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Preface

We are delighted to introduce this Reprint, showcasing a compilation of insightful scientific

contributions spanning diverse fields. This collection centers on the significant realm of environments

influenced by human activities, highlighting the essential role of remote sensing and geospatial

approaches. Our goal with this compilation is to offer a comprehensive overview of state-of-the-art

research and advancements in the covered subjects.

As Guest Editors, we are curating this Reprint with the aim of promoting knowledge sharing

and fostering collaboration among experts and enthusiasts in these fields. We are confident that this

collection will be a useful resource for our audience.

This compilation from the perspectives of new theories, datasets, methods, findings, and

applications delves into essential questions: How can we monitor the environmental alteration by

human activities at different spatiotemporal scales? How can we quantify, evaluate, and predict the

impact of human activities on the environment? How can we decompose or evaluate the compound

influence of various natural disturbances and human alteration on the environment? What is the

corresponding pattern or mechanism of the environmental evolution to different human activities?

Through this Special Issue, we aim to foster knowledge exchange, encourage innovative research

from diverse perspectives, and make scientific contributions to the environmental protection and

governance affected by a variety of human activities.

We would like to express our sincere gratitude to all the authors who submitted their

high-quality manuscripts to this Special Issue. We also thank all the reviewers who provided

constructive comments and suggestions to improve the manuscripts. We appreciate the support and

guidance from the editorial team of Remote Sensing.

We hope this compilation serves as a source of inspiration and prompts further exploration in

the realms of “Remote Sensing and Geospatial Approaches for Studying the Environment Affected

by Human Activities”, making a significant impact on scientific advancement and environmental

stewardship.

Jun Li, Xinyi Shen, Qiusheng Wu, and Chengye Zhang

Editors
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Abstract: This study conducted land cover classification and inversion analysis to estimate land
surface temperature, soil moisture, specific humidity, atmospheric water vapor density, and relative
humidity using remote sensing and multi-source mining data. Using 1990–2020 data from the
Shendong mining area in Inner Mongolia, China, the eco-environmental evolution and the ecological
cumulative effects (ECE) of mining operations were characterized and analyzed at a long-term scale.
The results show that while the eco-environment was generally stable, mining activities affected the
eco-environment at the initial stage (1990–2000) to a certain degree. During the rapid development
stage of coal mining, the eco-environment was severely damaged, and the ECE were significant at
the temporal scale. The absolute value of the change rate of ecological parameters was increasing.
Due to an increased focus on ecological restoration, starting in 2010, the environmental indicators
gradually stabilized and the eco-environment improved considerably, ushering in a period of stability
for coal mining activities. The absolute value of the change rate of ecological parameters became
stable. Analysis of the change in eco-environmental indicators with distance and comparison to the
contrast area showed the ECE characteristics from mining disturbance at the spatial scale. This study
shows that remote sensing technology can be used to characterize the ECE from mining operations
and analyze eco-environmental indicators, providing crucial information in support of ecological
protection and restoration, particularly in coal mining areas.

Keywords: ecological cumulative effect; coal mining area; quantitative remote sensing; ecology and
environment; land surface temperature; soil moisture

1. Introduction

Ecological cumulative effect (ECE) refers to the cumulative impact on the eco-environment
caused by activities from the past to the future. This metric is particularly useful for under-
standing that, while the individual effects of some operations may be small or subtle, the
combined effects could be significant [1]. Characterized by long-term lagging, accumulation,
and interaction [2], the ECE consists of temporal and spatial aspects. The temporal cumulative
effect refers to the accumulation generated when the time interval between two disturbances is
less than that required by environmental restoration. The spatial cumulative effect refers to
the accumulative phenomenon generated when the distance between two disturbances is less
than that required by the attenuation [3].

Understanding the cumulative effects on the environment of policies, industries, and
other economic activities is extremely important when evaluating choices and addressing
the long-term effects caused by various anthropogenic endeavors. One such industry where
the holistic comprehension of environmental effects is crucial is coal mining. Although coal
mining has brought huge economic benefits, it also has resulted in the continuous decline
in the quality of soil, water, vegetation, and atmosphere in the mining area, and has caused
long-term adverse effects on the ecological environment [4–6]. Given its small object and
long-duration features, the eco-environmental change caused by coal mining activities

Remote Sens. 2021, 13, 5034. https://doi.org/10.3390/rs13245034 https://www.mdpi.com/journal/remotesensing
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shows typical cumulative effect characteristics, which could be reflected by the superposi-
tion of the damage degree at the temporal scale and the attenuation with distance at the
spatial scale. The cumulative effect from coal mining activities has accelerated the degra-
dation of eco-environmental quality. Therefore, analyzing the cumulative effect of coal
mining would be extremely useful for ecological restoration and sustainable development.

The impact of mining and restoration activities in coal mining areas is a continuous
and intense process. Environmental effects vary considerably at the different stages of
mining (i.e., initial stage, intense phase, stable period, reduction phase, and closure stage),
as well as before, during, and after ecological restoration. Generally speaking, there
is a coupling relationship between mining and restoration activities and various eco-
environmental factors. This means that monitoring and evaluating the eco-environment
in coal mining areas require specialized observational techniques involving large-scale,
high-frequency, continuous, long-term, and comprehensive observations and quantitative
analyses. However, traditional approaches, such as field surveys, ground monitoring
stations, and sensor networks are unable to meet these requirements.

In recent years, remote sensing has been used to monitor and evaluate the eco-
environment in mining areas, given its ability to provide rapid synchronous observations
in large areas [7–11]. The combination of remotely sensed images and ground data can
generate land cover information and physical-chemical parameters of various ecological
elements, which are essential in estimating the ECE of mining activities [12]. Numerous
studies have employed and developed remote sensing techniques to measure ecological
parameters in mining areas. For example, in terms of land cover, Balaniuk et al. [13] used
Sentinel-2 satellite images to conduct nationwide automatic identification and classification
of open-pit mines and tailings dams in Brazil, with an accuracy of more than 95%. A
systematic image analysis method based on geographical objects (GEOBIA) was proposed
by Nascimento et al. [14], and land-use changes of open-pit mines were quantified using
high-resolution satellite images from different sensors, with an accuracy of more than
90%. In terms of ecological parameters, Wu et al. [15] adopted the BFAST algorithm to
detect abrupt changes in vegetation cover from open-pit mining using Landsat time series.
This algorithm can automatically detect the time of initial mining and evaluate the spatial
distribution of vegetation destroyed by mining. Fu et al. [16] monitored NDVI (Normalized
Difference Vegetation Index) in Xilinhot using the rate of change in greenness (RCG) and
coefficient of variation (CV) as indicators. They used correlation analysis and stepwise
regression to analyze the driving factors of vegetation and the impact of mining activities.
Using SPOT 5/6 and WorldView-2 data, Liu et al. [17] analyzed soil moisture (SM) in the
Dariuta Coal Mine through the Scaled SM Monitoring Index (S-SMMI). Cao et al. [18] ana-
lyzed land use, vegetation cover, and land surface temperature (LST) of the Jixi mining area
in Heilongjiang with the Landsat 8 Operational Land Imager (OLI) data and used correla-
tion analysis to explore the influence of land-use types, vegetation cover and coal mining
activities on LST. García Millán et al. [19] detected water distribution change through
multi-temporal analysis of multispectral data and extracted mine-related flood zones using
high-resolution hyperspectral data. Using Hyperion hyperspectral data and Landsat data,
Kayet et al. [20] conducted indirect monitoring of dust in opencast iron ore mines using
eight vegetation indices. When analyzed and compared with field measurements, the
remote sensing estimates were found to be reliable. In terms of cumulative effect [21–24], a
pixel-based Ecosystem Service Value (ESV) time series model was proposed that quantified
the ECE of the Yanzhou Coalfield over the past 30 years. However, to the best of our
knowledge, there has been no study estimating the ECE of coal mining operations and
analyzing its temporal and spatial dimensions using remote sensing.

Using long-term remote sensing and multi-source spatial data from 1990 to 2019,
this study performed land cover classification and change detection and quantitatively
estimated land surface (LST and SM) and atmospheric parameters (specific humidity,
atmospheric water vapor density, and relative humidity). The characteristics of ECE due to
coal mining disturbance were also analyzed temporally and spatially.
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2. Study Area and Datasets

2.1. Study Area

The study area is located in the Ejin Horo Banner, Inner Mongolia Autonomous Region,
and the Shenmu, Shaanxi Province, China (Figure 1).

Figure 1. Map of the study area.

Ejin Horo Banner is located in the southeastern part of Ordos, Inner Mongolia, China.
The southern part comprises the northern edge of the Mu Us Desert. The area has an
average annual temperature of ~6.9 ◦C, and the terrain is high in the northwest and low in
the southeast. Having a typical temperate continental climate, the region is dry, experiences
little rainfall, and has annual precipitation less than evaporation. The vegetation is mostly
herbaceous and small shrubs. Ejin Horo Banner is rich in mineral resources, the third-
largest coal-producing county in China, and is considered a critical national energy strategic
base [25], with coal reserves of 56 billion tons and an annual output of about 200 million
tons. Shenmu, found in Yulin, Shaanxi, is a transitional zone from grassland, forest, and
hill to steppe and desert. The area has a typical temperate continental climate and has
an annual average temperature of ~8.9 ◦C. Shenmu is located in the southeastern part of
the Mu Us Desert and has proven coal reserves of over 50 billion tons, with stable coal
occurrence and excellent mining conditions [26,27].

The Shendong mining area across the Ejin Horo Banner and Shenmu is one of the most
famous coal fields and mining bases with the largest proven reserves in China. According to
the statistical data of raw coal output in Ordos and Yulin, from 1990 to 2019 [28], the study
area underwent three stages of development based on the intensity of coal mining activities:
initial stage (1990–2000), rapid development stage (2001–2010) and stable operation stage
(2011–2019). Ecological restoration efforts in the mining site have increased considerably
since 2005.

3
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2.2. Datasets

The Landsat data used in this paper have been processed by cloud removing, radio-
metric calibration, atmospheric correction, mosaicking and clipping. The time range from 1
July to 1 September during 1990–2020 was selected as the time range of the image. Images
with less than 5% cloud cover were utilized. All of the steps were completed on Google
Earth Engine’s remote sensing cloud computing platform. In this study, Landsat images
were used for retrieving the ecological parameters (Figure 2).

(a) (b) (c) 

(d) (e) (f) 

Figure 2. Landsat satellite images in the study area: (a) 1990, (b) 2000, (c)2005, (d) 2010, (e) 2015, (f) 2019.

In addition, ASTER-GDEM (Advanced Spaceborne Thermal Emission and Reflection
Radiometer–Global Digital Elevation Model) images were used in land cover classification.
FLDAS (Famine Early Warning Systems Network Land Data Assimilation System), Chinese
farmland soil moisture ten-day dataset, and other soil moisture products were used for
estimating soil moisture, while the Atmospheric reanalysis ERA5 dataset was used for
determining the atmospheric parameters.
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3. Methodology

The main methods used in the study are as follows: multi-source remote sensing
data processing, remote sensing classification of land cover in mining areas, inversion of
land surface ecological parameters, reanalysis of atmospheric parameters, and analysis of
impacts on the ecological environment. The corresponding flowchart of the technology
framework is presented in Figure 3.

 
Figure 3. Flowchart of the technology frame.
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3.1. Land Cover Classification

The study area was classified into six land cover types: vegetation, water area, culti-
vated land, bare land, mining land, and artificial land (i.e., urban and construction lands).
Using high spatial resolution historical images, samples for each land cover type were
selected using manual interpretation and were then used for model training and result
verification. The Random Forest (RF) [29] classification algorithm, an integrated learning
algorithm based on multiple decision trees, was adopted to generate land cover classifi-
cation for the mining areas using remote sensing images. Figure 4 presents the schematic
diagram of the RF algorithm.

Figure 4. Schematic diagram of the random forest algorithm.

3.2. Inversion of Land Surface Ecological Parameters
3.2.1. Inversion of LST

The method proposed by Xu [30] was used in the inversion analysis of the land surface
temperature (LST). After acquiring the vegetation coverage using the pixel dichotomy
method [31–33] and empirically determining the surface emissivity of different ground
objects [34], LST can be obtained using the formula:

TS = T/[1 + (λT/ρ) ln ε] (1)

where T is the temperature value at the sensor, which can be obtained by radiation cali-
bration; λ is the center wavelength of the thermal infrared band of the sensor; ρ = 1.438 ×
10−2 mK; and ε is the emissivity of the surface.

3.2.2. Inversion of SM

The Temperature Vegetation Dryness Index (TVDI) [35] was used for the inversion
of soil volumetric moisture (unit: m3/m3). The Normalized Difference Vegetation Index
(NDVI) is calculated by the formula:

NDVI =
NIR− R
NIR + R

(2)

where NIR represents the reflectivity in the near-infrared waveband, and R represents the
reflectivity in the red-light waveband.

6
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The TVDI is determined by constructing the feature space of LST (Ts) and NDVI
(Figure 5) and calculated using the following equations:

TVDI =
TS − TSmin

TSmax − TSmin

(3)

TSmin = a1 + b1 ∗NDVI (4)

TSmax = a2 + b2 ∗NDVI (5)

where a1, b1, a2, and b2 are the undetermined coefficients of the dry-wet edge, obtained
by fitting the dry-wet edge equations using the least square method [36]. Equation (6) is
obtained by substituting Equations (4) and (5) into Equation (3).

TVDI =
TS − (a1 + b1 ∗NDVI)

(a2 + b2 ∗NDVI)− (a1 + b1 ∗NDVI)
(6)

Figure 5. Schematic diagram of TVDI.

After scale conversion, the FLDAS dataset and the Chinese farmland soil moisture
ten-day dataset were used to construct the remote sensing regression model of SM with
the TVDI.

3.3. Atmospheric Parameter Reanalysis

The ERA5 reanalysis data provide temperature, pressure, relative humidity, and
specific humidity values using 37 pressure levels. Note that the geopotential height should
be converted into geometric height using the formula [37]):

h =
Re(ϕ)·H

g(ϕ)/g0·Re(ϕ)−H
(7)

where h is the ellipsoidal height (km), H is the geopotential height (km), ϕ is the latitude,
g0 = 9.80665 ms−2, Re(ϕ) is the radius of curvature of the Earth at latitude ϕ, and g(ϕ)
represents the gravity on the geoid.

7
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The converted meteorological parameters were then interpolated to obtain the atmo-
spheric relative humidity and the atmospheric specific humidity at the Earth’s surface.
The atmospheric water vapor density ρv can be obtained using the atmospheric equation
of state:

ρv =
e

RvT
(8)

where T is the temperature in Kelvin; Rv is the gas constant of water vapor equal to
461.5 J/kg; and e is the water vapor pressure, calculated from the relative humidity and
temperature provided by ERA5 using the Magnus formula [38].

The water vapor humidity factors (i.e., density, relative humidity, and specific hu-
midity) at the Earth’s surface can then be obtained. Time series analysis for these factors
was conducted for the different production periods, and the change rates in the different
regions were fitted by the least square method.

4. Results and Discussion

4.1. Analysis of the Changes of Eco-Environmental Elements
4.1.1. Analysis of Land Cover Change

The land cover classification results using remote sensing are shown in Figure 6. To
further explore the evolution of the land cover changes in the past 30 years, changes in each
land cover type were calculated for the different time periods. The results are presented
in Figure 7, and the land cover transfer matrix is presented in Table 1. The results show
that the vegetation area remained stable in the first decade, showed rapid growth after
2000, and experienced steady growth since 2015. There were also three stages of change
occurring on the water cover type, i.e., a sharp decline stage (1990–2005), a gentle decline
stage starting (2005–2015), and a gradual growth stage (2015–2019). Mining land was
almost zero in 1990 and increased slowly from 1990 to 2000. Rapid growth in mining lands
occurred since 2000, gradually decelerating in recent years. Cultivated land exhibited a
steady growth trend, while bare land declined continuously over 30 years. Growth in
artificial land was observed from 1990 to 2019, increasing relatively more from 2005 to 2019.
More lands were converted into vegetation land compared to vegetation lands converted
into other cover types, increasing the extent of vegetation land in the study area. Many
vegetation and bare lands were also transformed into mining and artificial lands over the
years, resulting in a considerable increase in mining and artificial land extents.

(a) (b) (c) 

Figure 6. The results of the land cover classification in the study area: (a) 1990, (b) 2005, (c) 2019.
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 7. Changes of all kinds of land cover in the study area: (a) Vegetation, (b) Water, (c) Mining land, (d) Cultivated land,
(e) Bare land, (f) Artificial land.

Table 1. Land cover transfer matrix (1990–2019) (km2).

Vegetation Water Mining Land Cultivated Land Bare Land Artificial Land
Total

Transfer out

vegetation 8811.29 42.52 130.82 886.88 178.79 311.28 1550.28

water 118.54 91.36 5.50 26.37 13.53 19.85 183.79

mining land 0.00 0.00 0.00 0.00 0.00 0.00 0.00

cultivated
land 70.84 2.21 2.22 77.87 1.59 16.24 93.09

bare land 1811.39 14.56 32.32 122.15 39.61 74.57 2054.99

artificial land 5.45 0.15 0.23 2.33 0.12 6.54 8.28

total
transfer in 2006.21 59.44 171.09 1037.74 194.03 421.93

4.1.2. Analysis of the LST Inversion Results

The results of the LST inversion using remote sensing images (mean values from June
to August in summer) are shown in Figure 8, while the mean LST values for summer at
different years are presented in Figure 9. The results show the mean LST value increased
annually from 1990, reaching its peak in 2005 with the value at over 40 ◦C. The LST
decreased rapidly from 2005 to 2010, slightly increased in 2010–2015, and stabilized from
2015 to 2019. In particular, as shown in Figure 8, the LST has a more pronounced increase
at the northeastern section of the central image from 1990 to 2005. This is because many
coal mining areas are located in this region and have increased significantly over the years.

9
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(a) (b) (c) 

Figure 8. Inversion results of LST in the study area (◦C): (a) 1990, (b) 2005, (c) 2019.

 
Figure 9. The mean value of LST in the study area.

The LST change rates varied considerably during the 30-year study period. The
increase in LST was accelerating from 1990 to 2005, which was the initial and rapid
development stage of coal mining activities. The increased influence of mining activities
accelerated the upsurge in LST, showing a significant ECE at the temporal scale. This was
because more attention was given to ecological restoration and green mine construction,
and the impacts caused by mining activities were artificially improved. When coal mining
activities became stable after 2010, the LST change rate decelerated, and the impact of
mining activities gradually stabilized.

4.1.3. Analysis of the SM Inversion Results

The inversion results using remote sensing images (mean values from June to August
in summer) are shown in Figure 10, while the mean SM values for summer (June–August)
at different years are presented in Figure 11. As shown in the figures, SM experienced two

10
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different trends, i.e., a decreasing trend in 1990–2005 and the increasing trend in 2005–2019.
The highest and lowest mean SM values were observed in 2005 and 2019, respectively.

(a) (b) (c) 

Figure 10. Inversion results of SM in the study area (m3/m3): (a) 1990, (b) 2005, (c) 2019.

Figure 11. The mean value of SM in the study area.

The rate of increase in mean SM in 1990–1995 was comparable to its rate of decrease in
1995–2000. Note that the rate of decline in SM decelerated during the rapid development
of coal mining activities (from 2000 to 2005). The reason may be that while there may
have been increased mining activities during this period, people have started to pay
greater attention to ecological restoration, environmental protection, and sustainability.
Since 2005, the SM has gradually increased, particularly in 2015–2019, exhibiting apparent
ecological cumulative effects related to progress in sustainable mining practices and focus
on environmental protection.
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4.1.4. Analysis of Atmospheric Parameters

ERA5 reanalysis data were used to obtain mean values for relative humidity, specific
humidity, and atmospheric water vapor density (June to August). Figures 12–14 show the
spatial distribution of these parameters for 1990, 2005, and 2019. Specific humidity and
atmospheric water vapor density exhibited pronounced spatial variations in each interval.
In terms of spatial distribution, the parameter values were higher in the southern region
than in the north. The three atmospheric parameters were also found to have similar trends
in the time scale, showing a downward trend in 1990–2005 and a rising trend from 2005 to
2019. The three parameters reached their peak in 1990 and their minimum in 2005.

(a) (b) (c) 

Figure 12. Inversion results of relative humidity in the study area (%): (a) 1990, (b) 2005, (c) 2019.

(a) (b) (c) 

Figure 13. Inversion results of atmospheric specific humidity in the study area (g/kg): (a) 1990, (b) 2005, (c) 2019.

(a) (b) (c) 

Figure 14. Inversion results of atmospheric water vapor density in the study area (g/cm3): (a) 1990, (b) 2005, (c) 2019.
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Figures 15 and 16 show the interannual mean values (from June to August) for
temperature and precipitation from 1990 to 2019. The mean temperature has been relatively
stable for the past 30 years. The lowest temperature was recorded in 2003 at 19.9 ◦C, while
the highest temperature occurred in 1999 and 2010 at 22.5 ◦C. The mean precipitation (June
to August) changed significantly over the past 30 years. It reached its maximum value in
2016 at 65.8 mm and was relatively low in 2005, 2009, and 2010.

 
Figure 15. Average value of temperature in the study area.

 
Figure 16. Average value of summer precipitation in the study area.

4.2. Monitoring of Key Mining Area—Shangwan Coal Mine

Shangwan coal mine (see Figure 17), located in Wulanmulun Town, Ejin Horo Banner,
Ordos City, China, is one of the ultra-large modern backbone mines of Shenhua Shendong
Coal Group Co., Ltd. [39]. The mine is a subterranean coal mine (pithead industry coal
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mine) with an area of 61.8 km2 and a geological reserve of 1.23 billion tons [40]. It started
its operation in 2000, with an approved production capacity of 14 million tons per year.

 
Figure 17. Research area of Shangwan Coal Mine.

4.2.1. Land Cover Classification of the Shangwan Coal Mine

The land cover classification results for the Shangwan coal mining area at different
years are shown in Figure 18, and the tabulated results for each cover type are summarized
in Table 2. In 1990, almost no mining land and artificial land was found in the Shangwan
coal mining area; the main cover types were vegetation and bare lands. In 2005, the main
cover types were still vegetation and bare land. Patches of cultivated land and mining
land were observed, but there was still no artificial land. In 2019, most of the land had
vegetation cover type; bare land decreased, while mining land and artificial land increased
significantly. In the past 30 years, changes in the land cover types in the mining area have
been pronounced. The primary land cover type was vegetation. Bare land and water had
decreased considerably, while mining land and artificial land have increased year by year.

 

(a) (b) (c) 

Figure 18. Land cover classification in the Shangwan coal mining area for (a) 1990, (b) 2005, and (c)2019.
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Table 2. Statistics of various types of land coverage in different years in Shangwan coal mining area.

Coal Mine Year Class Vegetation Water
Mining

Area
Cultivated

Land
Bare Land Artificial Land

Shangwan
coal mine

1990
area (km2) 15.45 0.20 0.00 0.00 4.43 0.00

Percentage
% 77.00 1.00 0.00 0.00 22.00 0.00

2005
area (km2) 18.52 0.08 0.04 0.06 1.38 0.00

Percentage
% 92.20 0.40 0.20 0.30 6.90 0.00

2019
area (km2) 17.70 0.02 1.41 0.08 0.24 0.63

Percentage
% 88.14 0.10 7.02 0.40 1.20 3.14

In Figure 19, the vegetation area in the Shangwan coal mining area showed an accel-
erated growth trend from 1990 to 2005. The effects of mining activities on the vegetation
were minimal at this time, given that it was still the initial and early stages of development
for mining activities. During the period of rapid development of coal mining activities
(from 2005 to 2010), vegetation showed pronounced ECE, which gradually increased due
to its cumulative effects year by year.

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 19. Changes for all land cover types in the Shangwan coal mining area: (a) Vegetation, (b) Water, (c) Mining land,
(d) Cultivated land, (e) Bare land, (f) Artificial land.

There was a slow decline in vegetation from 2010 to 2019. Compared with the previous
period, vegetation in the Shangwan coal mine had increased overall, while water and bare
lands had downward trends. In 2000, lands classified as water were more extensive than
usual, possibly due to the heavy precipitation occurring in that year. The expansion of
artificial lands accelerated in 2010–2015; coal mining processing plants (screening fields)
and other artificial lands were built in the eastern part of the study area, given increased
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mining activities in the region. Cultivated lands had increased rapidly in 1990–2000 and
fluctuated in the following decades. These changes are closely related to changes in human
activities.

4.2.2. Analysis of LST and SM

The LST inversion results for the Shangwan coal mining area are shown in Figure 20,
and the mean LST summer values (June to August) at different years are presented in
Figure 21. The LST exhibited an overall upward trend in 1990–2005, reaching its peak in
2005 before declining in subsequent years. As shown in Figures 11 and 21, the change
trend in LST for the Shangwan coal mining area is comparable to that of the entire study
area. The LST in the mining area gradually surged in 1990–2000 because the impact from
mining on the surrounding environmental factors was weak at the initial stage of coal
mining operations. From 2000 to 2010, the LST initially increased and then declined.
To a certain extent, these changes were influenced by the cumulative effects of mining
activities, showing particular ECE characteristics. The LST in the mining area increased
gradually in 2010–2019, given the plateauing of coal mining activities, and the impact on
the LST diminished.

(a)     (b)      (c) 

Figure 20. LST inversion results of the Shangwan coal mining area (◦C): (a) 1990, (b) 2005, (c) 2019.

 
Figure 21. The mean LST value in the Shangwan coal mining area.

The SM inversion results of the Shangwan coal mining area are shown in Figure 22,
and the mean SM values for summer (June to August) at different years are presented in
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Figure 23. SM had an overall fluctuating trend, with the lowest value occurring in 2005
and the highest in 2019. SM was steady from 1990 to 2000. From 2000 to 2005, it dropped
rapidly; this was caused mainly by long-term mining activities. From 2005 to 2020, SM was
in an upward trajectory, surging particularly in 2015–2019. The pronounced SM changes in
the Shangwan coal mining area are related, not only to the climate elements, but also to the
ecological restoration measures being implemented at that time.

(a) (b) (c) 

Figure 22. SM inversion results of the Shangwan coal mining area (m3/m3): (a) 1990, (b) 2005, (c) 2019.

 
Figure 23. The mean value of SM in the Shangwan coal mining area.

4.3. Characteristics of Ecological Cumulative Effect of Mining Disturbance
4.3.1. Features on the Time-Scale

The spatial distribution of change rates in LST and SM are shown in Figures 24 and 25.
The LST increased from 1990 to 2005, with the most pronounced surge occurring in
2000–2005. The LST in more than half of the study area decreased significantly in 2005–2010,
especially in the eastern region. The LST increased from 2010 to 2019, comparable with the
change in 1990–2000. A decrease in LST was observed in a small number of areas.
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(a) (b) (c) 

(d) (e) (f) 

Figure 24. Change rate of LST in the study area: (a) 1990–1995, (b) 1995–2000, (c) 2000–2005, (d) 2005–2010, (e) 2010–2015,
(f) 2015–2019.

For 1990–2005, the SM in the study area decreased overall. SM mainly increased in
1990–1995 and then declined in the following decade. From 2005 to 2010, the SM increased
considerably in the eastern part of the study area and slightly increased in other areas.
From 2010 to 2015, the SM was comparable to the 2005–2010 levels, with the main difference
being that in the east-central area, the SM decreased slightly. From 2015 to 2019, the SM of
the entire study area had drastically changed.

Figures 26–28 show the change rates in atmospheric specific humidity, atmospheric
relative humidity, and atmospheric water vapor density. The atmospheric specific humidity
increased from 1990 to 2000. However, the increase rate showed a decreasing trend from the
northwest to the southeast, reflecting the variations in physical geography. The atmospheric
specific humidity had a downward trend for 2000–2010, and the decrease rate near the
mining area was significantly higher than that in other regions. From 2010 to 2020, the
atmospheric specific humidity again surged, with a large increase rate and a significant
ecological cumulative effect. The spatial and temporal distribution patterns of water
vapor density and relative humidity change rate were consistent with that of atmospheric
specific humidity.
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(a) (b) (c) 

(d) (e) (f) 

Figure 25. Change rate of SM in the study area: (a) 1990–1995, (b) 1995–2000, (c) 2000–2005, (d) 2005–2010, (e) 2010–2015,
(f) 2015–2019.

(a) (b) (c) 

Figure 26. Change rate of atmospheric specific humidity in the study area: (a) 1990–2000, (b) 2000–2010, (c) 2010–2019.
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(a) (b) (c) 

Figure 27. Change rate of atmospheric relative humidity in the study area: (a) 1990–2000, (b)2000–2010, (c)2010–2019.

(a) (b) (c) 

Figure 28. Change rate of atmospheric water vapor density in the study area: (a) 1990–2000, (b)2000–2010, (c)2010–2019.

The mean LST and SM change rates (in absolute value) at each time period are
summarized in Figure 29. In the first four intervals (1990–1995, 1995–2000, 2000–2005,
and 2005–2010), the mean LST change rate (in absolute value) showed an upward trend,
indicating that the LST increase was accelerating. In 1990–2000, mining operations were still
in the initial stage of development, and the succeeding decade (2000–2010) was the period
for rapid development. During these years, with the gradual strengthening of mining
activities, the influence of ecological factors also expanded, as indicated by the accelerated
changes in LST. For 2010–2019, the values were in a downward trajectory, indicating a
deceleration in LST change rates. At this period (2010–2019), coal mining activities were at
the stage of steady development. Vigorous implementation of environmental protection
and ecological restoration measures has gradually stabilized the ecological elements, as
manifested by the decelerating changes in LST.

The change rate in mean SM (in absolute value) showed an upward trend in 1990–1995.
From 1995 to 2010, the change rate of mean SM (in absolute value) decreased, indicating
that it had weakened during this period. In 2015–2019, the slope showed an upward trend,
indicating an accelerated change in mean SM.

Time accumulation is the cumulative phenomenon that occurs on the time scale when
the time interval between two disturbances is less than the time required for environmental
restoration. The external manifestation is an increase in the rate of change on the time scale.
Therefore, the accelerated changes in LST and SM values show the ecological cumulative
effect of mining disturbance on the time scale.
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Figure 29. The absolute value of the change rate of mean LST and SM in the study area.

4.3.2. Features on Spatial Scale

As shown in Figure 30, seven buffer zones were set up, with the Shangwan Coal Mine
as center and a 300 m interval between two adjacent buffers. The mean LST and SM values
for each buffer zone in 2019 were then calculated, and the summary of results is presented
in Figure 31.

Figure 30. The buffer zones at the Shangwan coal mine.
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Figure 31. The relationship between the mean value of LST, SM, and the distance from the mine.

The first buffer zone (>300 m) had the highest mean LST and the lowest average
SM values. The mean LST gradually declines as the distance increases, while the mean
SM exhibits a gradual upward trend. Spatial accumulation refers to the accumulative
phenomenon generated on the spatial scale when the spatial proximity between adja-
cent disturbance factors is less than the distance required to remove each disturbance.
Externally, the influence of disturbance on the spatial scale attenuates with the distance.
Therefore, the variations in LST and SM with regard to distance show pronounced ECE
characteristics on the spatial scale. Based on the temporal and spatial cumulative effect
characteristics (Wang et al., 2010), the source of the cumulative effect may be attributed to
mining disturbance by way of mining subsidence and the land-use change.

To better analyze the environmental evolution characteristics, we chose an area unaf-
fected by human activities to compare with the Shangwan coal mining area. The contrast
area is rectangular, located two kilometers from the western boundary of the Shangwan
coal mining area, and is similarly sized as the study site. The high-resolution image of the
contrast area is shown in Figure 32.

 

Figure 32. The contrast study area.
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The land cover results of the contrast area at different years are shown in Figure 33,
and the area statistics are summarized in Table 3. There was almost no mining or artificial
land in the contrast area in 1990, and the main coverage types were vegetation (79%) and
bare land (18%). In 2005, vegetation cover (90%) was still the primary coverage type,
while barren land decreased to 8%. In 2019, vegetation (53%) decreased considerably,
while bare land disappeared. Along with vegetation, cultivated land (47%) became a
major land cover type, and new artificial lands (1%) were established. Results from the
cover classification analysis reveal that the land cover in the contrast area has significantly
changed; in particular, large portions of vegetation and bare lands were converted into
cultivated land.

(a) (b)     (c) 

Figure 33. Results of land cover classification in the contrast area: (a) 1990, (b) 2005, (c) 2019.

Table 3. Statistics of various types of land coverage in the contrast area.

Coal Mine Year Class Vegetation Water
Mining

Area
Cultivated Land Bare Land Artificial Land

Shangwan
coal mine

1990
area (km2) 15.92 0.48 0.00 0.00 3.68 0.00

percentage
% 79.28 2.39 0.00 0.00 18.33 0.00

2005
area (km2) 17.98 0.52 0.00 0.00 1.58 0.00

percentage
% 89.54 2.59 0.00 0.00 7.87 0.00

2019
area (km2) 10.55 0.01 0.00 9.38 0.00 0.14

percentage
% 52.54 0.05 0.00 46.71 0.00 0.70

Figure 34 shows the various land cover changes in the Shangwan coal mining area
and the contrast area for the last 30 years. The vegetation cover in these two areas exhibited
a growing trend in the first 20 years but has since trended downwards in the last decade.
Vegetation in the contrast area decreased further and faster than in the mining area. The
change trends for water, bare land, and cultivated lands in the two areas are comparable,
but cultivated lands have expanded more rapidly in the contrast area in the past five years.
Both mining and artificial lands had increased in the mining zones.

The LST inversion results for the contrast area are shown in Figure 35. The overall
LST increased from 1990 until its peak in 2005 and then declined. The SM values initially
decreased, reached the lowest value in 2005, and then increased to the highest point in 2019.
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(a) (b) (c) 

(d) (e) (f) 

Figure 34. Changes of all kinds of land cover of the Shangwan coal mining area and contrast area: (a) Vegetation, (b) Water,
(c) Mining land, (d) Cultivated land, (e) Bare land, (f) Artificial land.

(a) (b) (c) 

Figure 35. Inversion results of LST in the contrast area (◦C): (a) 1990, (b) 2005, (c) 2019.

Figure 36 shows the LST box plot for the Shangwan coal mining area and the contrast
area. Comparing Figures 20 and 35, the LST in the two regions showed a gradually
increasing trend from 1990 to 2005. However, due to the emergence of mining land and
artificial land in the Shangwan coal mining area in 2019, the coal mine processing plant
and its surroundings yielded high LST values, while in other land cover types, the LST
values were considerably lower. In the contrast area, the LST decreased overall. As shown
in Figure 36, the Shangwan coal mining area had more concentrated LST values and a
higher mean LST than the contrast area.

The SM inversion results for the contrast area are shown in Figure 37. The SM box
plot between the Shangwan coal mining area and the contrast area is shown in Figure 38.
Comparing Figures 22 and 37, the two regions had similar SM change trends, decreasing
initially and then increasing. As shown in Figure 38, the distribution of the SM value for
the two regions is relatively consistent and concentrated. However, the mining area has
lower mean SM than the contrast area, which indicates that mining activities affect SM and
that the impact is highly concentrated.
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Figure 36. Comparison of LST of Shangwan coal mining area and contrast area.

(a) (b) (c) 

Figure 37. Inversion results of SM in the contrast area (m3/m3): (a) 1990, (b) 2005, (c) 2019.

Figure 38. Comparison of SM of Shangwan coal mining area and contrast area.

5. Conclusions

Land cover classification and change analysis were carried out to retrieve land surface
temperature, soil moisture, specific humidity, relative humidity, and atmospheric water
vapor density using remote sensing and multi-source spatial data. The eco-environment
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change and the characteristics of ecological cumulative effect from coal mining operations
were analyzed on a long-time scale. The Shangwan Coal mine was used as example in the
comparative analysis between the mining zone and the contrast area. The main highlights
of the study are as follows:

(1) In the initial stage of coal mining activities (1990–2000), the eco-environment was
generally stable, but mining activities had impacted the eco-environment to a cer-
tain degree.

(2) During the rapid development stage of coal mining operations, the eco-environment
was damaged severely, showing significant ECE, including temporal and spatial
cumulative effects. The change rates for the eco-environmental parameters accelerated
and showed pronounced ecological cumulative effects at the temporal scale. In 2010,
coal mining activities entered a period of relative stability, and ecological restoration
started to receive greater attention. The eco-environmental parameters gradually
recovered, and the eco-environment generally improved. Results from the land
surface temperature and soil moisture analyses and the spatial comparison with the
contrast area show ECE characteristics due to mining disturbance at the spatial scale.

Future studies can comprehensively utilize remote sensing, ground investigation,
and statistical data to conduct quantitative and high-frequency observations for more
parameters at long-term scales in mining areas. The results would help support under-
standing the mechanisms and characteristics of the ecological cumulative effects caused by
mining operations.
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Abstract: Mining has caused considerable damage to vegetation coverage, especially in grasslands. It
is of great significance to investigate the specific contributions of various factors to vegetation cover
change. In this study, fractional vegetation coverage (FVC) is used as a proxy indicator for vegetation
coverage. We constructed 50 sets of geographically weighted artificial neural network models for
FVC and its driving factors in the Shengli Coalfield. Based on the idea of differentiation, we proposed
the geographically weighted differential factors-artificial neural network (GWDF-ANN) to quantify
the contributions of different driving factors on FVC changes in mining areas. The highlights of the
study are as follows: (1) For the 50 models, the average RMSE was 0.052. The lowest RMSE was 0.007,
and the highest was 0.112. For the MRE, the average value was 0.007, the lowest was 0.001, and the
highest was 0.023. The GWDF-ANN model is suitable for quantifying FVC changes in mining areas.
(2) Precipitation and temperature were the main driving factors for FVC change. The contributions
were 32.45% for precipitation, 24.80% for temperature, 22.44% for mining, 14.44% for urban expansion,
and 5.87% for topography. (3) Over time, the contributions of precipitation and temperature exhibited
downward trends, while mining and urban expansion showed positive trajectories. For topography,
its contribution remains generally unchanged. (4) As the distance from the mining area increases,
the contribution of mining gradually decreases. At 200 m away, the contribution of mining was
26.69%; at 2000 m away, the value drops to 17.8%. (5) Mining has a cumulative effect on vegetation
coverage both interannually and spatially. This study provides important support for understanding
the mechanism of vegetation coverage change in mining areas.

Keywords: quantify; GWDF-ANN; FVC; vegetation cover; mining area

1. Introduction

Coal is an important source of energy in the world. For example, China’s primary
energy source is mainly coal [1]. Mining has caused land subsidence, occupation, excava-
tion, and pollution [2,3], considerably reducing vegetation areas. Mining also affects the
inherent growth of vegetation. For example, when dust from open-pit mines falls on the
plant leaf surface, the stomatal conductance of the leaf decreases, and the amount of carbon
dioxide exchange is also reduced. Large-scale mining has severely damaged the grassland
ecosystem [4] and accelerated changes in vegetation coverage [5]. In addition to mining,
many researchers have shown that precipitation, temperature [6–9], topography [10], and
urban expansion [11] are important driving factors altering vegetation coverage in mining
areas. However, the contribution of each factor to the change of vegetation coverage in
mining areas remains unclear. Therefore, it is crucial to accurately quantify the contribu-
tions of the different driving factors in altering the fractional vegetation coverage (FVC) in
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mining areas. The quantitative analysis of these factors may also help reveal the internal
mechanisms of vegetation coverage change in mining areas.

There are two main approaches based on remote sensing used to investigate the
impact of mining on vegetation. One is to use vegetation parameters obtained from satellite
monitoring as proxy indicators. Direct changes in proxy indicators are then used to analyze
the impact of mining on vegetation. Li and Wang used the temporal and spatial changes
in the FVC to reveal the changes in vegetation coverage in the Baorixile mining area, the
Shengli mining area, and the Yellow River basin mining area [12–14]. Li used NDVI to
analyze the impact of mining on vegetation change in Jungar Banner, China, from 2000 to
2017 [15]. Yang used NDVI and LandTrendr algorithms to monitor vegetation disturbance
and restoration in the Kurah coal mining area [16]. However, the proxy parameter for
vegetation is direct change, which is affected by the complex coupling of multiple factors
and cannot be attributed solely to mining.

The other uses statistical methods to construct a regression model based on ordinary
linearity for vegetation parameters and their driving factors. For example, Li used multiple
linear regression, spatial correlation, and partial least square regression to analyze the
impact of mining on the NDVI changes in the grasslands of Chenbarhu Banner, Inner
Mongolia, China [17]. Fu Xiao used the rate of change in greenness (RCV) and the coefficient
of variation (CV) to conduct correlation and stepwise regression analysis in studying the
driving factors for the vegetation change in Xilinhot, particularly mining activities [18].
These studies mainly use a global regression model, in which the relationship between
vegetation parameters and driving factors is assumed to be spatially constant. However,
such a relationship often varies significantly in space because the vegetation coverage in
mining areas may be affected by spatial factors such as climate, topography, and mining.
Each driving factor may also have different effects on FVC at various locations. The
phenomenon of how spatial relationships vary at different geographic locations is called
spatial nonstationarity [19]. Simple linear regression modeling cannot accurately describe
the complex driving processes of these different factors in changing the vegetation coverage
in mining areas.

Therefore, the local modeling method, geographically weighted regression (GWR),
was developed to deal with spatial nonstationarity. GWR has been widely applied in
various fields, such as real estate economics [20,21], land-use science [22,23], ecology [24],
and criminology [25,26]. However, GWR is essentially linear modeling. The geographically
weighted artificial neural network (GWANN) was proposed to address the limitations of the
GWR in describing complex nonlinear processes. GWANN uses the distance attenuation
kernel function and bandwidth to calculate the geographic weight of the observed value
results based on the GWR, solving the problem in spatial nonstationarity modeling. The
model uses ANN to construct a nonlinear function model without making any assumption
in completing complex spatial prediction tasks. It has been used to solve problems such
as real estate valuation [27], agricultural output estimation [28], and wildfire analysis [29].
GWANN has been shown to be significantly better than the GWR when modeling synthetic
data and actual data with nonlinearity and high spatial variance, respectively [27].

Vegetation coverage can be evaluated using the FVC determined using satellite im-
agery [30]. FVC is the ratio of the vertical projection of vegetation (e.g., leaves, stems,
branches) on the ground in each pixel, which directly reflects the amount of vegetation
in the target area [31,32]. FVC describes and measures vegetation growth and is the most
important and sensitive indicator for vegetation coverage change [33,34].

In this study, we developed the geographically weighted differential factors-artificial
neural network (GWDF-ANN). It is a mixed methodology based on the GWR and ANN,
which constructs a nonlinear model while considering the nonstationarity of variables.
Most importantly, this approach can quantify the contributions of different driving factors
to the FVC. We applied the above methods to the various driving factors (i.e., temperature,
precipitation, topography, mining, and urban expansion) and quantified each driving
factor’s contribution on FVC in the Shengli Coalfield of Inner Mongolia for 2004–2020.
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2. Methods

2.1. Geographically Weighted Artificial Neural Network

The artificial neural network is a computing model consisting of many neurons and
one-way connections [35]. Each neuron i represents a specific output function called an
activation function. The connection between the two neurons i and j are controlled by
the weight wij, which is the weighted value of the signal through the connection. These
neurons are usually organized in layers, and each neuron is directionally connected to the
neuron in the next layer. GWANN is different from the traditional ANN. It consists of an
input layer, a hidden layer, and an output layer. A network with a single hidden layer can
better approximate any continuous function on the closed subset and bounded subset of
n-dimensional Euclidean space, given enough hidden neurons.

An input neuron is a grid cell that contains location information, y-value, and x-
values. In this paper, y-value refers to FVC, and x-values refer to temperature, precipitation,
topography, mining, and urban expansion. The modeling process of GWANN is shown
in Figure 1. Many input neurons from the input layer pass into the hidden layer and
are then aggregated and converted in the hidden layer using Equation (1). The output
of neuron i is calculated using Equation (2). In neurons, people often use a nonlinear
hyperbolic tangent activation function, which has the necessary conditions for calculating
the network’s continuous and differentiable error gradient [36], as shown in Equation (3).
The output for each neuron is then passed to the output layer. Each output neuron of
the output layer is assigned to a location in the geographic space and predicts a global
observed value. However, the observed value is still not accurate enough. To simulate an
exact nonlinear relationship model, the connection weight of the ANN must be adjusted.

Layerj = ∑
i∈Sj

wijoi (1)

oi = Φ(Layerj) (2)

f (x) =
ex − e−x

ex + e−x (3)

where Layerj is the network input of neuron j, wij is the connection weight between neuron
i and j, oi is the output of neuron i, Sj is a group of neurons that have output connection
with neuron j, Φ is the activation function, f(x) is the transfer value after activation of the
neuron, and x is the parameter value before neuron activation.

Two main steps are usually required to adjust the ANN. First, backpropagation is used
to calculate the error signal for the observed value of each neuron [37]. Unlike traditional
ANN, GWANN uses a geographically weighted error function instead of a quadratic error
function to calculate the error signal. GWANN weighs the difference between the output
neuron and the target value (y-value) according to the spatial distance between the location
of the output neuron and the observed value. These weights can be interpreted as the
GWR model. When the output neuron’s position is closer to the observed value, it is
given a higher weight than those farther from the observed value. The geographically
weighted error function is defined as Equation (4), and the backpropagation error signal is
determined using Equation (5).
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Figure 1. The modeling process of GWANN. N1, N2, N3, and N4 are the multiple input neurons
composing the input layer. The rectangles on the left represent the attributes of each input neuron
(y-value and x-values), and Y0 is the prediction.

Gradient descent is used to adjust the connection weight in the second step, as in
Equation (6). We use Nesterov’s acceleration gradient [38], which significantly improves
training performance [39] and makes training more robust. These two steps are repeated
until the termination condition is reached (e.g., the error rate is lower than a predetermined
threshold) and the GWANN model construction is completed. Finally, the modeling is
completed, and we obtain the prediction(Y0). The GWANN can be implemented on RStudio
software. An R package providing an implementation of GWANN can be obtained from
https://github.com/jhagenauer/gwann (accessed on 1 July 2021) [27], the purpose of
which was to predict Y0 in this study.

E =
1
2

n

∑
i=1

vi(ti − oi)
2 (4)

δj =

{
Φ′(Layerj)vi(oj − tj) if j is an output neuron
Φ′(Layerj)∑

k
δkwjk otherwise (5)

Δwij = −η
∂E

∂wij
= −ηδjoi (6)

where oi is the output of neuron i, oj is the output of neuron j, ti is the target value of neuron
i, tj is the target value of neuron j, vi is the geographically weighted distance between
the observed value and the position of output neuron i, vj is the geographically weighted
distance between the observed value and the location of output neuron j, n is the number of
output neurons, Layerj is the network input of neuron j, Φ’ is the derivative of the activation
function, δ is the value of neuron j error signal, wjk is the connection weight between neuron
j and k, wij is the connection weight between neuron i and j, E is the error function, and η is
the learning rate.
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2.2. Geographically Weighted Differential Factors-Artificial Neural Network

The GWANN can be used for value prediction but not in exploring the contributions
of driving factors. Hence, we developed the geographically weighted differential factors-
artificial neural network (GWDF-ANN), which can be obtained from https://figshare.com/
s/3d06bb3dc4660396d539 (accessed on 15 November 2021). In GWDF-ANN, we adapted
the existing architecture (GWANN) and we added a bias for each driving factor before
prediction. The idea of differentiation is then utilized to quantify the contribution of each
factor. The steps are as follows.

First, we use the FVC and five driving factors (temperature, precipitation, topography,
mining, and urban expansion) (xi) to build the GWANN model and predict Y0. Second, a
bias (Δxi) is added to the xi, which is calculated using Equation (7). The bias is added to a
specific driving factor for all input neurons, while the other driving factors for each input
neuron are kept constant. The bias does not affect the learning in the hidden layer of other
inputs in computing the contribution of one factor. The setting of the bias is carried out
in a series of experiments. If the bias is greater than 0.001, the contribution of the driving
factor always changes. But if the bias is less than 0.001, the contribution of the driving
factor hardly varies. From experiments, we found that 0.001 is the threshold value at which
the contribution of the driving factor tends to stabilize. The bias is added separately for
each driving factor and then input into the model to predict Y (Yxi). The partial derivative
for each driving factor is then calculated separately, using Equation (8). Finally, the partial
derivative results are normalized using Equation (9), and the contribution of each driving
factor to Y is obtained. The modeling process of GWDF-ANN is shown in Figure 2.

� xi= xi ∗ 0.001 (7)

Gxi =
Yxi −Y0

Δxi
(8)

Wxi =
Gxi

n
∑

i=1
Gxi

(9)

where xi is the value of the driving factor i, Δxi is the bias of xi, Gxi is the partial derivative
of xi, Yxi is the prediction after adding a bias to xi, Y0 is the prediction of original data, n is
the number of driving factors, and Wxi is the contribution of the xi factor.

Figure 2. Cont.
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Figure 2. The modeling process of GWDF-ANN. N1, N2, N3, and N4 are the multiple input neurons
composing the input layer. The first rectangular box shows the model after the first driving factor
has been added with a bias to x1 (x1 + Δx1). The Yx1 represents the predicted result after adding a
bias. The second rectangular box shows the model after the first driving factor has been added with a
bias to x2 (x2 + Δx2). The Yx2 represents the predicted result after adding a bias. We do not show all
the driving factors. The last rectangular box shows the model after the first driving factor has been
added with a bias to x5 (x5 + Δx5). The Yx5 represents the predicted result after adding a bias.

3. A Case Study

3.1. Study Area

Shengli Coalfield is located in Xilinhot, Inner Mongolia, China (115◦18′~117◦06′ E,
43◦02′~44◦52′ N), as shown in Figure 3. It belongs to the mid-temperate semiarid conti-
nental monsoon climate. From 2004 to 2020, the monthly 24 h average temperature ranges
from −18.4 ◦C in January to 22.4 ◦C in July, with an annual mean temperature of 2.76 ◦C.
Most of the 250 mm (9.84 inches) annual rainfall occur in July and August. The average
precipitation and temperature from January to December 2004–2020 are shown in Figure 4a.
In winter, northwest winds predominate, while south and southeast winds are more preva-
lent in summer. Xilinhot’s usable pasture area is 1,369,000 hectares and is a significant
processing and production base for green livestock products in China. The grasslands are
composed of meadow grassland, typical grassland, and dune grassland. Xilinhot is also
rich in mineral resources, with more than 30 billion tons of proven coal reserves.
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Figure 3. The geographical location of Shengli Coalfield in Xilinhot, Inner Mongolia, China.
(a) Location of Xilinhot in China; (b) boundaries of the mine and urban areas in Xilinhot; (c) ex-
tent of the study area; (d) drone image of the mining area; (e) drone images of the grassland.

Figure 4. (a) The average precipitation and temperature from January to December during 2004−2020;
(b) the correlation coefficient between FVC and precipitation and temperature.

The Shengli Coalfield is a lignite coalfield with the thickest coal seam, and it holds the
largest reserves (estimated at 22.7 billion tons) in China. Its thick coal seam, shallow burial,
and simple geological structure are suitable for centralized development. The coal quality
is well suited for power generation, liquefaction, and chemical industries. The coalfield is
located three kilometers north of Xilinhot. In 2004, Shengli Coalfield started the mining
project and entered the large-scale construction phase in 2006.

A field survey was carried out in April 2020, in which drone images of the study area
were taken and discussed with the residents. We found that the impact of mining activities
on the vegetation two kilometers away from the coalfield boundary was minimal. While
a larger area would have been more favorable, we were hampered by data acquisition
constraints. In this paper, we selected a portion of the Shengli Coalfield to investigate the
effects of mining and other factors on the vegetation using our proposed approach. We set
a two-kilometer buffer and selected five directions (directions 1–5, Figure 3c) with uniform
and random distribution to acquire more representative results. Given that the south of the
Shengli Coalfield is mainly urban communities with little vegetation coverage, we did not
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include the south direction in this study. The placement of direction 5 was determined by
considering the land cover, which was incompatible with the other four. Each direction
was set up with ten analysis units placed at 200 m intervals. GWDF-ANN models were
constructed separately for each analysis unit.

3.2. Fractional Vegetation Coverage

In this study, FVC was used as a proxy for vegetation coverage change. FVC can
be calculated by the Normalized Difference Vegetation Index (NDVI) using the pixel
dichotomy model. First, Landsat Collection 2 surface reflectance products were accessed
on Google Earth Engine (GEE) from 2004 to 2020. All Collection 2 surface reflectance
products were created with a single-channel algorithm jointly produced by the Rochester
Institute of Technology (RIT) and National Aeronautics and Space Administration (NASA)
Jet Propulsion Laboratory (JPL). This 30 m spatial resolution product is derived from
Landsat 5 TM and Landsat 8 OLI sensors and has undergone radiation calibration and
atmospheric correction.

We selected satellite imageries from July 1 to September 30, when vegetation grows
vigorously. The masking and the removal of clouds on the images were implemented
on the GEE. Cloud removal was achieved using the QA quality band of Landsat and
filtering the pixel values by bit manipulation. Masking was then used to remove clouds,
cloud shadows, and snow pixels. The processed satellite images were synthesized using
the maximum function in GEE. The maximum algorithm reduces image collection by
calculating the maximum values at each pixel across the stack of all matching bands from
July to September for each year. In other words, we used this reduction function for the
images of every year. Years 2008, 2012, and 2018 were excluded due to excessive cloudiness.
The information of satellite imageries is shown in Table 1.

We then calculated the NDVI for each pixel in each year using Equation (10). We
corrected the NDVI for Landsat 5 TM to Landsat 8 OLI to resolve sensor differences between
satellites. Previous studies have proposed methods to calibrate Landsat 5 TM, Landsat
7 ETM+, and Landsat 8 OLI [40–42]. We followed their procedure and selected some sample
plots in Xilinhot to calibrate these sensors. We extracted the NDVI from TM and ETM+ for
the same dates and performed regression analysis on the two NDVI groups to obtain the
correction equation for TM to ETM+. The same method was used to calibrate ETM+ to OLI.
Finally, the TM was corrected to OLI.

We then calculated the FVC according to the pixel dichotomy model using Equation (11).
Pixel dichotomy assumes that ground pixels exist in a linear mixture of vegetation and soil.
The pixel’s NDVI value is only affected by vegetation coverage. We selected plots that were
completely bare. The NDVI pixel values from 2013 to 2020 were sorted in descending order,
and the 95% percentile was used as NDVIsoil. The NDVIveg and NDVIsoil are stable from
year to year with the long time series. We then selected some with complete vegetation
cover during the peak growing season. The NDVI values in these plots were sorted in
ascending order, and the 95% percentile was selected as NDVIveg. The long time series of
pixel values can ensure the interannual stability of NDVIveg and NDVIsoil. The NDVIveg
and NDVIsoil values are suitable since the different satellite sensors were corrected for
consistency. The use of the 95% percentile pixel values reduces anomalous noisy pixels.
The NDVIsoil was calculated to be 0.08, while NDVIveg was 0.7.

NDVI =
ρnir − ρred
ρnir + ρred

(10)

FVC =
NDVI−NDVIsoil

NDVIveg −NDVIsoil
(11)

where ρnir is the surface reflectance in the near-infrared band, ρred is the surface reflectance
in the red band, NDVIsoil is the NDVI for pure bare soil pixel, and NDVIveg is the NDVI for
pure vegetation pixel.
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3.3. Driving Factors

For this study, temperature, precipitation, topography, mining, and urban expansion
were selected as driving factors. Precipitation and temperature data were obtained from
the China Meteorological Data Network (http://data.cma.cn (accessed on 1 January 2021))
(station number 54,102). We collected the monthly cumulative precipitation (unit: mm)
and monthly average temperature (unit: ◦C) for Xilinhot in 2004–2020 (except 2008, 2012,
and 2018) from station number 54,102. Numerous studies have shown that vegetation
response to climate and precipitation may exhibit varying time lag effects for different
regions [43,44]. It remains unclear how precipitation and temperature correlate with the
FVC in the study area at different months of the year. Therefore, we performed a Pearson
correlation analysis on temperature, precipitation, and FVC for each month. The correlation
coefficients between FVC and precipitation and temperature are presented in Figure 4b.
The results show that the cumulative precipitation from July to September and the average
temperature from July to September have the highest correlations with the FVC at 0.660
and −0.616, respectively. Hence, they were selected as driving factors.

The topography data were derived from the digital elevation model (DEM) of the Shut-
tle Radar Topography Mission (SRTM), released by NASA in 2014. The spatial resolution is
30 m. Since topography does not significantly change year to year and annual topography
data is unavailable, the same topography data was used for each year (see Figure 5). The
mining factor was determined using the annual coal production, and the shortest Euclidean
distance between the grid cell and the mining boundary and is calculated by Equation (12).
Aside from the Shengli Coalfield, we also accounted for the effect of the West No. 2 Mine.
This Euclidean distance refers to the shortest distance from each grid cell to each mine
boundary. Coal production refers to the total output of the Shengli Coalfield and the West
No. 2 Mine. The urban expansion was quantified using the annual urban population of
Xilinhot and the shortest Euclidean distance between the grid cell and the mining boundary,
as shown in Equation (13).

Figure 5. The spatial distribution of topography.

Annual coal production was provided by the National Energy Investment Group Co.,
Ltd. (Beijing, China). Coal production did not increase annually. The annual coal produc-
tion from 2004 to 2020 is shown in Figure 6a. The urban population was obtained from the
Xilinhot Statistical Yearbook, while the mining and urban boundaries were generated using
Landsat imageries. In this study, we quantified mining and urban expansion from 2004 to
2020 (except 2008, 2012, and 2018). The quantitative results for the mining factor in 2020
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are presented in Figure 6b. The results for the urban expansion factor in 2020 are shown in
Figure 7.

Xmine =
MA

EDmine + 1
(12)

Xurban =
NP

EDurban + 1
(13)

where MA is the mined amount (unit: 104 m3), EDmine is the shortest Euclidean distance
between the grid cell and the boundary of the mining area (unit: km), NP is the urban
population of Xilinhot, and EDurban is the shortest Euclidean distance between the grid cell
and the urban boundary (unit: km).

Figure 6. (a) Coal production from 2004 to 2020; (b) quantitative results of the mining factor in
2020 (normalized).

Figure 7. Quantitative results of the urban expansion factor in 2020 (normalized).
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3.4. Model Building

We set a two-kilometer buffer in the study area and delineated the buffer zone uni-
formly and randomly in five directions (directions 1–5, Figure 3c). Each direction had ten
analysis units placed at 200 m intervals. The analysis unit was composed of 81 grid cells,
separated by 30 m. Each unit was a circular area with a 90 m radius and was used to train a
model; 50 driving models were established.

Before model training, we normalized the FVC, temperature, precipitation, topography,
mining, and urban expansion factors for 2004–2020 (except 2008, 2012, and 2018) using
Equation (14). The normalized data were then extracted to the corresponding grid cells
(y-value and x-values). In this case, the input values were mapped on a 0–1 range with
no dimension.

Zi =

xi − max
1≤i≤n

(xi)

max
1≤i≤n

(xi)− min
1≤i≤n

(xi)
(14)

where Zi is the normalized value of the Z factor in grid cell i, xi is the original value of the
grid cell i, and n is the number of grid cells.

The 15-year grid cells (y-value and x-values) for each analysis unit were input into the
model as the input layer. The FVC value (Y0) was predicted for each analysis unit. The
input data were then modified. Biases were added to the five driving factors (xi + Δxi)
and were input back into the model to predict the FVC value (Yxi) for each driving factor.
Finally, the GWDF-ANN method was used to obtain the contribution of each grid cell.
The average value of all the grid cells in each analysis unit was calculated to determine
the contribution of the analysis unit. The procedure was repeated for each analysis unit
to obtain the contribution (W) of the different analysis units. Each analysis unit uses an
independent GWDF-ANN model.

4. Results

4.1. Modeling Results and Accuracy

Models were generated for the different analysis units. We selected the predicted
FVC results (Y0) of the first analysis unit in each direction and compared them with the
actual FVC results (y-value), as shown in Figure 8. The predicted FVC values are similar
to the actual results. RMSE and MRE were used as the model evaluation indicators, and
the calculation methods are shown in Equations (15) and (16). The RMSE and MRE are
typical accuracy evaluation indicators widely used in evaluating modeling accuracy in
geospatial modeling [45,46]. The results of the RMSE and MRE are shown in Table 2. The
average RMSE for the 50 groups of models is 0.052. The minimum RMSE for analysis unit
16 is 0.007, and the highest RMSE for analysis unit 10 is 0.112. The average MRE value is
0.007. The lowest MRE for analysis unit 6 is 0.001, while the highest MRE for analysis unit
46 is 0.023. The results suggest that the GWDF-ANN model is suitable for quantifying the
change of FVC in mining areas.

RMSE =

√
1
n

n

∑
i=1

(FVCpredi − FVCtrue i

)2
(15)

MRE =
1
n

n

∑
i=1

|FVCpred i
− FVCtrue i |

FVCtruei

(16)

where n is the total number of grid cells in training data, FVCpredi
is the FVC value of grid

cell i predicted by the model, and FVCtruei is the actual FVC of grid cell i.
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Figure 8. The comparison of actual FVC and predicted FVC results. (a–e): Directions 1–5.

Table 2. Model accuracy.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

RMSE 0.0577 0.0567 0.0654 0.0642 0.0506 0.0493 0.0548 0.0554 0.0853 0.1117
MRE 0.0064 0.0084 0.0061 0.0035 0.0019 0.0014 0.0040 0.0006 0.0023 0.0162

Model 11 Model 12 Model 13 Model 14 Model 15 Model 16 Model 17 Model 18 Model 19 Model 20

RMSE 0.0537 0.0621 0.0190 0.0173 0.0262 0.0066 0.0334 0.0148 0.0935 0.0141
MRE 0.0095 0.0056 0.0076 0.0032 0.0085 0.0044 0.0061 0.0078 0.0080 0.0015

Model 21 Model 22 Model 23 Model 24 Model 25 Model 26 Model 27 Model 28 Model 29 Model 30

RMSE 0.0468 0.0930 0.0139 0.0954 0.0142 0.0630 0.0597 0.0709 0.0805 0.0963
MRE 0.0218 0.0042 0.0058 0.0025 0.0076 0.0083 0.0039 0.0087 0.0086 0.0020

Model 31 Model 32 Model 33 Model 34 Model 35 Model 36 Model 37 Model 38 Model 39 Model 40

RMSE 0.0706 0.0688 0.0178 0.0230 0.0167 0.0522 0.0256 0.0352 0.0931 0.0888
MRE 0.0038 0.0068 0.0042 0.0073 0.0043 0.0096 0.0078 0.0085 0.0057 0.0072

Model 41 Model 42 Model 43 Model 44 Model 45 Model 46 Model 47 Model 48 Model 49 Model 50

RMSE 0.0494 0.0598 0.0671 0.0223 0.0246 0.0660 0.0399 0.0883 0.0143 0.0569
MRE 0.0074 0.0078 0.0034 0.0120 0.0093 0.0234 0.0056 0.0126 0.0056 0.0130

4.2. FVC Spatial Changes and Quantitative Results of Driving Factors

Figure 9 shows the spatial distribution of FVC values within two kilometers from the
Shengli Coalfield. The FVC values are in the 0–1 range; the higher the value, the greater
the vegetation coverage. From 2004 to 2010 (except 2008), FVC decreased annually. The
average FVC was 0.48, 0.40, 0.37, 0.34, 0.34, and 0.30, decreasing by 37.02% in six years. The
FVC had a short-term increase from 2011 to 2013 and then decreased from 2013 to 2019.
The lowest FVC value was 0.30, occurring in 2010, and the highest was 0.63 in 2020.

We calculated the average contributions of all the analysis units in the five directions.
We found that the most prominent driving factor for FVC is precipitation (32.45%), followed
by temperature (24.80%), mining (22.44%), and urban expansion (14.44%). The topography
had the lowest contributions, with 5.87%. When combined, precipitation and temperature
drive more than half (57.25%) of the FVC changes.
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Figure 9. The spatial distribution of FVC from 2004 to 2020 (except 2008, 2012, and 2018).

We then computed the average factor contributions of the ten analysis units for a
given year at varying distances from the boundary of the mining area, and the results are
displayed in Figure 10. The contribution of each driving factor shows similar characteris-
tics. Over the years, the contributions of the different driving factors constantly changed.
Precipitation and temperature have a downward trend, while mining and urban expansion
have an increasing trajectory. The topography contributions remained unchanged.

Figure 10. The contribution of driving factors from 2004 to 2020. (a–e): Directions 1–5. Topo represents
the factor of topography; Pre represents the factor of precipitation; Temp represents the temperature
factor; Mine represents the factor of mining, and Urban represents the factor of urban expansion.
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To compare the contribution of a particular driving factor in different years, take
direction 1 as an example. Precipitation had the highest contribution at 37.28% in 2004 and
the lowest contribution in 2019 at 30.68%. Temperature’s contribution was at 25.37% in
2004 and it contributed the least in 2020 at 21.88%. The mining effect increased year by year,
closely following temperature. Temperature’s contributions in 2016, 2017, and 2020 were
comparable. The trend suggests that temperature has become the second major driving
factor. The contribution of mining from 2004 to 2020 increased from 18.38% to 22.23%, in
which the fastest growth occurred in 2010–2011, rising by 10.04 percentage points. Urban
expansion had a relatively flat growth trend and had declined in specific years. Still, urban
expansion’s overall contributions have grown over the years, increasing from 12.73% in
2004 to 15.77% in 2020. For topography, the interannual contributions had very little change,
only fluctuating within a 1% variation range.

The interannual contributions of each driving factor in the five directions had similar
fluctuation characteristics, with the fifth direction being slightly different. The contribution
of mining in direction 5 increased significantly interannually. In 2004, the major contribut-
ing factors were precipitation (32.42%), mining (25.47%), and temperature (24.75%). For
2020, mining (31.52%), precipitation (28.75%), and temperature (21.43%) were the main
contributors. During the early stages of mining in 2004, its contribution was the second
leading driving factor, surpassing that of temperature. However, over the years, tempera-
ture’s role gradually diminished while mining’s influence increased. From 2004 to 2020,
contributions from mining increased from 25.47% to 31.52%, growing by 23.77 percentage
points. After 2016, mining surpassed precipitation and became the leading driving factor.

Interannually, the contributions from precipitation and temperature show a fluctuating
trend. The increase in the contribution of the precipitation is accompanied by the decrease
in the influence of temperature. Likewise, the reduction in the contribution of precipitation
is accompanied by the increase in the contribution of temperature. In direction 4, the
contribution of precipitation showed a downward trend in 2004–2006, 2014–2017, and
2019–2020, and an upward trend in other years. Temperature showed an upward trajectory
in 2004–2006, 2014–2017, and 2019–2020, and had a downward trend in other years.

We then took the average contribution of each factor in the ten analysis units at varying
distances from the boundary of the mining area in the same direction. We calculated the
change in the contribution of each factor in different directions, and the results are shown
in Figure 11. The contribution of driving factors in direction 5 is noticeably different from
other directions. In direction 5, the contribution of mining increased significantly, while the
contributions of precipitation, temperature, urban expansion, and topography decreased.

Figure 11. The contribution of driving factors in different directions.
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We computed the mean contribution of each factor in the ten analysis units at different
distances from the boundary of the mining area in the same direction for 2004–2020 (except
2012 and 2018). We drew pie charts detailing the factor contribution of different directions
(see Figure 12). Precipitation had the maximum contribution of 33.50% in direction 1
and a minimum of 30.94% in direction 5. For temperature, the maximum contribution
was in direction 2 at 25.61%, and the minimum in direction 5 at 22.76%. The maximum
contribution of mining in direction 5 is 28.36%, and the minimum in direction 1 is 20.93%.
Urban expansion had the largest share of contribution in direction 4 at 14.89% and the
smallest in direction 5 at 12.88%. For topography, the maximum contribution was 6.13% in
direction 1 and the minimum at 5.06% in direction 5.

Figure 12. The pie chart of driving factor contribution in different directions. (a–e): Directions 1–5.
Topo represents the factor of topography; Pre represents the factor of precipitation; Temp represents
the factor of temperature; Mine represents the factor of mining, and Urban represents the factor of
urban expansion.

The contributions of the various driving factors varied for the different directions.
In directions 1–3, the order of driving factors from highest to lowest contribution was
precipitation, temperature, mining, urban expansion, and topography. In direction 4,
the ranking from highest to lowest was precipitation, temperature, mining, topography,
and urban expansion. In this direction, the topography influence exceeded that of urban
expansion. In direction 5, the order from highest to lowest contribution was precipitation,
mining, temperature, urban expansion, and topography. Mining surpassed temperature to
become the number two leading driving factor, second only to precipitation.

4.3. Contribution Analysis of the Mining Factor

We took the average value of mining contribution for each analysis unit from 2004
to 2020 (except 2008, 2012, and 2018) and analyzed the mining contributions at varying
distances from the Shengli Coalfield boundary. We plotted the mean values for the different
directions, and the results are presented in Figure 13. In all five directions, the contribution
of mining showed apparent distance attenuation. As the distance from the boundary
of the Shengli Coalfield increased, the contribution from mining exhibited a downward
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trend. This means that the farther away a point is from the mining area, the lower the
contribution of mining. The maximum contribution of mining in the five directions is 26.69%
at 200 m from the mining area boundaries, which drops to 17.8% at 2000 m, decreasing
by 33.31%. As the distance from the mining area boundary increases from 200 m to
2000 m, the contribution of mining in directions 1–5 decreases by 0.09, 0.10, 0.09, 0.08, and
0.08, respectively.

Figure 13. The contribution of the mining factor at different distances from the boundary of
Shengli Coalfield.

5. Discussion

The GWDF-ANN method proposed in this study quantifies the contribution of driving
factors to changes in the FVC. In particular, this study explores the impact of mining on
FVC. Some results need further explanation and discussion.

The main driving factor of FVC around the mining area is not mining but precipitation,
followed by temperature. In this study, the average contributions of precipitation and
temperature from 2004 to 2020 in all analysis units were 32.45% and 24.80%, respectively.
Since the study area was set as a buffer zone, two kilometers away from the mine boundary,
the spatial heterogeneity of temperature and precipitation was almost absent. Therefore, the
temperature and precipitation driving factors for each analysis unit were the same station
data. The differences in temperature and precipitation were mainly between years. For
example, the cumulative precipitation from July to September was high in 2004 and 2020
(274.3 mm and 268.4 mm) and low in 2014 and 2017 (93.9 mm and 93.1 mm). These values
are consistent with our results, as in direction 1, the contribution of precipitation factor was
high in 2004 and 2020 (37.28% and 33.27%) and low in 2014 and 2017 (32.07% and 32.93%).
We found that more than 50% of the vegetation changes had been driven by precipitation
and temperature and that the sum of their contributions reached 57.25%. Many studies have
shown that vegetation change is very responsive to precipitation and temperature [47–50],
consistent with the results of this study. In arid and semiarid grasslands, the contribution
of precipitation on FVC is significantly greater than that of temperature.

In addition to climate factors, this study quantified the impact of mining and urban
expansion. Hui and Aman Fang found that mining significantly degrades vegetation
coverage [51,52], but its specific contribution to vegetation coverage change has not been
thoroughly explored. From 2004 to 2020, the contribution of mining within two kilome-
ters around the boundary of the Shengli Coalfield was 22.44%. Mining causes severe
degradation in groundwater levels and noticeable soil desertification, resulting in harsh
environments for vegetation growth. Coal mine dust falling on plant leaf surface may
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also affect plant growth and cause other serious problems. Around the mining area, FVC
degradation caused by mining is apparent.

The city’s rapid expansion and industrialization have resulted in decreased FVC. From
2004 to 2020, the contribution rate of urban expansion within two kilometers from the
Shengli Coalfield is 14.81%. From 2004 to 2020, the urban area of Xilinhot expanded by
129.184 km2, and the urban population increased by 42,697 people. Urban expansion
reduces the dependence of plant growth on climate factors and has a particular impact on
FCV, consistent with Song’s and Noa’s findings [53,54].

As for the topography, its influence on FVC is relatively small, and its interannual
contribution remains unchanged. The topography showed little change from year to year,
and its differentiation is mainly spatial. There is a 45 m elevation difference in the study
area, high in the west and low in the east. However, the impact of topographic factors does
not significantly change in different directions. This may be because the elevation of the
mining area does not have a particular contribution to the vegetation.

The effects of mining have noticeable spatial and temporal variations. Temporally,
the value of the mining factor varies with the coal production. The findings also show
that the contribution of mining to FVC continued to increase annually, even as coal pro-
duction decreased in certain years. In 2009, 2011–2015, and 2019, while coal production
in the Shengli Coalfield declined from the previous year, the contribution of mining did
not decrease. Hence, the results suggest that the impact of mining on FVC may have a
cumulative effect in time. Years of continuous mining have exacerbated the adverse effects
of mining operations on FVC.

Spatially, the further away from the mine boundary, the lower the value of the mining
driving factor. The contribution of mining shows distance attenuation around the mining
area. Within 200 m from the periphery of the mining area, mining’s contribution was
26.69%; at 2000 m, it dropped to 17.84%. As the distance from the mining area increases,
the contribution of mining decreases until it reaches some point where the value is zero.
This suggests that the impact of mining on FVC may be limited. For example, Aman Fang
studied the influence area of Bao’s coal in eastern Inner Mongolia [51]. The scope of mining
influence on FVC needs to be further explored.

The contribution of mining in direction 5 was significantly higher than in other direc-
tions. This may be because the Shengli Coalfield is close to the West No. 2 Mine (about
three kilometers away), affecting the FVC. The West No. 2 Mine started operations in
2006, and by 2020, the cumulative coal produced was 825,110,800 m3, about 0.91 times the
cumulative coal production of the Shengli Coalfield. The high mining impact in direction 5
was likely caused by the cumulative effect of the Shengli Coalfield and the West No. 2 Mine.

Changes in the FVC are caused by the coupling of multiple factors. We only considered
the contribution of precipitation, temperature, mining, urban expansion, and topography.
Aside from these factors, overgrazing may have a considerable impact on the FVC [55].
Ecological environment restoration policies such as vegetation reclamation have also been
found to significantly affect the FVC in mining areas [56,57]. Subsequent studies can
analyze other parameters affecting vegetation coverage in mining areas, including grazing
activities, environmental protection policies, evaporation, and soil types. In addition, there
are currently few quantitative studies on mining and urban expansion. How to scientifically
quantify the impact of mining and urban expansion requires further exploration.

6. Conclusions

This study proposed the GWDF-ANN to quantify the contributions of different driving
factors on FVC changes in mining areas. Based on the results, some conclusions were
reached, as follows.

(1) For the 50 models, the average RMSE was 0.052 and the average MRE was 0.007. The
GWDF-ANN model is suitable for quantifying FVC changes in mining areas.
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(2) Precipitation and temperature were the main driving factors for FVC change. The con-
tributions were 32.45% for precipitation, 24.80% for temperature, 22.44% for mining,
14.44% for urban expansion, and 5.87% for topography.

(3) The contributions of precipitation and temperature on vegetation cover exhibited
downward trends, while mining and urban expansion showed positive trajectories.
For topography, its contribution remains generally unchanged.

(4) The contribution of mining showed apparent distance attenuation. At 200 m away,
the contribution of mining was 26.69%; at 2000 m away, the value drops to 17.8%.

(5) Mining has a cumulative effect on vegetation coverage both interannually and spatially.

In the future, more driving factors, such as grazing and soil quality, can be considered
to improve model accuracy.
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Abstract: Water, as an important part of ecosystems, is also an important topic in the field of remote
sensing. Shadows and dense vegetation negatively affect most traditional methods used to extract
water body information from remotely sensed images. As a result, extracting water body information
with high precision from a wide range of remote sensing images which contain complex ground-based
objects has proved difficult. In the present study, a method used for extracting water body information
from remote sensing imagery considers the greenness and wetness of ground-based objects. Ground
objects with varied water content and vegetation coverage have different characteristics in their
greenness and wetness components obtained by the Tasseled Cap transformation (TCT). Multispectral
information can be output as brightness, greenness, and wetness by Tasseled Cap transformation,
which is widely used in satellite remote sensing images. Hence, a model used to extract water body
information was constructed to weaken the influence of shadows and dense vegetation. Jiangsu and
Anhui provinces are located along the Yangtze River, China, and were selected as the research area.
The experiment used the wide-field-of-view (WFV) sensor onboard the Gaofen-1 satellite to acquire
remotely sensed photos. The results showed that the contours and spatial extent of the water bodies
extracted by the proposed method are highly consistent, and the influence of shadow and buildings
is minimized; the method has a high Kappa coefficient (0.89), overall accuracy (92.72%), and user
accuracy (88.04%). Thus, the method is useful in updating a geographical database of water bodies
and in water resource management.

Keywords: remote sensing imagery; water body extraction; Tasseled Cap transformation; WFV
onboard Gaofen-1; accuracy evaluation

1. Introduction

Water is an important resource for human survival and economic development [1–4].
Whether water is treated as an environmental factor, as a resource, or as a cause of flood
disasters, the monitoring and investigation of the nature of water bodies have great signifi-
cance in the use of natural resources; it is also important in land use planning, development
and protection of the environment, and in flood protection and mitigation [5–7]. Remote
sensing satellite observations can effectively overcome all kinds of the limitations that
may be encountered in ground mapping, with the graphics of the landscape recorded
numerically and processed by the computers [8–10]. Remote sensing satellite images cover
the entire Earth with high resolution, repeatable observation, and multispectral images,
which can accurately record rivers, lakes, coastlines, tidal conditions, as well as related
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ground information and allow researchers to determine the range of a water body quickly
and accurately; the cost of land-based surveys are saved while remotely sensed images
provide many economic and social benefits [11–14].

Since the 1970s, researchers have conducted a considerable amount of research on the
extraction of boundaries between water bodies and other ground-based objects [15–18].
From the earliest efforts in edge detection and threshold segmentation to the application of
deep learning, the methods for extracting water body information have been developing
over time with continuous progress [19–21]. The methods used to extract water body
information from remote sensing imagery can be divided into three categories: (i) the single
band threshold-band method, (ii) the spectrum photometric-based method, and (iii) the
water body index-based method [22–25]. (i) The single band threshold-based method is
an early commonly used method that uses a single band of a remote sensing image, the
reflectivity of water is significantly lower or higher than other features, and a water body can
be automatically extracted by setting the threshold [26–28]. The process of extracting water
bodies using the single band threshold-based method is relatively simple, and the effects of
extracting local water body information are clearly visible; nevertheless, dense vegetation,
mountain shadows, and the water body spectrum cannot always be correctly distinguished
while small water bodies cannot be extracted using this method [29–31]. (ii) The spectrum
photometric-based method extracts water bodies by searching for the difference between
the characteristics of the spectral curve of a water body and other features; this method can
extract water bodies as well as distinguish water bodies from shadows, making it suitable
for the extraction of water bodies in mountain plateaus [32–35]. For plains, this method can
extract the wider part of lakes, larger rivers, and smaller rivers, but a phenomenon known
as staggered buildings can create problems; however, a threshold can be used to judge the
conditions for the extraction of water bodies from small rivers and those of larger urban
areas [36–38]. In addition to buildings, this method is also affected by clouds. (iii) The
water body index-based method is performed by using normalized difference processing
of specific wavelengths of ground-based objects to highlight water body information in
remote sensing images [39–42]. The method is very precise, has wide applicability, is
simple to operate, and is currently the most widely used and developed method [43–45].
This method can effectively eliminate shadow pixels and improve the accuracy of shadow
extraction or of other dark surface areas; however, the reflective surfaces of urban areas,
such as ice, snow, and reflective roofs, may be accidentally classified as water.

Tasseled Cap transformation (TCT) is a special type of principal component trans-
formation, which combines complex factors into several components while introducing
multi-faceted variables, and it simplifies the problem and, at the same time, obtains more
scientifically sound and effective data information [46]. In this paper, we aim to provide
a detailed guide on how to develop an approach capable of providing estimates of wa-
ter body information from the wide-field-of-view (WFV) image of the Gaofen-1 satellite
with a wide range. This approach both considers the greenness and wetness of ground-
based objects obtained by TCT to weaken the influence of shadows and dense vegetation.
This paper is of great significance for updating basic geographic information and water
resources investigation.

2. Materials and Methods

2.1. Study Area

The study area is located at the intersection of Jiangsu and Anhui provinces, China,
which is a part of the Yangtze River Delta. The Yangtze River forms the Yangtze River
Delta, an alluvial plain, before entering the sea [47–49]. The delta covers parts of two
provinces, Zhejiang and Jiangsu, and the city of Shanghai [50,51]. This densely populated
low-lying plain also supports a well-developed area of agriculture; the plain is covered
by a dense river network, agricultural areas, and more than 200 lakes. The research area
includes a variety of terrain such as plains, lakes, and mountains with numerous urban
areas (Figure 1).
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Figure 1. Remotely sensed photo of the study area. An inset map shows the location of the study
area within the Anhui and Jiangsu provinces.

2.2. Data

In the study, the image of the covered study area was acquired on 31 December 2016
by the WFV camera onboard the Gaofen-1 satellite. Gaofen-1 (in the Chinese language, gao
fen means high resolution) is the first of a series of high-resolution optical Earth observation
satellites of the China National Space Administration, Beijing, China, which is configured
with two 2 m panchromatic/8 m resolution multispectral cameras and a set of four 16 m
resolution multispectral medium-resolution wide-field cameras [52]. The WFV sensor with
16 m spatial resolution consists of three visible light bands (0.45–0.52 μm, 0.52–0.59 μm,
0.63–0.69 μm) and a near-infrared band (0.77–0.89 μm) [53–55]. With the satellite’s four-day
repetition cycle, the combination of high temporal and spatial resolution is achieved; this
combination has played an important role in land and resources investigation and in the
dynamic monitoring of the environment and climate change as well as in supporting
precision agriculture and urban planning [56–58].

For the Gaofen-1 satellite data, no definite coefficient for TCT has yet to be developed;
however, by comparing the parameters of the WFV cameras sensor of Gaofen-1 with known
satellite sensors with Tasseled Cap transform coefficients, it was found that the WFV sensor
and the IKONOS satellite sensor have a similar number of bands and spectral range of
bands [59]. As the TCT conversion coefficient is fixed and determined by the band number
and band range of a sensor, the conversion coefficient of the IKONOS satellite was selected
in this paper (Table 1) [60,61].

It can be seen from Table 1 that (1) All band coefficients used to calculate the bright-
ness component are positive, each band makes a positive contribution to the brightness
component, and the contribution sequence is near-infrared band > red band > green band >
blue band. (2) The near-infrared band has a positive contribution to the greenness compo-
nent, while the other bands have a negative contribution, and the contribution sequence is
near-infrared band > green band > red band > blue band. (3) The red band has a positive
contribution to the wetness component, while the other bands have a negative contribution,
and the contribution sequence is red band > blue band > green band > near-infrared band.
(4) The green band has a positive contribution to the yellowness component, while the
other bands have a negative contribution, and the contribution sequence is green band >
blue band > red band > near-infrared band.
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Table 1. The weights of the Tasseled Cap transformation for the WFV sensor onboard the
Gaofen-1 satellite.

Blue Band Green Band Red Band Near-Infrared Band

Brightness component 0.326 0.509 0.560 0.567
Greenness component –0.311 –0.356 –0.325 0.819
Wetness component –0.612 –0.312 0.722 –0.081
Yellowness component –0.650 0.719 –0.243 –0.031

2.3. Method

Tasseled Cap transformation (TCT), also known as Kauth–Thomas transformation,
was first reported in 1976 by using maximum segment size data on the growth of crops and
vegetation; it consisted of four bands in the maximum segment size analysis [62–64]. In
the four-dimensional space, the spectral data points of vegetation are regularly distributed,
forming a hat-like shape; therefore, this transformation is named a Tasseled Cap transfor-
mation [65,66]. TCT has been widely used in many fields, such as crop type recognition [67],
crop growth monitoring [68], remote sensing ecological assessment [69,70], and monitoring
of land surface changes [71,72]. It also has important application value in forest type
classification [73], distinguishing forest density [74], and biomass inversion [75,76].

For satellite remote sensing imagery, a TCT can compress a multispectral image into
a sum of a set of components, each of which corresponds to a weighted index [66]. The
weighted index can reflect each pixel in the original multispectral image.

The TCT is as Equation (1) [62–64]:

y = cx + a (1)

where y is the component in multispectral space after the transformation, x corresponds to
the multispectral bands before the transformation, c is the transformation coefficient, which
is related to the sensor onboard a satellite, and a is a constant used to avoid negative values.

In this new spectral space after the TCT occurs, the first four components (brightness,
greenness, wetness, and yellowness components) are important. The brightness component
reflects the comprehensive effect of total reflectivity; the greenness component is related to
vegetation cover, leaf base cover index, and biomass; the wetness component reflects the
moisture condition of the ground-based objects, and the yellowness component indicates
the maturity of vegetation [49,77,78].

The size of the component index corresponding to each pixel can reflect the correlation
between its corresponding features and these components (Figure 2). Since different
features have different correlations with the four components, these pixels are based on the
component values in a 4-dimensional space. The distribution forms different settlements.
The pixels in each settlement correspond to the same kind of features, and the boundaries
are obvious. It is easy to find the difference between different objects and extract the
water information.

Tasseled Cap transformation uses principal component analysis, and its conversion
coefficient is fixed, which is determined by the number of frequency bands and spectral
range of frequency bands. Therefore, it is independent of individual images so that the
soil brightness and greenness can be compared between different images. Compared with
other ground-based objects, water bodies have unique characteristics in their greenness
and wetness components. Therefore, based on the characteristics of the TCT, a method for
extracting water body information from remote sensing imagery has been proposed for use
in processing remote sensing imagery; water body information can be extracted accurately
and the influence of shadows and dense vegetation can be weakened.
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Figure 2. Scatter plot of ground-based objects in the space of TCT.

The variation in water content and vegetation coverage of the ground-based objects
will cause water bodies to show unique characteristics in the feature space after TCT.
The overall workflow of the method for extracting water body information from remote
sensing imagery considering greenness and wetness can be divided into four steps: (a) pre-
processing, (b) TCT, (c) extraction of water body information, and (d) accuracy assessment
(Figure 3).

Condition 1: Iwetness Igreenness
Condition 2: Igreenness<K

Model of water body information extraction

Pre-processing

Tasselled cap transformation

Water body information extraction
Accuracy assessment

 

Figure 3. Flowchart of the proposed method.

First, the original remote sensing image data were pre-processed with radiometric
calibration and atmospheric correction to eliminate the deviation caused by atmosphere
absorption and scattering of light. Second, the correlated remote sensing image information
was converted into uncorrelated linear information using TCT; four components were
obtained: brightness, greenness, wetness, and yellowness. Third, based on the greenness
and wetness components, the difference between the water body and other ground-based
objects (vegetation, man-made object, shadow) was analyzed and the model was con-
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structed to extract water body information. Finally, an accuracy assessment was carried
out by calculating the Kappa Coefficient, overall accuracy, and user accuracy.

3. Results

3.1. Water Body Information Extraction from Remote Sensing Imagery While Considering
Greenness and Wetness

The original remote sensing image was pre-processed with radiometric calibration
and atmospheric correction to eliminate most of the deviation caused by the atmosphere,
and Environment for Visualizing Images (ENVI) version 4.8 software has been used to
perform statistical and visual analyzes on satellite imagery. Then, a TCT was performed
to obtain the four components, brightness, greenness, wetness, and yellowness, using the
weights in Table 1. The results are shown in Figure 4.

 

 

Figure 4. The TCT components of the WFV cameras onboard the Gaofen-1 satellite.

In the feature map (Figure 5), the water bodies show different distribution characteris-
tics from those of vegetation (including dry field), man-made features (including roads,
residential, and industrial land), and shadow (mainly mountain and building shadows).

As can be seen from Figures 4 and 5, the water bodies correspond to relatively high
and low values in the wetness and greenness components, respectively; vegetation has a
relatively high value in the greenness component; meanwhile, shadows and man-made
objects have more diverse reflectivity due to the variety of their species. By adding an
auxiliary line Iwetness = Igreenness to Figure 5, it is easy to see that the corresponding pixels of
water bodies are all located below the auxiliary line, and the vegetation and shadows are
all located above the line; therefore, the condition of “Iwetness > Igreenness” can easily be used
to divide the water bodies from the shadows and vegetation. However, some man-made

56



Remote Sens. 2022, 14, 3001

objects still fall below the auxiliary line; one can see a clear gap exists between the greenness
component of these man-made objects and the greenness component of the water body.
Therefore, the thresholding condition “Igreenness < K” was set to distinguish the water bodies
from the man-made object.

Figure 5. The distribution characteristics of ground-based objects in the feature map generated by
Tassel Cap transformation components.

Equation (2) provides the formula for extracting water body information as follows:{
Iwetness > Igreenness
Igreenness < K

(2)

where Iwetness and Igreenness are the wetness and greenness components obtained by TCT,
respectively, and K is the empirical constant of the greenness component, usually 750.

The greenness and wetness components obtained from the TCT were used to extract
water body information with the support of Equation (1). The extraction results are shown
in Figure 6.

 

Figure 6. The water body information extracted using the proposed method and ENVI 4.8 software
has been used to perform statistical and visual analyzes on satellite imagery.

By visually observing the difference between the extraction results and the original
remote sensing image, Figures 1 and 6 show that the extracted water body information is
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consistent with the visual results regardless of the size and contour of water bodies and can
effectively remove the shadows of mountains, buildings, and clouds. However, man-made
buildings cause some errors.

3.2. Accuracy Assessment

Accuracy assessment is an important part of information extraction from remote sens-
ing imagery, and using the confusion matrix to calculate the Kappa coefficient, overall accu-
racy (OA), and user accuracy (UA) is a common method for accuracy assessment [79–81].
The real boundary of the water bodies was obtained by visual interpretation from the
Gaofen-1 satellite image, and the Kappa coefficient, OA, and UA were calculated based
on visual interpretation and the extracted results. The water bodies were obtained by the
proposed method and the results were obtained by single band threshold-based method,
spectrum photometric-based method, normalized difference water index-based method
(NDWI-based method), water ratio index-based method (WRI-based method), and auto-
mated water extraction index-based method (AWEIsh-based method) which were com-
pared to perform a quantitative evaluation of the results [82–84], and the experiment was
carried out by ENVI 4.8 software.

Table 2 shows that the Kappa coefficient, OA, and UA of the proposed method are all
higher than those of the traditional methods. This indicates that the water body information
extracted using the proposed method is consistent with the visual interpretation results,
and the method considering the greenness and wetness of ground-based objects is reliable
and accurate.

Table 2. Quantitative evaluation of extracting water body information.

Method Formula
Kappa

Coefficient
OA (%) UA (%)

Single-band threshold-based method ρNIR < 0 0.77 86.63 80.28
Spectrum photometric-based method ρgreen + ρred > 2 × ρNIR 0.86 90.05 83.51
NDWI-based method (ρgreen − ρNIR)/(ρgreen + ρNIR) > 0 0.88 93.35 87.69
WRI-based method (ρgreen + ρred)/(2 × ρNIR) > 1 0.83 87.08 84.92
AWEIsh-based method (ρblue + 2.5 × ρgreen − 3.25 × ρNIR) > 0 0.78 80.34 78.59
The proposed method Iwetness > Igreenness and Igreenness < 750 0.91 97.02 90.81

Note: ρ is the reflectance of remote sensing imagery; red, green, NIR are red, green, and near-infrared bands,
respectively; Iwetness and Igreenness are wetness and greenness obtained by TCT, respectively.

4. Discussion

The components obtained by the TCT are associated with water content and vegetation
coverage of ground-based objects, which is helpful in extracting water body information
quickly and simply by using remote sensing images in a wide range. Following remote
sensing image pre-processing, TCT, and model construction considering greenness and
wetness, the water body information can be extracted accurately. Unfortunately, there
are some factors affecting the extraction accuracy of the water body information. First, a
pixel in the remote sensing image measures the combined reflectance of all ground objects
contained on the ground of the same size as the spatial resolution [4,28,49]. Therefore,
mixed pixels cause boundaries between land and water body to become vague and affect
the accurate statistics of the extracted water body information. Second, the threshold
values in the constructed model are obtained by the statistics of the sampling points
and are representative of the study area [3,10,49]. Therefore, the use of the model in
other regions may produce uncertainty errors. Third, the water surface can be shaded
by vegetation covering the bank zone, and then the surface morphology of extracted
water body information is affected [85–87]. Therefore, considering the characteristics
of smooth edges of banks, edge restoration of extracted water body information is also
worth discussing.
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5. Conclusions

The present study developed a method for extracting water body information from
remote sensing imagery by considering the greenness and wetness of ground-based ob-
jects using TCT. This was applied to reduce the influence caused by shadows and dense
vegetation to achieve simple, fast, and accurate extraction of water body information. The
experiment using the WFV sensor onboard the Gaofen-1 satellite was carried out along
the border between Jiangsu and Anhui of the Yangtze River Delta, China, to demonstrate
and validate this method. Based on the qualitative and quantitative evaluations, the pro-
posed method is accurate, and the validity and practicality of the proposed method have
been verified.

The proposed method has high precision and is simple to operate. However, some
weakness remained that has not been eliminated in this experiment. The influence of mixed
pixels caused the boundaries of water body information extracted from remote sensing
imagery to be inconsistent with the actual boundaries of water bodies in the real world. In
addition, using the coefficient of IKONOS to perform the TCT of data collected by the WFV
sensor onboard the Gaofen-1 satellite also leads to an uncertain effect in the extraction of
water body information. Therefore, developing a mixed pixel decomposition method that
can be used to extract the boundaries of water body information more accurately will need
to be a follow-up research study. Obtaining the coefficient of the WFV imagery acquired
using the Gaofen-1 satellite to reduce the uncertain influence of water body information
extraction is another direction that will need continuing efforts.
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Abstract: The construction of large-scale hydropower stations could solve the problem of China’s
power and energy shortages. However, the construction of hydropower stations requires reservoir
water storage. Artificially raising the water level by several tens of meters or even hundreds of
meters will undoubtedly change the hydrogeological conditions of an area, which will lead to surface
deformation near the reservoir. In this paper, we first used SBAS-InSAR technology to monitor
the surface deformation near the Xiluodu reservoir area for various data and analyzed the surface
deformation of the Xiluodu reservoir area from 2014 to 2019. By using the 12 ALOS2 ascending data,
the 100 Sentinel-1 ascending data, and the 97 Sentinel-1 descending data, the horizontal and vertical
deformations of the Xiluodu reservoir area were obtained. We found that the Xiluodu reservoir
area is mainly deformed along the vertical shore, with a maximum deformation rate of 250 mm/a,
accompanied by vertical deformation, and the maximum deformation rate is 60 mm/a. Furthermore,
by analyzing the relationship between the horizontal deformation sequence, the vertical deformation
sequence, and the impoundment, we found the following: (1) Since the commencement of Xiluodu
water storage, the vertical shore direction displacement has continued to increase, indicating that
the deformation caused by the water storage is not due to the elastic displacement caused by the
load, but by irreversible shaping displacement. According to its development trend, we speculate
that the vertical shore direction displacement will continue to increase until it eventually stabilizes;
(2) Vertical displacement increases rapidly in the initial stage of water storage; after two water-storage
cycles, absolute settlement begins to slow down in the vertical direction, but its deformation still
changes with the change in the storage period.

Keywords: SBAS; two-dimensional deformation sequence; water-level adjustment

1. Introduction

As a clean and recyclable resource, hydroelectricity is receiving increasing attention
from all countries [1]. Inevitably, the rapid development of China’s economy has led to
a huge demand for energy. Southwest China has abundant water resources for the con-
struction of hydropower stations, so it has obtained a reputation as the “Asian battery” [2].
However, the impounding of a reservoir changes the conditions of local hydrogeology and
the regional gravity field, resulting in ground deformation [3]. Furthermore, fluctuations in
water level accelerate the deformation, causing local geohazards. In 1961, a landslide with
a volume of about 165 × 104 m3 occurred in the Zixi Reservoir in Zishui, Hunan Province,
causing 40 deaths [4]. In 1963, a landslide occurred in the Vajont Reservoir in Italy; a huge
volume of landslide soil (about 270 × 106 m3) rushed into the reservoir, and the surge
caused 1925 deaths [5].
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The Three Gorges Dam is the largest hydropower station in the world. After the
water level of the Three Gorges Dam reached 175 m in 2008, the number of resurrection
landslides was tens of times the number from 1992 to 1995 [6]. In order to decrease such
geological disasters, scholars are paying more attention to the ground deformation around
hydropower stations.

Currently, the tools to monitor ground deformation include the spirit leveling
method [7], the Global Positioning System (GPS) [8], and optical remote sensing [9]. How-
ever, the spirit leveling and GPS methods are costly and a have low spatial resolution
for capturing the detail of a whole deformation pattern [10]. Optical remote sensing is
susceptible to the air conditions of clouds and rain.

Synthetic aperture radar interferometry (InSAR), a satellite-based geodetic technique,
can overcome the influence of cloud and rain on optical remote sensing and can work
both day and night, demonstrating advantages in ground-deformation monitoring [11].
InSAR has been used in the geohazard monitoring of landslides [12], earthquakes [13],
volcanos [14], and ground subsidence [15], among others. Additionally, in order to bypass
the effects of decorrelation [16] and atmospheric delay [17], scholars have proposed time-
series InSAR techniques, such as Persistent Scatterer InSAR (PS-InSAR) [18] and Short
Baseline Subset InSAR (SBAS-InSAR) [19]. The PS-InSAR or SBAS-InSAR techniques can
recover long-temporal time-series ground deformations with accuracy levels of mm to cm.
Recently, scholars have applied time-series InSAR to monitor the landslide at hydropower
stations, such as the Three Gorges Dam [10] and the Wudongde Hydropower Station [20].

The Xiluodu Hydropower Station is located upstream of the Jinsha River in China.
As the world’s third-largest hydropower station, the Xiluodu Hydropower Station has
experienced frequent landslides and other geohazards since its impoundment in 2013. In
2013, the Huangping landslide, with an inflow of earthworks amounting to 20 × 104 m3,
caused 12 deaths. The Ganhaizi landslide, with an influx of earthworks of 7800 × 104 m3,
was the largest landslide that occurred at the Xiluodu Hydropower Station [21]. LIANG
Guohe [22] and ZHOU Zhifang [23] used the leveling points and valley-shrink survey-
ing lines, respectively, to monitor subsidence and valley-shrink deformation around the
shoreside of the Xiluodu reservoir and the Xiluodu arch dam, and their results showed
that the Xiluodu arch dam and the shoreside of the reservoir were under valley-shrinkage
deformation of 50 mm, accompanied by about 25 mm subsidence. Additionally, ZHOU
Zhifang [23] pointed out that valley-shrinkage deformation is highly correlated with the
water level. In 2017, LI Lingjing [24] analyzed the Yizicun landslide with ALOS, ASAR,
and TerraSAR datasets and found that there was a push-type landslide before the water
impoundment and that the landslide changed to a pull-type after the water impoundment.

Currently, the research on the Xiluodu Hydropower Station has focused on valley-
shrinkage deformation of the shoreside and the arch dam and their subsidence. In 2019, Li
et al. [25] used D-InSAR technology to determine the vertical and horizontal displacement
of the landslide near the Xiluodu Hydropower Station and further analyzed its deformation
characteristics. In 2022, Zhu et al. [26] obtained the horizontal and vertical displacement of
the landslide of the Xiluodu Water Station by SBAS technology, using ALOS2 ascending
and descending data, and explained the cause of slope instability by combining geomorphic
data and lithologic characteristics.

However, these studies were mainly based on traditional measurements and could
not completely reflect the ground deformations occurring near Xiluodu. Although the
InSAR technique was used to monitor the Xiluodu reservoir area, it was limited to a
specific landslide. Furthermore, the hydrogeological conditions have changed after water
impoundment. Whether the change in the hydrogeological conditions will lead to wide-
range deformation in Yongshan and Leibo counties and change the relationship between
the water level and deformation, needs to be analyzed.

64



Remote Sens. 2023, 15, 168

2. Geological Setting

2.1. Geological Setting of Xiluodu

As the backbone project of “Power Transmission from West to East” in China, Xiluodu
is the largest hydropower station on the Jinsha River. The Xiluodu Hydropower Station
is located in the U-shaped river valley upstream of the Jinsha River. On its left side is
Leibo County of Sichuan Province, and on its right side is Yongshan County of Yunnan
Province. The construction of Xiluodu Hydropower Station started in April 2007, and
Xiluodu Hydropower Station carried out the first stage of water storage trial operation
in May 2013. In June 2014, Xiluodu Hydropower Station officially began operating, and
at the end of September, the water level of the reservoir reached 600 m for the first time.
The Xiluodu Hydropower Station is mainly designed to generate power, control floods, fix
sand, and navigation [27].

As shown in Figure 1, the reservoir area is located on the southwestern margin of the
Yangtze platform, which is the transitional zone between the Yunnan–Guizhou Plateau and
the Sichuan Basin. The terrain is generally high in the west and low in the east, belonging to
the strong erosion of the high-mountain landform [28]. The Xiluodu Hydropower Station
is located at the junction of the first and second steps of China. Rapid changes in the terrain
may easily cause geological disasters. Moreover, with the completion of the hydropower
station, significant fluctuations in water levels will significantly affect the fragile geological
environment.

Figure 1. Topography profile of Western—Eastern China.

As shown in Figure 2, the Xiluodu area is surrounded by the yellow mud slope
anticline in the north, the wall rock syncline in the south, the Majinzi fault (F1) in the
west, and the Jiziba fault (F2) in the east, forming a relatively stable zone. However, a
thrust—nappe structure fault (named Majiahe, F3) is located 3 km from the dam area, and
the number of thrust outliers is influenced by the Majiahe fault. When the water level of the
Xiluodu reservoir increases, most of the thrust outliers are submerged, and subsequently,
the fault becomes unstable, affecting the safety of the dam area [29].

2.2. Impoundment of Xiluodu

As shown in Figure 3a, the water level reached its highest level of 600 m in October
2014 for the first time. The water level dropped to 590 m in March 2015. In June 2015, the
water level rapidly dropped to 540 m, and then a new round of water storage was started.
In July 2015, the water level rose to 555 m. In August 2015, the water level rose to 560 m. In
October 2015, it reached 600 m again. Since the water impoundment in October 2014, four
complete water impoundment cycles have been completed. Because the annual rainfall is
different, the water storage mode is adjusted accordingly.
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Figure 2. Basic geological structural map of Xiluodu area. F1 is the Majingzi fault, F2 is the Jiziba
fault, and F3 is the Majiahe fault.

 

Figure 3. (a) Water level of Xiluodu reservoir; (b) distribution of aquifers (along the red line in
Figure 2) of Xiluodu after water impoundment. A is the river reservoir, B is the area of Yongshan
County. S is the Rammell aquifuge layer; P1 m is the limestone permeable bed layer; P2βn is the
Rammell aquifuge layer; P2β is the basalt permeable bed layer; P2x is the sandy shale layer; Q is the
Quaternary loose accumulation layer; the green arrow indicates the direction of water flow; the red
arrow indicates the direction of deformation along the Jinsha River valley. L1 is the water level before
constructing Xiluodu Hydropower Station, and L2 is the water level after its construction.

The distribution of the Xiluodu aquifers changed significantly after water impound-
ment. The geological setting mainly comprises three water-repellent layers (i.e., S, P2βn,
and P2x) and three water-permeable layers (i.e., P1 m, P2β, and Q) [23]; see Figure 3b. The
highest water level is 600 m, which is lower than the elevation of the sandy shale layer
(P2x). Therefore, only the P1 m and P2β permeable bed layers are directly connected with
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the reservoir water during the process of impoundment. The potential energy of Xiluodu
water increases with the water level. For the P1 m limestone permeable bed layers in
a pressurized state, the water permeates the P1 m layer through the exposed limestone
area, increasing the P1 m pressure potential energy. For the P2β basalt permeable bed
layers in a state of low pressure, the water will directly flow into the P2β layer through
the submerged basalt area (see the green arrow in Figure 3b), causing the P2β layer to be
saturated gradually.

When the water level rises to 600 m, the rising value of the water level (the difference
in L2 and L1) is about 220 m. It leads to an increase in the water’s potential energy. Due to
the existence of confining beds (Rammell layer P2βn), the groundwater pressure potential
energy under P2βn will generate an oblique upward pressure (see the solid red arrow
in Figure 3b), which will cause the uplift and horizontal displacement perpendicular to
the shoreline (see the red dash arrow in Figure 3b). Moreover, as the P2β layer becomes
increasingly saturated, the saturated soil will consolidate under the action of gravity,
causing vertical subsidence.

3. Methods

3.1. Theoretical Basis of Two-Dimensional Deformation Decomposition

The InSAR measures a one-dimensional deformation along the line of sight (LOS)
direction, and such measurements can lead to misinterpretation, as the true deformations
may consist of horizontal and vertical displacements [30]. As is known, the LOS deforma-
tion is the sum of projection results of horizontal (including north–south and east–west
components) and vertical displacement in the LOS direction. Given that there are three or
more LOS measurements from different viewing geometries, we can decompose the LOS
measurements into north–south, east–west, and vertical displacements by least-squares
adjustment [31]. However, for this specific study, we know that displacement along a
certain direction is zero or can be ignored based on certain assumptions. For the Xiluodu
Reservoir, which is a valley reservoir, the displacement along the direction parallel to the
shoreline can be ignored. Thus, the horizontal displacement in a direction perpendicular
to the shoreline and the displacement in a vertical direction are sufficient for interpreta-
tion. Moreover, due to the small number of viewing angles in the study area, it lacks any
redundant observation for us to check for errors if we decomposed the three-dimensional
deformations. Thus, we proposed an approach to decompose the InSAR measurements in
the LOS direction into two-dimensional displacements, i.e., the horizontal displacement in
a direction perpendicular to the shoreline and the vertical displacement.

The specific geometry for decomposing LOS deformation into two-dimensional dis-
placements is shown in Figure 4.

The LOS deformation measurement can be expressed as

dlos = ducosθ + dpcos(δ− ϕ)sinθ (1)

where δ is the azimuth angle of a predefined direction, i.e., the clockwise angle with respect
to the north direction; θ is the incident angle of the radar; ϕ is the heading angle of the
satellite; h and u are the horizontal deformation along predefined direction and vertical
deformation, respectively; and dlos is the InSAR measured deformation in the LOS direction.

Given that there are K (K >= 2) LOS measurements for some specific time periods,
there is a set of observation equations written in matrix form:⎡⎢⎢⎢⎣

dlos1
dlos2

...
dlosK

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cos(δ− ϕ1)sinθ1 cosθ1
cos(δ− ϕ2)sinθ2 cosθ2

...
...

cos(δ− ϕK)sinθK cosθK

⎤⎥⎥⎥⎦×
[

h
u

]
(2)

Ax = b (3)
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where A is the design matrix with a size of K× 2, x is the unknown parameter vector, and
b is the observation vector.

When solving Formula (3), because there are random errors in the interferogram, such
as noise and some unremoved clean atmospheric delay phase, a random model needs
to be added to constrain some of the errors. In this paper, interferogram coherence is
used for weighting; then, we can obtain the two-dimensional deformations by using the
least-squares adjustment method:

x = (AT PA)
−1

AT Pb (4)

where P is the weight matrix composed of interferogram coherence.

 

Figure 4. Schematic diagram of LOS decomposition. The red arrow represents the local east, north,
up (ENU) coordinates; the blue arrow represents the flight direction of the satellite; the green arrow
indicates the LOS direction; ϕ and θ are the azimuth and incident angle of the satellite, respectively; δ

is the azimuth angle of a predefined direction; n and p directions are defined local coordinate systems.

3.2. InSAR Two-Dimensional Deformation Method

Recently, the decomposition of three-dimensional deformation sequences has been
developed. Samsonov and D’Oreye proposed the MSBAS method to decompose the time-
series East–West and vertical deformations [32] by ignoring the North–South deformations;
Pepe et al. proposed the minimum-acceleration (MinA) method, which is used to recover
three-dimensional (3D) time-series deformations [33]; Xuguo Shi et al. recovered three-
dimensional deformation sequences by using cubic spline interpolation [34]. However,
rather than obtaining the 3D deformations or the East–West and vertical deformations by
ignoring the North–South deformations, we obtained the vertical and horizontal deforma-
tion, called two-dimensional (2D) deformations hereinafter, along a specified direction in
reality, which benefits the interpretation.

As shown in Figure 5, given that we have three tracks of SAR data, that is, the Sentinel-
1 ascending and descending and ALOS2, covering the study area. The SAR datasets are
processed to obtain the time-series LOS deformations. The deformations are geocoded
into a geographic coordinate system and further resampled to a common geographic
grid. Assuming that the number of images of the three tracks SAR data is N1, N2, and
N3, and the acquisition times are T1 =

[
t(1)1 , t(1)2 , . . . , t(1)N1

]
, T2 =

[
t(2)1 , t(2)2 , . . . , t(2)N2

]
, and

T3 =
[
t(3)1 , t(3)2 , . . . , t(3)N3

]
, respectively.
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Figure 5. Time series of Sentinel-1 ascending and descending data, and ALOS2 ascending data.

Assuming that the acquisition times are unique for different pieces of SAR data, the
total number of images is N = N1 + N2 + N3. The times of all of the data acquisitions
are T = T1 ∪ T2 ∪ T3. The corresponding LOS time-series deformations sequence are
d1 =

[
d(1)1 , d(1)2 , . . . , d(1)N1

]
, d2 =

[
d(2)1 , d(2)2 , . . . , d(2)N2

]
, and d3 =

[
d(3)1 , d(3)2 , . . . , d(3)N3

]
; then, the

merged LOS time-series deformations are d = d1 ∪ d2 ∪ d3.
According to Equation (2), the LOS time-series deformations d can be written as a set of

equations with respect to the time-series 2-D deformations, and expressed in matrix form:

Gx = d (5)

where d =
[
d1 d2 · · · dN

]T is the observation vector, and the unknown parameters

vector x =
[
h1 u1 h2 u2 · · · hN uN

]T with a size of 2N× 1. The design matrix has
a size of N × 2N, and its form is as follows:

G =

⎡⎢⎢⎢⎢⎢⎣
A1

A2
A3

. . .
AN

⎤⎥⎥⎥⎥⎥⎦
where A1 =

[
cos(δ− ϕ(1))sinθ(1) cosθ(1)

]
, A2 =

[
cos(δ− ϕ(2))sinθ(2) cosθ(2)

]
, and

A3 =
[
cos(δ− ϕ(3))sinθ(3) cosθ(3)

]
. The superscript in the angles of ϕ and θ is dependent

on which subset of di it is from.
Obviously, Equation (5) is rank deficient as the number of equations is smaller than the

number of parameters to be estimated, i.e., N < 2N. To solve the problem of rank deficiency,
we add smoothing constraints to the parameters by assuming that the deformation rates of
adjacent displacements are equal, i.e.,

hi+2 − hi+1

ti+2 − ti+1
=

hi+1 − hi
ti+1 − ti

(6)

ui+2 − ui+1

ti+2 − ti+1
=

ui+1 − ui
ti+1 − ti

(7)

where i ∈ [1, N − 2]. Then, we obtain a set of equations with respect to unknown parame-
ters vector, and it is expressed by

Rx = 0 (8)
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where R is the roughness matrix with a size of (N − 2)× N, and

R =

⎛⎜⎜⎜⎜⎝
t3 − t2 0 t1 − t3 0 t2 − t1 0 . . . . . . . . . . . . 0 0

0 t3 − t2 0 t1 − t3 0 t2 − t1 . . . . . . . . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . tN − tN−1 0 tN−2 − tN 0 tN−1 − tN−2 0
0 0 0 0 0 . . . 0 tN − tN−1 0 tN−2 − tN 0 tN−1 − tN−2

⎞⎟⎟⎟⎟⎠.

Combining Equations (5) and (8), we solve the regularized least-squares problem [35]:

min

∥∥∥∥∥
[

G
αR

]
x−

[
d
0

]∥∥∥∥∥
2

2

(9)

The Tikhonov regularization solution is determined by

x = (GTG + α2RT R)
−1

GTd (10)

where α is the smoothing parameter and is unknown beforehand. We determine it by using
the L-curve method [35].

Figure 6 presents a flowchart of the proposed method.

Co-registration, interference, filtering, 
unwrapping, geocoding, etc.

Ascending orbit SAR data Descending orbit SAR dataDEM

Data pre-processing

Unified observation datum

Build the mathematical model

Solve the 2D deformation results

Solving by the iterative LS

2D deformation results output

Accuracy Verification

Deformation of ascending 
orbit LOS direction

Deformation of descending 
orbit LOS direction

Spatial datum unification

Time datum unification

Build the function model Build the stochastic model

 

Figure 6. Flowchart of the proposed method.
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4. Data Processing and Results

4.1. SAR Data Used

In order to study surface deformation near the Xiluodu reservoir area, we used the
ascending and descending data of Sentinel-1 and the ascending data of ALOS2: from
October 2014 to March 2019, there was a total of 100 ascending Sentinel-1 data, and the
incident angle of the image center was 39.29◦. From October 2014 to April 2019, there
were 97 descending Sentinel-1 data, and the image center incident angle was 33.9◦. From
September 2014 to December 2018, there was a total of 12 pieces of ascending ALOS2 data,
and the image center incident angle was 31.4◦; the coverage area is shown in Figure 7. See
Table 1 for specific information. At the same time, we chose the Shuttle Radar Topography
Mission (SRTM) with a 30 m x 30 m resolution to remove the terrain phase.

 

Figure 7. (a) Study area; (b) SAR data coverage area. The white dashed box represents the Sentinel-1
ascending data, and the black dashed box represents the Sentinel-1 descending data. The blue dashed
box represents the ALOS2 ascending data.

Table 1. Three kinds of data for SBAS interference pair information.

Data Orbit Type Track No. of Images No. of Int. Pairs Time Span

S1 A Ascending T128 100 197 October
2014–March 2019

S1 A Descending T62 97 191 October
2014–April 2019

ALOS2 Ascending T146 12 21
September

2014–December
2018

4.2. Data Processing

We first performed SBAS processing on each piece of data to obtain the deformation
sequence of Sentinel-1 data and ALOS2 data. In the data-processing phase, first, in order to
ensure the consistency of the three sets of data results, we performed 8 × 2 multi-look on
the Sentinel-1 data and 3 × 7 multi-look on the ALOS2 data, thus obtaining image results
of about 15 m resolution. Second, because the Sentinel-1 data and ALOS2 data orbital
control were accurate, the spatial baseline was short, so the influence of spatial decoherence
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was not considered. At the same time, in order to overcome the time decoherence, we
adopted the two-connected interference pairing method (as shown in Figure 8: 1 and 2
constitute the interference pair, 1 and 3 constitute the interference pair, 2 and 3 constitute
the interference pair, and so on), so that any scene image was in a triangular closed loop,
which overcame the time decoherence and could test for errors. Therefore, we obtained 21
interference pairs from the ALOS2 ascending data, 197 interference pairs from the Sentinel-1
ascending data obtained, and 191 interference pairs from the Sentinel-1 descending data.
Third, we used the SRTM data of 30 × 30 m resolution to obtain the DEM in the SAR
coordinate system by geocoding, thus obtaining the simulated terrain phase, and then
using the generated interferogram subtracts in the simulated interference phase to remove
the terrain phase. In order to eliminate the phase residual and improve the signal-to-noise
ratio of the interferogram, we used a ‘Goldstein’ filter on the differential interference
phase with a filter factor of 0.5 and a filter window size of 64. As the low-coherence
region could be affected by phase noise, we averaged the coherence coefficient map when
unwrapping and then ensured that the region with coherence below 0.52 did not participate
in the unwrapping, thus ensuring the reliability of the wrap. In the phase unwrapping
stage, we selected the unwrapping reference point in the stable region away from the city.
After unwrapping with the minimum cost flow, we refined the baseline of the distracted
differential interferogram, thereby effectively removing the track phase. Through the above
process, we obtained the exact differential interference phase after unwrapping and then
converted it into a settlement sequence result. Finally, we inversely geocoded the resulting
sedimentation results and resampled them to the same geographic coordinate range to
obtain the deformation sequence results for the three images at 15 m resolution.

Figure 8. Two-connection network mode. The black triangles represent the SAR images in chronolog-
ical order from left to right, and the red lines represent different interference pairs.

On this basis, using the algorithm described in Section 3.2, the deformation sequence
was decomposed to obtain the deformation sequence results in the vertical shore direction
and the vertical direction, and the deformation rate in the horizontal direction and the
vertical direction was calculated by using the two-dimensional deformation sequence. The
results are provided in Section 4.3.

4.3. Results
4.3.1. LOS Deformation

Figure 9 shows the average rate map of the Sentinel-1 data and ALOS2 data obtained
using the SBAS technique. The reference point was selected in the same stable area farther
from the deformation zone. For the Yongshan County area, the ALOS2 ascending data
LOS has a maximum average speed of −90 mm/a; the ascending Sentinel-1 data LOS
has a maximum average speed of −110 mm/a; and the descending Sentinel-1 data LOS
has a maximum average rate of 60 mm/a (positive values represent proximity to the
satellite and negative values represent the distance from the satellite). For the ALOS2
ascending data and the Sentinel-1 ascending data, the incident angles are 31.4◦ and 39.29◦,
respectively. The reasons for the different deformation rates may be as follows: (1) the data
incident angles are different, resulting in different observational geometry; (2) Xiluodu
horizontal shifts may occur in the reservoir area, resulting in different projections onto the
LOS backward direction. For the Sentinel-1 ascending data and the descending Sentinel-1
data, the deformation rate results are opposite, indicating that the horizontal displacement
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must occur in the Yongshan County area. Therefore, we needed to achieve this in order to
decompose and obtain horizontal displacement and vertical displacement.

 

Figure 9. (a) Mean velocity map of ALOS2 ascending; (b) mean velocity map of Sentinel-1 ascending;
(c) mean velocity map of Sentinel-1 descending.

4.3.2. Two-Dimensional Deformation Rate

We used the Section 3.2 formula to decompose the deformation sequence to obtain
the deformation sequence results in the horizontal direction and the vertical direction
and then obtained the mean velocity map perpendicular to the shore direction and the
vertical direction, as shown in Figure 10. As can be seen from Figure 10, the maximum
deformation rate is 250 mm/a perpendicular to the outward direction of the slope, and the
maximum deformation rate is 60 mm/a in the vertical downward direction. It can be seen
that the deformation of the Xiluodu reservoir area is mainly in the horizontal direction,
accompanied by vertical sedimentation, which is consistent with the previous results of
Zhou et al. [23]. Furthermore, we sought to determine the relationship between water
storage and horizontal and vertical directions by analyzing the deformation sequence.

Figure 10. (a) Mean rate perpendicular to the shore direction; (b) vertical mean rate.

In order to more intuitively display the surface deformation of the Xiluodu reservoir
area, because the number of images was too large, we drew some horizontal and vertical
deformation sequence images, as shown in Figure 10. It can be seen from Figure 11 that,
since October 2014, the horizontal deformation of the Yongshan County area has been
accelerating, and the maximum deformation in April 2019 was about 1000 mm; at the same
time, the vertical direction deformation has also slowly increased, and by April 2019, the
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maximum deformation was about 200 mm. Since the reservoir was filled with water in 2014,
such a huge deformation occurred in the vicinity of the Xiluodu reservoir area. According
to previous studies, the reservoir impoundment may lead to instability of the reservoir
slope [36]. Therefore, we suspect that due to the huge water level after the impoundment,
the water level difference caused by the change threatens the Xiluodu surface, which could
lead to the deformation of the Earth’s surface.

Figure 11. (a) Horizontal time-series deformation; (b) vertical time-series deformation.

4.3.3. Two-Dimensional Time Series

It can be seen from Figure 10 that the closer the bank is, the smaller the deformation
rate, and the farther away it is from the shore, the greater the deformation rate. At the same
time, the study area is obviously two distinct regions. In order to prevent the formation of
the trailing edge of the study area from creating a landslide and to prevent the formation
of a ground crack in the middle of the study area, we selected the section line AB, CD
perpendicular to the shore direction and the section line EF parallel to the shore for analysis.
Figure 12a–d are the deformation rate profile lines of the vertical shore, and Figure 12e,f are
the deformation rate profile lines of the parallel shore. (1) The AB section line reaches a
peak at 3.7 km from the shore, while the horizontal deformation rate is greater than 100 mm
and the range is about 0.75 km, and the vertical deformation rate is greater than −40 mm.
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The range is about 0.5 km. (2) The CD profile line reaches a peak at 3.4 km from the shore,
while the horizontal deformation rate is greater than 100 mm, which is about 0.65 km; the
vertical deformation rate is greater than −20 mm, which is about 0.6 km. (3) The EF section
achieved peaks at 1.8 km and 4.2 km from point E. It can be seen from the results that these
two areas are more dangerous, and we will continue to analyze them in combination with
optical images.

 

Figure 12. (a) is the horizontal displacement rate of profile line A–B; (b) is the vertical displacement
rate of profile line A–B; (c) is the horizontal displacement rate of profile line C–D; (d) is the vertical
displacement rate of profile line C–D; (e) is the horizontal displacement rate of profile line E–F; (f) is
the vertical displacement rate of profile line E–F. The green line represents the suspected fault.

5. Analysis and Discussion

5.1. Precision Analysis

The accuracy of this experiment was evaluated by calculating the RMS of the residual
of the deformation sequence. The results are shown in Figure 13. Furthermore, we statisti-
cally analyzed the RMS of the deformation sequence (see Table 2 for details). We found that
the mean root mean square error of the region is 4.7 mm, RMS < 10 mm is about 95.36% of
the total, and RMS < 15 mm is about 98.85% of the total. The root error average is 4.1 mm,
RMS < 10 mm accounts for 95.40% of the total, and RMS < 15 mm accounts for 99.31% of
the total. The mean square root error of the non-deformation significant region is 4.8 mm,
RMS < 10 mm accounts for 95.35% of the total, and RMS < 15 mm is approximately 98.79%
of the total. It can be seen from Figure 14 that the deformation region mainly occurs in the
county area, and the terrain is relatively flat, so the accuracy of the InSAR monitoring result
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is high, while the other regions have steep terrain and relatively low precision. Therefore,
we think that the deformation accuracy could reach 10 mm within the 95% confidence
interval, so the accuracy of this experiment is reliable.

 

Figure 13. Root mean square error chart. (a) Total mean square error; (b) deformation significant
regional mean square error; (c) deformation non-significant area mean square error.

Table 2. RMS data statistics.

Average of RMSE (mm) Percentage of RME < 10 mm Percentage of RMS < 15 mm

Total 4.7 95.36% 98.85%
Deformation significant area 4.1 95.40% 99.31%

Non-deformation significant area 4.8 95.35% 98.79%

 
Figure 14. Overall root mean square error map.

5.2. Relationships between Displacement and Water Storage

According to the literature [23], the elevation of the Jinsha River riverbed near the Xilu-
odu reservoir area was about 400 m before water storage. When the Xiluodu Hydropower
Station began to store water, the lowest water level in the reservoir area rose to 540 m,
and the highest water level rose to 600 m. It leads to a continuous increase in surface
deformation near the reservoir area. At the same time, the fluctuation of the Xiluodu water
level of about 60 m per year will also cause the surface deformation near the reservoir area
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to fluctuate accordingly. To this end, we selected two feature points, P1 and P2, in the two
significant areas of deformation, to analyze the relationship between water storage and
deformation and provide a basis for future reservoir water storage.

5.2.1. Relationship between Horizontal Displacement and Water Storage

As shown in Figure 15, the water of Xiluodu has been stored for the first time since
October 2014, and the water level dropped to 540 m in June of the following year. At present,
it has experienced four complete water storage–drainage cycles, of which the cumulative
shape variable of the direction of the P1 level reached 110 mm, and the cumulative shape
variable of the horizontal direction of the P2 level reached 800 mm. At the same time, the
horizontal deformation rate obviously accelerated in each round of water storage, and
when the water level of Xiluodu rises to 600 m, the horizontal deformation rate begins to
decrease. Over time, in the third round and the fourth round of water storage, although the
absolute deformation variable increased in the horizontal direction of the Xiluodu reservoir
area, the relative deformation rate began to slow down, indicating that the horizontal
deformation of the Xiluodu reservoir area tends to be stable. According to Zhou et al.’s
literature analysis [23], as the water level continues to rise, the pore water pressure inside
the permeable layer of Yangxin limestone increases continuously, which leads to a reduction
in effective stress, which leads to the elastic expansion deformation of Yangxin limestone.
At the same time, since the upper layer of the Yangxin limestone is covered with mud shale
as a water-blocking layer, the shale also undergoes elastic deformation as the pressure
increases. Since the Yongsheng syncline basin generally tends toward the Jinsha River, the
horizontal direction of the Xiluodu reservoir area will be deformed outwardly along the
slope under the superposition of two elastic deformations. However, as the water level of
Xiluodu continues to rise, the water level of the reservoir enters from the permeable layer
of basalt, resulting in a stable horizontal deformation.

Figure 15. Relationship between horizontal displacement and impoundment. (a) is the relationship
between the deformation sequence and water level in the horizontal direction of point P1 in Figure 10;
(b) is the deformation sequence in (a) that removes the linear trend; (c) is the relationship between
the deformation sequence and water level in the horizontal direction of point P2 in Figure 10; (d) is
the deformation sequence in (c) that removes the linear trend.
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5.2.2. Relationship between Vertical Displacement and Water Storage

As shown in Figure 16, from October 2014 to April 2019, the cumulative shape variables
at the P1 point and the vertical point of the P2 point were −175 mm and −110 mm,
respectively. At the same time, when the water level of the reservoir rapidly decreases, the
deformation in the vertical direction accelerates. When the water level of the reservoir rises,
the deformation in the vertical direction begins to rebound and finally, the deformation in
the vertical direction changes with the fluctuation of the water level. Therefore, we speculate
that when the water in the Jinsha River continues to infiltrate, the floating force is generated,
causing the Xiluodu reservoir area to move upward in a vertical direction. However, the
elevation of the water level leads to an increase in the gravitational potential energy, and
the soil is consolidated under the action of gravity. The gravity is much greater than the
buoyancy. Therefore, the Xiluodu reservoir area has a vertical downward deformation.
Finally, as the water-storage cycle continues to increase, the natural consolidation state of
the soil becomes saturated so that the cyclical changes caused by the water storage are not
offset; thus, the vertical deformation changes with the water level fluctuation.

Figure 16. Relationship between vertical displacement and water storage. (a) is the relationship
between the deformation sequence and water level in the vertical direction of point P1 in Figure 10;
(b) is the deformation sequence in (a) that removes the linear trend; (c) is the relationship between
the deformation sequence and water level in the vertical direction of point P2 in Figure 10; (d) is the
deformation sequence in (c) that removes the linear trend.

5.3. Potential Geological Hazards

According to the National Geological Hazard Bulletin, there were 2966 geological
disasters in 2018, resulting in 105 deaths and seven missing people. The direct economic
losses amounted to RMB 1.47 billion. Among them, the southwestern region suffered the
most serious disasters, accounting for 35.2% of national geological disasters. Therefore,
monitoring geological disasters is vital. As a wide-ranging monitoring method, InSAR can
undoubtedly provide necessary observation of geological disasters. However, due to the
limitation of satellite side-view imaging, the SAR satellite of a single platform may have
overlapping, shadow, and top–bottom inversion in complex mountainous areas, which
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may easily cause blind spots of identification, resulting in misjudgment [37]. Therefore,
through a variety of data (ascending and descending data), the true strength of InSAR
technology can be realized in complex mountainous areas. In this paper, we used the data
of multiple orbits to decompose the study area horizontally and vertically, thus restoring
the deformation of the entire study area. According to the analysis in Section 5.1, combined
with the optical image (as shown in Figure 17a), we found that the deformation of the
trailing edge (fault-1) of the significant region of deformation was large, and then through
the analysis in Section 5.2, we speculate that the region will continue to move along the
coast, which may lead to cracks at the trailing edge, and the formation of geological
disasters such as ground fissures and collapses, which require following up. At the same
time, the left side of the area has a distinct block in the deformed area on the right. As the
deformation in the horizontal direction continues to accumulate, the unequal horizontal
forces in the two areas may cause relative shear, causing the middle area to form a fault
(Fault-2), which may lead to geological disasters such as landslides and ground fissures. As
can be seen from the foregoing, the geological conditions in the area are relatively fragile.
Therefore, in order to avoid large casualties, the area should be continuously monitored.

Figure 17. (a) Optical image; (b) potential fault.

6. Conclusions

As China’s demand for power resources continues to increase, hydropower has become
increasingly important as a clean and recyclable energy source. However, the artificial
construction of a reservoir undoubtedly changes the hydrogeological conditions of the
hydropower station’s attached structures, resulting in deformation of the surface near the
hydropower station, which can lead to landslides, mudslides, earthquakes, etc. In this
paper, using time-series InSAR technology, through a variety of data (ALOS2 ascending,
Sentinel-1 ascending and descending), large-scale surface deformation monitoring was
carried out near the Xiluodu reservoir area after water storage and power generation. The
conclusions are as follows:

(1) For a variety of data, the space is not synchronized, and the deformation sequence
decomposition cannot be directly performed. A new solution was proposed, and the
horizontal and vertical deformation values of the entire time series were obtained.
The results show that the maximum average velocity is perpendicular to the bank
edge, the maximum average velocity is 250 mm/a, and the maximum vertical velocity
is 60 mm/a, which indicates that the surface deformation near the Xiluodu reservoir
area is mainly horizontal and the vertical direction is supplemented. At the same time,
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we used the residuals to analyze the accuracy of the deformation solution. The results
show that the deformation accuracy can reach 10 mm within the 95% confidence
interval, indicating that the accuracy of this experiment is reliable.

(2) By analyzing the relationship between horizontal displacement and vertical displace-
ment and water level, it was found that after the Xiluodu water storage, the vertical
bank direction displacement continued to increase. This indicates that the deformation
caused by the water storage was not due to the elastic displacement caused by the
load but caused instead by the irreversible shaping displacement. According to its
development trend, we speculate that the vertical shore direction displacement will
continue to increase and finally stabilize. According to its development trend, we
speculate that the displacement in the vertical shore direction will continue to increase
and finally stabilize; the displacement in the vertical direction increases rapidly at the
initial stage of water storage. After two water-storage cycles, the vertical deformation
begins to stabilize, and the vertical deformation will change with the change in storage
period.

(3) Through the analysis of the results and potential faults, we speculate that there may
be two faults at this location. As the horizontal deformation continues to accumulate,
it may cause cracking, which will aggravate the geological vulnerability of the site.

This experiment failed to obtain GPS data, so it is impossible to verify the decompo-
sition results of InSAR data with external data. At the same time, the acquisition date of
this experimental data was after the Xiluodu Hydropower Station started operating. In
subsequent analysis, we can try to obtain the InSAR data before the Xiluodu Reservoir
was stored and thus gain a clearer understanding of the landmark deformation near the
Xiluodu Reservoir.
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Abstract: The evolution of land use functions and structures in ecologically fragile watersheds have
a direct impact on regional food security and sustainable ecological service supply. Previous studies
that quantify and simulate land degradation in ecologically fragile areas from the perspective of
long-term time series and the spatial structure of watersheds are rare. This paper takes the Huangshui
Basin of the Qinghai-Tibet Plateau in China as a case study and proposes a long-time series evolution
and scenario simulation method for land use function using the Google Earth Engine platform,
which realizes the simulation of land use function and structure in ecologically fragile areas by
space–time cube segmentation and integrated forest-based prediction. This allows the analysis of
land degradation in terms of food security and ecological service degradation. The results show
that: (1) the land use function and structure evolution of the Huangshui watershed from 1990 to
2020 have a significant temporospatial variation. In the midstream region, the construction land
expanded 151.84% from 1990 to 2004, driven by urbanization and western development policy; in
the middle and downstream region, the loss of farmland was nearly 12.68% from 1995 to 2005 due
to the combined influence of the policy of returning farmland to forest and urban expansion. (2) By
2035, the construction land in the watershed will be further expanded by 28.47%, and the expansion
intensity will be close to the threshold in the upstream and midstream areas and will continue to
increase by 33.53% over 2020 in downstream areas. (3) The evolution of land use function and
structure will further induce land degradation, causing a 15.30% loss of farmland and 114.20 km2

of occupation of ecologically vulnerable areas, seriously threatening food security and ecological
protection. Accordingly, this paper proposes policy suggestions to strengthen the spatial regulation for
land degradation areas and the coordination of upstream, midstream, and downstream development.

Keywords: GEE; long-term time series images; land use classification; spatial modeling; land degra-
dation; Huangshui watershed

1. Introduction

How human societies utilize, manage, and interact with land are key to addressing
current sustainable development issues, including sustainable livelihoods, food security,
biodiversity, climate change, and sustainable energy, which have been mentioned in high-
level political agreements such as the 2030 agenda for sustainable development, the Paris
climate agreement, and the convention on biological diversity [1,2]. Meanwhile, the global
climate keeps showing a warming trend, which causes a long-term effect on the human–
land system, especially in areas with vulnerable natural conditions [3,4]. Ecologically
fragile areas are vulnerable to the combined effects of climate change and human activities
due to the poor stability of their own functional and structural systems [5]. These areas are
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susceptible to exceeding critical thresholds and path dependence, leading to negative social
or environmental impacts, and the impacts are difficult to reverse, are receiving more and
more attention and becoming a hot topic. Retracing, monitoring, and analyzing the long-
term time series changes of land use function and structure in ecologically fragile areas,
revealing their process and mechanism, and modeling their potential degradation risks are
of importance to global climate change monitoring and the sustainable development of
ecologically fragile areas [6].

The existing dominant models for land use and land cover change include the logistic
regression [7], Markov [8], system dynamics (SD) [9], cellular automata (CA) [10], CLUE-
S [11], agent-based model (ABM) [12], and future land use simulation (FLUS) [13]. With
the advantages of wide applicability, easy operation, and high openness to integration
with other models, CA is widely used and has proven effective in various areas [14].
The key to these models is to set different development paths according to the land use
evolution and development policies, predict the total amount and structure of land use in
different paths, and use spatial simulation models to predict the land use patterns in the
corresponding scenarios [13,15]. However, these methods are usually constrained by the
temporal frequency of the historical land use data and lower classification accuracy, which
lead to higher errors and uncertainties in prediction parameters, while seriously affecting
the accuracy and reliability of simulation results.

With the open application of remote sensing big data platforms such as the Google
Earth Engine, it is possible to use long-term free data and high-performance platforms for
long-term land use classification [16]. At present, the realization of large-scale, long-term
land use classification and change detection with the help of the Google Earth Engine (GEE)
platform has become a hot issue, and a series of breakthroughs have been made. From a
methodological view, these studies mainly include three categories: one is to identify and
monitor the land use expansion through the construction of long-term remotely sensed
ecological environment indexes such as NDVI [17], NDWI [18], etc. [19,20]; second is
to realize the change detection of land use functions and structures [21,22] through full-
element classification and mapping with long-term Landsat or Sentinel series images; third
is to directly classify and extract change information by using multi-source images with
the fusion method and dense stacking of time series data as input into the classifier, which
prove that the accuracy of change detection can be significantly improved [23,24]. Based
on long-term remote sensing classification results, some researchers explored the impacts
caused by global issues, such as climate change [25,26], international protocols [27,28],
and so on. However, these studies basically only focused on classification and change
monitoring, and it is rarely shown how to reveal the evolution laws and patterns contained
in long-term classification data and further apply them to the spatial simulation of future
scenarios, which is our exploration in this study.

Located in the transition zone between the Qinghai-Tibet Plateau and Loess Plateau,
the Huangshui Basin has fragile natural conditions and features of an alpine zone and
soil erosion area, which causes great ecological vulnerability and significant ecological
importance in the basin. Therefore, the Huangshui Basin is a typically ecologically frag-
ile area. Meanwhile, it is the area with the highest population density and the most
concentrated economy in the Qinghai-Tibet Plateau, and the human–land relationship is
relatively adversarial and fragile. In 2020, the population of the Huangshui Basin was
~3.43 million, accounting for 56% of that of Qinghai Province; the population density was
95.62 persons/km2, which was about 13 times that of Qinghai Province. In terms of agri-
cultural production, the Huangshui Basin concentrates about 50% of it’s farmland in the
Qinghai Province and produces about 65% of its grain; the industrial production there is
more than 70% of that of the Qinghai Province. Under the background of global climate
change, the changes in natural environment and the expansion of human activities in the
past 30 years have had a relatively significant impact on the Huangshui Basin. In particular,
the average annual precipitation shows a slight increase, the irrigation water diversion
projects are continuously networked, the population and heavy chemical enterprises are
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further concentrated in the Huangshui Valley, the urban construction land has expanded
by 3.6 times, and the tourist and economy in farming and pastoral areas of the upstream
have continued to grow [29]. All these have led to great changes in the spatial structure
of the Huangshui Basin, resulting in increasingly acute contradictions between urban
construction, agricultural and animal husbandry production and ecologically functional
land, and an imbalance in the spatial evolution of the upstream and downstream territorial
structures. For example, the water pollution in the Xining-Minhe section was once in the
lower five categories, and the downstream areas suffered from serious soil erosion and
poverty problems [30]. However, China plans to achieve modernization by 2035, which
means the intensity of human activities in Huangshui basin tends to maintain a high in-
crease. In the future, with the development of the western region in the new period, the
integration of Lanzhou-Xining urban agglomeration and the construction of the Qinghai-
Tibet Plateau national park group, the population and economy of the Huangshui Basin
will be further agglomerated, and the contradiction between humans and the land will
become more prominent.

Therefore, this study took the Huangshui watershed of the Qinghai-Tibet plateau in
China as an example and used the GEE platform to realize long-term land use classification.
Specifically, a space-time cube that meets the prediction accuracy was constructed based on
fully exploiting the advantage of long-term classification, the functional land parameters of
future scenarios were measured and calculated by using space-time cube segmentation and
prediction methods based on integrated forests, and the land-use function and structure in
2035 were simulated based on adaptive cellular automata. Based on the spatial simulation,
relevant indicators were selected, and the risk of land degradation was analyzed from
the two aspects of food security and ecological security. Finally, this study verified the
reliability of the simulation and risk analysis results by combining field investigation visits
to sit in typical areas of the watershed.

2. Study area and Data

2.1. Study Area

The Huangshui Basin (36◦02′~37◦28′N, 100◦42′~103◦04′E) is located in northeastern
Qinghai, China, which is between the Qinghai-Tibet plateau and the Loess plateau. The
basin comprises the mainstream area of Huangshui and the tributary Datong river basin,
a plume-shaped water system with high terrain in the northwest and low terrain in the
southeast. Its area is about 16,200 km2 and its average elevation is 2300 m. The basin
is divided into Chuanshui area, Qianshan area, Naoshan area and Shishan forest area
from low to high, and the elevation of the dividing line is 2200 m, 2800 m, and 3200 m,
respectively. From a sub-basin division perspective, the basin is divided into upstream,
midstream and downstream and the points of demarcation are located in the confluences
of Xina river and Yinsheng river (Figure 1), respectively. The climate here is a plateau arid
and semi-arid continental climate, with high cold and little rainfall, and obvious vertical
differences in climate and meteorology with an average temperature of 2.5~7.5 ◦C and
large temperature differences between day and night. The average annual precipitation
is 394.6 mm, about 70% of which is concentrated between June and September, resulting
in frequent droughts and floods in the basin and a staggering trend. Water resources are
scarce in the basin, the ecosystem is fragile, and droughts occur frequently, with typical
characteristics of plateau basins and arid and semi-arid basins. The Huangshui basin
involves Xining City, Haidong City, and Haibei Prefecture, including 13 districts.
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Figure 1. Overview map of the study area (WGS84, 1:1,000,000).

2.2. Data
2.2.1. Remote Sensing Data

The remote sensing data applied in this study were mainly Landsat series image data,
obtained from GEE collections “LANDSAT/LT05/C02/T1_L2” and “LANDSAT/LC08/C01/
T1_SR”, including TM/ETM+/OLI, and periods are from June to October (vegetation
flourishing period) and from November to March of the next year (vegetation withering
period). In order to obtain as much observational data as possible with cloud cover <10%
from 1987 to 2019, we utilized the pixel mosaic-based method [31] and >9000 images were
obtained, obtaining 6 years images more than that of the traditional method. After image
mosaic, image synthesis, and other operations, we obtained a long-term Landsat image
dataset of the Huangshui watershed with a time step of 1 year. Spectral indices such as
NDVI, NDWI, and NDBI were then calculated. Auxiliary data include VIIRS night light
data (Nighttime Day/Night Band Composites Version 1) and digital elevation data (SRTM).
The VIIRS nighttime light data was applied to distinguish urban and non-urban areas and
is the monthly average radiation of nighttime data. The digital elevation data (SRTM) is
obtained from the US Land Distributed Activity Archive and was gap-filled using open
data (ASTER GDEM2, GMTED2010 and NED) [32].

2.2.2. Climate Data

The climate data in this study were FLDAS (Famine Early Warning Systems Network
(FEWS NET) Land Data Assimilation System) data, including water content, humidity,
evapotranspiration, soil temperature, and precipitation [33]. In addition, the Chinese
meteorological dataset was obtained from 1915 stations in the Resource and Environmental
Science and Data Center of the Chinese Academy of Sciences (http://www.resdc.cn/
(accessed on 7 July 2021)). After altitude correction, the annual average temperature
(Ta), annual average precipitation (Pa), and accumulated temperature ≥ 10 ◦C (TaDEM),
are obtained and then interpolated to obtain the nationwide dataset using the inverse
distance-weighted average method.
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2.2.3. Land Classification Sample Data

We selected a sample dataset of land-use function classification in the Huangshui
basin year by year, including the data for cultivated land, shrubs, forests, grasslands, water
bodies, urban construction, and unused land, by combining the visual interpretation of
historical images and the selection of field samples. The selection of the dataset was mainly
based on the 2019 high-resolution images of the same period as the selected Landsat image,
combined with the field sample points to obtain the 2019 sample point data; after that, 2019
was used as the base year, and the reference was gradually selected forward. The image
was interpreted sample point by sample point, and the sample points that changed the
category were eliminated, and the corresponding sample points were filled to ensure the
sample size. By repeating this process, a total of 1065 sample points covering 24-year were
finally selected.

3. Methodology

The Methodology (Figure 2) in our study mainly included: (1) using a random forest
and spatiotemporal consistency algorithm based on the GEE platform to realize long-term
land use classification; (2) constructing a spatiotemporal cube and using spatiotemporal
cube segmentation and integrated forest-based prediction methods to calculate the future
scenario of the functional land parameters, and using the adaptive cellular automata to
simulate land use function and structure; (3) selecting related indicators, such as the area
and quality of food loss, the importance, and vulnerability of ecological service functions,
analyzing the risks of land degradation from the perspective of food security and ecological
security, and verifying the results with field investigations in typical areas of the watershed.

 

Figure 2. The main technical flows adopted in the methodology.
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3.1. Long-Term Functional Classification of Land Use

In this study, we used the GEE platform and the random forest algorithm to initially
classify long-term images year by year. We first obtained sample points of 2019 manually.
Then to improve the accuracy and strengthen the consistency, we checked whether the
features changed and provided category replacement based on historical images of 2018.
The process was conducted annually until sample points of 1990 were obtained [29,34].
Next, the classifier was trained by continuously adjusting parameters such as sample point
distribution, optimal feature vector combination, texture, optimal window size, and climate
factors. After the training, we used the random forest classifier to classify the images of
the corresponding years to obtain the initial classification results. The training was as
follows: Firstly, taking 80% of the sample points as the training sample points and 20% as
the verification sample points, and using the GEE’s built-in random function to randomly
distribute the training sample points 30 times, we took the result with the highest accuracy
as the final training sample [35]. Secondly, based on long-term remote sensing image data,
the characteristic variables of each pixel, including the normalized vegetation index NDVI,
normalized building index NDBI, normalized difference water index NDWI, and the night
light data VIIRS, were calculated and combined year by year. Considering the significant
influence of altitude and terrain factors on land-use function in the plateau area [26], the
slope and aspect data generated by DEM were introduced as the classification basis, in
which DEM adopted the SRTM dataset. At the same time, the parameters in the gray level
co-occurrence matrix (GLCM) were used as texture feature variables, the window size and
parameter combination with the highest verification accuracy were selected as the final
texture feature, through the experiments of various window size and multi-type parameter
combination. These texture feature variables included a total of 17 index parameters
proposed by Haralick [36] and Conners [37], which are angular second moment (ASM),
correlation (CORR), entropy (SENT), variance (VAR), inverse difference moment (IDM),
average (SAVG), sum variance (SVAR), sum entropy (SENT), information entropy (ENT),
difference variance (DVAR), difference entropy (DENT), relevant information measure 1
(IMCORR1), relevant information measure 2 (IMCORR2), maximum correlation coefficient
(MAXCORR), dissimilarity (DISS), inertia (INERTIA), cluster shadow (SHADE), and cluster
protrusion (PROM). In addition, considering the natural background characteristics of
the Huangshui basin located on the Qinghai-Tibet plateau is sensitive to hydrothermal
conditions, meteorological elements were introduced for classification. Among them,
the temperature was characterized by annual average temperature, annual accumulated
temperature and soil average temperature, and the precipitation was characterized by
annual precipitation, soil moisture and soil moisture content. Finally, the final training
samples, feature variables, and terrain, texture and climate features were input into the
random forest classifier.

Due to the interannual differences in the quality of the Landsat images used in the long-
term classification results, we implemented a two-way consistency detection algorithm
by constructing a sliding window and a seed window to correct the consistency of the
classification results [29]. The main processing included: (1) setting up the bidirectional
sliding window wm and the seed window ws by selecting the five years with the highest
average precision as the starting position of the sliding window, and the third year as
the reference year of the seed window to construct a 3 × 3 seed window; (2) placing
the sliding window wm immediately outside the seed window ws; (3) determining the
dominant classification fm in the sliding window wm by investing the frequency � of
a function classification: if it was >0.7, the function classification was regarded as the
dominant classification fm of the sliding window wm, and if the classification frequency
of all functions was <0.7, it was considered that there was no dominant classification in
the sliding window; (4) determining whether the object type fs in the seed window ws was
consistent with the dominant classification fm in the adjacent sliding detection window wm:
if they were consistent, we set all the classifications in wm to fs, and moved the position of
the seed window to the grid position where the last dominant classification fs appeared in
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the sliding window, and went to step (2) until the seed window reached the beginning and
end of the time series; if it was inconsistent, we moved the seed window one bit inward,
and went to step (2), and repeated until the seed window reached the beginning and end of
the time series to complete the consistency correction.

3.2. Scenario Simulation of Land Use Function

Simulation analysis of land use function mainly included: (1) land use scale simulation
based on grid division and random forest, (2) spatial structure simulation based on adaptive
cellular automata, which is the simulation of the spatial structure of land use functions in
2035 based on land use function classification data, quantitative impact factor parameters
and the result of land use scale simulation.

The Huangshui basin had the characteristics of significant spatial differentiation
of natural background conditions, the factors that dominated the evolution of land-use
functions in different regions were significantly different, and it was difficult to obtain
simulation results with high confidence. Therefore, we constructed a 2 km × 2 km grid
division unit, downscaled the long-term land use function classification data, and calculated
the area proportion of each functional type Pm,q

t as a function parameter year by year. The
Pm,q

t was expressed as follows:

Pm,q
t =

sm,q
t
s

where sm,q
t represents the area occupied by the land-use function q in the grid unit m at the

t-th time, and s is the area of the grid unit.
Then, based on the existing functional parameter data, the Lagrangian interpolation

method was used to interpolate the functional parameters of 8 time nodes that lacked land
use functional classification data grid by grid, and the long time series data of functional
parameters with a step of 1 year were constructed. After that, based on the long-term time
series data of grid cell functional parameters, the random forest algorithm was used to
predict the functional parameters for 2035. We implemented the algorithm through the tool
Forest-based Forecast, developed and provided in ArcGIS Pro 10.8 by ESRI. The size of the
decision tree forest constructed in this study was 300, and the length of the decision tree
training sample was 7 time nodes. To improve prediction accuracy, the data of three time
nodes were selected as the verification samples, and the decision tree with the root mean
square error (RMSE), calculated by simulated value and observed value, less than 10−4 was
retained by simulating the verification samples based on the training samples. Finally, the
simulation results of functional parameters were normalized by functional classification,
and the total area of each functional classification in the Huangshui basin was counted to
obtain the simulation results of land use functional classification in the Huangshui basin
in 2035.

Based on the principle of functional genetics, we selected corresponding indicators by
considering natural carrying capacity, development status, and future potential. Critical
indicators such as land construction suitability, water resource convenience, and geological
disaster risk were selected for natural carrying capacity. Critical indicators such as popula-
tion density and economic agglomeration were selected for development status. The future
potential focused on the quantification of location conditions, with traffic dominance as
the main indicator including traffic accessibility and distance from the central city. Then,
based on the attributes of functional classification, the quantitative parameters of different
influencing factors were linear combination by category to calculate the functional suit-
ability probability Sk of land-use. The functional suitability probability Sk of land-use was
expressed as follows:

Sk = ∑x wx,k ∗ Ix

where x is the impact factor, wx,k is the impact weight of the impact factor x on the functional
classification k, and Ix is the quantitative parameter of the impact factor x.

89



Remote Sens. 2022, 14, 5521

Using Sk as the driving factor, and the land scale simulation result of functional
classification as the target parameter, the generation probability TPt

p,k of each functional
classification was calculated by adaptive cellular automata, which is conducted in GeoSOS-
FLUS V2.3, a software developed in 2017 [13], and the evolution simulation of functional
classification was realized by generating floating-point random numbers [13].

TPt
p,k = Sp,k ∗Ωt

p,k ∗ Intertiat
k

where k is the land type; p is the spatial location; t represents the t-th iteration; TPt
p,k repre-

sents the probability that the functional classification; Sp,k is the functional suitability proba-
bility of land-use; Ωt

p,k represents the neighborhood influence; and Intertiat
k represents the

inertia coefficient which is used to realize the adaptive process of the cellular automaton.

3.3. Risk Analysis of Land Degradation

We analyzed the risk of land degradation from the aspects of food security and
ecological security in this study. Food security risk mainly refers to the loss of farmland
quantity and quality due to the superposition of human activities and climate change, which
is mainly characterized by landscape indexes such as total farmland, farmland quality,
average patch area, the proportion of large-scale patches, and fragmented patches in total
patches. Ecological security risk refers to the decline of ecological service functions and
the enhancement of ecological vulnerability due to human activities and climate change,
which refers to the encroachment of other land-use on the ecological service function
land, mainly characterized by the importance evaluation of ecological conservation. The
importance evaluation (Z) was expressed by ecosystem service function importance (X) and
ecological vulnerability (Y), both of which were measured by the quality index [38], InVEST
model [39] and so on. Among them, the X was related to the importance of ecosystem
services such as water conservation [40], soil and water conservation [41], biodiversity
maintenance [42], and windbreak and sand fixation [43]; the Y took soil erosion [44] and
desertification vulnerability [45] into consideration:⎧⎨⎩

Z = f (X, Y)
X = Cx(x1, x2, x3, . . . , xn)
Y = Cy(y1, y2, . . . yn)

where Z represents the evaluation level of ecological protection importance, X and Y repre-
sent the importance of ecosystem service functions and ecological vulnerability, respectively,
x1~xn represent different types of ecological service functions, and y1~yn represents differ-
ent vulnerability types.

4. Results

4.1. Long-Term Land Use Functional Classification Result

The long-term classification results of land use in the Huangshui Basin are shown in
Figure 3. The classification results show that the overall accuracy of the initial classification
results was 76.02~88.92%, and the average accuracy was 83.06% with an improvement
of 2.32%. Grassland and farmland were the main land-use types in this basin, which
accounted for >77% of the total area of the basin. Grassland was mainly distributed
in alpine mountain areas and river valley areas, among which the area of river valley
grassland always remained higher than 4652.14 km2. The farmland was mainly distributed
in the river valley area, among which the area with a slope of <12◦ in the basin reached
2778.96 km2 in 2019, accounting for 55.98% of the total area. The woodland was mainly
(63.60%) distributed in mountainous areas with higher altitudes. Compared with grassland,
woodland areas were generally located upstream with higher elevations and steeper slopes.
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Figure 3. Results of year-by-year land use function classification from 1990–2019.

The spatial pattern of land use in the basin varied not only with terrain, but also with
upper, middle, and lower streams. The land-use types dominated by human activities were
mainly distributed in the middle and lower steams, while the original natural land types
were mainly in upstream. In 2019, the farmland area in the midstream and downstream
reached 3658.18 km2, accounting for 73.70% of the total area of the watershed; for construc-
tion land dominated by human activities as well, it mainly (725.88 km2, 62.72%) located in
Xining and Haidong in midstream area. The bare land was mainly distributed upstream,
with an area of 348.47 km2, which was higher than the sum of that in the middle and lower
stream, accounting for 57.18%.

We found that the largest changes were in construction land and farmland from 1990 to
2019. The construction land increased from 315.72 km2 to 1091.83 km2, with an expansion
of 2.67 times; while the area of farmland decreased in a wide range, from 6084.17 km2 to
4900.33 km2, with a loss of 18.41%, which is the land type that lost the largest areas over the
past 30 years. A major reason for the loss of farmland was the expansion of construction
land, occupying a total area of 601.73 km2, accounting for 77.53% of the total area of newly
added urban construction land; another major reason for this was that the evolution to
ecological land and the area of woodland, shrubs and other ecological land from evolution
was 762.21 km2, which was higher than the amount of urban construction encroaching. At
the same time, the farmland showed a certain trend of migrating to the mountainous areas,
which was revealed by the average slope of the farmland in 2019 as 12.08◦ and as 11.86◦
in 1990.

In addition, the land use change in this watershed had typical stage characteristics.
First, the rate of urban expansion in different stages was significantly different and the main
new urban construction land was concentrated in the period from 2000 to 2014, accounting
for 56.54% of the total new area. Among them, from 2000 to 2010, the average annual
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growth rate was 3.84%; from 2010 to 2014, it was a high-speed expansion stage, with an
average annual growth rate of 6.74%, which was more consistent with the region’s response
to the western development strategy. Second, the process of encroaching on farmland by
construction land and forests and grasses had two stages: 2000–2006 and 2014–2018, with
362.30 km2 and 160.21 km2 of farmland being converted into woodland respectively, which
is closely related to the project of “returning farmland to forest”.

4.2. Scenario Simulation Result of Land Use Function

The predicted parameters of different land use functions and structures in the Huang-
shui basin for 2035 are shown in Table 1. During the period from 2020 to 2035, the construc-
tion land in this basin still maintains a trend of rapid expansion. The simulation results
reached 1487.57 km2, which increased by 330.31 km2 compared to 2019, and the average
annual expansion rate reached 1.69%. The ecologically degraded bare land is another
type of area that increased significantly, which increased from 609.72 km2 to 752.20 km2,
with an increase of 23.37%. Shrubs and water showed a slight expansion trend, expand-
ing by 277.76 km2 and 36.13 km2, with an increase of 11.07% and 37.38%, respectively.
However, a loss of farmland in the simulation is always serious. The simulated farmland
was 4206.25 km2, which was only 84.70% of that in 2019, and the average annual decline
rate reached 1.10%. The woodland also had serious degeneration, which decreased from
568.51 km2 in 2019 to 455.31 km2, with a decline rate of 19.91%. The grassland did not
change significantly, and the area change was only 87.07 km2, accounting for 0.82% of the
total area.

Table 1. Simulation scale result table (km2) + specific gravity.

Arable Shrubs Woodland Grassland Water Construction Bare Land

2019 4966.18 2231.49 568.51 10524.76 60.53 1157.88 609.72

2035 4206.25 2509.25 455.31 10611.83 96.66 1487.57 752.20

The land use spatial simulation of the Huangshui basin for 2035 with the adaptive
cellular automata model is shown in Figure 4. From the perspective of terrain structure,
there were obvious differences in land-use in this Basin. The construction land and farm-
land are concentrated in river valleys and shallow mountainous areas with an altitude of
<2800 m, with an area of 1280.01 km2 and 2938.26 km2 respectively, accounting for 86.20%
and 69.40% of their respective total area. The woodlands were mainly distributed in the
origins of the main stream and main tributaries of the Huangshui river and the upper
mountains, and were concentrated in the water conservation areas with an altitude of
>2800 m. Shrubs were mainly distributed in the outer edge of the valley, concentrated on
the edge of farmland; grassland was widely distributed in the whole basin; and bare land
was densely distributed in the mountainous areas of the watershed or part of the valley
slopes of the tributaries of Huangshui.

From the perspective of the main and tributary network of the river, the simulation
results had obvious spatial differences between the upstream and downstream and the main
and tributary. The overall function and structure of the upper streams of the watershed
had a relatively small evolution, and were dominated by natural land such as forests and
grasses. At the same time, there was also the expansion of urban construction land and
the loss of farmland, but the evolution scale was small. The area of newly added urban
construction land and the area of lost farmland were 61.38 km2 and 121.33 km2, with ranges
of 23.24% and 9.29%, which were lower than the overall level of the basin. The middle
stream had the areas with the highest intensity of human activities and growth rate, and
construction land and farmland accounted for 51.75% and 56.64%. From 2019 to 2035,
the new construction land area was 167.93 km2, accounting for 50.85% of the total new
expansion; in addition, the mountain bare land at the source of the tributaries in the middle
stream had the most obvious expansion, with an increase of 81.19 km2, accounting for
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50.69% of the new bare land area, and the expansion rate reached 163.36%. The expansion
of construction land in the lower stream is also extremely serious. The newly added urban
construction land covered an area of 100.88 km2, with an average annual growth rate
of 1.95%, which was 0.25% higher than the average level. Similar to the midstream, the
bare land in downstream had a substantial expansion as well, with an expansion area of
38.05 km2 and an expansion rate of 54.54%.

Figure 4. Simulation results of land use function and structure in Huangshui watershed in
2035.(WGS84, 1:1,000,000).

4.3. Risk Analysis Results of Land Degradation

The simulation results of land use in the Huangshui basin demonstrated that both
construction land and bare land showed a significant expansion trend, which was accom-
panied by the loss of a large number of high-quality farmland and the loss of ecological
service functions, threatening the food security and biodiversity of the watershed. The area
of farmland decreased significantly, and the degree of fragmentation continued to increase.
By 2035, 14.70% of the farmland was lost in this basin, and the average patch area was
0.326 km2, with a decrease of 4.66%; and the broken farmland with an area of <1000 m2

increased from 64.44% to 74.64%. By analyzing the evolution from farmland to other land
use types (Figure 5), the expansion of construction land (typical of Duoba Town shown
in Figure 5b), the conversion between woodland and grassland and farmland, and the
degradation of farmland to bare land (typical of Hetaozhuang Town shown in Figure 5c)
were the main reasons for the loss of farmland, accounting for 82% of the total farmland
loss. The farmland replaced by woodlands and grasslands was mainly distributed in the
sloping farmland with an altitude of >2800 m and a slope of >25% with a lower quality
level. In addition, the degradation of farmland to bare land may also occur in the sloping
areas of river valleys.
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Figure 5. Results of risk analysis of farmland loss: (a) Huangshui Basin; (b) Duoba Town in
Huangzhong District; (c) Hetaozhuang town in Minhe County. (WGS84, 1:975,000).

In addition to the loss of farmland, the risk of land degradation was also reflected in
the partial weakening and loss of ecological services (Figure 6). The importance evaluation
of the ecological service functions showed that the area with moderate or above ecological
service function importance in the basin is 13,440.65 km2, accounting for 66.78% of the total
area of the basin. Among them, the proportion of soil and water conservation and biodiver-
sity was relatively high, accounting for 88.09% and 97.37%, respectively, mainly distributed
in the valley edge of this basin. This area is relatively flat, and the water and heat conditions
are relatively abundant, which is suitable for the growth of various plants, and plays an
important role in maintaining regional biodiversity and soil and water conservation. By
2035, the loss of areas with important ecological service functions increased to 111.64 km2

(typical in Ledu District shown in Figure 6b), with an increase of 67.43% over the base year.
The lost areas were mainly distributed in the transition zone from the middle and lower
streams, accounting for 28.71% and 19.47% of the total area of important ecological service
functions, respectively. The ecological vulnerability analysis showed that the total area
above moderately vulnerable in this basin was 6792.41 km2, accounting for 33.75%, mainly
concentrated in the valley slopes and the watershed mountain areas of the basin. The
area of bare land increased significantly, and the natural land degradation was relatively
serious. Among them, 114.20 km2 of newly added bare land was in areas with strong
ecological vulnerability (typical of Lierbao Town shown in Figure 6c, where 52.99% bare
land expansion was simulated in the area with strong ecological vulnerability), accounting
for 71.29% of newly added bare land. The expansion of bare land in ecologically fragile
areas mainly occurred on the slopes of tributary valleys in the middle stream. At the same
time, by superimposing the results of the individual evaluation of ecological vulnerability
and the simulated expansion of bare land, we found that 70.35% of the newly developed
bare land was located in the middle and high-risk areas of soil erosion in this basin.

94



Remote Sens. 2022, 14, 5521

Figure 6. Results of ecological protection importance evaluation and risk analysis: (a) Huangshui
Basin; (b) Ledu District; (c) Lierbao town in Minhe County. (WGS84, 1:975,000).

5. Discussion

The data used for the classification of land use functions in this study were long-series
Landsat satellite images. Due to the aging of Landsat 5 sensors and the serious banding
of Landsat 7 satellite images from 2007 to 2013, there are certain flaws in the reliability
of the data [46]. The advantages of the method in this paper have been confirmed in
previous studies, and a better classification has been achieved [47,48]. The overall accuracy
(OA) of Random Forest classification results ranges from 76.38% to 89.07% and the Kappa
range from 0.6881 to 0.9131. After bi-detection process, the OA averagely improved 5.60%,
ranging from 84.20% to 91.74%.

Meanwhile, the method in this paper combines random forest (RF) and cellular au-
tomata (CA), both of which have proven stable and robust in land use research [49–52].
Moreover, a series of works have conducted a sensitivity analysis of the CA model, which
found that the results are sensitive to time step, impact of driving factors, and neighbor-
hood influence [13,53]. Because the CA model is not sensitive to the area that random
forest simulates, the combined method is also stable and robust. To further assess accuracy,
we used the indicator “figure of merit” (FoM) as a veridiction method. FoM is a ratio
representing the proportion of samples that are observed and simulated correctly [54] and
has been widely used in previous studies [55]. We simulated land use in 2018 using our
method and the Markov-FLUS model, separately. The FoM using the method in this paper
was 12.63%, which was 1.33% higher than FoM using Markov-FLUS model.

As a high-intensity human activity area with an important but vulnerable environ-
ment, the Huangshui basin is a hotspot of environmental protection policies and devel-
opment plans, such as “returning farmland to forest”, “protection of prime farmland”,
“Lanzhou-Xining Urban Area Development Plan”, and so on. Effected by multiple policies,
interconversion of land use has occurred in the Huangshui Basin, between farmland and
shrubland, for instance. Taking policy factors and multiple special types of areas, such
as agricultural and animal husbandry interlaced zones and ecologically fragile areas into
consideration, the driving force is relatively complex, and the reliability of prediction and
simulation needs to be verified. Therefore, this study conducted a field survey, and verified
the conclusions of this study through a comprehensive practical investigation and visual
interpretation of historical image data for the typical sites involved in the study.

Because of the loss of cultivated land and ecological degradation caused by the expan-
sion of construction land, we selected Duoba Town in Huangzhong District Figure 7a and
the urban area of Ledu District Figure 7b as the verification and inspection sites, both of
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which are urban expansion areas in the “Lanzhou-Xining Urban Area Development Plan”.
Combining historical images and land use function classification data, it was found that
Duoba Town experienced a rapid expansion of urban construction land after 2012, and the
loss of its cultivated land accelerated during the same period; in the simulation results,
Duoba Town maintained the rapid expansion of urban construction land, its area reached
58.44 km2 in 2035, with an increase of 15.73 km2 compared to that in 2019; among them,
14.01 km2 of new urban construction land was converted from cultivated land, accounting
for 89.08% of the totally new area. The Ledu District had a similar situation to that of
Duoba Town, and the overall urban area along the main banks of the Huangshui river
showed a significant increase in 2013. The area of newly added urban construction land was
7.60 km2, of which the area of the area with medium or above ecological service function
importance accounted for 44.38%. The new urban area of Ledu District is flat, which is
convenient for the construction implementation, and the transportation infrastructure is
relatively superior, which reveals the extremely strong driving force for evolution into
urban construction land. Considering that Ledu District is located at the entrance of the
tributaries in the low stream, the weakening of the soil and water conservation service
function can easily lead to the instability of the regional ecosystem, resulting in the risk of
soil erosion in the upstream area.

Figure 7. Distribution of validation sites for risk analysis: (a) Duoba Town in Huangzhong District;
(b) urban area of Ledu District; (c) Hetaozhuang town in Minhe County; (d) Donggou Town in Huzhu
County. (WGS84, 1:975,000).

Given the degradation of farmland and ecological area into bare land, we selected
Hetaozhuang town in Minhe County Figure 7c and Donggou Town in Huzhu County
Figure 7d as verification sites. Several protection projects were conducted on these sites,
such as “returning farmland to forest” and “protection of prime farmland”. Based on the
classification data of land use function, it was found that Hetaozhuang Town continued to
maintain a certain decline of cultivated land after 1990, and the bare land also expanded
slightly. In the simulation results, the cultivated land in Hetaozhuang Town continued to
decline at significantly increased rates, which mainly evolved into grassland and bare land.
The area of cultivated land in decline reached 4.91 km2, accounting for 20.41% of the total
cultivated land. From the field investigation, it was found that there is a significant vertical
difference in some mountain land types in this area, which shows that the top mountain
is land or bare land, and the bottom is cultivated land and vulnerability may induce bare
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land to encroach on cultivated areas. The bare land in Donggou Town also showed a
large-scale expansion in the simulation results, with an expansion area of 12.24 km2, and
the simulated degradation area was 9.07 km2, revealing potential risks of land degradation
in areas with strong ecological vulnerability. The investigation shows that the vegetation
coverage in this area is relatively good, the main natural vegetation is grassland, and the
artificial development of the mountain is common with cultivated land at the bottom of the
mountain. Further investigation demonstrated that this area consisted of bare land and low-
coverage grassland before 2015, and there was an expansion trend, and the implementation
of the wasteland treatment project and the conversion of farmland to forest has gradually
restored the wasteland and part of the cultivated land into grassland and forest land after
2015. The stability of the ecosystem in Donggou Town has been enhanced, which has
greatly curbed the expansion trend of bare land. With the auxiliary UAV images, we found
that the grassland in Donggou town has regional heterogeneity and large-scale differences
in coverage levels, which can prove that there are ecological restoration projects carried out
in stages in this region.

After investigation and verification of typical sites in the Huangshui basin, it was
found that: (1) there is a strong driving force for land-use conversion in each area based on
the verification of the background conditions of urban construction land expansion and
bare land degradation areas, revealing that the evolution of functional land is reasonable
and the conclusions are reliable; (2) the degradation of bare land in the watershed mainly
result from the regional topography, soil quality and vegetation coverage, the change of
which has a great influence on the regional ecological effect. Destructive human activities
lead to irreversible land degradation and bring serious ecological risks, while ecological
management projects such as returning farmland to forests can curb the trend and improve
regional ecological security.

6. Conclusions

This paper modeled the spatial evolution of land use function and structure in the
Huangshui basin on the Qinghai-Tibet plateau using long-term time-series remote sensing
land use/land cover classification data and analyzed land degradation analysis in terms of
protection and degradation of ecological service functions. The study shows that Huang-
shui basin, as an ecologically fragile watershed, has undergone drastic changes in the
past 30 years, manifested by the massive expansion of construction land and the massive
loss of farmland. This change has been influenced not only by human activities such
as urbanization and ecological immigration, but also by the combined effects of various
policies such as the return of farmland to forests, farmland protection, and climate change.
By continuing to follow past development paths, the Huangshui basin will suffer from
further extensive land degradation, as evidenced by the massive expansion of built-up
land and bare land, which will encroach further, leading to the loss of farmland, as well as
the area of high ecological importance and vulnerability. Given the spatial management
and control of specific functional areas and the coordination of upstream, midstream, and
downstream development, we put forward specific policy recommendations in this study:
(1) strengthen the protection of cultivated land, delineate the farmland protection redline,
promote scientific planting pattern, and encourage the development of water-saving agri-
culture to improve planting efficiency; (2) strengthen ecological protection, ensure the
ecological service function of the river basin, delineate ecological protection redline, ensure
the ecological service function of the river basin, maintain the stability of the river basin
ecosystem, and maximize the ecological benefits; (3) promote the unified planning and
improve the collaborative management of the river basins.
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Abstract: Urban water quality is facing strongly adverse degradation in rapidly developing areas.
However, there exists a huge challenge to estimating the inner features and predicting the variation of
long-term water quality due to the lack of related monitoring data and the complexity of urban water
systems. Fortunately, multi-remote sensing data, such as nighttime light and evapotranspiration (ET),
provide scientific data support and reasonably reveal the variation mechanisms. Here, we develop
an integrated decomposition-reclassification-prediction method for water quality by integrating
the CEEMDN method, the RF method mothed, and the genetic algorithm-support vector machine
model (GA-SVM). The degression of the long-term water quality was decomposed and reclassified
into three different frequency terms, i.e., high-frequency, low-frequency, and trend terms, to reveal
the inner mechanism and dynamics in the CEEMDAN method. The RF method was then used to
identify the teleconnection and the significance of the selected driving factors. More importantly, the
GA-SVM model was designed with two types of model schemes, which were the data-driven model
(GA-SVMd) and the integrated CEEMDAN-GA-SVM model (defined as GA-SVMc model), in order
to predict urban water quality. Results revealed that the high-frequency terms for NH3-N and TN
had a major contribution to the water quality and were mainly dominated by hydrometeorological
factors such as ET, rainfall, and the dynamics of the lake water table. The trend terms revealed
that the water quality continuously deteriorated during the study period; the terms were mainly
regulated by the land use and land cover (LULC), land metrics, population, and yearly rainfall. The
predicting results confirmed that the integrated GA-SVMc model had better performance than single
data-driven models (such as the GA-SVM model). Our study supports that the integrated method
reveals variation rules in water quality and provides early warning and guidance for reducing the
water pollutant concentration.

Keywords: CEEMDAN method; GA-SVM model; decomposition; prediction; water quality

1. Introduction

Recently, urban water quality degradation has become a considerable restricting factor
for achieving the goal of the green development in metropolises, and thus has caused
worldwide concern [1,2]. Urbanization rates and the urban built-up area confirm that
urban area tends to continuously expand [3] and thus change the structure of the water
system, causing potential water pollution [4,5]. For instance, 32% of surface water in China
was facing water pollution disasters [6,7]. Waterbody quality strongly varies in time due
to uneven development of the urban area; the ongoing drastic change of the effective soil
water amounts, nutrient levels, and land use and land cover; and point sources of pollution
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discharged from residential and industrial sources [8,9]. Thus, accurately detecting the
inner dynamics and predicting potential water pollution issues caused by the varied driving
factors are the key points to preventing and reducing the degree of water pollution and
require immediate attention [10]. Particularly in the urban-rural marginal area, urban
expansion has a substantial influence on the hydrology and water environment. Moreover,
the high disturbance in the urban has caused more complex hydraulic conditions and more
sources of pollutants [11,12].

To detect the inner variation features of the water quality, plenty of methods exist
and have provided reasonable results [13–21]. However, there also exist some limitations
that have restricted the application of these methods. The Mann–Kendall test is mainly
used to detect the tendency of time-related data, and thus is widely used for analyzing
long-term rainfall, runoff datasets, and water quality [13,15]. However, water quality for
urban areas undergoing rapid expansion may not have a long time series of detection
data. Moreover, more decomposed features are necessary to analyze the dynamic of water
quality. The Fourier transformation (FT) method has also been used to detect the dynamic
pattern of time series data; however, the features of stationary and linear processes and
priori basis restrict its application for water quality [16]. The wavelet transform (WT)
method, which solves the shortage of FT method in the single resolution of short time,
is a time-frequency based method and thus is widely used for rainfall, runoff, and water
quality transformation [17–20]. The WT method is suitable for non-stationary signals and
is extremely dependent on the wavelet basis function. When the signal-to-noise ratio is
small or the data is not linear [21], the denoising effect of WT cannot obtain reasonable
results. The empirical mode decomposition (EMD) method has been proposed [22], as
the EMD method can compose the non-stationary and non-linear into linearizing and
stabilizing series, and the EMD method can select the basis function based on the time
scale characteristics of the signals themselves. Furthermore, with the development of other
improved EMD methods, such as the complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) method and ensemble empirical mode decomposition
(EEMD), EMD, EEMD, and CEEMDAN have been widely used to decompose time series
data of the climatic oscillation, runoff, water quality, and landslides [23–28].

Prediction of the variation of water quality also significantly supports improving
waterbody deterioration. Several models and information systems have been proposed
to predict the variation of water quality and obtain reasonable results. Among these
models, physical-based models, i.e., hydrologic-environmental models, have been widely
used in urban areas. For example, Joshi et al. [29] used the storm water management
model (SWMM) to reduce combined sewer overflows with reasonable cost-effectiveness for
sustainable urban drainage systems. The InfoWorks ICM model or the full hydrodynamic
(FH) models were widely used for multi-scale catchments in real-time control (RTC) and
obtained optimum results [30,31]. The Mike URBAN model contains distributed water
systems including combined sewer overflow system and separate stormwater system. More
importantly, the Mike URBAN covers two-dimensional overland flow and thus has good
performance in urban areas with rapid urbanization and climate change [32]. These models
are both supported by rigorous physical theory and are easily acceptable. However, the
rigorous physical theory-based models also need high-quality monitoring data to satisfy
the accuracy of the model.

However, the rapid expansion of urban areas is always accompanied by drastic
changes in the underlying surface, urban pipe networks, hydrological conditions, and
water environment conditions. Moreover, all of these changes are not always well moni-
tored or do not have high-quality data available. Therefore, data-driven models, such as
machine learning models, have also been used for water quality predictions. Zhi et al. [33]
used machine learning models in 236 minimally disturbed watersheds of the US and con-
firmed that machine learning models can predict results well in data-lacking areas. With
the immense and urgent demand for good-quality prediction of water quality variation
with the rapid development of urban areas, more machine learning models have been
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presented and compared. Qiao et al. [34] used 12 machine learning algorithms to evaluate
water quality, and both models obtained reasonable results. Compared with the neural
network model, Mohammadpour et al. [35] also analyzed the SVM model and artificial
neural networks (ANNs), and revealed that the SVM model could obtain better results
with limited monitoring data. Recently, a few types of integrated models, which can de-
compose the data series into more inner sequences and which are then coupled with the
machine learning model, were analyzed to evaluate the inner dynamic and provide better
modeling performance. For example, the EMD-ANN model and EMD-Auto-Regressive
and Moving Average (ARMA) model were integrated to predict runoff, and revealing that
the EMD-based integrated model performed better than the single model, i.e., the ANN
model and the ARMA model, in the hindcast experiment performed [36]. Yuan et al. [25]
integrated the EEMD and Long Short-Term Memory (LSTM) models to forecast daily runoff,
and confirmed that the integrated model significantly improved the simulation results
compared to the LSTM model. The EEMD and the SVM model also were integrated to
predict water quality and landslide displacement, and results revealed that the integrated
model increased the prediction accuracy [27,28]. However, some of the EMD-based inte-
grated models were not data-based [27], and some forecast results of the integrated models
performed worse than the original models [36].

To evaluate the inner dynamic and achieve better prediction performance of water
quality with limited data, this study integrated the CEEMDAN method, the random forest
method, and the GA-SVM model. The CEEMDAN method was used to decompose the
long-term water quality data; then, the decomposed sequences were reclassified into three
sequences according to the variance proportion, i.e., the high-frequency term, the low-
frequency term, and the trend term. Furthermore, the RF method was used to identify the
importance of the driving data on the water quality series, the high-frequency term, the
low-frequency term, and the trend term. More importantly, we then used the GA-SVM
model and the identified driving factors of the high-frequency, low-frequency, and trend
terms to predict the different terms, which were then coupled to predict the water quality.
In contrast, the data-driven model, i.e., the identified driving factors of the water quality
series coupled with the GA-SVM model, was set to forecast water quality.

2. Materials and Methods

2.1. The CEEMDAN Method

The complete ensemble empirical mode decomposition with adaptive noise (CEEM-
DAN) method was developed from empirical mode decomposition (EMD) and ensemble
empirical mode decomposition (EEMD) by adding adaptive white noise to suppress the
aliasing of the EMD [22,37,38] The CEEMADAN model is an efficient decomposed method
for the adaptive decomposition of non-stationary and non-linear data into many intrinsic
mode functions (IMF). The main progress is as follows:

Step 1 Define the long-term data xi(t) as the original input signal.

xi(t) = x(t) + εωi(t) (1)

where ε represents a noise coefficient and ωi(t) indicates white noise sequences.
Step 2 Decompose the IMF1. The first decomposed IMF averaged by the EMD method:

IMF1(t) =
1
N

N

∑
i=1

IMFi1(t) (2)

The residue is defined as:

r1(t) = x(t)− IMF1(t) (3)
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Step 3 Decompose the IMF2.

IMF2(t) =
1
N

N

∑
i=1

IMF1(r1(t) + ε1IMF1(ω(t))) (4)

Step 4 Decompose the other IMFs unless the extreme points are less than two. There-
fore, the final signal sequences x(t) are decomposed as follows:

x(t) =
N

∑
i=1

IMF2(t) + r(t) (5)

In the decomposing process, the IMFs and trend term can extract series terms for the
high-frequency to low-frequency and trend terms. In this study, the t-test was used to
reclassify the IMFs based on fine-to-coarse reclassification [39].

2.2. Driving Factors Selection and the Relative Importance Analysis

Urban water quality was influenced by many factors due to the complexity of the
urban water system [12], such as the heavy variation of LULC, land metrics, rainfall,
the human control of the lake water table, multi-point sources, complex rainfall-induced
runoff, and non-point pollutants. Therefore, identifying the important driving factors
under the condition of limited monitoring data and remote sensing data was the key point
to achieving more accurate predictions. Before evaluating the importance of the driving
factors, the Pearson method was used to analyze the correlation between the selected factors
and to exclude the variables with high correlation. The random forest (RF) method split
each partition into a random subset to search for the best feature variable, which produces
better overall performance and thus has been widely used for identifying the importance
of the driving factors for water quality [40]. Therefore, the RF method was used to identify
the importance of the driving factors for the water quality series, the high-frequency term,
the low-frequency term, and the trend term.

2.3. GA-SVM Model

The support vector machine (SVM) model is a nonlinear regression and is widely used
for predicting hydrological issues and water quality issues. In this study, we used the SVM
model to predict the water quality; the input data were divided into training data and test
data. Furthermore, the GA imitates biological evolution to approach the best solution of the
minimum project [41], and thus was used to search for the best matching kernel function
and parameters for the SVM model.

The Nash–Sutcliffe efficiency coefficient (NSE) and the root mean squared error (RMSE)
were used to estimate the model performance.

NSE = 1− ∑n
i=1 (ymod − yobs)

2

∑n
i=1 (ymod − yobs)

2 (6)

RMSE =

√
∑n

i=1 (ymod − yobs)
2

n
(7)

where the ymod and yobs represent the modeled and observed water quality. yobs represents
the observed mean of water quality and n represents the number of water quality samplings.

2.4. Experimental Schemes Design

In this study, we integrated a framework that realized the decomposition-reclassification-
driving factors identification-prediction for the water quality series. We decomposed the
water quality sequences and reclassified them to evaluate the inner dynamic of water
quality. Additionally, the water quality and the reclassified terms were set as the inputs
for the GA-SVM model. We designed and examined two types of GA-SVM models based
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on the selected 10 driving factors for each corresponding term (the water quality term,
the high-frequency term, the low-frequency term, and the trend term). We named the
data-driven GA-SVM model for water quality the GA-SVMd model. More importantly,
we used the RF method to identify the corresponding important driving factors for the
high-frequency term, the low-frequency term, and the trend term. Then, the GA-SVM
model was used to predict each term sequence. Finally, the water quality was obtained by
the sum of each predicted term sequence. Thus, this model was defined as the GA-SVMc
model (Figure 1).

 

Figure 1. The two designed integrated experimental schemes. HF term and LF term represent the
high-frequency and low-frequency terms. HF-Pre, LF-Pre, and Trend-Pre indicate the prediction of
the high-frequency, low-frequency, and trend terms.

3. Case Study of Beihu Lake, Wuhan City, China

3.1. Study Area

The Beihu catchment is situated on the eastern expansion edge of the Wuhan City and
includes the majority of heavy industrial parks (Figure 2). As a result, the Beihu catchment
has a relatively lagging underground pipe network and sewage treatment capacity. Further-
more, sewage water sources, such as industrial, domestic, runoff, and agricultural sources,
contribute vastly without reasonable water treatment, and discharge directly in the surface
water body. Thus, the multiple sources of sewage have caused the downstream water body
of Beihu Lake to be heavily polluted for a long time. Recently, many countermeasures have
been performed to control water pollution; however, significant improvement in water
quality has not been observed [42].

The Beihu Lake is a semi-natural lake regulated by a pumping station. Furthermore,
the Beihu Lake catchment is situated in the rural-urban marginal area. As a result, the
complex LULC, urban stormwater network, and multi-source water pollution create a
complex urban water system. In the wet season, the high frequency of rainfall events
causes a large amount of runoff; moreover, the water level of the outer river is higher than
the water table of the Beihu Lake. Therefore, pumping stations are needed to drain the lake
water to the outer river. In the dry season, the runoff of the Beihu Lake is quite small, and
the water table of the outer river is lower than the water table of the Beihu Lake; therefore,
the water of the lake is free to discharge to the outer river. Consequently, the water table of
the Beihu Lake level is a key factor, since it is a significant indicator of whether the pumping
station needs to drain water from the lake and whether the lake can be discharged into the
outer river via free flow. Evapotranspiration (ET) is also a key factor since the lake is an
open water body with a large surface.
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Figure 2. The study area of the Beihu catchment.

3.2. Water Quality and Other Monitored Datasets

In this study, the monthly water quality series from 15 January 2014 to 15 November
2021 were collected partly form environmental measurements by water samples and partly
from Wuhan Ecological Environment Bureau [43], and the modeling period was set to the
same period as the monitoring period. According to the monitored results, NH3-N and TN
were confirmed to be the main pollutants in the study area (Table 1); therefore, NH3-N and
TN were selected as the main water quality variables in this study. The hourly rainfall data
and the water table of the Beihu lake were also monitored. Furthermore, the sums of 5-day,
10-day, 15-day, 20-day, monthly, seasonal, and yearly rainfall were calculated based on the
hourly rainfall data. The 5-day, 10-day, 15-day, 20-days, and monthly average water table
and accumulated variations of the water table were also calculated based on the hourly
water table of the Beihu lake.

Table 1. Statistics of the water quality in the Beihu catchment.

Water Quality Variable Units Mean Standard Deviation

NH3-N mg/L 2.59 1.69
TN mg/L 4.56 2.29
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3.3. Remote Sensing-Based Data

Remote sensing-based data have significant contributions to the prediction of long-
term water quality. In this study, three types of remote sensing data were used: land
use and land cover, the ET dataset, and the nighttime light dataset (NTL) (Table 2). In
detail, three periods of the Chinese Gaofen (GF)-1 data (resolution of 2 m) were manually
identified to obtain the land use and land cover land metrics dataset for the years of 2014,
2017, 2020. The 8-day ET dataset [44], which ranges from 15 June 2015 to 15 November 2021,
was downloaded from the MODIS Land Products (Net Evapotranspiration 8-Day L4 Global
500 m) (https://ladsweb.modaps.eosdis.nasa.gov/search/, accessed on 15 December 2021).
Then, the monthly potential ET data were obtained by summing the total potential ET
data on the 8-day total ET dataset for four periods of every month. Domestic wastewater
discharge is a critical point pollutant source to the lake water quality; therefore, accurately
evaluating the population has a significant effect on predicting water quality. The NTL
dataset has been proven to be an effective dataset to obtain population data [45]. In this
study, the yearly Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB)
dataset was chosen to calculate the population [46].

Table 2. Statistics of the related data details.

No. Data Unit
Temporal and

Spatial Resolution
Data Sources

1 Rainfall mm 1 h Field investigation
2 Lake water table m 1 h
3 Annual District Population people 1 year Statistical yearbook
4 Land use and land cover m 2 m Chinese Gaofen (GF)-1

5 ET mm 8 days, 500 m https://ladsweb.modaps.eosdis.nasa.gov/search/,
accessed on 15 December 2021

6 Nighttime light m 1 year, 500 m https://eogdata.mines.edu/products/vnl/,
accessed on 15 December 2021

The yearly VIIRS data were first corrected based on the assumption that the NTL value
of the previous year is smaller than that of the next year (Equation (8)) [46].

DN(n,i) =

{
DN(n−1,i) DN(n−1,i) ≥ DN(n,i)

DN(n,i) DN(n,i) > DN(n−1,i)
(8)

Literature has proven that the NPP-VIIR NTL data can obtain a reasonable estimation
of distributed population [46]. The correlation between NPP-VIIR NTL radiance and
population follows Equation (9).

POPc = ax3 + bx2 + cx + d (9)

The precision of the calculated population and the real population was evaluated by
Equation (10). If the calculated population had a relatively large error, the power function
was then used to recorrect the calculated population until it obtained a reasonable result
(Equation (11)).

γ =
|POPc − POPs|

POPs
× 100% (10){

cn = POPn/POPtotal
fn = cn ∗ DNBn

(11)

where γ indicates the relative error. POPc and POPs indicate the calculated population by
the NTL and statistical population. cn and fn indicate the correction and the adjusted DBN.
POPn and POPtotal represent the nth yearly statistical population and the total statistical
population during the calculated period.
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4. Results

4.1. The Main Input Data from the Remote Sensing Dataset
4.1.1. Land Use and Land Cover (LULC), Land Metrics

LULC has a remarkable influence on urban water system quality due to different
rainfall-runoff response mechanisms and non-point sources pollution generation mecha-
nisms. Especially in urban-rural marginal areas, land use types are significantly altered,
changing the effective water amounts, nutrient levels, and surface roughness of the land
surface directly, and thus changing the urban hydrological processes and ecological en-
vironments. In this study, the years 2014, 2017, 2020 were interpreted for water quality
prediction. Results revealed that 11 types of LULC mainly existed in the Beihu catchment,
i.e., lake, rivers, roads, grassland, forest land, ponds, paddy fields, bare land, industrial
land, and residential land (Figure 3). The area of the ponds and paddy fields slightly
declined during the study period, while the area of the industrial land and residential land
increased due to the expansion of the urban area (Figure 3a–d). The area of forest/grassland
also had a substantial influence on non-point sources, and was chosen as a driving factor
in this study. The chosen land metrics were the patch density (PD) and contagion index
(CONTAG) due to the high Person’s correlations of the other factors, such as the landscape
shape index (LSI) and the largest patch index (LPI).

4.1.2. ET and POP Dataset

The average potential ET of the Beihu catchment exhibited strong seasonal variation
(Figure 4a). The population calculated by the NPP-VIIR NTL radiance of Wuhan City
performed well. The population of the Beihu catchment tended to decrease slowly in the
early period and increase rapidly in the later period (Figure 4b). This might be due to the
Beihu catchment being located at the edge of the urban area; people tended to migrate to
the urban area in the early period, while when the urban gradually expanded, more areas
of the catchment became urban areas; therefore, the population showed a trend of rapid
growth in the later period. This result was consistent with the statistical data of Qingshan
District, Wuhan City [47].

4.2. Decomposition and Reclassification of the Water Quality Series

All water quality sequences, i.e., the NH3-N and TN monitoring data from 15 January
2014 to 15 November 2021, were decomposed by the CEEMDAN method (Figure 5). Then,
the decomposed IMFs terms and trend terms were reclassified based on the t-test (Figure 6).

The decomposed IMFs and the residue term by the CEEMDAN for NH3-N and TN
are shown in Figure 5. In this study, 500 trials were implemented and the white noise
coefficient was given as 0.2. Results revealed that both NH3-N and TN had four IMFs. From
the high-frequency IMF to low-frequency IMF, the frequencies and amplitudes changed
significantly and the amplitudes became smaller (Figure 5). The amplitudes of NH3-N
and TN were 3 for IMF1 and then declined to 1.5–2 for IMF2-IMF3, while the amplitudes
increased to 3 for IMF4 for NH3-N and TN. The residue term for NH3-N and TN increased
and had relatively small amplitudes (Figure 5).

The mean period [39], mean values, the variance of each IMF, the percentage of the
variance of the IMFs, and the Pearson correlation between each IMF with the water quality
series were analyzed in this study (Table 3). Results revealed that IMF1 and IMF2 had more
frequent fluctuations and had different mean periods for NH3-N and TN, while IMF3 and
IMF4 had larger and similar mean periods (Table 3). The percentage of the variance of the
IMFs confirmed that the IMF1 and IMF4 had the greatest proportion of contribution on the
water quality.
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Figure 3. Land use and land change (a–d); land metrics (e,f).

 
Figure 4. The potential monthly ET (a); the yearly population of the Beihu catchment (b).
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Figure 5. The decomposition of water quality sequences by the CEEMDAN method. (a) NH3-N; (b) TN.

Figure 6. The reclassified terms and the original water quality series. (a) NH3-N; (b) TN.

We reclassified the decomposed water quality of IMF1 to IMF4 and residual term
based on the t-test in this study. The residual term was set as the trend term, IMF1 to
IMF3 were reclassified as the high-frequency term for both NH3-N and TN due to the
significant difference among the IMFs, and for IMF4, both NH3-N and TN were reclassified
as the low-frequency term. The original water quality series and the reclassified high-
frequency, low-frequency, and trend term are shown in Figure 6. Results confirmed that
the high-frequency terms for both NH3-N and TN had stronger fluctuation frequencies,
which were similar to the water quality series. The low-frequency terms for both NH3-N
and TN showed a tendency of first increasing and then decreasing, and the trend of the
low-frequency terms was similar to the water quality trend. The trend terms for NH3-N
and TN increased in the whole monitoring period and gradually leveled at the end of the
monitoring period.
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Table 3. The IMFs and the residue values for the decomposed long-term water quality data.

Variable IMF1 IMF2 IMF3 IMF4 Residue

Mean period
(Month)

NH3-N 1.31 2.94 7.83 23.5 47
TN 1.47 3.92 7.83 23.5 47

Mean
NH3-N −0.054 −0.030 −0.024 0.796 2.742

TN −0.052 0.038 −0.018 −0.273 4.348

Variance
NH3-N 0.83 0.52 0.65 0.89 0.41

TN 1.15 0.83 0.57 1.55 0.65

Variance as % of
(ΣIMFs + residual)

NH3-N 25.17 15.86 19.70 26.96 12.31
TN 24.15 17.56 12.08 32.57 13.64

Pearson correlation
NH3-N 0.50 0.46 0.44 0.65 0.27

TN 0.46 0.32 0.28 0.74 0.42

4.3. Evaluation of the Importance of Driving Factors

We used the RF method to estimate the importance of driving factors (determined
by the relative importance for all driving factors), which was used for both the GA-SVMd
model and the GA-SVMc model. As shown in Figure 7, the relative importance of driving
factors significantly varied between the water quality variables and the corresponding data
series and different frequencies.

Figure 7. The relative importance of the driving factors. The R5DS, R10DS, R20DS, RS, and RY
represent the sum rainfall over 5 days, 10 days, 20 days, seasonally, and yearly. The WT5DAc,
WT10DAc, WT15DAc, WT20DAc, and WT30DAc indicate the cumulative magnitude of change in
the lake water table over 5 days, 10 days, 15 days, 20 days, and 30 days. The WT5Av, WT10Av,
WT15Av, WT20Av, and WT30Av indicate the average lake water table over 5 days, 10 days, 15 days,
20 days, and 30 days. FG represents forest/grassland. POP represents the population. IMPS indicates
impervious surface.

Regarding the NH3-N of the Beihu Lake for the GA-SVMd model, the main driving
factors were hydro-meteorological factors, i.e., ET, seasonal rainfall, the cumulative mag-
nitude of change in the lake water table over 10 days, the average lake water table over
10 days, and the sum rainfall over 20 days. Furthermore, population, pond land, and
forest/grassland were also relatively important influences. When analyzing the importance
of the driving factors on the decomposed and reclassified results of the CEEMDAN, the
driving factors of the high-frequency term for NH3-N were dominated by the hydrom-
eteorological factors; only the population had a slight effect. The driving factors on the
low-frequency term for NH3-N were dominated by yearly rainfall, the population, LUCC
(such as the pond, the forest/grassland, and the paddy field), and land metrics (the PD,
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the CONTAG). The different days of the cumulative magnitude lake water table also had
a relatively significant impact on NH3-N. In detail, field investigation confirmed that the
industrial point sources were the main source of NH3-N; therefore, the industrial land area
had the most significant effect on the trend term of NH3-N. The impervious surface, the
paddy field, the population, and the cumulative magnitude of change in the lake water
table over 5, 20, and 10 days were also the main driving factors for the trend term of NH3-N.

Compared to the GA-SVMd model, the driving factors for TN also included many
hydro-meteorological factors, i.e., the ET, the yearly rainfall, the sum rainfall over 5 days,
and the average lake water table over 30 days. Moreover, paddy field land, impervious
surface (defined as the sum of the residential, industrial, and road land), population, and
PD also had significant influence on TN (Figure 7). When analyzing the importance of
the driving factors on the decomposed and reclassified results of the CEEMDAN, the
driving factors also significantly varied from the high-frequency term to trend terms
for TN. The driving factors of the high-frequency term for TN were dominated by the
hydrometeorological factors; only the population had a slight effect. The driving factors on
the low-frequency term for TN were also dominated by yearly rainfall, population, LUCC,
and land metrics. The driving factors on the trend term for TN were mainly influenced
by the population, the LUCC, land metrics, and yearly rainfall. Residential recharge was
proven to be the main source of TN by previous studies (Hwang et al., 2016; Paule et al.,
2014), which is related to the most important driving factor (the population) for the trend
term of TN (Figure 7).

4.4. Prediction of Water Quality by the GA-SVMd Model and the GA-SVMc Model

The proportion of the calibration period and the validation period was set as 0.7
for both NH3-N and TN; i.e., the period from 1 July 2015 to 15 January 2020 was set as
the calibration period, and the period from 15 January 2015 to 15 November 2021 was
set as the validation period. The results modeling with the GA-SVMd model and the
GA-SVMc model both showed reasonable performance (Figure 8, Table 4). Apparently, the
GA-SVMc model performed better in the prediction of water quality. Furthermore, the
GA-SVMc model provided more accurate prediction results on the strong variations of
water quality. However, the simulation accuracy of GA-SVMd model and the GA-SVMc
were poor when the water quality dramatically changed, which may be due to the lack
of measured runoff data in the study area. Non-point source pollution was usually the
main pollution source during the rainfall-runoff process [48]. Therefore, it is necessary to
strengthen the monitoring of runoff and water quality during rainfall in future research.

Table 4. The modeled accuracy results in the calibration period and the validation period.

Water Quality
Variables

Evaluation
Function

Calibration Period Validation Period

GA-SVMd GA-SVMc GA-SVMd GA-SVMc

NH3-N NSE 0.63 0.81 0.51 0.62
RMSE 0.97 1.28 1.7 1.14

TN
NSE 0.57 0.77 0.55 0.61

RMSE 1.46 1.07 1.57 1.48
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Figure 8. The prediction results of the GA-SVMd model and GA-SVMc model. (a) NH3-N; (b) TN.

5. Discussion

5.1. Important Factors Dominating Water Pollution and Different Frequency Terms of
Water Quality

The water pollution of urban-rural marginal areas is attributed to many factors, such
as LULC, land metrics, hydro-meteorological factors, and point sources recharged by the
domestic and industrial [4,33,49]. Land surface runoff is usually set as an essential factor for
predicting water quality in data-driven models [33]. The runoff was significantly complex
due to the multiple inputs and has not been monitored over a long time series. In this study,
the lake water table was affected by the recharge of rainfall-runoff sources, domestic sources
and industrial sources; controlled by the pumping gate, it could be set as a substitute factor
for runoff to predict water quality and obtain reasonable performance. The factors of the
LULC and land metrics for the urban-rural marginal area changed significantly due to
the rapid expansion of the urban area, and thus had notable impacts on water quality, as
has confirmed by many studies [50–52]. In this study, results confirmed that LULC and
land metrics had a relatively high impact on the low-frequency and trend term of water
quality. Point sources, such as industrial wastewater discharge and domestic wastewater
discharge, also had significant impacts on water quality [12]. Our results confirmed that
the population was the dominant pollution source of TN, and also had a relative effect
on NH3-N. Industrial land had a significant impact on NH3-N and a similar effect on TN.
Meteorological conditions, such as rainfall and the ET, also had significant and complex
impacts on water quality [51]. For example, the first rainfall was confirmed to have a
significant impact on water quality in the urban area, while seasonal rainfall had a greater
effect on agricultural land water quality [53,54]. Our results also confirmed that rainfall
and the ET had significant effects on water quality, and dominated the high-frequency term
of water quality.

5.2. Prediction of the Urban Water Quality by Machine Learning Models

Considering the strongly changing LULC, the complexity of diverse and continuous
varied pollution sources and hydro-hydraulic conditions, meteorological conditions with
complex dynamic characteristics, and the widespread lack of data in rural-urban marginal
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areas, developing a prediction model with reasonable performance is still a tremendous
challenge [4,33,35,55]. The original data-driven machine learning models seemed to provide
a good choice to simulate the urban-rural catchment water quality with complex and data-
lacking conditions [33]. In a fact, point sources, such as industrial discharge, have not
been well monitored for a long time. Runoff volumes have also not been monitored and
the complexity could not easily be modeled. However, the original data-driven machine
learning models, i.e., the GA-SVDd model in our study, still performed reasonably due
to the substantial data obtained from the remote sensing data and the lake water table
(Figure 8).

A successful model could both be used to reveal the inner dynamics and driving
mechanisms and provide accurate prediction results. Previous studies have integrated
many models to reveal the inner features of the time series data, such as runoff and water
quality. The EMD method, the EEMD method, the CEEMDAN method, and the WT method
have been widely used to decompose time series data, after which they integrated with
machine learning models [25,28,36]. However, not all the integrated models achieve better
prediction performance; Zhang et al. [36] confirmed that EMD-based integrated models may
perform worse than data-driven models in simulating streamflow. In our study, prediction
results from the integrated GA-SVMc model confirmed that the CEEMDAN integrated
with the GA-SVM model for water quality can achieve markedly better performance than
the original SVM model.

6. Conclusions

Evaluation of the dynamic and influence mechanisms, and the prediction of vari-
ations of water quality provide early warning and guidance to reduce water pollution
concentration. The limited monitoring data and the complexity of the water system restrict
the prediction of long-term water quality. However, the multiple variables derived from
remote-sensing data (ET, LULC, etc.) provide scientific data and reasonably reveal the
variation mechanism.

In this study, we developed an integrated decomposition-reclassification-prediction
method for water quality by integrating the CEEMDAN method, the RF method, and a
genetic algorithm-support vector machine model (GA-SVM). The degression of the long-
term water quality was decomposed and reclassified into three different frequency terms,
i.e., the high-frequency, low-frequency, and trend terms, to reveal the inner mechanisms
and dynamics in the CEEMDAN method. The RF method was then used to identify
the teleconnection and the significance of the selected driving factors. More importantly,
the GA-SVM model was integrated and designed in two types of model schemes, which
were the data-driven model (GA-SVMd) and the integrated CEEMDAN-GA-SVM model
(defined as GA-SVMc model), in order to predict urban water quality. Results revealed
that the high-frequency terms for NH3-N and TN had a major contribution to the water
quality and were mainly dominated by the hydrometeorological factors, such as the ET,
rainfall, and dynamics of the lake water table. The low-frequency terms for NH3-N and TN
were both dominated by yearly rainfall, population, LULC, and land metrics. The trend
terms revealed that the water quality continuously deteriorated during the study period
and was mainly regulated by the LULC and land metrics factor, population, and yearly
rainfall. The prediction results confirmed that the integrated GA-SVMc model achieved
better performance than a single data-driven model such as GA-SVM.
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Abstract: Forests play a vital role in combating gradual developmental deficiencies and balancing
regional ecosystems, yet they are constantly disturbed by man-made or natural events. Therefore,
developing a timely and accurate forest disturbance detection strategy is urgently needed. The
accuracy of traditional detection algorithms depends on the selection of thresholds or the formulation
of complete rules, which inevitably reduces the accuracy and automation level of detection. In
this paper, we propose a new multitemporal convolutional network framework (MT-CNN). It is an
integrated method that can realize long-term, large-scale forest interference detection and distin-
guish the types (forest fire and harvest/deforestation) of disturbances without human intervention.
Firstly, it uses the sliding window technique to calculate an adaptive threshold to identify potential
interference points, and then a multitemporal CNN network is designed to render the disturbance
types with various disturbance duration periods. To illustrate the detection accuracy of MT-CNN,
we conducted experiments in a large-scale forest area (about 990 km2) on the west coast of the
United States (including northwest California and west Oregon) with long time-series Landsat data
from 1986 to 2020. Based on the manually annotated labels, the evaluation results show that the
overall accuracies of disturbance point detection and disturbance type recognition reach 90%. Also,
this method is able to detect multiple disturbances that continuously occurred in the same pixel.
Moreover, we found that forest disturbances that caused forest fire repeatedly appear without a
significant coupling effect with annual temporal and precipitation variations. Potentially, our method
is able to provide large-scale forest disturbance mapping with detailed disturbance information to
support forest inventory management and sustainable development.

Keywords: forest disturbance mapping; multitemporal CNN; large-scale long time-series; distur-
bance type

1. Introduction

Amid radical global environmental degradation, forests with worldwide coverage
play a vital role in promoting human sustainable development. In terms of balancing the
regional ecology system, forests are also able to regulate regional climate as well as carbon
and water cycles [1–3]. Nevertheless, most existing forest ecosystems are continuously
disturbed by natural and human-made events, such as fires, pests, and deforestation,

Remote Sens. 2021, 13, 5177. https://doi.org/10.3390/rs13245177 https://www.mdpi.com/journal/remotesensing
119



Remote Sens. 2021, 13, 5177

which seriously harms the local ecosystem and wildlife population structure [4,5]. It is
urgently needed to develop appropriate land management strategies using accurate forest
disturbance maps through long time-series archived remote sensing data. Conventional
forest ecology methods often require intensive field investigation and consume abundant
resources, but it is difficult to achieve satisfactory forest disturbance detection results on
large-scales [6]. Therefore, developing a timely and accurate forest disturbance detection
strategy is urgently needed.

Earth observation satellites are designed to acquire land surface images constantly
with a long-time span and large-scale coverage, which was long considered an ideal
solution to comprehensively investigate forest disturbances [7]. Since the free opening of
the U.S. Geological Service (USGS) Landsat data archive in 2008, it provides large amounts
of medium-resolution optical imagery dating back to 1972 [8,9]. Densely formed time-
series remote sensing data can dynamically identify the annual forest disturbance and
characterize the magnitude and duration of the disturbance [10]. Aiming to detect forest
disturbances, intensive studies emerged for the sake of abundant time-series remote sensing
imagery, which significantly promoted the relevant research. However, direct identifying
forest disturbances almost impossible due to substantial random noises produced by
atmospheric effects, the sunlit angle variation, and sensor degradation. Therefore, the
challenge of detecting large-scale forest disturbance is how to identify disturbance signals
from a large amount of noisy background.

The conventional forest disturbance identification strategy in remote sensing society
is to use the vegetation index (such as the normalized difference vegetation index (NDVI)
and normalized burn ratio (NBR)) quantifying the degree of changes compared to the
standard unchanged targets’ profile [11,12]. For instance, The VCT algorithm designed
the integrated forest Z-score (IFZ) index to represent the possibility of forest pixels and
developed a set of rules to determine forest disturbances [13,14]. Such methods usually
require predefined standard time-series curves before iterative comparison for disturbance
determination [15]. However, due to the influence of random noise, even the same type
of forest may present great differences in time-series vegetation indices. For this reason,
the conventional difference measurements (such as Euclidean distance or Mahalanobis
distance) are often failed to calculate inconsistency between the target time-series and
standard ones. To alleviate the above problem, Landtrendr method uses straight-line
segments to fit the representative features of the Landsat time-series signals. It simplifies
the complex time-series into straight-line feature comparison, which reduces random
noise interference to a certain degree [16]. Following a different strategy, dynamic time
warping (DTW) constructs the optimal nonlinear alignment between two time-series,
which can overcome the time deviation effectively [17,18]. Meanwhile, The Breaks For
Additive Season and Trend Monitor (BFAST) algorithm decomposes Landsat time-series
pixels into the trend, season, and noise components and determines forest disturbance by
continually comparing the disturbed time-series profile with the historically stable forest
profile [19,20]. Moreover, the CCDC algorithm constructs a physical prediction model
and detects disturbance points by comparing the prediction with the real-time series. The
model can adapt to noise when given enough coefficients [21,22]. Currently, CCDC was
integrated on the Google Earth Engine (GEE) platform and plays as the benchmark for
forest disturbance validation [23–25]. Still, these methods are built on prior knowledge
or assumptions, and the process of disturbances detection must go through a series of
iterative curve filtering or parameter optimization. Therefore, the accuracy of detection
solely depends on the selection of threshold parameters and complete rule formulation,
which inevitably deteriorate the detection accuracies and automation levels [26]. Thus,
it is necessary to develop self-adaptative and autonomous detection methods for the
improvement of forest disturbance identification.

Deep learning strategies, which extract high-level features through hierarchy struc-
tures, were widely used in time-series information extraction tasks [27]. Compared with
traditional methods based on hand-crafted rules or thresholds, the high-level features

120



Remote Sens. 2021, 13, 5177

learned by deep learning are more representative [28]. At present, deep networks such as
CNN and LSTM were intensively used for large-scale agricultural and forestry monitoring,
such as forest coverage prediction and crop phenology detection [29,30]. Specifically, Kong
et al. (2018) [31] proposed a strategy to learn stable forest time-series with LSTM network
from historical data, which then allows for the forest disturbance detection to be identified
by comparing the predicted data and real data. Ban et al. (2020) [32] achieved near real-
time localization of forest fires with the assistance of a multilayer CNN framework. Thus,
the mentioned studies are designated to detect forest disturbances given the abnormality.
Still, the types of disturbances (i.e., fire, deforestation) is often needed before a reasonable
decision can be made for forest protection.

For a typical forest disturbance time-series, it can be decomposed into two subpro-
files that are the disturbance process (shown as a rapid decline in the values of vegeta-
tion index) and a duration process (shown as a slow recovery of the vegetation values),
respectively [33]. For example, after a forest fire event, the ecological forest infrastructure
is fully destroyed, and it will take 10 years or more to restore to the original level, while for
most deforestations, it can be quickly restored within few years (i.e., 3–5) [12,34,35]. But,
most of the existing forest disturbance detection methods focus on the fixed-scale for dis-
turbance process recognition and neglecting the recovery process measurement. Therefore,
the relationship between disturbance types and their scale-variate duration process is often
overlooked [36]. Moreover, different disturbances may constantly occur through a specific
temporal range. How to iteratively detect forest disturbances also remains unexploited.

To solve the above problems, we propose a multitemporal convolutional network
framework (MT-CNN) to recognize different types of forest disturbances. Specifically, we
first detect potential forest disturbance points through a set of sliding windows techniques,
which inevitably may contain a certain degree of noise. After that, the rough detection
results are further being refined with a well-trained multitemporal CNN network. In
addition, during the process of refinement, the disturbance types of the forest also to be
determined. The main contributions of this paper are:

(1) The sliding window scheme is being integrated with multiscale temporal CNN for
forest disturbance type recognition with various duration periods.

(2) The proposed MT-CNN can simultaneously achieve long-term and large-scale multi-
ple forest disturbance detection without human intervention.

(3) The prediction accuracy of forest disturbances is above 90% on the USA west coast
region with the past 35 years of Landsat time-series data.

The remainder of this paper is organized as follows: the research data and the details
of the MT-CNN method are described in Section 2, and Section 3, respectively. Section 4
introduces the experiment of forest disturbance type detection and shows the experimental
results. Discussion and conclusion are presented in Sections 5 and 6, respectively.

2. Study Area and Data Preparation

2.1. Study Area

To fully demonstrate the performance of our proposed forest disturbance detection
method, we conducted tests on a large-scale area at the west coast of USA. As shown in
Figure 1), it is mainly located in northwestern California and western Oregon. The region
mainly has a Mediterranean climate, with dry summers and rainy winters. Due to its
unique geographical location, the region has a variety of forest types. Among them, the
coastal area is mainly wet temperate rain forest, and the inland area has a large area of
coniferous forest. Affected by the vast forest area and human activities, forest fires and
anthropogenic deforestation constantly occurred.
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Figure 1. Study on west coast area of USA. Area A is dominated by forest decline, while Area B is
dominated by wildfires.

2.2. Time-Series Data Acquisitions
2.2.1. Landsat Data

We constructed long time-series data from 1986 to 2020 for the study area, mainly
consisting of annual composite images of Landsat in June, July, and August for each year.
Among them, Landsat5 TM and Landsat8 OLI are the main data sources, while Landsat7
ETM+ is the auxiliary data to make up for the lack of data observation. To reduce the
influence of clouds and cloud shadows, we do cloud masking for each image, and use
the median of all available images each year as the annual composite pixel value. For
forest disturbance detection, deforestation is manifested by the decrease of near-infrared
(NIR) reflectance and forest fire has an obviously increase in short-wave infrared(SWIR2)
reflectance [37,38]. Therefore, we preprocessed long time-series data to normalized burn
ratio (NBR), as it can effectively distinguish different types of forest disturbances such as
forest fire and deforestation. The NBR is formulated as NBR = (NIR−SWIR2)

(NIR+SWIR2)
.

We drew some typical NBR curves in this area. As shown in Figure 2, wildfires and
deforestation showed different characteristics in NBR time-series curves. For example,
harvest/deforestation activities are usually only lasting for a short period, while a quick
recovery can be observed. Differently, the forest fires usually with a long recovery period
compared to human intervened deforestation.

Moreover, Since the long time-series data was constructed between three different
sensors, TM and ETM+ were harmonized into OLI processing to maintain consistency [39].
All of the above processes are done on the GEE platform.

2.2.2. Disturbance Reference Data

We learned that in 2002, 2018, and 2020, several catastrophic wildfires occurred in
Medford and Eugene in southern Oregon through related articles and fire monitoring
websites (see area B in Figure 1). Meanwhile, the ever-increasing demand for the wood
industry also caused the constant decline in forest inventory.We found a large number of
harvest/deforestation areas from google earth platform (see area A in Figure 1). There-
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fore,we refer to two types of disturbances, that are harvest/deforestation and forest fires,
as our forest disturbance detection objectives [40].

Figure 2. The typical time-series curves for different types of forest disturbances. (a) represents fire
disturbance while (b) represents harvest/deforestation.

To validate the forest disturbance results by the proposed MT-CNN method, we obtained
the high-precision forest disturbance samples by interactively combining the forest disturbance
events and TimeSync interpretation tool [41]. We first convert the Landsat time series data
into the standard format required by Timesync, and then visually distinguished fire and
harvest/deforestation samples from nonchange ones combined with spatial information and
NBR index.To ensure the uniform distribution of the samples, we randomly select a certain
number of samples in area A and area B. In the end, we get 6000 samples in area A and area
B, respectively (12,000 in total), of which 2000 stable forest samples were in each of the two
regions, as shown in Figure 3.

Figure 3. Two annotated areas with different types of forest disturbances. Harvest/deforestation
disturbance samples are shown in left, while fire disturbance samples are shown in right.

3. Methodology

The proposed MT-CNN mainly consists of three modular units, that is, the data
preparation module, the time-series breakpoint detection module, and the multiscale
CNN disturbance type identification module. Specifically, we first construct the Landsat
time-series stack and compute the NBR index to amplify forest disturbance signals. Then,
a sliding window technique is applied to filter time-series signals which aim to detect
possible breakpoints for forest disturbances. In this process, the thresholds for potential
forest disturbances are automatically calculated by a self-adaptive scheme without human
intervention. As a result, both real and pseudo disturbances may be detected. Finally, the
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rough detection results are input into the multitemporal CNN model to determine the
type of forest disturbance and eliminate false detections. Based on the two-step detection
process, various forest disturbances and their types can be determined through long time
series data. The flowchart of the proposed MT-CNN method is shown in Figure 4.

Figure 4. Flowchart of proposed integrated MT-CNN. (1) yearly composite data are prepared for
analysis; (2) disturbance point is detected with sliding window technique; (3) disturbance type
recognition with multitemporal time-series fragments.

3.1. Disturbance Point Detection

For most forest disturbance scenarios, the disturbance point is defined as the timing
of a sudden decrease in the NBR value. Therefore, the sharp decline of NBR detection is
the key to determine the forest disturbance time. For this purpose, we use a self-adaptive
sliding window strategy to achieve disturbance point detection. For a given time series
t = t1, t2, . . . , tn, the corresponding NBR value is denoted by Vt. We use two sliding
windows side by side along with the time series to calculate the index difference between
windows for disturbance points detection. Suppose that Ti represents the time interval
that in range of [ti, ti+b] with window size b, Ti = [Vi, Vi+1, . . . , Vi+b]. To catch the overall
trend information, we compute the 2-norm for each window to represent the statistical
characteristics of the signal. The discrepancy measurement for each sliding window can be
expressed as:

N(Ti) = ‖Ti‖2 =
√

V2
ti
+ V2

ti+1
+ · · ·+ V2

ti+b−1
(1)

where N(Ti) represents the L2-norm of the given time-series signals. We predict the
disturbance point by the self-adaptive dynamic threshold technique. Specifically, the
possible disturbance points are automatically evaluated by a quartile statistical method.
Firstly, we arrange the window trend signals obtained in the previous step from small to
large and get the values q1 and q3 of their 1/4 and 3/4 positions according to the linear
rule. Then the interquartile range (r) of the signal can be expressed as:

r = (q3 − q1) (2)
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We take the self-adaptive factor σ on the quarterback difference as the abnormal
threshold, then the range of normal data can be expressed as:

range = [q1 − σ · r, q3 + σ · r] (3)

Since, the forest disturbance scene usually shows that the NBR value suddenly drops,
so we only take the lower bound of this range. The range formula of the disturbance point
is N(Ti) ≤ q1 − σ · r.

3.2. MT-CNN for Disturbance Type Recognition

The flowchart of our proposed multitemporal CNN framework is shown in Figure 5.
To achieve the purpose of disturbance type recognition, we developed a multitemporal
scheme to extract rapid decline and recovery process time-series fragments through forest
regions at different scales. Meanwhile, the convolutional neural network is applied to
automatically detect the disturbance types of the extracted time-series fragments. Specif-
ically, we extracted the multitemporal fragments with various lengths l = [3, 4, 5, . . . , L]
begin with the disturbance points detected in Section 3.1. For the part with insufficient
length, the last point of the time series is replicated to the extent of desired lengths. For the
extracted time-series fragments at different scales [S1, S2, S3, . . . , SL], we use multitemporal
convolutional neural networks to extract cross-scale disturbance features.⎡⎢⎢⎢⎢⎢⎣
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where dL represents the time-series fragments at different temporal scales, wn
L and bn

L repre-
sent learnable weights and bias for the multitemporal CNN framework. With increasing
length of time series fragments, the number of layers n of convolutional layer and subsam-
pling layer can be automatically adjusted. To accurately measure the general disturbance
characteristics for each temporal scale, we proposed an overall multitemporal attention
mechanism to the CNN framework. This process aims to learn the relative features of each
time-series fragment relative to the whole time-series, so as to increase its discrimination.
For the attention mechanism,we have

am
l =

M

∑
m=1

exp
(
(qS)

Tdm
l

)
∑N

j=1 exp
(
(qS)

Tdm
l

) (5)

where qS represents the whole time-series, am
l represents the attention indicator of the deep

features extracted from multitemporal CNN for the specific scale l. M represents the dimen-
sion of extracted deep features. During the training process, the multitemporal attention
term gradually learns the relationship between the disturbance types and multitemporal
deep features. Since the weights of the cross-scale network are determined, the probability
of disturbance type for each scale also can be deduced. This process can be represented as:⎡⎢⎢⎢⎢⎢⎣
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Finally, the output probabilities of cross-scale CNNs are connected through the fully
connected layer, allowing the model to be trained by optimizing a multiscale loss function.
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In this process, we get the final prediction for each sample across all-scale time-series
fragments on forest disturbance types. Specifically, to strengthen the cross-scale ability of
MT-CNN, we integrated all probabilities on various time-series fragments to get the final
prediction. Therefore, the final forest disturbance prediction can be formulated as

y(l, c) = max

(
L

∑
l=1

C

∑
c=1

WPc
l

)
, ∀c ∈ [1, 2, . . . , C] (7)

where C describes the number of forest disturbance types. Thus, in this process, CNN
predictions at different scales are integrated into the final predict disturbance types. In
addition, this modular is also able to correct the false detection in Section 3.1.

Figure 5. Flowchart of the multitemporal CNN framework.

4. Experiments and Results

In this section, we apply the MT-CNN algorithm to two areas on the west coast of the
United States that contain specific types of disturbances for qualitative evaluation (area A
and area B in Figure 1). To illustrate the capability of the proposed method, we randomly
select 50% of the manually labeled samples as the training set and the rest as the test
ones. Accuracy metrics such as users’ accuracy, producers’ accuracy, confusion matrix, and
precision rate are used to evaluate the detection accuracy of forest disturbance. In addition,
we also analyzed the evaluation results into three levels: disturbance type, disturbance
time, and the number of occurrences for each time-series signal. In the following sections,
we conduct a qualitative and quantitative evaluation of the disturbance detection in the
study area.

4.1. Large-Scale Forest Disturbance Mapping

To demonstrate the robustness of the proposed method, we used the MT-CNN method
to predict forest disturbances over a large-scale area of the USA west coast. With the
proposed modular, the forest disturbances with different types are accurately identified.
The forest disturbance results are illustrated in Figure 6.

Firstly, for the disturbance point detection from Figure 6a, we can conclude that
most disturbances occurred in 2002 and 2019 as there were two devastating wildfires
broke out. From 1986 to 2020, the yearly area of forest disturbances has witnessed a
continuous increase, especially since the year 2001. From a regional perspective, small
forest disturbances can be observed in the north region of the study area, while the large
disturbance areas are mainly located in the south region. Before the year 2000, forest
disturbances are sparsely distributed in the study area and the majority of them are near
the fringe area of the deep forest. While, after the year 2000, large-scale forest disturbances
are frequently observed, especially for the mountainous and deep forest regions.
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Figure 6. (a–c) Disturbance mapping results on disturbance point, type, and frequency.

Secondly, for the disturbance type identification from Figure 6b, the majority distur-
bance type of our study area is fire instead of harvest/deforestation. In general, there are
10,894,868 pixels of detected fire disturbances and 4,361,100 pixels of harvest/deforestation
disturbances. Similarly, to the disturbance year, a large area of fire disturbances occurred
in the south region of the study area, while the north part of the study area is mainly with
harvest/deforestation. With the spatial integration of disturbance point and disturbance
type, we can conclude that sparsely distributed forest disturbances in the north region
are mainly harvest/deforestation. The reason for this phenomenon probably is human
intervened urbanization. While for the south region of the study area, forest fire is the
prominent impact factor for forest sustainability.

Thirdly, from the perspective of disturbance frequency, we can identify the most
unstable area that suffers from continuous disturbances, as shown in Figure 6c. For
the detected forest disturbances, there is 69.1% (9,704,841) pixels had occurred one-time
disturbance over the last 3 decades. Another 27.4% detected pixels had encountered two-
time disturbances, such as fire-fire or harvest/deforestation-fire. Combining the mapping
results of disturbance point and type, we can deduce that high-frequency forest disturbance
areas are located in the deep forest region. Meanwhile, the disturbance type is mainly
forest fire with the first appearance in the year 1990. Over the last three decades, this region
is continuously suffered from forest fire disturbance until 2020.

In general, the study area has mainly two types of forest disturbances, i.e., fire and
harvest/deforestation. Most disturbances that occurred in this region is caused by wildfire
outbreak. Compared to that of the existing forest disturbance detection algorithm, the
MT-CNN is able to detect repeatedly occurred disturbances with types over the given
time-series signal. Therefore, we can deduce useful information for forest risks analysis
and management. To further evaluate the performance of MT-CNN on forest disturbance
detection, we performed a quantitative evaluation on two smaller study areas (area A and
area B in Figure 7) with exhausted annotation labels. According to the disturbance point,
type, and frequency identification, we compared the prediction results of the MT-CNN
with human labeled data.

4.2. Quantitative Evaluation on Forest Disturbance Detection

For area A, the major disturbance type is harvest/deforestation caused by human
logging.To validate the harvest/deforestation samples, we visually inspected the distur-
bance area by comparing historical high-resolution satellite images from Google Earth.
Two sub-regions (c and d) had occurred deforestation event for the year of 1990 and 2009,
respectively. While, for area B, there are two massive forest fire that occurred in sub-regions
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a and b (as shown in Figure 7). With the accurately labeled data, we further validate
the disturbance detection results through the perspective of disturbance point, type, and
frequency.

Figure 7. Finer-scale illustration of forest disturbance events with specific year.

4.2.1. Disturbance Point Accuracy Analysis

The disturbance point represents the beginning of forest disturbances from the time-
series signal. Therefore, the accurate identification of disturbance points is a prerequisite
for forest disturbance type understanding. To identify the disturbance point within the
time-series data, the sliding window technique is applied to progressively detect suspected
forest disturbances. With the automatic weights learning mechanism, the probability of
being a forest disturbance can be determined.

We mapped the disturbance point of areas A and B consecutively with the help of
MT-CNN. To better illustrate the prediction accuracy of the proposed method. We created
three accumulated forest disturbance maps for area A in the year 1994, 2002, and 2015, and
for area B in the year 1990, 2000, and 2009 (as shown in Figure 8), respectively. For area
A, we can see that fire disturbance (the Biscuit Complex wildfire (2002)) have occurred in
the year 2002 for the black square window. It continuously expanded to larger areas, a
specific disturbance region inside of red box have appeared in the year 2015 (the Buckskin
wildfire (2015)). For area B, there are several deforestation events that happened inside
of this area. At the beginning, a few number of disturbance pixels are identified in the
year 1990. Then, a few disturbances are identified in 2000 with rectangular-like shapes,
which mainly produced by timber harvest, as shown in the green and yellow box. In 2009,
massive disturbances can be observed around the outskirts area of previous logging sites.
These maps are consistent with the time of the disturbances observed by Google Earth. The
mapping results indicate that the proposed MT-CNN is able to continuously detect the
disturbance point regardless of the types.

To quantitatively measure the accuracy of disturbance point detection, we compared
the annotated label with the predicted output. For the annotated label, we extracted the
staring magnitude as the standard disturbance point. Also, for the circumstance that
disturbance happened more than once given a time-series signal, we only extracted the
first disturbance point for comparison. The time span of our study area is more than
30 years; therefore, we re-grouped the detection results with 2-year bins for an easy plot.
We used another 50% annotated samples to test the accuracy of the proposed MT-CNN in
disturbance point detection. Given the 2-year bin as a statistic unit, the confusion matrix
in disturbance point detection is generated, as shown in Figure 9. The overall accuracy in
terms of disturbance point detection reaches 91%, and the kappa coefficient is 0.88. For
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the confusion matrix, the majority of detection accuracies are above 85%. For instance,
the disturbance point detection accuracy reaches 99% around the year 2010–2011. Low-
confident detection rates appeared at the beginning and end of time- series, where prior
information is limited and coupled with significant noises. For the no-change (NC) class,
the stable forests also demonstrated great variations in the time-series NBR index that
inevitably lead to false predictions.

Figure 8. Disturbance point detection results on area A and B. For area A, maps with forest fire in
years of 1994–2002–2015 are illustrated. For area B, maps with harvest/deforestation in years of
1990–2000–2009 are illustrated.

Figure 9. Confusion matrix of disturbance point detection from 1986 to 2020.

4.2.2. Disturbance Type Accuracy Analysis

Disturbance type identification is one of the most challenging tasks in time-series
analysis. The proposed MT-CNN developed a multitemporal scheme to capture change
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patterns from various time-series fragments. To feed MT-CNN, the time-series fragments
were extracted based on the disturbance point identified from the previous step. The
accumulative disturbance maps on two areas (area A and area B in Figure 7) are demon-
strated with two types of disturbance, that are, fire and harvest/deforestation, as shown in
Figure 10. We visually inspected the disturbance type maps and found clear boundaries
between stable forest and disturbances. For the left area B, the dominant disturbance type
is fire and it is mainly covered by the mountain area, while with the right area A, the domi-
nant disturbance type is deforestation caused by human intervention, as square-shaped
logging sites can be clearly observed.

Figure 10. Disturbance type identification on area A and area B. Left area B is dominated by forest
fire, while right area A is dominated by harvest/deforestation.

To quantitatively validate the disturbance type detection results, we used 5795 avail-
able test samples to calculate disturbance accuracy. For the classes of no change (stable
forest), fire, and harvest/deforestation, the user accuracy is 94%, 85%, 93%, and the pro-
ducer accuracy is 88%, 98%, 84%. The overall accuracy of disturbance type identification
as high as 90%, and the kappa coefficient is 0.85, as shown in Table 1. The results of
disturbance type detection further proved the robustness of the MT-CNN regardless of the
complex background.

Table 1. Accuracies of disturbance type identification.

Manual Annotation Users
Accuracy

No Change Fire Harvest/Deforestation

Algorithm
No change 1749 4 114 0.94
Fire 177 1952 177 0.85
harvest/deforestation 71 44 1507 0.93

Producers accuracy 0.88 0.98 0.84
Overall users accuracy 0.90 Overall accuracy 0.90
Overall producers accuracy 0.90 Kappa coefficient 0.85

4.2.3. Disturbance Frequency Accuracy Analysis

Compare to the disturbance point and type identification, the continuity of detection
is another important indicator to evaluate the detection ability of the proposed method.
To illustrate the continuity detection capability, we mapped the disturbance frequency for
every single pixel on areas A and B, as shown in Figure 11. In this figure, we counted
the disturbance times with one, two, and multiple (MT > 2) for each pixel,the statistical
results are shown in the Figure 12. For the left area A, most disturbed areas have a one-
time fire event, while inside the mountain area, 2-time disturbances also can be found. It
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indicates that this area suffers from continuous fire disturbances that significantly reduce
the stability of the forest. Meanwhile, for the right area B, a large proportion of detected
areas encountered more than 2-time disturbances. The reason for this phenomenon is
probably the regular harvest of planted trees. From a quantitative point of view, we
randomly selected 5795 test samples from areas A and B, and there were 3317 and 607
detected disturbances that occurred once or twice over the past 35 years. In general, the
proposed method illustrated great robustness in multiple-disturbance detection.

Figure 11. Mapping results of forest disturbance frequencies. Left area B is dominated by 1 or 2 times
disturbances while right area A dominated with more than 3 times number of forest disturbances
within 35 years.

Figure 12. Statistical results on multiple disturbance with 5795 selected test samples.

5. Discussion

The proposed MT-CNN uses an integrated strategy to identify forest disturbances
in terms of disturbance point, type, and frequency. Compared with the most existing
forest disturbance detection strategies, the proposed method focuses on identifying the
type of time-series fragments which include both decline and duration process. Since the
disturbance point is determined, the time-series fragments with various lengths/scales can
be fed into the MT-CNN for further type understanding. This multitemporal based forest
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disturbance detection strategy proved to be efficient at frequent, multiple-type disturbance
identification. Still, the proposed method requires multitemporal inputs, which left an open
question on temporal scale selection. In other words, how to choose the best temporal scale
for disturbance type identification is remains unexploited. In addition, from the disturbance
results of the USA west coast, we can observe the significant differences between the north
and south region over the past 35 years in terms of forest disturbances. Also, the continuous
fire disturbances happened inside of mountain areas, and the reason for this phenomenon
is worth noticing. Therefore, in this section, we discussed two important factors that could
impact the disturbance detection results.

5.1. Contribution of Multitemporal Scheme

To quantify the impact factor of a multitemporal scheme for disturbance detection. We
set up an ablation experiment with different lengths of time-series fragments as multitem-
poral inputs. For a specific length of the fragment, the MT-CNN is able to automatically
adjusted to fit the dimension of input data. To train and test the accuracy of disturbance
types, we split all available samples into 50% and 50%. To determine both the final estimate
of the expected accuracy and the standard deviation, we ran this train-test process 10 times
on every single temporal scale. The quantitative evaluation of prediction results is plotted
in a boxplot as shown in Figure 13. In this figure, boxes show the median and interquartile
range of commission and omission errors for fire or harvest/deforestation disturbance
type given a specific temporal scale, and whiskers show full data range. In general, the
commission error for harvest/deforestation is relatively lower than that of fire disturbances.
For omission error, it shows the opposite trend. With the increasing size of the temporal
fragment, the commission error of harvest/deforestation and the omission error of forest
fire witnessed a slow decline trend, and the values stay around 0.1 without significant
variations. However, for the commission error of the forest fire and the omission error of
the harvest/deforestation, there are three distinct valleys on the temporal scale of 3–4, 6–7,
and 9–10. Consequently, different scales temporal-series fragments have different abilities
to distinguish different disturbances types.

Figure 13. Overall accuracy regarding disturbance types with different lengths of temporal fragment.

Therefore, the multitemporal scheme is effective in terms of disturbance type iden-
tification. Specifically, for the fire disturbance, the predicted accuracies increase with the
larger input temporal scale. Meanwhile, the decline disturbance is not sensitive to the
temporal scale as it with smaller duration temporal window. The conclusion will further
guide us to select proper temporal scales for various forest disturbances.

5.2. Influencing Factors of Forest Disturbance

The study area is located on the west coast of the USA, which is dominated by a
Mediterranean climate. With the increasing crisis of global warming, this area is continu-
ously impacted by heatwaves and wildfires. In the northern region of the study area, the
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low-altitude forests with intense human management are much more protected against
wildfires, but regular tree harvesting is a major disturbance. The northwest region is the
most stable region, and it greatly benefits from cooler temperatures and sufficient precipi-
tation. By contrast, for the southern region, mountains with solid rocks and high-altitude
drive plants tend to be extremely dry and flammable. From the previous disturbance
maps, we can conclude that forests in the southern region continuously suffer from fire
disturbances. The extremely large-scale wildfires broke out in the years 2002 and 2015. The
frequency of fire disturbances in the southern mountain area is relatively high, especially
for deep forest regions. Comparatively, for the northern region, most disturbances are forest
decline caused by human activities. These harvest/deforestation regions are near to cities
or towns, to where timber can be easily transported. However, the relationship between
terrain features (such as DEM), weather indicators (precipitation and temperature), and
disturbance frequency is needed to be deduced.

We obtained DEM, temperature and precipitation data on the GEE platform through
two data sets named “PRISM Monthly Spatial Climate Dataset AN81m” and “NASA-
DEM”.To determine the relationship between DEM and disturbance frequency, we have
selected a representative “south-north” profile for quantitative analysis. To better represent
the statistical results, we set the statistical bin to 50 pixels. That is, the DEM is the average
value of all the 50 pixels. And, the number of disturbances was summarized from 50 pixels
for better understanding. Began with the south region, we can see that a sharp increase in
DEM as it is the mountain region. In the meantime, a sharp increase also can be observed in
the number of disturbances inside of this region. The highest disturbance number reaches
125 times for a statistical unit over the past 35 years. Then, the number of disturbances
almost reaches 0 as DEM drops to 0. It means that the valley area with sufficient water and
cooler temperature will prevent wildfire expansion. For DEM in the range of 0–500 m, the
disturbances occurred without significant patterns. Statistical units that far than 160 km
demonstrate a much more stable curve than the southern regions. While the disturbance
type of this region is mainly harvest/deforestation with human intervention. In general,
we can conclude that the number of disturbances roughly coincided with the distribution
of DEM. That is, the higher DEM may suffer frequent disturbances than the plain area.

As the study area is mainly with the Mediterranean climate, scarce rains in hot summer
usually coexistence with severe fire disturbances. We collected the annual precipitation
rates over the last 35 years, and plotted it with the occurrence of observed disturbances,
as shown in Figure 14. The highest precipitation rate reaches almost 300 mm in 1996 that
coupled with the lowest frequency of fire disturbance. On the contrary, the minimum
annual precipitation is about 50 mm which appeared in 2014 within this study area. The
medium precipitation is around 175 mm per year, and five large-scale fire disturbances
appeared in the year of 1988, 2002, 2003, 2018, and 2019, respectively. Comparatively,
the harvest/deforestation is relatively stable that varies from the range of 0–100 cases
that happened in the 300 km profile over the last 35 years. After 2015, the deforestation
caused by human activities has significantly dropped, while fire disturbance continuously
increases. From the perspective of temperature variation, we also plotted the mean annual
temperature over the selected profile. The overall trend of the plotted curve demonstrates
small variations between 10 ◦C to 12 ◦C. And 2015, 2014, and 1992 are the top three hottest
years, while 2011, 2008, and 1990 are the top three coolest years. The highest temperature
almost reaches 12.5 ◦C in 2015 and the coolest temperature near to 10 ◦C in 2011. Coupled
with the precipitation information, the frequency of fire disturbance significantly increases
when little rain with high temperature both appeared within a year. Although the scorching
heat did not immediately cause heat fire in 2015, the dryer soil and dead trees become
one of the most important factors for wildfire outbroke in 2018 and 2019. Therefore, both
DEM, precipitation, and temperature potentially impact the frequency of forest disturbance
in the west coast region of the USA. The reason behind this phenomenon is worth being
quantitatively evaluated in future studies.
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Figure 14. (a–c) Influences of terrain and weather factors on different types of forest disturbances.

6. Conclusions

Forest is one of the fundamental elements for human survival on Earth. With ever-
increasing global warming and land detrition, timely and accurate identification of forest
disturbances in terms of their location, type, and frequency are urgently needed. Aiming to
detect forest disturbances from long time-series satellite data, we developed a multitempo-
ral convolutional neural network (MT-CNN) to automatically identify forest disturbances
with the feature of the beginning point, type, and frequency. The main contribution of
this method is threshold-free multiscale identification of forest disturbances, regardless of
duration periods variations of different events. To validate the performance of the proposed
method, we selected a large-scale study area of the west coast area of the USA. For the
35-year time-series data, we identified forest disturbances with respect to their occurrence
time, type, and frequency for each pixel. The overall accuracy reaches 90% compared
to the manually labeled data. From the forest disturbance map, we also concluded that
forest disturbances coupled with several indicators including DEM, precipitation, and
temperature.
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Abstract: Reservoir water and rainfall, leading to fluctuations groundwater levels, are the main
triggering factors that induce landslides in the Three Gorges Reservoir area. This study investigates
the response mechanism of landslide deformation under reservoir water and rainfall variations
through long-time on-site observations. To address the non-stationary characteristics of the time-
series records, joint time-frequency analysis (JTFA) is first introduced into our landslide prediction
model. This model employs optimal variational mode decomposition (VMD) to obtain specific signal
components with clear physical meaning, such as trend component and periodic components. Then,
multi-scale response analysis between the displacement and external factors three wavelet methods
was conducted. The analysis results show a 1 year primary cycle of the time series associated with the
landslide evolution. The reservoir water level and rainfall show anti-phase fluctuations. The periodic
displacement correlates significantly with rainfall, lagging by about two months. The reservoir
water is anti-phase with the landslide displacement, preceding it by approximately three months
(−51 ± 8◦ phase difference). For landslide displacement prediction, the gated recurrent units (GRU)
neural network model is integrated into the deep learning forecasting architecture. The model takes
into account the correlation and hysteresis effect of input variables. Through six experiments, we
investigate the effect of data volume on model predictions to determine the optimal model. The
results demonstrate that our proposed model ensures high performance in landslide prediction.
Moreover, a comparison with six other intelligent algorithms shows the advantages of our model in
terms of time-effectiveness and long-sequence forecasting.

Keywords: joint time-frequency analysis (JTFA); multi-scale response analysis; hysteresis effect; deep
learning forecasting model

1. Introduction

Since the Three Gorges Reservoir (TGR) was put into operation in June 2003, the
stability of slopes along the TGR bank has changed dramatically in response to the periodic
fluctuation of the rainfall intensity and the reservoir storage [1–3], resulting in thousands
of reactivated landslides. The geomechanical and hydrologic characteristics of these land-
slides are continually affected by the consistent water levels and rainfall changes, leading
to catastrophic events [4]. For example, the July 2003 Qianjiangping landslide developed
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during the initial reservoir impoundment, causing 24 fatalities and significant economic
losses [5]. Since then, research on long-term monitoring and early warning of these land-
slides has steadily expanded, leading to a deeper understanding of the inherent patterns
and the response mechanism of reservoir landslides.

Studies have revealed that the evolution of the reservoir landslide involves a com-
plex, non-stationary and nonlinear dynamic process [6,7]. Consequently, the long-term
observations collected on the landslide’s behavior exhibit non-stationary time-varying
characteristics with specific trends and/or seasonality. Although the deformation evolution
and response analysis of reservoir landslides in TGR have been extensively studied and dis-
cussed in the time domain [8–10], their characteristics in the frequency domain are relatively
unexplored, concealing valuable spectral information. Furthermore, non-stationary time
series show time-frequency characteristics [6,11,12], making time-frequency representation
of the signal essential for identifying the dominant fluctuation modes/spectra of different
signals and understanding how those modes vary over time.

The empirical mode decomposition (EMD), developed by Huang et al. [13], is well-
known for its time-frequency analysis, which is suitable for processing non-stationary
time series. This method decomposes the data into different band-limited intrinsic mode
functions (IMFs), but is sensitive to noise and sampling [14]. The variational modal
decomposition (VMD), a more recent signal decomposition technique, enables fully intrinsic
and adaptive decomposition [14]. In addition, Isham et al. also pointed out the importance
of determining the number of VMD modes to obtain specific signal components with
explicitly physical meaning [15]. To achieve efficient decomposition, the Shannon entropy,
reflecting the uniformity of probability distribution, can be used as a fitness function to
derive optimal parameters through an optimization method, such as the harmony search
(HS) algorithm [16] and the wolf optimization algorithm (GWO) [17] employed in this
study. GWO is easily implemented and exhibits advantages in strong convergence with
few parameters.

Moreover, it is crucial to explore the response mechanisms of landslide deforma-
tion [18] to unveil the changing patterns of specific signal components at different scales.
In 1998, Torrence et al. proposed wavelet analysis (WA) to study non-stationary time series
in signal processing [19]. Presently, wavelet decomposition and denoising are the most pop-
ular WA methods in time series analysis widely used in Geophysics [19], Geography [20]
and Meteorology [21]. However, WA methods, such as continuous wavelet transform
(CWT), cross-wavelet transform (XWT) and wavelet coherency (WTC), are more suitable
for analyzing non-stationary time series at different scales [7,22–24]. Unfortunately, they
are rarely used to analyze long-term non-stationary observations associated with landslide
behavior. As a result, this study will extend WA methods and optimized VMD into a deep
learning framework to conduct a joint time-frequency analysis (JTFA) before establishing a
landslide forecasting model.

So far, various approaches have been developed for landslide hazards research, rang-
ing from physics-based to statistics-based models [9,25,26]. Over the past decades, the
integration of machine learning (ML) methods into landslide research has led to significant
advancements [2,8,9]. In recent years, deep-learning approaches, like recurrent neural
networks (RNN) and their variants, designed to address the gradient explosion problem,
have shown impressive success in predicting landslide displacements based on GNSS time
series data [4,10,27,28]. Among these variants, the gated recurrent unit (GRU) proposed
by Chung et al. [29] stands out, surpassing other RNN variants, such as the LSTM, in
terms of training time, parameter update and generalization ability. Its outstanding perfor-
mance extends to diverse fields, including economics [30], flood control [31] and disaster
reduction [10], among others.

This paper presents a deep learning neural network model for predicting landslide
displacement, incorporating a joint time-frequency analysis (JTFA) module. The JTFA
employs optimal variational mode decomposition (VMD) to obtain specific signal com-
ponents with clear physical meaning (e.g., trend component and periodic component).
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Subsequently, multi-scale response analysis between the displacement and external factors
is carried out by wavelet transform (CWT), cross-wavelet transform (XWT) and wavelet
coherency (WTC). The enhanced GRU model based on deep learning architecture is em-
ployed to forecast landslide displacement (Figure 1e–g). Additionally, the model considers
the correlation and hysteresis effect of input variables, such as impact factors, during the
modeling process.

 

Figure 1. Architecture of the forecasting model.

2. Methodology

As can be seen in Figure 1, the forecasting model consists of seven parts: Figure 1 (a)
signal decomposition of landslide displacement, Figure 1 (b) signal decomposition of the
impacting factors, Figure 1 (c) multi-scale response analysis of landslide deformation by
JTFA, Figure 1 (d) data packet preparation for the deep-learning neural network model,
Figure 1 (e) trend displacement prediction by DES, Figure 1 (f) periodic and random
displacement prediction by GRU, and Figure 1 (g) cumulative displacements prediction by
the optimal model.

First, the on-site measured landslide displacements and the pre-selected impact factor
sequences are decomposed into specific IMF components by an optimal VMD (Figure 1a,b).
The number and parameters of the VMD modes with explicit physical meanings are deter-
mined by employing the Shannon entropy as a fitness function and the GWO optimization
method. Then, a multi-scale response analysis between the displacement and external fac-
tors is carried out by three wavelet analysis methods to investigate landslide deformation
response mechanisms and to reveal the changing patterns of specific signal components
at different scales (Figure 1c). Finally, the enhanced GRU and DES model based on deep
learning architecture is used to predict the landslide displacement (Figure 1e–g).

2.1. Joint Time-Frequency Analysis (JTFA)

The collected long-term observations associated with the landslide’s behavior are non-
stationary time series with specific trends or/and seasonality. The landslide displacement is
a time-series function controlled by geological conditions, reflecting long-term deformation
trends. While subject to external influences, the landslide displacement behaves as a
periodic variation with near-white noise associated with random factors. Therefore, the
landslide displacement time series can be expressed as follows:

Yt = Tt + Pt + Rt (1)

where Yt is the landslide displacement at time t; while Tt, Pt and Rt are the trend, periodic
and random terms, respectively.
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While studies on the deformation characteristics of landslides have been extensively
explored in the time domain, the significance of time-frequency analysis of the signal should
not be overlooked. Time-frequency analysis reveals the time-frequency features, and it pro-
vides access to the implicit spectral information of displacement Yt with different spectra,
enabling a time-frequency perspective of information mining. Having a time-frequency rep-
resentation is indispensable to investigate the dominant fluctuation spectra of deformation
signals and understand how those spectra vary over time. This involves one-dimensional
time series converting into a diffuse two-dimensional time-frequency image, allowing for a
comprehensive examination of the signal’s temporal and frequency properties.

2.1.1. Grey Wolf Optimized Variational Mode Decomposition (GWO-VMD)

The VMD enables fully intrinsic and adaptive signal decomposition [14], by which the
input displacement signal could be divided into several intrinsic mode functions (IMFs)
with specific characteristics determined in advance. To ensure that (1) the central frequency
bandwidth of each IMF is limited, (2) the sum of the estimated bandwidths is minimized,
and (3) the sum of each IMF equals the original signal f so that the constrained variational
equation can be expressed as follows:

min
{uk},{wk}

{
∑
k
‖∂t[(δ(t) + j/πt) ∗ uk(t)]e−jωkt‖2

2

}
s.t.

K
∑
k

uk = f
(2)

where uk is the kth decomposed IMF with a center frequency wk; and δ(t) and * indicate the
Dirac function and the convolution operator, respectively.

Then, the Lagrange multipliers λ and decomposition parameter ε are introduced to
transform the constrained problem into an unconstrained variational one, yielding the
augmented Lagrange expression:

L({uk}, {ωk}, λ) =

ε∑
k
‖∂t[(δ(t) + j/πt) ∗ uk(t)]e−jωkt‖2

2+

‖ f (t)−∑
k

uk(t)‖2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉 (3)

Here, the alternating direction multiplier method (ADMM) is used to search the saddle
points of the unconstrained model to obtain the optimal IMFs and the center frequency of
the constrained model. This process is defined as a function fVMD in the Algorithm 1.

The VMD is used to decompose complex digital signals, and the empirical decomposi-
tion parameter ε is usually K > 3. This value will not be physically meaningful when applied
to the landslide displacement decomposition. Thus, obtaining suitable VMD modes is
crucial to getting specific signal components with explicitly physical meaning. At this point,
the Shannon entropy (Equation (4)) is introduced to obtain the optimal IMFs with sparse
features: the larger the value is, the better the uniformity of the probability distribution
is [32].

H(uk) = −
n

∑
i=1

ui
k log ui

k (4)

As for the landslide’s periodic displacement, the probability distribution is relatively
uniform and sparse. Thus, the value of ε is optimized using the grey wolf optimizer (GWO)
with H(uk) as the fitness function [26] to obtain the periodic displacement with a uniform
probability distribution and strong sparsity along with the trend and random terms.

The landslide displacement Yt is used as input. The population size P of the grey wolf,
the upper bound Xup and lower bound Xlow of the individual grey wolves are initialized.
Then, the algorithm iterates and updates N times to obtain the optimal value of ε (see the
Algorithm 1). In the Algorithm 1, both A and C are coefficient vectors with A = 2a · r1 − a
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and C = 2 · r2. r1 and r2 are random values between 0 and 1. The convergence factor,
a = 2− 2n/N, decreases linearly from 2 to 0 during the iteration.

Algorithm 1 The GWO-VMD

Initialize εα, εβ, εδ, n ← 0
ε1

p ← Xlow +
(
Xup − Xlow

)× rand(0, 1) (5)
repeat
n ← n + 1{

up
k

}
← fVMD

(
Yt, εn

p

)
(6)

Update εα, εβ, εδ:

εα, εβ, εδ ← max
1,2,3

H
({

up
k=2

})
(7)

for p = 1 : P do
Update εp:

X1 ← εα − A1

∣∣∣C1εα − εn
p

∣∣∣ (8)

X2 ← εβ − A2

∣∣∣C2εβ − εn
p

∣∣∣ (9)

X3 ← εδ − A3

∣∣∣C3εδ − εn
p

∣∣∣ (10)

εn+1
p ← mean(X1, X2, X3) (11)

end for
until n = N.

2.1.2. Wavelet Analysis (WA)

Torrence and Compo [22] proposed WA to study non-stationary time series in signal
processing. The most popular WA methods in time series analysis include wavelet decom-
position and denoising. Additionally, there are other WA methods, such as the continuous
wavelet transform (CWT), the cross-wavelet transform (XWT) and the wavelet coherency
(WTC), which excel at non-stationary time series analysis at various scales. However,
despite their effectiveness, these WA methods are still rarely used in non-stationary time
series analysis associated with the behavior of landslides.

For a discrete time-series xn (n = 1, . . ., N) with equal time spacing δt, the CWT is
used for mapping the changing properties of non-stationary signals. CWT is defined as the
convolution of xn with a scaled and translated version of the wavelet basis function:

Wn(s) =
N−1

∑
n′=1

xn′ψ ∗
[
(n′ − n)δt

s

]
(12)

where * indicates the complex conjugate, s represents the wavelet scale, and n is the
localized time index. The non-orthogonal Morlet wavelets are chosen as the basis function:
ψ0(η) = π−1/4eiw0ηe−η2/2, where η and w0 are non-dimensional parameters of time and
frequency, respectively. When w0 = 6, the wavelet scale s equals the Fourier period. The
wavelet basis functions ψ0 are then normalized to have unit energy, and the CWT is
conducted in the Fourier space to improve efficiency.

In Equation (12), Wn(s) is a complex value, and thus, |Wn(s)|2 denotes the wavelet
power spectrum that clearly discriminates the periodic fluctuation and intensity in the time
series. As the input data is assumed to be cyclic, edge effects appear in the power spectrum
when dealing with finite-length time series. Hence, the cone of influence (COI) is defined,
representing the corresponding edge effects within the region of the power spectrum. In
addition, a Fourier power spectrum is constructed by Monte Carlo to represent the red noise
background spectrum and later performs a χ2 test with a specific confidence level, e.g., 95%,
to calculate each scale and construct the confidence contour with a 95% confidence level.

The XWT of two time-series xn and yn is defined as WXY = WXWY*, which measures
the similarity between two waveforms. The arg(WXY) is the relative local phase between xn
and yn in the time-frequency space. The mean and confidence interval must be estimated
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to analyze the phase difference. The phase relation is quantified using the periodic mean of
phases over a region with a significance level of 5% outside the COI. The periodic mean of
a set of phase angles is defined as follows:

am = arg(X, Y) with X =
n

∑
i=1

cos(αi) and Y =
n

∑
i=1

sin(αi) (13)

Because the phase angles are not independent, it is difficult to calculate the confidence
interval of the mean angle. Thus, the solution is obtained by calculating the scatter around

the mean using the circular standard deviation er =
√
−2 ln

(√
X2 + Y2/n

)
.

The power spectrum of XWT only shows the high common power part, while the WTC
measures the coherence of the XWT in the time-frequency space. The WTC of two-time
series is defined as follows:

R2
n(s) =

∣∣S(s−1WXY
n (s)

)∣∣2
S
(

s−1|WX
n (s)|2

)
· S
(

s−1|WY
n (s)|2

) (14)

where S is the smooth operator, and S(W) = Sscale(Stime(Wn(S))). Sscale and Stime indicate
smoothing along the wavelet scale axis and over time, separately.

2.2. Deep Learning Forecasting Model
2.2.1. Gated Recurrent Unit (GRU)

The gated recurrent unit (GRU) is a variant of recurrent neural networks (RNN),
which outperforms other RNN variants, e.g., the LSTM [29], in terms of training time,
and has fewer parameters. The GRU enables each recurrent unit to capture dependencies
adaptively at different time scales. As a refinement of the general RNN structure, GRU
is more straightforward, owing to the absence of a separate storage unit (see Figure 2)
regulating the internal information flow via a gated unit. Moreover, it is more efficient in
training time, parameter update and generalization ability than other RNNs [29].

 

Figure 2. The network structure of GRU.

The update gate zt is responsible for determining how much of the past information is
to be neglected, while the reset gate rt is responsible for deciding how much past knowledge
needs to be passed along into the future. Assume that the current input at t is xt, then one
forward calculation of GRU is as follows:

zt = σ(Wz · [ht−1, xt] + bz) (15)

rt = σ(Wr · [ht−1, xt] + br) (16)
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h̃t = tanh
(
Wh̃ · [rt ∗ ht−1, xt] + bh̃

)
(17)

where σ indicates the sigmoid function, and W and b are the weight and bias parameters,
respectively.

The hidden state at the present moment ht ht of the network is determined by the
update gate, the candidate state of the previous time step ht−1 and the current moment h̃t.
The output of the loop ŷt can be calculated by

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (18)

ŷt = σ(Wo · ht) + bo (19)

During the training process, the mean-square error (MSE) is used to measure the

errors, and the loss function is defined as loss =
T
∑

t=1
(ŷt − xt)

2/T, which is optimized by

the adaptive moment estimation (Adam) [33] to obtain the minimization loss, and update
W and b iteratively.

2.2.2. Double Exponential Smoothing (DES)

Double exponential smoothing (DES) is a weighted moving average method suit-
able for predicting time series with certain trends. This method operates by adopting a
weighted combination of the past observations and recent observations, with relatively
higher weights assigned to the more recent data points. The slope component is updated
through exponential smoothing [34], making it well-suited for time-sensitive landslide
displacement prediction. Thus, DES is employed to predict the trend component of the
landslide displacement.

Given a displacement time series with a specific trend xt, t = 1, . . ., N. st represents the
exponential smoothing value, bt represents the optimal trend estimate. The model’s output
ŷt+m is an estimate of xt+m at t + m (where m ≥ 1) and can be written as:

st = ζxt + (1− ζ)(st−1 + bt−1) (20)

bt = ξ(st − st−1) + (1− ξ)bt−1 (21)

ŷt+m = st + mbt (22)

where s1 = x1 and b1 = x1 − x0. The ζ and ξ are smoothing factors for the data and the trend,
respectively, that range from 0 to 1 and are usually set as ζ = 0.98 and ξ = 0.99.

2.2.3. Evaluation Indicators

Two evaluation indicators, namely the coefficient of determination (R2) and the root
mean square error (RMSE), are introduced to evaluate the performance of the deep learning
architecture forecasting mode. These indicators are widely used in deep learning regression
tasks and are defined as follows:

R2 = 1− ∑N
t=1(yt − ŷt)

2

∑N
t=1(yt − y)2 (23)

RMSE =

√
1
N ∑N

t=1(yt − ŷt)
2 (24)

where yt and ŷt are the observations and the predicted value at time t, respectively, and y
represents the mean of the N observed measures.
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3. Multi-Scale Response Analysis with JTFA

3.1. Pre-Processing of the Collected Data Sequence

Baishuihe landslide is a typical loose mound landslide in the TGR, about 56 km west
of the Three Gorges Dam in Zigui County, Hubei Province (see Figure 3a). The landslide
slope is about 30◦ with an average thickness of about 30 m, and the volume is about
1260 × 104 m3. The sliding surface is a contact zone between residual slope deposit and
bedrock that is about 0.9–3.1 m thick. Its bedrock lithology is a medium-thick sandstone
layer with a thin mudstone layer, yielding 15◦ ∠ 36◦, with joints and fissures developed in
the rock layer. The slide material consists mainly of residual Quaternary slope deposits of
gravelly soil with a gravel content of 20% to 40% [35].

 
Figure 3. (a) Location of the landslide. (b) monitoring layout diagram. (c) geological profile III’

through point ZG93.

As shown in Figure 3b, 11 GNSS monitoring stations (with a plane accuracy of
5 ± 1 ppm) were deployed on the Baishuihe landslide; six stations, namely the ZG93,
ZG118, XD-01, XD-02, XD-03 and XD-04, are located in the warning zone. The observed
displacements and the corresponding rainfall and reservoir levels are illustrated in Figure 4.
The TGR is in the wet season from May to September when the reservoir begins to play a
regulatory role of releasing flood water in moderation per annum. At this time of year, a
clear pattern of a step increase in the cumulative displacement appears, indicating a com-
bined effect of the changing reservoir water levels and rainfall on the landslide evolution.
However, monitoring stations in the non-warning area give a relatively small displacement
variation with an average annual amount of around 35 mm. In the warning zone, the ZG93
station is located on profile III. As shown in Figure 3c, the mid-slip zone runs the entire
slope length; the leading edge of the landslide has been submerged in water for years,
making the stability of the slope within this area vulnerable to the reservoir water level.
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Figure 4. Monitoring data in time series of the Baishuihe landslide.

In the subsequent analysis, the site monitoring data collected by ZG93 is selected as the
data source of displacement. Other synchronous on-site data include the monthly reservoir
water level data and the local rainfall data in the TGR between July 2003 and December
2012. As shown in Figure 4, the time-series displacement of the landslide shows specific
trends, seasonality and noise-induced fluctuations, indicating the need to obtain IFMs
based on VMD. Setting K = 3 in VMD allow us to acquire three IMFs in an increasing order
of frequency. The influence factors, e.g., the reservoir level and rainfall, mainly contribute
to the periodic terms, showing cyclical fluctuations. At this point, the Shannon entropy is
introduced as the fitness function to obtain the optimal IMFs by searching for the optimum
ε using the GWO. The population size of the GWO is set to 20, the number of iterations
to 100, and the upper-lower bounds to [0.01,100]. The optimal ε of ZG93 was determined
to be 0.55; it is then utilized in the VMD to obtain the trend, the periodic and the random
components of the displacement (Figure 5).

 

Figure 5. Decomposition result of displacement at ZG93.

3.2. Pre-Selection of the Impact Factors

Surface water infiltration is an essential factor affecting slope stability, especially
concerning the matrix suction of the unsaturated zone. When the slope experiences rainfall
infiltration, the bulk density increases, causing the matrix suction to decrease, which
in turn raises the sliding forces and reduces the shear strength [36]. Moreover, rainfall
infiltration into fractures enhances the split effect and raises the groundwater table, resulting
in an increase in porewater pressure [37], thus affecting the stability of the landslide.
As shown in Figure 6, the effect of rainfall on landslide displacement has an evident
hysteresis. For example, the wet season in the TGR area typically begins in May, but the
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response of landslide deformation does not manifest until July or August. This delayed
response highlights the complex interactions between rainfall, infiltration and subsequent
landslide movements.

 

Figure 6. Rainfall effects on landslide displacement.

Studies have shown that the periodic deformation highly correlates with the cumu-
lative rainfall of the current month and the preceding two months [2]. In this study, grey
correlation analysis gives a correlation degree of 0.79 and 0.78, further confirming their
close relationship with the displacement time series. Thus, the monthly rainfall V2 and
the two-month cumulative rainfall V3 are selected to characterize the rainfall effects on
landslide displacement, thereby avoiding transitional redundancy.

The periodical variation of reservoir level alters the distribution of the seepage field
and the stress state of the rock mass, directly influencing the stability of the landslide. The
rapid decline in reservoir water results in a higher hydraulic gradient inside and outside
the slope [38]. The seepage force along the slope greatly affects the landslide’s stability,
especially during the late reservoir water decline when rainfall concentration occurs. The
landslide deformation and failure process are further accelerated [39]. As shown in Figure 7,
the changes in the periodical deformation are consistent with the reservoir level fluctuation.

 

Figure 7. Relations between the periodical deformation and the reservoir level fluctuation.

To characterize the reservoir level effects on landslide displacement, the monthly
mean water level V1, the monthly variation V4, the monthly change rate V5 and the bi-
monthly variation V6 of the reservoir water level are selected. These variables exhibit a
grey correlation degree of 0.78, 0.81, 0.8 and 0.76, respectively, signifying their significant
relationship with the displacement of the landslide.

During the decomposition of the influence factors, we set K = 2 because they mainly
show cyclical fluctuations. The other VMD settings are the same as those used for the
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landslide displacement. The Shannon entropy of the periodic term of the factors serves
as the fitness function to obtain the optimal ε. The six obtained values of ε are 0.23, 0.99,
0.13, 0.98, 0.11 and 0.95, respectively. The results are given in Figure 8, where subscript p
indicates the periodic term and subscript s indicates the random term.

Figure 8. Decomposition results of the six influence factors (V1–V6), with the subscript p indicates
the periodic term and subscript s indicates the random term.

3.3. Multi-Scale Response Analysis

Investigating the deformation characteristics and the response analysis at different
scales is crucial to revealing the landslide mechanism. To achieve this, the JTFA is intro-
duced to conduct a multi-scale response analysis between the displacement and external
factors by three WA methods to investigate the deformation response mechanisms and
reveal the changing patterns of specific signal components at different scales. The WA
methods employed in this study include the continuous wavelet transform (CWT), the
cross-wavelet transform (XWT) and the wavelet coherency (WTC).

3.3.1. Analysis of CWT

The CWT extends time series analysis into a time-frequency domain to intuitively
map the changing properties of non-stationary signals. Through CWT, we have observed
an apparent yearly periodicity (1 year cycle) in the time series data associated with the
Baishuihe landslide. This periodicity is evident in the landslide displacement, rainfall
intensity and reservoir levels fluctuation, all coinciding with the primary cycle.

As critical external factors influencing landslides displacement, the variation of the
rainfall and reservoir water level (R.w.l) also exhibits specific patterns. With a subtropical
monsoon climate, the precipitation in the TGR shows seasonal features characterized by a
total rainfall exceeding 1000 mm per year. The rainfall is concentrated mainly in summer
and winter [40], which aligns with the 1 year cycle (12 months) of monsoon-related patterns
obtained by the CWT analysis (see Figure 9a).
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Figure 9. The CWT power spectrum of the rainfall (a), the reservoir water level (R.w.l) (b) and
the displacement at ZG93 (c). Regions enclosed by the heavy solid black line show a greater than
95% confidence level of the red noise standard spectrum. The cross-hatched regions on either end
indicate the “cone of influence”, where edge effects become important. Color changes mean different
magnitudes of power.

The storage of the TGR can be categorized into three stages: Stage I (June 2003–August
2006) with an average storage level of 135 m; Stage II (August 2006–August 2008) with
the highest storage level raised to 156 m; Stage III starting from November 2008 with
the highest storage level regulated to 175 m. Since then, the reservoir water level has
fluctuated between 145 m and 175 m, exhibiting a contrary periodic fluctuation to the pre-
cipitation intensity due to artificial flood control. As shown in Figure 9b, a clear 1 year cycle
(12 months) of R.w.l has been observed since 2006.

Generally, the displacement dominated by geological conditions is approximately
monotonic over time, indicating the long-term trend. The displacement affected by external
triggering factors (e.g., rainfall and R.w.l variation) can be expressed as a proximate periodic
function, leading to different deformation features. Thus, the periodical displacement is the
optimal option to illustrate the multi-scale response relationship with the impact factors.

Figure 9c gives the CWT power spectrum of the displacement at ZG93, showing a
1 year cyclic period (12 months), indicating a combined effect of changing reservoir water
levels and rainfall on the landslide displacement. In addition, a 2 years cyclic period
(24 months) is observed during extreme changes in the landslide displacement. This
phenomenon seems related to the deformation responding to the overall rise of the R.w.l,
but further research is still needed to confirm the underlying causes. Thus, cross-analysis
between the displacement and the influence factors are performed via XWT and WTC
later to further study the effect of rainfall and R.w.l variation on the kinematics of the
Baishuihe landslide.

3.3.2. Analysis of XWT and WTC

XWT is a measure of similarity between two waveforms, showing the presence of
high common power part. On the other hand, the WTC, which combines wavelet trans-
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form and coherence analysis, measures the coherence of the XWT in the time-frequency
space. It reproduces the consistency and correlation of the sequence in different periods
and scales through time-frequency analysis of the time series data [41]. Thus, employing
XWT and WTC with dual time series will contribute to further elucidating the charac-
teristics of landslide displacements and impact factors in terms of local coherence and
detailed variation.

To explore the underlying correlations and causes in multiple time periods and scales
(e.g., monthly or yearly time scales), we construct, the XWT power and the WTC coherence
spectrum of the periodic displacement and the six pre-selected impact factors. The red
noise standard spectrum is used to verify the reliability of the results, with a 95% confidence
level obtained through the standard red noise test enclosed by the heavy solid black line.
The thin solid black line enclosed area represents the cone of influence (COI) of the wavelet
analysis, where edge effects are significant; thus, the response relationships will not be
analyzed outside the COI.

As can be seen from Figure 10, there is a high common power area shared by the R.w.l
and the rainfall time series on a time scale of 1 year (12 months) throughout the study period
(2003–2012). The two time series are anti-phase relationship within the whole high common
power area, with a mean phase difference of about −178 ± 3◦, confirming a fluctuation
pattern of the R.w.l opposite to the precipitation conditions and thereby guaranteeing the
safe operation of the TGR and preventing flooding disasters.

Figure 10. The XWT power and WTC coherence spectrum of R.w.l and rainfall. The arrow direction
reflects the phase correlation between the two time series. The arrow points from left to right indicate
the in-phase relation, and the opposite suggests the anti-phase. In XWT, the color change indicates
the magnitude of power. In WTC, the color differences suggest different magnitudes of coherence.

As shown in Figure 11, the periodic displacement and the associated impact factors
have a significant power area throughout the study period. Rainfall shows a natural cyclic
fluctuation pattern. Figure 11a,b shows that the periodic displacement shares a continuous
significant power sector with the rainfall at a time scale of 1 year (12 months) and is highly
coherent. The two time series are in-phase throughout the study period, with a phase
difference of about 34 ± 12◦, indicating about a two-month lag behind the displacement
than the rainfall. In addition, a 2 years cyclic period (24 months) coincides with the extreme
change in the landslide displacement between 2006 and 2009, showing an anti-phase with
the R.w.l. This phenomenon seems related to the deformation response to the rapid rise of
the R.w.l; since it is the first time the water level R.w.l has reached its maximum, further
research is still needed to confirm the underlying causes of this behavior.
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Figure 11. The XWT power and WTC coherence spectrum of the periodic term and six impact factors.
(a,b) indicate rainfall-type factors V2 and V3. The remainder indicates reservoir-type factors, where
(c–f) indicate monthly mean level V1, monthly variation V4, single-month rate of change V5 and
bi-monthly variation V6.

As previously stated, the fluctuation of the R.w.l shows a cyclical pattern opposite to
the precipitation conditions. As shown in Figure 11c–f, the periodic displacement and the
associated four R.w.l factors also have a significant power sector with a 1 year (12 months)
cyclic period. However, there is a notable difference with the monthly mean water level V1
during the rapid impounding of the TGR (2006–2009), as it shows an inverse phase with
the displacement. These four factors all contain a significant power sector with a 2 years
(24 months) cyclic period, showing anti-phase relations, which may share a similar cause
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as that seen in the power spectrum of displacement and rainfall. This finding suggests
that the rise of the reservoir level is closely related to the extraordinary change in landslide
displacement, providing valuable insights into the influence of the reservoir water level on
landslide behavior during specific periods.

As shown in Figure 11c, there is a phase difference of −51 ± 8◦ between the landslide
displacement and the monthly mean level of the reservoir water, indicating the displace-
ment change occurs ahead of the change in reservoir water level by about three months.
This phenomenon is likely due to the fact that rising reservoir levels contribute to landslide
stability, and the displacement increase often occurs before the reservoir level rises or after it
falls. In-phase relations are observed between the displacement and the monthly variation
V4, the monthly change rate V5 and the bi-monthly variation V6 of the R.w.l, with a mean
phase difference of −13 ± 9◦, indicating a consistent variation pattern. All pre-selected
impact factors show strong coherence over a 1 year cyclic period (12 months), except during
the period from 2006 to 2009.

The analysis above confirms the preselected six impact factors have a strong correlation
with the variation trends of landslide displacements. The periodic variation of the rainfall
intensity and the reservoir storage leads to regularly varying underground water levels and
the seepage field distribution, which adversely affects the Baishuihe landslide’s stability.
These regular variations alter the equilibrium of the slope and cause periodic changes in
landslide displacements time series. The JFTA helps illustrate the periodically changing
patterns and the response between the displacement and external factors at multi-scales
to reveal the landslide mechanism behind the landslide behavior. By employing JTFA,
we gain valuable insights into how the landslide responds to the dynamic interplay of
various factors, providing a deeper understanding of the landslide’s complex behavior and
contributing to the advancement of landslide research and prediction.

4. Model Forecast and Discussion

4.1. Training Dataset and Parameter Setting

In the experiments, monthly GNSS-measured displacements at ZG93 were acquired
from July 2003 to March 2013. Additionally, the corresponding monthly reservoir water
level and precipitation data are used in the subsequent analysis and modeling. For the
training process, datasets collected from July 2003 to June 2009, comprising 72 sets of data,
are utilized as model inputs, while 25 sets of data collected from July 2009 to July 2010 are
used as forecast datasets, and the reserved 17 sets of data from August 2011 to December
2012 are used for model validation.

Six training sets with different data volumes are obtained by dividing the dataset based
on natural years (see Table 1). Using these datasets, six training models are constructed, and
the optimal data volume for the prediction model is determined by comparing the model
performance. Throughout this process, a sequential prediction strategy is implemented,
considering the timeliness of monitoring GNSS displacement.

Table 1. The designed training dataset.

Model
Number

Data Packet Time Date
Volume200307–200407 200407–200507 200507–200607 200607–200707 200707–200807 200807–200907

1
√

12
2

√ √
24

3
√ √ √

36
4

√ √ √ √
48

5
√ √ √ √ √

60
6

√ √ √ √ √ √
72

In the experiment, the deep learning architecture of the forecasting model in this
paper is built using the Deep Learning Toolbox of Matlab2020. We empirically set the
learning rate to 0.01 and the training number to 250. However, the number of hidden
neurons is a crucial factor that can affect the prediction precision, and therefore, it should
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be determined through carefully designed comparison experiments. The results of the
seven comparison experiments are shown in Table 2. According to Table 2, the model
performance is proportional to its number of neurons. As the number of neurons increases,
the RMSE of the model first decreases and then increases, with the optimal RMSE achieved
when the number of neurons is 100. However, the computation time keeps growing as the
number of neurons increases. Consequently, the number of hidden neurons is set to 100 in
the following experiments.

Table 2. The performance of the GRU using different numbers of neurons.

Number of Neurons RMSE (mm) Time (s)

20 28.581 55.295
40 19.602 56.638
60 17.988 57.699
80 12.603 60.307

100 10.175 60.649
120 10.894 61.635
140 11.131 62.281

4.2. Prediction Results and Analyses
4.2.1. Displacement Components Prediction

The DES is employed to predict the trend component of the landslide displacement by
using a weighted combination of past observations with recent observations given relatively
higher weights than the older ones. Thus, despite the data volume difference between
the designed six training datasets, the predicted trend component displacement is almost
identical. Here, the prediction of Model 6 is taken as the final trend result. The DES results
and the absolute error are shown in Figure 12a, with R2 = 0.998 and RMSE = 2.741 mm.

 
Figure 12. Predictions of each displacement component.

The GRU could adaptively capture dependencies at different time scales, especially
suitable for handling non-linear problems, and is thus used to forecast landslide displace-
ments for periodic and random terms. The performance of the GRU in predicting the
periodic component of the landslide displacement is shown in Table 3. According to Table 3,
the GRU performance increases as the training data volume increases; thus, the optimal re-
sult is achieved with Model 6. However, the model performance of the random component
displacement first increases and then decreases; the optimal results come from Model 3.
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Table 3. The performance of the GRU in predicting periodic and random displacement.

Model Number

ZG93

Periodic Random

RMSE (mm) R2 RMSE (mm) R2

1 21.562 0.503 9.647 0.507
2 20.722 0.541 8.729 0.597
3 18.741 0.624 8.127 0.651
4 14.042 0.789 9.107 0.569
5 11.171 0.867 9.196 0.552
6 10.175 0.889 9.468 0.514

The above results indicate that better periodic component prediction needs more
trained data; of the six designed models, the larger the amount of the training data, the
better. However, it does not apply to random components; for random component forecasts,
an appropriate amount of datasets works best.

4.2.2. Cumulative Displacement Prediction

The predicted cumulative displacements can be derived by combining the trend, the
periodic and the random predicted components. The optimal prediction of each component
is illustrated in Figure 12. According to Figure 12, the absolute forecast error of the trend
component remains small (<20 mm) and does not vary much, despite the deformation
being around 2 m. In contrast, the absolute forecast error of the periodic component follows
a certain regularity and shows a tendency to decrease, and that of the random component
shows randomness.

The evaluation indicators, as listed in Table 4, assess the performance of the six models.
According to Table 4, both indicators experience an increase and then a decrease as the
volume of the training dataset increases. A maximum RMSE of 26.043 mm and a minimum
R2 of 0.904 comes from Model 2 with a data volume of two natural years. The turning
point found at Model 4 with four years of data volume shows the best results among the
six models, with R2 of 0.952 and RMSE of 18.582 mm.

Table 4. Predictions of the cumulative landslide displacement.

Model Number
ZG93

RMSE (mm) R2

1 24.165 0.917
2 26.043 0.904
3 20.367 0.941
4 18.582 0.952
5 20.106 0.943
6 18.742 0.951

Optimal model 12.301 0.979

According to Section 4.2.1, Model 6 is the best model for predicting the periodic
component, while Model 3 gives the best performance for predicting the random part.
Consequently, based on this, an optimal combination prediction model for landslide dis-
placement is constructed. The evaluation indicators of the optimal model, shown in Table 4,
outperform the other six models in terms of both evaluation indicators, with an RMSE of
12.301 mm and R2 of 0.979. Compared with Model 4, the best forecast model among the six,
the RMSE decreases by 6.281 mm and R2 increases by 0.027 for the optimal model.
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4.2.3. Comparative Experiments and Analyses

In Section 3.2, we conducted a pre-selection of the impact factors, and later, through
the multi-scale response analysis in Section 3.3, we gained valuable insights into how the
landslide responds to the dynamic interplay of the selected factors. The analysis revealed
an apparent 1 year primary cycle of the time series associated with the landslide evolution.
Of particular interest were the delayed response results, which highlight the complex
interactions between the reservoir water level (R.w.l) and rainfall with the subsequent
landslide movements. This provides a deeper understanding of the landslide’s complex
behavior and guides the selection of the landslide prediction model.

GRU and other recurrent neural networks (RNNs) excel at handling the non-linear
dynamic characteristics present in complex time series. The GRU model, in particular,
has the ability to capture dependencies at different time scales, making it well-suited for
time series landslide displacement prediction. Considering the outstanding performance
of GRU in time-series forecasting, we conducted comparative experiments to analyze
the performance differences of the optimal model screened in Section 4.2.2, both when
considering impact factors and when not considering them.

Figure 13 displays the predicted cumulative displacements and absolute errors. No-
tably, when the impact factors are ignored, the model exhibits more significant deviations,
indicating a decline in prediction performance. The calculated RMSE and R2 are 20.218 mm
and 0.942, respectively. However, when considering the impact factors, the model produces
an improved performance, yielding an RMSE of 12.301 mm and R2 of 0.979. This results in
a reduction in the RMSE by 7.917 mm and an increase in R2 by 0.037, respectively.

Figure 13. Predictions of the cumulative landslide displacement. The red marker indicates the
absolute error without considering influencing factors, while the blue circle indicates the absolute
error of our proposed method.

As a result, the impact factors selected in Section 3.2 have been proven to be indispens-
able for multi-scale response analysis and the prediction model training process. Despite
the exceptional performance of GRU in time-series forecasting, it is evident that the influ-
ence factors of landslides displacement have a significant impact on the predictions. Hence,
the analysis and selection of the impact factors during the modeling process are crucial,
underscoring the comprehensiveness of the proposed model.

At this stage, the 17 reserved sets of data from August 2011 to December 2012 are
utilized for model validation to further verify the model’s performance. Figure 14 displays
the cumulative landslide displacement prediction (17 sets) and the absolute errors of the
proposed model, resulting in a calculated RMSE of 9.715 mm and R2 of 0.967. The results
demonstrate that the optimal combination prediction model exhibits a reliable capacity for
predicting landslide displacement.
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Figure 14. Predictions of the cumulative landslide displacement. The blue circles stands for the
absolute errors of the proposed model.

To further illustrate the superiority of the proposed method compared to existing
state-of-the-art methods, such as the GWO-MIC-SVR [42], the V/S-LSTM [43], the Chaotic
DWT-ELM [44] and the Multi-Chaotic ELM [45], we conduct a comparative analysis of the
forecasts generated by these models. The performance of the forecast models is shown
in Table 5.

Table 5. Comparison of model prediction results.

Model Name Forecast Duration (month) RMSE (mm)

The method proposed 17 9.715

PSO-SVR 12 20.770
GWO-MIC-SVR 18 14.024
M-EEMD-ELM 15 -

V/S-LSTM 8 8.950
Chaotic DWT-ELM 15 23.330
Multi-Chaotic ELM 20 23.710

According to Table 5, the proposed model achieves a competitive high-accuracy result
in terms of RMSE, ranking in the top two, with an RMSE of 9.715 mm, closely following
the V/S-LSTM with an RMSE of 8.950 mm. However, what makes the proposed model
stands out is its ability to makes 17 sets of consecutive forecasts, while V/S-LSTM only
forecasts 8 sets.

Considering that forecast errors can accumulate over time, the proposed model’s
RMSE of 0.765 mm for 17 sets of consecutive forecasts demonstrates its capability for
precise and reliable long-term predictions. Thus, from a comprehensive perspective, the
proposed model exhibits both time-effectiveness and long-sequence forecasting advantages
over the other six intelligent algorithms.

5. Conclusions

This paper presents a novel deep learning architecture specifically designed for predict-
ing reservoir landslide displacement. The evolution of reservoir landslides involves highly
complicated and nonlinear dynamics, characterized by specific time-frequency features. To
address the complexities, the joint time-frequency analysis (JTFA) module is designed. This
module integrates the GWO-optimized VMD and WA methods, facilitating the extraction
of essential signal components with clear physical implications. Additionally, the module
conducts multi-scale response analysis, thereby revealing deformation variation patterns in
the underlying mechanisms governing the landslide’s response behavior. For the actual dis-
placement prediction, The GRU is integrated, which possesses the capability of adaptively
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capturing dependencies at multiple time scales. Moreover, during the modeling process,
the correlation and hysteresis effect of the impact factors are also considered, further en-
hancing the accuracy and reliability of the predictions. The model experiments show that as
the amount of training data increases, the periodic component prediction improves signifi-
cantly. For the random component forecast, an appropriate amount of datasets yields the
best results, while the trend component remains almost identical regardless of the data size.
This insight led to the construction of an optimal combination prediction model, surpassing
the performance of the other six designed models in cumulative landslide displacement
predictions. This model achieved impressive results, with a minimum RMSE of 12.301 mm
and a maximum R2 of 0.979. Moreover, the proposed architecture’s superiority in time-
effectiveness and its ability to accurately predict long-sequence landslide displacement
have been firmly established through comparative experiments and analyses, in which
we evaluated its performance against six other state-of-the-art intelligent methods. The
favorable outcomes and impressive forecasting capabilities of our proposed architecture
solidify its position as an efficient and accurate tool for landslide displacement prediction.
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Abstract: A number of previous studies have contributed to a better understanding of the thermal
impacts of dam-related reservoirs on stream temperature, but very few studies have focused on air
temperature, especially at the catchment scale. In addition, due to the lack of quantitative analysis,
the identification of the effects of water impoundment on regional air temperature is still lacking.
We investigated the impacts of reservoirs on the regional air temperature changes before and after
two large dam constructions in the lower Jinsha River located in southwest China, by using a 40 year
record of reanalysis data at 90 m resolutions. Furthermore, the long short-term memory (LSTM)
model was also employed to construct an impoundment effect on the temperature (IET) index.
Research results indicate that compared to the pre-impoundment period (1980–2012), the variations
in the air temperature at the catchment scale were reduced during the post-impoundment period
(2013–2019). The annual maximum air temperature decreased by 0.4 ◦C relative to the natural regimes.
In contrast, the cumulative effects of dam-related reservoirs increased the annual mean and minimum
air temperature by 0.1 ◦C and 1.0 ◦C, respectively. Warming effects prevailed during the dry season
and in the regions with high elevations, while cooling effects dominated within a 4 km buffer of
the reservoirs. Therefore, this study offers important insights about the impacts of anthropogenic
impoundments on air temperature changes, which could be useful for policymakers to have a more
informed and profound understanding of local climate changes in dammed areas.

Keywords: dams and reservoirs; climate change; ANUSPLIN; LSTM; trend analysis

1. Introduction

Anthropogenic impoundments (e.g., dams, reservoirs, and ponds) are often considered
important contributors to the development of human societies by providing multiple ser-
vices including hydropower generation, flood control, and water supply [1]. Since the 1950s,
anthropogenic impoundments have been flourishing as a response to the ever-growing
requirements for water and energy [2]. However, despite their societal significance, anthro-
pogenic impoundments are also associated with several serious environmental problems,
including river system fragmentation [3], water diversion [4], changes in flow conditions [5],
decreased nutrient deliveries [6], interruptions of fish migrations [7], reservoir flushing [8],
alterations in bio-geochemical cycling [9], and disturbing climate regimes [10]. Among
them, the thermal variations associated with the dammed reservoirs are of considerable
interest. This is because the dams and reservoirs substantially alter the hydrological and
thermal regimes of the river, as well as the surface energy balance of the region [11].

The dammed hydropower, as one of the typical anthropogenic impoundments, gener-
ates power by using a dam that changes the natural flow of a river. It provides multiple
benefits and values to economic prosperity and social well-being by acting as a primary
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and low-cost renewable source of energy worldwide [12]. Approximately two-thirds of
the rivers in the world have dammed reservoirs [13]. It is physically reasonable to expect a
gradual air and water temperature variation in the impounded river basin. This is directly
attributed to the changing atmospheric conditions due to heat transfers, which, in turn,
occur because of the surface and internal thermodynamic phenomena of reservoirs [10]. As
a result, numerous studies have been carried out to analyze the thermal responses caused
by the generation of dammed hydropower. Nevertheless, these previous studies usually
focused on water temperature variations associated with dams and reservoirs, including
the reduction in magnitude, frequency, duration, and variability of water temperature,
and weakening interactions at the air/water interface due to the altered heat exchange
rate [14,15]. Although reservoirs exhibit an enormous capacity to regulate air temperature
regimes, the relationship between water impoundment and air temperature remains poorly
understood [10,16,17].

Air temperature is a sensitive indicator of the surface energy balance, as well as a
crucial parameter in biogeochemical and biophysical feedbacks to the climate system [18].
Several investigations have been carried out to realize the impact of dams and associated
reservoirs on air temperature. For instance, Zeng et al. [19] found that the annual aver-
age air temperature increased in the Three Gorges Dam reservoir area. Another study
performed by Fonseca and Santos [20] on the Sabor River demonstrated that the daily
and seasonal temperature decreased in the post-impoundment period. Miller et al. [21]
modeled the climate changes for eight weeks in the Three Gorges Dam area and suggested
that the decreased local surface and air temperature likely occurred because the reservoir
acted as a potential evaporating surface. Irambona et al. [22] found that reservoirs in-
duced localized 2 m temperature warming in winter and cooling in the summer in the La
Grande River watershed. Wang et al. [18] revealed that the reservoir had both warming
and cooling effects on the surface temperature in different parts of the dry–hot valley.
Zhao et al. [23] explored the potential connection between reservoir characteristic factors
and meteorological variables at the global scale, and suggested that they possibly have
contrasting effects on the air temperature. However, compared to the well-informed water
temperature variations, a significant delay in the knowledge of air temperature changes is
noticeable. Hence, there is still a major research gap in the regional-scale understanding
of dam-induced air temperature alterations, and it is critically required to determine how
artificial reservoirs influence the air temperature at the catchment scale [17].

The lower Jinsha River, as the upper reaches of the Yangtze River, is one of the largest
hydropower production regions in China [24]. It has a hydropower generation capacity of
40 million kW, which is twice that of the Three Gorges Reservoir [25]. As a consequence, the
lower Jinsha River has become one of the most highly modified rivers in the world [18]. The
dams and related reservoirs in the lower Jinsha River may change the local air temperature
patterns and further affect the thermal regime of the middle and lower Yangtze River.
Moreover, these cascade reservoirs in the lower Jinsha River are more pronounced than
those of an individual dam [26], and, thus, they will further change the annual or seasonal
thermal regimes of the river basin. By mostly considering the Gezhouba Dam and the
Three Gorges Dam in the middle river, previous investigations have examined the effects of
dam-related reservoirs on the thermal regime in the Yangtze River, however, the effects of
water impoundment on the local air temperature in the lower Jinsha River remain largely
unclear [18]. Therefore, if water impoundments inadvertently modify climate patterns in
impounded river basins, understanding the influence exerted by reservoirs in the lower
Jinsha River will be key.
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Over the past two decades, a long short-term memory (LSTM) model has been suc-
cessfully developed and extensively employed for temperature forecasting [27]. As a
deep learning model, LSTM is composed of multiple simple nonlinear models, and the
original input data are learned layer-by-layer to establish complex equations between
variables [28,29]. Thus, to quantify the impact of water impoundment on air temperature,
LSTM can be utilized to predict future temperature under the no impoundment scenario
through historical data, and the difference between actual and predicted data can be used
to define the impacts.

Hence, in this study, we tried to find an answer to the following open question: What
is the probable influence of large dams and related reservoirs on local air temperature
changes? The novelty and primary contribution of this study were to highlight complexities
in the response of the local air temperature to water impoundments. This has not been
previously fully investigated in the literature, and only site-specific analyses have already
paid attention to it. Specifically, the objectives of this study were as follows: (a) explaining
spatiotemporal patterns of local air temperature in pre- and post-impoundment periods;
(b) developing a predictive model based on the LSTM method and reconstructing air
temperatures in the absence of impoundments; (c) assessing the influence of dams and
related reservoirs on local air temperatures by comparing observed and predicted values
in the post-impoundment period. The findings of this study can be beneficial to develop
a more general understanding of the impacts of anthropogenic impoundments on air
temperature variations, because global change changes will likely exacerbate them.

2. Materials and Methods

2.1. Study Area

Four large hydropower stations including Xiangjiaba, Xiluodu, Baihetan, and Wudongde
have been built in the lower Jinsha River. They are all ranked among the top five largest
hydropower stations in China, with a total installed capacity of 42.96 gigawatt [30]. Specifically,
the Xiangjiaba, Xiluodu, Baihetan, and Wudongde reservoirs started the impoundment in
December 2012, May 2013, April 2021, and January 2020, respectively [31]. Consequently, by
considering the late impoundment time of the Baihetan and Wudongde hydropower stations,
we only focused on the thermal disturbance of the Xiangjiaba and Xiluodu reservoirs. The
water storage capacity is 5.16 billion m3 for Xiangjiaba Reservoir and 12.67 billion m3 for
Xiluodu Reservoir.

The river basin (27.37◦N–28.90◦N, 102.83◦E–104.42◦E) where Xiangjiaba and Xiluodu
hydropower stations are located was selected as a case study area, spanning two admin-
istrative provinces of Sichuan and Yunnan, and is approximately 11,167.70 km2 in size
(Figure 1). Elevations vary greatly ranging from around 240 m in the northeastern region to
more than 4000 m in the southwestern region, showing complicated topographic structures.
The study area has a subtropical climate with the dry season and the wet season [32]. The
dry season runs from November to April, and the wet season stretches from May to October.
Due to the great changes in terrain, elevations, and latitudes, the climatic conditions in
the catchment are complex. Its mean annual precipitation is 732–1028 mm and its mean
temperature is 13–18 ◦C, presenting a decreasing and increasing trend from northeast to
southwest of the basin, respectively [33]. The study area is characterized by two distinct
climate areas and vegetation, ranging from the monsoon region with subtropical evergreen
broad-leaved vegetation in the northeastern zone, to the dry–hot valley with Savanna-like
vegetation in the southwestern zone [34].
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Figure 1. Location of the study area showing (a) the location of Jinsha River Basin in China, (b) the
location of dams including Xiangjiaba and Xiluodu, and (c) the elevation of the study area and the
distribution of the meteorological stations.

2.2. Data Sources
2.2.1. Meteorological Data

In our study region within the 100 km buffer zone [35], daily mean (Tmean), maxi-
mum (Tmax), and minimum (Tmin) air temperatures of 47 meteorological stations from
January 1980 to December 2019 were collected from the China Meteorological Data Service
Centre (http://data.cma.cn, accessed on 8 June 2022). After excluding four stations with
discontinuous time series for one or more calendar months, we reserved 43 meteorological
stations for analysis as indicated by the black rectangles in Figure 1.

To ensure the reliability and continuity of the air temperature data, the Pauta criterion
method was employed to detect outliers, with 37 (0.24%), 335 (2.18%), and 10 (0.07%)
outliers detected for Tmean, Tmax, and Tmin, respectively. The linear interpolation method
was further utilized to replace them and the original missing values [36], and the results can
be seen in Figure 2. The annual and seasonal air temperatures were acquired by averaging
the corresponding month’s temperatures. Hence, four air temperature datasets at monthly,
annual, dry season, and wet season scales were generated. It is pertinent to note that the
statistical analysis or mapping in this study was all implemented using Python 3.9 software.
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Figure 2. Results of linear interpolation for Tmean, Tmax, and Tmin. Only the interpolated data (red
dots) and their two neighboring data (black dots) are displayed to ensure visualization clarity. DOY
indicates the day of year.

2.2.2. Terrain Morphology Data

The digital elevation model (DEM) at the spatial resolution of 90 m was used to
represent the terrain of the study area, which was obtained from the NASADEM digital
elevation dataset via the Google Earth Engine (GEE) platform [37].

2.3. Methods

The methodological framework of the whole research is depicted in Figure 3a. The
specific methods employed are described as follows.
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Figure 3. (a) Methodological framework applied in the present analysis, and (b) the detailed structure
of the LSTM model. Tt and ht are the input temperature data to the LSTM, the hidden state of the
current time step, respectively. Tt−1 and h t−1 correspond to the previous time step, while Tt+1 and
ht+1 are applied for the next time step, respectively. σ and tanh denote the sigmoid function and
hyperbolic tangent function.

2.3.1. Interpolation Methods

To generate the air temperature grid surface datasets at annual, dry season, and
wet season scales based on the meteorological data, the Australian National University
Spline (ANUSPLIN) model was adopted. The ANUSPLIN model provides a means for the
interpolation of noisy multi-variate data using thin-plate smoothing splines. It has been
widely employed to develop geographically continuous climate grid surface data from
weather station data and topographic variables that primarily include longitude, latitude,
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and elevation. The ANUSPLIN calculation formula was described by Hutchinson [38]
as follows:

Zi = f (xi) + bTyi + εi(i = 1, . . . , n) (1)

where xi represents a p-dimensional vector of spline independent variables, f denotes a
smoothing function of the xi, each yi represents a p-dimensional vector of independent
covariates, b stands for an unknown p-dimensional vector of coefficients of the yi, and each
εi represents an independent, zero mean error term.

2.3.2. Trends Analysis

The Theil–Sen estimator and Mann–Kendall (MK) trend test were integrated to identify
the air temperature trend variations on the pixel scale during both the pre-impoundment
period (1980–2012) and the post-impoundment period (2013–2019). The combined results
were classified into the following four distinct categories: non-significant increase (Ni),
significant increase (Si), non-significant decrease (Nd), and significant decrease (Sd). The
Theil–Sen estimator is a robust nonparametric statistics method for estimating the slope of
a trend [39]. Its calculation formula is as follows:

S = Median
(Tj − Ti

j− i

)
, i < j (2)

where S signifies the Theil–Sen median slope, and Ti and Tj symbolize the air temperature
at time i and j of each pixel, respectively. When S > 0, it indicates an increasing trend, and
when S < 0, it indicates a decreasing trend.

The MK trend test is a nonparametric test method for quantifying the significance of a
trend. The Z statistic is usually calculated initially. By checking within the standard normal
distribution table, the p-value can be obtained according to the Z statistic. The p-value is
utilized as a likelihood indicator to measure the significance of a trend. The smaller the
p-value, the greater the likelihood for the temperature series to have a significant trend. We
set the significance level α to 5%, and when p < 0.05, the trend was considered significant;
otherwise, it was considered not significant. Specific details on the calculation procedure
can be found in Liu and Menzel [40].

Additionally, to detect and identify the time when significant changes in air temper-
ature occurred in the time series of 1980–2019, the MK mutation test was also adopted.
UFK was used to test the mutation of trends in the air temperature series, while UBK was
calculated with the reverse series of UFK. The UFK and UBK curves were plotted under
annual, dry season, and wet season scales. The mutation point of the temperature series can
be identified as the point where the curves of UFK and UBK intersect within the confidence
interval (UF∂=0.05/2 = 1.96). Further detailed information regarding the MK mutation test
can be found in Hong and Zhang [41].

2.3.3. Quantitative Analysis of Impoundment Effects

We developed an impoundment effect on the temperature (IET) index to further
quantify the impact of water impoundments on regional air temperature. We defined
the IET index as the difference value between actual air temperature and predicted air
temperature. The actual air temperature was simulated using the ANUSPLIN model in
the post-impoundment period (2013–2019). Predicted air temperature in the post-impact
period was simulated by the LSTM model, by using the actual air temperature data during
the pre-impoundment period (1980–2012). Thus, the effects of water impoundment on air
temperature were simulated as follows:

IET = ATV − PTV (3)

where ATV stands for the actual temperature value (◦C), and PTV represents the predicted
temperature value (◦C). When IET > 0, the water impoundment has a warming effect on
air temperatures, whereas when IET < 0, the impoundment has a cooling effect.
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LSTM model can capture the nonlinear features of long time-series data and can avoid
the gradient vanishing and exploding issues encountered in the conventional recurrent
neural network (RNN) [42]. It consists of an input layer, an output layer, and a hidden
layer. The input data are sequentially processed through these three layers to acquire
pertinent information and eliminate extraneous information, thereby achieving an accurate
prediction. The hidden layer is composed of four units: the forget gate, the input gate, and
the output gate, as well as the memory state unit. The structure of the hidden layer is critical
for filtering the data and can be composed of multiple layers (Figure 3b). For more detailed
information regarding the LSTM model, please refer to Hochreiter and Schmidhuber [43].

To enhance the accuracy of our prediction, the LSTM model was designed with two
layers, in which the output of the first LSTM layer acted as the input for the second LSTM
layer [44]. The input dataset of the LSTM model aggregated 10,000 temperature series
samples, which were randomly extracted from all pixels of the historical actual grid surface
dataset (384 months, from 1980 to 2012). It was then partitioned into a training set (90%)
and a testing set (10%) based on the sample locations, which were employed to train the
model and assess the model performance, respectively. After training and testing, the
predicted air temperature dataset (2013–2019) was generated via the constructed LSTM
model by inputting the historical dataset (1980–2012). It should be noted that the predicted
grid surface datasets of Tmean, Tmax, and Tmin were generated by the three LSTM models.

2.3.4. Model Assessment

We employed the 10-fold cross-validation method to evaluate the effectiveness of
the ANUSPLIN model, which has been broadly employed to evaluate the model perfor-
mance [45]. The original observation data at 43 meteorological stations were randomly
divided into ten subsets. We further used nine of those ten subsets as the training datasets,
which were inputted into ANUSPLIN models, and reserved one-tenth as the observed
datasets to test the models. The simulated datasets were extracted through the training
outputs at the corresponding locations of the observed datasets. These processes were
iterated ten times. Hence, ten different combinations of stimulated and observed datasets
were generated, and the final performance of the ANUSPLIN model was determined by
the average discrepancy between each pair.

Furthermore, we calculated the mean absolute error (MAE), root mean square error
(RMSE), and coefficient of determination (R2) to evaluate the performance of the ANUS-
PLIN model and LSTM model [46]. The calculation formulas were as follows:

RMSE =

√
1
n∑n

i=1(Ts − To) (4)

MAE =
1
n∑n

i=1|Ts − To| (5)

R2 =
∑n

i=1
(
Ts − To

)2

∑n
i=1
(
To − To

)2 (6)

where n represents the number of samples, Ts denotes the simulated data obtained from the
model, and To stands for the observed data from the testing sets. The distribution range of
RMSE and MAE values is [0, +∞), while the range of R2 values is [0, 1]. A higher level of
precision is deduced in the evaluated model when the RMSE and MAE values approach 0
and the R2 value approaches 1.
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3. Results

3.1. Evaluation of the ANUSPLIN Model Performance

Figure 4 shows the MAE, RMSE, and R2 values of each air temperature indicator at
annual and seasonal scales. For the interpolated air temperature grid datasets at the annual
scale, the mean RMSE was 0.45 ◦C (the values ranged from 0.31 ◦C to 0.60 ◦C), the mean
MAE was 0.07 ◦C (the values were about 0.1 ◦C), and the R2 was 0.94 (the values were
within the range of 0.93–0.96). The mean RMSE for the interpolated air temperature grid
datasets for the dry season was 0.40 ◦C (the values were within the range of 0.31–0.50 ◦C),
and for the wet season was 0.45 ◦C (the values ranged from 0.37 ◦C to 0.52 ◦C). Compared
to Tmean and Tmin, Tmax had a higher interpolation accuracy, with smaller RMSE and
MAE values. In addition, as the magnitude of air temperature varied for different seasons,
the RMSEs (or MAEs) of the interpolated grid datasets were smaller in the dry season than
in the wet season, and the R2 remained reasonably constant with all values greater than
0.93 and close to 1 across the study period. The results prove that the ANUSPLIN method
is reliable for the air temperature estimation in the lower Jinsha River Basin.

Figure 4. Ten-fold cross-validation results of the ANUSPLIN model. (a) Root mean square error
(RMSE), (b) mean absolute error (MAE), and (c) coefficient of determination (R2) between observed
and simulated temperature grid datasets.

3.2. Air Temperature Changes before and after Impoundments
3.2.1. Spatiotemporal Patterns

Figure 5 exhibits the comparison of air temperature change trends for the pre-impoundment
period (1980–2012) and the post-impoundment period (2013–2019). It can be observed that the
air temperature shows an overall significant increase before the water impoundment, while after
the impoundments, the Tmean and Tmax experience an average decrease, and the Tmin displays
an average increase. All air temperature indicators generally transform from a significant trend
to a non-significant trend in most areas of the catchment. Note that some regions still show a
significant increase for Tmin after the impoundment.

As for annual Tmean, 88.43% of the study area experience a non-significant decrease,
particularly in the central and eastern regions (Figure 5a). A similar spatial pattern also
occurs in the dry season (52.59%, Figure 5b) and wet season (68.85%, Figure 5c). However,
it is worth noting that some western regions exhibit a non-significant increase in the dry
season (0.47 ◦C year−1), and a non-significant decrease in the wet season (0.69 ◦C year−1),
which results in a non-significant decrease for annual scale. In addition, 97.61% of the
catchment’s Tmax shows a non-significant decrease after water impoundments (Figure 5d).
This phenomenon is attributed to the presence of a non-significant decrease in both dry and
wet seasons (Figure 5e,f). Finally, Tmin exhibits a more conspicuous spatial heterogeneity
than Tmean and Tmax after water impoundments. The regions with a Tmin decrease (i.e.,
a non-significant decrease of 54.13%, Figure 5g) predominantly appear around reservoirs
in both dry and wet seasons (17.79% and 16.92%, respectively, Figure 5h,i). However,
the annual and wet seasonal Tmin maintains a significant increase similar to the trend
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before impoundments (14.56% and 12.37%, respectively, Figure 5g), which indicates small
variations in Tmin in comparison to Tmean and Tmax.

Figure 5. The spatial variations of Tmean (a–c), Tmax (d–f), and Tmin (g–i) for the pre-impoundment
period (1980–2012) and the post-impoundment period (2013–2019) at the annual, dry season, and
wet season scales. The orange and blue thick lines in the right axis show the average temperature
variations by the ensemble mean of each year during the pre- and post-impoundment period,
respectively, and the black dashed lines are their linear fits. The proportions of four classification
categories are noted in subscripts.

3.2.2. Change-Points Detection

To detect and identify the time in which significant changes in air temperatures
occurred, the temperature indicators were identified by using the MK mutation test at both
annual and seasonal scales. It can be observed that the annual changes for Tmean, Tmax,
and Tmin are quite similar to the seasonal changes (Figure 6). There is no significant change
point for each indicator at the annual scale, while mutations occur at both the dry and wet
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season scales. In particular, the significant changes occurred in 2013 for Tmean, and in 2006
and 2008 for Tmax. Even though UFK and UBK curves of Tmin intersect, the UFK statistics
do not exceed the critical line (Figure 6g–i), thus, no mutations could be confirmed for the
Tmin. Notably, the mutation time for the Tmean during the dry season in 2012 coincided
with the impounding time of the Xiluodu Reservoir (Figure 6b).

Figure 6. Mutation analysis of annual (a,d,g), dry season (b,e,h), and wet season (c,f,i) air temperature
changes during the 1980–2019 period. The yellow dashed lines in each subfigure mark the intersection
points of the UFK and UBK curves, indicating the observed mutation points, and the specific mutation
years are labeled. Subfigures without mutation points are not labeled with relevant information. The
black dashed lines indicate 0.05 significance level.

Overall, only one significant change point was observed at the dry season scale after
the water impoundments. This phenomenon implied that after the water impoundment in
the lower Jinsha River Basin, the air temperature variations were alleviated.

3.3. Effects of Water Impoundments on Air Temperature
3.3.1. Evaluation of the LSTM Model Performance

To evaluate the performance of LSTM models in predicting each air temperature grid
surface dataset (Figure 7), we used the testing sets from monthly temperature grid surface
datasets of the 1980–2012 period. The monthly LSTM forecast was well supported by actual
data. It can be seen that both the MAE and RMSE values of the three models hover around
0.1 ◦C and the R2 values are close to 1, reflecting the robustness of LSTM models. We
further utilized the least squares method to determine the best linear fit in each scatterplot.
The LSTM models tend to slightly underestimate the air temperature (the fitting slope
for the Tmean is 1.00062, for the Tmax is 1.00058, and for the Tmin is 1.00091). However,
they are all close to 1, reflecting the remarkable similarities between actual data and LSTM
forecast, which further confirms the high reliability and accuracy of the LSTM models in
predicting Tmean, Tmax, and Tmin datasets.
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Figure 7. Performance evaluations of the LSTM model for Tmean (a), Tmax (b) and Tmin (c) by
comparing the observed temperature grid surface datasets (actual data) and the predicted temperature
grid surface datasets (LSTM forecast) using the testing sets from monthly temperature grid surface
datasets (1980–2012). The position of each point is jittered by an amount of 0.8 for visual purposes.
The grey line indicates the linear fit by using the least squares method, with y and x indicating actual
data and LSTM forecast in the linear equations, respectively. The histograms depict the distribution
of actual data and LSTM forecast, with univariate Kernel density estimation curves on the top and
right side, respectively.

3.3.2. Patterns of the IET Index

Figure 8 displays the spatial distribution of the IET index at annual and seasonal scales.
According to Figure 8, the IET index had both positive and negative values across the
catchment and at different scales, suggesting that both warming and cooling effects existed.
Generally, there was a similar pattern for Tmean and Tmax, while there was a different
pattern for Tmean. In particular, for the annual Tmean, the average IET was 0.1 ◦C, with
51% of the catchment showing a warming effect (IET > 0) after water impoundment (chiefly
in the western region), while the remaining 49% (principally in the eastern region) exhibited
a cooling effect with IET < 0 (Figure 8a). The cooling effect in the eastern region was mainly
attributed to the negative IET index in both the dry and wet seasons. Specifically, 44%
(out of 80%) of the regions show a substantially positive reduction during the wet season,
while 41% (out of 74%) of the regions exhibit a substantially positive increase in the western
region during the dry season (Figure 8b,c).

The average IET value for the annual Tmax was −0.4 ◦C, indicating that water im-
poundment gave rise to an overall 0.4 ◦C reduction. This was mostly caused by significant
temperature decreases in 81% of the basin, especially during the wet season with a magni-
tude of around 2 ◦C reduction primarily distributed in surrounding areas of the reservoirs
(Figure 8d–f). It is worth mentioning that the annual Tmax did not pass the significance
test around the reservoir areas, although it displayed a reduced pattern. This was largely
because the area around the reservoirs exhibited insignificant warming during the dry
season, which partially compensated for the cooling effects shown during the wet season
on an annual scale.

As for the annual Tmin, the average IETs were 1.0 ◦C, 1.2 ◦C, and 0.8 ◦C at annual, dry
season, and wet season scales, respectively. The reservoir impoundment caused 98% of the
basin to show an air temperature increase (IET > 0), of which 85% of the catchment exhibited
a significant increase. At the same time, we also found an interesting phenomenon, that is,
the increase in the Tmin in the surrounding areas of the reservoirs was less than that in the
high altitudes.
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Figure 8. Spatial distribution of the IET index under annual (a,d,g), dry season (b,e,h), and wet season
(c,f,i)scales during the 2013–2019 period. The dots on the colorful regions indicate the impacts of
impoundments on temperatures are significant (p < 0.05), which were conducted by the paired sample
t-test between predicted and actual grid surface datasets (2013–2019). The lower right probability
density function shows the distribution of the IET index at different values. The red area denotes an
air temperature increase (IET > 0), while the blue area denotes an air temperature decrease (IET < 0).
The text in brackets shows the proportion of temperatures that are significant (p < 0.05).

4. Discussion

4.1. Impacts of Reservoir Impoundment on Air Temperature

We observed that reservoir impoundment led to simultaneous warming and cooling
effects at different time scales (Figure 8). The reasons for this phenomenon can be explained
by two biophysical mechanisms, namely, evaporative cooling and thermal inertia regulation.
First, the water impoundment in the Xiangjiaba and Xiluodu hydropower plants has
resulted in the conversion of approximately 243.90 km2 of land to the water surface [47].
The increase in the water area, in turn, considerably increases local evaporation while
absorbing heat through the water, which leads to a decrease in air temperature, especially
in regions that surround the reservoirs [48]. Second, the water bodies in the reservoirs
have substantial thermal inertia and can act as both a “thermal energy sink” and “thermal
energy source” under different conditions, thus, moderating the degree of air temperature
variability. For example, this characteristic of reservoir waters can cool the air temperature
by absorbing heat from the air in summer and can warm the air temperature by releasing
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heat in winter [49]. In our study, we noticed an overall decreasing trend for Tmax, with
81%, 68%, and 77% of the whole catchment showing significantly decreasing temperatures
at the annual, dry season, and wet season scales, respectively. However, Tmin showed an
overall increasing trend, with 98%, 99%, and 94% of the area exhibiting greatly increasing
temperatures at the annual, dry season, and wet season scales, respectively (Figure 8d–i).
These results can be justified by the thermal inertia mechanism.

Similar to other studies, our study also demonstrates that the cooling impact of the
reservoir occurs predominantly in the surrounding area of the reservoirs [10]. In particular,
in the lower Jinsha River Basin, the effect of reservoir impoundment on Tmean at the annual
scale was roughly confined to an area within about 4 km from the reservoirs (Figures 8
and 9d). Thus, the cooling effect of water impoundment within this distance range can be
justified by evaporative cooling theory.

Figure 9. The relationship between muti-scale IET and elevation (a–c) and Euclidean distance (d–f) from
the reservoirs. Thick lines refer to the average IETs in 200 elevation or distance bins that are created
based on group statistics, whereas shaded areas display their 95% confidence interval magnified by a
factor of 10 for visual purposes.

Interestingly, we realized that the modification exerted by water impoundments at
longer distances (around 4 km away from the reservoirs) was opposite to that at shorter
distances, with a dominant warming effect (Figure 9d). We speculated that the reason for this
phenomenon was probably the thermal inertia regulation of the impoundments. We found
that the thermal inertia of the large volume of water resulted in a warming effect at high
elevations where the temperature was supposed to be low (Figure 9a). That is, the evaporative
cooling effect was dominant at low elevations within about 4 km from the reservoirs, while
the heat source effect of the thermal inertia was dominant at high elevations.

The relationship between the IET index and elevation further supported this view. For
instance, we realized that the elevation threshold for the cooling or warming effect of the
reservoirs in the lower Jinsha River region was approximately 1.8 km above sea level at
the annual scale (Figure 9a). In other words, in regions with elevation smaller than 1.8 km,
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the effect of reservoirs was chiefly reflected as a cooling effect. However, in regions where
the elevation was greater than 1.8 km, the warming effect was dominant, and the higher
the elevation, the more obvious the warming effect. Furthermore, the threshold became
about 1 km and 2.5 km in the dry season and the wet season scale (Figure 9b,c), respectively,
suggesting that the area showing the warming effect in the wet season was less than that in
the dry season.

Xiangjiaba and Xiluodu hydropower plants are characterized by high water level
operation during the dry season, and low water level operation during the wet season [50].
This suggests the water area and volume of reservoirs are higher in the dry season than
in the wet season. Therefore, owing to the thermal inertia mechanism of the reservoirs,
milder temperature variations occur in the dry season than in the wet season. For example,
in our study, the percentage of the area where the temperature was significantly affected
was as high as 53% in the wet season, while this percentage was only 41% in the dry season
(Figure 8b,c). This finding is similar to that of Wang et al. [17], who also indicated that
air temperatures were more moderate during the dry season than in the wet season after
reservoir impoundment.

4.2. Limitations and Future Research Directions

Assessing regional air temperature changes is very challenging because of regional
heterogeneity and the non-linear characteristics of air temperature itself [51]. Generally,
air temperatures are largely influenced by the broad climatic context, topographic factors,
vegetation types, human activities, and complex interactions among them [19]. Despite the
fact our study has been theoretically conducted to eliminate the influence of natural factors
on air temperature and solely assess the effect of water impoundments, the impact of other
anthropogenic factors has not been assessed. Except for the effects of the reservoirs studied
in this study, many other factors may all contribute to the variation in air temperature [52].
For instance, the study by Ospina Noreña et al. [53] indicated that Tmean, Tmax, and Tmin
around the hydroelectric power plants in Sinú-Caribbean Basin all showed an increasing
trend in the context of global warming. Moreover, other factors such as the implementation
of ecological restoration projects [16], and the reduction in carbon emissions due to the out-
migration of the population after the construction of hydropower plants [54], may also have
an impact on the air temperature change. Hence, in the future, it is necessary to consider
all these various factors together when assessing the effect of reservoir impoundment on
regional air temperature variations.

Another limitation of this research is that its study period after impoundment is only
seven years. As the neighboring Baihetan hydropower station at the upstream of Jinsha
river impounded water in January 2020, our study had to be limited to 2019 in order to
exclude its impact on the air temperature in our study area. However, 7 years is a relatively
short period of time for air temperature changes, which may result in certain long-term
regular features not being effectively reflected.

5. Conclusions

This study provided an improved method for quantifying the effects of dam-related
reservoir impoundment on regional temperature. We found that in the lower Jinsha River
catchment, the reservoirs exerted an impact on regional air temperatures. Specifically,
temperature variability in the river basin decreased after water impoundment. At the
annual scale, Tmean increased by an average of 0.1 ◦C, Tmin increased by an average
of around 1.0 ◦C, and Tmax decreased by an average of about 0.4 ◦C. The impact of
reservoirs on air temperature was principally within about 4 km of the reservoirs and was
dominated by the cooling effect. Temperature variations were less pronounced during
the dry season than during the wet season. The warming effect was more pronounced
and the air temperatures were more moderate during the dry season compared to that in
the wet season after reservoir impoundment. Our research results contribute to a better
understanding of the impact of dam-related reservoirs on regional climate, which may,
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in turn, affect the existing ecological ecosystems adversely. Therefore, more attention to
dam-related reservoirs may be necessary to minimize the negative impacts of thermal
regime changes on the terrestrial ecosystem and the method presented in this paper can
achieve this goal.
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Abstract: Ecosystem service value is crucial to people’s intuitive understanding of ecological protec-
tion and the decision making with regard to ecological protection and economic green development.
This study improved the benefit transfer method to evaluate ESV in Hainan Province, proposed the
coupling analysis method of economic and environmental coordination, and explored the relationship
between ESV and economic development based on the medium-resolution remote sensing land use
data and socio-economic data from 2000 to 2020. The results show that Hainan Province’s ESV
decreased by 33.305 billion CNY from 2000 to 2020. The highest ESV per unit area was found in the
water system and forest ecosystem, mainly distributed in the central mountainous area. The overall
condition of EEC decreased from a basic coordination state to a moderate disorder state. Areas with
high economic development had better EEC, such as Haikou and Sanya. Meanwhile, we analyzed
the driving force of ESV and EEC by Geodetector. The results show that land use intensity was
the most important driving factor affecting ESV, with a contribution rate of 0.712. Total real estate
investment was the most important driving factor affecting EEC, with a contribution rate of 0.679.
These results provide important guidance for the coordinated development of regional economy and
ecosystem protection.

Keywords: ecosystem service value; degree of economic and environmental coordination; land use
change; sustainable development; analysis of driving force

1. Introduction

Ecosystem services refer to the benefits that humans derive directly or indirectly from
ecosystems [1], which include a range of goods and services that are extremely important to
human well-being [2,3]. The concept of ecosystem services was defined in the Millennium
Ecosystem Assessment published by the United Nations in 2005 [1], which includes supply
services, support services, regulatory services and cultural services [4]. Subsequently,
ecosystem services have received increasing attention from scientists, policymakers and
the public [5–8]. It is often difficult to obtain a clear picture of the importance and rich-
ness/scarcity of ecosystem services from the point of view of physical quantity alone [9].
The monetary valuation of ecosystem services has greatly facilitated the assessment of
global ecosystem services [3]. A growing number of studies have attempted to use ecosys-
tem service value (ESV) monetary evaluation methods to evaluate ESV at different scales,
including the global [3], national [10] and regional [8]. Much research has been carried out
on ESV evaluation methods at home and abroad, but a unified evaluation system has not
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been developed [2,6,11]. ESV can be broadly divided into two categories: price methods
based on unit service functions, and value-equivalent factor methods based on unit areas [6].
The former method has many input parameters, has a complicated calculation process
and has difficulty achieving a unified standard, so it has not generated a breakthrough
in the specific theory and method [12,13]. Compared with price methods, the equivalent
factor method is easier and more intuitive to use, is more comprehensive, has fewer data
needs and has high comparability. It is mainly influenced by Costanza, who divided the
world’s ecosystems into 16 types and 17 subtypes based on their service functions [3,5]. It
is particularly suitable for assessing the ESV at the regional and global scales [2,6,8–10].
In addition, a series of models for calculating ESV have been proposed based on existing
research, such as the Integrated Valuation of Ecosystem Services and Tradeoffs (INVEST)
model [14], Multi-Scale Integrated Models of Ecosystem Services (MIMES) model [15], etc.
These models explore the evaluation of ecosystem services from different perspectives,
focusing on ecological data, and can be applied to the global, watershed or landscape
scale [16]. Using modeling methods to evaluate ecosystem services has scientific and
objective advantages, but the result of the assessment is the quality of ecosystem services.
In order to better serve ecological compensation and ecosystem management, the quality
of ecosystem services needs to be converted into value. However, the quality of ecosystem
services may have various values, and using these methods it is difficult to fully evaluate
all ecosystem service functions [17]. Additionally, these methods rely too much on the
quality and quantity of satellite imagery.

Many researchers have evaluated ESV on a national or regional scale based on the
benefit transfer method [18,19]. However, their results have dramatically differed from the
results of applying this approach to China. For example, deviations in some cases may result
in an underestimate of farmland ESV and an overestimate of wetland ESV [20]. The ESV
that other researchers have assessed reflects the economies of developed countries (such as
the US and European countries) rather than developing countries (such as China) [10,21].
Xie et al. [4,6,7] improved this approach and calculated the basic equivalent of ESV in
China based on Costanza’s evaluation model, which has been adopted by most researchers.
It has been widely used to evaluate ESV at different spatial scales, such as country [6],
province [22], urban agglomeration [13] and watershed [23]. However, this may not be
enough for all regional cases in China. As a static coefficient table, the evaluation based
upon it cannot reflect the physical geographic and socio-economic characteristics of the
region [24]. Generally speaking, people’s willingness to pay and ability to pay increas with
the improvement of the socio-economic level. Moreover, ecosystem service functions vary
with different physical geographical conditions [25]. This is especially true in China. China
has a vast territory with diverse terrain and natural features. The above facts indicate that
the value coefficient should be dynamically adjusted to reflect the physical geographic and
socio-economic characteristics of the region [26,27].

In the face of increasingly severe global issues, such as a rapid population explosion,
food shortages, resource depletion and ecological degradation, increasing attention is being
paid to clarifying the relationship between ecological protection and economic develop-
ment [28]. Coordinating the relationship between economic growth and environmental
degradation and resource depletion is a basic requirement of sustainable development and
the only way to achieve it [29]. Therefore, it is necessary to analyze the coordination be-
tween ecosystem services and regional economic development [30]. Ecosystem services can
reflect the relationship between economic development and the ecological environment (for
example, economic development can improve the ecological environment by optimizing in-
dustrial structure and improving population quality, or through population growth and the
expansion of built-up land lead to the deterioration of the ecological environment [30,31])
as bridges and bonds that couple natural and social processes, which provides new theoret-
ical support for studying the coupling of human and natural systems [32]. Analyzing the
relationship between ecosystem services and economic development can better elucidate
the impact of socioeconomic activities on ecosystem services, which plays an important
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role in adjusting the structure of land use, improving the efficiency of land distribution,
and protecting the ecosystem. It is a realistic step towards realizing the coordination and
optimization of regional economic development and ecological protection.

The co-growth of ESV and the economy is the goal and direction of current social and
economic development. Previous studies were mostly limited to single-factor one-way
studies, and lack the analysis of the degree of coordination between ESV and regional
economic development, especially the spatial distribution characteristics of its coupling and
coordination characteristics [33,34]. The research of domestic and foreign scholars on the
coordination degree between the environment and economy mainly focuses on two aspects.
The first aspect is the theory of the coordinated development of the environment and
economy. Scholars believe that there is an organic connection between the environment and
economy, and that ecological construction and economic development should adapt to and
promote each other [35,36]. The second aspect is evaluating the coordinated development
of the environment and economy. Scholars at home and abroad have carried out a large
number of studies by comprehensively applying a variety of research methods, including
the comprehensive index evaluation method [37], energy analysis method [38], and the
law of space–time change method [39]. Foreign scholars have introduced land use change
into the study of the coordination degree between economic development and ecological
environment, focusing on the interaction between the economy and environment [40,41].
Chinese scholars focus on measuring, analyzing and evaluating this coordination from
the multiple perspectives of economy, environment, society, culture, information and
urbanization [42].

Hainan Province is an important strategic fulcrum of the “21st Century Maritime
Silk Road”. Since 2018, the Central Committee of the Communist Party of China and
the State Council have proposed to establish a Chinese pilot-free trade zone and build a
national ecological civilization pilot zone in Hainan. Therefore, in the context of the national
strategy, how to achieve the optimal balance of ecosystem services on the province based
on the premise of not destroying the ecological environment has important theoretical
significance and practical value for understanding the development and utilization of land
resources and ecological environmental protection. In this paper, normalized vegetation
index (NDVI) and net primary productivity (NPP) data were used for the first time to
improve the biomass correction factor to represent the spatial heterogeneity of physical
geography. In addition, we increased the willingness to pay, the ability to pay, and the
scarcity of resources to construct a socio-economic adjustment factor to reflect economic
development. We constructed a regional ESV evaluation model to obtain more accurate
evaluation results based on the actual situation of the study area. Meanwhile, this paper
quantitatively reflects the coordinated development degree of environment and economy
from the perspective of coupling analysis, and we used the new coupling method of the
coordination degree of economy and environment to study their coordinated development.
This paper chose Hainan Province as a research case to analyze the distribution pattern
of Hainan Province’s ecosystem, the characteristics of ESV temporal and spatial changes
and the temporal and spatial relationship of the coordinated development of the economic
environment based on these studies. This can provide a scientific reference for the rational
allocation of land resources and the coordinated development of the economic environment.
To this end, this study set five research goals, as follows:

(1) To explore the temporal and spatial variation characteristics of ecosystems in Hainan
Province from 2000 to 2020;

(2) To explore the spatial–temporal variation characteristics of the ESV in Hainan Province
from 2000 to 2020;

(3) To analyze the temporal and spatial characteristics of coordinated economic and
environmental development in Hainan Province from 2000 to 2020;

(4) To analyze the driving factors of the ESV and economic environment coordination
degree (EEC) in Hainan Province;
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(5) To put forward policy suggestions for coordinated economic and environmental
growth.

2. Materials and Methods

2.1. Study Area

Hainan Province (18.80◦–20.10◦N, 108.37◦–111.03◦E) is located at the northern end of
the continental shelf of the South China Sea, which has 18 cities and counties and covers an
area of approximately 34,000 km2. The province’s landforms are diverse. Its topography is
high in the middle and low on all sides. The terrain is a peak, with Wuzhishan (1867 m)
and Yingge Ling (1811 m) as the core of the uplift. This gradually descends from the middle
to the surrounding mountains, hills, platforms and plains (Figure 1). Hainan Province has
a typical tropical monsoon maritime climate. It has a hot, rainy climate with long summers
and no winter. The annual precipitation of 1000–2500 mm is unevenly distributed between
the rainy and dry seasons, and across the province. The average annual temperature is
23.8–26.2 ◦C. Hainan Province is dry in the west and wet in the east [43,44]. Hainan has
witnessed rapid social and economic development, rapid urban expansion and drastic
land changes since the construction of Hainan International tourism island in 2009, which
have profoundly affected the structure and function of the entire island ecosystem. This
profoundly affects the structure and function of the entire province ecosystem. At present,
the province’s land use is mainly forest and farmland, which account for nearly 90% of the
total area. The province is rich in forest resources and diverse in ecosystems and has the
most intact tropical natural forest in the country, which has laid a solid foundation for the
development strategy of Hainan’s ecological province and the construction of the national
ecological civilization experimental zone.

Figure 1. Overview of the study area.

2.2. Data Sources and Preprocessing

The land use classification data of Hainan Province in 2000, 2005, 2010, 2015 and 2020
came from the Resource Science and Satellite Center (http://www.resdc.cn/, accessed on
31 August 2021), with a spatial resolution of 30 m and a classification accuracy of more
than 85% [45]. The Resource Science and Satellite Center’s classification system includes
6 primary classes and 22 subclasses. On this basis, this study established an ecosystem clas-
sification system table (Table 1). We divided ecosystems into 8 primary classes: farmland,
forest, grassland, shrubs, wetlands, bare land, river, and construction land.
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Table 1. Ecosystem classification system.

Ecosystems Classes LUCC Classes

Primary Classes Subclasses Codes

Forest
Forestland 21

Sparse woods 22
Other forestland 24

Shrubs Shrubs 23

Farmland
Paddy field 11

Dry farmland 12

Grassland
High-covered grassland 31

Medium-covered grassland 32
Low-covered grassland 33

River Rivers and canals 41

Wetlands

Lakes 42
Reservoir pond 43

Tidal flat 45
Beach 46

Marshland 64

Construction land
Urban residential area 51
Rural residential area 52

Other construction land 53

Bare land

Desert sand 61
Saline-alkali land 63

Bare land 65
Bare rock 66

The socioeconomic data such as food crop yield, area and agricultural product prices,
agricultural product price index, population, and per capita GDP needed to evaluate the
ESV were derived from the “China Statistical Yearbook”, “Hainan Statistical Yearbook”, and
“National Agricultural Products” compilations of cost–benefit information and national
economy and development reports of various years. The administrative division data and
digital elevation model (DEM) data came from the geographic and national conditions
monitoring cloud platform (http://www.dsac.cn, accessed on 28 August 2021).

The NPP data were mosaicked by the MODIS satellite MOD17A3HGF.006 in the
Google Earth Engine (GEE) platform based on the shapefile data of Hainan Province, with a
spatial resolution of 500 m. The NDVI data were calculated by using the annual maximum
value synthesis method for Landsat TM/OLI image data after cloud removal on the GEE
cloud platform, with a spatial resolution of 30 m.

2.3. Methods

Figure 2 is the flow chart of the calculation and driving force analysis of ESV and
EEC in Hainan Province. It mainly includes five steps: (1) Using land use data to classify
ecosystem data; the spatial and temporal variation characteristics of ecosystem data were
analyzed and the ecosystem service value equivalent per unit area of Hainan Province
was constructed based on the ecosystem service value equivalent per unit area of China.
(2) Calculating a standard equivalent value and socio-economic adjustment coefficient using
social and economic statistics data; the annual NPP and NDVI data were calculated by the
GEE platform and administrative division data to improve the biomass factor adjustment
factor. (3) Calculating the ESV results of Hainan Province and analyzing the spatiotemporal
variation characteristics of ESV. (4) Calculating the economic environment coordination
index through the coupling model of ESV per unit area and GDP per capita, and analyzing
the spatiotemporal variation characteristics of EEC. (5) Driving factors of ESV and EEC are
analyzed by using the GeoDetector model (9 driving factors, such as DEM and cultivated
land area).
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Figure 2. Technology roadmap for computational and driving force analysis of ESV and EEC.

2.3.1. Ecosystem Category Analysis Method

We used single land use dynamics [46] and comprehensive land use dynamics [47]
to analyze the number and degree of ecosystem types and regional differences in ecosys-
tem changes. These results reflected the severity of changes in ecosystem types in the
assessment area.

The state of the ecosystem was expressed by the land use intensity (LUI), which
reflects the effects of human activities on the natural world [48]. The calculation method is
as follows:

LUI =
SCLE

S
× 100% (1)

SCLE =
n

∑
i=1

(SLi × ECi) (2)

where LUI is the land use intensity; SCLE is the equivalent area of construction land; S is
the total area of the region; SLi is the area of land use/cover type i; ECi is the equivalent
conversion coefficient of construction land for land use/cover type i; and n is the land
use/cover type in the area.

According to the two-level stepwise algorithm: (1) The first level. We set the eigen-
value of the unchanged surface natural property and unused natural cover as 0, and the
eigenvalue of the artificial surface layer and blocked water, nutrient, air and heat exchange
above and below the surface as 1. In other words, we used natural cover change and the
exchange of water, nutrients, air and heat above and below the surface as indicators, and
divided them into 5 equal parts from 0 to 1. (2) The second level. We marked the unchanged
surface natural cover being used, the changed natural cover—planting perennial plants,
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and the changed natural cover—planting 1-year-old crops, and divided them into 3 equal
grades from 0 to 0.2. We obtained the conversion coefficient of the construction land equiv-
alent for different land use/cover types according to the two-level stepwise algorithm [48],
as shown in Table 2.

Table 2. Equivalent conversion coefficients of different land use types.

Land Use Type Equivalent Conversion

Farmland 0.200
Forest 0.067
Shrubs 0.060

Grassland 0.100
Wetlands 0.200

Construction land 1.000
Bare land 0.001

River 0.002

2.3.2. Dynamic ESV Evaluation Method

Xie et al. revised the ecosystem service classification and equivalent table according
to the specific situation in China [49]. On the basis of Xie et al.’s research, we added the
socioeconomic adjustment coefficient and spatial heterogeneity adjustment coefficient [50].
Then, the equivalence factors were matched according to the status of Hainan’s ecosystem.
Finally, the Hainan Ecosystem Service Value Equivalent Table of Unit Area was formulated
(Table 3).

Specifically, the standard equivalent coefficient is defined as 1/7 of the economic
value of farmland’s annual grain. To eliminate the impact caused by price fluctuations
over the years, we increased the Consumer Price Index (CPI). We used formula (3) and
related statistics to convert all prices based on 2015 prices. According to relevant statistical
data, we collected the national average price and national output per unit area of each
grain crop in 2000, 2005, 2010, 2015 and 2020. We found that the standard equivalent
factor value of Hainan Province in each year was 1223.98 CNY/hm2, 1289.59 CNY/hm2,
1533.58 CNY/hm2, 1627.53 CNY/hm2, and 1472.49 CNY/hm2, respectively. Finally, the
average value of the data in the five periods was 1429.44 CNY/hm2, as the standard
equivalent factor value.

With the development of the economy, people will pay more attention to protecting
ecological systems and the ecological environment, which means that the costs people
must pay to protect the ecosystem are becoming increasingly affordable. We adjusted
for this by adding the socioeconomic development coefficient [51]. The socioeconomic
development coefficient includes the ability to pay represented by GDP, the willingness to
pay represented by Engel’s coefficient, and the resource scarcity coefficient represented by
population density.

As the ecosystem changes in different years and different regions, the ESV also changes
accordingly. Biomass has a great impact on ecosystems and it is positively correlated with
ESV. In this paper, annual NPP and annual NDVI were used as biomass adjustment
coefficients reflecting natural biomass. We used these data to modify ESV as a coefficient of
spatial heterogeneity.

Some studies assert that construction land provides different ESV (such as soil con-
servation and resource consumption). Therefore, this paper refers to the relevant liter-
ature [47,52,53], and we think that construction land contributes to ESV. Tables 3 and 4
show the unit area equivalent factor and unit area equivalent value of Hainan Province,
respectively. The specific formula for calculating ESV is as follows:
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yn =

⎧⎨⎩
100, n = 2000
xn, n = 2001
xn × yn−1/100, n = 2002, 2003, . . .

(3)

ESV = ∑ VC× Pj × Aj × PI (4)

VC =
1
7
×

n

∑
i=1

mi piqi/M× R
R0

(5)

Pj =

(Bj

B
+

Nj

N

)
/2 (6)

PI = Wt × At × S (7)

Wt =

(
2

1 + e−
1

Enr×(1−Pu)+Enu×Pu
+2.5

)
A

/

(
2

1 + e−
1

Enr×(1−Pu)+Enu×Pu
+2.5

)
N

(8)

At =
pGDPA
pGDPN

× UA
UN

(9)

S = ln PA/ ln PN (10)

where xn refers to the CPI in the nth year relative to the previous year = 100; yn refers to
CPI in the nth year relative to the base year 2000 = 100; n = 2000, . . . ,2020; ESV is the total
value of ecosystem service functions (CNY); VC is the value coefficient of ecosystem
service function (CNY/hm2); Pj is the adjustment coefficient of spatial heterogeneity;
Aj is the area of type j ecosystem (hm2); and PI is the social and economic adjustment
coefficient. i is the type of grain in Hainan Province, of which the main grain types are
rice, soybeans, etc.; n is the number of food categories; mi is the area of type i grain
(hm2); pi is the national yield per unit area of type i grain (kg/hm2); qi is the national
average price of category i grain (CNY/kg); M is the total area of n kinds of grain (hm2);
R is the grain yield per unit area of farmland in Hainan Province (t/hm2); and R0 is
the national grain output per unit area of farmland (t/hm2). Bj is the average annual
NPP (t/hm2) of ecosystem type j in Hainan Province; B is the average annual NPP of
this type of ecosystem nationwide (t/hm2); Nj is the average annual NDVI value of
the category j ecosystem in Hainan Province; and N is the average annual NDVI value
of this type of ecosystem across the country. Wt is the willingness to pay; Enu is the
urban and rural Engel’s coefficient in year t representing the urban Engel’s coefficient
and the rural Engel’s coefficient, respectively; and Pu is the proportion (%) of the urban
population in year t. At is the ability to pay; pGDPA is the GDP per capita of the study
area (CNY); pGDPN is the national GDP per capita (CNY); UA is the urbanization rate
of the study area (%); and UN is the national urbanization rate (%). S is the resource
scarcity index; PA is the population density of the study area (person/km2); and PN is
the national population density (person/km2).
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2.3.3. Calculation Method of EEC

The coordination index can reflect the strength of the interaction between different
systems and the degree of coordination. In this paper, the ESV per unit area was used to
characterize the ecological environment in different regions [42], and the per capita GDP
was used to characterize the level of economic development in different regions [54]. We
constructed a coordination index between the ESV and GDP per capita and established
different coordination levels [29] (Table 5).

Table 5. Level of coordination degree between economic development and environmental conditions.

Level High Maladjustment Mid Maladjustment Basic Coordination Mid Coordination High Coordination

D (0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1]

(a) Data Standardization

To eliminate the influence of different dimensions on the calculation results of the
coordination index, this paper used the range method to standardize the ESV per unit area
and GDP per capita data in 2000, 2005, 2010, 2015, and 2020 [36], as follows:

QESV =
QESV0 −QESVmin

QESVmax −QESVmin
(11)

QGDP =
QGDP0 −QGDPmin

QGDPmax −QGDPmin
(12)

where QESV and QGDP are the standardized values of ESV per unit area and GDP per
capita; QESV and QGDP0 are the original value of ESV per unit area and GDP per capita;
QESVmax and QGDPmax are their maximum values; and QESVmin and QGDPmin are their
minimum values.

(b) Coordination index

The degree of coordination index can not only reflect the strength of the interaction
between economic development and regional environment, but also reflect the degree of
coordination between them. This paper constructs the coordination index between ESV
and GDP per capita.

T = α×QESV + β×QGDP (13)

C =

√
QGDP×QESV

(QGDP + QESV/2)2 (14)

D =
√

T × C (15)

where D is the EEC; the larger the value of D, the better the EEC in the region. C is the degree
of coupling; T is the composite index; QESV and QGDP are the ESV per unit area and GDP
per capita, respectively; and α and β are undetermined weights for the ESV per unit area
and GDP per capita, respectively. Economic development is based on environmental quality,
and environmental quality is affected by economic development. Therefore, we believe that
economic development is as important as the ecological environment (α = β = 0.5) [29].

2.3.4. Driving Force Analysis Method

To explore the driving factors of ESV (Y1) and EEC (Y2), we chose six socioeconomic
and human activity factors: cultivated land area (X1); total population (X2); total real estate
investment (X3); total output value of agriculture, forestry and fishery (X4); number of
tourists (X5); LUI (X6); and three natural factors: altitude (X7); precipitation (X8); and
temperature (X9) based on relevant research and the actual situation in Hainan Province.
We used these factors for driving force analysis.
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We used Geodetector to analyze the driving forces of ESV and EEC and used the
bivariate correlation method to analyze the correlation between each driving force and ESV
and EEC. Geodetector is a set of statistical methods to detect spatial differentiation and
reveal the driving force behind it [55]. Factor detection in the Geodetector can detect the
spatial divergence of variable Y, which is measured by the q value. The calculation method
is as follows:

q = 1−
L

∑
h=1

Nhσ
2
h/Nσ2 (16)

where h = 1, . . . ; L is the stratification of variable Y or factor X; Nh and N are the number of
units in layer h and the whole area, respectively; and σ2

h and σ2 are the variance of the Y
value of layer h and the whole area, respectively. The value range of q is [0, 1]. The larger
the value of q, the more obvious the spatial divergence of Y.

3. Results

3.1. Ecosystem Category Changes

The spatial distribution of different ecosystems in Hainan Province over the past
20 years is shown in Figure 3a–e. The ecosystem of Hainan Province was dominated by
forest, which accounted for more than 55% of the entire province and was mainly dis-
tributed in the province’s central and southern regions. Forest was followed by farmland,
which accounted for approximately 26% of the entire province and was mainly distributed
in the north and around the mountains. The total area of the two ecosystems was close
to 82% of the total area of Hainan Province. Other types of ecosystems accounted for a
relatively small area. As seen from the spatial distribution, the transformation of Hainan
Province’s ecosystem was mainly concentrated in cities, counties, urban areas and coastal
areas. Among them, the Haikou, Sanya, Danzhou and Dongfang city urban areas, Yangpu
Economic Development Zone, and coastal areas northeast of Wenchang caused major
changes in ecosystem types due to urban construction. The main feature of these changes
was the conversion of farmland and forest to construction land. The construction of large-
scale reservoirs has led to the conversion of farmland, forest, and grassland into wetlands.
Second, as a result of Hainan’s afforestation activities on Treasure Island, grassland, farm-
land and other suitable forestland in Wenchang, Dongfang and other cities and counties
were converted into forests in large areas. This somewhat guaranteed the balance of forest
resources across the province.

The area classifications and proportions of ecosystems in Hainan Province from 2000
to 2020 are shown in Table 6. The single land use dynamics and change rates of each
ecosystem during the study period are shown in Figure 4. From 2000 to 2020, only river,
wetlands, and construction land were in a state of increase, while the rest of the ecosystem
types were in a state of decline. Among them, the area of construction land had the largest
increase and increase rate. Its rate of increase reached 87.28%, with an additional area
of 65,307 hm2. Construction land showed a continuous increasing trend and explosive
growth in 2010–2015. The newly increased areas of river and wetlands were 8287 hm2 and
5364 hm2, with increases of 53.15% and 4.71%, respectively. Forest was the most important
type of ecosystem in Hainan Province; it showed a trend of first increasing and then
decreasing, reducing its area by 25,396 hm2, and its area ratio dropped by 1.32% from 2000
to 2020. Farmland, grassland, shrubs and bare land showed a fluctuating downward trend.
Their area reductions were 30,556 hm2, 7940 hm2, 9936 hm2, and 5134 hm2, respectively, and
their area proportions decreased to 3.85%, 2.58%, 6.43%, 3.94%, and 40.15%, respectively.
In terms of area, farmland was the most reduced, followed by forest, shrubs, grasslands
and bare land. Bare ground had the largest decline because the area was actively small. In
terms of the overall degree of change, construction land had the largest change, followed
by bare land. Forest had the smallest change, which meant that forest was the most stable
in the ecosystem of Hainan Province.
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Figure 3. Spatial pattern of ecosystems in Hainan Province from 2000 to 2020. Note: (a) spatial pattern
of ecosystems in Hainan Province in 2000; (b) spatial pattern of ecosystems in Hainan Province in
2005; (c) spatial pattern of ecosystems in Hainan Province in 2010; (d) spatial pattern of ecosystems in
Hainan Province in 2015; and (e) spatial pattern of ecosystems in Hainan Province in 2020.

Table 6. Areas and percentages of different ecosystem classes in Hainan from 2000 to 2020.

Ecosystem
Class

2000 2005 2010 2015 2020

Area
(hm2)

Percentage
(%)

Area
(hm2)

Percentage
(%)

Area
(hm2)

Percentage
(%)

Area
(hm2)

Percentage
(%)

Area
(hm2)

Percentage
(%)

Forest 1,929,453 56.38 1,933,173 56.41 1,926,740 56.32 1,910,746 55.86 1,904,057 55.63
Farmland 900,232 26.30 894,627 26.11 888,736 25.98 871,892 25.48 869,676 25.41
Construction

land 74,821 2.19 81,821 2.39 90,870 2.66 127,502 3.73 140,128 4.09

Shrubs 252,229 7.37 249,423 7.28 247,214 7.23 244,369 7.14 242,293 7.08
Grassland 123,404 3.61 117,008 3.41 113,545 3.32 115,130 3.37 115,464 3.37
Wetlands 113,959 3.33 124,929 3.65 127,032 3.71 120,021 3.51 119,323 3.49

River 15,593 0.46 16,383 0.48 18,521 0.54 24,105 0.70 23,880 0.70
Bare land 12,788 0.37 9624 0.28 8578 0.25 7569 0.22 7654 0.22
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Figure 4. Single dynamic index and change rate of land use types in Hainan from 2000 to 2020.

3.2. Spatial and Temporal Analysis of ESV

As seen in Tables 7 and 8, the ESV in Hainan Province showed a trend of first decreas-
ing, then increasing, and then decreasing, and it showed a downward trend as a whole.
The ESV dropped from 206.842 billion CNY in 2000 to 175.615 billion CNY in 2005, then
increased to 177.286 billion CNY in 2010, increased to 184.399 billion CNY in 2015, and
finally decreased to 173.537 billion CNY in 2020. In the past 20 years, the ESV decreased
by 33.305 billion CNY, a decrease of 16.1%. The ESV was the highest in 2000, which was
mainly due to the biomass adjustment coefficient, the socioeconomic coefficient was the
highest (Figure 5), and this year had the least construction land area. In terms of ecosystem
types, forest had the highest ESV contribution rate, as high as 77.7%. This was followed
by farmland, shrubs, wetlands, grassland, and river; their proportions were 5.9%, 5.8%,
5.3%, 3.8%, and 2.4%, respectively. The ESV contribution rate of bare land was the lowest,
at only 0.02%, which showed that the ESV of bare land had the least impact on the overall
ESV of Hainan Province. In the past 20 years, only the ESV of wetlands and river showed
an upward trend, which was mainly due to the increase in the area of wetlands and river
for the construction of reservoirs and fishponds. The ESV of the remaining ecosystems
all showed a downward trend. The reason was not only the decline in the area of the
remaining ecosystems but also the decline in the biomass adjustment coefficient and the
socioeconomic coefficient (Figure 5). Construction land always had a negative effect on the
ESV. Although the biomass and socioeconomic regulation factors declined from 2000 to
2020, the ESV of construction land dropped by 68.72%, which showed that the construction
land in Hainan Province had increased significantly.

Figure 6 shows the ESV per unit area of different ecosystems. As shown in Figure 6,
the river had the highest ESV per unit area, followed by wetlands, forest, grassland, shrubs,
farmland and bare land. The ESV per unit area of construction land was always negative.
This result shows that to increase the ESV in Hainan Province, we should increase the
areas of river, wetlands, and forest to ensure the steady progress of the policy of returning
farmland to forest and wetland protection.
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Table 7. ESV and proportion by ecosystem class in Hainan Province (unit: 106 CNY).

Year Factor Forest Shrubs Wetlands Grassland Farmland River Bare Land
Construction

Land
Total

2000
ESV 1625.58 124.74 94.22 79.59 122.87 38.31 0.43 −17.32 2068.42

Percentage 78.59% 6.03% 4.56% 3.85% 5.94% 1.85% 0.02% −0.84% 100.00%

2005
ESV 1381.84 101.81 87.55 65.41 101.32 34.16 0.37 −16.30 1756.16

Percentage 78.69% 5.80% 4.99% 3.72% 5.77% 1.94% 0.02% −0.93% 100.00%

2010
ESV 1378.82 104.17 93.88 65.67 105.68 42.34 0.40 −18.09 1772.87

Percentage 77.77% 5.88% 5.30% 3.70% 5.96% 2.39% 0.02% −1.02% 100.00%

2015
ESV 1433.40 107.46 101.35 70.95 109.88 48.64 0.38 −28.06 1843.99

Percentage 77.73% 5.83% 5.50% 3.85% 5.96% 2.64% 0.02% −1.52% 100.00%

2020
ESV 1348.13 100.60 98.28 67.29 103.81 46.12 0.36 −29.22 1735.38

Percentage 77.69% 5.80% 5.66% 3.88% 5.98% 2.66% 0.02% −1.68% 100.00%

Table 8. ESV change rate by ecosystem class from 2000 to 2020 in Hainan Province.

Year Factor Forest Shrubs Wetlands Grassland Farmland River Bare Land
Construction

Land
Total

2000–2005

Change
rate

−14.99% −18.38% −7.08% −17.82% −17.54% −10.85% −14.93% −5.90% −15.10%
2005–2010 −0.22% 2.31% 7.23% 0.40% 4.30% 23.97% 9.05% 11.01% 0.95%
2010–2015 3.96% 3.16% 7.95% 8.05% 3.97% 14.87% −5.64% 55.10% 4.01%
2015–2020 −5.95% −6.38% −3.03% −5.16% −5.52% −5.18% −3.49% 4.14% −5.89%
2000–2020 −17.07% −19.35% 4.31% −15.45% −15.51% 20.38% −15.52% 68.72% −16.10%

Figure 5. Adjustment coefficient of Hainan province from 2000 to 2020.
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Figure 6. ESV value per unit area (CNY/ha) of ecosystem classes from 2000 to 2020.

Tables 9 and 10 showed the value and change rate of different ecological services
from 2000 to 2020. Climate regulation and hydrological regulation were the main functions
affecting ecosystem services, and their values accounted for more than 50% of the total value
of Hainan Province. The value of maintenance of nutrient circulation and water supply
accounted for the smallest proportion. Among these, water supply resources always had a
negative impact on the ESV. This was mainly due to the excessive consumption of water
resources on construction land and farmland, which showed that water conservation and
protection in Hainan Province was urgent. From 2000 to 2020, the value of all individual
ecosystem services decreased due to reductions in the biomass adjustment coefficient and
socioeconomic adjustment coefficient, and the impact of changes in different ecosystem
types. The value of the water supply continuously decreased, mainly because of the rapid
expansion of construction land. Although the increase in river and wetlands had a positive
effect on the water supply, the increase in the area of the two was much smaller than the
increase in construction land, which led to a continuous decrease in the ESV. The reduction
in raw material production, hydrological regulation, climate regulation, environmental
purification, gas regulation, soil conservation, and recreation and culture was related to
the continuous reduction in forest, grassland and shrubs. In terms of the rate of change,
the rate in hydrological regulation was the lowest (−12.11%), followed by biodiversity
(−15.03%). The change rates of hydrological regulation and biodiversity were lower than
those of other ecosystem services mainly due to the increase in the area of wetlands and
river, which indicates that the change in ecosystem types had an important impact on the
function of ecological services.
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As shown in Figure 7, regulation services were the most important function of ecosys-
tem services, with values of up to 68%. Second were support services, the value of which
accounted for approximately 23%, and the value of supply services and cultural services
accounted for approximately 5% and 4%, respectively. The change trend of the four ser-
vices during the study period was the same as the total ESV, which showed a trend of
first decreasing, then increasing, and then decreasing, and showed a downward trend as
a whole.

Figure 7. Four categories of ESV and the total ESV of Hainan.

In summary, the changes in ecosystems and the decline in the biomass adjustment
coefficients and socioeconomic adjustment coefficients played important roles in the decline
in ESV in Hainan Province. As shown in Figure 5, the biomass adjustment coefficient of
Hainan Province dropped from 2.28 to 1.94, a decrease of 14.91% from 2000 to 2020. The
advantages of Hainan Province’s NPP and NDVI over China’s average NPP and NDVI
continue to decline. The socioeconomic adjustment coefficient dropped from 0.78 to 0.52, a
decrease of 33.3%, which showed that the economic development speed of Hainan Province
was slower than that of China.

Due to the unit area, the ESV value in some pixels (such as river ecosystem) was much
higher than in other pixels. If we used the natural breakpoint method, it may result in
poor picture display, while the artificial breakpoint method can control the picture display
status and present a better display effect. Therefore, the artificial breakpoint method was
used to divide the ESV into six categories, as shown in Figure 8. The ESV of Hainan
Province conformed to the spatial distribution characteristics of being high in the middle
and low in the surrounding area, which was highly consistent with the spatial distribution
of elevation. The reason was the lower LUI in mountainous areas with higher altitudes,
which were mainly distributed in forest and grassland ecosystems, and these areas had
higher ESV. The surrounding areas with lower elevations had higher LUI, and they were
mainly distributed in ecosystems such as construction land and farmland; these areas had
lower ESV. The ecosystem with the highest ESV level in Hainan Province was mainly river,
which was concentrated in major river areas, with some scattered in the middle. The lowest
ESV ecosystem was mainly construction land, which was mainly concentrated in northern
Hainan and coastal plains. The high-value areas of ESV in Hainan Province continued to
slump and the low-value areas continued to expand from 2000 to 2020.
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Figure 8. Distribution map of ESV in Hainan from 2000 to 2020. (a) Distribution map of ESV in Hainan
in 2000; (b) distribution map of ESV in Hainan in 2005; (c) distribution map of ESV in Hainan in 2010;
(d) distribution map of ESV in Hainan in 2015; and (e) distribution map of ESV in Hainan in 2020.

Figure 9 shows the ESV and ESV per unit area in different periods of cities and
counties in Hainan Province. Figure 9b shows that the largest ESV in most cities and
counties appeared in 2000, and the lowest ESV occurred in 2020. Among these cities and
counties, Qiongzhong’s ESV was always the largest, and Lingao’s ESV was always the
lowest. Figure 9b shows a clockwise direction from Lingao to Qiongzhong, and that the
overall ESV of each city and county was on the rise. Figure 8a shows that the highest ESV
per unit area of most cities and counties occurred in 2000, and the lowest ESV occurred
in 2020, which was the same trend as the total ESV. Among these cities and counties,
Wuzhishan always had the highest ESV per unit area, and Lingao always had the lowest
ESV. Figure 9a shows a clockwise direction from Lingao to Wuzhishan, and the overall
ESV per unit area of each city and county showed an upward trend. The ESV per unit area
could be used to indicate the regional ecological quality, which showed that the ecological
environment of Wuzhishan was the best and that of Lingao was the worst.

Figure 9. ESV and ESV per unit area change in 18 cities from 2000 to 2020. (a) ESV per unit area
change in 18 cities from 2000 to 2020; (b) ESV area change in 18 cities from 2000 to 2020.
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3.3. Changes in the EEC

The GDP of Hainan Province has increased significantly in the past 20 years. It
increased from 52.682 billion CNY in 2000 to 553.239 billion CNY in 2020, which was
an increase of 10.5 times and represents China’s economic development speed since the
beginning of the 21st century. The spatial distribution of GDP per capita is shown in
Figure 10. The per capita GDP of Hainan Province changed dramatically in different years
and increased rapidly from 2000 to 2020. Spatial distribution was contrary to the spatial
distribution of ESV, which showed a distribution pattern of being low in the middle and
high in the surrounding areas. Areas with high GDP per capita were mainly distributed
in the coastal plains, with Haikou and Sanya having the highest GDP, and the central
mountainous areas had low GDP per capita. In 2020, the GDP per capita of Sanya city
was 88,900 CNY and that of Ledong County was only 31,000 CNY, which showed that the
uneven economic development of Hainan Province was relatively obvious.

Figure 10. Spatial distribution of GDP per capita in Hainan Province. (a) Spatial distribution of GDP
per capita in Hainan Province in 2000; (b) spatial distribution of GDP per capita in Hainan Province in
2005; (c) spatial distribution of GDP per capita in Hainan Province in 2010; (d) spatial distribution of
GDP per capita in Hainan Province in 2015; and (e) spatial distribution of GDP per capita in Hainan
Province in 2020.

The rates of change in GDP per capita in Hainan Province and each city and county
are shown in Figure 11. The GDP per capita of Hainan Province rose rapidly. From 2000 to
2020, the province’s average GDP per capita increased by 861%. Haikou, Sanya, Tunchang,
and Wanning’s growth rates exceeded 1000%. Wenchang and Qiongzhong had the lowest
growth rates, at approximately 500%. The GDP per capita of cities and counties grew the
fastest in 2005–2010 and 2010–2015.
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Figure 11. GDP per capita change rate of each city and county in Hainan. (a) The rate of change in
Hainan’s GDP per capita every five years, and (b) the rate of change in Hainan’s GDP per capita from
2000 to 2020.

The EEC calculation result is shown in Table 10. The overall EEC of Hainan Province
declined from 0.42 in 2000 to 0.36 in 2020. It first decreased, then increased, and then
decreased, which was consistent with the change trend of the ESV. This was mainly because
the GDP per capita was in a state of rapid development, but the decrease in the ESV caused
the EEC to show a negative growth trend, and the increase in the ESV caused the EEC to
show a positive growth trend. Hainan Province was in a state of basic coordination in only
2000, and it was in a state of mid maladjustment in 2005, 2010, 2015, and 2020.

According to the grading method in Table 5, we divided the EEC into five grades.
Therefore, the spatial distribution map of the Hainan EEC was obtained (Figure 12), and
the area of each grade was measured (Table 11). As seen in the figure, the EEC in the central
part of Hainan Province was low in all years. This result was mainly because the GDP per
capita in these areas was low but the ESV value was high, so the economic environment
development was not coordinated. The EEC was relatively high in the round-island areas,
which was mainly because the GDP per capita and ESV in these areas were both high,
and the economic and environmental development was more coordinated. In 2000, 2010,
2015, and 2020, Hainan Province had the most land at the basic coordination level. In 2005,
Hainan Province had the most land at the mid-maladjustment level. This result was mainly
due to the large decline in ESV in 2005 and the rapid growth of GDP per capita. From 2000
to 2020, the change trend of land area in a maladjusted state was the opposite to that of ESV,
and the change trend of land area in a coordinated state was the same as that of the ESV.
There was very little land with mid and high levels of coordination, scattered around rivers
with high ESV values. Since 2015, the area of moderately coordinated land has increased in
Sanya, which shows that the EEC of Sanya has improved.
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Figure 12. Spatial distribution map of the EEC in Hainan. (a) Spatial distribution map of the EEC
in Hainan in 2000; (b) spatial distribution map of the EEC in Hainan in 2005; (c) spatial distribution
map of the EEC in Hainan in 2010; (d) spatial distribution map of the EEC in Hainan in 2015; and
(e) spatial distribution map of the EEC in Hainan in 2020.

Table 11. Area statistics of EEC level (km2).

Year
Coordination

Level
High

Maladjustment
Mid

Maladjustment
Basic

Coordination
Mid

Coordination
High

Coordination

2000
Area 1175.43 11,619.16 20,967.4 89.23 1.09

Percentage 3.472% 34.323% 61.938% 0.264% 0.003%

2005
Area 5414.21 16,236.91 12,139.39 60.28 1.52

Percentage 15.994% 47.964% 35.860% 0.178% 0.004%

2010
Area 5866.15 13,038.4 14,863.18 83.14 1.45

Percentage 17.329% 38.516% 43.906% 0.246% 0.004%

2015
Area 1188.39 13,357.01 18,591.9 712.46 2.41

Percentage 3.511% 39.457% 54.921% 2.105% 0.007%

2020
Area 3895.89 14,133.5 15,181.4 640.2 1.32

Percentage 11.508% 41.750% 44.846% 1.891% 0.004%

Table 12 shows counties and cities in ascending order of coordination. Sanya’s EEC
was the highest in 2015 and 2020, Haikou’s EEC was the highest in 2005 and 2020, and
Qionghai’s EEC was the highest in 2000. They were all in a basic coordinated state. Sanya,
Haikou, Wenchang, and Changjiang were all in a basically coordinated state over the
past 20 years, which showed that the GDP growth of these regions also improved the
ESV. Ledong, Qiongzhong, Baisha, Tunchang, Ding’an, and Baoting were all in a state of
imbalance in the past 20 years due to the low GDP per capita and high ESV in these areas,
so it was necessary to vigorously increase the speed of economic development.
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Table 12. Environmental and economic coordination index in Hainan.

Coordination Index 2000 2005 2010 2015 2020

Hainan Province 0.42 0.32 0.35 0.39 0.36
Ledong 0.38 0.12 0.13 0.24 0.11

Wuzhishan 0.47 0.24 0.29 0.01 0.14
Qiongzhong 0.28 0.12 0.17 0.24 0.23

Baisha 0.36 0.28 0.25 0.29 0.24
Tunchang 0.39 0.27 0.20 0.23 0.24

Dingan 0.11 0.24 0.25 0.34 0.30
Baoting 0.30 0.22 0.26 0.35 0.32

Wanning 0.44 0.35 0.37 0.40 0.37
Dongfang 0.46 0.43 0.38 0.45 0.39

Lingao 0.39 0.39 0.34 0.42 0.39
Wenchang 0.49 0.42 0.42 0.40 0.40
Changjiang 0.48 0.45 0.45 0.48 0.45
Qionghai 0.57 0.45 0.45 0.48 0.46
Lingshui 0.33 0.23 0.33 0.45 0.47
Danzhou 0.50 0.36 0.49 0.50 0.48
Chengmai 0.43 0.37 0.42 0.53 0.51

Haikou 0.54 0.56 0.54 0.54 0.53
Sanya 0.50 0.50 0.57 0.58 0.58

3.4. Analysis of the Driving Force of the Coordination between ESV and EEC

The correlation coefficients between ESV and EEC and each driving force factor are
shown in Table 13. The p value of each driving force factor was 0.000, which indicated
that the results passed the hypothesis test with a significance level of 0.05. The ESV was
negatively correlated with X1, X2, X3, X4, X5, X6 and X8. Among them, the ESV had the
greatest correlation with LUI, with a value of −0.821. The ESV was positively correlated
with X7 and X9. Among them, the ESV was highly correlated with X7, with was 0.61.
This result showed that the ESV had a negative correlation with the impact of human
activities. The ESV was lower in areas with more severe human activities, while it was
higher in biomass-rich areas such as the mountainous areas of Hainan Province. The EEC
was positively correlated with X1, X2, X3, X4, X5, X6 and X9. Among them, the EEC had a
high correlation with socioeconomic factors and had a negative correlation with X7 and X8.
The driving forces of EEC and ESV had opposite effects, which showed that the EEC was
higher in the economically developed areas of Hainan Province.

Table 13. Correlation analysis of 9 driving forces of EEC and ESV.

Index X1 X2 X3 X4 X5 X6 X7 X8 X9

Y1 Correlation −0.300 −0.253 −0.203 −0.278 −0.095 −0.821 0.610 −0.010 0.032

p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Y2 Correlation 0.499 0.666 0.726 0.579 0.581 0.150 −0.452 −0.079 0.030

p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The ESV and EEC driving force results obtained by using the Geodetector are shown
in Table 14. The p value of each driving force factor was 0.000, which showed that the
results passed the hypothesis test with a significance level of 0.05. Among the driving force
factors of ESV, the contribution rate of X6 was the highest, with a value of 0.712. Next, X7
had a contribution rate of 0.411. X4, X2 and X1 had contribution rates of 0.231, 0.159 and
0.137, respectively. The contribution rates of the remaining driving force factors were all
below 0.1, and the contribution rates of X8 and X9 were the lowest. The ESV was mainly
affected by human activity factors and natural factors, and socioeconomic factors had little
influence. Among the driving force factors of the EEC, X3 had the highest contribution rate,
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with a value of 0.679. It was followed by the contribution rates of X2, X1, X4 and X5, which
had values of 0.635, 0.573, 0.561, and 0.555, respectively. X7 and X8 had contribution rates
of 0.328 and 0.194, respectively. The contribution rate of X6 was the lowest. The EEC was
mainly affected by socioeconomic factors, and the contribution rate of each socioeconomic
driving force was above 0.55. The EEC was less affected by natural factors.

Table 14. Driving force spatial differentiation.

Index X1 X2 X3 X4 X5 X6 X7 X8 X9

Y1 q
statistic 0.137 0.159 0.087 0.231 0.093 0.712 0.411 0.057 0.056

p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Y2 q
statistic 0.573 0.635 0.679 0.561 0.555 0.057 0.328 0.194 0.074

p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4. Discussion

4.1. Improvement of Dynamic ESV Assessment Method

ESV assessments have been widely used. However, most studies have not considered
the spatial heterogeneity of ESV [30,45,56,57]. In addition, the monetary estimation of ESV
is affected by different factors, including resource scarcity, ability to pay, willingness to
pay, market price and inflation [58], which will greatly affect the accuracy of the results.
This paper comprehensively considered the social and economic development status and
regional differences. We used biomass adjustment coefficients, socioeconomic adjustment
coefficients and resource scarcity adjustment coefficients to modify the value of the equiv-
alent factor and obtained accurate ESV assessment results. This method allowed us to
better explore the degree of EEC in Hainan Province and understand the driving forces that
affect ESV and EEC. The monetization of ecosystem services can enable people to better
understand the important contribution of ecosystem services to society [5]. The ESV is
beneficial to society as a whole, but it is not owned by individuals [59].

We used the biomass adjustment coefficient for the ESV spatial heterogeneity adjust-
ment, and NPP was used to express the area’s net primary production capacity. Hainan
Province is at the forefront of the country in terms of ecological quality and it is rich in
biological resources [60]. In addition, the equivalent factor of Xie et al. was based on the
national level, and biological resources in northwestern China are very scarce [6]. Thus, the
ratio of Hainan’s NPP to the national NPP is very large. As an index to evaluate vegetation
status, the NDVI can reflect the regional biomass status. To more accurately reflect the
biomass ratio between Hainan Province and the country, we used the ratio of the average
value of Hainan Province’s NDVI and NPP to the national average value of the NDVI and
NPP as the biomass adjustment coefficient to obtain a more accurate spatial heterogeneity
distribution situation.

4.2. Ecosystem Changes

As this paper differentiated shrub ecosystem from forest ecosystem, the proportion
of forest area is different from the proportion of forest in other studies, which accounts
for more than 62% [61]. This study found that the ecosystem of Hainan Province was
dominated by forest and farmland. From 2000 to 2020, the structure of the ecosystems was
relatively stable, and its overall change was small, with a comprehensive rate of change
of approximately 3.22%. Among the ecosystems, the area of construction land and river
increased significantly, from 74,821 hm2 to 140,128 hm2 and 15,593 hm2 to 23,880 hm2,
respectively. The 20-year rates of change were 87.28% and 53.15%, respectively. Due to the
promotion of policies such as Hainan International Tourism Island, urban construction and
land development further expanded from 2010 to 2015. The growth rate of construction land
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was the fastest in the past five years. The extensive development model was the main reason
for the significant differences in the urbanization level among various regions in Hainan
Province. Therefore, we recommend that the government further optimize the allocation
of land resources and appropriately limit the expansion of urban construction land. We
should rationally lay out the space, structure and scale of industry and urban development
in accordance with the requirements of high-quality development and scientifically plan
and improve the matching degree with various resources. In addition, we need to further
optimize the urban spatial structure.

The higher productivity of aquaculture fishponds [62] and the construction of large
reservoirs led to an increase in the wetland area, with a 20-year change rate of 4.71%. The
remaining ecosystems all showed a decreasing trend. In the past 20 years, the ecosystem
of Hainan Province was mainly transformed from farmland, forest, and wetlands, with
contribution rates of 29.82%, 27.07%, and 8.18%, respectively. The transformed ecosystems
were mainly construction land and wetlands, with contribution rates of 33.49% and 12.18%,
respectively. Among them, the transfer-out and transfer-in ratios of wetlands were relatively
large. The reason was that natural wetlands were constantly decreasing, while artificial
wetlands such as fishponds were constantly increasing [63,64]. Ecosystem transformation
was mainly manifested in the conversion of farmland, forest, and shrubs into construction
land. In the past 20 years, their contribution rate was 64.51%, which showed that the rapid
expansion of construction land had become the main factor in the loss of farmland and
forest [56,65,66]. Construction land was mainly transferred out of farmland, which was
similar to the results of previous studies [31,65,67]. This resulted in the reduction of a large
amount of high-quality farmland and increased the fragmentation of farmland, leading
to prominent food security problems [68]. There was also the conversion of wetlands
to farmland and the conversion of natural wetlands to constructed wetlands. This was
because although the overall area of wetlands has shown an increasing trend, the artificial
wetlands in Hainan Province were expanding rapidly, and reclamation and breeding and
port development [63] had severely damaged the natural wetland resources in Hainan
Province. Therefore, natural wetlands urgently need to be protected.

4.3. ESV Status and Changes

Studies have shown that the ESV of Hainan Province dropped from 206.842 billion
CNY in 2000 to 173.537 billion CNY in 2020 (Table 7), and the overall ESV biology has
shown a downward trend, which is very consistent with the results of Sui et al. and Sun
et al. [43,69]. Ecosystem changes and a decline in biomass adjustment coefficients and
socioeconomic adjustment coefficients played important roles in the decline in ESV in
Hainan Province.

As the dominant category of Hainan Province, forest ecosystem had the highest
contribution rate to ESV, accounting for 78%. Forest’s ESV was higher due to not only its
larger area but also its higher ESV per unit area. It was the most important ecosystem
category in Hainan Province, which is very consistent with the results of Deng et al. [70].
Rivers and wetlands had the highest ESV per unit area, which is very consistent with
the results of Xie et al., Hasan et al., etc. [6,20,42,56,67,71]. However, their contribution
rates to ESV were low, because the river and wetland areas of Hainan Province are small.
Therefore, policies such as increasing river and wetland areas, returning farmland to
wetland, and returning farmland to forest are important means to improve ESV [72]. The
ESV of construction land had a negative value, and the rapid expansion of construction land
in the past 20 years has provided increasingly negative values. Wuzhishan, Qiongzhong,
Baisha and other places had relatively large areas of forest and wetlands, and the area of
construction land was relatively small, so the unit ESV in these areas was relatively high
(Figure 8). Many studies regard construction land as worthless in terms of research [49,73].
Some studies have also shown that construction land can provide some ecosystem services,
such as culture and entertainment [53]. However, the ecological harm it brings will exceed
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the ecological benefits [52], which will cause the ecological environment to be destroyed, so
we agree that construction land provides a negative value.

The first-level category of ecosystem services (Figure 6) showed that regulation ser-
vices were the most important function, with the ESV accounting for up to 68%, followed
by support services, with the ESV accounting for approximately 23% and cultural ser-
vices accounting for the least, at approximately 4%, which is highly similar to many
studies [58]. The secondary classification showed that climate regulation, hydrological
regulation, soil conservation and biodiversity were the main ecological service functions of
Hainan Province. Among them, water supply provided a negative value. The reason was
that the high level of water consumption of construction land and farmland exceeded the
water supply service of the ecosystem. Although Hainan Province is located on the equator
and has plenty of rainfall, there is a significant engineering water shortage due to the large
slope of the province area and the difficulty of storing freshwater resources [74]. Therefore,
the problem of water shortages in Hainan urgently needs to be addressed.

4.4. EEC Status and Changes

Studies have shown that Hainan’s GDP grew rapidly, increasing by 550.557 billion
CNY. Its ESV dropped by 33.305 billion CNY, and the growth rate of ESV was lower than
that of GDP from 2000 to 2020 [29]. The EEC declined from 0.42 to 0.36 and degraded
from the basic coordinated state to the mid-maladjusted state. This result shows that the
economic development of Hainan Province and the protection of its ecosystem were not well
coordinated, and it was necessary to rationally allocate land resources and the development
of the ecological economy. The change trends of EEC and ESV were consistent. The reason
was that GDP per capita was in a state of rapid development, but the decline in ESV caused
the EEC to show a negative growth trend. The economic development of Hainan Province
was unevenly distributed on the province. The GDP per capita of the eastern, western
and central parts of Hainan Province showed a stepwise downward trend (Figure 9). The
distribution of the ESV was also uneven (Figure 7). The ESV was higher in the central region
and lower in the east and west. These caused the uneven distribution of the EEC in Hainan
Province. As Hainan Province led the country in ecological quality and its environment was
relatively good, the ecological economy was a prominent shortcoming in the construction of
Hainan’s ecological civilization [75]. Therefore, the conclusion of this study is different from
the literature, which believes that the low degree of economic environment coordination
is due to the better regional economic development and the poorer environment [29,30].
As a key ecological protection area, Hainan was subject to multiple protections at the
national and provincial levels [76]. We thought that the reason for the low degree of EEC
in the central region of Hainan Province was that its environmental condition was good
but the economic level was too low, and the economic level could not keep up with the
environmental conditions. The reason for the higher degree of EEC in the eastern and
western regions of Hainan was that these regions had higher economic levels, which could
be coordinated with good environmental conditions. Therefore, the improvement of EEC
in Hainan Province requires not only the rational allocation of land resources and the
protection of forest, wetlands, and other ecosystems but also the vigorous development
of ecological economy, considering the organic integration of economic construction and
the various ecological elements of mountains, water, farmland, forest, lakes and grasses.
Hainan should develop a characteristic ecological economy while protecting the ecology so
that the economy and the environment can develop in harmony.

4.5. Drivers of ESV and EEC

Studies have shown that LUI was the most important factor affecting ESV. The LUI
in Geodetector contributed the most to the ESV, with a value of 0.712 (Table 14). LUI
was related to human activities and was the highest for construction land and farmland,
which is highly similar to Xu et al. [48]. There was a significant negative correlation
between LUI and ESV, which indicated that the expansion of construction land was an
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important factor in the reduction of ESV. These results are highly consistent with previous
studies [43,47,56–58,67]. The ESV had a significant positive correlation with the DEM,
which was affected by the distribution characteristics of Hainan’s landforms. The high-
altitude mountainous areas in the central part were mainly distributed in forest, wetlands,
and other ecosystems with low LUI, so the ESV in these areas was high. The low-altitude
coastal plains were mainly distributed in ecosystems with high LUI, such as farmland and
construction land, so the ESV of these areas was low. The selected social and economic
factors, such as cultivated land area and total real estate investment, had a low contribution
rate to ESV. They were mostly negatively correlated with ESV. This result shows that social
and economic development, such as urban expansion, population growth, and real estate
development, will cause a certain degree of deterioration in ESV, which is very consistent
with the results of Zhang et al., Lei et al., etc. [43,45,77]. Therefore, we need to control the
intensity of land use and rationally allocate land resources to strengthen sustainable land
use to improve Hainan’s ESV.

The driving factor that had the greatest impact on EEC was the total real estate
investment, with a value of 0.679 (Table 14). In addition, socioeconomic factors such as
cultivated land area and number of tourists all had a greater impact on EEC, with values
above 0.55. All socioeconomic factors and EEC were positively correlated, while natural
factors such as the DEM were negatively correlated with low contribution rates. This result
shows that Hainan Province’s EEC was better in areas where people’s living standards
were higher due to the better overall environmental quality. The areas with the best EEC in
Hainan were the places with the best development of ecotourism. Therefore, to improve
the EEC of Hainan Province, it is necessary to vigorously develop ecotourism and other
characteristic economic industries to maintain the rapid growth of people’s income while
not damaging the environment.

4.6. Policy Suggestion

To improve the EEC of Hainan Province, the ESV status has also been steadily im-
proved. Therefore, the relationship between development and protection should be han-
dled well in the process of regional land development and utilization. We recommend
that the government draft and implement strict and effective policies to control the ero-
sion of land from construction land to natural ecosystems. In addition, the government
should rationally plan the spatial distribution of urban space, agricultural space and eco-
logical space [78]. For example, the government should: (1) strengthen the planning of
green space systems to increase the value of urban ecosystem services; (2) build multiple
green space ecosystems, including parks, nurseries, and shelterbelts, and build artificial
lakes, wetlands, forest parks, suburban water conservation forests, forests around the city,
and large areas of lawn to reduce the impact of urban expansion on ecosystem services;
(3) strictly implement the overall spatial planning of “multiple regulations in one” and
the red line management of marine and land ecological protection in Hainan Province
and implement the land management policy based on maps; and (4) pay attention to the
protection and restoration of high-ESV areas such as wetlands, river and forest; maintain
and strengthen the continuity and integrity of the entire province ecosystem; and guide
land use to develop in the direction of ESV preservation or appreciation.

In addition, Hainan Province must adhere to the principle of “ecology first, green
development” to achieve the coordinated development of its economic environment [71].
Hainan Province must speed up the adjustment of its economic structure, promote in-
dustrial transformation and upgrading, guide the rationalization of the spatial layout
of industrial functions, and promote green and high-quality development. First, local
governments must adhere to the equal emphasis on environmental protection and eco-
nomic growth and regard strengthening ecological protection as an important means to
adjust economic structure, transform economic growth patterns, and seek development
in environmental protection [79]. Second, they must change their agricultural produc-
tion method from a single water-intensive agricultural planting method to a diversified
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modern agricultural model that consumes less water, such as ecological agriculture and
sightseeing agriculture, to dramatically curb the large-scale consumption of agricultural
water. The government should vigorously promote a reduction in the use of fertilizers and
pesticides, continuously strengthen the utilization of agricultural waste resources and the
improvement and utilization of arable land, and actively build an agricultural brand of
ecological recycling. Third, the ecological economy must be vigorously developed. We
must firmly grasp the huge advantages of Hainan Province’s high ecological quality and
the construction of a free trade province. It is necessary to lead comprehensive efforts
in resources, environment, ecology, growth quality, production methods, lifestyles, and
social development to focus on the transformation of social development, production
methods and lifestyles, in order to achieve coordinated economic and environmental de-
velopment. The government should give full play to the unique advantages of vacation
tourism; make full use of ethnic villages, ancient towns, historic sites, natural landscapes
and other resources; and adjust production, living and ecological space in a reasonable
way according to its own natural landscape, regional characteristics, cultural traditions,
ethnic characteristics and industrial planning. We will promote the organic integration of
urban and rural construction with investment attraction, industrial development, tourism
and vacation, health and medical care, cultural cultivation and ecological protection; turn
Hainan’s tourism industry into the most competitive industry with the greatest potential;
and build a green ecological urban and rural area that is livable and suitable for working,
traveling and nourishing. Fourth, the government must promote the construction of an
ecological civilization, strengthen education on ecological civilization, raise awareness of
ecological protection and cultivate a low-carbon and green lifestyle for the whole people.

5. Conclusions

This paper used NDVI and NPP data to improve the biomass adjustment factor, and
used the ability to pay, willingness to pay, and resource scarcity to construct the socio-
economic adjustment factor based on the benefit transfer method and LUCC data of Hainan
Province. We measured the temporal and spatial characteristics of Hainan’s dynamic
ESV from 2000 to 2020. This article proposed a new coupling model of economic and
environmental conditions. We used unit ESV as an environmental factor and GDP per
capita as an economic factor. Then, we used the coupling analysis method to measure the
EEC of Hainan Province. Finally, a detailed analysis of the driving force factors of the ESV
and EEC was carried out. A powerful exploration of the assessment of the coordination of
ESV and economic and environmental development in regional areas has been realized.

The results show that Hainan Province has the largest forest area and the least bare
land area. The area of forests, farmland and grassland continued to decrease from 2000
to 2020. These ecosystems had positive values of ESV. Forests provided the highest ESV
(above 77%), and rivers had the highest unit ESV (above 200,000 CNY/ha). Construction
land was increasing rapidly, but it had a negative ESV value. Moreover, the advantages
of Hainan Province’s NPP and NDVI relative to the national average of NPP and NDVI
continued to decline, and the economic development speed of Hainan Province slowed
down relative to the economic development speed of the whole country. All these factors
led to a decline in the ESV of the ecosystem, reduced to 33.305 billion CNY. The overall EEC
of Hainan Province dropped by 0.06, and the state of EEC dropped from basic coordination
to a moderately unbalanced state due to the good environmental quality and the slowdown
in economic growth. In terms of driving force analysis, the LUI was the most important
factor affecting ESV, with a value of 0.712. Socioeconomic factors and human activities were
negatively correlated with ESV. The total real estate investment was the most important
factor affecting the EEC, with a value of 0.679. Socioeconomic factors and human activities
had a significant positive correlation with the EEC. The spatial distributions of GDP per
capita and EEC were opposite to the spatial distribution of ESV. This result shows that eco-
nomic growth will reduce ESV, but the reason for the EEC in Hainan Province was that the
ecological economy was low and the ecological quality was high. Therefore, we must pay
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more attention to the coordination of economic development and ecological protection to
seek green development in future land use planning and social and economic development.

There are still some shortcomings in this study, such as the spatial resolution of LUCC
data and NPP data, the amount of GDP data not being very high, and the accuracy of ESV
not being evaluated, etc. Therefore, in future research, we consider using high-resolution
remote sensing data such as Sentinel satellites to interpret land use types; using the CASA
model or downscaling models to obtain higher-resolution NPP data; adding soil con-
servation inverted by the RUSLE model data and precipitation data to improve spatial
heterogeneity adjustment factors; further obtaining township-level GDP data; exploring
the appropriate method to evaluate the accuracy of ESV results; using the Invest model to
calculate ESV, and using this ESV to calculate the township-scale economic and environ-
mental coordination; and exploring more effective methods to put forward more scientific
and reasonable suggestions for the coordinated development of the economic environment.
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Abstract: Heritage corridors are methods to effectively protect and utilize linear cultural heritage
based on the concept of regional conservation. The construction of a heritage corridor system is
extremely important to preserve the natural environment of the heritage corridor area as well as
the history and culture alongside. The majority of the research on the construction of heritage
corridors heretofore focused on the generation of corridors, whereas studies on the classification of
corridors are relatively limited, without a complete system for the construction of heritage corridors.
Therefore, this paper aimed to (1) establish a comprehensive system for the construction of heritage
corridors, (2) provide new ideas for the construction of heritage corridors, and (3) guide the scientific
development of heritage corridors combining conservation and tourism. In the first place, the
minimum cumulative resistance (MCR) model was applied to analyze the spatial structure of the
study area and explore site selection of the heritage corridors; secondly, spatial syntax was used to
measure the heritage corridors and determine the level of the heritage corridors; last but not least,
the kernel density analysis was used to classify the types of heritage corridors. The present study
shows that the heritage corridor system is built in a scientific approach, covering all aspects including
construction, protection, and development.

Keywords: heritage corridors; system construction; minimum cumulative resistance (MCR) model;
spatial syntax; the Shu Road

1. Introduction

Since the mid-19th century, the conservation of historical and cultural heritage has
gradually become a focused problem around the world. The concern of heritage conser-
vation has shifted from individual heritage to historical sites, with expanded range and
incisive content [1]. In this context, the concept of heritage corridors was proposed. Her-
itage corridors originated in the United States in the 1980s, developed from the concept of
the greenway [2]. Heritage corridors are linear cultural landscapes with special collections
of cultural resources, and the conservation objects can be natural river valleys, canals, roads,
and railway lines, or linear corridors of historical significance that connect individual her-
itage sites [3–5]. Until 2023, the United States had seven officially named heritage corridors
and one named heritage canal within the 55 designated National Heritage Areas. Other
typical heritage corridors include the Rideau Canal in Canada, the route of Santiago de
Compostela in Spain, the Midi Canal in France, and the Kumano Kodo Trail in Japan, to
name a few. Heritage corridors are of comprehensive conservation measure that promote
the simultaneous and balanced development of nature, the economy, history, and culture.
Therefore, the construction of heritage corridors is not only a meaningful way to realize the
harmonious development of heritage conservation, tourism economic development, and
ecological sustainability [6,7], but also a vigorous improvement for the cultural status and
reputation of tourist places [8].

The construction of heritage corridors primarily includes generation, grading, and
classification. (1) Various methods of corridor generation have been applied at home and

Remote Sens. 2023, 15, 4650. https://doi.org/10.3390/rs15194650 https://www.mdpi.com/journal/remotesensing
209



Remote Sens. 2023, 15, 4650

abroad such as the qualitative analysis method [9–11], analytic hierarchy process [12,13],
and minimum cumulative resistance (MCR) model [14–16] As the most prominent method
to construct heritage corridors, the MCR model calculates the cost of a species’ movement
from the source to the destination, and primarily focuses on horizontal ecological processes.
It was first applied to establish ecological security patterns for biodiversity conserva-
tion [17,18]. As the minimum cumulative resistance (MCR) model is being employed by a
growing number of researchers, the method has been gradually applied for urban land use
analysis [19,20], ecological pattern analysis [21], and corridor suitability analysis [22–24].
The model can calculate the least costly path based on the spatial unit resistance index,
which takes full consideration of the geographical and behavioral characteristics with
advanced operability and feasibility [25]. (2) In terms of the grading of heritage corridors,
literature analysis [26] and connectivity indices [27–29] are usually used to assist with the
analysis. The literature analysis method is mainly based on the researcher’s analysis of
a large amount of literature to obtain the grading results, of which the quality may be
compromised by the skill of the associated researchers; the connectivity index is a measure
of the corridor connectivity but lacks the visualization of the corridor characteristics. The
concept of spatial syntax, officially introduced by Hillier et al. in 1984, is employed for
the research of space as an independent element to outline the relationship among archi-
tectural, social, and cognitive domains and space [30]. The primary application field of
spatial syntax includes spatial morphology [31,32], urban planning and design [33,34], and
architectural design [35,36], while further development of the spatial syntax theory and
method enables the spatial analysis of street and road networks [37,38]. In the road analysis,
corridors can be characterized from multiple perspectives such as connectivity, choice, and
integration. The results can be visualized in ArcGIS, which overcomes the drawbacks of
the aforementioned and is more accurate and objective. (3) Most studies are deficient in
the consideration of heritage corridor classification. Classification is a core component
of heritage corridor studies regarding refined conservation, development themes, and
the functional positioning of heritage corridors. Kernel density analysis is extensively
applied in spatial clustering analysis, which can intuitively obtain the aggregation and
dispersion characteristics of point data to describe the distribution characteristics [39]. By
using kernel density analysis, the degree of clustering and dispersion for different types of
heritage sites can be visualized, which provides scientific guidance for the classification of
heritage corridors.

This paper introduces spatial syntax and kernel density analysis based on the least
cumulative resistance model to conduct a hierarchical classification study of heritage
corridors with the aim of providing new ideas for the construction of heritage corridors and
scientific guidance for the protection and tourism development of heritage corridors. The
objectives of this study are as follows: (1) determining resistance factors based on natural
conditions and social environment, applying the minimum cumulative resistance (MCR)
model for suitability analysis, and generating heritage corridors; (2) using the spatial syntax
to measure heritage corridors and determine heritage corridors levels; (3) classifying the
heritage corridor types with the assistance of kernel density analysis.

2. Materials and Methods

2.1. Study Area

The Shu Road is a major transportation route that stretched for more than 2000 years
from the Warring States Period to the era of the Republic of China, with long historical
standing and usage, a complicated terrain environment, and great historical and social
influence. The Shu Road is a symbol of the ancient road system in terms of transportation,
military activities, cultural communications, economics, and politics. In 2009, Sichuan
Province launched the nomination of the Shu Road to the World Heritage List. In 2013, the
Shu Road (Guangyuan section of the Jinniu Road) was honored on the Preparatory List of
World Cultural Heritage in China. In November 2015, it was inscribed on the UNESCO
World Heritage Center’s Tentative List of World Heritage Sites and has been included
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in the scope of nominated sites for declaration of World Natural and Cultural Heritage.
Exploring the generation and classification of the Shu Road heritage corridors is a key
step for the nomination of the Shu Road to the World Heritage List and the economic and
social development of the region. The study area included Chaotian, Lizho, Zhaohua, Jiang,
Zitong, and Langzhong, which are located at the edge of the Sichuan Basin. The terrain
transitions from mountains to gentle hills from the north to the south, with numerous
remains along the road (as shown in Figure 1). Four types of heritage, namely road remains,
plants, buildings, and ancient ruins, have been formed in different historical periods and
various environments (as shown in Table 1).

 

Figure 1. Study area. (a) Location of the study area in Sichuan Province. (b) Overview of the
study area.

Table 1. Heritage resources and resource dating of the Shu Road.

Types Historic Sites

Road remains

Qingfeng Gorge, Mingyue Gorge1, Mingyue Gorge (Pre Qin Dynasty); Datan Section1, Datan
Section2, Jiange Section (The Spring and Autumn Period and the Warring States Period); SantanGou,
Longdongbei1, Longdongbei2, Jie Cypress Crossing, Temple of Qiqu mountain Section, Xiaoshikou
Section, Houzi Station Section, Songlintang Section1, Songlintang Section2, Mulintang Section,
Xiangjiatang Section1, Xiangjiatang Section2 (data deficiencies)

Plants
Huang Cypress, Jiange Cypress, King of Cypress (Qin Dynasty); Hanzhuan Cypress, Adou Cypress,
Zhuangyuan Cypress, Tangchang Cypress, Huaitai Cypress, Guest-Greeting Pine, Fuqi Cypress,
Zhuxiang Cypress, Jin Cypress (Three Kingdoms)

Buildings

Qiaogouli Bridge, Xiaohe Bridge, Shidonggou Beacon Tower, Shiban Street, Wuhou Bridge, Guangji
Bridge (data deficiencies); Jiameng Pass (Qin and Han Dynasties); Xiaojian City Ruins, Jianhua
Beacon Tower (Han Dynasty); Yingpan Ruins, Wugong Bridge (Three Kingdoms); Temple of Qiqu
Mountain (Jin Dynasty); Jueyuan Temple, Huaguang Tower, Huangze Temple (Tang Dynasty);
Kuzhu Village Ruins (Song Dynasty); Tianxiong Pass, Chaotian Pass (Yuan Dynasty); Xinmin
Station Bridge, Jianzhou Confucius Temple, Shitaya Bridge, Jianmen Pass, Well of Eight Diagrams,
South Gate and Arrow Tower, Bell Tower and Drum Tower, Ancient City Wall, Zhangheng Ancestral
Temple, Dazhao Station (Ming Dynasty); Shuanglong Bridge, Tieshuanzi Bridge, Guafu Bridge,
Songning Bridge, Jianxi Bridge, Qingliang Bridge, Shuigouwan Bridge, Zhahua Ancient Town Gate,
Longmen Academy, Yihetang, Yixin Garden, Zhaohua Kaopeng, Jia Courtyard, Gu Courtyard,
Zhang Courtyard, Jianshan Academy, Erxian Ancestral temple, Langzhong Confucius Temple, Baba
Temple, Examination Hall, Guanyin Temple, Mosque, Jianzhou White Tower (Qing Dynasty);
Zhaohua Yue Tower (the Republic of China)

Ancient ruins

Choubi Stage, Chaoshou Station, Shangting Station, Yanwu Station, Horse blocking wall,
Ganchangya, Xin Station, Qipan Pass, Tangfangwan, Zhuyazi, Jiaxiandian, Houzi Station, Guaner
Station, Zhaohua Pavilion Ruins, Wulian Stage, Tandu Pass, Baiyang Plank path, Horsepond (data
deficiencies); Baiyanba Western Zhou City Ruins (Shang Dynasty); Shangxin Station, Gaomiao
Station (Qin and Han Dynasties); Baosanniang Tomb, Jiangwei Tomb, Feiyi Tomb, Jiangewei (Three
Kingdoms); Qianfo Ya (Thousand Buddha Cliff) (Wei Dynasty); Guanyin Rock, Heming Mountain
Taoism Stone Carving, Baiwei Mountain, Wangyun Stage (Tang Dynasty); Liangshan Station,
Shangxin Station, Chuiquan Station (Song Dynasty); Jiaochangba Ancient Architectural Complex,
Songxian Pavilion, Jianzhou Pavilion Ruins, Jingu Stage (Qing Dynasty)
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2.2. Data Sources

The research data mainly included: (1) information on the ruins of the Shu Road,
obtained from the archival records of the preliminary declaration of the Shu Road World
Cultural Heritage List and the Sichuan Provincial Culture and Tourism Resources Cloud,
which identified a total of 124 heritage resources of various types along the Shu Road; (2) a
DEM with a spatial resolution of 30 m, attained from the geospatial data cloud platform
of the Chinese Academy of Sciences (https://www.gscloud.cn/home, accessed on 26
November 2022); (3) land use classification data in 2022 with a spatial resolution of 10 m,
obtained from Google Earth Engine; (4) data on administrative divisions, rivers, roads, etc.,
obtained from the National Catalogue Service for Geographic Information (webmap.cn,
accessed on 14 December 2022); (5) POI data on restaurants, hotels, scenic spots, etc.,
obtained from Baidu Maps, containing a total of 4252 POI of public service facilities within
the study area.

2.3. Data Processing

In the selection of heritage sites, this paper first collected literature related to the Shu
Road, pre-determination of the heritage site, and then the former ancient road area of
research, in order to complete the further screening work. DEM data were used for the
elevation and slope analysis in ArcGIS.

In terms of land use types, these were based on the Google Earth Engine cloud platform
combined with Sentinel-2 data to construct a classification feature set. We used the random
forest algorithm to classify the land use types in 2022 into building land, grassland, forest
land, cultivated land, and bare land by combining the spectral, textural, and topographic
features and evaluating the accuracy of the classification results. To evaluate the results of
the classification, a confusion matrix of land use types in the study area was calculated in
conjunction with the validation sample (as shown in Table 2). The classification of forested
and other land was good, with high producer accuracy. The categorization of construction
land and cultivated land was effective, with a small number of cases of the misclassification
of construction land as cultivated land and some misclassification between cultivated land
and forest land. The poor classification of grass and bare ground and the low accuracy
of the producers were due to the relative scarcity of grass and bare ground, while there
was confusion between grass and forested land, and it was more difficult to distinguish
between bare ground and built-up land. There was an overall accuracy of 85.83% with a
kappa coefficient of 82.70%.

Table 2. Confusion matrix for the classification of land use types.

Land Use Type

Number of Pixels
Producer’s
Accuracy/%Grassland

Forest
Land

Cultivated
Land

Construction
Land

Bare Land
Other
Land

Total

Grassland 7 2 3 0 0 0 12 70.00
Forest land 1 30 0 0 0 0 31 93.75

Cultivated land 1 0 22 3 1 0 27 81.48
Construction land 0 0 0 22 3 0 25 78.57

Bare land 1 0 1 3 14 0 19 77.78
Other land 0 0 1 0 0 26 27 100

Total 10 32 27 28 18 26 140
Producer’s
accuracy/% 58.33 96.77 81.48 88.00 73.68 96.30

The data on administrative divisions, rivers and roads as well as restaurants, hotels,
and scenic areas were downloaded and then manually screened to eliminate duplicates
and irrelevant data. The data were imported into ArcGIS and then analyzed for Euclidean
distance for its river road data and kernel density for the POI data (as shown in Figure 2).
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Figure 2. Processing of data. (a) Elevation analysis of the study area. (b) Slope analysis of the study
area. (c) Analysis of land use types in the study area. (d) Euclidean distance analysis of rivers in the
study area. (e) Euclidean distance analysis of roads in the study area. (f) Kernel density analysis of
POI in the study area.

2.4. Research Methods

In this paper, the construction of heritage corridors was mainly carried out in three
steps: first, the evaluation index system was established, and the least cumulative resistance
model was used to generate heritage corridors; second, the spatial syntax analysis was
applied, and the connectivity, choice, and integration were selected for the grading of
heritage corridors; lastly, heritage corridors were classified by combining with the kernel
density analysis method. The research framework of this paper is shown in Figure 3.
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Figure 3. Research framework.

2.4.1. Heritage Corridor Generation

The generation of heritage corridors is mainly based on the establishment of a suitabil-
ity evaluation index system and the use of the minimum cumulative resistance model to
simulate the generation of potential heritage corridors.

In this paper, on the basis of reference to existing studies and considering the actual
situation of the Shu Road, 12 types of resistance factors constituting a comprehensive
resistance surface were determined from three aspects including the natural environment,
traffic network, and public services, and the reasons for selecting the above resistance
factors are shown in Table 3.

Table 3. Indicator system for evaluating the suitability of heritage corridors.

Resistance Factor Resistance Factor Selection Basis Access Time

Elevation and Slope

Elevation and slope are the basic geomorphological indicators,
and the mountains and valleys are the natural skeleton of the
heritage corridor. At the same time, the undulating changes of
the land surface make the construction of the heritage corridor,
the linking of the heritage resource sites, and the accessibility of
the corridor more difficult. In the study area, the topography
varies greatly, so the elevation and slope have an important
influence on the suitability of the construction of
heritage corridors.

Calculated from a digital
elevation model (DEM) with a
spatial resolution of 30 m.

Land use type

The land use type in part affects the orientation and ease of
construction of heritage corridors. Areas that are more
accessible to human activities such as construction land are
more suitable for heritage corridors, while types of land such as
cultivated land, forested land, and bare land can be more
resistant to the construction of heritage corridors.

Land use data from 2022
Sentinel-2 imagery from the
Google Earth Engine (GEE)
platform with a product level
of L2A.
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Table 3. Cont.

Resistance Factor Resistance Factor Selection Basis Access Time

Rivers

The most important role of rivers in the construction of heritage
corridors is to serve as natural environmental elements linking
heritage resource sites, enhancing the excellent landscape value
of the heritage corridors, and improving the accessibility of the
heritage corridors. The study area has rivers such as the Jialing
River, and the ancient Shu Road built the Mingyue Gorge trestle
as well as the Orange Cypress Ferry and so on based on the
rivers during the construction period. Therefore, this paper
selected the distance from the river as an indicator factor to
measure whether the river system has a significant connecting
effect on the heritage corridor.

River data derived from the
National Geographic Information
Resources Catalog Service System
2021 1:1 million basic geographic
information data.

Railroads and Highways

Roads are an important part of the settlement, an important
skeleton connecting heritage resource sites and affecting the
distribution of heritage resource sites, while road traffic also
reflects the accessibility of heritage corridors. Thus, in this
paper, railroads, highways, and first, second, and third class
national roads were selected as indicators to reflect the
influence of road transportation networks on the construction of
heritage corridors.

Road data derived from the
National Geographic Information
Resources Catalog Service System
2021 1:1 million basic geographic
information data.

Dining spots, Hotels and
Scenic spots

The degree of infrastructure will affect the tourism value of the
heritage corridor and its attractiveness to tourists, so this paper
screened three indicators: restaurants, hotels, and scenic areas.
Dining spots and hotels provide convenience for tourists to
visit, eat, and stay in the area, and the number of scenic spots
reflects to some extent the level of tourism development in the
study area.

Dining spot, hotels scenic spot
data obtained from Baidu Maps
Platform in 2022.

In order to determine the resistance value of each resistance factor, this paper invited
experts in the fields of cultural heritage, tourism, geography, ecology, landscape architecture,
and other professional fields to score the weights of the resistance factors of the heritage
corridor based on the characteristics of the heritage of the Shu Road and the current situation
of the ecological environment, determine the weight of each resistance factor after repeated
discussion, and to finally construct a system of evaluation indices, as shown in Table 4.

Table 4. Heritage corridor resistance factors and their weights and relative resistance values.

Resistance Factor Weight
Resistance Value

1 2 3 4 5

Elevation/m 0.1 0~500 500~700 700~900 900~1200 >1200

Slope/◦ 0.15 <5 5~10 10~15 15~25 >25

Land use type 0.23 Construction land Grassland Forest land Cultivated land Bare land

Distance from the
river/km 0.15 0~0.5 0.5~1 1~2 2~3 >3

Distance from the
railroad/km 0.08 0~0.5 0.5~1 1~3 3~5 >5

Distance from the
highway/km 0.07 0~0.5 0.5~1 1~3 3~5 >5

Distance from the
primary road/km 0.05 0~0.5 0.5~1 1 ~3 3~5 >5

Distance from the
secondary road/km 0.03 0~0.5 0.5~1 1~3 3~5 >5

Distance from the
tertiary road/km 0.01 0~0.5 0.5~1 1~3 3~5 >5

Dining locations 0.05 >30 10~30 3~10 0.1~3 0~0.1

Hotels 0.05 >10 5~10 2~5 0.1~2 0~0.1

Scenic spots 0.03 >8 5~8 2~5 0.1~2 0~0.1
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Based on the determination of the suitability evaluation index system, this study
adopted the minimum cumulative resistance model for the generation of heritage corridors.
Minimum cumulative resistance modeling focuses on simulating the minimum work
undertaken or the minimum cumulative cost of passing from a “source” through various
types of landscapes with different resistance values. The model was first proposed by
the Dutch ecologist Knappen and has been mainly used for the study of species dispersal
processes [40]. Yu K et al. introduced the minimum cumulative resistance model into the
field of heritage corridors for the first time when discussing a new approach to heritage
corridor suitability analysis [41]. The minimum cumulative resistance model simulates the
resistance posed by different resistance factors to the process of heritage preservation and
recreational experience during the generation of heritage corridors, and heritage corridor
suitability is inversely proportional to the magnitude of resistance values. The formula is
as follows:

MCR =
∫

min

i=m
∑

j=n

(
Dij × Ri

)
(1)

where MCR is the minimum cumulative resistance value; Dij is the spatial distance of the
person experiencing from environmental element i to heritage source j; Ri is the resistance
value of environmental element i to the spatial movement process of the experience.

Using the minimum cumulative resistance model and ArcGIS spatial analysis method,
we constructed a single-factor resistance surface, weighted, and superimposed it to ob-
tain the comprehensive resistance distribution map, then used the cost distance tool in
ArcGIS10.7 to calculate and acquire the suitability evaluation of the Shu Road heritage
corridor, and divided the study area into five suitability zones: the high suitability zone,
middle-high suitability zone, middle suitability zone, middle-low suitability zone, and low
suitability zone by using the natural break-point method.

2.4.2. Heritage Corridor Grading

In order to better study heritage corridors, this paper graded heritage corridors, where
objective and logical grading is essential for heritage corridors. In this study, spatial syntax
analysis was used and connectivity, choice, and integration were selected to classify the
heritage corridors.

Space Syntax was proposed by Prof. Bill Hillier to take the spatial organization and
human social relations as the research object, and geometric topology as the theoretical
basis for analyzing the complex urban network relationship [42]. Connectivity refers to
the number of nodes in the space that directly connect to other nodes [43]. The higher
the connectivity of a node, the more influence it has on surrounding nodes. Choice is
the probability or frequency of the shortest path from a node to other nodes in a spatial
system [44]. Nodes with high choice are more important in the spatial network and are
more likely to be passed by the crowd. The formula is as follows:

ACH(x) =
∑n

i=1 ∑n
j=1 σ(i,x,j)

(n − 1)(n − 2) (i �= x �= j) (2)

where n indicates the total number of heritage points within the search radius, and ACH
indicates the degree of the angular selection of X.

Integration, which refers to the degree of aggregation and dispersion between a node
and other nodes in the space, also represents the associativity of the space [45] A region
with a high level of integration exhibits better convenience and accessibility. The formula is
as follows:

Integration = n ∗ n
∑n

i=1 dθ(x,i) (3)

where n indicates the total number of heritage points within the search radius, and dθ(x,i)
indicates the angular topological distance between space x and space i.
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Based on the above research, this paper categorized the generated heritage corridors
into five classes. The higher the grade of the heritage corridor, the greater its connectivity,
choice, and integration, and the more accessible, attractive the heritage corridor will be.

2.4.3. Heritage Corridor Classification

In order to analyze the heritage corridors more comprehensively, this study used
kernel density analysis to classify the types of heritage corridors. Kernel density analysis
was used to calculate the degree of aggregation of spatial elements throughout the study
area in order to visualize the degree of aggregation and the dispersion of the spatial
distribution of heritage sites. A greater kernel density value f (x) indicates a higher degree
of aggregation [46]. The formula is as follows:

f (x) = 1
nh

n
∑

i=1
k
(

x − xi
h

)
(4)

where kx − xih is the kernel density formula; h is the search range and h �= 0; n is the
number of heritage points in the search range; x − xi is the distance from the valuation
point x to the measurement point xi, and the density distribution has the highest value at
the center of each xi point, decreases continuously outward, and when the distance reaches
a certain threshold value h at the center, the density decreases to zero.

In this paper, we selected the appropriate analysis radius for the kernel density analysis
according to the four types of road remains, plants, structures, and ancient sites, in order
to characterize the degree of aggregation and dispersion of heritage resource sites in the
spatial distribution and classify heritage corridors into a total of eight types.

3. Results

3.1. Heritage Corridor Generation

Based on the established heritage corridor generation methodology described above,
the results of the potential heritage corridors generated are shown in Figure 4. The medium-
high suitability zone shows a distinct linear distribution characteristic, with a total corridor
length of 405.625 km, and the corridor is roughly southwest–northeast oriented, showing a
non-closed-ring radial shape.

 

Figure 4. Partition of the suitability of the heritage corridors.
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The northern corridors were mainly composed of three branches: the first from Zhahua
ancient city to the Daitan at the northern end of the corridors, which was roughly the same
direction as the Jialing River due to the undulating terrain; the second started from Mingyue
Gorge and passed through the remains of the road to reach Tandu Pass, connecting with
the northern Baoxie Road; the third showed an east–west direction, connecting Shuanglong
Bridge with the remains of the Xiaoshikou of the road. The central corridors were mainly
located in Jiange including the Jianmen Pass military system, the ancient city of Jiange, the
Daoist stone statues in Heming Mountain, and numerous bridges. There were two main
branches in the south, the first started from the Wulian stage and connected to the Temple
of Qiqu Mountain in the south, through which it could enter Deyang to Chengdu. The
second one connected Jiange with Langzhong, and this branch roughly followed the same
path as the Baixihao River.

3.2. Heritage Corridor Grading

As can be seen from Figure 5a, the degree of connectivity was generally low, and most
of the heritage resource sites showed a decentralized distribution, while the areas with a
higher degree of connectivity were mostly tourism scenic spots with a large number of
heritage resource sites that are concentrated and more maturely developed including the
Jianmen Pass, Langzhong Ancient City, Zhaohua Ancient City, and so on.

 

Figure 5. Level analysis of the heritage corridors. (a) Connectivity of the heritage corridors; (b) choice
of the heritage corridors; (c) integration of the heritage corridors; (d) level of the heritage corridors.

As can be seen from Figure 5b, choice showed an obvious core-edge decreasing
distribution pattern, with the highest-value area located in Jiange County and Zhaohua
District, where Jiange County and Zhaohua District have a significant advantage in terms
of the quantity and quality of the heritage sites, and the area contains the Cuiyun Corridor,
Jiange Ancient City, Jianmen Pass, and Zhaohua Ancient City, etc. The second-highest-value
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area is the corridor connecting Lizhou and Chaotian Districts, and the area is connected to
the Mingyue Gorge via Huangze Temple, Thousand Buddha Cliff, and Flying Immortal
Pass, etc.

As can be seen in Figure 5c, it can be seen that the corridor integration has formed a
more obvious spatial aggregation feature in the middle of the study area, and the integration
of the surrounding branches is lower.

As can be seen from Figure 5d, the overall distribution pattern of the heritage corridor
grade showed a decreasing pattern from the central high-value area to the surrounding
area. The first-level corridor consists of two sections, mainly concentrated in Jiange County,
the first section is from Jueyuan Temple to Jianmen Pass, and the second section is from
Jianmen Pass to Guanyin Rock, which together with the surrounding branch corridors
form a “high-level corridor aggregation area”. The second-level and third-level corridors
are mainly the corridors connecting Jiange and Langzhong as well as the corridors in the
northern part of Lizhou District and Chaotian District. The fourth and fifth level corridors
are mainly located in Zitong County and Chaotian District at the edge of the study area.

3.3. Heritage Corridor Classification

As can be seen in Figure 6, a high-density of road remains was located in Langzhong
and Chaotian, while the other areas had a lower nuclear density; the high-density areas of
plants were mainly located in Jiange and Zitong, with the Cuiyun Corridor as the main
representative; the high-density areas of buildings were found in Zhaohua Ancient City,
Jiange Ancient City, and Langzhong Ancient City; ancient ruins are scattered throughout
the study area, and there were high-density clusters in Zhaohua District.

 

Figure 6. Relationship between heritage kernel density and corridor grade. (a) Relationship between
the kernel density of buildings and corridor grade; (b) relationship between kernel density of ancient
ruins and corridor grade; (c) relationship between the kernel density of road remains and corridor
grade; (d) relationship between the kernel density of plants and corridor grade.
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3.4. Heritage Corridor Construction

As can be seen from Figure 7 and Table 5, a total of 15 segments of corridors were
divided by manual discrimination including two first-level corridors, two second-level cor-
ridors, three third-level corridors, four fourth-level corridors, and four fifth-level corridors.
On this basis, the 15 sections of the corridor were categorized into eight types: two sections
of three composite types, five sections of double composite types, and eight sections of the
single type. Corridors located in the central part of the study area are mostly composite
high-grade corridors, and the farther away from the center, the lower the grade of the
corridor, and mostly single-type corridors such as the first-grade corridors in Jiange County
and the first-grade corridors in Zhaohua District are three kinds of composite corridors,
and the single-type corridors are concentrated in the fourth- and fifth-grade corridors.

 

Figure 7. Classification of heritage corridors. Note: The corridor’s name corresponding to the
corridor’s serial number is shown in Table 4. The numbers with circles indicate the serial numbers of
the corridor.

Table 5. Grade and type characteristics of the porcelain heritage corridors.

No. Name of Corridors Level Type

1 Wulian Stage—Jiameng Pass 1 Plants—Buildings—Ruins

2 Gaomiao Station—Jie Cypress 1 Roads—Buildings—Ruins

3 Jueyuan Temple—Houzi Station 2 Roads—Ruins

4 Xiaohe Bridge—Songlintang Section 3 Roads—Buildings

5 Songlintang—Guanyin Temple 4 Roads—Buildings

6 Wugong Bridge—Temple of Qiqu Mountain 4 Plants—Ruins

7 Guanyin Rock—Jingu Stage 3 Ruins

8 Jingu Stage—Meiling Pass 4 Ruins

9 Meiling Pass—Shuanglong Bridge 5 Buildings

10 Baosanniang Tomb—Xiaoshikou 5 Roads

11 Guanyin Rock—Mingyue Gorge 2 Roads—Ruins

12 Mingyue Gorge—Qingfeng Gorge 3 Roads

13 Qingfeng Gorge—Datan 5 Roads

14 Qingfeng Gorge—Longdongbei 4 Roads

15 Qipan Pass—Baiyang Plank path 5 Ruins
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4. Discussion

4.1. Discussion on Research Methodology

The existing research approaches to heritage corridor construction have mostly focused
on the generation of heritage corridors, and few studies have focused on the grading and
classification of heritage corridors [47–49].

This study not only analyzed the generation of heritage corridors, but also focused on
the grading and classification of heritage corridors, discussed the construction of the her-
itage corridor system in depth, and proposed a more systematic and complete construction
system of heritage corridors. In the construction of an evaluation index system for heritage
corridor generation, existing studies have tended to focus on natural factors [50–52] such
as elevation, terrain undulation, slope, land use type, and other indicators, while human
factors such as road density, public services, and other human activities closely related
to the corridor also affect the structural characteristics of the corridor to a certain extent,
so this study not only considered the natural environment elements in the selection of
resistance factors, but also considered the socio-economic elements to make the evaluation
index system more objective. In terms of heritage corridor grading, this paper chose spatial
syntax for heritage corridor grading research, as the introduction of spatial syntax can
comprehensively analyze the characteristics of the heritage corridor, enabling the grading
characteristics of the corridor to achieve visualization, corridor grading protection and
development as well as the grading of the configuration of tourism facilities to provide a
scientific basis. In terms of heritage corridor classification, this study used kernel density
analysis to observe the spatial visualization pattern of elements of heritage sites to obtain
the spatial layout and degree of agglomeration and disaggregation of heritage sites in
the study area, which increases the scientific process of corridor classification and has a
certain value of reference for the conservation strategy, thematic planning, and thematic
area delineation of heritage corridors.

Although the results of the heritage corridor construction method obtained based on
the minimum cumulative resistance model and spatial syntax and kernel density analysis
are reliable, this study still inevitably had some shortcomings. First of all, there was
inconsistency in the accuracy between the data of the suitability evaluation index system
adopted in the study such as the higher accuracy of the index data obtained based on the
interpretation of high spatial resolution remote sensing data and the lower accuracy of
the index data obtained based on the National Geographic Information Resources Catalog
Service System, which to a certain extent affects the accuracy of the generation of heritage
corridors. Secondly, the factors affecting the construction of the Shu Road heritage corridor
are complex and variable, and some indicators are difficult to quantify and were therefore
not included in the evaluation index system and heritage corridor grading indicators.
For example, this study did not consider the impact of the degree of conservation and
development of heritage resource sites on the generation and hierarchical classification of
heritage corridors. In addition, the application for World Heritage listing of the Shu Road is
constantly advancing, and information on the number, location, and chronology of heritage
resource sites is being updated and supplemented, so we were not able to comprehensively
include heritage resource sites in our study.

The heritage corridor construction system established in this study is an effective
method for constructing large-scale cross-regional heritage corridors, so it is applicable to
the construction of large-scale cross-regional heritage corridors. Second, this methodology
is applicable to other small- and medium-sized heritage corridors. However, it should
be noted that the natural environment and socio-economic conditions specific to differ-
ent regions should be fully taken into account when constructing the resistance surface
evaluation index system.

4.2. Strategies for the Protection and Development of the Shu Road Heritage Corridor

The generation of heritage corridors as well as hierarchical classification studies
provide a scientific basis for the protection and development of the Shu Road heritage
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corridors. The generation of heritage corridors connects heritage resource sites and heritage
areas, forming a multi-scale heritage protection and development structure of “heritage
resource sites–heritage corridors–heritage areas”. The hierarchical classification study of
heritage corridors explored the refined spatial structure of heritage corridors with multiple
levels and types, and delicately portrays the spatial hierarchy and functionality of corridors,
which is of reference value for the protection of heritage corridors, the planning of tourism
across the whole region, the organization of tourism routes, and the utilization of heritage
as a whole. Based on the above research results as a reference, combined with the current
situation of the protection and development of the Shu Road, this study proposes the
following protection and development strategies:

The Level 1 corridor is divided into two sections, with the Wulian Station–Jianmen
Pass section located in Jiange County. This section, as the area with the highest grade and
the richest type of heritage resource points, has advantages in terms of protection and
development, with maturely developed scenic spots such as Jianmen Pass, Jiange Ancient
City, and Cuiyun Corridor in the area, which includes plants, buildings, ruins, and other
types of heritage resource points. In terms of protection, as there are a large number of
national and provincial cultural protection units in the region, in the core area of the heritage
resource sites following the principle of “protection-oriented”, the protection of cultural
relics, display, and archaeological works have been carried out to ensure that the heritage
resource sites are protected in a comprehensive and static manner. In terms of development,
this section has the national 5A level tourist attraction Jianmen Pass Scenic Spot and the
national 4A level tourist attraction Cuiyun Corridor. Relying on the development of mature
scenic spots with the theme of heritage sightseeing, it creates a leisure and sightseeing resort
area integrating the experience of distinctive transportation, the experience of outdoor
extreme sports, and the experience of the ancient Shu Road and the Three Kingdoms culture.
The section of Gaomiao Station–Orange Cypress is located in Zhaohua District, and the area
is rich in heritage resources, with the ruins of the Zhaohua Ancient City and Stage as the
main ones. In terms of protection, Zhaohua Ancient City has a number of provincial-level
cultural relic protection units such as Longmen Academy, Yixinyuan, Yihetang, Zhaohua
Examination Sheds, and the Bell and Drum Tower Ancient Architecture Area, where these
heritage resource points, in accordance with relevant laws and regulations for protection,
constantly update the corresponding protection and development charter to improve the
construction of the protection system. In terms of development, this section of the heritage
corridor should be centered on the Zhaohua Ancient City, with the Shu Road culture as the
core and the Three Kingdoms culture as the supplement, in order to build up the theme
of cultural experience and leisure in the ancient town, and to combine Tianxiong Pass,
Dazhao Station, and other heritage resource points to create the Shu Road theme tourism
and leisure area.

The level 2 and 3 corridors are mainly double-composite corridors, connecting a larger
number of heritage resource sites and possessing higher conservation and development
values. The Jueyuan Temple–Houzi Station section mainly consists of the remains of
the road connecting Jiange and Langzhong and the ruins of the post store, of which
Jueyuan Temple is a national key cultural relic protection unit. This section of heritage
resource sites is mainly implemented in a single-point protection mode, based on the
existing corridor, which relies on the beautiful natural landscape of the village combined
with the surrounding villages and towns to develop tourism in the Shu Road original
township. The Guangyin Rock–Mingyue Gorge section has heritage resource sites such as
the Guanyin Rock Carvings, Huangze Temple, Thousand Buddha Cliff, and the Mingyue
Gorge. With the section of the Mingyue Gorge as the core, and the ancient palisades and
canyon landscape as the characteristics of the development of the Mingyue Gorge scenic
area while at the same time relying on the Thousand Buddha Cliff, Huangze Temple, and
other development of the Queen’s hometown regarding the humanities scenic area, this
section will be created for the Shu Road cultural enlightenment routes and recreational and
vacation routes.
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Level 4 and 5 corridors are mainly low-grade corridors of a single type. Under the
principle of “protection-oriented and rational utilization”, important heritage resource sites
on the corridors will be protected and repaired, and under the condition of satisfying the
protection of the heritage resource sites, the construction of tourism infrastructures will be
improved, and leisure and tourism projects related to their themes will be developed. Road-
based heritage corridors should be protected and repaired on the basis of their remaining
roads, setting up hiking, cycling, and other experiences, restoring the important post
stations and pavilions along the roads as well as the commercial and postal service system
of the Shu Road, and reproducing the prosperity of the ancient Shu Road. For corridors
that are dominated by ruins, the main strategy is to implement monolithic protection,
restore important ruins, thoroughly excavate the historical stories of the ruins, improve the
interpretation system of the ruins, avoid excessive development and utilization, and carry
out regular inspections and repairs.

5. Conclusions

This study mainly focused on the heritage corridor construction system for the Shu
Road with the support of ArcGIS and used the minimum cumulative resistance model,
spatial syntax, and kernel density analysis to construct the heritage corridor. Through the
whole study, we can obtain the following conclusions:

Heritage corridors show highly concentrated non-closed-loop radial distribution char-
acteristics; heritage corridors have multi-center features that show a core-edge attenuation
distribution pattern. Based on the natural discontinuity method, the corridor can be divided
into five levels, where the heritage corridor grade shows the center of the high, surrounded
by the low distribution characteristics. Heritage corridors can be divided into eight types;
the corridors located in the center of the study area are multi-complex high-grade corridors,
whereas farther away from the center of the corridors, the corridor grade is lower, and most
of them are mono-functional corridors. It can be seen that this paper used the minimum
cumulative resistance model to generate heritage corridors, adopted the spatial sentence
method to assess the corridor centrality characteristics for corridor classification, and com-
bined the kernel density analysis method to form the corridor classification scheme, which
together constitute a systematic and comprehensive heritage corridor construction system.
The study confirmed that the minimum cumulative resistance model, from a regional
perspective, combined with spatial syntax and kernel density analysis, provides a new re-
search idea for the conservation and sustainable development of this type of trans-regional
linear cultural heritage, and guides the conservation and development work related to
heritage corridors. In the next step of the study, we will supplement the information on the
quantity, location, and date of the heritage resource points according to the inscription of
the Shu Road, and at the same time, we will consider how to incorporate the information
on the protection status of the heritage resource points into the evaluation index system to
further improve the methodology of constructing the heritage corridor system proposed in
this paper.
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Abstract: The accurate identification and monitoring of invasive plants are of great significance
to sustainable ecological development. The invasive Pedicularis poses a severe threat to native
biodiversity, ecological security, socioeconomic development, and human health in the Bayinbuluke
Grassland, China. It is imperative and useful to obtain a precise distribution map of Pedicularis for
controlling its spread. This study used the positive and unlabeled learning (PUL) method to extract
Pedicularis from the Bayinbuluke Grassland based on multi-period Sentinel-2 and PlanetScope remote
sensing images. A change rate model for a single land cover type and a dynamic transfer matrix
were constructed under GIS to reflect the spatiotemporal distribution of Pedicularis. The results
reveal that (1) the PUL method accurately identifies Pedicularis in satellite images, achieving F1-scores
above 0.70 and up to 0.94 across all three datasets: PlanetScope data (seven features), Sentinel-2
data (seven features), and Sentinel-2 data (thirteen features). (2) When comparing the three datasets,
the number of features is more important than the spatial resolution in terms of use in the PUL
method of Pedicularis extraction. Nevertheless, when compared with PlanetScope data, Sentinel-2
data demonstrated a higher level of accuracy in predicting the distribution of Pedicularis. (3) During
the 2019–2021 growing season, the distribution area of Pedicularis decreased, and the distribution
was mainly concentrated in the northeast and southeast of Bayinbuluke Swan Lake. The acquired
spatiotemporal pattern of invasive Pedicularis could potentially be used to aid in controlling Pedicularis
spread or elimination, and the methods proposed in this study could be adopted by the government
as a low-cost strategy to identify priority areas in which to concentrate efforts to control and continue
monitoring Pedicularis invasion.

Keywords: Pedicularis; positive and unlabeled learning; dynamic variation; change detection;
PlanetScope

1. Introduction

The Bayinbuluke Grassland, which is the second largest grassland in China, boasts a
diverse array of grassland species and maintains a relatively intact ecosystem, providing a
favorable habitat for various animals [1]. In recent years, the invasion of Pedicularis has sig-
nificantly impacted animal husbandry and the ecological environment of the Bayinbuluke
Grassland. Pedicularis, with its gorgeous appearance, is a poisonous grass and a semi-
parasitic plant that has rapidly spread in alpine grasslands throughout western China [2].
The invasion of non-native grasses such as Pedicularis can cause a drastic alteration in
ecosystems, leading to significant socioeconomic costs [3]. Therefore, local authorities must
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urgently investigate the spatial and temporal patterns of Pedicularis invasion and develop
effective management strategies to control this toxic plant species.

Previous studies have reported that Pedicularis had affected an area of 2.33 × 104 hm2,
which expanded to 3.30 × 103 hm2, from 2000 to 2008 in the Bayinbuluke Grassland [4].
In 2018, Hejing County, Xinjiang Province, strived for CNY 7 million of funding for the
Pedicularis control project to manually eradicate 2093.33 hm2 of pastureland Pedicularis.
The local government invested a significant amount of financial and labor resources into
limiting the invasion of Pedicularis through physical, chemical, and biological means [5].
The traditional method of field surveying grassland species requires considerable human,
material, and financial resources, and fieldwork makes ensuring quality and efficiency
challenging [6,7]. Currently, remote sensing technology has significant advantages for
dynamically monitoring and analyzing vast grassland resources and their ecological envi-
ronments [8]. However, only one related study has been conducted on the identification of
Pedicularis in the Bayinbuluke Grassland using satellite images, and the applied method
did not perform well. Gao. S [9] studied the distribution of Pedicularis in 2016 using a
maximum likelihood algorithm based on GaoFen-1 WFV with a spatial resolution of 16 m;
they achieved a low precision of 80.91%, and a large number of samples were required
for labeling. Therefore, here, we demonstrate an innovative application of high-resolution
remote sensing imagery to discern the invasive species Pedicularis by employing the PUL
method. Furthermore, we conduct a comprehensive assessment aimed at precisely outlin-
ing the advantages and limitations associated with the utilization of various remote sensing
images for Pedicularis extraction.

Supervised classification algorithms, such as maximum likelihood, decision trees,
support vector machine (SVM), random forest, and deep neural networks, have been
widely used for land use and cover classification. Their performance has been validated
in previous studies [10–12]. However, these algorithms require labeling all land cover
types, which can be a tremendous drain on resources when only one specific land cover
type is of interest [13]. Therefore, there is a growing need to develop one-class classifiers
that can extract specific land cover types using only feature data of the target of interest.
Several one-class classifiers have been proposed, including one-class SVM, isolation forest,
and naive Bayes classifier [14–16]. In addition to labeled samples, unlabeled samples can
provide useful information for constructing classifiers. Positive and unlabeled learning
(PUL), a special one-class classification approach, has been increasingly improved upon and
has demonstrated improved land cover classification accuracy in recent years [17]. Previous
studies have mainly applied PUL and one-class classification to identify features such as
urban buildings, large land targets, and rivers [18–20]. A UAV-based study found that
the PUL approach was more appropriate for accurate Pedicularis extraction, suggesting its
potential as a promising approach for single-species extraction [21]. Owing to the sporadic
distribution pattern of Pedicularis, the reflectance characteristics of the pixel bands in remote
sensing images with lower resolutions showed reduced spectral purity, thereby posing
challenges to accurate identification endeavors. Compared with other measurements,
both PlanetScope and Sentinel-2, as multi-spectral instruments, exhibit superior spatial
resolution and better temporal revisit capabilities. This attribute renders them a judicious
choice for Pedicularis identification.

Remote sensing image change monitoring is a technique that quantitatively analyzes
and determines the process and characteristics of feature changes based on remote sensing
images of the same area over different periods [22]. It is widely used in disaster assessment,
urban development, and land use/cover [23]. Common methods for change monitoring
include the image difference method, the image ratio method, the principal component
transform method, the vegetation index method, and post-classification comparison [24].
To improve the temporal transfer of the algorithm, we selected unlabeled samples from
multiple periods. The change-detection-based sample transfer approach is efficient, simple,
and robust and has the potential to be used in large-scale ground cover classification [25–27].
This study takes advantage of PUL’s ability to conserve negative sample information, reduc-
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ing the statistical distribution differences between images of the target area by identifying
areas of invariance between multiple temporal images [28], and combining the change-
detection and post-classification approaches to solve the image classification problem of
the target area [29]. A post-classification comparison is the most direct method of change
monitoring. The advantage of this method is that it avoids the image sequence consistency
conditions required for the direct comparison method, as well as avoids image radiation
correction and matching problems. However, this method requires the development of
uniform classification criteria enforced via image classification [30,31]. This method is
extremely dependent on the accuracy of the classification algorithm, but this method per-
forms well when analyzing the variation in a single species [32]. Therefore, this research
uses a post-classification change detection approach for the analysis [33].

The aim of this study was to employ remote sensing techniques to obtain the temporal
and spatial distribution of Pedicularis in Swan Lake and the buffer zone of the Bayinbuluke
Grassland. Remote sensing data were collected in August for three consecutive years
(2019–2021) to facilitate a comparison of the changes over time. Geospatial information
holds valuable and significant data useful for the strategic planning of eradication efforts
targeting Pedicularis infestations. Our objectives are as follows:

(1) Assessing the accuracy of PUL on predictions of the poisonous species Pedicularis;
(2) Comparing the efficacy of Sentinel-2 and PlanetScope satellite imagery in the identifi-

cation of Pedicularis;
(3) Generating precise distribution maps of Pedicularis with time-series data for sub-

sequent spatiotemporal analysis to support the conservation of the Bayinbuluke
Grassland ecosystem through time-series remote sensing dynamic monitoring.

This paper is structured as follows. Section 2 describes the materials and methods,
including the dataset used for the study, the principles of the PUL method, and the scheme
for extending PUL for land cover classification and change detection. Section 3 presents the
experimental results, including a comparison of the two types of data sources. Section 4
discusses the issue of change detection and the obtained results. Finally, Section 5 draws
some conclusions.

2. Materials and Methods

All calculations and analyses of the research were performed in Python (v3.6.12) and
the geographic information system ArcGIS (v10.6, ESRI). The experiment was run on
Windows 10 on a machine with two 36-core Intel Xeon 3.10 GHz processors and 128 GB
RAM. The technology workflow of the study has been organized in the following sections
(Figure 1).

2.1. Study Area

The Bayinbuluke Grassland (42◦18′~43◦34′N, 82◦27′~86◦17′E), in the southern hinter-
land of the central part of Mountain Tianshan, is located in the northwest region of Hejing
county in Xinjiang Province [34]. Furthermore, it is the second largest grassland in China
and the most extensive subalpine, alpine meadow grassland in the desert region of China,
with a total area of 3523.94 km2 [35,36], and the main vegetation types are alpine grassland
and swampy alpine meadows [37]. The Bayinbuluke Grassland is part of the Kaidu River
basin, where water comes mainly from alpine snow melting and the recharge of natural
precipitation. Its altitude is 2400~4400 m; the average annual temperature is −4.7 ◦C, with
an extreme high of 28.3 ◦C and an extreme low of −48.1 ◦C; the annual precipitation is
216.8~361.8 mm; it experiences about 150~180 d of snow; and the annual dry grass period
is seven months. Due to the cold weather, the soil in this area is frozen and there are almost
no large trees. There are six main land use types in this grassland: high-cover pasture,
low-cover pasture, marshland, timberland, water, and wild land. The water areas include
rivers and lakes in the grassland and mountain snowfields [34]. The study area is shown in
Figure 2.
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Figure 1. The technology workflow of the study (Blue arrows refer to the components of Samples).

2.2. Data Sources
2.2.1. UAV RGB Imagery

Selecting samples through a visual interpretation of remote sensing images with a low
spatial resolution (relative to UAV images) presents a challenge due to the varying degrees
of sparsity in the distribution of Pedicularis across different regions. Therefore, this study
selected Pedicularis samples on satellite images via visual interpretation with the aid of
UAV RGB (380~760 nm) imagery, which was obtained using a SONY RX1RII. The UAV
data selected for the study area were taken on 7 August (f), 8 August (c), and 9 August
(d, e), 2019 (Figure 2). The UAV was a DJI M600 (DJI, Shenzhen, China), and the flight
information was planned in DJI GS Pro. The flight height of the UAV was 230 m, and the
forward and side overlaps were 80% and 70%, respectively. The spatial resolution of all
images acquired was 3 cm. The areas photographed by the UAV and where it was located
are shown in Figure 2.

2.2.2. Sentinel-2 Imagery

The Sentinel-2 L2-level product used in the study was a Sentinel-2 Multispectral In-
strument (MSI) from the European Space Agency (ESA). Sentinel-2 images cover 13 spectral
bands in the visible, near-infrared (NIR), and short-wave infrared (SWIR) wavelengths,
with four bands at 10 m, six bands at 20 m, and three bands at 60 m spatial resolution. The
characteristics of the bands are listed in Table 1. For Sentinel-2 data, four 10 m and six 20 m
bands can be used for land cover/land use (LCLU) mapping and change detection. The
Sentinel-2 L2-level product provides the surface reflectance of images [38]. Regarding the
matching of imaging data, imaging quality, and imaging time, through the Google Earth
Engine platform, this study screened remote sensing images from 1 August to 31 August
2019. In order to obtain a better surface reflectance product, the Sentinel-2 L2-level product
needs to be filtered and pre-processed. This experiment selected images with less than
10% cloudiness and filled the filtered images via temporal interpolation. Next, the filtered
images were mosaicked and clipped through the region of interest (ROI) and all bands
were resampled to 10 m. The sensor configuration of Sentinel-2 is as follows [39].
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Figure 2. Location of the study area. (a) The study area is located in Hejing County, Xinjiang
Province, China. (b) The Swan Lake (red boundary) and its buffer zone in the Bayinbuluke Grassland
(background: an RGB remote sensing image acquired from PlanetScope in August 2019). (c–f) Ortho-
mosaic image taken via an RGB UAV in August 2019 (the purple pixels are Pedicularis).

Table 1. Configuration information for the Sentinel-2 satellite.

Band Name
Sentinel-2A/Sentinel-2B
Central Wavelength (nm)

Resolution
(Meters)

Band 1—Coastal aerosol 443.9/442.2 60
Band 2—Blue 496.6/492.1 10

Band 3—Green 560.0/559.0 10
Band 4—Red 664.5/664.9 10

Band 5—Vegetation red edge 703.9/703.8 20
Band 6—Vegetation red edge 740.2/739.1 20
Band 7—Vegetation red edge 782.5/779.7 20

Band 8—NIR 835.1/832.9 10
Band 8A—Narrow NIR 864.8/864.0 20
Band 9—Water Vapor 945.0/943.2 60

Band 10—SWIR–Cirrus 1373.5/1376.9 60
Band 11—SWIR 1613.7/1610.4 20
Band 12—SWIR 2202.4/2185.7 20

The 60 m spatial resolution bands were not used in the experiment.

2.2.3. PlanetScope Imagery

The PlanetScope images with a 3 m spatial resolution were from the Planet Labs. It
had four reflectance bands—blue, green, red, and near-infrared—with near-daily global
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coverage. The PlanetScope images can be accessed for free by researchers through a research
and education license (https://developers.planet.com/ (accessed on 1 May 2022)). This
study used a Level-3B surface reflectance product, which was geometrically corrected,
radiometrically corrected, and atmospherically corrected. We also processed it with ENVI
(v5.3, ESRI) for mosaic, registration, and reflectance calculations (divided by 10,000). The
daily acquisition of PlanetScope data allowed us to select images with optimal imaging
quality for our analysis. For our experiment, we selected PlanetScope images from 7 August
and 12 August 2019. Similarly, for the year 2020, we selected images acquired on 5 August,
24 August, and 30 August. For the year 2021, we selected images acquired on 11 August,
18 August, and 23 August. The configuration information for the PlanetScope satellite is as
Table 2 [40].

Table 2. Configuration information for the PlanetScope satellite.

Band Name Spatial Resolution (m) Spectral Wavelength (nm)

Blue

3.0

464–517
Green 547–585
Red 650–682
NIR 846–888

2.3. Datasets and Data Analysis
2.3.1. Generation of Additional Features

Identifying Pedicularis on satellite images is a challenging operation. It is difficult to
identify Pedicularis accurately through object-oriented methods. Therefore, it is necessary to
use pixel-based classification to extract Pedicularis, and feature engineering is a particularly
useful method. Some work in the literature has indicated that spectral features and com-
bined vegetation indices are more essential than textural features and principal components
in target identification and classification [41,42].

In order to better extract Pedicularis from the land cover, we compared the spectral
characteristics of Pedicularis and familiar grasses. These spectral curves were obtained from
the results in a previous study [43]. The normalized difference vegetation index (NDVI),
the normalized ratio vegetation index (RVI), and the difference water index (NDWI) were
obtained using Equations (1)–(3), respectively. The NDVI is one of the most influential
parameters for characterizing changes in vegetation greenness, and it is often employed
in studies of land cover [44]. RVI is widely used to estimate and monitor the biomass of
green plants [45]. Pedicularis is a water-loving plant, often growing next to rivers [4,46].
Therefore, this experiment calculated the NDWI to extract Pedicularis [47]. Numerous
studies have verified that the three indices are efficient for land use/land cover and target
extraction [44,45,48–51].

NDVI =
ρnir − ρred
ρnir + ρred

, (1)

RVI =
ρnir
ρred

, (2)

NDWI =
ρgreen − ρnir

ρgreen + ρnir
. (3)

2.3.2. Construction of the Datasets

This study was based on UAV RGB images from the PlanetScope and Sentinel-2
satellites, with visual interpretation using ROIs plotted on the UAV RGB images to select
the Pedicularis samples. These data were obtained in August for each of the years 2019~2021,
and the details are presented in Section 2.2. Subsequently, we selected a sample of non-
Pedicularis species for 2019 to 2021, ensuring that the chosen locations exhibited a consistent
distribution of non-Pedicularis species in 2020 and 2021. Finally, the samples used as input
data for the construction of the model were of three types: PlanetScope data (7 features),
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Sentinel-2 data (7 features), and Sentinel-2 data (13 features). The sample information is
shown in Table 3. The location of the sample selection is shown in Figure 2b.

Table 3. Ground sample information for the study regions.

Training Samples (Pixels) Test Samples (Pixels)
Pedicularis Others Pedicularis Others

2019
Sentinel-2 data (7/13 features) 7690 7690 1923 5598
PlanetScope data (7 features) 62,063 62,063 15,515 455,615

2020
Sentinel-2 data (7/13 features) 1943 6477 486 1900
PlanetScope data (7 features) 15,568 51,893 15,515 15,434

2021
Sentinel-2 data (7/13 features) 2395 7983 599 1900
PlanetScope data (7 features) 19,520 65,066 4880 15,434

Others: unlabeled samples. Seven features: four 10 m bands and three vegetation indices. Thirteen features: four
10 m, six 20 m bands, and three vegetation indices.

The constructed models were applied to three different datasets for change detection
in multi-period remotely sensed images. The classification results were evaluated and
analyzed separately, and the samples were partitioned into training and test sets at an
8:2 ratio. To ensure balance within the training set, we performed downsampling such that
the proportion of positive class samples to unlabeled samples was 3:7 in 2020/2021. Since
the sample size in 2019 was sufficient, 1:1 was chosen for modelling to ensure the model’s
generalizability. The details of the selected samples are shown in Table 3.

2.4. Methodology
2.4.1. Classification Method

This study used the PUL method, which was demonstrated to be feasible for identify-
ing Pedicularis in another study [21]. This method is based on the bootstrap aggregation
(bagging) technique: the algorithm iteratively trains many binary classifiers to distinguish
known positive (P) examples from random subsamples of the unlabeled (U) dataset and to
average their predictions. PUL is a semi-supervised learning algorithm based on a positive
and unlabeled sample [52]. This study chose decision trees as the base classifiers and
described PUL’s classification results in detail. Similar to all machine learning approaches,
the PUL methodology encounters challenges in addressing the intricacies of spatiotemporal
migration within the recognition process. However, this algorithm is a few-shot learning
approach, which is well-suited for addressing the challenge of identifying Pedicularis in the
presence of limited samples, particularly within a vast spatial extent.

The steps are as follows: (1) determine a set of reliable negation (RN) examples, which
has a small number of positive samples, from U and transform the problem into a binary
classification problem; (2) train binary classifiers based on P and RN by iteratively applying
existing classification algorithms; and (3) iterate over the previous two steps, with the
number of bootstrap samples T also being a user-defined parameter. Finally, the probability
of each unlabeled sample being judged as a positive sample is calculated.

In the PUL classifier, positive and negative samples are selected from the training
dataset to train the model. In an example conducted in 2019, Sentinel-2 had 7690 positive
and 7690 negative samples. To improve the training efficiency of PUL, we trained ‘n’
decision trees to fit the training dataset. Firstly, we selected 10% of the positive class
samples as positive samples (y = 1); secondly, the remaining 90% of positive class samples
and all negative class samples were labeled as unlabeled samples (y = 0); then, the same
proportion of unlabeled samples was randomly selected as negative samples (y = −1) for
training; and, finally, ‘k’ iterations were performed in this manner. The probability of each
sample being positive was calculated to obtain the classification result of this classifier. The
parameter ‘k’ was adjusted from 100 to 2000 with a step size of 100. The ‘n’ ranged from
100 to 1000 with a step size of 100. PlanetScope datasets were modelled using the same
methodology and range of parameters.
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2.4.2. Accuracy Assessment

Using PUL, we obtained a confusion matrix and calculated the evaluation metrics on
the test dataset, including recall, precision, overall accuracy (OA), F1-score, and AUC (area
under the ROC curve), which can be calculated using the ROC curve (receiver operating
characteristic curve). These metrics were utilized to assess the model’s performance.
Precision represents predictions for a positive class in the truly labeled dataset and can
be obtained using Equation (4). Recall represents the evaluation of samples predicted to
be in the positive class and can be obtained using Equation (5). Overall accuracy (OA) is
the sum of the true positives plus true negatives divided by the total number of tested
individuals, as shown in Equation (7). F1-score is a metric that combines the strengths
of precision and recall, is well suited for evaluating models in situations where there is
an imbalance between categories, and can be calculated using Equation (8). AUC can be
viewed as the probability of randomly selecting a pair of positive and negative samples
from a sample, which is the area under the ROC curve drawn using the FPR and TPR
(Equations (5) and (6)). The AUC is less sensitive to class imbalance than OA and reflects
the model’s performance under sample imbalance more accurately [53].

precision =
TP

TP + FP
, (4)

TPR = recall =
TP

TP + FN
, (5)

FPR =
FP

TN + FP
. (6)

OA =
TP + TN

TP + TN + FP + FN
, (7)

F1− score =
2× precision× recall

precision + recall
(8)

TP, FP, FN, and TN are the classifications true positive, false positive, false negative,
and true negative, respectively.

2.4.3. Change Detection

This study took the distribution area and proportion, and the change rate of Pedicularis
from the classification results for 2019–2021 [54]. To further reflect the direction, amount,
and rate of Pedicularis change, this study generated a dynamic transfer matrix from the
change detection results in 2019–2021, which can reflect the flow of species change [55].
Based on these results, we analyzed the change in the dynamics of Pedicularis. The change
rate of the area of Pedicularis was calculated using Equation (8).

Ci =
Wbi −Wai

Wai
× 1

t
× 100% . (9)

where Ci is the change rate of Pedicularis during the study period; Wai and Wbi are the
distribution areas of Pedicularis at the beginning and end of the study period, respectively;
t is the study period, measured by year; and the calculation results indicate the annual
change rate of Pedicularis [56].

A transfer matrix model can depict a species’ evolutionary patterns, capturing both
species distribution changes and their migration directions. Using the classification out-
comes of the study area in 2019, 2020, and 2021, we derived the transfer areas for each stage
and constructed a transfer matrix.
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Sij =

⎡⎢⎣S11 · · · S1n
...

. . .
...

Sn1 · · · Snn

⎤⎥⎦ . (10)

where S is the species area; i and j are the species types at the beginning and end of the
study, respectively; and n is the number of species types.

3. Results

3.1. Comparison of Classification Accuracy on Sentinel-2 and PlanetScope

Three classifiers were developed for the positive and unlabeled learning (PUL) method
using three different types of datasets. Based on the results presented in Table 4, the highest
extraction accuracy for Pedicularis was observed when using Sentinel-2 data (13 features),
yielding an F1-score of 0.9405. On the other hand, the lowest classification accuracy
was obtained using PlanetScope data, resulting in an F1-score of 0.7049. Notably, the
classification accuracy for Pedicularis using Sentinel-2 data (7 features) was significantly
higher compared with that obtained using PlanetScope data and slightly lower than the
accuracy observed for Sentinel-2 data (13 features).

Table 4. Assessment metrics of models during the 2019–2021 period.

Year Datasets Types
Metrics

Recall Precision Accuracy F1-Score

2019

Sentinel-2 data (7 features)
Pedicularis 0.9212 0.9286

0.9617 0.9248Others 0.9757 0.9730

Sentinel-2 data (13 features)
Pedicularis 0.9278 0.9536

0.9700 0.9405Others 0.9845 0.9754

PlanetScope data (7 features) Pedicularis 0.8458 0.6042
0.8678 0.7049Others 0.8728 0.9610

2020

Sentinel-2 data (7 features)
Pedicularis 0.8861 0.7307

0.9169 0.8009Others 0.9241 0.9721

Sentinel-2 data (13 features)
Pedicularis 0.8710 0.9045

0.9583 0.8874Others 0.9786 0.9702

PlanetScope data (7 features) Pedicularis 0.8340 0.6132
0.8708 0.7067Others 0.8793 0.9584

2021

Sentinel-2 data (7 features)
Pedicularis 0.8971 0.8629

0.9454 0.8796Others 0.9591 0.9703

Sentinel-2 data (13 features)
Pedicularis 0.8864 0.9277

0.9593 0.9065Others 0.9802 0.9678

PlanetScope data (7 features) Pedicularis 0.8985 0.7399
0.9313 0.8115Others 0.9377 0.9791

Our findings indicate that the highest classification accuracy for Pedicularis was ob-
served in 2019. While recall and precision were generally comparable across most models,
recall was found to be higher than precision for the models built using PlanetScope data.
Moreover, our results demonstrate that the difference between accuracy and F1-score is
minimal when the model’s accuracy is high but becomes more pronounced when the
accuracy is low.

To evaluate the temporal transferability of the model, we tested the model developed
in 2019 on data from 2020 and 2021. As illustrated in Figure 3, the model’s performance
on this test was unsatisfactory, with the F1-scores for both years being less than 0.62.
Specifically, the F1-score for the PlanetScope dataset in 2020 was insufficient, with a value
of only 0.3300. Subsequently, upon training the model with the corresponding year’s
training set, a notable improvement in accuracy was observed. These results demonstrate
the potential of positive and unlabeled learning (PUL) for small-sample learning.
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Figure 3. Comparison of accuracy between the 2019 model and model built in the same year as the
test set.

As evidenced by the ROC and AUC curves depicted in Figure 4, changes in precision
and recall exhibit an inverse relationship while the AUC values remain stable. In order to
maximize the AUC, we could appropriately adjust the threshold to manipulate the precision
and recall, ultimately achieving a balance between the two for accurate classification of
Pedicularis. However, in scenarios with a large F1-score and accuracy gap, the AUC of the
model remains low compared with that of other models.

Figure 4. ROC and AUC curves for the models developed from 2019 to 2021.
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3.2. Changes in Dynamics of Pedicularis

The classification results obtained using Sentinel-2 data (13 features) were the most
accurate among all models. Accordingly, changes in the distribution area of Pedicularis
from 2019 to 2021 were monitored based on this classification result. The analysis revealed
that Pedicularis had the largest area, 195.7803 km2, in 2019, accounting for 5.55% of the total
region, while its size decreased to 3.54% in 2020.

Figure 5 illustrates the spatiotemporal distribution of Pedicularis from 2019 to 2021
using Sentinel-2 data (13 features). The results showed a gradual decrease in its distribution
in the northwest and an increase in the south over the past three years. Additionally, the
total distribution area of Pedicularis showed a decreasing and then increasing trend over
this period.

Figure 5. Spatiotemporal pattern of Pedicularis in 2019–2021 using Sentinel-2 data (13 feature).

The change in the distribution area of Pedicularis in the Bayinbuluke Grassland was
analyzed from 2019 to 2021. Comparing the changes in Pedicularis in 2019 and 2020,
it was observed that 173.89 km2 of the Pedicularis distribution area disappeared, while
103.0704 km2 was converted from distribution areas of other species to that of Pedicu-
laris, indicating an overall improvement. From 2020 to 2021, there was a decrease of
106.0108 km2 in Pedicularis, followed by an increase of 138.2587 km2. However, the total
amount of Pedicularis from 2019 to 2021 still decreased, with a decrease in distribution area
of 38.5740 km2.

4. Discussion

4.1. Influencing Factors of Classification Accuracy

We can identify Pedicularis clearly from the high-resolution drone images. However,
the low spatial resolution of the images and the interplay of spectral information from
different land covers produce mixed pixels. These phenomena result in the color and
geometric textural information of Pedicularis not being easily acquired on satellite images.
The PUL method used in this study can effectively improve the classification accuracy of
Pedicularis based on satellite imagery; relevant studies on UAV imagery can support this
method [21].

During the mosaicking of data, an uneven color balance across multiple images can
have an impact on the outcome of image classification [57]. Sentinel-2 only requires two
images to be sufficient to cover the study area; PlanetScope has a higher temporal resolution
and a smaller coverage area per image. It requires 41 images to cover the study area, making
the classifier more likely to learn some noise.

The accuracy of Pedicularis extraction was significantly enhanced by increasing the
number of features from 7 to 13 in the Sentinel-2 classification results. This finding aligns
with other pixel-based classification methods [58]. Moreover, the classification results of the
model constructed using Sentinel-2 data (13 features) provide a more realistic distribution
of Pedicularis.

Comparing the identification results of PlanetScope data (seven features) and Sentinel-
2 data (seven features), the identification result for the 10 m resolution is higher than that
for the 3 m resolution, which is unexpected. Our analysis shows that this is mainly caused
by the significant difference in spectral reflectance between the images due to PlanetScope
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requiring more images [59,60]. Additionally, the band characteristics of the pixels are
contingent on the complexity of the species within each pixel: the more intricate the object
within the pixel, the greater the divergence between its spectral features and the pure pixel
features, resulting in the reduced recognition accuracy of scattered patterns. Conversely,
during sample selection, we noticed that Pedicularis was easier to identify in Sentinel-2
images compared to PlanetScope images, based solely on color considerations.

It has been found that the spectral signature of the same object using the same sensor
may vary at different times, and this phenomenon also affects the classification results.
Consequently, identifying features resistant to temporal and spectral variations is crucial
for pixel-based classification methods, and can also help to improve the reliability of
monitoring changes after classification.

4.2. Spatiotemporal Pattern of Pedicularis

Figure 5, Tables 5 and 6 collectively elucidate the dynamic trajectory of the spatial
distribution of Pedicularis and characterize its temporal pattern, marked by an initial
decrease, followed by a subsequent increase from 2019 to 2021. While the distribution of
Pedicularis sharply decreased in the northwestern region between 2019 and 2020, other
regions showed no significant migration trend. Furthermore, in 2021, the distribution area
of Pedicularis in the southern region showed an increasing trend. As depicted in Figure 5,
the distribution of Pedicularis was predominantly along rivers, suggesting that Pedicularis is
a water-loving plant, which is consistent with local investigation findings [43]. Following a
comprehensive survey, it has been observed that the precipitation levels in the region have
exhibited a decline from 2019 to 2020. This observation explains the decrease also seen in
the distribution of Artemisia marcescens [61]. This case also contributes to the investigation
into the driving mechanisms underlying Pedicularis distribution. By utilizing GIS methods
to analyze the spatial distribution of Pedicularis, a further understanding of its invasion
routes and drivers can be attained.

Table 5. Statistics of distribution area of Pedicularis in different periods using Sentinel-2 data (13 features).

Year Area (km2) Area Ratio (%)

2019 195.7803 5.55%
2020 124.9584 3.54%
2021 157.2063 4.46%

Table 6. Transition matrix of land cover change for 2019~2021.

2019–2020 2020–2021 2019–2021
Pedicularis Others Pedicularis Others Pedicularis Others

Pedicularis 21.8880 173.8923 18.9476 106.0108 33.6437 162.1330
Others 103.0704 3225.0944 138.2587 3260.7280 123.5590 3204.6058

This article discusses the feasibility of a spatiotemporal analysis based on PlanetScope
and Sentinel-2 imagery. Both satellites have a high temporal resolution and meet the needs
of long-time-series monitoring. However, post-classification change monitoring can avoid
influencing the classification results due to different spatiotemporal and data sources. The
accuracy of the classification results dramatically affects the detection of changes in the
distribution of Pedicularis. It further shows that investigating a classifier or feature factor
that can resist spatial and temporal variation and developing a better transfer learning
method are essential.

4.3. A Case of Pedicularis Eradication

We learned that the government conducted a local campaign for the removal of
Pedicularis in July 2019. To verify the process of eliminating Pedicularis, we looked up
remote sensing images from PlanetScope, which has a high spatial resolution, for July 2019.
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These images correspond to the position in Figure 2f. As seen from Figure 6, Pedicularis
was physically removed by local people on 17 July, 23 July, and 29 July 2019. It is, therefore,
essential to identify the location of Pedicularis and its dynamics. This contributes to the
local government’s efforts to control the invasion of Pedicularis and to protect the ecological
environment [1,7].

Figure 6. Local variations in Pedicularis in PlanetScope images from July 2019 within the red box.
(a–c) refer to PlanetScope images taken on 17 July, 23 July, and 29 July 2019. (the purple pixels
are Pedicularis).

5. Conclusions

The main contribution of this work is the use of a new PUL method to extract Pedic-
ularis. This extracted Pedicularis distribution is subsequently employed for the dynamic
detection of Pedicularis and for conducting a spatiotemporal analysis of the prediction
results. With the use of the spatial distribution of Pedicularis from 2019 to 2021, we can
achieve real-time monitoring and the effective eradication of Pedicularis. In contrast to the
one-class classifier, which only uses positive-class samples, PUL makes full use of numer-
ous unlabeled samples to improve the accuracy of the classification results, contributing to
curbing the expansion of the distribution area of poisonous Pedicularis. The conclusions are
as follows:

(1) The proliferation of Pedicularis in the Bayinbuluke Grassland has resulted in signifi-
cant ecological damage, necessitating the substantial expenditure of resources and
efforts by the provincial government for rehabilitation efforts. In addressing this
issue, change-detection methods utilizing remote sensing technology offer a practi-
cal approach for informed management and mitigation. Sentinel-2 images have the
advantages of a large width, easily acquirable data, and high accuracy in extracting
Pedicularis. The resolution of PlanetScope is higher than that of Sentinel-2, which is
more advantageous when removing Pedicularis from small areas. The results of the
study show that the PUL method is able to achieve a high recognition accuracy across
different images.

(2) Within the confines of the same sensor platform, the influence of feature count on
improvements to the identification accuracy becomes obvious with an ample sample
size, as evidenced by an increasing feature count coinciding with increased recognition
accuracy. However, within an equivalent feature framework, the correlation between
resolution elevation and accuracy enhancement does not invariably hold, implying
that the resultant classification outcome is dependent on the inherent data quality
obtained using the sensor apparatus.

(3) The post-classification comparison algorithm avoids spectral differences in remote
sensing images, especially long-time-series images from different sensors. It enables
the rapid monitoring of regional variations in the distribution of different land types.
However, it is highly dependent on the stability of the model, and a transferred,
high-accuracy classification model needs to be further developed. The distribution of
Pedicularis is concentrated in the northwestern and southwestern parts of Bayinbuluke
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Swan Lake. From 2019 to 2021, the distribution area of Pedicularis exhibited a fluctuat-
ing trend, initially increasing and then subsequently decreasing, with the 2021 area
measuring 157.2063 km2. Despite better eradication efforts in the northeast region,
the distribution area of Pedicularis did not exhibit significant changes, indicating that
grassland managers may not have done enough to control the growth of Pedicularis.
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