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1. Introduction

A modern power system is a complex network of interconnected components, such as
generators, transmission lines, and distribution subsystems, that are designed to provide
electricity to consumers in an efficient and reliable manner. These systems make use of
advanced technologies and control systems to monitor and manage the flow of electricity,
including integrating renewable energy sources (RESs), implementing smart grid systems,
and using advanced forecasting and optimization techniques to ensure the stability and
security of the grid. The aim of modern power systems is to provide a sustainable and reli-
able source of electricity that meets the needs of the growing population, while minimizing
the environmental impact and reducing the costs.

A power system requires forecasts that predict the future electricity demand, the power
generation from RESs, and meteorological data that are important regarding consumer
demand and the level of generation from RESs. Accurate forecasting enables the effective
operation of power systems of all sizes, including microgrids. It is necessary for energy
mix optimization, energy storage management, hydro-thermal coordination, fuel reserve
planning, electricity import and export planning, and security assessments. It is also crucial
in competitive energy markets, as electricity prices are highly influenced by the demand
for electricity and energy mixes. Thus, accurate forecasting is financially beneficial for all
participants of the energy market.

The objective of optimization of power systems is to efficiently utilize available re-
sources to meet a target outcome, such as reducing costs, increasing efficiency, or improving
reliability. Optimization of power systems involves finding the optimal operating con-
ditions for a system given constraints such as equipment capacity, energy prices, and
system reliability requirements. This requires taking into account a wide range of factors,
including energy generation and demand forecasts, load profiles, and the availability of
energy storage and other resources. Typical optimization problems in power systems are
unit commitment and optimal power flow. Unit commitment is the process of scheduling
the available generating units to meet the expected load demand in the most economical
way. This involves determining which generators to operate, their power outputs, and
their start-up and shut-down schedules over a given time period. Optimal power flow is
the process of finding the optimal settings for the controllable devices in the power system,
such as generators, transformers, reactive power devices, and switches, to minimize the cost
of generating and transmitting electricity in the system while satisfying system constraints,
such as power balance, network stability limits, transmission limits, voltage limits, and
device operational limits.

This Special Issue explores the latest developments and advancements in the appli-
cation of artificial intelligence (AI) and machine learning (ML) for forecasting and opti-
mization in the field of power engineering. In recent years, AI and ML have been gaining
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significant traction and are becoming one of the most important fields in computing. These
methods have proven to be effective in solving forecasting and optimization problems in
power engineering.

For this Special Issue, we invited researchers to submit original papers and review ar-
ticles that showcase their latest research results in forecasting and optimization of electrical
power systems. Topics of interest include, but are not limited to:

• AI/ML/deep learning for forecasting electricity generation from RESs;
• AI/ML/deep learning for forecasting power demand for electrical power systems;
• Optimization of electrical power systems;
• Forecasting of meteorological data (wind speed and solar radiation) that is important

for forecasting electricity generation from RESs;
• Statistical analyses of data for forecasting models (including problems related to big,

missing, distorted, and uncertain data);
• Reliability of electrical power systems.

Overall, this Special Issue aims to bring together the latest research and advancements
in the application of AI and ML to forecasting and optimization in the field of power
engineering and provide a platform for the exchange of ideas and the presentation of
new findings.

2. Summary of the Contributions

There were 25 papers submitted to this Special Issue, and 18 papers were accepted.
Although each paper covers a different topic, we can identify four categories into which
the papers can be classified according to their main focus: electricity demand forecasting,
wind power forecasting, photovoltaic power forecasting, and optimization.

2.1. Electricity Demand Forecasting
2.1.1. Relevance of the Subject

Demand forecasting in power systems is the process of predicting the future electricity
demand of a given area or region. It is an important aspect of power system planning, as it
allows utility companies to estimate the amount of energy they will need to supply in the
future and to make informed decisions about how to meet that demand. Accurate demand
forecasting helps power system operators to avoid both shortages and excess generation,
which can be costly and impact the stability of the electrical grid. Forecasting electricity
demand can be challenging because it depends on a wide range of factors, including
weather patterns, economic trends, and consumer behavior.

In addition to its importance in day-to-day operations, demand forecasting is also
critical for mid-term and long-term planning in the power sector. Accurate forecasting
assists utility companies in making knowledgeable decisions about investments in new
infrastructure, such as power plants and transmission lines, and can aid in optimizing the
use of existing resources.

2.1.2. Main Forecasting Problems

There are different types of forecasting problems that can arise in electricity demand
forecasting, including:

• Very short-term forecasting, which refers to the prediction of electricity demand or
production for a time horizon from seconds to a few hours ahead.

• Short-term forecasting, which refers to predicting electricity demand in the immediate
future, usually up to several days ahead.

• Medium-term forecasting, which involves predicting electricity demand for a period
of a few weeks to a few months ahead.

• Long-term forecasting, which involves predicting electricity demand for a period
several years in advance.

2
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• Peak electricity demand forecasting, which is forecasting of the highest level of elec-
tricity consumption within a particular period, typically daily or yearly.

• Seasonal forecasting, which involves predicting the electricity demand for different
seasons of the year.

• Special event forecasting, which involves predicting the electricity demand for special
events, such as holidays, sports events, or festivals.

• Probabilistic forecasting, which is forecasting of not only a single predicted value, but
also a probability distribution or range of potential values with their associated proba-
bilities.

• Uncertainty forecasting, which involves predicting electricity demand in the pres-
ence of uncertainty, such as changes in weather patterns, economic conditions, or
energy policies.

Each type of forecasting problem requires different data, models, and techniques, and
may have different levels of accuracy and uncertainty.

Electricity demand forecasting can be a challenging task due to various factors that
can affect the consumption patterns of electricity users:

• Seasonality and trends. There can be significant seasonality and trends in electricity
demand, such as increased usage during hot summer months or the growth in the
electricity market over time.

• Volatility. Electricity demand can be volatile and subject to unexpected changes due to
weather events, economic conditions, or other unforeseen factors.

• Data quality. Electricity demand data may be incomplete or contain errors, which can
affect the accuracy of forecasting models.

• Non-linear relationships. There may be non-linear relationships between electricity
demand and various factors such as temperature, time of day, and day of the week.

• Uncertainty. The accuracy of forecasting models can be affected by uncertainty around
future events or conditions, such as changes in regulations or the introduction of
new technologies.

To address these challenges, advanced forecasting techniques such as ML, time series
analysis, and statistical modeling are often used to analyze historical data and identify
patterns and trends that can help predict future electricity demand. There are many methods
used for demand forecasting, including statistical models, AI and ML models, and hybrid
models that combine the two. These models use historical data, weather forecasts, economic
data, and other factors to make predictions about future electricity demand.

2.1.3. Overview of Article Content

The purpose of [1] is to predict the impact of electric vehicle developments on the
Polish power system from 2022 to 2027. The study conducted multi-stage and multi-variant
prognostic research by forecasting the number of electric vehicles using seven methods,
and then forecasting the annual power demand arising from the operation of these vehicles,
both with and without the impact of e-mobility growth, using six methods. The daily
profiles of typical days were forecasted with and without e-mobility growth using three
methods. To forecast the number of electric vehicles in Poland, a unique growth dynamics
model was developed. The researchers also applied an artificial neural network (ANN),
specifically the multilayer perceptron (MLP), in the extrapolation of non-linear functions
for forecasting the number of electric vehicles and annual power demand without the
impact of e-mobility growth. In another innovative proposal, they included two ANN
models (MLP and long short-term memory (LSTM)) in an ensemble model for simultaneous
extrapolation of 24 non-linear functions to forecast the daily profiles of typical days. The
study revealed that e-mobility development in Poland for the next six years (2022–2027)
may pose a challenge in terms of the additional demand for electricity. Electric vehicles’
largest percentage share of the demand for electricity was in the peak evening time, while
the smallest percentage share was during the night. Overall, this study provides important
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insights for policymakers, energy planners, and stakeholders who need to make informed
decisions on how to manage the expected increase in demand for electricity due to the
growth of e-mobility in Poland.

Paper [2] investigated the sources of uncertainty in short-term hourly electricity load
forecasting and proposed a clustering-based bootstrapping method to increase the accuracy
of multi-step ahead point forecasts. The proposed method, called SSA.KM.N, combines
singular spectrum analysis and K-means clustering-based generation of Gaussian normal
distribution to generate electricity load time series with lower variance and values around
the original data. The study compares SSA.KM.N and KM.N using two Malaysian, one
Polish, and one Indonesian electricity load time series using four benchmark models for
electricity load forecasting: SARIMA, NNAR, TBATS, and DSHW. The results showed
that the proposed method improves the accuracy of multi-step ahead forecast values,
especially for the SARIMA and NNAR models. The study also noted that the number of
bootstrapped series does not seem to affect the forecasting accuracy, and the model suitable
for the original series is not necessarily appropriate for all bootstrapped series. The authors
suggest combining several models and ensemble learning methods in future research.
Overall, the study proposed a novel method for improving the short-term hourly electricity
load forecasting accuracy by addressing uncertainty through bootstrap aggregation.

Paper [3] conducted a literature review of autoregressive methods applied to short-
term forecasting of power demand, aiming to improve the forecasting efficiency while
minimizing the financial costs and time taken. The review analyzed 47 articles and 264 fore-
casting models, focusing on autoregressive methods, but also including methods with
explanatory variables. The analysis included 25 power systems on four continents that
were published by 44 different research teams. The paper presents a new approach to
developing literature reviews, ranking the forecasting models based on the mean average
percentage error (MAPE), and also presenting a flowchart illustrating the process. The most
effective models using the autoregressive approach include fuzzy logic, ANNs, wavelet
ANNs, adaptive neuro-fuzzy inference systems, genetic algorithms, fuzzy regression, and
data envelope analyses. The results of the review constitute an excellent starting point for
further tests and pave the way for future research in this area. The paper also discusses the
state of research in short-term power demand forecasting, including methods of AI, data
mining, and big data.

ML ensemble models are the state-of-the-art in forecasting. Paper [4] explored the use
of random forest, an ensemble model, for short-term load forecasting, and investigated
various data representation and training modes. The study demonstrated that the proposed
approach using random forest outperforms both standard statistical models and more
sophisticated ML approaches in terms of accuracy for short-term load forecasting. The
random forest model is easy to learn and optimize, with a small number of tuning hyper-
parameters. It has the ability to handle multiple exogenous predictors of different types.
The study also shows that the performance of random forest depends significantly on data
preprocessing and proper organization of the training process. The proposed approach
extends pattern definition and introduces a global mode of training with additional predic-
tors representing calendar data. The proposed model is suitable for forecasting problems
with multiple seasonality, nonlinear trends, and varying variance in time series. In future
work, the author plans to extend random forest with random data projection and use it for
probabilistic forecasting.

A solution for predicting the monthly power demand using statistical methods such as
ARIMA, ETS, and Prophet is proposed in [5]. These methods utilize pattern representation
of seasonal cycles of the time series to unify the data, filter out a trend, and define longer
seasonal cycles. The input and output variables in the pattern space are characterized by
a less complex relationship, resulting in a simpler forecasting model. ARIMA and ETS
construct global models, while comparative minimum distance methods, such as k-NN,
construct local models individually for each query pattern. Outliers in the time series affect
the selection of ARIMA and ETS parameters, leading to suboptimal models, while they
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have a lesser impact on k-NN. Additionally, the statistical models generate forecasts one
step ahead, while k-NN predicts the vector representing the entire predicted sequence
in one step. A simulation study on monthly electricity load time series for 35 European
countries confirmed the high accuracy of the proposed models.

Paper [6] proposed a smart home occupancy prediction technique using environmental
variables such as CO2, noise, and relative temperature via an ML forecasting strategy. The
LSTM neural network was used to process time series prediction, and two metaheuristic
optimization algorithms (GA and PSO) were used to enhance the performance of the LSTM
algorithm. The proposed methods were evaluated using real-world datasets. The results
show that GA and PSO can adjust the LSTM model to perform significantly better than
benchmark models, including other ML approaches such as basic LSTM. The predicted
values were used to determine whether residents were present and control real electrical
consumption. The authors suggest a potential field for future research in thermal parameter
forecasting using recurrent neural networks for various places such as hospitals, hotels,
and public establishments.

2.2. Wind Power Forecasting
2.2.1. Relevance of the Subject

The forecasting of power generation in wind farms is a much explored research
topic. Five papers devoted to forecasting the energy generation of wind farms have been
published in this Special Issue.

Forecasting purposes vary by time horizon. The ability to precisely forecast power
generation in the short-term for wind farms (especially large wind farms) is very topi-
cal, since such generation is highly unstable and creates problems for distribution and
transmission system operators in appropriately preparing the power system for operation.
Forecasts of the energy generation of wind farms, especially for the next day, play an
important role in this process. They are also utilized in energy market transactions. Even a
small improvement in the quality of these generation forecasts translates into an improved
security of the system and savings for the economy. High quality forecasts of electrical
energy generation are also very important for owners of small wind turbines due to the
optimization of energy storage and optimization of the use of various energy carriers
(especially in microgrid systems). Medium-term forecasts of wind farm power generation
have other purposes: grid integration planning, determining the optimal use of backup
power sources, and balancing the supply and demand of electricity. The applications of
long-term forecasts of wind farm power generation are, e.g., maintenance scheduling, wind
farm design, electricity market restructuring, and optimization of operating costs.

2.2.2. Main Forecasting Problems

For short-term forecasts (more than a few hours), it is not possible to accurately forecast
electricity generation from wind farms without using wind speed forecasts. The accuracy
of power generation forecasts depends strongly on the quality of wind speed forecasts.
For extensive wind farms, an additional problem is the variety in atmospheric conditions
(essentially wind speed) in different parts of the farm. The terrain in the vicinity of the wind
farm (e.g., forests, hills, and lakes) is another factor that affects the amount of electricity
generation. The amount of electricity generated is therefore to some extent dependent on
the roughness of the terrain. On the macro scale, it is equally important to select a proper
forecasting point from which meteorological variables can be derived. The location of
numerical weather prediction (NWP) forecasting points has an impact on the quality of
generation forecasts; NWP forecasts at locations far away from the wind farm can generate
large forecasting errors.

The problem of the availability (amount of information) of data for the forecasting
model is also very important; the more information related to power generation available to
be used in the model, the more accurate the generation forecasts will be. Another problem is
the use in forecasting models of wind speeds that were forecasted at a much different height
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than the height of the wind turbines on the wind farm. The final important forecasting
problem is that the quality of forecasts decreases as the forecast horizon grows (it is difficult
to accurately forecast wind speed for a horizon greater than 6 h).

A fundamental problem for generating a forecast for a specific period of time, for
example, for a 1-h period or a 15-min period, is that the instantaneous wind speed forecasts
are unknown. Therefore, simplification of the model is necessary, which has an obvious
impact on the accuracy of wind farm generation forecasts.

2.2.3. Overview of Article Content

Paper [7] concerns ensemble methods using ML and deep learning for one-day-ahead
forecasts of electric energy production in two wind farms. It is worth noting that using
two wind farms for forecasting considerably increases the credibility of newly created
prediction methods and the conclusions made from them. The authors verified the accuracy
of forecasts executed by single methods, hybrid methods, and ensemble methods (for a total
of thirteen methods). However, the predictions made by the original ensemble forecasting
method, called “Ensemble Averaging without Extremes”, had the lowest normalized mean
absolute error (nMAE) among all tested methods. A new, original proposal, “Additional
Expert Correction”, reduced the errors of energy generation forecasts for both wind farms.
Using the original skill score (SS) metric proposed by the authors to compare the prediction
accuracy proved to be very useful. This metric allows incorporation of both the nMAE
and the normalized root mean square error (nRMSE) into the final quality assessment. The
results of comparative tests (different sets of inputs to the predictive models) demonstrated
that it is better to use NWP point forecasts for hourly lags (−3, −2, −1, 0, 1, 2, 3 (original
contribution)) as input data than lags of 0 and −1 that are typically used in such situations.
The authors demonstrated that it is better to use forecasts from two different NWP models
as input data than from one NWP model. The conclusions drawn from this extensive work
can be generalized, at least for Central Europe.

Paper [8] concerns offshore wind power short-term forecasting. ML models are
accurate methods of wind power prediction; however, their accuracy depends on the
selection of appropriate hyperparameters. The authors proposed a novel optimization
algorithm to tune the LSTM model for short-term wind power forecasting. The new Optuna
optimization framework was employed to optimize the hyperparameters of the LSTM
model, including the number of lag observations, the exposure frequency, the number of
nodes, the number of samples in an epoch, and the used difference order, to convert a
nonstationary dataset into a stationary dataset. This proposed method improved the wind
power prediction accuracy. The method’s effectiveness was validated using six distinct
datasets, with noted accuracy improvements observed in all cases.

Paper [9] concerns NN-based wind power forecasting models for neuromorphic
devices. The authors proposed the use of biologically inspired algorithms adapted to the
architecture of neuromorphic devices, such as spiking artificial NNs. They proposed a
short-term wind power forecasting model based on spiking artificial NNs adapted to the
computational abilities of Loihi (a neuromorphic device developed by Intel). One-step-
ahead wind power forecasts were executed using wind power generation data from Ireland.
The authors demonstrated that neuromorphic computing offers a new paradigm to create
energy efficient, low latency algorithms in contrast to the present state-of-the-art ML/DL
strategies, thus potentially reducing the computational cost of training and deploying
AI-based forecasting models.

Paper [10] presented a selective review on the recent advancements in long-, short-, and
ultra-short-term wind power predictions. A detailed review of recent research achievements
and performance and the possible future scope of research are presented. Each category
of forecasting methods is divided into four subclasses and a comparative analysis is
presented. This review paper also provides future recommendations and discussions
on recent development trends in forecasting methods. An analysis of papers showed that
hybrid methods are probably the best choice for all three prediction horizons.
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Paper [11] concerns an evaluation of the metrics for wind power forecasts. The “Intro-
duction” section provides a valuable and extensive description of the major factors that
affect the quality of wind power forecasts. In the “Performance of Forecasting Model”
section, a comprehensive inventory of error metrics is presented, which includes both
popular and occasionally used metrics, totaling 19 error metrics. This paper conducted
a comprehensive review (quantitative analysis) based on more than one hundred papers
concerning forecasts of energy generation from wind farms (offshore and onshore). More-
over, the paper includes an extensive statistical analysis of errors (qualitative analysis). In
the “Comprehensive Error Analysis” section, the quotients of the nRMSE and nMAE were
calculated and a new, unique error dispersion factor (EDF) metric was thus introduced (a
combination of two frequently used error metrics). This research presents a unique and
novel approach to studying errors in power generation forecasts for wind farms. The EDF
shows the average variability of the moduli of error, regardless of the magnitude of the
error. The decrease in the EDF with a rise in the forecasting horizon indicates that the
variability in the errors decreases with an increasing forecasting horizon. An analysis of
the errors and the EDF depending on the class of forecasting methods demonstrated that
the variability in the moduli of errors of the best methods (smallest forecasting errors) was
usually larger than for the “single method” class (much larger forecasting errors). The
moduli of errors in the “single method” class are much larger and much closer in value
than in the best (ensemble or hybrid) methods.

2.3. Photovoltaic Power Forecasting
2.3.1. Relevance of the Subject

Photovoltaic sources (PV) are perceived by the public as an opportunity for emission-
free electricity generation on various scales. Of course, sources of this type are intermittent
and often difficult to manage. Depending on the size of the power system and the size of
the connected PV system, there is a growing need for increasingly more precise forecasts of
energy production. Therefore, the topic of forecasting energy production from PV sources
is quite popular, leading to the next three papers in this Special Issue. As it was mentioned
above, PV system sizes may vary. For household use, they can be few hundred Watts, for
small microgrids, they may be dozens of kW, and for PV farms, they can reach dozens of
MW. Electricity produced from a PV source can be utilized in many ways in power systems
of different sizes and purposes. Depending on these factors, different prediction horizons
and prediction quantization may be chosen. The typical applications of PV forecasts are
summarized in the following:

• Control of microgrid elements (sources, receivers, and storage), especially important
and difficult in islanded operation mode;

• Energy market participation of PV source operators;
• Control and operation planning of conventional electricity sources (transmission

system operator level);
• Control and operation planning of power grids (distribution system operator level).

Control applications usually require ultra-short-term forecasts, with horizons from a
number of seconds up to few hours ahead and with quantization from seconds to dozens
of minutes. For planning applications, short-term forecasts are used. In this context,
short-term refers to horizons from a few hours up to one week. It is obvious that without
forecasts, most of the businesses and technical processes mentioned above are not plausible.
Furthermore, using PV energy forecasts results in substantial economical savings.

2.3.2. Main Forecasting Problems

Electricity production of photovoltaic sources depends strictly on meteorological
conditions. This makes these sources similar to wind sources. However, in the case of
photovoltaic sources, the geographic location of the source and the season of the year are
also important, as these factors affect the maximum insolation during the day. In order to
obtain forecasts of electricity production from PV sources of the highest possible quality,
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it is necessary to use weather forecasts and to take into account seasonal dependencies
in predictive models. Most solutions use NWP forecasts. They are indispensable in the
case of short-term forecasts and some (longer horizons) ultra-short-term forecasts. In the
case of the latter (for shorter horizons), different measurements are utilized to create so-
called “nowcasting” meteo forecasts. These measurements may include insolation, energy
production of neighboring PV sources, and also images of the sky taken with a camera.
Seasonal dependencies are in some way taken into account in NWP forecasts. For example,
insolation and temperature are given for the exact time and date. However, there can be
some factors, which can grow to considerable depending on the class of prediction models.
For physical models, the main problem is the exact determination of PV panel orientation
and inclination angle. Machine learning methods generally do not require such data. It
is more important to collect and prepare proper datasets for model learning and testing.
These datasets should reflect phenomena that can be described by the included parameters.
As an example, the influence of various types of precipitation on energy generation (e.g.,
snow and rain) should be modeled. Another problem is that the soiling of PV panels and
their periodic cleaning must be taken into account. Both the problems of precipitation and
soiling may influence the energy generation from a few tenths of a percent to several tens
of percent.

2.3.3. Overview of Article Content

Paper [12] concerns ultra-short-term forecasting of photovoltaic source power gen-
eration. In this case, the forecasting horizon was next step forecasting and the forecast
quantization was 5 min. The paper starts with a literature overview and a description of
photovoltaic system performance. The data gathered for the presented research are derived
from a 3.2 kW PV system. A very detailed statistical analysis of power generation data is
presented. On the basis of this analysis, sets of explanatory variables are proposed. There
are eight different sets with different numbers of inputs (explanatory variables), varying
from one up to fifteen. The authors proposed ten different forecasting models: single (naive,
LR, KNNR, MLP, SVR, and IT2FLS), ensemble, and hybrid. Almost every model was tested
for more than one set of explanatory variables, giving a total of almost 40 configurations.
All the results were evaluated using four quality criteria, i.e., RMSE, nMAPE, nAPEmax,
and MBE. The best results were obtained by the hybrid and MLP models when using sets of
explanatory variables with higher numbers of variables. The authors presented a detailed
analysis of the results.

Paper [13] concerns short-term forecasting with a 1 to 144 h horizon and hourly
quantization. The authors presented in detail the dataset used, which includes lagged
power production, global horizontal irradiance, NWP forecasts, and regional aggregated
solar power predictions. Then, a one-step-ahead model configuration was presented. The
authors proposed the use of separate models for (a) the 1st hour ahead, (b) the 2nd to
56th hour ahead, and (c) the 57th to 144th ahead. XGBoost (XGB) and CatBoost (CTB)
methods were used to build the prediction models. As evaluation criteria, the RMSE and
RMSE scores were selected. The RMSE skill score utilizes the complete history persistence
ensemble (CH-PeEn) as a benchmark method. Such a criterion can be used as a comparison
for the proposed model with simple forecasting based on historical data. The authors
also investigated the model’s performance with respect to the development of separate
models for each month, for 3 months, or for a universal model. The results of the tests were
presented and discussed in detail. The best results were obtained for separate models built
for each month of the year.

Paper [14] concerns day-ahead forecasting (24–47 h horizon) with hourly quantization
of PV and wind sources. The main idea of this article is the use of multi-task learning
(MTL) autoencoders. The authors determined whether MTL autoencoders can be utilized
to predict day ahead electricity generation for different sources in non single-task learning.
This led to other investigations, such as determining the quality of such predictions and
determining whether additional encoder fine-tuning will be necessary. To answer to these
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questions, the authors used the following datasets: PVOPEN, PVSYN, PVREAL, WIN-
DOPEN, WINDSYN, and WINDREAL. These datasets include over 600 renewable power
stations with additional NWP data. The authors tested different autoencoder architectures
varying the parameter number by three orders of magnitude. During experiments, the
RMSE and nRMSE were used as quality criteria. When considering a multi-task approach,
the authors reduced the trainable parameters by up to 203 times. The authors also concluded
that the amount of layers requiring fine-tuning depends on the architecture and the model.

2.4. Optimization
2.4.1. Relevance of the Subject

The competitiveness of the economy depends on the ability to save energy and the
ability to propose innovative solutions in optimization of power systems. Furthermore, in
electrical power engineering, optimization often uses the results of forecasting, creating a
synergistic effect. Solving an optimization problem requires several steps, usually prob-
lem description, criteria definition, mathematical model construction, objective function
definition, optimization method application, and testing. For many problems, these are
relatively time-consuming tasks because most of them do not have ready-made toolkits.
In this Special Issue, there are four papers concerning different aspects of optimization of
power systems.

2.4.2. Overview of Article Content

Paper [15] concerns the optimization of the configuration and operation of a hybrid
AC/DC low voltage microgrid. For optimization purposes, the CLONALG algorithm
was chosen. The CLONALG algorithm belongs to the family of artificial immune system
(AIS) computational intelligence methods. In the presented application, it was equipped
with a modified hypermutation operator. The author stated three different optimization
tasks: minimization of total active power losses, minimization of costs associated with
the operation of the hybrid AC/DC microgrid, and maximization of the level of power
generated by the RES. For each task, there is an appropriate mathematical definition of
the problem. The test hybrid microgrid consists of AC and DC networks coupled with
an electronic power converter. The microgrid supplied a single family housing estate and
connects PV, wind, and distributed generation sources. It also included energy storage.
The optimization results of the proposed version of the CLONAG algorithm are presented
in detail and compared to the evolutionary algorithm. The proposed algorithm achieved
better results in most cases.

Paper [16] concerns voltage control in MV networks with distributed generation.
Widespread incorporation of distributed generation (DG) (especially renewable) to medium
voltage (MV) and low voltage (LV) networks causes many operation problems. One of these
problems is the rise in voltage during high energy generation in DG and vice versa. This
results, for example, in limitations of PV source generation on sunny days. The main idea of
this article is to overcome the voltage problems by appropriately setting the transformer’s
on-load tap changers and using additional measures such as capacitor banks, reactive
power generation in the RES, and energy storage. As an optimization method, the authors
used the algorithm of the innovative gunner (AIG). This algorithm, as a computational
intelligence method, is generally similar to other methods, especially swarm methods.
One feature that distinguishes it from other swarm methods is its method of decision
vector modification. Usually, algorithms use additive formulae. However, the AIG uses
multiplicative modifications, which makes optimization more dynamic (especially at the
beginning). The authors presented the test network and AIG optimization results compared
to cuckoo search (CS) and moth-flame optimization (MFO) algorithms.

Paper [17] concerns the reliability of MV distribution networks with distributed gen-
eration and ICT infrastructure. Distribution power networks (both MV and LV) were
originally designed as hierarchical for unidirectional power flow from generating units
connected to higher voltage levels to receivers connected to lower voltage levels. Incor-
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poration of distributed generation (DG) and RESs has changed this operation model. To
obtain a better performance of the networks, their structures and operation model must
change. Obviously, information and communication technology should be a part of this
transition. This article presents a reliability analysis to answer the questions of what the
future network structure should be and what additional elements need to be incorporated
to obtain the optimal reliability. The authors used several indices (SAIFI, CAIFI, ASAI,
ASUI, and EENS) to answer to this question, analyzing five network structures.

Paper [18] concerns the optimization of industrial refrigeration system operation. The
authors decided to define this problem as a multi-objective problem with two conflicting
objectives: maximization of the effectiveness of the cooling towers and minimization of the
overall power requirements of the refrigeration system. The objectives are contradictory
because the efficiency of the system increases with the required system power. The struc-
ture of the test refrigeration system and objective functions were presented. To solve the
optimization problem, the authors proposed and described three different evolutionary
algorithms: the non-dominated sorting genetic algorithm (NSGAII), the micro-genetic
algorithm (Micro-GA), and the strength Pareto evolutionary algorithm (SPEA2). As deter-
mining the optimal solution (in the case of multi-objective optimization) is difficult, the
authors introduced a third criterion: the energy efficiency ratio. After many analyses of the
obtained results by using this third criterion, the authors proved that the best solution was
achieved using the SPEA2 algorithm.
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Abstract: The issue of optimization of the configuration and operating states in low voltage micro-
grids is important both from the point of view of the proper operation of the microgrid and its impact
on the medium voltage distribution network to which such microgrid is connected. Suboptimal mi-
crogrid configuration may cause problems in networks managed by distribution system operators, as
well as for electricity consumers and owners of microsources and energy storage systems connected
to the microgrid. Structures particularly sensitive to incorrect determination of the operating states
of individual devices are hybrid microgrids that combine an alternating current and direct current
networks with the use of a bidirectional power electronic converter. An analysis of available literature
shows that evolutionary and swarm optimization algorithms are the most frequently chosen for the
optimization of power systems. The research presented in this article concerns the assessment of the
possibilities of using artificial immune systems, operating on the basis of the CLONALG algorithm,
as tools enabling the effective optimization of low voltage hybrid microgrids. In his research, the
author developed a model of a hybrid low voltage microgrid, formulated three optimization tasks,
and implemented an algorithm for solving the formulated tasks based on an artificial immune
system using the CLONALG algorithm. The conducted research consisted of performing a 24 h
simulation of microgrid operation for each of the formulated optimization tasks (divided into 10
min independent optimization periods). A novelty in the conducted research was the modification
of the hypermutation operator, which is the key mechanism for the functioning of the CLONALG
algorithm. In order to verify the changes introduced in the CLONALG algorithm and to assess the
effectiveness of the artificial immune system in solving optimization tasks, optimization was also
carried out with the use of an evolutionary algorithm, commonly used in solving such tasks. Based
on the analysis of the obtained results of optimization calculations, it can be concluded that the
artificial immune system proposed in this article, operating on the basis of the CLONALG algorithm
with a modified hypermutation operator, in most of the analyzed cases obtained better results than
the evolutionary algorithm. In several cases, both algorithms obtained identical results, which also
proves that the CLONALG algorithm can be considered as an effective tool for optimizing modern
power structures, such as low voltage microgrids, including hybrid AC/DC microgrids.

Keywords: hybrid AC/DC microgrid; optimization of configuration and operating states;
CLONALG; modified hypermutation operator

1. Introduction

Over the last few years, the development of distributed, renewable energy sources
(RES) and growing interest in prosumer installations have been observed. The pres-
ence of a large number of generation sources and energy storage devices (ESDs) in low
voltage distribution networks promotes the creation of microgrids which are capable of
synchronous operation with the remaining part of the power system as well as autonomous
island operation.

Energies 2021, 14, 6351. https://doi.org/10.3390/en14196351 https://www.mdpi.com/journal/energies
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A significant part of the ESDs and microsources used in microgrids generate DC
voltage. Connecting them to the AC network requires the use of DC/AC electronic power
converters (EPCs). Some AC microsources, due to the high voltage frequency, require a
connection to the microgrid via AC/AC converters. The use of EPCs between microsource
or energy storage device and the AC network results in additional power losses and reduces
the efficiency of generation units. Increasing the efficiency of the devices included in the
microgrid is possible by connecting energy sources and storage devices generating DC
voltage to the DC network and units generating AC voltage to the AC network. Both types
of network can be connected with each other by means of a single, bidirectional AC/DC
converter, thus creating a low voltage hybrid microgrid.

The complexity of a low voltage microgrid, resulting from a large number of mi-
crosources, ESDs, EPCs, and controlled loads, requires the development of an appropriate
management system for their operation in order to achieve maximum efficiency of RES.
Proper selection of elements forming the microgrid, as well as subsequent determination
of the operating states of individual devices in such a way that the microgrid as a whole is
in the optimal configuration for the problem under consideration is not an easy task. The
complexity of the calculations is directly proportional to the number of devices installed.
The creation of an effective control system is possible by using appropriate optimization
algorithms, including those that use artificial intelligence methods. The division of op-
timization algorithms that can be used in problems related to microgrids is shown in
Figure 1.

Figure 1. Division of optimization algorithms.

Among the methods of artificial intelligence used in solving optimization tasks, the
most popular are evolutionary algorithms (EA) and particle swarm optimization (PSO). In
article [1], a memory-based genetic algorithm, which is a type of EA, was used to minimize
the power generation costs in the smart grid framework. The proposed method shares
optimal power generation in a microgrid through different types of microsources. The
authors of [2] use differential evolution algorithm (type of EA) for optimal single-objective
economic scheduling and bi-objective environmental-economic scheduling of community
microgrids. Another popular artificial intelligence method used to solve optimization tasks
is the PSO algorithm. In paper [3], PSO was used to find economically optimal solutions for
day-ahead scheduling strategy of a microgrid equipped with CHP microsources. Article [4]
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concerns the use of the PSO as a management system of microgrids composed of different
types of microsources and energy storage devices to minimize total operating costs of
the microgrid.

There are many other artificial intelligence methods that can be used for solving
different optimizations tasks, such as Artificial Neural Network, Fuzzy Logic or Artificial
Immune Systems (AIS) [5–7]. The main objective of the research presented in this paper is
to assess whether the AIS, operating on the basis of the CLONALG algorithm, can be used
as an effective tool for optimizing the configuration and operating states of low voltage
AC/DC hybrid microgrids.

1.1. Review of Knowledge in the Field of Hybrid AC/DC Microgrids

The article [8] presents an overview of microgrids cooperating with AC and DC power
grids. Advantages and disadvantages of both technologies were discussed in detail in
this publication. The differences in the manner of connecting microsources, ESDs, and
receivers to the networks were described, and schematic diagrams of EPCs, protection,
and monitoring systems were presented. The article also contains an overview of control
and optimization systems aimed at ensuring the quality of electricity and stability of the
microgrid. The publication was completed with an economic analysis and examples of
operating microgrids all over the world.

Hybrid AC/DC systems constitute a separate group of microgrids. An outline of
the structure of hybrid microgrid was presented in [9] and the first research works began
in 2010 [10]. The simplest hybrid microgrid is composed of AC and DC networks con-
nected to each other by means of a bidirectional AC/DC EPC [11–14]. In paper [15], the
planning process of a hybrid AC/DC microgrid with optimal placement of DC feeders
was described. The concept, control paradigm, and implementation of a bus-sectionalized
hybrid microgrid was presented in article [16].

Both AC and DC networks in a hybrid microgrid have the same types of microsources
and ESDs. The coexistence of AC and DC networks allows for greater efficiency of installed
devices than in case of solutions using only one type of voltage. The DC network of the
hybrid microgrid is a natural place for connecting photovoltaic panels [17,18], fuel cells [19],
wind turbine generation sets equipped with DC generators [19], battery energy storage
systems [20], and supercapacitors. The ability to integrate AC and DC networks within a
hybrid microgrid can also contribute to the development of V2G technology [21–23].

Creating a hybrid microgrid concept allows combining the advantages of DC and AC
networks, as well as eliminating some of the disadvantages of these network. The main
advantages of using hybrid microgrids are described in [24] and include:

• reduction of energy conversion levels in EPCs and associated power losses,
• increasing the efficiency of RES,
• increasing the level of reliability of energy supply,
• increasing flexibility in regulatory services,
• limiting the impact of higher current and voltage harmonics,
• the ability to simplify the design of some electricity consumers by not having to use a

built-in EPCs.

In terms of the method of connecting the hybrid microgrid to the external distribution
network, coupled and separated topologies can be distinguished. In coupled topologies,
the distribution network and the AC network of the hybrid microgrid are connected directly
to each other using an MV/LV transformer. The DC network is connected using a two-way
AC/DC converter. This converter can be connected to both low voltage and medium
voltage sides of the transformer. In the case of separated topologies, the microgrid DC
network is connected to the distribution grid through an AC/DC converter. Depending
on the design, this converter can be connected directly to the medium voltage network or
using a step-down transformer. In both of these cases, the AC low voltage network does
not have a direct connection to the distribution grid. A detailed description of coupled and
separated topologies is provided in [25].
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As with other types of microgrids, popularization of hybrid microgrids requires the
development of appropriate solutions for protection systems, taking into account the
specificity of AC and DC networks. Detailed methods for solving problems related to the
protection of hybrid microgrids are presented in publications [26–28].

In the field of architecture of hybrid microgrid control systems, the same centralized
and distributed control solutions are used as in the case of AC and DC microgrids. It should
be noted that the hybrid microgrid control system must provide the ability to control the
operating states of the AC/DC converter connecting the networks of both types of voltage
in order to properly manage energy exchange between them. An example of a hybrid
microgrid centralized control system has been described in [29]. Article [30] presents a
coordination control strategy for a hybrid microgrid in standalone mode.

1.2. Objective and Contribution

The main objective of this paper is the assessment of the effectiveness of the AIS in
solving tasks related to the optimization of the configuration and operating states of a
hybrid AC/DC low voltage microgrid. Below are the contributions of this paper:

• modification of hypermutation operator used in the CLONALG algorithm,
• development of an optimization algorithm of operating states of hybrid AC/DC low

voltage microgrid,
• comparison of the obtained results using classic and modified CLONALG algorithms

as well as evolutionary algorithms.

The remainder of this paper is organized as follows: Section 2.1 presents the formu-
lated optimization tasks. The mathematical models of this tasks are presented in Section 2.2.
Section 3 describes the proposed microgrid optimization algorithm. The case study, includ-
ing description of the test hybrid AC/DC low voltage microgrid, results of optimization
calculations, as well as comparison of the calculation results obtained using the CLONALG
algorithm and the evolutionary algorithm and discussion about these results are presented
in Section 4. The summary and main conclusions are included in Section 5. The paper ends
with a list of references.

2. Optimization Problem Formulation

In order to ensure proper operation of the hybrid AC/DC microgrid as a coherent
system, it is necessary to implement appropriate strategies for controlling the operation
of individual components of this system. The strategy of centralized two-stage control
is considered in this article. Each of the microsources, ESDs, EPCs, and controlled loads
should be equipped with a local controller. The task of local controllers is to collect
information about the status of individual devices and send them to a central controller,
which carries out the process of optimal control of the microgrid. Local controllers also
receive signals from the central controller and force the appropriate behavior of the devices
they control. The adopted control strategy allows the hybrid microgrid to operate in a
synchronous mode with an external distribution grid, or autonomously in island mode.
In both of these cases, determining the operating states is necessary to meet the given
optimization criteria. The central controller must also distinguish between a number of
factors affecting the possible operating states of microgrid components, such as power
demand values and generation capacities of RES during the optimization period, acceptable
regulatory ranges of individual devices in microgrid, instantaneous energy storage state
of charge (SOC) levels, technical data of microgrid components, and mode of microgrid
cooperation with an external distribution grid.

2.1. Optimization Tasks

In this paper, three single-criteria optimization tasks are formulated:

• task 1—minimization of total active power losses,
• task 2—minimization of costs associated with the operation of the hybrid AC/DC

microgrid,
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• task 3—maximization of level of power generated by RES.

In the first task, the control strategy assumes that the individual devices included in a
hybrid microsystem will be controlled to obtain the lowest possible values of total active
power losses in the optimization period under consideration. The amount of this losses
can be described by the following formula:

ΔPTOTT =
Nl

∑
i=1

ΔPli +
NTR

∑
j=1

ΔPTRj +
NEPC

∑
k=1

ΔPEPCk (1)

The reduction of active power losses is achieved by changing the power flow in the
microgrid, resulting from the levels of microsources generation, load level and mode of
operation of ESDs, as well as the demand for controlled loads. To minimize active power
losses, microgrid central controller must have information about the current power flow in
the microgrid and determine the expected power flow for subsequent settings of individual
microgrid elements.

In the second task, control strategy assumes determination of such operating states of
individual components of hybrid microgrid so that the total costs related to the functioning
of this microgrid in the considered optimization period will be as low as possible. In
order to implement this strategy, a hybrid microgrid operator (HMO) was defined as
an intermediary in financial settlements between customers and the distribution system
operator (DSO). The costs to be minimized can be written using the following formulas:

CTOTT = CFIXT + CVART (2)

CFIXT = CFIXDSO + CFIXMSHMO + CFIXESHMO + CFIXMEL (3)

CVART = CVARDSO + CVARMSHMO + CVARMSL + CVARESHMO + CVARESL (4)

In the last task, the control strategy consists of determining the operating states of
individual components of the hybrid microgrid so that the sum of power generated in
microsources using renewable primary energy resources is as high as possible in the
considered optimization period. The level of power generated by RES is determined by
the following formula:

PREST =
NRES

∑
i=1

PGi (5)

2.2. Mathematical Models of Formulated Optimization Tasks

In order to solve formulated optimization tasks, appropriate mathematical models
are defined for each of them, containing a problem representation, the form of objective
function, and a set of constraints.

For each of the formulated tasks, a δ vector is defined, which represents a set of
solutions to a given optimization problem. This vector contains a binary sequence coding
the operating states of individual components of the hybrid microgrid. On the basis of
the data contained in the δ vector, load flow calculations on the hybrid microgrid are
performed, and then, depending on the considered optimization criterion, the following
are determined: active power losses, costs related to the operation of the hybrid microgrid
and RES generation levels. The mathematical notation of the objective functions defined
for individual tasks is as follows:

FO1 = min
δ

{
ΔPTOTT (δ)

}
(6)

FO2 = min
δ

{
CTOTT (δ)

}
(7)

FO3 = max
δ

{
PREST (δ)

}
(8)

17



Energies 2021, 14, 6351

Determining the optimal operating states of a hybrid microgrid requires that the
following constraints be met:

• none of the microsources/ESDs connected the hybrid microgrid may operate with
output power greater than nominal power of this microsource/ESD:

Si ≤ Sni∀i ∈ MSAC (9)

Pi ≤ Pni∀i ∈ MSDC (10)

SESDACi
≤ SESDACni

∀i ∈ SDAC (11)

PESDDCi
≤ PESDDCni

∀i ∈ SDDC (12)

• none of the microsources/ESDs/EPCs connected to the AC part of hybrid microgrid
may operate with a power factor cos(ϕ) lower than the nominal power factor of this
microsource/ESD/EPC:

cosϕMSi ≥ cosϕMSni
∀i ∈ MSAC (13)

cosϕESDi ≥ cosϕESDni
∀i ∈ SDAC (14)

cosϕEPCi ≥ cosϕEPCni
∀i ∈ PC (15)

• current flow in any of the power lines should not be greater than the long-term current
carrying capacity of this power line:

Ii ≤ Icci∀i ∈ L (16)

• voltage level at each of the hybrid microgrid nodes may not exceed the maximum or
minimum allowable values:

Umini ≤ Ui ≤ Umaxi∀i ∈ N (17)

• power flow in the EPC/transformer cannot be greater than the nominal power of this
EPC/transformer:

SEPCACi
≤ SEPCni∀i ∈ PC (18)

PEPCDCi
≤ PEPCni∀i ∈ PC (19)

STRi ≤ STRni∀i ∈ TR (20)

• The SOC level of each ESD should be within the limits allowed for that ESD:

SOCmini ≤ SOCi ≤ SOCmaxi∀i ∈ SD (21)

• the synchronous generator acting as a balancing source in the AC part of the hybrid
microgrid cannot go into motor operation:

PSG ≥ 0 (22)

3. Description of the Proposed Microgrid Optimization Algorithm

An AIS based on a CLONALG will be used to solve the defined optimization tasks. In
order to “build” a properly functioning immune system, it is necessary to determine:

• the method of representation of the optimization task solutions,
• how to create the initial set of antibodies (candidate solutions),
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• the method of assessing the solution (formulation of the evaluation function),
• how to adapt the AIS during its operation.

A binary representation of the problem is assumed for each of the defined optimization
tasks. The antibody should then be understood as the δ vector encoding the operating
states of all devices controlled by the immune system within a hybrid microgrid. The
δ vector consists of a binary sequence divided into groups of different lengths, coding
individual operating states. The number of groups is equal to the number of operating
states determined during the operation of AIS. Determining the number of bits belonging
to a single group (length of a group) requires knowledge of the allowable adjustment range
of individual devices and the expected accuracy (number of decimal digits).

The initial set of antibodies is created as a N × l matrix, where N is the number
of antibodies in the set and l is the number of bits encoding the given antibody—size
of the antibody. Knowing the number of antibodies and their size, the optimization
algorithm randomly assigns the values “0” or “1” to individual bits, creating the initial set
of antibodies.

After creating the initial set of antibodies, an optimization algorithm determines the
operating states of individual devices installed in the microgrid. The next steps performed
by the algorithm are the calculation of the power flow, determining the value of the
evaluation function appropriate for the optimization task being solved.

The transformation of the objective functions defined in Section 3 into evaluation func-
tions is necessary due to the development of a universal algorithm for solving minimizing
and maximizing optimization tasks. In the case of minimizing tasks, the objective and
evaluation functions are identical. For the maximization task 3 evaluation function take
the following form:

eval3 = C3 − Fo3 (23)

Formulation of the evaluation functions in accordance with the above-mentioned
description aims at transforming all defined optimization tasks into minimizing tasks.

The load flow calculation performed by the optimization algorithm also allows to
check whether the found solution does not violate the constraints. The algorithm enforces
compliance with constraints by introducing appropriate penalty functions whose task is to
increase the value of evaluation function in case of violation of constraints. The general
mathematical notation of penalty functions is as follows:

evalpi = evali·
n

∏
j=1

Ψj (24)

Ψj =

{
1 in the absence o f violations
aj + ψj

bj i f violations occur
(25)

The operation of the AIS is based on determining the affinity of the antibody to the
presented antigen, whose role in optimization tasks is performed by the antibody encoding
the best solution found so far for the given task. The determination of affinity is calculated
as follows:

AFFi =
best_eval

evalpi

(26)

After determining the affinity, antibodies in the set are sorted in descending order. The
next step performed by the algorithm is to select N1 antibodies with the highest affinity
and create their clones. The number of clones is directly proportional to the affinity of the
antibody and calculated as follows:

NCLi = NCLmax −
(AFFmax − AFFi)·

(
NCLmax − NCLmin

)
AFFmax − AFFmin + ε

; NCLi ∈ N (27)
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Created clones are then subjected to a hypermutation process, inversely proportional
to the affinity of the antibody. The probability of mutation of an antibody is determined
as follows:

PMUTi = PMUTmin +
(AFFmax − AFFi)·

(
PMUTmax − PMUTmin

)
AFFmax − AFFmin + ε

(28)

In the classical variant of the CLONALG, the mutation operator generates r = N·l
pseudo-random numbers between 0 and 1. For binary problem representation, mutation
of a single bit in an antibody occurs when the generated pseudo-random number is less
or equal to the probability of mutation. The presented scheme of the hypermutation
operator operation shows that with a sufficiently high probability value, all bits in the
analyzed antibody can undergo mutation. This article presents a modification of the
hypermutation operator to enable changing the value of only a single bit in a given antibody.
The modification consists of the fact that the number of generated pseudo-random numbers
on the basis of which the algorithm decides whether to make a mutation has been limited
to r = N. In case the generated pseudo-random number is less than the probability of
mutation, a second pseudo-random generator is launched, which randomizes an integer
ranging from 1 to l. The generated second pseudo-random number is the position of the bit
being mutated. The operation diagram of the modified hypermutation operator is shown
in Figure 2.

 

Figure 2. Operation diagram of the modified hypermutation operator.

After the hypermutation operation, the modified clones are added to the antibody set.
To prevent excessive growth of the set of antibodies, the algorithm removes N2 antibodies
with the lowest affinity, and then complements the free spots in the set with new, randomly
generated antibodies. Then the algorithm goes to the next iteration by re-determining
the operating states of individual devices installed in the microgrid. The algorithm’s
operation cycle is repeated until the stop condition is reached. The last step performed by
the algorithm is to save the results of the optimization calculations.

The optimization algorithm was implemented using the DPL script language included
in the PowerFactory v.15.2 software [31]. Ranges of settings of individual devices in the
microgrid and ESDs SOC are loaded once after the script has been started. Generation
profiles of RES and power demand profiles of consumers are cyclically loaded for each of
the optimization periods considered. All mentioned input data are saved in appropriate
text files. Changing the settings of parameters controlling the operation of the algorithm
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and economic quantities, such as electricity purchase prices or per unit fixed costs, is made
directly in the source code of the script implementing the optimization algorithm. The
general block diagram of the script implementing the optimization algorithm, taking into
account the above description, is presented in Figure 3.

 

Figure 3. General block diagram of the script implementing the optimization algorithm.

4. Case Study

In order to evaluate the possibility of using the CLONALG with a modified hypermu-
tation operator in the process of optimizing the configuration and operating states of the
hybrid microgrid, exemplary calculations were carried out in the test microgrid working
synchronously with the distribution power grid and in island mode. The optimization
calculations were repeated using the CLONALG with the classic variation of the hypermu-
tation operator and the evolutionary algorithm to compare the obtained results and verify
the correct operation of modified CLONALG algorithm. Sample results of the calculations
carried out are presented later in this paper.
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4.1. Description of Test Hybrid Microgrid

Optimization calculations were carried out for a hybrid test microgrid supplying a
single-family house estate. It is a microgrid consisting of AC and DC networks connected
to each other with an EPC. Individual nodes of both types of network were connected by
overhead lines. DC power lines were built as double-track AsXS 2 × 70 type lines and AC
power lines were built as single AsXS 4 × 70 type lines. The AC network is connected to
the external distribution grid via MV/LV transformer and AFL6 35 type medium voltage
line. The technical data of individual elements of the hybrid test microgrid are given in
Table 1. The schematic diagram of the test microgrid is presented in Figure 4.

Table 1. Technical data of individual elements of the hybrid test microgrid.

EPC
Sn [kVA] UAC [kV] UDC [kV] cosϕn [−] ΔPLoad [kW] ΔPIdle [kW]

125 0.4 0.4 0.8 5 0.5

MV/LV Transformer
Sn [kVA] UMV [kV] ULV [kV] ΔUk [%] ΔPCu [kW] ΔPFe [kW]

63 15.75 0.4 4.5 1.2 0.18

AC line AsXS 4 × 70
R′
[

Ω
km

]
X′
[

Ω
km

]
Idd [A]

0.443 0.083 213

MV line AFL6 35
R′
[

Ω
km

]
X′
[

Ω
km

]
Idd [A]

0.852 0.4 145

DC line AsXS 2 × 70
R′
[

Ω
km

]
Idd [A]

0.443 213

Figure 4. Schematic diagram of the test microgrid.
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In a hybrid test microgrid, 24 non-controlled loads connected only to the AC network
were modeled. Each of the load was characterized by assigning to it one of three different
daily active and reactive power demand characteristics. The total daily power demand
characteristics of the test microgrid are presented in Figure 5.

 

(a) (b) 

Figure 5. (a) Total daily active power demand characteristics of the test microgrid; (b) Total daily reactive power demand
characteristics of the test microgrid.

The hybrid test microgrid was equipped with 9 microsources, divided into three
categories (1 reciprocating engine (RE) with synchronous generator connected directly to
the AC network, 3 wind microturbine generation sets, and 5 photovoltaic sources connected
to the DC network via power inverters). Technical data of installed microsources are
presented in Table 2. Daily characteristics of photovoltaic sources and wind microturbine
generation sets’ generation capacity for two selected days of the year are presented in
Figure 6.

Table 2. Technical data of the microsources installed in the hybrid test microgrid.

Microsource Owner
Nominal Power

[kW]/[kVA] *
Pmin

[kW]
Pmax

[kW]
Qmin

[kvar]
Qmax

[kvar]

AP HMO 61 0 49 −36.7 36.7
PV HMO 40 0 It depends

on the
atmospheric
conditions

prevailing in
a given

optimization
period

0 0
PV12 Consumer 4 0 0 0
PV16 Consumer 25 0 0 0
PV23 Consumer 6 0 0 0
PV24 Consumer 10 0 0 0
TW14 Consumer 2 0 0 0
TW22 Consumer 5 0 0 0
TW26 Consumer 3 0 0 0

* apparent power for the microsource connected to the AC network, active power for the microsource connected
to the DC network.

For microsources owned by the HMO, fixed costs per unit of 0.0014 USD/kW/T were
adopted, where T is an optimization period of 10 min. HMO is not charged with fixed costs
resulting from the maintenance of microsources owned by individual consumers. Variable
costs per unit of the reciprocating engine were adopted at the level of 0.0279 USD/kW/T;
it was also assumed that this value constitutes the purchase price of energy generated in
microsources owned by individual consumers. Variable costs of the HMOs photovoltaic
source are zero. The regulation of the generated power level of photovoltaic sources and
wind microturbine generation sets is carried out by detuning the converter connecting the
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source with the hybrid microgrid from the maximum power operation point (MPP) on the
production characteristics of the given source [32].

(a) (b) 

Figure 6. (a) Daily generation capacity charecteristics of photovoltaic sources; (b) Daily generation capacity characteristics
of wind microturbine generation sets.

The test microgrid was equipped with 9 ESDs with a rated power of 50 kW and a
capacity of 37 kWh, owned by individual consumers. The HMO also has one energy
storage device with a rated power of 40 kW and a capacity of 160 kWh. All ESDs have been
connected only to the DC network. In the process of controlling ESDs, it was assumed that
they could operate in the full range of power regulation. However, the charge or discharge
power may be reduced if the energy level in the storage device is not within acceptable
limits. These limits are:

• from 5% to 95% of the storage capacity between 12:00 am to 6:50 pm,
• from 40% to 60% of the storage capacity between 7:00 pm to 11:50 pm.

The greater reduction on the SOC of ESDs in the evening is designed to prepare
them for operation during the next day, so that they are able to balance the shortage or
surplus of generated power in microsources in relation to the power demand of customers.
As in the case of microsources, the HMO is not charged with fixed costs resulting from
the maintenance of consumers ESDs. Consumers have full freedom in the choice of
energy storage technology and capacity, which forces HMO to maintain the appropriate
infrastructure enabling the connection of the storage device to the network. It has been
assumed that the costs per unit of maintaining a single connection is 0.004 USD/kW/T.
The same numerical value is a fixed costs per unit for the energy storage device owned by
HMO. HMOs variable costs include per unit costs of discharging energy storage device,
amounting to 0.0095 USD/kW/T. The price from the sale of energy taken to charge storage
devices belonging to the consumers amounts to 0.0322 USD/kW/T and it is HMO revenue.

It should also be noted that the energy storage device owned by HMO is not subject to
optimization. The device works as a source balancing the DC network. The use of energy
storage as a balancing element of the DC network allows optimization of the operating
states of the EPC connecting both DC and AC networks, which translates into control of
power flow between both networks. In the case of island operation of the hybrid microgrid,
the reciprocating engine was excluded from the optimization process, also to assign the
role of balancing source to this device.

4.2. Results of Optimization Calculations Carried out Using the Modified CLONALG Algorithm

In order to obtain the results of optimization calculations, a 24 h microgrid opera-
tion simulations were performed for a test microgrid. Simulations were made for both
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synchronous and island operation. Two different load demand profiles for working day
and for holiday were taken into account, as well as two generation profiles for RES for
2 March 2017 and 10 December 2017. In total, eight simulations were carried out for a
single optimization task. Each of the simulations was started for the same initial ESDs SOC
levels and the following settings of the algorithm control parameters:

• number of antibodies: N = 400,
• number of antibodies selected for cloning: N1 = 40,
• number of antibodies replaced by randomly generated new antibodies: N2 = 16,
• maximum probability of mutation: Pmut_max = 0.53,
• minimum probability of mutation: Pmut_min = 0.19,
• maximum number of clones created for single antibody: NCLmax = 4,
• minimum number of clones created for single antibody: NCLmin = 2.

The number of iterations of the optimization algorithm depended on the chosen
optimization tasks and microgrid operation mode; detailed values are given in Table 3.

Table 3. Number of iterations of the optimization algorithm.

Optimization Task Synchronous Operation Island Operation

Task 1 200 200
Task 2 200 450
Task 3 150 250

Selected results of optimization calculations (for a single optimization period) are
presented in Tables 4–6. Exemplary daily changes of optimized values for the adopted
generation profile of 2 March 2017 and power demand profile for the working day are
presented in Figures 7–9.

Table 4. Selected results of optimization calculations in task 1.

Test Microgrid
Operation

Mode
Time

RES Generation
Profiles Date

Day Type

Optimized Quality
Indicator

Other Quality Indicators

Active Power Losses
[kW]

Costs [USD]
Level of Power
Generated in

RES [kW]

Synchronous 10:50 am

2 March 2017
working day 1.086 3.565 35.550

Holiday 0.839 3.766 15.468

10 December 2017
working day 1.081 2.977 0.754

holiday 1.421 2.958 1.147

Island 5:30 am

2 March 2017
working day 1.346 3.338 0.000

holiday 1.161 3.578 0.000

10 December 2017
working day 1.293 3.204 0.000

holiday 1.670 3.454 0.000
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Table 5. Selected results of optimization calculations in task 2.

Test Microgrid
Operation

Mode
Time

RES Generation
Profiles Date

Day Type

Optimized Quality
Indicator

Other Quality Indicators

Costs [USD]
Active Power
Losses [kW]

Level of Power
Generated in

RES [kW]

Synchronous 10:50 am

2 March 2017
working day 3.304 1.231 0.000

holiday 2.707 0.927 4.678

10 December 2017
working day 3.053 2.515 0.000

holiday 3.267 2.130 0.000

Island 5:30 am

2 March 2017
working day 2.601 0.886 0.000

holiday 2.657 0.956 0.000

10 December 2017
working day 3.094 1.235 0.000

holiday 2.657 0.956 0.000

Table 6. Selected results of optimization calculations in task 3.

Test Microgrid
Operation

Mode
Time

RES Generation
Profiles Date

Day Type

Optimized Quality
Indicator

Other Quality Indicators

Level of Power
Generated in RES [kW]

Costs
[USD]

Active Power
Losses [kW]

Synchronous 10:50 am

2 March 2017
working day 29.576 4.681 3.774

holiday 62.094 5.230 3.148

10 December 2017
working day 1.702 3.586 1.495

holiday 1.696 4.525 3.039

Island 5:30 am

2 March 2017
working day 0.000 3.602 1.499

holiday 0.000 3.602 1.499

10 December 2017
working day 0.000 3.602 1.499

holiday 0.000 3.602 1.499

Figure 7. Daily changes of active power losses.
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Figure 8. Daily changes of costs of operation of the hybrid test microgrid.

Figure 9. Daily changes of active power generated in RES.

Figure 10 presents the changes in the value of the evaluation function in task 1 for
a microgrid operating synchronously with the distribution network depending on the
selected RES generation capacity profile, and the power demand profile (the figure shows
calculation made at 10:50 am).
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Figure 10. Progress of the optimization process.

Exemplary daily changes of the operating states of a selected microsource for a mi-
crogrid operating synchronously with the distribution network depending on the RES
generation capacity profile of 2 March 2017 and the power demand profile for a working
day are shown in Figure 11.

Figure 11. Daily changes of the operating states of the selected microsource (PV12).

4.3. Comparison of Calculation Results Obtained Using the CLONALG Algorithm and the
Evolutionary Algorithm

Due to the modification of the hypermutation operator used in the CLONALG and
the wish to verify the obtained optimization results, a comparative analysis of these results
was carried out with the results obtained using the evolutionary algorithm, which is com-

28



Energies 2021, 14, 6351

monly used to solve optimization tasks in the field of power engineering [33–37]. In the
evolutionary algorithm used for comparison, a stochastic sampling with replacement was
used as a selection method. A binary representation of the problem, identical to the CLON-
ALG, was also assumed. Within the control parameters of the evolutionary algorithm, a
crossover probability of 0.22 and a mutation probability of 0.07 were assumed. The number
of chromosomes was equal to the number of antibodies defined in the CLONALG and both
algorithms performed the same number of iterations within the considered optimization
period. The results of the comparison are shown in Tables 7 and 8.

Table 7. Comparison of results of optimization calculations for the microgrid synchronous operation.

Optimization
Task

RES Generation
Capacity Profile

Power
Demand
Profile

Percentage of Optimization Periods at Which:
Number of
Analyzed

Optimization
Periods

CLONALG
Algorithm
Achieved a

Better Solution

Evolutionary
Algorithm
Achieved a

Better Solution

Both Algorithms
Reached an

Identical
Solution

Task 1

2 March 2017
working day 83.33% 16.67% 0.00% 144

holiday 79.86% 20.14% 0.00% 144

10 December 2017
working day 86.81% 13.19% 0.00% 144

holiday 79.86% 20.14% 0.00% 144

Task 2

2 March 2017
working day 91.67% 8.33% 0.00% 144

holiday 91.67% 8.33% 0.00% 144

10 December 2017
working day 92.36% 7.64% 0.00% 144

holiday 86.11% 13.89% 0.00% 144

Task 3

2 March 2017
working day 61.81% 2.78% 35.42% 144

holiday 61.81% 2.78% 35.42% 144

10 December 2017
working day 36.81% 0.00% 63.19% 144

holiday 36.81% 0.00% 63.19% 144

Table 8. Comparison of results of optimization calculations for the microgrid island operation.

Optimization
Task

RES Generation
Capacity Profile

Power
Demand
Profile

Percentage of Optimization Periods at Which:
Number of
Analyzed

Optimization
Periods

CLONALG
Algorithm
Achieved a

Better Solution

Evolutionary
Algorithm
Achieved a

Better Solution

Both Algorithms
Reached an

Identical
Solution

Task 1

2 March 2017
working day 90.00% 10.00% 0.00% 50

holiday 92.16% 7.84% 0.00% 51

10 December 2017
working day 93.24% 6.76% 0.00% 74

holiday 88.41% 11.59% 0.00% 69

Task 2

2 March 2017
working day 100.00% 0.00% 0.00% 114

holiday 98.77% 1.23% 0.00% 81

10 December 2017
working day 100.00% 0.00% 0.00% 92

holiday 98.91% 1.09% 0.00% 92

Task 3

2 March 2017
working day 14.29% 0.00% 85.71% 42

holiday 11.36% 0.00% 88.64% 44

10 December 2017
working day 30.77% 0.00% 69.23% 52

holiday 14.00% 0.00% 86.00% 50
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For the selected cases, a comparison was also made with the classic version of the
CLONALG algorithm. Calculations were made for:

• all defined optimization tasks,
• synchronous and island operation of the test microgrid,
• total achievable RES active power generation capacity equal to 75.225 kW,
• total load demand for active power equal to 10.704 kW.

The results of the comparison are shown in Table 9. Figure 12 shows the convergence
of the optimization process for tasks 1 and 2.

Table 9. Comparison of results of the optimization calculations.

Test Microgrid
Operation Mode

Optimized Quality
Indicator

Evolutionary
Algorithm

CLONALG Algorithm

With Modified
Hypermutation

Operator

With Classic
Hypermutation

Operator

Synchronous
Active power losses [kW] 1.220 1.291 1.254

Costs [USD] 3.923 3.091 3.679

Level of power generated in RES [kW] 52.082 61.478 58.369

Island

Active power losses [kW] 1.180 1.031 1.081

Costs [USD] 3.960 2.871 3.556

Level of power generated in RES [kW] 55.774 61.957 57.875

  
(a) (b) 

  
(c) (d) 

Figure 12. Convergence of optimization process for (a) task 1, synchronous operation; (b) task 1, island operation; (c) task 2,
synchronous operation; (d) task 2, island operation.
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4.4. Discussion

The concept of a hybrid low voltage AC/DC microgrid controlled by AIS could be
an interesting way to integrate renewable energy sources, energy storage units, as well as
electric vehicles into an efficient and easy to manage power microsystem.

Analyzing the results of optimization calculations constituting a 24 h simulation of
the operation of the hybrid microgrid, it should be stated that the AIS, functioning on
the basis of a CLONALG, is able to carry out the process of optimizing the configuration
and operating states of the hybrid microgrid, working synchronously with the external
distribution network. In case of the island operation, for all formulated optimization tasks,
the algorithm was not able to ensure the correct operation of the microsystem for 24 h.
Premature termination of optimization calculations is not due to the malfunction of the
AIS, but to the structures of test microgrid that were not designed for long-term island
operation.

The obtained results also depend on the adopted assumptions regarding RES gen-
eration profiles and consumer power demand profiles. Analysis of the results of the
optimization calculations shows that there is a relationship between the results obtained
and the choice of the power demand profile. Similar conclusions can be drawn based
on the analysis of various RES generation capacity profiles. In the example of the task
of maximizing the level of power generated by RES, there are clear differences between
generation capacities in spring and winter.

Analyzing the progress of the optimization process, it should be stated that it pro-
ceeded correctly for all considered cases. Subsequent iterations of the algorithm for solving
formulated optimization tasks results in a decrease in the value of the evaluation function.
The sharp decline in the value of the evaluation function in the initial iterations of the
algorithm testifies to the proper functioning of the AIS and the effective elimination of
suboptimal solutions. The advantage of the CLONALG over the evolutionary algorithm in
the first stage of the optimization process can be due to two mechanisms:

• cloning probability directly proportional to the affinity of the antibody to antigen,
combined with inverse proportional hypermutation,

• removal from the population antibodies with the lowest affinity to antigen.

The first mechanism operates by selecting a certain number of antibodies with the
highest affinity (the best solution in a given iteration) and subjecting them to the cloning
and hypermutation processes. The second mechanism is used to protect the algorithm
against an excessive increase in population size, and thus a decrease in its efficiency, by
removing the worst solutions of the optimization task and, if necessary, supplementing the
population with new randomly generated antibodies. Both mechanisms mentioned above
cause that in the initial phase of operation, the AIS rejects the worst solutions faster than
the evolutionary algorithm.

While searching for optimal solutions for formulated tasks, the AIS changed the
operating states of individual devices in the test hybrid microgrid. The way the selected
microgrid element works depends to a large extent on the chosen optimization task and
on the input data. For example, in task 2, the analyzed microsource (photovoltaic panel)
is switched off practically throughout the simulation, while in task 3, it works with the
maximum achievable power.

A comparative analysis of optimization calculations carried out using an AIS based
on a CLONALG and an evolutionary algorithm showed that for tasks 1 and 2 in most of
analyzed cases more favorable results of calculations were obtained using AIS and thus the
proposed optimization method is an effective optimization tool. For task number 3, the
advantage of AIS is smaller than in previous cases and for some optimization periods, both
algorithms obtained identical results. This is especially visible in the case of optimization
of microgrid operating in the island mode; however, it should be noted that the number
of analyzed optimization periods is relatively low, compared to the optimization of the
synchronously operating microgrid.
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Due to the wish to verify the modification of the hypermutation operator introduced
in the CLONALG algorithm, a comparison (only for selected optimization periods) was
also made with the classic version of this operator. The obtained calculation results indicate
that the change in the mode of operation of the hypermutation operator resulted in an
improvement of the results obtained in most of the considered cases.

When assessing the convergence of the examined optimization algorithms, it was
noticed that the CLONALG algorithm with the modified hypermutation operator in most of
analyzed cases gains an advantage over the other algorithms in the first few iterations of the
optimization process. Further observations of the behavior of analyzed algorithms allow
us to state that in the final stage of the optimization process, the differences in the obtained
results are not relatively high and modified CLONALG rarely obtained worst solution.
The complexity of the CLONALG algorithm, compared to the evolutionary algorithm, will
require a longer computation time. This fact theoretically acts as a disadvantage of AIS as
an optimization tool, but the observed tendency to remove suboptimal solution quickly in
an initial stage of optimization process may be an advantage of the method proposed in
this paper.

5. Conclusions

From the obtained results of the optimization calculations, the following conclusions
can be made:

• It is possible to use an AIS based on the CLONALG algorithm as an effective optimiza-
tion tool for hybrid AC/DC microgrids operating on both synchronous and island
mode,

• in most of the considered cases, optimization with the use of an AIS resulted in finding
a better solution compared to optimization with an evolutionary algorithm,

• the introduced modification of the hypermutation operator contributed to the im-
provement of the obtained results in relation to the classic version of CLONALG
algorithm as well as evolutionary algorithm,

• the modified CLONALG algorithm showed a stronger tendency to reject suboptimal
solutions in the early phase of the optimization process than its classic version,

• the artificial immune system, operating on the basis of the CLONALG algorithm,
requires greater computational effort that the commonly used evolutionary algorithm;
however, the aforementioned tendency to quickly reject suboptimal solutions at an
early stage of the optimization process may be an advantage of the AIS,

• both algorithms, due to the way they work, do not guarantee that the solution they
find is a global optimum. The analysis of the convergence of these algorithms suggest
that the obtained solutions are a quite good approximation of the global optimum.

• the optimization tasks formulated and solved in this paper can be implemented in
real installations. However, this process requires the construction of an appropriate
telecommunications infrastructure that allows monitoring the state of individual
microgrid elements and sending control signals to them.

The author of the article considers it advisable to conduct further research on the
possibility of using AISs in solving optimization problems in the field of power engineering,
especially in the field of optimization of configuration and operating states of hybrid
microgrids. Another important direction of future research is also the optimization of the
structure of newly design hybrid microgrids in terms of the selection of the composition of
generating units, ESDs, and EPCs coupling AC and DC networks. In addition, from the IT
side, research is possible to increase the efficiency of the computational algorithms used.
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Abbreviations

The following abbreviations are used in this manuscript.

EA Evolutionary algorithm
PSO Particle swarm optimization
AIS Artificial immune systems
AC Alternating current
DC Direct current
CLONALG Clonal selection algorithm
RES Renewable energy sources
ESD Energy storage device
EPC Electronic power converter
V2G Vehicle to grid
MV Medium voltage
LV Low voltage
SOC State of charge
HMO Hybrid microgrid operator
DSO Distribution system operator
RE Reciprocating engine
MPP Maximum power operation point

Nomenclature:

ΔPTOTT total active power losses in the hybrid microgrid during
the optimization period

Nl/NTR/NEPC number of power lines/transformers/EPCs in the hybrid
microgrid

ΔPli /ΔPTRj /ΔPEPCk active power losses in the ith power line/jth
transformer/kth EPC belonging to the hybrid microgrid

CTOTT total costs related to the operation of hybrid microgrid
during the optimization period

CFIXT /CVART total fixed/variable costs related to the operation of
hybrid microgrid during the optimization period

CFIXDSO fixed costs related to maintaining the connection of hybrid
microgrid with external distribution system

CFIXMSHMO /CFIXESHMO fixed costs related to the maintenance of
microsources/ESDs owned by HMO

CFIXMEL fixed costs related to maintaining the infrastructure
enabling consumers to connect microsources and ESDs to
the microgrid

CVARDSO variable costs associated with the purchase of energy from
DSO

CVARMSHMO /CVARESHMO variable costs related to the operation of
microsources/ESDs owned by HMO

CVARMSL /CVARESL variable costs related to the purchase of energy generated
in microsources/taken from energy storage units owned
by individual customers supplied from hybrid microgrid

PREST total active power generated in RES belonging to hybrid
microgrid during the optimization period

NRES number of RES installed in hybrid microgrid
PGi active power generated by ith RES
δ vector which coding a candidate solution
FOi objective function for ith optimization task
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Si/Pi apparent/active power generated by ith microsource
connected to the AC/DC part of hybrid microgrid

Sni /Pni nominal apparent/active power of the ith microsource
connected to the AC/DC part of hybrid microgrid

MSAC/MSDC set of microsources connected to the AC/DC part of
hybrid microgrid

SESDACi
/PESDDCi

apparent/active power measured at the connection point
of ith ESD connected to AC/DC part of hybrid microgrid

SESDACni
/PESDDCni

nominal apparent/active power of the ith ESD connected
to AC/DC part of hybrid microgrid

SDAC/SDDC set of ESDs connected to AC/DC part of hybrid microgrid
cosϕMSi /cosϕESDi /cosϕEPCi power factor of the ith microsource/ESD/EPC connected

to the AC part of hybrid microgrid
cosϕMSni

/cosϕESDni
/cosϕEPCni

nominal power factor of the ith microsource/ESD/EPC
connected to the AC part of hybrid microgrid

MSAC/SDAC/PC set of microsources/ESDs/EPCs connected to the AC part
of hybrid microgrid

Ii current flow in the ith power line
Icci long-term current capacity of the ith power line
L set of power lines belonging to the hybrid microgrid
Umini /Umaxi minimum/maximum allowable voltage level for ith node
Ui voltage measured in ith node
N set of nodes belonging to the hybrid microgrid
SEPCACi

/PEPCDCi
apparent/active power flow through the
alternating/direct current circuits of the ith EPC

SEPCni /PEPCni nominal apparent/active power of the ith EPC
STRi apparent power flow through the ith transformer
STRni nominal apparent power of ith transformer
PC/TR set of EPCs/transformers belonging to the hybrid

microgrid
SOCmini /SOCmaxi minimum/maximum allowable SOC level of the ith ESD
SOCi current SOC level of the ith ESD
SD set of ESDs belonging to the hybrid microgrid
PSG active power generated by a synchronous generator

acting as a balancing source
evali evaluation function for ith optimization task
C3 non-negative constant for task 3
evalpi

evaluation function after taking into account the penalty
functions

evali evaluation function for ith optimization task
n number of defined constraints
Ψj general form of the penalty function for jth constraint
ψj detailed form of the penalty function for jth constraint
aj/bj non-negative coefficient of sensitivity of the penalty

function significant for minor/major exceedances of jth
constraint

AFFi affinity of ith antibody
best_eval value of the evaluation function of the antibody encoding

the best solution found so far
NCLi number of clones of ith antibody from N1 selected

antibodies
NCLmax /NCLmin maximum/minimum number of clones created for a

single antibody
AFFmax/AFFmin maximum / minimum affinity of N1 selected antibodies
ε→ 0 constant value
PMUTi probability of mutation of ith antibody among the clones

created
PMUTmin /PMUTmax minimum/maximum probability of mutation

34



Energies 2021, 14, 6351

References

1. Askarzadeh, A. A memory-based genetic algorithm for optimization of power generation in a microgrid. IEEE Trans. Sustain.
Energy 2018, 9, 1081–1089. [CrossRef]

2. Rana, M.J.; Zaman, F.; Ray, T.; Sarker, R. Economic-environmental scheduling of community microgrid using evolutionary
algorithm. In Proceedings of the 2020 IEEE Symposium series on computational intelligence (SSCI), Canberra, Australia, 1–4
December 2020. [CrossRef]

3. Xu, Y.Q.; Sun, K.Y. Economic optimization of a community-scale integrated energy microgrid based on PSO algorithm. In
Proceedings of the 2020 12th IEEE PES Asia-Pacific and Energy Engineering Conference (APPEEC), Nanjing, China, 20–23
September 2020. [CrossRef]
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Abstract: The ability to precisely forecast power generation for large wind farms is very important,
since such generation is highly unstable and creates problems for Distribution and Transmission
System Operators to properly prepare the power system for operation. Forecasts for the next 24 h
play an important role in this process. They are also used in energy market transactions. Even a
small improvement in the quality of these forecasts translates into more security of the system and
savings for the economy. Using two wind farms for statistical analyses and forecasting considerably
increases credibility of newly created effective prediction methods and formulated conclusions. In the
first part of our study, we have analysed the available data to identify potentially useful explanatory
variables for forecasting models with additional development of new input data based on the basic
data set. We demonstrate that it is better to use Numerical Weather Prediction (NWP) point forecasts
for hourly lags: −3, 2, −1, 0, 1, 2, 3 (original contribution) as input data than lags 0, 1 that are typically
used. Also, we prove that it is better to use forecasts from two NWP models as input data. Ensemble,
hybrid and single methods are used for predictions, including machine learning (ML) solutions like
Gradient-Boosted Trees (GBT), Random Forest (RF), Multi-Layer Perceptron (MLP), Long Short-Term
Memory (LSTM), K-Nearest Neighbours Regression (KNNR) and Support Vector Regression (SVR).
Original ensemble methods, developed for researching specific implementations, have reduced errors
of forecast energy generation for both wind farms as compared to single methods. Predictions by
the original ensemble forecasting method, called “Ensemble Averaging Without Extremes” have
the lowest normalized mean absolute error (nMAE) among all tested methods. A new, original
“Additional Expert Correction” additionally reduces errors of energy generation forecasts for both
wind farms. The proposed ensemble methods are also applicable to short-time generation forecasting
for other renewable energy sources (RES), e.g., hydropower or photovoltaic (PV) systems.

Keywords: wind energy; wind farm; ensemble methods; short-term forecasting; electric energy
production; machine learning; deep neural network; swarm intelligence

1. Introduction

The impact of humanity on climate change is a fact accepted by most scientists and
policymakers. Renewable energy sources have become a “natural” alternative to energy
sources based on fossil fuels. Obviously, the largest increases in energy production come
from wind sources. However, they are known for their basic disadvantage, which is
intermittent power generation. A way to overcome this drawback is to develop best
possible energy production forecasts and properly prepare the power system for operation
by Distribution and Transmission System Operators. Forecasts for the next day play an
important role in this process. They are also used in energy market transactions. Even a
small improvement in the quality of these forecasts translates into improved security of the
system and savings for the economy. Therefore, efforts are made to improve quality by:
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• analysing the usefulness of various explanatory data;
• utilizing machine learning;
• preparing forecasts with single, team and hybrid methods;
• analysing the influence of point distribution of Numerical Weather Prediction (NWP)

models at large wind farms;
• conducting comparative analysis of forecast quality for various wind farms.

The research presented in this paper concerns two medium-sized wind farms. No
real-world wind speed data had been collected, which has made data analysis difficult.

1.1. Related Works

In recent years, ensemble models have become popular to tackle the deficiencies
of single prediction models. The concept of ensemble is to achieve data variability to
compensate for disadvantages of component models, such as bias, and obtain a solution
that is more robust and less susceptible to the errors of NWP models. In their work,
Liu, Chen, Lv, Wu and Liu [1] presented different ways of creating an ensemble. One
solution (sol1) was based on achieving varying training data sets. Bagging and boosting
mechanisms were indicated by the authors as a way to create such data, and decision tree-
based methods as models using this type of data. Another solution (sol2) involved using
different prediction models as components of the ensemble. In this case, the same class of
prediction tools (different ANN) or their different classes (statistical and machine learning
models) were both suggested as viable options. The third way of achieving variability
(sol3) was to use the same prediction models with different components. MLP networks
with different numbers of hidden layers and neurons in them or wavelet networks using
different wavelets could be given as an example here. To systematize the papers presented
below, they are assigned to the aforementioned groups.

Studies on sol1 have been presented in many works [2–8]. Research of Yildiz, Acikgoz,
Korkmaz and Budak [2], Duan, Wang, Ma, Tian, Fang, Cheng, Chang, Y and Liu [3],
and Abedinia et al. [4] addressed achieving sol1 by decomposition of input data into
IMFs. On the other hand, Memarzadeh and Keynia [5] and Liu, Zhao, Yu, Zhang, and
Wang [6] used wavelet decomposition, while Wang, Zhang and Ma [7] used single spectrum
analysis instead. Like in the work of Sun, Zhao and Zhang [8], clusterization sometimes
followed decomposition.

Literature concerning sol2 offers a plethora of model mixes. Piotrowski et al. [9]
analysed different combinations of physical model, kNN regression, MLP and LSTM
networks with PSO or BFGS optimization. Other researchers used 2 neural networks of the
same type with different Lagrange polynomials in hidden layers [7], different predictive
distributions [10], BPNN, ENN, ELM, LSTM [11], ANN-SVR-Gaussian process [12], etc.

After data decomposition, Sun, Zhao, and Zhang [8] performed further clustering
and created a separate LSTM model for each cluster. Thus, their work could be assigned
not only to sol1 but also to the sol3 category. The same applies to the work by Chen and
Liu [11], as the authors created the same models for data with different time resolutions.
Others authors proposed, among others, using parallel stacked autoencoders [13] and
LSTM networks [14–19] with different wavelet activation kernels [14] or with ensemble
pruning and combination [15].

Some authors performed comparative analyses. Sun, Zhao, and Zhang [8] compared
BP, Elman, and LSTM networks accuracy, Saini, Kumar, Mathur, and Saxena [16] compared
RNN, NARX, and LSTM networks and Ahmadi et al. compared different tree models [17];
Kisvari, Lin, and Liu confronted LSTM with GRU [18], while Yildiz et al. [2] compared
CNN with other deep learning methods. Although these studies lacked ensemble models
as a cherry on top, the performed analyses could be of use when composing ensembles
of these models. Semi-ensemble, switchable models would also be a viable alternative:
Ouyang, Huang, He, and Tang [19] created models switched by the Markov chain regime,
while Sun, Feng, and Zhang [10] created an ensemble with component models accuracy at
previous time steps used as a switching condition.
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Machine learning models have become frequently used prediction tools, not only as
ensemble components, but also as standalone solutions. Decision trees with variants [17],
SVR [10,20], and neural networks [8–10] are examples of quite popular predictors. With
increasing average PC computational power, deep learning models gained their share of
popularity, too. Among them, not only methods such as LSTM [3,6,8,11,14,16,18,21,22],
GRU [18,23], or deep ESN [24] have been used in research, but also methods previously
associated with image analysis like CNN [1,2,25–27] have been incorporated into studies.
In their research, Wang, Li, and Yang [19] proposed an LSTM-based encoder to achieve
input attention that understands the importance of variables, Sun, Zhao, and Zhang [8]
created different LSTM hybrids for wind power series of multiple time scales, while
Niu et al. [23] presented Sequence-to-Sequence GRU Networks as a recurrent method of
multi-step ahead prediction.

In the papers reviewed by us, convolution networks were used to extract spatial
information from data. In some cases [2,25,26], they were used to add spatial aspect to tem-
poral information. For that purpose, Yin, Ou, Huang, and Meng [28] suggested extracting
both temporal and spatial information by cascade of CNN followed by LSTM; in another
case [27], extracted spatial information was a replacement for lacking time information.

Data extraction by CNN can be treated as semi-automatic input inference without user
involvement. Some authors, however, preferred a different approach, i.e., feature engineer-
ing and input selection based on statistical analysis. Lin and Liu [29] presented wind data
correction methods according to IEC standards, Medina and Ajenjo [30] presented analysis
of optimal time lags for input variables with different time horizons, while other authors
presented data cleaning and imputation by Lomnaofski norm [31], extensive sensitivity
analysis of input data [9], and analyses of optimal sparsity of NWP model grids [32].

Last but not least, note that all of the mentioned deep learning and ensemble solutions
could either use NWP data or be created as a stack of weather forecasting models followed
by energy prediction models. Since generated energy prediction accuracy is usually affected
by the accuracy of input data, enhanced weather forecasts could lead to improved energy
prediction. Better weather forecast could be achieved in multiple ways, e.g., de Mattos
Neto et al. [33] proposed in their paper an LSTM-SVR hybrid as a means of obtaining better
wind speed forecasts.

1.2. Objective and Contribution

The main objectives of this paper can be summarized as follows:

• Perform extensive statistical analysis of time series of energy generated in two wind
farms and perform statistical analysis of potential exogenous explanatory variables;

• Perform very extensive analysis of sensitivity of explanatory variables;
• Verify the accuracy of forecasts conducted by single methods, hybrid methods, and

ensemble methods (13 methods in total);
• Develop and verify an original ensemble method, called “Ensemble Averaging With-

out Extremes” and conduct an original selection of combinations of predictors for
ensemble methods;

• Identify the most efficient forecasting methods from among tested methods for data
from both wind farms.

Below are listed selected contributions of this paper:

1. This research addresses forecasting for large wind farms. Although this topic fre-
quently appears in literature, this research has its unique values. First of all, an
extensive data analysis was performed, including the time series itself, additional
data, and two different NWP model parameters (81 inputs in total). Secondly, 13 fore-
casting methods for two wind farms were tested and compared.

2. Development of an original method, called “Ensemble Averaging Without Extremes”.
Predictions by this method have yielded the lowest SS metric (Skill Score) and nMAE
error among the tested methods; the original “Additional Expert Correction” method
yielded additional improvement of forecasts.
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3. Construction of a number of different models, data scenarios and parameters resulted
in testing more than 400 forecasting models. This makes this research one of the
most extensive studies on the topic. The conclusions drawn from this research can be
generalized, at least for Central Europe.

The remainder of this paper is organized as follows: Section 2.1 presents statistical
analysis of times series and NWP data for two wind farms. The importance of the available
basic input data and additional input data is discussed in Sections 2.2 and 2.3. Section 3 de-
scribes prediction methods employed and Section 4 gives evaluation criteria for assessment
of forecasting quality. Extensive analysis of the results and their discussion is in Section 5.
Section 6 summarizes the whole research providing the main conclusions. References are
listed at the end of this paper.

2. Data

2.1. Statistical Analysis

For statistical analyses, data acquired for two medium-sized European wind farms (A
and B) were used. The range of the acquired data was identical for both farms and spanned
from 4 April 2017 to 10 October 2019, with about 29 months in total. Rated powers for
Farms A and B were 50 MW and 48.3 MW, respectively.

The following data were available for analysis:

• Wind farm generation time series (forecasted variable);
• Weather forecasts for wind farms location.

Records of actual meteorological parameters were not available; hence, GFS and
ECMWF NWP models were used for our research instead. For ECMWF, the archived
high-resolution atmospheric model was chosen (HRES) [34]. The GFS model was supplied
by the Interdisciplinary Modelling Center, Warsaw University (ICM UW) [35,36]. Both
models make it possible to use 4 forecast runs per day (at 0/6/12/18 UTC) with 1 h
resolution and maximal horizon of 240 h. Time resolution of HRES changes, however,
to a 3 h interval after 90 h horizon and to 6 h after 144 h horizon. For GFS, only the
first interval change appears after reaching the 120 h horizon. For each wind farm, only
weather forecasts corresponding to the respective spatial point were used. Weather source
points for the ECMWF model were chosen as the points nearest to the ones appearing in a
dense 1/8 × 1/8-degree grid. The same method was applied to GFS with its native spatial
resolution of 0.25 × 0.25 degrees.

Data from both time series of electric energy production (Farm A and Farm B) were
normalized separately for anonymization to relative units (1 relative unit is equal to the
rated power of the wind farm). However, each time series of NWP forecasts data was
normalized using min–max scaling.

Table 1 shows descriptive statistics for time series of hourly electric energy generated
by the Wind Farm A and Wind Farm B considered here. Percentage distribution of electric
energy generation for both wind farms is shown in Figure 1. The analysis of electric energy
generation percentiles shows that values very close to 0 made up more than 25% of both
time series samples. Usually, energy generation was within the range of (0–0.1) [p.u.] for
both time series samples.

Calculated autocorrelation coefficient (ACF) of hourly generation in both time series
shows a little daily periodicity. Autocorrelation coefficients quickly decrease for the follow-
ing hours of the first day. For both time series, all autocorrelation coefficients are statistically
significant (5% significance level) up to 3 days back (72 prior observations). Autocorrelation
function (ACF) of the Wind Farm A energy generation time series is presented in Figure 2.
However, autocorrelation function (ACF) of the Wind Farm B energy generation time series
is presented in Figure 3.
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Table 1. Descriptive statistics for hourly electric energy generation.

Descriptive Statistics Wind Farm A Wind Farm B

Mean 0.278 [p.u.] 0.288 [p.u.]
Standard deviation 0.284 [p.u.] 0.315 [p.u.]

Minimum 0.000 [p.u.] 0.000 [p.u.]
Maximum 0.990 [p.u.] 0.980 [p.u.]

Coefficient of variation 102.277% 109.164%
The 10th percentile 0.000 [p.u.] 0.000 [p.u.]

The 25th percentile (lower quartile) 0.025 [p.u.] 0.018 [p.u.]
The 50th percentile (median) 0.181 [p.u.] 0.163 [p.u.]

The 75th (upper quartile) 0.459 [p.u.] 0.483 [p.u.]
The 90 percentile 0.742 [p.u.] 0.861 [p.u.]

Variance 0.080 0.099
Skewness 0.906 0.941
Kurtosis −0.320 −0.468

 

Figure 1. Percentage of time-series observations in particular generation ranges.

 

Figure 2. Autocorrelation function (ACF) of the Wind Farm A energy generation time series.
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Figure 3. Autocorrelation function (ACF) of the Wind Farm B energy generation time series.

Figure 4 shows daily variability of hourly energy production [p.u.] of Wind Farms
A and B. Arithmetic means of hourly energy generations for each hour of the day were
calculated based on data span from 4 April 2017 to 28 September 2018 (18 months in
total), with omitting test period datetimes—1 October 2018 to 1 October 2019. For the
same periods, mean arithmetic hourly generations were calculated for each month, with
the averaging of values for the months occurring two times. Pearson linear correlation
coefficient between the data is equal to 0.950. Daily variability of electric energy generation
of both wind farms is similar.

  
(a) (b) 

Figure 4. (a) Daily variability of hourly energy production of Wind Farm A; (b) Daily variability of
hourly energy production of Wind Farm B.

Figure 5 shows seasonal variability of electrical energy generation of Wind Farms A
and B. Pearson linear correlation coefficient between the data is equal to 0.922. Seasonal
variability of electric energy generation of both wind farms is similar.
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(a) (b) 

Figure 5. (a) Seasonal variability of electrical energy production of Wind Farm A; (b) Seasonal
variability of electrical energy production of Wind Farm B.

Figure 6 presents dispersion diagrams—relationships between wind speed forecasts
[p.u.] for the beginning of a 1 h period of energy generation and actual production
of electrical energy [p.u.] from Wind Farm A for 2 different NWP models (GFS and
ECMWF). Figure 7 contains similar diagrams for Wind Farm B. For both figures, points
are slightly more concentrated for the ECMWF model (cases b). All dispersion diagrams
indicate a non-linear relationship between wind speed and the yield of electricity. The
exact shape corresponding approximately to the shape of the wind turbine power curve
typical for a single turbine cannot be well seen on the diagram due to low concentration of
data points. Both of the observed disadvantageous phenomena result probably from the
following reasons:

• Data include wind speed forecasts instead of actual, recorded values;
• Wind speed forecasts are momentary values for a given hour and actual wind speed

usually changes during a 1 h period;
• Data come from very large wind farms with turbines scattered across vast territory

with varying orography. For single wind turbines, data would probably be much
more concentrated.

For both wind farms, extreme outliers were treated as unreliable samples, and fur-
ther removed from data. This can be due to incorrect readings, missing data or sched-
uled/unscheduled shutdowns of at least a part of the wind farm. Only extreme, rarely
occurring outliers were removed from the data, since big errors of wind speed prediction
certainly must occur in a 24 h forecast horizon. A scenario with null wind speed forecast
and non-zero electricity generation could be given as an example of NWP inaccuracy.

2.2. Analysis of Importance of Available Basic Input Data for Forecasting Methods

A detailed description of the available basic set of potential input variables for fore-
casting models is presented in Table 2. Figure 8 presents time points (momentary values
time lags) of point weather forecasts from GFS and ECMWF models (input data) in relation
to periods of electricity generation.
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(a) (b) 

Figure 6. (a) Relationship between wind speed forecast from GFS NWP model and electricity
generation from Wind Farm A; (b) Relationship between wind speed forecast from ECMWF NWP
model and electricity generation from Wind Farm A.

  
(a) (b) 

Figure 7. (a) Relationship between wind speed forecast from GFS NWP model and electricity
generation from Wind Farm B; (b) Relationship between wind speed forecast from ECMWF NWP
model and electricity generation from Wind Farm B.

To identify the most important inputs for prediction models, extensive sensitivity
analysis was performed for both wind farms. All of the 68 potential input variables that
had been acquired were included. Comparison of the importance of input variables for
both farms made it possible to draw general conclusions about the validity of use of given
variables in predictions of electricity generation from large wind farms. Figure 9 presents
consecutive steps of this analysis. Global Sensitivity Analysis (SA statistics) in the MLP
network was performed for 4 models. Each trained model had 68 input variables and
1 output variable (electricity generation), 40, 50, 60, 70, and 80 (5 models) hidden neurons,
used the BFGS learning algorithm, hyperbolic tangent hidden layer activation function,
and linear output layer activation function. After training each MLP model, GSA was
performed and the importance of each input variable was computed. Next, for each input,
the overall rating was calculated as the arithmetic mean of 4 results of global sensitivity
analysis obtained from each MLP model.
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Table 2. Description of available basic input variables for forecasting models.

Input Data Numbers Input Data Code/Codes Description of Input Data (Three Categories)

Category I. Markers of variability of wind farm’s daily energy production

1 hour
Numbers from 0 to 23 refer to the time of the forecast, where
0 refers to power generation from 23:00 to 00:00

2 ave_hour Arithmetic mean of power generation for the given hour of the
day (24 values)

Category II. Lagged variables of hourly energy generation forecasted time series

3–5 E-23 h, E-24 h, E-25 h Energy generation lagged by 23/24/25 h from currently
considered timestamp

Category III. NWP forecasts

6–12 GFS_t_−3, GFS_t_−2, . . . ,
GFS_t_3

Seven values of air temperature point forecasts from GFS NWP
model for respective hourly lags −3, −2, −1, 0, +1 1, +2, +3 h

13–19
ECMWF_t_−3,
ECMWF_t_−2, . . . ,
ECMWF_t_3

Seven values of air temperature point forecasts from ECMWF
NWP model for respective hourly lags −3, −2, −1, 0, +1 1, +2, +3
h

20–26 GFS_p_−3, GFS _p_−2, . . . ,
GFS _p_3

Seven values of atmospheric pressure point forecasts from GFS
NWP model for respective hourly lags −3, −2, −1, 0, +1 1, +2, +3
h

27–33
ECMWF_p_−3,
ECMWF_p_−2, . . . ,
ECMWF_p_3

Seven values of atmospheric pressure point forecasts from
ECMWF NWP model for respective hourly lags −3, −2, −1, 0, +1
1, +2, +3 h

34–40 GFS_h_−3, GFS_h_−2, . . . ,
GFS_h_3

Seven values of air humidity point forecasts from GFS NWP
model for respective hourly lags −3, −2, −1, 0, +1 1, +2, +3 h

41–47
GFS_alpha_−3,
GFS_alpha_−2, . . . ,
GFS_alpha_3

Seven values of wind direction (0 degree at N, 90 at E) point
forecasts from GFS NWP model for respective hourly lags −3, −2,
−1, 0, +1 1, +2, +3 h

48–55
ECMWF_alpha_−3,
ECMWF_alpha_−2, . . . ,
ECMWF_alpha_3

Seven values of wind direction (0 degree at N, 90 at E) point
forecasts from ECMWF NWP model for respective hourly lags
−3, −2, −1, 0, +1 1, +2, +3 h

55–61
GFS_v_mod_−3,
GFS_v_mod_−2, . . . ,
GFS_v_mod_3

Seven values of wind speed (modulus calculated from NS and
WE components) point forecasts from GFS NWP model for
respective hourly lags −3, −2, −1, 0, +1 1, +2, +3 h

62–68
ECMWF_v_mod_−3,
ECMWF_v_mod_−2, . . . ,
ECMWF_v_mod_3

Seven values of wind speed (modulus calculated from NS and
WE components) point forecasts from ECMWF NWP model for
respective hourly lags −3, −2, −1, 0, +1 1, +2, +3 h

1 1 h lag refers to the time point for which forecast is to be generated, and energy generated is assigned to the
hourly period between the considered time and one hour earlier.

 

Figure 8. Relationship between time lags of GFS and ECMWF forecasts and periods of
electricity generation.

45



Energies 2022, 15, 1252

 

Figure 9. Consecutive steps of potential input data sensitivity analysis of made with 4 different
methods and Overall Rating (OR).

Results of sensitivity analysis for potential input variables of prediction models are
shown in Figure 10. The most important input variables are definitely wind speed forecasts,
notably, the ones closest to the 1 h energy generation period. ECMWF NWP forecasts
turned out higher in ranking than GFS forecasts, while the least important input variables
were predictions of atmospheric pressure.

The importance of INPUT variables varied between 4 analytic methods used here for
both value of metrics and position in importance ranking. The most differing results came
from the SA method due to the non-linear modelling (MLP network) used in that method.
The remaining analytic methods used linear modelling; hence, their results were similar.
Figure 11 contains the interrelationship matrix (Pearson linear correlation coefficients)
between 4 analytic methods used to determine the importance of input variables.

2.3. Analysis of Importance of Additional Input Data Created

A detailed description of an additional set of potential input variables for forecasting
models, derived from mathematical transformation of basic data, is presented in Table 3.
Additional input data are created to verify their potential usefulness and importance in
the forecasting process. Wind speed forecasts using either one or both NWP models are
averaged to reduce the random component. Percentage differences between averaged wind
speed/atmospheric pressure point forecasts for respective pairs of hourly lags are computed
to include additional information about the dynamics for wind speed/atmospheric pressure
in the model. Physical model (turbine power curve) prognosis is another additional
information. A third-order polynomial is used to approximate the power curve, while
averaged wind speeds with lag 0 and 1 from time bounds of the predicted periods are
inputs to this model.

Figure 12 shows the results of importance analysis of the additional input data created.
The analysis was performed according to steps in Figure 3, the same as for the basic input
data case, and used 68 basic input variables (described in Table 2) and 13 additional inputs
(described in Table 3). Figure 12 presents partial results-40 best input variables out of
the total of 81. Studies have shown that additional input data, in particular forecasts
from physical models and average values of predictions, are highly valuable as prediction
model explanatory data, as additional input data usually rank high in terms of importance
(OR metrics). Moreover, similar results for both wind farms show the universality of
our procedure of the construction of additional input data. As the next step, it was
verified whether additional data can be advantageous for different methods of electricity
generation forecasting.
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Figure 10. Results of sensitivity analysis of potential input variables for prediction models for Wind
Farm A and Wind Farm B: 4 analysis methods and final Overall Rating (OR).
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Figure 11. Interrelationship matrix (Pearson linear correlation coefficients) between 4 methods used
to determine the importance of input variables.

Table 3. Description of additional input variables created for forecasting models.

Input Data Numbers Input Data Code(s) Description of Additional Input Data

1A ave(GFS_ECMWF)_v_mod_0-1
Arithmetic mean of averaged wind speed point forecasts for
hourly lags 0 h and +1 1 h from ECMWF NWP and GFS
NWP models

2A ave_ECMWF_v_mod_0-1 Arithmetic mean of wind speed point forecasts for hourly
lags 0 h and +1 1 h from ECMWF NWP model

3A ave_GFS_v_mod_0-1 Arithmetic mean of forecasts of wind speed point for hourly
lags 0 h and +1 1 h from GFS NWP model

4A–7A

differ(GFS_ECMWF)_v_mod_−2_−1
differ(GFS_ECMWF)_v_mod_−1_0
differ(GFS_ECMWF)_v_mod_0_1
differ(GFS_ECMWF)_v_mod_1_2

Percentage difference between averaged wind speed point
forecasts for respective pair of hourly lags −2, −1, 0, +1 1,
+2 h from ECMWF NWP and GFS NWP models

8A–11A

differ(GFS_ECMWF)_p_−2_−1
differ(GFS_ECMWF)_p_−1_0
differ(GFS_ECMWF)_p_0_1
differ(GFS_ECMWF)_p_1_2

Percentage difference between averaged atmospheric
pressure point forecasts for respective pair of hourly lags −2,
−1, 0, +1 1, +2 h from ECMWF NWP and GFS NWP models

12A E_from_producer_turbine_power_curve

Forecast of electric energy production calculated based on
producer turbine power curve estimated as a polynomial of
degree 3, with ave(GFS_ECMWF)_v_mod_0-1 as input data.
For input data below and above the cut-in for turbine, the
forecast value is equal to zero

13A E_from_power_curve(scatter_plot)

Forecast electric energy production calculated based on
estimated polynomial of degree 3 as turbine power curve
with ave(GFS_ECMWF)_v_mod_0-1 as input data. The
estimation of power curve was executed based on the
scatter plot between electric energy production and wind
speed forecasts. For input data below and above the cut-in
for turbine, the forecast value is equal to zero

1 1 h lag refers to the point of time for which forecast is to be generated, and energy generated is allocated between
the considered time and one hour earlier.
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Figure 12. Results of sensitivity analysis of potential input variables including additional input
data created for prediction models for Wind Farm A and Wind Farm B: 4 analysis methods and
final Overall Rating (OR). Figure contains 40 best inputs out of 81. Names of additional inputs are
marked green.

3. Forecasting Methods

This section includes the description of proposed forecasting methods. The research
used both single methods as well as advanced ensemble and hybrid methods. Described
the Persistence Model is a benchmark for the quality of other, more advanced forecasting
methods.

Single methods, using only one individual predictor, are addressed next. The general
scheme is presented in Figure 13.

 
Figure 13. General structure of single method.
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Persistence model. The naïve model is the simplest model in forecasting. In the
Persistence Model, the forecast generation value is the same as the actual energy generation
value from the same hour the day before. Forecasts are calculated by Formula (1):

ŷt = yt−24 (1)

where ŷt—forecast electric energy generated by wind farm for hour t and yt−24·n—energy
generation for period lagged by t – 24 from forecast period t.

Physical Model. This forecasting model of generated hourly power is a function of
wind speed. The function is in the form of the 3rd-order polynomial. Two different methods
were utilized to form 3rd-degree polynomial separately for Wind Farm A and Wind Farm B.

• Physical model version 1. The polynomial of degree 3 is estimated based on turbine
power curve data from the manufacturer’s catalogue (turbine power for wind speeds
with 1 m/s steps). For input data below and above cut-in for each turbine, the forecast
is equal to zero. The input data depend on variant (ave(GFS_ECMWF)_v_mod_0-1,
ave_ECMWF_v_mod_0-1 or ave_GFS_v_mod_0-1).

• Physical model version 2. The polynomial of degree 3 is estimated based on the scatter
plot between electric energy production and wind speed forecasts (ave(GFS_ECMWF)
_v_mod_0-1). For input data below and above cut-in for each turbine, the forecast
value is equal to zero. The input data are ave(GFS_ECMWF)_v_mod_0-1.

K-Nearest Neighbours Regression. KNNR is a non-parametric method used for
regression problems [37]. The input of the model contains the k-closest training examples in
the feature space. The output of KNNR model is the property value for the object. Property
value is the average of the values of k-nearest neighbours. Hyperparameter—the value of k
(the number of nearest neighbours) needs searching for the appropriate value. The other
hyperparameter for tuning is the choice of the distance metric.

Neural Network, Type MLP—Multi-layer Perceptron is a classical type of ANN.
Widely used over decades, it proved its applicability as an effective non-linear or linear
global approximator [13,38]. It is a feedforward ANN usually with an input layer, one or
two hidden layers, and an output layer. Originally, it used the backpropagation algorithm
for supervised learning. During years of development, other optimisation algorithms were
applied for MLP learning, among them, the BFGS method that was chosen as the learning
algorithm in our research. The number of neurons in hidden layer(s) was decided to be the
main hyperparameter for tuning.

Support Vector Regression. Support Vector Machine for regression (SVR) transforms
the classification task into regression by defining hyperparameter width ε tolerance re-
gion around the destination [39]. Hyperparameters of SVR for tuning are the following:
regularization constant C, tolerance ε, and parameter s of the Gaussian kernel.

Deep Neural Network Type LSTM. The main difference between LSTM and tradi-
tional RNNs is LSTM’s internal built format. Its hidden layers contain 3 gates, namely,
input, forget, and output gate. This solution allows to control the flow of information
and allows to deal with problems such as gradient explosion and vanishing, and taking
long-term dependencies into account [10]. A typical LSTM network contains an input
layer followed by up to two hidden layers finished by an output layer with dropout layers
possible between layers. The dropout mechanism’s goal is to prevent overfitting by keeping
node in network with Bernoulli distribution probability [40]. The LSTM model contains
(among others) the following hyperparameters: the number of hidden layers and neurons
in them, activation function in each layer, number of training epochs, batch size, dropout
degree, type of model optimizer, and learning rate.

Ensemble methods, using more than one individual predictor and supported by a
simple or more complex integration system of individual forecasts, are addressed next. The
simplest integration system is weighted averaging of individual predictors. The general
scheme of establishing an ensemble of predictors is presented in Figure 14. The ensemble
method can use the same type of methods as predictors (e.g., Random Forest, Gradient-
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Boosted Trees) or different types of predictors (e.g., single Machine Learning methods as
predictors.

  
(a) (b) 

Figure 14. (a) General structure of ensemble method with the same type of methods as indi-
vidual predictors; (b) General structure of ensemble method with different types of methods as
individual predictors.

Random Forest Regression. RF is an ensemble method based on many single decision
trees (the same type of models). In the regression task, the prediction in a single decision
tree is the average target value of all instances associated with the single leaf node [41].
The final prediction is the average value of all n single decision trees. The regularization
hyperparameters depend on the algorithm used, but generally restricted are among others:
the maximum depth of a single decision tree, maximum number of levels in each decision
tree, minimum number of data points placed in a node before the node is split, minimum
number of data points allowed in a leaf node and maximum number of nodes. The number
of predictors for each of the n single decision trees is made by the random choice of k
predictors from all available n predictors [41,42].

Gradient-Boosted Trees for Regression. Gradient boosting refers to an ensemble
method that can combine several weak learners into a strong learner [41]. GBT works
by sequentially adding predictors (the same type of models) to the ensemble, each one
correcting its predecessor. The method tries to fit the new predictor into the residual
errors made by the previous predictor. The final prediction is the average value from all n
single decision trees. In comparison with random forest, this method has one additional
hyperparameter—learning rate, which scales the contribution of each tree [42,43].

Ensemble Averaging Without Extremes. The method developed by the authors of
this study involves the deletion of the minimum and maximum forecast from the set of n
single predictors (different types of methods) before each calculation of single final forecasts,
being an average of forecasts from n-2 single predictors. The deletion is executed 24 times
for each forecast separately. The choice predictors in the ensemble is based on the similar
levels of forecasting error and mutually independent operation [9]. The final forecast result
is calculated by Formula (2).

ŷi =
1

n − 2
· (

s

∑
k=1

ŷk
i − min{ŷk

i } − max{ŷk
i }) (2)

where i is the forecast point, ŷi is the final forecast value, ŷk
i is the forecasted value by

predictor number k, and n is the number of predictors in the original ensemble before the
removal of the outputs of predictors yielding extreme forecasts from the set of results.

Weighted Averaging as an Integrator of Ensemble based on nMAE and R. It inte-
grates the results of selected predictors (different types of methods) into the final verdict of
the ensemble. The final forecast is defined as the average of the results generated by all n
predictors in the ensemble and is calculated by Formula (3) [9,39]. This method reduces
the variance of forecast errors. Predictors are included in the ensemble based on two
important elements:
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• time series of the residues from forecasts should be most distant from each other (small
R values);

• the smallest nMAE errors on the validation subset.

ŷi =
1
n

n

∑
j=1

ŷj
i (3)

where i is the prediction point, ŷi is the final predicted value, ŷj
i is the predicted value by

predictor number j, and n is the number of hybrid predictors in the ensemble.
Hybrid methods, using two or more different methods connected in series, are ad-

dressed next.
Machine learning method with additional input data from two Physical models.

This hybrid method is a cascade of two different Physical models (version 1 and version 2)
with one of the five ML methods (GBT, SVR, KNNR, MLP, or LSTM). ML component uses
both forecasts of electric energy production as an additional input. The general scheme of
this hybrid method is presented in Figure 15.

 
Figure 15. General structure of hybrid method—machine learning method with additional input
data from two Physical models.

Physical model version 1 with input data as wind speed forecast from Gradient-

Boosted Trees method. This hybrid method consists of the Gradient-Boosted Trees method
connected in series with Physical Model Version 1. The GBT method predicts wind speed,
while Physical Model Version 1 forecasts electric energy production. Physical Model Version
1 yielded smaller errors than the MLP and GBT methods considered here. The training and
testing subsets differ from each other. The training subset uses wind speed based on the
manufacturer’s reversed turbine power curve (third-order polynomial) as additional input.
This allows the method to learn effective wind speed corresponding to actual values of
electric energy production. In turn, the testing subset uses ave(GFS_ECMWF)_v_mod_0-1
as its additional input, since electric energy production, and thus effective wind speed,
would be unobtainable during the operational work of the models. The concept of this
hybrid methods is based on the assumption that GBT will learn better on a training subset
containing a precise estimate of wind speed than on one containing wind speed forecasts
with a large random component. The general scheme of this hybrid method is presented
in Figure 16.

A summary description of thirteen tested forecasting methods is shown in Table 4.
The listed methods include four types of ensemble methods, two types of hybrid ones, and
seven single methods. Six methods (single/ensemble) are machine learning (ML) methods,
including one deep learning method.
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Figure 16. General structure of hybrid method—Physical model version 1 with input data as wind
speed forecast from Gradient-Boosted Trees method.

Table 4. Summary description of thirteen tested forecasting methods.

Name of Method Method Code Category Complexity

Persistence PERSISTENCE Linear/
non-parametric Single

Physical model version 1 PHYS_v1 Non-linear/
parametric Single

Physical model version 2 PHYS_v2 Non-linear/
parametric Single

K-Nearest
Neighbours Regression KNNR Non-linear/

non-parametric Single

Type MLP artificial
neural network MLP Non-linear/

parametric Single

Support Vector Regression SVR Non-linear/
non-parametric Single

Deep neural network type LSTM LSTM Non-linear/
parametric Single

Random Forest Regression RF Non-linear/
non-parametric

Ensemble
(one type of model)

Gradient-Boosted Trees
for regression GBT Non-linear/

non-parametric
Ensemble

(one type of model)

Ensemble Averaging
Without Extremes INT_OUT_EXT [p1 *, . . . , pn] Non-linear/

non-parametric

Ensemble
(different types of models
including hybrid models)

Weighted Averaging as an
Integrator of Ensemble based on

nMAE and R
INT_AVE [p1 *, . . . , pn] Non-linear/

non-parametric

Ensemble
(different types of models
including hybrid models)

Machine learning method with
additional input data from two

physical models
PHYS(v1&v2)→ML Non-linear/

parametric Hybrid

Physical model version 1 with
input data as wind speed forecast

from Gradient-Boosted
Trees method

GBT→PHYS_v1 Non-linear/
parametric Hybrid

Remark: * denotes first predictor in ensemble of n predictors.
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Additional expert correction of forecasts. Since wind turbines produce no power
below the lower and above the upper limits of wind speed, a unique expert correction
method is proposed. Obviously, without verification, the use of the correction would
be unjustified, as it applies to wind speed forecasts with a large random component
instead of real-world wind speeds. Due to that, its effectiveness and validity are verified
for the selected group of methods providing best forecasts. A robust wind estimator
ave(GFS_ECMWF)_v_mod_0-1 is used as a conditional variable for the method to adjust
for bias of singular NWP models. For wind speed forecasts—ave(GFS_ECMWF)_v_mod_0-
1 below cut-in and above cut-out wind speeds for wind turbine, forecast electric energy
production is corrected to zero. The final prediction with expert correction is calculated
by Formula (4).

Êi =

⎧⎨⎩
Êi f or vmin〈v̂i〉vmax

0 f or v̂i ≤ vmin
0 f or v̂i ≥ vmax

(4)

where Êi is the predicted value (electric energy production), v̂i is the predicted wind speed
(ave(GFS_ECMWF)_v_mod_0-1) and vmin and vmax are cut-in and cut-out wind speeds
of turbine.

4. Evaluation Criteria

Three evaluation criteria are used to test the performance of the methods, including
normalized Root Mean Square Error (nRMSE), normalized Mean Absolute Error (nMAE)
and normalized Mean Bias Error (nMBE).

Normalized Root Mean Square Error which is sensitive to large error values is calcu-
lated by Formula (5):

nRMSE =
1

cnorm

√
1
n

n

∑
i=1

(ŷi − yi)
2 (5)

where ŷi is the predicted value (electric energy production), yi is the actual value, cnorm is
the normalizing factor (rated power of wind farm), and n is the number of prediction points.

Normalized Mean Absolute Error is calculated by Formula (6). nMAE is a risk metric
according to the expected value of the absolute error.

nMAE =
1
n

n

∑
i=1

1
cnorm

|ŷi − yi| · 100% (6)

Normalized Mean Bias Error (nMBE) captures average bias in prediction and is calcu-
lated by Formula (7). The forecasting method overestimates if nMBE > 0 or underestimates
if nMBE < 0.

nMBE =
1
n

n

∑
i=1

1
cnorm

(ŷi − yi) (7)

Errors nRMSE and nMAE are basic measures to evaluate the accuracy of proposed
models, while nMBE is only auxiliary. In the process of forecasting electric energy pro-
duction in a wind farm, the changes of nRMSE and nMAE have the same trend, and the
smaller the two error values, the more accurate the prediction results. Both show random
and systematic errors. A large gap between nMAE and nRMSE for the results of a method
indicates that predicted values are extremely distant from the measured data [44,45].

The effectiveness of the forecasting approaches is found by considering the uncertainty
and variability of forecasts [46]. For a comparative assessment of the performance test of
the analysed methods, the Skill Score (SS) metric was used. The proposed Skill Score metric
uses two error metrics—nRMSE and nMAE—and is calculated by Formula (8). Higher SS
values are an indication of superior prediction quality.

SS =
1
2

[(
1 − nMAEf orecast

nMAEre f erence

)
+

(
1 − nRMSEf orecast

nRMSEre f erence

)]
(8)
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where nMAEf orecast and nRMSEf orecast are errors of the analysed method, nMAEre f erence
and nRMSEre f erence are errors of reference method (persistence method—naive model).

5. Results and Discussion

The range of the acquired data was identical for both wind farms and spanned from
4 April 2017 to 10 October 2019, with about 29 months in total. Data were divided into three
subsets—training subset, validation subset, and test subset. The training and validation
subsets for the period from 4 April 2017 to 30 September 2018 (17 months) were chosen
at random (85% and 15%, respectively). The training subset is used for the estimation of
model parameters. The validation subset is used for tuning hyperparameters of parts of
methods. The last part of the data (from 1 October 2018 to 1 October 2019—12 months)
constituted the test subset used for one-time final evaluation of the quality of specific
prediction methods on data for all seasons.

Predictions were conducted sequentially, from single methods with a limited number
of input variables to hybrid methods, to ensemble methods. Such procedure allows us
to observe differences in the quality of results depending on the complexity of particular
methods and the range of input variables used. Research was done in steps in order
to verify different hypotheses, and find an optimal input dataset and the best group of
prediction methods.

Step 1. Hypotheses verification:

• Are the accuracies of two designed physical models different from each other?
• Is it better to use one or two NWP models with wind speed forecasts for physical models?

Tables 5 and 6 contains results of forecasts for A and B wind farms, respectively.
Physical and Persistence (reference) Models were used for predictions.

Table 5. Measures of performance of the proposed Physical Models (test subset) for Wind Farm A.

Method Code Input Data Codes nMAE [%] nRMSE nMBE

PHYS_v1 ave(GFS_ECMWF)_v_mod_0-1 12.3288 0.1813 0.0349
PHYS_v2 ave(GFS_ECMWF)_v_mod_0-1 12.3700 0.1709 0.0025
PHYS_v1 ave_ECMWF_v_mod_0-1 13.2318 0.1920 0.0663
PHYS_v1 ave_GFS_v_mod_0-1 14.5975 0.2152 −0.0063

PERSISTENCE E-24 h 28.7790 0.3833 0.0127
Remarks: The best fitting results for each fitting measure are printed in bold in blue. The worst fitting result is
printed in red.

Table 6. Measures of performance of the proposed Physical Models (test subset) for Wind Farm B.

Method Code Input Data Codes nMAE [%] nRMSE nMBE

PHYS_v1 ave_ECMWF_v_mod_0-1 14.6101 0.2246 −0.0173
PHYS_v1 ave(GFS_ECMWF)_v_mod_0-1 15.2718 0.2286 0.0403
PHYS_v2 ave(GFS_ECMWF)_v_mod_0-1 15.9984 0.2196 −0.0025
PHYS_v1 ave_GFS_v_mod_0-1 19.5102 0.2889 −0.0468

PERSISTENCE E-24 h 29.9931 0.3886 −0.0291
Remarks: The best fitting results for each fitting measure are printed in bold in blue. The worst fitting result is
printed in red.

Results of the two Physical Models indicate that PHYS_v1 was better fitted for both
wind farms, while results for the NWP models were ambiguous. Although using only the
GFS model was clearly the least favourable option, for Wind Farm A it was better to use
both NWP models, while for Wind Farm B it was better to use the ECMWF model only. In
comparison, the nMAE Persistence Model was twice as good as both Physical Models.

Step 2. Hypotheses verification:

• Is it better to use NWP point forecasts for hourly lags: −3, 2, −1, 0, 1, 2, 3 (original
contribution) as input data instead of the typically used lags 0, 1?

• Is it better to use one or two NWP models as input data source?
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To verify the above, a strong GBT method was used, recommended by multiple papers.
Tables 7 and 8 present the resulting forecasts for Wind Farms A and B using the proposed
GBT method with different versions of NWP input data.

Table 7. Measures of performance of the proposed GBT method, with different versions of NWP
input data (test subset) for Wind Farm A.

Method Code Input Data Numbers/Description nMAE [%] nRMSE nMBE

GBT
1−68 (68 inputs)/including NWP forecasts

from ECMWF and GFS models (point forecasts
for hourly lags: −3, 2, −1, 0, 1, 2, 3)

11.8518 0.1636 0.0006

GBT

1–5, 13–19, 27–33, 48–55, 62–68 (34
inputs)/including NWP forecasts from

ECMWF model (point forecasts for hourly lags:
−3, 2, −1, 0, 1, 2, 3)

12.5388 0.1701 −0.0019

GBT
1–5, 16–17, 30–31, 51–52, 65–66 (13

inputs)/including NWP forecasts from ECMWF
model (point forecasts for hourly lags: 0, 1)

12.9633 0.1760 −0.0006

GBT

1–5, 6–12, 20–26, 34–47, 55–61 (40
inputs)/including NWP forecasts from GFS
model (point forecasts for hourly lags: −3, 2,

−1, 0, 1, 2, 3)

13.8295 0.1855 0.0037

GBT
1–5, 16–17, 30–31, 51–52, 65–66 (13

inputs)/including NWP forecasts from GFS
model (point forecasts for hourly lags: 0, 1)

14.1665 0.1888 0.0026

Remarks: The best fitting results for each fitting measure are printed in bold in blue. The worst fitting result is
printed in red.

Table 8. Measures of performance of the proposed GBT method, with different versions of NWP
input data (test subset) for Wind Farm B.

Method Code Input Data Numbers/Description nMAE [%] nRMSE nMBE

GBT
1–68 (68 inputs)/NWP forecasts from ECMWF
and GFS models (point forecasts for hourly lags:

−3, 2, −1, 0, 1, 2, 3)
14.4555 0.2090 0.0032

GBT

1–5, 13–19, 27–33, 48–55, 62–68 (34
inputs)/including NWP forecasts from

ECMWF model (point forecasts for hourly lags:
−3, 2, −1, 0, 1, 2, 3)

14.7389 0.2141 0.0066

GBT
1–5, 16–17, 30–31, 51–52, 65–66 (13

inputs)/including NWP forecasts from ECMWF
model (point forecasts for hourly lags: 0, 1)

14.9831 0.2161 0.0048

GBT

1–5, 6–12, 20–26, 34–47, 55–61 (40
inputs)/including NWP forecasts from GFS
model (point forecasts for hourly lags: −3, 2,

−1, 0, 1, 2, 3)

17.8355 0.2397 −0.0003

GBT
1–5, 16–17, 30–31, 51–52, 65–66 (13

inputs)/including NWP forecasts from GFS
model (point forecasts for hourly lags: 0, 1)

18.0803 0.2446 −0.0019

Remarks: The best fitting results for each fitting measure are printed in bold in blue. The worst fitting result is
printed in red.

Research in step 2 demonstrated that the order of the results obtained with the same
combination of input data was the same for both wind farms. Best accuracies were achieved
by using both NWP models. The application of the novel and original idea of using point
forecasts for hourly lags: −3, 2, −1, 0, 1, 2, 3 yields clearly better results than using typical
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0, 1 lags. Like in Physical Models, in this case, forecasts for Wind Farm B were less accurate
than for Wind Farm A. Preliminary studies analysing the importance of input data also
indicated slightly lesser correlation between NWP forecasts for Wind Farm B than for Wind
Farm A. The above findings were used in further research steps; hence, the subsequent
versions of forecasts use both NWP models predictions and point forecasts for hourly lags:
−3, 2, −1, 0, 1, 2, 3.

Step 3. This step is the main, most extensive and labour intensive part of research.
Forecasts of energy production were obtained from different single, hybrid and ensemble
models, including by original methods. To find proper hyperparameters for them, more
than 300 hyperparameter combinations were tested using the Grid Search method. The
lowest nMAE score on the validation range was used as the parameter selection criterion.
Hyperparameter search ranges and their determined values for chosen methods are sum-
marized in Table A1 in Appendix A. The described determinations were carried out to
verify the following:

• Which method group yields the lowest prediction errors (recommended methods) and
does the Ensemble Averaging Without Extremes original method developed by us
belong to the recommended methods?

• Does the original proposition developed by us—additional input variables (see Table 3)—
reduce the prediction error?

• Does the original proposition developed by us—additional expert correction—reduce
the prediction error?

Tables 9 and 10 present forecasts for Wind Farms A and B resulting from the proposed
single, ensemble and hybrid methods with different sets of input data. For the two best
methods, results are shown with and without additional expert correction (see Formula (4)).

Tabular results were ordered by descending SS metric, which was taken as the main
determinant of prediction quality, as it takes into account both nMAE and nRMSE errors.

Based on the results from Tables 9 and 10, the following conclusions can be drawn
regarding the proposed single, hybrid, and ensemble methods with different sets of
input data:

• Original method called “Ensemble Averaging Without Extremes” is the best for both
wind farms (SS metric and nMAE error);

• For “Ensemble Averaging Without Extremes”, the best fitted solution was to use
an ensemble of 5 methods, while a 3-method ensemble was the best for “Weighted
Averaging As an Integrator of Ensemble”;

• Our original method “Additional Expert Correction” resulted in lower nMAE than for
predictions without correction. For “Ensemble Averaging Without Extremes”, nMAE
decreased by 0.42% for Wind Farm A and 0.92% for Wind Farm B;

• Hybrid methods have worse accuracy measures of nMAE and nRMSE than ensemble
methods for both wind farms;

• Deep neural network LSTM is the best single method, MLP is the second best;
• Original hybrid “Physical Model Version 1 With Input Data As Wind Speed Fore-

cast from Gradient-Boosted Trees Method” turned out to be of less advantage than
ensemble methods;

• For most methods, using additional input data (numbers: 1A, 2A, 3A) reduced nMAE
in comparison with using basic input data only (numbers: 1–68). KNNR was an
exception as it yielded the lowest nMAE with a highly reduced number of input
data variables;

• Values of nMBE were very low for the analysed methods, which means there was no
systematic error in predictions. The lowest nMBE for both wind farms was achieved
with the RF Method;

• Prediction errors for Wind Farm B were bigger than for Wind Farm A, which was
indicated by results of sensitivity analysis of potential input variables (see Figure 10).
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Figures 17–20 provides two forecasts of electric energy generation for Wind Farm A
made by the best method with additional expert correction for the two following days of
each season (from autumn to summer).

Table 9. Measures of performance of the proposed single, ensemble and hybrid methods with
different sets of input data (test subset) for Wind Farm A.

Method Code Input Data Numbers SS nMAE [%] nRMSE nMBE

INT_OUT_EXT [GBT, RF,
PHYS(v1&v2)→KNNR, MLP, LSTM]

with additional expert correction

Different, it depends on predictor
in ensemble 0.5925 11.3055 0.1618 0.0146

INT_AVE [GBT, RF, LSTM] with
additional expert correction

Different, it depends on predictor
in ensemble 0.5923 11.3387 0.1615 0.0117

INT_OUT_EXT [GBT, RF,
PHYS(v1&v2)→KNNR, MLP, LSTM]

Different, it depends on predictor
in ensemble 0.5921 11.3527 0.1615 0.0123

INT_AVE [GBT, RF, LSTM] Different, it depends on predictor
in ensemble 0.5910 11.4403 0.1612 0.0085

INT_AVE [GBT, RF,
PHYS(v1&v2)→KNNR, MLP, LSTM]

with additional expert correction

Different, it depends on predictor
in ensemble 0.5904 11.3558 0.1627 0.0149

INT_AVE [GBT, RF,
PHYS(v1&v2)→KNNR, MLP, LSTM]

Different, it depends on predictor
in ensemble 0.5898 11.4174 0.1624 0.0124

LSTM 1–68, 1A, 2A, 3A 0.5842 11.4012 0.1669 0.0252

GBT 1–68 0.5807 11.8518 0.1636 0.0006

RF 1–68, 1A, 2A, 3A 0.5803 11.8847 0.1635 −0.0004

PHYS(v1&v2)→GBT 1–68, 1A–13A 0.5791 11.9190 0.1639 0.0022

MLP 1–68, 1A, 2A, 3A 0.5781 11.9211 0.1646 0.0041

GBT→PHYS_v1 1–68, 1A, 2A, 3A 0.5760 11.6604 0.1698 0.0463

PHYS(v1&v2)→MLP 1–68, 1A–13A 0.5694 12.1960 0.1676 −0.0026

PHYS_v1 1A 0.5622 12.3700 0.1709 0.0025

PHYS(v1&v2)→LSTM 1–68, 1A–13A 0.5534 12.2249 0.1796 0.0134

PHYS(v1&v2)→KNNR 1A, 2A, 3A, 12A, 13A 0.5507 12.2899 0.1807 0.0326

PHYS_v1 1A 0.5493 12.3288 0.1813 0.0349

PHYS(v1&v2)→SVR 2A, 12A, 13A 0.5432 13.1031 0.1757 −0.0202

PERSISTENCE 4 0.0000 28.7790 0.3833 0.0127

Remarks: The best fitting results for each fitting measure are printed in bold in blue. The worst fitting result is
printed in red.

Figures 21–24 provides two forecasts of electric energy generation for Wind Farm B
made by the best method with additional expert correction for two following days of each
season (from autumn to summer).

Figures 17–24 show that energy generation of both wind farms in presented days
(16 in total) is highly random. For some hours of certain days, generation is periodically
close to its rated value, but for other hours generation is very low. There are also few hour
periods of null generation. The lowest generations and predictions among the presented 16
days occurred for 4 days of summer months (Figures 20 and 24). It should be noted that
generation predictions have periods of both over- and under-forecasting. Most commonly,
it can be observed on a few consequent samples of time series. Moreover, time series of
generation predictions have slightly smoothened course due to using the ensemble method,
as ensemble methods reduce the variance of forecasts. For “Ensemble Averaging Without
Extremes”, additional removal of extreme forecasts occurs before average forecast calcula-
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tion, which, in turn, further enhances the smoothening effect for generation prediction time
series.
Table 10. Measures of performance of the proposed single, ensemble and hybrid methods with
different sets of input data (test subset) for Wind Farm B.

Method Code Input Data Numbers SS nMAE [%] nRMSE nMBE

INT_OUT_EXT [GBT, RF,
PHYS(v1&v2)→KNNR, MLP, LSTM]

with additional expert correction

Different, it depends on predictor
in ensemble 0.5096 13.7552 0.2029 0.0108

INT_OUT_EXT [GBT, RF,
PHYS(v1&v2)→KNNR, MLP, LSTM]

Different, it depends on predictor
in ensemble 0.5091 13.8199 0.2025 0.0075

INT_AVE [GBT, RF, LSTM] with
additional expert correction

Different, it depends on predictor
in ensemble 0.5087 13.7794 0.2033 0.0061

INT_AVE [GBT, RF,
PHYS(v1&v2)→KNNR, MLP, LSTM]

with additional expert correction

Different, it depends on predictor
in ensemble 0.5078 13.8182 0.2035 0.0128

INT_AVE [GBT, RF, LSTM] Different, it depends on predictor
in ensemble 0.5073 13.8994 0.2028 0.0019

INT_AVE [GBT, RF,
PHYS(v1&v2)→KNNR, MLP, LSTM]

Different, it depends on predictor
in ensemble 0.5071 13.8928 0.2031 0.0096

RF 1–68, 1A, 2A, 3A 0.4977 14.4916 0.2026 0.0000

GBT→PHYS_v1 1–68, 1A, 2A, 3A 0.4944 14.6231 0.2035 0.0053

LSTM 1–68, 1A, 2A, 3A 0.4932 13.9797 0.2127 0.0109

GBT 1–68, 1A, 2A, 3A 0.4909 14.4610 0.2083 −0.0003

MLP 1–68 0.4894 14.6654 0.2068 0.0057

PHYS(v1&v2)→GBT 1–68, 1A–13A 0.4838 14.8258 0.2091 −0.0015

PHYS(v1&v2)→MLP 1–68, 1A–13A 0.4781 15.0611 0.2105 −0.0008

PHYS_v1 2A 0.4675 14.6101 0.2246 −0.0173

SVR 1–68 0.4617 15.9566 0.2116 0.0143

PHYS(v1&v2)→LSTM 1–68, 1A, 2A, 3A, 12A, 13A 0.4574 15.2485 0.2241 0.0111

PHYS(v1&v2)→KNNR 1A, 2A, 3A, 12A, 13A 0.4548 15.1681 0.2272 0.0366

PHYS_v2 1A 0.4508 15.9984 0.2196 −0.0025

PERSISTENCE 4 0.0000 29.9931 0.3886 −0.0291

Remarks: The best fitting results for each fitting measure are printed in bold in blue. The worst fitting result is
printed in red.

For both wind farms, additional analysis of nMAE error distribution was made. It
concerned hourly periods of prediction using the best forecasting method of “Ensemble
Averaging Without Extremes”. The goal of analysis was to determine whether error
magnitude depends on forecast horizon (from 1 to 24 h) and time of the day. Figure 25
shows the graph of the forecast error (nMAE) depending on the forecast horizon for the
test subset for Wind Farm A and Wind Farm B.

nMAE values presented in Figure 25 are visibly greater for Wind Farm B, which
complies with the results from Tables 9 and 10. nMAE error equals 11.3055% and 13.7552%
for Wind Farm A and B, respectively. The distribution of error values shown in Figure 25
and the distribution of average production of energy in individual hours values shown
in Figure 4a,b are very similar for both wind farms. For Wind Farm A, the correlation
coefficient is equal to 0.9331, and for Wind Farm B, the correlation coefficient is equal 0.9291.
Both autocorrelation coefficients are statistically significant (5% significance level). This
phenomenon is related to a strong non-linear relationship between the energy forecast error
and the wind speed forecast error. The aforementioned non-linear relationship results from
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the fact that the generation of energy in the wind source is a third-degree polynomial of the
wind speed.

Figure 17. Two forecasts of electric energy generation for Wind Farm A made by INT_OUT_EXT
[GBT, RF, PHYS(v1&v2)→KNNR, MLP, LSTM] method with additional expert correction for two
consecutive days of an autumn month (November).

 

Figure 18. Two forecasts of electric energy generation for Wind Farm A made by INT_OUT_EXT
[GBT, RF, PHYS(v1&v2)→KNNR, MLP, LSTM] method with additional expert correction for two
consecutive days of the winter month (January).

Figure 19. Two forecasts of electric energy generation for Wind Farm A made by INT_OUT_EXT
[GBT, RF, PHYS(v1&v2)→KNNR, MLP, LSTM] method with additional expert correction for two
consecutive days of the spring month (April).
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Figure 20. Two forecasts of electric energy generation for Wind Farm A made by INT_OUT_EXT
[GBT, RF, PHYS(v1&v2)→KNNR, MLP, LSTM] method with additional expert correction for two
consecutive days of the summer month (August).

Figure 21. Two forecasts of electric energy generation for Wind Farm B made by INT_OUT_EXT
[GBT, RF, PHYS(v1&v2)→KNNR, MLP, LSTM] method with additional expert correction for two
consecutive days of an autumn month (November).

Figure 22. Two forecasts of electric energy generation for Wind Farm B made by INT_OUT_EXT
[GBT, RF, PHYS(v1&v2)→KNNR, MLP, LSTM] method with additional expert correction for two
consecutive days of the winter month (January).
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Figure 23. Two forecasts of electric energy generation for Wind Farm B made by INT_OUT_EXT
[GBT, RF, PHYS(v1&v2)→KNNR, MLP, LSTM] method with additional expert correction for two
consecutive days of the spring month (April).

 

Figure 24. Two forecasts of electric energy generation for Wind Farm B made by INT_OUT_EXT
[GBT, RF, PHYS(v1&v2)→KNNR, MLP, LSTM] method with additional expert correction for two
consecutive days of the summer month (August).

 

Figure 25. Forecast error depending on the forecast horizon for the test subset for both wind farms.

6. Conclusions

Using two wind farms for statistical analyses and forecasting considerably improves
credibility of newly created effective prediction methods and conclusions. The results of
the study are summarized below.

Original ensemble methods, developed for researching specific implementations,
reduced errors of energy generation forecasts for both wind farms as compared to single
methods. The best integration system for ensemble methods for accuracy measure nMAE is
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a new, original integrator developed for predictions, called “Ensemble Averaging Without
Extremes” (method code INT_OUT_EXT), with five methods in the ensemble. The best
integration system for ensemble methods for accuracy measure nRMSE is an original
integrator developed for predictions called “Weighted Averaging As an Integrator of
Ensemble” (method code INT_AVE) with three methods in the ensemble.

A new, original “Additional Expert Correction” reduced errors of energy generation
forecasts for both wind farms. Deep neural network LSTM is the best single method, MLP
is the second best, while using SVR, KNNR, and Physical model is less favourable for both
wind farms. Hybrid methods have worse accuracy measures using nMAE and nRMSE
than ensemble methods for both wind farms.

Using meteo forecasts from two NWP models (ECMWF and GFS) as input data yield
better results than using a single NWP model. Using NWP point forecasts for hourly lags:
−3, −2, −1, 0, 1, 2, 3 (original contribution) as input data is better than using typical lags 0,
1. Using additional input data created, especially input data numbers: 1A, 2A, 3A, reduces
prediction errors of most methods in comparison with base input variables (input data
numbers: 1–68).

For both wind farms, strong positive correlation was determined between distribution
of energy production averages, in particular, hourly periods and distribution of prediction
errors (nMAE). Identifying this relationship is valuable, practical information concerning
the expected value of prediction error depending on the time of the day. The greater the
average generation for a given hour, the greater the prediction error (nMAE) expected.
For both analyzed wind farms, the greatest prediction errors are expected during evening
hours, while the lowest errors are expected between 08:00 a.m. and 2:00 p.m.

Using original SS metric to compare prediction accuracy is useful, as it allows to
incorporate both nMAE and nRMSE into final quality assessment. Both measures are
important for the end user of the prediction, as the former is sensitive to reducing the
average error, while the latter is sensitive to overforecasting and underforecasting.

More research is needed to verify, among other things, the following:

• Does prediction accuracy depend on using forecasts from more than one spot of a
medium-sized wind farm and how the accuracy of forecasts will be affected by other
factors, i.e., data with higher time resolution, e.g., 15 min, using real measurements of
weather as input data?

• Can measurements and weather predictions be used to create a weather-error sensitive
switching regime for models of ensembles?

• Is it possible to reduce the level of high random component in predictions?
• Will the proposed, original method of “Ensemble Averaging Without Extremes” be

equally good for different types of RES predictions (e.g., photovoltaic systems and
hydropower system)?
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Abbreviations

The following abbreviations are used in this manuscript:
ACF Autocorrelation function
ANN Artificial Neural Network
BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm
BPNN Back Propagation Neural Network
CNN Convolutional Neural Network
DNN Deep Neural Network
ECMWF European Center for the Medium-Range Weather Forecast
ELM Extreme Learning Machine
ENN Elman Neural Network
ESN Echo State Network
F Fisher test
GBT Gradient-Boosted Trees
GFS Global Forest System
GRU Gated Recurrent Unit
HRES High-resolution atmospheric model
IEC International Electrotechnical Commission
KNNR K-Nearest Neighbours Regression
LSTM Long short-term memory
ML Machine Learning
MLP Multi-Layer Perceptron
NARX Nonlinear Autoregressive Exogenous Model
nMAE normalized Mean Absolute Error
nMBE normalized Mean Bias Error
NWP Numerical Weather Prediction
PSO Particle Swarm Optimization
p.u. Per unit
R Pearson linear correlation coefficient
R2 Determination coefficient
RES Renewable Energy Sources
RF Random Forest
RNN Recurrent Neural Network
nRMSE normalized Root Mean Square Error
SA Sensitivity analysis
SS Skill Score
SVR Support Vector Regression
SVM Support Vector Machine

Appendix A

Table A1. The results of hyperparameters tuning for chosen single, hybrid and ensemble methods
for Wind Farm B.

Method Code Description of Method, the Name and the Range of Values of Hyperparameters Tuning and Selected Values

LSTM

The number of hidden layers: 1–2, selected: 2, the number of neurons in hidden layer: 4–50, selected: 35–20,
the activation function in hidden layer: ReLU/sigmoid/tanh, selected hyperbolic tangent, the activation function in
output layer: linear, learning algorithms ADAM, RMSprop, selected optimizer: ADAM, lr = 0.001, decay = 1 × 10−5,
epochs: 1500, patience: 100, batch size: 128; shuffle: True. Dropout after each hidden layer: 0/0.2, selected dropout: 0.2

SVR Regression SVM: Type-1, Type 2, selected: Type-1, kernel type: Gaussian (RBF), the width parameter σ: 0.147, the
regularization constant C, range: 1–20 (step 1), selected: 2, the tolerance ε, range: 0.01–1 (step 0.01), selected: 0.05.

PHYS(v1&v2)→KNNR Distance metrics: Euclidean, Manhattan, Minkowski, selected: Euclidean, the number of nearest neighbours k, range: 1–50,
selected: 4.

MLP The number of neurons in hidden layer: 10–80, selected 30, learning algorithm: BFGS, the activation function in hidden
layer: linear, hyperbolic tangent, selected: hyperbolic tangent, the activation function in output layer: linear.

GBT
Considered max depth: 2/4/6/10, selected depth: 6; trees number: 100/200/400, selected number: 100; learning rate:
0.1/0.01/0.001,
selected: 0.1

RF

The number of predictors chosen at random: 30, 35, 40, 45, 50, 55, 60, selected 35 number of decision trees: 1–500, selected:
385. Stop parameters: maximum number of levels in each decision tree: 5, 10, 20, selected 10, minimum number of data
points placed in a node before the node is split: 100, 200, 300, selected 200, min number of data points allowed in a leaf
node: 10, maximum number of nodes: 100.
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Abstract: Connecting an increasing number of distributed sources in MV (medium voltage) and
LV (low voltage) distribution networks causes voltage problems resulting mainly from periodic
power flows towards the HV/MV (HV—high voltage) transformer station. This temporarily changes
the nature of distribution networks from receiving to supply networks and causes an increase in
the voltage values deep within the network, often above the permissible level. Therefore, it is
necessary to search for new voltage control methods that take into account the active participation of
distributed sources. The article proposes a concept of such a system in which the control signals are
transformer taps in the HV/LV station and the values of reactive powers generated or consumed by
RES (renewable energy sources). These values can be determined either by solving the optimisation
problem (according to a given quality indicator criterion) or on the basis of appropriately selected
settings of the Q(U) characteristics of the inverters and the HV/LV transformer ratio. The article
describes both approaches, pointing to the advantages and disadvantages of each of them.

Keywords: voltage control; voltage quality; renewable energy; metaheuristic optimisation; medium
voltage; Q(U) characteristics

1. Introduction

The article continues and extends the analysis of problems related to voltage control
in MV networks, in which a large number of distributed sources have been installed.
The variable power generation of these units due to weather conditions causes frequent
changes of voltage values. The most severe are voltage increases above 1.1 Un, which when
transformed into the LV level may damage the receivers, or create conditions for switching
off the sources (both on the MV and LV side) by overvoltage protections. The volatility of
weather phenomena and the randomness operation of protective devices lead to voltage
chaos in the network.

In the previously presented work [1], the authors showed that voltage control is
possible, in which not only the HV/MV transformer with OLTC (on load tap changer) is
actively involved, but also sources connected to the MV grid. These sources, depending
on the voltage conditions (related to the variability of the power generation and voltage
changes in the HV grid), can control the values of the generated (or consumed) reactive
power on the basis of signals sent from the voltage controller.

The concept of voltage control in the MV network proposed in [1] comes down to
on-line solving (for every quarter of an hour) of the OPF (optimal power flow) task after
prior estimation of the network state and transmission of control variables determined
in the computational process to the actuators (tap changer position and source reactive
powers). In the considered OPF problem, the objective function is a voltage quality indicator
covering all network nodes (the number of nodes is N). The objective function is described
by the Equation (1).

The proven effectiveness of the optimisation task solution (the AIG heuristic algo-
rithm [2] was used) is conditioned, however, by high requirements in terms of accessibility
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to the network model and its ICT equipment. The network model is the result of the process
of estimating its state. The use of estimation algorithms at the MV level is not an easy
task, although certainly not as complex as in the case of meshed transmission networks.
Similarly, solving the OPF task in real time (the research assumed a discrete control for each
time window of one quarter of an hour) requires considerable computational expenditure.
Thus, the method of optimal voltage control in MV networks presented in [1], hereinafter
referred to as the OPFh-MVt method (optimal power flow heuristic—medium voltage for
each time period), can be considered attractive and future-proof, but today it is difficult to
convince network operators to wider attempts to implement it.

In the present article, the authors set themselves the goal of searching for an alternative
method of voltage control in MV networks with distributed generation, the implementation
of which would not be as complicated as in the case of the OPFh-MVt method, while the
results would be only slightly worse. The novelty of the proposed approach consists in
presenting the optimal method of voltage control in the MV network, the results of which
are treated as reference. For practical use, a simplified method is recommended, the results
of which have also been positively verified. The novelty of the article also lies in the fact
that a very large set of data from real objects was used to verify the presented methods.

The article consists of seven sections. The first section contains an introduction to
the subject and the purpose of extending research and analyses related to the considered
problem. The second section presents a literature review on voltage control in the MV
network. The third section contains the formulation of the optimisation task and the
description of the algorithm for its solution. The fourth section includes a description of
a simplified method of voltage control using the HV/MV transformer tap changer and
control of the reactive power of RES sources with given Q(U) characteristics. Section five
presents the IEEE 37 test network. The calculation results showing the effectiveness of the
proposed control system are included in section six. Section seven provides a discussion of
the results and conclusions.

2. Literature Review

The subject of voltage control in MV networks with distributed generation has been
the subject of research in many articles. The authors approach this problem in various ways,
trying to demonstrate the effectiveness of the proposed methods of solving it. Generally
speaking, there are four main groups of methods presented in the works so far:

• Voltage control using only the on-load tap-changer (and/or possibly a capacitor bank);
• Voltage control with the use of on-load tap changer and reactive power generation

in RES;
• Voltage control with the use of on-load tap changer, reactive power generation in

renewable energy sources and the use of energy storages connected in selected net-
work nodes;

• Voltage control with the use of on-load tap changer, reactive power generation in RES
and the use of electrolyser installations connected in generation nodes.

It is also possible to imagine a comprehensive approach to the problem and apply
voltage control using an on-load tap changer, reactive power generation in RES, the use of
energy stores connected in selected network nodes and electrolyser installations connected
in generation nodes.

A number of works have been prepared in which problems resulting from a radical
change in the characteristics of distribution networks, previously considered typical (radial
system of operation, unidirectional power flow), are considered. Some of them used both
classical and heuristic optimisation methods. The selected voltage control evaluation
criteria identified by the authors in other articles are presented below:

• Minimisation of the cost of power and energy losses [3],
• Minimisation of power losses [4,5],
• Minimisation of energy losses [3],
• Minimisation of costs related to active power losses and reactive power flow [6],
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• Minimisation of the voltage quality index (while in the literature there are indicators
expressed with the use of various dependencies) [7–11],

• Minimisation of the number of tap changer position changes [9].

The above-mentioned selected criteria, ways of solving the outlined problems and
many other similar issues can be found, for example, in works [12–24].

The easiest way to adjust is to use only the on-load tap-changer. For example, in [25]
the authors used the multi-agent system to find the optimal values of the transformer tap
changer in order to minimise the objective function, which is the positive three-phase volt-
age deviation. This function represents the sum of voltage deviations in the observed nodes.

In article [26], the authors present the results of analyses for the IEEE 13 test net-
work at various load levels. Changing the transformer taps is controlled by the line drop
compensator, depending on the required voltage level in the selected network node.

An interesting approach can be found in article [9], where the objective function is the
difference between the transformer’s taps at two consecutive time points (assuming that
there is one transformer in the network). The optimisation task is to minimise the number
of tap changer position changes during the day while meeting the constraints.

Study [10] uses a method consisting in adaptive adaptation of the transformer’s tap
changer to the assumed voltage value in a fictitious node. The electrical distance of this
node from the MV busbars in the 110/MV station is also appropriately determined so that
the expected voltage value in it influences the quality indicator of the voltage quality in the
entire network.

In article [8], seven different objective functions related to the optimal voltage control
in the MV and LV distribution networks are considered. HV/MV transformer ratios and
MV/LV transformers ratios are addressed as decision variables.

In addition to the transformer tap changer, the ability to generate reactive power in
RES is also used for voltage control. A number of works on this subject have been written.
An example may be article [6] where the decision variables are the reactive powers of the
micro-sources in the LV network at the given transformer ratio. The objective function is
the sum of costs related to active power losses and costs related to the reactive power flow.
The internal point method is used to solve the optimisation problem.

Decision variables in the form of reactive power generated or consumed by RES are
also used in work [27]. The authors consider a three-criteria objective function under the
necessary constraints. Weights for individual criteria are determined dynamically.

In [28], a two-criteria objective function is considered, consisting of the sum of the costs
of power losses and the costs of switching operations as well as voltage deviations. The ob-
jective function contains two criteria, therefore weighting factors were used. The weighting
factors are selected by the analytic hierarchy process (AHP), described in article [29].

In [30], a single-criterion objective function is used in the form of a voltage quality
indicator. The optimisation task was to minimise the objective function by changing the
HV/LV transformer ratio and the reactive power of the sources, but only in a few operating
states. The applied method of linear optimisation was locally convergent.

The use of reactive power generation or consumption in RES was also analysed in
works [31–36].

The next group of papers are articles devoted to the use of electricity storage to
optimise the operation of the distribution network [37–45]. The authors of these studies
apply various criteria and methods for solving voltage problems.

In the work [37], the authors consider the medium voltage network and the water
supply network, which is a controlled energy storage. Water consumption control (grid
load control) is used to control the voltage by changing the electricity consumption. The
article [38] presents the Predictive Control (MPC) Model, which consists in the optimal
coordination of generation in renewable energy sources, energy storage and the operation
of the on-load tap changer. One of the most interesting functions of the objective is included
in [39]. The objective function has two normalised criteria (with values ranging from 0 to
1). Each of the two considered criteria is taken into account with an appropriate weighting
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factor. The first criterion is the voltage deviation, while the second criterion is the total
capacity of the energy storage.

In the work [40], in order to solve the voltage problems caused by a large number of
photovoltaic installations, a coordinated method of controlling distributed energy storage
systems in combination with traditional control (OLTC) has been proposed. A novel
charging and discharging system for battery energy storage systems (BESS), which uses
real network data, is described in [41]. The article [42] proposes to create an optimal battery
charging/discharging schedule in the context of power loss minimisation. Determining
the capacity of battery energy storages installed in a grid saturated with photovoltaic
installations, in order to control their operation, was proposed in [43]. A review of energy
storage technologies and systems and the methods of their application, for example in
power grids, have been presented in the works [44,45].

Some authors use the available measurements and also look for the relationship
between the voltage values and the power generated in the sources to implement the
voltage control process in the distribution network. Some of these methods do not require
knowledge of the network model, due to the application of neural solution (deep learning)
and artificial intelligence. Such attempts can be found, for example, in works [46–51].

The use of voltage value measurements to control the operation of the distribution
network without the knowledge of the network topology is presented, for example, in [46].
In the work [47], the authors replace with a linear model the non-linear dependencies
between the voltage values in the distribution network nodes and the generated power.
Optimal voltage control in a distribution network containing renewable energy sources,
which does not require knowledge of its model, was considered in the works [48,49]. In
the article [50] a data-driven-based optimisation method for var-voltage sequential control
was proposed. An interesting algorithm of voltage control in the distribution network
is presented in [51]. The authors also emphasise that the proposed method requires the
exchange of information only between neighbouring photovoltaic installations, which
significantly reduces the communication complexity.

The applied deep learning algorithms can be combined with optimisation tasks. Ex-
amples of such research and analyses are presented, for example, in the works [52–55].

The P2G (power to gas) technology has also been developed for some time, and
alkaline water electrolysers (AEL)—[56,57], used for the production of “green hydrogen”,
are considered the cheapest and the most accessible. From the point of view of voltage
control they are controlled active power loads connected at the generation nodes. Within a
few years there has been a significant increase in interest in this method of storing surplus
electricity from renewable sources [56–64]. Some works concern the optimal size and layout
of electrolyser installations. Part of the articles concern the elimination of negative voltage
effects in networks saturated with RES installations. The analyses are conducted for both
the medium voltage and low voltage distribution networks.

As shown in the literature review, there are many ways to assess the quality of voltage
and the effectiveness of its control in power grids. Some of them use a complicated
mathematical framework, in others the objective function of the control process is difficult
to understand intuitively by a combination of technical and economic indicators. In
some solutions it is not necessary to know the network model, but it is necessary to
transmit signals from all its nodes and sources. According to the authors of the presented
article, only simple voltage quality assessment criteria have a chance for practical use by
network operators and sensitive consumers. Therefore, the search for complex alternative
criteria was abandoned, assuming that simple criteria such as (1) having a simple physical
interpretation (analysis of the deviation from the criterion value) can be treated as the
appropriate objective function of a more or less complex optimisation processes.

Comparing the works of other authors with the analyses performed in this article, its
originality should be emphasised, consisting in the application of an innovative approach
to the problem of voltage control in the considered MV network. It consists in:
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• Using the actual annual power generation characteristics by the solar and wind sources
under consideration (Pgi(t));

• Using the real characteristics of the power received at nodes (PLi(t)) of the considered
network;

• Using the real waveform of voltage changes in the 110 kV network (UHV(t));
• Determination of the optimal values of the control variables with the use of the

proprietary OPFh-MVt algorithm for all the considered grid states and determination
of global control assessment indicators;

• Formulation of a simplified method of voltage control using the interaction of the
OLTC system and active operation of the source control and its evaluation in relation
to the reference results obtained with the OPFh-MVt method.

3. The Method of Voltage Control in the MV Network Using the Results of Cyclic
Solving of the OPF Task

The method proposed in this paper is implemented on the basis of the solution of the
optimisation task.

The considered objective function was described by the following equation:

F(x, y, z) =

√√√√ N

∑
i=1

(
Ui − Uo

Un

)2
= Ind U, (1)

while the individual variables of the control process are defined as follows:
x =

[
ϑ, QG1 . . . QGk . . . QGp

]
—vector of control variables formed by transformer

ratio (ϑ—discrete variable) and reactive power of p sources connected to the MV network;
y =

[
UHV, PL1 . . . PLm, QL1 . . . QLm, PG1 . . . PGp

]
—vector of independent variables,

formed by: HV network supply voltage, active and reactive power received in m nodes
and power generated in p sources, not subject to change during optimisation calculations,

z =
[
U1 . . . Uj, δ1 . . . δj

]
—the vector of state variables containing nodal voltages and

their arguments (total number of network nodes j = p + m).
The results obtained by that method can be treated as reference for the other simplified

solutions. A diagram of the control process is shown in Figure 1.

Figure 1. Diagram of the OPFh-MVt voltage control method, control signals—transformer ratio ϑ

and reactive power of RES systems.

For the solution of the optimisation task, the original proprietary heuristic algorithm
called AIG (Algorithm of Innovative Gunner) was used, described in detail in [2] and
successfully tested to solve many technical and mathematical problems—[2,65]. The AIG
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algorithm is characterised by the fact that the components of the decision vector are subject
to “multiplicative” modifications in subsequent iterations, described by the relationship

x(k+1)
l = x(k)l · gl(ξ) (2)

in contrast to “additive” modifications, used in other metaheuristic methods [65–73],
described by the relationship

x(k+1)
l = x(k)l + Δx(k)l (3)

where k is the next iteration, functions gl(ξ) and Δx(k)l are a symbolic notation and a
characteristic of the heuristic method used.

The innovativeness of the AIG algorithm results from a new method of determining
the value of decision variables in subsequent iterations. This means that in each step of the
iteration process, the previously obtained solution is corrected by appropriately selected
multipliers. This is a fundamental difference compared to other metaheuristic algorithms, in
which the process of creating a new solution is based on adding an appropriate component
(appropriate for a given method) to the previous solution or searching in its environment.
The authors of the article, as the authors of the AIG algorithm, find more and more
applications in which its speed and accuracy of calculations are used. It is also used in
other applications, even very distant from the power industry [74–77].

In the case of the AIG algorithm, the gl(ξ) functions have the form of the cosα function
and its inverse (cosα)−1, while α and β are correction angles drawn from the variable
interval (−αmax, αmax) and (−βmax, βmax) by means of the uniform distribution. A block
diagram showing the operation of the AIG algorithm is shown in Figure 2 [2].

 

Figure 2. Block diagram of the AIG algorithm (k is the iteration number).

The objective function F(x), which is minimised, is described by Equation (1). The
following limitations are checked during the optimisation process:

• Minimum and maximum transformer ratio values (ϑ). The calculations were based on
a 10 MVA transformer with 19 operating positions of the tap changer, within the range
of ±9 (plus the tap in the zero position);

• Minimum and maximum reactive power values for each renewable energy source
(QGmax, QGmin ). It was assumed that each RES has the ability to generate/consume a
maximum reactive power equal to . . . PnG; since the maximum power of each power
plant is 1 MW, the possible reactive power control is within ±0.4 Mvar;

• Minimum and maximum voltage values for all network nodes (Ui); the voltage was
kept in the range from 0.9 UnMV to 1.1 UnMV;
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• Permissible values of current carrying capacity of sections of power lines (Ilmax). The
following value was assumed in the calculations:

� Ilmax = 355 A for conductors with a cross-section of 120 mm2,
� Ilmax = 290 A for conductors with a cross-section of 70 mm2,
� Ilmax = 170 A for conductors with a cross-section of 50 mm2,
� Ilmax = 145 A for conductors with a cross-section of 35 mm2,

and the permissible power value o of the transformer (SnT). The calculations assume
the rated power of the transformer SnT = 10 MVA.

The calculations were performed in Matlab and PowerWorld Simulator, version 22.
The main script was written in Matlab, while the power flow calculations were performed
in PowerWorld. The connection between the two programs is possible owing to the
SimAuto plug-in (included with PowerWorld), which also acts as an interchangeable com-
puting engine that enables data exchange between different applications. The computation
process starts with running the script in the Matlab environment. Then, during each it-
eration, remote connection with the PowerWorld floodlight program is performed, the
parameters of the power system elements are changed, and the calculation results are down-
loaded [1,65,78]. The flow chart of the optimisation process is presented in the general
diagram (Figure 3).

 

Figure 3. General scheme of the organisation of the computational process used in solving the
optimisation task.

Changing the input parameters or downloading the calculation results is done with
the use of appropriate commands, appropriate for a given programming environment.
After the AIG algorithm is run, optimisation calculations follow, and the results are saved
in a file.

4. A Simplified Method of Voltage Control in the MV Network with the Use of the Tap
Changer of the HV/MV Transformer and the Active Influence of Distributed Sources

The basic voltage control system in the MV network is shown in Figure 4a. Very often,
the role of this system is limited to keeping a constant, set voltage value on the lower side
of the HV/MV transformer. The OLTC switches the transformer taps on the HV side, in
the considered case their number (up and down) was ±9, and the voltage change per tap
ΔUT = 1.11%. These are typical values. At the same time, in many cases, the neutrality of
RES in terms of generation (or consumption) of reactive power is sought by setting their
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power factors to the value cos ϕ = 1. Admittedly, this method of voltage control ensures its
set value near the transformer busbars (most often it is 1.05 Un), but it does not allow for
controlling the increase in voltage deep inside the network, which was shown for the test
cases. Such a method of control should be assessed negatively.

Figure 4. Simplified methods of voltage control in the MV grid with distributed generation: (a) tra-
ditional regulation—keeping a constant voltage value on the MV busbars, (b) keeping a constant
voltage value in an optimally selected node deep inside the grid and activating the characteristics of
Q(U) inverters.

In order to take advantage of the regulation possibilities of the sources, it is possible to
consider the way of operating with a defined level of reactive power generation. As the
problem is too high voltage values caused by the power flow towards the MV busbars,
the method of operation involving reactive power consumption depending on the value
of the generated active power, i.e., QG = −0.4 PG, was also considered. This method of
voltage control should also be assessed negatively, because in some cases the voltage value
is underestimated, and unnecessary reactive power flows increase losses.

The improvement of voltage conditions in the MV network can be achieved also by
keeping a constant voltage value not on the transformer busbars, but inside the network—
Figure 4b (node s). Depending on the possibility of signal transmission from the network
to the controller and the method of selecting the set point, the effects of such control may
be varied, but they have a significant impact on reducing the negative influence of RES on
voltage conditions and improve the efficiency of the OLTC system.

The activation of the characteristics of the Q(U) inverters results in a further improve-
ment of voltage conditions in the vicinity of installation of RES units. The required shape
of the Q(U) characteristic is given in standards [79–81]. Its individual characteristic points
can be individually set for each source. Analyses taking into account the characteristics
of reactive power as a function of voltage in a network node can be found, inter alia, in
the works [7,32,65,82–85]. Figure 5 shows the characteristic that seems to be the most
appropriate for a network with a large number of RES—when the voltage reaches the value
of 1.1 Un, the source absorbs the maximum possible value of reactive power.
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Figure 5. The Q(U) characteristic of the inverter of the RES installation (photovoltaic and wind farm)
selected for the analysis of the effectiveness of the voltage regulation in the MV grid.

5. Test Network

The subject of the research was the IEEE 37 network [86], which was assigned a
voltage of 15 kV (MV). The supply station has a 10 MVA transformer with a ratio of
ϑ = 115/16.5 kV/kV ± 9%. The operation of five sources was considered in this network—
three photovoltaic farms and two wind turbines with the same rated power of 1 MW. The
diagram of the IEEE 37 network and the location of the sources are shown in Figure 6. A
detailed description of the network structure as well as the resistance and reactance of
individual branches modelling the lines are presented in Table 1. Table 1 also contains
cross-sections and lengths of individual line sections, which show that the network in
question is typical for rural areas with an average level of electrification. The network load
includes MV/LV transformer substations connected in all nodes (the total number of nodes
is m = 37, MV/LV substations are not marked in the Figure 6). Table 1 presents the data of
the individual sections of the MV line. Table 1 presents the data of the individual sections
of the MV line.

Figure 6. IEEE 37 test network diagram [86].
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Table 1. Parameters of the individual sections of the MV line.

Power Line
from-to

Line Length
l, km

Conductor
Cross-Section

S, mm2

Resistance
R, Ω

Reactance
X, Ω

0–1 1.80 120 0.43 0.18
1–2 1.80 120 0.43 0.18
2–3 0.50 70 0.20 0.20
2–6 0.50 70 0.20 0.20

2–16 2.50 120 0.60 0.25
3–4 0.70 70 0.29 0.28
3–5 0.60 70 0.25 0.24
6–7 1.20 70 0.50 0.48
7–8 1.20 35 0.99 0.48

7–10 2.00 70 0.82 0.80
8–9 0.70 35 0.57 0.28

10–11 0.50 35 0.41 0.20
10–13 1.20 35 0.98 0.48
11–12 1.20 35 0.98 0.48
13–14 0.50 35 0.41 0.20
13–15 0.90 35 0.74 0.36
16–17 1.50 35 1.22 0.60
16–21 2.90 120 0.69 0.29
17–18 0.90 35 0.74 0.36
18–19 0.50 35 0.41 0.20
18–20 0.70 35 0.57 0.28
21–22 2.50 120 0.60 0.25
22–23 1.00 35 0.82 0.40
22–24 1.00 35 0.82 0.40
22–25 1.80 35 1.47 0.72
25–26 0.50 35 0.41 0.20
25–27 2.00 35 1.63 0.80
27–28 1.50 35 1.22 0.60
28–29 0.90 35 0.74 0.36
28–32 1.80 35 1.47 0.72
29–30 1.00 35 0.82 0.40
29–31 0.60 35 0.49 0.24
32–33 1.50 35 1.22 0.60
33–34 1.90 35 1.55 0.76
34–35 0.80 35 0.65 0.32
34–36 0.80 35 0.65 0.32

The authors had hourly measurements of the load and generated power in the MV
network and the voltage on the 110 kV (HV) side registered for the entire year, which gives
8760 h. The record of changes in these values is shown in Figure 7. Power generation in
wind turbines (Figure 7c) and in photovoltaic farms (Figure 7d) corresponds to real changes
resulting from weather conditions (wind speed, solar radiation intensity, cloud cover).

Figure 8 shows the results of the voltage analysis carried out for the tested MV
network in the conditions of complete no RES generation. The voltage values determined
for 8760 cases form a characteristic multicoloured “band” which, with increasing distance
from the MV busbars of the HV/MV transformer, slightly widens and falls downwards. In
all cases and for each node, the voltage must be between 1.01 and 1.05 of the rated voltage.
Thus, the voltage quality in the state of no generation, even without introducing numerical
indicators, can be assessed as good.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 7. Drawn variable values for subsequent calculation cases (a) HV values, (b) maximum loads
of individual nodes, (c) power generated in wind turbine (G2), (d) power generated in photovoltaic
farm (G4), (e) total power generated in renewable energy sources, (f) total load power in MV nodes.

Figure 8. The results of the voltage analysis in the IEEE 37 network without the participation
of sources.

6. Calculation Results

Below, the results of the analysis of voltage values in the MV nodes, carried out over a
period of one year with the use of the three control methods discussed above, are presented
and compared.
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6.1. Assessment of Voltage Quality Using a Traditional Circuit

Figure 9 shows the results of the analysis carried out with the assumption that the
control system keeps the value of 1.05 Un on the transformer LV bus (node 0 of IEEE 37
network) by influencing the OLTC. Generators operate with coefficient cos ϕ = 1 or absorb
reactive power according to defined relation QG = −0.4 PG. As can be seen in Figure 9a,b,
the band of voltages clearly widens, exceeding in many cases the critical value of 1.05 Un.
As the voltage drops below 1.02 Un, under no-generation conditions, it is impossible to
ensure stable voltage conditions on the lower side of the MV/LV transformers of the
consumers connected at nodes 25 to 37. The values of the voltage quality index, defined by
Equation (1), many times exceed the value of 0.1 defined as acceptable (Figure 9c,d). High
generation with reactive power absorption slightly reduces the maximum voltage values,
but for small generation cases the voltage value drops below the value equal to 1.

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 

Figure 9. Annual effects of voltage control using the traditional method for two cases of reactive
power generation in sources: cos ϕ = 1, QG = −0.4 PG (a) voltages in network nodes, cos ϕ = 1;
(b) voltages in network nodes, QG = −0.4 PG; (c) voltage quality indicator, cos ϕ = 1; (d) voltage
quality indicator, QG = −0.4 PG; (e) power losses, cos ϕ = 1; (f) power losses, QG = −0.4 PG; (g) OLTC
position, cos ϕ = 1; (h) OLTC position, QG = −0.4 PG.
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6.2. Voltage Quality Assessment Using the OPFh-MVt Method

Figure 10 shows the results of the analysis carried out with the assumption that the
control system operates in accordance with the principles of the OPFh-MVt method. As a
result of the optimisation process, repeated in each time window on the basis of data from
telemetry and grid state estimation, the HV/MV transformer ratio values and the reactive
powers of the sources connected to the grid are determined. As can be seen in Figure 10a,
the band of voltages becomes significantly narrower and even at the end of the network it
ranges from 1.04 Un to 1.08 Un. Moreover, the voltage quality indicator (optimisation task
of objective function) decreases in value and in the worst case it practically does not exceed
the level of 0.1.

 

(a) (b) 

 
(c) (d) 

Figure 10. Results of the analysis of the effects of voltage regulation using the OPFh-MVt method:
(a) voltage values in the network nodes for all hours of the year, (b) annual changes in the voltage
quality index, (c) annual changes in power losses in the network, (d) annual changes in the position
OLTC.

Generators produce or absorb reactive power so as to minimise the value of the
indicator. Changes in the value and direction of reactive power flows take place very
rapidly, as they are forced by the course of the optimisation process (Figure 11). The result
of high reactive power flows is a significant increase in power losses, which is visible in
Figure 10c (compared to Figure 9c). The transformer ratio values changed with OLTC, on
the one hand, limit the voltage at the end of the network, but on the other hand, they allow
to keep the appropriate voltage value near the station busbar.

Referring to the course of the optimisation process, it should be stated that the AIG
algorithm ensures its high convergence and accuracy. Figure 12 shows changes in the best
values of the objective function for the selected case.

Figure 12 shows how quickly the AIG algorithm finds the optimal solution. Addi-
tionally, for comparison and verification, Figure 12 shows the course of the optimisation
process according to the known heuristic algorithms—cuckoo search (CS) and moth-flame
optimisation (MFO) compared to the proprietary AIG algorithm. The chart shows that prac-
tically 100 iterations are enough to find the optimal solution, so the optimisation process
runs efficiently. For AIG, it is even more convergent than for the other tested algorithms.
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(a) (b) 

(c) (d) 

(e)

Figure 11. Changes in reactive power generation and consumption of individual RES in the voltage
regulation process according to the OPFh-MVt method (a) G1, (b) G2, (c) G3, (d) G4, (e) G5.

Figure 12. Changes of the best values of the objective function in subsequent iterations for AIG, CS
and MFO algorithms.

6.3. Description of the Method Using OLTC Control Related to the Voltage inside the Network with
the Simultaneous Use of the Q(U) Characteristics of Individual Sources

Figure 13 presents the results of the analysis carried out with reference to the alterna-
tive, simplified method of voltage control, described in point 4. The value of the transformer
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ratio is determined by the controller to which the voltage is applied from the deep inside of
the network. The selection of the node for which the regulator tries to keep the value of
1.05 Un (internal reference node) is the result of the offline optimisation process, described
in the next section. Additionally, for each source, Q(U) characteristics are activated, which
ensure local voltage limitation under high-generation conditions. The band of voltages
visible in Figure 13a is slightly less coherent than for full optimisation (Figure 10a), but
much more favourable than for conditions with traditional control method (Figure 9a,b).
The power losses in Figure 13c are clearly smaller than in the case of control OPFh-MVt
(Figure 10c). It is a natural consequence of limiting the generation of reactive power in
sources only to ensure the appropriate local voltage value, without striving to minimise the
global value of the quality indicator Ind U. This is shown in Figure 14—the values of the
reactive power absorbed are significantly lower than in the case of the OPFh-MVt control.
It can be seen that they do not reach their maximum values and the generation of reactive
power does not occur at all.

 
(a) (b) 

 
(c) (d) 

Figure 13. Graphs for data after optimisation (a) voltage values at all MV network nodes, (b) voltage
indicator, (c) power losses, (d) transformer tap.

 
(a) (b) 

 
(c) (d) 

Figure 14. Cont.
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(e) 

Figure 14. Changes in reactive power generation and absorption of individual RES in the voltage
control process according to the simplified method—OLTC + Q(U) (a) G1, (b) G2, (c) G3, (d) G4,
(e) G5.

6.4. Selection of the Internal Reference Node

The concept of selecting the control reference node not on the HV/MV transformer
busbars but inside the network has been known for years. Such a node was called the
“centre of gravity of the network load” and it was modelled (without real voltage transmis-
sion) by means of a elements (R, X) inside the controller. This solution was called current
compensation. With the development of distributed generation, this concept should be
modified. As shown in Figure 4b, the reference node for control with OLTC should be
appropriately selected, located inside the network and transmission of the voltage value
to the controller should be provided. The question is how to select a reference node? The
general rule for such a choice can be described as “deep but not too deep”. For each of the
8760 h of the year, the effectiveness of the method described in Section 6.3 was simulated,
with each of the 37 test network nodes selected as the reference node (in total, calculations
were made for 8760 × 37 = 324,120 cases). The following figures show the results of these
simulations.

Figure 15 shows the values of the Ind U indicator for the entire IEEE 37 network
determined for the simulations described above. A characteristic band of numerical values
is visible and despite such a large number of results, it can be clearly seen that the lowest
values of the voltage quality index were achieved when node 22 was selected as the
reference node. Interestingly, this choice is appropriate for different load conditions,
different values of generated power, and different voltage values in the 110 kV network.
Placing the reference node too close to the generation sources (deeper into the network,
e.g., nodes 28,33,36) results in a significant reduction in the voltage value on the HV/MV
transformer busbars and deterioration of the voltage quality for the nodes closer to the
transformer and consequently for the entire network. Hence, the rationale for the principle
is as defined above (deep but not too deep).

Figure 16 shows the results of three of the 8760 simulations selected for the high
generation distributed source state, the medium generation level and for zero generation
and high load. The results of the calculations confirm the correctness of choosing node
22 as the reference node. Similar values result from the analysis of the value of the Ind U
indicator averaged for the whole year, presented in Figure 17. The choice of node 22 as the
reference node minimises the value of this indicator, which confirms the correctness of the
selection.
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Figure 15. The results of the simulation assessment of the voltage quality indicator Ind U for the
IEEE 37 network depending on the selection of the reference node, the voltage of which is maintained
at a given level by the OLTC controller.

 

Figure 16. The results of simulations determining the voltage quality index for five characteristic grid
operation conditions depending on the selection of the reference node.

Figure 17. Simulation results determining the voltage quality index averaged for the entire year
depending on the selection of the internal reference node.
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6.5. Discussion and Comparison of Results for the Analysed Voltage Control Methods

Table 2 summarises and compares the statistical assessment of annual changes in the
voltage quality index and relative power losses for the considered cases of voltage control
in the considered IEEE 37 network. The rows of the table marked with a superscript 1 refer
to network operation without RES generation. The introduction of RES generation with no
changes in the voltage control method (transformer with OLTC, zero reactive power—table
rows marked with index 2 increases the average value of the voltage quality index from
0.034 to 0.048, while its maximum value increases more than three times (from 0.076 to
0.24). This is a significant deterioration of the voltage quality, with a noticeable increase in
relative power losses (on average from 0.740% to 1.208%, maximum from 1.73% to 26.7%,
with high generation and very low load).

Table 2. Annual changes in the voltage quality and power loss index.

W σ Max Min Med

Ind U 1 0.034 0.011 0.076 0.011 0.033
Ind U 2 0.048 0.035 0.240 0.003 0.038
Ind U 3 0.011 0.014 0.108 0.001 0.006
Ind U 4 0.033 0.018 0.121 0.004 0.029

ΔP/P0
1 [%] 0.740 0.260 1.730 0.238 0.724

ΔP/P0
2 [%] 1.208 2.040 26.70 0.050 0.441

ΔP/P0
3 [%] 2.760 3.590 38.30 0.040 1.327

ΔP/P0
4 [%] 1.355 2.350 30.57 0.051 0.466

1 Network with traditional control, the transformer with OLTC keeps the voltage value equal to 1.05 Un on the MV
(bus number 0) buses; no active power generation. 2 Network with traditional control, the transformer with OLTC
as describe above, RES variable generation of active power, zero value of reactive power of RES. 3 Voltage control
in the MV network using the results of cyclic solving the OPF task. 4 A simplified method of voltage control in
the MV network with the use of the tap changer of the HV/MV transformer, keeping the voltage value equal to
1.05 Un in the depths of the network (bus number 22) and the local influence of reactive power of distributed
sources.

The use of voltage control as a solution to the OPF task and the impact on both the
transformer ratio (OLTC) and the reactive power of generating sources (RES) significantly
improve its quality—Table 2, values with the upper index 3. The average value of the
indicator Ind U decreases four times to the value of 0.011, which is significantly better
than in the absence of any generation. Unfortunately, the intensive use of reactive power
generation (or absorption) by RES systems leads to a noticeable increase in power losses.
Their average relative value increases more than twice (to 2.76%). Thus, to the technical and
computational problems related to voltage control based on OPF, there is a doubt related
to the clear relationship between the improvement of voltage quality and an increase in
power losses.

As stated earlier, a method ensuring relatively easy implementation and a positive
impact on voltage quality with a simultaneous limited increase in losses is the use of
appropriately selected Q(U) characteristics, while striving to keep a constant voltage level
in the depths of the network (in Table 2, the rows with the superscript 4. The voltage quality
index is practically the same as for the state with zero generation (0.033), the power losses
increase, but to the value of 1.355%, i.e., they are twice lower than in the case of the OPF
solution. Thus, the presented results confirm the thesis about the possibility of selecting a
relatively easy method of improving voltage conditions in a network with a large number
of RES systems.

7. Conclusions

Numerous connections of distributed generation sources to the MV grid cause un-
favourable voltage effects, characterised in high-generation conditions by an increase in
the voltage values inside the grid, above the permissible level. As the analyses presented
in the article showed, the traditional method of regulation with OLTC and keeping a con-
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stant voltage value on the MV busbars of the HV/MV transformer does not prevent this
phenomenon and it is necessary to look for new solutions.

Undoubtedly, the development of telemetry and software for estimating the state
of the MV network allows for the optimisation of its operating conditions, including the
optimisation of the voltage control system. The control variables are defined as the result
of the optimisation problem—the use of the original AIG heuristic algorithm is shown.
Simultaneous control of the HV/MV transformer ratio and influencing the generation or
absorption of reactive power by RES units dramatically improves the voltage conditions in
the MV network, even with a very high share of distributed generation. Unfortunately, this
solution is associated with a significant increase in power losses.

Technical difficulties related to the implementation of such an advanced method may
be replaced by a compromise by the operation of OLTC on the basis of a measurement signal
from the inside of the network and the effect of the activation of the Q(U) characteristics of
distributed sources. The results of the analyses obtained on the basis of the actual annual
HV voltage waveforms and power generated by wind turbines and PV systems indicate
that such control can now be treated as a standard for MV grid operation. However, it is
justified to continue working on the implementation of more advanced voltage control
methods, such as OPFh-MVt described in the article.
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Abstract: This paper concerns very-short-term (5-Minute) forecasting of photovoltaic power gen-
eration. Developing the methods useful for this type of forecast is the main aim of this study. We
prepared a comprehensive study based on fragmentary time series, including 4 full days, of 5 min
power generation. This problem is particularly important to microgrids’ operation control, i.e., for the
proper operation of small energy micro-systems. The forecasting of power generation by renewable
energy sources on a very-short-term horizon, including PV systems, is very important, especially in
the island mode of microgrids’ operation. Inaccurate forecasts can lead to the improper operation
of microgrids or increasing costs/decreasing profits for microgrid operators. This paper presents a
short description of the performance of photovoltaic systems, particularly the main environmental
parameters, and a very detailed statistical analysis of data collected from four sample time series of
power generation in an existing PV system, which was located on the roof of a building. Different
forecasting methods, which can be employed for this type of forecast, and the choice of proper input
data in these methods were the subject of special attention in this paper. Ten various prognostic
methods (including hybrid and team methods) were tested. A new, proprietary forecasting method—
a hybrid method using three independent MLP-type neural networks—was a unique technique
devised by the authors of this paper. The forecasts achieved with the use of various methods are
presented and discussed in detail. Additionally, a qualitative analysis of the forecasts, achieved using
different measures of quality, was performed. Some of the presented prognostic models are, in our
opinion, promising tools for practical use, e.g., for operation control in low-voltage microgrids. The
most favorable forecasting methods for various sets of input variables were indicated, and practical
conclusions regarding the problem under study were formulated. Thanks to the analysis of the utility
of different forecasting methods for four analyzed, separate time series, the reliability of conclusions
related to the recommended methods was significantly increased.

Keywords: microgrids; operation control; power generation; PV system; very-short-term forecasting;
machine learning; interval type-2 fuzzy logic system

1. Introduction

Microgrids are autonomous energy micro-systems that can operate in both the syn-
chronous (parallel) mode with distribution system operators’ grids and the island mode.
Control of the microgrid operation in both modes, in particular in the island mode, is a very
important issue. Forecasts of power generated from renewable energy sources and forecasts
of power demand, in a very-short-term horizon, affect the proper microgrid operation,
especially in the island mode. Because of this, forecasts are more and more important. Very-
short-term power-generation forecasts, if imprecise, can cause increased costs/decreased
profits for microgrids operators or improper operation of energy micro-systems.

It is expected that microgrids will undergo management of electrical power and energy
in a very-short-term horizon. All active components of the microgrid, e.g., controllable
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microsources, energy storage units, and controllable loads, take part in the management
process. For the electrical power and energy-management process to proceed correctly,
a lot of detailed data is needed. These data include, among others: data on current and
forecast loads, data on current and forecast values of power and energy generated by
nondispatchable sources (among them, renewable energy sources), and data on the current
and forecasted prices of the electrical energy market. These data enable the correct control
process of the above-mentioned active components of the microgrid. Obtaining accurate
forecasts of power generated in PV systems in a very-short-term horizon is therefore very
important from the point of view of power and energy management in the microgrid.

1.1. Related Works

The first part of the literature review refers to the very-short-term forecasting. Within
this field, we distinguish between load-demand forecasts and power-generation (wind
power and photovoltaic power) forecasts.

The problem of forecasting power demand in a very-short-term horizon is presented
in several publications, e.g., in [1–4]. The authors of [4] describe the 10 s forecasting of
power demand in the case of highly variable loads. In turn, paper [5] includes a very
comprehensive overview of load forecasting methods in short-term and very-short-term
horizons. Topics such as the different areas and locations to which this type of forecast can
be applied (smart buildings, microgrids, small cities), along with forecasted time horizons,
are described in this overview.

Various methods (models) can be applied to prepare forecasts of wind power genera-
tion in very short time horizons. In [6], a model of wavelet decomposition and weighted
random forests for very-short-term wind power forecasts is presented. The authors of [7]
describe hybrid empirical mode decomposition and team empirical mode decomposition
models for the needs of wind power forecasts. The authors of [8] present various ap-
proaches: neuro fuzzy systems, a support vector regression, and a regression tree in the
case of forecasting 1 h wind power. The authors of [9] address, in turn, different approaches
for forecasts of wind power in minute horizons. The fuzzy model of Takagi–Sugeno applied
to very-short-term forecasts of wind power is presented in [10]. In [11], models based on a
discrete-time Markov chain for very-short-term wind power forecasting are described.

Another aspect to be considered is photovoltaic power forecasting in very-short-term
or short-term horizons. Two methods, including smart persistence and random forests for
the needs of forecasts of PV energy production, are presented in [12]. The authors of [13]
address a team model for short-term PV power forecasts. In [14], a complex model for
solar power forecasts is described. The model combines wavelet transform, ANFIS, and
hybrid firefly and PSO algorithms. The authors of [15] discuss a physical hybrid ANN for
24 h-ahead PV power forecast in microgrids. A very comprehensive review and evaluation
of different methods (models) for PV power forecasting are included in [16]. A review of
various methods concerning power-generation forecasting in PV systems is also presented
in [17]. Paper [18] includes an extensive comparison of different physical models, which
can be used for the needs of forecasts concerning PV power generation. In turn, the impact
of the availability of design data on the exactness of power-generation forecasts in PV
systems, based on physical models, is described in [19].

The second part of the literature review specifically refers to microgrids.
The topic of microgrids was discussed intensively in the literature. In [20,21], a

formal definition of microgrids is presented. The idea of microgrids was described in
many other publications, e.g., [22,23]. A lot of books and papers address the topic of
microgrids’ operation control [22–29]. In [24,28,29], a very comprehensive overview of
works relating to optimum control (centralized control and decentralized (distributed)
control) in microgrids is presented. The authors of [25,28] describe the centralized control
logic. In turn, the distributed control logic in microgrids is discussed in [26,28,29]. The
authors of [25] present the model of predictive control in microgrids. The operational

90



Energies 2022, 15, 2645

control in the microgrid island mode is addressed in [25,27]. In [30], a fault detection,
localization, and categorization method in the case of a PV-fed DC microgrid is described.

In the analyzed works, different issues concerning photovoltaic power forecasting in a
very-short-time horizon and microgrids were considered. The main aim of this paper is
to provide a very comprehensive review of the various possible methods of very-short-
term photovoltaic power-generation forecasting for the needs of low-voltage microgrids
operation, as well as select the best methods among those considered.

1.2. Objective and Contribution

The following are the main objectives of this paper:

• Carry out an analysis of the statistical properties of a time series of the measured
values of 5 min power generation in a PV system;

• Verify the usefulness of the available input variables—perform a validity analysis
(the time series of solar irradiance, air temperature, PV module temperature, wind
direction, and wind speed) using four different methods and select eight sets of input
variables to make forecasts using various methods;

• Check the efficiency of 5 min horizon power-generation forecasts by means of ten fore-
casting methods, including machine learning, hybrid, and ensemble methods (several
hundred various models with different set values of parameters/hyperparameters
have been verified for this purpose);

• Point out forecasting methods that are the most effective for this 5 min power-
generation time series depending on the number of input variables used.

• The selected contributions of this paper are as follows:
• The research concerns unique data—a time series of 5 min power-generation values

in a small, consumer PV system. In the case of such small PV systems and such a
short forecast horizon (5 min), meteorological forecasts are usually not used in the
forecasting process due to difficulties in obtaining them, which makes it problematic
to obtain forecasts with very high accuracy;

• We provide a detailed description of the performance of photovoltaic systems regard-
ing the main environmental parameters;

• We performed extensive statistical analyses of the available time series (including an
analysis of the importance of the input variables);

• We used tests of ten different prognostic methods (including hybrid and team methods);
• We developed a new, proprietary forecasting method—a hybrid method using three

independent, MLP-type neural networks;
• We indicate the most favorable prognostic methods for various sets of input variables

(from 3 input variables to 15 input variables) and formulate practical conclusions re-
garding the problem under study, e.g., from the point of view of microgrids’ operation.

• We provide a broad comparative analysis of forecasting methods of a very-short-term
horizon for power generation in PV systems that can be connected to low-voltage
microgrids.

After completing our studies, we can state that there are efficient, very-short-term
forecasting methods for PV power generation, which are suitable for practical use in
microgrids’ operation.

The organization of this paper is as follows: Section 2 describes the influence of the
main environmental parameters on the performance of photovoltaic systems. Section 3.1
includes an analysis of the statistical properties of the time series of PV power generation
data investigated in this paper. The analysis leading to the choice of proper input data
(explanatory variables) for various prognostic methods is shown in Section 3.2. Section 4
addresses the forecasting methods applied in this paper. In turn, Section 5 discusses criteria
employed to evaluate the quality of the forecasting models considered. A broad compar-
ative analysis of forecasting methods of a very short time horizon for power generation
in PV systems is presented in Section 6. Section 7 includes the main conclusions resulting
from our studies. A list of references ends the paper.
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2. Performance of Photovoltaic Systems

The two main environmental parameters affecting the performance of photovoltaic
(PV) systems are solar irradiance and cells’ temperature [31,32]. Changes in solar irradiance
result in a generally proportional shift of the I–V (current–voltage) curve along the current
axis, along with a relatively much smaller voltage change. Under low-irradiance conditions,
such as those during overcast weather, the maximum power of the PV module tends to
be further decreased due to the higher significance of the parallel resistance, which results
in a slight decrease in current with an increasing voltage. This effect is highly dependent
on PV cells’ technology. The current changes resulting from the changing irradiance are
instantaneous from the point of view of PV system energy yields. The PV system power
output is primarily dependent on the available irradiance.

The PV cell temperature is the second most important factor influencing the energy
output of a PV system, as demonstrated by analyses utilizing the performance ratio (PR)
parameter to model PV systems’ operations [33,34]. The increase in the PV cell temperature
results in a decrease in the PV device’s open-circuit voltage, along with a minor increase in
the short-circuit current. The PV output power temperature coefficients of silicon-based
solar cells are of the order of −0.45%/K [35]. Due to heat capacity of PV modules being
heavily dependent not only on the materials and structure of the module itself but also
on its mounting structure, tilt angle, and surrounding ground, the rate of response of
the module’s temperature to the environmental conditions (the irradiance, velocity, and
direction of wind and the ambient temperature) varies significantly and must be assumed
to be an individual property of the particular system under analysis. The literature provides
numerous similar approximations of the influence of temperature on PV systems’ efficiency
and output power, often using empirically established coefficients [36]. Direct measurement
of the temperature of laminated solar cells is difficult, and temperature sensors are usually
attached to the rear backsheet of the module. The significant temperature gradient between
different points of a single module exposed to sunlight (due to proximity of the frame
or mounting structure attachment) makes reliable module temperature challenging, with
guidelines suggesting the use of up to four temperature sensors on a single module to model
the temperature correctly [37,38]—an effort rarely undertaken, even in research-oriented
test systems, and even more so in commercial systems.

Spectral effects, related to the mismatch between the spectral response of a PV mod-
ule (which primarily depends on PV cell technology) and the spectrum of the incident
irradiance (which consists of the direct and diffused component of the solar spectrum
and light reflected from the surrounding objects—particularly important for bifacial and
multijunction modules), primarily contribute towards varying irradiance effects. However,
the spectral mismatch also impacts thermalization and sub-bandgap losses, which result in
PV module heating. These factors are difficult to quantify in the analysis of PV systems’
performance, as their inclusion would require long-term monitoring of the solar spectra
in the location of the system under analysis. Their impact is also highly specific to PV
cell technology [39]. The size and layout of a PV system may also impact both the degree
and pace of the change of its power output due to external factors, which is particularly
important in the case of large-area systems [40].

3. Data

3.1. Statistical Analysis of the Time Series of Power-Generation Data

The installed power of the analyzed PV system is 3.2 kW. The power output of the
analyzed system was monitored using the built-in capability of the system’s inverter, type
SMA Sunnybox SB3000. The built-in measurement system records parameters, such as AC
and DC side power, voltages, and currents. The data points are recorded in 5 min intervals.
These electrical data are then merged with the data gathered by the meteorological station.
Statistical analysis is based on fragmentary time series, including 4 full days. Each day
is from a different season. The daily time series includes 288 periods of 5 min. The total
number of 5 min periods of power generation in watts is 1152. Before statistical analysis
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was performed, the data “cleaning” process was performed. Wrong data were identified
and replaced with data most relevant to their location (e.g., in the case of non-zero power-
generation values in the period between sunset and sunrise or zero-generation values in
the period when solar irradiance was non-zero).

Table 1 shows selected statistical measures of the time series of power generation in
the PV system. As much as 50% of power generation from the time series was due to small
values, below 46.914 (W) (which is more than 68 times less than the installed power of the
PV system).

Table 1. Descriptive statistics of time series of power generation.

Statistical Measures PV System Data

Mean 635.61 (W)
Percentage ratio of mean power to installed power 19.86%

Standard deviation 930.63 (W)
Minimum 0.00 (W)
Maximum 3114.81 (W)

Range 3114.81 (W)
Coefficient of variation 146.41%

The 10th percentile 0.00 (W)
The 25th percentile (lower quartile) 0.00 (W)

The 50th percentile (median) 46.91 (W)
The 75th (upper quartile) 1127.19 (W)

The 90th percentile 2368.10 (W)
Variance 866,074.80 (-)
Skewness 1.23 (-)
Kurtosis −0.04 (-)

Figure 1 shows the daily time series of power generation for every season of the
year (actual measurement data). The whole spring day was cloudless (generation was
close to the rated power, very smoothed time series). The opposite of a spring day was
a winter day with a much shorter power-generation period and a significantly smaller
generation compared to a spring day and a summer day. Dynamic changes in the quantity
of generation during the summer and autumn days are evidence of the high variability of
cloud cover on these days.

Figure 1. Daily time series of power generation for every season of the year.

For the time series of power generation, the autocorrelation coefficient (ACF) slowly
decreased from 0.974 (one period back, e.g., 5 min) to 0.892 (twelve periods back, e.g., 1 h)
(see Figure 2). All autocorrelation coefficients are statistically significant (5% significance

93



Energies 2022, 15, 2645

level). The use of several past values of the forecasted time series of power generation as
input data for forecasting models seems justified.

Figure 2. Autocorrelation function (ACF) of the analyzed time series of power generation.

3.2. Analysis of Potential Input Data for Forecasting Methods

The forecasted output is the power generation in the PV system (generation in the DC
part of the system). Five additional time series (measured, real values) are available for
analysis as potential input data. There are no forecasts of these time series. The following
time series are available:

• Solar irradiance (W/m2);
• Air temperature (◦C);
• PV module temperature (◦C);
• Wind direction (degrees);
• Wind speed (m/s).

Only the past values of the five exogenous explanatory variables and the past values
of the dependent variable (endogenous variable) can be selected as input data for the
forecasting methods. Furthermore, a weighted averaging of the time series of power-
generation values can be performed. This activity should reduce the random component of
this time series. The selected past values of such transformed time series may be a valuable
set of input data. They can even potentially replace the past values of the forecasted time
series as input data in the forecasting model. The values of the smoothed time series of
power generation were calculated from Equation (1).

Psmoothed
t = Pt−1·wt−1 + Pt−2·wt−2 + Pt−3·wt−3, ∑k=3

k=1 wt−k = 1 (1)

where Psmoothed
t is the smoothed value of power generation for period t and Pt−k is the value

of power generation for period t−k, wt−1 = 0.6, wt−2 = 0.3 and wt−3 = 0.1.
Table 2 shows Pearson linear correlation coefficients (R) between the 5 min power

generation and the potential explanatory variables considered. All correlation coefficients
are statistically significant (5% level of significance). The number of expertly proposed past
values (from one to three withdrawals) for each explanatory variable results from the value
of the Pearson correlation coefficient (the higher the value of the Pearson coefficient, the
greater the significance of the variable) and the independence of information contained
in a given explanatory variable (the small value of the Pearson coefficient comparing the
analyzed explanatory variable and other explanatory variables).
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Table 2. Values of Pearson linear correlation coefficients between 5 min power generation and the
explanatory variables considered.

Code of Variable Potential Explanatory Variables Considered R

SPG(T-1) Smoothed power generation in period t−1 0.9756
PG(T-1) Power generation in period t−1 0.9744
PG(T-2) Power generation in period t−2 0.9601
PG(T-3) Power generation in period t−3 0.9536
SI(T-1) Solar irradiance in period t−1 0.9661
SI(T-2) Solar irradiance in period t−2 0.9587
SI(T-3) Solar irradiance in period t−3 0.9385
AT(T-1) Air temperature in period t−1 0.4261

PV_MT(T-1) PV module temperature in period t−1 0.7134
WD(T-1) Wind direction in period t−1 −0.2475
WS(T-1) Wind speed in period t−1 0.1825

The three past values of power generation and the three past values of solar irradiance
have very large and similar values of the Pearson’s coefficient related to the dependent
variable (output data)—power generation. PV module temperature in period t−1 has a
significantly greater R value than the air temperature in period t−1. The smallest R values
have wind direction in period t−1 and wind speed in period t−1. All R values except wind
direction in period t−1 are positive.

Figure 3 presents dispersion diagrams–relationships between power generation in
period t and smoothed power generation in period t−1. The relationship is close to
linear. The strongest linear relationship is visible for values close to the extremes (power
generation close to zero and power generation close to the rated power). The few points
significantly deviating from the linear relationship can be interpreted as a change in cloud
cover over a period of 5 min. The Pearson linear correlation coefficient between the output
data (the power generation in period t) and proposed new input data (the smoothed
power generation in period t−1) is equal to 0.9756. This R value for the smoothed power
generation in period t−1 is the biggest of all potential input data.

Figure 3. Relationship between power generation in period t and smoothed power generation in
period t−1.
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In order to determine the importance of the potential input data, the following methods
of selecting variables were additionally used, using all possible 11 inputs and 1 output:

• C&RT decision trees algorithm for the selection of variables in regression problems—for
each potential predictor (input data), the coefficient of determination R2 is calculated;

• Analysis of variances (F statistics)—this method calculates the quotient of the intergroup
variance to the intragroup variance (the dependent variable) in predictor intervals (the
number of quantitative predictor classes is determined before the analysis);

• Global Sensitivity Analysis (GSA statistics) for multilayer perceptron (MLP) neural
network. A neural network with one hidden layer and four neurons in this layer was
used for the analysis. The training algorithm is BFGS, the activation function in the
hidden layer is the hyperbolic tangent, and the activation function in the output layer
is linear. The value of the importance factor for input data number k is the quotient of
the RMSE error of the forecasts of the trained MLP network using the remaining 10
input data and the input data number k is replaced by its mean value from the total
data to the RMSE error of the forecasts using all 11 sets of input data. The greater the
value of the importance factor for the given input data, the greater their significance.
Results below 1 for a given input data mean that these input data can probably be
eliminated because the MLP network without these input data has a lower RMSE error
in the forecasts;

• The importance of input data using the random forest (RF) algorithm is the many
decision trees (DCs). The importance of the given input data is measured by checking
to what extent nodes (in all decision trees) using the input data reduce the impurity
Gini indicator, with the weight of each node being equal to the number of associated
training samples [38]. It was assumed for the analysis that each decision tree would
have 6 randomly selected sets of input data from the total of 11.

The results of the input data selection with the C&RT decision tree algorithm are
shown in Figure 4. The values of the coefficient of determination are sorted in descending
order. The most important explanatory variable according to this method is smoothed
power generation in period t−1.

Figure 4. The results of the input data selection with the C&RT decision tree algorithm.

In Figure 5, the results of the input data selection with the use of the analysis of variance
(F statistics) are presented. The F values are sorted in descending order. Power generation
in period t−1 is the most important explanatory variable according to this method.
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Figure 5. The results of the input data selection using analysis of variance (F statistics).

The results of input data selection using the Global Sensitivity Analysis for the mul-
tilayer perceptron (MLP) neural network are shown in Figure 6. The importance factor
values are sorted in descending order. The most important explanatory variable according
to this method is solar irradiance in period t−1.

Figure 6. Input data selection results using Global Sensitivity Analysis for MLP-type neural network.

In Figure 7, the results of the input data selection with the use of the random forest
algorithm are presented. The importance values are sorted in descending order. Smoothed
power generation in period t−1 is the most important explanatory variable according to
this method.

Figure 7. The results of the input data selection using the random forest algorithm.
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Based on the analysis of the selection of variables using these four methods, the
following conclusions can be drawn:

• For all analyzed methods of selecting variables, the significantly least important input
data are wind direction in period t−1 and wind speed in period t−1. In the vast
majority of cases, the last, least-important input data are (somewhat surprisingly)
wind speed in period t−1;

• The best input data include smoothed power generation in period t−1, power genera-
tion in period t−1, and solar irradiance in period t−1.

• The results of the individual selection methods were quite similar, except for the
input-data-selection method using global sensitivity analysis for the MLP-type neural
network. In this case, the most important input data—solar irradiance in period
t−1—are significantly more important than the second (surprisingly) in order input
data, the PV module temperature in period t−1. This method also obtained validity
results with the greatest diversification of numerical values;

• For all analyzed methods of selection of input data, the PV module temperatures in
period t−1 are more important input data than the air temperature in period t−1;

• The results of the input-data-selection method with the C&RT decision tree algorithm
(values of the coefficient of determination) are very similar to the values of Pearson’s
linear correlation (Table 2), both in relation to the order of input data in the ranking as
well as the values of the coefficients.

Table 3 shows the input datasets that will be applied to forecasts using various meth-
ods, including hybrid methods and team methods. The input datasets proposed for the
forecast quality tests assume the use of all data nominated on the basis of the selection
made using four methods, as well as the use of a limited number of inputs for a given
method (e.g., maximum of four sets of input data—this is the limitation of the Interval
Type-2 Fuzzy Logic System method due to the computational time consumption). Thanks
to the construction of many sets with a different number of input data, it will be possible
to verify whether it is reasonable to limit data to those that selection methods indicate as
the most important input data or whether it is better to use all available input data that
are statistically significant. The persistence model only uses the last known value of the
forecast time series for the prediction (set 0 (1 input)). This model is a reference point for
other more advanced methods, the forecasts of which should have lower error measures.

Table 3. Sets of input data selected for forecasting methods.

Name of Set Codes of Input Data and Additional Comments

Set 0 (1 input) PG(T-1)
SET I (3 inputs) PG(T-1), PG(T-2), PG(T-3)

SET II A (4 inputs) PG(T-1), SI(T-1), PV_MT(T-1), AT(T-1)
SET II B (4 inputs) SPG(T-1), SI(T-1), PV_MT(T-1), AT(T-1)

SET II C (3, 3, 4 inputs)
PG(T-1), PG(T-2), PG(T-3)—inputs for predicting PG forecast(T)

SI(T-1), SI(T-2), SI(T-3)—inputs for predicting SI forecast(T)
PG forecast(T), SI forecast(T), PV_MT(T-1), AT(T-1)—inputs for predicting PG(T)

SET III (11 inputs) SPG(T-1), PG(T-1), PG(T-2), PG(T-3), SI(T-1), SI(T-2), SI(T-3), AT(T-1), PV_MT(T-1),
WD(T-1), WS(T-1)

SET IV (3, 3, 13 inputs)

PG(T-1), PG(T-2), PG(T-3)—inputs for predicting PG forecast(T)
SI(T-1), SI(T-2), SI(T-3)—inputs for predicting SI forecast(T)

SPG(T-1), PG(T-1), PG(T-2), PG(T-3), SI(T-1), SI(T-2), SI(T-3), AT(T-1), PV_MT(T-1), WD(T-1),
WS(T-1), PG forecast(T), SI forecast(T)—inputs for predicting PG(T)

SET V (15 inputs) SPG(T-1), PG(T-1), PG(T-2), PG(T-3), SI(T-1), SI(T-2), SI(T-3), AT(T-1), AT(T-2), AT(T-3),
PV_MT(T-1), PV_MT(T-2), PV_MT(T-3), WD(T-1), WS(T-1)

One of the sets (set I (three inputs)) assumes the use of only three retracted values of
the forecast time series. This is to compare the quality of forecasts based only on the time
series without the use of exogenous input variables with the forecasts using additional
exogenous input variables.
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Set II C (three, three, and four inputs) and set IV (three, three, and thirteen inputs) are
sets for the hybrid method. The first model forecasts power generation in period t using the
last three values of the time series. The second model forecasts solar irradiance in period t
using the last three values of the time series. The third model that generates the correct
final forecast of power generation in period t uses the forecasts from the first model and
the second model as input data.

Set V uses all available statistically significant data, including the last three sets’
previous values of the following variables: power generation, solar irradiance, PV module
temperature, and air temperature.

4. Forecasting Methods

This section describes the methods employed in this paper. Forecasts are made using
single methods, ensemble methods, and hybrid methods. In total, ten prognostic methods
were used. Figure 8 presents a general diagram of subsequent activities related to the
forecasting process.

Figure 8. A general diagram of the consecutive steps in the forecasting process.

In the first step, data were preprocessed. In the beginning, before the process of data
scaling (normalization) and data processing into the appropriate sets (input data and output
data, the process of data “cleaning” was performed. Next, the data from the time series
of the PV system’s power generation were normalized to relative units (one relative unit
is equal to the installed power). The other time series of data (exogenous input variables)
were normalized using min–max scaling. The data, including 1152 periods of 5 min, were
divided into three subsets: training, validation, and test subsets, respectively. Training
and validation subsets consisted of 80% of the time series chosen randomly (division into
training and validation parts, which are different depending on the forecasting method
used). The test subset comprised the remaining 20% of the time series via random selection.
Estimation of model parameters was performed with the training subset. The validation
subset was used for tuning the hyperparameters of the selected methods. The last one—test
subset—was applied to find the final results of errors in the forecast methods used. The
choice of the training and validation subsets from 80% of the data of the time series was
made with the usage of gradient-boosted trees (GBT) along with the bootstrap technique.
The multiple linear regression model (LR) only used the training subset (80% of the data
of the time series) without a validation subset—this model had no hyperparameters, only
parameters determined during a one-time parameter-optimization process.

Next, multivariate analysis was performed—using the predictive methods on eight dif-
ferent input datasets in the training subset and the selection of appropriate hyperparameters
of the methods in the validation subset. An example of the selected hyperparameters and
the scope of their searches for the selected methods is included in Appendix A—Table A1.

Then, the final predictions for the subset test were made for all methods with the
selected hyperparameters.
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Postprocessing was performed in the last step. The values of the generated forecasts
were scaled (de-normalized) to natural values (watts). An expert forecast correction was
performed—non-zero power-generation values from the periods between sunset and
sunrise were reset (power generation is impossible) in these time periods.

Following is a brief description of the proposed predictive methods. The persistence
model was a benchmark for the quality of other, more advanced forecasting methods.

Persistence model. The naive model was the simplest to implement. It assumes that
the forecast generation value is equal to the actual power-generation value obtained from
the period 5 min before. Forecasts were calculated by Equation (2):

ŷt = yt−1 (2)

where ŷt—forecast power generated by the PV system in a 5 min period t and yt−1—power
generation in a period lagged by t−1 from forecast period t.

Multiple linear regression model. This is a linear model that adopts a linear associa-
tion among the input variables and the single output variable [41,42]. The input data are
particular lags of the forecasted output variable. The other input explanatory variables
(including their particular lags) are correlated to the output variable. The least-squares
approach was used to fit the model.

K-Nearest Neighbors Regression. This technique is a non-parametric method used
for regression and classification tasks [42,43]. The input consists of the k nearby training
examples from the feature space. When using the KNN regression, the output is the
property value for the object. This value represents the average of the values of the k
nearest neighbors. The number of nearest neighbors is treated as the main hyperparameter
for the tuning process. Models with a very low k value of 1 or 2 are most likely to suffer
from overfitting. Along with increasing the value of k, this model should work more
efficiently, but it may also lead to an increase in the load on the model and the occurrence
of underfitting. The distance metric is the second hyperparameter.

MLP-type artificial neural network. This is a group of feedforward artificial neural
networks (ANNs). MLP is an effective and popular linear or non-linear (depending
on the kind of activation function in hidden layer/layers and output layer) universal
approximator [44,45]. It consists of one input layer, which typically has one or two hidden
layers, and one output layer. It often uses the backpropagation algorithm for the supervised
learning process. The number of neurons in the hidden layer(s) is usually the main
hyperparameter in the tuning task. Another selectable hyperparameter is the activation
function in the hidden layer(s) and in the output layer. The Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method used for solving unconstrained non-linear optimization problems
was chosen as a learning algorithm for the neural network.

Support Vector Regression. SVM for regression of the Gaussian kernel converts the
classification process into regression by specifying the width ε tolerance region around the
destination [46]. The learning process for SVR is diminished to the quadratic optimization
problem and depends on several hyperparameters, such as tolerance ε, regularization
constant C, and width parameter s of the Gaussian kernel.

Interval Type-2 Fuzzy Logic System. Type-2 fuzzy sets (T2 FSs) are used in type-
2 fuzzy logic systems (T2 FLSs). Type-2 fuzzy sets are an expansion of type-1 fuzzy
sets (T1 FSs). Investigations on T2 FSs were performed by Zadeh, Karnik, Mendel, and
Liang [47–49]. Membership functions with three dimensions (MFs), including a footprint of
uncertainty (FOU), are features of T2 FSs [50]. The structure of T2 FLSs was presented, e.g.,
in [4]. Typical blocks include the fuzzification block, the fuzzy inference block, the base of
fuzzy rules, the type reduction block, and the defuzzification block as components of T2
FLSs. In the type reduction block, the transformation of T2 FS to T1 FS occurs. Usually, for
type reduction, the Karnik–Mendel (KM) algorithm is employed [48].

Interval type-2 fuzzy logic systems (IT2 FLSs) (see, e.g., [50]) are often used in practice
because of the computational complexity of T2 FLSs [51]. Among the different IT2 FLSs,
the IT2 TSK FLS (the IT2 FLS with the inference model of Takagi–Sugeno–Kang [50]), or
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the IT2 S FLS (the IT2 FLS with the Sugeno inference model), can be distinguished. IT2 TSK
FLS and IT2 S FLS require a lower number of model parameters than the standard IT2 FLS.
Genetic algorithms (GAs) or PSO algorithms are often used in the training process of the
IT2 FLSs (in the determination of their parameters’ values).

Random Forest Regression. RF is a collaborative method based on numerous single
decision trees (the same type of models). In the regression process, the prediction in
a single decision tree consists of the average target value of all instances related to the
single leaf node [4]. The final prediction is the average value of all n single decision trees.
Random forests are created on the basis of quite deep trees—forecasts using this method
are characterized by a low load along with quite a large variance. The regularization
hyperparameters depend on the algorithm used but generally restricted, are among others,
are factors such as the minimum number of data points placed in a node before the node
is split, the maximum number of levels in each decision tree, the maximum depth of a
single decision tree, the minimum number of data points allowed in a leaf node, and the
maximum number of nodes. The number of predictors for each of the n single decision
trees is made by the random choice of k predictors from all available n predictors [4,41].
The overfitting problem, in this case, is usually related to redundant decision trees in the
random forest.

Gradient-Boosted Trees for Regression. Gradient boosting refers to an ensemble
method that can combine several weak learners into a strong learner [4]. GBT ensures the
minimization of variance and bias in relation to single prognostic models. On the other
hand, the algorithm is more susceptible to outliers than, for example, simple decision tree
models. The GBT algorithm sequentially adds predictors (the same type of models) to
the ensemble, each one correcting its own predecessor. This technique tries to fit the new
predictor into the residual errors made by the previous predictor. The final prediction
consists of the average value from all n single decision trees. In comparison with random
forest, GBT has one additional hyperparameter—the learning rate, which is used for scaling
the contribution of each tree [41,52]. The problem of overfitting is most often associated
with too many trees in the ensemble.

Weighted Averaging Ensemble. This is an integration of the results of selected predic-
tors into the final verdict of the ensemble. The final forecast is defined as the average of the
results produced by all n predictors organized in an ensemble [42,46]. The final prediction
result is calculated by Equation (3).

ŷi =
1
n

n

∑
j=1

ŷj
i (3)

where i is the prediction point, ŷi is the final predicted value, ŷj
i is the value predicted by

predictor number j, and n is the number of predictors in the ensemble. Note: all weights
are equal to 1/n in this case.

This formula makes use of the stochastic distribution of the predictive errors. The
process of averaging reduces the final error of forecasting. The averaging of the forecast
results is an established method of reducing the variance of forecast errors. An important
condition for including the predictor in the ensemble is independent operation from the
others and a similar level of prediction error [42,46]. The choice of predictors (forecasting
methods) is based on the smallest RMSE error on the validation subset, and only predictors
of different types are selected for the ensemble.

Hybrid method—connection of three MLP models. As an element of the prognostic
problem decomposition, separate forecasts of selected exogenous variables for the forecast
of the power-generation period can be made. This procedure creates new input explanatory
exogenous variables (forecasts) that may be valuable for power generation in PV system
forecasting methods. In the first step, MLP no. 1 forecasts power generation in period t.
On the other hand, MLP no. 2 forecasts solar irradiance in period t. In the second step,
neural network MLP no. 3 forecasts the final value of power generation in period t based
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on forecasts from the neural network of MLP no. 1 and no. 2 and other endogenous and
exogenous variables (4 or 13 depending on the variant). For each of the three MLP neural
networks, their appropriate hyperparameters are selected (the number of neurons in the
hidden layer and activation functions in the hidden layer as well as in the output layer).
Figure 9 shows a general diagram of the developed, proprietary hybrid method.

Figure 9. General scheme of the developed hybrid method with the use of three MLP neural network
models.

Table 4 shows tested input datasets for each method and the codes of the methods.
One reason for organizing data into such sets was to verify the influence of the type and
number of variables on the forecast accuracy.

Table 4. Tested input datasets for each method and the codes of the methods.

The Name of Method The Method Code Complexity of Method/Type Tested Sets of Input Data

Persistence model NAIVE Single/linear Set 0
Multiple linear regression

model LR Single/linear SET I, SET II A, SET II B, SET
III, SET V

K-Nearest Neighbors
Regression KNNR Single/non-linear SET I, SET II A, SET II B, SET

III, SET V
MLP-type artificial neural

network MLP Single/non-linear SET I, SET II A, SET II B, SET
III, SET V

Support Vector Regression SVR Single/non-linear SET I, SET II A, SET II B, SET
III, SET V

Interval Type-2 Fuzzy Logic
System IT2FLS Single/non-linear SET I, SET II A, SET II B

Random forest regression RF Ensemble/non-linear SET I, SET II A, SET II B, SET
III, SET V

Gradient-Boosted Trees for
regression GBT Ensemble/non-linear SET I, SET II A, SET II B, SET

III, SET V
Weighted Averaging

Ensemble WAE (p1 *, . . . , pm) Ensemble/non-linear SET I, SET IIB, SET III

Hybrid method—connection
of three MLP models MLP&MLP→MLP Hybrid/non-linear SET II C, SET IV

Remark: * denotes first predictor in ensemble of m predictors.

102



Energies 2022, 15, 2645

5. Evaluation Criteria

In order to have a broader view of the quality of individual forecasting models, four
evaluation criteria were used, including RMSE, nMAPE, nAPEmax, and MBE. The RMSE
error was adopted as the most important measure due to the greater sensitivity to large
partial errors. In all three tables (presented later) with performance measures of proposed
methods, the results are sorted by this error measure. On the other hand, the second
measure in the order of importance is the nMAPE error. The nAPEmax and MBE measures,
in turn, are only auxiliary.

The Root Mean Square Error is calculated by Equation (4). The RMSE measure is
typically used for power-generation forecasts from RES, including PV systems.

RMSE =

√
1
n ∑n

i=1 (yi − ŷi)
2 (4)

where ŷi is the predicted value, yi is the actual value, and n is the number of prediction
points.

The Normalized Mean Absolute Percentage Error is determined by Equation (5). Due
to the zero values occurring in the power-generation time series, it is impossible to use the
popular and recommended measure of the MAPE error. Therefore, the nMAPE measure
was used, in which the real power-generation value presented in the denominator of
the MAPE formula was replaced with the value representing the normalizing factor (the
installed power of PV system).

nMAPE =
1
n

n

∑
i=1

1
cnorm

|yi − ŷi|·100% (5)

where cnorm is the normalizing factor (installed power).
The Normalized Maximum Absolute Percentage Error is calculated by Equation (6).

The nAPEmax error is the largest partial error of all individual n nAPE errors.

nAPEmax = max
i=1,...,n

1
cnorm

|yi − ŷi|·100% (6)

The Mean Bias Error (MBE) captures the average bias in the prediction and is defined
by Equation (7). The forecasting method underestimates values if the nMBE < 0 or overesti-
mates values if the nMBE > 0. The MBE error of a properly functioning prognostic method
should be equal to or very close to zero.

MBE =
1
n ∑n

i=1(yi − ŷi) (7)

6. Results and Discussion

This section presents a wide comparative analysis of very-short-term forecasting
methods for power generation in PV systems.

Table 5 shows performance measures of the proposed methods (on test subset) using
three sets of input data—SET I (three inputs). This is the most basic set of input data using
only the last three retracted values of the forecast time series of power generation. The study
was completed to verify the quality of the forecasts; in this case, it was worse compared
to forecasting methods that also use exogenous input variables with a similar amount
of input data. Furthermore, the Table 5 shows forecast errors for the simplest reference
method—persistence methods (NAIVE), using only one set of input data. Tabular results
are ordered by ascending RMSE error values. Table A1 in Appendix A shows the results of
hyperparameter tuning for the proposed methods using only three sets of input data.
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Table 5. Performance measures of proposed methods (on test subset) using three input data.

Method Code Input Data Set
RMSE

(W)
nMAPE

(%)
nAPEmax

(%)
MBE
(W)

MLP SET I (3 inputs) 122.558 1.474 32.781 −4.539
WAE [MLP,RF] SET I (3 inputs) 129.491 1.527 30.847 −2.623

RF SET I (3 inputs) 133.931 1.674 28.439 −6.832
IT2FLS SET I (3 inputs) 135.965 1.773 29.808 −6.536
KNNR SET I (3 inputs) 137.828 1.533 33.802 −5.291

LR SET I (3 inputs) 140.989 1.617 34.214 9.711
SVR SET I (3 inputs) 142.441 1.481 34.426 −3.364
GBT SET I (3 inputs) 154.257 1.948 29.019 6.427

NAIVE * SET 0 (1 input) 165.783 1.975 40.199 −9.030
Remarks: The best fitting result for each fitting measure is printed in bold in blue. The worst fitting result is
printed in red. * Reference model.

Based on the results from Table 5, the following preliminary conclusions can be drawn
regarding the proposed methods using only three sets of input data:

• The smallest RMSE and nMAPE errors were obtained by the MLP method among
the seven tested methods (including two group methods), and this method can be
considered the preferred one. The RF and IT2FLS methods obtained a slightly higher
RMSE error;

• The difference in the quality of forecasts between the best MLP method and the worst
NAIVE is quite large;

• The SVR method obtained an RMSE error significantly higher than the best MLP
method (according to the RMSE measure), while the nMAPE error was almost identical
to the MLP method.

Table 6 shows performance measures of the proposed methods (on test subsets) using
four sets of input data (SET II A (four inputs), SET II B (four inputs), and SET II C (three,
three, and four inputs)). In this case, the amount of input data is limited to only the most
relevant input data, both endogenous and exogenous. The study was completed to verify
the quality of the forecasts; in this case, it was worse compared to the prognostic methods
using all available statistically significant endogenous and exogenous input variables.
Another goal of this research was to verify which of the two sets of input data (SET
IIA, SET IIB) obtains smaller forecasting errors using different forecasting methods. In
addition, the quality of the proprietary hybrid model was verified in relation to other
forecasting methods. Furthermore, the table shows forecast errors for the simplest reference
method—the persistence method (NAIVE), using only one set of input data. Tabular results
are ordered by ascending RMSE error values.

Based on the results from Table 6, the following preliminary conclusions can be drawn
regarding the proposed methods using only four different sets of input data (including
exogenous variables):

• The use of exogenous variables for forecasts made it possible to reduce the RMSE error
of all the methods used;

• The use of smoothed power generation in period t−1 (in SET 2B) as an input variable
instead of power generation in period t−1 (in SET 2A) turned out to be beneficial—all
tested methods obtained a lower RMSE error;

• The smallest RMSE error and nMAPE error were obtained by the original, proprietary
hybrid method (MLP&MLP->MLP). On the other hand, the MLP method obtained
RMSE and nMAPE errors that were slightly higher;

• The largest RSME error, significantly greater than other methods, was obtained by the
reference method—the NAIVE method, while the GBT method was the method with
the second-greatest RSME error;
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• The SVR method using four sets of input data (including exogenous variables) signif-
icantly reduced the RMSE error compared to the forecasts using three sets of input
data (only the last two withdrawn values of the forecast process)—see Table 5.

Table 6. Performance measures of proposed methods (on test subset) using four input data.

Method Code Input Data Set
RMSE

(W)
nMAPE

(%)
nAPEmax

(%)
MBE
(W)

MLP&MLP→MLP SET II C (3, 3, 4 inputs) 98.113 1.336 19.110 −0.192
MLP SET 2B (4 inputs) 99.761 1.393 18.100 −6.335

WAE[SVR,MLP] SET 2B (4 inputs) 101.825 1.423 17.743 −0.098
SVR SET 2B (4 inputs) 104.942 1.506 16.329 −0.638

WAE[IT2FLS,MLP] SET 2B (4 inputs) 105.274 1.535 18.784 −0.116
IT2FLS SET 2B (4 inputs) 110.461 1.540 19.223 4.956
KNNR SET 2B (4 inputs) 116.924 1.837 19.328 6.615
MLP SET 2A (4 inputs) 116.949 1.715 26.040 −2.637
RF SET 2B (4 inputs) 117.383 1.632 23.882 −0.142

KNNR SET 2A (4 inputs) 118.985 1.506 27.016 4.145
IT2FLS SET 2A (4 inputs) 121.590 1.661 27.173 7.511

LR SET 2B (4 inputs) 123.803 1.961 19.513 −8.993
SVR SET 2A (4 inputs) 124.312 1.695 30.977 6.775
GBT SET 2B (4 inputs) 124.747 1.914 17.422 −9.287
RF SET 2A (4 inputs) 129.469 1.676 28.658 11.728
LR SET 2A (4 inputs) 132.943 2.076 27.148 −2.051

GBT SET 2A (4 inputs) 134.457 1.914 28.318 −4.637
NAIVE * SET 0 (1 input) 165.783 1.975 40.199 −9.030

Remarks: The best fitting result for each fitting measure is printed in bold in blue. The worst fitting result is
printed in red. * Reference model.

Table 7 shows, in turn, performance measures of the proposed methods (on test
subsets) using 11, 13, and 15 sets of input data. This study aimed to verify whether the use
of as many available and statistically significant endogenous and exogenous input variables
would improve the quality of forecasts compared to a limited number of input data (three
or four sets). In addition, the quality of the proposed proprietary hybrid model and the
original “Weighted Averaging Ensemble” models compared to other forecast methods
was verified. Furthermore, the Table 7 shows forecast errors for the simplest reference
method—the persistence method (NAIVE), using only one set of input data. Tabular results
are ordered by ascending RMSE error values.

Table 7. Performance measures of proposed methods (on test subset) using 1, 11, 13, and 15 sets of
input data.

Method Code Input Data Set
RMSE

(W)
nMAPE

(%)
nAPEmax

(%)
MBE
(W)

MLP&MLP→MLP SET IV (3,3,13 inputs) 61.633 0.805 13.918 1.196
MLP SET V (15 inputs) 63.092 0.848 12.375 −3.498
MLP SET III (11 inputs) 64.794 0.809 16.173 3.664

WAE (SVR,MLP) SET V (15 inputs) 65.391 0.832 12.397 −0.053
SVR SET V (15 inputs) 71.618 0.824 12.629 −6.088

WAE (LR,MLP) SET III (11 inputs) 71.884 0.826 15.038 −0.048
SVR SET III (11 inputs) 90.379 1.416 16.065 3.570
LR SET V (15 inputs) 90.491 1.015 14.982 −0.049
LR SET III (11 inputs) 91.674 1.030 21.215 −3.760

KNNR SET V (15 inputs) 104.505 1.360 18.228 −4.819
RF SET V (15 inputs) 111.269 1.577 22.362 −2.483
RF SET III (11 inputs) 116.497 1.619 23.848 3.406

KNNR SET III (11 inputs) 118.490 1.565 23.348 7.507
GBT SET V (15 inputs) 118.547 1.523 20.386 −0.179
GBT SET III (11 inputs) 122.569 1.587 25.624 −2.750

NAIVE * SET 0 (1 input) 165.783 1.975 40.199 −9.030
Remarks: The best fitting result for each fitting measure is printed in bold in blue. The worst fitting result is
printed in red. * Reference model.
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Based on the results from Table 7, the following preliminary conclusions can be drawn
regarding the proposed methods using different numbers of sets of input data ranging
from 11 to 15 (including exogenous variables):

• The use of a larger number of input data, from 11 to 15 for forecasts (including
exogenous variables), allowed for a significant reduction in the RMSE error of all
methods used compared to the use of only four sets of input data;

• The smallest RMSE error and nMAPE error were obtained by the original, proprietary
hybrid method (MLP&MLP->MLP), and it is the recommended method. On the other
hand, the MLP method obtained RMSE and nMAPE errors that were slightly higher;

• The largest RSME error, significantly greater than other methods, was obtained by the
reference method—the NAIVE method, while the GBT method was the method with
the second-greatest RSME error;

• The SVR method using 15 sets of input data (including exogenous variables) was one
of the best methods, but the use of 11 sets of input data proved to be less favorable;

• Team methods with different types of predictors in the team (WAE (SVR,MLP) and
WAE (LR,MLP)) were also among the best methods—the RMSE error of these methods
was slightly greater than the second MLP method in the list;

• For all tested methods, it was more advantageous to use 15 sets of input data than
11 sets of input data.

Figure 10 shows the RMSE error, for each of the eight tested datasets, obtained by the
best prognostic method for the test range. The MLP neural network method (yellow) is
definitely the most common method for various input datasets. On the other hand, the
smallest RMSE error (green) was obtained by the proprietary developed hybrid model
(MLP&MLP->MLP). The highest RMSE error (gray) was achieved by the persistence (naïve)
model as the simplest one, using only one set of input data. It should be noted that the
quality of forecasts increases significantly with the increasing number of input data used.
Thus, it can be concluded that by providing the predictive model at the input with more
information related to the predicted process, in particular, with more than just one retracted
value of a given explanatory variable (both exogenous and endogenous), smaller forecast
errors can be expected.

Figure 10. Summary of RMSE error values for the best predictive method depending on the dataset.

Figure 11 shows a scatter plot between the actual power-generation values and the
values obtained from the forecast using the best method—a proprietary hybrid model
(MLP&MLP->MLP) for the test range. From the graph, it can be observed that the accuracy
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of forecasts was the highest for small power-generation values below 750 W (where the
installed power of a PV system is equal to 3200 W).

Figure 11. The scatter plot of the real power-generation values and the values obtained from the
forecast with the best hybrid model.

7. Conclusions

The analysis of the available input variables with the use of four different methods of
selecting input variables for forecasting models allowed us to identify the most important
input variables. The most important input data include smoothed power generation in
period t−1, power generation in period t−1, and solar irradiance in period t−1. The
significantly least-important input data are wind direction in period t−1 and wind speed
in period t−1.

The influence of the type and number of input variables on the quality of forecasts was
investigated. The use of only three withdrawn values of power generation showed that this
is the least-effective solution. Additionally, the use of other available exogenous variables
(the selected historical values of solar irradiance, PV module temperature, wind direction,
and wind speed) allowed us to reduce the RSME error of forecasts. An additionally
valuable input variable is the smoothed value of power generation (see Equation (1)), a
value calculated on the basis of the reverted values of the forecast process. The smallest
forecast errors (RMSE) were obtained using a set of SET IV and SET V input variables, i.e.,
sets with the largest number of input variables.

The effectiveness of many prognostic methods, both single as well as team and hybrid,
was verified. The smallest RMSE and nMAPE errors were obtained for the original, devel-
oped hybrid method using three MLP neural networks (method code MLP & MLP-MLP)
using a set of SET IV input variables. Compared to the reference method (method code
NAIVE), the hybrid method obtained an RMSE error 62.8% lower. However, compared
to the best single method (the MLP method code) using the SET V input variable set, the
RMSE error of the hybrid method was 2.3% lower. In the case of the number of input
variables limited to four, the proprietary hybrid method also obtained the smallest RMSE
error. Compared to the method code MLP, the RMSE error for the hybrid method was
1.7% lower. Among the single prognostic methods, the MLP neural network was the best
method. Other machine learning techniques (RF, SVR, KNNR, and GBT) obtained slightly
larger RMSE errors. The most advantageous of these four machine learning techniques was
the SVR method with the SET V set of input variables. It is also advantageous to use the
collective method (method code WAE (SVR, MLP)), which obtained an RMSE error slightly
greater than the best method single (MLP).
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In the authors’ opinion, some of the forecasting methods investigated are effective and
promising tools for practical applications, e.g., for very-short-term PV generation power
forecasting. In turn, forecasts of this type are very useful for the needs of low-voltage
microgrid operation control.

Research may be continued and expanded in the future. The proposed research
directions include:

• Increasing the forecast horizon to 1 h (4 forecasts for consecutive 15 min periods);
• Using various techniques for decomposing the prognostic problem and examining

their impact on the quality of forecasts (in the case of obtaining data from a period of
several years);

• Examining the distribution of forecast errors during the day—verifying whether there
is a relationship between the RMSE error rate and the time of day;

• Quality-testing forecasting models using additional solar irradiance, wind speed, and
wind direction forecasts (in the case of obtaining such meteorological forecasts).
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Abbreviations

The following abbreviations are used in this manuscript:

ACF Autocorrelation Function
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm
C&RT Classification and Regression Trees algorithm
DCs Decision Trees
EIASC Enhanced iterative algorithm with stop condition
GA Genetic algorithm
GBT Gradient-Boosted Trees
GSA Global sensitivity analysis
IASC Iterative algorithm with stop condition
IT2FLS Interval Type-2 Fuzzy Logic System
KM Karnik–Mendel
KNNR K-Nearest Neighbors Regression
LR Linear Regression
MBE Mean Bias Error
MLP Multi-Layer Perceptron
nAPEmax Normalized Maximum Absolute Percentage Error
nMAPE Normalized Mean Absolute Percentage Error
PR Performance ratio
PSO Particle Swarm Optimization
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PV Photovoltaic
R Pearson linear correlation coefficient
RES Renewable Energy Sources
R2 Determination coefficient
RF Random forest
RMSE Root Mean Square Error
SVM Support Vector Machine
SVR Support Vector Regression

Appendix A

Table A1 shows the results of hyperparameter tuning for the proposed methods using
three sets of input data.

Table A1. Results of hyperparameter tuning for proposed methods using three sets of input data.

Method Code
Description of Method, Name, and Range of Values of Hyperparameters’ Tuning and

Selected Values

SVR
Regression SVM: Type-1, Type 2, selected: Type-1; kernel type: Gaussian (RBF); width

parameter σ: 0.333; regularization constant C, range: 1–50 (step 1), selected: 2; tolerance ε,
range: 0.01–0.2 (step 0.01), selected: 0.02.

KNNR
Number of nearest neighbours k, Distance metrics: Euclidean, Manhattan, Minkowski, selected:

Euclidean; range: 1–50, selected: 13.

MLP
Learning algorithm: BFGS; the number of neurons in hidden layer: 2–10, selected: 3; activation

function in hidden layer: linear, hyperbolic tangent, selected: hyperbolic tangent; activation
function in output layer: linear.

IT2FLS

Interval Type-2: Sugeno FLS, Mamdani FLS, selected: Sugeno FLS; learning and tuning
algorithm: GA, PSO, selected: PSO; initial swarm span: 1500–2500, selected: 2000; minimum

neighborhood size: 0.20–0.30, selected: 0.25; inertia range: from [0.10–1.10] to [0.20–2.20],
selected: [0.50–0.50]; number of iterations in the learning and tuning process: 5–20, selected: 20;

type of the membership functions: triangular, Gauss, selected: Gauss; the number of output
membership functions: 3–81, selected: 81; defuzzification method: Centroid, Weighted average

of all rule outputs, selected: Weighted average of all rule outputs; AND operator type: min,
prod, selected: min; OR operator type: max, probor, selected: probor; implication type: prod,
min, selected: min; aggregation type: sum, max, selected: sum; the k-Fold Cross-Validation
value: 1–4, selected: 4; window size for computing average validation cost: 5–10, selected: 7;

maximum allowable increase in validation cost: 0.0–1.0, selected: 0.1; the type-reduction
methods: KM, IASC, EIASC, selected: KM.

RF

The number of decision trees: 2–50, selected: 5; the number of predictors chosen at random: 1, 2,
selected 2. Stop parameters: maximum number of levels in each decision tree: 5, 10, 20, selected
10; minimum number of data points placed in a node before the node is split: 10, 20, 30, 40, 50,
selected 20; minimum number of data points allowed in a leaf node: 10; maximum number of

nodes: 100.

GBT
Considered max depth: 2/4, selected depth: 2; trees number: 50/100/150/200/250, selected

number: 100; learning rate: 0.1/0.01/0.001, selected: 0.1.
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Abstract: In recent years, the increased distributed generation (DG) capacity in electric distribution
systems has been observed. Therefore, it is necessary to research existing structures of distribution
networks as well as to develop new (future) system structures. There are many works on the reliability
of distribution systems with installed DG sources. This paper deals with a reliability analysis for
both present and future medium voltage (MV) electric distribution system structures. The impact of
DG technology used and energy source location on the power supply reliability has been analyzed.
The reliability models of electrical power devices, conventional and renewable energy sources as
well as information and communications technology (ICT) components have been proposed. Main
contribution of this paper are the results of performed calculations, which have been analyzed
for specific system structures (two typical present network structures and two future network
structures), using detailed information on DG types, their locations and power capacities, as well
as distribution system automation applied (automatic stand-by switching on—ASS and automatic
power restoration—APR). The reliability of the smart grid consisting of the distribution network and
the coupled communications network was simulated and assessed. The observations and conclusions
based on calculation results have been made. More detailed modeling and consideration of system
automation of distribution grids with DG units coupled with the communication systems allows the
design and application of more reliable MV network structures.

Keywords: distribution of electric power; distributed storage and generation; smart grids; power
distribution reliability; information and communication technology

1. Introduction

The increasing penetration of distributed energy generation (DG) from renewable
energy sources (RES) contributes to a decrease in greenhouse gases emission and reduces
the dependency on fossil energy sources. At the same time, however, this trend means
the electric power networks cannot continue to operate as before. The power grids were
originally designed for the classical, hierarchical system with a unidirectional power flow
from the central generation, through transmission and distribution level up to the loads. DGs
nowadays largely feed directly to the distribution networks, which were not designed for
this purpose. Therefore, the planning, operation and maintenance of distribution networks
need to be changed.

In power system planning and operation, effective reliability analysis and assessment
are key aspects. The reliability of the electric power system is usually expressed as a measure
of the ability of the system to provide the customers with a sufficient supply. Continuous
energy supply is one of the most important success criteria of a power system. However,
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the occurrence of major outages can have a significant economic impact on electricity
suppliers and the end users who lose electrical service. Competition on the power market
forces utilities to reduce costs through, for example, postponing preventive maintenance or
replacing equipment only when it has already broken down [1].

There are many studies on reliability of distribution systems with DG units (including
RESs) which are connected to them. Large part of those studies concerns the evaluation
of the reliability of distribution networks with distributed generation (DG) units installed.
A reliability model for distributed generations and an analytical probabilistic approach to
investigate impacts of DG units on reliability of electric power distribution grid is proposed
in [2]. An analytical technique using explicit expressions for this purpose is studied in [3].
In turn, paper [4] describes the impact of DG units on the radial distribution grid reliability
using the analytical as well as Monte Carlo Simulation methods. A probabilistic technique
for the evaluation of the distribution network reliability by means of some specific methods
used for the estimation of wind speed profile is presented in [5]. Paper [6] describes a Monte
Carlo method for the needs of a reliability assessment of distribution systems with dis-
tributed generation sources installed with the use of parallel computing. Different scenarios
concerning the impact of photovoltaic systems on performance of a test system are analyzed.
In paper [7], optimal coordination of distributed generation sources, energy storage and
demand management techniques, in the context of a reliability assessment of distribution
grids, is presented. The main goal of this action is to maximize the network reliability.
Paper [8] addresses the reliability assessment of distribution systems with renewable energy
sources (wind and PV units) installed in order to minimize power losses in the systems.
An integrated approach for the needs of assessing the influence distributed energy sources,
including PV installations, on the reliability performance of power grids is presented in [9].
The modified Monte Carlo method is used for this purpose. Paper [10] presents the problem
of the optimization of a hybrid photovoltaic—battery system sizing. A genetic algorithm is
used for addressing the reliability in considered grids.

Reliability analyses concerning distribution systems also appear in other various issues.
For example, this analysis can be a part of the electric power distribution grids planning
process, as it was presented in [11]. In turn, paper [12] describes an approach allowing for the
evaluation of reliability indices of a distribution grid for some specific operation practices, i.e.,
use of telecontrolled switches and islanded operation mode. Paper [13] presents the problem
of distribution system reconfiguration optimization in a multi-criteria category utilizing
a set of well-known reliability indices for this purpose. Another issue is an extension of
the distribution grid reliability evaluation by including electric vehicles in different modes
of grid operation [14]. The reliability issue of the information and power terminal to be
used in disaster scenarios as a small-scale microgrid, which includes PV generation, battery
storage, loads, electric vehicle and ICT components is considered in [15]. In paper [16], a
comprehensive review on the smart grid research is presented. The recent achievements in
the field of network reliability are described. Paper [17] presents a deep neural network
ensemble model for the needs of estimation of outages in an overhead power distribution
grid. The neural networks creating the ensemble are trained by a novel algorithm.

Many works are devoted to reliability evaluations in microgrids. An analytical method
for the evaluation of the customer’s supply reliability in a microgrid, which includes DG
units, is presented in [18]. The optimal operation control based on centralized control logic
in microgrids functioning in synchronous and islanded mode are introduced in [19], which
can have an impact on improvement of supply reliability for consumers connected to these
microgrids. Paper [20] describes the impact of operating conditions and protection systems
on the microgrid reliability indices. In paper [21], an efficient control to manage power in
microgrids with energy storage is proposed. The control system, developed in Real Time
Digital Simulator, improves the reliability and resiliency of the microgrid consisting of
photovoltaic installations, battery storage, diesel generator and controllable loads.

There are several papers concerning possible cooperation of distribution systems and
microgrids in the context of reliability. In paper [22], the influence of microgrids on the
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distribution grid reliability has been discussed. An analytical method for the evaluation of
reliability of the distribution grid in a network environment of multi-microgrids is discussed
in [23]. Paper [24] describes a novel method for determining the optimal location and size
of micro-grid systems to improve the continuity of supply in radial distribution networks
in rural areas. The microgrids are used for reducing the non-served energy, taking into
account the reliability and investment costs. In turn, paper [25] presents a method allowing
for evaluating the reliability of active distribution grids with multiple microgrids using
a Monte Carlo approach. A review and classification of the state-of-the-art of reliability
assessment in the case of microgrids connected to distribution grids is presented in [26].

A very important issue for network reliability studies is having accurate models of
DG units, particularly models of renewable energy sources. A model used for the purpose
of wind farms probabilistic representation for reliability investigations is described in [27].
In paper [28], a review of thirteen wind turbine reliability studies is presented. Paper [29]
presents a model allowing for evaluation of generation availability in the case of small hydro
power plants.

In the grids with a large share of distributed generation, mainly renewable sources, the
additional information and communications technology (ICT) to monitor, control and protect
these power system components is applied. This additional ICT smooths the transition
from conventional power systems to smart grids. However, it increases the complexity of
such integrated systems, thus necessitating new methods for the planning and the optimal
integration of advanced communication systems in electric power grids.

A comprehensive overview on smart grids and their technical, management, security,
and optimization aspects is given in [30]. In addition to the definition of electrical compo-
nents, much emphasis is placed on communication, protocols, architecture and security as
well as optimization using cloud computing infrastructure, web application scheme as well
as information flows and agent clusters. The impact of automation and communication tech-
nology on the reliability of the electric distribution systems is given in [31,32]. This facilitates
analysis and modeling of coexisting ICT infrastructures on power grid reliability [33,34] and
on smart grids altogether. Cooperation between the communication layer and the electrical
network and the resulting coupled subsystem, along with the proposal of a multi-agent
system for cooperative control of microgrids are mathematically modeled in [35].

A reliability perspective of the smart grid and critical overview of the reliability
impacts of major smart grid resources, such as renewables, demand response and storage
are given in [36]. This article provides a grid-wide IT architectural framework to meet the
reliability challenges that are further enhanced by the ideal mix of these resources leading
to a flatter net demand. An optimal control of smart grid including distributed generation
and telecommunications and, in particular, smart power substations for improving the
network parameters and reliability is given in [37].

The issue of cyber security in networks using the SCADA system are considered in [38],
where four attack scenarios for cyber components, which may trip breakers of physical
components, are analyzed. In [39], models of cascading failures and uncertainty on the
supply side are proposed, followed by an assessment of the reliability of cyber-physical
power systems. Cyberpower grids based on IEEE 14-bus and 39-bus system with control
centers and corresponding communication networks are tested for false data injection attacks
and defense mechanisms in [40].

Communication requirements, specifications, functions and applications in advanced
electric power grids are summarized in [41]. An overview of communication standards and
protocols, available technologies, data transfer methods, and future development trends is
given in [42,43]. The ICT is used for bi-directional data transmission from the monitoring
and control of devices to the control center where an operator with an appropriate computer
application and algorithms can analyze these data and perform effective monitoring,
control and protection of the system [44]. The performance of IEC 61,850 messages in LTE
communication for reactive power management in a microgrid is analyzed in [45]. The ICT
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also provides communication between markets, forecast applications and web services for
the customers, which supports the management of the demand and supply process [46].

The issue of reliability of electric distribution systems with DG sources installed in
them was broadly discussed in many publications. Quite often there is a lack of any detailed
information on distribution network structures (parameters of distribution transformers,
data on overhead lines and underground cables) and on DG source types, as well as their
power capacities and locations, considered in the existing papers is observed. Moreover, the
details on the reliability parameters of distribution system components being considered in
these publications are often missing. We intend to present such details in this paper. We
are convinced there is still a research space to present different, more detailed studies on
reliability of electric distribution systems with integrated DG sources (for various network
structures and data describing them) as well as ICT components.

This paper concentrates on the reliability analysis for both present and future electric
distribution system structures. Two present electric distribution system structures are
considered: a typical urban distribution network (UDN) and typical rural distribution
network (RDN). Moreover, two future electric distribution system structures are analyzed:
the urban distribution network with connected microgrids (DNMG) and active managed
distribution network (AMDN). The impact of DG technology used, energy source locations,
and their power capacity on the power supply reliability have been analyzed. The reliability
models of electrical power devices, conventional and renewable energy sources, as well as
information and communication technology (ICT) components have also been proposed.

The main contribution of this paper is investigating the analyzed subject in a more
thorough way, that is: giving detailed data on considered distribution networks structures;
on reliability parameters of distribution network components; on DG source types, as well
as their power capacities and locations, for which the reliability calculations have been
made, taking into account distribution system automation (automatic stand-by switching
on (ASS) and automatic power restoration (APR)); presenting the results (seven commonly
known reliability indices) achieved from the carried out computations and discussing the
results (indices). The impact of DG type on these reliability indices has been investigated.
It is worth noting, the reliability assessment of smart grid, i.e., electric power network
coupled with the communication network, has also been done. We would like to highlight
that this paper relates to MV distribution grids, for which reliability indices are the worst
among all electric power distribution networks, as it is reported e.g., in [47–49]. Therefore,
the importance of this paper on practical applications can be seen.

This paper evaluates reliability of four electric distribution system structures (two
present ones and two future ones) and presents the reliability indices obtained for these
structures. In our opinion, more detailed modeling and consideration of system automation
of the distribution grids with DG units coupled with the communication systems allows
for the design and application of such MV network structures for which the best reliability
indices can be obtained.

2. Problem Statement

The main goal of this research was to analyze the impact of a type and location of DG
units in present and future distribution network structures on the power supply reliability.
The distribution system automation (ASS and APR) has also been considered in the studies.
The analysis performed by the authors of this paper has been done for the benchmark
structures of the MV distribution networks with the connected DG sources. The benchmark
structures (shown in Figures A1, A3 and A4) have also been developed by the authors of
this paper. The following reliability indices have been calculated with the use of DIgSILENT
PowerFactory software [50,51]:

• SAIFI is the System Average Interruption Frequency Index, which provides the average
number of interruptions, above 3 min, in the system that a customer experiences during
the observation period, mostly in one year. The index is a dimensionless number and
can be calculated as follows [52,53]:
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SAIFI =
Total number of customer interruptions

Total number of customers served
=

∑i Ni
NT

[1/yr] (1)

where Ni is the number of customers interrupted by i-th outage in the observation
period and NT is the total number of customers in considered system.

• CAIFI (Customer Average Interruption Frequency Index)—total number of all in-
terruptions, above 3 min, divided by the total number of consumers affected by an
interruption in the analyzed system. CAIFI can be calculated as follows [53,54]:

CAIFI =
Total number of customer interruptions

Total number of customers affected
=

∑i Ni
CN

[1/yr] (2)

where CN is the total number of consumers, which experienced one or more outages.
• SAIDI is the System Average Interruption Duration Index, and it measures the total

duration of an interruption, above 3 min, for the average customer during a given
time period. It is normally calculated for the period of one year and presents customer
minutes or hours of interruption. Mathematical representation of SAIDI is given in
Equation (3) [52,53]:

SAIDI = ∑ Customer interruption durations
Total number of customers served

=
∑i riNi

NT
[hr/yr] (3)

where ri is restoration time and failure duration in the case of consumers interrupted
by i-th outage.

• CAIDI, the Customer Average Interruption Duration Index represents the average time
required to restore service after an outage occurs, which indicates how long an average
interruption, above 3 min, lasts. It measures the duration of time that the customer is
de-energized per interruption. To calculate the index Equation (4) can be used [52,53]:

CAIDI = ∑ Customer interruption durations
Total number of customers interruptions

=
∑i riNi

∑i Ni
[hr] (4)

• ASAI (Average Service Availability Index)—the probability of having all loads supplied.
The index is often expressed in a percentage, and it can be calculated from Equation
(5) [52,53]:

ASAI =
Customer hours service availability

Customer hours service demand
=

NT · (T)− ∑i riNi
NT · (T) [pu] (5)

where T is the observation time period, usually one year, and in a non-leap year is
equal to 8760 h.

• ASUI (Average Service Unavailability Index)—the probability of having one or more
loads interrupted, which can be calculated as follows [54]:

ASUI =
Customer hours service unavailability

Customer hours service demand
= 1 − ASAI [pu] (6)

• EENS (Expected Energy Not Supplied)—the total amount of energy which is expected
not to be delivered to loads. The index can be calculated from the Equation (7) [53,55]:

EENS = ∑ (Customer annual outage time·connected power)
= ∑

i
riPave,i [MWh/yr] (7)

where Pave,i—the average active power of customers which is interrupted by i-th outage.

A further aim of this research was to analyze the impact of ICT components integrated
with the power system on the overall reliability of the smart grid supply. Therefore, a
basic distribution power supply system was proposed, for which simulations using the
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sequential Monte Carlo method were carried out. The following reliability indices have
been calculated along with the distribution of the results with the use of Matlab software:
SAIDI, SAIFI, CAIDI, EENS, ASAI and ASUI.

3. Reliability Models of Electric Distribution System Components

The operation of an electric power system component can be described as a stochas-
tic process {Xt: t ∈ T ∧ Xt: Ω → S}, where T is the life cycle time (continuous value),
Ω is the space of coexisted events with the operating process of the system element
and S = {s1, s2, . . . , sm} is the finite set of discrete operational states of the system com-
ponent [56]. According to the element operation types, the states can be functional (full or
partial one), stand-by and nonfunctional (failure or planned repair mode, etc.). The transi-
tions between the component states may be caused by random events (failures and repairs),
deterministic events (preventive repairs in a scheduled time) and random-deterministic
events (conditional realization of preventive repairs).

There are many types of recommended mathematical techniques used in the reliability
analysis [50]. Among them one can find as follows:

• Minimal cut-set,
• Zone branch,
• Fault tree,
• Discrete event simulation (Monte Carlo),
• Boolean algebra,
• Failure mode effects and criticality analysis (FMECA),
• Markov and semi-Markov models,
• Stochastic Petri nets.

The information about the accuracy and applicability of the aforementioned techniques
can be found in many meaningful publications, e.g., [57].

3.1. Electrical Power Devices

The elements of an electric distribution system, such as lines, transformers, power
switches, busbar of switchgears, protection and control elements are modeled as objects,
which can be functional or in failure state. The time between these states is represented as a
random variable described by an adequate type of probability distribution. In reliability
analyses, the following probability distribution types are most often used [57,58]:

• Exponential EXP (λ), λ > 0, λ—the rate parameter;
• Weibull WEI (λ, β), λ > 0, β > 0, λ—the scale parameter, β—the shape parameter;
• Gamma GAM (b, p), b > 0, p > 0, b—the rate (scale) parameter, p—the shape parameter;
• Normal NOR (μ, σ), μ ≥ 0, σ > 0, μ—the expected value, σ—the standard deviation;
• Pareto PAR (b, δ), b > 0, δ > 0, b—the scale parameter, δ—the shape parameter;
• Gumbel GUM (b0, t0), b0 > 0, t0 ≥ 0, b0—the scale parameter, t0—the location parameter;
• Log-normal LNOR (μ0, σ0), μ0 ≥ 0, σ0 > 0, μ0—the expected value of natural logarithm,

σ0—the standard deviation of natural logarithm.

Additionally, one can take into consideration the third state that is a preventive repair
state with the average annual maintenance duration. A two-state reliability model can be
assumed for the MV networks belonging to Polish distribution system operators. Table 1
presents the reliability models of different types of electrical power devices. All the probabil-
ity distribution parameters have been estimated based on the observations of Polish power
distribution systems [59,60].

It is also necessary to determine the adequate reliability model of an equivalent point
supplying an analyzed distribution system. The reliability characteristics of that point can
be found by an assessment on the power transmission system level or statistical research.

Some reliability analyses take into account the separate characteristics of protection
devices (fuses, relays, releases, etc.) and automation equipment (automatic reclosing, stand-
by switching on and others) [61].
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Table 1. Reliability parameters of selected types of MV distribution system elements; elaborated on
the basis of [59,60].

Distribution System Component
Probability Distribution of Time to Failure Probability Distribution of Time to Repair

Type Parameters Type Parameters

Overhead lines (100 km) EXP λ = 25.0 1/a EXP λ = 0.071 1/h
Underground cable with paper-insulation

used in urban networks (100 km) WEI λ = 12.0 1/a β = 2.24 EXP λ = 0.69 1/h

Underground cables with polythene-insulation
used in urban networks (100 km) WEI λ = 12.0 1/a β = 1.85 EXP λ = 0.72 1/h

Underground cables with paper-insulation
used in rural networks (100 km) WEI λ = 13.0 1/a β = 2.33 EXP λ = 0.30 1/h

Underground cables with polythene-insulation
used in rural networks (100 km) WEI λ = 7.2 1/a β = 1.20 EXP λ = 0.30 1/h

110 kV/MV transformers EXP λ = 0.06 1/a EXP λ = 0.08 1/h
Circuit-breakers EXP λ = 0.132 1/a NOR μ = 5.5 h σ = 1.0 h
Disconnectors EXP λ = 0.0055 1/a EXP λ = 0.115 1/h

Busbars in MV switchgear (bay) EXP Λ = 0.003 1/a EXP λ = 0.10 1/h
Current transformers EXP Λ = 0.009 1/a EXP λ = 0.047 1/h

3.2. Distributed Generation Sources

From the point of view of a modeling and reliability assessment, DG sources can be
divided into two classes:

• Sources based on conventional energy carriers, such as diesel oil, gas, biogas, etc.,
• Sources based on renewable energy carriers, such as wind, solar radiation, water, etc.

In the first case, the availability of the energy source for generation is highly probable.
On the other hand, the availability of the renewable energy resources (second group) requires
considering more appropriate probabilistic models [62].

3.2.1. Conventional Energy Sources

The conventional electric energy sources are:

• Engine-driven generators,
• Turbine-driven generators,
• Microturbines,
• Fuel cells.

Depending on the type of service, the aforementioned energy sources can be modeled
as the following Markov chain:

• Two-state model—in case of continuous service; determined by the failure rate λ and
the repair rate μ,

• Four-state model—in case of peak service; shown in Figure 1

Both the standby anticipation rate ρ and operation rate ν should be determined indi-
vidually depending on the analyzed electric distribution system. The reliability parameters
of engine-driven generators (EDG) and turbine-driven generators (TDG) can be found in
Table 2. The values of parameters ν and ρ have been arbitrarily selected.

One can observe a much lower failure rate λ for generation units (both EDG and
TDG) operating in peak service. This fact obviously results from less wear of individual
components of a generation unit. Therefore, the possibility of failure is decreased. The TDG
exhibit the lowest failure rates of units in peak service. Simultaneously, the lower repair
rate is observed in comparison to other cases. It is attributable to a relatively small number
of long-duration events.

In recent years, a new type of gas turbine, microturbine (MT), has become a fully
developed technology. As MT’s have only relatively recently been used as the commercial
generation sources, there is not wide access to reliability data obtained from a long-time
operation of this DG type. The same problem concerns the fuel cells (FC) as a relatively
new technology in an industrial and commercial usage.
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Figure 1. Four-state reliability model of a conventional generation unit operating in peak service. PS

is a probability value of unsuccessful unit starting, ν is an operation rate, ρ is a standby rate, λ is a
failure rate and μ is a repair rate [63].

Table 2. Reliability parameters of EDG and TDG [64].

Parameter
Continuous Service Peak Load Service

EDG TDG EDG TDG

λ [1/a] 4.30 4.50 0.90 0.30
μ [1/h] 0.15 0.14 0.26 0.009

(1 − PS) [-] - - 0.912 0.912
ν [1/a] 1.33 1.33 1.33 1.33
ρ [1/a] 4.0 4.0 4.0 4.0

As in case of EDG and TDG, MT and FC can be modeled using a two-state or four-
state Markov chain with the failure rate λ and repair rate μ as well as a probability of
unsuccessful DG unit starting PS. For the reliability calculation purpose λ, μ and PS have
been obtained from the manufacturers data available only for peak service. The same
values of parameters ν and ρ as for EDG and TDG have been assumed. All of these are
presented in Table 3.

Table 3. Reliability parameters of MT and FC.

Parameter MT FC

λ [1/a] 0.40 0.80
μ [1/h] 0.013 0.05

(1 − PS) [-] 0.961 0.976
ν [1/a] 1.33 1.33
ρ [1/a] 4.0 4.0

The reliability parameters presented in Table 3 have been obtained based on the data
given by different manufacturers (catalogues and brochures). It is necessary to treat these
values a little distrustfully. These reliability parameters come from laboratory research,
which cannot reflect the real conditions in an operating process.
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3.2.2. Renewable Energy Sources

Among the most popular renewable energy sources in electric distribution systems,
there are small hydro power plants (SHPP), small wind-turbine power plants (WTPP) and
photovoltaic power plants (PVPP).

The parameters of different energy carriers (i.e., a river flow, wind speed and solar
radiation) can be modeled as the homogenous Markov chain with the states representing
different intervals of available energy and the transition rates between λij (transition rate
from state i to state j). The general reliability model of a renewable generation system is
shown in Figure 2.

 
Figure 2. N + 1-state reliability model of a renewable generation system. U.i is an up unit state (normal
operation) with i-th of n level of energy carrier {1, . . . , i, j, . . . , n} and D is a down unit state (failure).

In order to represent the reliability of particular types of renewable energy sources,
the authors of this paper have found an exemplary number of states, fraction of DG rated
apparent power corresponding to the state and values of the transition rates between the
states [29,62,65]. All of these are presented in Tables 4–6.

Table 4. Reliability parameters of WTPP [62].

Fraction of DG Rated Apparent Power

0% 60% 100% 0% 0%

FROM\TO U.1 U.2 U.3 U.4 D
U.1 0 200 1/a 0 0 4 1/a
U.2 20 1/a 0 400 1/a 0 4 1/a
U.3 0 300 1/a 0 10 1/a 4 1/a
U.4 0 0 500 1/a 0 24 1/a
D 90 1/a 90 1/a 90 1/a 24 1/a 0
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Table 5. Reliability parameters of SHPP [29].

Fraction of DG Rated Apparent Power

38% 54% 66% 80% 100% 0%

FROM\TO U.1 U.2 U.3 U.4 U.5 D
U.1 0 11.9 1/a 0 0 0 1.8 1/a
U.2 1.7 1/a 0 9.4 1/a 0 0 1.8 1/a
U.3 0 4.4 1/a 0 5.2 1/a 0 1.8 1/a
U.4 0 0 27.2 1/a 0 3.6 1/a 1.8 1/a
U.5 0 0 0 27.7 1/a 0 1.8 1/a
D 88.2 1/a 88.2 1/a 88.2 1/a 88.2 1/a 88.2 1/a 0

Table 6. Reliability parameters of PVPP [65].

Fraction of DG Rated Apparent Power

100% 20% 0% 0%

FROM\TO U.1 U.2 U.3 D
U.1 0 1250 1/a 0 0.1 1/a
U.2 2250 1/a 0 2250 1/a 0.1 1/a
U.3 0 1250 1/a 0 0.1 1/a
D 146 1/a 146 1/a 146 1/a 0

It is necessary to mention the values of fraction the DG rated apparent power given in
Table 4. The state U.1 concerns a situation when a wind speed is less than the cut-in wind
speed of a wind turbine and the power generation equals 0. No power generation is also in
the state U.4. In this case, the wind speed is greater than the cut-out wind speed when a
wind turbine is switched off.

3.3. Information and Communication Devices

To implement future smart grid functions, the information and communication tech-
nology (ICT) is needed. The ICT devices integrated in a power system collect, process and
transfer data within the infrastructure. This requires robust communication channels to
ensure reliable data flow. For that they use different sorts of communication media, such
as Power Line Communication (PLC), Digital Subscriber Lines (xDSLs), fiber optics, IEEE
802.11 (WLAN), IEEE 802.16 (WiMAX), GSM/GPRS, IEEE 802.15.4 (Zigbee), depending
on application, technical characteristics and feasibility [41,66]. Several types of devices are
installed in integrated communication networks in smart grids, such as phasor measurement
unit (PMU), remote terminal unit (RTU), programmable logic controller (PLC), gateway,
router, modem, Digital Protective Relay (DPR), Digital Fault Recorder (DFR), PQ meter and
smart meter. The types of these devices depend on their application and tasks such as mea-
suring the electrical parameters, controlling the automation systems, transferring collected
data and resaving control signals from the control center applications. The comparison of
ICT devices, protocols and typical functions in power system is given in Table 7.
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Communication network equipment can fail causing interruptions in data transfer,
information exchange and other corresponding services. Both hardware and software can
be affected for various reasons, impacting the reliability of the communication network.
The reliability parameters like mean time between failure (MTBF) and mean time to repair
(MTTR) for chosen devices: phasor measurement unit (PMU), remote terminal unit (RTU),
programmable logic controller (PLC), gateway and router are given in Table 8. These values
are calculated based on literature research on simulation models, laboratory tests and
vendors’ data presented in [70–72].

Table 8. Reliability of selected communication components; elaborated on the basis of [70–72].

Type Modell MTBF (yr) MTTR (h) A U

PMU Simulation 1.46350 23.1168 0.99820 0.0018
RTU Calculation 11.0000 4.2000 0.99952 0.00048
PLC Calculation 17.000 2.8000 0.99968 0.00032

Gateway G650 Media 16.0009 8.4100 0.99994 0.00006
Router Cisco 2811 34.2466 1.0000 0.99999 0.00001

where: A—availability, U—unavailability.

3.4. Interdependencies Modeling of Coupled Electric Power System and ICT Infrastructures

With the rise of smart grid technologies, the interdependencies of communication
technologies and electric power systems become an important aspect in the development
of both networks [73]. Modeling such interdependencies will be even more complex in the
planning and future operation of multi-energy systems (MES) integrating various energy
converters and sources of different physical nature [74].

Infrastructures interdependencies are based on physical and functional relationships
among individual components both within and between systems. To characterize the
effects of failure propagation from the single component or system to mutually dependent
interconnected systems the structure modeling of complex infrastructures can be used [75].
The individual operating conditions of the component in the system can be analyzed and
the fault propagation can be reduced by having fast recognition of threats, redundancy
design and alternative modes of operation [76]. The concept of complex networks the-
ory [77], which is based on the graph theory, can be used to describe and analyze critical
infrastructures on a large scale with multifaceted topologies [78]. The interdependency
modeling techniques of coupled infrastructures for integrating ICT within the electric
power system (EPS) are offered in [33,34].

A graph can represent a network with its set of components and connections between
them. Applying graph representation to the coupled EPS and ICT infrastructures, the
vertices indicate system components such as buses, gateways and routers while edges
correspond to the power lines, cables and communication links. In order to characterize
the interdependencies between the infrastructures they can be classified as follows:

• Connection of an electric node with another electric node, which characterize typical
power flow in the electric power grid;

• Connection of a communication node with another communication node that corre-
sponds to a data flow;

• Connection of an electric node to a communication node that represents an electricity
supply for the ICT infrastructure;

• Connection of a communication node to an electric node which is responsible for
sending and requesting information to and from the power system component.

3.5. Tool for Reliability Analysis

The reliability assessment in electric power distribution systems has been carried out
with the use of DIgSILENT PowerFactory software (PF). This software enables an assess-
ment of different reliability indices for power systems in a generation area (hierarchical
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level HL I) as well as in transmission and distribution system (hierarchical levels HL II and
HLIII adequately).

The procedure of a reliability assessment in PF is shown in Figure 3, according to [51].

 
Figure 3. Flow diagram of the reliability assessment in PF software.

The first step is modeling an electric power network structure where technical require-
ments are met (no overloading, acceptable voltage deviations, etc.). For all main network
components, the failure models are defined by giving a description of the appropriate
probability distributions.

The next stage of the reliability assessment is to generate a list of system states relevant
with the failure models and load models. In other words, it is a combination of one or more
simultaneous faults and a specific load condition. For each system state, some defined
power system reactions are analyzed such as:

• Automatic stand-by switching on (ASS),
• Fault clearance by using protection equipment,
• Automatic power restoration (APR) by opening separating switches (fault separation)

and closing normally open switches.

Finally, the system state generation combined with the failure effect analysis updates
the calculation of statistic indices. The detailed description of the used algorithm in PF can
be found in [79].

4. Reliability Analysis of Electric Power Network

4.1. Assumptions and Limitations

The urban and rural structures of present electric distribution networks (UDN, RDN)
with distributed generation have been investigated. Different structures of future dis-
tribution networks with embedded generation have been also analyzed, such as: active
managed MV distribution network (AMDN) and MV distribution network with connected
LV microgrids (DNMG).
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The diagrams and parameters of all the basic structures (as a starting point of analysis)
are shown in detail in Appendices A–D.

In Poland any part of the electric distribution system (both MV and LV network) con-
trolled by distribution system operators cannot operate in islanded mode. The autonomous
operation is admitted only for power networks and installations belonging to a consumer.
For that restriction, the islanded operation of UDN and RDN is not admitted.

In the loop structures, i.e., UDN and DNMG, the ASS as well as the APR have been
considered in the reliability assessment. All the MV distribution system models do not take
into consideration a possibility of power supply reserve (e.g., with the use of ASS) on the
level of LV distribution network

For all investigated DG sources, the reliability models described in Section 3.2 have
been assumed. The reliability models of the energy storages (chemical battery and flywheel)
have been not considered in this analysis.

4.2. Results of Test Calculations

Before the reliability indices have been calculated, the load flow analysis had been
carried out for all investigated distribution network structures. Branch overloading and
the excess of permissible voltage deviation in nodes has not been observed.

All the calculated system reliability indices for all considered present and future
distribution networks are presented in Tables 9–12.

Table 9. Reliability system indices for UDN structure (Figure A1).

Variants: UDN_1, UDN_2, UDN_3, ASS—Busbars 1–2, 14–16, 15–17

Index Case_1, Case_2, Case_3

SAIFI [1/a] 0.731679
CAIFI [1/a] 0.731679
SAIDI [h] 2.684
CAIDI [h] 3.668
ASAI [-] 0.9996936566
ASUI [-] 0.0003063434

EENS [MWh/a] 42.363

Variants: UDN_1, UDN_2, UDN_3, ASS and APR—all busbars and terminals

SAIFI [1/a] 0.380772
CAIFI [1/a] 0.380772
SAIDI [h] 1.603
CAIDI [h] 2.191
ASAI [-] 0.9998169754
ASUI [-] 0.0001830246

EENS [MWh/a] 25.449

Table 10. Reliability system indices for RDN structure (Figure A3).

Variants: RDN_1, RDN_2, RDN_3

Index Case_1, Case_2, Case_3

SAIFI [1/a] 0.806104
CAIFI [1/a] 0.806104
SAIDI [h] 8.306
CAIDI [h] 10.304
ASAI [-] 0.9990518242
ASUI [-] 0.0009481758

EENS [MWh/a] 72.132
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Table 11. Reliability system indices for DNMG structure (Figure A4).

Variant: DNMG_1

Index Case_1 Case_2 Case_3

SAIFI [1/a] 0.352252 0.352234 0.352209
CAIFI [1/a] 0.354118 0.354100 0.354075
SAIDI [h] 2.183 2.293 8.046
CAIDI [h] 6.197 6.509 22.844
ASAI [-] 0.9997507987 0.9997382643 0.9990815262
ASUI [-] 0.0002492013 0.0002617357 0.0009184738

EENS [MWh/a] 33.829 35.533 124.821

Variant: DNMG_2

Index Case_1 Case_2 Case_3

SAIFI [1/a] 0.346583 0.346587 0.346654
CAIFI [1/a] 0.348419 0.348423 0.348490
SAIDI [h] 2.393 2.472 8.992
CAIDI [h] 6.904 7.133 25.938
ASAI [-] 0.9997268479 0.9997177990 0.9989735626
ASUI [-] 0.0002731521 0.0002822010 0.0010264374

EENS [MWh/a] 37.077 38.306 139.453

Variant: DNMG_3

Index Case_1 Case_2 Case_3

SAIFI [1/a] 0.358422 0.358436 0.358511
CAIFI [1/a] 0.360315 0.360330 0.360405
SAIDI [h] 2.474 2.558 9.438
CAIDI [h] 6.903 7.136 26.324
ASAI [-] 0.9997175397 0.9997079937 0.9989226588
ASUI [-] 0.0002824603 0.0002920063 0.0010773412

EENS [MWh/a] 38.492 39.795 147.018

Table 12. Reliability system indices for AMDN structure (Figure A5).

Variant: AMDN_1

Index Case_1 Case_2 Case_3 Case_4 Case_5

SAIFI [1/a] 0.087041 0.081571 0.074728 0.074746 0.076239
CAIFI [1/a] 0.087041 0.081571 0.074728 0.074746 0.076239
SAIDI [h] 0.661 0.661 0.661 0.661 0.661
CAIDI [h] 7.593 8.103 8.845 8.842 8.669
ASAI [-] 0.9999245511 0.9999245511 0.9999245511 0.9999245511 0.9999245511
ASUI [-] 0.0000754489 0.0000754489 0.0000754489 0.0000754489 0.0000754489

EENS [MWh/a] 9.037 9.037 9.037 9.037 9.037

Variant: AMDN_2

Index Case_1 Case_2 Case_3 Case_4 Case_5

SAIFI [1/a] 0.081363 0.080969 0.080475 0.080476 0.079877
CAIFI [1/a] 0.081363 0.080969 0.080475 0.080476 0.079877
SAIDI [h] 0.715 0.715 0.715 0.715 0.715
CAIDI [h] 8.788 8.831 8.885 8.885 8.952
ASAI [-] 0.9999183769 0.9999183769 0.9999183769 0.9999183769 0.9999183769
ASUI [-] 0.0000816231 0.0000816231 0.0000816231 0.0000816231 0.0000816231

EENS [MWh/a] 9.376 9.376 9.376 9.376 9.376

Variant: AMDN_3

Index Case_1 Case_2 Case_3 Case_4 Case_5

SAIFI [1/a] 0.073720 0.076901 0.080882 0.080871 0.080003
CAIFI [1/a] 0.213266 0.222469 0.233984 0.233954 0.231441
SAIDI [h] 0.700 0.700 0.700 0.700 0.700
CAIDI [h] 9.498 9.105 8.657 8.658 8.752
ASAI [-] 0.9999200708 0.9999200708 0.9999200708 0.9999200708 0.9999200708
ASUI [-] 0.0000799292 0.0000799292 0.0000799292 0.0000799292 0.0000799292

EENS [MWh/a] 9.283 9.283 9.283 9.283 9.283

Three variants of DG unit location are considered. Based on UDN_1 variant as a basic
UDN structure (see Figure A1), a node including the PVPP and BES connected changes
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from no. 5 to no. 1 (UDN_2) and no. 8 (UDN_3). In each variant, three cases of different
power generation levels of the considered PVPP and BES are analyzed, i.e., Case_1—51 kW,
Case_2—100 kW and Case_3—510 kW. The other DG sources do not change the location in
all variants and the power generation values in all cases.

There are also three variants of DG unit location to be considered. Based on RDN_1
variant as a basic RDN structure (see Figure A3), a node the WTPP and BES are connected
to changes from no. 72 to no. 43 (RDN_2) and no. 71 (RDN_3). In each variant, three cases
of different power generation levels of the considered WTPP and BES are analyzed, i.e.,
Case_1—2.4 MW, Case_2—1.6 MW and Case_3—0.8 MW. The other DG sources do not
change the location in all variants and the power generation values in all cases.

Three variants of MG location are considered. Based on DNMG_1 variant as a
basic DNMG structure (see Figure A4), a MG is connected to changes from no. 6 to
no. 3 (DNMG_2) and no. 1 (DNMG_3). In the second variant (DNMG_2) a load equivalent
is shifted from node no. 3 to node no. 6. In the third variant (DNMG_3) an additional load
equivalent is connected to node no. 6 (P = 100 kW, Q = 20 kvar). In each variant the change of
only one of two microsources in considered MG is analyzed in three cases: Case_1—WTPP
(170 kW); MT (30 kW), Case_2—WTPP (170 kW); FC (30 kW), Case_3—WTPP (170 kW);
PVPP (30 kW). In all the cases reactive power generated in microsources is equal to 0 kvar.

Three variants of DG unit location are considered. Based on AMDN_1 variant as a basic
AMDN structure (see Figure A5), a node the DG unit is connected to changes from no. 4
to no. 2 (AMDN_2) and no. 1 (AMDN_3). In each variant, five cases of different types of
the considered DG unit are analyzed, i.e., Case_1—WTPP, Case_2—PVPP, Case_3—EDG,
Case_4—TDG, Case_5—SHPP. The change of power generation level of the DG unit is
not considered.

For AMDN_1 variant an impact of automatic on-load tap changer at the 110 kV/MV
transformer on the maximum active and reactive power generated by a DG unit has been
analyzed as well. The branch power capacity and permissible voltage deviation (±10%)
was the criterion used to determine the maximum power generation. The first investigated
case assumes the peak load and 110 kV/MV transformer operation without on-load tap
changer. Maximum values of active and reactive power generated by the DG source are
P = 14.3 MW and Q = 4.3 Mvar adequately at +10% voltage deviation. In the second case
(peak-off load and transformer operation without on-load tap changer) the DG unit can
generate only P = 1.8 MW and Q = 0.54 Mvar. The last case assumes the automatic on-load
tap changer at the transformer as well as the peak-off load, the DG source can generate the
power up to the cable load capacity (the line between nodes no. 3 and 4).

4.3. Observations

Based on the test calculation results the following observations have been made:

• Looking at the reliability indices calculated for UDN and RDN one can certainly state
that location and type of DG source does not directly affect the power supply reliability.
The APR application in UDN definitely improves all the investigated reliability indices,
i.e., SAIFI, CAIFI, SAIDI, CAIDI, EENS, ASAI, ASUI).

• Three considered variants of DG source location in AMDN have been compared.
Looking at ASAI index, the highest value is for “AMDN_1” and the lowest one is for
“AMDN_2”. There is also an impact of DG types on both the interruption frequency
and interruption duration.

• An impact of DG type on reliability indices is also noticeable for DNMG. For all
considered DNMG variants, the lowest ASAI value is observed in “Case_3” with
WTPP and PVPP connected to a microgrid. Analyzing three variants of microgrid
locations, the highest ASAI value is observed for “DNMG_1”. In addition, “DNMG_3”
characterizes the lowest value of ASAI index.

• Both the interruption frequency (SAIFI, CAIFI) and interruption duration (SAIDI,
CAIDI) for UDN are lower than for RDN.
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• The interruption frequency (SAIFI, CAIFI) calculated for RDN is about tenfold higher
than for AMDN with DG unit connected (except the variant AMDN_3 in which the
ratio is about four). An interesting observation about interruption durations is made.
The values of CAIDI index are almost comparable to one another, but the SAIDI for
AMDN is over twelvefold lower than for RDN structure. This observation shows the
strongly irregular distribution of the repair duration in the analyzed AMDN structure.

• DNMG with connected LV microgrids does not significantly improve the power supply
reliability in comparison to UDN with APR.

5. Smart Grid Reliability Assessment

5.1. Model Structure

A simple distribution system structure was created to analyze the reliability assessment
of an electric power network coupled with a communications network [80,81], see Figure A6
in Appendix E. Integrated communication allows for monitoring all nodes in the network,
and thus faster detection of the location of failures in the power network and taking
corrective actions. The component aging is disregarded and only the constant failure rate
related to their useful life is analyzed. Since failures in the power system usually occur
randomly, the sequential Monte Carlo method was employed to simulate and assess a
smart grid’s reliability over time. The method produces a distribution of possible outcomes
rather than a single expected value.

The artificial operating/failure histories of the relevant smart grid elements are gener-
ated. The period during which the element is operating is called time to failure (TTF). The
period during which the element fails is called time to repair (TTR).

The parameters TTF, TTR constitute random variables and may have different proba-
bility distributions. Exponential distribution is used here to assess the reliability of both
the electric power distribution system and the communications network. The exponential
distribution’s probability distribution function is described as follows [80,82]:

f (t) =

{
λe−λt, 0 < t < ∞
0, otherwise

(8)

The method for generating an artificial failure history of a component is presented in
Figure 4. Each time interval is computed with different random numbers. This simulates
contingencies occurring in a real system realistically.

Figure 4. Method of failure history generation [80,81].

TTF and TTR are calculated for a given failure rate and repair rate from Table 13 with
the formulas [83]:

TTFi = − 1
λ

ln(ui) (9)

TTRj = − 1
μ

ln
(
uj
)

(10)

where ui, uj are random numbers uniformly distributed in the range of 0–1 and λ and μ are
the failure rate and the repair rate, respectively.
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Table 13. Values of the reliability parameters used for the simulations.

Components Failure Rate (λ)
Mean Time to Repair

(MTTR) [h]
MTTRSG with com.

Network [h]

Distribution lines 0.8 50 40
Transformers 0.1 100 80

The communications infrastructure in smart grid supplies additional information on
power system states, thus improving overall network performance. It enables faster detec-
tion of and response to failures or even prevents their occurrence. Accessing information
faster facilitates earlier dispatching of service teams or faster responses by different system
operators to potential imbalances in power systems, for instance.

By extension, communications shorten interruption times. This method, thus, entails
shortening interruption times by shortening the time to repair for combined system. The
shorter time to repair is denoted as TTRSG (see Figure 5) and simulated. Since communica-
tions are assumed to improve distribution system reliability, their absence or failure do not
diminish an electric power system’s (EPS) performance, as shown on the right in Figure 5.

Figure 5. Methodology of smart grid co-simulation: (a) EPS, ICT and Smart Grid in operation, (b)
outage in EPS, ICT in operation, shortening the failure in Smart Grid, (c) failure in EPS, failure
in ICT, shortening the failure in Smart Grid, (d) EPS in operation, failure in ICT, Smart Grid in
operation [80,81].

5.2. The Algorithm Used

The reliability simulations are based on the time sequential Monte Carlo technique.
This method has been adapted into the proposed approach of Smart Grid reliability as-
sessment. The algorithm used to compute reliability indices of electric power distribution
systems (EPS), communications networks (ICT) and integrated Smart Grid (SG) system is
presented in a block diagram in Figure 6.

The program starts with definition of system input data such as network topology
with location of the components, failure and repair rates and connected loads. The number
of sample years (N) and simulation period (T) are also entered in this step. The simulation
begins with generating random numbers [0,1] for each element in the system and converting
them into time to failure (TTF) using equation 4. In the next step, the element with the
shortest TTF is determined, i.e., the component that will fail first. In the conditional block,
it is then checked to see if the found minimal TTF value matches within one year. If this
is not a case, it means that the TTF is longer than 8760 h and within this year no failure
occurs. Further steps will be skipped and random numbers of TTF are computed again for
all elements. If the TTF is shorter than 8760 h, the time to repair (TTR) will be computed for
that element which indicates its out of operation state duration. Moreover, its location in
the interconnection matrix as well as the location of any load nodes which can be influenced
by the given component is also determined. After that, a new random number is generated
for that component and converted into new TTF. Simulation time has to be updated for
each element according to Equation (11).

TTF = t + TTR + TTF_new (11)
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The updated TTF value indicates subsequent time of failure occurrence and is com-
pared with previously generated TTFs of other components. After that, the TTR for other
elements can be computed. These procedures are repeated in a loop for each element until
the simulation period (e.g., one year) is completed and all of the simulation sequences com-
prising the defined number of years are finished. Then, the reliability parameters of each
component, such as failure and repair rate as well as unavailability, are computed. Finally,
based on these parameters, the reliability indices for the whole system are calculated for
the total sample number of years (N).

 
Figure 6. Sequential Monte Carlo algorithm [81,82].
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5.3. Simulation Results

The simulations of an integrated smart grid system were run with the structure illus-
trated in Figure A6. In the simulations, component failures and the existence of communica-
tion were considered, and generation parameters were omitted. In order to calculate the
relevant reliability indicators, the number of customers has been taken into account.

Simulations of N = 100 years with the step-in sequence of one year (8760 h) with the
resolution of one hour were run using the input data presented in Table 13. Faster responses
to failures, shorten the time to repair for the smart grid. The results of reliability parameters
obtained with time sequential simulation are strongly influenced from the failure, repair
rates and system structure. The distribution of reliability indices significantly depends on
the number of simulated years.

Simulation results are presented in Table 14 and Figure 7. The average system indices
show that the electric power system with a communications infrastructure is more reliable.
The presence of ICT shortens interruption times, represented by the SAIDI index.

Table 14. Average system indices for the electric power system analyzed.

Network Structure
SAIDI
[h/yr]

SAIFI
[fail./yr]

CAIDI
[h/fail.]

EENS
[MWh/yr]

ASAI
[%]

Without communication 9.352 0.105 38.101 0.094 99.893
With communication 7.482 0.104 30.608 0.075 99.915

Figure 7. Cont.
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Figure 7. Index distributions obtained from the simulation of an electric power system with and
without a communications infrastructure.

Moreover, the range of index distributions shifts toward zero in systems with com-
munications, reflecting improved reliability. Distributions of the SAIFI index representing
the number of interruptions in one year are identical for systems with and without com-
munications because only the durations of interruptions change in both scenarios but the
number of interruptions in one year remain constant.

The CAIDI index representing the average interruption duration is significantly smaller
in electric power systems with ICT than in systems without communications. This is due to
the shorter break times.

6. Conclusions

Electrical component failures in distribution systems have been proven the cause of
the majority of power interruptions in electric power system.

The number, location, and type of DG sources in existing (conventional) company-
owned distribution networks that may not operate in islanded mode have no direct impact
on reliability indices. However, a DG unit connection to a distribution network may cause a
load alleviation in lines, transformers, etc. and this phenomenon varies the form of the risk
function of power system components. The DG sources connected to a distribution network
indirectly improves electric service reliability for consumers. DG units may increase voltage
in busbars and terminals and short-circuit currents in a distribution system.

Power supply is chiefly improved by providing power redundancy and using remote
control switches with distribution system automation, such as ASS, APR and AR (automatic
reclosing). The reliability calculations corroborate this. Power interruption frequency and
power interruption duration are lower in urban looped distribution networks than in rural
distribution networks with feeders supplied from one point. The continued growth of
DG capacity in distribution systems requires research and development of new (future)
distribution network structures, e.g., actively managed networks (smart grids), microgrids,
clustered networks, etc. All of these networks are assumed to be capable of operating
autonomously (i.e., islanded and unconnected to the main grid) and to be equipped with
distribution system automation (e.g., ASS, APR and AR).

The calculations confirm that the future distribution network structures have higher
electrical service reliability than existing distribution networks. Future distribution systems
have lower interruption frequencies and durations.

Actively managed distribution networks appear to be a promising idea [84]. Assuming
the voltage limitation on network busbars and terminals, the impact of the active on-load tap
changer in the 110 kV/MV transformer on the maximum active and reactive power generated
by a DG source has been analyzed. This study has demonstrated that the automatic voltage
regulator (AVR) at the transformer allows the increase of installed capacity of DG unit
connected to the distribution network.
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Considering the impact of DG type and locations in future electric distribution net-
works on the power supply reliability, the results of reliability assessment allow the formu-
lation of the following remarks:

• Power supply continuity is higher when DG sources are based on conventional fuels
(gas, diesel oil, etc.). The installation of renewable DG units (energy carriers that are
hard to forecast) delivers worse results.

• Types of microsources in distribution networks with connected LV microgrids affect
the reliability indices. This is noticeable in installed microsources based on energy
carriers dependent on weather conditions.

• The location of DG sources in distribution systems also affects electrical service relia-
bility. The most favorable reliability indices are obtained when the potential maximum
number of energy consumers are double-feed (loop: transformer substation—DG unit).
In case of aggregation of supplying sources at the one network busbar or terminal,
worse reliability indices are observed.

• The appropriate level of DG power generation is a significant issue. The DG power
available ensures peak loads are covered. The level of power generation is often limited
by branch power capacity and maximum allowable voltage deviation. Active voltage
regulation in power transformers can resolve voltage level problems.

The authors intend to focus on optimizing future distribution system structures and
devising an optimal development strategy for existing distribution networks in future
studies. This will require the determining of accurate reliability models of electric power
equipment, protection and automation systems, DG sources and energy storage systems in
different types of network structures.

The use of information and communications technology to monitor, control and protect
power systems is an important way to meet the challenges of continuously developing
electric power grids. The installation of measurement sensors, automated control systems
and communication devices will increase the complexity of such integrated systems, thus
requiring new methods for designing and optimal integrating of advanced communications
systems in electric power grids.

A reliability assessment of smart grids consisting of an electric power distribution
system and an integrated communications network based on Monte Carlo simulation was
developed and tested in this study. The simulation algorithm delivers the distributions and
average values of reliability indices for smart grids, electric power systems and communica-
tions networks. This enabled analyzing the influence of the coexistent ICT infrastructure on
the power distribution system’s reliability and, thus, the entire smart grid. Although some
assumptions were made in the methodology to model the systems, the algorithm developed
delivers valuable results for the assessment of reliability when designing and optimizing
systems. Widespread use of a reliable information and communications infrastructure will
improve smart grids’ functionality and reliability.

Since this study concentrates on the monitoring of smart grids with advanced ICT,
future studies ought to analyze their control and protection. Applying reliable control and
protection schemes to the system will help minimize outages and their impact on overall
system operation. Future studies ought to examine more complex models of ICT network
operation, including several levels of communication performance, e.g., full communication
of all components, full communication of all components with limited quality of service
(QoS) and limited communication.
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Abbreviation

The following abbreviations are used in this manuscript:

AMDN Active managed distribution network
APR Automatic power restoration
AR Automatic reclosing
ASAI Average service availability index
ASUI Average service unavailability index
ASS Automatic stand-by switching on
AVR Automatic voltage regulator
BES Battery energy storage
BTPP Biogas-turbine power plant
CAIDI Customer average interruption duration index
CAIFI Customer average interruption frequency index
DG Distributed generation
DGU Distributed generation unit
DNMG Urban distribution network with connected microgrids
EDG Engine-driven generator
EENS Expected energy not supplied
EPS Electric power system
ET Electric traction substation
EXP Exponential
FC Fuel cell
FMECA Failure mode effects and criticality analysis
GAM Gamma
GT Grounding transformer
GTPP Gas-turbine power plant
GUM Gumbel
HL Hierarchical level
ICT Information and communication technology
IEC International Electrotechnical Commission
IP Industrial park
IT Information technology
LNOR Log-normal
LTE Long term evolution
LV Low voltage
MG Microgrid
MG(G) Microgrid generation
MG(L) Microgrid load
MT Microturbine
MTBF Mean time between failure
MTTR Mean time to repair
MV Medium voltage
MVUS MV urban distribution substation
NOR Normal
PAR Pareto
PF PowerFactory software
PFCB PFC capacitor bank
PLC Programmable logic controller
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PMU Phasor measurement unit
PS Power system
PV Photovoltaic
PVPP Photovoltaic power plant
QoS Quality of service
RDN Rural distribution network
RES Renewable energy source
RTU Remote terminal unit
R&PU Residential and public utility
SCADA Supervisory control and data acquisition
SAIDI System average interruption duration index
SAIFI System average interruption frequency index
SG Smart grid
SHPP Small hydro power plant
TDG Turbine-driven generator
TTF Time to failure
TTR Time to repair
UDN Urban distribution network
WEI Weibull
WTPP Wind-turbine power plant

Appendix A. UDN Structure

Figure A1. MV urban distribution network with the distributed generation sources (PS—power
system, PVPP—photovoltaic power plant, BES—battery energy storage, MT—micro-turbine, GTPP—
gas-turbine power plant, GT—grounding transformer, MVUS—MV urban distribution substation,
IP—industrial park).
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Table A1. Distributed generation sources and energy consumers connected to the urban MV distribu-
tion network.

Node No.
PLOAD/PGEN

[kW]
QLOAD

[kvar]
Load/DG

Type
Node No.

PLOAD/PGEN

[kW]
QLOAD

[kvar]
Load/DG

Type

1 5000 1500 R&PU 15 4700 1700 R&PU
2 5000 1500 R&PU 16 200 - MT
3 1200 - GTPP 16 1080 420 IP
4 510 185 R&PU 17 4650 1835 R&PU
5 530 210 R&PU 18 545 215 R&PU
5 30 - BES 19 310 120 R&PU
5 51 - PVPP 20 315 115 R&PU
6 305 120 R&PU 21 335 110 R&PU
7 300 110 R&PU 21 51 - PVPP
8 530 210 R&PU 22 540 195 ET
9 320 115 R&PU 23 495 180 R&PU
10 540 210 R&PU 24 535 195 R&PU
11 495 180 R&PU 25 325 105 R&PU
12 340 110 R&PU 25 51 - PVPP
12 51 - PVPP 25 30 - BES
13 300 120 R&PU 26 325 105 R&PU
14 1060 415 IP 27 540 195 R&PU
14 200 - MT 28 1200 - GTPP

Types of energy consumers: R&PU—residential and public utility, IP—industrial (park), ET—electric traction
substation. The nodes the DG sources are connected to are marked as gray background.

Figure A2. Typical daily load profile (15-min intervals) for residential consumers (a line with the
triangles) as well as industrial parks and electric traction substation (a line with the quadrants);
based on [85].
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Table A2. Line parameters of the urban MV distribution network.

From
Node No.

To
Node No.

Line Type
Length

[m]
From

Node No.
To

Node No.
Line Type

Length
[m]

1 3 3xXUHAKXS1 × 120 2000 1 15 HAKnFty 3 × 240 3000
1 4 3xYHAKXS1 × 120 110 2 16 HAKnFty 3 × 120 1600
4 5 3xYHAKXS1 × 120 250 2 17 HAKnFty 3 × 240 3000
5 6 3xYHAKXS1 × 120 100 2 28 3xYHAKXS 1 × 120 190
6 7 3xYHAKXS1 × 120 130 18 19 3xYHAKXS 1 × 120 100
7 8 3xYHAKXS1 × 120 160 19 20 3xYHAKXS 1 × 120 110
8 27 3xYHAKXS1 × 120 170 20 21 3xYHAKXS 1 × 120 130
1 9 3xYHAKXS1 × 120 200 21 22 3xYHAKXS 1 × 120 80
9 10 3xYHAKXS1 × 120 120 2 23 3xYHAKXS 1 × 120 120

10 11 3xYHAKXS1 × 120 140 23 24 3xYHAKXS 1 × 120 200
11 12 3xYHAKXS1 × 120 170 24 25 3xYHAKXS 1 × 120 80
12 13 3xYHAKXS1 × 120 80 25 26 3xYHAKXS 1 × 120 140
13 22 3xYHAKXS1 × 120 140 26 27 3xYHAKXS 1 × 120 90
1 14 HAKnFty 3 × 120 1600 2 28 3xXUHAKXS1 × 120 2500

XUHAKXS—single-Al core cable, radial field, polythene-coated, polythene sheath, YHAKXS—single-Al core
cable, radial field, polythene-coated, polyvinyl chloride sheath, HAKnFty—triple-Al core cable, radial field,
paper-coated, steel armor, polyvinyl chloride sheath.

Appendix B. RDN Structure

Figure A3. Rural MV distribution network with the distributed generation sources (PS—power
system, PVPP—photovoltaic power plant, BES—battery energy storage, SHPP—small hydropower
plant, BTPP—biogas-turbine power plant, WTPP—wind-turbine power plant, PFCB—PFC capacitor
bank, GT—grounding transformer, IP—industrial park).
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Table A3. Distributed generation sources and energy consumers connected to the rural MV distribu-
tion network.

Node No.
PLOAD/PGEN

[kW]
QLOAD

[kvar]
Load/DG

Type
Node No.

PLOAD/PGEN

[kW]
QLOAD

[kvar]
Load/DG

Type

1 4000 1400 R&PU 36 1595 580 IP
2 565 185 R&PU 39 335 120 R&PU
5 210 75 R&PU 41 1200 - BTPP
7 85 30 R&PU 43 135 50 R&PU
7 200 - PVPP 45 140 45 R&PU
7 200 - BES 48 75 30 R&PU
10 145 45 R&PU 50 135 50 R&PU
12 135 50 R&PU 51 200 75 R&PU
14 125 40 R&PU 54 190 75 R&PU
15 190 70 R&PU 55 210 75 IP
17 205 80 R&PU 57 135 50 R&PU
19 125 50 R&PU 59 75 30 R&PU
21 125 45 IP 61 210 75 R&PU
23 75 30 R&PU 63 215 75 R&PU
25 200 75 R&PU 64 140 45 R&PU
27 225 75 R&PU 66 200 70 R&PU
29 120 45 R&PU 68 125 50 R&PU
30 125 50 R&PU 70 140 45 R&PU
32 120 50 R&PU 71 85 30 R&PU
33 130 45 R&PU 72 2400 - WTPP
34 90 30 R&PU 72 500 - BES
35 2000 - SHPP - - - -

The nodes the DG sources are connected to are marked as gray background.

Table A4. Line parameters of the rural MV distribution network.

From
Node No.

To
Node No.

Line Type
Length

[m]
From

Node No.
To

Node No.
Line Type

Length
[m]

1 2 3xYHAKXS 1 × 120 500 1 37 3xYHAKXS1 × 120 450
2 3 3xYHAKXS 1 × 120 150 37 38 70 AFL 200
3 4 70 AFL 160 38 39 50 AFL 100
4 5 50 AFL 130 38 40 70 AFL 150
4 6 70 AFL 200 40 41 70 AFL 90
6 7 50 AFL 50 40 42 70 AFL 180
6 8 70 AFL 120 42 43 50 AFL 70
8 9 50 AFL 310 42 44 70 AFL 180
9 10 50 AFL 60 44 45 50 AFL 120
9 11 50 AFL 210 44 46 70 AFL 210
11 12 50 AFL 80 46 47 50 AFL 200
11 13 50 AFL 160 47 48 50 AFL 90
13 14 50 AFL 50 47 49 50 AFL 150
13 15 50 AFL 120 49 50 50 AFL 90
8 16 70 AFL 160 49 51 50 AFL 110
16 17 50 AFL 100 46 52 70 AFL 140
16 18 70 AFL 180 52 53 50 AFL 200
18 19 50 AFL 90 53 54 50 AFL 60
18 20 70 AFL 210 53 55 50 AFL 190
20 21 50 AFL 160 52 56 70 AFL 210
20 22 70 AFL 130 56 57 50 AFL 120
22 23 50 AFL 110 56 58 70 AFL 130
22 24 70 AFL 120 58 59 50 AFL 70
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Table A4. Cont.

From
Node No.

To
Node No.

Line Type
Length

[m]
From

Node No.
To

Node No.
Line Type

Length
[m]

24 25 50 AFL 140 58 60 70 AFL 200
24 26 50 AFL 180 60 61 50 AFL 130
26 27 50 AFL 160 60 62 70 AFL 160
26 28 50 AFL 150 62 63 50 AFL 200
28 29 50 AFL 70 62 64 50 AFL 130
28 30 50 AFL 290 62 65 50 AFL 140
24 31 50 AFL 200 65 66 50 AFL 210
31 32 50 AFL 120 65 67 50 AFL 140
31 33 50 AFL 60 67 68 50 AFL 80
31 34 50 AFL 300 67 69 50 AFL 120
1 35 3xYHAKXS 1 × 120 4000 69 70 50 AFL 90
1 36 3xYHAKXS 1 × 120 2500 69 71 50 AFL 200
24 31 50 AFL 200 1 72 3xYHAKXS1 × 120 3000

AFL—steel-cored aluminum conductor.

Appendix C. DNMG Structure

Figure A4. MV distribution network with connected LV microgrids (PS—power system, MG—microgrid,
IP—industrial park, MVUS—MV urban distribution substation, GT—grounding transformer).
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Table A5. Distributed generation sources and energy consumers connected to the MV distribution
network with LV microgrids.

Node No.
PLOAD/PGEN

[kW]
QLOAD

[kvar]
Load/DG

Type
Node No.

PLOAD/PGEN

[kW]
QLOAD

[kvar]
Load/DG

Type

1 5000 1500 R&PU 16 4650 1835 R&PU
3 510 185 R&PU 17 545 215 R&PU
4 530 210 R&PU 18 310 120 R&PU
5 305 120 R&PU 19 580 145 MG(L)
6 580 145 MG(L) 19 200 - MG(G)
6 200 - MG(G) 20 335 110 R&PU
7 530 210 R&PU 21 540 195 R&PU
8 320 115 R&PU 22 495 180 R&PU
9 540 210 R&PU 23 535 195 R&PU
10 495 180 R&PU 24 325 105 R&PU
11 340 110 R&PU 25 325 105 R&PU
12 300 120 R&PU 26 540 195 R&PU
13 1060 415 IP 2 5000 1500 R&PU
14 4700 1700 R&PU 27 580 145 MG(L)
15 1080 420 IP 27 200 - MG(G)

Energy consumers and power generation types: MG(L)—microgrid load, MG(G)—microgrid generation. The
nodes the MG generations are connected to are marked as gray background.

Table A6. Line parameters of the MV distribution network with LV microgrids.

From
Node No.

To
Node No.

Length
[m]

From Node
No.

To
Node No.

Length
[m]

1 3 110 2 15 1600
3 4 250 2 16 3000
4 5 100 2 17 190
5 6 130 17 18 100
6 7 160 18 19 110
7 26 170 19 20 130
1 8 200 20 21 80
8 9 120 2 22 120
9 10 140 22 23 200

10 11 170 23 24 80
11 12 80 24 25 140
12 21 140 25 26 90
1 13 1600 2 27 2500
1 14 3000

The MV distribution network with connected LV microgrids consists entirely of underground cables 3x(YHAKXS
1 × 240).
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Appendix D. AMDN Structure

 

Figure A5. Actively managed MV distribution network with the DG unit (based on [84]).

Table A7. Energy consumers connected to the actively managed MV distribution network.

Node No.
PLOAD/PGEN

[kW]
QLOAD

[kvar]
Load/

DG Type
Node No.

PLOAD/PGEN

[kW]
QLOAD

[kvar]
Load/

DG Type

1 7000 2100 R&PU 8 400 130 R&PU
2 400 130 R&PU 9 450 150 R&PU
3 500 165 R&PU 10 550 165 R&PU
5 450 135 R&PU 11 1600 640 IP
6 2000 800 IP 12 400 120 R&PU
7 550 165 R&PU

Table A8. Line parameters of the actively managed MV distribution network.

From
Node No.

To
Node No.

Length [m]
From

Node No.
To

Node No.
Length [m]

1 2 500 7 8 140
2 3 150 1 9 300
3 4 250 9 10 140
1 5 400 10 11 180
5 6 150 11 12 120

The actively managed MV distribution network consists entirely of underground cables 3x(YHAKXS 1 × 240).
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Appendix E. Smart Grid Structure

Figure A6. A proposed benchmark system for coupled electric power system and communications
network (N—number of customers) (based on [80,81]).
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7. Escalera, A.; Castronuovo, E.D.; Prodanović, M.; Roldán-Pérez, J. Reliability Assessment of Distribution Networks with Optimal
Coordination of Distributed Generation, Energy Storage and Demand Management. Energies 2019, 12, 3202. [CrossRef]

8. Kumar, S.; Sarita, K.; Vardhan, A.S.S.; Elavarasan, R.M.; Saket, R.K.; Das, N. Reliability Assessment of Wind-Solar PV Integrated
Distribution System Using Electrical Loss Minimization Technique. Energies 2020, 13, 5631. [CrossRef]

9. Ndawula, M.B.; Djokic, S.Z.; Hernando-Gil, I. Reliability Enhancement in Power Networks under Uncertainty from Distributed
Energy Resources. Energies 2019, 12, 531. [CrossRef]

10. Kebede, F.; Olivier, J.-C.; Bourguet, S.; Machmoum, M. Reliability Evaluation of Renewable Power Systems through Distribution
Network Power Outage Modelling. Energies 2021, 14, 3225. [CrossRef]

11. Verbo, P.; Järventausta, P.; Kiviko, K.; Pylvänäinen, J.; Partanen, J.; Lassila, J.; Honkapuro, S.; Kaipia, T. Applying Reliability
Analysis in Evaluation of Life-Cycle Costs of Alternative Network Solutions. In Proceedings of the FPS 2005 International
Conference on Future Power Systems, Amsterdam, The Netherlands, 16–18 November 2005; pp. 1–4.

143



Energies 2022, 15, 5311

12. Conti, S.; Rizzo, S.A.; El-Saadany, E.F.; Essam, M.; Atwa, Y.M. Reliability Assessment of Distribution Systems Considering
Telecontrolled Switches and Microgrids. IEEE Trans. Power Syst. 2014, 29, 598–607. [CrossRef]

13. Paterakis, N.G.; Mazza, A.; Santos, S.F.; Erdinç, O.; Chicco, G.; Bakirtzis, A.G.; Catalão, J.P. Multi-Objective Reconfiguration of
Radial Distribution Systems Using Reliability Indices. IEEE Trans. Power Syst. 2016, 31, 1048–1062. [CrossRef]

14. Xu, N.Z.; Chung, C.Y. Reliability Evaluation of Distribution Systems Including Vehicle-to-Home and Vehicle-to-Grid. IEEE Trans.
Power Syst. 2016, 31, 759–768. [CrossRef]

15. Lombardi, P.; Hänsch, K.; Arendarski, B.; Komarnicki, P. Information and power terminals: A reliable microgrid infrastructure for
use in disaster scenarios. Int. J. Crit. Infrastruct. Prot. 2017, 19, 49–58. [CrossRef]

16. Alotaibi, I.; Abido, M.A.; Khalid, M.; Savkin, A.V. A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable
Future with Renewable Energy Resources. Energies 2020, 13, 6269. [CrossRef]

17. Das, S.; Kankanala, P.; Pahwa, A. Outage Estimation in Electric Power Distribution Systems Using a Neural Network Ensemble.
Energies 2021, 14, 4797. [CrossRef]

18. Bae, I.-S.; Kim, J.-O. Reliability Evaluation of Customers in a Microgrid. IEEE Trans. Power Syst. 2008, 23, 1416–1422.
19. Parol, M.; Rokicki, Ł.; Parol, R. Towards optimal operation control in rural low voltage microgrids. Bull. Pol. Ac Tech. 2019, 67,

799–812.
20. Xu, X.; Mitra, J.; Wang, T.; Mu, L. Evaluation of Operational reliability of a Microgrid Using a Short-term Outage Model. IEEE

Trans. Power Syst. 2014, 29, 2238–2247. [CrossRef]
21. Worku, M.Y.; Hassan, M.A.; Abido, M.A. Real Time Energy Management and Control of Renewable Energy based Microgrid in

Grid Connected and Island Modes. Energies 2019, 12, 276. [CrossRef]
22. Costa, P.M.; Matos, M.A. Assessing the contribution of microgrids to the reliability of distribution networks. Electr. Power Syst.

Res. 2009, 79, 382–389. [CrossRef]
23. Conti, S.; Nicolosi, R.; Rizzo, S.A. An Analytical Formulation to Assess Distribution System Reliability in Presence of Conventional

and Renewable Distributed Generators. In Proceedings of the CIGRE Symposium “The Electric Power System of the Future–
Integrating Supergrids and Microgrids”, Bologna, Italy, 13–15 September 2011.

24. Marcos, F.P.; Domingo, C.M.; San Román, T.G.; Arín, R.C. Location and Sizing of Micro-Grids to Improve Continuity of Supply in
Radial Distribution Networks. Energies 2020, 13, 3495. [CrossRef]

25. Bie, Z.; Zhang, P.; Li, G.; Hua, B.; Meehan, M.; Wang, X. Reliability Evaluation of Active Distribution Systems Including Microgrids.
IEEE Trans. Power Syst. 2012, 27, 2342–2350. [CrossRef]

26. López-Prado, J.L.; Vélez, J.I.; Garcia-Llinás, G.A. Reliability Evaluation in Distribution Networks with Microgrids: Review and
Classification of the Literature. Energies 2020, 13, 6189. [CrossRef]

27. Leite Andréa, P.; Borges Carmen, L.T.; Falcäo Djalma, M. Probabilistic Wind Farm Generation Model for Reliability Studies
Applied to Brazilian Sites. IEEE Trans. Power Syst. 2006, 21, 1493–1501. [CrossRef]

28. Artigao, E.; Martín-Martínez, S.; Honrubia-Escribano, A.; Gómez-Lázaro, E. Wind turbine reliability: A comprehensive review
towards effective condition monitoring development. App. Energy 2018, 228, 1569–1583. [CrossRef]

29. Borges Carmen, L.T.; Pinto Roberto, J. Small Hydro Power Plants Energy Availability Modeling for Generation Reliability
Evaluation. IEEE Trans. Power Syst. 2008, 23, 1125–1135. [CrossRef]

30. Ardito, L.; Procaccianti, G.; Menga, G.; Morisio, M. Smart Grid Technologies in Europe: An Overview. Energies 2013, 6, 251–281.
[CrossRef]

31. Celli, G.; Ghiani, E.; Pilo, F.; Soma, G. Impact of ICT on the Reliability of Active Distribution Networks. In Proceedings of the
CIRED Workshop, Lisbon, Portugal, 29–30 May 2012.

32. Girón, C.; Rodríguez, F.J.; Giménez de Urtasum, L.; Borroy, S. Assessing the contribution of automation to the electric distribution
network reliability. Int. J. Electr. Power Energy Syst. 2018, 97, 120–126. [CrossRef]

33. Sanchez, J.; Caire, R.; HadjSaid, N. ICT and Electric Power Systems Interdependencies Modeling. In Proceedings of the
Internationaler ETG-Kongress in Berlin, Berlin, Germany, 5–6 November 2013.

34. Sanchez, J.; Caire, R.; Hadjsaid, N. ICT and Power Distribution Modeling using Complex Networks. In Proceedings of the IEEE
PES Powertech Conference, Grenoble, France, 16–20 June 2013.

35. Smith, E.; Robinson, D.; Agalgaonkar, A. Cooperative Control of Microgrids: A Review of Theoretical Frameworks, Applications
and Recent Developments. Energies 2021, 14, 8026. [CrossRef]

36. Moslehi, K.; Kumar, R. A Reliability Perspective of the Smart Grid. IEEE Trans. Smart Grid 2010, 1, 57–64. [CrossRef]
37. Pavon, W.; Inga, E.; Simani, S.; Nonato, M. A Review on Optimal Control for the Smart Grid Electrical Substation enhancing

Transition Stability. Energies 2021, 14, 8451. [CrossRef]
38. Zhang, Y.; Wang, L.; Xiang, Y.; Ten, C.-W. Power System Reliability Evaluation with SCADA Cybersecurity Considerations. IEEE

Trans. Smart Grid 2015, 6, 1707–1721. [CrossRef]
39. Chen, L.; Zhao, N.; Cheng, Z.; Gu, W. Reliability Evaluation of Cyber–Physical Power Systems Considering Supply- and

Demand-Side Uncertainties. Energies 2022, 15, 118. [CrossRef]
40. Liu, R.; Mustafa, H.M.; Nie, Z.; Srivastava, A.K. Reachability-Based False Data Injection Attacks and Defence Mechanisms for

Cyberpower System. Energies 2022, 15, 1754. [CrossRef]
41. Jewell, W.; Namboodiri, V.; Aravinthan, V.; Karimi, B.; Kezunovic, M.; Dong, Y. Communication Requirements and Integration

Options for Smart Grid Deployment; Power Systems Engineering Research Center (PSERC): Tempe, AZ, USA, 2012.

144



Energies 2022, 15, 5311

42. Güngör, V.; Sahin, D.; Kocak, T.; Ergüt, S.; Buccella, C.; Cecati, C.; Hancke, G. Smart Grid Technologies: Communication
Technologies and Standards. IEEE Trans. Ind. Inform. 2011, 7, 529–539. [CrossRef]

43. Molokomme, D.N.; Chabalala, C.S.; Bokoro, P.N. A Review of Cognitive Radio Smart Grid Communication Infrastructure Systems.
Energies 2020, 13, 3245. [CrossRef]

44. Powalko, M.; Rudion, K.; Komarnicki, P.; Blumschein, J. Observability of the distribution system. In Proceedings of the 20th
International Conference and Exhibition on Electricity Distribution, CIRED 2009, Prague, Czech Republic, 8–11 June 2009.

45. Hussain, S.S.; Aftab, M.A.; Ustun, T.S. Performance Analysis of IEC 61850 Messages in LTE Communication for Reactive Power
Management in Microgrids. Energies 2020, 13, 6011. [CrossRef]

46. VDE; DKE. The German Roadmap E-Energy/Smart Grids 2.0. Smart Grid Standardization Status, Trends and Prospects; VDE Association
of Electrical Electronic & Information Technologie, DKE German Commission for Electrical, Electronic & Information Technologies
of DIN and VDE, Eds.; English Version; H. Heenemann GmbH & Co.: Berlin, Germany, 2013.

47. Bundesnetzagentur. Monitoringbericht 2019. Available online: https://www.bundesnetzagentur.de/SharedDocs/Mediathek/
Monitoringberichte/Monitoringbericht_Energie2019.pdf?__blob=publicationFile&v=6 (accessed on 16 March 2022).

48. CEER Benchmarking Report 6.1 on the Continuity of Electricity and Gas Supply. Ref: C18-EQS-86-03; Council of European Energy
Regulators Asbl: Brussels, Belgium, 2018.

49. Parol, M. Analysis of indexes concerning interruptions in delivery of electricity in distribution networks. Prz. Elektrotechniczny
(Electr. Rev.) 2014, 90, 122–126. (In Polish)

50. IEEE Std 493-2007; IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems. IEEE: New
York, NY, USA, 2007.

51. DIgSILENT. DIgSILENT PowerFactory Manual; DIgSILENT GmbH: Gomaringen, Germany, 2017.
52. IEEE Std 1366TM-2012 (Revision of IEEE 1366-2003); IEEE Guide for Electric Power Distribution Reliability Indices. IEEE: New

York, NY, USA, 2012.
53. Common T&D Reliability Indices. Available online: https://www.ewh.ieee.org/r6/san_francisco/pes/pes_pdf/Reliability_

and_Artificial_Intelligence/Common_T&D_Reliability_Indices.pdf (accessed on 9 July 2022).
54. Billinton, R.; Allan, R.N. Reliability Evolution of Power Systems, 2nd ed.; Springer: New York, NY, USA, 1996.
55. Choi, S. Assessment of Reliability in the Distribution System of an Industrial Complex. J. Electr. Eng. Technol. 2007, 2, 201–207.

[CrossRef]
56. CIGRE. CIGRE. CIGRE Task Force 38-03-10. Power System Reliability Analysis. In Composite Power System Reliability Evaluation,

Paris; CIGRE: Paris, France, 1992.
57. Brown, R.E. Electric Power Distribution Reliability, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009.
58. Paska, J. Reliability of Electric Power Systems; Publishing House of the Warsaw University of Technology: Warsaw, Poland, 2005. (In

Polish)
59. Stepien, J.C. Probabilistic reliability models of 15 kV cable lines. Prz. Elektrotechniczny (Electr. Rev.) 2005, 3, 245–249. (In Polish)
60. Bargiel, J.; Goc, W.; Sowa, P.; Tejchman, B.; Paska, J. Reliability of Medium Voltage Power Networks. In Proceedings of the VI

Scientific-Technical Conference Power Networks in Industry and Power Engineering, Szklarska Poreba, Poland, 10–12 September
2008; pp. 359–364. (In Polish).

61. Bollen, M.H.J.; Sun, Y.; Ault, G.W. Reliability of distribution networks with DER including intentional islanding. In Proceedings
of the FPS 2005 International Conference on Future Power Systems, Amsterdam, The Netherlands, 16–18 November 2005.

62. Sayas, F.C.; Allan, R.N. Generation availability assessment of wind farms. IEEE Proc.-Gener Transm. Distrib 1996, 143, 507–518.
[CrossRef]

63. IEEE Task Force on Models for Peaking Service Units. A four State Model for Estimate Outage Risk for Units in Peaking Service.
IEEE Trans. Power Appar. Syst. 1972, 91, 618–627.

64. Smith, A.C.; Donovan, M.D.; Bartos, M.J. Reliability survey of 600 to 1800 kW diesel and gas-turbine generating units. IEEE Trans.
Ind Appl. 1990, 26, 741–755. [CrossRef]

65. Cha, S.T.; Jeon, D.H.; Bae, I.S.; Lee, I.R. Reliability Evaluation of Distribution System Connected Photovoltaic Generation
Considering Weather Effects. In Proceedings of the International Conference on Probabilistic Methods Applied to Power Systems,
Ames, IA, USA, 12–16 September 2004; pp. 451–456.

66. Usman, A.; Shami, S. Evolution of Communication Technologies for Smart Grid Applications. Renew. Sust. Energ. Rev 2013, 19,
191–199. [CrossRef]

67. Medhi, D.; Ramasamy, K. Network Routing: Algorithms, Protocols, and Architectures, 2nd ed.; Elsevier: Amsterdam, The Netherlands,
2018.

68. Wei, M.; Chen, Z. Communication Systems and Study Method for Active Distribution Power Systems. In Proceedings of the 9th
Nordic Electricity Distribution and Asset Management Conference, Aalborg, Denmark, 6–7 September 2010.

69. Ali, M. Reliability of information and communication technology equipment in power system–study review. Nontechnical Res.
Proj.–Masters Otto-Von-Guericke-Univ. Magdebg. 2014, 1–67. [CrossRef]

70. Zhang, P.; Chan, K. Reliability Evaluation of Phasor Measurement Unit Using Monte Carlo Dynamic Fault Tree Method. IEEE
Trans. Smart Grid 2012, 3, 1235–1243. [CrossRef]

71. Dolezilekm, D.J. Choosing Between Communications Processors, RTUs, and PLCs as Substation Automation Controllers; Schweitzer
Engineering Laboratories, Inc.: Pullman, WA, USA, 2000; White Paper.

145



Energies 2022, 15, 5311

72. Momken, B. High Availability Solutions, Avaya Servers and Media Gateways. Avaya Aura™ Communication Manager (Avaya CM)
Software; Avaya Inc.: Durham, NC, USA, 2010; Issue 6.0.

73. Müller, S.; Georg, H.; Rehtanz, C.; Wietfeld, C. Hybrid Simulation of Power Systems and ICT for Real-Time Applications. In
Proceedings of the Innovative Smart Grid Technologies Europe (ISGT Europe), 3rd IEEE PES, Berlin, Germany, 14–17 October 2012.

74. Suslov, K.; Piskunova, V.; Gerasimov, D.; Ukolova, E.; Akhmetshin, A.; Lombardi, P.; Komarnicki, P. Development of the
methodological basis of the simulation modelling of the multi-energy systems. In Proceedings of the International Scientific and
Technical Conference Smart Energy Systems, E3S Web of Conferences, Kazan, Russia, 18–20 September 2019.

75. Zio, E.; Sansavini, G. Modeling Interdependent Network Systems for Identifying Cascade-Safe Operating Margins. IEEE Trans.
Reliab. 2011, 60, 94–101. [CrossRef]

76. Rinaldi, S. Modeling and Simulating Critical Infrastructures and Their Interdependencies. In Proceedings of the 37th Hawaii
International Conference on System Sciences, Big Island, HI, USA, 5–8 January 2004.

77. Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U. Complex networks: Structure and dynamics. Phys. Rep. 2006, 424,
175–308. [CrossRef]

78. Tranchita, C.; Hadjsaid, N.; Viziteu, M.; Rozel, B.; Caire, R. ICT and Powers Systems: An Integrated Approach. In Chapter 5:
Securing Electricity Supply in the Cyber Age: Exploring the Risks of Information and Communication Technology in Tomorrow’s Electricity
Infrastructure; Springer: New York, NY, USA, 2010.

79. Casteren, J.; van Bollen, M.; Schmieg, M. Reliability assessment in electrical power systems: The Weibull-Markov stochastic
model. IEEE Trans. Ind Appl. 2000, 36, 911–915. [CrossRef]

80. Trojan, P. Reliability Assessment of Smart Grid. Master’s Thesis, Otto-von-Guericke-Universität Magdeburg, Magdeburg,
Germany, August 2013.

81. Trojan, P.; Arendarski, B.; Komarnicki, P. Reliability assessment of smart grid. In Proceedings of the Tagungsband Zum Power
and Energy Student Summit 2014 in Stuttgart. Kongress PESS, Stuttgart, Germany, 23–28 January 2014; pp. 131–136.

82. Godha, N.R.; Deshmukh, S.R.; Dagade, R.V. Time sequential Monte Carlo Simulation for Evaluation of Reliability Indices of
Power Distribution System. In Proceedings of the 2012 IEEE Symposium on Computers and Informatics-ISCI 2012, Penang,
Malaysia, 18–20 March 2012.

83. Billinton, R.; Allan, R.N. Reliability Evaluation of Engineering Systems–Concepts and Techniques, 2nd ed.; Plenum Press: New York,
NY, USA, 1992.

84. Djapic, P.; Ramsay, C.; Pudjianto, D.; Strbac, G.; Mutale, J.; Jenkins, N.; Allan, R. Taking an Active Approach. IEEE Power Energy
Mag. 2007, 5, 68–77. [CrossRef]

85. Rudion, K.; Styczynski, Z.A.; Hatziargyriou, N.; Papathanasiou, S.; Strunz, K.; Ruhle, O.; Orths, A.; Rozel, B. Development of
Benchmarks for Low and Medium Voltage Distribution Networks with High Penetration of Dispersed Generation. In Proceedings
of the International Symposium “Modern Electric Power Systems–MEPS’06”, Wroclaw, Poland, 6–8 September 2006.

146



Citation: Nedjah, N.; de Macedo

Mourelle, L.; Lizarazu, M.S.D.

Evolutionary Multi-Objective

Optimization Applied to Industrial

Refrigeration Systems for Energy

Efficiency. Energies 2022, 15, 5575.

https://doi.org/10.3390/en15155575

Academic Editors: Paweł Piotrowski,

Grzegorz Dudek and Dariusz

Baczyński
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Abstract: Refrigeration systems based on cooling towers and chillers are widely used equipment
in industrial buildings, such as shopping centers, gas and oil refineries and power plants, among
many others. Cooling towers are used to recover the heat rejected by the refrigeration system. In
this work, the refrigeration is composed of cooling towers dotted with ventilators and compression
chillers. The growing environmental concerns and the current scenario of scarce water and energy
resources have lead to the adoption of actions to obtain the maximum energy efficiency in such
refrigeration equipment. This backs up the application of computational intelligence to optimize the
operating conditions of the involved equipment and cooling processes. In this context, we utilize
multi-objective optimization algorithms to determine the optimal operational setpoints of the cooling
system regarding the cooling towers, its fans and the included chillers. We use evolutionary multi-
objective optimization to provide the best trade-offs between two conflicting objectives: maximization
of the effectiveness of the cooling towers and minimization of the overall power requirement of the
refrigeration system. The optimization process respects the constraints to guarantee the correct and
safe operation of the equipment when the evolved solution is implemented. In this work, we apply
three evolutionary multi-objective algorithms: Non-dominated Sorting Genetic Algorithm (NSGA-
II), Micro-Genetic Algorithm (Micro-GA) and Strength Pareto Evolutionary Algorithm (SPEA2).
The results obtained are analyzed under different scenarios and models of the cooling system’s
equipment, allowing for the selection of the best algorithm and best equipment’s model to achieve
energy efficiency of the studied refrigeration system.

Keywords: energy efficiency; cooling towers; chillers; evolutionary multi-objective optimization

1. Introduction

The technical and scientific community is moving fast towards adopting premises
and drastic measures that allow the achievement of a maximal level of energy efficiency of
industrial installations. This is due to the ever growing environmental concerns regarding
the inefficient electrical power usage and its ever growing demand, as well as to the misuse
of water resources. So, in order to achieve energy efficiency in industrial refrigeration
systems, we require the utilization of modern mechanisms and methodologies that allow
yielding a good or maybe the best possible solution for a process. Many industrial processes
generate unwanted heat. So, this heat often must be somehow dissipated. In this case,
water is generally used. The returning water in refrigeration systems is often at higher
temperatures. It can be discarded or cooled down for further usage. However, the disposal
of water is an environmentally unsustainable practice. Furthermore, the disposal of water,
which comes at a high temperature would have a very negative impact on the local
underwater flora and fauna. Hence, modern sustainable refrigeration system must be
designed, configured and operated to reuse water. It is noteworthy to point out that there
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are more advanced refrigeration systems that are based on the usage of cryogenic fluids [1].
These kind of systems also aim at achieving high degrees of energy efficiency as required
in critical systems, such as spaceships and nuclear stations [2]. An interesting survey of
refrigeration methods can be found in [3].

Cooling towers are the basic equipment of industrial refrigeration systems. They are
intended whenever there are large cooling demands. Moreover, cooling towers offer a clean
and economical solution to water reuse in the cooling process. A cooling tower operates
together with other equipment such as fans, chillers and pumps to ensure water circulation
in the system [4,5]. A coordinated configuration of all the equipment composing the cooling
system must be guaranteed. This is because a modification of some parameter in one of
these equipment items can impact either positively or negatively the performance of the
others parts of the system. When the cascading effects are unsatisfactory to the refrigeration
system, a reduction of energy efficiency is often observed.

In this work, we propose to exploit computational intelligence techniques to optimize
the energy requirement and effectiveness of an industrial refrigeration system composed of
cooling towers, tower ventilators and chillers. For this purpose, quantitative and qualitative
data are required to achieve good results. These data are usually collected from field data
and data-sheets provided by the equipment manufacturers.

The attainable energy efficiency of a cooling tower is intrinsically dependent on that
of the heat exchange process between the returning hot water and the air volume induced
in counter-flow to this in the tower via ventilators. It is also influenced by climatic and
operational aspects. This optimization is a complex process, and is mainly dependent on
the precision of the model used for the equipment of the overall system.

The multi-objective optimization is two-fold. It aims at maximizing the efficiency
of the heat exchange performed by the cooling tower while minimizing the global en-
ergy requirement of the refrigeration system. The optimization takes into account all the
equipment necessary for the correct and safe operation of the refrigeration system. In this
work, three evolutionary multi-objective optimization algorithms are applied: NSGA-II,
Micro-GA and SPEA2. These algorithms will deliver the optimal settings of the system’s
parameters to configure the composing cooling towers, tower fans and chillers. Mainly,
the variables for which the optimization process will answer for are the cooling tower
fan speed setpoint and the water temperature setpoint to be provided by the chillers. It
is needless to state that the proposed optimization respects the restrictions imposed for
a proper and safe operation of all the involved equipment composing the refrigeration
system. The restrictions are set as provided by the equipment suppliers. The cooling system
used in this work is based on compression chillers. Herein, such chillers are modeled in
two different ways: a simple model wherein only one variable is considered and a more
complete one wherein two variables are taken into account. The results yielded from both
models are compared in terms of accuracy with respect to the field data. The two models
provided for the chillers are used to set up the two objective functions for the optimization
process. We also explore two different scenarios regarding the stopping criteria of the
optimization algorithms. The performance results using different models and stopping
criteria are compared, allowing the selection of the best algorithm for each scenario and the
best model for the application.

This paper is structured into six sections. First, in Section 2, we briefly introduce the
structure of the studied refrigeration system. Then, in Section 3, we provide a review of
related research works. In the sequel, in Section 4, we define the objective functions and
operational restrictions. After that, in Section 5, we describe the methodology behind each
of the optimization algorithms applied in this work. Then, in Section 6, we analyze the
evolved results for different algorithms, stopping scenarios and system models. Subse-
quently, in Section 7, we compare the effectiveness and efficiency of the used algorithm
regarding the achievement of the main objective, which is the energy efficiency of the
refrigeration system. Finally, in Section 8, we draw some conclusions and point out some
promising directions for future work.

148



Energies 2022, 15, 5575

2. System’s Structure

The refrigeration system to be optimized is composed of chillers and cooling towers.
This configuration is commonly used in commercial buildings and industrial facilities
to ensure the thermal comfort of the transiting people and adequate equipment cooling
and electrical rooms. The configuration of the cooling system considered in this work is
presented in Figure 1. It includes two cooling towers, each composed of three elementary
cells. Each cell includes a fan operating with an electric motor. Considering all the compo-
nents composing the cooling tower, only the fans allow speed variation, through the use of
frequency converters, while the others always remain operating at a fixed speed and equal
to the nominal one.

Tower
Cell
1

Tower
Cell
2

Tower
Cell
3

Tower
Cell
4

Tower
Cell
5

Tower
Cell
6

Cooling Tower 1 Cooling Tower 2

Chiller 1
Condensed Water Circuit

Chiller 2

Chiller 3

Chiller 4

Chilled Water Circuit

Commercial Building

Figure 1. Refrigeration system’s configuration.

In the case under study, the number of condensation water lift pumps in operation
must be equal to the number of chillers in operation. Hence, the total number of cells
in operation in the cooling towers can also be obtained based on the number of chillers
in operation.
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Among the equipment that composes the refrigeration system considered in this work,
only the tower fans allow speed variation, through the use of frequency converters. Lift
pumps and chillers operate at fixed speed, which is equal to the rated speed. Thus, as the
condensed water pumps are not influenced by the speed variation of the tower fans, nor
by the variation in the temperature of the water passing through the chillers, both in the
condenser and in the evaporator, the required energy cannot be taken into account in the
optimization process. Therefore, the optimization will be dedicated to the electrical energy
demand of the fans and the chillers.

3. Related Works

In [6], the energy efficiency of the refrigeration system is achieved through a control
strategy based on extreme search. The proposed control system is based on the global
energy requirements, composed of chillers and tower fans. It attempts to reach energy
efficiency exploiting variation of the fan speed setpoint. In [7], an extreme search strategy
very similar to that presented in [6] is presented. The variable manipulated by the control
system is the cooling tower output temperature, in contrast with the work reported in [6]. It
exploits the tower ventilators. The achieved improvements vary in function of the chiller’s
thermal load.

In [8], a control strategy called Optimum Approach Temperature (OAT) is proposed
for the energy optimization of the cooling tower. The approach concept represents the
difference between the condensing water temperature and the wet bulb temperature. The
OAT strategy is an optimization that can only be applied to cooling towers.

In [9], an optimal control strategy for a chiller-based refrigeration system is presented.
In this work, the equipment model precision is ensured via an online updating process
of the underlying parameters. It relies on the recursive least squares method. A genetic
algorithm is used as a global optimization tool. The used cost function, which must be
minimized, models the global energy as required by the chillers, fans and condensed
water pumps.

In [10], an energy optimization system based on simulation for the refrigeration system
is proposed. Therein, the chillers are driven by frequency converters, and the tower fans
and condensing water pumps operate at predefined velocity. The optimization system uses
evolutionary computing. The cost function, which must be minimized, models the energy
demand of the refrigeration system regarding the chiller’s load, cooling tower ventilators
and water pumps. The optimization process considers three kinds of restrictions. The first
one guarantees that at any time, the tower thermal capacity must be higher than the chillers’
cooling load. The second restriction upholds the minimal and maximal thresholds for the
water temperature. The third one allows to maintain water flow within the prescribed
minimal and maximal threshold.

In [11], a model that is based on prior experiments is proposed. It allows to simul-
taneously optimize the available performance parameters while ensuring a minimum
energy consumption from an induced draft cooling tower operating under a given set of
conditions. It is claimed that the proposed model for the cooling tower performance is
suitable for on-line optimization. The objective function is formulated dependent on several
performance parameters such as the approach, tower characteristic ratio, effectiveness and
evaporation rate, air and water flow rates.

In [12], an overview of the research and development of optimization approaches for
water-cooled refrigeration systems is presented. This work survey allows to understand
the new significant directions and innovative results in this field. Therein, a taxonomy of
the existing optimization approaches is proposed.

4. Problem Formalization

The effectiveness of the cooling tower is defined as its operational efficiency, and is
related to the efficiency of the heat exchange between the hot water coming from the process
and the air mass induced in the tower in counter-current, through fans. This efficiency is
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influenced by several factors, which are explained in the modeling of the cooling tower [13].
Among the factors that influence the effectiveness of the tower, we have the relationship
between the water and air flows inside the tower and climatic factors, defined by external
and wet bulb temperatures. In this work, the water flow that reaches the tower cells only
varies as a function of the number of pumps that are in operation, i.e., as a function of
the number of operating chillers. On the other hand, the air flow in each cell can vary
continuously through the variation of the fan speed. The external temperature influences
the thermal load to be served by the chillers, and the wet bulb temperature influences the
efficiency of the thermal exchange of the tower, as it represents the lowest possible outlet
temperature to be reached. Thus, this work aims to explore multi-objective optimization in
order to solve the problem composed of the following conflicting objectives:

• Maximizing the effectiveness of the cooling tower;
• Minimizing the overall energy consumption of the refrigeration system.

To this end, the process variables are collected in the field from the instrumentation
already installed in the cooling towers. Local weather conditions are provided by a weather
station installed and integrated into the cooling system. So, based on the process data
provided by the existing Supervisory Control and Data Acquisition (SCADA) system,
the following variables are provided as inputs to the optimization system proposed: the
number of chillers that are in operation; the temperature of the hot water reaching the
cooling tower; the wet bulb temperature on site; the flow of water that reaches the cooling
tower; and the water flow that leaves each chiller.

In this work, the model considers adjustments in the speed of the tower fans as well
as adjustments in the chilled water temperature leaving the chillers. This modeling deals
with two conflicting variables.

In the studied refrigeration system, the cooling tower operates in conjunction with
compression chillers. These occasion the highest energy consumption. The condensed
water and chilled water circulation pumps always operate at a fixed speed. So, the in-
clusion of these into the calculation of the overall energy required by the cooling system
does not provide any advantage, as the objective is to evaluate the energy efficiency as
achieved after application of the optimization algorithms. Thus, only the consumption of
the chillers and tower fans are considered in the implementation of the proposed energy
optimization system.

As a premise for the implementation, we consider that the optimal output values of
the optimization system must be obtained based on the best compromise between the ob-
jectives established above, respecting the operational limits and restrictions defined for the
equipment that compose the cooling system. The objective is to obtain, at each predefined
interval of one hour, the best setpoint of speed for the tower fans and/or the best setpoint
of the temperature of the chilled water leaving the chiller, depending on the modeled
scenario. The optimization simulations will be performed using the improved version of
three evolutionary algorithms: Strength Pareto Evolutionary Algorithm, Non-Dominated
Sorting Genetic Algorithm and Micro-Genetic Algorithm. Note that an explanation of the
dynamics of the used optimization algorithms will be provided in Section 5.

4.1. Objective Functions

In this work, we optimize two conflicting objective to solve the energy efficiency
problem. The first objective function, F1, estimates the tower’s effectiveness while the
second objective function, F2, approximates the required power of the refrigeration system.
Thus, finding the solution that maximizes function F1 allows the maximization of the heat
exchange efficiency of the cooling tower. As we intend to use multi-objective optimization,
the found solution will also minimize function F2, allowing the minimization of the power
consumption of the cooling system.

Objective function F1, which evaluates the efficiency of the heat exchange of the
cooling tower is defined in Equation (1):
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wherein εa represents the effectiveness of the cooling tower, ṁa and ṁw represent the mass
flow of air and water and Twi and Tb represent the temperature of inlet water and that of
the bulb. For details about the model’s variables, see [13]. The objective function F2, which
evaluates the power required by the system composed of chillers and cooling tower fans is
defined in Equation (2):

minF2 = n1Pv + n2Pch
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ṁa
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where n1 and n2 are discrete variables, representing the number of fans and chillers that
must operate in order to meet the requested thermal demand and the commitment to lower
energy consumption, respectively. Moreover, Pv and Pch represent the electrical power
demanded by fans and chillers, respectively. Recall that the number of fans in operation
corresponds to the number of tower cells required in order to guarantee its operational
limits. In this problem, we have n1 = n2 + 1. Moreover, terms ZC and ZE of Equation (2)
are defined as in Equation (3):

ZC = b0 + b1ΔTag + b2ΔT2
ag + b3Taeco + b4T2

aeco + b5ΔT2
agTaeco + b6ΔTagT2

aeco ;

ZE = a0 + a1Taeev + a2T2
aeev + a3Taeco + a4T2

aeco + a5Taeev Taeco ,
(3)

wherein we have ΔTag = Taeev − Tasev [14]. It is noteworthy to emphasize that all the
aforementioned variables are fully defined herein or in the model descriptions of the
cooling tower and fans [13] and/or of the chillers [14]. The coefficients a0 . . . a5, b0 . . . b6,
c0 . . . c5, d0 . . . d3 are obtained using the Levemberg–Marquardt method as a non-linear
regression technique [15]. Their values are given in Table 1. The precision and faithfulness
of the resulting models are validated using real field data as proven in [13,14].

Table 1. Model’s coefficients to evaluate the system’s effectiveness and the power required by the
refrigeration system.

ZE Value ZC Value εa Value Pv Value

a0 −1.0405 b0 −0.1177 c0 +0.0262 d0 +0.7931
a1 +0.1379 b1 +0.3381 c1 +0.4935 d1 +0.0330
a2 −0.0090 b2 −0.0513 c2 +0.14350 d2 +0.0557
a3 +0.0840 b3 −0.0276 c3 −0.0289 d3 +0.0039

a4 −0.0022 b4 +0.0022 c4 −0.0129
a5 +0.0033 b5 +0.0030 c5 −0.0533

b6 −0.0006479

Restrictions

For the optimization problem, four operational constraints related to the considered
refrigeration system are required to guarantee correct system operation. The first constraint
G1 concerns the lowest possible value to be reached by the cooling tower outlet temperature.
It cannot be lower than the local instantaneous wet bulb temperature due to the saturation
of the air leaving the tower after heat transfer and mass with the hot water that reaches
the tower. The wet bulb temperature varies throughout the day and can be calculated as a
function of ambient temperature and relative humidity. Therefore, the first restriction is
defined as in Equation (4):

G1 : Tas ≥ Tb, (4)
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wherein Tas represents the cooling tower leaving water temperature and TBU represents
the wet bulb temperature.

The second constraint G2 models the operational conditions of the chiller considered
in this work. The manufacturer of the chiller establishes in [16] a restriction regarding the
temperature difference between the water inlet and outlet of the condenser. The surge
curve of the chiller can be found [17], where it is possible to observe two operating zones
for the chiller: with or without surge. The operation in the surge zone of the chiller
compressor causes a series of inconveniences, such as vibrations and load oscillations,
generating mechanism wear and unexpected performance of the electrical protection in
cases of overload. Furthermore, in this operating condition there is a considerable reduction
in the coefficient of performance (COP) of the equipment. The COP of a chiller represents
the relationship between the cooling capacity (kWthermal) and the electrical power required
(kWelectric) for its operation. So, the chiller should preferably operate in the zone below
the surge line. It represents the maximum admissible limit for the temperature difference
between the inlet and outlet of water in the condenser as a function of the chiller load.
Based on this, the second restriction can be defined as in Equation (5):

G2 : ΔTco ≤ 7, 3ct − 0.3, with ΔTco = Tae − Tas, (5)

wherein ct is the chiller load factor, with ct ∈ [0, 15, 1], Tae is the temperature of the water
that leaves the chiller condenser and leaves towards the cooling tower, and Tas is the
temperature of the water leaving the cooling tower and going towards the condenser inlet.
Note that the manufacturer does not recommend operating the chiller with a load below
15% [16]. So, we have to consider a third constraint. It is defined as in Equation (6):

G3 : 15% ≤ ct% ≤ 100%. (6)

Moreover, the nominal design temperature of the cooling tower is 36.4 ◦C [17]. There-
fore, temperatures above this value should be avoided. So, we must impose a fourth
restriction, which concerns the maximum limit of the water inlet temperature in the cooling
tower. We define this constraint as in Equation (7):

G4 : Tae ≤ 36.4. (7)

5. Evolutionary Algorithms for Multi-Objective Optimization

There are several evolutionary algorithms for multi-objective optimization. The main
and more efficient ones are based on the Pareto dominance concept [18,19]. Techniques
based on the Pareto concept can be classified into non-elitist techniques and elitist tech-
niques [20]. Multiple Objective Genetic Algorithm (MOGA) [21], Non-Dominated Sort-
ing Genetic Algorithm (NSGA) [22] and Niched Pareto Genetic Algorithm (NPGA and
NPGA-II) [23] are examples of non-elitist techniques. Pareto Archived Evolution Strategy
(PAES) [24], Memetic Pareto Archived Evolution Strategy (M-PAES), Pareto Envelope-
Based Selection Algorithm (PESA and PESA-II), Strength Pareto Evolutionary Algorithm
(SPEA and SPEA2) [25], Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [26] and
Multiobjective Messy Genetic Algorithm (MOMGA and MOMGA-II) [27] are examples of
elitist techniques.

The implementation of elitism in genetic algorithms can significantly accelerate per-
formance [28]. It prevents premature loss of good solutions, according to results presented
in [29,30]. The first approach uses elitism is SPEA in [29]. There follows PESA [31],
PAES [24], MOMGA [27] and NSGA-II [26]. Since then, elitism is used systematically.

More recently, some elitist algorithms for multi-objective optimization problems are
presented with improvements to some of the already established methods, such as SPEA2,
NSGA-II and PESA-II. Aiming at these improved algorithms, we have SPEA2+ [32], Chaotic-
NSGA-II [33], IPESA-II [34] and NSGA-III [35]. However, there are still no records of a
significant number of applications of these algorithms. The purpose of these improved
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methods is to obtain greater diversity and greater speed of convergence, in order to solve
extremely complex problems.

Among the most recently proposed algorithms, NSGA-III stands out, which is an
improvement on NSGA-II for applications with many objectives (from four objectives).
This algorithm is based on the concept of reference point, emphasizing non-dominated
individuals close to a set of reference points provided and updated throughout the iterations.
In this way, the maintenance of diversity is achieved through the adaptive update of the
reference points distributed in the search space. In NSGA-III, the crowding distance
operator, used in NSGA-II, is replaced by the clustering operator, which operates based on
distributed reference points. In [35], the NSGA-III is compared to the MOEA/D algorithm,
showing satisfactory results.

For the application of energy optimization proposed in this work, only multi-objective
algorithms based on the Pareto concept that implement elitism will be used. This follows
from the bibliographic study carried out. We found out that these strategies present a better
performance in most applications. In addition, due to the fact that the proposed work
regards an engineering application that involves a feasibility study for the implementation,
the exploitation of multi-objective optimization algorithms already applied to engineering
problems must be prioritized. This same consideration is carried out in [36].

The Micro-GA algorithm is a good option for the application at hand, since the op-
erational restrictions of the equipment that compose the cooling system limit the search
space to a relatively small region. Therefore, in this work, the multi-objective evolutionary
algorithms chosen for the solution of the proposed optimization problem are: SPEA2 [37],
NSGA-II [26] and Micro-GA [21]. In the sequel, we give a brief description of the optimiza-
tion strategies adopted in each of the applied algorithms.

5.1. SPEA2

The main steps of SPEA2 are sketched in Algorithm 1. This algorithm was developed
as an improvement of SPEA, and incorporates techniques that should improve the effi-
ciency of the optimization process. It requires variables N, N and T, which represent the
population size, the external population size (file) and the maximum number of genera-
tions, respectively. It returns the set of non-dominated individuals A that establish the best
compromise with the defined objectives and constraints.

The methodology implemented in SPEA2 can be explained through the following
steps [37]:

Step 1 Initialization: Initially, two populations are generated: a random initial population
P0 and an initial external population, termed file, such that P0 = ∅. Variable t is
defined and set to 0, which must be incremented with each new generation of
new non-dominated individuals.

Step 2 Fitness evaluation: Each solution in the current populations Pt and Pt is evaluated
with respect to the objective functions. Then, it is evaluated with respect to
dominance relationships. So, each individual is evaluated in relation to the
individuals that it dominates and to those that dominate it. When this step is
performed for the first time, only individuals from population Pt will be evaluated.
Therefore, each individual i of population Pt and in file Pt will be assigned a value
called strength, represented by S(i). The strength of individual i coincides with
the number of solutions individual i actually dominates, and it is defined as in
Equation (8):

S(i) = |{ j|j ∈ Pt ∪ Pt ∧ i � j}|. (8)

Moreover, each individual is associated with a value called raw fitness that is
equivalent to the sum of the strengths of all the individuals that dominate the
individual under analysis, both in the population and in the file, as defined in
Equation (9):

R(i) = ∑
j∈Pt∪Pt ,j�i

S(j). (9)
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Note that the strength of a given individual i will be higher when more individu-
als are dominated by i, and its raw fitness will be lower when less individuals
dominate i. Although the raw fitness provides assignments to individuals based
on Pareto dominance, if there are many individuals with identical raw fitness
values, this mechanism may fail. Therefore, SPEA2 uses neighborhood density
information to effectively guide the search. An adaptation of the kth-nearest
neighbor method is used, wherein the density at any point is a function of the
distance to the kth-nearest neighbor. In this case, SPEA2 simply takes the inverse
of the distance to the kth-nearest neighbor as an estimate of the density. The
most accurate way to estimate neighborhood density is to calculate the Euclidean
distance in the feasible region from an individual i to each individual j in the file
and in the population, and store the obtained values in a list. Another possible
way is to consider the term k =

√
N + N as a common point and list the results

obtained for all individuals. After sorting the list in ascending order. The kth
neighbor will be the one that gives the smallest distance sought, denoted by σk

i .
Therefore, the density D(i), corresponding to the individual i, is defined as in
Equation (10):

D(i) = (σk
i + 2)−1. (10)

Note that constant 2 is added to the denominator in order to ensure that its value
is greater than zero, and that the density is always less than 1. Finally, the fitness
value of the individual is simply defined by F(i) = R(i) + D(i). It is noteworthy
to mention that the lower the value of an individual’s fitness, the more apt it
is, and hence the more chances it will have to propagate over generations and
disseminate its characteristics to other individuals.

Algorithm 1 Main steps of SPEA2.

Require: N, N, T
Ensure: A

1: generate P0 randomicallt, with |P0| = N
2: generate P0 = ∅

3: t := 0;
4: while true do
5: compute Fitness in Pt and Pt
6: copy non-dominated solutions in Pt and Pt to Pt+1
7: if |Pt+1| > |N| then
8: repeat
9: reduce |Pt+1| Using slicing algorithm

10: until |Pt+1| = |N|
11: else if |Pt+1| < |N| then
12: repeat
13: complete Pt+1 with Pt and Pt
14: until |Pt+1| = |N|
15: end if
16: if t ≥ T then
17: save in A the set of non-dominated solution of Pt+1
18: halt
19: else
20: apply selection binary operator with reposition in Pt+1
21: apply recombination operator
22: apply mutation operator
23: save in Pt+1 the genetic operators’ results
24: t := t + 1
25: end if
26: end while
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Step 3 Contextual selection: In this step, all non-dominated individuals from population
Pt and file Pt are copied to next generation file Pt+1. If the size of Pt+1 exceeds
N, it must reduce use of the slicing algorithm. If the size of Pt+1 is smaller than
N, Pt+1 must be completed using the best dominated individuals in Pt and Pt.
The slicing algorithm is an iterative process that eliminates, at each iteration, the
individual with the smallest Euclidean distance to the nearest neighbor. In the
case of a tie, the second smallest Euclidean distance is verified, and so on. The
iterative process ends when the population dimension of Pt+1 = N.

Step 4 Finalization: If t ≥ T, or any other used stopping criterion is satisfied, A is defined
as the set of non-dominated individuals that represent the best solution in Pt+1
and for the optimization process. If the stopping conditions are not yet met,
proceed with the selection at Step 5.

Step 5 Selection: In this step, individuals are selected through the selection operator by a
tournament, whose winners are the individuals with the lowest fitness value.

Step 6 Crossover and mutation: In this step, the selected individuals are recombined
using crossover and mutation operators, thus generating the new individuals of
population Pt+1. Then, the generation counter is incremented (t = t + 1) and the
fitness calculation at Step 2 is to be returned to.

5.2. NSGA-II

The main steps of NSGA-II are sketched in Algorithm 2. Initially, NSGA-II generates a
random population P0, with |P0| = N. This initial population is ordered based on solution
non-domination. Thus, in this first iteration, a fitness value is calculated for each solution,
which makes it possible to determine its respective level of dominance.

Algorithm 2 Main steps of NSGA-II.

Require: T, N
Ensure: Qt+1

1: P0 := Q0 := 0; Generate P0 randomically with |P0| = N; t := 0
2: Apply tournament selection
3: Apply crossover, recombining solutions; Apply mutation; Generate Q0
4: while t < T do
5: Rt := Pt ∪ Qt; Sort Rt using non-dominance; Pt+1 := 0; i := 1
6: while |Pt+1| ≤ N do
7: Compute crowding distance for Ni
8: if |Ni| > |(N − Pt+1)| last spots in Pt+1 then
9: Sort Ni regarding crowding operator (≺obj)

10: Pt+1 := Pt+1 ∪ Ni[1 : (|N| − |Pt+1|)]
11: else
12: Pt+1 := Pt+1 ∪ Ni
13: end if
14: i := i + 1
15: end while
16: Apply crossover, recombining solutions; Apply mutation; Generate Qt+1
17: t := t + 1
18: end while

In order to choose the best solution, tournament selection is used. Then, recombination
and mutation operators are applied to generate solution offspring. The first population of
descendants is named Q0, with |Q0| = N. Then, both the initial populations P0 and Q0 are
pooled into a single population R0 = P0 ∪ Q0, with |R0| = 2N. This is the procedure used
to generate the initial population R0 in the first iteration.

In the following t iterations, where t = 1, 2, 3, · · · , T, with T representing the maximum
number of iterations, a population Rt ordered by non-dominance is handled. Elitism is
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guaranteed by combining the previous and current populations in Rt. After sorting,
non-dominated solutions are ranked at the level (or boundary) N1, and these come to
play a leading role during the process. The remaining solutions are ranked at one of
the levels N2, N3 and so on, up to the last level Nd, so that all individuals belong to a
certain level of domination. If the size of N1 is smaller than N, the algorithm considers
that all its individuals form the new population Pt+1. The remaining space in this new
population, that is, |N| − |N1| spots, must be filled in by the individuals of the subsequent
non-dominated levels, using the crowding distance-based comparison operator to select
the last remaining spots in Pt+1.

In NSGA-II, the fitness of each individual i is called rankj, and depends on the bound-
ary or dominance level to which it belongs and the operator based on the crowding operator,
generally represented by ≺m. The latter, in turn, depends on the value of crowding distance
disti of the evaluated individual i regarding a given objective. In this way, each individual i
is compared to an individual j in order to choose which one of them should belong to the
new population Pt+1.

Crowding operator ≺m for objective m helps in the algorithm selection process, in
order to allow the convergence to the Pareto optimal front. The crowded comparison defines
that the individuals selected for the new population Pt+1 will be those with a lower value
of rank. Therefore, an individual j will be chosen if it has a rank less than an individual
p �= j, i.e., rankj < rankp). If the individuals j and p have the same rank, the one associated
with the highest value of crowding distance will be selected. That is, if rankj = rankp, we
choose j if distj > distp. Otherwise, the individual p is chosen.

Algorithm 3 shows the procedure to compute the crowding distance, where � is the
number of individuals (solutions) contained in the set T, fobj(i) is the value of the obj-
th objective function for solution i. The terms fobjmax and fobjmin

represent, respectively,
the maximum and minimum values obtained for each objective, considering the set � of
individuals. The use of the crowding distance allows the most scattered individuals to
occupy the last available spots for the formation of the new population Pt+1, guaranteeing
the diversity of solutions. According to [38], it is important to maintain a good spread in
the solutions of the boundaries already found, in order to better explore the search space.

Algorithm 3 Crowding distance procedure.

Require: ni, fobj
Ensure: disti

1: dist0 := ∞;
2: dist� := ∞
3: for i := 1 → �− 2 do
4: disti := 0
5: end for
6: for each obj do
7: Sort fobj regarding objective obj
8: dist0 := ∞;
9: dist� := ∞

10: for i := 1 → �− 2 do

11: disti := disti +
fobj(i+1)− fobj(i−1)

fobjmax− fobjmin
12: end for
13: end for

5.3. MicroGA

The main steps of Micro-GA are sketched in Algorithm 4, where N represents the
population size, P the population, Pi the initial Micro-GA population, M the population
memory, E the external memory, iter the current iteration, itermax the maximum number of
iterations and NRC the number of iterations between two replacement cycles.
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Algorithm 4 Main steps of Micro-GA.

Require: itermax,NRC
Ensure: E

1: generate initial population P randomically, with |P| = N
2: distribute P between the two portions of M
3: iter := 0;
4: while iter < itermax do
5: choose initial Pi for the Micro-GA from M
6: repeat
7: /* Micro-GA cycle */
8: perform binary tournament selection based on dominance relationship
9: apply recombination operator

10: apply mutation operator
11: apply elitism keeping only one non-dominated solution
12: until nominal convergence is reached
13: copy two non-dominated solutions from Pi to the external memory E
14: if E is full when trying to insert non-dominated solution into Pi then
15: apply the adaptive grid
16: end if
17: copy two non-dominated solutions from Pi to M, (replaceable portion)
18: if iter mod NRC then
19: apply the replacement cycle
20: end if
21: iter := iter + 1
22: end while

Micro-GA is a genetic algorithm that uses a very small population during a reset
process. In fact, this reset process is the Micro-GA performed in conjunction with the use of
an external file to store the non-dominated solutions obtained during the iterations. This
algorithm is able to obtain the Pareto front with a reduced number of iterations [21]. The
basic idea is suggested from theoretical results, where a population size equal to 3 is proven
sufficient for the convergence of the genetic algorithm, regardless of the chromosome
length [39]. Micro-GA uses two memories: the population memory, which is used to obtain
diversity, and the external memory, used to store the solutions of the Pareto-optimal set.
The population memoryis divided into two parts: one called the replaceable portion and
the other the non-replaceable portion. The percentages of each of the portions can be
determined in advance. Initially, a random population is generated, which is distributed
between the replaceable and non-replaceable portions of the population memory. The
non-replaceable portion will never be modified during the process, and has the function of
providing diversity to the algorithm. The initial population of Micro-GA at the beginning
of each of its cycles is taken from both portions of population memory.

During each cycle, Micro-GA implements the conventional genetic operators: tour-
nament selection, two-point recombination, uniform mutation and elitism. Regardless of
the number of non-dominated solutions in the population, only one is arbitrarily chosen at
each iteration to be used in the next generation. A Micro-GA cycle ends when the nominal
convergence is reached. This happens when the difference between the average fitness and
the maximum fitness converges to a value less than or equal to 5%. Nominal convergence
can also be defined in terms of a certain (usually low) number of generations, ranging from
2 to 5. At the end of a cycle, two non-dominated solutions from the current population
obtained (the first and the last) are chosen, which will be compared with the solutions
stored in the external memory, initially empty. If one or both of the chosen solutions
remain non-dominated after the comparison, they will be included in external memory.
Then, the dominated solutions from the external memory are discarded. These two chosen
solutions are also compared with two distinct solutions of the replaceable portion of the
population memory, so that the non-dominated ones will remain. Thus, during the process,
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the replaceable portion of the population memory will tend to have more non-dominated
solutions, some of which will be used in the initial Micro-GA population of the following
iterations, i.e., in the next cycles.

The Micro-GA approach allows for the use of three types of elitism. The first is based
on the fact that the non-dominated solutions produced in each cycle of the Micro-GA are
stored; therefore, no value information of the evolutionary process is lost. The second type
of elitism is based on the fact that the best solutions found after the nominal convergence
replace some elements of population memory. This allows gradual convergence to obtain
the best solutions, provided that the genetic operators of recombination and mutation yield
diversity and spread. The third type of elitism is applied after a pre-established number
of iterations, and is called the replacement cycle. The replacement cycle is a process in
which some solutions in various regions of the front obtained so far are removed, in order
to use them to fill in the replaceable portion of the population memory. Depending on the
size defined for this memory, as many solutions as necessary are chosen to guarantee a
good distribution.

In order to maintain diversity on the Pareto front, an approach similar to adaptive
grid, presented in [24], is applied. Once the file that stores the non-dominated solutions
reaches its limit, the search space covered is then divided, indicating a set of coordinates
for each solution. From then on, each new non-dominated solution will only be accepted if
it belongs to a geometric space that is less populated than the denser regions previously
mapped. Thus, preference is given to solutions that appear in less populated regions,
thus favoring the scattering of individuals on the Pareto front. So, the adaptive grid aims
to divide the search space explored by the solutions stored in the file into h hypercubes,
establishing a set of coordinates for each solution. The hypercubes are resized as new
solutions and extrapolate the limits of solutions already found in the explored search space.
Each hypercube can be interpreted as a small space that contains a certain number of
solutions. The number of dimensions of the hypercubes corresponds to the number of
search variables in the problem. So, the application of adaptive grid allows to obtain well-
distributed Pareto fronts [21]. The adaptive grid requires two parameters: estimated size
for the Pareto front and the number of solutions into which the search space will be divided
for each objective. The first parameter coincides with the size of the external memory. For
the second parameter, the usages of values between 15 and 25 are prescribed [21]. Thus,
when the external memory is full, the adaptive grid is used to decide which non-dominated
solutions will be eliminated.

6. Performance Results

This section is organized into five sections. First, in Section 6.1, we give all the
equipment data and settings of the refrigeration system as used in its model. Then, in
Section 6.2, we motivate the two stopping criteria exploited to terminate the optimization
processes. Subsequently, in Section 6.3, we present the selection method of the preferred
solution among those in the obtained Pareto front. After that, in Sections 6.4–6.6, we
introduce the parameter settings and performance results of each of the three applied
algorithms: SPEA2, NSGA-II and Micro-GA, respectively.

6.1. System Parameters

The configuration of the cooling system considered in this work, as presented in
Figure 1, has the following characteristics. The cooling towers have a capacity of 2500 TR
each (the TR unit represents tons of refrigeration and is commonly used in refrigeration
systems. One TR corresponds to the power that provides the heat required to melt a ton of
ice in 24 h. We have 1 TR = 3.5168 kW). The fan’s motor has a nominal power of 30 HP (the
HP unit represents horse power. We have 1 HP = 735.5 W). The two cooling towers must
guarantee the thermal requirements of four chillers of 1000 TR. The rated power of the
chiller compressor’s motor is 586 kW while that of condensed water lift pump and chilled
water circulation pump motors is 120 HP.

159



Energies 2022, 15, 5575

The daily thermal load is guaranteed using two chillers only. The third chiller is
available as a sporadic ally in the case of an additional thermal load. The fourth chiller
would only operate in a rotational situation, in which there is periodical alternation of
operating chillers. Moreover, the alternation allows the avoidance of excessive equipment
wear or failure. Therefore, the situation of operation with two chillers is the most common
for the cooling system to be optimized, as considered in this work. The compression chillers
used are from the manufacturer York�, model YKLKLLH9-CZFS, with rated voltage of
4.16 kV, thermal capacity of 1000 TR, rated electrical power of the compressor motor of
586 kW [40].

In the studied refrigeration system, the efficiency optimization of heat exchange,
occurring in each tower cell is provided after determining the best trade-off between the
water and air flows. Each lift pump of condensed water operates with a nominal flow
of 505 m3/h. The nominal flow in the Chiller’s condenser is 496.8 m3/h [40]. Hence,
the number of pumps must coincide with the number of operating chillers to guarantee
nominal flow. Note that The number of operating tower cells is dependent on that of
operating lift pumps of the condensed water. This is decided so that the input flows into
the tower cells are always in their operating thresholds. These limits are 30% smaller and
20% greater than the nominal input flow. This nominal value is 404 m3/h [17]. It follows
that the input flow into each tower cell must be in the range [282.8, 484.8]. The flow is given
in m3/h.

Table 2 indicates the possible scenarios with up to two operating chillers. The number
of water lift pumps and that of cells are the ones that must operate to guarantee the minimal
and maximal flow thresholds for the equipment. In Table 2, the indicated flows are in
m3/h. The configurations showing the placeholder were impossible, since according to the
respective theoretical values, the real flow would be beyond the cell’s required limits. As
indicated in Table 2, in the case under study, for n operating chillers, we set the refrigeration
system with n + 1 tower cells. This ensures that the cells will always operate within its
inlet flow prescribed interval.

Table 2. Inlet flows for the cooling tower cells in m3/h.

#Chillers #Pumps
#Cells (Theoretical) #Cells (Real)

1 2 3 4 5 1 2 3 4 5

1 1 505.00 252.50 168.30 - - 550.00 280.00 170.00 - -

2 2 1010.0 505.00 336.70 252.50 - - 485.00 330.00 - -

6.2. Stopping Criteria

In this work, we investigate the effectiveness of two stopping criteria for the optimiza-
tion processes. One criterion is based on a simple overall number of iterations used in the
optimization algorithm and the other is based on an overall lapsed optimization time.

Regarding the first stopping criterion, the number of iterations to the finalization of the
optimization process is determined experimentally, during the algorithm calibration stage.
We verify that 50 iterations is sufficient to obtain a Pareto front with good distribution and
a sufficient number of points to choose the best solution to be applied onto the refrigeration
system’s cooling towers, fans and chillers. So, the first stopping criterion is 50 iterations.

Regarding the second stopping criterion, the lapsed time till the termination of the
optimization process is defined based on the transport delay of the refrigeration system
being optimized. The transport delay is the time interval required to achieve system stability
after defining a new setpoint. For the real system under consideration, we could discover
that after setting a new speed setpoint for the tower fans, the system requires 15 min
on average to establish a new temperature value for water condensation. Considering
the transport delay of the thermal system is quite high, we deemed it important that the
optimization process should take the shortest possible period of time to yield the optimal
solution to be applied. Note that in the case this time value is close to the system transport
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delay, the selected solution to be applied may no longer be the best alternative. For instance,
assuming that the optimization system obtains the optimal solution in a time interval equal
to the transport delay, only after 30 min would we be able to configure a new setpoint
for the fan speed. Furthermore, due to a possible variation of the thermal load after this
time interval, the speed setpoint obtained could no longer yield the optimal solution at
that instant. Hence, we arbitrated that the solution to be applied must be available no later
than the equivalent of 10% of the transport delay, i.e., after 90 s. So, the second stopping
criterion is 90 s.

6.3. Preferred Solution Selection

Multi-objective algorithms return a set of solutions that guarantee a good trade-off
between the optimization conflicting objectives. Therefore, we need a criterion to identify
the adequate solutions to be applied in the real application at hand. There are several
possible selection criteria [41]. In this work, we select the solution in the Pareto front that
provides the lowest mean square of the normalized objectives.

In this application, the overall power consumption of the refrigeration system is in
the order of hundreds of thousands of Watts while the effectiveness of the cooling tower
varies between 0 and 1. Thus, the objective values must be normalized to avoid giving
preference to solutions on the Pareto front that minimize the power consumption over those
that maximize effectiveness. For this purpose, we normalize the system’s effectiveness
metric using Equation (11) and to normalize the power consumption values, we apply
Equation (12):

εn =
εe − εmin

εmax − εmin
, (11)

Pn =
Pg − Pmin

Pmax − Pmin
, (12)

wherein εn stands for the normalized effectiveness, εmin and εmax for the minimum and
maximum effectiveness, respectively, considering all the Pareto front solutions. Likewise, Pn
stands for the normalized overall power consumption, and Pmin and Pmax for the minimum
and maximum powers, respectively, considering all the Pareto front solutions.

Recall that the energy efficiency of the application, as modeled in this work, consists
of maximizing the system’s effectiveness while minimizing its power consumption. So, the
criterion defined for choosing the optimal solution is defined formally as in Equation (13):

S∗ = min
F

(√
0.5
ε2

n
+ 0.5P2

n

)
, (13)

wherein S∗ represents the solution selected from the Pareto front F. In this work, we
consider that the two defined objectives are equally important to achieve the system’s
energy efficiency. So, both objectives have the same weight.

In Figure 2, we show that the minimum point of the mean square curve of the normal-
ized objectives can be used as a separator between the regions that favor one objective over
the other. The solutions towards the left of the minimum point of this curve give preference
to maximizing the system’s effectiveness, which is achieved by increasing the system’s
power requirements. On the other side, the solutions towards the right of the minimum
point of this curve give preference for minimizing the system’s power requirements, which
is achieved by decreasing effectiveness, i.e., increasing its inverse 1/εa.

The data used to evaluate the performance of applied optimization algorithms were
collected in the field using the existing Supervisory Control and Data Acquisition (SCADA).
The dataset includes 21,385 operational points at a rate of 1 point every 5 s. So the overall
dataset was collected over 29 h and 42 min of operation of different days and times, so that
we could contemplate different conditions of thermal load and different weather conditions.
It is noteworthy to mention that the wet bulb temperatures were obtained from the database
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of the Instituto Nacional de Pesquisas Espaciais (INPE), available at [42], as recorded by the
meteorological station at Santos Dummont airport in Rio de Janeiro/Brazil.
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Figure 2. Illustration used to motivate the usage of the selection criterion of the best solution.

For the sake of synthesis and without loss of generality, the analysis presented in the
sequel considers the results and Pareto fronts obtained by the applied algorithms, only for
3 points, namely 8, 16 and 26, of the 35 operational points of the whole dataset [43]. These
points depict very different load situations. Table 3 presents the data for the illustrative
operational points. During the period of time in which the field data are collected, a
maximum of two chillers are used. Note that this does not impact the evaluation conducted
herein, since the dataset includes 21,385 points, and was also used to validate the tower’s
and chiller’s mathematical models [13,14].

Table 3. Collected data for the operational points used to discuss the performance of the optimiza-
tion process.

Point #Chillers ṁwaterin (kg/s) Twaterin (◦C) TBU (◦C) ṁwaterev (kg/s) Taeev (◦C) Tasev (◦C)

8 2 87.02 29.68 22.94 130.53 10.41 6.01
16 2 70.71 29.40 24.49 106.07 11.16 6.27
26 1 51.65 27.94 23.31 154.96 9.72 6.05

6.4. SPEA2’s Performance Results

For the SPEA2 algorithm, the combined MATLAB/C++ implementation available
in [44] is used. The parameters’ settings used are as follows: population equal to 100,
probability of recombination equal to 5% and probability of mutation equal to 15%. In
addition, the tournament is used for selecting the best individuals. The choice of these
parameters was validated experimentally after repeated tests with several possible sets
of parameters. We could verify that populations greater than 100 and recombination
and mutation rates above the mentioned values only increased the execution time of the
algorithm, not providing significant changes in the results nor in the quality of the obtained
Pareto frontiers.

Table 4 presents the selected solutions, as evolved by SPEA2, together with the corre-
sponding values of the objective functions for the 3 operational points (the results for all the
35 operational points used in the optimization are available in Appendix A of [43]). In this
table, nbest stands for the solution, εa the effectiveness of the cooling tower, Pg the global
power required by fans and chillers and ec the savings in terms of energy consumption.
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Table 4. Optimal solutions obtained by SPEA2 for the 4 operational points.

Point
SPEA2—50 Iterations SPEA2—90 s

nbest (Hz) Tbest (◦C) εa Pglobal (kW) ec (%) nbest (Hz) Tbest (◦C) εa Pglobal (kW) ec (%)

8 44.28 6.27 0.5192 857.44 9.55 43.48 6.25 0.5178 858.30 9.45
16 60.00 6.91 0.7452 934.74 11.34 59.97 6.91 0.7451 935.46 11.27
26 58.22 6.80 0.7359 371.46 16.03 59.23 6.83 0.7402 372.43 15.79

Table 5 exhibits the parameters of the optimal solutions obtained that guarantee the
established restrictions for the 3 operational points (the results for all the 35 operational
points used in the optimization are available in Appendix B of [43]). As before, Taeco stands
for the predicted temperature for the water of the condenser circuit that leaves the cooling
tower and travels towards the chillers, and Tasco the predicted temperature for the water in
the condenser circuit, that leaves the chillers and goes towards the cooling tower.

Table 5. Verification of compliance of SPEA2 with the operational restrictions of the equipment for
the 3 operational points.

Point
SPEA2—50 Iterations SPEA2—90 s

nbest (Hz) Tbest (◦C) Taeco (◦C) ΔT (◦C) Tasco (◦C) nbest (Hz) Tbest (◦C) Taeco (◦C) ΔT (◦C) Tasco (◦C)

8 44.28 6.27 26.18 3.24 30.91 43.48 6.25 26.19 3.25 30.94
16 60.00 6.91 25.74 1.25 31.80 59.97 6.91 25.74 1.25 31.81
26 58.22 6.80 24.53 1.22 28.71 59.23 6.83 24.51 1.20 28.68

Comparing the results obtained with the two stopping criteria, i.e., after 50 iterations
and after 90 s, we verify that after a number of iterations greater than 50, operational
points 8 and 16 converge to solutions that provide a reduction in both savings and in
the effectiveness of the tower, compared to the result obtained for 50 iterations. This is
due to the fact that the algorithm’s execution with stopping criterion after 90 s is not a
continuation of that after 50 iterations, i.e., these are different executions, and due to the
stochastic character of the algorithm, it cannot be guaranteed that the solutions obtained in
different executions are identical, but rather they represent very close points. Points 8 and
16 show reductions in global energy savings of 0.1% and 0.07%, respectively, and reductions
in effectiveness of 0.14% and 0.01%, respectively, after new executions with a number of
iterations greater than 50. We observe that this does not rule out the optimal solutions
presented for these points, since they ensure a good trade-off between the established
objectives. The variations in the achieved results for the different stopping criteria are
negligible in practical terms.

Operational point 26, after execution with a number of iterations greater than 50,
shows a reduction of 0.24% in global energy savings, in order to obtain an increase of 0.43%
in the tower’s effectiveness.

Figure 3 shows the Pareto front obtained for the stopping condition of 50 iterations for
the 3 operational points indicated in Tables 4 and 5. Figure 4 shows the Pareto front obtained
for the stopping conditions of 90 s for the 3 operational points indicated in Tables 4 and 5.
In both fronts, the circled points represent the chosen optimal solution. Note that the Pareto
fronts obtained when using both stopping conditions are identical, verifying the correct
convergence of the algorithm.
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Figure 3. Pareto fronts and selected optimal solutions for 3 of the 35 operating points used in
the implementation of the optimization with SPEA2 with stopping criterion after 50 iterations.
(a) Operational point 8; (b) Operational point 16; (c) Operational point 26.
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Figure 4. Pareto fronts and selected optimal solutions for 3 of the 35 operating points used in the
implementation of the optimization with SPEA2 with stopping criterion after 90 s. (a) Operational
point 8; (b) Operational point 16; (c) Operational point 26.

6.5. NSGA-II’s Performance Results

For the NSGA-II algorithm, the MATLAB implementation available in [45] is used.
The parameters’ settings used are as follows: population equal to 100, probability of
recombination equal to 0.8 and probability of mutation equal to 0.3. In addition, the binary
tournament is used to select the best individuals. Once again, the parameter values are
chosen based on tests carried out in order to reduce the execution time and obtain a Pareto
front with good distribution and sufficient number of solutions.

Table 6 presents the selected solutions, as evolved by NSGA-II, together with the
corresponding values of the objective functions for the 3 operational points (the results for
all the 35 operational points used in the optimization are available in Appendix A of [43]). In
this table, nbest stands for the solution, εa the effectiveness of the cooling tower, Pg the global
power required by fans and chillers and ec the savings in terms of energy consumption.

Table 6. Optimal solutions obtained by NSGA-II for the 4 operational points.

Point
NSGA-II—50 Iterations NSGA-II—90 s

nbest (Hz) Tbest (◦C) εa Pglobal (kW) ec (%) nbest (Hz) Tbest (◦C) εa Pglobal (kW) ec (%)

8 44.46 6.26 0.5196 859.03 9.37 46.04 6.28 0.5223 859.98 9.26
16 59.88 6.95 0.7448 928.58 11.96 59.78 6.93 0.7444 930.36 11.78
26 56.87 6.71 0.7301 372.54 15.76 57.37 6.73 0.7323 373.09 15.62

Table 7 exhibits the parameters of the optimal solutions obtained that guarantee the
established restrictions for the 3 operational points (the results for all the 35 operational
points used in the optimization are available in Appendix B of [43]). Recall that Taeco stands
for the predicted temperature for the water of the condenser circuit that leaves the cooling
tower and travels towards the chillers, and Tasco the predicted temperature for the water in
the condenser circuit that leaves the chillers and goes towards the cooling tower.
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Table 7. Verification of compliance of NSGA-II with the operational restrictions of the equipment for
the 3 operational points.

Point
NSGA-II—50 Iterations NSGA-II—90 s

nbest (Hz) Tbest (◦C) Taeco (◦C) ΔT (◦C) Tasco (◦C) nbest (Hz) Tbest (◦C) Taeco (◦C) ΔT (◦C) Tasco (◦C)

8 44.46 6.26 26.18 3.24 30.92 46.04 6.28 26.16 3.22 30.89
16 59.88 6.95 25.74 1.25 31.76 59.78 6.93 25.74 1.25 31.78
26 56.87 6.71 24.56 1.25 28.79 57.37 6.73 24.55 1.24 28.78

Comparing the results obtained for the stopping criteria after 50 iterations and after
90 s, it appears that, after a number of iterations greater than 50, for the operational points,
indicated in Table 6, the optimization converged to solutions that reduce the overall energy
savings while achieving a better or similar value for tower effectiveness. In this case, the
optimization regarding operating point 8 presents a reduction of 0.11% in energy savings
for an increase of 0.27% in the effectiveness of the tower. The optimization regarding point
26 shows a 0.14% reduction in overall energy savings for a 0.22% increase in effectiveness.
Unlike the others, for point 16 the optimization exhibits a reduction in both consumption
and effectiveness, respectively, of 0.18% and 0.04%, and this is due to the fact that the
execution with stopping criterion of 90 s is not a continuation of that of 50 iterations. As
noted before, for the stochastic character of the algorithms, it cannot be guaranteed that
they will converge to exactly the same solution, but rather to very close points.

Figure 5 shows the Pareto front obtained when using the stopping condition of 50 iter-
ations for the 3 operational points indicated in Tables 6 and 7. Figure 6 presents the Pareto
front achieved for the stopping criterion of 90 s for the 3 operational points indicated in
Tables 6 and 7. The circled points represent the selected optimal solution. Note that the
Pareto fronts obtained for the two stopping criteria are practically identical, verifying the
proper convergence of the algorithm.

0.58 0.6 0.62 0.64 0.66 0.68 0.7
750

800

850

900

950

1000

1050

0.45          0.47         0.49          0.51         0.53          0.55         0.57 
Cooling tower’s effectiveness

G
lo
ba
l
po
w
er

(k
W

)

(a)

0.8 0.82 0.84 0.86 0.88
850

900

950

1000

1050

1100

1150

1200

1250

0.69                0.71                 0.73                0.75                 0.77
Cooling tower’s effectiveness

G
lo
ba
l
po
w
er

(k
W

)

(b)

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88
320

340

360

380

400

420

440

460

0.62      0.64      0.66      0.68       0.7       0.72      0.74      0.76       0.78      0.8 
Cooling tower’s effectiveness

G
lo
ba
l
po
w
er

(k
W

)

(c)

Figure 5. Pareto fronts and selected optimal solutions for 3 of the 35 operating points used in
the implementation of the optimization with NSGA-II with stopping criterion after 50 iterations.
(a) Operational point 8; (b) Operational point 16; (c) Operational point 26.
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Figure 6. Pareto fronts and selected optimal solutions for 3 of the 35 operating points used in the
implementation of the optimization with NSGA-II with stopping criterion after 90 s. (a) Operational
point 8; (b) Operational point 16; (c) Operational point 26.
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6.6. Micro-GA’s Performance Results

For the Micro-GA algorithm, the Toolbox SGALAB from MATLAB [46] is used. The
parameters’ settings used are as follows: population memory equal to 100, external memory
equal to 100, percentage of non-replaceable memory equal to 20%, internal Micro-GA
population equal to 6, recombination rate equal to 0.8, mutation rate equal to 0.2, number of
Micro-GA iterations until achieving nominal convergence equal to 4 and a replacement cycle
of 15 iterations. The binary tournament is used for selecting the best individuals. These
values are obtained based on the recommended values in [21] and through experiments in
order to obtain a Pareto boundary with good distribution with a fast possible convergence.
It is noteworthy to point out that higher values for the mutation rate and for the initial
population only increased the algorithm convergence time, leaving the results practically
unchanged. Differently from what is indicated in [21], where it is suggested that values
for the internal population should be set as 3 to 4, we notice, in this case, that the use of an
internal population equal to 6 allowed us to further reduce the algorithm convergence time.

Table 8 presents the selected solutions, as evolved by Micro-GA, together with the
corresponding values of the objective functions for the 3 operational point s(The results for
all the 35 operational points used in the optimization are available in Appendix A of [43]). In
this table, nbest stands for the solution, εa the effectiveness of the cooling tower, Pg the global
power required by fans and chillers and ec the savings in terms of energy consumption.

Table 8. Optimal solutions obtained by Micro-GA for the 4 operational points.

Point
Micro-GA—50 Iterations Micro-GA—90 s

nbest (Hz) Tbest (◦C) εa Pglobal (kW) ec (%) nbest (Hz) Tbest (◦C) εa Pglobal (kW) ec (%)

8 43.50 6.26 0.5179 857.17 9.58 43.54 6.20 0.5179 865.90 8.58
16 56.67 6.77 0.7322 946.05 10.21 53.24 6.81 0.7181 929.14 11.90
26 57.29 6.74 0.7320 372.23 15.83 58.30 6.65 0.7363 378.59 14.27

Table 9 exhibits the parameters of the optimal solutions obtained that guarantee the
established restrictions for the 3 operational points (the results for all the 35 operational
points used in the optimization are available in Appendix B of [43]). As before, Taeco stands
for the predicted temperature for the water of the condenser circuit that leaves the cooling
tower and travels towards the chillers, and Tasco the predicted temperature for the water in
the condenser circuit that leaves the chillers and goes towards the cooling tower.

Table 9. Verification of compliance of Micro-GA with the operational restrictions of the equipment
for the 3 operational points.

Point
Micro-GA—50 Iterations Micro-GA—90 s

nbest (Hz) Tbest (◦C) Taeco (◦C) ΔT (◦C) Tasco (◦C) nbest (Hz) Tbest (◦C) Taeco (◦C) ΔT (◦C) Tasco (◦C)

8 43.50 6.26 26.19 3.25 30.93 43.54 6.20 26.19 3.25 30.98
16 56.67 6.77 25.81 1.32 32.03 53.24 6.81 25.87 1.38 32.05
26 57.29 6.74 24.55 1.24 28.77 58.30 6.65 24.53 1.22 28.80

Comparing the results obtained after executing the Micro-GA with different stopping
criteria, i.e., after 50 iterations and after 90 s, we note that the optimization regarding
operating point 8 offered the same effectiveness for both criteria, varying only in the
achieved global energy savings. After 90 s, a reduction of 1.00% is achieved. Recall that the
different stopping criteria occasion different executions, and due to the stochastic character
of the optimization algorithms, there could be a deviation between the results. Nonetheless,
a convergence confirmation of the algorithm regarding the region containing the optimal
solutions is apparent. The optimization regrading operational point 16 shows a reduction
of 1.41% in the tower’s effectiveness in order to obtain a 1.72% increase in global energy
savings. For point 26, the optimization reaches a reduction of 1.58% in the overall energy
savings in order to obtain an increase of 0.43% in the tower’s effectiveness.

As observed for operational points 26, the result obtained after 90 s is below that
obtained after 50 iterations, since the reduction in energy savings is lower than the increase
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in effectiveness in the tower. This is due to the fact that the criterion for choosing the
optimal solution adopted does not verify whether the new optimal solution obtained in a
new execution is better or worse than the one obtained in the previous optimization, with
50 iterations. The stopping criteria are applied in two different executions of the algorithm.
Thus, after reaching the stopping criterion, the optimal point is simply chosen based on the
lowest mean square of the normalized objectives, without evaluating whether the result
obtained with the stopping criterion after 90 s is better or worse than after 50 iterations.
In this work, the comparison between the optimal solutions obtained for each stopping
criterion is performed in a stage after the execution of the algorithm.

Figure 7 presents the Pareto fronts obtained for the stopping criterion of 50 itera-
tions for the 3 operational points indicated in Tables 8 and 9. Figure 8 shows the Pareto
fronts obtained for the stopping criterion of 90 s for the 3 operational points indicated in
Tables 8 and 9. The circled points represent the preferred optimal solution. Note that the
reached Pareto fronts do not have satisfactory solution distribution, as was the case for
SPEA2 and NSGA-II. It can also be observed that there is a visible displacement in the
optimal solutions obtained after 90 s, which is not satisfactory. Even so, the obtained results
confirm the convergence of the algorithm, since the variations verified for the objectives
are very small and the solutions for the two stopping criteria are very close.
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Figure 7. Pareto fronts and selected optimal solutions for 3 of the 35 operating points used in
the implementation of the optimization with Micro-GA with stopping criterion after 50 iterations.
(a) Operational point 8; (b) Operational point 16; (c) Operational point 26.
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Figure 8. Pareto fronts and selected optimal solutions for 3 of the 35 operating points used in the
implementation of the optimization with Micro-GA with stopping criterion after 90 s. (a) Operational
point 8; (b) Operational point 16; (c) Operational point 26.

7. Performance Comparison

We now compare the results obtained by the optimization processes when using multi-
objective algorithms SPEA2, NSGA-II and Micro-GA. First of all, the obtained results are
compared to collected field data to evaluate the gains obtained in terms of energy savings
and cooling tower effectiveness. Then, the results achieved by the algorithms are compared
with each other in order to choose the most adequate algorithm for the application. Three
metrics are used in the comparison and selection process:
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• The average, minimum and maximum savings obtained in terms of power consump-
tion by the refrigeration system;

• The average, minimum and maximum effectiveness reached for the cooling tower;
• The ratio between the average savings in terms of overall power consumption and the

corresponding reduction in terms of average effectiveness of the cooling tower;

where the average values are computed by applying the optimization results to the 21,385
collected field data regarding the 35 operational points. In this work, the third metric will
be termed Energy Efficiency Ratio (EER). It is computed using Equation (14):

EER =
PSavg

Δεavg
(14)

Table 10 presents the evaluated metrics results of SPEA2, NSGA-II and Micro-GA,
regarding both stopping criteria. The values indicated refer to the application of the results
obtained for the 35 operational points as presented in Appendix A of [43] to the 21,385 actual
field data collected from the real refrigeration system. The execution time indicates the
average time spent by the implementation of the considered algorithm with the stopping
criterion of 50 iterations. This time duration is given in seconds. For the 90 s case, we report
the number of required iterations instead, as the execution time is fixed, i.e., 90 s.

Table 10. Metrics evaluation for the three applied algorithms regarding both stopping criteria.

Metric
After 50 Iterations After 90 s

SPEA2 NSGA-II Micro-GA SPEA2 NSGA-II Micro-GA

PSavg (%) 8.48 8.28 8.43 8.50 8.32 8.43
PSmin (%) −3.72 −4.09 −4.64 −3.72 −4.26 −3.66
PSmax (%) 26.07 25.36 25.67 25.27 26.16 25.46

εavg 0.6232 0.6219 0.6183 0.6247 0.6200 0.6159
εmin 0.4843 0.4826 0.4818 0.4833 0.4818 0.4816
εmax 0.8474 0.8470 0.8350 0.8473 0.8466 0.8285

Time (s) 15.70 69.82 77.92 90 90 90
#Iterations 50 50 50 548 63 78

In Table 10, we can observe that the algorithms implemented in MATLAB (NSGA-II
and Micro-GA) require a longer execution time for 50 iterations compared to algorithms
implemented in C++ (SPEA2). This result is expected. However, it is noteworthy that the
execution time in a dedicated implementation for real usage purposes will depend on the
characteristics of the running processor and available memory resources. Moreover, a more
efficient codification of the selected algorithm can always be achieved. For both stopping
criteria, we can also observe that the algorithm that achieved the best average power
savings is SPEA2 followed Micro-GA by NSGA-II. Figure 9 allows a visual comparison
of the improvement yielded in terms of average power savings for both stopping criteria
(PSavg—50 i; and PSavg—90 s). It is noteworthy to point out that SPEA2 provides a solution
that offers a greater average power saving in the case of the 90 s based stopping criterion.

Moreover, note that for both stopping criteria, SPEA2 presents the best average ef-
fectiveness, but in this case followed by NSGA-II then Micro-GA. For the first stopping
criterion, the optimization time for SPEA2 is the lowest but in the case of the second stop-
ping criterion, the number of iterations required by SPEA2 is the highest. Notably, there
are records of negative values of power energy savings, which occur at points wherein the
fan speed in the field collected data is 30 Hz. In these cases, the optimization also suggests
increasing their speed in order to increase the tower’s effectiveness, with a consequent
increase in the power energy consumption of the system. This is consistent and matches
the expected solution for the proposed optimization system. Figure 10 allows a visual
comparison of the improvement yielded in terms of average effectiveness of the tower for
both applied algorithms for both stopping criteria (εavg—50 i; and εavg—90 s). Once again,

168



Energies 2022, 15, 5575

it is noteworthy to point out that SPEA2 provides a solution that offers a greater average
cooling tower effectiveness in the case of the 90 s based stopping criterion.
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Figure 9. Comparison of average power savings for both stopping criteria as obtained by the
applied algorithms.

εavg-50i εavg-90s
0.61

0.62

0.62

0.63

E
ff
ec
ti
ve
n
es
s
im

pa
ct

(%
)

SPEA2 NSGA-II Micro-GA

Figure 10. Comparison of average effectiveness improvements for both stopping criteria as obtained
by the applied algorithms.

It is known that the system’s effectiveness depends not only on the setpoints of the
cooling tower operation, but also on external factors, such as ambient temperature and wet
bulb temperature. Thus, the reference value for evaluating the algorithms must be at least
the average effectiveness obtained by applying the 21,385 operational points collected for
the cooling tower modeling, which is 0.6761. Hence, the best algorithm for the application
must be the one that achieves the highest average global power savings, with the least
possible detriment to the average effectiveness of the cooling tower.

It is noteworthy to point out that, in Table 11, for all three algorithms, the value of EER
is greater than 1, which is quite satisfactory. This means that the power savings achieved
outweigh the reduction in effectiveness of the cooling tower. So, for both stopping criteria,
we note that we have In decreasing order of performance: SPEA2, NSGA-II then Micro-GA.
SPEA2 offers the highest value of EFR, which corresponds to 1.60 and 1.65, respectively. So,
for the second stopping criterion, SPEA2 achieves a power savings of about to 1.65 times
the reduction in the tower effectiveness.
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Table 11. Results for the selection of the best algorithm considering both stopping criteria.

Metric
After 50 Iterations After 90 s

SPEA2 NSGA-II Micro-GA SPEA2 NSGA-II Micro-GA

PSavg (%) 8.48 8.28 8.43 8.50 8.32 8.43
εavg (%) 62.32 62.19 61.83 62.47 62.00 61.59
Δεavg (%) 5.29 5.42 5.78 5.14 5.61 6.02
EER 1.60 1.53 1.46 1.65 1.48 1.40

A reduction in the performance of the NSGA-II and Micro-GA algorithms can be seen
when comparing the values of FER obtained with the stopping criteria after 50 iterations
and after 90 s. For NSGA-II, this factor reduces from 1.53 to 1.48, and for Micro-GA, from
1.46 to 1.40. This is mainly due to the criterion used to choose the optimal solution, which
is impacted by the Pareto front distribution. In this case, after 90 s, NSGA-II and Micro-GA
added points to the Pareto front that led the adopted decision criterion to choose optimal
solutions that favored an increase in terms of average effectiveness of the cooling tower.
Figure 11 allows a visual comparison of the improvement yielded in terms of average
effectiveness of the tower for both applied algorithms for both stopping criteria (εavg—50 i;
and εavg—90 s). Note that, as expected, the solution provided by SPEA2 offers a greater
energy efficiency ration in the case of the 90 s based stopping criterion.
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Figure 11. Comparison of energy efficiency ratio achieved by the best solutions for both stopping
criteria as obtained by the applied algorithms.

So, it is now safe to conclude that SPEA2 is the best algorithm for the studied ap-
plication and that the 90 s based stopping criterion is more adequate as it allows for a
more interesting trade-off between average power saving and average tower effectiveness,
yielding a better ration regarding energy efficiency.

8. Conclusions

The proposed work analyzes the feasibility of applying a multi-objective optimization
to the operation of refrigeration systems based on cooling towers and chillers, in order to
obtain the operational setpoints that meet the best compromise between two conflicting
objectives: reduction of energy consumption and increasing of the tower’s effectiveness.
This allows obtaining the maximum energy efficiency possible for the whole refrigeration
system. For this purpose, it is necessary to formally model the main equipment involved
in the considered refrigeration system. Precise and faithful models for the cooling towers
and its fans and for the chiller have been developed previously. We also conducted a
preliminary survey to select evolutionary multi-objective optimization algorithms to be
applied. Algorithms SPEA2, NSGA-II and Micro-GA are chosen so as to investigate their
performance regarding the energy efficiency optimization.
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We conducted a thorough analysis of the Pareto fronts yielded by the usage of the
chosen algorithms. This is performed based on two optimization scenarios with regards
to the stopping criterion to be used: either a fixed number of iterations (50 iterations)
or a fixed time interval (90 s). We considered these two possibilities so as to obtain the
optimal solution to be applied to the real refrigeration system, hence yielding the expected
energy efficiency. These iteration and time thresholds are thus set to meet the requirements
of the application and to verify the performance impact of the solution reached by the
optimization process. After analyzing the obtained global performance results, we conclude
that the results obtained with SPEA2 when combined with the stopping criterion of after
90 s should be adopted.

There are several directions to carry on this work aiming at improving the analysis.
The used models can be made more sophisticated to offer support for other kind of chillers.
In addition, it would be interesting to compare the performance of the chosen algorithms
by varying the speed of the condensed and chilled water pumps. The frequency converters
could be considered in the optimization process. In this case, the variation of the speed
of the cooling tower’s fans would have to be taken into account. Furthermore, in the
present work, the increase in terms of water consumption of the refrigeration system is
not considered in contrast to the reduction of the cooling tower’s effectiveness. Thus,
developing a model that estimates the system’s water consumption in terms of the tower’s
effectiveness would be interesting. There is also the possibility to explore the usage of
other kinds of multi-objective optimization algorithms, such as those based on swarming
strategies as apposed to the evolutionary strategy. Among these algorithms, we can
mention the work in progress exploring multi-objective particle swarm optimization and
multi-objective tribe optimization. Another possible direction could be the study of the
effects of cryogenic fluids on the system’s energy efficiency.
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Abstract: The main objective of this study was to conduct multi-stage and multi-variant prognostic
research to assess the impact of e-mobility development on the Polish power system for the period
2022–2027. The research steps were as follows: forecast the number of electric vehicles (using seven
methods), forecast annual power demand arising solely out of the operation of the forecast number
of electric vehicles, forecast annual power demand with and without the impact of e-mobility growth
(using six methods), forecast daily profiles of typical days with and without the impact of e-mobility
growth (using three methods). For the purpose of this research, we developed a unique Growth
Dynamics Model to forecast the number of electric vehicles in Poland. The application of Multi-Layer
Perceptron (MLP) to the extrapolation of non-linear functions (to the forecast number of electric
vehicles and forecast annual power demand without the impact of e-mobility growth) is our original,
unique proposal to use the Artificial Neural Network (ANN). Another unique, innovative proposal is
to include Artificial Neural Networks (Multi-Layer Perceptron and Long short-term memory (LSTM))
in an Ensemble Model for simultaneous extrapolation of 24 non-linear functions to forecast daily
profiles of typical days without taking e-mobility into account. This research determined the impact
of e-mobility development on the Polish power system, both in terms of annual growth of demand
for power and within particular days (hourly distribution) for two typical days (summer and winter).
Under the (most likely) balanced growth variant of annual demand for power, due to e-mobility,
such demand would grow by more than 4%, and almost 7% under the optimistic variant. Percentage
growth of power demand in terms of variation according to time of day was determined. For instance,
for the balanced variant, the largest percentage share of e-mobility was in the evening “peak” time
(about 6%), and the smallest percentage was in the night “valley” (about 2%).

Keywords: mid-term forecast; e-mobility; electric vehicles (EVs); power system demand; load profile
forecast; machine learning (ML)

1. Introduction

The last two decades have seen tremendous change in how electric power is used.
On the one hand, certain users have reduced their demand for power. As a result of
various regulations and technological progress, equipment (e.g., lighting, refrigerators, TV
sets) has become increasingly energy efficient. On the other hand, growing population
wealth has increased the quantities and diversities of power-consuming equipment (e.g.,
computers, air conditioners, heat pumps). In the Polish electric power system, a very
characteristic symptom of these developments has been significantly increased demand for
power in the summer months, especially during heat waves. At the same time, the hitherto
typical winter peak of demand for electric power has been decreasing over the years. This
requires changes to the planning of how the electric power system operates. Sufficient
generation reserves and power transmission capacity should be ensured. To some extent, it
leads to problems with upgrades and maintenance works in generation units and power
transmission lines.
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To operate the power system correctly, appropriate demand forecasts should be pre-
pared, with various time horizons. Annual and monthly quantities of power are both
important here, as are the aspects related to peak power and minimum power and the
shape, or profile, of the demand curve. Power demand forecasts allow one to properly
optimise the composition of the generating units and anticipated potential contingencies.

Electric vehicle owners are a new group of consumers that significantly affect the
shape of the power demand curve. The research presented here aimed to answer the
question as to the extent of the impact of electric vehicles on the demand profile of the
Polish system in the medium term i.e., until 2027.

Over the period 2014–2021, the share of electric vans and cars in new vehicle sales in
Poland rose from 0.04% to 2.86%. In that period, the number of EVs increased more than
80-fold [1]. The Polish Alternative Fuels Association forecasts that, by 2024, the market
share (sales) of Battery Electric Vehicles (BEVs) will have increased by as much as 14 times,
to 10% of the entire market for new vehicles in Poland. In 2025, the cumulative number of
registered EVs (BEV and Plug-in Hybrid Electric Vehicles (PHEVs)) in Poland is forecast to
be more than 516,000 vehicles, and more than 1.6 million by 2030 [1].

1.1. Related Works

In recent years, dynamic transition to electric vehicles (EVs) has become a major
challenge facing the Green Transition. The predicted zero-emission future entails the
need to anticipate the effects of progress in vehicle electrification. This involves a number
of analyses, regarding both forecasts of the dynamics of development of EVs and their
impact on the electric power system and its stability. The following five categories of
studies on the topic have been identified in recent literature: forecasts of annual demand
on the national level [2–9], forecast number of EVs [7–10], analyses of EV impacts on the
power system [11,12], forecast power demand profiles [13–19], and studies combining these
particular aspects [20–26].

The identified papers addressing annual demand applied to various parts of the world.
Nayyar Hussain Mirjat et al. [2] used the Long-range Energy Alternatives Planning System
(LEAP) model to analyse the effect of energy policies on Pakistan’s demand until 2050.
Similar research using the same system, but for Ethiopia, was conducted by Gebremeskel,
Ahlgren and Beyene [3]. The former compared four scenarios, including ones that address
maximisation of energy efficiency, Renewable Energy Sources (RESs) penetration, or clean
coal technologies. The latter determined scenarios depending on the level of economic
development, electrification and urbanisation. Unlike the former, the latter provided for
replacement of traditional cars with EVs, which was assumed to be achieved by 2050.
Other research in this segment focused on traditional improvement of stability or quality
of forecasts. Angelopoulos, Siskos and Psarras [4] proposed, for the Greek system, a dis-
aggregation framework aimed at achieving a robust additive model. He, Wang, Guang
and Zhao [5] presented the Simulated Annealing Chicken Swarm Optimization (SACWO)
method to optimise the weights adopted in forecast models, and Manowska [6] presented
the application of LSTM to power demand by user groups (residential, commercial, trans-
port, industry, and agriculture).

Determination of annual national demand is used for finding a baseline for changes
in energy demand as a result of progressing electrification of vehicle fleets. Another
contribution of research on EV impacts is to determine the scale of this development by
using certain assumptions [3,10] or forecasts [7–9]. This can be done in various ways. Wu
& Chen [7] proposed Principal Component Analysis—General regression neural network
(PCA-GRNN) as the prediction method. Rietmann, Hügler & Lieven [8] applied a logistic
growth model, and Ding and Li [9] applied seven varied models, including ones based on
the Grey Model. Some papers [7,8] addressed forecasts of the number of cars sold rather
than the number of vehicles actually present in the market. Although such an approach
allows for a clearer overview of the situation, based on economic factors, it fails to answer
the question of how many cars there are on the market at the same time, which makes
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it necessary to adopt additional assumptions in longer forecast horizons. Unlike their
predecessors, Viri, Makinen and Liimatainen [10] applied a scenario model to analyse the
baseline and ±30% larger increase in the number of EVs. The baseline scenario was defined
using a Suomen alueellinen autokantamalli, Finnish regional car fleet model (SALAMA).
This model allowed for the inclusion of factors such as car age, age of car retirement, user’s
age group, etc.

After the future number of vehicles is determined, the impact of that number of
vehicles on the system can be defined. Such two-step analyses were conducted by Liu and
Liu [20], Nogueira, Sousa and Alves [21], Wörner et al. [22], and Brdulak, Chaberek and
Jagodziński [23]. The aspects addressed by them included analysis of the impact of vehicles
on the peak and off-peak grid balance [21] and analysis of the sufficiency and development
needs of charging infrastructure [22]. Other topics included the definition of changes
in annual and monthly peak power [20] and the effect of Personal light electric vehicles
(PLEVs), such as scooters, on the power grid load. However, the number of vehicles
was not always necessary in EV impact studies. The paper by Galvin [11] attempted,
instead, to determine how changes in specifications, such as weight and EV motor power
output, affect consumption of energy. Feng et al. [12] focused on forecasts of load of vehicle
charging stations.

The shape of future power demand profiles can be useful in determining the trends of
change in relation to the traditional process of power delivery to users. It makes it possible
to determine how the currently-used system balancing solutions might potentially evolve.
In the literature considered here, research addressing forecast profiles of power demand
has been quite diverse. Kalhori, Emami, Fallahi and Tabarzadi [13] presented a fuzzy logic
system for demand with temperature uncertainty; Carmo, Souza and Barbosa [14] proposed
a bottom-up approach to creating scenarios for daily curves based on demand, divided into
Residential, Tertiary and Industry segments. A different approach was used in papers by
Brodowski, Bielecki and Filocha [15] and Hinde, Verdejo and Martínez-Ramón [16], since
they focused on creating a hybrid forecasting system. The former approach was based on
using Principal Component Analysis (PCA) and clustering of data using Fuzzy C-Means to
create a set of hierarchical demand estimators. The latter approach integrated regression
and clustering. A secondary objective of the latter approach was to obtain feedback on how
automatic division of demand into clusters has been achieved in hourly, daily and monthly
intervals. The remaining identified papers also included analyses of the effect of COVID-19
on energy consumption and daily demand curve [17], standardisation of the modelling of
load profiles for Europe [18] or forecasts of EV charging profiles [19]. The latter can also be
found in Liu and Liu [20], with typical daily curves for subsequent years.

Some studies, classified as combining certain aspects, included the determination of
the number and impact of EVs on the electric power system [20–23]. The remaining papers
were more extensive, or featured slightly different characteristics. Piotrowski et al. [24]
additionally analysed changes in daily profiles over the years. The research by Zou et al. [25]
combined EV charging scenarios with effect on the sufficiency of charging infrastructure.
Bibak and Tekiner-Mogulkoc [26] focused on EV control in various scenarios using Vehicle-
to-grid (V2G) and its impact on daily profiles. The factors affecting the acceptance of that
mechanism were presented by Heuveln et al. [27].

1.2. Objective and Contribution

The purpose of this paper was to conduct multi-stage and multi-variant prognostic
studies (multiple secondary objectives) with the final objective being to determine the mag-
nitude of impact of e-mobility on the Polish electric power system by 2027 (annual power
demand figures). In addition, this paper determined the effect of e-mobility development
on hourly profiles of power demand for typical winter and summer days. An important
indirect objective was to develop methods to forecast the relative profiles for typical winter
and summer days without taking into account the effect of e-mobility.
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The research presented in this paper, compared to other studies on the impact of
e-mobility on the Polish electric power system, is distinguished by the most comprehensive
approach allowing the obtaining of more accurate results than studies using certain simpli-
fications. These simplifications applied either to assumptions in relation to forecasts or the
forecasts concerning only one research aspect (e.g., forecasts of annual electricity demand
without the impact of e-mobility [6,28], forecasts of annual energy demand resulting from
e-mobility [29]). As examples of the comprehensiveness of our presented approach, two
elements can be mentioned. The first element is the division of the forecasted number of
EVs into different categories of vehicles, thanks to which the estimation of energy demand
is more accurate than in studies that do not take into account different EV categories. The
second is the inclusion of the increase in the annual demand for electricity resulting from
factors other than e-mobility in forecasting the shapes of daily profiles of typical days. It
is worth adding that the proposed methodology of forecasting changes in the shape of
daily profiles of typical days is a unique, innovative research. The most similar studies, but
using simplified (linear) methods of forecasting of the shapes of typical days’ daily profiles,
are described in [24]. The linear model is unable to represent the non-linear shape of the
variability of power demand in the respective hour over consecutive years. Furthermore, to
apply linear regression, one needs to build 24 independent models for the given typical day,
whereas a single neural network (non-linear model) simultaneously generates 24 values of
the typical day profile in a single step.

Below are listed the selected contributions of this paper:

1. Application of the MLP artificial neural network for the extrapolation of non-linear
function (forecast number of electric vehicles in Poland from 2022 to 2027), which is
our original, unique proposal to apply ANN.

2. Development of an original, unique Growth Dynamics Model, using forecasts of the
ratio of annual growth rate to the forecast number of electric vehicles in Poland from
2022 to 2027.

3. Application of the MLP artificial neural network for extrapolation of non-linear
function (forecast annual power demand in Poland from 2022 to 2027, excluding
the development of e-mobility in Poland), which is our original, unique proposal to
use ANN.

4. Application of combined artificial neural networks (MLP and LSTM) in an Ensemble
Model for simultaneous extrapolation of 24 non-linear functions, which is our original,
unique proposition to use ANN in forecasting the shapes of daily profiles of typical
days for 2022–2027 without e-mobility.

The remainder of this paper is organised as follows: Section 2 presents the charac-
teristics of the applied data time series. Section 3 specifies forecasting methods used in
this paper and results of stepwise, multi-stage forecasts (Sections 3.2 and 3.3), the final
objectives of which are to forecast daily profiles of energy demand in the Polish electric
power system, taking into account the development of e-mobility. Evaluation criteria used
for the assessment of forecasting quality are presented in Section 3.1. Discussion is in
Section 4. Finally, the main conclusions of our studies are summarised in Section 5, and
references are listed at the end of this paper.

2. Data

Different time series from Poland were applied to multi-stage research which has as
its primary end objective medium-term forecasts of the shape of daily profiles of power
demand in the Polish electric power system, taking into account the development of
e-mobility. The next research steps used a total of six different types of time series.

The first time series were annual values for electric power demand in Poland from
1990 to 2021 (a total of 32 values). The time series was used for forecasting annual values of
power demand within a six years’ horizon (2022–2027). Figure 1 presents historical data
for annual power demand. The process generally displayed a growing multi-annual trend,
with temporary disturbances (drops in energy demand) due to economic situation (e.g.,
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financial crisis 2007–2009, COVID-19 pandemic in 2019–2020). The growing trend was
markedly more dynamic since Poland joined the European Union (EU) in 2004.

Figure 1. Historical data for annual power demand in Poland.

The second time series were cumulative values of the number of EVs in Poland since
2011 through to 2021 (a total of 11 values). The time series was used for forecasting the
cumulative number of EVs in a six years’ horizon (2022–2027). Figure 2 presents the total
number of EVs in Poland (2011–2021). The process involved strongly non-linear growth,
particularly evident in the last three years.

Figure 2. Total number of EVs in Poland.

The third type of time series were six-year forecasts (2022–2027) of power demand
due to e-mobility development in Poland, in three variants (optimistic, balanced and
pessimistic). The time series were calculated based on the forecast number of EVs in the six
years’ horizon (2022–2027) and various EV statistical figures (including estimates of annual
power demand per EV).

The fourth type of time series were hourly values of power demand in the national
electric power system from 2009 to 2021 (a total of 13 years of hourly values). This time
series was used to construct profiles of typical days for each of the 13 years. The third
Wednesday of January and the third Wednesday of July are “typical days” in the Polish
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Power System, representing the winter and the summer business days, respectively [24].
Two daily profiles of typical days were calculated for each year of 2009–2021. The hourly
values of the profile were computed as an arithmetic average of hourly values from five
business Wednesdays. The five business Wednesdays were the following: the typical
day (the third Wednesday of January or the third Wednesday of July), two prior business
Wednesdays and two following business Wednesdays. This exercise evened out the profiles
and reduced the random component resulting from single days.

Upon building the profiles of typical days for 13 years (2009–2021), two time series
of the fifth type were established, containing 24 hourly values for the typical day profiles,
for each of the 13 years. Hourly values of both profiles were normalised in each year
separately. Normalisation was achieved by dividing the values of profiles from each hour
by average hourly power demand during the year [24]. Normalisation enabled us to the
track changes in the profiles in 2009–2021, ignoring any profile change resulting from
multi-annual growing trends of power demand in the subsequent years. Figure 3 presents
relative values of daily profiles of electric energy demand for the typical winter day and
summer day in Poland from 2009 to 2021. The charts show that the profile of typical days
changed over subsequent years. For the profile of the typical winter day, power demand
was decreasing in subsequent years, albeit unevenly for particular hours. For the profile of
the typical summer day, power demand has been growing unevenly. Based on these two
time series, both profiles with six years’ horizons (2022–2027) were forecast, without taking
into account an increase in power demand due to e-mobility development.

  
(a) (b) 

Figure 3. (a) Daily profiles of power demand for the winter typical day in Poland; (b) Daily profiles
of power demand for the summer typical day in Poland.

The sixth type of times series were daily profiles of power demand for various EV
types (BEV, PHEV, electric buses, electric heavy trucks and electric delivery vans) and
two different charging methods (slow charging and rapid charging). These profiles were
expertly developed and uniquely based on different statistical data. The profiles were used
for the final calculation of forecast profiles of typical days in the power system with the
six years’ horizon (2022–2027), taking into account e-mobility development. In addition,
this process required forecasts of annual EV numbers (2022–2027) and forecasts of annual
power demand without taking into account e-mobility development (2022–2027).

3. Methods and Results

This section and its subsections describe forecasting methods and results as particular
forecasts of various kinds were performed, until the final objective was achieved, that
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being forecast shapes of profiles until 2027 taking into account e-mobility development.
The following models and methods were applied to particular forecasts, including: trend
extrapolation models, methods based on time series, methods based on deterministic chaos
theory, artificial neural networks (MLP and LSTM), as well as ensemble methods. The
general diagramme of the studies described in this paper is shown in Figure 4.

 
Figure 4. General diagramme of studies described in this paper.

3.1. Evaluation Criteria

To assess the quality of particular forecasting models within their parameter estima-
tion ranges (availability of observed and forecast values), the following five evaluation
criteria were used: Root Mean Square Error (RMSE) and Mean Absolute Percentage Error
(MAPE) as the main evaluation criteria, Mean Bias Error (MBE), Pearson coefficient of linear
correlation (R) and R-squared (R2) as three auxiliary evaluation criteria. It is worthwhile to
note that the least RMSE and MAPE errors in the parameter estimation range do not mean
that the model would generate the most accurate “ex ante” (forward-looking) forecasts. On
the one hand, relatively small errors within the parameter estimation range are desirable (it
would mean that the process has been well framed as a function of time). On the other hand,
extremely small errors would mean that the model was unable to generalise (forecasts
matching observed values too tightly, which would result in lower prognostic potential
of such a model). Expert assessment of the magnitude of error was therefore required to
select the preferred prognostic models.

Root Mean Square Error was calculated by Formula (1). RMSE is sensitive to large
errors and is more useful when large errors are particularly undesirable.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (1)

where, ŷi is the predicted value, yi is the observed value, and n is the number of predic-
tion points.

Mean Absolute Percentage Error is calculated by Formula (2).

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ · 100% (2)

Mean Bias Error captures the average bias in the prediction, and is calculated by
Formula (3)

MBE =
1
n

n

∑
i=1

(yi − ŷi) (3)

Pearson coefficient of linear correlation between observed and predicted data was
calculated by Formula (4). The forecasting method overestimates values if MBE < 0 or
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underestimates values if MBE > 0. The MBE error of a properly functioning prognostic
method should be equal or very close to zero.

R =
Cyŷ

std(y) · std(ŷ)
(4)

where, Cyŷ s the covariance between the observed and predicted data, and std denotes
standard deviation of the variable.

The bigger the error R (range from −1 to 1), the more accurate the prediction results.
R-squared was calculated by Formula (5).

R2 = 1 −
((

n

∑
i=1

(ŷi − yi)
2

)
/

(
n

∑
i=1

(yi − y)2

))
(5)

where, y is the mean of the observed load values.
The R-squared formula describes the difference between the goodness of fit of perfectly

fitting model and models the sum of squared errors related to the sum of squared deviations
of measured values from the mean value. The bigger R-squared is (range from 0 to 1) the
better the model’s fit is and the more the process is explained by it. R-squared value gets
lower with increasing concentration of the observed data around the mean value.

3.2. Forecast Number of Electric Vehicles in POLAND from 2022 to 2027

A very short time series of the cumulative number of EV registrations in Poland (period
2010–20121) increases the uncertainty of forecasts and justifies the use of an ensemble model
based on several models. The process was assumed to be in its inception phase. The process
growth dynamics (cumulative number of registered EVs) was strongly non-linear. A similar
trend is also evident in other countries.

The methods used for forecasting EV numbers can also be grouped as follows: methods
with control of the process growth ceiling (logistic function and a Model According to
Prigogine) and methods without control of the process growth ceiling (other methods). It is
worthwhile noting that the process reviewed here would not be growing indefinitely. At
some point, the process would reach its ceiling. This is due to the fact that the number of
vehicles (regardless of their power source) in a country would not grow indefinitely, and
would strongly depend on the size of the population. Table 1 shows the grouping of the
methods used for forecasting the number of electric vehicles.

Table 1. Groups of methods used for forecasting the number of electric vehicles.

Name of Method Equation No.
Model Parameter

Optimisation Method
Minimised Error Step Forecasts

Category I. Methods of direct trend extrapolation

Logistic function * (6)
Differential Evolution and
Particle Swarm Optimisation
algorithm (DEPS)

Sum of Squared Errors (SSE) No

Exponential function (7) Method of Least Squares (MLS) SSE No

MLP artificial neural
network -

Broyden–Fletcher–Goldfarb–
Shanno
algorithm (BFGS)

SSE No

Category II. Methods based on deterministic chaos theory
Model According to

Prigogine * (8) DEPS SSE Yes

Category III. Methods using time series
Grey Model GM(1,1) (9) DEPS SSE Yes
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Table 1. Cont.

Name of Method Equation No.
Model Parameter

Optimisation Method
Minimised Error Step Forecasts

Growth Dynamics
Model (10) MLS SSE Yes

Category IV. Method using more than one model
Ensemble Model (12) - - No

Remark: * growth ceiling control models.

The extrapolation model of the logistic function was described by Formula (6) [24].

y(t) =
a

1 + b · e−c·t (6)

where, t is the sample index in the time series of the process, a > 0 is the saturation level and
b > 0, c > 0 are the parameters. The saturation level is adopted to be exactly 15 million—in
Poland, more than 24 million vehicles of all power-source types are registered (about
750 vehicles per 1000 inhabitants).

The extrapolation model of the exponential function was described by Formula (7).

y(t) = a · eb·t (7)

where, a, b are the parameters.
The application of the MLP artificial neural network to the extrapolation exercise is

our original, unique proposition to use ANN. MLP is typically used in regressive (including
forecasting [30,31]) and classification problems [32] and requires a large number of learning
modules. In this case, MLP was first used for the construction of non-linear function, or
the approximation exercise. In this case there was no explicit function formula, rather it
was embedded in the architecture of the neural network, in the weights (parameters) and
functions of activation of particular layers of the neural network. Next, MLP was applied
to forecast out-of-range values (extrapolation). Figure 5 presents a diagram of subsequent
actions using an MLP neural network to obtain the forecast number of EVs.

 

Figure 5. Application of MLP to forecasts of EV numbers.

Tests for various hyperparameters were performed to select appropriate models.
The tested number of hidden neurons ranged from 1 to 4. The number of learning

epochs was tested for the following values: 10, 20, 50, 100, 150 and 200. The number of
learning epochs had a large influence on the level of “smoothing out” of the function being
approximated. With too large a number of learning epochs, MLP learned the values too
strictly, thus, losing the capacity to generalise. For the hidden layer, the Linear and Expo-
nential activation functions were tested. In the baseline layer, the exponential activation
function was adopted as the one appropriate for the process studied. Such a choice ensured
that the MLP neural network was capable of extrapolating (able to predict outside of the
learning range). As a result of extensive tests, outcomes of the forecasts of two MLP models
were finally selected. Both models had one input and one output. To optimise the weights
(model parameters), BFGS optimisation algorithm was applied.

183



Energies 2022, 15, 5578

The first of the selected models had 2 hidden neurons and an exponential activation
function in the hidden layer and in the output layer (MLP 1-2-1 (exp/exp)).

The other selected model had 2 hidden neurons and a linear activation function
in the hidden layer, and exponential activation function in the output layer (MLP 1-2-1
(linear/exp)). Both models were learning for 100 learning epochs, with weights being
updated following each learning epoch.

The Model According to Prigogine was described by Formula (8) [28,29].

y(t) = y(t − 1) ·
[

1 + r ·
(

1 − y(t − 1)
K

)]
(8)

where y(t) is the population size in period t, r > 0 is the population growth rate, K > 0
is the development ceiling (forecast population growth in the future). The development
ceiling was assumed to be 15 milion.

Grey Model GM (1,1) was described by Formula (9) [24]. In this model, the order of
the Grey Differential Equation and the number of variables are equal to 1. This model is
recommended by literature [33], especially for very short time series and where the process
evolution is in its initial phase.

ŷ(t) = ŷ(1)(t)− ŷ(1)(t − 1),
ŷ(1)(t) =

[
y(1)(1)− u

a

]
· e(−a(t−1)) + u

a

ŷ(1)(t) =
t

∑
i=1

y(i), t = 1, 2, . . . , n
(9)

where n ≥ 4 is the length of time series, a is the evolution parameter, u is the grey variable
and ŷ(t) is the forecast in period t.

The Growth Dynamics Model is our original, unique proposal for a model. In Step
One, annual growth rates were calculated for 2011–2021 as the rate of the number of EVs
in the year to the number of EVs in the prior year. In Step Two, annual growth rates were
approximated to a linear function. Figure 6 presents the variability of annual growth rates.

Figure 6. Variability of annual growth rates.

Formula (10) presents a linear function equation with calculated parameter values.

cgrowth(t) = 0.0368 ∗ t + 1.7939 (10)

In Step Three, annual growth rates for 2022–2027 were forecast, using extrapolation of
the linear function onto subsequent periods (forward-looking). In Step Four, appropriate
stepwise forecasts of the number of EVs were conducted for 2022–2027, using the calcu-
lated forecast annual growth rates. Forecast number of EVs was calculated for each year
according to Formula (11)

y(t) = y(t − 1) ∗ ĉgrowth(t) (11)

where, y(t)—forecast number of EVs in period t, ĉgrowth(t)—forecast annual growth rate
for period t, calculated as extrapolation of the linear function.

The Ensemble Model was described by Formula (12) [24]. The forecast in the Ensemble
Model was the weighted arithmetic average of forecasts from several models. To construct
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such a model, seven single prognostic models were used (logistic function, exponential
function, MLP 1-2-1 (exp/exp), MLP 1-2-1 (linear/exp), Model According to Prigogine,
Grey Model GM(1,1) and Growth Dynamics Model). Averaged results of forecasts from
different models should increase reliability of forecasting.

ŷt =
∑k

i=1 ŷi
t · wi

∑k
i=1 wi

, wi =
1
k

(12)

where k is the number of forecasting models and ŷi
t is the forecast in period t generated by

the model number i.
Table 2 presents summary results (quality assurance metrics) for the model’s parameter

estimation range (2010–2021). Figure 7 presents the results of forward-looking (2022–2027)
forecasts of the total number of EVs in Poland for the eight methods.

Table 2. Performance metrics in the model’s parameter estimation range for the forecast number
of EVs.

Method Name RMSE MAPE [%] MBE R R2

MLP 1-2-1 (exp/exp)—pessimistic variant 4.13 15.26 54.53 0.99983 0.99962
Logistic function 15.61 16.83 39.34 0.99982 0.99963

Exponential function 16.06 16.67 38.33 0.99982 0.99962
MLP 1-2-1 (linear/exp) 18.97 9.28 20.34 0.99982 0.99964

Ensemble model—balanced variant 34.99 9.83 31.15 0.99975 0.99950
Model According to Prigogine 93.41 12.62 −17.70 0.99898 0.99797

Grey Model GM(1,1) 249.29 11.08 131.74 0.99980 0.99907
Growth Dynamics Model—optimistic variant 346.09 10.78 −47.22 0.99884 0.99729

Remarks: The best fitting results for each fitness metric are printed in bold in blue. The worst fitted result is
printed in red.

Figure 7. Results of forecasts of the total number of EV in Poland from 2022 to 2027 obtained by
eight methods.

The best fitting model for historical data was MLP 1-2-1 (exp/exp) model. It was
selected as the pessimistic variant (the lowest “ex ante” forecast values (2022–2027)). The
Growth Dynamics Model was the least fitting model in the parameter estimation range. This
model was selected as the optimistic variant (largest “ex ante” forecast values (2022–2027)).
The Ensemble Model was selected as the most credible model for a balanced model.
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The pessimistic and optimistic variants were the models that differed the most from
the remaining models, in terms of forecast values. This effect was particularly evident for
the 2027 forecasts.

3.3. Forecast Annual Power Demand in Poland from 2022 to 2027 Excluding the Development of
E-Mobility in Poland

Forecasts of annual demand for power with the exclusion of e-mobility were conducted
by six methods.

The first model, a modified Holt’s model, is presented in detail in [34]. Model parame-
ters for the data from the estimation range (1991–2021) were selected using optimisation by
the DEPS method. The minimum SSE was sought. Forecasts were conducted by a Stepwise
Method (2022–2027).

The second model, the Model According to Prigogine was described by Formula (8).
Model parameters for the data from the estimation range (1991–2021) were selected us-
ing optimisation by the DEPS method. The minimum SSE was sought. Forecasts were
conducted by a Stepwise Method (2022–2027).

The third model, the Method of Constant Annual Growth, Version 1, was described by
Formula (13). Annual growth was the average annual growth rate based on historical data
of the forecasting exercise. Forecasts were conducted by a Stepwise Method (2022–2027).

ŷt = ŷt−1 +
∑k

j=2
(
yj − yj−1

)
k − 1

(13)

where k is the number of the data points in the time series and yj−1 is the previous value
(or forecast) from the time series.

The fourth model, the Method of Constant Annual Growth, Version 2, was described
by Formula (14). Annual growth was equal to the slope A from the linear function used for
the approximation of the trend line (1991–2021) of annual power demand. The parameter
value was A = 1382.30. Forecasts were conducted by a Stepwise Method (2022–2027).

ŷt = ŷt−1 + A (14)

where, A—parameter from the linear function used for the approximation of the trend line.
The fifth model was an original, unique proposed model, MLP Artificial Neural

Network. The model was described (conceptually) in Section 3.2. To select the appropriate
model, tests for various hyperparameters were conducted. The tested number of hidden
neurons ranged from 1 to 3. The number of learning epochs was tested for the following
values: 5, 10, 20 and 50. The number of learning epochs had a large influence on the
level of “smoothing out” of the function being approximated. For the hidden layer, the
Linear and Hyperbolic Tangent activation functions were tested. In the output layer, a
Linear activation function was adopted as the one appropriate for the process studied here,
which was due to the variability of the forecast process. Such a choice ensured that the
MLP neural network was capable of extrapolating (able to predict outside of the learning
range). To optimise the weights (model parameters), the BFGS optimisation algorithm
was applied. The selected final mode had two hidden neurons and Hyperbolic Tangent
activation function in the hidden layer, and a Linear activation function in the output
layer (MLP 1-2-1 (tangh/linear). This model learned for 10 learning epochs, with weights
updated following each learning epoch.

The sixth model, the Ensemble Model, was described by Formula (12). The following
methods were selected for the ensemble model: Modified Holt’s Model, Model According to
Prigogine, Constant Annual Growth Method, Version 1, Constant Annual Growth Method,
Version 2, and MLP 1-2-1 (tangh/linear).

Table 3 presents summary results (quality assurance metrics) for the model’s parameter
estimation range (1991–2021). Figure 8 presents the time series of the observed annual
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power demand figures in Poland and results of forecasts from 2022 to 2027, obtained by the
six methods.

Table 3. Performance metrics for the forecast values of annual power demand in Poland within the
model’s parameter estimation range.

Method Name RMSE MAPE [%] MBE R R2

MLP 1-2-1 (tangh/linear) 509.04 1.574 −112.04 0.9776 0.9556
Ensemble model 1402.67 1.571 152.27 0.9753 0.9510

Constant Annual Growth Method—Version 2 1658.21 1.755 −114.49 0.9693 0.9393
Constant Annual Growth Method—Version 1 1665.56 1.751 −5.6 × 10−12 0.9693 0.9393

Model according to Prigogine 1665.76 1.751 −2.18 0.9694 0.9394
Modified Holt’s Model 1692.48 1.776 990.05 0.9681 0.9253

Remarks: The best fitting results for each fitness metric are printed in bold in blue. The worst fitted result is
printed in red.

Figure 8. Time series of observed values of annual electric energy demand in Poland and results of
forecasts from 2022 to 2027 obtained by six the methods.

MLP 1-2-1 (tangh/linear) was the model that best fit the historical data, and at the
same time it generated the lowest values of “ex ante” forecasts (2022–2027). The least fitting
model in the parameter estimation range was the Modified Holt’s model, and at the same
time it generated the largest “ex ante” forecast values (2022–2027). Results of forecasts from
the Ensemble Model were selected for further analyses.

3.4. Forecast Annual Power Demand in Poland from 2022 to 2027 Solely due to the Operation of
the Forecast Number of EVs

The algorithm had four steps. Figure 9 shows the details. Table 4 contains input data
and summary calculation results for 2027 (forecasts with six years’ horizon).
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Figure 9. Diagram of calculation of forecasts of annual power demand resulting solely from the
operation of the forecast number of electric vehicles.

Table 4. Input data and calculation results for 2027.

Description BEVs PHEVs Electric Buses Electric Trucks Electric Delivery Vans

Input data for calculations

Average annual mileage [km] 15,000 10,000 80,000 80,000 80,000
Battery capacity in a single EV [kWh] 49.7 12.2 167.5 276.6 48.2

Average EV driving range [km] 343.6 61.2 175.0 252.2 260.0

Results of calculation of average values

Average annual number of charges 44 163 457 317 308
Average annual power consumption

by a single EV [kWh] 2169.7 1993.5 76,571.4 87,727.2 14,830.8

Results of calculation of the number of EVs in 2027

Pessimistic variant [pcs] 1,217,911 1,262,651 1126 709 2849
Balanced variant [pcs] 1,777,612 1,842,912 1501 945 3799

Optimistic variant [pcs] 2,801,269 2,904,173 1876 1181 4749

Outcome of calculation of power demand for charging the forecast number of EVs in 2027

Pessimistic variant [GWh] 2642.5 2517.1 86.2 62.2 42.3
Balanced variant [GWh] 3856.8 3673.8 114.9 82.9 56.3

Optimistic variant [GWh] 6077.8 5789.4 143.7 103.6 70.4

Battery capacity and average driving ranges of BEVs and PHEVs were determined as
averages calculated for 38 and 65 different vehicle models, respectively, costing less than
PLN 0.25 million. For electric vans, these variables were determined as average figures for
17 vehicles of that type. For electric buses, the range and battery capacity were adopted in
accordance with [24].

For forecast number of electric trucks of various sizes and the number of electric buses
in the six years’ horizon, constant growth of the number of vehicles was assumed (average
growth from the last several years), such was the observed dynamics of both processes.
Forecast numbers of BEVs and PHEVs in subsequent years were calculated as 49% and 51%,
respectively, of the forecast values for the given year of the number of EVs of all categories
(having deducted forecast number of vehicles from the remaining three categories).

The analysis of results from Table 4 showed that BEVs and PHEVs, or mainly passenger
transport, would have by far the biggest impact on annual power demand in Poland in
the next six years. For buses, the level of electrification would be about 16% of the fleet
(currently, there are about 12,000 buses with various power-source variants). Electric trucks
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would have no significant impact on power demand, despite large battery capacities, due
to the fact that their number in the next six years was not predicted to be very large. Electric
delivery vans would probably be more significantly electrified, as the manufacturers’ offer
gets bigger every year. For that reason, the calculations assumed a 75% share of those
vehicles in the category of electric trucks of various sizes.

Figure 10 shows three variants of the forecast annual demand for power in Poland in
2022–2027, resulting solely from the operation of the forecast number of electric vehicles.

Figure 10. Forecast annual power demand in Poland in 2022–2027 solely due to the operation of the
forecast number of electric vehicles.

3.5. Forecast Annual Power Demand in Poland from 2022 to 2027 Taking into Account the
Development of E-Mobility in Poland

The forecast value for the year was the sum of the forecast power demands, excluding e-
mobility, for the year (for the result obtained from the Ensemble Model, details in Section 3.3)
and the three variants of forecast power demand resulting from the operation of electric
vehicles in the year (details in Section 3.2). The results of calculations are presented in
Table 5. Figure 11 shows, for the three variants the forecast percentage growth of power
demand due to e-mobility in Poland from 2022 to 2027.

Table 5. Results of calculations of power demand with e-mobility, in three variants.

Power Demand
Without e-Mobility

Power Demand with E-Mobility

Year
Ensemble Model

[GWh]
Pessimistic

Variant [GWh]
Balanced

Variant [GWh]
Optimistic

Variant [GWh]

2022 175,799 176,063 176,098 176,135
2023 177,272 177,734 177,795 177,865
2024 178,733 179,566 179,702 179,873
2025 180,180 181,718 182,067 182,557
2026 181,615 184,481 185,415 186,882
2027 183,038 188,389 190,824 195,224

The results in Table 5 and Figure 11 show that, for the initial period (forecasts for
2022–2024), the impact of e-mobility on the Polish electric power system was negligible. In
subsequent years (forecasts for 2023–2027), the impact of e-mobility on the Polish power
system grew dynamically, reaching almost 7% for the optimistic variant. Such an extra
annual amount of power (more than 12 [TWh]) is a big challenge for the Polish electric
power system, especially in the context of the energy crisis (energy deficit). On the other
hand, the mechanisms of the “Fit for 55” package (phasing out manufacturing of petrol or
diesel vehicles) means that significantly larger quantities of power need to be generated
to meet the e-mobility demand (EV charging). Obviously, these will be covered by RES to
some extent.
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Figure 11. Forecast percentage growth of power demand due to e-mobility in Poland from 2022
to 2027.

3.6. Forecast Daily Profiles of Typical Days in 2022–2027 without E-Mobility

The third Wednesday of July and the third Wednesday of January are “typical days”
in the Polish Power System, representing the summer and the winter business days, respec-
tively. Forecasts for both relative daily profiles (normalised hourly values) were conducted
for both typical days with a horizon of six years (2022–2027). The normalisation procedure
is described in Section 2. Normalisation enabled us to the track changes in the profiles over
2009–2021, ignoring any profile change resulting from a multi-annual growing trend of
power demand in the subsequent years.

Forecast relative values of the profiles in the subsequent years, conducted separately
for each hour, used the following methods: MLP-type Artificial Neural Network, LSTM-
type Deep Neural Network (DNN) and Ensemble Model (final forecast).

Both the MLP and LSTM were used in Step One for simultaneous approximation
of 24 different functions (variability of demand for power for the respective hour of the
day between 2009 and 2021) in a single model of artificial neural network with 24 outputs
(function values) and 1 input (sample index in the time series of the process). In the
next step, relative values of both profiles were forecast by extrapolating the function onto
six consecutive periods (from 2022 to 2027). The use of an artificial neural network for
extrapolation of the function is our original, unique ANN application proposal. Figure 12
conceptually presents our unique method using two different models of neural networks.

The first model used in the Ensemble Model was MLP. The model is described (con-
ceptually) in Section 3.2. Tests for various hyperparameters were performed to select
appropriate models. The tested number of hidden neurons ranged from 3 to 12. The
number of learning epochs was tested for the following values: 10, 20, 30, 40 and 50. The
number of learning epochs had a large influence on the level of “smoothing out” of the
function being approximated. For the hidden layer, a hyperbolic tangent was selected as
the activation function. Linear activation function in the output layer was adopted as the
appropriate one for the process studied here. Such a choice ensured that the MLP neural
network was capable of extrapolating (able to predict outside of the learning range). To
optimise the weights (model parameters), the BFGS optimisation algorithm was applied.
The finally selected models for forecasting the typical winter and summer day profiles had
six neurons in the hidden layer (MLP 1-6-24 (tangh/linear)). Both models were learning for
20 learning epochs, with weights being updated following each learning epoch.
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Figure 12. Conceptual graph of the proposed method for relative profile forecasting.

The other model applied in the Ensemble Model was LSTM. The model is described
in [35]. Tests for various hyperparameters were performed to select appropriate models.
The number of hidden neurons was tested in the range between 3 and 50. The number
of learning epochs was tested for the following values: 50, 100, 200, 300 and 500. For the
hidden layer, Sigmoid, Relu, and Hyperbolic Tangent activation functions were tested.
Linear function was applied in the output layer. Adaptive Moment (Adam) and Root
Mean Square Propagation (RMSprop) Optimisation Algorithms were tested to optimise the
weights. In addition, the Dropout technique, with the value of 0.1 along the hidden layer,
was applied, and the absence of that mechanism was tested. Both final models, selected
by expert choice, were taught for 200 epochs, with the Sigmoid function in the hidden
layer without the Dropout technique, and with the Adam (winter profile) and RMSPprop
(summer profile) optimisation algorithms. The finally selected models for forecasting the
profiles of typical days in January (LSTM 1-3-24 (sigm/linear)) and in July (LSTM 1-4-24
(sigm/linear)) had 3 and 4 neurons in the hidden layer, respectively.

The appropriate models (MLP, LSTM) were selected by expert choice based on the
size of errors in the estimation range, and the observation of the level of “smoothing out”
of forecasts within the model’s parameter estimation range (the model should preserve a
non-linear shape of forecasts with simultaneous avoidance of overestimating).

The application of two independent non-linear models was much more accurate than
a simple linear regression model, for example, in terms of extrapolating forecasts indepen-
dently for each hour. The linear model was unable to reflect the non-linear shape of the
variability of power demand in the respective hour over consecutive years. To apply linear
regression, one needs to build 24 independent models for the given typical day, whereas a
single neural network generates 24 values of the typical day profile simultaneously in a
single step. Such a simplified linear approach to the forecast profiles was applied in [24].
Figure 13 presents differences in the operation of the linear model of regression with trend
extrapolation, and the proposed non-linear Ensemble Model. The shapes of forecast curves
of the Ensemble Model were clearly non-linear (especially for the estimation of model pa-
rameters). The Linear Regression (LR) Model clearly underestimated forecasts in 2022–2027,
as compared to the Ensemble Model, as it failed to incorporate a significant change in the
downward trend in the last years of the model’s parameter estimation range (2014–2021).
Process figures from recent years should weigh more since they reflect the most current
status of the process trend line. The figures presented in Figure 13 indicated that the process
had stabilised (cessation of the downward trend).
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Figure 13. Comparison of forecast outcomes from the linear regression model and non-linear Ensem-
ble Model at 4:00 am on the winter typical day.

Table 6 presents aggregate results of relative forecast profiles of typical days for the
three models (error metrics) in the models’ parameter estimation range (2009–2021). Error
metrics were average values calculated on errors obtained separately for each of the 24 h
of the given profile. The error metrics thus obtained indicated that, within the estimation
range, the models were better fitted, in terms of relative profile of the typical day, for the
summer rather than for the winter. Detailed summary of the results (five error metrics) for
each separate hour is provided in Table A1 in Appendix A.

Table 6. Summary of forecast relative profiles of typical days for three models (error metrics) within
the models’ parameter estimation range (2009–2021).

Method Name RMSE MAPE [%] R R2

Relative profile of the winter typical day

MLP 1-6-24 (tangh/linear) 0.0172 1.300 0.7447 0.5649
LSTM 1-3-24 (sigm/linear) 0.0197 1.423 0.7094 0.4180

Ensemble Model 0.0179 1.311 0.7345 0.5285

Relative profile of the summer typical day

MLP 1-6-24 (tangh/linear) 0.0110 0.922 0.7726 0.6091
LSTM 1-4-24 (sigm/linear) 0.0128 0.970 0.7191 0.5116

Ensemble model 0.0116 0.931 0.7532 0.5865

Figure 14 presents forecast power demand in particular hours of the typical winter and
summer days (2022–2027), and observed values (2009–2021). Figure 15 presents forecast
relative profiles of power demand for the typical winter and summer days. The trend of
change in relative demand varied by hour. For the profile of the winter typical day, relative
power demand slightly fell in particular hours between 01:00 pm and 12:00 pm between the
last year of the forecast (2027) and the first year of the forecast (2022). In the night “valley”,
profile changes were minimal.

For the profile of the summer typical day, there were both slight increases in demand
for power in the night “valley” of daily demand, and in the evening “peak” of power
demand. In the morning “peak”, power demand fell slightly.
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(a) (b) 

Figure 14. (a) Forecast relative power demand in particular hours of the winter typical day; (b) Fore-
cast relative power demand in particular hours of the summer typical day.

  
(a) (b) 

Figure 15. (a) Forecast relative profiles of power demand for the winter typical day; (b) Forecast
relative profiles of power demand for the summer typical day.

3.7. Forecast Daily Profiles of Typical Days in 2022–2027 with E-Mobility

In Step One, calculations were conducted to transform the forecast values of relative
power demand profiles (2022–2027) into absolute values of power demand. Relative
forecast values of both profiles (2022–2027) (details in Section 3.6) were recalculated to
absolute values [GWh]. However, forecast annual power demand in Poland (2022–2027), as
detailed in Section 3.3, was recalculated to obtain average hourly figures of power demand
during that year. This method incorporated both the growing trend of the annual power
demand and how relative profiles evolved over the subsequent years.

In Step Two, daily profiles of power demand for EV charging were calculated. Cal-
culations of hourly figures from daily profiles of power demand, due solely to e-mobility,
used the relative profiles developed for a business day for EVs and daily power demand
from four EV categories calculated on annual values. The subsequent calculations assumed
that BEVs and PHEVs belonged to a single category, cars with the same relative profiles.
The methodology of construction of relative hourly profiles for EV power demand and the
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relative profiles alone are described in detail in [36]. A total of six relative profiles were
used. Each of the three EV categories had two profiles, power drawn from rapid charging
stations and from slow charging stations. Slow charging was assumed to be the following:
70% for electric cars, 20% for electric buses and 35% for electric heavy trucks and electric
delivery vans, and the remaining power was drawn from rapid charging stations.

Calculations were performed for the three variants of forecast EV numbers in each EV
category separately, for 2022–2027. In the next step, combined daily power demand for
charging EVs of any type was calculated. Figure 16 shows the outcome of calculations for
the balanced variant of the forecast number of EVs in 2027.

Figure 16. Daily profiles of power demand for charging EVs—balanced variant of the forecast number
of EVs in 2027.

In the third and last step, power demand for the typical winter day profile and typical
summer day profile were calculated taking into account the development of e-mobility.
Figure 17 presents daily power demand profiles for the typical winter and summer days
with and without e-mobility for the balanced variant of the number of EVs in 2027.

 
(a) (b) 

Figure 17. (a) Daily power demand profiles for the winter typical day with and without e-mobility for
the balanced variant of the number of EVs in 2027; (b) Daily power demand profiles for the summer
typical day with and without e-mobility for the balanced variant of the number of EVs in 2027.

194



Energies 2022, 15, 5578

Percentage growth of power demand due to e-mobility for the balanced variant varied
by the time of the day. For the typical winter and summer day profiles, the distribution of
percentages within a day were very similar. During the “evening” peak, the percentage
share of e-mobility was largest, whereas during the night “valley”, the percentage share
was the lowest. For the summer typical day profile, percentage shares of e-mobility for
all times of the day were slightly higher than for the winter typical day profile. Figure 18
shows the percentage growth of power demand due to e-mobility for the balanced variant
of forecast number of EVs in 2027, for the typical winter and summer days. This was due
to the fact that, in the winter period, power demand was slightly more than in the summer
period, and power demand values due to e-mobility were adopted to be the same for both
seasons of the year.

 
Figure 18. Percentage growth of power demand due to e-mobility for the balanced variant of forecast
number of EVs in 2027 for the typical winter and summer days.

4. Discussion

Our observation is that, for the forecast number of EVs and for the forecast demand
for power from the Polish electric power system, the models with the best fit, within
the models’ parameter estimation ranges (RMSE metric), generated at the same time the
smallest “ex-ante” (forward-looking) forecast values of all methods. The opposite was
noted for models with the worst fit to the observed values within the models’ parameter
estimation range (RMSE metric). These models, at the same time, generated “ex ante”
(forward-looking) forecasts with the highest values of all methods. The conclusion could
be, therefore, that well-fitting models would tend to underestimate forecast values, and
models with a relatively poor fit would tend to overestimate the forecasts.

Regarding the forecast impact of e-mobility on the Polish electric power system,
forecasts (pessimistic variant, balanced variant, and optimistic variant) could be noted to
vary more with growing forecast horizon. Particularly wide differences occurred for six
years’ advance (2027). Therefore, the conclusion could be that uncertainty of forecasts for
that horizon was relatively large. The increase in electric power demand for 2027 in the
optimistic variant was almost 7%, which is a significant warning signal as to potential
problems with meeting power requirements in Poland.

Our study forecasted on average 0.85 million EVs and 1.54–2.38 TWh corresponding
load for the year 2025. Comparatively, previous studies determined the EV number to be
3.64 million and energy to be 6.11 TWh [37] or 0.021–0.176 million EVs and 0.19–1.5 TWh,
respectively [25]. For the first study, the number of EVs was quadruple and amount
of energy was more than twice to almost quadruple greater than in our forecasts. The
difference could be attributed to the first study using a simplified procedure of calculation,
not decomposing EVs into categories, and the short period used for forecast parameters
estimation. Although the second study decomposed EVs into categories, it also used
pre-2019 data. This period concerns time when EVs were treated like a novelty in Poland
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rather than a valid conventional car alternative. It can be noted that from that period of
pioneering EVs in Poland the dynamic of process has changed steeply and EVs have started
to be bought on a much larger scale, so more recent data has better accuracy.

Our demand forecasts excluding e-mobility determined that demand in 2025 would
equal ca.180 TWh (on different model average). Comparatively, another study forecast
149 TWh with quasi-linear dynamics of growth [7]. We deem the results to be roughly
comparable, as flattening of the curve can be attributed to the referred authors using ca.
20 years for training phase of the forecasting model instead of using less, but fresher data,
thus obtaining a more conservative, averaged forecast.

The pace of growth in the number of electric trucks, especially heavy ones, is a big
unknown. Currently, this segment of e-mobility is in its inception phase, and the momen-
tum of this process is unknown. For electric buses, the growth ceiling, and, therefore, the
current impact on the Polish electric power system is quite low, due to the relatively small
total number of buses used in Poland (slightly more than 12,000 pcs). Even so, financial
inequalities between Polish regions make the future transformation process unequal. Due
to the cost of acquisition of vehicles and loading infrastructure one can expect that the
biggest cities will note the greatest increase in the number of electric buses. Study concern-
ing the dynamics of growth for the Polish capital city showed tripling of the number of
electric buses over 2021–2022, for instance [38]. Although the study referred to determined
lack of problems for charging infrastructure with the increase of number of electric buses,
the result could potentially vary with region and situation. Current socio-political factors,
such as petrol prices or increasing inflation, could also affect interest of customers in using
public transport, and, in turn, further increase number of electric buses. Another valid
method of eco-transport, especially in big cities, are individual and shared e-scooters. This
vehicle type could potentially optimize energy spent per capita for routes without good
direct connection by electric buses, and reduce traffic. Facilitating movement of this vehicle
requires, however, adoption of proper legislation to ensure safety of drivers, especially in
the face of the increasing popularity of this solution [39].

Meanwhile, the potential for rising numbers of electric trucks is very large. Currently
there are more than 3.6 million such vehicles registered in Poland. If all of those vehicles
became electric, their impact on power demand would be huge. Assuming that the share
of electric vans is 75% and of electric heavy trucks 25% out of 3.6 million of electric trucks
overall, annual power demand resulting only from electric trucks would be, according to
our calculations, about 118,000 TWh, i.e., 33% more than the current (2021) total annual
power production in Poland.

The analysis of the results of the forecasts of relative power demand profiles shows
that the dynamics of change in both relative profiles decrease significantly over 2022–2027
as compared to changes after 2009. For both relative profiles, the largest changes between
2009 and 2027 (forecast) are visible during the evening “peak” of power demand. In the
winter season, the evening “peak” of power demand would have decreased over time,
while in the summer period, the evening “peak” of power demand would have increased
over time. Since 2009 to about 2016, the dynamics of change in relative profiles was high.
In the subsequent years since 2017 and to 2021 the changes became less dynamic, the same
applies to forecasts from 2022 to 2027.

Analyses of the impact of e-mobility on the Polish power system until 2027 show
that, for the profiles of the typical winter and summer days the percentage share of e-
mobility is the highest during the evening “peak”, which is very unfavourable for the
electric power system. This could be partially alleviated by changing the habits of EV
users so that they begin slow charging of their EVs just after midnight rather than from
afternoon (after returning from work). However, this requires incentives for EV users, such
as a significantly reduced electricity price at night. To avoid local grid overload, remote
control of the charging process seems to be necessary for users charging their vehicles at
night. The controller could collaborate with the controllers of other cars, thus, coordinating
the charging process in the respective part of the network, and with the power meter,
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thus, increasing the automation of the process, or by deploying demand management
software. Recent studies show, however, that user acceptance of external management
of their cars is rather low in Poland [40]. In light of this, more effort should be put into
either policy or incentives creation, as solutions such as V2G could decrease the negative
impact of increased load caused by electric vehicles [26]. Albeit not all factors influencing
the customers are easily transferable between countries, the quality of quick-charging
infrastructure and simplicity of use could be named as universal factors impacting users’
decisions to join such programs [27].

The work on hourly electricity profiles, excluding EV, can be compared with the
work of Brodowski et al. [15], where the authors predicted mean hourly load profile in
the Polish Electric Grid starting from 11 am in the first variant and 8 am in the second
one. In order to compare accuracy of the studies, our summer and wind profiles were
averaged over hours, and presented in Figure 19. The comparison determined that both
studies resulted in a similar magnitude of error, though the referred study showed higher
deviation from average from both sides of the average. For early morning (hourly periods
2–8) our model showed more accuracy, while for the rest of the periods both study models
were comparable. It can be noted that 8/11 models demonstrated lowest error directly
after moments of start, with rapid increase shortly after. Our model, in turn, was more
stable in all analysed periods. It must be, however, emphasised that, due to the difference
in tested period ranges (year 2004 for 8/11 models, years 2009–2021 in our model) the
above comparison could only be roughly done. Other studies, pertaining to profile creation
with decomposition into summer and winter day profiles, resulted in 2.8% MAPE over the
year 2016 [18]. In view of the nature of our study, concerning forward extrapolation, both
of the above studies cannot be directly compared with our study, as it had no direct test
data equivalent.

Figure 19. Comparison of hourly energy demand profile excluding EV between our study averaged
profile and profiles started to be predicted at 8/11 am.

5. Conclusions

As a result of multi-step and multi-variant forecasts, the impact of e-mobility on the
Polish electric power system was determined in terms of annual growth of power demand
and on a daily basis (times of the day) for two typical days (summer and winter ones).
This impact varied by e-mobility development variant. For the balanced (i.e., the most
likely) growth variant, annual power demand would grow by almost 7% due to e-mobility.
However, the percentage growth of power demand due to e-mobility for the balanced
variant varied by the time of the day. For typical winter and summer day profiles, the
distribution of percentages in different times of the day was very similar. During the
“evening” peak, the percentage share of e-mobility was the largest, whereas during the
night “valley”, the percentage share was the lowest.
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The outcomes of forecast power demand amounts in particular times of typical winter
and summer days (2022–2027) without e-mobility indicated that, depending on the time
of the day, the trends of changes in relative demand were different. For the profile of
the typical winter day, relative power demand fell slightly in particular hours between
01:00 pm and midnight between the last year of the forecast (2027) and the first year of the
forecast (2022). In the night “valley”, profile changes were minimal.

This research shows that the development of e-mobility in Poland for the horizon
of 6 years (2027) may cause a problem regarding covering the additional demand for
electricity. The problem concerns both the value of the total annual energy demand, but
also the “evening” peak of the typical summer and winter days, in which the impact of
e-mobility on the demand for electricity is greatest.

The proposed unique methods developed by the authors proved to be effective. An
MLP artificial neural network was applied for non-linear extrapolation of a single function
(forecast number of electric vehicles in Poland from 2022 to 2027 and forecast annual power
demand in Poland from 2022 to 2027, without the development of e-mobility in Poland).
Ensemble Methods (MLP and LSTM) were applied to conduct simultaneous extrapolation
of 24 non-linear functions (forecast daily profiles of typical days in 2022–2027 without
e-mobility).

A novel, original Growth Dynamics Model was developed that used forecast annual
growth ratios to forecast the number of electric vehicles in Poland from 2022 to 2027.

This research has some limitations which should be pointed out in order to ensure
the integrity of scientific research. The main limitation is the use of only the time series
of forecasted processes in forecasting models. For this reason, the proposed methods of
EV number forecasting can be considered appropriate only for the medium-term horizon
(up to several years ahead) due to the relatively short time series of historical data and the
dependence of the forecasted process on many factors that may undergo dynamic changes
in the future (electricity price, incentives supporting e-mobility, dynamic development of
hydrogen-powered electric cars, FCV (Fuel Cell Vehicle)). In the case of forecasts of profiles
of typical days, for forecast horizons greater than 6 years, one should expect more and
more errors in forecasts as the forecast horizon grows. In the future, there may be various
additional factors influencing the shape of the typical day profiles. A factor that may affect
the shape of the daily load profiles is, for example, the development of RES. Other factors
include climate change and the introduction of dynamic tariffs.

We intend to expand future research on e-mobility development to include forecasts
of the development of the number of charging stations, discriminating between rapid and
slow charging stations, and forecast the development of e-mobility in as disaggregated a
manner as possible (separate forecasts by EV type, including electric bikes and scooters).
Regarding the research on the impact of e-mobility development on the electric power
system, changes in profiles of typical days due to RES development in Poland (wind farms,
photovoltaic systems, and energy storage) can be taken into account or studied in addition.
An important element planned in future research will be the use of exogenous explanatory
variables (input data) in prognostic models (historical values and forecasts), in addition to
the withdrawn values of the explained variable.
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DNN Deep Neural Network
EVs Electric vehicles
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FCV Fuel Cell Vehicle
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Appendix A

Table A1. Forecast accuracy metrics of the MLP + LSTM Ensemble Method for particular times of
the day.

Relative Profile of the Winter Typical Day Relative Profile of the Summer Typical Day

Hour * RMSE
MAPE

[%]
MBE R R2 RMSE

MAPE
[%]

MBE R R2

1 0.0165 1.383 0.00430 0.8054 0.6212 0.0094 0.907 0.00142 0.6934 0.4680
2 0.0151 1.410 0.00245 0.8350 0.6877 0.0090 0.950 0.00185 0.7131 0.4849
3 0.0149 1.356 0.00349 0.8468 0.7004 0.0098 0.971 0.00249 0.6526 0.3751
4 0.0158 1.394 0.00396 0.8208 0.6501 0.0092 0.928 0.00134 0.6770 0.4251
5 0.0159 1.412 0.00270 0.7932 0.6176 0.0098 0.994 0.00148 0.7337 0.5241
6 0.0167 1.446 0.00296 0.7397 0.5315 0.0116 1.029 0.00251 0.7878 0.5914
7 0.0196 1.450 0.00362 0.5105 0.2327 0.0092 0.805 0.00056 0.9346 0.8718
8 0.0221 1.521 0.00423 0.5153 0.2367 0.0092 0.752 0.00084 0.9314 0.8662
9 0.0200 1.393 0.00306 0.5647 0.3020 0.0116 0.862 0.00134 0.8591 0.7341

10 0.0187 1.308 0.00459 0.6331 0.3616 0.0118 0.886 0.00198 0.8074 0.6417
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Table A1. Cont.

Relative Profile of the Winter Typical Day Relative Profile of the Summer Typical Day

Hour * RMSE
MAPE

[%]
MBE R R2 RMSE

MAPE
[%]

MBE R R2

11 0.0171 1.141 0.00619 0.7159 0.4386 0.0123 0.885 −0.00063 0.7491 0.5597
12 0.0165 1.135 0.00353 0.6888 0.4470 0.0120 0.882 0.00030 0.7581 0.5744
13 0.0168 1.131 0.00408 0.6769 0.4210 0.0127 0.931 −0.00081 0.7715 0.5928
14 0.0177 1.131 0.00048 0.6820 0.4646 0.0132 0.982 0.00058 0.7567 0.5714
15 0.0189 1.261 0.00542 0.6262 0.3375 0.0133 0.990 −0.00022 0.7603 0.5777
16 0.0186 1.194 0.00486 0.5862 0.2955 0.0134 1.013 −0.00007 0.8209 0.6734
17 0.0201 1.283 0.00210 0.7187 0.5094 0.0142 1.067 0.00102 0.8241 0.6771
18 0.0200 1.296 0.00234 0.8283 0.6810 0.0153 1.064 0.00298 0.8001 0.6249
19 0.0190 1.253 0.00006 0.8441 0.7125 0.0152 1.067 0.00187 0.8191 0.6614
20 0.0197 1.312 −0.00033 0.8511 0.7242 0.0125 0.947 0.00141 0.8778 0.7651
21 0.0197 1.370 0.00407 0.8343 0.6818 0.0114 0.871 0.00128 0.8521 0.7226
22 0.0176 1.279 0.00388 0.8565 0.7189 0.0108 0.769 −0.00049 0.5679 0.3095
23 0.0164 1.284 0.00578 0.8479 0.6775 0.0105 0.858 0.00135 0.4894 0.4010
24 0.0152 1.322 0.00327 0.8063 0.6322 0.0105 0.930 0.00047 0.4407 0.3820

* Hour corresponds to the point in time of measurement/end of hourly period, e.g., hour = 12 corresponds to
11:00–12:00 period.
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for efficient spatial forecasting of wind power generation. Electr. Power Syst. Res. 2019, 175, 105891. [CrossRef]

31. Dudek, G. Multilayer perceptron for short-term load forecasting: From global to local approach. Neural Comput. Appl. 2019, 32,
3695–3707. [CrossRef]

32. Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd ed.; O’Reilly Media Inc.: Sevastopol, CA,
USA, 2019.

33. Liu, S.; Lin, Y. Grey Systems. In Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2010.
34. Piotrowski, P. Forecasting in Power Engineering in different time horizons. In Prace Naukowe Politechniki Warszawskiej ”Elektryka”;

Oficyna Wydawnicza Politechniki Warszawskiej: Warsawz, Poland, 2013; Volume 144.
35. Duan, J.; Wang, P.; Ma, W.; Tian, X.; Fang, S.; Cheng, Y.; Chang, Y.; Liu, H. Short-term wind power forecasting using the hybrid

model of improved variational mode decomposition and Correntropy Long Short -term memory neural network. Energy 2021,
214, 118980. [CrossRef]
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Abstract: In general, studies on short-term hourly electricity load modeling and forecasting do
not investigate in detail the sources of uncertainty in forecasting. This study aims to evaluate the
impact and benefits of applying bootstrap aggregation in overcoming the uncertainty in time series
forecasting, thereby increasing the accuracy of multistep ahead point forecasts. We implemented the
existing and proposed clustering-based bootstrapping methods to generate new electricity load time
series. In the proposed method, we use singular spectrum analysis to decompose the series between
signal and noise to reduce the variance of the bootstrapped series. The noise is then bootstrapped by
K-means clustering-based generation of Gaussian normal distribution (KM.N) before adding it back
to the signal, resulting in the bootstrapped series. We apply the benchmark models for electricity
load forecasting, SARIMA, NNAR, TBATS, and DSHW, to model all new bootstrapped series and
determine the multistep ahead point forecasts. The forecast values obtained from the original series
are compared with the mean and median across all forecasts calculated from the bootstrapped series
using the Malaysian, Polish, and Indonesian hourly load series for 12, 24, and 36 steps ahead. We
conclude that, in this case, the proposed bootstrapping method improves the accuracy of multistep-
ahead forecast values, especially when considering the SARIMA and NNAR models.

Keywords: electricity load forecasting; bootstrap aggregating; singular spectrum analysis; time series
forecasting; calendar variation

1. Introduction

Electricity load forecasting plays a critical role in controlling the balance between
power demand and supply. Sometimes, the energy demand exceeds the energy supply and
vice versa, which results in financial losses. An important aspect of a smart grid system
is determining an accurate load forecasting model. Electricity load forecasting provides
information that will simplify the work of planning consumption, generation, distribution,
and other essential tasks of the smart grid system [1,2].

Much work has been performed to develop models and strategies to improve the
electricity load forecasting accuracy. Generally, an hourly load series shows three relation-
ships, i.e., between the observations for consecutive hours on a particular day, between the
observations for the same hour on consecutive days, and between the observations for the
same hour on the same day in successive weeks. In certain countries, the hourly load series
may become more complex due to calendar variations [3]. The effect of calendar variation
is usually considered by including a dummy variable in the model [4–7]. In countries
with four seasons, the temperature is often included in the load forecasting model [8,9].
For countries with two seasons, such as Malaysia, it is also possible to include tempera-
ture information to improve the forecasts’ accuracy [10]. Many models, from simple to
complex, have been proposed and developed by researchers and practitioners around the
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world to improve the accuracy of electricity load forecasting, e.g., regression and seasonal
autoregressive integrated moving average (SARIMA) models [4,11,12], exponential smooth-
ing [3,6,13–15], neural network (NN) [16–19], singular spectrum analysis (SSA) [20–22],
wavelets [23,24], fuzzy systems [10,25,26], support vector machine [1,21,27,28], among
others. However, the most suitable model for electricity load forecasting in a given country
may not be the best to model the data in another country because of different consumption
and behavioral characteristics.

In this study, we discuss the implementation of the bootstrap aggregating method
to improve the accuracy of multistep ahead load forecast. Bootstrap aggregation, which
is known by the acronym “bagging”, was proposed by [29] to reduce the variance of the
predictor. It works by generating replicated bootstrap samples of the training data and
using them to obtain the aggregated predictor. Bagging aims at improving the point forecast
by considering sources of uncertainty, namely, the parameter estimates, the appropriate
model determination, and the noise. In 2016, [30] successfully applied the development
of this method in the field of time series forecasting by using the moving block bootstrap
(MBB). Further, [31] explored how bagging improves point forecasts and showed that
model selection as a solution to model uncertainty was the most influential on the success
of bagging in time series. As described in [30], MBB bagging methods first apply the
Box–Cox transform to the original series and then decompose it into a trend, seasonal, and
noise using STL (Seasonal and Trend decomposition using Loess). STL is a decomposition
method developed by [32]. In MBB, the noise is bootstrapped and added back to the trend
and seasonal components. The new transformed bootstrapped series are then inverted
and modeled. However, MBB is more appropriate for bootstrapping stationary time series.
When the original data are not stationary, the bootstrapped series may be very noisy and
do not fluctuate as the original series [30].

Recently, [33] proposed three clustering-based bootstrap aggregating methods, i.e.,
Smoothed MBB (S.MBB), K-means clustering based (KM), and K-means clustering based-
generated from Gaussian normal distribution (KM.N), which perform better under noisy
and fluctuating data. In adapting the fluctuating data, the S.MBB method smooths the noise
using simple exponential smoothing before applying MBB. Meanwhile, KM and KM.N
methods adapt to the noisy series by first implementing the K-means cluster. The original
series clusters into K groups and then creates new time series based on the clusters. The
difference between KM and KM.N is in how they generate the bootstrap series. In KM,
a new time series is created directly by sampling values of clusters, while in KM.N, it is
created by generating values based on the parameters of the Gaussian normal distribution
of clusters. Both the KM and KM.N methods succeeded in making the bootstrapped time
series have low variance between each other. Based on the experimental study of the
electricity load series with multiple seasonal and calendar effects, KM.N performed better
than the KM method [33]. However, this method creates a bootstrapped series based on
the original data without sorting out signal and noise. Thus, in more complex series where
the calendar effect may not be visible clearly in the original data, it will produce a noisier
bootstrapped series at specific points, especially at times affected by calendar variation.

Inspired by [30,33], this study proposes an SSA–clustering-based method named
SSA.KM.N as a modification of KM.N. Our proposed method combines singular spectrum
analysis (SSA) as an alternative to the STL method in MBB and KM.N to generate new
series from the remainder of the SSA decomposition. Literature shows that SSA is powerful
in decomposing time series with complex seasonal patterns ([5,20]). SSA plays a role in
breaking down time series, which have trends, multiple seasonal components, and are
affected by calendar variation, into signal and noise, which generally contain extreme
values representing calendar effects in more detail. By taking advantage of the unique
strengths of SSA and KMN, our methodology can better adapt to fluctuating time series
related to the effects of calendar variation. Bootstrapping the noise using KM.N and adding
it to the signal is expected to produce a bootstrapped time series with low variance and
values around the original series.
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In this work, the proposed method compares with KM.N in its application to bootstrap
two Malaysian load time series with different sample sizes and different time periods; one
from Poland and another from Indonesia. We evaluate the impact and benefits of applying
SSA.KM.N and KM.N in overcoming the source of uncertainty in time series forecasting
and their success in increasing the accuracy of multistep ahead point forecast obtained by
standard models such as SARIMA, NNAR, TBATS, and DSHW models.

The rest of the paper is organized as follows. Section 2 describes the methods used
in this paper, starting from forecasting methods, decomposition, bagging, and ensemble
methods. We also present the procedure of our proposed approach in this section. Section 3
reports the application of KM.N and SSA.KM.N to the four electricity load time series and
shows the error evaluation for 12, 24, and 36 steps-ahead point forecasts obtained from
SARIMA, NNAR, DSHW, and TBATS for further investigation and assessment. Conclusions
are found in Section 4.

2. Materials and Methods

This section contains a brief overview of the methods used for time series modeling and
forecasting, the decomposition method, the ensemble learning, and the proposed approach.

2.1. Forecasting Methods

SARIMA, and exponential smoothing (i.e., TBATS and DSHW), are popular ap-
proaches to forecast trend and seasonal time series. On the other hand, NNAR is a powerful
method for capturing nonlinear relationships in time series data. These four methods are
frequently used in modeling load series, and their forecast accuracy is used as benchmarks
for other proposed methods [4,10,22]. For example, the Spanish Transmission System
Operator uses autoregressive (AR) and NN models [7].

The seasonal ARIMA model, notated as SARIMA (p, d, q)(P, D, Q)S, is an extension of
ARIMA model that accommodates the seasonal component of the time series [34,35], and
can be written as follows:

φp(B)ψP

(
BS
)
∇d∇D

S zt = θq(B)ϑQ

(
BS
)

at (1)

where zt is observation at time t, S is seasonal period, p, P, q, and Q are the orders of
autoregressive, seasonal autoregressive, moving average, and seasonal moving average,
respectively. Superscript d and D notate the regular and seasonal differentiation, while
∇S = 1 − BS is a backshift operator, and φp(B), and θq(B) are polynomials in B of degree

p and q, respectively. Notations ψP

(
BS
)

, and ϑQ

(
BS
)

are polynomials in BS of degrees
P and Q, and at is white noise. The orders of p, q, P, and Q can be determined from the
correlogram and partial correlogram. Oftentimes, the identification of these orders is not
an easy task and the user experience is required [36]. The automatic algorithms discussed
in [37] with the “auto.arima” function of the R software can be used to help handle this
problem [31]. However, other researchers may prefer to estimate the parameters manually
instead of using automated packages [38]. In this case, we use “Arima” function included
in the package “forecast” in the software R [39].

NNAR is a feedforward neural network that consists of lagged input neurons, one
hidden layer with nonlinear function, and one output neuron [40,41]. NNAR (p, P, k)S
model can be represented as in Equation (2),

zt = b1 +
k

∑
j=1

vj fj

(
b0 +

p

∑
i=1

zt−iwij +
P

∑
m=1

zt−mSwmj

)
(2)
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where b0 and b1 are biased, k is the number of neurons in the hidden layer, p is the order of
the non-seasonal component, while P is the order of the seasonal component. The sigmoid
function at the jth neuron in the hidden layer, f j, is defined in Equation (3),

f j(u) =
1

[1 + exp(−u)]
, (3)

where u = b0 + ∑
p
i=1 zt−iwij + ∑P

m=1 zt−mSwmj. In its implementation we use the “nnetar”
function in the R package “forecast” ([39]). Later in the experimental study, P is set to be
1, p is the optimal number of lags for the linear model fitted to the seasonally adjusted
data, and k is determined by the rounded value of (P + p)/2. The final forecast values are
obtained by averaging 20 networks with different random starting weights.

TBATS and DSHW are modifications of the exponential smoothing to handle trends
and multiple seasonal patterns in time series forecasting [42]. DSHW, proposed by [13],
accommodates two seasonal patterns where one cycle may be nested within another.
Meanwhile, TBATS, proposed by [3], can handle a more complex seasonal pattern in time
series forecasting. The term “complex” means that the time series has a trend, and multiple
seasonal patterns with integer or non-integer periods, and this may include dual-calendar
seasonal effects. Success studies of the use of DSHW and TBATS in modeling electricity
load time series can be found in [3,13,43]. Detail of these models can be found in [3,13,42,44].
In this paper, TBATS and DSHW are fitted by using the “tbats” and “dshw” functions
included in the R package “forecast” ([39]).

2.2. SSA Decomposition Method

SSA is a technique in the field of time series analysis that has a vast range of applicabil-
ity in decomposition [20], missing value imputation [45], and forecasting [46]. In this study,
we focus on the use of the SSA algorithm to decompose time series into the following two
components: signal and unstructured noise. SSA consists of four steps, namely, embedding,
singular value decomposition (SVD), grouping, and diagonal averaging [47,48].

In embedding, we transform a time series zt = {z1, z2, . . . , zntr} into a trajectory
matrix as in (4) as follows:

Z =

⎡⎢⎢⎢⎣
z1 z2 z3 . . . zc2

z2 z3 z4 . . . zc2+1
...

...
... · · · ...

zc1 zc1+1 zc1+2 . . . zntr

⎤⎥⎥⎥⎦ (4)

where c1 is the window length, ntr the number of training data sets, c2 = ntr − c1 + 1 and
c1 ≤ c2.

The matrix Z is then decomposed by SVD and expressed as follows:

Z = Z(1) + Z(2) =
r1

∑
l=1

√
λlulv

′
l +

r2

∑
l=r1+1

√
λlulv

′
l (5)

where λl are the eigenvalues of matrix Z, ul and vl are left and right singular vectors of the
matrix Z corresponding to the eigenvalues λl , respectively. We need to determine r1, the
number of signal components used for reconstruction in the grouping stage. Finally, we
can obtain signal and noise by the diagonal averaging procedure, i.e., the anti-diagonals
that map the matrices of the signal and noise components back to time series. The original
time series can then be expressed as follows:

zt = z̃(1)t + z̃(2)t (6)

where z̃(1)t is the signal and z̃(2)t is the noise.
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2.3. Bagging and Ensemble Methods

The K-means clustering-based bagging method, proposed by [33], clusters a univariate
time series into K groups by the K-means method. Each cluster has its average value and
standard deviation as parameters of the cluster. A Gaussian normal distribution according
to these parameters is then used to generate a random number as a new value of the
bootstrap time series. For example, suppose zt is a value of the original time series at
time t that belongs to the ith cluster. In that case, we can obtain the new value of the
bootstrap time series at time t by generating a random value based on the Gaussian normal
distribution of the particular cluster. The code for bootstrapping time series by K-means
clustering-based-generated from Gaussian normal distribution (KM.N) can be found in [49].

2.4. Proposed Approach

The proposed SSA.KM.N bagging method is a modification of KM.N where the first
stage decomposes the original time series using SSA (Figure 1; blue cells). As shown in [20,50],
SSA can be used to decompose complex time series into several simple pattern components.

 

Figure 1. Procedure for generating bootstrapped time series by the SSA-KM.N method.

Step 1. Divide the series into the following two parts: training and testing datasets;
Step 2. Generate B new series from the original training data by the KM.N method;
Step 3. Generate B new series from the original training data by the SSA.KM.N method;

207



Energies 2022, 15, 5838

a. Apply SSA to the original training data to define the signal and the irregu-
lar component;

b. Generate B new series from the irregular component obtained in Step 3a by
the KM.N method;

c. Sum each new irregular component obtained from Step 3b with the signal
component so that we obtain B bootstrapped series of the original training data;

Step 4. Model the original training data, and each bootstrapped series by SARIMA, NNAR,
TBATS, and DSHW;

Step 5. Calculate up to M-steps-ahead forecast values by each model obtained in Step 4;

a. Define the M-steps-ahead forecast values from the SARIMA, NNAR, TBATS,
and DSHW models obtained from the original training data series;

b. Apply mean and median to calculate the final forecast of the bootstrap series
determined in Step 2 and Step 3 for the first nB bootstrap series;

Step 6. Evaluate the forecast accuracy based on root mean square error (RMSE) and mean
absolute percentage error (MAPE).

The two accuracy measures considered in this study can be defined as follows. MAPE,
calculated by Equation (7), is frequently used in evaluating load forecasting accuracy since
it is a scale-independent error that may compare forecast performance between different
data sets [44,51]. Meanwhile, RMSE, calculated using Equation (8), is a scale-dependent
error that can be used to compare the accuracy performance of several models on the same
data set [51].

MAPE =
100%

H

H

∑
h=1

∣∣∣∣∣entr+h/yntr+h

∣∣∣∣∣ (7)

RMSE =

(
∑H

h=1 e2
ntr+h

H

)1/2

(8)

In addition, we also evaluate the model using mean bias error (MBE) as defined in
Equation (9). It provides information whether there is a positive or negative bias [52]. We
can calculate MBE by the following:

MBE =
∑H

h=1 entr+h

H
(9)

where
entr+h = yntr+h − ŷntr+h

ŷntr+h and yntr+h are the predicted value and the actual value at time (ntr + h), respec-
tively. H is the number of observations included in the calculation and ntr is the size of
training data.

In this study, each bootstrapped series is modeled separately, and the final forecast for
time t is obtained by the following two ensemble methods: the mean and the median across
all forecast values at time t, calculated from the bootstrap series. In this study, we obtain
the mean and the median of the predicted values generated from the first nB (between 10 to
100) bootstrapped series to investigate whether the number of generated time series affects
the accuracy of the forecast results.

3. Results and Discussion

In this section, we discuss two hourly electricity loads in Johor, Malaysia, and two
other electricity load datasets from Poland and Indonesia. We decided to use these four
data sets to show the generality of our work for electricity load forecasting.
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3.1. Application to the Hourly Electricity Load of Johor, Malaysia

This subsection focuses on short-term forecasting of hourly electricity load with
application to Malaysian data. We consider two datasets with different sizes that can be
accessed in [53]. The first is the hourly load series from 1 January to 31 December 2009,
and the second is the hourly load series from 1 January to 31 July 2010, which are depicted
in Figure 2 (see Figure 2a,b, respectively).

 
(a) 

 
(b) 

Figure 2. Hourly load series of Johor, Malaysia: (a) 1 January time 00:00, to 30 November 2009,
time 23:00; (b) 1 January, time 00:00, to 30 June 2010, time 23:00.

The period from 1 January, time 00:00, to 30 November 2009, time 23:00, and the period
from 1 January, time 00:00, to 30 June 2010, time 23:00, were used for estimation purposes
as the training data. The remainder was used to evaluate the forecast performance of the
models. These periods are summarized in Table 1.

Our analysis generated 100 bootstrap time series using the KM.N and the SSA.KM.N
methods. Note that the original series is included in those 100-bootstrap series. Figure 3
shows the original time series and a realization of the bootstrap series by each of the
two methods.

209



Energies 2022, 15, 5838

Table 1. Training and testing datasets of hourly load series used in the experimental study.

1st Data Set 2nd Data Set

Training 01/01/2009 00:00–30/11/2009 23:00 01/01/2010 00:00–30/06/2010 23:00

Testing (for up to h-step ahead):

h = 1 01/12/2009 00:00–31/12/2009 23:00 01/07/2010 00:00–31/07/2010 23:00
h = 12 01/12/2009 00:00–01/12/2009 11:00 01/07/2010 00:00–01/07/2020 11:00
h = 24 01/12/2009 00:00–01/12/2009 23:00 01/07/2010 00:00–01/07/2020 23:00
h = 36 01/12/2009 00:00–01/12/2009 11:00 01/07/2010 00:00–02/07/2020 11:00

(a) 

 
(b) 

Figure 3. The original series (in black) and the bootstrap time series (in red) obtained by the (a) KM.N
method; (b) SSA.KM.N method.

From Figure 3, we can see that both the KM.N and SSA.KM.N methods produce
bootstrap series (in red) with almost the same pattern as the original series (in black). Even
in certain parts, where the data have lower or higher values than other times as a result of
the calendar variation, the SSA.KM.N can generate series closer to the original time series
than the KM.N, visually. As illustrations, we zoom the load on the time period influenced
by the Prophet’s birthday (Figure 4a) and Eid al-Fitr (Figure 4b). Figure 4 shows that the
variance of bootstrapped series obtained by KM.N (left) is larger than those obtained by
SSA.KM.N (right).
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KM.N SSA.KM.N 

  
(a) Load influenced by the Prophet’s birthday 

  
(b) Load influenced by Eid al-Fitr  

Figure 4. The original series (in black) and the bootstrap time series (in red) obtained by the KM.N
method (left) and SSA.KM.N (right) (a) for time period influenced by the Prophet’s birthday; (b) for
time period influenced by the Aid al-Fitr.

The performance of the one-step ahead forecast accuracy of SARIMA, NNAR, TBATS,
and DSHW is shown in Table 2. All these calculations were performed in the R soft-
ware. From the analysis of the correlogram and the partial correlogram, the model
SARIMA(2,0,3)(2,1,2)24 was chosen for the first data set and the SARIMA(2,0,0)(3,1,0)24
for the second data set. The most appropriate NNAR, TBATS, and DSHW models were
reconstructed and chosen automatically by the “nnetar”, “tbats”, and “dshw” functions
in R. Based on Table 2, we can see that both for the first and second data sets, the NNAR
and the DSHW produce smaller RMSE and MAPE than SARIMA and TBATS in the case of
one-step ahead forecasting.

Table 2. RMSE and MAPE for one-step-ahead forecasts for the testing data of the two data sets of
hourly electricity load in Malaysia, obtained by SARIMA, NNAR, TBATS, and DSHW.

Method

Testing of 1st Data Set
(1–31 December 2009)

Testing of 2nd Data Set
(1–31 July 2010)

RMSE MAPE RMSE MAPE

SARIMA 1168.02 1.90 1719.68 2.54
NNAR 749.92 1.21 1182.68 1.75
TBATS 1584.47 2.91 1466.33 2.37
DSHW 839.18 1.29 1035.14 1.46

Furthermore, we investigate how these four models work for multistep ahead load
forecasting with and without bagging implementation. The comparative values of RMSE
and MAPE for 12, 24, and 36 steps ahead for SARIMA, NNAR, TBATS, and DSHW are
presented in Tables 3–6, respectively. We also present in Tables 3–6 the RMSE and MAPE
obtained from the forecast values of each model with four different numbers of bootstrap
time series, to infer whether the number of bootstrap samples interferes with the accuracy
of the forecasts.
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Table 3. RMSE and MAPE of h-step ahead forecast obtained by SARIMA model from the original
series, KM.N and SSA.KM.N bootstrap series.

1st Data Set 2nd Data Set

RMSE MAPE RMSE MAPE

h 12 24 36 12 24 36 12 24 36 12 24 36

original 466.51 1408.20 2118.07 0.88 1.94 3.13 1139.08 1268.58 1324.19 2.27 2.48 2.97

Bagging + Mean

KM.N
nB = 25 512.57 1404.68 2035.79 0.97 1.94 3.00 1345.29 1405.54 1366.41 2.25 2.57 2.87
nB = 50 530.99 1419.45 2049.64 0.99 1.96 3.03 1320.97 1393.69 1366.42 2.28 2.59 2.91
nB = 75 544.23 1429.02 2053.97 1.02 1.99 3.05 1323.97 1394.82 1367.79 2.29 2.60 2.92
nB = 100 556.73 1438.17 2062.04 1.09 2.03 3.08 1329.88 1397.27 1371.85 2.32 2.61 2.93

SSA. KM.N
nB = 25 490.52 1368.94 2029.14 1.04 1.94 2.96 1067.12 1234.85 1286.55 2.11 2.40 2.87
nB = 50 494.71 1357.47 2018.93 1.05 1.94 2.95 1069.56 1235.92 1288.94 2.13 2.41 2.88
nB = 75 498.23 1356.26 2015.31 1.07 1.94 2.95 1068.79 1235.36 1288.80 2.13 2.41 2.88
nB = 100 495.76 1360.24 2018.48 1.06 1.95 2.95 1072.37 1236.66 1289.22 2.14 2.41 2.88

Bagging + Median

KM.N
nB = 25 548.32 1415.38 2045.61 1.03 1.98 3.04 1330.61 1388.67 1348.25 2.12 2.49 2.80
nB = 50 543.85 1424.97 2055.74 1.02 1.98 3.05 1306.42 1383.85 1355.37 2.18 2.53 2.86
nB = 75 549.99 1430.50 2056.88 1.05 2.00 3.06 1322.84 1390.97 1360.40 2.22 2.55 2.88
nB = 100 566.06 1444.64 2066.11 1.09 2.04 3.09 1325.92 1392.35 1365.12 2.27 2.58 2.90

SSA.KM.N
nB = 25 501.40 1372.29 2029.04 1.10 1.98 2.98 1072.91 1239.46 1290.89 2.13 2.41 2.88
nB = 50 514.83 1355.26 2012.78 1.13 1.97 2.95 1076.47 1239.43 1292.00 2.15 2.42 2.89
nB = 75 514.08 1355.95 2011.37 1.13 1.97 2.95 1069.09 1234.93 1289.34 2.13 2.41 2.88
nB = 100 508.08 1365.38 2018.37 1.11 1.97 2.96 1074.03 1238.00 1290.43 2.15 2.42 2.88

Green cells represent the RMSE and MAPE values of the SARIMA model obtained from the bootstrap series lower
than those obtained from the original series. Bold values represent the lowest value in a column of each bagging
method with green cells.

Based on Table 3, we can see that the SSA.KM.N performed better than the KM.N
in reducing the RMSE and MAPE of forecasts for 24- and 36 steps-ahead, respectively,
obtained by the SARIMA model. The green cells in Table 3 represent the RMSE and MAPE
values of the SARIMA model obtained from the bootstrap series, which are lower than
those obtained from the original series. Bold values represent the lowest value in a column
of each bagging method with green cells.

Moreover, in Table 3, it can be seen that for the first dataset, SARIMA provided high
accuracy values for forecasting one day ahead (next 24 h), indicated by the MAPE values
of less than two. For the second dataset, the MAPE values were between two and three.
For each bagging method, there is no significant difference between the forecast results
obtained by the mean and the median ensemble.

Based on the analysis for multistep-ahead forecasting by the SARIMA model with the
bagging methods, it cannot be concluded that the more bootstrapped series used in the
calculation, the more accurate the forecasting results will be. As we can see, the values in
bold (see Table 3) are not in the nB = 100 row, being some in the nB = 25 row.

The comparative forecast results obtained by the NNAR model reconstructed from the
original and bootstrap series are presented in Table 4. Based on the analysis of this table, the
NNAR tends to produce larger RMSE than SARIMA. This is not in line with the results for
predicting one step ahead (see Table 2). However, both the KM.N and SSA.KM.N methods
can improve the accuracy performance of the forecasts. The 36-steps-ahead forecast values
obtained from the bootstrap series using SSA.KM.N produced a larger RMSE than those
obtained from the original time series, but the MAPE value showed the opposite direction.
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Similar to the results shown in Table 3, in this case, a greater number of bagging samples
does not necessarily result in a better performance in terms of forecasting accuracy.

Table 4. RMSE and MAPE of h-step ahead forecast obtained by NNAR model from the original series,
KM.N and SSA.KM.N bootstrap series.

1st Data Set 2nd Data Set

RMSE MAPE RMSE MAPE

h 12 24 36 12 24 36 12 24 36 12 24 36

Original 1761.72 2365.26 4393.21 2.12 3.18 5.81 2474.07 2797.86 5179.86 3.62 4.24 6.15

Bagging + Mean

KM.N
nB = 25 960.09 1723.56 2881.12 1.10 2.35 4.01 2367.77 2062.45 4128.65 3.50 3.32 5.19
nB = 50 964.93 1730.89 2894.54 1.12 2.37 4.03 2433.15 2096.23 4154.82 3.58 3.34 5.22
nB = 75 996.61 1747.33 2949.97 1.16 2.39 4.08 2358.62 2044.60 4084.19 3.48 3.28 5.13

nB = 100 1007.27 1766.48 2972.19 1.16 2.42 4.12 2388.40 2067.72 4120.69 3.51 3.30 5.17
SSA. KM.N

nB = 25 973.69 1661.79 2756.24 1.11 2.29 3.93 2279.29 1958.57 5344.05 3.41 3.15 6.04
nB = 50 954.97 1618.73 2701.08 1.11 2.23 3.84 2349.54 1997.22 5451.24 3.52 3.18 6.14
nB = 75 971.00 1634.74 2732.76 1.11 2.24 3.86 2325.34 1980.90 5443.80 3.47 3.16 6.13

nB = 100 968.26 1628.32 2716.57 1.11 2.24 3.85 2311.58 1974.44 5452.81 3.45 3.16 6.13
Bagging + Median

KM.N
nB = 25 913.18 1695.23 2836.71 1.07 2.34 3.96 2364.00 2069.78 4029.04 3.52 3.35 5.14
nB = 50 912.72 1690.94 2861.26 1.05 2.32 3.98 2469.39 2110.04 4136.53 3.63 3.36 5.21
nB = 75 948.08 1697.71 2883.83 1.13 2.35 4.01 2399.13 2068.57 4035.98 3.53 3.31 5.11

nB = 100 964.86 1713.66 2892.47 1.12 2.36 4.02 2418.19 2080.95 4088.09 3.55 3.32 5.15
SSA.KM.N

nB = 25 978.42 1654.41 2785.53 1.13 2.28 3.95 2248.30 1952.46 5361.38 3.37 3.14 6.05
nB = 50 979.69 1633.47 2657.16 1.13 2.26 3.81 2270.89 1954.88 5411.12 3.39 3.14 6.09
nB = 75 975.65 1642.36 2683.66 1.12 2.26 3.83 2315.22 1980.65 5475.96 3.44 3.16 6.15

nB = 100 959.00 1612.46 2631.46 1.13 2.23 3.78 2307.14 1977.87 5438.96 3.43 3.15 6.12

Green cells represent the RMSE and MAPE values of the SARIMA model obtained from the bootstrap series lower
than those obtained from the original series. Bold values represent the lowest value in a column of each bagging
method with green cells.

Table 5 shows that, for the first dataset, bagging did not improve the forecast accuracy
obtained by the TBATS model. For the second dataset, the SSA.KM.N enhanced the
performance of forecasting accuracy, but this did not apply to the KM.N. Based on the
RMSE, the forecast values calculated from the TBATS model were more accurate than those
obtained from the NNAR model.

Contrary to the results shown in Table 5, bagging implementation improved the
forecasting accuracy of the DSHW model for the first dataset but not for the second dataset
(see Table 6). In this case, the KM.N bagging performed better than the SSA.KM.N in
reducing the forecasting error. Table 6 shows that the MAPE values obtained by the DSHW
model for the first dataset are on average 2–3 times higher than those obtained by the
DSHW model for the second dataset. However, in this case, the application of KM.N was
able to reduce the MAPE value for 12-step ahead by approximately 36%.

By implementing the SSA.KM.N in the hourly load forecasting of Malaysia up to
36 steps ahead, the RMSE was able to be reduced by 4.97% and 40% when using SARIMA
and NNAR, respectively. Meanwhile, KM.N was able to reduce the RMSE value by up to
3.8% for SARIMA and up to 35.43% for NNAR. Furthermore, although in one case, the
SSA.KM.N bagging implementation for predicting up to 36 steps ahead using TBATS and
DSHW can decrease the RMSE by more than 10%, in another case, it may behave differently.
Similar conclusions were obtained when analyzing the MAPE.

For further evaluation, we consider MBE to see the direction of the models and present
the results in Tables 7 and 8. The MBE is supposed to provide information on the long-
term performance of the model. Based on Tables 7 and 8, the interpretation of the model
performance is consistent with that based on RMSE and MAPE. The directions of the bias

213



Energies 2022, 15, 5838

generated by the models with and without bagging are the same, except for the forecasting
of 12 steps ahead by SARIMA (see Table 7). It may be related to the weakness of MBE,
where the positive and negative errors can cancel each other, and high individual errors
can result in low MBE values. However, we can see that bagging methods, both KM.N and
SSA.KM.N, reduces MBE values obtained from the NNAR model compared with those
obtained from the original time series. In the case of modeling the second data set by
TBATS, SSA, KM.N yields lower MBEs than the KM.N bagging method.

Table 5. RMSE and MAPE of h-step ahead forecast obtained by TBATS model from the original series,
KM.N and SSA.KM.N bootstrap series.

1st Data Set 2nd Data Set

RMSE MAPE RMSE MAPE

h 12 24 36 12 24 36 12 24 36 12 24 36

original 1613.36 2057.21 2146.92 4.03 3.72 4.08 1574.78 2771.37 2685.71 3.87 5.54 5.54

Bagging + Mean

KM.N
nB = 25 1740.64 2333.25 2360.33 3.99 3.98 3.91 1410.82 3122.42 2864.93 3.50 5.93 5.86
nB = 50 1668.46 2245.73 2282.53 3.89 3.86 3.84 1296.39 3045.17 2805.20 3.18 5.67 5.63
nB = 75 1664.15 2246.18 2290.12 3.86 3.85 3.84 1280.05 3047.59 2806.13 3.14 5.67 5.62

nB = 100 1732.41 2325.22 2370.24 3.91 3.93 3.90 1255.27 3002.58 2775.60 3.10 5.59 5.55
SSA. KM.N

nB = 25 1966.14 2547.93 2560.87 4.61 4.44 4.26 1371.73 1974.32 2286.35 3.43 4.03 4.61
nB = 50 2023.97 2609.35 2634.36 4.60 4.48 4.28 1447.05 1939.14 2316.25 3.51 3.99 4.68
nB = 75 2011.41 2580.08 2615.16 4.60 4.45 4.28 1503.40 1861.19 2247.76 3.56 3.87 4.61
nB = 100 1994.50 2572.82 2597.21 4.59 4.45 4.27 1468.42 1879.36 2259.16 3.52 3.90 4.60

Bagging + Median

KM.N
nB = 25 1937.56 2611.75 2574.41 4.19 4.27 4.16 1336.97 3256.25 2953.00 3.30 6.03 5.91
nB = 50 1719.88 2336.30 2337.81 3.86 3.90 3.87 1297.49 3240.04 2933.74 3.19 5.96 5.83
nB = 75 1818.78 2406.98 2410.71 4.01 4.03 4.00 1297.06 3239.03 2934.09 3.19 5.96 5.83

nB = 100 2010.25 2642.92 2639.85 4.19 4.31 4.21 1287.17 3203.36 2909.66 3.16 5.90 5.78
SSA.KM.N

nB = 25 1980.32 2604.85 2589.40 4.56 4.46 4.16 1594.16 2542.15 2846.89 3.99 5.13 5.72
nB = 50 2021.70 2674.56 2675.42 4.51 4.50 4.19 1482.30 2157.74 2548.26 3.71 4.46 5.16
nB = 75 2043.60 2661.86 2678.06 4.59 4.53 4.27 1476.01 2070.70 2462.00 3.65 4.28 5.01
nB = 100 2040.19 2629.41 2651.92 4.59 4.50 4.25 1415.00 2012.09 2390.52 3.54 4.14 4.88

Green cells represent the RMSE and MAPE values of the SARIMA model obtained from the bootstrap series lower
than those obtained from the original series. Bold values represent the lowest value in a column of each bagging
method with green cells.

3.2. Application to the Hourly Electricity Load of Poland

Figure 5 shows the hourly electricity load of Poland, in Megawatts (Mwh), from 26 Oc-
tober, at 01:00 to 16 December 2020 at 00:00. The data were accessed from https://www.pse.
pl/obszary-dzialalnosci/krajowy-system-elektroenergetyczny/zapotrzebowanie-kse (ac-
cessed on 21 January 2021). This data set contains the linear trend and multiple seasonal
patterns with daily and weekly periods. There was a slight pattern change around time in-
dex 400 (11 November 2020) due to the influence of the National Independence Day holiday
(shown by the orange rectangle in Figure 5). We fit the model using the first 1212 observa-
tions and evaluated the forecasting accuracy performance using the last 36 observations.

In this experimental study, we generate 50 bootstrapped series from the original
electricity load of Poland using KM.N and SSA.KM.N. We then model each generated time
series by SARIMA, NNAR, TBATS, and NNAR, in the same way as for the Malaysian data.
The accuracy evaluation was based on RMSE, MAPE, and MBE for 12, 24, and 36 steps
ahead, and is summarized in Tables 9–11.
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Based on Tables 9 and 10, we can see that SSA.KM.N can improve the accuracy of
24 and 36 steps ahead of electricity load forecasting for the Polish data using the NNAR
model, while KM.N fails to improve forecasting accuracy for this model. On the other hand,
the KM.N bagging method works well on the DSHW model, while SSA.KM.N does not
perform so well. However, both of them succeeded in increasing the accuracy of forecasting
for the ARIMA model.

Table 6. RMSE and MAPE of h-step ahead forecast obtained by DSHW model from the original series,
KM.N and SSA.KM.N bootstrap series.

1st Data Set 2nd Data Set

RMSE MAPE RMSE MAPE

h 12 24 36 12 24 36 12 24 36 12 24 36

original 3448.13 4802.00 4207.31 4.19 6.97 6.39 1458.59 1231.29 1148.92 2.77 2.05 2.00

Bagging + Mean

KM.N
nB = 25 2183.44 3644.90 3236.11 2.67 5.39 5.32 1809.37 1902.75 1718.99 3.29 3.06 2.75
nB = 50 2230.95 3640.88 3233.82 2.83 5.46 5.40 1890.92 2012.37 1801.60 3.43 3.24 2.89
nB = 75 2194.68 3590.45 3183.48 2.81 5.40 5.34 1918.15 2065.24 1842.82 3.47 3.33 2.96

nB = 100 2268.22 3660.82 3241.71 2.91 5.50 5.40 1913.90 2052.31 1828.07 3.49 3.32 2.96
SSA. KM.N

nB = 25 3168.62 4611.09 4018.48 3.76 6.62 5.99 2361.26 2782.86 2349.97 3.68 4.33 3.82
nB = 50 3157.42 4596.48 4006.13 3.74 6.60 5.97 2552.00 2945.08 2475.15 4.06 4.56 3.95
nB = 75 3156.84 4598.52 4007.59 3.74 6.60 5.97 2544.55 2946.87 2487.05 4.03 4.59 4.05

nB = 100 3153.79 4597.77 4005.71 3.73 6.60 5.97 2521.97 2911.70 2455.59 4.02 4.55 3.99
Bagging + Median

KM.N
nB = 25 2556.48 4295.01 3778.13 3.18 6.27 5.93 1860.06 1967.00 1771.43 3.33 3.12 2.79
nB = 50 2542.87 4273.27 3758.95 3.12 6.23 5.90 1922.97 2026.09 1817.49 3.47 3.23 2.88
nB = 75 2574.91 4263.89 3750.11 3.15 6.21 5.88 1934.91 2060.74 1843.21 4.48 3.30 2.93

nB = 100 2658.87 4320.54 3801.11 3.21 6.28 5.94 1935.22 2046.94 1830.22 3.52 3.29 2.92
SSA.KM.N

nB = 25 3184.94 4621.30 4025.46 3.77 6.63 5.99 2372.52 2855.73 2427.66 3.58 4.50 4.06
nB = 50 3183.66 4607.60 4014.75 3.77 6.62 5.98 2602.98 2938.16 2472.20 4.11 4.46 3.93
nB = 75 3178.47 4606.99 4014.94 3.76 6.62 5.98 2517.25 2841.47 2404.81 4.01 4.38 3.91

nB = 100 3184.52 4610.00 4016.52 3.77 6.62 5.98 2521.24 2812.68 2374.88 4.03 4.33 3.84
Green cells represent the RMSE and MAPE values of the SARIMA model obtained from the bootstrap series lower
than those obtained from the original series. Bold values represent the lowest value in a column of each bagging
method with green cells.

We can see from Table 10 that implementing the bagging method on Polish data
does not reduce the MAPE values in the case of the TBATS model. Still, it makes the
MBEs smaller (in absolute values) than those obtained from the original data (Table 11).
Furthermore, although the RMSE and MAPE values of the DSHW model decreased with
bagging, the results were the opposite when analyzing the MBE values. SSA.KM.N gives
better outcomes for the NNAR model, while KM.N is better for the DSHW model.

3.3. Application to the Hourly Electricity Load of Java-Bali, Indonesia

To show the generality of the implementation of bagging methods in electricity load
forecasting, we also discuss the hourly electricity load of Java-Bali, Indonesia. The data
consists of 1464 observations, from 1 October to 30 November 2015. Figure 6 shows that
the data has no trend but has double seasonal patterns. It is relatively stable except at
time points around 312–336 (14 October 2015) due to the influence of the Hijriyah New
Year holiday (shown by the orange rectangle in Figure 6). Moreover, this data set was also
discussed in [54].
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We generate 50 bootstrapped time series for this case based on 1428 observations (1 October
at 01.00 to 29 November at 12.00). The error evaluation in terms of RMSE, MAPE, and MBE ob-
tained from the SARIMA, NNAR, TBATS, and DSHW models are summarized in Tables 12–14,
respectively. The overall results shown in Tables 12–14 for this application are similar to those
of the previous applications for Malaysian and Polish electricity load data.

Table 7. MBEs of h-step ahead forecast for the first data set obtained by SARIMA, NNAR, TBATS,
and DSHW models.

SARIMA NNAR TBATS DSHW

h 12 24 36 12 24 36 12 24 36 12 24 36

original 145.99 907.89 1446.04 751.37 1574.98 2308.25 −69.78 598.89 607.95 2233.79 3829.69 3311.54

Bagging + Mean

KM.N
nB = 25 167.58 905.80 1390.65 443.29 1232.64 1968.24 290.35 1200.32 1246.45 1356.39 2890.41 2618.15
nB = 50 214.87 937.02 8881.84 441.63 1236.06 1269.93 384.09 1287.13 470.02 1447.27 2924.45 1012.76
nB = 75 230.20 950.19 1425.00 460.41 1246.86 2003.83 371.32 1252.58 1318.35 1436.04 2891.67 2610.35
nB = 100 257.88 969.21 1441.16 473.65 1266.20 2025.98 348.74 1242.51 1298.32 1490.21 2951.16 2654.25

SSA. KM.N
nB = 25 −137.62 728.93 1264.851 411.07 1170.29 1895.15 269.68 1112.43 1132.33 1921.13 3601.54 3093.45
nB = 50 −150.17 714.81 869.88 386.29 1130.32 1210.20 221.89 1042.36 334.78 1919.84 3593.18 1010.49
nB = 75 −164.26 705.98 1243.53 402.64 1142.61 1863.60 238.15 1053.85 1069.63 1919.89 3595.02 3087.34
nB = 100 −154.71 714.48 1250.64 391.24 1133.87 1851.27 323.68 1139.93 1162.73 1913.61 3591.93 3083.82

Bagging + Median

KM.N
nB = 25 198.26 925.21 1407.78 413.57 1213.51 1938.24 447.49 1340.14 1307.19 1533.13 3350.10 2965.00
nB = 50 230.70 946.82 1426.14 413.63 1209.42 1948.60 297.71 1130.41 1117.38 1553.86 3350.17 2963.54
nB = 75 234.08 951.99 1428.00 420.36 1207.34 1954.58 375.90 1203.43 1178.55 1593.23 3355.65 2964.73
nB = 100 260.12 972.47 1444.30 440.88 1227.32 1970.68 558.25 1415.63 1394.91 1645.62 3403.65 3003.21

SSA.KM.N
nB = 25 −152.57 722.76 1258.23 387.98 1150.80 1894.71 343.25 1289.54 1343.09 1932.04 3610.62 3097.90
nB = 50 −172.75 699.00 1237.00 378.60 1130.51 1820.84 431.02 1376.17 1441.36 1935.88 3603.03 3092.51
nB = 75 −177.18 696.20 1233.93 382.15 1136.42 1835.54 421.09 1348.28 1416.42 1934.80 3603.84 3094.52
nB = 100 −168.17 708.37 1244.94 367.05 1113.81 1801.46 413.72 1325.61 1396.90 1939.26 3606.19 3095.18

Green cells represent the MBE values obtained from the bootstrap series for the first data set lower (in absolute
values) than those obtained from the original series. Bold values represent the lowest value in a column of each
bagging method with green cells.

Table 8. MBEs of h-step ahead forecast for the second data set obtained by SARIMA, NNAR, TBATS,
and DSHW models.

SARIMA NNAR TBATS DSHW

h 12 24 36 12 24 36 12 24 36 12 24 36

original 287.06 −228.44 −591.45 2319.17 1146.12 2903.47 −1266.71 −2379.66 −1457.27 −1178.78 −805.60 −534.08

Bagging + Mean

KM.N
nB = 25 616.40 −3.69 −389.82 1733.21 472.40 1818.49 −1191.85 −2641.61 −1815.55 −1496.71 −1538.48 −935.39
nB = 50 568.38 −38.61 −582.74 1784.60 530.70 1375.18 −1071.33 −2541.56 −431.21 −1568.82 −1638.40 10.61
nB = 75 566.62 −40.03 −423.90 1729.60 476.55 1807.17 −1041.47 −2524.44 −1688.93 −1591.59 −1687.65 −1044.28

nB = 100 559.38 −43.89 −428.30 1744.63 493.21 1827.51 −1009.37 −2480.44 −1640.25 −1592.14 −1679.05 −1047.71
SSA. KM.N

nB = 25 291.41 −224.24 −571.59 1672.25 481.19 2374.84 −97.56 −869.941 −314.26 −1783.46 −2256.37 −1713.42
nB = 50 283.98 −225.54 −606.41 1728.23 557.90 1976.58 −149.71 −914.66 −18.19 −1952.89 −2375.25 −335.45
nB = 75 283.69 −226.25 −574.95 1708.84 537.57 2457.88 −125.375 −832.99 −348.08 −1943.21 −2389.85 −1849.06

nB = 100 285.39 −222.95 −571.83 1695.97 518.81 2448.55 −209.48 −940.32 −418.47 −1931.83 −2363.00 −1804.90
Bagging + Median

KM.N
nB = 25 653.55 10.43 −376.27 1730.47 422.54 1737.09 −1138.90 −2723.60 −1888.97 −1529.41 −1578.47 −957.24
nB = 50 600.71 −16.70 −403.8 1811.03 532.83 1586.62 −1102.34 −2699.53 −1860.87 −1591.57 −1636.36 −995.47
nB = 75 604.67 −19.03 −405.87 1751.48 487.22 1788.34 −1095.80 −2690.14 −1849.37 −1600.02 −1674.19 −1024.61

nB = 100 578.09 −35.40 −419.54 1763.27 504.38 1817.09 −1083.54 −2654.90 −1816.41 −1609.89 −1663.54 −1023.59
SSA.KM.N

nB = 25 289.37 −221.65 −571.52 1652.67 470.11 2375.43 −3.50 −755.85 −200.04 −1746.97 −2341.34 −1867.79
nB = 50 285.59 −223.41 −574.00 1668.23 499.54 2419.34 −227.46 −1074.75 −432.69 −1977.57 −2334.53 −1784.67
nB = 75 283.23 −224.74 −575.07 1694.84 517.58 2458.64 −267.19 −1001.17 −421.91 −1921.88 −2271.71 −1797.42

nB = 100 284.76 −221.12 −571.49 1690.07 514.03 2440.18 −350.40 −1103.52 −506.35 −1925.08 −2246.15 −1737.53

Green cells represent the MBE values obtained from the bootstrap series for the first data set lower (in absolute
values) than those obtained from the original series. Bold values represent the lowest value in a column of each
bagging method with green cells.
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Figure 5. The hourly electricity load of Poland between 26 October and 16 December 2020.

Table 9. RMSEs of h-step ahead forecast for the hourly electricity load of Poland obtained by SARIMA,
NNAR, TBATS, and DSHW models.

SARIMA NNAR TBATS DSHW

h 12 24 36 12 24 36 12 24 36 12 24 36

Original 2120.28 2436.07 2540.46 107.18 308.45 382.81 259.27 437.82 466.29 351.51 289.03 284.54

Bagging + Mean

KM.N
nB = 10 298.01 254.32 229.17 133.53 343.25 416.31 309.15 456.14 468.23 323.29 258.16 254.41
nB = 20 276.62 237.69 220.48 135.79 319.32 390.97 307.57 457.72 467.18 326.77 255.35 255.16
nB = 25 266.20 231,54 218.07 132.76 305.93 371.25 308.52 459.61 469.26 305.33 240.89 240.29
nB = 50 300.58 257.61 230.87 146.32 316.44 383.40 304.79 455.58 467.42 318.51 246.98 243.43

SSA. KM.N
nB = 10 361.10 304.85 256.78 130.42 254.16 290.95 291.24 433.47 441.28 365.75 298.55 291.71
nB = 20 356.84 302.42 254.80 128.66 228.89 262.25 296.73 439.51 444.58 369.77 298.33 291.90
nB = 25 353.73 299.78 252.83 132.14 234.19 268.70 296.91 442.01 447.02 370.41 300.02 291.14
nB = 50 353.14 299.24 252.50 131.97 231.66 267.86 299.30 435.43 437.14 374.79 300.84 290.49

Bagging + Median

KM.N
nB = 10 323.16 270.39 243.86 127.12 330.51 401.92 319.28 463.28 470.74 324.95 261.77 253.61
nB = 20 287.77 243.37 222.76 135.81 312.82 385.15 312.11 461.49 470.19 330.34 257.77 256.02
nB = 25 265.14 227.19 213.62 136.70 298.21 370.86 312.14 461.90 470.74 316.96 249.81 245.81
nB = 50 302.26 257.68 228.44 150.87 313.86 381.42 310.11 460.61 470.76 336.98 261.51 257.76

SSA.KM.N
nB = 10 364.58 306.80 258.27 137.93 286.20 326.78 296.29 448.13 448.54 366.90 303.00 297.67
nB = 20 362.98 307.99 259.25 132.48 245.93 287.50 297.94 449.62 451.81 376.13 303.83 298.76
nB = 25 364.04 308.75 260.17 137.58 247.58 284.35 300.09 453.73 456.32 373.93 304.04 295.95
nB = 50 306.64 258.38 1.44 133.83 232.00 267.26 299.78 450.28 450.92 378.22 305.12 294.39

Green cells represent the RMSE values obtained from the bootstrap series for the Polish data set lower than those
obtained from the original series.
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Table 10. MAPEs of h-step ahead forecast for the hourly electricity load of Poland obtained by
SARIMA, NNAR, TBATS, and DSHW models.

SARIMA NNAR TBATS DSHW

h 12 24 36 12 24 36 12 24 36 12 24 36

original 7.09 9.99 10.20 0.36 0.84 1.19 1.01 1.52 1.59 1.34 1.13 1.11

Bagging + Mean

KM.N
nB = 10 1.14 0.99 0.86 0.42 0.98 1.29 1.15 1.89 1.84 1.23 0.98 0.97
nB = 20 1.02 0.90 0.82 0.43 0.91 1.21 1.13 1.89 1.84 1.19 0.91 0.93
nB = 25 0.97 0.88 0.81 0.41 0.86 1.40 1.13 1.90 1.85 1.13 0.87 0.89
nB = 50 1.12 0.99 0.86 0.48 0.92 1.20 1.14 1.88 1.84 1.14 0.86 0.87

SSA. KM.N
nB = 10 1.44 1.22 0.86 0.42 0.75 0.91 1.10 1.76 1.71 1.37 1.16 1.13
nB = 20 1.42 1.21 0.86 0.42 0.69 0.83 1.10 1.80 1.73 1.38 1.15 1.12
nB = 25 1.41 1.21 0.86 0.43 0.71 0.84 1.10 1.81 1.75 1.38 1.16 1.12
nB = 50 1.41 1.20 0.86 0.43 0.70 0.84 1.10 1.79 1.71 1.39 1.15 1.11

Bagging + Median

KM.N
nB = 10 1.22 1.05 0.91 0.39 0.93 1.24 1.18 1.93 1.87 1.22 1.01 0.98
nB = 20 1.06 0.92 0.83 0.411 0.90 1.20 1.15 1.91 1.86 1.18 0.90 0.92
nB = 25 0.96 0.86 0.79 0.41 0.84 1.14 1.15 1.91 1.86 1.14 0.89 0.90
nB = 50 1.12 0.98 0.84 0.49 0.93 1.20 1.16 1.91 1.86 1.20 0.91 0.92

SSA.KM.N
nB = 10 1.45 1.23 0.96 0.46 0.83 1.01 1.10 1.84 1.75 1.38 1.19 1.17
nB = 20 1.44 1.24 0.96 0.44 0.74 0.90 1.09 1.85 1.77 1.40 1.17 1.15
nB = 25 1.45 1.24 0.97 0.46 0.74 0.89 1.09 1.87 1.79 1.39 1.17 1.14
nB = 50 1.44 1.22 0.86 0.44 0.70 0.84 1.09 1.85 1.76 1.40 1.18 1.13

Green cells represent the MAPE values obtained from the bootstrap series for the Polish data set lower than those
obtained from the original series.

Table 11. MBEs of h-step ahead forecast for the hourly electricity load of Poland obtained by SARIMA,
NNAR, TBATS, and DSHW models.

SARIMA NNAR TBATS DSHW

h 12 24 36 12 24 36 12 24 36 12 24 36

original 1561.97 411.79 962.12 86.73 198.18 286.42 −117.26 79.96 170.71 135.94 0.51 40.35

Bagging + Mean

KM.N
nB = 10 273.31 174.83 76.82 104.49 227.21 309.50 −120.87 −39.71 66.39 154.18 44.32 67.89
nB = 20 244.56 147.74 53.40 104.45 211.54 289.94 −129.99 −49.57 53.46 187.92 84.30 107.71
nB = 25 232.10 136.46 42.70 97.04 198.57 270.37 −132.55 −51.01 53.80 168.66 72.60 95.20
nB = 50 268.19 174.37 81.24 118.23 215.67 287.11 −118.26 −35.53 66.27 195.48 92.75 110.85

SSA. KM.N
nB = 10 344.43 247.28 163.03 99.88 163.18 202.15 −150.01 −41.64 45.34 171.18 15.69 58.17
nB = 20 340.06 234.96 158.87 101.06 147.35 178.70 −150.37 −52.88 33.91 178.98 23.50 65.33
nB = 25 337.43 241.26 155.77 105.18 152.51 183.96 −147.70 −54.21 33.98 179.56 23.77 63.67
nB = 50 336.97 240.48 154.86 104.43 150.84 183.92 −156.03 −64.71 16.50 189.36 25.20 65.02

Bagging + Median

KM.N
nB = 10 290.28 194.92 91.57 92.97 214.79 −288.01 −136.15 −61.41 47.86 140.73 33.83 50.60
nB = 20 253.80 158.19 66.38 100.62 207.48 −228.01 −131.90 −56.81 48.96 195.85 91.18 109.55
nB = 25 231.23 138.56 14.34 97.07 193.80 −228.01 −129.80 −53.97 50.75 180.31 76.99 96.29
nB = 50 267.03 173.02 85.13 121.50 216.16 −228.01 −120.45 −44.30 59.69 206.92 101.26 120.60

SSA.KM.N
nB = 10 347.60 248.26 162.68 111.64 189.09 231.51 −146.64 −61.85 28.45 154.73 −3.77 45.28
nB = 20 346.04 249.75 164.58 107.36 160.93 201.89 −145.21 −62.12 30.76 174.09 15.25 61.85
nB = 25 347.75 250.10 166.04 112.56 162.74 198.52 −147.18 −67.27 27.96 173.74 18.04 59.33
nB = 50 345.41 248.56 162.74 106.97 151.23 182.94 −151.43 −72.11 18.52 187.02 19.27 61.72

Green cells represent the MBE values obtained from the bootstrap series for the Polish data set lower (in absolute
values) than those obtained from the original series.
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Figure 6. The hourly electricity load of Indonesia between 1 October and 30 November 2015.

Table 12. RMSE of h-step ahead forecast for the hourly electricity load of Indonesia obtained by
SARIMA, NNAR, TBATS, and DSHW models.

SARIMA NNAR TBATS DSHW

h 12 24 36 12 24 36 12 24 36 12 24 36

original 1236.72 2440.28 3119.10 193.12 216.95 234.57 611.23 702.52 609.34 167.51 265.62 351.18

Bagging + Mean

KM.N
nB = 10 140.46 148.61 182.96 192.32 200.15 211.26 581.86 681.02 593.49 138.18 231.80 339.36
nB = 20 137.65 148.79 182.42 201.59 201.79 207.81 581.67 678.01 592.20 137.31 224.45 318.91
nB = 25 136.02 149.93 184.64 197.91 198.36 204.31 581.49 677.87 591.87 139.20 227.65 327.53
nB = 50 136.02 149.93 184.64 194.08 200.23 208.27 580.00 677.27 590.68 147.81 245.81 362.49

SSA. KM.N
nB = 10 181.30 178.87 194.99 136.43 177.76 208.49 605.75 704.10 608.36 170.08 270.61 364.78
nB = 20 186.56 184.79 199.14 135.42 177.59 208.45 600.50 700.37 605.79 167.54 277.51 385.43
nB = 25 185.58 183.79 198.45 134.86 178.64 209.78 597.76 698.29 604.43 167.74 277.13 383.10
nB = 50 193.68 189.13 201.59 146.47 184.91 213.14 602.30 699.76 605.76 150.49 260.36 370.83

Bagging + Median

KM.N
nB = 10 139.51 144.76 183.00 190.81 199.99 210.46 581.67 680.87 593.92 153.44 245.70 352.49
nB = 20 138.10 146.75 183.39 198.30 200.90 205.40 581.72 680.30 593.77 162.20 247.44 344.32
nB = 25 139.17 150.71 187.80 195.26 196.90 202.43 584.21 681.03 594.27 160.89 242.23 344.98
nB = 50 136.72 146.71 184.83 192.91 199.18 206.05 585.00 682.61 595.21 161.88 258.46 372.81

SSA.KM.N
nB = 10 180.44 178.15 194.23 135.73 174.27 206.11 605.40 700.65 606.85 166.57 268.12 358.32
nB = 20 187.25 184.52 198.52 132.52 176.76 207.01 604.35 700.16 606.58 168.90 267.43 360.99
nB = 25 186.72 183.84 198.25 135.54 178.50 208.79 598.77 696.99 604.16 168.29 268.13 366.47
nB = 50 193.01 188.59 200.85 149.27 186.48 213.25 607.15 701.46 607.49 155.88 258.63 359.15

Green cells represent the RMSE values obtained from the bootstrap series for the Indonesian data set lower than
those obtained from the original series.

Table 13 shows that SSA.KM.N produces lower MAPE than KM.N for the NNAR
model. Compared with that obtained from the original data, the MAPE of the NNAR model
was able to be reduced by up to 31.38%, 24.27%, and 17% for 12, 24, and 36 steps ahead
of forecast values, respectively. Meanwhile, KM.N failed to lower the MAPE value for
12 steps-ahead, and it only declined approximately 8.74% and 11% for 24 and 36 steps-ahead
forecast values, respectively.

In addition, for the NNAR model, MBE presented in Table 14 shows the application
of the SSA.KM.Ns bagging method provides less bias for 12 and 24 steps-ahead forecast
values than without bagging. However, this does not apply to KM.N.

Based on the experimental findings of the four data sets, bagging implementation
can work well to improve the forecasting accuracy of the SARIMA and NNAR models.
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However, the TBATS and DSHW did not yield the same behavior. The success of this
implementation is thought to be influenced by the uncertainty of the models. In this
experimental study, we found that some bootstrapped series failed to be modeled by
TBATS and DSHW, affecting the final forecast results calculated based on the mean and
median across all the forecast values.

Table 13. MAPE of h-step ahead forecast for the hourly electricity load of Indonesia obtained by
SARIMA, NNAR, TBATS, and DSHW models.

SARIMA NNAR TBATS DSHW

h 12 24 36 12 24 36 12 24 36 12 24 36

original 5.83 10.87 13.45 0.95 1.03 1.00 2.78 3.25 2.59 0.77 1.10 1.40

Bagging + Mean

KM.N
nB = 10 0.67 0.70 0.76 0.96 0.96 0.92 2.67 3.15 2.53 0.64 0.92 1.29
nB = 20 0.65 0.71 0.76 1.01 0.98 0.92 2.66 3.15 2.53 0.61 0.90 1.22
nB = 25 0.63 0.71 0.77 0.99 0.96 0.91 2.66 3.14 2.53 0.63 0.91 1.25
nB = 50 0.63 0.71 0.77 0.97 0.96 0.91 2.65 3.14 2.53 0.68 0.96 1.37

SSA. KM.N
nB = 10 0.87 0.86 0.85 0.66 0.78 0.84 2.76 3.24 2.58 0.79 1.13 1.45
nB = 20 0.91 0.90 0.88 0.66 0.78 0.83 2.73 3.23 2.57 0.78 1.12 1.51
nB = 25 0.90 0.89 0.88 0.66 0.78 0.84 2.71 3.22 2.56 0.79 1.12 1.50
nB = 50 0.94 0.92 0.89 0.73 0.83 0.87 2.73 3.22 2.57 0.68 1.03 1.43

Bagging + Median

KM.N
nB = 10 0.67 0.69 0.75 0.95 0.96 0.92 2.66 3.15 2.54 0.71 0.98 1.35
nB = 20 0.65 0.70 0.76 0.99 0.97 0.91 2.66 3.26 2.54 0.75 1.00 1.33
nB = 25 0.66 0.72 0.78 0.97 0.94 0.89 2.68 3.16 2.54 0.74 0.97 1.32
nB = 50 0.65 0.71 0.76 0.96 0.95 0.90 2.68 3.17 2.55 0.76 1.02 1.43

SSA.KM.N
nB = 10 0.87 0.86 0.85 0.67 0.78 0.83 2.73 3.24 2.58 0.77 1.12 1.43
nB = 20 0.91 0.90 0.88 0.65 0.78 0.83 2.75 3.23 2.58 0.76 1.11 1.43
nB = 25 0.90 0.89 0.87 0.67 0.79 0.84 2.72 3.22 2.57 0.77 1.10 1.44
nB = 50 0.95 0.89 0.92 0.75 0.84 0.88 2.76 3.23 2.58 0.70 1.06 1.41

Green cells represent the MAPE values obtained from the bootstrap series for the Indonesian data set lower than
those obtained from the original series.

Table 14. MBE of h-step ahead forecast for the hourly electricity load of Indonesia obtained by
SARIMA, NNAR, TBATS, and DSHW models.

SARIMA NNAR TBATS DSHW

h 12 24 36 12 24 36 12 24 36 12 24 36

original 760.77 1914.50 2658.76 −171.70 −73.39 −7.27 −247.66 −394.84 −210.28 13.77 53.09 184.57

Bagging + Mean

KM.N
nB = 10 −110.53 −107.27 −74.87 −176.59 −90.30 −17.23 −196.70 −361.33 −186.34 30.98 63.46 194.51
nB = 20 −107.48 −109.13 −77.58 −185.87 −104.32 −29.48 −192.40 −354.91 −178.92 14.41 46.96 170.86
nB = 25 −104.71 −110.04 −79.76 −181.50 −104.71 −30.37 −192.71 −355.37 −179.71 25.91 58.99 184.20
nB = 50 −104.71 −110.04 −79.76 −176.85 −99.07 −24.80 −199.37 −358.92 −184.30 52.43 89.04 224.39

SSA. KM.N
nB = 10 −157.22 −147.24 −104.51 −121.14 −33.90 26.25 −242.95 −399.82 −220.51 9.29 53.06 193.08
nB = 20 −163.43 −154.65 −111.92 −120.07 −32.97 27.19 −237.07 −394.13 −214.88 12.78 68.00 216.31
nB = 25 −162.16 −153.24 −110.25 −119.85 −32.31 28.96 −232.08 −390.43 −211.79 14.10 68.99 215.21
nB = 50 −170.78 −158.66 −113.53 −133.25 −41.03 22.80 −241.80 −395.38 −215.15 8.55 60.63 206.89

Bagging + Median

KM.N
nB = 10 −109.90 −105.26 −73.05 −174.03 −91.36 −18.07 −197.11 −361.31 −185.10 36.11 72.84 204.91
nB = 20 −109.00 −107.40 −75.75 −182.41 −105.51 −31.60 −196.47 −359.60 −182.80 29.83 62.95 191.74
nB = 25 −108.90 −111.56 −80.54 −177.65 −105.33 −31.90 −199.31 −360.76 −183.54 32.22 71.68 199.89
nB = 50 −105.43 −105.82 −73.99 −174.42 −100.32 −26.06 −203.93 −364.34 −187.13 57.59 99.10 234.13

SSA.KM.N
nB = 10 −156.02 −146.64 −104.14 −119.95 −35.59 25.79 −239.17 −392.13 −211.83 5.88 46.37 185.00
nB = 20 −164.52 −153.32 −109.83 −118.08 −32.99 27.89 −239.19 −391.83 −211.09 −1.97 46.70 186.84
nB = 25 −162.60 −152.57 −109.06 −121.50 −34.02 28.08 −231.34 −387.20 −207.83 1.60 52.27 193.65
nB = 50 −171.08 −158.53 −113.30 −136.04 −42.54 21.33 −242.47 −393.92 −212.83 4.19 48.66 190.21

Green cells represent the MBE values obtained from the bootstrap series for the Indonesian data set lower (in
absolute values) than those obtained from the original series.

The number of bootstrap series does not seem to affect the forecasting accuracy
calculated by the mean and median ensemble. In some cases, the SSA.KM.N was able to
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improve the multistep-ahead forecasting accuracy, but in other cases, the KM.N provided
better results.

In this case, the selection of the model is an important step to be considered. The
application of bagging with the right forecasting model will increase the accuracy of multi-
step ahead forecast values. Further development of the hybrid model, i.e., FFORMA [55]
and exponential smoothing-neural network [56] or other combinations depending on the
pattern of the data, can be considered to help overcome the uncertainty of the models [30].

4. Conclusions

In this study, we evaluated the impact and benefit of applying the existing KM.N
and our proposed clustering-based bootstrap method, SSA.KM.N, in overcoming the
uncertainty in time series multistep-ahead point forecasts. We focused on time series with
a trend, seasonal, and affected by calendar variation and considered two Malaysian, one
Polish, and one Indonesian electricity load time series as illustrative examples.

KM.N is considered an appropriate method for bootstrapping data with complex
seasonal patterns, such as electrical load data. In the proposed method, we combined SSA
and KM.N with the hope of producing bootstrap values that are more similar to the original
data. We considered the SSA method to decompose the load series into signal and noise. By
SSA, the observed values influenced by the calendar variation appear more clearly in the
noise component than in the original data. Bootstrapping this residual value and adding it
to the signal will result in the bootstrap series values around the original data.

Furthermore, we applied the following four models, usually used as benchmark
models in forecasting electricity load time series: SARIMA, NNAR, TBATS, and DSHW.
These four models are applied to all bootstrapped series to obtain up to 36-steps ahead
of forecast values. The final forecast at time t is obtained by the following two ensemble
methods: the mean and the median across all forecast values at time t. Based on the
experimental results, we note that the number of bootstrapped series does not seem to
affect the forecasting accuracy calculated by the mean and the median ensemble. We
also found that the model suitable for the original series is not necessarily good for all
bootstrapped series. We note that the accuracy of multiple-step-ahead forecasting values
can be improved when the model, with different parameters, is appropriate for both the
original and bootstrap data. Thus, combining several models and ensemble learning
methods can be the direction of future research.
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Abbreviations

Abbreviation Definition

DSHW Double Seasonal Holt-Winters
KM K-means Clustering-Based
KM.N K-means Clustering-Based Generated from Gaussian Normal Distribution
MAPE Mean Absolute Percentage Error
MBE Mean Bias Error
MBB Moving Block Bootstrap
NN Neural Network
NNAR Neural Network Autoregressive
RMSE Root Mean Square Error
SARIMA Seasonal Autoregressive Integrated Moving Average
S.MBB Smoothed Moving Block Bootstrap
SSA Singular Spectrum Analysis

SSA.KM.N
Singular Spectrum Analysis, K-means Clustering-Based Generated from Gaussian
Normal Distribution

STL Seasonal and Trend decomposition using Loess
SVD Singular Value Decomposition
TBATS Trigonometric, Box–Cox transform, ARMA errors, Trend, and Seasonal Components
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Abstract: The paper conducts a literature review of applications of autoregressive methods to short-
term forecasting of power demand. This need is dictated by the advancement of modern forecasting
methods and their achievement in good forecasting efficiency in particular. The annual effectiveness
of forecasting power demand for the Polish National Power Grid for the next day is approx. 1%;
therefore, the main objective of the review is to verify whether it is possible to improve efficiency while
maintaining the minimum financial outlays and time-consuming efforts. The methods that fulfil these
conditions are autoregressive methods; therefore, the paper focuses on autoregressive methods, which
are less time-consuming and, as a result, cheaper in development and applications. The prepared
review ranks the forecasting models in terms of the forecasting effectiveness achieved in the literature
on the subject, which enables the selection of models that may improve the currently achieved
effectiveness of the transmission system operator. Due to the applied approach, a transparent set
of forecasting methods and models was obtained, in addition to knowledge about their potential
in the context of the needs for short-term forecasting of electricity demand in the national power
system. The articles in which the MAPE error was used to assess the quality of short-term forecasts
were analyzed. The investigation included 47 articles, several dozen forecasting methods, and
264 forecasting models. The articles date from 1997 and, apart from the autoregressive methods, also
include the methods and models that use explanatory variables (non-autoregressive ones). The input
data used come from the period 1998–2014. The analysis included 25 power systems located on four
continents (Asia, Europe, North America, and Australia) that were published by 44 different research
teams. The results of the review show that in the autoregressive methods applied to forecasting
short-term power demand, there is a potential to improve forecasting effectiveness in power systems.
The most promising prognostic models using the autoregressive approach, based on the review,
include Fuzzy Logic, Artificial Neural Networks, Wavelet Artificial Neural Networks, Adaptive
Neurofuse Inference Systems, Genetic Algorithms, Fuzzy Regression, and Data Envelope Analysis.
These methods make it possible to achieve the efficiency of short-term forecasting of electricity
demand with hourly resolution at the level below 1%, which confirms the assumption made by the
authors about the potential of autoregressive methods. Other forecasting models, the effectiveness
of which is high, may also prove useful in forecasting by electricity system operators. The paper
also discusses the classical methods of Artificial Intelligence, Data Mining, Big Data, and the state
of research in short-term power demand forecasting in power systems using autoregressive and
non-autoregressive methods and models.

Keywords: short-term forecasting; electrical power demand; power systems; autoregressive forecasting
methods; classical forecasting methods; artificial intelligence methods; Big Data; machine learning;
Data Mining
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1. Introduction

1.1. Overview

The economic development of countries is inextricably linked with the functioning
of their power systems. Due to the development of power grids and the growing access
to them, electricity is now indispensable for the proper functioning of the economy and
the population, and the demand for it is systematically growing. Rising electricity prices
in recent years and their fluctuations, in addition to insufficient development of the man-
ufacturing sector, make it difficult to optimally meet the growing demand for electricity.
Unfortunately, storage of electricity on a large scale and in the long term is a complex and
very expensive issue. Thus, at any time in the operation of power systems, it is necessary to
maintain a balance between the generation of electricity and its consumption, taking into
account the technical limitations of electricity networks, in order to maintain continuity and
security of power and electricity supplies while maintaining the optimal operating costs of
the power system. In this context, forecasting the load of power systems is an essential ele-
ment of planning their work in the short, medium, and long term, and is one of the greatest
challenges faced by the power industry in every country. Electricity demand forecasting
is a basic element of planning electricity generation, participation in electricity markets,
and the development of the power grid. Short-term forecasting of the power system load,
performed, inter alia, by operators of power systems, requires ensuring the highest possible
accuracy for each hour of the day while maintaining the lowest computational cost at an
appropriate time. Forecasting the load on systems with the use of prognostic models using
explanatory variables is costly and time-consuming, in contrast to autoregressive methods
which use only information about the earlier development of the analyzed parameter in
the forecasting process. Thus, along with the observed trend indicating the reduction in
forecast horizons from hours to minutes, and even seconds, it is necessary to search for
cheap and quick forecasting methods that will allow the current forecasting effectiveness
to be maintained at lower costs of their development and with a comparable or shorter
development time.

1.2. Literature Survey

In short-term electrical power demand forecasting, both autoregressive methods using
the properties of moving averages and exponential smoothing, and methods using machine
learning [1–6]. Support Vector Machines and Particle Swarms, and artificial intelligence [7],
including Artificial Neural Networks, have been used for years. Many research centers
worldwide have developed more accurate forecasting methods and models, especially
for short-term forecasting. Several teams have conducted research at the academic level,
perfecting the methods and models they have developed. For the conducted analyses and
simulations, usually, STATISTICA®, SAS/ETS, and SPSS environments [8], GRETL [9,10],
and the R and Python programming languages are used, among others.

The demand for electrical power is characterized by large fluctuations [11]. In this case,
the key factors exhibit daily, weekly, annual, and multi-year variability [12]. Moreover, the
seasonal variability (which results in annual variability), quarterly variability (seasons), and
monthly variability (part of the seasons) are distinguished. Continuity of power demand
and the still “insufficient” (in the sense of high power/capacity) development of energy
storage results in the inability to store it in large quantities, which makes it necessary to
cover the demand for power at the time of the occurrence of this demand [13].

Other factors, apart from the passage of time (consecutive days, weeks, etc.), that
influence the variability in the power system load [14,15] are the variability in weather
conditions and the resulting variability in the ambient temperature, in addition to the
transition from winter to summer time [16,17] and from summer to winter time (introduced
to flatten the evening peak of power demand in the summer half of the year) [12]). Other
weather factors influencing the level of demand in the power system include, among others,
cloudiness, air humidity, and wind speed [12]. The ambient temperature significantly
affects the load in the power system. The change in weather conditions directly impacts
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consumer behavior (municipal and industrial), consisting of increasing power consumption
from lighting and heating devices (convector heating and electric heating).

1.3. Motivation and Incitement

Individual areas of the Polish Power System have a different share in shaping the do-
mestic demand for electrical power. Naturally, areas with significant industrialization and,
therefore, a significant population in Poland, translate into greater demand for electrical
power (and, consequently, electrical power consumption), and thus, to a greater extent,
changes in the weather (atmospheric conditions) affect these areas. The yearly demand
forecasting error for the Polish National Power System is approximately 1%, which shows
a high level of accuracy; thus, there is a need to search for the potential in well-known
methods and models, including autoregressive models, to reduce the error below this level.
In this context, this paper aims to review auto-regressive methods applied to short-term
power demand forecasting in power systems.

1.4. Research Gaps

The conducted review of articles describing the methods and forecasting models used
in short-term forecasting of electric power demand shows a great variety. Autoregressive
methods are still an attractive and effective tool for forecasting. Their unquestionable
advantage is low financial outlay and quickly obtaining forecast results. The current obser-
vation of scientific reports in the form of literature reviews is time-consuming. Therefore, it
is important to develop rankings of forecasting models, taking into account their forecasting
effectiveness. While preparing this review, the authors identified a gap in presenting the
results of valuable research in this aspect, and thus attempted to develop such a ranking.
The Mean Average Percentage Error was adopted as a measure for assessing the quality of
forecasts developed with autoregressive methods. From the prepared ranking of 264 au-
toregressive models, a set of Top 10 models was distinguished, which can be a significant
aid for researchers and scientists dealing with short-term forecasting of electricity demand
in power systems.

1.5. Major Contributions

The main contribution of the authors is to present an overview of methods in the
field of artificial intelligence, Data Mining (now often associated with Big Data issues),
and Big Data. In addition, the state of research in short-term power demand forecasting
for power systems using autoregressive and non-autoregressive methods and models is
presented, along with a detailed table that describes the results of the review of 47 articles
describing 264 forecasting models (Table 1, where MAPE is an ex post, and MAPE(ea)
is an ex ante approach). Additionally, the authors present a new way to develop litera-
ture reviews in the context of selecting the most prospective prognostic models. In the
proposed new approach (explained in the flowchart—Figure 1), ranking of forecasting
models (Tables 2 and 3 and Figure 2) was used due to the selected measure of forecast qual-
ity (Mean Average Percentage Error). The applied new approach to the development of
the results of literature reviews is an excellent source of knowledge for scientists, experts,
and analysts, supporting the preparation of forecasts for power system operators, with
particular emphasis on transmission system operators.
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Table 1. The publications’ preview results in short-term power demand forecasting methods and
models used for power systems.

N
o

.

Authors/Title/Publishing House
Year

Analysis
Scope

Country Method, Model Effectiveness
Model

No.

- Years - - Error, % -

1.

Al-Fuhaid A.S. et al.
Neuro-Short-Term Load Forecast of the Power
System
in Kuwait
Elsevier (21:215-219) [18]

1997 1994 Kuwait ANN(ea)—Artificial neural
network MAPE(ea) 1.84 4.84 1

2.

Almeshaiei E., Soltan H.
A Methodology for Electric Power Load
Forecasting
Alexandria Engineering Journal (50) [19]

2011 2006–2008 Kuwait MA(ea7,30)—Moving
Average (7, 30) MAPE(ea) 3.84 2

3.

Al-Shobaki S., Mohsen M.
Modeling and Forecasting of Electrical Power
Demands
for Capacity Planning
Elsevier Energy Conversion and Management
(49) [20]

2008 2002–2007 Jordan ARIMA(ea) MAPE(ea) 5.25 3

4.
Badran S.M., Abouelatta O.B.
Forecasting Electrical Load using ANN Combined
with Multiple Regression Method
The Research Bulletin of Jordan ACM II(II)
[21]

2013 1988–2006 Saudi
Arabia

MR—Multiple Regression MAPE 11.58 14.35 4

ANN—Multiple Regression MAPE 2.44 8.04 5

5.

Brodowski S. et al.
A Hybrid System for Forecasting 24-h Power Load
Profile
for Polish Electric Grid
Elsevier B.V. Applied Soft Computing (58) [22]

2017 2013, 2015 Poland
(NPS)

HA + MR—Hierarchical
Approximator + Multiple
Regression

MAPE 1.08 2.26 6

6.

Buitrago J., Asfour S.
Short-Term Forecasting of Electric Loads Using
Nonlinear Autoregressive Artificial Neural
Networks with Exogenous Vector Inputs
Energies 10(40) [23]

2017 2005–2015
USA
(New

England)

ANN—Artificial Neural
Network MAPE 0.85 7

7.

Ceperic E., Ceperic V.
A Strategy for Short-Term Load Forecasting by
Support Vector Regression Machines
IEEE Transactions on Power Systems (1) [24]

2013 2006 USA

ANN—Artificial Neural
Network MAPE 1.50 3.72 8

SDBWNN—Similar
Day—Based Wavelet Neural
Network

MAPE 1.26 2.70 9

SASVR—Seasonality—
Adjusted, Support Vector
Regression

MAPE 0.93 1.86 10

8.

Chahkoutahi F., Khashei M.
A Seasonal Direct Optimal Hybrid Model of
Computational Intelligence and Soft Computing
Techniques for Electricity Load Forecasting
Energy (140) [25]

2017 2011.05.02–
2011.07.03 Australia

ARIMA MAPE 0.76 1.07 11

ANN(MLP)—Artificial
Neural Network
(Multilayer Perceptron)

MAPE 0.72 1.23 12

ANFIS—Adaptive Neuro
Fuzzy Inference System MAPE 0.83 0.95 13

DOPH—Direct Optimum
Parallel Hybrid MAPE 0.58 0.71 14

9.
Chapagain K., Kittipiyakul S.
Short-Term Electricity Load Forecasting Model
and Bayesian Estimation for Thailand Data
MATEC Web of Conferences (55) [26]

2016 2013–2015 Thailand
MR—Multiple Regression MAPE 1.75 33.45 15

MR(Gibbs)—Multiple
Regression (Gibbs Sampling) MAPE 0.85 23.06 16

10.

Chen H. et al.
ANN-Based Short-Term Load Forecasting in
Electricity Markets
University of Waterloo, Department of
Electrical & Computer Engineering [27]

2001 1999 Canada ANN—Artificial Neural
Network MAPE 0.48 3.00 17

11.

Chheepa T.K., Manglani T.
A Critical Review on Employed Techniques for
Short Term Load Forecasting
IRJET 04(06) [28]

2017 1996–1997,
2000 Iran ARIMA MAPE 1.48 1.99 18

12.

Clements A.A. et al.
Forecasting Day-Ahead Electricity Load Using a
Multiple Equation Time Series Approach
NCER Working Paper Series 103(5) [29]

2015 1999.07.12–
2013.11.27 Australia ARIMA MAPE 1.36 2.89 19
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13.

Czapaj R.
Typowanie zmiennych objaśniających przy
wykorzystaniu zautomatyzowanych metod
statystycznych jako sposób optymalizacji wyboru
metody estymacji szczytowego dobowego
obciążenia KSE
Przegląd Elektrotechniczny 4(93) [30]

2016 2010–2014
Poland
(NPS)

MARSplines MAPE 1.86 6.99 20

C&RT—Classification and
Regression Trees MAPE 2.57 7.18 21

C&RT—Classification and
Regression Trees MAPE 2.56 6.77 22

Chi2—Automatic
interaction detector using
Chi2

MAPE 4.06 7.33 23

CHAID—Chi2 Automatic
Interaction Detector MAPE 3.69 9.40 24

14.

Czapaj R., Kamiński J., Benalcazar P.
Dobór zmiennych objaśniających z
wykorzystaniem metody MARSplines
Politechnika Częstochowska, XIV Konferencja
PE [31]

2018 2009–2014 Poland
(NPS) MARSplines MAPE 1.86 6.99 25

15.
Czapaj R., Kamiński J., Benalcazar P.
Prognozowanie krótkoterminowe z
wykorzystaniem metody MARSplines
Politechnika Częstochowska, XIV Konferencja
PE [32]

2018 2009–2014
Poland
(NPS)

MARSplines MAPE 3.36 6.04 26

MARSplines(ea) MAPE(ea) 6.57 27

16.

Dąsal K.
Dobór zmiennych wejściowych do Modelu
Rozkładu Kanonicznego
Politechnika Częstochowska, VI Konferencja
PE [33]

2002 1993–1995 Poland
(NPS)

MRK(Mo-Fr)
—Canonical Vector
Decomposition Method from
Monday till Friday

MAPE(Mo-
Fr) 0.64 9.79 28

17.

Dudek G.
Short-Term Load Forecasting Based on Kernel
Conditional Density Estimation
Przegląd Elektrotechniczny 8(86) [34]

2010

2002–2006

Poland
(NPS)

SFS(5 years)—Sequential
Forward Selection Methods MAPE 1.84 29

SBS(5 years)—Sequential
Backward Selection Methods MAPE 1.77 30

NS(5 years)—Nearest
Neighbors MAPE 1.94 31

ANN(5 years)—Artificial
Neural Network MAPE 2.02 32

FE(5 years)—Fuzzy
Estimators MAPE 1.76 33

1997–2000

SFS(4 years)—Sequential
Forward Selection Methods MAPE 2.19 34

SBS(4 years)—Sequential
Backward Selection Methods MAPE 2.06 35

NS(4 years)—Nearest
Neighbors MAPE 2.55 36

ANN(4 years)—Artificial
Neural Network MAPE 2.24 37

FE(4 years)—Fuzzy
Estimators MAPE 2.14 38

18.

Dudek G., Janicki M.
Nearest Neighbor Model with Weather Inputs for
Pattern-based Electricity Demand Forecasting
Przegląd Elektrotechniczny 3(93) [35]

2017 2011–2014

Poland
(NPS)

NNWISA(working days)
—Nearest Neighbors with
Weather Inputs for
Similarity Analysis

MAPE
(working

days)
1.55 1.67 39

Belgium
MAPE

(working
days)

2.82 2.88 40

New
England

MAPE
(working

days)
2.41 3.26 41

USA
MAPE

(working
days)

3.43 4.82 42
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18.

Dudek G., Janicki M.
Nearest Neighbor Model with Weather Inputs for
Pattern-based Electricity Demand Forecasting
Przegląd Elektrotechniczny 3(93) [35]

2017

2011–2014

Poland
(NPS)

NNWISA(weekends)
—Nearest Neighbors with
Weather Inputs for
Similarity Analysis

MAPE(weekends) 1.75 1.76 43

Belgium MAPE(weekends) 3.02 3.12 44

New
England MAPE(weekends) 2.92 3.16 45

USA MAPE(weekends) 4.31 4.99 46

2011–2014

Poland
(NPS)

NNWISA(Holidays)
—Nearest Neighbors with
Weather Inputs for
Similarity Analysis

MAPE(Holidays) 4.36 16.17 47

Belgium MAPE(Holidays) 4.05 12.61 48

New
England MAPE(Holidays) 6.35 7.03 49

USA MAPE(Holidays) 6.05 7.62 50

19.

Dudek G.
Pattern-Based Local Linear Regression Models for
Short-Term Load Forecasting
Elsevier, Electric Power System Research (130)
[36]

2016

2002–2004
Poland
(NPS)

MR(January)—Multiple
Regression MAPE(January) 2.37 51

SR(January)—Stepwise
Regression MAPE(January) 1.52 52

RR(January)—Ridge
Regression MAPE(January) 1.59 53

Lasso(January)—Least
Absolute Selection
Regression and the
Constriction Operator

MAPE(January) 1.51 54

PCR(January)—Principal
Component Regression MAPE(January) 1.36 55

PLSR(January)—Partial
Least Squares Regression MAPE(January) 1.18 56

MR(July)—Multiple
Regression MAPE(July) 2.63 57

SR(July)—Stepwise
Regression MAPE(July) 1.14 58

RR(July)—Ridge Regression MAPE(July) 1.23 59

Lasso(July)—Least Absolute
Selection Regression and the
Constriction Operator

MAPE(July) 1.06 60

PCR(July)—Principal
Component Regression MAP(July) 0.94 61

PLSR(July)—Partial Least
Squares Regression MAPE(July) 1.00 62

2002–2004
Poland
(NPS)

PCR—Principal Component
Regression MAPE 1.35 63

PLSR—Partial Least
Squares Regression MAPE 1.34 64

ARIMA MAPE 1.82 65

ES—Exponential Smoothing MAPE 1.66 66

ANN(MLP)—Artificial
Neural Network
(Multilayer Perceptron)

MAPE 1.44 67

NWE—Nadaraya—Watson
Estimator MAPE 1.30 38

NM—Naive Method MAPE 3.43 39
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19.

Dudek G.
Pattern-Based Local Linear Regression Models for
Short-Term Load Forecasting
Elsevier, Electric Power System Research (130)
[36]

2016

2007–2009 France

PCR—Principal Component
Regression MAPE 1.71 70

PLSR—Partial Least
Squares Regression MAPE 1.57 71

ARIMA MAPE 2.32 72

ES—Exponential Smoothing MAPE 2.10 73

ANN(MLP)—Artificial
Neural Network
(Multilayer Perceptron)

MAPE 1.64 74

NWE—Nadaraya—Watson
Estimator MAPE 1.66 75

NM—Naive Method MAPE 5.05 76

2007–2009 Great
Britain

PCR—Principal Component
Regression MAPE 1.60 77

PLSR—Partial Least
Squares Regression MAPE 1.54 78

ARIMA MAPE 2.02 79

ES—Exponential Smoothing MAPE 1.85 80

ANN(MLP)—Artificial
Neural Network
(Multilayer Perceptron)

MAPE 1.65 81

NWE—Nadaraya—Watson
Estimator MAPE 1.55 82

NM—Naive Method MAPE 3.52 83

2006–2008 Australia

PCR—Principal Component
Regression MAPE 3.00 84

PLSR—Partial Least
Squares Regression MAPE 2.83 85

ARIMA MAPE 3.67 86

ES—Exponential Smoothing MAPE 3.52 87

ANN(MLP)—Artificial
Neural Network
(Multilayer Perceptron)

MAPE 2.92 88

NWE—Nadaraya–Watson
Estimator MAPE 2.82 89

NM—Naive Method MAPE 4.88 90

20.

Dudek G.
Drzewa regresyjne i lasy losowe jako narzędzia
predykcji szeregów czasowych z wahaniami
sezonowymi
Politechnika Częstochowska [37]

2016 2002–2004
Poland
(NPS)

RF(January)—Random
Forest MAPE(January) 1.42 91

C&RT(January)—
Classification and Regression
Trees

MAPE(January) 1.70 92

C&RTR(January)—Fuzzy
Classification and Regression
Trees

MAPE(January) 1.62 93

ARIMA(January) MAPE(January) 2.64 94

ES(January)—Exponential
Smoothing MAPE(January) 2.35 95

ANN(January)—Artificial
Neural Network MAPE(January) 1.32 96

NM(January)—Naive
Method MAPE(January) 6.37 97

RF(July)—Random Forest MAPE(July) 0.92 98

C&RT(July)—Classification
and Regression Trees MAPE(July) 1.16 99
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20.

Dudek G.
Drzewa regresyjne i lasy losowe jako narzędzia
predykcji szeregów czasowych z wahaniami
sezonowymi
Politechnika Częstochowska [37]

2016 2002–2004
Poland
(NPS)

C&RTR(July)—Fuzzy
Classification and Regression
Trees

MAPE(July) 1.13 100

ARIMA(July) MAPE(July) 1.21 101

ES(July)—Exponential
Smoothing MAPE(July) 1.19 102

ANN(July)—Artificial
Neural Network MAPE(July) 0.97 103

NM(July)—Naive Method MAPE(July) 1.29 104

21.

Esener I.I., Yuskel T., Kurban M.
Short-Term Load Forecasting Without
Meteorological Data Using AI-Based Structures
Turkish Journal of Electrical Engineering &
Computer Sciences (23) [38]

2015

2009

Turkey

ANN—Artificial Neural
Network MAPE 3.67 105

WM+ANN—WM—
Wavelet Method +
ANN—Artificial Neural
Network

MAPE 3.73 106

WM+ANN(RBF)—WM—
Wavelet Method +
ANN—Artificial Neural
Network (Radial Basis
Functions)

MAPE 2.89 107

ED—Empirical
Decomposition MAPE 3.52 108

2010

ANN—Artificial Neural
Network MAPE 3.81 109

WM+ANN—WM—
Wavelet Method +
ANN—Artificial Neural
Network

MAPE 4.18 110

WM+ANN(RBF)—WM—
Wavelet Method +
ANN—Artificial Neural
Network (Radial Basis
Functions)

MAPE 2.99 111

ED—Empirical
Decomposition MAPE 3.63 112

22.

Fan S.
Short-Term Load Forecasting Based on a
Semi-Parametric Additive Model
IEEE Transactions on Power Systems [39]

2010

1997–2009
(training)

2009.01.01–
2009.01.31

(test)

Australia

SPAM—Semi-Parametric
Additive Model MAPE 1.41 2.37 113

ANN—Artificial Neural
Network MAPE 1.82 3.90 114

SPAM+ANN—Hybrid
Model (Semi-Parametric
Additive Model + Artificial
Neural Network)

MAPE 1.58 2.79 115

23.

Farahat M.A.
Short Term Load Forecasting Using Neural
Networks and Particle Swarm Optimization
Journal of Electrical Engineering [40]

2018

2011.07.01–
2011.08.10
(training)

2011.08.11–
2011.08.17

(test)

Egypt

ANN(BP)—Artificial
Neural Network (Back
Propagation Training)

MAPE 4.60 116

ANN(BP)+PSO –ANN(BP)
—Artificial Neural Network
(Back Propagation Training)
+ PSO—Particle Swarm
Optimization

MAPE 1.90 117

24.

Gorwar M.
Short Term Load Forecasting Using Time Series
Analysis:
A Case Study for Karnataka, India
ResearchGate, IJESIT Conference [41]

2012 2011–2012 India

AR(ea)—Autoregression MAPE 13.03 118

ARMA(ea) MAPE 11.73 119

ARIMA(ea) MAPE 6.15 120
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25.

Hassan S., Khosravi A., Jaafar J.
Examining Performance of Aggregation
Algorithms for Neural Network-Based Electricity
Demand Forecasting
ScienceDirect, Electrical Power and Energy
Systems (64) [42]

2015
2011

(30-min
Intervals)

Malaysia,
Aus-
tralia,

Pakistan

ANN(I)—Artificial Neural
Network (Integration)

MAPE(I 30
min.) 7.16 121

ANN(TI)—Sztuczna sieć
neuronowa (Trimmed
Integration)

MAPE(I 30
min.) 10.13 122

ANN(BA)—Artificial
Neural Network (Bayesian
Averaging)

MAPE(I 30
min.) 4.34 123

NM—Metoda naiwna MAPE(I 30
min.) 6.41 124

26.

He W.
Deep Neural Network Based Load Forecast

Computer Modelling & New Technologies
18(3) [43]

2014 2000.02.10–
2012.11.30 China ANN—Artificial Neural

Network MAPE 1.90 2.08 125

27.

Hong T., Wang P.
Fuzzy Interaction Regression for Short Term Load
Forecasting
University of North Carolina at Charlotte 13(1)
[44]

2014 2005–2007 USA

FRI(ea)—Fuzzy Regression
without Interaction MAPE(ea) 14.21 126

FRICV(ea)—Fuzzy
Regression without
Interaction with Categorical
Variables

MAPE(ea) 5.16 127

FRI(ea) +
MR—FRI(ea)—Fuzzy
Regression without
Interaction + MR—Multiple
Regression

MAPE(ea) 4.63 128

FRI(ea)+TV—FRI(ea)—
Fuzzy Regression without
Interaction +
TV—Temperature Variables

MAPE(ea) 3.68 129

28.

Janicki M.
Temperature Correction Method for Pattern
Similarity-Based Short-term Electricity Demand
Forecasting Models
Przegląd Elektrotechniczny 3(93) [45]

2017 2013–2014

USA

IS+TC(USA
2013)—IS—Image
Similarities +
TC—Temperature Correction
(USA 2013)

MAPE 4.50 130

USA
NM(USA 2013)—Naive
Method
(USA 2013)

MAPE 10.78 131

USA

IS+TC(USA
2014)—IS—Image
Similarities +
TC—Temperature Correction
(USA 2014)

MAPE 4.86 132

USA
NM(USA 2014)—Naive
Method
(USA 2014)

MAPE 10.94 133

Belgium

IS+TC(BEL
2013)—IS—Image
Similarities +
TC—Temperature Correction
(Belgium 2013)

MAPE 3.80 134

Belgium
NM (BEL 2013)—Naive
Method
(Belgium 2013)

MAPE 8.54 135

Belgium

IS+TC(BEL
2014)—IS—Image
Similarities +
TC—Temperature Correction
(Belgium 2014)

MAPE 3.66 136

Belgium
NM(BEL 2014)—Naive
Method
(Belgium 2014)

MAPE 9.47 137
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29.

Kheirkhah A. et al.
Improved Estimation of Electricity Demand
Function by Using of Artificial Neural Network,
Principal Component Analysis and Data
Envelopment Analysis
Elsevier Ltd. Computers & Industrial
Engineering (64) [46]

2013 1992.04.01–
2003.02.28

Iran,
Ireland
Turkey

GA—Genetic Algorithm MAPE 0.14 138

FR—Fuzzy Regression MAPE 0.08 139

ANN—Artificial Neural
Network MAPE 0.16 140

ANFIS—Adaptive Neuro
Fuzzy Inference System MAPE 0.15 141

DEA—Data Envelopment
Analysis MAPE 0.01 142

30.

Kolcun M., Holka L.
Daily Load Diagram Prediction of Eastern Slovakia
Politechnika Częstochowska, VI Konferencja
PE [47]

2002 1997–1998 Slovakia ANN(Koh)—Kohonen’s
Artificial Neural Network MAPE 3.50 143

31.

Lin Y.
An Ensemble Model Based on Machine Learning
Methods and Data Preprocessing for Short-Term
Electric Load Forecasting
Energies 10(1186) [48]

2017 2010.08.01–
2011.07.31 Australia

EML—Extreme Machine
Learning MAPE 0.83 144

EMLDE—Extreme Machine
Learning (optimized by)
Differential Evolution

MAPE 0.77 145

ARIMA MAPE 0.73 146

WTWTMABC—Wavelet
Transform—
Wavelet
Transform—Modified
Artificial Bee
Colony—Extreme Machine
Learning

MAPE 0.59 147

EMDDEEML—Empirical
Mode
Decomposition—Differential
Evolution
– Extreme Machine Learning

MAPE 0.39 148

VMD—Variational Mode
Decomposition MAPE 0.30 149

32.

Liu N., Babushkin V., Afshari A.
Short-Term Forecasting of Temperature Driven
Electricity Load Using Time Series and Neural
Network Model
Journal of Clean Energy Technologies 2(4) [49]

2014 2010.01.01–
2011.06.30

United
Arab

Emirates

SARIMAX MAPE 1.58 150

ANN—Artificial Neural
Network MAPE 2.29 151

33.

Magnano L., Boland J.W.
Generation of Synthetic Sequences of Electricity
Demand: Application in South Australia
Elsevier Ltd. Energy (32) [50]

2006
2000–2001
(Summer

Time)
Australia ARMA(Summer Time)

MAPE
(Summer

Time)
2.40 152

34.

Nadtoka I.I., Al-Zihery B.M.
Mathematical Modelling and Short-Term
Forecasting
of Electricity Consumption of the Power System,
with Due Account of Air Temperature and Natural
Illumination, Based on Support Vector machine
and Particle Swarm
Elsevier Ltd. Procedia Engineering (129) [51]

2015 2009–2012 Iraq

SVM+PSO—
SVM
– Support
Vector
Machines +
PSO
– Particle
Swarm Op-
timization
(including
UV)

2011.05.11. MAPE(UV;
May 2011) 2.65 153

2011.08.31.
MAPE(UV;

August
2011)

1.23 154

2011.11.30.
MAPE(UV;
November

2011)
2.13 155

2012.01.26.
MAPE(UV;

January
2012)

1.73 156

SVM+PSO—
SVM
– Support
Vector
Machines +
PSO
– Particle
Swarm Op-
timization
(including
tempera-
ture)

2011.05.11. MAPE(Temp.;
May 2011) 2.60 157

2011.08.31.
MAPE(Temp.;

August
2011)

1.37 158

2011.11.30.
MAPE(Temp.;
November

2011)
1.94 159

2012.01.26.
MAPE(Temp.;

January
2012)

1.90 160
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34.

Nadtoka I.I., Al-Zihery B.M.
Mathematical Modelling and Short-Term
Forecasting
of Electricity Consumption of the Power System,
with Due Account of Air Temperature and Natural
Illumination, Based on Support Vector machine
and Particle Swarm
Elsevier Ltd. Procedia Engineering (129) [51]

2015 2009–2012 Iraq

SVM+PSO—
SVM
– Support
Vector
Machines +
PSO
– Particle
Swarm Op-
timization
(including
UV & Tem-
perature)

2011.05.11.
MAPE(UV;

Temp.;
May 2011)

2.26 161

2011.08.31.

MAPE(UV;
Temp.;
August
2011)

1.41 162

2011.11.30.

MAPE(UV;
Temp.;

November
2011)

1.61 163

2012.01.26.

MAPE(UV;
Temp.;

January
2012)

1.58 164

35.

Narayan A.
Long Short Term Memory Networks for
Short-Term Electric Load Forecasting
IEEE International Conference on Systems,
Man, and Cybernetics [52]

2017 2006–2016 Canada

ANN(January)—Artificial
Neural Network

MAPE
(January) 4.60 165

ARIMA(May) MAPE
(May) 5.70 166

ANN-LSTM-
RNN(September)—
Long—Short—Term
Memories—Recurrent
Neural Network

MAPE
(Septem-

ber)
4.40 167

ANN(sty.)—Artificial
Neural Network

MAPE
(January) 6.30 168

ARIMA(May) MAPE
(May) 8.20 169

ANN—LSTM—
RNN(September)—
Long—Short—Term
Memories—Recurrent
Neural Network

MAPE
(Septem-

ber)
5.90 170

ANN(January)—Sztuczna
sieć neuronowa

MAPE
(January) 3.80 171

ARIMA(May) MAPE
(May) 3.90 172

ANN-LSTM-
RNN(September)—
Long—Short—Term
Memories—Recurrent
Neural Network

MAPE
(Septem-

ber)
3.80 173

36.

Nowicka-Zagrajek J., Weron R.
Modeling Electricity Loads in California: ARMA
Models with Hyperbolic Noise
Hugo Steinhaus Center Wrocław University of
Technology, KBN [53]

2002

1999.01.01–
2000.12.31

USA

ARMA(1,6) (January
1.—February 28.) MAPE 1.66 174

ARMA Adaptive (January
3.—February 28.) MAPE 1.66 175

ARMA(1,6) (January
1.—February 28.) MAPE 1.24 176

ARMA Adaptive (January
3.—February 28.) MAPE 1.23 177

37.

Nowotarski J. et al.
Improving Short Term Load Forecast Accuracy via
Combining Sister Forecasts
Hugo Steinhaus Center Wrocław University of
Technology, University of North Carolina at
Charlotte [54]

2015 2007.01.01–
2011.12.31 USA

SA—Simple Averaging(ea) MAPE(ea) 2.10 2.82 178

AT(PU—ea) (Average
Trimming) MAPE(ea) 2.10 2.82 179

WA(UW—ea) (Winsor’s
Averaging) MAPE(ea) 2.10 2.83 180

OLS(MNKea) (Ordinary
Least Squares) MAPE(ea) 2.14 2.82 181

RMAD(ea)
(Regression of the Minimum
Absolute Deviation)

MAPE(ea) 2.14 2.83 182

LSLPW(ea) (Least Squares
Limited
—Positive Weights)

MAPE(ea) 2.12 2.81 183
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37.

Nowotarski J. et al.
Improving Short Term Load Forecast Accuracy via
Combining Sister Forecasts
Hugo Steinhaus Center Wrocław University of
Technology, University of North Carolina at
Charlotte [54]

2015 2007.01.01–
2011.12.31 USA

LSL(ea) (Least Squares
Limited) MAPE(ea) 2.11 2.83 184

IRMSEA(ea) (IRMSE
Averaging) MAPE(ea) 2.10 2.82 185

BI—C(ea) (The Best
Individual Calibration
Window)

MAPE(ea) 2.25 2.93 186

SM—Sister Model 1(ea) MAPE(ea) 2.29 3.09 187

SM—Sister Model 2(ea) MAPE(ea) 2.24 3.15 188

SM—Sister Model 3(ea) MAPE(ea) 2.34 3.01 189

SM—Sister Model 4(ea) MAPE(ea) 2.32 3.17 190

SM—Sister Model 5(ea) MAPE(ea) 2.28 3.11 191

SM—Sister Model 6(ea) MAPE(ea) 2.30 3.18 192

SM—Sister Model 7(ea) MAPE(ea) 2.37 3.07 193

SM—Sister Model 8(ea) MAPE(ea) 2.31 3.21 194

38.

Hsiao-Ten P.
Forecast of Electricity Consumption and Economic
Growth in Taiwan by State Space Modeling
Elsevier Ltd. Energy (34) [55]

2009 2002–2007 Taiwan

ECSTSP
—Error—
Correction
State Space
Model

2002–2007 MAPE 3.90 195

2003–2007 MAPE 2.57 196

2004–2007 MAPE 2.38 197

2005–2007 MAPE 1.52 198

2006–2007 MAPE 2.57 199

2007 MAPE 2.04 200

STSP
—State
Space Model

2002–2007 MAPE 4.04 201

2003–2007 MAPE 2.62 202

2004–2007 MAPE 2.43 203

2005–2007 MAPE 1.75 204

2006–2007 MAPE 2.34 205

2007 MAPE 2.39 206

SARIMA

2002–2007 MAPE 5.32 207

2003–2007 MAPE 3.79 208

2004–2007 MAPE 3.01 209

2005–2007 MAPE 2.87 210

2006–2007 MAPE 2.18 211

2007 MAPE 1.20 212

39.

Rana M, Koprinska I.
Forecasting Electricity Load with Advanced
Wavelet Neural Networks
Elsevier B.V. Neurocomputing (182) [56]

2016 2006–2007

Australia WANN(F—Aus.)—Wavelet
Artificial Neural Network MAPE 0.27 213

Australia ANN(Aus.)—Artificial
Neural Network MAPE 0.28 214

Australia FL(Aus.)—Fuzzy Logic MAPE 0.29 215

Australia MTR(Aus.)—Model Tree
Rules MAPE 0.35 216

Australia

ESDS(n-1;
Aus.)—Exponential
Smoothing—Daily
Seasonality

MAPE 0.30 217

Australia

ESWS(n -7;
Aus.)—Exponential
Smoothing—Weekly
Seasonality

MAPE 0.32 218

Australia

ESDWS(n-1 i n -7;
Aus.)—Exponential
Smoothing—Daily and
Weekly Seasonality

MAPE 0.30 219

Australia ARIMA(n-1; Aus.) Daily MAPE 0.30 220

Australia ARIMA(n -7; Aus.) Weekly MAPE 0.32 221
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39.

Rana M, Koprinska I.
Forecasting Electricity Load with Advanced
Wavelet Neural Networks
Elsevier B.V. Neurocomputing (182) [56]

2016

2006–2007

Australia ARIMA(n-1 i n -7; Aus.)
Daily & Weekly MAPE 0.30 222

Australia IM(Aus.)—Industrial Model MAPE 0.31 223

Australia NAM(Aus.)—Naive
Averaged Method MAPE 13.48 224

Australia NDM(Aus.)—Naive
Delayed Method MAPE 0.47 225

Australia NM(n-1; Aus.)—Naive
Method (Previous Day) MAPE 5.05 226

Australia
NM(n -7; Aus.)—Naive
Method
(Previous Week)

MAPE 4.94 227

2010–2011

Spain ANN(F—Esp)—Wavelet
Artificial Neural Network MAPE 1.72 228

Spain ANN(Esp)—Artificial
Neural Network MAPE 2.12 229

Spain FL(Esp)—Fuzzy Logic MAPE 2.25 230

Spain MTR(Esp)—Model Tree
Rules MAPE 2.24 231

Spain

ESDS(n-1;
Esp)—Exponential
Smoothing—Daily
Seasonality

MAPE 2.54 232

Spain

ESWS(n -7;
Esp)—Exponential
Smoothing—Weekly
Seasonality

MAPE 2.01 233

Spain

ESDWS(n-1 i n -7;
Esp)—Exponential
Smoothing—Daily and
Weekly Seasonality

MAPE 1.95 234

Spain ARIMA(n-1; Esp) Daily
Seasonality MAPE 2.45 235

Spain ARIMA(n -7; Esp) Weekly
Seasonality MAPE 2.00 236

Spain ARIMA(n-1 i n -7; Esp)
Daily & Weekly Seasonality MAPE 1.89 237

Spain IM(Esp)—Industrial Model MAPE 0.31 238

Spain NAM(Esp)—Naive
Averaged Method MAPE 21.18 239

Spain NDM(Esp)—Naive Delayed
Method MAPE 5.05 240

Spain NMPD(n-1; Esp)—Naïve
Method (Previous Day) MAPE 9.45 241

Spain NMPW(D-7; Esp)—Naive
Method (Previous Week) MAPE 7.42 242

40.

Siwek K., Osowski S.
Prognozowanie obciążeń 24-godzinnych w
systemie elektroenergetycznym z użyciem zespołu
sieci neuronowych
Przegląd Elektrotechniczny 8(85) [57]

2009 2006–2008
Poland
(NPS)

ANN(MLP)—Artificial
Neural Network
(Multilayer Perceptron)

MAPE 2.07 243

ANN(SVM)—Artificial
Neural Network
(Support Vector Machines)

MAPE 2.24 244

ANN(Elman)—Artificial
Neural Network (Elman) MAPE 2.26 245

ANN(Koh)—Kohonen’s
Artificial Neural Network MAPE 2.37 246

ANN(MLPZ1)—Artificial
Neural Network
(Committee—Multilayer
Perceptron 1)

MAPE 1.48 247

237



Energies 2022, 15, 6729

Table 1. Cont.

N
o

.

Authors/Title/Publishing House
Year

Analysis
Scope

Country Method, Model Effectiveness
Model

No.

- Years - - Error, % -

40.

Siwek K., Osowski S.
Prognozowanie obciążeń 24-godzinnych w
systemie elektroenergetycznym z użyciem zespołu
sieci neuronowych
Przegląd Elektrotechniczny 8(85) [57]

2009 2006–2008
Poland
(NPS)

ANN(SVMZ)—Artificial
Neural Network
(Committee—Support Vector
Machines)

MAPE 1.35 248

ANN(BSSZ)—Artificial
Neural Network
(Committee—BSS)

MAPE 1.71 249

41.

Selivan R.A., Rajagopal R.
A Model For The Effect of Aggregation on Short
Term Load Forecasting
IEEE, Stanford University [58]

2014 - USA

ARMA MAPE 2.00 250

SVR (Support Vector
Regression) MAPE 4.00 251

SSN(FF)—Artificial Neural
Network
(Fast Forward Training)

MAPE 2.40 252

42.

Sousa J.C., Neves LP., Jorge H.M.
Assessing the Relevance of Load Profiling
Information in Electrical Load Forecasting Based
on Neural Network Models
Elsevier Ltd. Electrical Power and Energy
Systems (40) [59]

2012 2006.12.15–
2009.11.30

Portugal

SSN(OK)—Artificial Neural
Network
(Municipal Users)

MAPE 6.13 22.39 253

ANN(TSDSO)—Artificial
Neural Network
(Transformer Station of a
Distribution System
Operator)

MAPE 5.14 5.35 254

43.

Wang P., Liu B., Hong T.
Electric Load Forecasting with Recency Effect: A
Big Data Approach
Hugo Steinhaus Center Wrocław University of
Technology [60]

2015 2007 USA
REM—Recent Effect Method
(Forecasts for each day with a
year in advance)

MAPE 4.27 4.38 255

44.

Wang Y., Bielecki J.M.
Acclimation and the Response of Hourly
Electricity Loads
to Meteorological Variables
Elsevier Ltd. Energy (142) [61]

2018

1999.07.28–
2007.12.31.
(Calibration

Set) USA

GRM(Temp.)—General
Regression Model
(Temperature)

MAPE
(Temp.) ~0.10 ~4.10 256

FGRM(ea; Temperature;
Wind)—Full General
Regression Model (hourly
delays of
thermosensitivity, binary
variables of historical
temperatures in months,
wind speed)

MAPE
(ea; Temp.;

Wind)
~0.20 ~4.30 257

2008.01.01–
2014.12.31.

2SGRM(Temperature; Wind;
Humidity)—2-Step General
Regression Model
(1.—Fit to the full model;
2.—Adjustment to the model
of the influence of humidity
on demand)

MAPE
(Temp.;
Wind;

Humid.)

1.00 2.00 258

45.
Wyrozumski T.
Prognozowanie neuronowe w energetyce
Politechnika Lubelska, Konferencja REE [62]

2005 - Poland ANN(ea)—Artificial Neural
Network

MAPE
(ea) 1.31 4.87 259

46.
Yang J.
Power System Short-term Load Forecasting
TU Darmstadt, Doctoral Thesis [63]

2006 2002 China

C&RT—Classification and
Regression Trees MAPE 2.63 11.64 260

ANN—Artificial Neural
Network MAPE 1.51 4.13 261

SVM—Support Vector
Machines MAPE 1.51 3.87 262

47.

Yu X., Ji H.
A PSO-SVM-Based 24 h Power Load Forecasting
Model
MATEC Web of Conferences (25) [64]

2015 2014 China

ANN(BP)—Artificial
Neural Network (Back
Propagation Training)

MAPE 3.28 4.13 263

SVM+PSO—SVM—
Support Vector Machines +
PSO—Particle Swarm
Optimization

MAPE 2.58 2.68 264
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Figure 1. The design of the survey.

Table 2. Forecasting model ranking for the position from 1 to 132.

Ranking
(1–33)

Model
No.

Ranking
(34–66)

Model
No.

Ranking
(67–99)

Model
No.

Ranking
(100–132)

Model
No.

1 142 34 16 67 91 100 43

2 139 35 98 68 67 101 204

3 256 36 10 69 18 102 33

4 138 37 61 70 247 103 30

5 141 38 103 71 8 104 65

6 140 39 62 72 54 105 114

7 257 40 258 73 261 106 1

8 213 41 60 74 262 107 29

9 214 42 6 75 52 108 80

10 215 43 100 76 198 109 20

11 149 44 58 77 78 110 25

12 217 45 99 78 39 111 237

13 219 46 56 79 82 112 117

14 220 47 102 80 71 113 125

15 222 48 212 81 115 114 160

16 223 49 101 82 150 115 31

17 238 50 59 83 164 116 159

18 218 51 154 84 53 117 234

19 221 52 177 85 77 118 236

20 216 53 176 86 163 119 250

21 148 54 9 87 93 120 233

22 225 55 104 88 74 121 32

23 17 56 68 89 81 122 79

24 14 57 259 90 66 123 200

25 147 58 96 91 75 124 35

26 28 59 64 92 174 125 243

27 12 60 63 93 175 126 73

28 146 61 248 94 92 127 178

29 11 62 19 95 70 128 179

30 145 63 55 96 249 129 180
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Table 2. Cont.

Ranking
(1–33)

Model
No.

Ranking
(34–66)

Model
No.

Ranking
(67–99)

Model
No.

Ranking
(100–132)

Model
No.

31 13 64 158 97 228 130 185

32 144 65 113 98 156 131 184

33 7 66 162 99 15 132 183

Table 3. Forecasting model ranking for the position from 133 to 264.

Ranking
(133–165)

Model
No.

Ranking
(166–198)

Model
No.

Ranking
(199–231)

Model
No.

Ranking
(232–264)

Model
No.

133 229 166 203 199 87 232 227

134 155 167 5 200 108 233 76

135 38 168 235 201 112 234 226

136 181 169 232 202 136 235 240

137 182 170 36 203 86 236 254

138 211 171 22 204 105 237 127

139 34 172 21 205 129 238 3

140 37 173 196 206 24 239 207

141 188 174 199 207 106 240 166

142 231 175 264 208 208 241 170

143 244 176 157 209 134 242 50

144 186 177 202 210 171 243 253

145 230 178 57 211 173 244 120

146 161 179 260 212 109 245 168

147 245 180 94 213 2 246 49

148 191 181 153 214 172 247 97

149 151 182 40 215 195 248 124

150 187 183 89 216 251 249 27

151 192 184 85 217 201 250 121

152 194 185 210 218 48 251 242

153 72 186 107 219 23 252 169

154 190 187 45 220 110 253 135

155 189 188 88 221 255 254 241

156 205 189 111 222 46 255 137

157 95 190 84 223 123 256 122

158 51 191 209 224 47 257 131

159 193 192 44 225 167 258 133

160 246 193 263 226 130 259 4

161 197 194 26 227 116 260 119

162 206 195 42 228 165 261 118

163 152 196 69 229 128 262 224

164 252 197 143 230 132 263 126

165 41 198 83 231 90 264 239
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Figure 2. The effectiveness of forecasting models in the Top 10 set from a group of 264 models.

2. Short-Term Forecasting Methods and Models Used for Power Systems

2.1. Classical Methods of Artificial Intelligence

There main methods are successfully used in forecasting, optimization, diagnostics,
detection, and design in the power industry: artificial neural networks, evolutionary algo-
rithms, and expert systems. Neural networks are used, among others, in optimization of tap
changer settings in transformers, optimization of capacitor bank settings, and forecasting
of the peak load of the power system and its daily loads using Artificial Neural Net-
works [13,23,40,42,43,46,49,57,62,65–78], in addition to using Deep Neural Networks [43],
and autoregressive models [79], Big Data [1,80], short-circuit analyses, and transformer
damage detection. Artificial Neural Networks are the most commonly used artificial in-
telligence methods [81] in forecasting the operating parameters of power systems and
networks. Artificial Neural Networks [82,83] are an effective tool for forecasting in the
power industry (not only the loads mentioned above in the power grid [84–87], but also
electricity prices [88], especially in short-term forecasting [72]. In practical applications, Ar-
tificial Neural Networks are also supported by the techniques of Fuzzy Logic functions [89]
and the Neuro-Fuzzy Approach [90–93].

The indication of the greater effectiveness of Artificial Neural Networks over the
improvement of traditional methods in short-term forecasting of power system loads,
presented in [72], does not always translate into short-term forecasting of energy prices on
Polish and foreign electricity trading floors [94]. In this context, it is possible to obtain an in-
verse relationship. For example, the multiple regression method gives significantly greater
forecasting efficiency when compared to the models of Artificial Neural Networks [95].
Artificial Neural Networks are highly effective not only in the short term, but also in
long-term forecasting [96,97].

Evolutionary algorithms are used, among others in [84]: forecasting daily loads of elec-
tric power systems [46,67], optimizing the configuration of power grids, optimizing voltage
levels in power grids, designing power grids, planning power plant operation, creating an
economical distribution of loads, planning power grid development, supporting regulatory
activities in power systems, and protection automatics [83,98]. Expert systems are used,
among other things, in [99]: designing power grids and stations and reconstruction of
power systems in post-emergency states [100,101].

Additional information on the application of artificial intelligence methods, taking into
account the studied subject of the variability in power system loads and their forecasting,
can be found in [81,84,85,102,103].
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2.2. Data Mining Methods

In the literature focusing on the analysis of large data sets and forecasting using Data
Mining methods, there are many definitions of these methods and ideas [104].

The main definitions of Data Mining are:

1. An interdisciplinary approach using techniques from machine learning, image recognition,
statistics, databases and visualization to extract information from large databases [42,105,106];

2. An analysis of large, previously collected data sets to discover new regularities and de-
scribe the data in a new way that is understandable and useful for the data owner [107].

The first definition comes from 1998, while the second comes from 2001; thus, their
evolution is noticeable.

Further definitions of Data Mining methods are:

3. The process of searching for valuable information (knowledge) when the researcher is
dealing with a large amount of data [108–111];

4. The process of examining and analyzing large amounts of data by automated or
semi-automatic methods to discover meaningful patterns and rules [112,113];

5. Methods of broadly understood data analysis aimed at identifying previously un-
known regularities occurring in large data sets, from which the results are in a form
that is easy to interpret by the researcher [109].

At the beginning of their development, Data Mining methods were accused of be-
ing unscientific, assuming no theory, having no elegance or formal evidence, and being
primitive and for application only [114].

The classical approach to data analysis uses the scheme [115,116] from defining the
problem through creating a mathematical model, preparing the input data, and analyzing
the problem, to interpreting the obtained results. The Data Mining approach uses a
scheme from problem definition through preparing input data, problem analysis, and
creating a mathematical model, to interpreting the obtained results. The algorithms used
in the field of Data Mining are divided into supervised learning and non-supervised
learning [104]. In the supervised learning methods, the main goal is to recreate the value
of the examined parameter. In the non-supervised learning methods, the aim is to detect
structures or hidden patterns in the analyzed data due to the lack of distinguishing a
single feature. Teaching forecasting models using a supervised learning approach can be
conducted as an implementation of a classification or regression problem. In classification
problems, the analyzed parameter is qualitative, and in regression problems, this parameter
is quantitative.

The knowledge derived from empirical research is proven, and due to the collection
of larger and larger sets of data, it is beneficial for further research, both empirical and
forecasting (in a certain sense speculative); it is useful to analyze these sets and draw
additional conclusions. Additional research, including experimental studies, may result in
obtaining a greater number of answers than the questions posed by the researcher [117–119].
The classification indicated in [118] of problem types and their respective Data Mining
methods concerning time series analysis notes the inclusion of MultiLayer Perceptron
(MLP) and Radial Basis Function (RBF) Artificial Neural Networks in this method. It must
be concluded that the classifications of methods overlap and do not function as hermetic.

The group of Data Mining methods and models also includes forecasting problems,
which are divided into two groups. The first group includes regression and classification
trees, and the second group includes advanced machine learning methods. Classification
and regression trees include Classification and Regression Trees (C&RT) and Chi-Square
Automatic Interaction Detection (CHAID) trees [96,120]. The advanced machine learning
group consists of the methods Multivariate Adaptive Regression Splines (MARSplines),
Support Vector Machines (SVMs), k Nearest Neighbors [121,122], k—Means [123,124],
Naive Bayes Classifier (only applicable to classification problems), Random Forest [125],
and Boosted Trees [96]. The use of Data Mining methods in forecasting regression problems
consists of evaluating many models, comparing their effectiveness results, and creating
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hybrid systems, due to which it is possible to maintain the smallest deviations in the
forecasted values from the realized values of the analyzed parameters. The distinguishing
feature of Data Mining methods is the speed of their creation. The MARSplines and
Boosted Tree methods are among the most effective predictive models from the group of
Data Mining methods for forecasting power demand in power systems.

The MARSplines method is in the niche of practical applications in forecasting prob-
lems in large-scale power engineering. In the MARSplines method, a non-parametric type
belonging to the group of supervised learning methods, the co-variability in features is
used to predict the value of a selected feature, and in classification problems [126,127].
The indicated convenience excludes from research activities the necessity to analyze the
correlation between the independent variables, which in many cases may correlate with
the predicted variable, but do not affect it.

The Multivariate Adaptive Regression Splines (MARSplines) method [128–130] uses
the method of recursive division of the feature space to build a regression model in the
form of spline curves [131–133] and is an extension of the methods of regression trees and
multiple regression [105]. Due to the above properties, the MARSplines [131–133] is an
effective tool for Big Data applications [134,135].

The MARSplines method also enables the automatic selection of explanatory variables
for forecasting models. The efficiency of this selection is in many cases greater than
that for classical methods of selecting variables [30,31,136–138]. Thus, the method can
be successfully used, in addition to the multiple regression method, in selecting input
variables for forecasting models and short-term forecasting of time series, including power
demand in power systems. [31,32,139].

The principal components method is an alternative to those analyzing the correlations
between the explanatory variables in the forecasting process. It not only allows the removal
of variables that are overly correlated with each other, but also the acquisition of uncor-
related variables that are responsible for part of the variability in groups of variables or
even for the variability in entire groups of variables [140]. The application of the method
creates new variables, which are linear combinations of the original variables, and the fol-
lowing components capture as much information contained in the original data as possible.
The disadvantage of the method is the difficulty in interpreting the meaning of principal
components [140].

2.3. Big Data

Big Data is a term that describes, on a very general level, exceptionally large data
sets. These collections are characterized by a diversified structure of high complexity. The
main difficulties are data storage, real-time analysis, and data visualization and analysis re-
sults [141,142]. The process of examining massive amounts of data to reveal hidden patterns
and secret correlations is called Big Data analysis. In the 1990s and the first decade of the 21st
century, Big Data analysis was understood as Data Mining. Big Data sets are characterized
by: high volume (Volume) [98,141,143,144], high growth rate (Velocity) [98,141,143,144],
reliability and accuracy (Veracity) [141,142], great variety (Variety) [98,144], and value for
decision making processes (Value) [98,141,144,145].

The use of Big Data analysis for the needs of data sets containing electrical mea-
surements, including the load size of power systems, includes practical applications, e.g.,
techniques, i.e., correlation analysis and machine learning techniques (including deep
learning: Multilevel Deep Learning [146], Pooling Deep Recurrent Neural Network [147],
Convolutional Neural Network Based Bagging Learning Approach [148], TensorFlow Deep
Learning Framework and Clustering-regression [149], Long Short—Term Memory Neural
Network [150], using Scikit-Learn and TensorFlow [151], with the Keras library [152], Deep
Neural Networks [43,153], and introducing Multilevel Deep Learning Methods for Big Data
Analysis [146] and databases [114]). Processing of electrical measurement data includes
distributed processing (data storage and processing—Distributed Computing), memory
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processing (data reading and processing—Memory Computing) and stream processing
(real-time data processing—Stream Processing) [141,154].

The use of Big Data techniques in the energy system in the energy sector [155–157]
and in the field of Smart Grids [1,80,154,158] includes the use of RBF Artificial Neural
Networks [159] using a Convolutional Neural Network Based Bagging Learning Ap-
proach [148]. This also encompasses compatibility of aid for technical measures con-
cerning the integration of the generating sources [160], with special regard to renewable
sources [161,162] and in creating backup data sets that can be used in situations of informa-
tion and communication disruptions [163].

The use of sets, techniques, and processes concerning Big Data for the power industry
is inextricably linked with the security of the stored data. The security of this type of data
can be increased through its location dispersion (e.g., SCOOP system) [144].

Data streams supplying Big Data sets in transmission and distribution power systems
come from [164–166]: Supervisory Control And Data Acquisition (SCADA) systems [167],
phasor measurement systems in Wide Area Management System (WAMS) technology [168],
Intelligent Electronic Devices (IEDs), network asset management systems, conventional
and smart meters [147,169–171], and information exchange systems with electricity market
participants, from seismic and meteorological institutes, Global Positioning System (GPS)
systems, and Geographic Information System (GIS) systems. The practical method of the
similarity of days [172–176] allows the quality of forecasting power demand to be below
3.00% per day and the efficiency achieved by the Polish Transmission System Operator
(PSE S.A.) to be approx. 1.00%. Similar days are selected based on the most recent demand
factor forecasts in the first step. In the second step, the weighted average is calculated for
each hour of the day, considering the historical values. In the classical approach, there is a
slight variation in the values of individual weights. Due to weighting of the most similar
days, it is possible to obtain minimum, maximum, and average errors for the entire day
below 2% [176]. The method of self-adaptive weighing is successfully used in forecast-
ing the demand for electric power in microgrids. Compared to the standard methods of
dynamic demand profiles, multiple regression, and Artificial Neural Networks, it almost
doubles forecasting effectiveness (approx. 3.5%) [177]. A similar level of effectiveness
(3.99%) using the multiple regression method for the power system shows that despite the
longer computation time (for a seven-day horizon), its classical version [178], using as input
data (explanatory variables) forecasts of weather parameters, gives a similar quality. The
use of Artificial Neural Networks in short-term forecasting of electrical power demand in
power systems does not always give exceptionally effective forecasting results compared to
other methods. Artificial Neural Networks require significant research experience, and the
results, even using efficient network learning methods [147], rarely give effectiveness below
1.00% per day. Often, advanced Artificial Neural Networks provide forecasting efficiency
expressed by the values of Mean Average Percentage Error (MAPE) from approx. 3.00% to
even approx. 13.00% (in the 20-day horizon) [5]. The knowledge of electrical power quality
parameters is one of the key elements of entities operating in the electricity market [179].
Cyclical measurements of these parameters (including the assessment of the condition of
electrical apparatus and devices [180]), and their transmission and collection, in addition
to the conducted analyses, may affect the medium-term planning of outages of individ-
ual elements of the transmission network and, thus, indirectly, short-term forecasting of
power demand.

3. The State of Research in Short-Term Power Demand Forecasting for Power Systems
Using Autoregressive and Non-Autoregressive Methods and Models

The study (Figure 1) was planned in such a way as to answer the question of whether
the use of autoregressive methods in short-term forecasting of electricity demand in power
systems can be even more effective and, at the same time, inexpensive and quick to
implement. In order to answer this question, scientific articles presenting the effectiveness
of autoregressive forecasting models determined by the MAPE were analyzed. The result

244



Energies 2022, 15, 6729

of the review is Table 1 and a ranking of forecasting models (Tables 2 and 3), and the
Top 10 collection of the ten most effective forecasting models. As a result of the review
and development of the ranking of forecasting models, it was confirmed that the use of
autoregressive models may support the transmission system operator to achieve better
forecasting efficiency.

The literature review (Table 1) included 47 unique items and titles, several dozen
forecasting methods, and 264 forecasting models (Table 1). Scientific papers were published
in the period from 1997 and concerned short-term forecasting of power demand. The
source data used by the authors of the analyzed publications, constituting the input for the
forecasting models, covered the period from 1998 to 2014. Diverse and international teams
of authors conducted their research based on data on the functioning of power systems in 25
countries located on four continents—in the countries of the Near and the Far East, Western
Europe (including the British Isles), Central Europe (including Poland), North America
(USA), and Australia. The publications indicated were compiled by 44 different authors’
teams and published in 23 publishing houses. The analysis concerning the nomenclature of
forecasting models covers a set of 185 unique items. Diversifying the observed relationships
in individual forecasting models results in identifying 197 unique abbreviations assigned to
forecasting models. The MAPE(ea) in Table 1 means that the accuracy results are measured
in ex ante mode.

All the reviewed references describe the effectiveness of the presented forecasting
models, in terms of the MAPE measure, to assess the accuracy of the forecasts. To analyze
the collected forecasting results, 27 unique names of MAPE errors were distinguished for
this analysis, reflecting the forecasting models used in the analysis. Some of the forecast
results described by the MAPE index, contained in selected publications, are presented
from the lowest value (MAPE min) to the highest value (MAPE max). In contrast, the
remaining part of the results is described by one value.

The analysis of monovalent results was decomposed into minimum and maximum
values to standardize the dominant approach used in selected publications. The lowest
values of MAPE min are recorded in the range from 0.01% to 21.18%, while in the MAPE
max category, the corresponding range of variability in the MAPE ranges from 0.01% to
33.45%. The MAPE min category includes 196 unique items from a set of 264 models, while
the MAPE max category includes 212 unique items from the same set.

Further analysis of the results of the effectiveness of the forecasts obtained, described
by the forecasting quality measure using the MAPE, concerns the MAPE category, min.
A set of the ten smallest results expressed as percentages was selected in this category
(Figure 2). This collection was called Top 10. The smallest values of MAPE errors min, in
ascending order, in the Top 10 set (Figure 2) are obtained for the following models: Data
Envelopment Analysis (DEA), Fuzzy Regression (FR), General Regression Model (GRM),
Genetic Algorithm (GA), Adaptive Neuro Fuzzy Inference System (ANFIS [181,182]), Arti-
ficial Neural Network (ANN), Full General Regression Model (FGRM), Wavelet Artificial
Neural Network (WANN), Artificial Neural Network (ANN), and Fuzzy Logic (FL). The
values of MAPE min were: 0.01%; 0.08%; 0.10%; 0.14%; 0.15%; 0.16%; 0.20%; 0.27%; 0.28%;
and 0.29%. The summary of the abbreviations used for the forecasting methods and models
in the Top 10 set is as follows: DEA; FR; GRM; GA; ANFIS; ANN; FGRM; WANN; ANN;
and FL.

Only analytical studies on the GRM forecasting model in the Top 10 set are performed
ex ante (ea). In the case of this model, the efficiency obtained in the third position should
be considered very high. The GRM model uses information about the shaping of the
ambient temperature as an input variable. The second model that uses the input variables
is the FGRM model, which considers both the variability in the ambient temperature and
the wind speed. The FGRM model ranks seventh in the Top 10 ranking in the MAPE
category, min.

The forecasting effectiveness described by the lowest value of the MAPE min has an
ambiguous effect on high forecasting efficiency. The power systems subject to forecast
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analysis in the Top 10 list are (in ascending order) the systems of Iran (two items), USA
(one item), Iran (three items), USA (one item), and Australia (three items).

The length of the analyzed period significantly affects the quality of forecasting ob-
tained. Along with the extension of the analysis period, including the natural impact of
non-working days and holidays, both cyclical and non-cyclical, there is a decline in the
effectiveness of the obtained forecasts of the load on power systems. The full forecasting
model ranking is presented in Tables 2 and 3, where the column Model No. represents
the model number from Table 1 (the last column on the right), and the column Ranking
shows the position in the model ranking (1 equals the first position and 264 equals the last
position). Table 2 consists of the models from Table 1 from 1 to 132 (in four pairs of Ranking
and Model Number), and Table 3 shows the same scheme for the models from 133 to 264.
Tables 2 and 3 present four sets of Ranking and Model Number. Articles [183–185] from
2019 to 2021 indicate that analysis and research are being continued, including with the use
of some of the analyzed methods.

4. Conclusions

The 47 publications describing 264 models published from 1997 to 2018 were analyzed
in detail by applying methods that use explanatory variables to broaden the background of
analyses. Some relevant publications from 2019 to 2021 were also included to determine if
autoregressive methods are still of interest. The results of the review confirm the significant
potential of the autoregressive approach to power demand forecasting. The analyzed
methods enable very high accuracy to be achieved in short-term forecasting with the
resolution of one hour (accuracy measured in terms of MAPE is below 1%). The methods
whose effectiveness were classified in the top ten sets are Fuzzy Logic (LR), Artificial Neural
Network (ANN), Wavelet Artificial Neural Network (WANN), Full General Regression
Model (FGRM), Artificial Neural Network (ANN), Adaptive Neurofuse Inference System
(ANFIS), Genetic Algorithm (GA), General Regression Model (GRM), Fuzzy Regression
(FR), and Data Envelope Analysis (DEA). These methods allowed them to achieve MAPE-
determined values of: 0.29%; 0.28%; 0.27%; 0.20%; 0.16%; 0.15%; 0.14%; 0.10%; 0.08%; and
0.01%. All of the Top 10 models achieved high accuracy; however, the DEA model reached
the accuracy of 0.01% MAPE. Models No. 257 (FGRM) and No. 256 (GRM) of the Top 10
set use the explanatory variables, and the other eight models were autoregressive (models
No.: 215—FL, 214—ANN, 213—WANN, 140—ANN, 141—ANFIS, 138—GA, 139—FR, and
142—DEA). This shows the potential of the autoregressive prediction approach used in the
models for short-term power demand forecasting in power systems.

5. Critical Discussion, Major Findings and Future Scope of Research

The results of the review show that the use of short-term forecasting of electric power
demand with hourly resolution enables efficiency of below 1% to be achieved. It should
be borne in mind that such effectiveness should apply to the entire calendar year. In
the analyzed collection of 47 articles from all over the world, the analysis period ranges
from several months to several years, which indicates that the research covers significant
periods of time, and the analyzed models are stable and resistant to changes in external
conditions (economic and climatic conditions). The group of the most effective prognostic
models includes models using artificial intelligence techniques (e.g., Artificial Neural
Networks, Fuzzy Logic, and Genetic Algorithms). The effective methods also include classic
forecasting methods (e.g., ARIMA, Multiple Regression, Exponential Smoothing) and
methods from the Data Mining group (e.g., Support Vector Machines, Nearest Neighbors,
Random Forest).

The article confirms the authors’ thesis about the enormous potential inherent in the
use of the autoregressive approach for short-term forecasting of electricity demand. The
results of the review (the prepared ranking of prognostic models and the knowledge from
the analyzed articles) constitute an excellent starting point for further tests and pave the
way for future research in this area.
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The future research of the authors will focus on the first step of testing the prognostic
models from the Top 10 set. The tests will take into account both the achieved effectiveness
and the necessary financial costs and time consumption of the process. In the next step,
the most effective prognostic methods selected in the first step will be tested, including
individual testing in off-line mode. In the third step of further research, prognostic model
committees will be established. The developed committees will assign weights to the
participation of individual models (step 1) and test the suitability of individual models for
forecasting individual hours of the day or periods of the day (step 2). The MAPE selected
by the authors for the review analysis, despite the undoubted advantage of being able to
be used to easily compare the effectiveness between forecasting models, has a tendency to
average forecasts. Therefore, in future studies, the authors will also use other measures
to assess the quality of forecasts, such as Mean Absolute Error, Mean Absolute Scaled
Error, and Root Mean Square Error, and others as needed. The usefulness of the tested
forecasting models will be assessed, taking into account the seasonality, periodicity, and
ranges of hours during the day. The developed review encompasses an excellent range of
forecasting methods and models that can be used at any time, and the usefulness of each of
them may prove invaluable from the point of view of the needs of the Polish Transmission
System Operator.
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Abbreviations

The following abbreviations are used in this manuscript:

AG Genetic Algorithm (GA)
ANFIS Adaptive Neuro Fuzzy Inference System (ANFIS)
ANN Artificial Neural Network (ANN)
ARIMA Autoregressive Integrated Moving Average
C&RT Classification And Regression Trees
CHAID Chi-Square Automatic Interaction Detection
DEA Data Envelopment Analysis
ea ex ante
GIS Geographic Information System
GPS Global Positioning System
IED Intelligent Electronic Device
FL Fuzzy Logic
MAPE Mean Average Percentage Error
MARSplines Multivariate Adaptive Regression Splines
MLP Multilayer Perceptron
GRM General Regression Model
FGRM Full General Regression Model
NPS National Power System
PSE S.A. Polskie Sieci Elektroenergetyczne S.A. (The Transmission System

Operator in Poland)
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RBF Radial Basis Function
FR Fuzzy Regression
SARIMAX Seasonal Auto-Regressive Integrated Moving Average

with eXogenous Factors
SCADA Supervisory Control and Data Acquisition
WANN Wavelet Artificial Neural Network (AWNN)
SVM Support Vector Machines
WAMS Wide Area Management System
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systemów polskich. In Analiza i Prognoza Obciążeń Elektroenergetycznych; Wydawnictwa Naukowo-Techniczne: Warszawa,
Poland, 1971.
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16. Dobrzańska, I. (Ed.) Wpływ czasu letniego na wykres obciążenia dobowego systemów energetycznych w Polsce. In Analiza i
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2011, 1, 18–24. [CrossRef]
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Elektrotech. 2006, 8, 26–28.

90. Dudek, G. Neuro—Fuzzy approach to the next Day Load Curve Forecasting. Przegląd Elektrotech. 2011, 87, 61–64.
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173. Dudek, G. Analiza podobieństwa obrazów sekwencji szeregów czasowych obciążeń elektroenergetycznych. Przegląd Elektrotech.
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Abstract: The main obstacle against the penetration of wind power into the power grid is its high
variability in terms of wind speed fluctuations. Accurate power forecasting, while making mainte-
nance more efficient, leads to the profit maximisation of power traders, whether for a wind turbine or
a wind farm. Machine learning (ML) models are recognised as an accurate and fast method of wind
power prediction, but their accuracy depends on the selection of the correct hyperparameters. The
incorrect choice of hyperparameters will make it impossible to extract the maximum performance
of the ML models, which is attributed to the weakness of the forecasting models. This paper uses a
novel optimisation algorithm to tune the long short-term memory (LSTM) model for short-term wind
power forecasting. The proposed method improves the power prediction accuracy and accelerates
the optimisation process. Historical power data of an offshore wind turbine in Scotland is utilised
to validate the proposed method and compare its outcome with regular ML models tuned by grid
search. The results revealed the significant effect of the optimisation algorithm on the forecasting
models’ performance, with improvements of the RMSE of 7.89, 5.9, and 2.65 percent, compared to
the persistence and conventional grid search-tuned Auto-Regressive Integrated Moving Average
(ARIMA) and LSTM models.

Keywords: auto-regressive integrated moving average (ARIMA); long short-term memory (LSTM);
Optuna; isolation forest (IF); elliptic envelope (EE); one-class support vector machine (OCSVM)

1. Introduction

Undoubtedly, to accelerate economic growth, power production through renewable
energy sources needs to increase because conventional methods such as using fossil fuels
have irreparable consequences, including pollution, climate change, and the depletion of
the ozone layer [1].

In recent decades, various renewable energies, such as wind, solar, waves, etc., have
received increasing attention. Among all these energies, wind power has played the most
important role in replacing fossil fuels [2]. As reported by the World Wind Energy Council,
the installed global capacity of wind energy in the world in 2021 has reached 837 GW, with
an increase of 92 GW compared to 2020 [3]. Figure 1 shows the global wind power installed
capacity increment over the past 21 years [3]. In this figure, the blue columns represent the
capacity of installed wind power on land, while the red columns represent the offshore
installed wind energy.

One main obstacle hindering the increase of wind power penetration into the power
grid is the production uncertainty due to fluctuations in wind speed [1]. Therefore, adequate
planning in electricity distribution to meet consumers’ demand, determining the best time
for operation and maintenance, and the fairest pricing on the market requires accurate
wind power forecasting in the upcoming time steps.

Energies 2022, 15, 6919. https://doi.org/10.3390/en15196919 https://www.mdpi.com/journal/energies
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Figure 1. Global wind power installed capacity increment during the last 21 years [3].

Hanifi et al. [1] categorised wind power forecasting into three main methods, including
physical, statistical, and hybrid approaches. Physical methods utilise numerical weather
prediction (NWP) data, wind turbine geographic descriptions, and weather information to
predict wind power [1]. These methods are computationally complex and very sensitive
to initial information [2]. On the other hand, statistical methods work based on building
an accurate mapping between input variables (such as NWP data, historical data, etc.)
and target variables (wind speed or wind power). These methods include two main
approaches: time-series-based methods and machine learning (ML) approaches [1]. Time-
series-based methods can predict wind speed or wind power based on the history of
the predicted variable itself. They can recognise the concealed random features of wind
speed and are used for very short-term (minutes to a few hours) forecasting. The Auto-
Regressive Integrated Moving Average (ARIMA) model proposed by Box–Jenkins [4] is
one of the common statistical methods which is used in various research. For example,
in Western Australia, Yatiyana et al. [5] applied the ARIMA model for wind speed and
direction forecasting. They proved that their proposed model could predict wind speed
and direction with a maximum of 5% and 16% error, respectively. Firat et al. [6] proposed
an autoregressive (AR) wind speed prediction model for a wind farm in the Netherlands.
They used six years of hourly wind speed and achieved a high accuracy for 2–14 h ahead.
In another study, De Felice et al. [7] applied 14 months of temperature readings in Italy
to train an ARIMA model for electricity demand prediction. Their proposed method
demonstrated higher accuracy, particularly in hot locations, compared with persistence
methods. Duran et al. [8] proposed a method to combine AR and exogenous variable (ARX)
models to predict the wind power generation in a wind farm located in Spain up to one
day in advance. They used different model orders and training periods to prove that the
application of the AR models presents lower errors than a persistent model. Kavasseri
et al. [9] examined the application of fractional ARIMA models to predict wind farm
hourly average wind speed for one- and two-day-ahead time horizons. The results of
the predictions showed a 42% improvement compared to persistent methods. Later, the
predicted wind speeds were applied to the power curve of an operating wind turbine to
predict the relevant wind powers. In another study, Torres et al. [10] used the ARMA and
the persistence model for hourly average wind speed forecasting up to 10 h ahead. The
ARMA model demonstrated a better performance compared to the persistence method,
with a 12% to 20% lower root mean square error (RMSE) when forecasting 10 h in advance.

ML methods such as neural networks (NNs) can establish deductive models by learn-
ing dependencies between input and output variables. These methods are easy to create, do
not require further geographic information, and can predict over longer timeframes. One of
the common ML methods is the LSTM model, which can address the long-term dependency
issues [11], which is important in forecasting time-series with long input sequences [12].
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LSTM is variously used in research for wind power prediction. For instance,
Zhang et al. [13] proposed an LSTM wind power forecasting model for three wind tur-
bines of a wind farm in China. They utilised three months of wind speed and historical
power data and achieved the highest forecasting accuracy in a one-to-five time-steps ahead
compared to the radial basis function (RBF) and deep belief network (DBN). Fu et al. [14]
demonstrated LSTM and gated recurrent unit (GRU) for a one-to-four step-ahead fore-
casting of a 3 MW wind turbine in China, based on the first three-month dataset of 2014,
with a resolution of 15 min. The comparison with ARIMA and support vector machine
(SVM) methods showed the superiority of their proposed methods. Cali and Sharma [15]
proposed an LSTM-based model with one hidden layer for 1 to 24 h ahead of wind power
forecasting. The model was trained with 9-month data and evaluated in the last three
months of 2016. They used nine combinations of input data, including wind speed at
various levels, wind direction, temperature, and surface pressure. They demonstrated that
temperature, wind speed, and direction positively impacted model performance; however,
adding surface pressure to the input features led to worse performance.

As well as the training data, ML models’ accuracy strongly depends on the adequate
selection of their parameters and hyperparameters. The parameters of ML models (e.g.,
the weights of each neuron) are determined during the training process of the algorithm.
In contrast, hyperparameters are not directly learnt by the learning algorithm and need
to be specified outside the training process. The main role of the hyperparameters is to
control the capacity of the models in learning dependencies. They also prevent overfitting
and improve the generalisation of the algorithm. Hyperparameter optimisation or tuning
improves forecasting accuracy and reduces models’ complexity [16].

The literature’s most common hyperparameter tuning methods are the grid search
and random search. Grid search can be used for simple models with a few parameters.
The calculation will be extremely time-consuming by increasing the number of parameters
and expanding the space of the possible configurations [17]. Therefore, researchers usually
consider a narrow range of hyperparameters during the grid search [16]. On the other
hand, a random search algorithm looks randomly for a set of combinations rather than
searching for better results.

Both these search methods generate all candidate combinations of hyperparameters
upfront and then evaluate them in parallel. Based on the evaluation of all combinations,
the best hyperparameters can be selected. Trying all possible combinations is very costly;
as a result, it is vital to develop advanced techniques to intelligently select which hyperpa-
rameters to assess and then decide where to sample next after evaluating their quality.

The advanced optimisation of the ML-based time-series forecasting models for wind
turbine-related predictions remained untouched. However, a few studies have proposed
methods for optimising ARIMA and LSTM models within other applications than wind
power forecasting. For example, Al-Douri et al. [18] designed a genetic algorithm (GA) to
find the best parameters of an ARIMA model for the better cost prediction of used fans
in Swedish road tunnels, and provided results which proved a significant improvement
in data forecasting. In another study, F. Shahid et al. [19] employed GA to optimise the
window size and neuron numbers of LSTM layers. This approach improved the power
prediction accuracy of wind farms in Europe by up to about 30% compared to existing
methods such as support vector regressors.

As the review of the literature indicates, several examples use linear and nonlinear
regression models for challenges related to predicting wind power. Each study provides
the use of one model type or a comparison of various model types. Nevertheless, without
the tuning and selection of the hyperparameters, it is not possible to obtain their maximum
benefit [16]. This advanced tuning method plays an important role when the hyperpa-
rameter search space grows exponentially, and the use of exhaustive grid search becomes
extremely time-consuming.

This paper proposes a framework for developing accurate and robust ML models
for wind power forecasting. The framework outlines the model development procedure
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from data engineering to precision evaluation and fine-tuning. Furthermore, an advanced
algorithm is utilised to optimise wind power forecasting models to reduce time calculation
costs, as well as to improve accuracy. For the case study, two ML models were selected: the
LSTM model, which is proven to have remarkable prediction performance on time-series-
based models, and ARIMA, a traditional model, for the purpose of benchmarking.

The novelty of this work lies in developing a short-term wind power forecasting model
through an intelligent application of the long short-term memory (LSTM) model, while a
new optimisation algorithm tunes its main hyperparameters. In addition, the distinguished
aspects of the methodology are summarised, based on importance, as follows:

• LSTM is used on a wind power dataset to take advantage of its ability to learn nonstatic
features from nonlinear sequential data automatically.

• The ARIMA model is applied as a forecasting model because of its short response time
and ability to capture the correlations in time series.

• Instead of the trial-and-error method to select the best hyperparameters of the ARIMA
and LSTM forecasting models, which require a great deal of time, grid search is used
to tune both these models.

• The new Optuna optimisation framework is employed to optimise the hyperparam-
eters of the LSTM model, including the number of lag observations, the quantity of
LSTM units for the hidden layer, the exposure frequency, the number of samples inside
an epoch, and the used difference order for making a nonstationary dataset stationary.

• Unlike most previous studies, which is for onshore wind turbines, forecasting assess-
ments have been done for an offshore wind turbine in this study.

• How to deal with the negative values of wind power (which are normally found in
active power observations), in terms of removal or replacement, has been thoroughly
investigated in this study and the results have been discussed.

• After a detailed discussion about the reasons for having outliers, three different
methods, including isolation forest (IF), elliptic envelope (EE), and the one-class
support vector machine (OCSVM), are used to detect and treat them. A comparison
of the results will help researchers to choose the best outlier detection method for
future studies.

• The proposed Optuna–LSTM model is assessed by the comparison of its forecasted
power with actual values and predictions by persistence and ARIMA based on the
RMSE statistical error measure.

The rest of this paper is organised as follows: Section 2 discusses the optimisation
process, the forecasting models, and the studied supervisory control and data acquisition
(SCADA) data. This section includes the steps taken for preprocessing, resampling, and
outlier treatment. Section 3 presents the results of the trained, optimised LSTM model in
terms of model accuracy and the time cost compared to other prediction methods. Finally,
Section 4 summarises the paper’s contributions.

2. Methodology

The proposed procedure of this study is illustrated in Figure 2. At the beginning of this
study, three required features, including the time stamps, wind speeds, and active wind
powers, are selected to improve the computational time. At the next step, negative power
values are removed or replaced. This data preprocessing is followed by resampling the
dataset and removing outliers in three different ways. After finishing the data preprocessing
and providing proper data for forecasting, data predictability and stationarity are assessed
as two important specifications for accurate power forecasting. Afterwards, three different
approaches are employed for forecasting, and their best performance is gained by the
selection of their most appropriate hyperparameters.
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Figure 2. Diagram of applied methodology.

2.1. ARIMA Model

In this study, the standard approach of the Box–Jenkins method [20] was traced for the
ARIMA model development. The ARIMA model is a widely used set of statistical models
for analysing and predicting time-series data [21]. This model can be expressed as [22]:

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + et − θ1et−1 − θ2et−2 − · · · − θqet−q (1)

While φt and θt are coefficients, p, q, and d are the lag number of observations in the
model, the order of moving average, and the degree of difference, respectively. Degree
of difference (d) values greater than 0 imply that the data has been nonstationary but has
become stationary after some degree of difference.

The ARIMA model combines the AR, moving average (MA), and the Integrated (I)
components, which denotes the data substitution with the value of the difference between
its values and the preceding values [23]. The forecasting accuracy of the ARIMA model
depends on selecting the most appropriate combination of p, d, and q. Normally, for small
data sets, the autocorrelation function (ACF) and partial autocorrelation function (PACF)
can be used to determine which AR or MA component should be selected in the ARIMA
model [24].

These two factors, which can be graphically plotted, are widely used elements in
analysing and predicting time-series. They highlight the relationship between an obser-
vation and the observations’ value at prior time steps. The difference between ACF and
PACF is that, in PACF, while assessing the relationship between observation of two time
steps, the relationships of the intervening observations are removed. Figure 3a,b show the
observations’ ACF and PACF plots. An appropriate ARIMA model can be selected based
on the simple explanations in Table 1 [9], and the value of d (degree of difference) depends
on the number of differencing until the data is stationary.
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(a) (b)

Figure 3. ACF (a) and PACF (b) plots for generated power of LDT. The blue points represent the
value of autocorrelation and partial autocorrelation of different time lags.

Table 1. ACF and PACF application for statistical model selection.

Model Autocorrelation Partial Autocorrelation

AR (p) Tails off gradually Cuts off after p lags
MA(q) Cuts off after q lags Tails off gradually

ARMA (p, q) Tails off gradually Tails off gradually

The ARIMA model forecasting steps after resampling and outlier treatment can be
seen in Figure 4. The first step is assessing the stationarity of the time-series. Stationary is
one of the assumptions during time-series modelling, which shows the consistency of the
summary statistics of the observations.

Figure 4. Flowchart of ARIMA and LSTM wind power forecasting models.

When a time-series is stationary, it means that the statistical properties of the time-
series (such as mean, variance, and autocorrelation) do not change over time. This property
can be violated by having any trend, seasonality, and other time-dependent structures.
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There are two main methods for the stationarity assessment of time-series, the visualisation
approach and the augmented Dickey–Fuller (ADF) test. The visualisation method uses
graphs to show whether the standard deviation changes over time. On the other hand,
the ADF method is a statistical significance test that compares the p-value with the critical
values and does hypothesis testing. This test makes the stationarity of data clear at different
levels of confidence.

Regarding the data used in this study, due to the high number of observations and
wide dispersion, it is not possible to check stationarity through the visualisation method.
Therefore, in this study, the ADF method was used.

The ADF test’s execution provides a p-value which, by comparing it with a threshold
(such as 5% or 1%), can identify the stationarity of the data. Nonstationary data in this step
need to be changed to stationary by methods such as differencing. After ensuring the time-
series is stationary, a persistence method as a baseline is created. Then, through a detailed
grid search, the best hyperparameters for the ARIMA forecasting for each preprocessed
data were found. The last step is ARIMA forecasting and comparing its error with the error
of the persistence method.

2.2. LSTM Model

The recurrent neural network (RNN) is a model in which the connection of its units
creates cycles. RNN has a high ability to represent all dynamics. However, its effectiveness
is affected by the limitations of the learning process. The main limitation of gradient-based
methods that use back propagation is their path integral time-dependence on assigned
weight [13]. When the time lag between the input signal and the target signal increases
to more than 5–10 time-steps, the normal RNN loses the learning ability, and the back-
propagation error either vanishes or explodes. This error elimination raises the question of
whether normal RNNs can show practical benefits for feed-forward networks. To address
this problem, the LSTM has been developed based on memory cells. The LSTM consists of
a recurrently attached linear unit known as the constant error carousel (CEC). CECs, by
keeping the local error backflow constant, mitigate the gradient’s vanishing problem [25].
They can be trained by adjusting both the back propagation over time and the real-time
recurrent learning algorithm [26]. Figure 5 shows the typical structure of the LSTM.

As can be seen, there are three gate units in a basic LSTM cell, including the input,
output, and forget gates. The gate activation vectors of it, ot and ft for input, output, and
forget gates, respectively, are calculated in Equations (2)–(4).

it = σl(Wixt + Uiht−1 + bi) (2)

ot = σl(Woxt + Uoht−1 + bo) (3)

ft = σl

(
Wf xt + Uf ht−1 + b f

)
(4)

In these equations, Wi, Wo, Wf Ui, Uo, and Uf represent the assigned weights, and
bi, bo, and b f represent the biases in conjunction with relevant activation functions σl . In
addition, xt is the neuron input at time step t, and the cell state vector at time step t − 1 is
ht−1. As shown in Equation (5), the next evaluated value of the state S̃t can be calculated
based on the relevant activation function σs.

S̃t = σs(Wsxt + Usht−1 + bs) (5)

In Equation (7), the newly assessed value of S̃t and the prior cell state St−1 are used to
calculate cell state St, which by itself will be used with the output gate control signal ot
and the activation function σlh to obtain the overall output ht according to Equation (8).

St = ftSt−1 + itS̃t (6)

ht = otσlh (St) (7)
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Figure 5. Typical structure of the LSTM.

As can be seen in Equations (6) and (7), the output ht is dependent on the state St of
the LSTM cell and the activation function σlh that is usually tanh (x). The state St depends
on the state of the prior step St−1 as well as the new value of the state S̃t.

In accordance with all the relations mentioned above, the function of the LSTM model
can be concluded as:

• Input gate (it) controls the extent to which S̃t flows into the memory.
• Output gate (ot) regulates the extent to which St gives to the output (ht).
• Forget gate ( ft) controls the extent to which St−1 (i.e., previous state) is kept in the

memory.

Specifying the best LSTM model for wind power forecasting requires the determination
of the neural network’s best combination of hyperparameters. LSTMs have five main
hyperparameters, including the number of lag observations as inputs of the model, the
quantity of LSTM units for the hidden layer, the model exposure frequency to the whole
training dataset, the number of samples inside an epoch in each weight updating, and
finally, the used difference order for making nonstationary data stationary.

2.3. Grid Search for ARIMA and LSTM Models

ARIMA model factors (i.e., p, d, and q) can be estimated through iterative trial and
error by revising the ACF and PACF plot. This part of defining the ARIMA forecasting
model can be very challenging and time-consuming, leading to prediction errors. As a
result, researchers attempt to find these hyperparameters using an automatic grid search
approach. Similar to the ARIMA model, specifying the best LSTM model for wind power
forecasting requires the determination of the best combination of hyperparameters in this
neural network. This study also specified a grid of the LSTM parameters to iterate. An
LSTM model is created based on each combination, and its forecasting accuracy is assessed
by calculating its RMSE.
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2.4. Persistence Method

It is vital to create a baseline for any time-series prediction approach. As a reference,
for comparing all modelling approaches, this baseline can show how well a model makes
predictions. Models which perform worse than the performance level of the baseline can
be ignored.

Benchmarks for forecasting problems need to be very simple to train, fast to implement,
and repeatable. The persistence model is one of the most commonly used references for
wind speed and power prediction (short-term forecasting methods in particular). Based on
the definition of this method, wind power in the future will be equivalent to the generated
power in the present [27], as given by Equation (8):

P̂t+k/t = Pt (8)

where Pt is the measured wind power at time t and P̂t+k/t is the predicted wind power for
the future time k. This model performs better than most short-term physical and statistical
forecasting methods. Therefore, it is still widely used in very short-term prediction [28].
This research uses the persistence model to compare the performance of the ARIMA and
LSTM models for different datasets.

2.5. Hyperparameter Optimisation with Optuna

This study uses the Optuna optimisation method to optimise the forecasting models.
Optuna is an open-source optimisation software with several advantages over the other
optimisation frameworks [29]. Other optimisation tools usually differ depending on the
algorithm used to select the parameters. For example, GPyOpt and Spearmint [30] apply
Gaussian processes, SMAC [31] employs random forests, and Hyperopt [32] uses a tree-
structured Parzen estimator (TPE). These methods have three main drawbacks. Firstly,
they need the parameter search space to be statically defined by the user, a process that is
extremely hard for large-scale experiments with many possible parameters. Furthermore,
they do not have an efficient pruning strategy for high-performance optimisation when
accessing limited resources. In addition, they cannot handle large-scale experiments with
minimal setup requirements. On the other hand, Optuna, with a define-by-run design,
enables the user to create the search space dynamically. This optimisation framework
is an open-source, easy-to-set-up package that benefits effective sampling and pruning
algorithms [29]. Optuna optimises the model through minimising/maximising an objective
function (here, the RMSE of the forecasted wind power rather than the real generated
values) that assumes a group of hyperparameters as input and returns its validation core.
The optimisation process is called a study, and each objective function’s evaluation is called
a trial [29].

At the beginning of the optimisation, the user is asked to provide the search space for
the dynamic generation of the hyperparameters for each trial. Then, the model builds the
objective function by interacting with the trial object. After this step, the next hyperparame-
ter selection is based on the history of previously evaluated trials. This algorithm optimises
ML models in two steps. First, a search strategy determines a set of parameters to be
examined, and second, a performance assessment strategy known as a pruning algorithm
excludes the improper parameters based on the estimation of the value of the currently
investigated parameters [29].

Since the initial prediction accuracy assessment of the ARIMA and LSTM models (both
tuned by grid search) highlighted the better performance of the LSTM model compared to
ARIMA, it was decided to apply the optimisation framework only to the LSTM model.

In this way, the hyperparameter ranges of the LSTM model increased from what
was examined in its grid search to wider ranges, as shown in Table 2. In other words,
the hyperparameter combinations increased from 48 combinations to more than a million
combinations.
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Table 2. Hyperparameter ranges and their total combinations in LSTM–grid search and LSTM–
Optuna methods.

Parameters

LSTM–Grid Search LSTM–Optuna

Values
Possible

Combinations
Values

Possible
Combinations

No. of lag observations (3, 4, 6) 48 (1, 3, 4, . . . , 10) More than 1 M
No. of LSTM units (100, 150) (50, 60, 70, . . . , 300)

Exposure frequency (100, 150) (50, 60, 70, . . . , 300)
No. of samples inside an epoch (100, 150) (50, 60, 70, . . . , 300)

Difference order (0, 1) (0, 1, 2, . . . , 5)

2.6. Wind Power Dataset

The source SCADA data are measured at a 1 Hz frequency from the Levenmouth
Demonstration Turbine (LDT), an offshore wind turbine which is located just 50 m from the
coast at Leven, a seaside town in Fife, Scotland [33]. This wind turbine was acquired by the
Offshore Renewable Energy (ORE) Catapult in 2015, while its construction was completed
by Samsung in October 2013 [34].

ORE Catapult’s wind turbine is a three-bladed upwind turbine installed on a jacket
structure [25]. The turbine is ranked to work at 7 MW, but to decrease the noise, it is limited
to operating at the highest power of 6.5 MW [33]. This turbine’s rotor diameter is 171.2 m,
and its hub height is 110.6 m. Each blade of this turbine measures 83.5 m and weighs 30 tons.
The defined cut-in speed for this turbine is 3.5 m/s, which means its electricity generation
will start when wind speeds reach this speed. It will shut down if the wind is blowing
too hard (roughly 25 m/s) so to prevent equipment damage. Its operating temperature is
between −10 ◦C to +25 ◦C, and it has been designed to work for 25 years [35]. Figure 6
shows the configuration and main parameters of the LDT.

Figure 6. Main parameters and schematic of Levenmouth wind turbine [35].

2.7. Feature Selection

This study recorded the SCADA datasets for five months, from 1 January 2019 to
31 May 2019, at a 1 Hz frequency (with one-second intervals). Each timestamp in this
time-series data includes 574 different observations, including the generated power, wind
speed at different levels, blade pitch angle, nacelle orientation, etc. At the beginning of the
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data processing, a feature selection was carried out to decrease the size of the dataset to
reduce the computation time by excluding unnecessary variables. This process was vital to
making this study possible. All variables except the time stamp, wind speed, and active
power were removed at this stage, which was useless in the ARIMA and univariate LSTM
forecasting methods. Keeping the wind speed variable was vital in this project, as it verified
the accuracy of generated power. For example, failure to generate power when high wind
speeds were recorded was recognised as a stop in power generation due to reasons such as
maintenance. After removing the redundant information, observations of wind speed and
active power were plotted as shown in Figure 7a,b.

(a) (b)

Figure 7. Wind speed observations (a), wind active power observations (b).

The histograms of this dataset for wind speed and active power are presented in
Figure 8a,b, and Table 3 shows their statistical descriptions.

Active power Wind speed

(a) (b)

Figure 8. Histogram of active power (a) and wind speed (b).

Table 3. Statistical descriptions of the SCADA datasets.

Active Power, kW Wind Speed, m/s

Count 1.0 × 107 1.0 × 107

Mean 1.8 × 103 7.6
Standard deviation 2.3 × 103 3.9
Minimum −1.2 × 102 −3.3 × 10−2

25% −6.0 × 10 4.7
Medium 5.9 × 102 7.1
75% 3.2 × 103 1.0 × 10
Maximum 7.2 × 103 3.2 × 10
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2.8. Obvious Outlier Removal

An initial assessment of Figure 7b specified that a large part of the recorded generated
power at the end of this time-series (May 2019) equals zero. Usually, the generated power
of a turbine can be zero when no wind is blown. However, the evaluation of Figure 7a
shows a continuous wind blowing with fluctuations similar to previous months. Therefore,
it is speculated that the turbine was out of production during this period. Based on this
assumption, it was decided that this month (May 2019) should be removed entirely from
the dataset. The time-series after this omission was reduced to four months, from 1 January
2019 to 30 April 2019. A closer look at the active power, as shown in Figure 9, revealed
another obvious error in the SCADA data, the existence of negative values. Negative values
are values of which there is no practical meaning in wind power generation. Shen et al. [36]
believe that these values represent time stamps when turbine blades do not rotate, but the
turbine’s control system needs electricity [36]. These values need to be eliminated along
with the corresponding parameters of the same timestamp for better forecasting results [25].
Since the elimination of these negative values disrupts the time continuity of the time-series,
and can possibly lead to errors in wind power prediction, at this stage it was decided to
create and assess three types of datasets based on different actions against negative values.
Assessment of the impact of these actions on forecasting accuracy became another goal of
this study.

Figure 9. Wind power observations (only power values under 1000 kW are shown). The dotted red
line indicates the power value of zero (the boundary of negative/positive values).

These three preprocessing methods against the negative values are:

• Total elimination of negative values without any substitution;
• Replacement of negative values with the average amount of power in the whole

4-month period;
• Replacement of negative values with positive values of power at the nearest timestamp.

2.9. Resampling

The effect of wind turbulence as one of the obstacles to increasing the wind energy
penetration in energy markets is more significant in horizontal axis wind turbines. This
is because the wind speed and direction change rapidly after hitting swept blade rotors.
Therefore, the amount of wind speed measurements by installed anemometers are not
equal to the speed of the wind flow hitting turbine blades [25]. These differences, which
lead to a decrease in the correlation between the measured wind speed and the output
power, and then scattering of the power curve, can be resolved by averaging the samples in
a reasonable average period [25]. The SCADA data for this study was recorded with a 1 Hz
frequency; as a result, it was possible to create multiple averaged sets for removing the
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mentioned obstacle. According to a review conducted by Hanifi et al. [1], the maximum
sampling rate used for wind speed and power forecasting in the previous research is 10 min.
This is equivalent to an average time that the international standard for power performance
measurements of electricity-producing wind turbines (IEC 61400-12-1) establishes for large
wind turbines [37]. Based on the IEC 61400-12-1 and reviewed literature, the data presented
here was averaged for each 10 min of data collection. Figure 10a,b show the wind power
curves for the original and 10 min resampled data.

(a) (b)

Figure 10. Wind power curves. (a) Original 1s data (b) and 10 min resampled data.

2.10. Anomalies Detection and Treatment

Outliers in a dataset are specific data points that are different or far from most other
regular data points [38]. Undetected or improperly treated anomalies can adversely affect
wind power forecasting applications. They may be biased with high prediction errors [38].

There are various reasons for having outliers among wind turbine and wind farm
measurements, including wind turbine downtime [36], data transmission, processing or
management failure [39], data acquisition failure [40], electromagnetic disturbance [36],
wind turbine control system fault (such as the pitch control system fault) [41], damage
of the blades or the existence of ice or dust [42], shading effect of neighbouring turbines,
fluctuation of air density [43], etc.

Figure 11 shows four different types of anomalies in the current SCADA data. Category
A points have negative, zero, or low values of generated power during speeds larger
than the cut-in speed [25]. The leading causes of these outliers are wrong wind power
measurements, wind turbine failure, and unexpected maintenance. Wind speed sensors
and communication errors cause category B outliers. The mid-curve outliers (category C)
represent power values lower than ideal—this is caused by the down-rating of the wind
turbines and data acquisition. Outliers in category D are scattered irregular points due to
faulty sensors exacerbated during harsh weather circumstances [36].

There are different methods for anomaly detection in machine learning, such as
Density-Based Spatial Clustering of Applications with Noise (DBSCAN), IF, local outlier
factor, and EE. In this study, three common methods for wind power forecasting are
investigated. EE is used based on the assumptions described in [44]. IF, which is an
unsupervised learning algorithm, recognises anomalies by isolating them in the data.
This algorithm works based on two main features of anomalies, that they are few and
different. The one-class support vector machine (OCSVM) is a common unsupervised
learning algorithm for outlier detection, assuming rare anomalies create a boundary for
most data, and considering data points out of the boundary as outliers [45]. This method of
outlier detection and treatment chose the third method.
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Figure 11. Observed anomalies coupled with the power curve of the 1 Hz original data. (A) Low
power output in high wind speeds in turbine failure cases; (B) Outliers due to the wind speed sensor
and communication errors; (C) Power outputs less than the rated power as a result of the turbine’s
down-rating; (D) Scattered outliers caused by sensor malfunctions or noise in signal processing.

3. Experimental Results and Discussion

This research employs packages and subroutines written in Python to implement the
proposed algorithms. A PC with an Intel Core i5–7300 32.6 GHz CPU and 8 GB RAM
(without any GPU processing) was used to run the experiments. Three outlier detection
methods, which were described in Section 2.8, were used to detect and remove the outliers
of the resampled dataset. The results of these treatments can be seen in Figures 12–14:

Figure 12. Elliptic envelope application for outlier detection and treatment. The blue points represent
the normal data, and the red represents the detected anomalies.

This study considers six different preprocessing methods based on applying three
different outlier detection methods and three approaches against the negative power values
(Table 4). Different cases of preprocessed data are fed to the ARIMA and LSTM forecasting
models. The grid search method is applied for the initial hyperparameter tuning; Table 4
shows the selected hyperparameters for the ARIMA and LSTM models. As expected, the
values of the hyperparameters vary depending on the different employed preprocessing
methods (Table 4).
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Figure 13. Isolation forest application for outlier detection and treatment. The blue points represent
the normal data, and the red represents the detected anomalies.

Figure 14. OCSVM application for outlier detection and treatment. The blue points represent the
normal data, and the red represents the detected anomalies.

Table 4. Best ARIMA and LSTM hyperparameters resulting from the grid search.

Case Data Preprocessing Approach
ARIMA

Hyperparameters
LSTM

Hyperparameters

Case 1 Negatives replaced by mean *; Outliers
not removed (2, 0, 1) (3, 100, 100, 150, 0)

Case 2 Negatives replaced by nearest positive value
*; Outliers not removed (1, 1, 1) (6, 100, 150, 150, 0)

Case 3 Negatives removed; Outliers not removed (1, 0, 2) (3, 100, 150, 150, 0)

Case 4 Negatives removed; Outliers removed by
EE method (1, 1, 3) (3, 100, 100, 150, 0)

Case 5 Negatives removed; Outliers removed by
IF method (3, 1, 1) (3, 150, 150, 150, 0)

Case 6 Negatives removed; Outliers removed by
OCSVM method (1, 1, 3) (3, 150, 150, 150, 0)

*: Mean value has been calculated after removing negative values.

After selecting the best ARIMA and LSTM prediction methods, both models were
trained by the first 95% part of the dataset (as training data) to make predictions for the
last 5% of the dataset. The predicted values were compared with the measured values to
determine the RMSE of each forecasting process. Table 5 provides the RMSE values of the
ARIMA, LSTM, and persistence methods.
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Table 5. RMSE values of persistence, ARIMA, and LSTM models for six different treated case data.

Data 1 Data 2 Data 3 Data 4 Data 5 Data 6

Negative values Mean 1 Nearest
Positive 2 Removed Removed Removed Removed

Outliers Not
removed Not removed Not removed EE

removed
IF

removed
OCSVM
removed

Persistence 636.3 720.5 830.5 512.7 509 566

ARIMA 622.8 713 813 505.3 503.3 559

LSTM 626 695.8 785 501.5 497.5 550.6
1 Replaced by mean value calculated after removing negative values. 2 Replaced by nearest positive value.

Comparing the RMSE values of all three models (Table 5) for case data 1, 2, and
3 clarifies that the complete elimination of the negative values (without any replacement)
will lead to worse forecasting. The highest RMSE value of case 3 means that removing
the negative values will decrease the forecasting accuracy. One of the reasons for this
performance drop can be the creation of discontinuity in the dataset.

Regarding the best specific value to be considered instead of negatives, a comparison
of case data 1 and 2 proves that replacing the negative values with the average wind power
values has a better impact than replacing them with the nearest (neighbour) positive value.
Replacing the negative values with the average values can lead to about a 15% forecasting
improvement for ARIMA and 11% for the LSTM models.

The results also highlight the importance of dealing with outliers in wind power
forecasting. Cases 4, 5, and 6, representing the outlier removed data, show a significant
enhancement of the accuracy rather than the other cases, without any action against the
anomalies. Comparing the error levels of case data 3 with cases 4, 5, and 6 (for both ARIMA
and LSTM models) shows a 30% to 38% forecasting improvement by the elimination
of the outliers, either by isolation forest, elliptic envelope, or the one-class SVM outlier
detection methods.

The assessment of the RMSE values of cases 4, 5, and 6 show that the IF and EE
outlier detection methods overcome the OCSVM method. An elliptic envelope can improve
forecasting performance up to 9.61% and 8.92% rather than OCSVM for ARIMA and LSTM
methods. This performance enhancement can reach 9.96% and 9.64% for ARIMA and
LSTM, respectively, by applying the isolation forest.

As shown in Table 5, the ARIMA and LSTM methods for all the treated case data have
better performances than the persistence methods. This is understandable if one remembers
that, in the persistence method, only one preceding step data is used for forecasting, whilst
the ARIMA and LSTM models consider a more extensive range of prior data.

It is also clear that the LSTM performs better than the ARIMA almost for all approaches
against the negative values and outliers. This is probably due to the fact that LSTMs are
better equipped to learn long-term correlation. In addition, the LSTM can better capture
the nonlinear dependencies between the features.

In this study, because of the better prediction performance of the LSTM model com-
pared to the ARIMA model, the proposed optimisation algorithm is applied to the LSTM
model to tune its hyperparameters even more. As discussed in Section 2.5, the hyperparam-
eter ranges of the LSTM model are increased from what was examined in its grid search to
the wider ranges shown in Table 2.

The six preprocessed case data are again divided into the first 95% as the training
dataset and the rest 5% as the test data. These divisions were developed to establish the
same conditions and logically compare the new and previous methods. The developed
optimisation algorithm, with the two described strategies, including search and pruning,
started the selection of different combinations to minimise the RMSE value. Table 6 shows
the new hyperparameters found by the Optuna optimisation algorithm, and Figure 15
shows the measured power values of the turbine and prediction results of all the forecasting
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methods, including ARIMA, LSTM–grid, and LSTM–Optuna, for one of the datasets (data
4—removed negative values and removed outliers with the EE method).

Table 6. Best LSTM hyperparameters resulted from Optuna optimisation.

Case Data Preprocessing Approach LSTM Hyperparameters

Case 1 Negatives replaced by mean *, Outliers not removed (9, 190, 230, 130, 0)
Case 2 Negatives replaced by nearest positive value *, Outliers not removed (8, 60, 270, 170, 0)
Case 3 Negatives removed; Outliers not removed (3, 120, 120, 160, 0)
Case 4 Negatives removed; Outliers removed by EE method (6, 180, 180, 180, 0)
Case 5 Negatives removed; Outliers removed by IF method (4, 260, 120, 280, 0)
Case 6 Negatives removed; Outliers removed by OCSVM method (2, 130, 280, 90, 1)

*: Mean value has been calculated after removing negative values.

Figure 15. Comparison of measured wind power and forecasted values by ARIMA, LSTM–grid, and
LSTME–Optuna models for data 4 (removed negative values and removed outliers with EE method).

As can be seen in Figure 15, the LSTM model optimised by Optuna can predict more
accurately by better learning the wind power’s short-term and long-term dependencies.
The diagram illustrated in Figure 16 is plotted to better compare the error levels of the
different wind power forecasting methods. It can be recognised from this diagram that the
LSTM–Optuna approach follows rules similar to the ARIMA and LSTM–grid models. To
achieve a higher prediction accuracy, it is essential to eliminate the outliers and replace the
negative power values with the average wind power value.

Building the LSTM models based on the new values of the hyperparameters, as shown
in Table 6, improves the prediction accuracy of the LSTM model in a range from 1.22% to
2.65% for different cases of preprocessed data. These accuracy improvements can be seen
in Table 7.

The results show that the highest accuracy improvement is related to case 5, a case
in which negative values were replaced with the mean power value and the outliers were
removed through the IF method. A comparison of the required search times to find the
best combination of the hyperparameters in LSTM–grid and LSTM–Optuna proves the
faster performance of the proposed method, as it spends from 13.79% to 20.59% less time
adjusting the model for the most accurate prediction (Table 8).
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Figure 16. Error comparison of persistence, ARIMA, LSTM, and LSTM optimised by Optuna fore-
casting methods.

Table 7. A comparison of RMSE, the LSTM–grid search, and LSTM–Optuna methods.

Predictive Model Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

LSTM tuned by grid search 626 695.8 785 501.5 497.5 550.6
LSTM optimised by

Optuna 617.8 687.3 765 492.4 484.3 540.8

Accuracy improvement 1.31% 1.22% 2.55% 1.81% 2.65% 1.78%

Table 8. A comparison of the required tuning time of the LSTM–grid search and LSTM–Optuna methods.

Predictive Model Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

LSTM tuned by grid search 680 660 290 396 380 340
LSTM optimised by Optuna 540 530 250 340 320 280

Spent time improvement 20.59% 19.70% 13.79% 14.14% 15.79% 17.65%

4. Conclusions

This study addresses issues regarding inaccurate wind power prediction using ML
approaches. As discussed in the reviewed literature, most previous research applied ML
without advanced model optimisation. At the same time, in this paper, a novel concept
of Optuna–LSTM is reported to expedite the process of selecting the hyperparameters
and tuning the wind power forecasting models. This model not only reduces the time
complexity of creating reliable models, but also improves the accuracy of the predictions.

To accurately evaluate the proposed model, SCADA data of an offshore wind turbine
was preprocessed by eliminating its negative values and outliers to help find the best
preprocessing method. The performance of the proposed forecasting was demonstrated
through comparisons with the persistence, ARIMA, and LSTM models, which were already
tuned by grid search. This comparison proved the better performance of the proposed
model, with a range up to 7.89, 5.9, and 2.65 percent compared to the persistence and
conventional grid-search-tuned ARIMA and LSTM models.

This study also highlights the importance of eliminating negative values in the power
recordings. The results of this study confirmed that replacing the negative values with the
average power value has the most positive effect on the forecasting accuracy. In addition,
comparisons between several data cases showed the significant impact of the outlier
treatment methods on the forecasting performance. The results proved that removing the

274



Energies 2022, 15, 6919

outliers by the isolation forest method improves the forecast accuracy compared to the
elliptic envelope and OCSVM methods. This novel forecasting method combining the
capacity of the LSTM model in the prediction of nonlinearities and the optimisation tool for
better tuning the hyperparameters can be used for different time-series-based predictions.
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Nomenclature

Latin symbols
bi, bo, b f LSTM model biases
d degree of ARIMA differencing
ft LSTM forget gate
ht LSTM overall output
it LSTM input gate
ot LSTM output gate
p order of autoregressive
Pt measured wind power at the time t
P̂t+k/t predicted wind power for the future time k
q order of moving average model
Ui, Uo, Uf LSTM assigned weights
Wi, Wo, Wf LSTM assigned weights
ht−1 cell state vector at time step t − 1
xt neuron input at time step t
Xt forecasted wind power
Greek symbols
σl activation function
σs activation function
φt ARIMA model coefficient
θt ARIMA model coefficient
Abbreviation
ACF autocorrelation function
ADF augmented Dickey–Fuller
ANN artificial neural network
AR auto-regressive
ARMA Auto-Regressive Moving Average Model
ARIMA Auto-Regressive Integrated Moving Average
ARX Auto-Regressive with Exogenous variable
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BP back propagation
BPNN back propagation neural network
CEC constant error carousel
DBN deep belief network
DGF double Gaussian function
EE elliptic envelope
FFNN feed-forward neural network
IF isolation forest
LDT Levenmouth Demonstration Turbine
LSTM long short-term memory
MA moving average
MAE mean absolute error
MSE mean square error
NN neural network
NWP numerical weather prediction
ORE offshore renewable energy
PACF partial autocorrelation function
RBF radial basis function
RMSE root mean square error
RNN recurrent neural network
SCADA Supervisory Control and Data Acquisition
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Abstract: Many authors have reported the use of deep learning techniques to model wind power
forecasts. For shorter-term prediction horizons, the training and deployment of such models is
hindered by their computational cost. Neuromorphic computing provides a new paradigm to
overcome this barrier through the development of devices suited for applications where latency
and low-energy consumption play a key role, as is the case in real-time short-term wind power
forecasting. The use of biologically inspired algorithms adapted to the architecture of neuromorphic
devices, such as spiking neural networks, is essential to maximize their potential. In this paper, we
propose a short-term wind power forecasting model based on spiking neural networks adapted to the
computational abilities of Loihi, a neuromorphic device developed by Intel. A case study is presented
with real wind power generation data from Ireland to evaluate the ability of the proposed approach,
reaching a normalised mean absolute error of 2.84 percent for one-step-ahead wind power forecasts.
The study illustrates the plausibility of the development of neuromorphic devices aligned with the
specific demands of the wind energy sector.
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1. Introduction

A large number of machine learning (ML) and deep learning (DL) models have been
developed and applied to time series data of a varied nature for tasks such as forecasting [1],
classification [2], and clustering [3]. This trend has been also been observed in the field
of wind power forecasting (WPF) [4], particularly the use of artificial neural networks
(ANNs) [5], which are usually trained with the backpropagation algorithm [6]. Recurrent
neural networks, such as the gated recurrent unit (GRUs) [7] and long short-term memory
(LSTM) neurons [8], can learn temporal features on wind data, whereas convolutional
neural networks (CNNs) capture spatial ones [9]. Other ML algorithms that have been
applied in the literature are support-vector machines [10], random forests [11], gradient
boosting machines [12], and neuro-fuzzy models [13,14]. DL methods such as deep neural
networks are built by stacking multiple layers between the input and output layers to
extract higher-level features from the data [15]. Deep neural architectures such as deep
belief networks [16], deep convolutional networks [17] and N-BEATS [18] have been applied
in the WPF literature. Furthermore, the abilities of ML/DL as a modelling tool have proven
valuable for solar power forecasting [19] and renewable energy systems [20].

Accurate WPFs can be estimated using ML/DL architectures considering different
types of data collected at a wind farm [21,22]. However, such models may be associated
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with a high computational cost, a critical factor for edge computing [23], including those ap-
plications for renewable energy [24]. For instance, the low latency inherent in neuromorphic
devices can be critical for transmission system operators to manage the grid in real time
and the decision-making process of traders participating in electricity markets, specifically
to correct their positions in intraday markets. Thus, neuromorphic computing provides an
alternative to the computational complexity of ML/DL models [25] with the development
of devices inspired by the energy-efficient nature of biological systems such as the Intel’s
Loihi chip [26]. The architecture of spiking neural networks (SNNs) [27] resemble more
closely biological neurons, and are thus adequate for implementation in neuromorphic
devices to unleash their potential in terms of low latency and lower energy consump-
tion. However, training SNNs remains a challenge, as the well-known backpropagation
algorithm cannot be applied, due to the non-differentiable nature of spikes. The current
approaches to train spiking DL algorithms can be broadly divided into online and offline
approaches [28]. Online approaches first implement an SNN in neuromorphic hardware,
leveraging on-chip plasticity to train the spiking network and evolve its parameters with
the arrival of new data [29]. This approach includes online approximations of the backprop-
agation algorithm [30,31] and evolving SNNs [32]. On the other hand, the SNN is trained
before deploying the model for offline approaches. These can be further divided into two
categories, considering how the training stage is performed. One possibility is to train a
conventional ANN using the backpropagation algorithm, and later map the parameters
into an equivalent SNN model [33]. This approach is known as ANN-to-SNN conversion. Al-
ternatively, a direct training approach uses a variation of error backpropagation to optimize
directly the parameters of an SNN [34].

In addition, the research community has been developing specific software platforms
to implement applications based on SNNs. For instance, Nengo [35] is a software based
on the principles of the Neural Engineering Framework (NEF), a theoretical framework to
implement large-scale neural models with cognitive abilities [36]. This same software was
later extended with the sister library NengoDL [37], aiming to combine the principles of
neuromorphic modelling with the well-known deep learning framework TensorFlow [38]
to build deep spiking neural models by ANN-to-SNN conversion. Alternatively, other
frameworks can directly train SNNs, such as the Spike Layer Error Reassignment (SLAYER)
algorithm proposed by Shrestha and Orchard [39]. Recently, in October 2021, Intel’s Neuro-
morphic Computing Lab released the first version of Lava [40], an open-source software
framework, to implement neuromorphic applications for the Intel Loihi architecture [41].

The SNN features are maximized within the framework provided by neuromorphic
computing. However, no study has realistically attempted to model short-term WPFs using
SNNs while considering the current computational abilities of neuromorphic devices to
date. We have to remember that neuromorphic computing is still in its infancy, so the
goal is to reach an acceptable level of performance to build up our knowledge regarding
the implementation of spiking-based models in WPF, and not to outperform the current
well-established neural network models [28]. Therefore, we propose a SNN model for short-
term WPF, adapted to the hardware capacity of the current state-of-the-art neuromorphic
devices, particularly the neuromorphic chip Loihi developed by Intel. The aim of this study
is not solely constrained to achieving highly accurate WPFs, but also to efficiently design
WPF models that leverage the neuromorphic processors’ power efficiency. The proposed
forecasting approach was designed by applying the modelling framework provided by
NengoDL to build spiking neuron models, and NengoLoihi, a complementary library, to
implement such models on Loihi hardware.

The rest of this paper is structured as follows. Section 2 describes the ANN-to-SNN
conversion method used to train spiking neural networks, as well as the spiking model
architecture tailored to Loihi hardware. Section 3 presents a case study using this method-
ology for short-term WPF, using real data from an Irish wind farm. Section 4 contains the
concluding remarks and the scope for future research work.
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2. Methodology

NengoDL [37] is a modelling framework that includes tools to design biological
neuronal models and the optimization methods used to train ML/DL models. Such op-
timization methods are usually incompatible with SNNs, as spikes are not differentiable.
NengoDL links SNNs and these optimization methods by performing the necessary trans-
formations to apply the ANN-to-SNN conversion method proposed by Hunsberger and
Eliasmith [42], which allows for the use of a rate-based version of the spiking model in the
training stage and the SNN for inference. The design of this rate-based approximation is
key to successfully mapping its parameters into a spiking network, so the parameters of
the network must be carefully tuned to ensure a minimal loss of performance during the
conversion, and the architecture of the model must be tailored to subsequently build the
network on Loihi hardware. Typically, six steps were followed to build and evaluate the
performance of our proposed SNN model within the framework provided by NengoDL,
as follows:

1. Build the non-spiking neural model as usual. The network must be designed consid-
ering the specific requirements for its implementation on Loihi hardware, such as the
communication with the chip.

2. Train the equivalent rate-based network with the methodology described by Huns-
berger and Eliasmith [42], the default method implemented in NengoDL to train
SNNs.

3. Replace the activation functions with their spiking counterparts. We used spiking Rec-
tified Linear Unit (ReLU) activations for the inference process. The activation profile of
this function is restricted by the discretization required for the Loihi chip [43], leading
to discrepancies compared to the theoretical spiking ReLU activation (Figure 1). Such
discrepancies increase for higher firing rates due to this discretization. Furthermore,
the Loihi chip can only fire a spike once per timestep, limiting its firing rate at a
maximum of 1000 Hz. This constraint does not exist otherwise, and multiple spikes
could, in theory, be fired simultaneously and exceed that value [44].

4. Run the network using the NengoDL framework, setting parameters such as the
number of timesteps that each input will present to the spiking model, allowing for
the network to settle and spike in the given timeframe, and the firing rate scale, letting
the network spike at a higher rate. These preliminary results will help us monitor the
neural activities and tune the parameters of the SNN.

5. Once an acceptable model performance is reached, we need to configure some addi-
tional parameters to set up the SNN for Loihi and simulate it for either Loihi hardware
or the emulator [45] to replicate the chip’s behavior. This is achieved with the extra
functionalities provided by the library NengoLoihi.

6. Collect the results to evaluate them. One-step ahead point predictions are calculated,
and normalized mean absolute error (NMAE) [46] is the metric used to measure the
accuracy of these forecasts.

In the remainder of this section, we introduce how the ANN-to-SNN conversion is
performed and the model architecture chosen to forecast wind power.
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Figure 1. Spiking ReLU activation profile (based on DeWolf et al. [43]).

2.1. ANN-to-SNN Conversion

The non-differentiable nature of spikes impedes the use of the backpropagation algo-
rithm to train spiking neurons [47]. ANN-to-SNN conversion sorts this out by mapping
the parameters of a trained ANN to an equivalent SNN. Thus, the main challenge is how
to train the non-spiking model so that there is only a small loss of performance in the
conversion process. The first point is choosing an adequate spiking activation function.
Cao et al. [48] established an equivalence between the ReLU activation function [49] and
the spiking neuron’s firing rate. The ANN-to-SNN conversion method implemented in
NengoDL was proposed by Hunsberger and Eliasmith [42]. This method is valid for both
linear (such as ReLU) and non-linear activation functions such as leaky integrate-and-fire
(LIF) by smoothing the equivalent rate equation employed to train the ANN. To understand
this, let us look at the equation governing the dynamics of an LIF neuron:

τRC
dv(t)

dt
= −v(t) + I(t) (1)

where τRC is the membrane time constant, v(t) is the membrane voltage, and I(t) is the
input current. The neuron will fire a spike if it reaches a certain threshold V and after the
potential is reset during a certain period of time (known as refractory period τre f ). The
dynamics of the neuron are recovered after the refractory period τre f is ended. If a constant
input current is given to the neuron, the steady-state firing rate (i.e., the time that it takes to
the neuron to reach the threshold to fire a spike) can be determined as:

r(j) =
[

τre f + τRC log(1 +
V

ρ(j − V) )
]−1

(2)

where ρ(x) = max(x, 0). However, this function is not completely differentiable, so the LIF
rate equation is softened to address this problem and allow for use of the backpropagation
algorithm [42]. The hard maximum ρ is replaced by a soft maximum ρ′ defined as:

ρ′(x) = γ log(1 + ex/γ) (3)

After training the conventional ANN, the parameters of the SNN are identical to its
non-spiking counterpart, with only the neurons themselves changing. The performance of
the spiking network can be further enhanced by tuning additional parameters. For instance,
if using a linear activation function for the spiking forecasting model, the spiking firing
rate can easily be increased after training by applying a scale to the input weights of the
neurons to make them spike at a faster rate. The output of the network is divided for the
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same scale to not affect the behavior of the trained network. This way of proceeding is
not optimal for non-linear activation functions. Instead, the firing rates can be optimized
during training with regularization, so the firing rates are encouraged to spike at a certain
firing rate [43]. Furthermore, a synaptic filter can be applied to reduce any possible noise
found in the output of the spiking network.

2.2. Spiking Model Architecture

The model architecture (Figure 2) is slightly different to conventional ANNs, as it has
to be adapted to the requirements of the Loihi hardware. The first distinctive feature of this
network is the off-chip layer. This layer is a prerequisite to transmitting any information
with the hardware, as it only communicates with spikes. Thus, this initial layer is run
off-chip and converts the input into spikes [44]. The rest of the network is run on the
hardware. A convolutional (conv-layer) and a regular fully connected layer (dense-layer) are
used to process the data and generate the forecast. The convolutional layer is constituted
by filters in the form of convolutions:

( f ∗ g)(t) =
∫ ∞

−∞
f (τ)g(t − τ)dτ (4)

where ( f ∗ g) indicates the convolution between the functions f and g, in which the function
f can be considered as a filter or kernel and g as the input data. On the right hand side,
g(t − τ) indicates that the input data g are reversed and shifted to a certain time t. It is
important to notice that not all types of neural networks are currently available in this ANN-
to-SNN conversion framework (e.g., LSTM neurons are not supported). The activation
function of all these three layers will be a spiking ReLU activation for inference. The
equivalent ANN used during training follows the same architecture, including the off-chip
layer, although it only behaves as a regular convolutional layer in this case. ReLU activation
functions are used instead during the training stage.

Following up on our previous work [46,50], this model architecture is applied to
10-min resolution wind power data. The data used in this paper were collected for a
wind turbine of a site located in Ireland (the exact location cannot be disclosed due to
confidentiality reasons) for a two-year-and-a-half period (from January 2017 to June 2019).
As input, the model uses previous wind power observations to provide the one-step-ahead
forecasts as the output.

The wind power data were preprocessed using the variational mode decomposition
(VMD) algorithm [51]. In particular, the data were decomposed into 8 subseries (known as
modes) with different levels of complexity [52], giving us the opportunity to examine and
adapt the SNN architecture under varied conditions. The forecasts of each mode were later
aggregated to subsequently estimate the WPF [53].
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Figure 2. SNN model architecture.

3. Results

First, examples using a synthetic sine wave signal and load data are given to clarify
some details of the steps that need to be followed to successfully convert an ANN model
into a spiking one. Later, a case study is presented using data from an Irish wind farm.

3.1. Synthetic Signal Forecasting

Before applying the methodology to wind power data, let us present an example with a
more simple signal (a synthetic sine wave) to clarify and further explain the details of tuning
the parameters to achieve a good performance with the spiking network. For simplicity,
the example using this signal was run within the NengoDL framework, so any additional
parameters used to implement the model on Loihi hardware can be dismissed (such as
the off-chip layer); therefore, a basic feedforward neural network (FFNN) model was used
instead of the previously described model architecture, which suffices to accurately predict
such a basic signal.

During the initial evaluation of the spiking network model (Steps 3 and 4), considering
the discretization of the activation function required for Loihi hardware is of importance
to posteriorly transfer our model without a significant drop in performance. Therefore,
we must be particularly careful when scaling the firing rate of the spikes, as very high
rates will not work on Loihi hardware. Let us examine the implications of disregarding
this point with the example shown in Figure 3: we build the FFNN model (Step 1) and
train it with a rate-based (i.e., non-spiking) ReLU activation (Step 2). Then, we replace
the activation for its spiking counterpart, scaling the firing rate with a high enough value
(Step 3). The neural activities of three neurons when presenting an input are shown in
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Figure 3a,b, having replaced the ReLU activation function with the theoretical spiking
ReLU and the discretized version with Loihi, respectively. Two of these neurons (shown
in green and yellow) fire very fast in the first case, but their behavior is diminished in the
second one due to the activation profile, impacting the performance of the model when
all the input vectors conforming with the testing set are presented to the network (Step
4), as displayed in Figure 3c). Thus, the firing rate of this network should be lowered to
satisfy the hardware specifications required in the following steps to implement the model
on neuromorphic devices.

Figure 3. (a) Neural activities using a spiking ReLU activation for inference (one input vector is
shown to the network during 50 timesteps), (b) neural activities using the discretized version of the
spiking ReLU activation, and (c) predictions over the testing set.

The tuning of the firing rate scale, as well as the amplitude of the spikes, are essential
to achieve a good forecasting accuracy while simultaneously trying to find a balance
between the firing rates (enough spikes must be generated to transmit the information to
the network) and the sparsity of spiking networks (leveraging the promise of low energy
consumption by neuromorphic devices). Following the same example, let us a fix a certain
spiking amplitude and experiment with different firing rate scales to find this trade-off,
considering the Loihi-tailored spiking ReLU activation. The neural activities of the same
three neurons are shown in Figure 4a for a scale of 1 (i.e., keeping the same input weights
as the original SNN), in Figure 4b for a scale of 5 (a linear scale of 5 is applied to the inputs
of the neurons), and in Figure 4c using a scale of 50. As expected, the spikes fire much
faster when increasing this parameter, with the spikes being almost indistinguishable in the
latter case, thus reducing the sparsity of this network. Between the neural activities shown
in Figure 4a,b, the mean firing rates are low (6 and 30.9 Hz) and show a more sparse firing
rate, meaning that both are, in principle, better-suited to this application. The preliminary
results computed within NengoDL (Figure 4d) indicate that a scale of 5 provides a slightly
better performance, being the most adequate value for this parameter. Naturally, tuning
these parameters is a harder task when dealing with more complex data and more complex
spiking architectures, as we will see in the following section.
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Figure 4. (a) Neural activities setting an amplitude = 0.01 and a firing rate scale = 1, (b) Neural
activities setting an amplitude = 0.01 and a firing rate scale = 5, (c) Neural activities setting an
amplitude = 0.01 and a firing rate scale = 50, and (d) predictions over the testing set.

3.2. Load Forecasting

Let us set another example using real data to calculate one-step ahead forecasts. In par-
ticular, short-term load forecasting is of interest due to its close relation with WPF, as both
are necessary to operate and maintain the stability of the electrical grid [54]. Furthermore,
load demand data show regular daily and weekly patterns, which are not observed in wind
power data [55], so a model architecture formed of CNNs is a good candidate to extract
such features [56]. Records of aggregated hourly demand data from Ireland can be found
on the European Network of Transmission System Operators for Electricity (ENTSO-E)
website [57]. The available measurements were recorded between 2016 and 2018.

As usual, we built and trained the rate-based equivalent of the model, and subse-
quently the activation functions were replaced. Then, the spike parameters were tuned
without specifying any hardware requirements, and we monitored the initial results to
choose the best values for these parameters. Some of these initial forecasts are shown in
Figure 5. The existing patterns in load data were captured by the model, and adjusting
the spikes’ parameters is fairly straightforward. The dashed red line (obtained using an
amplitude of 0.05 and a firing rate scale of 50) more closely matches the test data than
the rest, so these values were chosen for its implementation on Loihi’s emulator (or the
hardware itself, if available).
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Figure 5. Preliminary one-step-ahead load forecasts, setting different spike amplitudes and firing
rates.

As indicated in Step 5, the network must be further adjusted to be run on Loihi. In
our particular case, we must indicate what layers are run on- and off-chip, but other adjust-
ments might be needed for more complex networks, such as distributing the connections
of the network over multiple cores on Loihi [44]. Figure 6a shows that neurons are ef-
fectively firing in each layer, whereas Figure 6b compares the initial forecasts thaat were
obtained previously while tuning the spike parameters (the red dashed line) and the load
forecasts emulating the Loihi chip (dash-dot green line). It can be observed that the model
architecture translates well to the emulator after fine-tuning those hardware specifications,
resulting in similar load forecasts with respect to the initial evaluation of Step 4.

Figure 6. Cont.
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Figure 6. Results for one-step ahead load forecasts: (a) Neural activities of 5 neurons of each layer.
One input vector is shown over 1000 timesteps. (b) Predictions over the testing set with the SNN
architecture (dashed red line) and running the SNN on the Loihi emulator (dash-dot green line).

3.3. Wind Power Forecasting

Noting the computational abilities of current neuromorphic devices, let us apply
the proposed model architecture to build the spiking forecasting models for each mode
extracted from Irish wind-power data after preprocessing the data with the VMD algorithm.
The exact location of the wind farm is not disclosed for confidentiality reasons. The library
Nengo [35] was used to simulate neuromorphic algorithms, together with the extensions
NengoDL [37] for deep learning and NengoLoihi to emulate the behavior of Loihi hardware.
The original neural-network-based models were implemented using Keras with Tensorflow
backend for the rest of the models [38,58].

Following the proposed methodology, we first built the model (Step 1), and trained
the rate-based neural network model to set its network parameters (Step 2). Then, we
transformed it into an SNN by switching the activation functions to spiking ones (Step 3).
In Step 4, we set empiric values for the amplitude and firing rate of the spikes (Table 1)
within the NengoDL framework until we obtained a reasonable performance from the
spiking model. The spiking amplitude modulates the amount of information transmitted
to the subsequent layers of the network, whereas the firing rate adjusts how fast the spikes
are being fired. If the firing rate is high, the behavior will be closer to the non-spiking
model, and thus the performance will increase, but at the cost of losing the characteristic
temporal sparsity provided by the spikes [59]. In addition, a high firing rate will lead to
detrimental results on Loihi because of the discrepancy resulting from discretizing the
spiking activation function (as shown in Figure 1). The low mean firing rates of these
preliminary results (Table 2) suggest that the selected parameters are potentially good for
implementation on Loihi. Afterwards, we configured some additional parameters to run
the model on the Loihi emulator (Step 5). In particular, we must indicate what part of the
model is run off-chip (in this case, the off-chip layer we use to communicate with the chip)
and how long each input vector is presented to the network (in our case, we show each one
for 0.4 s).
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Table 1. Main spiking network parameters.

Neuron Type Spiking Amplitude Firing Rate Scale

Mode 1 Spiking ReLU 0.1 25

Mode 2 Spiking ReLU 0.05 40

Mode 3 Spiking ReLU 0.01 70

Mode 4 Spiking ReLU 0.1 90

Mode 5 Spiking ReLU 0.3 200

Mode 6 Spiking ReLU 0.3 200

Mode 7 Spiking ReLU 0.5 400

Mode 8 Spiking ReLU 1.5 500

Table 2. Mean firing rates (Hz) for each layer.

Off-Chip Layer Conv Layer Dense Layer

Mode 1 8.1 8.3 12.0

Mode 2 1.9 1.8 2.1

Mode 3 7.2 4.9 2.5

Mode 4 1.6 1.2 1.0

Mode 5 1.2 1.3 1.0

Mode 6 1.1 1.0 1.0

Mode 7 1.4 1.1 1.0

Mode 8 3.7 9.6 11.5

The information recorded in Steps 4 and 5 is shown in Figures 7–14 for modes 1–8,
respectively. Part a of these figures shows the neural activities of each layer (limited to
5 neurons for illustrative purposes). These neural activities correspond to the first input
vector fed to the model, and produce the first point forecast, shown on part b. This
constitutes one of the main differences in comparison to ANNs. Neurons in regular ANNs
are static entities, which are always activated every time a new input arrives to the model,
whereas neurons of SNN models will only be activated if certain dynamic conditions are
met. From an user perspective, the neural activities help us visualize the mean firing rates
shown in Table 2: modes 1, 3, and 8 exhibit higher firing rates, which translates into a large
number of spikes being generated during this timeframe, whereas the rest of the modes
present a more sparse behavior, resulting in a lower generation of spikes. In some cases,
such as mode 4 (Figure 10) and mode 5 (Figure 11), the neurons of the off-chip layer need
a long time to settle and thus start to spike, delaying the neural response of subsequent
layers. Even if temporal sparsity is a desirable feature in a spiking model, in the sense that a
smaller number of spikes means a lower consumption of energy (as a non-activated neuron
will consume no energy), it might occasionally be advisable to finetune the firing rate of the
off-chip layer to propagate the information faster to the rest of the network, as delays in the
neural responses could degrade model performance. A quote on exact power consumption
on the chip is erroneous in the current context, since the entire hardware is active during
implementation, while only a minute fraction is actually used for the proposed problem.
Under such circumstances, power quotes become relevant with sector-customised chips
and a better handling of SNN architecture for DL, a direction in which the industry and
current research is quickly moving.
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Figure 7. Results for mode 1: (a) Neural activities of 5 neurons of each layer. One input vector is
shown over 1000 timesteps. (b) Predictions over the testing set with the SNN architecture (dashed
red line) and running the SNN on the Loihi emulator (dash-dot green line).
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Figure 8. Results for mode 2: (a) Neural activities of 5 neurons of each layer. One input vector is
shown over 1000 timesteps. (b) Predictions over the testing set with the SNN architecture (dashed
red line) and running the SNN on the Loihi emulator (dash-dot green line).
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Figure 9. Results for mode 3: (a) Neural activities of 5 neurons of each layer. One input vector is
shown over 1000 timesteps. (b) Predictions over the testing set with the SNN architecture (dashed
red line) and running the SNN on the Loihi emulator (dash-dot green line).
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Figure 10. Results for mode 4: (a) Neural activities of 5 neurons of each layer. One input vector is
shown over 1000 timesteps. (b) Predictions over the testing set with the SNN architecture (dashed
red line) and running the SNN on the Loihi emulator (dash-dot green line).
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Figure 11. Results for mode 5: (a) Neural activities of 5 neurons of each layer. One input vector is
shown over 1000 timesteps. (b) Predictions over the testing set with the SNN architecture (dashed
red line) and running the SNN on the Loihi emulator (dash-dot green line).
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Figure 12. Results for mode 6: (a) Neural activities of 5 neurons of each layer. One input vector is
shown over 1000 timesteps. (b) Predictions over the testing set with the SNN architecture (dashed
red line) and running the SNN on the Loihi emulator (dash-dot green line).
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Figure 13. Results for mode 7: (a) Neural activities of 5 neurons of each layer. One input vector is
shown over 1000 timesteps. (b) Predictions over the testing set with the SNN architecture (dashed
red line) and running the SNN on the Loihi emulator (dash-dot green line).
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Figure 14. Results for mode 8: (a) Neural activities of 5 neurons of each layer. One input vector is
shown over 1000 timesteps. (b) Predictions over the testing set with the SNN architecture (dashed
red line) and running the SNN on the Loihi emulator (dash-dot green line).

At this stage, the performance of our models can finally be examined (Step 6). The
model is designed to provide one-step-ahead point forecasts (Figure 15). The dashed-red
lines show the forecasts obtained while tuning the model using the NengoDL framework
in Step 4. While this preliminary model is able to forecast increasing/decreasing trends
of power generation, it is not as accurate for high or low power-generation scenarios.
Nonetheless, this initial assessment allows for us to prepare our model for Loihi (dash-

297



Energies 2022, 15, 7256

dot green line), which demonstrates the same skill in detecting increasing/decreasing
trends of power generation as the preliminary model, while showing a better ability to
forecast high/low power-generation values. This difference in performance also arises
from the model architecture itself. When the model is initially evaluated outside the Loihi
framework, it cannot discern that the first layer is only set to start to generate spikes. Such
nuance is captured when the model is configured for implementation on Loihi. Additionally,
we observe that the forecasts are not as accurate compared to a non-spiking VMD-GRU
model that we used in a previous study using the same data [50], and the outputs are
generally noisier. However, this is an expected outcome due to the current limitations of
neuromorphic hardware.

Figure 15. One-step ahead WPFs with the SNN architecture (dashed red line), running the SNN on
the Loihi emulator (dash-dot green line) and a non-spiking VMD-GRU model (purple crosses) over
the testing set.

In conclusion, we have successfully transformed a non-spiking neural model into a
spiking one with a reasonably good performance, having achieved a 2.84% NMAE for one-
step ahead forecasts with the model being adapted to neuromorphic hardware. This type
of proof is not only helpful to prove that industrial applications such as WPF modelling can
be transferred to non-von Neumann architectures such as neuromorphic computing, but to
provide guidelines to the manufacturers of such hardware (e.g., Intel and the development
of devices as Loihi) to cater to the industry’s needs.

4. Conclusions

Neuromorphic computing provides a new paradigm to build energy-efficient, low-
latency algorithms in contrast to the current state-of-the-art ML/DL strategies, thus poten-
tially reducing the computational cost of training and deploying artificial-intelligence-based
models. In particular, SNNs aim to learn in a more biologically plausible manner [60] by
more closely mimicking the spike-based transmission of information that occurs in the
brain [61]. At present, the two major challenges for the use and implementation of SNNs
are (1) the training of such models, as the well-established training strategies based on the
backpropagation algorithm applied to ML/DL cannot be directly used, as spikes are not
differentiable, and (2) the implementation of SNNs on neuromorphic hardware, as SNNs
must be tailored to cater to the specific requirements of the hardware. The first challenge
has been addressed with different approaches to date, such as ANN-to-SNN conversion,
and using variations in error backpropagation to directly train SNNs. The second challenge
is hardware-dependent, and should be addressed according to the requisites of the hard-
ware used to implement the SNN. Additionally, there is currently a lack of studies applying
neuromorphic computing for practical cases that are useful for both research and industrial
practices, such as the design of WPF models [62].

In this paper, we adopt an ANN-to-SNN conversion approach to forecast wind power,
and obtain these WPFs emulating or running the spiking model using the neuromorphic
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hardware Loihi [41]. SNNs are designed using the framework provided by the software
Nengo [35,37]. First, we build and train the non-spiking neural network. After training,
we map the parameters and replace the activation functions for their spiking counterparts,
which will be used during the prediction stage. Then, without considering hardware
specific constraints, some preliminary results are evaluated to tune some spike-related
parameters such as the firing rate or the amplitude of the spikes. Finally, the SNN is further
adjusted to be run on the hardware emulator (or actually running the model on Loihi if
available) to obtain the WPFs. Following all these steps, we managed to reach our goal of
achieving a good level of performance with the proposed spiking architecture, obtaining a
NMAE of 2.84% for one-step ahead forecasts when the model is emulated on Loihi.

As neuromorphic computing is not a well-established technology at present, there
is room for future research. First, the proposed ANN-to-SNN conversion approach for
short-term WPF can be further refined by tuning the firing rates of each layer individually
and considering the use of synaptic filters to smooth the output. Second, the modelling of
spiking neural networks can be improved by (1) directly training the network to increase
the efficiency of neuromorphic devices from the energy point of view and (2) using online
approximations of the backpropagation algorithm to adjust network parameters with the
arrival of new data. Third, it will be possible to implement more complex biological
inspired neural networks in the near future, as the computational capability of neuromorphic
computing continues to increase with the development of new devices, such as Loihi 2 [63].
As reducing the computational cost is one of the main reasons to use neuromorphic devices,
any future line of research must address model performance in terms of energy consumption
to verify that it achieves a significant reduction in consumption compared to conventional
computer architectures. To achieve that, the neural spiking models must not only be
emulated but run on a real neuromorphic device to realistically measure this feature.
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ANN Artificial Neural Network
CNN Convolutional Neural Network
DL Deep Learning
ENTSO-E European Network of Transmission System Operators for Electricity
FFNN Feedforward Neural Network
GRU Gated Recurrent Unit
LIF Leaky Integrate-and-Fire
LSTM Long Short-Term Memory
ML Machine Learning
NEF Neural Engineering Framework
NMAE Normalized Mean Absolute Error
SLAYER Spike Layer Error Reassignment
ReLU Rectified Linear Unit
SNN Spiking Neural Network
VMD Variational Mode Decomposition
WPF Wind Power Forecasting
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Abstract: Random forest (RF) is one of the most popular machine learning (ML) models used for
both classification and regression problems. As an ensemble model, it demonstrates high predictive
accuracy and low variance, while being easy to learn and optimize. In this study, we use RF for
short-term load forecasting (STLF), focusing on data representation and training modes. We consider
seven methods of defining input patterns and three training modes: local, global and extended global.
We also investigate key RF hyperparameters to learn about their optimal settings. The experimental
part of the work demonstrates on four STLF problems that our model, in its optimal variant, can
outperform both statistical and ML models, providing the most accurate forecasts.

Keywords: random forest; regression tree; pattern representation of time series; short-term load
forecasting

1. Introduction

Electricity demand forecasting is extremely important for energy providers to ensure
the secure, effective and economic operation of the power system. Short-term load forecast-
ing (STLF) covers a forecast horizon of a few hours to a few days. STLF is necessary for
generation resource planning to meet electricity demands and optimize the power flow
on the transmission grid to avoid overloads. As electricity demand is a major driver of
electricity prices, load forecasting plays a key role in competitive energy markets. The STLF
accuracy directly affects the financial performance of energy market participants.

The importance of accurate electricity demand forecasts for the safe, reliable and
effective operation of power systems is behind the great interest of researchers in this area.
STLF problems are complex because electricity demand time series express a nonlinear
trend, multiple seasonality, variable variance, significant random disruptions and changing
daily profile. These challenging factors place high demands on STLF models.

1.1. Related Work

Roughly, STLF methods can be divided into statistical and ML methods. The most
popular representatives of the first group are: auto-regressive integrated moving average
(ARIMA) [1], exponential smoothing (ETS) [2], linear regression [3], and Kalman filtering [4].
The main drawbacks of the statistical methods are their linear character, limited adaptability,
limited ability to deal with complex seasonal patterns, and problems with capturing long-
term dependencies in time series and introducing exogenous variables into the model [5].

ML models provide more flexibility in modeling nonlinear functions. Unlike statistical
methods, they do not require strong assumptions about the mapping function, and they
learn relationships between predictors and targets directly from historical data. Among ML
methods for forecasting, neural networks (NNs) have gained the most popularity in recent
years [6]. The multitude of architectural solutions and mechanisms to improve performance
encourage the use of NNs to solve complex forecasting problems such as STLF. Classical
NNs were investigated for suitability for STLF in [7]. To deal with triple seasonality in time
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series, patterns of the daily profiles were introduced, which filter out the trend and the
weekly and yearly seasonality (a similar approach was used in this study, where different
definitions of patterns are examined). Among the considered NN architectures, which
included Multilayer Perceptron (MLP), Radial Basis Function NN, General Regression NN
(GRNN), Fuzzy Counterpropagation NN, and Self-Organizing Maps, GRNN and MLP
stand out as performing with the highest accuracy.

In recent years, a development in the NN field has been the move towards deep
and, especially useful in forecasting, recurrent architectures [6]. Deep NNs (DNNs) are
especially beneficial in learning the most useful data representation for modeling a given
target function, while Recurrent NNs (RNNs) are beneficial in modeling complex, short-
and long-term temporal relationships in data. New mechanisms and procedures introduced
to RNNs such as delayed connections, attention, hybrid architecture, dynamic training sets,
residual connections and flexible loss functions improve their learning capabilities and
expressive power to solve forecasting problems [5]. Some examples of using DNNs and
RNNs for STLF are [8], where Convolutional NNs (CNNs) are utilized to extract load and
temperature features, which are fed as inputs into the bidirectional propagating RNN to
perform hourly electrical load forecasting [9], where a recurrent inception CNN is proposed
for STLF that combines RNN and 1-dimensional CNN [10], where RNN with attention
significantly reduced forecasting errors as compared to the current state-of-the-art results;
and [11], where deep residual networks integrate domain knowledge and researchers’
understanding of the problem and enables probabilistic load forecasting using Monte
Carlo dropout.

An effective way to increase the forecast accuracy and robustness of both statistical
and ML models is ensembling. This combines multiple models for a common response to
improve both the accuracy and stability of the final solution compared to a single model [12].
The theoretical properties of forecast combination investigated in [13] answer the question
why a simple average of forecasts often outperforms forecasts from single models. They also
prove that simple averages in many cases perform better than more complicated weighting
schemes. The beneficial effects of the forecast aggregation on STLF accuracy are shown in
many papers: in [14], several ML methods are aggregated in ensembles for one-day-ahead
wind power forecasting; in [15], to forecast an interval-valued load, ensemble of RNNs is
applied, which learns on the components of the bivariate empirical mode decomposition;
in [5], ensembling of a hybrid model, which combines ETS and RNN, leads to a significant
reduction in the forecast error; in [16], an ensemble of randomized DNN combined with a
walk-forward decomposition is proposed; in [17], a stacking ensemble approach is used
to combine DNNs, and in [18], several methods of aggregating base models (MLPs) are
considered. Stacking, used in the last two papers, is a way of combining base models via
meta-learning, i.e., a meta-model is trained on the predictions of the base models.

Alternatives to stacking are boosting and bagging. Popular representatives of these
are gradient-boosted trees and random forest (RF), respectively. Both, used as forecasting
models, are based on regression trees. It was shown in [19] that RF can compete with both
classical models and NNs in STLF. It can deal with complex time series using appropriate
data preprocessing, which produces normalized patterns of the daily profiles. Based on
this research, in this study, to improve RF performance, we extend pattern definitions and
introduce additional predictors. To enrich input information, in [20], the input patterns
are extracted from electrical, meteorological and calendar data by temporal CNN. Fed
with these patterns, a Light Gradient Boosting Machine, a type of gradient-boosted trees
algorithm, was able to forecast very volatile industrial customer loads. A novel tree-based
ensemble method called Warm-start Gradient Tree Boosting (WGTB) was proposed in [21].
It combines four different inference models and aggregates their outputs by a warm-start,
bagging and boosting, which at the same time reduces bias and variance. The result
proves the efficiency of the proposed strategy and shows an improvement in STLF accuracy
over baseline models. Another type of tree-based ensemble, eXtreme Gradient Boosting
(XGBoost), was used in [22] for forecasting electricity consumption by industrial customers.
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To deal with multiple seasonality, the time series were first decomposed using variational
mode decomposition. Then, a linear regression model was applied for the trend series and
a XGBoost regression model was applied for each fluctuation sub-series.

To close this section, we note that, according to some studies, tree-based ensembles
are not inferior to NNs in terms of forecast accuracy. In [23], the authors have examined
and reproduced a number of state-of-the-art DNNs for time series forecasting. DNNs
were compared on different datasets to a Gradient Boosting Regression Tree (GBRT). The
experimental results show that a conceptually simpler model such as GBRT can compete
and sometimes outperform modern DNNs by efficiently feature-engineering the input and
output structures of GBRT.

1.2. Motivation and Contribution

Tree-based methods are widely used as prediction models as they have very attractive
properties such as a capacity for flexible nonlinear regression, which can capture complex
interactions between variables and effectively handle multiple predictors (including exoge-
nous ones) of various types (numeric, binary, and categorical). Moreover, they are robust
against over-fitting of the training data, they are relatively simple to tune, and they are easy
to implement with the available software. Their effectiveness has been confirmed in many
forecasting competitions, for example those carried out on the Kaggle platform [24].

The excellent performance of tree-based approaches was demonstrated in the 2020 M5
forecasting competition. The top places in this competition, in terms of both accuracy and
uncertainty, were dominated by entries that used tree-based ML methods such as gradient-
boosted trees [25]. Four out of the five winning models used a variant of the tree-based
method and most of the other top 50 best-performing models adopted similar approaches
to the winning submission by training recursive and non-recursive tree-based models [26].
Thus, tree-based forecasting models appear to be strong competitors to NNs, which in
the form of deep learning-based models dominate the recent literature on forecasting
methods [6].

In this study, motivated by the excellent results of tree-based models in forecasting
competitions, we apply RF to the challenging problem of STLF. RF gives similar results
to boosting, but is easier to train and tune [27]. The main contribution of this work is to
examine RF models using a variety of time series preprocessing methods and training
modes. In the local mode, RF learns on samples similar to the query sample, which enables
the model to focus on the local features of the target function around the query pattern
and improve accuracy in this region. In the global mode, to achieve the same goal, i.e.,
focusing on the proper region of the target function, we introduce additional calendar
variables. By examining different methods of time series preprocessing, we find the most
useful data representation for achieving the highest accuracy of the model. We empirically
demonstrate that the proposed approach outperforms in terms of accuracy both standard
statistical models as well as more sophisticated ML approaches.

The novelty of this work in relation to our previous work [19] is twofold. First, we
extend pattern definition by introducing seven types of patterns based on the historical
data. They incorporate daily and/or weekly seasonality, while in [19], the patterns captured
only daily seasonality. Second, we introduce a global mode of training with additional
predictors representing calendar data. In [19], only a local training was considered without
calendar inputs.

The rest of the paper is organized as follows. In Section 2, we propose several data
prereprocessing methods for electricity demand times series. Section 3 defines the forecast-
ing problem and RF training modes. Section 4 describes the RF algorithm in application
to STLF. The experimental framework used to evaluate the performance of the proposed
model and compare it with baseline models is described in Section 5. Finally, Section 6
concludes the work.
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2. Data Preprocessing

The power system load or electricity demand time series express a trend, triple sea-
sonality (annual, weekly and daily) and random fluctuations. These components are
dependent on the system size, size of the economy served, customer structure, as well as
weather and climatic conditions. The daily load profiles that we focus on in STLF vary
throughout the year and depend on the day of the week [5].

To forecast future demand with the least possible error, the forecasting model should be
fed by the most relevant predictors. In our univariate STLF model, which produces forecasts
for the next day, the predictors are selected from recent history and are preprocessed
accordingly. The forecasting model based on RF is fed by input patterns xi and produces
encoded forecasts for hour t of day i, yi,t (MISO model).

Let {zτ}M
τ=1 be an electricity demand time series with hourly resolution and vector

zi = [zi,1, ..., zi,24] represents its 24-hour-long sequence for day i. To capture the characteris-
tic properties of the series, remove the trend and unify data, we define the input patterns
as follows:

r1 The input patterns are defined based on the weekly sequence which precedes fore-
casted day i:

xi =
si − si

‖si − si‖ (1)

where xi ∈ R168 is the input pattern, si = [zi−7, ..., zi−1] is the demand sequence of the
week preceding the forecasted day i and si is the mean of this sequence.
Input vectors (1), which for successive i represent overlapping weekly sequences
shifted by one day, are normalized versions of centered vectors si. They all have zero
mean, the same variance and the same unity length. However, they differ in shape.
Thus, we assume that the weekly shape carries the information about the forecasted
demand of the day following this week.

r2 The input patterns are defined based on the daily sequence which precedes the
forecasted day i. The encoding equation is (1), where xi ∈ R24 and si = zi−1 is the
demand sequence of the day preceding the forecasted day i. In case of r2, a carrier of
the information about the forecasted value is the shape of the preceding day.

r3 The input patterns are defined based on the sequence composed of the demands at
hour t of seven consecutive days preceding the forecasted day i. In (1), xi ∈ R7 and
si = [zi−7,t, ..., zi−1,t], where t is the forecasted hour of day i.

r4 The input patterns are defined based on the sequence composed of the demands at
hour t of 21 consecutive days preceding the forecasted day i. In (1), xi ∈ R21 and
si = [zi−21,t, ..., zi−1,t], where t is the forecasted hour of day i.

r5 The input patterns are defined based on the sequence composed of the demands at
hour t of seven days preceding forecasted day i and representing the same day of
the week as the forecasted day. For example, when the model predicts demand at
hour t on Monday, the input pattern is composed of the demands at hour t of seven
preceding Mondays. In (1), xi ∈ R7 and si = [zi−49,t, zi−42,t, ..., zi−7,t], where t is the
forecasted hour of day i.

r6 Cross-pattern combining r2 and r3—the input patterns are defined based on both: the
daily sequence and the sequence composed of the demands at hour t of seven consecu-
tive days preceding the forecasted day i. In (1), xi ∈ R30 and si = [zi−1, zi−7,t, ..., zi−2,t],
where t is the forecasted hour of day i.

r7 Cross-pattern combining r2 and r4—the input patterns are defined based on both: the
daily sequence and the sequence composed of the demands at hour t of 21 consecutive
days preceding the forecasted day i. In (1), xi ∈ R44 and si = [zi−1, zi−21,t, ..., zi−2,t],
where t is the forecasted hour of day i.

Figure 1 shows the sequences which are used for x-patterns construction and Figure 2
shows data used for construction patterns r6 and r7. Depending on the definition, x-patterns
introduce different input information to the model. Pattern r1 introduces detailed informa-
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tion about the weekly sequence which precedes the forecasted day. Note that r1 expresses
both daily and weekly seasonality unlike r2, which carries information only about the daily
seasonality. To deal with weekly seasonality when r2-patterns are used, the model can be
trained in the local mode, i.e., on the subset of x-patterns corresponding to the forecasting
task (see Section 3).

Time
1

1.5

2

2.5

Lo
ad

, M
W

104

Data r1 r2 r3 r4 r5

Figure 1. Load time series points used for input patterns construction.

Figure 2. Cross-patterns: r6 (green + blue) and r7 (green + orange + blue).

Pattern r3 introduces information on the demand in the previous seven days at the
same hour as the forecasted one. It expresses only weekly seasonality. Information about
the daily seasonality is not included, so the local mode of training, i.e., training on the
selected r3-patterns corresponding to the forecasting task (see Section 3), can help with
dealing with daily seasonality. Similar information as in r3 is contained in pattern r4 but
from a longer 3-week period. Pattern r5 shows neither daily nor weekly seasonality. It
carries information about the demand at the same hours as forecasted in previous days of
the same type as the forecasted day.

Cross-patterns r6 and r7 express both daily and weekly seasonalities as r1, but in
a more sparing form, using respectively 30 or 44 instead of 168 components. In [28],
we showed that STLF based on both daily and weekly patterns gives better results than
forecasting based on separate daily or weekly patterns. In [28], we aggregated forecasts
generated by two neural models: a daily pattern-based model and a weekly pattern-based
model, while in this study, we combine daily and weekly patterns into one pattern and use
only one model.

Examples of input patterns r1–r7 are depicted in Figure 3. Note different shapes of
patterns, carrying different input information.
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Figure 3. Examples of input patterns r1–r7.

The output data, i.e., the electricity demand at hour t of day i, is encoded as follows:

yi,t =
zi,t − si

‖si − si‖ (2)

where si is the demand sequence preceding forecasted day i, defined depending on the
x-pattern type r1–r7 (this is the same sequence based on which pattern xi was defined) and
si is the mean of this sequence.

The output data are encoded similarly to the input data, using the same coding
variables: si and ‖si − si‖. Thus, Equation (2) like Equation (1) filters the data by removing
the local trend (si) and unifying the variance (this is a function of the denominator of these
equations, which can be thought of as a measure of diversity of the input sequence). Such
filtered and unified data are predicted by the forecasting model (RF). Then, the real forecast
is determined from transformed Equation (2):

ẑi,t = ŷi,t‖si − si‖+ si (3)

where ŷi,t is the model prediction and ẑi,t is the real forecast.
Note that (3) brings back the local current properties of the time series (level and

dispersion), which were removed by (1) and (2) to simplify the relationships between input
and output data. We have successfully used this kind of preprocessing of input and output
data in our previous load forecasting models to deal with multiple seasonality, simplify the
model and speed up training, see, e.g., [7,19,28–32].

3. Forecasting Problem and Training Modes

The forecasting task is defined as follows: predict electricity demand for hour t∗ (1, . . .,
24) of day i∗ based on historical data. Day i∗ represents day of the week d∗ (Monday, . . .,
Sunday). To maximize the forecasting performance and to make the most of all available
training data up to day i∗ (forecasted day), the forecasting model is trained individually
for each forecasting task and it performs only one prediction: ŷi∗ ,t∗ . Note that the “global”
generalization property of the model is not important because it is built to make only one
prediction. What is important is the “local” performance in the neighborhood of pattern
xi∗ . To increase this property, we use two approaches. In the first one, we train the model in
the local mode and in the second one, we extend input patterns with calendar variables
when we use global learning. For comparison we also train the model in the standard
global mode.

The full training set determined on the historical data is Ψ = {(xi, yi,t)}, where
i = 1, . . ., i∗ − 1, t = 1, . . ., 24 and pair (xi, yi,t) includes the input pattern and target defined
according to r1–r7. The three training modes are as follows:
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Local The model is trained on the subset of Ψ containing pairs (xi, yi,t) which correspond
to the forecasting task, i.e., the pairs which include targets representing the same day
type as forecasted, d(yi,t) = d∗, and the same hour as forecasted, t = t∗.

Global The model is trained on full training set Ψ.

Global extended The input data are extended with calendar information:

• season of the year encoded as follows [29]:

pi =

[
sin

2π#i
366

, cos
2π#i
366

]
(4)

where #i is the number of day i in the year,
• day of the week, d = Monday, ..., Sunday (categorical variable), and
• hour of the day, t = 1, ..., 24 (categorical variable).

The training set in the global extended mode is of the form: Ψ = {(〈xi, pi, di, t〉, yi,t)},
i = 1, ..., i∗ − 1, t = 1, ..., 24.

In the local training mode, the model solves the forecasting task by learning on the
samples expressing similar properties and relationships between input and output data as
those expressed by input pattern xi∗ and forecasted value yi∗ ,t∗ . That is, the training input
patterns are limited to those that are similar in shape to pattern xi∗ (further limitations in
this regard can be made by selecting training data from the same period of the year as
day i∗ or by selecting training data based on similarity to pattern xi∗ [7], but we have not
employed these approaches in this study). The relationships between input and output
data expressed in the local training set are limited to those corresponding to day type
d∗ and hour t∗, so we expect the model to more accurately approximate the relationship
between xi∗ and yi∗ ,t∗ than in case of global training on the full training set expressing the
relationship for all day types and hours.

In the global training mode with extended inputs, the model has additional input
information to more accurately solve the forecasting task, i.e., the calendar variables.
Although the model is global, we expect that the calendar data will help to increase its
local accuracy around pattern xi∗ . A regression tree as a base forecasting model can more
appropriately divide the input space using the calendar variables than without these
variables, and therefore approximate locally the target function with greater accuracy.
Although this will lead to a more complex model than in the other two training modes.

4. Random Forest for STLF

RF is a ensemble learning algorithm based on decision trees (CART [33]) as the base
models [34]. It is suitable for either regression or classification problems. In this study, for
forecasting problems, we focus on the regression RF based on regression trees.

RF is devoid of the well-known drawbacks of single trees such as unstable splits and a
lack of smoothness [27]. It combines bagging [35] with a random subspace method [36].
The key idea in bagging is to average multiple noisy but approximately unbiased base
models and thus reduce the variance. Trees as noisy and low biased models if they have
grown sufficiently deep, are great candidates for bagging. The main goal of the random
subspace method is to increase diversity between trees by restricting them to work on
different random subsets of the full predictor space (more specifically, at each node of
the tree, a random predictor subset is selected). Each tree in the forest is built from a
bootstrap sample of the original dataset, which is an additional source of diversity. Random
predictors selected in the nodes of bagged trees help to decorrelate the trees and improve
prediction accuracy as well as reduce the model variance.

The RF algorithm draws a bootstrap sample Ψk of size N from training set Ψ for each
of K trees, k = 1, . . ., K. For each bootstrapped sample, a tree T is grown by recursive
partitioning the input space in each node until a minimum leaf size is reached. At each
node, data splits based on p out of n predictors chosen at random are considered. The
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best split is determined by maximizing the reduction in mean squared error (MSE) over
all splitting candidates and cutpoints. After all K trees are grown in this fashion, the RF
predictor is [27]:

f̂K(x) =
1
K

K

∑
k=1

T(x; Θk) (5)

where x is the input pattern and Θk characterizes the k-th tree in terms of split predictors,
cutpoints, and terminal-node values.

RF has the following hyperparameters:

• number of trees K. Intuitively, the number of trees should be as large as possible
because the model variance reduces with K. Usually, the forecast error stabilizes with
the number of trees, and the most reasonable RF size is selected.

• minimum leaf size m. As deeper trees have low bias and large variance, they are
strongly recommended as RF members. Thus, the minimum leaf size should be small.
The inventors of the algorithm recommend m = 5 for regression forest.

• number of predictors to select at random for each split p. As p decreases, the correla-
tion between trees reduces, and hence the variance of the average reduces. Typically, a
value for p for regression RF is n/3, as the inventors recommend.

In practice the best values for the hyperparameters are dependent on the problem,
and they should be treated as tuning parameters.

The standard method of selecting split predictors [33] has two drawbacks. Firstly, it
tends to miss important interactions between pairs of predictors and the response. Secondly,
it tends to select continuous predictors that have many levels, which masks more important
predictors that have fewer levels, such as categorical predictors. To mitigate selection
bias and increase detection of important interactions, curvature or interaction tests can
be applied [37,38]. Therefore, in this study we consider three methods of selecting the
split predictors:

s1 Standard CART method. This selects the split predictor that maximizes the split-
criterion gain over all possible splits of all predictors.

s2 Curvature test. This selects the split predictor that minimizes the p-value of chi-square
tests of independence between each predictor and the response.

s3 Interaction test. This performs the curvature test extended by the minimization of
the p-value of a chi-square test of independence between each pair of predictors and
the response.

The algorithm of RF construction for STLF is shown in Algorithm 1. It produces a set
of K trees, {Tk}K

k=1. Based on them, to make a prediction for new point x, we use (5). Then,
the real forecast is calculated from (3). Note that training set Ψ is prepared for the selected
training mode and input pattern type.

Algorithm 1 Random forest construction for STLF

Input: training set Ψ containing N samples, number of trees K, minimum leaf size
m, number of predictors to select at random for each split p, split predictor selection
method s
Output: set of trees {Tk}K

k=1
Procedure:
for k = 1 to K do

Draw a bootstrap sample Ψk of size N from Ψ
Grow tree Tk to Ψk by recursively repeating the following steps for each terminal node,
until the minimum node size m is reached:
– Select p predictors from the n predictors
– Pick the best predictor/cutpoint among the p using predictor selection method s
– Split the node into two daughter nodes

end for
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In the experimental study (Section 5), we use RF specified in Algorithm 1 in several
variants depending on the data preprocessing method (r1–r7) and training modes, i.e.,
local, global and global extended. In the global extended mode, the predictor vector is
composed of 〈xi, pi, di, t〉. In the other training modes, the predictor vector is the same as
input pattern x (1).

5. Simulation Study

In this section, we investigate RF variants with different data preprocessing methods
and training modes. We compare RF performance with that of other models based on
classical statistical methods and ML methods.

STLF for four countries is performed: Poland (PL), Great Britain (GB), France (FR) and
Germany (DE). The real-world data was collected from ENTSO-E repository (www.entsoe.
eu/data/power-stats; accessed on 6 April 2016). It details the hourly power system load in
the period from 2012 to 2015. The last year of the data (2015) is treated as a test period. We
predict the daily load profiles for each day of this period, excluding atypical days such as
public holidays (between 10 and 20 days a year). RF models were optimized on the data
from 2012 to 2014, with validation data composed of 100 patterns selected randomly from
2014 and training data preceding the validation pattern.

5.1. Results for Different Preprocessing Methods and Training Modes

Tables 1 and 2 show mean absolute percentage error (MAPE) and root mean square er-
ror (RMSE), respectively, for input patterns r1–r7 and different training modes. Figures 4–6
show the boxplots of MAPE. The results can be summarised as follows:

• It is evident from these tables and figures that the global extended mode yields the
lowest errors, when combined with patterns r4 (for PL, FR and DE) or r6 (for GB).

• The local training mode brings lower errors than the global one when patterns r1, r2,
r6 and r7 are used, i.e., patterns which are composed of the daily curves. The local
mode is usually better than the global extended one when patterns r1 and r2 are used,
but it is worse than the global extended mode when cross-patterns are used, which
also reflect a weekly seasonality.

• The highest errors for the global mode were observed when patterns r1 and r2 were
used. In these cases, the errors were up to nine times greater than in the alternative
training modes. Pattern r4 is recommended for the global mode, which for all countries
provided the lowest errors. Modifying the global mode by extending the input patterns
with calendar variables has always resulted in a reduction of errors.

Table 1. Validation MAPE for different input patterns r1–r7 and training modes (lowest errors in
bold, second lowest errors in italics).

Data Training Mode r1 r2 r3 r4 r5 r6 r7

PL
Local 1.54 1.55 1.89 2.17 3.66 1.45 1.63
Global 11.55 11.61 2.11 1.30 2.94 1.82 1.82
Global ext. 1.92 1.79 1.40 1.24 1.96 1.50 1.55

GB
Local 1.92 1.91 2.29 2.21 3.68 1.76 1.75
Global 14.88 15.01 2.21 1.75 2.92 1.84 1.83
Global ext. 2.22 2.09 1.79 1.59 2.12 1.47 1.52

FR
Local 1.88 1.77 2.12 2.43 5.10 1.74 1.86
Global 8.50 8.54 2.09 1.53 2.90 2.11 1.92
Global ext. 1.98 1.71 1.59 1.37 1.71 1.63 1.64

DE
Local 1.34 1.31 1.67 1.93 3.47 1.21 1.45
Global 12.33 12.34 1.62 1.07 2.61 1.79 1.54
Global ext. 1.55 1.57 1.17 0.99 1.65 1.17 1.19
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Table 2. Validation RMSE for different input patterns r1–r7 and training modes (lowest errors in bold,
second lowest errors in italics).

Data Training Mode r1 r2 r3 r4 r5 r6 r7

PL
Local 436 522 489 540 1014 412 473
Global 2420 2427 577 347 741 454 458
Global ext. 468 448 364 337 509 406 410

GB
Local 918 825 1100 1118 1816 811 841
Global 6309 6358 1035 860 1445 811 824
Global ext. 925 937 784 757 985 669 690

FR
Local 1630 1576 1851 1939 3893 1406 1626
Global 5602 5635 1714 1144 2697 1538 1437
Global ext. 1414 1280 1287 1048 1450 1232 1272

DE
Local 1590 1190 1748 2099 3046 1168 1641
Global 8927 8926 1410 878 2094 1411 1131
Global ext. 1224 1229 833 713 1261 915 883
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Figure 4. Local training mode: Boxplots of validation MAPE for different input patterns r1–r7.
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Figure 5. Global training mode: Boxplots of validation MAPE for different input patterns r1–r7.
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Figure 6. Global extended training mode: Boxplots of validation MAPE for different input patterns
r1–r7.

Based on the results, the recommended training mode is global extended with r4
patterns for PL, FR and DE, and r6 patterns for GB. These variants of RF were used in the
experiments described in the next sections.
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5.2. Tuning Hyperparameters

In this experiment, we change the selected hyperparameter in the range shown in
Figure 7, keeping the remaining hyperparameters at their constant values as follows:
number of trees in the forest—K = 100, minimum number of leaf node observations—
m = 1, and number of predictors to select at random for each decision split—p = n/3.

Figure 7 shows the impact of hyperparameters on the forecasting error (MAPE). As
expected, the error decreases with the number of trees in the forest. The reduction in MAPE
when the RF size changes from 1 do 300 trees was from 38.7% for PL to 50.0% for DE. At the
same time, a significant reduction in the forecast variance was also observed from 63.8%
for PL to 82.5% for DE. It can be seen from Figure 7b that an increase in the minimum leaf
size leads to a deterioration in the results. Small values of m, close to 1, are preferred. This
means that trees as deep as possible are the most beneficial in RF. The optimal number
of predictors selected in the nodes to perform a split varies from country to country (see
Figure 7c). For PL and DE it is 15, for GB it is 20, and for FR it is 6. These values differ from
the recommended p = n/3, which are 8 for PL, FR and DE, and 11 for GB.
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Figure 7. Validation MAPE depending on hyperparameters: number of trees in the forest (a),
minimum number of leaf node observations (b) and number of predictors to select at random for
each decision split (c).

Using optimal values of the hyperparameters for each country, we investigate the
methods of split predictor selection s1–s3. Table 3 shows the results, validation MAPE
and RMSE. Both accuracy measures show similar results for all methods of split predictor
selection. Therefore, s1 is recommended as a simple, standard method, which does not
cause any additional computational burden.

Table 3. Validation MAPE and RMSE for different methods of split predictor selection (training mode:
global extended, #trees: 300, minimum leaf size: 1; lowest errors in bold).

Data Variant
MAPE RMSE

s1 s2 s3 s1 s2 s3

PL r4, p = 15 1.26 1.30 1.30 339 345 345
GB r6, p = 20 1.44 1.42 1.42 652 649 649
FR r4, p = 6 1.35 1.39 1.38 1046 1071 1053
DE r4, p = 15 0.98 1.00 1.00 709 714 714

Figure 8 shows the “importance” or “predictive strength” of the predictors estimated
on the out-of-bag data (this is discussed further in Section 5.4). As can be seen from this
figure, when r4 extended pattern is used (PL, FR and DE), the most important predictor
is the last component of the r-pattern, i.e., the predictor expressing electricity demand
at forecasted hour t of the day preceding the forecasted day, zi−1,t. The importance of
this predictor reaches 3.5 for FR and over 5 for PL and DE, while the importance of other
demand predictors is usually below 2. Among the calendar predictors, the most important
for r4 extended pattern are those coding the season of the year, especially for DE. For
cross-pattern r6 (GB), the most important predictors are the calendar ones: day of the
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week and season of the year (p1). The next positions are occupied by predictors coding
the demand for the last four hours of the day before the forecasted day (zi−1,24 is clearly
the most important of these) and predictor coding demand at forecasted hour t week ago,
zi−7,t. Note the low importance of the other predictors representing demand at hour t of
the preceding days, zi−6,t–zi−2,t.
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Figure 8. Importance of the predictors (x1 − x30—predictors expressing demand pattern r4 or r6,
p1 and p2—components of vector p expressing season of the year, d—day of the week, and t—hour
of the day).

Table 4 shows the forecasting results for the test set when using RF with the optimal
values of hyperparameters. As performance metrics we use: MAPE, MdAPE (median
of absolute percentage error), IqrAPE (interquartile range of APE), RMSE, MPE (mean
percentage error), and StdPE (standard deviation of PE). MdAPE measures the mean error
without the influence of outliers, while RMSE, as a square error, is especially sensitive
to outliers.

Table 4. Results for test data (training mode: global extended, #trees: 300, minimum leaf size: 1, split
predictor selection method: s1).

Data Variant MAPE MdAPE IqrAPE RMSE MPE StdPE

PL r4, p = 15 1.05 0.78 1.06 259 0.03 1.52
GB r6, p = 20 2.36 1.78 2.39 1058 −0.32 3.36
FR r4, p = 6 1.67 1.18 1.67 1338 −0.22 2.42
DE r4, p = 15 1.06 0.80 1.07 815 −0.04 1.48

The MAPE and MdAPE values in Table 4 indicate that the most accurate forecasts
were obtained for PL and DE, while the least accurate were for GB. MPE allows us to assess
the forecast bias. Positive values of MPE indicate underprediction, while its negative values
indicate overprediction. Note that for PL and DE the forecast bias was significantly smaller
than for GB and FR. The same can be said about the forecasts dispersion measured by
IqrAPE and StdPE.

5.3. Results Comparison with Other Models

We compare the performances of RF with other models including statistical models
and ML models. The comparative models are outlined below (see [30,39] for further
description). Their hyperparameters were selected on the data from 2012–2014 in grid
search procedures using a variant of cross-validation or selected by experimentation (this
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applies to models with a large number of hyperparameters, which are difficult to optimize
using standard methods due to the huge search space).

• Naive—naive model: ẑi∗ = zi∗−7;
• ARIMA—Auto-Regressive Integrated Moving Average model;
• ETS—Exponential Smoothing model;
• Prophet—a modular additive regression model with nonlinear trend and seasonal

components;
• MLP—perceptron with a single hidden layer and sigmoid nonlinearities;
• SVM—linear epsilon insensitive Support Vector Machine (ε-SVM);
• ANFIS—Adaptive Neuro-Fuzzy Inference System;
• LSTM—Long Short-Term Memory;
• FNM—Fuzzy Neighborhood Model;
• N-WE—Nadaraya–Watson Estimator;
• GRNN—General Regression NN;
• RandNN—ensemble of 100 Randomized NNs;
• MTGNN—Graph NN for multivariate time series forecasting;
• ES-adRNNe—ensemble of five hybrid and hierarchical models combining ETS and

dilated RNN with attention mechanism.

We also compare our model with competitive tree-based ensembles: XGBoost [40]
and LightGBM [41]. Their predictors include both calendar data (hour of the day, day
of the week, quarter, month, year, day of the year, day of the month and week of the
year) and historical demands (demands at hour t of 21 consecutive days preceding the
forecasted day).

Table 5 compares MAPE for RF and the baseline models. From this table, you can
clearly see the better performance of RF compared to the other models. RF outperformed
all other models in terms of accuracy for PL, GB and DE. For FR it took third place after
RandNN and SVM. To confirm the results, a pairwise one-sided Giacomini-White test
was performed (GM test) [42]. Its results, p-values, are shown in Figure 9 (we used GW
test implementation from [43]). Small p-values, below 0.05 (green color), indicate that the
model on the X-axis significantly outperforms in terms of accuracy the model on the Y-axis.

Table 5. MAPE comparison between RF and baseline models (lowest errors in bold).

Model PL GB FR DE

RF (proposed) 1.05 2.36 1.67 1.06
Naive 2.96 4.80 5.53 3.13
ARIMA 2.31 3.50 3.00 2.31
ETS 2.14 3.19 2.79 2.10
Prophet 2.63 4.00 4.71 3.23
MLP 1.39 2.84 1.93 1.58
SVM 1.32 2.54 1.63 1.38
ANFIS 1.64 2.80 2.12 2.48
LSTM 1.57 2.92 1.81 1.57
FNM 1.21 3.02 1.84 1.30
N-WE 1.19 3.12 1.86 1.29
GRNN 1.22 3.01 1.81 1.30
RandNN 1.14 2.51 1.57 1.18
MTGNN 1.95 3.44 2.59 2.04
ES-adRNNe 1.22 2.45 1.73 1.15
XGBoost 1.67 3.36 2.51 1.74
LightGBM 1.67 3.39 2.54 1.79
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Figure 9. Results of the Giacomini-White test for the proposed and baseline models (black color is for
p-values larger than 0.10).

5.4. Discussion

In our previous work [19], we used a local training mode with input patterns r2, which
express daily profiles. Our current research revealed that input patterns incorporating
weekly seasonality (r4) or both daily and weekly seasonality (r6) combined with global
training with extended inputs improve the results (note that in Tables 1 and 2, patterns r4
and r6 provide lower errors than r2 for all countries). Calendar data used as additional
input in the global extended training helps the trees to properly partition the input space
and thus approximate the target function with greater accuracy. It does not take place
without costs: the complexity of the model increases due to learning on all data, not just
the selected data as in local training.

Table 5 and Figure 9 show that the proposed RF outperforms classical statistical models
(ARIMA and ETS), modern statistical model (Prophet), classical ML models (MLP, SVM,
ANFIS, GRNN), modern ML models (LSTM, RandNN), similarity-based models (FNM,
N-WE) as well as state-of-the-art ML models (MTGNN, ES-adRNNe) and boosted regres-
sion trees (XGBoost, LightGBM). The last two models, as well as the proposed RF model,
also used calendar variables, even in larger numbers. However, in contrast to these models,
our model uses specific time series preprocessing, which may be a decisive advantage. Our
model also outperforms ES-adRNNe, which is a very sophisticated and complex model
developed especially for STLF [39]. To increase its predictive power, it is equipped with a
new type of RNN cell with delayed connections and inherent attention, it processes time
series adaptively, learning their representation and it learns in the cross-learning mode (i.e.,
it learns from many time series in the same time). It reveals its strength with a large amount
of data, numerous and long time series. In our case, this condition was not met—there
were only four, relatively short series available for training the models. In this case, the
proposed RF model, which learns from individual series, generated more accurate forecasts
than ES-adRNNe.

It is worth noting that RF has few hyperparameters to tune, which makes it easy to
optimize (compare with DNNs with many hyperparameters). The results of our experi-
ments confirmed that the number of trees in the forest should be as large as possible and
the mimimum leaf size can be set to one. Therefore, the key hyperparameter remains the
number of predictors to sample in the nodes. Its optimal values significantly differed from
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the recommended default values. Our attempt to increase the performance of the RF model
through alternative methods of selecting predictors for split failed. Neither the curvature
test nor the interaction test, which take into account the relationship between predictors
and response when splitting data in nodes, improves the results significantly over the
default CART method.

In our study, we used both continuous and categorical predictors. Such a mix causes
many difficulties for other models such as ARIMA, ETS, NNs, SVM, LSTM and others.
Categorical variables cannot be processed by these models directly. Such predictors must
be converted into numerical data, so as to maintain the relationship between their values.
The method of this conversion can be treated as an additional hyperparameter. RF has no
problems with categorical variables, which is its big advantage. Moreover, RF can deal
easily with any number of additional exogenous predictors and does not need to unify
predictor ranges, which is often necessary for other models. RF can even deal with raw
data because the predictors are not processed by the tree in any way, just selected in nodes,
to construct a specific decision model (flowchart-like structure).

Regression tree provides fast one-pass training which does not need to repeatedly
refer to the data. In contrast, NNs, which use a variant of the gradient descent optimization
algorithm with multiple scanning of a dataset, are more time-consuming to train. Addition-
ally due to the number of hyperparameters, they are also much more expensive to optimize
in terms of time than RF. The training of a tree does not provide an optimal result because
decisions about data split are made in nodes using a local rather than a global criterion, i.e.,
the split made may not be optimal from the point of view of the final result. However, the
NN learning process also does not lead to optimal results due to sensitivity to the starting
point and tendency to fall into the traps of the local minimum. Note that non-optimality
of the trees is mitigated by their aggregation in the forest. Aggregation also smoothes out
functions modeled by individual trees and reduces their variance. The learning process of
RF can be easily paralleled because the individual trees learn independently.

One useful feature of RF is that it enables the generalization error to be estimated
using out-of-bag (OOB) patterns, i.e., training patterns not selected for the bootstrap sample
(approximately one third of the training patterns are left out in each bootstrap sample).
Therefore, the time-consuming cross-validation that is widely used in other models for
estimating the generalization error is not needed. Using OOB patterns, the generalization
error can be estimated during one training session, along the way. Although for forecasting
problems, where training patterns should precede validation to prevent data leakage, the
OOB approach as well as standard cross-validation may be questionable. For this reason,
we did not use the OOB approach in this study. Instead, we applied a different strategy.
We chose a set of 100 validation patterns from 2014 and for each of them we trained RF on
training patterns preceding the validation pattern.

A valuable feature of RF is its built-in mechanism for predictor selection. In each
node, the predictor which improves the split-criterion the most is selected. The splitting
criterion favors informative predictors over noisy ones, and can completely disregard
irrelevant ones. Thus, in RFs an additional feature selection procedure is unnecessary.
Based on the internal mechanism for selecting predictors, the predictor importance or
strength can be estimated. The importance measure attributed to the splitting predictor
is the accumulated improvement this predictor gives to the split-criterion at each split in
each tree. RF also offers another method of estimating the predictor importance based
on the OOB patterns [27]. When the tree is grown, the OOB patterns are passed down
the tree, and the prediction error is recorded. Then the values for the given predictor
are randomly permuted across the OOB samples, and the error is computed again. The
importance measure is defined as the increase in error. This measure is computed for every
tree, then averaged over the entire forest and divided by the standard deviation over the
entire forest. Such a measure is presented in Figure 8. Note that information about the
predictor importance is a key factor, which helps to improve the interpretability of the
model and can be used for feature selection for other models.
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Model interpretability is an emerging area in ML that aims to make the model more
transparent and strengthen confidence in its results. This topic is also explored in electricity
demand forecasting literature [44]. In [45], it was shown that the predictor importance is
related to the model sensitivity to inputs and also to the method of importance estimation.
An LSTM-based model, which is proposed in [45], is equipped with a built-in mechanism
based on a mixture attention technique for temporal importance estimation of predictors.
In the experimental study, this model demonstrated higher sensitivity to inputs than tree-
based models (RF and XGBoost) which showed very low sensitivity on the predictors
except one, which strongly dominated (the authors used built-in functions of scikit-learn
to calculate the predictor importance for tree-based models). In our study, the predictor
importance is more diverse (see Figure 8), which may result from the fact that our trees
are very deep and thus involve a great number of predictors. Note that tree-based models
enhance interpretability not only through built-in mechanisms of predictor importance
estimation, which show predictive power of individual predictors, but also through their
flowchart-like tree structure. They can be interpreted simply by plotting a tree and observ-
ing how the splits are made and what is the arrangement of the leaves. It should be noted,
however, that while following the path that a single tree takes to make a decision is trivial
and self-explanatory, following the paths of hundreds of trees in the ensemble is much
more difficult. To facilitate this, in [46], model compression methods were proposed that
transform a tree ensemble into a single tree that approximates the same decision function.

In this study we use a standard RF formulation which is a MISO model producing
point forecasts. Thus for prediction of 24 values of the daily curve of electricity demand,
we need to train 24 RF models. In [32], we proposed a multivariate regression tree for STLF,
which produces a vector as an output, representing the 24 predicted values. Using such
MIMO trees as ensemble members simplifies and speeds up the forecasting process. A
promising extension of the RF in the direction of probabilistic forecasting can be achieved
using a quantile regression forest, which can infer the full conditional distribution of the
response variable for high-dimensional predictor variables [47].

6. Conclusions

ML ensemble models are state-of-the-art for forecasting problems. They dominate
the most recent literature on forecasting. Among them, tree-based ensembles have a solid
theoretical basis and have been thoroughly researched in a huge number of papers. Their
predictive power has been confirmed in numerous forecasting competitions [24].

In this study, we propose a RF model for a challenging STLF problem with multiple
seasonality, nonlinear trend, and varying variance in time series. Unlike DNNs, RF is simple
and transparent, it does not require a complex, deep architecture, equipped with additional
sophisticated mechanisms to deal with complex time series. The greatest advantages of
RF as a forecasting model are: small number of tuning hyperparameters (we show that
only one is key), fast training and optimization, ability to deal with multiple exogenous
predictors of different types, and built-in mechanism for selecting predictors and estimating
their importance.

As with any predictive model, the performance of RF depends significantly on data
preprocessing and proper organization of the training process. In the simulation study, we
show how the results of RF depend on the training method, definition of input variables
and hyperparameters. Based on the results, we recommend the best method of predictor
definition (r4 and r6) and training mode (global extended) for STLF. Comparing the perfor-
mances of RF and baseline models including statistical and ML ones, we showed that RF
can successfully compete with them, providing the most accurate forecasts.

In our future work, we plan to extend RF with random data projection (to further
smooth the estimator and provide an additional source of diversity) and use RF for proba-
bilistic forecasting. A quantile regression forest [47] is a promising tool for the latter task.
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Abbreviations

The following abbreviations are used in this manuscript:

ANFIS Adaptive Neuro-Fuzzy Inference System
APE Absolute Percentage Error
ARIMA Auto-Regressive Integrated Moving Average
CART Classification And Regression Trees
CNN Convolutional Neural Network
DE Germany
DNN Deep Neural Network
ES-adRNNe ensemble of five hybrid and hierarchical models combining ES

and dilated RNN with attention mechanism
ETS Exponential Smoothing
FR France
FNM Fuzzy Neighborhood Model
GB Great Britain
GBRT Gradient Boosting Regression Tree
GRNN General Regression Neural Network
IqrAPE Interquartile Range of Absolute Percentage Error
LightGBM Light Gradient Boosting Machine
LSTM Long Short Term Memory Neural Network
MAPE Mean Absolute Percentage Error
MdAPE Median of Absolute Percentage Error
MIMO Multiple Input Multiple Output
MISO Multiple Input Single Output
ML Machine Learning
MLP Multilayer Perceptron
MPE Mean Percentage Error
MTGNN Graph Neural Network for Multivariate Time series forecasting
N-WE Nadaraya–Watson Estimator
NN Neural Network
PE Percentage Error
PL Poland
RandNN Randomized Neural Network
RF Random Forest
RMSE Root Mean Square Error
RNN Recurrent Neural Network
StdPE Standard Deviation of Percentage Error
SVM Support Vector Machine
STLF Short-Term Load Forecasting
WGTB Warm-start Gradient Tree Boosting
XGBoost eXtreme Gradient Boosting
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Abstract: Integrating new renewable energy resources requires robust and reliable forecasts to ensure
a stable electrical grid and avoid blackouts. Sophisticated representation learning techniques, such
as autoencoders, play an essential role, as they allow for the extraction of latent features to forecast
the expected generated wind and photovoltaic power for the next seconds up to days. Thereby,
autoencoders reduce the required training time and the time spent in manual feature engineering
and often improve the forecast error. However, most current renewable energy forecasting research
on autoencoders focuses on smaller forecast horizons for the following seconds and hours based on
meteorological measurements. At the same time, larger forecast horizons, such as day-ahead power
forecasts based on numerical weather predictions, are crucial for planning loads and demands within
the electrical grid to prevent power failures. There is little evidence on the ability of autoencoders
and their respective forecasting models to improve through multi-task learning and time series
autoencoders for day-ahead power forecasts. We can close these gaps by proposing a multi-task
learning autoencoder based on the recently introduced temporal convolution network. This approach
reduces the number of trainable parameters by 38 for photovoltaic data and 202 for wind data while
having the best reconstruction error compared to nine other representation learning techniques. At
the same time, this model decreases the day-ahead forecast error up to 18.3% for photovoltaic parks
and 1.5% for wind parks. We round off these results by analyzing the influences of the latent size and
the number of layers to fine-tune the encoder for wind and photovoltaic power forecasts.

Keywords: transfer learning; wind power; photovolatic power; autoencoders; deep learning; time series

1. Introduction

Due to the increase in the amount of renewable energy in the electric grid, it is essential
to find suitable compact representations that allow prediction of expected power generation.
Such compact representations often improve the prediction quality and can be used to
save computational resources and time [1]. The area of research that deals with finding a
suitable representation, e.g., through autoencoders, is called representation learning [2]. An
autoencoder, an artificial neural network architecture, consists of an encoder, a bottleneck
layer, and a decoder. In the case of an undercomplete autoencoder, an encoder learns a
transformation of the original features into a lower-dimensional feature space, e.g., through
a bottleneck in the neural network [3]. The decoder utilizes this latent representation to
reconstruct the original features. Although this area of research has existed in the literature
on renewable energy for some time, it is mainly concerned with short-term forecasts, which
use wind speed measurements to predict the expected wind power in the following minutes
and hours [4–7].

At the same time, for planning and ensuring the stability of the electric grid, larger
forecast horizons, such as day-ahead forecasts between 24 and 47 h into the future are
inevitable. Such prediction horizons are possible with predicted features of numerical
weather prediction (NWP) models.

Energies 2022, 15, 8062. https://doi.org/10.3390/en15218062 https://www.mdpi.com/journal/energies
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Due to the weather’s chaotic and non-linear behavior, these forecast horizons have
more substantial forecast errors than smaller horizons. Therefore, finding suitable repre-
sentations for those horizons is even more essential. The research questions to find an
appropriate representation are:

Research Question 1. To what extent are multi-task learning (MTL) autoencoders beneficial
for learning latent features of NWP for day-ahead forecasts?

Answering and developing methods for this question is critical, as in practice, an
individual autoencoder is often trained for each wind or photovoltaic (PV) park. This
training setting is also called single-task learning (STL), where we train one model for each
park individually. At the same time, an MTL architecture reduces the required training
time and often improves the forecast error. To our knowledge, MTL autoencoders, trained
in a semi-supervised setting, have not been considered for day-ahead power forecasts.

Research Question 2. To what extent are time series-specific layers in autoencoders benefi-
cial for learning latent features of NWP day-ahead features?

Answering this question allows us to consider seasonality within forecasts, e.g., given
through the diurnal cycle, which influences the forecast error [8].

Research Question 3. To what extent is it necessary to fine-tune the encoder for day-ahead
power forecasts?

In the literature, the encoder is often fine-tuned completely for predicting power
forecasts. However, as we will see later on, this is not always beneficial and depends on,
e.g., the architecture of the autoencoder.

To answer those research questions, we combine techniques from unsupervised learn-
ing and MTL. We utilize a discriminative STL autoencoder based on a multi-layer per-
ceptron (MLP) and a temporal convolution network (TCN) for learning latent features
of the weather, i.e., referred to as AEMLP and AETCN. The TCN model type is recently
introduced for time series forecasts in fields such as speech processing, traffic estimation,
short-term wind power predictions [9], and day-ahead wind and PV power forecasts [10].
We extend both models in an MTL setting and refer to them as AEMLP-MTL and AETCN-
MTL. Our experiments consider a generative approach for all variants through a variational
autoencoder (VAE). The generative approach learns to represent the (whole) distribution,
while the discriminative autoencoders learn the most efficient data encoding to represent
the data. Finally, we train the encoder with a forecasting model in a supervised fashion to
forecast the expected power and evaluate the different amount of layers to fine-tune the
encoder, leading to the following contributions:

• Through the proposed MTL autoencoders, we reduce the number of parameters for
training by a factor of 38 for PV data and by 202 times for wind data.

• At the same time, we improve the reconstruction error by up to 300% for PV and
134 times for wind through the proposed AETCN-MTL architecture.

• During our study, to answer Research Question 3, we found that the number of
layers to be fine-tuned depends on the model type, e.g., MLP or TCN and the model
architecture, e.g., STL or MTL.

• Based on the encoder of the proposed AETCN-MTL model, we achieve one of the best
results with improvements up to 18.3 and 1.5 percent for PV and wind day-ahead
power forecasts, respectively.

The remaining article shows the necessity for a systematic analysis of autoencoders
in day-ahead forecasts in Section 2 through the literature review. Afterward, we detail
different autoencoder techniques in Section 3. The following section, Section 4, summarizes
the datasets and challenges for day-ahead power forecasts. In Section 5, we detail our
analysis to answer the identified research questions. Finally, in Section 6, we revisit our
work and propose future work.
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2. Related Work

The following section reviews the related work on wind and PV power forecasts
using autoencoders. Within the review, we focus on work that utilizes autoencoder in
a transfer learning (TL) setting, e.g., to reduce the required training time. Generally, we
consider transfer learning as a knowledge transfer between two tasks. Nowadays, most
researchers perform knowledge transfer through fine-tuning layers of a deep learning
model. Additional work that applies autoencoders for predicting wind speed and solar
radiation is summarized in [11].

The authors of [12] are one of the first that considered long-tem short memories
(LSTMs) for day-ahead PV power forecasts. Therefore, they initially trained a vanilla
autoencoder based on day-ahead NWP inputs from 21 parks. Vanilla autoencoder refers to
an autoencoder based on an MLP architecture. Afterward, the authors trained an LSTM
attached to the encoder of the autoencoder for renewable power forecasts.

The authors of [4] proposed the utilization of a stacked autoencoder for multi-step
wind power prediction based on an MLP model. The authors trained a three-layer stacked
autoencoder on a single wind park based on historical power measurements. Afterward,
adding a final layer to the model and fine-tuning the whole network allowed for the creation
of multi-step-ahead prediction. The authors evaluated the results on roughly 1.5 weeks of
data for a one-hour-ahead prediction.

In [5], a stacked autoencoder was proposed for wind speed and wind power prediction
for horizons up to four hours ahead. Compared to [4], a recurrent autoencoder allowed for
learning of the relations in the time series in [5]. Again, the whole network was fine-tuned
after the pre-training and evaluated on two wind speed prediction experiments and one
for predicting the expected wind power generation in Belgium.

The third variant of a stacked autoencoder was presented in [6] for wind power
predictions up to two-hours ahead. A particularly engaging aspect of their approach is
that they learn the feature extraction of the stacked autoencoder with the power prediction
layer jointly in an end-to-end fashion. At the same time, they considered an MTL approach
for multi-output predictions, where the model predicts multiple horizons simultaneously.
The results were evaluated on a single wind farm in the United States after fine-tuning the
complete network.

While the former articles did not explicitly consider TL techniques, the following articles
consider techniques from this field. One of the earliest works trained nine MLP-based
autoencoders on a single wind park [7]. Those autoencoders were adapted to four other
wind parks and an ensemble given by a deep belief network that combines each park’s
extracted features. The authors made a one-hour ahead prediction by utilizing the previous
24 h NWP data, where they reduced the training time through the fine-tuning process from
the source park.

The same leading author randomly selected one out of five parks in [13]. This park
was utilized for training a single MLP autoencoder from a randomly selected park. This
autoencoder was adapted for every four months of available training data. Over time,
there are various autoencoders acting as feature extractors for intra-day forecast horizons.
Features extracted from those autoencoders were selected through mutual information and
forecasts were combined through an ensemble to provide the final prediction.

The article closest to ours is [1]. This article compared traditional feature extraction
methods with feature extraction techniques from deep learning. The authors showed
that fine-tuning helps improve the forecast error for MLP-based models for day-ahead
wind and PV power forecasts on a total of 21 PV and 55 wind parks. However, they
did not consider autoencoders based on TCNs. Furthermore, an MTL approach was not
considered, nor was a different number of layers to unfreeze in the model.

The authors of [14] trained a unified autoencoder considering data from wind turbines.
This model allowed them to extract homogeneous features of all turbines in a base model.
To reduce the training time and problem of vanishing gradient, they adopted a model fn
a single turbine to extract heterogeneous features and fine-tune the model for the final
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prediction. Their work considered two experiments with forecast horizons between 10 and
60 s based on meteorological measurements to predict the expected power generation. In
the first experiment, they considered 15 parks as the source and target task, whereas in the
second experiment they considered 50 parks as the source and target. The unified approach
within the article is similar to our proposed MTL approach. However, they only considered
an MLP-based model for short forecast horizons, whereas we are interested in the horizon
between 24 and 47 h into the future and TCN architecture.

Finally, the authors of [15] trained variational autoencoders on source parks and fine-
tuned this on a target with limited data. They simultaneously utilized five variational
datasets as source models to generate several different latent features. The proposed
approach reduced the training time while having excellent forecast errors. However, they
only used two wind parks as the source domain and three wind parks as the target domain.
At the same time, this article utilizes meteorological measurements in a regression task.

Overall we can summarize that only two articles have considered day-ahead power
forecast and only one utilized an MTL approach. Even though various articles have
considered fine-tuning an initial representation, to the best of our knowledge, none of the
articles have evaluated the different number of layers to fine-tune. Furthermore, those
techniques are often considered separately. We aim to close this gap with our article. Finally,
the maximum number of considered wind parks in the literature are 55 and 21 PV, whereas
we considered 445 wind and 117 PV parks.

3. Method

This section explains the deep learning-based techniques for latent feature extraction
and concepts of transfer learning and MTL. Latent feature extraction from input features
allows the derivation of valuable latent features for downstream tasks such as classification
or regression.

We concentrate on undercomplete autoencoders (Figure 1), as they allow learning
a representation z ∈ RDz of the input x ∈ RDx , where the number of latent features
Dz ∈ N≥1 is less or equal than the input feature dimension Dx ∈ N≥Dz . The concept of
undercomplete autoencoders assures that after the training the computational effort is less
than with the original input features. Moreover, undercomplete autoencoders are often
preferred over overcomplete autoencoders for the same reasons, as they learn a higher
dimensional representation of the input features and increase the computational effort in
further processing. Within the context of undercomplete autoencoders, we analyze and
explain three types of autoencoders:

1. We present the vanilla autoencoder that builds the foundation for the other architectures.
2. We introduce time series autoencoders. These consists of recurrent networks or

a convolutional neural network (CNN)-based approach. Due to the recent success
and advantages of CNNs over recurrent networks [16,17], we focus on the latter.

3. We detail variational autoencoders as an example of generative autoencoders. A
generative approach has the advantage that we can impute missing values, reduce
noise in data, or sample from the learned representation. The generative approach
learns to represent the (whole) distribution, while a discriminative autoencoder learns
the most efficient data encoding to represent the data. On the other hand, discrimina-
tive autoencoders have the advantage that they are easy to implement and often are
sufficient for various tasks [1].

A combination of those concepts is applicable. For instance, we can train a variational
time series autoencoder. Further, we must differentiate if an architecture is learned from
single or multiple tasks simultaneously. In the former, we refer to it as an STL and, in the
latter case, as an MTL autoencoder.

3.1. Vanilla Autoencoder

Autoencoders describe the concept of learning latent features through neural networks.
Within this article, we refer to a vanilla autoencoder as architecture that utilizes an MLP archi-
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tecture to extract those features. Additionally, we only consider undercomplete autoencoders
for reducing the original input features from the NWP, as detailed in Section 4.1.

In such a vanilla autoencoder, as visualized in Figure 1, we have three main components:
the encoder, the bottleneck, and the decoder. The encoder has the features x from the NWP
as input, where the dimension is of size Dx. In each successive layer, we reduce the number
of features to the required number of latent features Dz, which we refer to as the bottleneck.
Afterward, the decoder aims to reconstruct the original features from the latent features z at
the bottleneck by increasing the number of features in each successive layer. The difference
between the original input and the reconstructed features is referred to as the reconstruction
error. We evaluate the reconstruction error often through a squared error loss.

x

Inputs Outputs

Latent Features

fθ(x) = z

Bottleneck

Encoder fθ Decoder hφ

hφ(z) = x̂

Figure 1. An example undercomplete autoencoder (AE) topology. The AE reduces the dimensionality
in each layer of the encoder. The representation of the latent features at the bottleneck are the extracted
hidden features sufficient to reconstruct the original input successively in each layer of the decoder.

One of the fundamental concepts of autoencoders is the bottleneck. We ensure that the
network is not learning an identity mapping during training by having a lower dimension
in the bottleneck than in the input. Other alternatives to avoid this problem are, e.g.,
denoising autoencoders, where we induce random noise on the input features [1]. However,
we excluded those variants as the current results suggest that they are not beneficial over
vanilla autoencoders for day-ahead power forecasting [1].

To introduce the loss function, consider that the latent features are given by the encoder
with z = fθ(x), where fθ is the encoding neural network with parameters θ. At the same
time, the reconstructed features x̂ ∈ RDx and Dx ∈ N≥1 are given by x̂ = hφ(z), where
hφ is the decoding function given by the neural network with parameters φ. In the case
that we are interested in reconstruction of the same input features x as output features x̂,
then we aim to approximate the input features with x ≈ x̂. We achieve this approximation
through the following loss function:

LAE = L(x, hφ( fθ(x))), (1)

where L is often a quadratic loss such as the mean squared error (MSE).
After the unsupervised training of an autoencoder through the above loss function,

we typically remove the decoder and solely use the learned latent feature as input for
supervised machine learning (ML) algorithms for regression or classification tasks. Often,
we train this model through a gradient descent method such as the Adam optimizer, where
we update the weights of the encoder and those of the forecasting model, e.g., based on a
squared error loss.

For results of a squared error loss and a linear decoder, the latent space of the autoen-
coder lies in a similar sub-space to principal component analysis (PCA). Moreover, ref. [18]
shows that PCA components can be estimated from latent features through singular value
decomposition. This result motivates us to utilize PCA as a reference for later experiments.
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To compare the predictions obtained with AEs to extended techniques, we extend the
idea of AE to more complex structures and further exploit the potential of deep architectures
for representation learning in the following.

3.2. Time Series Autoencoder

While a latent representation through an MLP has the advantage that it is easy and efficient
to train, this representation neglects cyclic influences, e.g., caused by the diurnal cycle within a
day [8]. Therefore, an autoencoder that learns correlations between timesteps is often beneficial.
One choice would be an autoencoder based on a recurrent network such as LSTMs. However,
due to the recent success of 1D CNNs for time series forecasts, their reduced training time,
and often improved performance, see, e.g., [17], we focus on these over recurrent architectures.
As the principled structure of a time series autoencoder is identical to the vanilla autoencoder
detailed in the previous section, we initially focus on the general concept of a one-dimensional
convolution autoencoder. Afterward, we detail the proposed TCN autoencoder to learn the
latent features from NWP models for day-ahead forecasts.

Figure 2 visualizes an example of a 1D-CNN. Let us, therefore, assume we have a
one-dimensional input time series with 24 timesteps t from {0, . . . , 23} similar to the time
series length in day-ahead forecasts with an hourly resolution. Let us further assume the
time series of a single input feature is given as an ordered set with {x0, . . . , xt, . . . , x23}, also
referred to as input channel, and a filter a ∈ R3. Then, the result of the 1D-CNN at timestep
t is simply given by the dot product between the filter a and {xt−1, xt, xt+1}. By adding,
e.g., a zero padding at the beginning and end of the time series, we ensure that we maintain
the length of the time series, similar to a recurrent network [19], in the output channel.
Padding the time series is also essential, as later on, we aim to forecast the expected power
generation with an equivalent time series length.

Filter Kernel

Padding

Padding

Input Fea-
ture

Output
Feature

t0

t23

t0

t23

x0

x1

· · ·

· · ·

x22

x23

a0

a1

a2

a0

a1

a2

y0

· · ·

· · ·

y23

Figure 2. Example one-dimensional CNN with a filter of size 1× 3. We keep the time series’ dimension
and extract relevant information by applying the filter to an input time series size of 1 × 24 with
additional padding.
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Figure 3 visualizes this concept for multiple inputs. We can observe that in each layer
of the encoder, the length of the time series stays the same while the number of features
reduces. In the decoder, we increase the number of features. The time series autoencoder
now has a tensor X ∈ RN×Dx×K with N, Dx, K ∈ N≥1 as input. Here, N refers to the
number of samples, Dx is the number of features, and K is the length of the time series.
Again, in our case for day-ahead forecasts, the length of the time series is 24 considering
an hourly resolution. The encoder now reduces the dimension to obtain the latent feature
tensor Z ∈ RN×Dz×K. The decoder approximates the original input tensor with X ≈ X̂.

t0 t23...

t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...

t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...

t0 t23...t0 t23...t0 t23...

t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...

t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...t0 t23...
t0 . . . t23 Encoder fθ Bottleneck Decoder hφ

t0 . . . t23

t0 . . . t23 t0 . . . t23

t0 . . . t23

X hφ(Z) = X̂fθ(X) = Z

Padding

Figure 3. An example undercomplete time series AE topology. The AE reduces the dimensionality
in each layer of the encoder. The latent features’ representation at the bottleneck are the extracted
hidden features sufficient to reconstruct the original input successively in each layer of the decoder.

As pointed out earlier, we use the TCN network as the building block for the time series
autoencoder. The principle approach is inspired by [20]. We adapted their proposal to the
needs for day-ahead power forecasts. We do not use upsampling or downsampling, as we
use zero-padding in all layers and have short time series. As a result, the TCN autoencoder
simplifies to a sequential concatenation of residual blocks, as visualized in Figure 4, of
the original TCN network [21]. The concept of residual blocks is well known in computer
vision [22]. The principle idea behind a residual block is to add a skip connection for the
input from previous layers to reduce the risk of the vanishing gradient. Therefore, in each
residual block, the input is processed twice in the following pattern: dilated convolution,
weight norm, ReLU activation, and dropout for regularization (see Figure 4). Note that a
dilated convolution is a particular convolutional layer that increases the receptive field, is
computationally efficient, and requires less memory. The skip connection adds the original
input to the output. An optional convolution matches the dimensions in the skip connection
if a single layer’s input and output dimensions are unequal.

Continuous
Input

Dilated
Causal
Conv

Weight
Norm

Dropout ReLU
Dilated
Causal
Conv

Weight
Norm

Dropout ReLU

+
Skip connection

with optional
1 × 1 Conv

Figure 4. Residual block of the TCN.

3.3. Variational Autoencoder

A drawback of the discriminative architectures in the previous sections is that they
cannot be used to reconstruct missing values or generate new samples. VAEs are a genera-
tive approach that extends the idea of a simple autoencoder by adding a constraint on the
encoding site to generative properties.

The encoder fθ, with parameters θ, is forced to learn the mean μ and standard deviation
σ of a Gaussian distribution. μ and σ are used to create latent features z by sampling from a
unit Gaussian translated and are scaled with the learned μ and σ to obtain qθ(z|x). This is also
called the reparameterization trick [23]. The scaled samples are used to reconstruct the original
features x with the decoder hφ, with parameters φ. More formally, this can be done using the
loss function:
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LVAE = −Ez�qθ(z|x)
[
log pφ(x|z)

]︸ ︷︷ ︸
LAE

+DKL(qθ(z|x) ‖ pφ(z)), (2)

where the first part, the likelihood function, is equal to the loss function LAE of an autoen-
coder (see Equation (1)). The Kullback–Leibler Divergence DKL penalizes the deviation
between the learned distribution qθ from a unit Gaussian with pφ(z) = N (0, I).

By applying the reparameterization trick, it is possible to extend the original idea of
an AE and achieve the following properties:

• Often, the combination of a generative network with an encoder forces the VAE to
learn a representation in a much lower-dimensional space (see [3] (p. 699) and [23]).

• The decoder and the latent vector, which can be drawn from prior pφ(z), provide a
generative framework.

3.4. Transfer Learning

Transfer learning describes the concept of knowledge transfer from one task to another.
Knowledge transfer from a source to a target task often has better generalization capabilities
and improves the forecast error for problems with limited data. One sub-field of transfer
learning is multi-task learning. The term MTL refers to two different concepts: Soft pa-
rameter sharing (SPS) and hard parameter sharing (HPS). The idea that shared knowledge
should be used across tasks is included in both principles. However, HPS is advantageous
when tasks are closely related and it is advantageous to share a lot of information [10].
When activities are only slightly related, SPS is helpful, and it is good to have primarily
specific knowledge for each task [10]. When considering a neural network, most layers
in the case of HPS are the same for all tasks, and only the final few layers differ. For SPS,
we train a single network for each task and regularize the training to make the learned
representations of each task similar. Within our work, we consider the extreme case of
an HPS autoencoder, where layers of all tasks are the same, as we assume that there is a
common latent representation of the weather. While in principle, this might be a simplified
consideration, it is the first important step towards finding a common latent representation
for forecasting tasks and we can extend the concept to task-specific representation later
on, e.g., through task embeddings as proposed in [10].

Once we learn a joint representation of the weather, we must ensure that the knowl-
edge is appropriate for the target task, in our case, the forecasting of the expected power
generation. While an adaption is unnecessary for some latent representations and tasks,
this is probably untrue for most. Therefore, we have to adapt knowledge for the task
at hand. A common approach in deep learning is the fine-tuning of the final layers of a
network. In our case, the encoder extracts the latent features and we adapt the layers of
this network. Training an initial network on a source task and adapting it for a target task
through fine-tuning is often referenced as sequential transfer learning [24].

4. Datasets and Challenges in Day-Ahead Power Forecasts

The following sections summarize the datasets and the challenges in day-ahead
power forecasts.

4.1. Overall Process of Day-Ahead Forecasts and Challenges

The following section details the challenges associated with day-ahead power forecasts.
We include a description of the overall process for generating power forecasts for a wind
or PV park. Figure 5 summarizes this process. Due to the weather dependency of renewable
power plants, we require weather predictions from so-called NWP models. The NWP model
receives input from sensors that approximate the current weather situation. Based on the
latest sensory data, a so-called model run is calculated. This model is ran, e.g., at 0.00 a.m.
Due to the complex and manifold stochastic differential equations involved in predicting
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the weather, such a model run typically requires about six hours. Afterward, the NWP
provides forecasts, e.g., up to 72 h into the future. In our case, we are interested in so-called
day-ahead power forecasts based on weather forecasts between 24 and 47 h into the future.
Based on these weather forecasts and historical power measurements, we can train the ML
model to predict the expected power generation for day-ahead forecasting problems.

sensor data 
of current weather 

NWP
Model

weather forecasts
between 24 and 48 h into

the future

uses forecasts

wind or solar park

uses

utilizes historical
power measurements

ML
Model 

forecasts

Figure 5. Overview of renewable power forecast process.

However, due to the dependency of renewable power forecasts on weather forecasts
as input features, substantial uncertainty is associated with these forecasts making it a
challenging problem. At the same time, weather forecasts are valid for larger grid sizes, e.g.,
three kilometers, and a mismatch between these grids and the location of a wind or PV
causes additional uncertainty in the power forecasts [25]. These mismatches and the non-
linearity of the forecasting problem are depicted in Figure 6. We can observe mismatches
between the predicted wind speed (or radiation) and historical power measurements. For
instance, we can observe (outliers) where a large amount of power is generated for low
values of those features. These mismatches are also shown in the time series plots in
Figure 7. This observation indicates that the weather forecasts were incorrect. While the
scatter plot indicates a more linear and straightforward forecasting problem for PV, we can
also observe a stronger correlation in the time series than for wind.

(a) PVREAL dataset. (b) WINDREAL dataset.

Figure 6. Scatter plots of the most relevant features for power forecasts from day-ahead weather
forecasts and the historical power measurements. Large radiation or wind speed values and no power
generation indicate an incorrect weather forecast or feed-in management. Large power generation
values and a low value of wind speed or radiation indicate an incorrect weather forecast.

Examples are also present where we observe a considerable amount of wind speed or
radiation, but no or little power is generated. An incorrect weather forecast can cause this
problem. However, often it is associated with regular interventions. For instance, in some
regions in Germany, wind turbines must limit the rotation speed at night. Furthermore,
there is a large portion of feed-in management interventions in Germany. These interven-
tions are used to stabilize the electrical grid. A typical pattern for those interventions is
given in Figure 7b at time step 275. We can observe an initial large power production
associated with large wind speed values. At this point, the power generation drops to
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zero while the wind speed remains high. Such a sudden drop is typically associated with
feed-in management interventions. As those interventions depend on the power grid’s
state, we typically have no information about such drops, making the forecasting problem
even more challenging.

(a) PVREAL dataset.

(b) WINDREAL dataset.

Figure 7. Time series plots of most relevant features for power forecasts from day-ahead weather
forecasts and the historical power measurements. The radiation, as well as the historical power,
shows a typical Gaussian-shaped behavior during the day. The dashed rectangle shows a potential
bad weather forecast of the wind speed. The dotted rectangle for the WINDREAL dataset indicates a
typical pattern of feed-in management interventions.

4.2. Summary of Datasets

We summarize the considered datasets for learning latent features and predicting the
day-ahead power forecasts between 24 and 47 h into the future in Table 1. The table shows
the diversity of the datasets. Each dataset has a different number of parks, input features,
training, and test samples. For a better comparison between datasets, we linearly interpo-
lated the PVOPEN datasets from a three-hour to an hourly resolution. All other datasets
already had the respective resolution. The datasets also differ in the utilized NWP model. In
those weather predictions, from either the European center for medium-range weather fore-
casts (ECMWF) [26] or the Icosahedral Nonhydrostatic-European Union (ICON-EU) [27]
weather model, features such as wind speed, wind direction, air pressure, and direct and
diffuse radiation are included. For the PVOPEN dataset, various manually engineered
features are included, taking seasonal patterns of the sun into account. In the case that a
dataset initially did not include seasonal features from the month, day of the year, and hour
of the day, we incorporated those through a sine and cosine encoding [28].

All datasets except the PVREAL and WINDREAL datasets are openly accessible. At
the same time, those two datasets are the most recent and diverse. For instance, the
WINDREAL dataset includes 13 turbine manufacturers, six hub heights, and 99 different
nominal capacities. Furthermore, the PVREAL dataset has various distinct physical charac-
teristics, including ten tilt orientations, 31 different nominal capacities, and nine azimuth
orientations. Both datasets include parks located in and around Germany.
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Table 1. Overview of the evaluated datasets. All datasets except PVREAL and WINDREAL are
openly accessible.

Dataset #Parks #Features
Mean Train

Samples
Mean Test
Samples

Resolution NWP Ref.

PVOPEN 21 43 6336 8424 (57%) hourly ECMWF [29]
PVSYN 114 16 7596 3730 (32%) hourly ICON-EU [30]

PVREAL 38 25 14,513 4836 (25%) hourly ICON-EU [31]
WINDOPEN 45 9 6931 6659 (49%) hourly ECMWF [29]
WINDSYN 260 25 8428 4169 (33%) hourly ICON-EU [30]
WINDREAL 185 29 9032 3023 (25%) hourly ICON-EU [31]

The length of these two datasets varies dramatically between parks. Therefore, we
considered 25% randomly sampled days as test data such that we have an equal fraction
for training and testing in each park. Note that each day is based on independent day
ahead NWP forecasts, so no information is leaked from the future to the past [25]. This
splitting allows for a split without generalization of the test error. For the WINDSYN and
PVSYN dataset, on the other hand, the predefined test set is utilized [30]. Similar to [29],
for the WINDOPEN and PVOPEN, we use the first year’s data as training data and the
remaining data as test data. We use 25% randomly sampled for validation from the training
data for all datasets.

5. Experiments

The following sections summarize our results to answer our research questions
for the PV and WIND parks from the six datasets. PV parks contain all parks from
the datasets PVREAL, PVSYN, and PVOPEN, and WIND refers to all parks from the
datasets WINDREAL, WINDSYN, and WINDOPEN.

We first provide details on the overall experimental setup. Afterward, we describe one
experiment to evaluate the reconstruction error for the different representation learning
techniques for the evaluated latent sizes 2, 4, 6, 8, and 10. The trained autoencoder from
this experiment extracting the latent features of the weather (Figure 8) is then reused for
forecasting the expected power in the second experiment described afterward.

Encoder Decoder

Forecasting 
Model

fine-tuned learned from
scratch

re-used

N
W

P
Fe

at
ur

es

NWP 
Features

Power

Figure 8. In our experiments, we initially trained an autoencoder to reconstruct the NWP features
and learn the latent features of the weather. Afterward, the encoder was fine-tuned with a forecasting
model to forecast the day-ahead power.
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5.1. Overall Experimental Setup

For evaluation, we considered the normalized root mean squared error (nRMSE) given
by Equation (4) based on the root mean squared error (RMSE) in Equation (3). We use
Equation (4) in two ways. First, we utilize it in calculating the reconstruction error to
quantify how well a representation learning technique is capable of reconstructing the
original features from a latent representation. Secondly, it measures the forecast error for
day-ahead power forecasts.

RMSE =

√√√√ 1
N

i=N

∑
i=1

(yi − ŷi)2 (3)

nRMSE =
RMSE − ymin

ymax − ymin
(4)

In Equations (3) and (4), yi is the i-th value of the response, ŷi is the prediction from
a model, N ∈ R≥1 is the number of samples, and ymax and ymin are the maximum and
minimum values of the response, respectively, a feature. Note that for normalization of
the power in all datasets, ymax is given by the nominal power, whereas for features from
the NWP, we consider the empirical minimum and maximum values from the training set.

We considered between two and ten latent features for each experiment. All experiments
were conducted on a Slurm cluster and all processes run on one out of four computing nodes,
each with 256 AMD EPYC 7742 CPUs and 1008 GB Ram. To answer Research Questions 1 and 2,
in the first experiment we evaluated the reconstruction error of the autoencoders. In the
second experiment, we evaluated how the encoders from the first experiments can be utilized
for power forecasts to answer Research Question 3. In both experiments, we differentiate
between WIND and PV parks due to their differences in the expected forecast errors [8]. The
former park type has a total of 490 parks, whereas the latter has 173 parks. For a given park
type and the number of latent features, we calculated the mean performance rank based on
the nRMSE for both park types. We test for a significant difference compared to the baseline by
the Wilcoxon test (α = 0.01).

5.2. Experiment on Representation Learning for Dimension Reduction

In this section, we answer Research Questions 1 and 2 to evaluate the different repre-
sentation learning techniques for day-ahead weather forecasts.

5.2.1. Experimental Setup

As a traditional dimension reduction technique we considered a PCA and a kernel PCA
with a cosine kernel, referred to as PCA-COSINE. The latter had one of the best results
in representation learning for day-ahead power forecasts in [1]. We compared those two
techniques with eight variants of autoencoders as summarized in Table 2.

Table 2. Overview of autoencoder-based representation learning techniques. The model type is
abbreviated as MLP for the multi-layer perceptron and TCN for temporal convolutional networks.
MTL is an abbreviation for multi-task learning, where all parks of a datatype are trained in a unified
autoencoder model. VAE is an abbreviation for a variational autoencoder as a generative approach
for dimension reduction.

Model Type
Architecture

(STL or MTL)
Discriminative or

Generative
Abbreviation

MLP/TCN STL Discriminative AEMLP/AETCN
MLP/TCN MTL Discriminative AEMLP-MTL/AETCN-MTL
MLP/TCN STL Generative VAEMLP/VAETCN
MLP/TCN MTL Generative VAEMLP-MTL/VAETCN-MTL
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Within those autoencoders we either considered an MLP or a TCN model. The
former consists of a linear layer followed by the rectified linear unit (ReLU) activation
and batchnorm for the input and hidden layers. For the output layers of the encoder and
decoder, the activation and batchnorm were not included. The TCN model allows us to
take the diurnal behavior of the weather into account and has the structure and non-linear
activation functions as described in Section 3.2.

For each model type, we considered an STL and an MTL approach. For the STL
architecture for each park and latent size, we trained an autoencoder. In the case of the MTL
architecture, we combined the data of all parks to train a single autoencoder. As all data
were combined, we considered this to be a unified AE, where we learn a unified latent space
across all parks. It is important to consider here that the MTL architecture has the same
number of parameters as the STL approach for a single park. This way, we can evaluate how
we can compress features robustly from various parks through a unifying autoencoder.

Within this experiment, the baseline refers to the AEMLP dimension reduction tech-
nique. Choosing the AEMLP as baseline allows to compare how MTL architectures improve
the reconstruction error for Research Question 1 over STL architectures. Furthermore, it
gives insights into how a time series autoencoder improves upon an MLP-based autoen-
coder for Research Question 2.

The number of input features for autoencoders is equal to that described in Table 1.
Each dataset includes six seasonal features, such as the day of the year, as described
in Section 4.2. These manually engineered features were not included in the output as they
are often challenging to learn for autoencoders and we can add those manually. At the
same time, including them in the input is essential so that the autoencoder can learn latent
features that depend on the seasons. For training, we reduced the number of features in
each successive layer by 70%, up to a minimum of the latent size plus one for all encoder
models. The final number of features in the encoder was then equal to the latent size. The
decoder had the reverse structure and an additional output layer to map it to the number
of features within a park without the seasonal features. For the variational autoencoders,
we added one additional layer in the encoder, transforming the latent features into μ and
σ (see Section 3.3).

To find the best hyperparameters, we conducted a grid search for the learning rate and the
number of epochs based on the reconstruction error on the validation dataset. For an STL AE,
we selected the best number of epochs from the set {50, 100, 200} along with a learning
rate from the set {10−2, 10−3, 10−4}. We initiated five parallel jobs for STL models to train
individual parks, where each process had 20 CPUs. While the learning rate was the same, due
to the additional data the number of epochs was selected from the set {50, 100, 200, 300, 400}
for MTL architectures. For MTL, we trained a model for all parks simultaneously with a single
process with 50 CPUs. We trained all MTL deep learning models through the Adam optimizer.

5.2.2. Findings

To show how the required number of parameters is reduced through MTL architec-
tures, Table 3 provides an overview of the number of parameters for the different models
for an example latent size of two. Other latent sizes solely differ slightly in the additional
parameters required for the latent features. For both model types, MLP and TCN, when
comparing the STL with the MTL architecture, the required number of parameters is re-
duced 38 times for the PV datasets and 202 times for the wind datasets. The TCN model
type, on the other hand, increases the required number of parameters five times over
an MLP-based model due to additional parameters in the residual block of the TCN.

We summarize the time consumption of these models in Table 4. Even though we
trained STL models with 100 CPUs through parallelization for each data and model type
and the MTL models were trained only with 50 CPUs, we can observe a substantial
reduction in the training time. Often the STL models require at least five times more
computation time, even though we trained them with additional CPUs. For a few cases,
the computation time of MTL is even ten times less than that of an STL architecture.

335



Energies 2022, 15, 8062

Table 3. The number of parameters for all autoencoder architectures for an example latent size of two.
Other latent sizes solely differ slightly in the additional parameters required for the latent features.
The number of parameters for the three wind and three PV datasets are summed for readability. The
abbreviations here are the same as those in Table 2.

Model Type
Data Type

AEMLP-MTL AEMLP-MTL AETCN AETCN-MTL VAE VAE-MTL VAETCN VAETCN-MTL

PV 118,707 3080 624,762 16,514 120,831 3116 629,718 16,598
WIND 421,870 2076 2,243,970 10,986 427,750 2112 2,257,690 11,070

Table 4. Duration to train the different autoencoders in minutes. For the STL models, we trained
with five parallel jobs. Each job utilized 20 CPUs and trained a single park. An MTL trained all parks
simultaneously through a single job with 50 CPUs.

Model Type Data Type
Duration

STL MTL

AE PV 1473 1295
WIND 5723 1126

AETCN PV 5043 940
WIND 13,174 1289

VAE PV 1592 1309
WIND 7456 1364

VAETCN PV 5495 1009
WIND 14,249 1342

The mean performance rank results for the reconstruction error of all models are
depicted in Table 5. We summarize the median reconstruction errors based on Equation (4)
in Table 6. These tables show that the variational autoencoders have the worst results,
regardless of the architecture and model type used. The variational autoencoders are
significantly worse than the baseline for all latent sizes and the two data types. For instance,
for a latent size of ten, the median nRMSE of the baseline is 74% lower than the best
variational autoencoder for the WIND parks. Similarly, for PV parks, the baseline is at
least 78% better than the variational autoencoder. This observation likely occurs due to
the limitation of the variational distribution that restricts the latent space through the
normal distribution. This effect can potentially be reduced by scaling the Kullback–Leibler
divergence in Equation (2).

Another interesting observation is that the mean performance rank in all cases is
larger for variational MTL autoencoders than for the same STL architecture. At the same
time, the difference in the median reconstruction error is only about 1%. Again, we can
explain this result with the variational distribution. In the case of the MTL architecture, the
same variational distribution must express multiple parks. Intuitively enough, as the STL
architecture already has difficulties compressing the information in the latent space, it is
even more challenging in an MTL setting. As all models share the same number of layers,
it might be beneficial for the variational autoencoder to utilize a deeper network or a larger
latent size to ease the training. Again, another option would be to reduce the constraint
given through the Kullback–Leibler divergence. With the evaluated hyperparameters, we
can summarize that the MTL architecture is not beneficial for variational autoencoders.

336



Energies 2022, 15, 8062

Table 5. Rank summary of the reconstruction error for all models and latent sizes for the autoencoder
model (see Table 2), and the PCA-based models. AEMLP is the baseline and all models were tested to
determine whether the reconstruction error is significantly better (∨), worse (∧), or not significantly
different (�) compared to the baseline. We test for a significant difference with the Wilcoxon test
(α = 0.01). The colors denote the respective rank. Blue indicates a smaller (better) rank and red a
higher (worse) rank. The best latent size and data type model is highlighted in bold.

Data
Type

Latent
Size

Baseline
AEMLP-

MTL
AETCN

AETCN-
MTL

PCA PCA-COSINE VAE
VAEMLP-

MTL
VAETCN

VAETCN-
MTL

PV 2 3.954 2.387∨ 2.757∨ 1.006∨ 4.896∧ 8.249∧ 8.844∧ 9.156∧ 6.659∧ 7.092∧
PV 4 3.682 2.971∨ 2.410∨ 1.087∨ 4.850∧ 6.173∧ 9.069∧ 9.474∧ 7.451∧ 7.832∧
PV 6 3.618 2.301∨ 3.075∨ 1.393∨ 4.613∧ 6.017∧ 9.092∧ 9.468∧ 7.497∧ 7.925∧
PV 8 3.254 1.983∨ 3.983∧ 1.260∨ 4.520∧ 6.006∧ 9.017∧ 9.538∧ 7.486∧ 7.954∧
PV 10 4.017 1.925∨ 4.520∧ 1.179∨ 3.358∨ 6.000∧ 9.104∧ 9.468∧ 7.526∧ 7.902∧

WIND 2 3.820 2.332∨ 2.992∨ 1.012∨ 4.853∧ 8.120∧ 6.925∧ 6.641∧ 8.888∧ 9.417∧
WIND 4 4.447 2.393∨ 4.285∨ 1.249∨ 2.636∨ 6.838∧ 7.299∧ 7.318∧ 8.99∧ 9.545∧
WIND 6 4.008 2.162∨ 3.919� 1.110∨ 3.813∨ 6.401∧ 7.376∧ 7.553∧ 9.081∧ 9.576∧
WIND 8 4.080 2.037∨ 4.439∧ 1.000∨ 3.458∨ 6.165∧ 7.256∧ 7.570∧ 9.222∧ 9.773∧
WIND 10 4.014 2.199∨ 4.828∧ 1.002∨ 2.970∨ 6.103∧ 7.387∧ 7.501∧ 9.231∧ 9.764∧

Table 6. Median nRMSE of the reconstruction error for all models and latent sizes for the autoencoder
models (see Table 2), and the PCA-based models. AEMLP is the baseline and all models were
tested to determine whether the reconstruction error is significantly better (∨), worse (∧), or not
significantly different (�) compared to the baseline. We test for a significant difference with Wilcoxon
test (α = 0.01). The colors denote the respective rank. Blue indicates a smaller (better) rank and red a
higher (worse) rank. The best latent size and data type model is highlighted in bold.

Data
Type

Latent
Size

Baseline
AEMLP-

MTL
AETCN

AETCN-
MTL

PCA PCA-COSINE VAE
VAEMLP-

MTL
VAETCN

VAETCN-
MTL

PV 2 0.126 0.108∨ 0.112∨ 0.075∨ 0.141∧ 0.201∧ 0.227∧ 0.227∧ 0.190∧ 0.191∧
PV 4 0.081 0.068∨ 0.063∨ 0.04∨ 0.100∧ 0.180∧ 0.226∧ 0.227∧ 0.190∧ 0.191∧
PV 6 0.058 0.046∨ 0.052∨ 0.028∨ 0.072∧ 0.153∧ 0.227∧ 0.227∧ 0.189∧ 0.191∧
PV 8 0.044 0.027∨ 0.046∧ 0.011∨ 0.048∧ 0.135∧ 0.226∧ 0.227∧ 0.190∧ 0.191∧
PV 10 0.042 0.015∨ 0.044∧ 0.014∨ 0.024∨ 0.124∧ 0.227∧ 0.227∧ 0.189∧ 0.191∧

WIND 2 0.119 0.109∨ 0.110∨ 0.081∨ 0.135∧ 0.255∧ 0.217∧ 0.214∧ 0.276∧ 0.278∧
WIND 4 0.103 0.080∨ 0.097∨ 0.062∨ 0.088∨ 0.209∧ 0.213∧ 0.214∧ 0.276∧ 0.278∧
WIND 6 0.068 0.054∨ 0.067� 0.033∨ 0.070∨ 0.191∧ 0.208∧ 0.210∧ 0.276∧ 0.278∧
WIND 8 0.061 0.046∨ 0.064∧ 0.026∨ 0.059∨ 0.186∧ 0.209∧ 0.213∧ 0.278∧ 0.279∧
WIND 10 0.054 0.035∨ 0.060∧ 0.023∨ 0.048∨ 0.181∧ 0.208∧ 0.209∧ 0.278∧ 0.279∧

On the other hand, regarding Research Question 2, the results are different. We can
observe that regardless of the architecture, the mean performance rank is better for time
series autoencoders for PV parks. For WIND parks, the time series autoencoders are worse
than the MLP-based variational autoencoders. These differences in the data types are best
explained by the diurnal cycle of a day that influences the forecast for PV parks more than
for WIND parks (see [8]).

We can make similar conclusions for the PCA-COSINE representation technique than
for the variational autoencoders. A transformation through a cosine kernel seems too
restrictive or unsuitable for the data at hand. On the other hand, the PCA model is, at least
for the WIND data type, better than the baseline up to a latent size of four. For PV parks,
the PCA is significantly worse except for with a latent size of ten.

As the baseline substantially outperforms the PCA-based models and the varia-
tional autoencoders, we can safely assume that the AEMLP is a reliable baseline method.
The MTL architecture of the baseline, the AEMLP-MTL model, significantly outperforms
this reference in all cases. The improvements in the median nRMSE range from 9 to 54%
for WIND parks and between 16 and 179% for PV parks. We also achieve improvements
through the MTL architecture for time series autoencoders. The MTL time series autoen-
coder has the best median performance rank for all latent sizes and data types. Thereby,
concerning Research Question 1, we can conclude that we substantially improve the recon-
struction error for discriminative autoencoders through an MTL architecture. This result
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contrasts with the generative autoencoder results, where the MTL architecture worsens the
results. However, the discriminative autoencoder is not limited by the variational distri-
bution. Without this limitation, the autoencoder learns a better encoding for the weather
features through the MTL approach. The additional training samples from all parks allow
us to learn an encoding that generalizes better during test time. The improvements can be
best explained by the fact that in an MTL setting, we train with weather conditions from
other parks that would otherwise not be available in an STL training. During test time, this
allows the network to use knowledge from all parks.

To answer Research Question 2 for discriminative autoencoders we need to differenti-
ate between STL and MTL architectures. While the median nRMSE of the STL time series
autoencoder is often of similar magnitude to the baseline, the results are only significantly
better or equal in six cases. The critical improvements come in combination with the MTL
architecture. As pointed out earlier, this model is the best for all tested latent sizes and
data types. For PV parks, the improvements of the median error range from 68–300% and
between 46 and 134% for WIND. Here, we can assume that the STL time series autoen-
coder differs from the MTL approach, as additional training samples are required for the
additional parameters and learning the particular requirements in learning the diurnal
cycle. Overall we can summarize the results as follows:

• Generative autoencoders need further investigation regarding influences of the latent
size, the network structure, and the scaling of the Kullback–Leibler divergence to
answer the research questions.

• MTL architectures improve the reconstruction error substantially for discriminative
autoencoders.

• Time series autoencoders significantly improve when combined with an MTL architecture.

5.3. Experiment on Wind and PV Power Forecasts

Within this section, we answer Research Question 3 to evaluate the importance of
fine-tuning the encoder for day-ahead power predictions.

5.3.1. Experimental Setup

In the experiment described in this section, we considered the models from Section 5.2
as models for feature extraction. These models were used to extract the latent features
utilized to make predictions for wind and PV day-ahead power forecasts. As forecasting
models, we considered an MLP and a TCN attached to the encoder with the same model
type from the previous experiment. For the PCA and PCA-COSINE representation learning
technique, we also considered an MLP for forecasting the expected power generation. We
chose the hidden layers to be 200 and 100 neurons for the MLP. Due to the additional
parameters in the residual block of the TCN, the hidden layers were of size 60 and 30. These
two forecasting models were trained for ten epochs with cosine annealing with a maximum
learning rate of 10−1 and afterward with a maximum learning rate of 10−2 for another ten
epochs with cosine annealing through the Adam optimizer.

The batch size was selected to have ten iterations within each epoch. We evaluated
whether it was beneficial to fine-tune the encoder models and we fine-tuned zero, one, or
two layers of the encoder models. As in the previous experiment, we utilized the AEMLP
for latent feature extraction as a baseline and attached an MLP for forecasting the power. In
principle, we could have also attached other models to the encoder, such as a linear model
or a gradient boosting regression tree. However, forecast errors for different forecasting
models are often in a similar range [1] and it is difficult to fine-tune the encoder in an
end-to-end fashion for those models.

5.3.2. Findings

The results that we use to answer Research Question 3 are summarized in Tables 7
and 8. We only consider those models that are within the two best ranked models for read-
ability. The naming conventions are the same as in the previous section for the dimension
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reduction techniques. Additionally, we add the considered forecasting model. The results
indicate the number of fine-tuned layers that are 1 or 2. For example, AEMLP-MTL-MLP1
depicts the AEMLP-MTL feature extraction technique coupled with the MLP forecasting
model and the fine-tuning of the last layer of the encoder.

Table 7. Rank summary of the forecast error for best models and latent sizes for the autoencoder
models (see Table 2), and the PCA-based models. AEMLP-MTL-MLP is the baseline and all models
were tested to determine whether the mean performance rank was significantly better (∨), worse (∧),
or not significantly different (�) compared to the baseline. We tested for a significant difference with
the Wilcoxon test (α = 0.01). The colors denote the respective rank. Blue indicates a smaller (better)
rank and red a higher (worse) rank. The best model for a latent size and data type is highlighted
in bold.

Data Type
Latent
Size

Baseline
AEMLP-

MLP1

AEMLP-
MTL-
MLP

AEMLP-
MTL-
MLP1

AEMLP-
MTL-
MLP2

AETCN-
MTL-
TCN1

AETCN-
MTL-
TCN2

AETCN-
TCN2

PCA-
COSINE-

MLP

PCA-
MLP

PV 2 6.821 6.682� 7.052� 5.665∨ 5.780∨ 2.503∨ 2.480∨ 4.671∨ 6.775� 6.572�
PV 4 7.260 6.277∨ 8.983∧ 6.272∨ 5.931∨ 3.659∨ 3.335∨ 3.006∨ 5.624∨ 4.653∨
PV 6 5.514 5.445� 8.393∧ 7.098∧ 7.341∧ 4.538∨ 3.746∨ 4.312∨ 4.601∨ 4.012∨
PV 8 6.936 5.746∨ 8.220∧ 6.110∨ 6.491∨ 4.965∨ 4.046∨ 5.121∨ 4.035∨ 3.329∨
PV 10 6.717 7.052� 6.023∨ 6.422� 6.358� 5.225∨ 4.133∨ 5.017∨ 3.838∨ 4.214∨

WIND 2 4.707 4.440∨ 6.606∧ 3.778∨ 3.830∨ 5.349∧ 4.641� 4.865� 9.683∧ 7.102∧
WIND 4 6.312 6.341� 3.653∨ 4.370∨ 4.012∨ 7.647∧ 7.973∧ 6.243� 4.366∨ 4.083∨
WIND 6 5.212 3.992∨ 7.574∧ 5.805∧ 4.954� 5.310� 4.239∨ 4.031∨ 7.160∧ 6.723∧
WIND 8 4.879 4.989� 5.513∧ 5.703∧ 5.812∧ 4.654� 4.071∨ 4.627� 7.632∧ 7.121∧
WIND 10 5.590 5.387� 6.130∧ 4.346∨ 4.039∨ 5.007∨ 4.121∨ 4.320∨ 8.018∧ 8.041∧

Table 8. Median nRMSE of the forecast error for best models and latent sizes for the autoencoder
models (see Table 2), and the PCA-based models. AEMLP-MTL-MLP is the baseline and all models
were tested to determine whether the mean performance rank is significantly better (∨), worse (∧), or
not significantly different (�) compared to the baseline. We tested for a significant difference with the
Wilcoxon test (α = 0.01). The colors denote the respective rank. Blue indicates a smaller (better) rank
and red a higher (worse) rank. The best latent size and data type model is highlighted in bold.

Data Type
Latent
Size

Baseline
AEMLP-

MLP1

AEMLP-
MTL-
MLP

AEMLP-
MTL-
MLP1

AEMLP-
MTL-
MLP2

AETCN-
MTL-
TCN1

AETCN-
MTL-
TCN2

AETCN-
TCN2

PCA-
COSINE-

MLP

PCA-
MLP

PV 2 0.116 0.117� 0.116� 0.110∨ 0.111∨ 0.099∨ 0.098∨ 0.105∨ 0.117� 0.116�
PV 4 0.099 0.095∨ 0.106∧ 0.092∨ 0.093∨ 0.087∨ 0.087∨ 0.087∨ 0.093∨ 0.092∨
PV 6 0.088 0.087� 0.094∧ 0.090∧ 0.09∧ 0.086∨ 0.084∨ 0.085∨ 0.087∨ 0.085∨
PV 8 0.087 0.087∨ 0.091∧ 0.086∨ 0.087∨ 0.084∨ 0.083∨ 0.084∨ 0.084∨ 0.083∨
PV 10 0.087 0.087� 0.085∨ 0.085� 0.087� 0.085∨ 0.084∨ 0.085∨ 0.083∨ 0.083∨

WIND 2 0.178 0.176∨ 0.191∧ 0.171∨ 0.173∨ 0.179∧ 0.176� 0.178� 0.226∧ 0.192∧
WIND 4 0.158 0.159� 0.143∨ 0.146∨ 0.145∨ 0.174∧ 0.175∧ 0.163� 0.150∨ 0.149∨
WIND 6 0.137 0.135∨ 0.143∧ 0.139∧ 0.138� 0.136� 0.135∨ 0.135∨ 0.147∧ 0.147∧
WIND 8 0.136 0.135� 0.135∧ 0.135∧ 0.135∧ 0.134� 0.133∨ 0.134� 0.145∧ 0.146∧
WIND 10 0.135 0.135� 0.136∧ 0.133∨ 0.133∨ 0.133∨ 0.133∨ 0.133∨ 0.147∧ 0.149∧

Compared to the previous experiment, there is no prominent best model. Not sur-
prisingly, none of the variational autoencoder architectures are among the best models, as
learned latent features are insufficient for reconstructing the original features. Unlike the
previous experiment, PCA and PCA-COSINE now achieve the best results in two cases
for PV parks. Except for a latent size of two, the PCA-MLP and the PCA-COSINE-MLP
outperform the baseline significantly for this data type. For WIND parks, these models are
significantly worse for most latent sizes.

For the AEMLP-MLP model, we can observe that fine-tuning the final layer is at least
as good as the baseline (the same model without fine-tuning). Fine-tuning the second
last layer of the encoder leads to worse results and is not within the best models. We can
assume that due to the STL approach, the latent features are already close to a representation
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required for forecasting the expected power and only slight adjustments in the encoder
are required.

For the STL time series encoder, we need to fine-tune two layers such that the model
is among the best and at least as good as the baseline. For the PV parks, improvements up
to 13% are present, whereas for WIND, these are at about 1.5%.

For the MTL variant of the baseline, the AEMLP-MTL-MLP model, we can observe no
substantial difference between fine-tuning one or two layers. Nevertheless, the results of this
model without fine-tuning are worse than with the adaption of the encoder. Furthermore,
in three cases, AEMLP-MTL-MLP1 and AEMLP-MTL-MLP2 are significantly worse than
the baseline. These results are engaging in a manifold way. In the previous experiment, we
saw that the MTL architecture outperforms the STL approach for representation learning
significantly in all cases for the MLP-based autoencoder. This relation is no longer the case for
forecasting historical power. We can assume here that, on the one hand, the learned latent
space needs to be adapted for forecasting the power in general. On the other hand, due to
the MTL approach, the latent space is too broad and careful fine-tuning is needed to adapt the
encoder model for the specific requirements of a single park. This problem was not present
for the STL architecture, where the forecast errors were always as least as good as the baseline.

The AETCN-MTL-TCN model is consistently among the best for latent sizes up to
six. When fine-tuning two layers of the encoder, it is only worse than the baseline in one
case. We can also observe, except for this case, that fine-tuning two layers improves the
forecast error compared to a single layer. For the PV parks, we achieved improvements
between 3.5% and 18.3% for the median forecast error, whereas for WIND parks, we
accomplished advances in the error ranging from 1.1 to 1.5%. In contrast to the MLP-
based MTL autoencoder, we can assume that the fine-tuning of the encoder is more reliable
for CNN layers than for MLP layers. Overall the results can be summarized as follows:

• For forecasting the day-ahead power generation based on an AE-MLP autoencoder
and MLP forecasting model, fine-tuning only the last layer of the encoder for STL
architectures leads to the most reliable results.

• When considering a time series autoencoder such as the proposed AE-TCN, an MTL
approach and the fine-tuning of two layers of the encoder leads to the best and most
consistent results regardless of the data type and latent size.

6. Conclusions and Future Work

This article studied autoencoders for day-ahead wind and solar power forecasts. By consid-
ering generative, discriminative, vanilla, and time series autoencoders, we considered a broad
range of architectures to find the most applicable representation learning technique. We found
that multi-task autoencoders improve reconstruction errors for discriminative autoencoders. A
combination of multi-task and time series autoencoders led to an almost perfect ranking of the
reconstruction error. By considering a multi-task approach, we reduced the trainable parameters
by up to 203 times. Finally, we can conclude that the amount of layers to fine-tune depends
on the architecture and the model. For single-task learning architectures and a multi-layer
perceptron-based autoencoder, fine-tuning a single layer is sufficient. In contrast, for single-task
time series, an autoencoder including additional layers is beneficial, whereas for multi-task
architectures, it is always beneficial to include multiple layers during fine-tuning.

Due to the restrictions of the variational distribution of variational autoencoders, we
could not find a sufficiently good representation. In future work, we will need to extend
the analysis for this model concerning the latent size, the number of layers in the network,
and the scaling of the Kullback–Leibler divergence.
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Abstract: With large penetration of wind power into power grids, the accurate prediction of wind
power generation is becoming extremely important. Planning, scheduling, maintenance, trading and
smooth operations all depend on the accuracy of the prediction. However due to the highly non-
stationary and chaotic behaviour of wind, accurate forecasting of wind power for different intervals
of time becomes more challenging. Forecasting of wind power generation over different time spans
is essential for different applications of wind energy. Recent development in this research field
displays a wide spectrum of wind power prediction methods covering different prediction horizons.
A detailed review of recent research achievements, performance, and information about possible
future scope is presented in this article. This paper systematically reviews long term, short term and
ultra short term wind power prediction methods. Each category of forecasting methods is further
classified into four subclasses and a comparative analysis is presented. This study also provides
discussions of recent development trends, performance analysis and future recommendations.

Keywords: wind power prediction; machine learning; deep learning; hybrid methods; time series
analysis

1. Introduction

According to the global wind energy council report 2022, wind power capacity added
in 2021 was 93.6 GW which was the second best year. However, in the same report it is
mentioned that, to meet net zero, a four times increase in installation is required by the end
of the decade. This implies that wind power is going to play a key role in future worldwide
energy requirements. However, irregularities and randomness in wind power generation
severely affect large-scale access of wind power to the grid [1,2]. This impacts dispatch
operation, power quality and stable power system operations. Therefore, an accurate wind
power prediction method is very important to reduce the burden on grid dispatching
operations and to improve wind farm management [3,4]. However, the accurate prediction
of wind power generation is a complex task owing to the stochastic nature of wind speed.
The accurate prediction of wind power is challenging due to the nonlinear behaviour
of wind speed, its random patterns and its dependence on atmospheric pressure and
temperature [5,6]. Due to the stochastic nature of wind speed, the accurate prediction of
wind power generation is a complex task.

Being a very active field of research, a large number of wind power prediction models
have been developed. Few review articles [7,8] on this topic are available. Reference [7]
presents a detailed review of past and present methods in WPP along with the future
scope in this area. Reference [8] presented a review of hybrid models based on empirical

Energies 2022, 15, 8107. https://doi.org/10.3390/en15218107 https://www.mdpi.com/journal/energies
343



Energies 2022, 15, 8107

mode decomposition. In this article we present recent developments in WPP and provide
quick access to meaningful works. Based on the type of prediction models, existing
wind power prediction (WPP) methods are categorised into physical models [9], statistical
models [10,11], and hybrid models [12,13]. Detailed physical analyses and descriptions
of wind farm layout and wind turbines, and physical descriptions of meteorological and
geographical conditions are required to build physical models. Physical attributes of
geographical location such as terrain and wind turbulence affect the accuracy of the physical
models. The physical models need various environmental parameters such as wind speed,
wind direction, and air pressure. These parameters are obtained from the numerical weather
prediction data which is updated once every few hours. In areas where the numerical
weather prediction (NWP) system is not available the physical models are not useful. Due
to the low update frequency of NWP data, physical models are not suitable for a prediction
horizon of more than 6hrs, i.e., short-term prediction [14,15].

Several statistical models have been developed in the literature for WPP. In this review
we have classified them into time series methods, machine learning methods and deep
learning methods. Time series methods consist of linear and nonlinear time series-based
models such as auto-regressive (AR), auto-regressive moving average (ARMA) [16], moving
average (MA) and auto-regressive integrated moving average (ARIMA) [17]. Various
machine learning (ML) methods such as support vector machine (SVM) [18], support vector
regression (SVR), Gaussian process regression (GPR) [19], random forest and k-means
clustering artificial neural networks are used for WPP.

With the development of high computing power and advanced machine learning and
deep learning methods, accurate and effective wind power prediction methods have been
developed. Various combinations of physical, statistical and deep learning methods have
also evolved to improve prediction accuracy. Furthermore, data cleaning, preprocessing
and feature extraction methods combined with advanced learning algorithms lead to
improved results.

In this paper, we have systematically investigated WPP methods based on different
prediction horizons, algorithms and evaluation criteria. In this review, we present detailed
documentation of various algorithms, their performance and discussions. Wind power
forecasting can be categorised depending on prediction horizon or prediction methodology.
In Table 1 prediction horizons and the corresponding time range are listed. According to
the prediction horizon, they can be categorised as long-term, short-term or ultra-short-term
methods. Prediction methodologies are classified as physical, statistical and hybrid meth-
ods. With the recent developments in computing power and ML techniques, the statistical
methods are further classified as time series methods, machine learning methods and deep
learning (DL) methods. Hybrid methods are a combination of different prediction method-
ologies; it can be a combination of time series and ML or ML and DL or a combination of
all of them. In this article, we have followed the prediction horizon for the categorization of
WPP methods and, for each category, related prediction methodologies are discussed. The
statistics of the number of articles referred to in this article are shown in Figure 1. In this
review, we have considered articles published on WPP after 2015. It is clear from Figure 1
that recent research in this field mainly focuses on short-term wind power prediction.

Table 1. Prediction horizons in WPP.

Prediction Horizon Time Range

Long term a day to 6 days ahead
short-term an hour to a day ahead
Ultra short-term 5 min to 1 h
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Figure 1. The distribution of articles reviewed into long-term, short-term and ultra-short-term
predictions.

Depending on the amount of power generated in different time scales, the prediction
methodologies are classified as long term, short-term and ultra short-term. For example,
for turbine maintenance scheduling, optimization of operating cost and other management
issues, a day ahead or 2 to 3 days ahead, i.e., long term predictions are required. From a
day until several hours ahead, predictions are enough for planning related to load dispatch
and for treading issues. Further, a shorter prediction horizon is required for turbine control,
and real time grid operations. Several learning algorithms have been developed since the
past decade that cover the wide range of forecasting horizons. Figure 2 shows recently
published prediction methodologies (referred in this article) for long term, short-term and
ultra short-term WPP. Clearly it can be seen that recently, researchers are focusing on short-
term WPP. As far as prediction methodologies are concerned, a number of publications on
hybrid methods are more for all the three prediction horizons. This implies that the hybrid
models are more suitable and widely used for short-term prediction applications.

Figure 2. Distribution of different categories of articles reviewed.

In this paper, recent advancements in wind power forecasting approaches are reviewed.
Performance evaluation metrics are presented in Section 2. Classification of WPP methods
based on prediction algorithms is presented in Sections 3–5. Detailed review of long term
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forecasting methods is discussed in Section 3. Different prediction algorithms developed
for short-term forecasting are presented in Section 4, Furthermore, Section 5 reviews ultra
short-term WPP methods in detail. Section 6 is devoted to detailed discussions and future
scope in this area. Finally, the conclusions are presented in Section 7.

2. Performance Evaluation Metrics

Performance evaluation metrics are measures to judge or quantify the goodness or
usefulness of the prediction algorithm. These metrics generally estimate the distance be-
tween original output and the estimated output. Performance of the wind power prediction
models is evaluated using several statistical metrics; the following are frequently used
performance measures. Let Yi be the ith actual load value, Ŷi be the ith predicted load value,
Ȳi the mean of the actual load value and N the total number of predicted points. Different
evaluation metric used as performance measures are listed below.

1. Mean absolute error (MAE) :
MAE is average value of absolute different between predicted and actual value.

MAE =
1
N

N

∑
i=1

∣∣Yi − Ŷi
∣∣. (1)

2. Root Mean Square Error (RMSE):
RMSE computes the standard deviation of the residuals between predicted and actual
values. Residuals defined the distance between regression line data points and RMSE
measures the spread of these residuals.

RMSE =

√
∑N

i=1
(
Ŷi − Yi

)2

N
. (2)

3. Mean Square Error (MSE):
The mean squared error calculates the average of the squares of the error in the
prediction.

MSE =
1
N

N

∑
i=1

(
Yi − Ŷi

)2. (3)

4. Mean Absolute Percentage Error (MAPE):
The mean absolute percentage error (MAPE) is average of the absolute percentage
error in the forecasts.

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣. (4)

5. Normalised RMSE (NRMSE):
Normalization of the RMSE value is useful for fair comparison of the model on
different scales. The normalization can be performed with respect to mean or standard
deviation. The following is the Mean NRMSE.

MeanNRMSE =
RMSE

Ȳ
. (5)

6. Normalized Mean Absolute Error (NMAE):
NMAE is used to compare the MAE of models with different scales. The NMAE is a
two-step process. The normalization can be performed with respect to mean, range or
inter quartile range. The following is Range NMAE.

RangeNMAE =
MAE

range(Y)
. (6)
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7. Root Mean Square Prediction Error (RMSPE):
RMSPE calculates the root mean squared percentage error regression loss.

RMSPE =

√
∑N

i=1(Predictedi − Actuali)
2

N
× 100. (7)

8. R-Square (R2):
R2 is the coefficient of determination, it computes the variance of the prediction from
the measured data. A negative value of R2 implies worse prediction while it can reach
a maximum value of 1.

R2 = 1 − ∑ntest
i=1

(
Ŷi − Yi

)2

∑ntest
i=1 (Yi − Ȳ)2 . (8)

3. Long Term Prediction

Maintenance of wind turbines and other management issues are planned with the help of
long term prediction. These activities do not require highly accurate prediction accuracy.

3.1. Time Series Analysis

Time series prediction models are mathematical models that estimate model parame-
ters from the historic data. Time series prediction models can capture nature of system and
generate predictions. Time series models with different orders generate different results.

A polynomial extension of the AR model, i.e., PAR is presented in [20]. A polynomial
AR (PAR) model of degree 2 derived from Volterra series expansion (9) is used for wind
power prediction. A comparative study of PAR with MLFF, MLP, ANN, AR and ANFIS is
also presented in [20]. Compared to these nonlinear models PAR requires less parameters,
is computationally efficient, and performs better for longer prediction horizons (more than
12 h). Experimental analysis was performed on the data published for Global Energy
Forecasting Competition 2012 [21] and NRMSE, NMAPE and bias were used as error
measures. In (9), μ is the intercept, excitation sequence ε(l) is n independent and identically
distributed with distribution N (0, σ2) and a(1)i , a(2)i,j , · · · , a(p)

i,··· are coefficients for first, second
and pth order polynomials, respectively, degree of the non-linearity is p and the AR order k.

x(l) = μ +
k

∑
i

a(1)i x(l − i) +
k

∑
i

k

∑
j

a(2)i,j x(l − i)x(l − j) + · · ·+
k,···
∑
i,···

a(p)
i,···x(l − i) · · ·+ ε(l). (9)

Large fluctuations in wind power within a relatively short time interval caused by
wind is defined as a wind power ramp event. These power ramps lead to a potential
disaster and affect the stability and safety of the wind farms and power grids. In order to
take preventive action before such disaster happens, the accurate prediction of power ramp
events is most important. Wind power prediction and ramp event detection algorithm is
presented in [22]. Two models have been proposed for wind power prediction. Long term
trends in the data are captured using wind power curve model utilizing NWP. A correction
model improves the local prediction accuracy using a multivariate prediction algorithm.
For power ramp event detection a well-known swinging door algorithm [23] is used and a
higher accuracy of ramp event prediction was reported. Table 2 list the time series methods
for long term WPP and their respective performances.

3.2. Machine Learning

A wide range of machine learning models including extreme learning machine, sup-
port vector machine (SVM) [18] and the Gaussian process [19], backpropagation net-
work [24] and radial basis function are applied for WPP. These methods learn a nonlinear
regression function that fits the relationship between the input feature space and the output
wind power from the data.
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Table 2. Time series methods for long term WPP.

Sr. No. Articles Models Evaluation Metric Evaluation Value

1. Karakus et al., 2017 [20] Polynomial AR NRMSE
NMAPE

0.1199
6.8146

2 Ouyang et al., 2019 [22] Residue correction
MAE
RMSE
Bias

4.9647
8.9453
0.0013

Back propagation neural network (BPNN) is a widely used nonlinear method for wind
power prediction. In [25], the basic structure of BPNN is used along with the conjugate
gradient method for weight optimization and termed the method as conjugate gradient
neural network (CGNN). There are various meteorological factors such as air pressure,
humidity, temp etc. influence the wind power, in [25] along with wind speed and wind
cos above mentioned parameters are also taken as input to the CGNN. For experimental
validation the data from wind farms in Mongolia and China is used. Accuracy as well as
time taken by the proposed CGNN and existing Racial Basis Function Neural Network
(RBFNN), Steepest Gradient Neural Network (SGNN), and Extreme Learning Machine
(ELM) is reported. Due to conjugate gradient optimization, the training time as well as
MAE of the CGNN are less than those of the other compared methods. Ref. [26] also used
the swinging door algorithm for power ramp prediction. In [26], first, the data are divided
into two data segments—a ramp window or a non-ramp window. The optimum window
size for these two events is decided using a genetic algorithm. Once the optimum window
size is decided then the power in the optimized window is predicted using SVM, which
receives NWP data as input data. Depending on the predicted power, the swinging door
algorithm detects whether it is a power ramp event or not. To validate the results, different
window sizes were analysed and the accuracy and false positive rate of ramp detection
were reported.

Support vector machine (SVM) [18] is a popular machine learning algorithm due to
its generalization ability and high dimensional data handling capability. SVM is widely
used for wind speed and wind power prediction. The accuracy of the SVM depends on
various hyper-parameters of kernel and cost function. In [15], SVM with hybrid kernel
function is proposed for wind power prediction. Two separate kernels polynomial and
radial basis function (RBF) were used to build a hybrid kernel that can capture correlation
in the local and distant data samples. The parameters of the hybrid kernel are estimated
using an improved particle swarm optimization algorithm. Experimental analysis showed
better accuracy of SVM with hybrid kernel in terms of RMSE, MAE and MAPE compared
to ARMA, SVM with only RBF and the echo state network. Table 3 shows machine learning
models developed for long term WPP.

Due to the no-nstationary behaviour of the wind energy, a single algorithm is not able
to fit the data accurately. In this situation, ensemble learning methods are used to improve
the accuracy. In ensemble learning, multiple base learning methods are combing. Improve-
ment of the accuracy can be achieved by one of the following approaches—to perturb the
training data, model parameters, attributes of the data and base models. The selection of
appropriate base learners is also important to increase accuracy. Non-probabilistic learning
methods provide point prediction outputs but do not provide an estimate of uncertainty.
Gaussian process regression is a powerful nonparametric Bayesian method for supervised
learning. Along with the probabilistic predictions, it also provides confidence intervals
of predictions. Ensemble learning model in [27] utilizes Gaussian process regression as
the base learners. In order to improve the accuracy and diversity of the learning meth-
ods, first the perturbations on training data and input attributes are combined. Next, the
Gaussian mixture model (GMM) clustering is applied to create different clusters of the
data. Further, GPR is applied on each cluster separately to fit each cluster individually.
This method is termed the selective ensemble of finite mixture Gaussian process regression
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models (SEFMGPR). Performance of the ensemble learning improves with the pruning
method. In [27], a genetic algorithm-based pruning method has been adopted to select
significant models. The pruning algorithm enhanced the performance as well as reduced
the model complexity.

Table 3. Machine learning methods for long term WPP.

Sr. No. Articles Models Evaluation Metric Evaluation Value

1 Fang et al., 2016 [28] Improved GPR NRMSE 0.14564
2 Tian et al., 2016 [25] CGNN MSE 0.004

3 Tinghui et al., 2017 [26] Swinging door+SVM Precision, Recall
Accuracy, Error

0.8059, 0.8390
0.8747, 0.1253

1

4 Zhongda et al., 2018 [15] Modified SVM
RMSE
MAE
MAPE

59.313
50.344
0.038

5 Bogdan et al., 2021 [29] Comparison of ML RMSE
MAPE

412
0.267

2

6 Huaiping et al., 2021 [27] ensemble of
mixture of GPR

RMSE
R²

1.7771
0.9057

3

1 for 2 h time window. 2 indicate hourly prediction, daily prediction values are 13.9% 65.60. 3 indicate 4 step
ahead prediction.

Another Gaussian process based approach in [28] proposed a composite covariance
function (CF) for the GP. Performance of the GPR varies with the CF. The composite CF pro-
posed in models the relation between wind features and auxiliary features. The composite
CF is the multiplication of squared exponential CF that can integrate multiple NWP features
into a single composite CF. The GP approach in [28] used the 2012 global energy forecasting
competition wind power forecasting data, and outperformed all of the competitors on
this data.

A comparative analysis of different machine learning techniques to forecast the pro-
duction of wind energy not for a single wind farm but for an entire country Poland has been
presented in [29]. They have presented the results of two decision tree based algorithms,
i.e., random forest (RF) and Extreme Gradient Boosting (XGB) and two neural network
based algorithms, i.e., artificial neural network (ANN) and deep neural network (DNN).
For the experimental analysis, various interesting inferences were also presented in [29].
Although all four algorithms predicted wind power with high accuracy, XGB was better
in terms of MAPE for hourly predictions and ANN for daily sums of produced energy.
Performance analysis for different seasons was also presented and it was inferred that
MAPE was the highest in June and the lowest in January. This is due to the fact that the
windiest day occurs in January and the calmest day appears in August. The lowest variance
in prediction was reported in the winter season and was highest in the summer season.

3.3. Deep Learning Models

Wind power data are characterised as highly nonlinear as well as high dimensional.
Compared to shallow machine learning models, deep learning models are more suitable
for such data. With high computing power and the ability to fit complex and nonlinear
function deep learning methods are widely used for WPP.

In [30], instead of statistical features, stacked autoencoder (SAE) features are proposed
for wind power prediction. Structural properties of the wind data are effectively extracted
using an autoencoder. A two level autoencoder is designed for structural feature extrac-
tion. During the training stage, the input data are divided into small data segments and
predictions are performed on those segments individually. Features are also extracted for
each segment. For wind power, a cluster-based ensemble regression is proposed, where the
data segments are first clustered and then a regression model is learned separately for each

349



Energies 2022, 15, 8107

cluster. Compared to statistical features 12.63% improvement in the prediction accuracy
was reported when SAE features are used.

A combinatory approach for feature generation, feature selection and power prediction
is presented in [31]. They presented an improved wavelet neural network (WNN) that uses
the Morlet wavelet as an activation function of the neural network for feature extraction.
Next, relevant features are selected using a maximum dependence, maximum relevancy,
and minimum redundancy (MDMRMR) feature selection algorithm. Later they trained a
2D CNN using these selected features as input and PSO based improved optimization algo-
rithm. Shallow 2D CNN is build that consist of input layer, two convolutional layers, two
pooling layers and one fully connected layer. Extensive experimentation was performed to
validate the proposed method. This combinatory approach is evaluated for three different
prediction horizons i.e., an hour ahead, day-ahead, and 48 h and two separate databases for
this analysis. Accuracy of both the methods is reported with respect to different measures.
Comparative analysis of deep learning methods in long term WPP is shown in Table 4.

Table 4. Deep learning methods for long term WPP.

Sr. No. Articles Models Evaluation Metric Evaluation Value

1 Abedinia et al., 2017 [30] autoencoder features
and SVR PE 0.152 1

2 Abedinia et al., 2020 [31] 2D CNN MAPE
NRMSE

5.93%
9.40%

1 for ensemble of SVR.

3.4. Hybrid Approach

Multiple prediction horizons are proposed in [32] using a hybrid approach for long
term prediction and reinforcement learning for short-term prediction. For long term wind
power prediction sigma point Kalman filter is modified using complementary ensemble
empirical mode decomposition. Initially, sigma points are used to limit the boundary
effects; next the historic data are decomposed into various intrinsic mode functions with
steady-state features using the complementary ensemble empirical mode decomposition
(CEEMD) method. For power prediction, each stable sequence is updated to reconstructed
using sigma point based Kalman filter. For short-term prediction, a deep deterministic
policy gradient (DDPG) method is proposed in [32]. Prediction results are compared with
different state-of-the-art methods on the basis of MAE, MAPE, SDE and RMSE.

A hybrid approach to predicting wind power from the numerical weather prediction
data and actual wind power data are presented in [33]. Daily similarities are observed in
the wind power and based on these similarities the data can be easily clustered. Using
spatial similarities in the NWP data, k-means clustering is used to split the data into
different subsets. Next, the samples matching with the predicted day are used to train the
generalized regression neural network (GRNN) model. Experimental analysis shows that
GRNN can effectively model the nonlinear relationship between the wind data and the
predicted output. The results also show the impact of clustering on the long term wind
power prediction. In [34], a bagging neural network (BaNN) is also combined with k-means
clustering for long term wind power prediction. Prediction accuracy is enhanced by fine
tuning the BaNN parameters using an optimization method. They also used improved
empirical mode decomposition (IEMD) to reduce the fluctuations during the forecasting
process to improve the accuracy. The Experimental analysis was performed on the data
collected from three different farms. Since CNN do not provide good prediction results,
such hybrid approaches with improved clustering methods and advance neural networks
need to be further explored for long term predictions.

An hourly forecast of day-ahead wind power method proposed in [35] combines
variational mode decomposition (VMD) and LSTM. Compared to empirical mode decom-
position (EMD), VMD provides less fluctuation and retains more adequate data information
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for forecasting. VMD decomposes the input wind series data into different modes, sep-
arate LSTM with three layers is trained for each mode. Experimental analysis of two
different VMDs, recursive (R) VMD and direct (D) VMD with LSTM is presented in [35].
Performance of the VMD-LSTM method is compared with the BP, ELM, and SVM and
results show that VMD- LSTM achieved significant results. RMSE, MAE and MAPE are
reported for one-day, two day and three day-ahead prediction. Hybrid methods and their
corresponding performances referred to in this article are listed in Table 5.

Table 5. Hybrid methods for long term WPP.

Sr. No. Articles Models Evaluation Metric Evaluation Value

1 Dong et al., 2016 [33] NWP + GRNN NMAE
NRMSE

10.67
14.01%

2 Shi et al., 2018 [35] LSTM + VMD
RMSE
MAE
MAPE

6.44
7.16
22%

3 Abedinia et al., 2020 [34] BaNN +
K-means clustering

MAPE
NRMSE

2.71
19.78%

4 Zhang et al., 2021 [32] E-EMD + RNN MAE, SDE
RMSE, MAPE

144.79, 60.32
81.77, 12.79%

4. Short-Term Prediction

Short-term wind power prediction assists with deciding power generation plans,
regional dispatching, and maintenance plans.

4.1. Machine Learning

Instead of using a single ML algorithm, the combining of different ML models into
an ensemble predictor provides improved results. The heterogeneous ensemble approach
in [36] used decision trees (DT), k-NN, or support vector regressors as base algorithms.
They also analysed the performance of individual as well as different combinations of the
base predictors. Different combinations provide different accuracies and computational
complexity. On the basis of these two parameters, the combination of DT and SVR provided
improved results. Experiments were conducted using the power output data of the five
wind parks. Ensemble of Boosted Trees, Random Forest, and Generalized Random Forest
are presented in [37] for short-term wind power prediction. Correlation or time dependen-
cies in the data are considered in ensemble learning, which improved the accuracy. Time
lagged values are added as new features and a feature importance analysis is performed to
decide the impact of features on the forecast. The proposed method is evaluated using data
from five farms and compared with SVR and GPR in terms of R2, RMSE and MAE.

A variant of Gaussian process regression model is proposed for short-term prediction
in [38]. Computational complexity of the GPR increases with dimensionality of the data.
In order to reduce computational complexity and to model the non-stationarities in the
wind data, a new teaching learning based optimization (TLBO) is proposed. Optimal
parameters of the Gaussian process are learned during the training process using the
TLBO. It also helped to improve the learning rate and computational complexity. This
method effectively forecasted the data from a single farm as well as from an entire Ireland.
Performance of the GPR outperforms many other ML methods with proper selection of
covariance function and optimization. However, even with the optimally tuned parameters,
a drastic reduction in accuracy and confidence interval is observed if the missing data are
encountered. In [39], data imputation approach is used to handle missing data and new
datasets are generated. Missing data are reconstructed from the distribution of the data
and the iterative learning algorithm. Next, the GPR model is built using the reconstructed
data for wind power prediction. Performance of the proposed approach is compared with
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SVM and MLP using data from three different wind farms and GPR reported better results
in terms of RMSE and MAE.

Appropriate parameter selection usually helps to improve the accuracy of the learning
algorithm. Out of multiple parameters and features available in the meteorological data,
the work in [40], used most useful features of the wind data. Using the correlation and
the importance measures, spatially averaged wind speed and wind direction are selected
for the wind power prediction. Next, random forest is selected as a prediction algorithm
due to its low computation complexity compared to other ML methods. Impact of selected
features on the prediction accuracy is also analysed.

Short-term wind power prediction in [41] explores correlation between wind speed
and wind power data. This method combines NN and PLS to form Nonlinear Partial Least
Square (NPLS) method. The historic data are applied as input to the NN and the output
of the NN is provided as input to the PLS which provides the final wind power predicted
value. For experimental analysis two well known NNs i.e., BPNN and RBFNN are used
and combined with PLS. The performance of BPE-PLS and RBFE-PLS and compared with
SVM, BPNN, RBFNN and PLS. For experimentation, datasets with three different weather
conditions are used. In terms of RMSEP measure, the RBFE-PLS algorithms outperformed
all the other method on all the dataset.

Extreme learning machine is a feed forward neuron network with three layers, input
layer, hidden layer and output layer. A few wind power prediction method used ELM as
a regressor, but the training strategy (leave one out) is not suitable for high dimensional
data. Kernel ELM is proposed in [42] adopts k-fold cross validation with its average MSE
as error function. High nonlinearity of wind data are effectively captured by kernel ELM.
Performance of learning machines depend on the parameter selection, in case of KELM,
optimal values of regularization coefficient and kernel width improves the performance.
In [42], KELM is trained using the wind power data and optimal parameters are learned
using differential evolution (DE) optimizer and average MSE of k-fold cross validation.
This approach improves the generalizability as well as stability of the model. Performance
of the KLEM with cross validation and DE optimizer (DECVKLEM) is compared with
KLEM with cross validation and GA as an optimizer. Compared to GACVKLEM, only
8.34% improvement has been observed in case of DECVKLEM, but the convergence speed
of DE base CVKLEM is more. In [43] ELM is trained using PSO and combined with
Adaboost for short-term wind power prediction. Performance of the Adaboost-PSO-ELM
is compared with PSO-BP, GPR, PSO-SVM, PSO-ELM, GA-ELM, few tree based methods
and Adaboost-PSO-BP and better performance of Adaboost-PSO-ELM is reported.

Accurate wind speed prediction is important for NWP based WPP, so to improve the
accuracy of WPP, the NWP data from three different organizations is combined in [44] and
used for prediction. Three forecasted wind speeds from NWP are fused using weighted
naive Bayes (WNB) method and accurate wind speed is estimated. Next, wind power
prediction is performed using BPNN. Ref. [45] modified BPNN and proposed a small-
world BPNN (SWBP). Small-world networks ties to reduce the gap between artificial and
biological neural networks [46] by modifying node type, connections between the nodes,
and realization function. Input features for the SWBP are selected using modified mutual
information (MI) and applied to the SWBP. The proposed model is compared with BPNN
for 15 min-ahead power prediction and found better than BPNN in terms of training time,
prediction accuracy and convergence.

Uncertainty and missing values in the wind data incurs difficulties in the accurate
prediction. In such cases, grey models are found useful. In [47], grey model GM(1,1) with
background value optimization is proposed for wind speed prediction. Two separate grey
models are designed and combined to improve the wind speed prediction accuracy. Further,
for WPP, SVR is designed. Various parameters of SVR such as cost function, precision
and variance of the kernel function are estimated using PSO optimizer. Results of PSO-
SVR are compared with ARIMA on the basis of MAE, MAPE and RMSE and nearly 30%
improvement in speed prediction and 35% improvement in power prediction are reported.
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Multimodality, nonstationarity, and skewness are characteristics of the wind power
which make wind power prediction a challenging task. In [48], an infinite Markov switching
autoregressive model is used for wind power forecast. Using a nonparametric Bayesian
approach, a posterior predictive distribution is computed which is further used to predict
wind power and uncertainty of the forecast. Probabilistic methods provide estimate of the
value as well as uncertain in prediction. Compared to MSAR, TVQR and BELM model,
the proposed nonparametric method performed better.

Pattern Sequence-based forecasting (PSF) [49–51] method has shown its potential in
short-term wind speed forecasting accurately [52], but for the first time, it offers higher
accuracy for wind power time series in [53]. This is a kind of its own approach, where
the wind power time series was first smoothened down with the reference of the corre-
sponding wind speed time series dataset and then a smoother wind power time series was
forecasted with the PSF algorithm. This smoothening process comprised of generation
of label sequences in the PSF method and a matching process with Naive Bayesian. The
proposed approach was observed to be less chaotic for wind speed predictions than the
existing ones.

An integrated approach is employed in [54] for short-term wind power prediction. Un-
certainty, nonlinearity, missing data extended training time and computational complexity
these are various factors that affects performance of the prediction system. Uncertain-
ties and missing information in the data are modelled and the controlled fuzzy network,
wavelet decomposition models the dynamic behaviour, and nonlinearities are modelled
with NN. In [54], an integrated approach of these methods is presented. Similar to ANFIS,
a fuzzy NN is proposed where a wavelet function is used as an activation function and the
combined model is termed as Fuzzy WNN (FWNN). Optimization of this combined model
is carried out using PSO and gradient descent. Performance of the FWNN is compared with
7 ML methods, RBF, SVR, ANN, ANN-GA, ANN-PSO, ANFIS, ANFIS-GA and ANFIS-PSO.
Table 6 list the details of the machine learning methods in short-term WPP.

Table 6. Machine learning methods for short-term WPP.

Sr. No. Articles Models Evaluation Metric Evaluation Value

1 Heinermann et al., 2016 [36] SVR MSE 588.60

2 Yan et al., 2016 [38] Variant of GPR NRMSE
MAE

0.05
0.1

3 Lahouar et al., 2017 [40] random forests MAE,RMSE
NAME,MAPE,MASE

0.93, 1.76
1.72, 10.29, 0.4

1

4 Wang et al., 2018 [41] Nonlinear PLS RMSECV
RMSEP

206.2611
225.5973

5 Liu et al., 2018 [39] GPR with
data imputation

RMSE
MAE

0.9763
0.8321

2

6 Xie et al., 2018 [48] Bayesian Framework Skill score
Coverage

−5.314
0.164

7 Wang et al., 2019 [55] Small-world NN eNRMSE
eNMAE

7.5
4.9

8 Zhang et al., 2019 [47] PSO-SVR
MAE
RMSE
MAPE

76.9
109.4
15.7%

9 Jianqi et al., 2020 [44] Weighted Naive Bayes MAE
NRMSE

8.97
77.23%

10 Junho 2020 [37] Boosted Trees + RF
MAE
RMSE
R2

22.54
50.44
98.88
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Table 6. Cont.

Sr. No. Articles Models Evaluation Metric Evaluation Value

11 Ning et al., 2020 [42] Kernel ELM

MAE
RMSE
MSE
R2

7.30
10.22
104.59
0.53

12 Guoqing et al., 2021 [43] Adaboost
MAE, MSE
RMSE, MAPE
R2

23.38, 1023.4
31.99, 0.028
0.99

13 Ghoushchi et al., 2021 [54] fuzzy Wavenet RMSE
MAPE

0.198
0.00123

1 values not explicitly mentioned noted from graph for 6-step ahead. 2 for 20% missing rate.

4.2. Deep Learning Methods

In [56], DNN based ensemble learning is proposed where base-regressors and a meta-
regressor both are built using DNN. First several autoencoders act as base methods and are
trained using the training data and transfer learning. Transfer learning saves the time to
train the system from scratch as well as provides suitable weight initialization for training.
Due to abrupt changes in the meteorological conditions, the transients are observed in
the predictions. These transients are smoothed with the help of a meta-regressor. In [56],
Restricted Boltzmann Machines (RBMs) are stacked to Deep Belief Network (DBN) which
acts as a meta learner. Once the base learner is trained, the test data features and predictions
from the base learners on test data are applied as input to DBN for final prediction value.
Data from five wind farms is uses for evaluation of the algorithm and the results in terms
of RMSE, MAE and SDE are reported. Two step approach in [57] uses DBN and k-means
clustering for wind power prediction. The noise in the NWP greatly affects the accuracy of
the learning method, so the NWP data are divided into different clusters using k-means
clustering. Next the clustered data (e.g., NWP wind speed, wind direction, humidity, temp
etc.) is applied as input to the DBN. The DBF consists of five layers with three hidden
layers. For prediction, the test data are divided into clusters and the clusters belonging to
those data are fed to the trained model to obtain the wind power. In comparison to BPNN
and WMNN, the performance of the proposed method improved by 44%.

A Gaussian mixture model combined with NN is termed the Gaussian Mixture Density
Network (MDN). The conditional density function of the data is predicted using a trained
MDN which is further used to predict the required uncertainty information. The parameters
of the Gaussian mixture are computed using a feed forward NN. An improved deep MDN
proposed in [58] uses beta distribution to solve density leakage associated with MDN
and modified ReLU activation function to handle NaN issue associated with activation
function. Data from seven wind farms is used and proposed method is compared with
8 existing methods and the improvement in the performance is recorded. Time and
memory complexity analysis is also presented and the proposed method requires 10 min
training time.

NWP provides various parameters such as wind speed, wind direction, temp, air
pressure etc. of which wind speed is an important parameter for power prediction. A gated
recurrent unit neural network (GRUNN) presented in [59] makes use of the variance of the
NWP wind speed prediction error for wind power prediction. It utilizes both temporal as
well as statistical characteristics of the time series data. Bidirectional GRUNN in [59] is a
simple version of LSTM [60] with two gates in GRU. In the proposed method, first, local
features are extracted from the NWP data and a weight time series is constructed using
the NWP wind speed prediction error and extracted features. This weight time series is
applied as input to GRUNN which corrects the NWP wind speed. Once correct wind speed
is obtained then Power Forecasting is performed using the Wind Power Curve Model. This
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computationally efficient method is compared with SVN and ANN and the results in terms
of RMSE and MAE are presented.

Data cleaning and feature reconfiguration approach using CNN is proposed in [61]
for WPP. It has been observed that performance of the prediction system degrades in
presence of outliers. In [61], outliers are identified using density based clustering method.
After data cleaning the wind data are applied to CNN, since CNN requires images as an
input; a feature reconfiguration is an essential step. Each sample of wind data has two
features; wind direction and wind speed along with the label, i.e., wind power. Wind
direction and wind speed sample along with the corresponding temporal information and
label are arranged in a 2D matrix which is applied as an input to the CNN. The CNN
architecture consists of one input layer, two convolutional layers, and one fully connected
layer, ReLU is used as an activation function, no pooling layers are used and parameter
tuning is performed by trial and error. MAE, MAPE and NRMSE are used as performance
measures for the evaluation of the proposed scheme. This is the only method that re-
configures wind data as a 2D matrix and uses an image based deep learning approach.
In our opinion, if parameter tuning is performed by an optimization method then accuracy
can further increase. Table 7 shows the deep learning methods for short-term WPP and
their performances.

Table 7. Deep learning methods for short-term WPP.

Sr. No. Articles Models Evaluation Metric Evaluation Value

1 Qureshi et al., 2017 [56] DNN with transfer learning
MAE
SDE
RMSE

0.0658
0.0929
0.0939

1

2 Wang et al., 2018 [57] Deep belief network NMAE
NRMSE

0.0236
0.0322

3 Ding et al., 2019 [59] Gated RUNN RMSE
MAE

13.45
6.87

2

4 Zhang et al., 2020 [58] Deep Mixture
Density Network

NMAE
NRMSE

0.108
0.147

5 Wang et al., 2021 [61]
Multidimensional
data cleaning +
feature reconfiguration

MAE, MAPE
NRMSE

2.18, 4.36%
7.29%

1 results of test data from farm 1. 2 % value of MAE and RMSE for day 1.

4.3. Hybrid Methods

LSTM and genetic algorithm (GA) are combined for wind power prediction in [62].
The performance of the LSTM algorithm largely depends on the window size. A smaller
window size implies no information is forwarded and carried, whereas a larger window
size implies noise in the past samples. A genetic algorithm is used to learn optimum
window size. Experiments were performed on the dataset from seven wind farms in the
European region. The data consisting of sixteen features measures a duration of 48 h and a
12 h interval is applied as an input to the Genetic LSTM (GLSTM) network. GA is used to
train the network to find the optimum window size and number of neurons. Performance
of GSTM is compared with the ARIMA, a few deep learning methods and SVR of three
different kernel functions. To validate the effectiveness, six variants of GLSTM are applied
on the seven datasets and improvement in the performance was reported. Closed to zero
MSE, MAE and RMSE were reported with the proposed GLSTM network.

Wind power ramps events are predicted in [63] using different ML algorithms. A com-
parative analysis of ML methods to predict ramp events has been presented. In this hybrid
approach the data from numerical-physical models is applied as input the various ML
algorithms. The effectiveness of SVM, GPR, ELM and MLP for ramp event prediction
is experimentally verified in [63]. RMSE, MAE and sensitivity are used as performance
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measures for evaluation of these methods on three wind farm dataset. The performance of
GPR outperformed other methods in terms of all the measures.

Decomposition methods for WPP decompose the wind power time series into different
components depending on different characteristics such as frequency, scale [64,65]. Next
different prediction algorithms can be applied on these components for WPP. These decom-
position methods can efficiently model the nonlinearities, however in many cases these
components shows chaotic behaviour which degrades the prediction accuracy. To remove
the uncertainty and low amplitude variations from these components and to improve the
accuracy, singular spectrum analysis (SSA) [66,67] was found to be very useful. In [14],
ensemble empirical mode decomposition (EEMD) is used to decomposed the time series
data into different components. After determining the chaotic components, SSA is applied
to remove the impact of the chaotic components on the accuracy. The proposed method has
two stages—a decomposition stage and a prediction stage. The first stage consists of EEMD,
chaotic TS analysis, and SSA and is referred to as multi-scale singular spectrum analysis
(MSSSA). In the next stage, the authors used LSSVM-based framework as a prediction
algorithm and developed an iterative multi-step short-term WPP method. Due to chaotic
TS analysis and iterative multi-step algorithm, the accuracy of the prediction for both
chaotic as well as non-chaotic components increases. The proposed method is evaluated on
historical data from farms located in Spain and Canada.

A short-term wind power prediction method with high accuracy is presented in [68].
The hybrid prediction method combines empirical mode decomposition and kernel ridge
regression (KRR). Mutual effects in different components of time series data are isolated
using EMD. They further combined RVFL and ELM with EMD and comparative analy-
sis of EMD-KRR, EMD-RVFL and EMD-ELM is also presented. To reduce computation
complexity and improve the training time, an improved version of EMD-KRR is also pre-
sented in [68]. The proposed algorithm is evaluated on four different prediction horizons,
i.e., 10 min, 30 min, 1 h and 3 h ahead and comparable improvement in accuracy and
computation time is reported. In order to avoid limitations of EMD (mentioned in an earlier
section), Ref. [48] combined VMD with multi-kernel ridge regression (MKRR) instead of
EMD. Improvement in the performance is reported over its EMD counterpart.

Wavelet decomposition is widely used to decompose a signal into different frequency
bands. Use of the wavelet kernels as an activation function of the CNN is recently trending
in wind power prediction algorithms. In [69], wavelet kernel is used in LSTM and achieved
30% improvement in performance compared to existing wind power prediction methods.
Gaussian, Morelet, Ricker and Shannon are four different wavelets that are used as acti-
vation functions. LSTM composed of four layers is trained using Rmsprop optimizer for
wind power prediction. Data from seven farms in the European region are used for the
evaluation of the work, results of four different wavenets (wavelet + LSTM network) on the
data from seven wind farms are reported in terms of MSE, MAE, MAER, MAPE, and R2.
The lowest prediction errors are observed in the case of all four networks. .

Depending on the weather conditions, the wind speed varies and hence wind power
generated. Based on the wind speed there exists different wind grades such as breeze, cool
breeze, strong wind etc. Fuzzy k-means clustering is applied in [70] to classify the historic
time series data into these wind classes. Each class corresponds to different speed hence
the wind power data corresponding to each class and amount of power generated by each
class will be different. Therefore instead of learning single function that can fit all these
classes, separate SVR is trained for each class. The optimization of various SVR models is
performed using enhanced harmony search (EHS) algorithm. The authors also presented
the uncertainty analysis in terms of confidence interval using EHS-based QR approach. The
proposed multiple SVR-based method provides 3 h-ahead 15 min wind power forecasts.

Wind power series is characterised by long memory characteristics and strong un-
predictability. The forecasting method should be able to capture both the characteristics.
Hybrid approach in [71] combines autoregressive fractionally integrated moving average
ARFIMA to capture long memory characteristic and LSSVR to capture nonlinearities in
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the data. Such integration of linear and nonlinear component for wind power forecast
improves the performance. Experimental analysis and comparison with ARFIMA, LSSVM
and hybrid ARFIMA-BP demonstrates the superiority of the ARFIMA-LSSVM model. Com-
bination of time series and ML method are computationally efficient solution for short-tern
wind power prediction.

Two optimization algorithms are employed in [72] to optimize ANFIS [73] for short-
term wind power prediction. The initial parameters of ANFIS are randomly initialized
and fuzzy c-means (FCM) clustering is used to generate fuzzy inference structure (FIS).
Two optimizers GA and the PSO run simultaneously and independently and optimal
model parameters are selected based on RMSE. The GA–PSO hybrid algorithm performs
better than BPNN, GA-BPNN, and NF-based forecast models. Hybrid approach composed
of DWT, seasonal autoregressive integrated moving average (SARIMA), and LSTM is
proposed in [74]. First, the input data are cleaned using data pre-processing methods such
as isolation forest, re-sampling, and interpolation. Next, the pair of DWT and IDWT is
applied on the cleaned data to decompose data into different components and to remove
noise. Next the approximation and detail components are analysed by SARIMA model.
SARIMA being sensitive to seasonal components is more suitalbe than ARIMA for non-
stationary datasets to improve the prediction accuracy. Finally each decomposed band is
processed through LSTM for power prediction. Combined effect of DWT, SARIMA and
LSTM has shown drastic improvement in the prediction accuracy.

In the case of ML and DL models, it has been observed that accuracy largely de-
pends on hyperparameters and therefore optimization methods play an important role.
In [75], training an LSTM novel optimization method is proposed. The hybrid approach
in [75], ARIMA and LSTM are combined for short-term WPP. After data preprocessing
and assessing stationarity, three different optimization approaches are applied for WPP.
Grid search is applied to find optimum hyperparameters of ARIMA, LSTM. Along with
grid search Optuna optimizer is proposed to accelerate the process of hyperparameter
search. The integration of preprocessing, outlier removal, imputation, resampling and
optimizer along with ARIMA and LSTM has resulted into significant improvements in
results. Hybrid methods for short-term WPP are listed in Table 8.

Table 8. Hybrid methods for short-term WPP.

Sr. No. Articles Models Evaluation Metric Evaluation Value

1 Liang et al., 2016 [76] SVM + ELM NMAE, NRMSE 0.0417, 0.0621
2 Cornejo et al., 2017 [63] Hybrid ML Methods RMSE, MAE 5.3066, 3.9519
3 Huang et al., 2017 [70] SVM + k-means clustering RMSE, MRE 57.0628, 2.0112%
4 Yuan et al., 2017 [71] Hybrid AR + LSSVM RMSE, MAPE, MAE 114.80, 8.33%, 85.56

5 Safari et al., 2017 [14] EEMD + SSA + LSSVM NRMSE
NMAE

5.9671
3.4262

6 Naik et al., 2018 [68] EMD + KRR RMSE, MAPE 1.0674, 7.68%
7 Zheng et al., 2018 [72] GA + PSO+ ANFIS MAE, NMAE, MAPE 45.73, 1.83, 6.64
8 Liu et al., 2019 [77] LSTM + wavelet MAE, MAPE, RMSE 10.12, 3.01%, 14.22
9 Son et al., 2019 [78] LSTM + ANN RMSE, MAPE 3.67, 5.04%
10 Mishra et al., 2019 [79] ANN + RBF MAPE, RMSE 8.1043, 0.8394
11 Zhang et al., 2019 [80] CEEMD + LLE + ELM NRMSE, NMAE, R 7.372, 6.124 91.958

12 Shahid et al., 2020 [69] LSTM + Wavelet
MSE, MAE
MAER, MAPE, R2

0.0089, 0.0644
0.0416, 0.4512, 0.9221

13 Shahid et al., 2020 [69] GP + ANNs + Axp-GPNN RMSE, SDE, MAE 0.0845, 0.0580, 0.0841

14 Zhao et al., 2020 [81] SSA+
Temporal CNN RMSE, SMAPE, R2 188.79, 23.07, 0.9804

15 Yan et al., 2020 [82] EWT + KLEM + GRUNN RMSE, MAE,
GRA

33.75, 27.44
0.95

16 Liu et al., 2020 [83] Wavelet + LSTM MAE, MAPE, RMSE 49.896, 5.831, 63.991
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Table 8. Cont.

Sr. No. Articles Models Evaluation Metric Evaluation Value

17 Han et al., 2020 [84] wavelet WPD + VMD + SSA
NMAE, NRMSE,
MAPE, R2

0.66, 0.84,
2.3, 0.99

18 Duan et al., 2021 [85] VMD + LSTM neural network MAE,RMSE,TIC 41.10, 58.77, 0.0047

19 Shahid et al., 2021 [62] LSTM + GA MSE, MAE, RMSE,
EV, R2Score

0.00924, 0.87413, 0.09615
0.07271, 0.87656

20 Huang et al., 2022 [86] VMD + BiLSTM–CNN–WGAN GP MAE, MAPE, RMSE 0.28, 1.26%, 0.33
21 Zhang et al., 2022 [74] DWT + SARIMA + LSTM Prediction Accuracy 0.99
22 Hanifi et al., 2022 [75] ARIMA + LSTM RMSE 484.3

5. Ultra Short-Term Wind Power Prediction

5.1. Machine Learning

A multi-linear regression algorithm is presented in [87] for ultra short-term WPP.
Initially, the dimensionality of the data is reduced and only relevant parameters from the
NWP data are selected. Next, phase space reconstruction is performed using a covariance
matrix and eigen values. Further, state variables of the regressive model are extracted
from the proposed phase space. Finally the multivariate regression model provides the
predicted wind power. Performance of this approach is compared ARIMA, BPNN, LSSVR
and single-variable phase space reconstruction and proposed model found more accurate
and fast.

Ultra short-term (10 min) wind power prediction is presented in [88] using ELM
wherein the weights are optimized using the Salp Swarm Algorithm. The input dataset
consists of wind speed, wind direction, temperature and other climate factors. The ELM
has single hidden layer, the weights and bias of this network are first optimized by SSA
using historic wind data. SSA helps to avoid overfitting and improves generalization ability
of ELM. This method is compared with other variants of ELM and found better in terms of
accuracy. However, the performance of this method degrades in the presence of outliers.

An efficient yet low-complexity algorithm based on k-nearest neighbour classifier is
proposed in [89] for very short-term wind power prediction. The proposed method utilizes
the power of information that lies in different parameters of meteorological data. Instead
of using highly complex ML method or an ensemble of them, in [89], a simple but efficient
KNN classifier is trained using multidimensional data. The authors selected wind speed,
wind power, wind direction, air temperature and barometric pressure time series as input
data. The combined and individual influence of each of these parameters and different
distance measures on the prediction accuracy is also analysed. Through this analysis,
wind speed and barometric pressure are found to be most influential parameters for WPP
whereas, wind direction and air pressure are decided as ineffective for WPP. Although this
method is simple and effective its performance is not compared with existing methods.

5.2. Deep Learning

The prediction horizon of ultra short-term wind power prediction ranges from a
few minutes toa few hours. Therefore, the prediction algorithms need to capture spatial
as well as temporal variations in the data. Existing deep learning methods captures
nonlinear relation between the input parameters and predicted power using spatial features.
For accurate ultra short-term wind power prediction, Ref. [90] proposed combination of
spatio-temporal correlation model (STCM) and LSTM. CNN is used for spatial feature
extraction and LSTM extracts the temporal relation between input and output. Performance
of the combined model is compared with individual CNN and LSTM and better results
are reported in terms of MAE, MAPE, RMSE and NRMSE. Ref. [91] also explored the
spatio-temporal relationship for ultra short-term WPP. Wherein, attention mechanism that
automatically calculates the contribution of input in the output is used for feature selection.
In general, the convolutional network carries only spatial information; in [91], a temporal
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CNN is introduced for spatial as well as temporal feature extraction. The performance of
TCN for ultra short-term WPP is improved by incorporating a self-attention mechanism in
the TCN. The proposed SATCN extracts temporal features that improve the performance
of the LSTM connected to it. Performance evaluation of the combined TCN-LSTM system
is carried out using meteorological data and wind power data of full year. Combined
feature extraction and prediction scheme shows better results than other methods. For ultra
short-term WPP prediction—spatial as well as temporal—both the trends are important.
Therefore, for this category of WPP, the combined effect of spatio-temporal features and a
learning algorithm seems to be a promising future dimension.

5.3. Hybrid Methods

An improved EMD (IEMD) is proposed in [92] to overcome shortcomings of EMD
through analysis and improvement of sifting process of EMD. IEMD decomposes non-
stationary data into stationary components. Depending on the fluctuations in the data,
a series of intrinsic mode functions (IMFs) is obtained from the IEMD. Large fluctuations
degrade the prediction accuracy while a moderate one improves it [13]. That means
depending on the available fluctuations in the data one can change the prediction model,
i.e., for moderate variations linear prediction can provide required accuracy and for large
fluctuations we need complex models. The authors used ANN for high frequency and
separate SVM for mid frequency, low frequency and and trend item. Validation is performed
using two different datasets and results are compared with only ANN and EMD.

A hybrid method combining k-means clustering and an adaptive neuro-fuzzy infer-
ence system (ANFIS) is proposed in [73] for ultra short-term wind power prediction. In this
approach, phase space variables are first obtained from PSR; next, optimal input variables
are selected using a feature selection method. Selected input variables are categorised
into different subsets using k-means clustering and ANFIS is trained using these clusters.
Parameters of the ANFIS are optimized using PSO.

In [93], a hybrid approach combining LSTM, wavelet transform and PCA was utilized
to forecast ultra-short-term wind power. Initially, for signal decomposition and feature
extraction, wavelet transform and PCA are applied on the time series. Further these
features are applied as input to the LSTM network. Next the authors used normal condition
distribution to find the prediction error of the wind power.

A deep learning based hybrid approach is proposed in [94] for ultra short-term (5
min) wind power prediction. Feature extraction is performed using CNN and the extracted
features are used to train gated recurrent units. Long term trends in the data across the time
steps are captured using GRU. Next, a fully connected NN is used to forecast wind power
generation. Comparison with existing advanced prediction methods such as RNN, LSTM,
Bi-LSTM, GRU, ARIMA and SVM is presented to show the effectiveness of the proposed
hybrid scheme. The authors presented a fair comparison by separately tuning parameters
of all the compared methods to their best setting. The results show that performance of
proposed scheme is close to ARIMA and SVM in terms of MAE, RMSE and MAPE. Similar
approach using GRU, CNN and LSTM is proposed in [95] for ultra short-term (5 min)
wind power prediction. Authors used CNN for feature extraction, GRU to learn long-term
variations and LSTM for prediction. However, parameter tuning has been carried out using
Harris Hawks Optimization algorithm [96]. This combined approach outperformed all the
compared method with large gap in terms of MAPE. Table 9 shows ultra short-term WPP
methods reviewed in this article.
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Table 9. Ultra short-term wind power prediction.

Sr. No. Articles Models Evaluation Metric Evaluation Value Prediction Horizon

1 Yesilbudak et al., 2017 [89] KNN classifier eNRMSE, eNMAE
eNMAPE

2.475%, 15.839
1.158% 10 min

2 Liu et al., 2018 [87] PSR and MLR NMAE 5% less than 4 h

3 Yang et al., 2018 [92] IEMD + ANN + SVM
NRMSE
DMAP
DMQP

9.21%
93.82%
91.91%

4 h

4 Dong et al., 2018 [73] mRMR + IVS NRMSE, NMAE 6.67, 4.10 1 h to 4 h

5 Tan et al., 2020 [88] SSA_ELM
MAE
MAPE
RMSE

0.09
0.47
0.16

15 min to 4 h

6 Sun et al., 2020 [93] LSTM + WT MAPE, RMSE 1.54%, 3.66 2 h
7 Hossain et al., 2021 [94] LSTM + GRUNN MAE, RMSE, MAPE 2.45, 3.85, 9.80% 5 min
8 Hossain et al., 2021 [95] CNN + GRU + LSTM MAPE 17.9 5 min and 10 min

6. Discussion

In this paper, we have presented a selective review of state-of-the-art wind power
prediction methods. We do not aim to compare different methods and reported results
rather, we highlight recent developments and benchmarks in this field. We presented three
different classes of WPP based on prediction horizon and for each class, detail discussions
on prediction methodology or algorithms are also presented.

From the presented review it has been observed that, in recent times, relatively few
publications report on time series methods for WPP. Time series models are not competent
enough to capture high degree of nonlinearity and stochastic behaviour of wind. Higher
order polynomials can model nonlinear behaviour, but complexity increases with the
degree of the polynomial and finding global minima not guaranteed.

Machine learning methods are suitable for all the prediction horizon. Variants of BPNN
and ELM are proposed with different optimization methods. It is noted that, same network
with different optimizers produce different results, since datasets are not same. Variants
of Gaussian process regression and ELM with advanced optimizers shown improved
results. Along with the accuracies, GP based approaches provide the confidence interval
of the results. Being a nonparametric method, GP-based approaches do not require cross
validation. Instead of using a single ML method, ensemble learning methods are widely
used for WPP in different horizons. Through ensemble learning different base learner
effectively models the non-stationary behaviour of wind. Ensemble of different learning
algorithms have shown improvement in the accuracies.

With increased computing power and ability to model complex nonlinear functions,
deep learning models can provide accurate predictions than shallow machine learning
methods. The deep learning models extract optimal features as well as learn a regression
function. Each of these models perform well individually, combination of time series and
ML and deep learning models substantially improves the results.

Rightly pointed out in [8], in recent years, a substantial increase in hybrid approaches
has been observed. It is effectively applicable to all prediction horizons. Variants of EMD
are combined with different ML, LSTM and deep learning models to improve the prediction
accuracy. Decomposition power of wavelets are incorporated in deep learning by using
wavelet as an activation function and substantial improvement is observed. Combination
of LSTM, CNN and decomposition methods drastically improves accuracy of short-term
and ultra short-term WPP. However, these methods become computationally very heavy.
It is noted that appropriate feature selection, data cleaning and optimizers and network
selection are key to improving the accuracy of WPP.

It has been observed that the selection of an optimizer is a very crucial step in the case
of ML and DL models. Recently developed hybrid approaches make use of LSTM and CNN
along with different decomposition methods; however, the combination of decomposition
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methods and deep learning models does not perform well unless hyperparameters are
properly tuned. In our opinion, with sufficiently large development in the deep learning
area, efficient optimization algorithms are needed, and researchers need to focus on this
aspect as well.

Data preprocessing is an important step in WPP; it can be seen that, in [74,75], data
preprocessing such as outlier removal, anomaly detection and removal, resampling and
interpolation substantially improved the performance of the algorithm. Therefore, along
with the algorithmic development data, preprocessing is also an important factor. The R
package for data cleaning and preprocessing is presented in [97]. Researchers can used
such tools for data preprocessing and also to analyze data at various scales and resolutions
to find relevant features.

7. Conclusions

This paper presents a selective review of wind power forecasting methods. In this
paper, WPP methods are classified based on the prediction horizon and for each category
we investigated time series, machine learning, deep learning and hybrid approaches for
WPP. Among these four categories, recent developments are skewed towards hybrid
methods. This paper focuses on a comparison of existing state-of-the-art methods based
on pre-processing, feature extraction, algorithm and performance. Compared to long term
approaches, due to the high requirement for stable dispatching of the power grid, short-
term forecasting methods are gaining more attention. A combination of feature extraction,
time series decomposition and learning algorithms improves the forecasting accuracy.
Investigations in this paper favour the hybrid methods, which show high performance for
all three prediction horizons. It is noted that there is a large variation in databases, related
NWP data and performance measures; therefore common datasets and parameters are
needed for bench-marking. The discussions in this paper provide guidelines about current
achievements and future requirements.
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Abbreviations

The following abbreviations are used in this manuscript:

ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
AR Autoregressive
ARX Autoregressive with exogenous variable
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
AWNN Adaptive Wavelet Neural Network
BP Back Propagation
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BPNN Back-Propagation Neural Network
CNN Convolutional Neural Network
DBN Deep Belief Network
ELM Extreme Learning Machine
ENN Elman Neural Network
EVS Explained Variance Score
FFNN Feed Forward Neural Network
GA Genetic Algorithm
GFS Global Forecasting System
GMM Gaussian Mixture Model
GP Gaussian Process
GPR Gaussian Process Regression
IF Isolation Forest
LSSVM Least Square Support Vector Machine
LSTM Long Short-Term Memory
MA Moving Average
MAPE Mean Absolute Percentage Error
MARE Mean Absolute Relative Error
MDN Mixture Density Neural Network
MLP Multilayer Perceptron
MSE Mean Square Error
MSLE Mean Squared Logarithmic Error
NAAE Normalised Absolute Average Error
NMAE Normalised Mean Absolute Error
NMBE Normalized Mean Bias Error
NMSE Normalized Mean Square Error
NN Neural Network
NRMSE Normalised Root Mean Square Error
NWP Numerical Weather Prediction
PSO Particle Swarm Optimisation
R2 R-Square
RBFNN Radial Basis Function Neural Network
RF Random Forest
RMSE Root Mean Square Error
RVM Relative Vector Machine
SDE Standard Deviation Error
SNMAE Square Normalized Mean Bias Error
SVM Support Vector Machine
SVR Support Vector Regression
WNN Wavelet Neural Network
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Abstract: Power generation forecasts for wind farms, especially with a short-term horizon, have been
extensively researched due to the growing share of wind farms in total power generation. Detailed
forecasts are necessary for the optimization of power systems of various sizes. This review and
analytical paper is largely focused on a statistical analysis of forecasting errors based on more than
one hundred papers on wind generation forecasts. Factors affecting the magnitude of forecasting
errors are presented and discussed. Normalized root mean squared error (nRMSE) and normalized
mean absolute error (nMAE) have been selected as the main error metrics considered here. A new and
unique error dispersion factor (EDF) is proposed, being the ratio of nRMSE to nMAE. The variability
of EDF depending on selected factors (size of wind farm, forecasting horizons, and class of forecasting
method) has been examined. This is unique and original research, a novelty in studies on errors
of power generation forecasts in wind farms. In addition, extensive quantitative and qualitative
analyses have been conducted to assess the magnitude of forecasting error depending on selected
factors (such as forecasting horizon, wind farm size, and a class of the forecasting method). Based
on these analyses and a review of more than one hundred papers, a unique set of recommendations
on the preferred content of papers addressing wind farm generation forecasts has been developed.
These recommendations would make it possible to conduct very precise benchmarking meta-analyses
of forecasting studies described in research papers and to develop valuable general conclusions
concerning the analyzed phenomena.

Keywords: forecasting error; evaluation criteria metrics; wind power forecasting; wind turbine;
wind farm; statistical analysis of errors; hybrid methods; ensemble methods; machine learning;
deep neural network

1. Introduction

The forecasting of power generation in wind farms has been an extensively explored
research topic [1–8]. The growing significance of renewable energy sources (RES) and
the remarkably dynamic growth of wind farms in most countries has highlighted the
importance of accurate power generation forecasts due to, e.g., increased wind farm contri-
bution to the overall power system. Cost-efficient and optimized management of a power
system requires RES generation forecasts of the best possible accuracy. System operation
optimization processes include scheduling the operation of fossil-based sources, schedul-
ing maintenance works in the power grid, and preventive and remedial maintenance of
RES themselves. In addition to obtaining forecasts with the best accuracy, the estimation
of errors in these forecasts also proves to be important, as it translates into maintaining
appropriate safety margins.

Forecasting purposes vary by time horizon [4,5,7]. Time horizon, also called planning
horizon, is a fixed point in the future at which a certain process will be evaluated or assumed
to have ended. In wind energy forecasting, time horizon affects the choice of forecasting
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techniques, as they are classified into four types: very short-term (seconds), short-term
(minutes to hours), medium-term (months), and long-term forecasts (months/years) [9].
Based on this classification, each approach is defined in Table 1.

Table 1. Forecasting horizons.

Horizon Applications Duration

Very short-term Turbine regulation, control strategies, electricity market billing,
real-time grid operation, network stability, voltage control 10 s

Short-term
Economic load dispatch planning, load amount, reversibility of

power management, electric market reliability in day-ahead,
load decisions for increments

5 min, 10 min, 15 min, 1 h, 24 h

Medium-term Unit commitment, reserved requirement, generation operator,
operation scheduling 1 month

Long-term Maintenance scheduling, wind farm design, electricity market
restructuring, optimization of operating costs 1 month, 1 year

Each time horizon tends to use different types of data. Very short-term forecasts
are most often based on time series data. Short-term forecasts very often use online
measurement data from a meteorological station, NWP, or combination of both as input
data, with the expectation that weather conditions will remain the same in a short time.

1.1. Major Factors Affecting Wind Power Forecasts

Magnitudes of forecasting errors for wind power generation can vary widely. The
quality of power generation forecasts is affected by a large number of independent factors
based on quantities or classes. The final forecasting error can be seen as the output of a
non-linear function that uses all the factors presented in Table 2 as inputs. Obviously, it is
impossible to create a formal formula for such a function, although it is possible to verify
how selected factors affect the magnitude of error. In some cases, it is possible to determine
the functional relationship between the error and the factor, but, unfortunately, it requires a
very large pool of research samples. In Table 2 modifiable and fixed factors are described.
When the wind farm is already active and generating energy, the following factors are fixed:
site, landscape, and size of the system.

Table 2. Description of major factors affecting wind power forecasts.

Factor Description/Influence on Error Level

Time horizon With increasing forecasting horizon, forecasting errors grow significantly, mainly
due to the falling quality of NWP forecasts [5,6,8,10,11]

Forecasting method (complexity) Complex (ensemble or hybrid) models have typically lower forecasting errors than
single methods (more details in Section 2) [1–5,8]

Size of system The inertia of power production usually grows with system size. This translates
into more predictable production, especially in shorter horizons.

Site (onshore/offshore)
Forecasting errors for offshore wind farms should be less than for onshore wind
farms due to distinctive characteristics of weather conditions (more stable and

higher wind speeds).

Landscape

Forecasting errors for farms located in rough terrain can depend on the local
landscape and meteorological features (e.g., a forest, hills, or a lake in a direct
neighborhood). The best if the terrain has as little roughness as possible—this

guarantees the optimal generation of wind energy [12]

Location of NWP forecasting points
NWP forecasts from points more distant from the wind farm can generate larger
forecasting errors. The topic of optimum selection of NWP forecasting points and

their location on the farm is subject to studies [12]
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Table 2. Cont.

Factor Description/Influence on Error Level

Types and quantities of input data

The more information related to power generation can be used in the model, the
more accurate generation forecasts can be expected. In particular, using NWP as
input data is especially important (if absent, generation forecast errors grow very

sharply), and with horizons of more than several hours, NWPs are virtually
indispensable [1,2,4,13]

NWP data sources NWP data can vary by quality (forecasting accuracy)—the more accurate NWP
forecasts, the lower power generation forecasting error [2]

Quantity of training sets

The model must use training data encompassing at least one year. With a growing
number of years, the model uses more information and better represents the

seasonality and daily variability of the process (a smaller forecasting error can be
expected)

Data preprocessing Properly conducted steps to clean up and process raw input data can reduce
forecasting error [3]

Data postprocessing
Elimination of impossible situations, e.g., negative power forecasts or forecasts

determined as unlikely for specific input data. Elimination of such cases reduces
the error [13]

Measurement data availability lag Using up-to-date, current data provides for identification and correction of errors
“on the fly,” e.g., using switchable forecasting models

More attention should be paid to forecast model inputs due to the fact that, whereas
some factors, such as location, size of the system, or forecasting horizon, cannot be changed,
the biggest reduction in error can be achieved by appropriate selection of input data or
such selection that encompasses as much information as possible related to the forecast
power generation time series.

Regarding the selection of input data itself, both statistical analysis and a semi-machine
approach can be applied. Statistical analysis using various tests can help to draw conclu-
sions on data interdependencies, however, the time required for this makes it impractical
for big datasets. If larger quantities of data are available, expert selection of a pool of input
data combinations and their subsequent review can prove to be a more practical approach.
The choice of solution depends significantly on the tool—the time required for statisti-
cal analysis can bring more benefits for tools that usually require greater optimization,
e.g., ANN models.

Forecasting models require input data to predict wind power generation. The data
format used by forecasting models need to be relevant to the model itself, i.e., it must
consider which external phenomena have a direct impact on wind generation. This data
can be divided into NWP and time series [14].

NWP is a multivariate dataset based on a set of physical models used to simulate
conditions in the atmosphere; these models are available both on local and global scales.
NWP dataset contains information generated by power metering and prediction of several
meteorological variables, such as wind speed, wind direction, temperature, humidity, air
pressure, time of the day, day of the year, etc. [15,16]. As NWP is a general dataset, the
main factor that affects wind-generated power is wind speed [17,18].

The time series is a univariate dataset of a wind speed or wind power that is measured
at timestamps over a certain period. To obtain a wind speed time series, a mast is usually
installed at the wind farm, with an anemometer mounted at the hub height.

Decomposition methods often used during the forecasting process are based on the
premise that the wind power time series contain different frequency signals with different
characteristics, and that modeling each of the decomposed series separately can lead to
an overall improvement in forecast quality [8]. Popular techniques are discrete wavelet
transform (DWT), empirical mode decomposition (EMD) [3,8], ensemble empirical mode
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decomposition (EEMD) [6], variational mode decomposition (VMD) [4,8], or wavelet packet
transform (WPT).

Machine learning models can use NWP data as features, and/or time series as inputs,
where NWPs are features with information related to the expected output wind speed.
Input matrix X contains the following: historical wind inputs, weather information, and
time data. Output vector y contains the time series and multiple values of predicted wind
power with a changing prediction horizon [19].

When NWP data is not available to be used as input data, common practice is to use
autoregression of the output variable. In some works, measured values of other variables
from the recent past are also used—e.g., measured instantaneous rotor speed or measured
weather parameters for a few hours in the past [20,21]. This allows us to take into account
recent generation trends and a farm’s short-term generation inertia. A practical drawback
of this appeal would be that it cannot be used for forecasts with horizons longer than a
few hours ahead. Other possible approaches would be using measures from one farm
to forecast another one [22]. In this case, the final result would depend on the weather
similarity between used and destination farms and tools used to translate one generation
to another.

When only the wind speed time series is known, a technique called feature engineering
can be used to fabricate new features. This technique’s goal is to fabricate features by
executing simple calculations based on the known feature, the wind speed time series.
These calculations are described by standard deviation, average, minimum, or maximum
wind speed for a period of time [20,23].

In practice, the choice of the source and types of NWP forecasts strongly depends on
the data cost-to-quality ratio, nevertheless, it is worthwhile to maximize both the number of
NWP models with various densities of forecasting points and the number of weather pa-
rameters derived from them [12]. In some cases, the application of various models, or even
bundles of models, is recommended due to the diverse information content of different
models. For instance, for long-term forecasts, NWP climatic models are different from each
other, and identification of the best one can be not only difficult, but virtually impossible,
and drawing any conclusion can require aggregation analysis of various scenarios. On the
macro scale, equally important is to select a proper forecasting point, from which mete-
orological variables would be derived. Hence, the growing trend of extraction of spatial
information using various tools, e.g., CNN, was applied by some research papers [24–26].

1.2. Objective and Contribution

The main objectives of this paper can be summarized as follows:

• classify wind power forecasting techniques;
• provide unique description of major factors affecting wind power forecasts;
• describe the performance of forecasting models;
• conduct comprehensive review (quantitative analysis) based on more than one hun-

dred papers;
• conduct statistical analysis of errors (qualitative analysis).

Below are listed selected contributions of this paper:

• proposal for a novel, unique ratio, called EDF;
• analysis of variability of the new EDF ratio depending on selected characteristics (size

of wind farm, forecasting horizon, and class of forecasting method) and the original,
novel conclusions drawn from the analysis;

• development of a unique list of recommended content of papers addressing wind farm
generation forecasts (the application of these recommendations would make it possi-
ble to conduct very accurate meta-analyses that would compare various forecasting
studies).

The remainder of this paper is organized as follows: Section 2 presents the classifi-
cation of wind power forecasting techniques. Section 3 describes the performance of the
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forecasting model. Section 4 is the main part of the paper and includes comprehensive sta-
tistical analysis (quantitative and qualitative analysis). Discussion is provided in Sections 5
and 6 draws the main conclusions. References are listed at the close of this paper.

2. Classification of Wind Power Forecasting Techniques

The following alternative methodologies are applied to wind power forecasting: Naive,
Physical, Statistical, and AI/ML methods (see Table 3).

Table 3. Classification of forecasting techniques.

Technique Description Advantage Disadvantage

Naive/Persistence Methods

Simple approach that
evaluates the last period t,

benchmark for more complex
methods

Fast results, applicable only
for short-term forecasts

Does not consider correlations
between input data and the

results are not reliable for the
subsequent steps in time

Physical Methods Physical mathematical model
of the power turbine

No need for training or
historical data, enables

understanding of physical
behavior

Computationally complex, it
relies on fresh data from

several features, extensive
setup effort

Statistical/Multivariate
Methods (time series)

Mapping of relations between
features, generally through

recursive techniques, no NWP
data as an input

Models can be built easily and
with small computational

effort

Quick loss of accuracy with
time

AI/ML methods
(LR, GBT, RF, BPNN, KNNR,

LSTM, CNN, DBN, GRU,
EDCNN, RBF, SVR)

Techniques that enable the
computer to mimic human

behavior without a predefined
mathematical model (“black

box”)

Highest accuracy and can
learn more complex nonlinear

relations

Slower convergence speed,
risk of overfitting,

computational complexity

Statistical models have high precision in very short-term prediction [27]. The most
used statistical model for wind forecasting is the times series model, due to the fact that
future levels of wind power depend on weather features, but they also can depend on the
prior value of wind power generated. The amount of wind power produced in the current
hour affects the amount of wind power generation in the next hour. These models can
determine conditions in time based on relationships between parameters. However, they
depend on pre-set coefficient values.

AI and ML models are suitable for systems that are more complex to model, as they
attempt to discover underlying relationships, and are widely used to accurately predict
wind. Without an a priori structural hypothesis that relates wind power to several historical
meteorological variables, they have a strong generalization and fast speed [18,28].

Each approach mentioned above can have a high forecasting error due to inherent
weaknesses, especially when wind speeds have significant non-linear characteristics, as
volatility causes complex fluctuations. In particular, the conventional single ANN model
has the drawback of falling into local minimum and overfitting, and its performance can be
influenced by the initial parameters. These weaknesses cannot be easily remedied with a
single method. To reduce forecasting error and obtain advanced models that can achieve
higher accuracy, a combination of methods described in Table 4 is incorporated.

Ensemble forecasting methods are generated through the application of various ma-
chine learning techniques and then by merging the outputs, which reduces the risk of
overestimation and is aimed at preserving the diversity of models. The ensemble technique
is known to be applied in both cooperative and competitive styles.

In a cooperative ensemble, the dataset is divided into data subsets, each subset being
forecast individually and then aggregated with other sub-forecasts [29]. This technique is
computationally lightweight due to less need for parameter tuning and is in general used
for very short-term or short-term forecasting.

371



Energies 2023, 15, 9657

Table 4. Classification of complex forecasting techniques.

Technique Description Advantage Disadvantage

Ensemble methods Aggregate a combination of
results from different methods

Usually perform better
than a single method

Larger computational cost of running
individual methods; the combination of
results can obscure problems inherent

in the methods

Hybrid methods
Combination of different methods

connected in series to create
hybrid prediction structures.

Usually perform better
than a single method

Larger computational cost of running
individual methods; require large

quantities of data

Competitive ensembles build individual forecasting models with different parameters
and initial values, and the results are obtained by aggregation of forecasts by different
techniques, such as the Bayesian model average. This technique, used by [30], can cover a
larger dataset and is used to achieve early detection of a large wind ramp before the changes
in the wind speed propagate to other locations. However, it is considered computationally
expensive and is mostly used in medium-term and long-term forecasting.

To obtain an advanced model with higher accuracy, hybrid forecasting models combine
the advantages of different methods with individual superior features [31]. Overall forecast-
ing effectiveness of hybrid methods can be improved, since hybrid methods can overcome
the limitations and take advantage of the merits of individual models by integrating two or
more types of models [28].

A neural network can be used in different steps of the algorithm, for example, a CNN-
based model using transfer learning is used to address the problem of some newly con-
structed farms not having sufficient historical wind speed data to train a well-performing
model by producing synthetic data [32]. In [26], the CNN is trained in layers to extract
local features and relationships between the nodes, and the output layer of CNN is set in
multiple dimensions to directly forecast future wind speed.

The most common approach is to adopt the machine learning algorithm as the main
forecasting tool and to perform data treatment using general techniques as shown by [33],
which consist of variational mode decomposition (VMD) of raw wind power series into
a certain number of sub-layers with different frequencies; the K-means as a data mining
approach being executed for splitting the data into an ensemble of components with a
similar fluctuant level of each sub-layer; and LSTM is adopted as the principal forecasting
engine for capturing unsteady characteristics of each component.

Some authors also combine both hybrid and ensemble approaches into one [34], using
a hybrid technique of intelligent and heuristic algorithms that include neural networks,
wavelet transform, diverse heuristic algorithms, and fuzzy logic. The hybrid technique uses
wavelet transform to filter distortions and noise in wind power signals, the radial neural
networks (RBF) technique being used as a preliminary predictor to find local solutions.
With the local solution, an ensemble combining three neural networks of MLP using various
learning methods along with heuristic WIPSO is used for the final prediction and modeling
of the non-linear behavior of the wind power curve.

3. Performance of Forecasting Model

3.1. RMSE, MAE, and MAPE as Frequently-Used Metrics

The root mean square error (RMSE), given by Formula 1, is a quadratic scoring rule
that estimates the average magnitude of error. It is the most standard function used to
calculate the difference between predicted and observed values, since it reflects the level of
differences between the actual and forecast values, in other words, the absolute magnitude
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of prediction error [35]. However, RMSE is sensitive to outliers, so its outcome can be
biased if the data is not clean [36].

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (1)

where ŷi is predicted value, yi is the actual value, and N is the number of prediction points
or number of samples. A smaller RMSE means that the proposed model performs better.

The mean absolute error (MAE), Equation (2), corresponds to the estimated level of
absolute error. This level indicates the average magnitude of the actual value and the
predicted value [37].

MAE =
1
N

N

∑
i=1

|yi − ŷi| (2)

where ŷi is predicted value, yi is the actual value, and N is the number of prediction points
or number of samples. MAE is not susceptible to outliers and can better reflect the actual
status of predicted errors [38]. The model is deemed to be accurate when MAE is close to
zero.

The mean absolute percentage error (MAPE), Equation (3), calculates the percentage
error relative to the actual value, which is stated as the average ratio, and is also commonly
used to compare different models [36,39].

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ · 100% (3)

where ŷi is predicted value, yi is the actual value, and N is the number of prediction points
or number of samples.

Although RMSE is usually used to express the dispersion of the results, MAE and
MAPE can indicate the deviation of the prediction [17]. The smaller the values of RMSE,
MAE, and MAPE, the more accurate the forecasting model.

3.2. MSE, nMAE, nRMSE, and R2 As Occasionally Used Metrics

The mean squared error (MSE), Equation (4), simply averages the mean squared
difference between the estimated and original parameters [40], which can avoid the problem
that the errors cancel each other out, and accurately reflects the actual prediction error [35].

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (4)

where ŷi is predicted value, yi is the actual value, and N is the number of prediction points
or number of samples.

Sometimes authors need to normalize the MAE and RMSE to quantitatively examine
the prediction performances of some models, their norms being given by the normalized
mean absolute error (nMAE), Equation (5), and normalized root mean squared error
(nRMSE), Equation (6).

nRMSE =

√√√√ 1
N

N

∑
i=1

(
yi − ŷi

Ci

)2
(5)

nMAE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
Ci

∣∣∣∣, (6)

where Ci is the operating capacity of time point i, ŷi is predicted value, yi is the actual
value, and N is the number of prediction points or number of samples. In general, smaller
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values of these metrics indicate that the corresponding solution offers less deviation of
prediction performance [41].

The R-square or coefficient of determination (R2), Equation (7), is the proportion of the
variance in the dependent variable that is predictable from independent variable(s) [42,43].
It indicates the level of correlation between predicted value and the actual value, and it
helps to select the best model with highest forecasting accuracy [44]. It is mostly used in
datasets of large amplitudes [17].

R2 = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 , f or y =

1
N

N

∑
i=1

yi (7)

where y is the average of actual values, ŷi is predicted value, yi is the actual value, and N is
the number of prediction points or number of samples. An R2 closer to one indicates more
accurate forecasting. It can also be displayed as negative to denote an arbitrarily worse
predicting model [20].

3.3. R, PICP, PINAW, sMAPE, MRE, and TIC As Seldom Used Metrics

The Pearson linear correlation coefficient (R or CC), Equation (8), is a metric that deter-
mines the relationship between inputs and outputs by determining the linear dependence
between results and observations [9,37].

R =
∑N

i=1(xi − x̂i)(yi − ŷi)√
∑N

i=1(xi − x̂i)
2 ∑N

i=1(yi − ŷi)
2

(8)

where ŷi and x̂i are predicted values, yi and xi are the actual values, and N is the number
of prediction points or number of samples. The possible R score range can vary between 1
and −1, with 1 representing the biggest correlation, and −1 the lowest one [45].

Prediction interval coverage probability (PICP), Formula (9), measures the ability of
the constructed confidence interval to cover the target values for prediction intervals.

PICP =
1
N ∑N

i=1 ρi, for ρi =

{
1, i f yi ∈ [Li, Ui]

else 0
(9)

where Li and Ui are the lower bound and the upper bound, respectively, of the prediction
values, yi is the actual value, and N is the number of prediction points or number of samples.
The greater the PICP, the more reliable the prediction values [46,47].

Prediction interval normalized average width (PINAW), Equation (10), is used to
measure the width of the PIs for a given length of the prediction interval.

PINAW =
1
N

N

∑
i=1

(Ui − Li)

tmax − tmin
(10)

where tmin and tmax are the maximum and minimum values of the predicted values, and Li
and Ui are the lower bound and the upper bound, respectively, of the prediction values [48].

The Symmetric Mean Absolute Percentage Error (sMAPE) metric, Formula (11), a
variation of MAPE, is used to describe the relative error of a set of forecasts and their labels
as a percentage [36,37].

sMAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi + ŷi

∣∣∣∣ · 200% (11)

where y is the average of actual values, ŷi is predicted value, yi is the actual value, and N is
the number of prediction points or number of samples.

374



Energies 2023, 15, 9657

Theil’s inequality coefficient (TIC), Equation (12), is used to measure the predictive
performance of the model [49].

TIC =

√
1
N ∑N

i=1 (yi − ŷi)
2√

1
N ∑N

i=1 ŷi
2 +

√
1
N ∑N

i=1 ŷi
2

(12)

where y is the average of actual values, ŷi is predicted value, yi is the actual value, and N
is the number of prediction points or number of samples. The smaller the TIC value, the
stronger the prediction ability [50].

The mean relative error (MRE), Equation (13), calculates the magnitude of the differ-
ence between predicted and actual values [51].

MRE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (13)

where y is the average of actual values, ŷi is predicted value, yi is the actual value, and N
is the number of prediction points or number of samples.

The mean bias error (MBE), Equation (14), gives the average bias error of prediction. It
is used to determine if the predicted value is underestimated <0 or overestimated >0 [1,2,52].

MBE =
1
N

N

∑
i=1

(yi − ŷi) (14)

where ŷi is the predicted value, yi is the actual value, and N is the number of prediction
points or number of samples. This metric is useful to identify the need to add extra steps to
calibrate the model.

3.4. Interesting Usage of Other Metrics

Some studies use prediction accuracy metrics such as MSE, combinations of MAE, and
RMSE to create the fitness function, as the fitness function directly affects the convergence
of the algorithms and the optimal solution [17,35,49].

The MAPE is a commonly used evaluation metric that generates infinite values when
the actual value yi is zero or close to zero. To avoid this problem, mean arctangent absolute
percentage error (MAAPE) is used, Equation (15).

MAAPE =
1
N

N

∑
i=1

arctan
∣∣∣∣yi − ŷi
yi + ŷi

∣∣∣∣ (15)

where MAAPE ranges from 0 to π
2 , y is the average of actual values, ŷi is predicted value,

yi is the actual value, and N is the number of prediction points or number of samples. A
smaller MAAPE indicates smaller forecasting error [9].

To compare the predictive performance of the models, promoting percentages (P) are
applied in different metrics, Equation (16).

PMETRIC =

∣∣∣∣METRIC1 − METRIC2

METRIC1

∣∣∣∣ (16)

where METRIC1 and METRIC2 are the error metrics calculated for two different prediction
models. The promoting percentages are called PMAE, PMAPE, PRMSE, PNMAE, PNRMSE,
and PSMAPE [26,33,48,53–55].

The metrics MAE, MSE, and RMSE are usually used in deterministic forecasting
methods. As for probabilistic forecasting, the process can be more complicated, due to the
influence of external factors leading to a better analysis based on the verification of the
quantile forecasts given by PICP and PINAW [56].
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For a comparative assessment of the performance test of the analyzed methods, the
skill score (SS) metric is useful. The skill score metric uses one nRMSE (Equation (17)) or
nMAE metric (Equation (18)) or two error metrics—nRMSE and nMAE—and in this case, it
is calculated by Equation (19) [2]. Higher SS values are an indication of superior prediction
quality. An advantage of using a skill score is the ability to compare the forecasting qualities
of various systems, using the level of reduction in forecasting error relative to the reference
method as the quality indicator (persistence method—naive model).

SSRMSE =

(
1 − nRMSE f orecast

nRMSEre f erence

)
(17)

where nRMSE f orecast is the error of the analyzed method, and nRMSEre f erence is the error of
the reference method (persistence method—naive model).

SSMAE =

(
1 − nMAE f orecast

nMAEre f erence

)
(18)

where nMAE f orecast is the error of the analyzed method and nMAEre f erence is the error of
the reference method (persistence method—naive model).

SSRMSE, MAE =
1
2

[(
1 − nMAE f orecast

nMAEre f erence

)
+

(
1 − nRMSE f orecast

nRMSEre f erence

)]
(19)

4. Comprehensive Statistical Analysis

Out of 106 papers, statistical analysis was conducted on those which applied nRMSE
and nMAE errors and which could calculate these two error metrics based on the rated
power of the system and the levels of RMSE and MAE errors. In addition, based on the
content of those papers, crucial details (factors) of studies were selected to enable statistical
quantitative analysis and error analysis and their relationship with other factors. Table 5
(onshore systems, data from 60 papers) and Table 6 (offshore systems, data from six papers)
contain sets of selected information from the studies presented in the papers.
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In addition to the papers mentioned in Tables 5 and 6, in Section 4.1 (Comprehensive
Quantitative Review) below we also use in certain analyses information from those papers
which did not provide nRMSE and nMAE error values or these values could not be
calculated due to absence of information on the rated power of the system. These papers
are the following: [26,83–122].

4.1. Comprehensive Quantitative Review

Based on data from 116 papers, statistical analysis was conducted to determine, among
other things: the frequency of use of various error metrics, classes of forecasting methods,
distinct types of input variables for forecasting models, scopes of rated powers of the
systems subject to forecasting, location of the systems subject to forecasting, and typical
forecasting horizons. The analysis in this subparagraph excludes papers that provided less
reliable or no data.

Figure 1 presents the outcome of statistical analysis of the number of forecasting
studies concerning wind power generation in particular regions of the world based on
the research papers analyzed here. What is remarkable is the very uneven distribution of
studies across regions of the world. Special attention must be drawn to China—by far the
largest number of papers addressing wind farm generation forecasting. The second best is
the United States.

Figure 1. Total number of farms analyzed in 116 papers.

The performance of a wind power forecasting model is measured with different
statistical metrics. These metrics quantify the prediction error of a model, providing the
accuracy between the predicted values and the measured data [65]. It is difficult to make
a comprehensive evaluation using the single error index, and, as Figure 2 shows, studies
can consider up to six different metrics to evaluate, compare performance and quantify
forecasting errors [20,40]. However, in general, only 2 or 3 statistical metrics are used in
model validation. In some cases, authors also do not specify the metric used to evaluate the
performance of the model. The combination of statistical metrics, presented by Figure 2,
varies by study.
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Figure 2. Number of statistical metrics used per article to evaluate the performance of forecasting
models (evaluation of 114 articles).

It means that the metrics used to evaluate the performance of each model are different
for each study. Figure 3 shows a summary of quantifiers used in the studies analyzed, and
these metrics are split into four groups (see Table 7).

Figure 3. Common ways to measure and evaluate the error of models predicting quantitative data.

Table 7. Frequency of use of model performance evaluation metrics.

Use Metric Number of Times Used

Frequent RMSE, MAE, and MAPE 46–62
Occasional MSE, nRMSE, nMAE, and R2 15–24

Seldom R, PICP, sMAPE, MBE, MRE, . . . , TIC 2–9
Rare Other Metrics 1
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RMSE, MAE, and MAPE are popular accuracy metrics due to their ease of interpretabil-
ity by decision-makers and participants of energy markets. Those metrics, unlike mean bias
errors, do not falsify the average quality of forecasts by compensating over-forecasting with
under-forecasting. Moreover, they give a decent estimation of the average error one can
expect from forecasts for each prediction step [123]. Because of squaring the error, RMSE is
more sensitive to the detection of high values of errors in error time series, which make
it a good metric for detecting extreme error values. In turn, MAE does not additionally
magnify extreme values of errors and is the closest to the most naturally expected type of
error—mean error. Unlike the two previous metrics, MAPE is not dependent on the scale
of values in the data, which makes it useful for comparing data of different scales—e.g.,
errors for prosumer wind turbines and very big wind farms. It also allows us to find how
an accurate model is in the scale of changing the momentary real value. This metric is,
however, susceptible to zero/small values of generation appearing in its denominator [124].
The result can be either an indefinite expression or a substantial error at a given step,
and as a consequence, its value is reflected in the final average value. Because of the
aforementioned, we recommend not using MAPE. In Figure 3 one can see the rare use of
metrics other than the three most frequent ones. Usually, they are root or derivative metrics
of those three and are used to solve previous ones’ drawbacks, e.g., nRMSE and nMAE
add an aspect of comparability between objects of different scales, which cannot be easily
conducted without normalization of time series, used in MAPE for example. A coefficient
of determination is also relatively frequently used. It serves as a means of describing not
how well a model predicts but how much of the modeled process is actually modeled.

Forecasting methods were classified into single methods, ensemble methods, and
hybrid methods, and calculations were conducted on how frequently each of those methods
was the best method (lowest nRMSE error) in each of the studies described in the papers
reviewed here. Figure 4 presents the outcome of our analysis. A hybrid method was usually
the best class of forecasting methods (almost 44%). Quite a substantial percentage (almost
25%) of studies in which a single method was the best is surprising. This can be explained
by the fact that some papers proposed single methods only, without comparing them to
other classes (ensemble, hybrid). Additionally, note that, in some cases, ensemble and
hybrid methods have the characteristics of both classes. For instance, the general hybrid
model also contains model(s) from the ensemble class. Comparison of forecast quality of
the single, ensemble, and hybrid methods are presented in Section 4.2.2. Analysis of errors
and EDF depending on the class of forecasting methods.

Figure 4. Frequency of using forecasting methods (quantity statistics).

Based on information from papers (for which rated powers were provided), the
percentage of farms for which generation forecasts were conducted was calculated for
specific ranges of rated powers. By far most frequently studied were systems sized from
more than 10 MW to 100 MW, with the second largest group of systems being those sized
up to 10 MW (Figure 5). Domination of the former range is probably due to the fact that it
is the most frequent range of powers in wind farms, and, on the other hand, for very small
(prosumer) systems, power generated from wind turbines is forecast much less frequently.
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Figure 5. Ranges of rated powers of wind farms.

The percentage of farms for which generation forecasts have been conducted was
calculated by forecasting horizon (Figure 6). By far the most frequent forecasting horizon is
“24 h” and “few steps”, with “one step” (5 min, 10, min, 15 min, or 1 h) being slightly less
frequent. Forecasts with horizons of more than 24 h are clearly rare. On the one hand, the
reason may be more difficult access to NWP with such horizons and the awareness of the
loss of quality of such forecasts, especially as compared to horizons with few steps ahead.

Figure 6. Frequency of forecasts from different forecasting horizons.

The frequency of use of various sets of input data in the forecasting models described
in the papers was calculated (Figure 7). Lagged generation values of the forecast time series
are used clearly most frequently. NWP and weather measurements are used only slightly
less frequently. Other types of input data are used at least ten times less frequently than the
three input data mentioned above (or incidentally). Such infrequent use of input data such
as lagged NWP, time variables and generation stats (statistics on the forecast times series)
in forecasting models is surprising.

Figure 7. Input data categories by frequency of use.
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4.2. Comprehensive Error Analysis

Out of 116 papers, error analysis was conducted on those which applied both nRMSE
and nMAE errors and which could calculate these two error metrics based on the avail-
able rated power of the system and the values of RMSE and MAE errors (errors pre-
normalization). In addition, quotients of nRMSE to nMAE errors were calculated. A new,
unique EDF (error dispersion factor) metric has thus been introduced to analyses, described
by Formula (20). Therefore, EDF is a combination of two frequently used error metrics.
Statistical analyses in Section 4.2, Section 4.2.1 and Section 4.2.2 apply, among others, to the
potential usefulness of EDF in analyses of wind power forecasts.

EDF =
RMSE
MAE

=
nRMSE
nMAE

=

√
1
N ∑N

i=1(yi − ŷi)
2

1
N ∑N

i=1|yi − ŷi|
(20)

The analysis in this subparagraph excludes papers that provided less reliable data
(abnormal errors, abnormal error quotients)—abnormal phenomena are addressed in the
Section 5. Table 8 presents basic statistics, and Figure 8 visualizes selected statistics.

Table 8. Descriptive statistics of errors and error quotients.

Descriptive Statistics nRMSE nMAE EDF

Mean 0.0787 0.0566 1.4160
Standard deviation 0.0578 0.0407 0.2307

Minimum 0.0162 0.0077 1.0283
Maximum 0.2762 0.1942 2.1129

Quotient of maximum/minimum 17.05 25.22 1.75
The 10th percentile 0.0244 0.0174 1.1841

The 25th percentile (lower quartile) 0.0324 0.0236 1.2740
The 50th percentile (median) 0.0654 0.0504 1.3603

The 75th (upper quartile) 0.1007 0.0756 1.5019
The 90 percentile 0.1618 0.1070 1.7741

Variance 0.0033 0.0017 0.0562
Skewness 1.3448 1.2811 1.2939
Kurtosis 1.9858 1.8489 1.5423

Figure 8. Selected statistics of errors and error quotients.
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The averages in Table 8 are slightly larger than the medians both for nRMSE, nMAE,
and EDF. The dispersion of errors is remarkably high—the maximum/minimum quotient
for nRMSE error metric is more than 17, and for nMAE errors, the quotient is more than
25. Such large dispersion of values can be partly justified by different forecasting horizons
(from 10 min to 72 h).

4.2.1. Analysis of Errors by Forecasting Horizon

Figures 9 and 10 present nRMSE and nMAE errors, respectively, in ascending order,
based on the papers in which these error metrics were provided (also considering those
which did not provide the rated power of the system). In addition, information on the
forecasting horizon is provided. Forecasts with longer horizons display significantly much
larger nRMSE errors, which is unsurprising (the accuracy of wind speed forecasts decreases
with increasing forecasting horizon).

Figure 9. nRMSE errors with a note on forecasting horizon, in ascending order.

Figure 10. nMAE errors with a note on forecasting horizon, in ascending order.

Figure 11 presents how the amount of error depends on the forecasting horizon. This
figure summarizes information from Figures 9 and 10—average values for both metrics
were calculated for selected forecasting horizons. In general, average errors grow with
increasing forecasting horizon, although, for the 24 h horizon, average errors are slightly
more than for the 48 h horizon. This is probably due to the fact that there were significantly
fewer papers describing forecasts with a 48 h horizon than with a 24 h horizon (random
element of lower errors from a small number of samples). By far the largest were the
average errors for the 72 h horizon—more than two-and-a-half larger than for 24 h and 48
h horizons. For the “one step” horizon, average errors are two times smaller than average
errors for the 24 h horizon. This information has large practical significance—it shows
what magnitude of normalized errors should be expected from the respective forecasting
horizon. Please note that the averages calculated for the 48 h and 72 h horizons may not be
fully representative due to a small number of samples.
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Figure 11. Magnitudes of error by forecasting horizon.

To determine precisely whether there is a statistically significant relationship between
the forecasting horizon and error magnitudes, numerical forecasting horizons were selected
(1/6 h, 1/4 h, 1/2 h, 1 h, 6 h, 12 h, 24 h, 48 h, and 72 h), which enabled us to calculate
Pearson linear correlation. The statistical analysis concluded a statistically significant (5%
level of significance) positive linear correlation between the forecasting horizon (multiples
of 1) and the magnitude of nRMSE error (R = −0.347). nRMSE error grows with increasing
forecasting horizon. Figure 12 presents how the magnitude of nRMSE error depends on the
forecasting horizon.

Figure 12. Dependence of nRMSE on forecasting horizon.

The statistical analysis concluded a statistically significant (5% level of significance)
positive linear correlation between the forecasting horizon (multiple of 1) and the magni-
tude of nRMSE error (R = 0.410). nMAE error grows with increasing forecasting horizons.
Figure 13 presents how the magnitude of nMAE error depends on the forecasting horizon.
It is worthwhile to emphasize that the linear correlation between the forecasting horizon
and the magnitude of error is slightly larger for the nRMSE error metric than for nMAE.

The statistical analysis concluded a statistically insignificant (5% level of significance)
negative linear correlation between the forecasting horizon and EDF (R = −0.196). The
EDF slightly decreases with increasing forecasting horizon. Figure 14 presents how EDF
depends on the forecasting horizon.

For forecasts with very short horizons (from 10 min to 1 h), the average EDF is 1.422,
and 1.3163 for 6 h, and it falls to 1.2724 for the 24 h horizon. For the 48 h and 72 h horizons,
the samples are too few to calculate reliable averages.

In addition, statistical analysis omitting the 48 h and 72 h horizons concluded a nega-
tive correlation. Not a very large one, but statistically significant (15% level of significance),
between the forecasting horizon and EDF (R = −0.283).
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Figure 13. Dependence of nMAE errors on forecasting horizon.

Figure 14. Dependence of EDF on forecasting horizon.

The EDF (Figure 14) and (Formula (20) show the average variability of the moduli
of error regardless of the magnitude of the error. If absolute errors on all samples are the
same, this ratio reaches its minimum value of 1. The larger the error deviation on particular
samples from the average, the larger the ratio. This resembles the behavior of standard
deviation determined for the moduli of error for samples, however, with the difference that
standard deviation reaches a minimum value equal to zero, and the dynamics of that ratio
is much larger—significantly dependent on particular samples. For the EDF, the dynamics
of values are smaller, which better illustrates the variability of errors across the sample pool.
It should also be mentioned that the EDF in fact shows the ratio of the second moment of
error to the first moment of error.

The decreasing levels of EDF with a rising forecasting horizon means that the vari-
ability of error decreases with an increasing forecasting horizon. On the one hand, it is
probably due to the growing error, and, on the other, the averaging nature of the forecasting
models for longer horizons, which stabilizes errors around certain values.

It is worthwhile to note that statistical analysis of hourly values of wind speed pre-
sented in [1] concluded that the variance of wind speed forecasts for horizons ranging from
1 to 24 h was 3.121, and for 25- to 48-h horizons, it was 3.063, which is less.

4.2.2. Analysis of Errors and EDF Depending on the Class of Forecasting Methods

Some of the 116 papers analyzed here provide the forecasting error of a method
from the “single method” class. The primary objective of the analysis was to investigate
percentage error reduction achieved by the best (proposed) method from the ensemble
or hybrid class relative to the single method with the largest forecasting error (excluding
the outcome of the naive method). Figure 15 presents, in descending order, percentage
reductions of nRMSE and percentage reductions of nMAE of the best methods relative to
single methods. What is remarkable is a very wide dispersion of percentage reductions of
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error. For nRMSE, the largest percentage reduction of error is 80.02%, and the smallest is
2.76%. Similar observations apply to the dispersion of nMAE.

  
(a) (b) 

Figure 15. (a) Percentage reduction in nRMSE for the best method relative to the single method; (b)
percentage reduction in nMAE for the best method relative to the single method.

Figure 16 presents the average percentage improvement of the hybrid methods and
ensembles method relative to the single method for nRMSE and nMAE error metrics. The
percentage improvement of error metrics is much bigger for hybrid methods in comparison
to ensemble methods however the number of cases (19 for hybrid methods and 14 for
ensemble methods) is too small to generalize this fact.

Figure 16. Average percentage improvement of the hybrids method and ensembles method relative
to the single method for nRMSE and nMAE error metrics.

Unfortunately, a small proportion of the papers reviewed here provide forecasting
error using a naive (persistence) method—such error would be the best benchmark for
the level of improvement achieved by other proposed methods, including single methods.
The forecasting methodology assumes that a forecasting method is valuable if its error is
less than the error of the naive method. Six papers provide errors for the naive method.
Figure 17 presents, in descending order, percentage reductions of nRMSE relative to the
naive method for six cases (pairs of nRMSE and nMAE)
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Figure 17. Percentage improvement of the best method relative to the naive method for nRMSE and
nMAE error metrics.

The average percentage reduction calculated for six cases is 60.53% for nRMSE and
63.79% for nMAE. Therefore, both average percentages are much larger than similar values
calculated for nRMSE and nMAE reductions when errors of best methods are compared to
single methods. Nevertheless, in a small number of cases, percentage reductions of nRMSE
and nMAE for the best method relative to single methods are large and similar to the best
method compared to the naive method. It means that some single methods referred to in
literature are only marginally better than naive methods.

The second objective of our analysis is to compare EDF for the best (proposed: ensem-
ble or hybrid) method and a single method. Based on 33 cases (pairs of ratios), we have
determined that in 77% of cases, the EDF for the best method is larger than the EDF for the
single method used in the respective study—this is more frequently observed for larger
values of those ratios. The Pearson coefficient of linear correlation (R) between the ratios
for the best method and the ratios for the single method is 0.737.

Figure 18 presents pairs of EDF sorted in descending order by the level of ratios for
the best method.

Figure 18. Pairs of EDF sorted in descending order by the level of quotients for the best method.

The average EDF for the best method is 1.432 and the median EDF is 1.364. The
average EDF for the single method is 1.352, and the median EDF is 1.294. Therefore, both
the average and median levels are clearly larger for the best method. Both series do not have
normal distribution—Shapiro–Wilk test was conducted. Wilcoxon signed-rank test has
been therefore applied to the analysis of pairs, which concluded that there are statistically
significant differences between pairs in both series (they have different expected values).
Therefore, differences between medians are statistically significant, and not without reason.
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An interesting conclusion can be drawn based on our analysis—the variability of the
moduli of errors in the best methods (smallest forecasting errors) is typically larger than
for the “single method” class (much larger forecasting errors). The moduli of errors in
the “single method” class are much larger and much closer to each other than in the best
(hybrid or ensemble) method. In some studies, a single method could also use slightly less
information (a different set of input data), which can also affect the characteristics of errors
(magnitude and variability level).

4.2.3. Analysis of Errors Based on System Size

Our analysis covered the studies which provided nRMSE and nMAE and the size
of the system. Statistical analysis did not reveal a statistically significant (5% level of
significance) linear correlation between the size of the system (rated power) and nRMSE
and nMAE errors (R = −0.110, R = −0.111, respectively). In theory, errors should grow with
increasing size of the system due to much less uniform weather conditions (wind speed) in
wind farms occupying extensive areas, the fact of using usually point-based meteorological
forecasts, the wake effect, and other factors affecting the farm which are more difficult to
represent if they overlap in the same space. The Pearson coefficient of linear correlation (R)
between nRMSE and nMAE is 0.994 (5% level of significance). It means that these error
metrics are very similar to each other. The details are presented in Figure 19. In addition,
there is a large dispersion of the magnitudes of error for systems of similar sizes. This can
be due to different sets of input data (different quality of information).

Figure 19. Magnitude of error depending on rated power of the system.

The statistical analysis concluded an insignificant (5% level of significance), marginally
positive linear correlation between the size of the system (rated power) and EDF (R = 0.039).
The EDF usually varies between 1 and 2. The average value of the EDF is 1.35. The details
are presented in Figure 20.

Figure 20. Magnitude of EDF depending on rated power of the system.
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4.2.4. Analysis of Error Based on System Location (Onshore v. Offshore)

The number of papers addressing forecasting for offshore farms is small, as they
constitute less than 6% of the 116 papers subject to this analysis. Only six papers (Table 6)
provide nRMSE or nMAE, which is too little to conduct an accurate statistical analysis.
Figure 21 compares nRMSEs for two forecasting horizons (average of the errors provided
in the papers) for offshore and onshore farms.

Figure 21. Magnitude of nRMSEs depending on farm location and forecasting horizon.

Offshore farms have smaller forecasting errors than onshore farms. This is expected,
as it results from more stable and stronger winds at offshore farms. In addition, these are
typically very large systems. For a 1 h horizon, such a sizable difference may result from
the fact that the average for offshore farms was based on only two values of error and the
fact that some onshore forecasts did not use meteorological forecasts of wind speed (larger
forecasting errors occur in such cases). In real terms, at 24 h horizon, nRMSE at onshore
farms can be about twice as large (assuming that meteorological forecasts are used in both
locations).

5. Discussion

A comprehensive review and statistical analysis of errors based on an extensive
selection of 116 papers allowed us to conclude, using actual figures, a correlation between
the magnitude of error and selected factors. The quantitative analysis is provided for the
aggregate assessment of how frequently various categories of (quite diverse) forecasting
methods are applied, what typical input data are (meteorological forecasts are typically
used for horizons above 6 h), how often various forecasting horizons have been used
(typical horizons being in the range of 1 h to 24 h).

The analyses concluded that some papers used incomplete data that prevented them
from being used in an aggregate meta-analysis of studies, which applies, in particular, to
error metrics (nRMSE and nMAE).

In addition, several untypical (extreme) nRMSE and nMAE error levels have been
identified, which, due to extreme dissimilarity to the remaining data of the same class
(forecasting error being too large or too small) by expert judgment have been excluded
from the analyses presented in Section 4.2. Comprehensive Error analysis. Figure 22 presents
the variability of nRMSE error in the papers reviewed here.

A novel, unique ratio called EDF has been explored. The EDF shows the average
variability of the moduli of error regardless of the magnitude of error. The analysis of
variability of the new EDF ratio depending on selected characteristics (size of wind farm,
forecasting horizon, and class of forecasting method) has been performed. There is a small
negative correlation but statistically significant between the forecasting horizon and EDF.
Additionally, the EDF for the best forecasting method is larger than the EDF for the single
forecasting method. The analysis concluded an insignificant, marginally positive linear
correlation between the size of the system (rated power) and EDF.
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Figure 22. Variability of nRMSEs in the reviewed papers, with red-marked less reliable values.

Statistical analysis in one paper concluded, in addition, an untypical value of EDF.
Statistical data from the reviewed papers for which EDF could be calculated shows that
EDF levels range from 1.028 to 7.478, although a vast majority of EDF levels range between
1 and 2 (this range seems to be most credible—minimum value of the ratio is 1). The
outcome of our analysis is presented in Figure 23.

Figure 23. Variability of EDF in reviewed papers, with red-marked less credible value.

Based on our analysis of papers, in our subjective assessment, to maximize the quality
of aggregate meta-analysis of studies addressing power generation forecasting in wind
farms, a research paper should contain the following items (our recommendations):

• mandatory use of normalized error metrics for the assessment of forecasting quality:
nRMSE Formula (5) and nMAE Formula (6), accompanied by a description of the
normalization method (recommended normalization using the rated power of the
system), which would enable comparative assessments of the quality of studies of
systems of various sizes (or regardless of how big the wind farm is);

• we do not recommend the use of MAPE metric, which is susceptible to substantial
error for small or zero generations;

• mandatory use of a forecast conducted by naive (persistence) method to enable the
assessment of the quality of the best model proposed by the authors of the paper
relative to the reference model; in such case calculation of the skill score metric by
Formula (17), (18), or (19) is recommended in addition;
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• provide strict, precise information on forecasting horizon(s) and information if the
forecast is, e.g., “One Step,” e.g., from 1 h to 24 h, or one step ahead with follow-up
predictions (in which case forecasting errors are typically smaller);

• provide strict, precise information on the set(s) of input data for the proposed model(s);
• provide the source of meteo forecasts (GFS, ECMWF, other sources) if used in the

forecasting model;
• explicit statement on whether the forecasting model uses meteo forecasts and/or

on-site measurements of weather conditions at the wind farm;
• provide the range of training, validation, and testing data, and how the range of data

is divided into the identified subsets;
• provide details of the location, unless confidential (location and size of the wind farm,

and landscape features prevalent at the location).

6. Conclusions

This paper is the outcome of a comprehensive review and statistical analysis of errors
using more than one hundred research papers. The quantitative analyses allowed us to
assess the distribution of frequency of application of selected parameters in research studies
(including the number and type of error metrics, forecasting horizon, rated power of the
system, classes of forecasting methods, and location of the forecast systems).

Our qualitative analyses allowed us to provide an aggregate assessment of power
generation forecasting in wind farms, including how selected factors affect the magnitude
of forecasting errors. In addition, the rationale for using complex (ensemble, hybrid) fore-
casting methods instead of single methods was verified, by examining how this improves
the quality of forecasts.

Notably, only 6 of 116 papers addressed power generation forecasts in offshore farms—
it means that such research should intensify going forward, although it is in part due
to a significantly smaller number of such systems than of onshore farms. The offshore
location of a farm involves a number of distinct characteristics (such as a surface with
exceptionally low roughness, significantly higher wind speeds, and more stable power
generation). The magnitude of forecasting errors is significantly smaller. Due to a small
number of offshore-related papers, our analysis was much more constrained.

In our view, research on topics related to aggregate statistical analyses (meta-analyses)
should continue. We are planning to increase the number of reviewed papers at least
two- or three-fold in the future. Such a number will enable us to conduct a more precise
statistical assessment of a large number of factors affecting the magnitude of forecasting
error, and expand the analyses related to the EDF factor proposed by us. In our view, it is
crucial that published papers on generation forecasts in wind farms contain information
from our recommended list, to enable conducting the necessary analyses.
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ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
BP Back Propagation
BPNN BP Neural Network
CNN Convolutional Neural Network
CSA Crow Search Algorithm
DA Dragonfly Algorithm
DBN Deep Belief Network
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DGF Double Gaussian Function
DWT Discrete Wavelet Transform
EDCNN Efficient Deep Convolution Neural Network
EDF Error Dispersion Factor
EEMD Ensemble Empirical Mode Decomposition
EMD Empirical Mode Decomposition
EWT Empirical Wavelet Transformation
FS Feature Selection
GBT Gradient Boosted Trees
GRU Gated Recurrent Unit
HLNN Laguerre Neural Network
HNN Hybrid Neural Network
IPSO Improved Particle Swarm Optimization
KNNR K-Nearest Neighbors Regression
LD Lorenz Disturbance System
LR Linear Regression
LSTM Long-Short-Term Memory
MAAPE Mean Arctangent Absolute Percentage Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MBE Mean Bias Error
MCC Maximum Correntropy Criterion
MKRPINN Multi-Kernel Regularized Pseudo Inverse Neural Network
MPSO Modified Particle Swarm Optimization
MRE Mean Relative Error
mRMR Maximum Relevance and Minimum Redundancy Algorithm
MSE Mean Squared Error
nMAE Normalized Mean Absolute Error
NN Neural Network
nRMSE Normalized Root Mean Squared Error
NWP Numerical Weather Prediction
OMS-QL Online Model Selection using Q-learning
P Promoting Percentages
PCA Principal Component Analysis
PICP Prediction Interval Coverage Probability
PINAW Prediction Interval Normalized Average Width
PSO Particle Swarm Optimization
R or CC Pearson Linear Correlation Coefficient
R2 R-square or Coefficient of Determination
RBF Radial Basis Function
RES Renewable Energy Sources
RF Random Forest
RMSE Root Mean Square Error
SAE Stacked Auto-Encoders
SE Sample Entropy
sMAPE Symmetric Mean Absolute Percentage Error
SS Skill Score
SSA Singular Spectrum Analysis
STA State Transition Algorithm
SVM Support Vector Machine
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SVR Support Vector Regression
TIC Theil’s Inequality Coefficient
VMD Variational Mode Decomposition
WF Wind Farm
WIPSO Weight Improved Particle Swarm Optimization
WPT Wavelet Packet Transform
WT Wavelet Transform
xGBoost eXtreme Gradient Boost
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1. Piotrowski, P.; Kopyt, M.; Baczyński, D.; Robak, S.; Gulczynski, T. Hybrid and Ensemble Methods of Two Days Ahead Forecasts
of Electric Energy Production in a Small Wind Turbine. Energies 2021, 14, 1225. [CrossRef]
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Abstract: This article provides a solution based on statistical methods (ARIMA, ETS, and Prophet)
to predict monthly power demand, which approximates the relationship between historical and
future demand patterns. The energy demand time series shows seasonal fluctuation cycles, long-term
trends, instability, and random noise. In order to simplify the prediction issue, the monthly load
time series is represented by an annual cycle pattern, which unifies the data and filters the trends. A
simulation study performed on the monthly electricity load time series for 35 European countries
confirmed the high accuracy of the proposed models.

Keywords: medium-term load forecasting; pattern-based forecasting; time-series preprocessing

1. Introduction

Forecasting loads on power systems is an integral activity embedded in the long-term
system operation planning processes and in the processes of the ongoing control of its
operation. The system cannot function without accurate forecasts. This is because electricity
cannot be stored in large quantities. The demand must be covered on an ongoing basis
with production, with the limitations resulting from the flexibility of the production units
and the requirements of the reliability and safety of the system operation. The accuracy of
forecasts translates into the costs of production, transmission, and the degree of reliability
of electricity supply to consumers. Inflated forecasts lead to the maintenance of too many
generating units in order to meet the safety requirements to ensure an adequate margin of
reserve capacity. Underestimated forecasts have the opposite effect—too few generating
units are planned, which are not able to cover the actual demand. In such a situation,
additional units with quick start-up are intervened in the traffic, generating additional
operating costs [1].

Medium-term forecasting most often concerns forecasting the monthly electricity load
(MEL). MEL time series contain components of nonlinear trend, annual seasonality and
random disturbances. They show a significant variation in the variance and shape of the
annual cycle over time. MEL is highly dependent on economic and socioeconomic as well
as climatic and weather variables. The factors disturbing the MEL include unpredictable
economic events, extreme weather changes and political decisions [2]. The importance
of MEL forecasting in the power sector and the complexity of the problem encourage the
search for forecasting models that will meet the requirements of the specificity of the task
and generate accurate forecasts.

Medium-term electricity demand forecasting is a very well-researched issue. There is a
great deal of solutions used to settle this issue, including classical/statistical methods [3,4],
neural networks (NNs) [5–7], deep learning [8–12] or similarity-based methods [13–18].
Traditional strategies were first launched for electricity load forecasting. Linear regression,
ARIMA, and exponential smoothing (ETS) methods have been widely used [19]. The
restricted versatile capacities of these strategies and their linear nature have brought about
an expanded interest in artificial intelligence techniques [5]. Neural networks in [5] are
utilized to predict the trend of the time series of MELs and the Fourier series are included to

Energies 2023, 16, 827. https://doi.org/10.3390/en16020827 https://www.mdpi.com/journal/energies
405



Energies 2023, 16, 827

forecast the seasonal component. Then, at that point, the two gauges, trend and occasional
changes, are totaled. In [20], a deep short-term memory network (LSTM) was carried out
for the probabilistic estimating of client load profiles. The LSTM method is also used for
predicting electricity prices in the article [21] with good accuracy.

The simplest classical models include naive models, which assume a selected historical
load value as a forecast. In series that exhibit seasonality, such as monthly load series, this
is a twelve-month shifted value. Random fluctuations and trend may negatively affect the
forecast results.

Linear regression models allow for taking into account the trend (only linear), but
the implementation of seasonal cycles in the model requires additional operations, e.g.,
decomposition of the series into individual months. An example of the application of a
linear model for medium- and long-term forecasting of the electricity loads can be found
in [22]. The model uses strong daily (24 h) and annual (52 weeks) correlations to forecast
daily load profiles in the horizon from several weeks to several years. The forecast results
are corrected for annual load increments. For forecasting with a one-year horizon, the
MAPE errors were obtained with values not greater than 3.8%. In [3], the operation of
the linear regression model and the ARIMA model in the task of forecasting monthly
peak loads up to 12 months in advance was compared. The models are powered by
the same set of inputs, including historical peak load data, weather data, and economic
data. About twice the accuracy of the ARIMA model was demonstrated experimentally.
For non-stationary time series with an irregular periodic trend, [23] proposed a linear
regression model extended with periodic components implemented by the sine function of
different frequencies.

The spatial autoregression model for medium-term load forecasting is described in [24].
The authors noted a strong correlation between the load on the system and GDP in the
analyzed thirty Chinese provinces. To forecast the load in a given province, they used
not only the local dependence of the load on GDP, but also the relationships identified for
neighboring provinces. This allows to reduce forecast errors from 5.2–5.4% to 3.5–3.9%.
Ref. [25] described ARIMA and ETS prognostic methods in combination with bootstrap
aggregation. The time series were initially processed using the Box-Cox transform (a
procedure often used to compensate for variances) and decomposed. The ARMA model
was used for the generation of bootstrap tests, and the ARIMA and ETS models for their
forecasting.

Classical methods also use Fourier series. In [5], they were used to model the seasonal
component of the time series of monthly loads. Based on spectral analysis, six fundamental
frequencies were identified, and a Fourier series was created for them. The forecast of
the seasonal component calculated by the Fourier series was added to the trend forecast.
Markov chains were used in [26] to analyze the input data and select the best forecasting
model. This approach is especially useful when the upward trend of the time series is
unstable. The classic models also include the model described in [27], which is based on a
simple logistic function. The input variables are time, maximum atmospheric temperature
and the social factor, taking into account religious holidays (the model was developed for
Arab countries).

In this work, statistical methods for estimating month-to-month power demand are
utilized. What differentiates these models from other traditional strategies is that they use
pattern representation of seasonal cycles of the time series. The patterns allow us to unify
the data and filter out the trend. The input and output variables in the pattern space are
characterized by a less complex relationship contrasted with the original space. Thus, due
to pattern representation, the classical forecasting method has an easier task to perform.
Using time-series preprocessing by calculating yearly patterns constitutes the direct novelty
of the proposed models.

Patterns represent fragments of time series and extract information about the shape of
these fragments, filter out the trend and normalize the variance. By using a pattern-based
representation, the relationship between the input and output variables is simplified, and
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hence the predictive model is simplified. Unlike parametric systems, which are most
often “black box” models, the statistical methods’ principle of operation is understandable,
which is important in practical industrial applications and translates to a greater degree of
confidence in the forecast.

2. MEL Time Series Analysis

A time series is a set of observations of a certain variable ordered in the time domain:
{zt, t = 1, 2, . . . , N}. Formally, the observations zt are implementations of a sequence of
random variables {Zt, t = 1, 2, . . . , N} having certain specified cumulative distribution.
These definitions are applied to a discrete variable when the time variable t takes values at
equal intervals (seconds, hours, days, months).

The purpose of the time series analysis is to detect and describe the regularities
affecting the phenomenon expressed in the form of a time series. The following components
of time series are distinguished, which are the effect of the influence of various factors on
the studied phenomenon [28,29]:

• Development tendency (trend), which is revealed by one-way and systematic changes
in the level of a given phenomenon that takes place over a long-term period;

• Periodic fluctuations, i.e., rhythmic fluctuations with a specific cycle;
• Business cycle fluctuations, i.e., systemic wave fluctuations observed in longer periods;
• Random fluctuations, i.e., irregular random disturbances.

Periodic fluctuations, also known as seasonal fluctuations [30], are characterized
by a constant period, as opposed to a cyclical fluctuations in which there are no fixed
period fluctuations.

A time series is called stationary if its statistical properties do not change over time.
That is, a time series of {Zt} has the same properties as time series shifted in time {Zt+l}, for
each value shift l. In practice, weak stationarity is tested (so-called wide-sense stationarity),
which requires immutability mean level, variance and time correlation. It can be written as
follows [28]:

• EZt = const—expected value is constant (none trend);
• Var(Zt) = const—the variance is homogeneous over time;
• Corr(Zr, Zs) = Corr(Zr+t, Zs+t) = ρ(s − r) = ρ(l)—the correlation between observa-

tions is solely dependent on time shift l.

The stationarity of the time series plays a key role in a forecasting model selection and
the construction of forecasts. Establishing forecasts for the stationery time series, where
the basic properties do not change over time, is much easier than for non-stationary series.
Therefore, in practice, it is often sought to transform the time series into a stationary form
before starting the forecasting process.

A series of MELs for Poland with a box diagram, showing the distribution of monthly
values in the following years, is shown in Figure 1. The variability of the median and
variance is clearly visible over time. The last year of observation is characterized by almost
a three times smaller interquartile range (box height) than the first one. Figure 2 shows
the MEL time series for 35 European countries. The time series vary in length, from 60 to
288 months, ending with a year 2014. As we can see, these time series are non-stationary,
and they show variability of mean value and variance. They are characterized by strong
annual seasonality and non-linear trends.

Other forms of graphical presentation of MEL time series are shown in Figures 3 and 4.
Figure 3 presents the trends set in the subsequent months of the year. Strong upward
trends are observed in the summer months, which is not the case for the winter months.
Figure 4) allows us to observe distinctive features of annual cycles and assess the shape
similarity of these cycles over the years. Despite the reduction in the amplitude of the
yearly fluctuations in subsequent years, the shapes of the annual cycles show similarities.
The demand in the winter months is significantly greater than the demand in the summer
months. It is observed that there is understated demand in February with the following
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months (which cannot only be explained by the smaller number of days this month) and
overstated demand in March and October. The shape similarities of the annuals cycles are
particularly important in the nonparametric regression models [31]. The seasonal graph
can be compiled in polar coordinates (Figure 4)).
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Figure 1. Graph of the monthly electricity demand time series for Poland (a) and the box diagram
showing the medians and annual dispersions (b).
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Figure 2. Monthly electricity demand time series for European countries.

Relationship between observations of the time series distant by l time units are assessed
using the autocorrelation function (ACF) and the partial autocorrelation (PACF). The former
has the form [28]:

ACF(l) =
γ̂(l)
γ̂(0)

, l = 0, 1, . . . , N − 1, (1)

where γ̂(h) is a sample autocovariance function:

γ̂(l) =
1
N

N−l

∑
j=1

(
Zj+l − Z

)(
Zj − Z

)
, (2)
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where Z is the mean value of the time series.
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Figure 4. Seasonal MEL plots for Poland.

In the case of PACF, when determining the autocorrelation between Zt and Zt+l , the
influence of intermediate observations on this is eliminated dependency, Zt+1, . . . , Zt+l−1.
Sample partial autocorrelation is an estimate of a theoretical PACF function of a given pattern:

α(l) =
{

Corr(Zt+1, Zt), l = 1
Corr(Zt+l − Pt,l(Zt+l), Zt − Pt,l(Zt)), l > 1

, (3)

where Pt,l(Zt) is the orthogonal projection operator on linear subspace spanning over
variables Zt+1, . . . , Zt+l−1.

Examples of ACF and PACF charts for the MEL time series are shown in Figure 5. The
horizontal lines designate the confidence intervals, which allow a conclusion to be drawn
about the statistical significance of the autocorrelation. The 95% confidence interval has
the form

[
− 1.96√

N
, 1.96√

N

]
. Autocorrelations outside this range are considered to be statistically

significant. On the ACF chart, we can see very strong oscillations, proving a clear seasonality
of the series. According to what is expected, the strongest autocorrelation occurs for lags
which are multiples of twelve, which is confirmed by the annual cycle. The big PACF value
for delay l = 1, close to 1, can signal the presence of an uptrend.

Seasonal fluctuations can also be identified using the harmonic (spectral, spectral)
analysis [32]. It leads to creating a model consisting of the sum of the sine and cosine
functions different frequency. A time series of length n is recorded using the Fourier series
as follows [33,34]:

f (t) = a0 +
N/2

∑
i=1

[
aisin

(
2πit

N

)
+ bi cos

(
2πit

N

)]
, (4)

where a0, ai and bi are the coefficients which are determined from patterns:

409



Energies 2023, 16, 827

a0 = 1
N ∑N

t=1 Zt

ai =
2
N ∑N

t=1 Zt sin
(

2πit
N

)
, i = 1, 2, . . . , N

2 − 1

bi =
2
N ∑N

t=1 Zt cos
(

2πit
N

)
, i = 1, 2, . . . , N

2 − 1
aN/2 = 0

bN/2 = 1
N ∑N

t=1 Ztcos(πt)

, (5)

The magnitudes of the amplitudes for successive harmonics are as follows:

Ai =
√

a2
i + b2

i . (6)

The amplitude of i-th harmony, Ai, testifies to the participation of this harmony in
explaining the variance of the considered variable. This share is expressed by the following
formula [33]:

ui =
A2

i
2Var(Zt)

, (7)

The amplitudes of successive harmonics for the MEL time series for Poland are shown
in a periodogram (Figure 6). As can be seen, the dominant period in this series is a year.
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Figure 5. Graphs of autocorrelation and partial correlation of the MEL time series for Poland (lag
means delay l).
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Figure 6. Periodogram of the MEL time series for Poland.

3. Forecasting Model

Let us consider the monthly electricity demand time series beginning from January
and finishing off with December: E = {Et : t = 1, 2, . . . , N}. We divide each time series
into yearly fragments Ei = {Et : t = 12(i − 1) + 1, 12(i − 1) + 2, . . . , 12(i − 1) + 12)},
i = 1, 2, . . . , N/12. Every fragment can be described by a vector Ei = [Ei,1Ei,2. . . Ei,12]

T .
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Let us formulate an x-pattern xi = [xi,1xi,2. . . xi,12]
T as a vector, which represents a yearly

fragment Ei. A function, which transforms time series points into patterns, is chosen,
including the character of the time series, such as trend, variance, and seasonalities. We
proposed a few definitions of this function in [35]. In this study, x-patterns are defined
as [8]

xi,j =
Ei,j − Ei

σi
, (8)

where j = 1, 2, . . . , 12, Ei is a mean of sequence Ei, and σi =
√

∑n
j=1(Ei,j − Ei)2 is a measure

of the sequence Ei dispersion.
The X-pattern is a normalized Ei vector. Note that yearly fragments expressed by

Ei have a different mean and dispersion. After the normalization process, time-series
fragments are also unified: all x-patterns have unity length, the same variance and also the
mean value of these fragments equals zero. x-patterns carry information about the shapes
of the yearly fragments. Then, the new time series composed of x-patterns representing suc-
cessive yearly periods are created: x = {xi : i = 1, 2, . . . , N/12} = {x1,1, x1,2, . . . , xN/12,12}.
Note that it is distinguished by regular character and stationarity.

The forecasting procedure using the time series composed of x-patterns requires
determining the demand forecast using the x-pattern forecast. After generating the x-
pattern by the forecasting model, the MELs in the forecasted yearly period are computed
from the forecasted x-pattern using transformed Equation (8) (this is called decoding):

Êi,j = x̂i,j ∗ σ̂i + Êi, j = 1, 2, . . . , 12. (9)

However, in this equation, the coding variables, Ei and σi, are not known because they
are the mean and dispersion of the future fragment, which is forecasted. So, the coding
variables must be forecasted based on their historical values. ARIMA and ETS models
are used for this purpose in this work in every model and for preprocessed time-series
forecasting, when we use these two models [8]. Figure 7 presents the idea of pattern-based
forecasting using a block diagram of the proposed methodology presenting data structures
and illustrating data flow.

Figure 7. A block diagram of pattern-based MEL forecasting methodology.

3.1. Autoregressive Integrated Moving Average ARIMA Model

The autoregressive integrated moving average ARIMA model ARIMA(p, d, q)(P, D, Q)m
[30,36] was used to model the MEL time series:

Φ(Bm)φ(B)(1 − B)D(1 − B)dzt = c + Θ(Bm)θ(B)ξt, (10)

where zt are the terms of the time series (in the considered case of the series {Et, t =
1, 2, . . . , N}), m is the length of the annual cycle (m = 12), B is the backward shift operator,
D and d are the orders of seasonal differentiation and of the ordinary, respectively, φ(.),
Φ(.), θ(.), and Θ(.) are polynomials of degree p, g, P and Q, respectively, c denotes a
constant, and ξt is a white noise process with zero mean and the variance of σ2.
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The ARIMA model was also used to construct predictive models for the code variables
Êi and σ̂i needed to decode the pattern x. In this case, the ARIMA model can be simplified
to the non-seasonal ARIMA form (p, d, q):

φ(B)(1 − Bd)zt = c + θ(B)ξt, (11)

where zt represents the terms of the time series
{

E1, E2, . . . , EN−1
}

or {σ1, σ2, . . . , σN−1}.

3.2. Exponential Smoothing ETS

The seasonal exponential smoothing method (Holt–Winters method), known since
the 1960s, is, next to the ARIMA method, one of the most frequently used in practice. The
idea of ETS is to assign exponentially declining weights to observations from previous
periods. Thus, observations from recent periods have a greater impact on the forecast.
The Holt–Winters model is based on three smoothing equations that represent the level of
the forecast variable, its increment and seasonality. There are two types of Holt–Winters
methods, which depend on how seasonality is modeled. The additive version of the Holt–
Winters method is used when seasonal fluctuations are independent of the trend. On the
other hand, the multiplicative version is used when there is a proportional relationship
between seasonal fluctuations and the trend [28].

The equations for the additive version of the Holt–Winters method are [36]

Level : l = α(y − s−m) + (1 − α)(l−1 − b−1)
Increment : b = β(l − l−1) + (1 − β)b−1

Seasonality : s = γ(y − l−1 − b−1) + (1 − γ)s−m
Forecast : ŷt+h|t = l + bh + s−m+h+m

, (12)

where m is the period of seasonal fluctuations (m = 12 for the MEL series), h is the forecast
horizon, h+m = [(h − 1) mod m] + 1, and α, β, γ are the smoothing coefficients from the
range (0, 1).

Before using the model, the initial values of the states l0, b0, s1−m,. . . , s0 and the
smoothing parameters α, β and γ should be given. All these values are then estimated
from the observed data.

In [36], ETS models were defined by state equations and classified into 30 types. These
types differ in the ways in which the model includes the trend components (the sum of the
level and the increment), seasonality and error. Components can be expressed as additive
or multiplicative, and the trend can be further suppressed.

The ETS model was also used to build forecasting models for the code variables Êi
and σ̂i.

3.3. Prophet

Prophet is a time series forecasting method designed by Facebook for direct use
in business applications [37]. It is distinguished by a completely automatic forecasting
procedure with an intuitive selection of parameter values that can be adjusted without
knowing the details of the base model. Prophet is immune to data deficiencies and trend
changes. It usually copes well with outliers. The model implementation is publicly available
in the Python and R environments.

Prophet is an additive model with three components—non-linear trend, seasonality,
and a component that represents holidays:

y(t) = g(t) + s(t) + h(t) + εt, (13)

where g(t) is a trend function modeling non-periodic changes in the value of the time series,
s(t) represents seasonal changes (e.g., weekly and annual seasonality), h(t) represents
holiday effects, and εt is a residual component with a normal distribution.
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The model specification is similar to the generalized additive model (GAM), with
nonlinear smoothing and time t as the sole regressor. The trend is modeled in two ways:
using a piecewise-linear model or a limited-growth model. In the latter case, the logistic
curve is used:

g(t) =
C(t)

1 + exp(−k(t)(t − q(t)))
, (14)

where C(t) is the carrying capacity, k(t) is the increment function, and q(t) is the offset
function.

In (14) both the carrying capacity and the increment and offset are functions of time.
They vary depending on the characteristics of the time series. This makes it possible to
flexibly shape the trend function.

The seasonal component is modeled using the Fourier series:

s(t) =
N

∑
i=1

(
aicos

(
2πit

m

)
+bi sin

(
2πit

m

))
, (15)

where m is the length of the seasonal cycle, and ai and bi are the coefficients.
The component representing the effects of public holidays, h(t), is not applicable in

forecasting MEL time series.

4. Simulation Study

In this section, we analyze the monthly electricity demand time series for 35 European
countries and verify our proposed forecasting model on these time series. The data were
downloaded from the ENTSO-E repository, (www.entsoe.eu, accessed on 12 April 2016).

4.1. MEL Time Series Analysis Results

Table 1 shows the statistics and parameters describing the analyzed time series:

• Median—median as a measure of the average level of the series,
• IQR—average of the annual interquartile ranges as a measure of the annual dispersion

of the series,
• iqr%—mean relative annual dispersion as mean ratio of annual interquartile ranges to

annual medians:

iqr% =
100
M

M

∑
i=1

IQRi
Mediani

, (16)

where M is the length of the series in years, IQRi and Mediani is the interquartile range
and the median of the year i,

• ACF(12)—value of the autocorrelation function for the delay l = 12,
• u12—annual-period harmonics share in the series variance (7).

The countries classified as the largest, most developed and with the largest number
of inhabitants in Europe have the greatest demand for electricity, i.e., Germany, France,
Italy and Great Britain. The greatest relative annual volatility iqr% is characterized in the
following order: Norway, Sweden, Montenegro, Bulgaria, Estonia and France. In these
cases, the interval of the median is over 25% of the median. The least annual volatility is
observed for Italy and Iceland (less than 7%).

The strongest autocorrelation for the annual delay l = 12 (ACF(12) ≥ 0.9), signaling
the clearest annual cycles, occurs for the time series of the MEL of Switzerland, Spain,
Portugal, France and Italian. The MEL time series of Montenegro, Northern Ireland and
Iceland show the lowest values ACF(12).

The annual-period harmonics share is the highest for Norway, Sweden, Finland and
Estonia. There is a high correlation u12 with mean relative annual dispersion iqr%. The
harmonic analysis in some cases gives very low values u12 despite the high values of the
annual autocorrelation, e.g., for Italy, Greece and Spain. Periodograms for these countries
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show a high bar for the year period but many lower bars for higher frequencies. This
means that there are disturbances in the series of those countries with the lower value of
u12, masking the picture of the annual cycle.

Table 1. Statistics and describing parameters analyzed MEL time series.

Symbol Median IQR iqr%

AT 4978.00 ± 641.00 720.00 ± 164.00 15.00 ± 4.36
BA 955.00 ± 49.00 141.00 ± 58.00 14.91 ± 5.66
BE 6981.00 ± 609.00 848.00 ± 96.00 12.66 ± 1.93
BG 2654.00 ± 152.00 740.00 ± 200.00 27.69 ± 6.64
CH 4885.00 ± 425.00 862.00 ± 120.00 18.15 ± 2.87
CY 375.00 ± 35.00 87.00 ± 12.00 23.33 ± 3.41
CZ 5134.00 ± 243.00 1105.00 ± 203.00 21.98 ± 4.82
DE 44,140.00 ± 2883.00 5921.00 ± 1411.00 13.79 ± 3.81
DK 2824.00 ± 86.00 431.00 ± 86.00 15.46 ± 2.95
EE 672.00 ± 16.00 181.00 ± 42.00 27.37 ± 6.66
ES 19,294.00 ± 3778.00 1466.00 ± 437.00 8.11 ± 1.49
FI 7052.00 ± 89.00 1636.00 ± 204.00 23.33 ± 2.84
FR 36,860.00 ± 2948.00 9116.00 ± 2822.00 25.01 ± 6.69
GB 25,751.00 ± 869.00 4559.00 ± 750.00 17.66 ± 2.80
GR 4094.00 ± 623.00 467.00 ± 161.00 12.03 ± 3.05
HR 1346.00 ± 158.00 196.00 ± 40.00 15.24 ± 3.86
HU 3224.00 ± 180.00 303.00 ± 92.00 9.70 ± 3.51
IE 2157.00 ± 12.00 290.00 ± 42.00 13.48 ± 1.91
IS 1413.00 ± 41.00 92.00 ± 9.00 6.48 ± 0.71
IT 25,913.00 ± 2767.00 1290.00 ± 246.00 5.15 ± 0.86
LT 864.00 ± 38.00 102.00 ± 9.00 11.99 ± 0.91
LU 509.00 ± 64.00 46.00 ± 11.00 9.53 ± 2.44
LV 622.00 ± 18.00 105.00 ± 19.00 17.01 ± 3.23
ME 345.00 ± 42.00 77.00 ± 46.00 22.25 ± 11.75
MK 641.00 ± 41.00 190.00 ± 38.00 29.60 ± 6.47
NI 742.00 ± 8.00 109.00 ± 14.00 14.79 ± 1.90
NL 8880.00 ± 1099.00 837.00 ± 243.00 9.78 ± 2.00
NO 10,339.00 ± 397.00 3827.00 ± 460.00 37.03 ± 4.90
PL 11,299.00 ± 429.00 1774.00 ± 517.00 15.65 ± 4.86
PT 3764.00 ± 716.00 292.00 ± 70.00 8.37 ± 1.20
RO 4357.00 ± 142.00 543.00 ± 104.00 12.53 ± 2.64
RS 3201.00 ± 104.00 632.00 ± 289.00 19.82 ± 9.55
SE 11,600.00 ± 299.00 3511.00 ± 462.00 30.55 ± 3.64
SI 1046.00 ± 64.00 86.00 ± 28.00 8.43 ± 3.00
SK 2165.00 ± 59.00 383.00 ± 117.00 17.70 ± 5.66

Figure 8 shows pie charts presenting the shares of each components of decomposition,
i.e., trend, periodic fluctuations and random fluctuations, in the total variance of the MEL
time series. The results were used as seasonal–trend decomposition using LOESS (STL).
The shares were calculated from the formulas

uT =
Var(Tt)

Var(Et)
, uS =

Var(St)

Var(Et)
, uR =

Var(Rt)

Var(Et)
, (17)

where Tt, St, Rt is the component of the trend, respectively, seasonal and random fluctua-
tions, and Et is the MEL time series.

By analyzing pie charts, one can divide the MEL time series from due to the dominant
component. Countries whose time series have the highest content of the trend component,
above 80%, are Spain, Portugal, the Netherlands and Italy. The highest share of the
seasonal component, over 90%, distinguishes Norway, Finland, Estonia, Sweden and
Ireland. Countries whose MEL time series show the dominance of the seasonal component
comprise the most numerous group. It should be noted that the results of these analyzes
are dependent on the length of the time series. The trend shines through the time series
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longer ones, while in short ones, the seasonal component dominates. Montenegro is the
only country whose series includes the disturbance component as dominant (53%). Other
countries with a high proportion of random fluctuations, over 30% are in the following
order: Northern Ireland, Serbia, Iceland and Slovenia [31].
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Figure 8. Shares of individual components decomposition in the total variance of the MEL time series.

4.2. MEL Time Series Forecasting Results

It follows that the time series show extensive contrasts and permit us to dependably assess
predictive models. The forecasting issue is to create the multi-step-ahead forecasts for the each
month of 2014 (last year of data) utilizing the information from the past period for training.
For hyperparameter selection, the models were trained and validated on data up to 2013.

In this work, classical statistical models in connection with preprocessing are proposed:

• ARIMA — ARIMA(p, d, q)(P,D,Q)12 model used in function auto.arima in R envi-
ronment (package forecast). This function uses automatic ARIMA modeling. It
combines unit root tests, maximum likelihood estimation and minimization of the
Akaike information criterion (AICc) to obtain the optimal ARIMA model [38].

• ETS — exponential smoothing state space model [4] used in function ets (R pack-
age forecast). This implementation uses many types of ETS models depends on
the consideration of the trend, seasonal and error components. It can be expressed
multiplicatively or additively, and the trend could be damped or not. Similar to the
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case of auto.arima, ETS returns the optimal model estimated by the model parameters
using AICc [38].

• Prophet — modular additive regression model with nonlinear trend and seasonal com-
ponents [37] implemented in function Prophet in R environment (package prophet).

The proposed models were here compared with other computational intelligence
models as well as classical statistical models. They include the following:

• k-NN—k nearest neighbor is an ML-type model designed for the medium-term load
forecasting (MTLF) [13]. It learns from patterns defined by (8).

• N-WE—Nadaraya–Watson estimator [39] for MTLF using pattern representation (8).
• LSTM—Long short-term memory (LSTM) network developed for MEL forecasting

in [8]. It works on patterns (8).
• MLP—Multilayer perceptron proposed in [6]. This model is developed for MEL

forecasting. It learns from patterns defined by (8).
• ANFIS—adaptive neuro-fuzzy inference system proposed for MTLF in [40]. It works

on patterns (8).
• SVM—Support vector machine proposed for MTLF in [41]. It works on patterns (8).
• ES-RNN—A hybrid method of exponential smoothing and recurrent neural net-

works [42–44].

The length of the x-patterns is the one of the main hyperparameters for k-NN, N-WE,
LSTM, MLP, ANFIS, and SVM models. Despite the natural choice for this hyperparameter,
which is equal to the seasonal cycle length, i.e., 12 for the monthly type of time series, the
optimal value of n, in a range from 3 to 24, for each model and each time series was selected
in leave-one-out procedure using historical data.

The parameters of the ARIMA, ETS, and Prophet models were selected in the optimiza-
tion procedures implemented in the auto.arima, ets, and prophet functions, respec-
tively. These functions ensure a fully automatic selection of model structure and parameters
for each time series individually. The MLP model learned from x patterns. A separate MLP
network was trained for each time series and each month of the forecast period (2014). A
single-hidden layer network with sigmoid activation functions was used. The networks
were trained using the Levenberg–Marquardt method with Bayesian regularization, which
helped prevent overfitting. The number of hidden nodes was selected from 1 to 10, individ-
ually for each time series and each forecasted month. The adaptive-network-based fuzzy
inference system, ANFIS, like MLP, learned from x patterns. A separate ANFIS model was
trained for each time series and month of the forecast period. The initial parameters of the
Gaussian membership functions in the premise parts of the rules were selected using fuzzy
c-means clustering. ANFIS was trained with a hybrid method that uses a combination of
the least squares method to estimate the consequent parameters and the backpropagation
gradient descent method to select the premise parameters. The number of fuzzy rules M
was selected from 2 to 13. SVM, like MLP and ANFIS, is learned from x patterns. For
each time series and each month of the forecast period, a separate SVM model was trained
with kernels in the form of a dot product K(xi, xj) = xT

i xj. The length of the input pattern
was selected for each series. The remaining hyperparameters (BoxConstraint, KernelScale,
and Epsilon) were selected in the automatic optimization procedure implemented in the
fitrsvm function from the Statistics and Machine Learning Toolbox in the Matlab environ-
ment. LSTM networks in all variants were trained using the Adam optimization algorithm
(adaptive moment estimation). The number of hidden units was selected for each time
series individually from the set {1, 2, . . . , 10, 15, . . . , 50, 60, . . . , 200}. The remaining hyper-
parameters assumed default values: number of epochs, 250; initial value of the learning
rate, 0.005; and a threshold value of the gradient (to prevent gradient explosion), 1. In the
middle of the learning process, the learning rate was reduced to 0.001. The ETS+RD-LSTM
model learned on all-time series simultaneously (cross-learning). The optimal values of
the hyperparameters of this model for the set of 35-time series were as follows: number
of epochs, 16; learning rate, 0.001; length of the cell and hidden state, 40; pinball loss, 0.4;
regularization parameter, 50; and ensembling parameters, L = 5, K = 3, and R = 3.
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In the case of the k-NN, MLP, ANFIS, SVM, and LSTM models, the optimal values
of their hyperparameters were selected individually for each of the 35 time series. The
selection of parameters was carried out separately for each of the variants of the models,
V1, or (V2, and V3). The selection of hyperparameters was performed on the training set
in the grid search procedure using cross-validation—the leave-one-out cross-validation
method or by treating the last year of training data (2013) as validation data (SVM and
LSTM models). The training set contained all terms of a given series from the historical
period, up to and including 2013. The model with the optimal set of hyperparameter
values was used to forecast the time series in the test period, which covered 12 months in
2014. Optimization procedures for ARIMA, ETS, and Prophet models are fully automatic,
built into the functions that implement these models (auto.arima, ets, prophet). The
ETS+RD-LSTM model was optimized on training data, treating the last year of training
data (2013) as validation data.

The k-NN, N-WE, ARIMA and ETS are deterministic models, and they return the same
results for the same data. NN-based models, for example, MLP, ANFIS, LSTM, and SVM,
return various outcomes for the same data because of the stochastic type of the learning
system. In this study, these models were run 100 times, and the final errors were averaged
from 100 independent trials.

Taking into account the x-pattern encoding variants described in Section 3, three
variants of each models (which also work with pattern representation usage) are considered:

• V1. The basic variant, where the coding variables for x-patterns are the mean and
dispersion of previous sequence Xi−1 for k-NN, N-WE, LSTM, MLP, ANFIS, and SVM.
No patterns and coding variables are used for ES-RNN, ARIMA, ETS, LSTM, and
Prophet in this case. We can use this variant to forecast the MEL from (8) without
additional forecasting for coding variables.

• V2. The variant, for which the mean and dispersion of sequence Xi serve as the coding
variables. Using ARIMA model, they are both independently forecasted for the query
pattern based on their previous values. This variation broadens the denotations by
“+AR”, e.g., “k-NN + AR”, and “ANFIS + AR”.

• V3. The mean and dispersion of sequence Xi serve as the coding variables, as in
variant V2. However, in this instance, they are predicted using ETS for the query
pattern. “+ETS” is used to extend the denotations in this variant, such as “k-NN +
ETS”, and “ANFIS + ETS”.

The following measures are used to assess the quality of forecasts and forecasting models:

• Percentage error (PE):

PE =
E − Ê

E
· 100, (18)

where E is the actual value and Ê is the forecasted value.

• Mean percentage error (MPE):

MPE =
1
N

N

∑
i=1

PEi. (19)

• Absolute percentage error (APE) :

APE = |PE| . (20)

• Mean absolute percentage error (MAPE):

MAPE =
100
N

N

∑
i=1

∣∣∣∣∣Ei − Êi
Ei

∣∣∣∣∣. (21)

• Interquartile range of absolute percentage error (IQR):

IQR(APE) = Q3(APE)− Q1(APE), (22)
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where Q1(APE), Q3(APE) are the lower and upper quartiles, respectively.
The quarter range allows you to assess the variability of the APE error. It includes 50%
of all observations located centrally in the distribution.

• Root mean squared error (RMSE):

RMSE =

√√√√ 1
N

N

∑
i=1

(Ei − Êi)
2
. (23)

• Standard deviation of percentage errors (stdPE):

Std(PE) =

√√√√ 1
N

N

∑
i=1

(PEi − MPE)2. (24)

• Coefficient of asymmetry (skewness) of the distribution of percentage errors (skewPE):

Skew(PE) =
1
N ∑N

i=1 (PEi − MPE)3

Std(PE)3 , (25)

The coefficient of asymmetry is zero for symmetric distributions, negative values for
left asymmetric distributions (most of the population is below average) and positive
for right asymmetric distributions (most of the population is above average).

• Kurtosis of percentage error distribution (kuPE):

ku(PE) =
1
N ∑N

i=1 (PEi − MPE)4

Std(PE)4 − 3, (26)

kuPE is a measure of the clustering of PE errors around the mean value of MPE. The
higher the kurtosis value, the more slender the distribution of errors and the greater
the concentration of their values around the mean.

The median absolute percentage error (MdAPE), mean absolute percentage error
(MAPE), interquartile range of absolute percentage error (APE) as a measure of the forecast
dispersion, and root mean square error (RMSE) are all shown in Table 2. The RMSE error
measure, as can be seen from this table, indicates that Prophet + ETS is the most accurate
model when compared to its rivals. In cases of MdAPE and MAPE metrics, Prophet + ETS
results are very close to the state-of-the-art model ETS-RNN + ETS, but the predictions are
fully interpretable, and the model has a small number of parameters to estimate.

Table 2. Results comparison among proposed and comparative models.

Model MdAPE MAPE IQR RMSE

k-NN 3.11 5.19 4.17 385.68
k-NN + AR 2.88 4.71 4.25 352.42
k-NN + ETS 2.72 4.58 3.58 333.27
N-WE 2.84 5.00 3.97 352.01
N-WE + AR 2.85 4.59 3.95 340.26
N-WE + ETS 2.68 4.37 3.36 320.51
LSTM 3.73 6.11 4.50 431.83
LSTM + AR 3.43 5.28 4.79 392.47
LSTM + ETS 3.08 5.19 4.54 366.45
MLP 2.97 5.27 3.84 378.81
MLP + AR 3.12 4.83 4.26 362.03
MLP + ETS 3.11 4.80 4.12 358.07
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Table 2. Cont.

Model MdAPE MAPE IQR RMSE

ANFIS 3.56 6.18 4.87 488.75
ANFIS + AR 3.66 6.05 5.07 473.80
ANFIS + ETS 3.54 6.32 4.26 464.29
SVM 2.80 5.41 3.97 382.60
SVM + AR 3.14 4.91 4.09 348.52
SVM + ETS 2.85 4.74 3.60 330.94
ETS-RNN 2.74 4.48 3.55 347.24
ETS-RNN + AR 2.58 4.23 3.47 332.74
ETS-RNN + ETS 2.64 4.09 3.13 314.01
ARIMA 3.32 5.65 5.24 463.07
ARIMA + AR 2.99 4.64 3.95 357.84
ARIMA + ETS 2.85 4.52 3.61 339.49
ETS 3.50 5.05 4.80 374.52
ETS + AR 2.94 4.50 3.68 345.37
ETS + ETS 2.76 4.30 3.19 326.94
Prophet 3.08 4.72 4.37 349.01
Prophet + AR 2.99 4.39 3.65 334.46
Prophet + ETS 2.68 4.15 3.44 311.56

Figure 9 provides more specific results, such as MAPE for each nation. It is important
to note that Prophet + ETS is frequently one of the most precise models. The model rankings,
based on MAPE and RMSE, are shown in Figure 10. They display the models’ average
positions in the country-by-country rankings. Take note of Prophet + ETS’s top spot in
both rankings.

Figure 9. MAPE for each country.
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Figure 10. Rankings of the models.
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In Table 3, the forecast errors and the descriptive statistics for the percentage errors are
shown. The bias of the forecasts can be estimated from the average value of the PE error.
For all models, the mPE is negative, which means that the forecast is overstated. The least
loaded forecasts are made by the Prophet model (mPE = −0.70), and the most by the LSTM
model (mPE = −3.12). The distribution of PE errors is described by the statistics: medPE,
stdPE), skewPE, and kurtPE. The distribution of Prophet + ETS errors (medPE = 0.00) is
the closest to zero, and the most distant LSTM (medPE = −1.81). The PE errors for the SVM
model show the greatest dispersion around the mean (stdPE = 16.76), and the Prophet +
AR errors the smallest (stdPE = 7.02). The most slender and centered around the mean
value are the error distributions MLP + AR, MLP + ETS, ANFIS + AR, ARIMA + AR, ETS,
ETS + AR, Prophet, Prophet + AR (kurtPE > 15), and the most flattened is error distribution
MLP + ETS (kurtPE = 11.83). The negative skewness values, skewPE, which characterize
the PE distributions of all models, indicate the left-hand skewness (the greater part of
the population has values below the average). The most flattened distribution shows the
greatest symmetry, obtained for ANFIS + ETS (skewPE = 0.96), and the smallest, the most
slender distribution, obtained for SVM (skew (PE) < −13.40).

Table 3. Descriptive statistics of percentage errors among proposed and comparative models.

Model mPE medPE stdPE skewPE kuPE

k-NN −1.96 −1.27 10.83 −4.88 49.39
k-NN + AR −1.76 −0.75 8.10 −2.66 20.96
k-NN + ETS −1.26 −0.20 9.11 −4.47 38.22
N-WE −1.91 −1.18 10.82 −5.41 48.94
N-WE + AR −1.75 −0.85 7.82 −2.68 21.38
N-WE + ETS −1.26 −0.17 8.68 −4.63 40.75
LSTM −3.12 −1.81 9.49 −2.86 22.21
LSTM + AR −1.86 −0.78 8.66 −2.75 21.20
LSTM + ETS −1.41 −0.55 10.15 −5.35 50.04
MLP −1.37 −0.68 11.88 −7.52 109.64
MLP + AR −1.64 −0.92 7.45 −1.64 12.16
MLP + ETS −1.71 −1.03 7.32 −1.55 11.83
ANFIS −2.51 −1.43 11.37 −4.35 34.93
ANFIS + AR −1.94 −0.65 9.63 −1.67 13.29
ANFIS + ETS −1.30 −0.40 12.65 −0.96 39.37
SVM −2.22 −0.91 16.76 −13.40 229.68
SVM + AR −1.66 −0.61 8.58 −3.44 28.95
SVM + ETS −1.28 −0.09 11.06 −7.84 95.91
ETS-RNN −1.11 −0.27 10.07 −6.37 63.61
ETS-RNN + AR −0.86 −0.20 7.30 −2.75 24.75
ETS-RNN + ETS −0.32 0.47 8.48 −5.36 52.51
ARIMA −2.35 −1.03 13.62 −9.01 119.20
ARIMA + AR −1.69 −0.77 7.43 −1.65 12.67
ARIMA + ETS −1.15 −0.26 8.40 −3.76 30.82
ETS −1.04 −0.31 7.97 −1.89 13.52
ETS + AR −1.71 −0.90 7.20 −1.73 13.02
ETS + ETS −1.17 −0.28 8.20 −4.06 33.64
Prophet −0.70 −0.18 7.47 −1.37 12.27
Prophet + AR −1.30 −0.55 7.02 −1.66 12.84
Prophet + ETS −0.76 0.00 7.86 −3.79 30.82

Figure 11 shows the MAPE errors broken down into individual months of the forecast
period (2014). Attention should be paid to errors that are lower for months 8–10 and higher
for months 1–4 and 12 [18]. The lowest errors were most often achieved by models with
the forecast of code variables using ETS. Examples of forecasts generated by the models
with the + ETS representation for several European countries are shown in Figure 12. The

420



Energies 2023, 16, 827

forecast errors of the PL series, except for the ETS model, do not exceed 2%, which should
be considered a very good result. DE, ES, and IT ranks are forecast with a slightly greater
error. In the case of DE, there are greater deviations in the forecasts set by ANFIS + ETS
for September. The GB series is projected well below the actual mileage. This is due to the
unexpected increase in demand in the UK system in 2014, despite the downward trend
observed in 2010–2013 (see Figure 5). The opposite situation for FR, ES, and IT resulted in a
slight overestimation of forecasts.
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Figure 11. MAPE for each month.
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Figure 12. Examples of forecasts of MOD.
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MAPE and RMSE results are presented in Figure 13. The time series of code variables
and their forecasts for six sample countries are shown in Figure 14). Figure 15 shows
Wilcoxon tests and the distribution of APE errors. The models were ranked from the lowest
to the highest median (APE) value. The first two positions are occupied by the ETS-RNN
models using the forecast of code variables. It should be noted that the proposed statistical
models achieve higher positions in the case of using ETS to forecast code variables. ANFIS
models take final positions to confirm the statistical significance of the differences in APE
errors. Wilcoxon tests were performed for each pair of models. A white diagram element
means that the models intersecting this element do not differ statistically in terms of APE.
A yellow element means that the model pointed to by this element on the OY axis has
reached a smaller error than the model indicated on the OX axis. A red element means that
the model pointed to by this element on the OY axis has reached a greater error than the
model pointed to on the OX axis. Figure 15 shows that models without prediction of code
variables in many cases bring greater errors than hybrid models that contain predictions
of these variables. The results of the Wilcoxon test for the ETS-RNN + ETS model, which
is characterized by the lowest MAPE error (see Table 3), is similar to the results of the
Prophet + ETS model. Both of these models show advantages over at least twenty-three
other models (statistically significant difference in errors) and are as accurate as the other
models. The ETS-RNN + ETS model shows the greatest advantage: in terms of error, the
APE is more accurate than twenty-five other models.
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Figure 13. Errors of the models.
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Figure 14. Forecasts of coding variables.
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Figure 15. APE and Willcoxon test results for each model.

Summarizing the preliminary results, it should be noted that the performance of the
prediction model is completely dependent on proper TS preprocessing. The introduction
of initial normalization and predictive coding variables through ETS in the classic models
significantly improves performance.

5. Discussion

In the ARIMA and ETS models, the optimization is global, i.e., their parameters are
adjusted to ensure the lowest error for all terms of the time series (however, the length
of the series can be restricted to the last terms so that the model takes into account only
the specificity of the last historical period). The memory of the ARIMA model is limited
to the last values of the time series (the size of the memory is determined by the rows of
the AR and MA processes). Thus, the predicted value is “constructed” from the last terms.
The ETS model is based on all values, but their influence on the predicted value decreases
exponentially with time, i.e., more distant points have lower weights. Unlike these models,
for example, k-NN constructs a local model individually for each query pattern. For the
construction of the forecast, it uses all terms of the time series, not limited to the last period,
as in ARIMA, and without introducing weights depending on the time distance, as in ETS.
To construct a local regression function, k-NN considers values that may be distant in time
from the query pattern if such distant cases are similar in shape to the query pattern. It is
worth noting, however, that the time distance information can be easily introduced into,
for example, N-WE by additional weights (decreasing in time) assigned to the x output
patterns in the model. We can also enter weights based on seasonality. Outliers in the time
series interfere with the selection of ARIMA and ETS parameters, leading to suboptimal
models. In, for example, k-NN, as previously stated, outliers have a reduced impact in
part. An additional distinction between statistical models and, for example, N-WE, is
that the former generates forecasts one step ahead. Forecasts with longer horizons are
achieved recursively, taking the the prediction for the preceding time step as an input
for the prediction of the following time step. In contrast, for example, k-NN predicts the
x-pattern, representing the entire predicted sequence, in one step.

6. Conclusions

In this paper, statistical methods for mid-term load forecasting were proposed. The
input data for the models represent the normalized annual seasonal cycle of a load time
series with filtered trend and unified variance. They express shapes of the yearly cycles.
The proposed approach uses statistical methods for forecasting annual patterns and also for
forecasting coding variables for decoding these patterns. Due to the pattern representation
of the time series, forecasting models do not need to grasp the essence of the complex time
series, which simplifies the predictive problem.
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In the experimental part of the work, classical models with pattern representation
were tested on MEL predicting issues for 35 European countries. The outcomes showed the
advantages of the proposed approach over an alternative approach without forecasting
coding variables. For statistical models and also for many comparative models, the pro-
posed approach improved the accuracy. For example, in the cases of Prophet + ETS, ETS
+ ETS, and ARIMA + ETS usage, it leads to outperform predecessors Prophet, ETS, and
ARIMA about 13.7%, 17.4%, and 25% in case of MAPE error. The proposed models can be
further implemented for short-term load forecasting.
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Abbreviations

The following abbreviations are used in this manuscript:

ML Machine Learning ES Spain
MEL Monthly Energy Load FI Finland
MTLF Mid-term Load Forecasting FR France
ARIMA Autoregressive Integrated Moving Average GB Great Britain
ETS Exponential Smoothing GR Greece
NN Neural Network HR Croatia
ACF Autocorrelation Function HU Hungary
PACF Partial Autocorrelation Function IE Ireland
k-NN k Nearest Neighbor IS Iceland
N-WE Nadaraya–Watson estimator IT Italy
LSTM Long Short-Term Memory LT Lithuania
MLP Multilayer Perceptron LU Luxembourg
ANFIS Adaptive Neuro-Fuzzy Inference System LV Latvia
SVM Support Vector Machine ME Montenegro
ETS-RNN Exponential Smoothing and Recurrent Neural Networks MK Macedonia
AT Austria NI Northern Ireland
BA Bosnia and Herzegovina NL Netherlands
BE Belgium NO Norway
BG Bulgaria PL Poland
CH Switzerland PT Portugal
CY Cyprus RO Romania
CZ Czech Republic RS Serbia
DE Germany SE Sweden
DK Denmark SI Slovenia
EE Estonia SK Slovakia
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Abstract: Due to the growing penetration of behind-the-meter (BTM) photovoltaic (PV) installations,
accurate solar energy forecasts are required for a reliable economic energy system operation. A
new hybrid methodology is proposed in this paper with a sequence of one-step ahead models to
accumulate 144 h for a small-scale BTM PV site. Three groups of models with different inputs are
developed to cover 6 days of forecasting horizon, with each group trained for each hour of the above
zero irradiance. In addition, a novel dataset preselection is proposed, and neighboring solar farms’
power predictions are used as a feature to boost the accuracy of the model. Two techniques are
selected: XGBoost and CatBoost. An extensive assessment for 1 year is conducted to evaluate the
proposed method. Numerical results highlight that training the models with the previous, current,
and 1 month ahead from the previous year referenced by the target month can improve the model’s
accuracy. Finally, when solar energy predictions from neighboring solar farms are incorporated,
this further increases the overall forecast accuracy. The proposed method is compared with the
complete-history persistence ensemble (CH-PeEn) model as a benchmark.

Keywords: photovoltaic (PV); forecast; behind-the-meter (BTM); spatio-temporal; strategic training

1. Introduction

A deployment of 138 GW of rooftop photovoltaic (PV) systems has been identified
between 2020 and 2021 [1]. PV systems deployment did not slow down even during the
COVID-19 pandemic and all of the related health and logistic limitations. The growth
of behind-the-meter (BTM) solar sites makes net demand forecasting challenging as it
introduces additional uncertainty in net demand patterns [2]. Net demand is the critical
input in both short-term and long-term planning of power systems [3]. To carry this out, net
demand must be forecasted, accounting for a modified shape pattern between the morning
hours of the day and the end of the afternoon [4]. Net demand can be predicted directly
or indirectly by subtracting the BTM PV power forecast from the demand. Therefore,
forecasting models with enhanced accuracy for small BTM PV sites are important to
support net demand forecasting in power systems.

One-step ahead forecasters were the most common between 2010 and 2019, while
more recently, multi-step forecast methods are gaining momentum [5]. Even though many
hybrid approaches have been proposed in the literature, they are limited mainly by intra-
day horizons or, in some cases, limited to 3 days ahead [5]. For example, in [6], a hybrid
method called physical hybrid artificial neural network (PHANN) is proposed to predict
up to 72 h ahead. Finally, in [7], a hybrid method with artificial neural network (ANN) and
an analog ensemble (AnEn) is proposed to generate 72 h forecasts of power.

In the solar energy forecasting domain, there are two primary training practices. The
first approach, Generalization, is when research works use a significant amount of data as
possible to train a unique model to forecast any hour of the day, month, or season. The
second approach, Classification, is when different models are built based on categories.
For example, the first two full years of data were used for training in [8], and in [9], the
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authors used the total accumulated historical data to train a model. On the other hand,
an optimization using a selection training dataset with a standard setting consisting of
days with different cloud conditions from half a year of data was applied in [10]. Whereas,
in [11], three models were trained with a dataset divided into three categories: Sunny,
cloudy, and overcast days, according to the mean irradiance.

The spatio-temporal correlation is attracting attention in solar energy forecasts. Some
works have applied historical data from neighboring solar sites and weather stations to
forecast solar energy. For example, five nearby solar irradiance stations, with distances
from 0 to 200 km to predict from 5 min to 24 h ahead; first, solar irradiance, converted
to solar power, was accounted in [12]. More recently, in [13], the authors considered the
collaborative data from 44 rooftop-scale solar units located in a Portuguese city in their
model to produce 6 h ahead of solar power forecasts.

In distinction to the common practices, we propose a new hybrid methodology with
three groups of models and different inputs to cover a forecasting horizon of 6 days.
Each group is trained for each hour of above zero irradiance. In addition, the method
includes a monthly pattern preselection approach where the most recent and the most likely
future weather patterns are present. We select similar months based on the target month
we want to predict, reducing the available dataset to only the months with very similar
characteristics to the target month. Namely, the previous month, the current month, and
the next month ahead from the previous year are selected and referenced by the forecasting
origin. This strategy balances enough generalization and similar days classification in a
reduced dataset which is more correlated with the target forecast. Moreover, we propose
the reinforcement of the methodology by benefiting from spatio-temporal correlation using
publicly available regional aggregated solar power predictions (RASPP) as a feature. This
specific feature helps the proposed method to take advantage of other forecasts for solar
energy generation within the same neighboring region.

In summary, the main contributions of this work are as follows: First, we propose a
horizontally cascaded set of models to extend the forecasting horizon of short-term solar
energy forecasting to 6 days. The forecasting horizon of 6 days is divided into three groups
of models with different inputs, and, within each group, a separate model for each hour of
the day is proposed. Moreover, a novel classification and training strategy is proposed for
the enhancement of forecast accuracy. Second, we propose the use of publicly available
regional aggregated solar power predictions (RASPP) as an input to the model to benefit
from potential spatio-temporal correlations between the power production at the target site
and the general solar energy production patterns in the same geographical region.

The remainder of this paper is organized according to the following sections: Section 2
presents a literature review of solar power forecasting. Section 3 describes the proposed
solar power forecasting methodology. Section 4 presents the numerical results and dis-
cussions, followed by Section 5, which summarizes this work, and suggests directions for
potential future work.

2. Literature Review

The solar energy forecasting literature can be classified into subdomains regarding
the spatial horizon [14], time horizon [15], methods [5], techniques [14], inputs [14], bench-
marks [16], and level of uncertainty [17,18]. Regarding methods, some strategies consider
numerical and probabilistic methods, physical models, and artificial intelligence (AI) tech-
niques, including machine learning (ML), deep learning (DL), and hybrid methods [5]. In
terms of time horizon [14], these works can be categorized into four subdomains: Intra-hour
or nowcasting, intra-day, i.e., 6 h to day-ahead, or multi-days ahead or more prolonged
(2 days and longer). Regarding modelling inputs [14], forecasting strategies consider
endogenous inputs [8] and [19], exogenous, or both [20], including numerical weather
predictions (NWP), sky cameras [17], satellite imagery [21], neighboring PV plants [22],
adjacent weather stations [12], and other predictions.
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A review of the literature showed that some works used a significant amount of data
as possible to train a model. They based their models on Generalization. For example,
in [8], where the first two full years of data were used for training; or in [9], the authors
used the total accumulated historical data to train a model with no specific selection of
days; and in [23], the authors used one whole year of data to train six models. However, in
terms of Classification, different models are built based on categories. Some works targeted
the pattern of the preselected data to train a model in order to focus on the similar pattern
to be predicted, as seen in [10], in which an optimization using a selection training dataset
with a standard setting consisting of days with different cloud conditions from half a year
of data was applied; or in [11], the authors trained three models with the dataset divided
into three categories: Sunny, cloudy, and overcast days, according to the mean irradiance;
or in [24], the researchers developed a weather scenario based on generation, in which
a copula was adopted to model the correlation among weather variables, including the
data from local weather stations and historical NWP, through a high-dimensional joint
distribution; or in [25], three selection methods were presented for training purposes: First,
the previous 30 days, or second, the 30 days according to the absolute difference between
the clearness index of the day to be predicted and each day included in the database, or
finally the third strategy, which considered the 30 days according to the similarity between
the empirical distribution function of the irradiance forecast for the day to be predicted
and for each day included in the database. The first group of works considered that a
generalization strategy would assist in increasing the quality of their models. On the other
hand, the second group argued that a classification strategy would perform better. It is very
unlikely that a model trained with data from Winter would be helpful to predict something
during Summer. Therefore, we understand that a generalization strategy is ineffective in
this case. Meanwhile, the second group relied on the forecasted weather in order to select
the respective model to predict accurately. However, if the weather forecast is wrong, it
is very likely that the prediction, based on the classified day would not perform well. For
example, an overcast day would be predicted, but no clouds are above the solar panels and
then, an underestimated production would be expected. In this case, a methodology that
considers enough generalization and classification is needed. Therefore, a reduced dataset
also divided by each hour of the day is a potential solution. In conclusion, to the best of our
knowledge, the gap related to the month pattern preselection exists. As a result, it merits
investigation in this paper.

Some works have explored the application of using historical data from neighboring
solar sites or weather stations in the context of solar energy forecasting. For example, the
authors of [26] accounted for 80 distributed rooftop PV plants in the Arizona region as a
network of irradiance sensors to predict cloud speed and solar power; or the authors of [27]
used historical information from five neighboring rooftop PV plants in the Netherlands
and one meteorological station to predict solar power of a 500 W PV system; or the authors
of [12] accounted for five nearby solar irradiance stations, with distances from 0 to 200 km
for prediction, first, of solar irradiance, and then conversion to solar power; or the authors
of [22] developed an individual model for each hour for each of three utility-scale solar
farms (Solar Farms A, B, and C) to predict with an hourly resolution, accounting for the
inclusion of independent variables from the adjacent solar farms (for example, for Solar
Farm A, the neighboring solar farms included in the model were B and C, etc.). More
recently, the authors of [13] considered the collaborative data from 44 rooftop-scale solar
units located in a Portuguese city in their model to produce solar power forecasts. However,
none of the existing works had explored the possibility of using publicly available regional
aggregated solar power predictions (RASPP) for improving the forecasts of small BTM
solar facilities. In addition, only one publication [27] focused on intra-hour, intra-day,
day-ahead, and longer horizons as 7 days ahead, 15 days ahead, 20 days ahead, and
1 month ahead. The remaining works concentrated their findings on the intra-hour forecast,
in [26], which focused on predictions from 15 to 90 min ahead; on the intra-day forecast,
in [13], which focused on 6 h ahead; or on intra-day to day-ahead forecast, in [12], which
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focused on predictions from 5 min to 24 h ahead, and finally in [22], which focused on
24 h ahead. Therefore, the presented works used historical data from neighboring solar
sites or weather stations to forecast solar irradiance or solar power and none of them used
regional aggregated solar power predictions from adjacent solar farms. Moreover, most
of them limited their works to forecast up to 1 day ahead horizons. As a result, a hybrid
methodology to predict solar power forecast accounting for publicly available regional
aggregated solar power predictions and covering from intra-day to 6 days ahead will be
explored in this paper.

3. Proposed Solar Power Forecasting Methodology

The proposed method comprises relevant inputs, data preprocessing steps, and train-
ing of three groups of separate one-step ahead model for each hour of the day, including
two regression models per hour to produce a set of deterministic forecasts. The final
step considers data postprocessing. These components together form the proposed so-
lar power forecasting framework, presented in Figure 1, which will be described in the
following sections.

Figure 1. The proposed solar power forecasting methodology.

3.1. Dataset

A dataset with an hourly resolution of PV power output, including lagged power
production from the previous 15, 30, 45, 60, and 75 min, and lagged power production
from the previous 1, 24, 48, 72, 96, 120, and 144 h from 11 March 2019 to 31 July 2022 are
used in this work. Moreover, the following is aggregated in this dataset: Global horizontal
irradiance (GHI), zenith, and azimuth. GHI is the total power of solar radiation per unit
area, measured in W/m2 at a horizontal surface to the ground during the absence of visible
clouds across the sky. It provides the maximum irradiance under clear sky conditions.
In addition, numerical weather predictions (NWP) are included in the dataset, such as
ambient temperature, solar irradiance, wind speed, wind direction, relative humidity, cloud
cover, dew point, gust speed, and pressure, in which forecasts are performed by an external
source. The solar irradiance forecast considers the likelihood of clouds and their effects
on the availability of solar irradiance. In a nearby geographical location of the target PV
system, in the City of Medicine Hat, Alberta, Canada, there are more than 20 utility-scale
solar farms. Therefore, the historical regional aggregated solar power output (RASPO),
and the publicly available regional aggregated solar power predictions (RASPP), which are
provided by the independent system operator (ISO) are also added to the dataset. Lagged
features or past power production improve the forecast quality since time dependency is
considered in the forecasting problem [28]. Data from NWP in solar power forecasting are
most applicable for day-ahead forecasting [29]. NWP uses mathematical models of the
atmosphere and oceans based on measured conditions to predict with excellent forecast
skill up to 6 days ahead and a relatively accurate forecast up to 14 days ahead.
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3.2. Data Preprocessing

The standard scaler normalizes all features to remove the mean and scale to unit
variance. A correlation analysis is a statistical summary that assists in identifying the
strength and direction of the relationship between two variables. Spearman’s correlation is
applicable for nonlinear relationships and non-Gaussian distribution, which assumes that
the relationship between variables is monotonic and tends to move in the same relative
direction but not at a constant rate. An autocorrelation analysis was performed to explore
the relevance of lagged features. In addition, a correlation among other variables was
carried out. Therefore, only the most relevant and correlated features are used in this study.

3.3. Monthly Preselection

We propose a new training strategy for this work. The strategy is based on the
similarity of seasonal weather and the general solar power production for each month in
hourly resolution. For example, the objective is to avoid training with a database from
Winter months, while the target is to predict Summer. Two main benefits can be observed:
First, the correlation among features is increased, which directly impacts the accuracy
of the predictions. Second, the training process speed is increased, which reduces the
computational cost.

Herein, primary and secondary strategies are proposed in a simplified way to train a
model weekly. Strategy 1M targets the dataset selection of the previous month, the current
month, 1 month ahead from the previous year, and the previous month and the last weeks
of the current month of the current year, always referenced by the forecasting origin. On
the other hand, strategy 3M targets the dataset selection of the previous 3 months of the
previous and current year, and the last weeks of the current month of the current year. For
example, Figure 2 presents a dataset containing data from 1 January 2020 to 31 December
2021, and the forecast origin is 1 August 2021. For strategy 1M, the preselected months to
train the model are from July to September 2020 as well as July 2021. For strategy 3M and
the same forecast origin, the preselected months to train the model are from May to August
2020, as well as May to July 2021. Namely, the proposed training strategy 1M considers the
typical previous 30 days in the current and previous years, as well as the following 60 days
in the previous year. The numerical results in Section 4 highlight the fact that the proposed
method can improve the model’s accuracy.

Figure 2. The proposed training strategy.

3.4. Separate One-Step Ahead Models for Each Hour of the Day

In this paper, we propose the development of three groups of separate one-step ahead
deterministic models, with each group trained for each hour of the day and receiving
different inputs. During the Summer, from 4:00 a.m. to 11:00 p.m., there are a total of 20 h
of above zero solar irradiance. The strategy does not consider the remaining 4 h of the
day since they have zero solar irradiance. Therefore, the proposed methodology trains
20 separate models. In addition, two techniques are selected to fit the models: XGBoost and
CatBoost. As a result, the number of separate models per hour multiplied by the number of
methods accumulates 40 models per group, and finally, multiplied by three groups results
in a total of 120 models. Different combinations of inputs and time horizons are proposed in
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this work to extract the best outcomes from each available feature and reflect the accuracy
gained for each step ahead in the forecasting horizon.

3.4.1. Group A: One-Step Ahead for the 1st Hour Ahead Framework

The most impactful prediction horizon is 1 h ahead since it is critical for monitoring and
dispatching purposes. For example, in [30], the authors identified that lagged observations
are more important for shorter forecasting horizons than weather forecasts. Group A is a
set of one-step models for the 1st hour ahead, with separate models for each hour of the
day. It leverages the most recent observations of the target PV system’s power (p) from
the previous 15, 30, 45, 60, and 75 min to increase the accuracy of the next hour ahead
prediction. In addition, exogenous inputs from NWP, such as GHI, ambient temperature
(T), and solar irradiance (SI) are considered, according to Equation (1). For a set of models,
MA with h hours of the day is limited to 4:00 a.m. ≤ h ≤ 11:00 p.m. and two techniques
(XGBoost, CatBoost), herein Equation (2) represents Group A, as follows:

(pt+1) = f (pt−15, pt−30, pt−45, pt−60, pt−75, GHIt+1, Tt+1, SIt+1) (1)

MA =
{(

XGBA
4 , CTBA

4

)
, . . .

(
XGBA

h , CTBA
h

)}
h=4AM, ...11PM

(2)

3.4.2. Group B: One-Step Ahead for 2nd to 56th Hour Ahead Framework

Intra-day and day-ahead forecasts are relevant for scheduling the spinning reserve
capacity. Group B is a set of one-step ahead models for recursive predictions from the 2nd
to the 56th hour ahead, with separate models for each hour of the day. Group B leverages
the information from NWP and the solar farms’ power predictions to increase the accuracy
of the target PV power output model. Since these forecasts are available with a forecasting
horizon limited to the 56th hour ahead, Group B is also determined by the same horizon.
The set of inputs considered in this group of models are past power output (p), GHI,
ambient temperature (T), solar irradiance (SI), wind speed (WS), relative humidity (RH),
and the publicly available regional aggregated solar power predictions (RASPP), according
to Equation (3) with k = (2, . . . , 56). The forecasting engine uses a recursive forecasting
strategy, i.e., to keep the properties of the time series, the outputs from Group A are used
as inputs to Group B and then from Group B to Group C [31]. For a set of models, MB with
h hours of the day is limited to 4:00 a.m. ≤ h ≤ 11:00 p.m. and two techniques (XGBoost,
CatBoost), herein Equation (4) represents Group B, as follows:

(pt+2h, . . . , pt+k)
= f (pt−1h, pt−24h, pt−48h, pt−72h, pt−96h, pt−120h, pt−144h, GHIt+k, Tt+k, SIt+k, WSt+k, RHt+k, RASPPt+k)

(3)

MB =
{(

XGBB
4 , CTBB

4

)
, . . .

(
XGBB

h , CTBB
h

)}
h=4AM, ...11PM

(4)

3.4.3. Group C: One-Step Ahead for 57th to 144th Hour Ahead Framework

The following days ahead forecasting is essential for managing the grid operations.
Group C is a set of one-step ahead models for recursive predictions from 57th to 144th
hour ahead, with separate models for each hour of the day. Group C models rely on the
NWP and the most recent forecasts from Group B, following the same recursive forecast-
ing strategy. The input variables are past power output (p), GHI, ambient temperature
(T), solar irradiance (SI), wind speed (WS), and relative humidity (RH), according to
Equation (5) with k = (57, . . . , 144). For a set of models, MC with h hours of the day limited
to 4:00 a.m. ≤ h ≤ 11:00 p.m. and two techniques (XGBoost, CatBoost), herein Equation (6)
represents Group C, as follows:

(pt+57h, . . . , pt+k) = f (pt−1h, pt−24h, pt−48h, pt−72h, pt−96h, pt−120h, pt−144h, GHIt+k, Tt+k, SIt+k, WSt+k, RHt+k) (5)

MC =
{(

XGBC
4 , CTBC

4

)
, . . .

(
XGBC

h , CTBC
h

)}
h=4AM, ...11PM

(6)
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Figure 3 shows an example of the forecasting strategy and how Groups A, B, and C
accumulate outputs for the forecasting horizon of 144 h ahead. The instance considers the
issuing time of 1 August 2021 at 4:20 a.m.. Therefore, the forecasting origin is 1 August
2021 at 5:00 a.m., which is one step ahead of forecasting. From a set of 20 pairs of models,
Group A will select the appropriate model specific for 5:00 a.m. to forecast the first step. It
will provide predictions for XGBoost and CatBoost. Next, Group B will predict the second
step by selecting the 6:00 a.m. models for the specific hour. Then, Group B sets the next pair
of models recursively for 7:00 a.m. until it reaches 56 h ahead of forecast. Similarly, Group
C will provide the following one-step forecasting from 57 to 144 h ahead, when the last
prediction of the forecasting horizon is reached. In summary, a serial sequence of one-step
ahead or 1 h ahead models will be selected from 1 to 144 h ahead.

Figure 3. Group A, B, and C models to predict 1-144 h ahead.

3.5. Deterministic Forecast

Point forecasts, deterministic forecasts, or single-value forecasts are all synonyms.
They can be used to define that the predictions or forecasts made by this class of models can
output only one value for each instance or each time stamp. Two deterministic models will
be presented and then, individual performances will be evaluated. Producing probabilistic
forecasts are left for future works.

• XGBoost (XGB) [32], or the eXtreme Gradient Boosting, is an evolution implementation
of the gradient tree boosting (GB), which is a technique first introduced in 2000 by the
authors of [33]. XGBoost gained recognition in several data mining challenges and
machine learning competitions. For example, in 2017, one of the five best teams in
The Global Energy Forecasting Competition 2017 (GEFCom2017) used XGBoost to
solve a hierarchical probabilistic load forecasting problem. The technique is a gradient
boosted tree algorithm, a supervised learning method capable of fitting generic non-
parametric predictive models. For XGBoost, a search for the hyperparameters with
RandomizedSearchCV class and GridSearchCV class from Scikitlearn is performed.

• CatBoost (CTB), or categorical boosting [34], is an open-source machine learning
tool developed in Germany in 2017. The authors claim that this updated method
outperforms the existing state-of-the-art implementations of gradient-boosted decision
trees XGBoost. CatBoost proposes ordered boosting, a modification of the standard
gradient boosting algorithm that avoids both a target leakage and prediction shift,
with a new algorithm for processing categorical features. It presents three main
advantages: First, it can integrate data types, such as numerical, images, audio, and
text features. Second, it can simplify the feature engineering process since it requires
minimal categorical feature transformation. Finally, it has a built-in hyperparameter
optimization, which simplifies the learning process while increasing the overall speed
of the model.
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4. Numerical Results

4.1. Evaluation Criteria

The most common and accepted deterministic forecasting accuracy measures are the
root mean squared error (RMSE) and its respective RMSE skill score [35,36]. The RMSE is
a common error metric used in point forecasting due to its squared error, which is more
sensitive to outliers [37]. The RMSE is calculated according to Equation (7). It is measured
with the same unit as the target forecasting, in kilowatts (kW). For n = 144, t ∈ (1, 2, . . . 144),
ŷt is the forecast at time t, and yt is the observed PV power at time t. The best way to
measure the accuracy gain of a proposed forecasting method is to calculate the forecast
skill score using the RMSE as the base metric and compare the results from the proposed
method versus a benchmark method [35,38]. The RMSE skill score is calculated using
Equation (8) and is measured in percent (%), as follows:

RMSE =

√
1
n

n

∑
t=1

(ŷt − yt)
2 (7)

Skill ScoreRMSE = 1 − RMSEProposed Method

RMSEBenchmark
(8)

4.2. Benchmark

Solar energy forecasts, including irradiance and power, strongly depend on data,
location, resolution, and horizon. Therefore, according to the author in [35], without a
universal benchmark, it is sometimes impossible to interpret the quality of a solar energy
forecast model. The complete-history persistence ensemble (CH-PeEn) was proposed in
2019 to be a universal benchmarking method for probabilistic solar forecasting [16]. The
historical PV power output with hourly resolution used to calculate this model is from
11 March 2019 to 31 July 2022. This paper will use the percentile 50% or the mean as a
benchmark. Figure 4 shows the target PV system’s mean and probability distribution
of power.

Figure 4. The dashed dark blue line represents the mean, and the light blue area represents the 90%
interval probability distribution of power for the CH-PeEn benchmark for the target PV system for
six consecutive days.

4.3. Test Design

In this paper, the following six scenarios will be performed to demonstrate the quality
of each strategy: Models S, 3M, 1M, N, S3M, and S1M, covering from 1 h to 6 days ahead.
First, Model S will verify whether the hybrid method with publicly available regional
aggregated solar power predictions can be effectively applied to increase the accuracy of
the small-scale BTM PV model. Second, Model 3M will verify whether solely selecting
the current and the previous 3 months related to a targeted pattern of historical data
can increase the forecasting model accuracy. Third, Model 1M will examine the accuracy
improvement from the solely 1M strategy. Fourth, Model N will verify whether a model
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considering none of the proposed strategies is better and can increase the forecasting
model accuracy. Fifth, Model S3M will explore whether a model assuming a combination of
Models S and 3M can improve the model’s accuracy. Sixth, Model S1M, the proposed model
of this paper, will consider including Models S and 1M. A CH-PeEn model benchmark is
also performed to compare the forecasting skill of each model. The training data available
are from 11 March 2019 to 31 July 2021. Each model is retrained every week, adding one
previous week. The solar power forecasting methodology is deployed to predict a total of
1 year of testing from 1 August 2021 to 31 July 2022.

The skill score RMSE of each model per month and season is presented in Tables 1
and 2, respectively, for models XGBoost and CatBoost. Table 1 shows that from October to
February, the skill score ranges from 73% to 96% compared with the CH-PeEn benchmark,
in which the skill score is more significant than in the other months. This result aligns with
the baseline in Section 4.2 since it has only one shape for all days of the year, represented
by the mean curve in Figure 4. For example, in Table 1, the results for S1M-CatBoost show
that the highest skill score occurred in December 2021 and the lowest in May and July
2022. This indicates that compared with the benchmark in Figure 4, the general shape and
magnitude of the solar power predictions are more similar to months, such as May and July
than December. According to the authors of [35], due to an effective model considering a
station in the upwind direction to the target point, higher forecast skill scores can be found
between 50% and 70% during specific periods and not year round.

Table 1. Average skill score RMSE (%) per month per model.

INDEX 202108 202109 202110 202111 202112 202201 202202 202203 202204 202205 202206 202207

S-XGBoost 58 69 80 85 91 88 78 67 51 39 52 42
S-CatBoost 59 69 81 86 91 88 79 68 52 41 52 44

3M-XGBoost 52 60 75 82 90 84 77 57 42 47 45 34
3M-CatBoost 53 63 75 84 92 85 78 59 45 46 47 35
1M-XGBoost 72 72 84 91 95 94 89 74 70 55 60 54
1M-CatBoost 72 74 85 91 96 94 90 77 70 57 61 57
N-XGBoost 53 53 73 84 92 85 81 61 48 45 48 35
N-CatBoost 55 56 75 84 92 86 81 62 49 46 51 38

S3M-XGBoost 58 66 77 84 92 84 80 63 48 44 49 43
S3M-CatBoost 58 68 79 85 93 85 80 65 49 45 50 47
S1M-XGBoost 74 74 85 91 95 94 89 76 72 56 61 57
S1M-CatBoost 73 75 85 91 95 94 90 77 70 58 62 58

Table 2. Average skill score RMSE (%) per season per model.

INDEX SPRING SUMMER FALL WINTER AVG Year Ranking

S-XGBoost 52 51 78 86 66.7 7
S-CatBoost 54 52 79 86 67.5 5

3M-XGBoost 48 44 72 84 62.2 12
3M-CatBoost 50 45 74 85 63.6 10
1M-XGBoost 67 62 82 93 76.0 4
1M-CatBoost 68 63 83 93 76.8 3
N-XGBoost 52 45 70 86 63.2 11
N-CatBoost 52 48 72 86 64.7 9

S3M-XGBoost 52 50 76 85 65.6 8
S3M-CatBoost 53 52 77 86 67.0 6
S1M-XGBoost 68 64 83 93 76.9 2
S1M-CatBoost 68 64 84 93 77.3 1
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In Table 2, it can be observed that strategies S, 3M, N, and S3M presented skill score
RMSE results below 67.5%. Moreover, this table shows how Models S1M and 1M are more
relevant than the other suggested models. When Model N is compared with Model S1M,
it can be observed that Model S1M could leverage the combination of both strategies: S
and 1M, indicating that the solar farms’ power forecasts and the reduced dataset assisted
in increasing the forecasting skill. The best individual technique was S1M-CatBoost, with
an average per year of 77.3%, followed by S1M-XGBoost with 76.9%.

In Table 2, the best deterministic model is CatBoost, since it outperformed XGBoost
on all scenarios. Therefore, an analysis of the average RMSE and the skill score RMSE of
hours ahead predictions of the six solar scenarios will be presented only for the CatBoost
scenarios. Figure 5 shows that Model 3M presents the highest RMSE, while Model 1M is the
second best, which indicates that a reduced dataset using strategy 1M leveraged the highest
correlation to improve the model’s accuracy. Next, Model N was easily outperformed by
Models S3M and S when the publicly available regional aggregated solar power predictions
were added as a feature. Finally, the proposed Model S1M consistently outperformed
from 2 to 144 h ahead. For Model S1M, the error increases more noticeably from 1 to 2 h
ahead, and the average error of the following steps increases very slightly. Moreover, an
improvement is observed between steps 91 and 97. It could be related to the recursive
forecasting strategy and the lagged power production as inputs for the model, highlighting
a higher correlation.

Figure 5. RMSE of hours ahead predictions of the six CatBoost scenarios.

Figure 6 shows that all CatBoost scenarios outperformed the mean of the benchmark
CH-PeEn with skill score RMSE ranging from 79% to 62%. Although Models S1M, 1M,
S, and S3M were outperformed by Model N via a small margin in the 1st hour ahead,
all models outperformed Model N consistently for all of the remaining 143 steps ahead.
Models 1M and 3M outperformed the benchmark, but the latter did not outperform Model
N any step forward. Finally, Models 1M and 3M were improved when the solar farms’
power predictions were added as a feature, later identified as Models S1M and S3M,
proving the relevance of this feature.

Since the best deterministic model is the S1M-CatBoost, an analysis of the average
RMSE and skill score RMSE for each hour of the day will be presented. The average RMSE
and the respective skill score RMSE for each hour of the day in the four seasons are shown
as two main characteristics in Figures 7 and 8. First, each season has a particular magnitude,
and second, each has a specific duration, from sunrise to sunset. For example, during
Summer, the highest magnitude of RMSE is around 3.8 kW at 4:00 p.m., and the daylight
hours are from 6:00 a.m. to 9:00 p.m., with an average skill score of 65%. However, during
Winter, the lowest magnitude of RMSE is found since it is directly proportional to the
lower availability of solar irradiance, around 1.6 kW at 9:00 a.m., with daylight hours from
8:00 a.m. to 5:00 p.m., and an average skill score of 93%.
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Figure 6. Skill score RMSE of hours ahead predictions of the six CatBoost scenarios.

Figure 7. Average RMSE for each hour of the day for the proposed Model S1M.

Figure 8. Average skill score RMSE for each hour of the day for the proposed Model S1M.

In Figure 8, the average skill score identified from 7:00 a.m. to 7:00 p.m. for all seasons
are similar, but two exceptions can be found. During Spring and Summer, at 6:00 a.m.
and 8:00 p.m., and during Summer, at 9:00 p.m., the magnitude of the skill score is lower
than the season average. This situation occurs due to the higher errors found, especially
during sunrise and sunset, which are harder to predict even though the magnitude of the
PV output is significantly lower than the daylight peak hours.
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5. Conclusions

The contributions of this paper are three-fold: First, a new hybrid methodology
was proposed with a sequence of one-step models to forecast 6 days ahead for a small-
scale BTM PV site with three groups of models with different inputs—each group was
trained for each hour of above zero irradiance. The best technique identified was CatBoost
and the proposed method was S1M. Second, a novel dataset preselection was presented,
named 1M, and individual results proved the method’s efficiency against a benchmark and
other scenarios. Third, applying neighboring solar farm predictions as a feature boosted
the model’s accuracy. Therefore, to the author’s knowledge, no other research work has
developed a simplified targeted training strategy, such as the one presented or used publicly
available regional aggregated solar power predictions from neighboring utility-scale solar
farms to improve the quality of the small-scale BTM PV system forecasts.

Future Work

Probabilistic forecasts describe the embedded variability and assist in the decision-
making process [18]. Therefore, a bootstrap strategy can be implemented by creating N
different scenarios with an increased bandwidth of predictions to output a probabilistic
forecast. For example, the authors of [24] used 20,000 weather scenarios and averaged the
estimates with quantile regression averaging (QRA) to produce probabilistic forecasts.
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Abstract: In this work, we provide a smart home occupancy prediction technique based on environ-
mental variables such as CO2, noise, and relative temperature via our machine learning method and
forecasting strategy. The proposed algorithms enhance the energy management system through the
optimal use of the electric heating system. The Long Short-Term Memory (LSTM) neural network
is a special deep learning strategy for processing time series prediction that has shown promising
prediction results in recent years. To improve the performance of the LSTM algorithm, particularly
for autocorrelation prediction, we will focus on optimizing weight updates using various approaches
such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The performances of the
proposed methods are evaluated using real available datasets. Test results reveal that the GA and the
PSO can forecast the parameters with higher prediction fidelity compared to the LSTM networks.
Indeed, all experimental predictions reached a range in their correlation coefficients between 99.16%
and 99.97%, which proves the efficiency of the proposed approaches.

Keywords: deep neural networks; LSTM; time series prediction; optimisation; GA; PSO

1. Introduction

One of the most efficient systems to save energy is to reduce a building’s heating
and cooling load, which is mostly caused by heat transfer over its envelope. Smart build-
ings are required to provide permanent, healthy and comfortable indoor environments,
independent of exterior weather conditions [1,2]. Indeed, the major part of energy in
such buildings is used by Heating, Ventilation, and Air Conditioning (HVAC) systems,
which have a significant influence on both home comfort and the environment. Therefore,
managing these systems in residential structures should be tackled in order to increase
energy efficiency through improved energy planning [3]. One of the most essential features
of smart buildings is their ability to self-control the systems used to maintain the comfort
of the inside atmosphere while also minimizing energy use. Because HVAC systems are
the primary source of energy consumption in buildings, intelligent HVAC system control is
a current trend in research studies that necessitates the insertion of occupancy information
into the control process [4]. Moreover, the rise of smart buildings, as well as the pressing
need to reduce energy use, has rekindled interest in building energy demand prediction.
Intelligent controls are a solution for optimizing power consumption in buildings without
reducing interior comfort [5]. For example, in [6], a Model Predictive Control (MPC) is
developed to obtain a hybrid HVAC control with energy savings while maintaining of
thermal comfort. Building energy consumption prediction strives to achieve various goals
such as evaluating the impact of energy-saving interventions and assume energy demands
based on regular requirements. It can anticipate the fluctuations in power consumption of
certain events at specfic times that may modify the systems’ customary energy usage [7].
Furthermore, based on detailed and extensive studies, it was concluded that occupant
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behavior is one of the most significant elements affecting residential structure energy use.
Occupancy behavior includes activities such as turning on and off lights, switching on and
off heating and cooling systems, and regulating the temperature.

Previous research has shown that various occupant demands and behaviors necessi-
tate specific technological solutions, which may induce or change behavior patterns, and
that occupant behavior affects the flexibility and deployment of technologies. However, the
lack of comprehensive knowledge of occupant behaviors in residential building leads to
misunderstanding and inaccurate decisions in both technical design and policy making [8].
The context of our research is energy efficiency. In recent years, energy efficiency has been
realized by improving the thermal performances of the building envelope’s insulation layer.
The research strategies aim to permanently adjust the comfort conditions to the living
situation, as well as to ensure greater energy supervision and management within the
smart buildings. To achieve this, it is important to automatically characterize the activities
of the building’s residents. The significant challenge in today’s new technical design for
smart buildings is understanding customer behaviors [9]. In the future, our occupancy pre-
diction approach will guarantee energy savings in a smart building environment. Ambient
intelligence is an important prerequisite for improving human quality of life.

The rest of this work is structured as follows: Section 2 explains the technique em-
ployed in this project. Firstly, it offers the overall framework of the LSTM forecasting model.
Next, it presents, step-by-step, the implementation procedure of the suggested technique; it
includes descriptions of database processing, the parameters, and the assessment indicators.
Section 3 features experimental details, as well as an analysis of the results. Finally, Section 4
provides some conclusions and future works.

2. Related Works

Building energy consumption is influenced by the thermal insulation, heating, ven-
tilation, air conditioning, lighting, and occupants’ behaviors [10]. Characterising human
activity has become an increasingly prominent application of machine learning in a many
disciplinary fields. Indeed, for the past two decades, researchers from several application
fields have investigated activity recognition by developing a variety of methodologies
and techniques for each of these key tasks. The prediction of human behaviour repre-
sents a key challenge, and many approaches have already been proposed in the industrial,
medical, home care, and energy efficiency domains, and many others [11]. For example,
in [12], an end-to-end technique for forecasting multi-zone interior temperatures using
LSTM-based sequence to sequence has been introduced. The goal of this prediction is to
improve the building’s energy efficiency while maintaining occupant comfort. Authors
in [13] also proposed implementing simple XGBoost machine learning methods to predict
the interior room temperature, relative humidity, and CO2 concentration in a commercial
structure. The proposed technique presents a practical option because it does not require
a large data set for training. Additionally, these models eliminate the necessity for multiple
sensors, which create sophisticated and expensive networks. In [14], a short-term load
consumption forecasting approach for nonresidential buildings using artificial occupancy
attributes and based on Support Vector Machines (SVM) has been developed. However, the
determination of human behaviour in this work is imprecise. The authors in [15], present
a load forecasting model for office buildings based on artificial intelligence and regres-
sion analysis to effectively extract the cooling and heating load characteristics. However,
the model assumes that the building’s internal disturbing influences are steady. In [16],
an optimal deep learning LSTM model for forecasting electricity consumption utilizing
feature selection and a Genetic Algorithm (GA) is implemented. The goal of this suggested
technique is to determine the optimal time delays and number of layers for LSTM architec-
ture’s predictive performance optimisation, as well as to minimize overfitting, resulting
in more accurate and consistent forecasting. Furthermore, recently, machine learning ap-
proaches based on Artificial Neural Networks (ANNs) have been widely used to forecast the
thermal behavior of modern buildings for modeling HVAC systems. As an example, in [17],
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four comparative models have been developed and refined to forecast the inside tempera-
ture of a public building. These proposed techniques can be adapted to various scenarios.
However, we must keep in mind that the adoption of an online technique such as OMLP
(Online MultiLayer Perceptron) might be influenced by outliers. The authors also in [18]
tackle a non-linear autoregressive neural network methodology for forecasting interior
air temperature in the short and medium terms. Realistic artificial temperature data are
used to train the proposed model. The goal of this strategy is to make up for the lack of
real-world data collected by sensors in energy experiments. Thus, an improved technique
integrating real-time information and addressing possible noise or missing data is necessary
to prove the reliability of the proposed strategy in real scenarios. Differently from previous
research solutions, which typically rely on a basic and simple LSTM model, we designed
an optimised architecture exploiting GA and PSO algorithms to update weights and select
the optimal values that give the best prediction precision and reduce model overfitting.
As a matter of fact, these two methods (PSO and GA) were chosen due to their good
reputation in the literature, and they add a stochastic approach to the neural network that
resulted in better performance. We compared our results with the LSTM method, which
is considered the best neural approach in time series forecasting, as proven in previously
conducted works based on LSTM. As an example, Ref. [19] introduces comprehensive
comparative studies that include several deep learning methods used in forecasting extra-
short-term Plug-in Electric Vehicle (PEV) charging loads such as ANN, RNN, LSTM, gated
recurrent units (GRU), and bi-directional long short-term memory (Bi-LSTM). Among
these approaches, the LSTM model outperforms the others, and it is competent in giving
satisfactory results.

3. Materials and Methodologies

3.1. Data Description

A year of data were collected from a smart home between 1 January 2018 and
31 December 2018 with a resolution of 10 min. Each room of the house was equipped
with several sensors, including set points of the room temperature, CO2 concentration,
pressure, noise, lighting, and occupancy:

• CO2 values of a floor of house;
• Outdoor temperature;
• Noise values.
• Pressure values.

The concentration of these factors varied depending on the room; for example, the
concentration of CO2 in the living room differed from that in the office or the kitchen.
Moreover, the CO2 variable does not have a direct relationship with the interior temperature.
However, because CO2 is a strong predictor of room occupancy, it may have a direct impact
on the indoor temperature during the cold season. The variation in the CO2, the noise, and
the temperature are given by Figures 1–3, respectively.

3.2. Data Pre-Processing

The prediction of building energy use based on an occupant behavior assessment is
a multivariate time series issue in which sensors create data that may contain uncertainty, re-
dundancy, missing values, non-unified time intervals, noise, and so on. Traditional machine
learning techniques struggle to reliably anticipate power usage due to unpredictable trend
components and seasonal trends. The collection of suitable data contributes to efficiently
addressing prediction challenges. As a result, several considerations should be made [20].
So, numerous techniques have been proposed to obtain meaningful inferences and insights;
nevertheless, these solutions are still in the early phases of development. Therefore, current
research is focusing on improving the procedures for processing and cleaning the collected
data in order to produce accurate prediction [21].

443



Energies 2023, 16, 1641

0 1000 2000 3000 4000 5000 6000
Time (min)

400

600

800

1000

1200

1400

1600

C
O

2 c
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Figure 1. Overview of the CO2 set points.
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Figure 2. Overview of the room noise set points.
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Figure 3. Overview of the room temperature set points.
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3.2.1. Missing Values

Many real-world datasets may include missing values for various reasons. So, training
a model using a dataset that has a large number of missing values can have a consider-
able influence on the machine learning model’s quality. To prevent information leakage,
missing data were interpolated using Exponential Moving Average (EMA). This method is
described in [22].

3.2.2. Normalisation

The data for a sequence prediction problem probably need to be normalised to the
range of [−1, +1] when training a neural network such as a long short-term memory
recurrent neural network. When a network is fit on unscaled data, it is possible for large
inputs to slow down the learning and convergence of that network and, in some cases,
prevent the network from effectively learning the problem. The Z-score is used for the
normalization, and the formula is given as [23]:

ZScore =
x − xmean

xσ
(1)

where:

xσ =

√
1

n − 1

n

∑
i=1

(xi − xmean)2 (2)

xmean =
1
n

n

∑
i=1

xi (3)

and n is the number of time periods.

4. Modeling Approaches

The main aim of this research is to investigate the performance of various occupancy
forecasting strategies to identify the most accurate ones. In fact, we choose three distinct
methods, based on a deep learning method: GA-LSTM and PSO-LSTM as optimiser based-
models and LSTM as a simple deep learning technique.

4.1. LSTM Architecture

Recurrent Neural Networks (RNNs) struggle with learning long-term dependencies.
LSTM-based models are an extension of RNNs that can solve the vanishing gradient prob-
lem and exploding gradient problem of RNNs and which perform more favorably than
RNN on longer sequences. LSTM models basically expand the memory of RNNs to allow
them to maintain and learn long-term input dependencies properly. This memory expan-
sion can recall data for a longer amount of time, allowing them to read, write, and delete
information from their memories. The LSTM memory is referred to as a “gate” structure
because it has the power to decide whether to keep or discard memory information [24,25].
A gate is a way of transferring information selectively that includes a sigmoid neural net-
work layer and a bitwise multiplication operations. The LSTM process and mathematical
representation consists mostly of the four phases listed below [26]:

1. Deciding to remove useless information:

ft = σ(w f [ht−1, Xt] + b f ) (4)

where ft represents the forget gate and σ is the sigmoid activation function and it can be
defined as:

σ(x) = (1 + e−x)−1 (5)

This function is utilized for this gate to decide what information should be removed from
the LSTM’s memory. This decision is mainly dependent on the values of the previous
hidden layer output ht−1 and the input xt. The output ft takes a value between 0 and 1,
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where 0 means fully discard the learned value and 1 means preserve the entire value. w f is
the recurrent weight matrix, while b f is the bias term.

2. Updating information:

it = σ(wi[ht−1, Xt] + bi) (6)

c̃t = tanh(wc[ht−1, Xt] + bc) (7)

in which it is the input gate and denotes if the value needs to be updated or not and c̃t
designates a vector of new candidate values that will be added into the LSTM memory.
Indeed, the sigmoid layer determines which values require updating, and the tanh layer
generates a vector of new candidate values.

3. Updating the cell status:

ct = ft ∗ ct−1 + it ∗ c̃t (8)

where ct and ct−1 represent the current and previous memory states, respectively. This
phase is carried out by updating the previous cell’s state, multiplying the old value by
ft, deleting the information to be forgotten, and adding it ∗ c̃t to generate a new candi-
date value.

4. Outputting information:

ot = σ(wo[ht−1, Xt] + bo) (9)

ht = ot ∗ tanh(ct) (10)

where ot is the output gate and ht is the current hidden layer outputs whose representations
are a value between −1 and 1. This step defines the ultimate result. To begin, a sigmoid
layer, represented by ot, selects which part of the cell state will be output. The cell state is
then processed by the tanh activation function and multiplied by the sigmoid layer output
to create the output.

A typical LSTM network is seen in Figure 4. LSTM layers are composed of memory
blocks rather than neurons. These memory blocks are interconnected across the layers,
and each block may contain one or more recurrently connected memory elements or cells.
As indicated in this figure (yellow shaded area), the flow of information is managed by
three types of gates: the forget gate ( ft), the input gate (It), and the output gate (Ot).

4.2. LSTM Model Settings and Optimisation

Optimizing an LSTM model entails establishing a set of model parameters that yields
the best model performance. The number of units and hidden layers and the optimiser,
activation function, batch size, and learning rate are typical examples of such elements. So,
the choice of a suitable algorithm is critical to success in addressing any type of optimisation
issue. Wolpert and Macready demonstrated this in their “no free lunch” theorem, which
states that no method is perfect for solving every type of optimisation issue. As a result,
the basic idea is to select an effective optimisation approach to solve a given hand-in
optimisation problem with less computational effort and a greater rate of convergence [27].

4.2.1. Genetic Algorithm (GA)

Genetic algorithms (GAs) have been around for over four decades. GAs are heuristic
search algorithms that provide answers to optimisation and search problems. The name
“GA” is derived from the biological terminology of natural selection, crossing, and muta-
tion. In reality, GAs simulate natural evolutionary processes [28]. Thus, a literature review
provides many instances of using GA in the analysis and optimisation of various elements
from many sectors, such as energy systems. Moreover, GA can be used for the optimisa-
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tion of ANN predictions or for the optimisation of ANN architecture [29]. GAs provide
a general and global optimisation process. Since the GA is a global search technique, it will
be less vulnerable to local search flaws such as back-propagation. The GA may be used to
design the network’s architecture as well as its weight. There have been various attempts
to utilise GAs to determine the architecture of a neural network and the link weights for
a fixed architecture network. Many attempts have been made to use a GA to determine the
architecture as well as the link weights.
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Figure 4. A typical Long Short-Term Memory (LSTM) network topology.

4.2.2. Particle Swarm Optimization (PSO)

The particle swarm optimisation (PSO) method is a swarm-based stochastic optimi-
sation approach introduced by Eberhart and Kennedy (1995). This technique replicates
the social behavior of birds inside a flock to reach the food objective. A swarm of birds
approaches their food goal using a combination of personal and communal experience.
They constantly update their position based on their best position as well as the best
position of the entire swarm, and reunite themselves to form an ideal configuration [30].
This nature-inspired method is becoming increasingly popular due to its reliability and
easy implementation. In addition, classical neural networks do not operate well when
forecasting parameters within short intervals. Moreover, because of their dependability,
hybrid ANNs based on particle swarm optimisation have been frequently advocated in
literature reviews. The PSO method, like the GA, is used as an optimisation technique
within neural networks to optimise ANN forecasts or ANN architecture (the number of
layers, neurons, etc.) [31]. Thus, we use this algorithm to optimise the weights.

4.3. LSTM Network Parameters

The network’s trainable parameters, known as the trainable weights, influence the
network’s complexity. They are represented in LSTMs via connections between the input,
hidden, and output layers, as well as internal connections. The following formula is used
to calculate the Number of Trainable Weights (NTW) of a neural network with x inputs,
y outputs, and z LSTM cells in the hidden layer:

NTW = 4xz + 4zz + 4z + yz + y (11)
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where:

- 4xz: the connection weights between the input layer and the hidden layer;
- 4zz: the hidden layer’s recursive weights;
- 4z: the hidden layer’s bias;
- yz: the connection weights between the hidden layer and the output layer;
- y: the output layer’s bias.

Choosing ideal neural network settings can frequently imply the difference between
mediocre and peak performance. However, there is limited information in the literature on
the selection of different neural network parameters x, y, and z; it requires the expertise
of professionals.

4.4. Train–Validation–Test dataset

The one-year target variables were divided into three datasets: the first served as
the training set, the second served as the test set, and depending on the length of the
output sequence, random samples drawn from the last part served as the validation
set. So, for the validation, we use cross-validation, which is a popular data resampling
approach for estimating the true forecasting prediction error of models and tuning model
parameters. This technique evaluates the generalization capabilities of prediction models
and prevents over-fitting. It is the process of generating numerous train–test splits from
the training data, which are then applied to adjust the model [32] . k-fold cross-validation
is identical to repeated random sub-sampling, but the sampling is performed in such
a manner that no two test sets overlap. The available learning set is divided into k disjoint
subsets of about equivalent size. Indeed, each time, one of the k subsets is utilised as the
validation/test batch, while the remaining (k−1) subsets are combined to form the training
set. The total efficacy of the model is calculated by averaging the error estimation over all
k trials. Each sample is placed in a validation/test set precisely once and in the training
set (k−1) times [33]. Figure 5 illustrates this process as a popular evaluation mechanism in
machine learning.

kk - 11 2 3 41st iteration

kk - 11 3 42nd iteration

kk - 11 2 43rd iteration

k - 11 2 3 4kth iteration

1

2

3

k

Validation Training

Figure 5. k-fold cross-validation.

We train the LSTM with various architectures for 12-h forecasting of thermal parame-
ters such as CO2, noise, and temperature. As a result, the window size of the input and
output parameters is determined by the time scale of the chosen parameter prediction. We
apply the ADAM optimiser, which is one of the optimisation methods employed in deep
learning. The learning rate is fixed to 0.01 and gradually drops after every 50 epochs. We
train the LSTM with 60, 60, and 100 hidden units for the forecasting of the CO2, the noise,
and the temperature, respectively. The window size of the input and output parameters
depends on the time scale of the load prediction. The validation and training results of
each parameter are illustrated in Figures 6–8.
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Figure 7. Training and validation of the noise data.

4.5. Evaluation Metrics

This study uses the Root Mean Square Error (RMSE) as the loss function and the
Mean Absolute Error (MAE) and the Correlation Coefficient (CC) to evaluate the various
performance measures. These indicators are measurements of the anticipated value’s
departure from the actual data, and they indicate the prediction’s overall inaccuracy. The
corresponding definition of each indicator is given by the following as [34]:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ỹi)2 (12)
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MAE =
∑N

i=1|yi − ỹi|
N

(13)

CC =
∑N

i=1(ỹi − p̄)(yi − ȳi)√
∑N

i=1(ỹi − p̄)2 ∑N
i=1(yi − ȳi)2

(14)

where yi and ỹi represent the real value and the forecasted value at the time t, N denotes
the total time step, and ȳi and p̄ are the average of the real value and the forecasted value,
respectively. The smaller the values of RMSE and MAE, the smaller the deviation of the
projected outcomes from the actual values. A value of CC closer to 1 indicates lower errors
and a more accurate prediction.
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Figure 8. Training and validation of the temperature data.

5. Experimental Results

5.1. Parameters Forecasting

We show in this research a forecast of the thermal characteristics of a smart house
outfitted with various types of sensors. The fundamental architecture of LSTM networks is
predetermined and immutable; each LSTM unit has a vector input of n values, including
the current value of the specified parameters (CO2, noise, and temperature) at time t = 0 as
well as the past values. We create three neural networks with various designs, each one
adapted to the predicting parameter. After 10 min, these neural networks can forecast. We
can anticipate the full period of the required horizon by repeating the process and selecting
the appropriate parameters for these models.

5.2. CO2 Forecasting

In the first experiment, we give the CO2 prediction of a house for 12 h. Figures 9–11
show the predicted results obtained by the LSTM, the GA-LSTM, and the PSO-LSTM
algorithms, respectively. As shown, the predicted results are closer to the real data values
and the RMSE of each technique is quite low, which proves the forecasting performance of
the suggested strategies.
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Figure 9. CO2 forecasting by LSTM.

Figure 10. CO2 forecasting by GA-LSTM.
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Figure 11. CO2 forecasting by PSO-LSTM.

5.3. Noise Forecasting

The second experiment also illustrates the noise prediction results for 12 h.
Figures 12–14 show the findings with the error rate of the LSTM, the GA-LSTM, and
the PSO-LSTM models. It appears that each model’s curve prediction retains the shape of
the real data curve.

Figure 12. Noise forecasting by LSTM.
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Figure 13. Noise forecasting by GA-LSTM.
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Figure 14. Noise forecasting by PSO-LSTM.

5.4. Temperature Forecasting

The third experiment shows the temperature forecasted results for 12 h. Figures 15–17
depict the results with the RMSE value of the LSTM, the GA-LSTM, and the PSO-LSTM
approaches. Likewise, each model’s curve prediction looks to keep the form of the real
data curve.
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Figure 15. Temperature forecasting by LSTM.
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Figure 16. Temperature forecasting by GA-LSTM.
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Figure 17. Temperature forecasting by PSO-LSTM.

5.5. Analysis of Results

This work basically assesses the performance of the suggested model from two angles:
precision and running time. Tables 1–3 provide the various performance measures for
testing predictions on the studied building.

We can see that the implemented approaches produce quite excellent results, and the
predicted findings are precise and dependable.

Tables 1–3 reveal that the two performance metrics, RMSE and MAE, have small
values. These predictions are fairly close and representative to the real data. The correlation
coefficient (CC) is also very close to 1, which proves the high precision of the forecasting
strategies. As indicated in the tables and figures of forecasting results, the simple LSTM
model without optimisation gives the worst results compared with the GA-LSTM and the
PSO-LSTM techniques. We emphasize that the experimental results of the CO2 prediction
show that the GA-LSTM outperforms the PSo-LSTM and the LSTM models with RMSEs of
0.0135, 0.0185, and 0.0281 and CCs of 99.80%, 99.62%, and 99.16% for GA-LSTM, PSO-LSTM,
and LSTM, respectively. For noise and temperature prediction, the performance of the PSO-
LSTM outperforms the GA-LSTM in terms of RMSE and CC. Overall, we have successfully
shown that the proposed optimisation techniques (GA-LSTM and PSO-LSTM networks)
may successfully extract relevant information from noisy human behavior data.

The statistical analysis of the obtained results shows that the proposed model tuned by
the two evolutionary metaheuristic search algorithms (GA and PSO) provides more precise
results than the benchmark LSTM model, whose parameters were established through
limited experience and a discounted number of experiments.

Table 1. Performance criteria of the CO2 prediction.

Algorithms LSTM GA-LSTM PSO-LSTM

RMSE 0.0281 0.0135 0.0185
MAE 0.0102 0.0039 0.0061
CC 0.9916 0.9980 0.9962
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Table 2. Performance criteria of the noise prediction.

Algorithms LSTM GA-LSTM PSO-LSTM

RMSE 0.0405 0.0290 0.0256
MAE 0.0097 0.0070 0.0080
CC 0.9942 0.9970 0.9978

Table 3. Performance criteria of the temperature prediction.

Algorithms LSTM GA-LSTM PSO-LSTM

RMSE 0.0275 0.0243 0.0070
MAE 0.0063 0.0075 0.0017
CC 0.9968 0.9974 0.9997

6. Conclusions

In this work, we have proposed two optimised metaheuristic algorithms based on the
LSTM architecture for dealing with occupancy forecasting in the context of smart buildings.
The GA-LSTM and PSO-LSTM models give very satisfactory prediction results with a high
level of precision and reliability compared with the LSTM forecasting results. The choice of
these two methods (PSO and GA) is based on their reputation in literature. A comparison
shows that the implementation of the two metaheuristic algorithms (GA and PSO) for
the optimal configuration of occupancy forecasting derived an optimal LSTM model that
performs significantly better than the benchmark models, including other machine learning
approaches such as the basic LSTM model. The predicted values have been used to check
the presence of residents and then control real electrical consumption. This was carried
out to prove that the optimised LSTM can decrease power consumption, improve security,
and maintain comfort for the occupants. A potential field for future research would be
to perform thermal parameters forecasting, using recurrent neural networks, for various
construction such as hospitals, hotels, and public establishments. It would be worthwhile
to investigate whether a recurrent neural network can maintain such a high accuracy to
forecast thermal features and room occupancy rates in a smart building. Thus, future
studies will also focus on the deployment and integration of various hybrid optimisation
algorithms in recurrent neural networks such as the LSTM model in order to select the best
architecture, weights, and learning rate in order to achieve greater energy savings in the
building energy management system. As a result, our findings provide a solid foundation
for future research aimed at providing a more accurate assessment of building occupancy.
Nonetheless, the current findings will provide a basis for occupancy prediction, which
might be used to enhance our context-driven approaches for managing active building
systems such as the HVAC, lighting, and shading systems. Again, a forecasting model
for thermal characteristics and room occupancy rates with a low estimation error would
help energy producers in making operational, tactical, and strategic decisions. Finally,
better building load forecasting allows the implementation of the real-time management of
smart buildings.
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