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Sparse Signal Models for Data Augmentation in Deep
Learning ATR

Tushar Agarwal *, Nithin Sugavanam and Emre Ertin

Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA;
sugavanam.3@osu.edu (N.S.); ertin.1@osu.edu (E.E.)
* Correspondence: agarwal.270@osu.edu

Abstract: Automatic target recognition (ATR) algorithms are used to classify a given synthetic
aperture radar (SAR) image into one of the known target classes by using the information gleaned
from a set of training images that are available for each class. Recently, deep learning methods have
been shown to achieve state-of-the-art classification accuracy if abundant training data are available,
especially if they are sampled uniformly over the classes and in their poses. In this paper, we consider
the ATR problem when a limited set of training images are available. We propose a data-augmentation
approach to incorporate SAR domain knowledge and improve the generalization power of a data-
intensive learning algorithm, such as a convolutional neural network (CNN). The proposed data-
augmentation method employs a physics-inspired limited-persistence sparse modeling approach,
which capitalizes on the commonly observed characteristics of wide-angle synthetic aperture radar
(SAR) imagery. Specifically, we fit over-parametrized models of scattering to limited training data,
and use the estimated models to synthesize new images at poses and sub-pixel translations that are
not available in the given data in order to augment the limited training data. We exploit the sparsity
of the scattering centers in the spatial domain and the smoothly varying structure of the scattering
coefficients in the azimuthal domain to solve the ill-posed problem of the over-parametrized model
fitting. The experimental results show that, for the training on the data-starved regions, the proposed
method provides significant gains in the resulting ATR algorithm’s generalization performance.

Keywords: machine learning; data augmentation; automatic target recognition; synthetic aperture
radar

1. Introduction

Synthetic aperture radar (SAR) sensors provide day and night high-resolution imaging
capabilities that are robust to weather and other environmental factors. The SAR sensor
consists of a moving radar platform with a collocated receiver and transmitter that tra-
verses a wide aperture in the azimuth domain, acquiring coherent measurements of scene
reflectivity. The returns for multiple pulses across the synthesized aperture are combined
and coherently processed to produce high-resolution SAR imagery. A SAR imaging system
achieves a high spatial resolution in both the radial direction, termed as range, as well as in
the orthogonal direction, termed as cross-range. The range resolution is a function of the
bandwidth of the signal used in illumination. The cross-range resolution is a function of the
antenna aperture’s size and the persistence of scattering centers [1]. A significant fraction
of the energy in the back-scattered signal from the scene is due to a small set of dominant
scattering centers that are resolved by the SAR sensor. The localization of back-scatter
energy provides a distinct description of the targets of interest [2], such as in the case of
man-made objects such as civilian and military vehicles. This sparsity structure has been
utilized in [3,4] to design features like peak locations and edges that succinctly represent the
scene. In the early works, these hand-crafted features were used in solving the target recog-
nition problem in a statistical framework. Notably, the template-based methods exploited
the geometric structure and variability of these features in the scattering centers in [5,6]
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to distinguish between the different target categories. The target signature of each of the
scattering centers varied with the viewing angle of the sensor platform. Statistical methods
can explicitly model and utilize this low-dimensional manifold structure of the scattering
center descriptors [7,8] for improved decisions, as well as for integrating information across
views [9,10].

However, ATR algorithms based on these hand-crafted features are limited to the in-
formation present in these descriptors, and they lack the generalization ability with respect
to variability in clutter, pose, and noise. With the advent of data-driven algorithms such
as artificial neural networks (ANN) [11], an appropriate feature set and a discriminating
function can be jointly estimated using a unified objective function. Recent advances in
techniques to incorporate the deep hierarchical structures used in ANN [12,13] has led
to the widespread use of these methods to solve inference problems in a diverse set of
application areas. Convolutional neural networks (CNN) in particular have been used as
automatic feature extractors for image data. These methods have also been adopted in
solving the ATR problem when using SAR images [14]. There have been several efforts in
this direction, including the state-of-the-art ATR results in the MSTAR data set in [15]. These
results establish that a CNN could be effective in radar image classification when provided
with sufficient training data. However, this approach of designing ATR algorithms for
new sensors that operate in different bands and elevations with limited training data from
targets of interest is not feasible as the scattering behavior changes substantially as the
wavelength of the operation changes. The major challenge is that neural networks usually
require large data sets to have a good generalization performance. In general, labeled radar
image data are not readily available in abundance unlike other image data sets. In this
paper, we address the scarcity of training data and provide a general method that utilizes a
model-based approach to capture and exploit the underlying scattering phenomenon to
enrich a training data set.

Transfer learning is one of the most effective techniques through which to handle the
availability of limited training data. Transfer learning uses the model parameters, which
are estimated using a similar data set such as Image-net [16], as initialization for solving
the problem of interest, and typically CNNs are used with little to no fine-tuning. There
have been numerous experiments supporting the benefits of transfer learning, including
two seminal papers [17,18]. However, radar images are significantly different from regular
optical images. In particular, SAR works in the wavelength of 1 cm to 10 m, while visible
light has a wavelength of the order of 1 nm. As a result, most surfaces in natural scenes are
rough at visible wavelengths, leading to diffused reflections. In contrast, microwaves from
radar transmitters undergo specular reflections. This difference in scattering behavior leads
to substantially different images in SAR and optical imaging. Since specular reflections
dominate the scattering phenomenon, the images are sensitive to instantaneous factors
like the imaging device’s orientation and background clutter. Therefore, readily available
optical-imagery based deep neural network models like Alex-net and VGG16 [19] are
not suitable for transferring knowledge to the SAR domain. In this paper, we pursue
an alternative strategy for the data augmentation of limited data sets through using a
principled approach that exploits the phenomenology of the RF backscatter data.

Next, we review the relevant research work and outline our contributions in
Sections 1.1 and 1.2, respectively.

1.1. Related Work

Over-fitting is a modeling error that is common to data-driven machine learning
methods when the learned classifier function is too closely aligned to the training data
points and therefore fails to generalize to the data points outside the support of the training
set. The over-fitting problem is exacerbated with smaller training sets. Several methods
have been proposed to reduce over-fitting and to improve the generalization performance.
Typically, the ill-posed problem of fitting an over-parametrized function to data is solved
by using regularizers that impose structure and constraints in the solution space. The norm
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of the model parameters serves as a standard regularizing function. This keeps the pa-
rameter values small with a 2-norm (|| · ||2 called L2 loss) space or sparse with a 1-norm
(|| · ||1 called L1 loss) space. Furthermore, the optimization algorithms, such as stochastic
gradient descent and mirror descent, implicitly induce regularization [20,21]. Dropout,
introduced by Srivastava et al. [22], is another popular method specifically for deep neural
networks. The idea is to randomly switch off certain neurons in the network by multiplying
a Bernoulli random variable with a predefined probability distribution. The overall model
learned is an average of these sub-models, providing improved generalization performance.
Batch normalization is another way through which to improve the generalization perfor-
mance, and was proposed by Ioffe and Szegedy [23]. They proposed normalizing all the
neuron values of the designated layers continuously while training them along with an
adaptive mean and variance that would also be learned as part of the back-propagation
training regime. Finally, the work by Neyshabur et al. [24] established the benefit of over-
parameterizing in implicitly regularizing the optimization problem and in improving the
generalization performance.

Transfer learning is another approach for improving the generalization performance
in the cases where there is a limited availability of data. Pan and Yang [25] provided a
comprehensive overview that illustrated the different applications and performance gains
of transfer learning. For radar data, Huang et al. [26] suggested a promising approach
along this direction by using a large corpus of SAR data to train feature extractors in an
unsupervised manner. Huang et al. [27] recently extended this idea to high-resolution
SAR data.

Much of the recent literature has gravitated towards using CNNs as the automatic
feature extractors for the SAR ATR task, as mentioned earlier. One research direction
has been to improve the classifier of CNNs by cascading CNN feature extraction with
other machine learning algorithms, such as a large-margin softmax classifier in [28] and
an ensemble learning-based classifier called the AdaBoost rotation forest in [29]. Other
researchers have focused on improving ATR performance through multiple views of the
same object as in [30], or by using multiple polarization information as in [31,32]. There is a
great deal of potential in improving ATR performance, especially in challenging scenarios
such as clutter. In such scenarios, polarimetric data and bistatic measurements serve as
an important tool in improving the classification performance, especially in cases of low
sample sizes in the training data. Our phase history model works with complex-valued
data, and we previously extended the model to bistatic measurements in [33]. Another
important research direction has been focused on reducing the space and computation
requirements of CNN-based ATR. To achieve this, depthwise separable convolutions were
used in [34]; in addition, Huffman coding and weight quantization were used in [35],
as well as knowledge distillation in [36,37]. Few other approaches focus on learning a
special type of features. Dong et al. [38] generated an augmented monogenic feature
vector followed by a sparse representation-based classification. In [39], the authors used
hand-designed features with supervised discriminative dictionary learning to perform
SAR ATR. Song et al. used a sparse-representation-based classification (SRC) approach
in [40]. In [41], Huang et al. designed a joint low rank and sparse dictionary to denoise
the radar image while keeping the main texture of the targets. Yu et al. [42] proposed a
combination of Gabor features and the features extracted by neural networks for better
classification performance.

When there is a limited availability of SAR data, there exist several ANN-architecture-
based approaches to improve generalization. Chen et al. [14] restricted the effective degrees
of freedom of a network by using a fully convolutional network. Lin et al. [43] proposed a
convolutional highway network to tackle the problem of limited data availability. In [44],
the authors designed a specialized ResNet architecture that learns effectively even when
the training data set is small. In addition to [26], the idea of semi-supervised learning has
recently received much attention for improving SAR ATR performance in cases of limited
data availability. Yue et al. [45] used a CNN to obtain the class probabilities of unlabeled
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data samples, which was followed by incorporating this knowledge into the classification
loss of ATR via a novel linear discriminant analysis method. In [46], Wang et al. used the
information in unlabeled SAR data to inform a deep classifier by using a self-consistent
augmentation rule, a mixup-based mixture, and weighted loss. Recently, Chen et al. [47]
used an unlabeled data-based consistency criterion, domain adaptation, and top-k loss to
alleviate the requirement of labeled data.

Data augmentation is another example of a regularization strategy that reduces the
generalization error while not affecting the training error [48,49], and is the main focus of
this paper. The main idea is to use domain-specific transformations to augment the original
training data set. J. Ding et al. [50] explored the effectiveness of the conventional transforma-
tions used for optical images, viz. translations, noise addition, and linear interpolation (for
pose synthesis). They reported marginal improvements in classification performance on the
MSTAR data set. Yan [51] used the original training images to generate noisy samples at
different signal-to-noise ratios, multiresolution representations, and as partially occluded
images. In [52], the authors proposed a generative adversarial network (GAN) to generate
synthetic samples for the augmentation of SAR data, but they did not report any signifi-
cant improvements in the error rate of the ATR task. Lewis et al. [53] explored multiple
deep generative models for SAR data augmentation and recommend BicycleGAN after
experimentation. In another effort that used a GAN, Gao et al. [54] used two jointly trained
discriminators with a non-conventional architecture. They further used the trained genera-
tor to augment the base data set and reported significant improvements. Cui et al. [55] used
a Wasserstein GAN, and Sun et al. [56] proposed an attribute-driven angular rotation gener-
ative network to produce synthetic samples for augmentation. Shi et al. [57] used a GAN to
super-resolve samples for data augmentation. None of these deep generative methods used
complex-valued imagery; therefore—unlike the proposed work here—they were unable
to create imagery that was consistent with the frequency support of the imaging system.
Cha et al. [58] used images from a SAR data simulator and refined them using a learned
function from real images. Simple rotations of radar images were considered as a data aug-
mentation method in [59]. In [15], Zhong et al. suggested key ideas for incorporating prior
knowledge in training the model. They added samples that were flipped in the cross-range
dimension with a reversed sign of the azimuthal angle. Such flip-augmentation exploits the
symmetric nature of most objects in the MSTAR data set. They also added a loss that was
auxillary to the primary objective of classification. The authors used the pose prediction
(azimuthal angle) as the secondary objective of the network. They empirically showed that
this helps by adding meaningful constraints to the network learning. Thus, the network
was more informed about the auxiliary confounding factor, improving its generalization
capability. Lv and Liu [60] proposed to extract attributed scattering centers (ASCs) through
the sparse representation algorithm. The synthetic samples for data augmentation were
then reconstructed by selecting a subset of these ASCs and by repeating the procedure.

1.2. Contributions

In this work, we introduce a novel data augmentation method for SAR domains,
following a principled approach that exploits the phenomenology of the RF backscatter
data over the azimuth and frequency domains. This paper is an extension of our previous
work [61] with additional results that include a comparison to other existing techniques
and an ablation study of the components of the proposed technique.

First, we introduce an approach for pose synthesis that models and exploits the lim-
ited persistence of the sparse set of scatterers over the azimuth domain. We assume that
man-made objects comprise a small set of dominant scattering centers. Specifically, we
first transform the image into the polar frequency domain to obtain the samples in the
phase history domain. We then construct a model motivated by the scattering behavior of
canonical reflectors in this phase history domain. The phase history model further decou-
ples the point-spread function associated with the imaging setup. This model captures the
phenomenology of the viewing-angle-dependent anisotropic scattering behavior of man
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made-objects, as well as provides realistic imagery at poses outside the training data set,
with quality that far surpasses previous approaches such as linear interpolation in image
domains [50].

Second, with modeling in the complex valued phase history domain, our algorithm
can create realistic sub-pixel shift augmentations that capture the well-known scintillation
effects in SAR imagery. These sub-pixel shifts are not possible in traditional image domains
that use standard interpolators (linear, cubic, etc.), as the complex-valued interpolation
kernels need to be appropriately designed by taking into account the azimuth and frequency
windows of the sensor. We hypothesize that these two factors are essential for improving
the network’s knowledge about the SAR imaging systems’ underlying physics.

Third, we focus on a state-of-the-art deep learning classifier for SAR ATR [15] using the
MSTAR data set, as well as provide extensive simulation studies to illustrate the learning
performance of different training data set sizes with un-augmented and augmented ap-
proaches to training. Our results show a significant boost in the generalization performance
over both un-augmented and augmentation approaches with the previously suggested
approaches. In particular, for the MSTAR data set when the training data set is reduced by
a factor of 32, the proposed augmentation algorithm reduces the test error by more than
42% when compared to the baseline approach that includes image domain flips and integer
pixel translations.

It is important to note that our data-augmentation-based strategy is generic and
decoupled from the network architectures proposed in other works like [14,43]. Therefore,
the proposed augmentation strategy may yield even further improvements in conjunction
with the methods mentioned above. Our objective here is to demonstrate the benefits of
the proposed data augmentation strategy. Hence, apart from data augmentation, we only
use Zhong et al.’s [15] multi-task learning paradigm.

The rest of the paper is structured as follows. In Sections 3.1 and 3.2, we describe the
data set and network architecture in detail. In Section 2.1, we provide an overview of our
strategy and then describe the details of our pose-synthesis methodology in Section 2.2.
Following those sections, we present the details of the experiments and corresponding
results in Sections 3 and 4, respectively, which provide the empirical evidence for the
effectiveness of the proposed data augmentation method. We then conclude with some
possible directions for future research in Section 5.

2. Model-Based SAR Data Augmentation

An approach to ATR algorithm design is to train a parametric neural network classifier
g, with parameters w ∈ Rdw , that predicts an estimate of output labels Y ∈ RdY for an
input X ∈ CdX , i.e., Ŷ = g(X; w), where dX, dw, and dY are dimensions of X, w, and Y,
respectively. We consider a supervised learning setting, where a labeled training data
set Dtrain = {(Xu, Yu)}Ntrain

u=1 is used to estimate the classifier parameters w, where Ntrain
is the total number of training samples. The training procedure is the minimization of
an appropriate loss function L : (w,D) → R, which is achieved by using an iterative
algorithm like the stochastic gradient descent. Therefore, the learned w∗ is the solution of
the following minimization problem P :

w∗ = P(D) = arg min
w
L(w,D) (1)

Data augmentation involves applying an appropriate transformation, such as TDin →
Dout, to a data set (only using Dtrain for our purposes), and to then expand it to an aug-
mented data set T(Dtrain). We also use a validation data set, Dval = {(Xu, Yu)}Nval

u=1, for
cross-validation during training. Furthermore, we use a test data set Dtest = {(Xu, Yu)}Ntest

u=1
for evaluating g(X; w) in post-training. The evaluation can be conducted using a suit-
able metric M : (w,D) → R, which may be different from the L above. Our aim is
to find T, such that the estimated parameters waug = P(T(Dtrain)) perform better than
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wtrain = P(Dtrain) in terms of the chosen metric, i.e.,M(waug,Dtest) is more desirable than
M(wtrain,Dtest).

2.1. Exploiting SAR Phenomenology for Data Augmentation

Simple approaches to designing transformations T for data augmentation consider
translation invariance and the symmetry of objects around its main axis in order to introduce
discrete pixel shifts and flips along the cross-range dimension. Our augmentation strategy
goes further and uses model-based transformations to improve the network’s knowledge
principally about two confounding factors, the pose as well as the scintillation effects that
occur due to shifts in the range domain. Our method allows the synthesis of new poses in a
close neighborhood of existing poses, based on a sparse modeling of the existing training
data set that exploits the spatial sparsity and the scattering centers’ limited persistence.

An overview of our approach is as follows: for every image in the training data set,
we fit a sparse model in the phase history domain by exploiting SAR phenomenology. This
model is henceforth referred as the PH model. We utilize the continuity of this PH model
in the azimuth domain to extrapolate the phase history measurements and to synthesize
new images in a close neighborhood of the original image. The PH model also allows
for the introduction of arbitrary-valued sub-pixel shifts in both range and cross-range
dimensions to images at both the original and synthesized poses. These fractional shifts
provide information to the network regarding scintillation effects, which further improves
its generalization capability. In the following section, we describe our modeling and pose
synthesis strategy in full detail.

2.2. Modeling and Pose Synthesis Methodology

This section describes the pose synthesis methodology used for data augmentation
when using the PH model. This work builds on our earlier work, which focused on
modeling of the scattering behavior of targets in monostatic and bistatic setups [33,62–68].
We first constructed a model for each image in the training data set and locally extrapolated
the measured images through using the model. We assumed that a SAR sensor that operated
in the spotlight mode was used to create the images (as in the case of the MSTAR data set).
The images were translated from the spatial domain to the Cartesian frequency domain via
the steps described in [69]. Subsequently, we converted the frequency measurements to the
polar coordinates to obtain the phase history measurements described in [70].

We considered a square patch on the ground of side lengths L = 30 m that were centered
around the target. From the geometric theory of diffraction, we assume that a complex
target can be decomposed into a sparse set of scattering centers. The scattering centers are
then assumed to be K point targets, and are described through using {(xk, yk), hk(θ, φ)}K

k=1,
where (xk, yk) ∈ [− L

2 , L
2 ] × [− L

2 , L
2 ] are the spatial coordinates of the point targets, θ is

the azimuthal angle, φ is the angle of elevation of the radar platform, and hk(θ, φ) is the
corresponding scattering coefficients that depend on the viewing angle. The samples of the
received signal after the standard de-chirping procedure are given by

s( fm; θ, φ) =
K

∑
k=1

hk(θ, φ) exp
(
−j4π

fm cos(φ)
c

(xk cos(θ) + yk sin(θ))
)

, (2)

where fm is the illuminating frequencies such that m ∈ [M], M = 2BL
c ; B is the bandwidth of

the transmitted pulse; c is the speed of light; and the notation [M] denotes the enumeration
of natural numbers up till M. We estimated the function hk(θ, φ) ∀ k ∈ [K] from the
receiver samples.

Parametric models for standard reflectors, such as dihedral and trihedral reflectors,
were studied in [71–73]. These models indicate that the reflectivity is a smooth function over
the viewing angle, which is parameterized by the reflector’s dimensions and orientation.
Therefore, we exploited this smoothness to approximate this infinite-dimensional function
through using interpolation strategies [74] with the available set of samples Θ in the angle
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domain. We denote the sampled returns from the scene by the matrix S = NUFFT(X) ∈
CNθ×M, where NUFFT represents the non-uniform Fourier transform. The elements of S

are defined as follows:

sm,i = nm,i +
K

∑
k=1

hk(θi, φ) exp
(
−j4π

fm cos(φ)
c

(xk cos(θi) + yk sin(θi))

)
. (3)

where nm,i represents the measurement noise. In order to solve the estimation problem,
we assume that the function hk has a representation in the basis set denoted by the matrix
Ψ ∈ CNθ×D of a size D. For the MSTAR data set, the elevation angles we worked with
are similar. We assumed that the variation in hk with respect to φ was insignificant. This
assumption lead to the following relation hk(θ; φ) = ∑D

v=1 cv,kψv(θ) + εP. The estimated
phase history matrix was now Ŝ, whose elements were given by

ŝm,i = n̂m,i +
K

∑
k=1

D

∑
v=1

cv,kψv(θi) exp
(
−j4π

fm cos(φ)
c

(xk cos(θi) + yk sin(θi))

)
, (4)

where n̂m,i consists of the measurement noise and the approximation error. To estimate
the coefficients cv,k from the noisy measurements in (4), we discretized the scene with
a resolution of ΔR in the X, Y (range and cross-range, respectively) plane to obtain the
K = N2

R grid points, where NR = 2BL
c is the number of the range bins. Furthermore, we con-

sidered a smooth Gaussian function to perform the noisy interpolation. We partitioned the
sub-aperture 2Δθ into smaller intervals of equal length with a corresponding set containing
the means of the intervals given by {θ̂v}D

v=1, where D = 12, and these were used as the
centroids for the Gaussian interpolating functions. We assumed the width of the Gaussian
function σG as a constant hyper-parameter, whose selection is described in Section 3.4.
Hence, σG is the constant minimum persistence of the scattering center in the azimuth
domain that we wish to detect. The radial basis functions used were

ψv(θ) = exp

⎛
⎝−

(
θ − θ̂v

2σG

)2
⎞
⎠ (5)

The elements of Ŝ were obtained due to the scattering centers located at the discrete
grid points, which are now given by

ŝm,i = n̂m,i +
N2

R

∑
k=1

D

∑
v=1

cv,kψv(θi) exp
(
−j4π

fm cos(φ)
c

(xk cos(θi) + yk sin(θi))

)
. (6)

Here, the discrete grids for (xk, yk) and (θi, fm) are now both known. Let the vectors
containing all corresponding grid points for xk, yk, θi, and fm be referred to as x, y, θ, and f

respectively. The problem now is to find the coefficients cv,k that minimize the error between
Ŝ and S. Let vector ck = [c1,k · · · cD,k]

T . To recover the structured signal h = [h1 · · · hN2
R
],

which represents the scattering coefficient of a sparse scene that has a sparse representation
in an underlying set of functions, we solve the following linear inverse problem via a
sparse-group regularization on ck∀ k ∈ [N2

R].

min
C

⎛
⎝ N2

R

∑
k=1

λ‖ck‖2 +
∥∥S− Ŝ

∥∥
F

⎞
⎠⇐⇒ min

C
J(C, σG) (7)

where C refers to the matrix [c1 · · · cN2
R
], σG is a constant hyper-parameter, and ‖·‖2, ‖·‖F

refer to the l2, Frobenius norms, respectively.

7
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The elements of the recovered model, S∗(θ; f) are now

s∗i,m =
N2

R

∑
k=1

D

∑
v=1

c∗v,kψv(θi) exp
(
−j4π

fm cos(φ)
c

(xk cos(θi) + yk sin(θi))

)
(8)

where c∗v,k are the recovered coefficients. The phase history measurements were converted
back to the image by using overlapping sub-apertures that spanned 2Δθ = 3 degrees in the
azimuth domain, as shown in Figure 1. Here, Δθ is the angular span of the sub-aperture
from the center azimuth. This azimuth span determines the cross-range resolution of the
SAR image. The slant-plane cross-range resolution is given by

ΔCR
slant =

λc

4 sin(ΔΘ)
,

ΔΘ = sin−1

(
λc

4ΔCR
groundcos(φ)

)
.

Each image in the MSTAR data set contains a header that summarizes the imaging
geometry information stored in the Phoenix format. The parameters, such as center-
frequency fc and angle of depression φ, are obtained from the header information stored in
each file. We assume that the cross-range resolution given in the file is on the ground-plane.
The cross-range resolution is given as ΔCR

ground = 0.305. We infer that ΔΘ = 1.51 degrees.
We apply the same Taylor window with zero-padding and then translated it back to the
Cartesian coordinates before applying the Fourier transform to generate the images to
augment the data set.

Figure 1. Pose synthesis using the phase history model. F denotes the Fourier transform operator.
The phase history collected over an azimuth span of 2Δθ = 3◦ was extrapolated by δθ via the model
S∗(θ; f).

3. Experiments

We hypothesize that the underlying scattering mechanism is locally continuous or
persistent in nearby look angles. We exploited this structure to generate realistic SAR
images in the nearby look angles to augment the training data set. We evaluate that this
hypothesis can be supported in the publicly available MSTAR data set, which has been
typically used for evaluating algorithms.

8
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3.1. MSTAR Data Set

One of the motivations for choosing the well-studied MSTAR data set for our ex-
periments is its popularity, which enables us to compare our method with several other
approaches in the literature. Additionally, imaging geometry parameters are provided in
the MSTAR data set, which makes it straightforward to infer the frequency support of the
images. Alternatively, for the data sets that do not provide the parameters, we can infer
the frequency support of the image by applying Fourier transform to the complex-valued
SAR image. The MSTAR data set consists of 10 classes, i.e., tanks (T62 and T72), armored
vehicles (BRDM2, BMP2, BTR60, and BTR70), a rocket launcher (2S1), an air defense unit
(ZSU234), a military truck (ZIL131), and a bulldozer (D7). We illustrate this observation in
Figure 2.

Figure 2. A 128× 128 image chip from the MSTAR data set of a BTR-70 Tank and the correspond-
ing spectral representation that was obtained by applying 2D Fourier transform to extract the
K-space support.

We considered a image chip of BTR70 at the size of a 128× 128 pixel-sized image,
as well as the corresponding spectral content. The support exists on a central region of
100× 100 frequency points. The corners of the square support can now be expressed in
terms of the normalized spatial frequency domain, which is used to compute the K-space
points. The phase history measurements at those K-space points were computed via the
non-uniform Fourier transform [75,76] operator without a loss in generality. Therefore, we
can estimate our model on this normalized domain by sampling in a wedge-shaped region.
The radar platform used in constructing the MSTAR data set acquires the measurements
through using Np = 100 pulses over an aperture of 3 degrees. The phase history mea-
surements obtained in the receiver were converted to images via the sub-aperture-based
method described in [77]. The motion-compensation steps were followed by the application
of a Taylor window to control the side-lobes. The measurements were zero-padded to
obtain an over-sampled image via the Fourier transform. The complete MSTAR data set
used in [15] was highly imbalanced. We replaced the data set used in [15] with a balanced
subset, which is referred to as the standard operating conditions that were considered
in [14,26]. We henceforth denote this subset as the SOC MSTAR data set.

Similar to the existing literature, we used the images at a depression angle of φ = 17◦

for training, while images at φ = 15◦ formed the test set. Similar to [15], we cropped
the images to 64× 64 with the objects in the center. Note that we cropped the images
right before feeding it to the ANN. We performed the modeling and augmentation steps
on the original images. Since our paper’s objective is to investigate the effects of data
augmentation, we worked with much smaller training data sets by artificially reducing the
size of our data set to φ = 17◦. We exponentially sub-sampled by extracting only theR ratio
of the samples from each class, where R ∈ {2−5, 2−4, 2−3, 2−2, 2−1, 20}. We ensured that
the extracted images were uniformly distributed over the [0, 2π] azimuthal angle domain
for each sub-sampling ratio. This sub-sampling strategy is essential for ensuring that the
learning algorithm obtains a complete view of the vehicle’s scattering behavior. We further
selected 15% of the uniformly distributed samples from this uniformly sub-sampled data as
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the validation set, we then utilized the remaining 85% as the new training set. The training
data Dtrain include a flip augmentation along the cross-range domain [15], as well as real-
time translations along both the range and cross-range domains. These translations (in
no. of pixels) are randomly sampled from the set {−6, − 4, − 2, 0, 2, 4, 6} at every
epoch; as such, Dtrain will be henceforth referred to as just the baseline data. We also
included the flip augmentation in the final validation set Dval , and no augmentations were
included in the final test-set Dtest. We formed our T(Dtrain) by performing the proposed
pose augmentation on each radar image in the training data set, as described in Section 2.2.
Additionally, our net transformation T also includes sub-pixel level translations, as well as
real-time pixel-level translations [50] in the range and cross-range domains. We used the
sub-pixel shifts of the 1

2 pixel, which corresponded to an approximately 0.15 m displacement
in the Y-direction (range) as well as in the X-direction (cross-range) of the scene, where each
pixel corresponds to 0.3 m in the range and cross-range domains.

3.2. Network Architecture

Our data augmentation algorithm was decoupled from the network architecture by
realizing the ATR algorithm. For our experiments, we choose the simple CNN network
architecture that was inspired by [15] and which is shown in Figure 3. We made such an
architectural choice because, similar to Zhong and Ettinger [15], we wished to show that
the classification performance of even simple CNN architectures can be improved through
successful regularization through using domain-specific data augmentation for (in our case)
SAR ATR. We modified the network and used batch-normalization layers after the ReLU
activation in the convolutional layers. We deferred the use of dropout in the convolutional
layers since batch normalization regularizes the optimization procedure [78]. After the
last convolutional layer, we flattened out all the feature values and used a fully connected
(FC) layer, which was followed by a dropout layer that was used to obtain the final set of
features. These features were used to estimate class Y1 of the input SAR images via training
that was achieved by using the categorical cross-entropy loss function L1. We further
modified the cosine loss, which is used for pose awareness in [15], to a pair of simpler
losses by using the Y2 = sin(θ) and Y3 = 1A(θ) features, where θ is the azimuthal angle
and 1A is the indicator function over set A = [−π

2 , π
2 ]. The mean-squared-error loss L2 was

used for training the network to estimate Y2 and the binary cross-entropy loss L3 (which is
used for training the network to estimate Y3). These two features uniquely determined the
azimuthal angle, and they remove the need for a cosine distance loss. In our experiments,
while training the model, we found that this modification to the loss function resulted in
improving the convergence of the optimization procedure. The loss function of L to find
the network parameters is now

L(w,D) = ĒD [L1(w, X, Y1) + L2(w, X, Y2) + L3(w, X, Y3)] (9)

L1(w, X, Y1) = −
10

∑
p=1

Y1,p log
(
Ŷ1,p(w, |X|)

)

L2(w, X, Y2) = (Y2 − Ŷ2(w, |X|))2

L3(w, X, Y3) = −Y3 log
(
Ŷ3(w, |X|)

)
− (1−Y3) log

(
1− Ŷ3(w, |X|)

)
where |.| denotes the absolute value, X ∈ C64×64, Y1 ∈ {0, 1}10×1, Y2 ∈ [−1, 1], and Y3 ∈
{0, 1} refer to the complex radar images, the one-hot vector of the 10 classes, sin(θ), and
1A(θ), respectively. ĒD refers to the empirical mean over data set D, and Y1,p is the pth

component of the vector Y1. All the quantities withˆ(hat) are the corresponding estimates
given by the ANN.
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Figure 3. The neural network architecture. The abbreviations used are as follows. Conv is the
convolutional layer followed by the kernel height × width. MP is the max pooling followed by the
pooling size as the height × width. RL, BN, Flat, Drop, and FC are the ReLU, batch normalization,
flattening, dropout and fully-connected layers, respectively. The sizes of the feature maps are
mentioned at the top as height × width × channels.

3.3. Experimental Setup

The experiments were conducted using the network that is described in Section 3.2.
This was used on the data sets described in Section 3.1. This model was trained on a
local machine with a Titan Xp GPU. The Tensorflow (1.10) [79] library was used for its
implementation through its Python API. We used the ReLU activation function everywhere
except for in the final output layers of Ŷ1, Ŷ2, and Ŷ3, where we instead used the Softmax,
Linear, and Sigmoid activations, respectively.

An overview of the processing steps conducted to synthesize the radar images is as
follows: Starting from the complex radar data, as described in Figure 4, we first transformed
the image to a K-space by inverting the transformations applied to the MSTAR data in
order to obtain the phase history representation. Through using the header information
from the MSTAR data set, we determined the discrete grids for (xk, yk) and (θi, fm). Next,
we estimated the model coefficients by solving the optimization problem described in
Equation (7). As a result, we obtained the S∗(θ; f) model that is given by Equation (8). This
model was further used to synthesize new columns of phase history data (or to extend
the θ vector). Consequently, a synthesized image was produced, which was achieved
by the procedure described in Section 2.2 and followed by a transformation of the phase
history data to complex-valued image data. The complete MATLAB code that was used
to perform our proposed augmentations on the MSTAR data set is available at https:
//github.com/SENSE-Lab-OSU/mstar_data_aug (accessed on 11 July 2023).

Figure 4. Overview of the Image Synthesizing Procedure. All boxes with grid lines represent the
matrices of complex values across an (xk, yk) ∀ k ∈ [N2

R] grid, where Cross-range and Range are
labeled, as well as along an (θi, fm) ∀ i ∈ [Nθ ], m ∈ [M] grid, where θ and f are also labeled. The
blue arrows represent the pre-model fitting stage, and the green arrows represent the post-model
fitting stage.

We used the magnitude of the complex-valued radar data as the input X, which is
in agreement with the existing literature for training the network. We normalized all the
input images to the unit norm to reduce some of the undesired effects that occur due to
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the Gaussian kernel during extrapolation. We also removed all of the synthetic images at
poses that were already in the corresponding training set. Then, the optimization problem
in Equation (1) was solved by using the off-the-shelf method, as well as by the Adam
variant of the mini-batch stochastic gradient descent optimizer with a mini-batch size of
64. The training was carried out for many epochs (>400) while using the early-stopping
criterion, and the model was saved for the best moving average validation performance
metric. Although we care about accuracy (i.e., that the percentage of samples are classified
correctly) as a performance metric, the Dval here becomes small, especially for small R
values, thereby saturating the validation accuracy at 100% and thus yielding this metric as
less useful. Instead, we then monitored the minimum classification loss L1 as the validation
performance metric. We reported the percentage error (or misclassification), which was
100 − accuracy, as the test performance results.

3.4. Determining Hyper Parameters

The PH model for each image and the neural network model introduced a set of hyper
parameters. We will now explain our choices for a subset of them and will mention some
others. The neural network’s hyper parameters were kept at the Tensorflow (1.10) library’s
default values unless specified.

The PH model has two main hyper parameters, the σG and δθ. We determined, using a
simple line-search, the optimum σG for every image by minimizing the following equation
over all possible values of it.

σ∗G = arg min
σG

[
min

C
J(C, σG)

]

For determining the appropriate δθ, we chose the heuristic approach for the grid
search. We generated samples of up to 6◦ because the approximation error increases
beyond that. We chose an appropriate δθ by running a grid search over a factor η, such
that δθ = min{6◦, ησ∗G}. This was chosen because the amount of possible extrapolation per
image depends on the corresponding kernel width σ∗G. We ran the training on the smallest
subset of the data set at a sub-sampling ratio of 2−5 for the purpose of searching over a grid
of three values, i.e., η = {1, 2, 3}. We chose η = 3 as it gives the best validation performance.
Although we experimented with η > 3, we found the results were comparable to when
η = 3.

For the neural network model, we set the dropout rate for the last fully connected
layer at 0.2.

4. Results

A scarcity of training data affects the performance of the resulting ATR classifier in two
distinct ways: First, a small training data set interferes with the ability of learning how to
extract informative features from the data. Second, given a set of features, limited training
data results in suboptimal decision boundaries, thereby leading to a poor generalization
performance. We hypothesize that data augmentation techniques primarily improve
the former effect, i.e., it improves the test performance through an enhanced training
of the CNN’s convolutional layers that serve as the feature extractors. Our empirical
results, which are presented below, support this observation. With an adequate feature set,
the classifier can be trained even with small training data sets, and it will still generalize
well. To disentangle the two effects, the convolutional layers of the network were trained
with the augmented training data set, and the classifier layers (after and including the first
FC layer) were trained using the corresponding non-augmented training data set.

For all the approaches, we generated the results for the 6 values ofR that correspond
to the different sub-sampling ratios of the original training data set. All the models have the
same architecture as described in Section 3.2, and they use the same Dtest. The difference
among them is the Dtrain and Dval that are used, as described in Section 3.1. For consistency
in the results, we repeated the process described in Section 3.1 to obtain four different
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Dtrain and Dval for each R (except for R = 2−1 and R = 20, which is where only two
and one such unique data sets were possible, respectively). Moreover, we reported the
mean and standard deviation of the classification performance. The overall augmentation
performance is summarized in Tables 1 and 2, and they are visualized in Figure 5. The bold
numbers in these tables highlight the best performance in respective rows.

Table 1. The test errors that correspond to the analysis plot (Figure 5a).

Sub-Sampling Ratio (R) Baseline Data (B)
Adding Our Sub-Pixel

Shifts (B + S)

Adding Our Poses and
Sub-Pixel Shifts

(B + S + P)
Full-Data Features (F)

20 0.50 {B0} 0.58 {S0} 0.37 {SP0} 0.50 {F0}
2−1 1.44 ± 0.33 {B1} 1.03 ± 0.08 {S1} 0.54 ± 0.00 {SP1} 0.72 ± 0.06 {F1}
2−2 4.21 ± 0.83 {B2} 2.33 ± 0.33 {S2} 1.00 ± 0.34 {SP2} 0.99 ± 0.17 {F2}
2−3 10.99 ± 0.73 {B3} 5.68 ± 0.67 {S3} 3.32 ± 1.31 {SP3} 1.22 ± 0.26 {F3}
2−4 18.78 ± 2.40 {B4} 14.02 ± 0.28 {S4} 7.33 ± 0.54 {SP4} 2.07 ± 0.21 {F4}
2−5 32.38 ± 2.93 {B5} 29.98 ± 2.62 {S5} 18.66 ± 3.22 {SP5} 4.55 ± 0.57 {F5}

Table 2. Test Errors corresponding to the comparative plot (Figure 5b).

Sub-Sampling Ratio (R) Baseline Data (B)
Augmenting with

Naively Rotated Poses
(B + R)

Augmenting with
Linearly Interpolated

Poses (B + L)

Augmenting with Our
Poses and Sub-Pixel

Shifts (B + S + P)

20 0.50 {B0} 0.62 {R0} 0.50 {L0} 0.37 {SP0}
2−1 1.44 ± 0.33 {B1} 1.22 ± 0.19 {R1} 1.22 ± 0.14 {L1} 0.54 ± 0.00 {SP1}
2−2 4.21 ± 0.83 {B2} 4.38 ± 0.72 {R2} 2.56 ± 0.21 {L2} 1.00 ± 0.34 {SP2}
2−3 10.99 ± 0.73 {B3} 10.01 ± 1.72 {R3} 7.26 ± 2.56 {L3} 3.32 ± 1.31 {SP3}
2−4 18.78 ± 2.40 {B4} 19.83 ± 2.21 {R4} 12.99 ± 1.10 {L4} 7.33 ± 0.54 {SP4}
2−5 32.38 ± 2.93 {B5} 32.05 ± 7.58 {R5} 30.79 ± 3.04 {L5} 18.66 ± 3.22 {SP5}

4.1. Ablation Study of the Proposed Approach

We performed an ablation study of the two proposed augmentations, i.e., the sub-
pixel and pose augmentations, by incrementally adding them to the baseline data. We
abbreviated the data sets as follows: the baseline data as B (which includes the image
domain flips and integer pixel translations); the baseline data with proposed sub-pixel
augmentations as B + S; and the baseline data with the proposed sub-pixel and pose
augmentations as B + S + P. Moreover, to provide a lower bound on the test error at all the
sub-sampling ratios of the data-augmentation approaches, we used a genie-aided approach
(non-realizable in practice) by utilizing the full SOC data set to learn the CNN features,
but we still used only the sub-sampled training data-set for training the fully connected
classifier layers. This formed the test-error curve, which is referred to as F (for full data) in
Figure 5a.

The full-data plot in Figure 5a (values are in Table 1) shows the importance of extracting
good quality features, i.e., if we had access to all the poses, we would learn very good
features. Having good features makes classification quite easy, and this is evident from the
low test errors that are found even in cases of very low data availability when learning
the classifier. The sub-sampling had little effect on the generalization performance for
the genie-aided case. The baseline data plot showed a considerable degree of test error,
especially in cases of low training-data availability. This test error was reduced in the B + S
data plot, as well as further reduced in the B + S + P data plot, which shows the effectiveness
of both our strategies in improving the quality of features extracted by the CNN. Note
that the majority of the improvement comes from the pose augmentations. ForR = 2−5,
the proposed augmentations reduced the test error by more than 42% when compared to the
baseline approach (which includes the image domain flips and integer pixel translations).
ForR > 2−2, the model that used both proposed augmentations provided an even better
performance than the genie-aided features. This makes sense because our augmentation
strategy is able to successfully fill in the pose information gaps in the complete SOC data.
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However, there exists a considerable gap between the full data and the B + S + P data plots
in the smaller data regimes ofR < 2−2. So, there still exists room for further improvements
in aiding the network-learning informative features for the data-starved regimes.

The confusion matrices for a sample data set atR = 2−4 are shown in Tables 3 and 4.
These tables clearly show that the performance has considerably improved via the proposed
augmentation of the training data in cases of low data availability. Not only that, but the
performance also improved over all the classes except two. As there were four distinct
sub-sampled data sets at R = 2−4, we picked the one that was a good representative of
the average performance. The bold numbers in these tables highlight the best performing
method for respective classes.

4.2. Comparison with Existing SAR-ATR Models

In comparing our test error with the full SOC MSTAR data set, it can be seen from
Table 5 that our approach is on par with the existing approaches when using all of the
data. We are interested in training the CNN models when data availability is extremely
low, say ≤60 samples per class. To compare the results obtained from our approach to
recent works in extremely low-data regimes, we utilized some results from [26,42]. We
also conducted B + S + P experiments for 18% of data per class. These are also tabulated
in Table 5. It is in this extreme sub-sampling regime where our approach outperforms all
the other existing approaches. The proposed algorithm reduces the test error by more than
46% when compared to the next best approach of the CNN-TL-bypass [26]. We obtained
the lowest test error even when using the smallest portion of the data. We reiterate that
most of the tabulated approaches were decoupled from our data-augmentation approach.
So, in principle, it may be possible to combine our data-augmentation strategy with the
existing approaches in order to obtain even better results. The bold numbers in Table 5
highlight the best performing method in respective columns.

Table 3. Confusion matrix for the classifiers corresponding toR = 2−4 with no augmentation.

Class 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 Error (%)

2S1 196 0 1 0 3 1 40 5 18 10 28.467
BMP2 21 117 2 18 10 0 1 23 3 0 40.0

BRDM2 9 1 256 1 0 1 0 0 6 0 6.569
BTR60 2 2 4 161 10 3 2 4 4 3 17.436
BTR70 21 13 1 23 130 1 0 6 0 1 33.673

D7 0 0 0 0 0 264 1 0 7 2 3.65
T62 5 0 0 2 0 1 234 4 22 5 14.286
T72 5 2 0 3 0 1 16 164 5 0 16.327

ZIL131 1 0 0 0 0 34 4 0 234 1 14.599
ZSU234 0 0 0 0 0 17 11 0 29 217 20.803

Overall 18.639

Table 4. Confusion matrix for the classifier corresponding toR = 2−4 with augmentation.

Class 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 Error (%)

2S1 251 0 0 1 0 1 9 8 4 0 8.394
BMP2 4 169 0 4 0 0 4 12 1 1 13.333

BRDM2 16 8 243 0 0 0 0 0 6 1 11.314
BTR60 2 1 4 172 6 1 3 1 1 4 11.795
BTR70 7 2 1 0 184 0 0 2 0 0 6.122

D7 0 0 0 0 0 263 0 0 0 11 4.015
T62 6 0 0 4 0 1 257 4 1 0 5.861
T72 1 0 0 0 0 0 10 183 0 2 6.633

ZIL131 6 0 0 0 0 8 6 1 244 9 10.949
ZSU234 0 0 0 0 0 0 2 0 0 272 0.73

Overall 7.711
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Table 5. Results from the various SAR-ATR efforts that used the SOC MSTAR data set.

Method Error (%) Using 100% Data Error (%) Using ≤20% Data

SVM (2016) [40] 13.27 47.75 (at 20%)
SRC (2016) [40] 10.24 36.35 (at 20%)

A-ConvNet (2016) [14] 0.87 35.90 (at 20%)
Ensemble DCHUN (2017) [43] 0.91 25.94 (at 20%)

CNN-TL-bypass (2017) [26] 0.91 2.85 (at 18%)
ResNet (2018) [44] 0.33 5.70 (at 20%)
DFFN (2019) [42] 0.17 7.71 (at 20%)

Our Method 0.37 1.53 (at 18%)

Except for the works of [50,59], we did not find reproducible data-augmentation
strategies that explicitly synthesize samples at new poses. As pointed out earlier, our
approach can be used in conjunction with most of the other strategies outlined in Section 1.1.
As such, we conducted a detailed comparison of our pose synthesis approach and sub-pixel
level translations with the pose synthesis methods in [50,59]. We added real-time pixel level
translations for all experiments. For the sake of completion, the simple rotations that are
produced in [59] used the rotation matrix and were followed by appropriate cropping, and
the linearly interpolated poses that were synthesized in [50] used the following equation

Iθc = CRθc

( |θb − θc|Rθa(Iθa) + |θa − θc|Rθb(Iθb)

|θa − θc|+ |θb − θc|

)
(10)

where Rθ(I) denotes the rotation of the radar image I by θ degrees clockwise, CRθ(I)
denotes the same but counter-clockwise, Iθ denotes the radar image at the pose θ, θc is the
desired new pose, and θa and θb are the poses closest to θc in the training data.

For a qualitative evaluation, we illustrated the images that were synthesized from
the T62 tank at θc = 57◦, and the corresponding ground-truth image (which is part of the
Full SOC data) was used for comparison purposes only. We observed in Figure 6b the
synthesized image at θc = 57◦ when using θa = 56◦ and θb = 85◦, and this was achieved by
using a sub-sampled data set withR = 2−4. We note that the dominant scattering centers
in the synthesized image were different compared to the ground-truth image. Next, we
used the proposed model that was estimated for the azimuth angle of 56◦. It is evident from
Figure 6c that the synthesized image from our method captures all the dominant scattering
centers present in the ground truth. Finally, we used the rotation operator to synthesize
at θc = 57◦ when using θ = 56◦. We observed that, even when the rotation is small, the
ground-truth image has a different scattering behavior that is not captured by rotation.
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(c)

Figure 6. Comparison of the radar images synthesized for class T62 at the viewing angle of θc = 57◦

when using different augmentation strategies. (a) Radar image at a viewing angle of θc = 57◦,
which was generated by rotating the closest available in the sub-sampled data set at θa = 56◦

(from [59]). (b) Linear interpolation strategy proposed in [50]. Here, α and β can be inferred from Equa-
tion (10), and the closest poses to θc = 57◦ in the sub-sampled data set were θa = 56◦ and θb = 85◦.
(c) This radar image at the azimuth angle of θa = 56◦ was first approximated using the proposed
set of basis functions in the frequency domain. Measurements from the unobserved viewing angles
were synthesized via the model in the frequency domain, which was used to create the image at the
viewing angle of θc = 57◦.

For the quantitative evaluation, we compared the ATR performance at all sub-sampling
ratios similar to those conducted in the previous Section 4.1. We abbreviated the data sets
as follows: the baseline data as B, the baseline data with simple rotations added (from [59])
as B + R, the baseline data with linearly interpolated poses (from [50]) as B + L, and the
baseline data with proposed sub-pixel and pose augmentations as B + S + P.

The comparison of these is tabulated in Table 2, and it can also be seen in Figure 5b. It
is evident that our approach is significantly better than both simple rotations and linearly
interpolated poses for this CNN-based ATR task. ForR = 2−5, the proposed augmentations
reduced the test error by more than 39% when compared to the next best augmentation
approach of [50].

5. Conclusions and Future Directions

In this paper, we proposed incorporating the domain knowledge of SAR phenomenol-
ogy into a CNN by way of data augmentation. We presented a model-based approach to
data augmentation for the purpose of training the neural network architecture to solve
the ATR problem with limited labeled data. Through extensive simulation studies, we
showed the effectiveness of the augmentation strategies by training a neural network with
the augmented data set that was synthesized from the phase history models extracted
from each available training image. Our results show that the proposed data augmentation
strategy produced a significant improvement in the model’s generalization performance
when compared to the baseline performance over a wide range of sub-sampling ratios.
As presented, the phase history approximation method is only valid in a local neighborhood
of a given azimuth angle. Future work could focus on fitting a single global model to every
class that is jointly derived from all the training images. Such a global model could produce
a diverse set of SAR images over larger pose variations. Since, typically, target image chips
are not perfectly registered and are aligned across different azimuth angles, the global
model fit should incorporate unknown phase and spatial shifts for each image. As part
of future research, we propose developing a network architecture to support a unified
model that can account for these phase errors, and which can synthesize a larger data set to
improve the classifier’s performance further. We also aim to evaluate such augmentations
on more challenging data sets such as the Military Ground Targets Database (MGTD) [80],
the Synthetic and Measured Paired Labeled Experiment (SAMPLE) [81], and the Ship data
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set OpenSARShip (which was obtained from Sentinel-I imagery [82]). Additionally, since
our data-augmentation method creates complex-valued synthetic data, it can potentially be
used to regularize complex-valued neural networks [83,84], and it can be used to improve
their performance for SAR ATR. Moreover, since the currently used Taylor windowing is
sub-optimal, the problem in optimizing the window function that enhances ATR perfor-
mance can be incorporated in the form of a multi-objective optimization—a topic that will
be investigated in our future work.
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Abstract: Traditional models that employ CNNs as encoders do not sufficiently combine high-level
features and low-level features. However, high-level features are rich in semantic information but
lack spatial detail, while low-level features are the opposite. Therefore, the integrated utilization of
multi-level features and the bridging of the gap between them is crucial to promote the accuracy
of semantic segmentation. To address this issue, we presented communicating mutual attention
(CMA) and communicating self-attention (CSA) modules to enhance the interaction and fusion of
different levels of feature maps. On the one hand, CMA aggregates the global context information of
high-level features into low-level features and embeds the spatial detail localization characteristics of
low-level features in high-level features. On the other hand, the CSA module is deployed to integrate
the spatially detailed representation of low-level features into the attention map of high-level features.
We have experimented with the communicating attention network (CANet), a U-net-like network
composed of multiple CMA and CSA modules, on the ISPRS Vaihingen and Potsdam datasets with
mean F1-scores of 89.61% and 92.60%, respectively. The results demonstrate that CANet embodies
superior performance in the semantic segmentation task of remote sensing of images.

Keywords: attention mechanism; remote sensing; semantic segmentation

1. Introduction

As aerospace technology is constantly evolving, the spatial resolution, radiometric
resolution, spectral resolution, and observation frequency of the sensors have been in-
creased. As a result, both the quality and quantity of Earth Observation (EO) data have
significantly improved. Remote sensing images find wide applications in various fields,
including semantic segmentation [1–4], change detection [5,6], target detection [7,8], target
extraction [9], and more. Semantic segmentation of remote sensing images in urban areas
plays a crucial role in generating accurate land use maps [10]. Traditional methods applied
to semantic segmentation based on edges [11] or regions [12], are known for their fast
and efficient processing. However, different objects in urban areas may have the identical
spectral signatures, such as grass and trees, roads and bridges. They are often difficult to
distinguish by traditional methods, which leads to low accuracy in segmentation results.
As a result, this is an obstacle to the widespread application of traditional segmentation
methods. In recent years, there have been significant developments in deep learning tech-
niques [13], and their high flexibility and accuracy have made them widely employed in
semantic segmentation of remote sensing images. In addition, the ability of a convolutional
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neural network (CNN) to capture spatial features and the abstraction characteristics of
object texture, edges, and shape [14] has led to a tremendous improvement in segmentation
accuracy in the semantic segmentation task of remote sensing images [15]. By increasing in
the number of layers in the CNN, the extracted features reach a higher level, characterized
by a larger receptive field and richer semantic information [16]. However, relying solely on
high-level features derived by the CNN for semantic segmentation while neglecting the
geometric representation properties of low-level features results in a lack of spatial details,
thus hindering the improvement of segmentation precision.

The distance from a satellite or UAV platform to an object on the Earth’s surface
is much greater than the distance from an ordinary camera to the photographed object.
There should also be an awareness that both the distance and the viewpoint differ, with an
overview for remotely sensed images and a sideview for close-range images. Therefore,
traditional images and remote sensing images contain variations. They cover a very wide
spatial area and have a larger scale [17]. Moreover, objects in remote sensing images
are relatively smaller compared to conventional images, which makes it more difficult to
access global semantic representational properties. On the one hand, high-level features
have coarse image resolution and lack spatial detail characteristics, which reduces the
capability of the model to segment fine objects. On the other hand, low-level features have
finer resolution and smaller receptive fields, providing greater geometric representation
capability suitable for handling small targets. The discrepancy between the different levels
of features (high and low level) is shown in Figure 1. However, the shallow CNN layers
that produce low-level features lack abstract semantic information and contextual content,
which limits the accuracy of semantic segmentation. In other words, focusing only on
high-level or low-level features is insufficient for the semantic segmentation task of high-
resolution remote sensing in urban areas. Therefore, it is crucial to combine high and
low-level features to reduce the gap between them.

Figure 1. The gap between low-level features and high-level features. (a) is a visualization of low-level
features. (b) is a visualization of high-level features.

Several models have recently been proposed to improve the accuracy of semantic
segmentation models for high-resolution remote sensing images by reducing the gap be-
tween the high-level and low-level feature representation. LANet [18] embedded semantic
information from high-level features into low-level features to strengthen the semantic ref-
erence of low-level features. However, this model does not embed spatial information from
low-level features into high-level features, resulting in the spatial distribution and physical
content of the latter remaining unchanged. Moreover, when extracting the contextual infor-
mation of high-level features, the model barely utilizes local regions to generate channel
attention maps, thus failing to exploit global long-range dependent semantic information.
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Excessive emphasis on local regions leads to ambiguity in the pixel-level classification,
while global contextual information can alleviate this problem [19,20].

We propose a novel communicating attention module to reduce the gap between the
information representation capabilities of high-level and low-level features. The module is
based on the discovery that high-level features are rich in contextual information and low-
level features contain more spatially detailed content, while combining the two allows the
model to have both long-range global modeling and segmentation capability for tiny objects.
To address this challenge, we introduce two novel modules, namely CMA and CSA, to
reduce the difference between high-level and low-level features. The CMA module consists
of two branches, the high-level feature flow and the low-level feature flow, respectively.
The two branches are combined into a loop to aggregate the global semantic information
of high-level features into low-level features, while assigning the spatial information of
low-level features to high-level features, which improves the long-range dependence and
geometric representation of the model. The CSA module incorporates the spatial detail
of low-level features when computing the attention map of high-level features, thereby
avoiding excessive focus on global contextual information. This improves the perception of
spatial details of high-level features and provides a trade-off between capturing global and
local features. In this study, the model was tested using the ISPRS Potsdam and Vaihingen
datasets to ensure the validity of the algorithm we propose.

To summarize, the contributions of this paper are as follows:

(1) To bridge the gap between high-level and low-level features in terms of spatial
distribution and physical content, we introduce two attention modules, CMA and CSA.
These modules enhance the model’s ability to capture fine targets while maintaining
the global semantic modeling capability.

(2) We propose the CANet model for semantic segmentation of high-resolution remote
sensing images. The model improves the accuracy of semantic segmentation in urban
areas by fusing output features of different scales and levels from the CNN in the
encoding stage using the attention mechanism.

2. Related Work

2.1. Semantic Segmentation of Remote Sensing Images

Semantic segmentation of remote sensing images is a hot research theme in the field of
computer vision and remote sensing technology, which aims to segment pixels or regions
in remote sensing images into categories with specific semantic labels. This technique is
of significant value in application scenarios such as land cover classification [21], urban
planning [22], and environmental surveillance [23]. In recent years, remarkable progress has
been achieved in semantic segmentation of remote sensing images with the development
of deep learning techniques.

Deep learning methods, especially convolutional neural networks (CNN), have be-
come the mainstream technique for semantic segmentation of remote sensing images. In
this regard, a typical model is the full convolutional network (FCN) [24], which first applied
CNNs to pixel-level image segmentation. Afterwards, many modified models based on
FCNs came into being. For example, SegNet [25] employs an encoder–decoder structure to
improve segmentation performance, while U-Net [26] achieves accurate edge segmentation
by skip connections.

Some researchers have focused on fusing multiscale information to improve the perfor-
mance of semantic segmentation in remote sensing images. For example, DeepLabV3+ [27]
employed dilated convolution and pyramidal pooling modules to capture multi-scale infor-
mation. In addition, HRNet [28] proposed a high-resolution network that integrates high-
resolution features and multi-scale features to improve segmentation accuracy. DANet [29]
enabled better contextual information acquisition through a self-attention mechanism that
improved the performance of remote sensing image segmentation. Meanwhile, DANet
also introduces spatial and channel attention to further optimize the segmentation results.
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Spatial resolution and spectral resolution are often not available at the same time, so
the number of bands in high-resolution remote sensing images is low, and the capture of
spectral characteristics of features is deficient. The Gaussian-weighting spectral (GWS)
feature and the area shape index (ASI) feature are based on adaptive areas to compensate
for the lack of high spatial resolution images for land cover classification features [30].

2.2. Attention Mechanism

Traditional convolutional neural network models have limitations in handling complex
remote sensing images for semantic segmentation. For example, there are certain barriers
to fully obtaining the content of the image, resulting in low accuracy. To overcome these
obstacles, the attention mechanism is introduced into models for semantic segmentation
tasks of remote sensing images. By adopting the attention mechanism, the model adaptively
adjusts the weights of different features to better capture the important features in remote
sensing images and increase the accuracy and robustness of segmentation. In addition,
the attention mechanism can also reduce the computational complexity and the efficiency
of the algorithm. Therefore, the attention mechanism model becomes one of the essential
techniques in the segmentation field of remote sensing image semantics and is extensively
used in various remote sensing image segmentation tasks.

Attention mechanisms for the areas mentioned above are typically classified into two
categories: spatial attention and channel attention.

The earliest spatial attention model is the Spatial Transformer Network (STNet) [31],
which is a neural network module that can adaptively perform spatial transformations on
the input. Since remote sensing images typically have large scale, high dimensionality and
complex spatial structure, it is not possible for traditional image segmentation methods
to process them effectively. In contrast, STN networks can preprocess the input images
by adaptive spatial transformations to improve the segmentation accuracy. Although the
STN network has many advantages in the field of semantic segmentation of remote sensing
images, it also exhibits some limitations. First, STN networks need a large amount of
training data to learn the transformation parameters, otherwise, the problem of overfitting
may occur. Second, STN networks may not be able to be efficiently handle some complex
transformations (e.g., nonlinear transformations).

Channel attention mechanisms are also widely applied in semantic segmentation of
remote sensing images. The earliest channel attention model is the Squeeze-and-Excitation
Network (SENet) [32]. Specifically, SENet achieves a better feature representation by
calculating the significance of each channel and weighting the channels according to
their importance. However, the limitation of SENet is that it requires a large amount of
computational resources. Therefore, there may be some challenges in practical application.

Several modified models using channel attention mechanisms have been developed,
including CBAM (Convolutional Block Attention Module) [33], ECA-Net (Efficient Channel
Attention Network) [34], and SKNet (Selective Kernel Networks) [35]. Among them,
CBAM is a module that can be embedded into existing deep learning models, and it
contains both the channel attention mechanism and spatial attention mechanism. The
channel attention mechanism is used to adjust the importance of each channel, and it
employs the spatial attention mechanism to adapt the significance of the spatial location.
This combination can improve the capabilities of the model and is more flexible than other
attention mechanism models. ECA-Net is a lightweight model that strengthens the model’s
attention to important characteristics by introducing the ECA module. In addition, SKNet
is a selective convolution-based model. It implements the channel attention mechanism
by controlling the shape of each convolution kernel through selective weight vectors to
enhance and augment the efficiency of the model.

MANet [36] utilizes multiple attention modules to model global long-range infor-
mation and proposes linear complexity attention to solve the problem of operations that
require huge memory and time consumption. UNetFormer [37] performs attention ex-
traction for both global and local information, maintaining a balance between contextual
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and spatial detail information. CHGFNet [38] proposes a co-attention mechanism to fuse
optical and SAR images, and thoroughly explores in depth the complementary relationship
between the two images.

The attention mechanism plays an essential role in the semantic segmentation of
remote sensing images. It can facilitate the model to capture the features of different
regions and channels to promote the performance of the algorithm. In the future, with the
continuous development of deep learning and remote sensing technology, the attention
mechanism will also play a more crucial role in remote sensing image analysis.

2.3. Multi-Scale Feature Fusion

Multi-scale feature fusion is an extensively researched and employed technique in the
field of semantic segmentation. Its primary objective is to integrate feature information
from various scales and aims to enhance the accuracy of segmentation outcomes.

Some established researchers have utilized the traditional image pyramid approach,
where the original image is scaled to different sizes, and the corresponding feature maps
are retrieved and then integrated [39]. Other studies have adopted multiscale CNN models
by introducing feature extraction modules at different scales directly in the network, for
instance, the Pyramid Scene Parsing Network (PSPNet) [40] and DeepLabV3 [41].

Although multi-scale feature combination has been widely implemented in the field
of semantic segmentation of remote sensing images, it still has some limitations and draw-
backs. On the one hand, the conventional image pyramid method requires multiple scaling
and feature abstraction of the original image, which is computationally intensive and prone
to information loss and blurring. On the other hand, introducing multi-scale feature extrac-
tion modules directly into the network can reduce the computational effort and information
loss, but tends to cause problems such as overfitting and a model complexity increase.

Some improvement approaches have been proposed for the issue of multi-scale feature
fusion. For example, some studies have introduced attention mechanisms for adaptively
selecting feature information at different scales [29,42]. Other studies have provided
lightweight network structures based on deeply separable convolutions to reduce model
complexity and computational complexity [43,44].

Building on the previous study, we propose the CMA and CSA modules for fusing
high-level features with low-level features using the attention mechanism. Furthermore,
we combine multiple attention modules to form the CANet model.

3. Materials and Methods

3.1. Approach Overview

To balance the ability to capture global contextual content and local spatial detail
information, we propose the use of the CMA and CSA modules. Multiple CMA modules
are embedded in CANet to reduce the gap between neighboring feature maps, while a CSA
module is used to incorporate spatial geometric information when computing attention
maps for high-level features. The redefined feature maps are then skip-connected to the
decoder to output predicted images.

3.2. Communicating Mutual Attention (CMA)

The communicating mutual attention module includes two branches: high-level
feature flow (HLF) and low-level feature flow (LLF), as shown in Figure 2. The high-
resolution coarse features preserve more spatial and contextual characteristics, while the
low-resolution fine features are rich in semantic characteristics. The balance between
the two flows is essential for semantic segmentation. The LLF extracts the spatial and
contextual information of the low-level features, which is transformed into an attention
map, and then it is combined with the high-level characteristics. At the same time, in
the high-level feature flow, attention extracted from the high-level features is aggregated
with the low-level features. It can be seen that the high-level feature flow forms a closed

27



Remote Sens. 2023, 15, 3619

loop with the low-level feature flow. Therefore, high-level features can communicate with
low-level features in this closed loop.

 

Figure 2. Illustration of Communicating Mutual Attention (CMA).

High-level features Xh ∈ RB×Ch×Hh×Wh and low-level features Xl ∈ RB×Cl×Hl×Wl are
features output from different layers of the backbone network, so they have different shapes.
In order to ensure that the features are the same shape, we have used patch embedding. To
get the patches of low-level features, we first set K = Hl

Hh
and S = Hl

Hh
, where K is the size of

the kernel, S is the size of the stride. Xl is unfolded from C×H×W to CK2×
(

Hl− K
S + 1

)2
,

where
(

Hl− K
S + 1

)2
is equal to Hh. Then, Xl is reshaped to CK2 ×Hh ×Hh. Eventually,

the 1D convolution is used in Xl to ensure that Xl has the same number of channels as Xh.

Xl = conv1×1(reshape(unfold(Xl))) (1)

Both exhaustive and detailed information is crucial for semantic segmentation because
of the complexity of urban situations. This maintains a balance between global context and
spatially detailed information [37]. Thus, we employ self-attention and 2D convolution to
capture the global and local characteristics of low-level features. Features can be extracted
from long-range information by self-attention, which can upgrade the global informa-
tion of features. In order to achieve the above, we will first reshape Xl ∈ RB×Cl×Hh×Wh

into Xl ∈ RB×N×Cl and use the 1D convolution to get the query matrix Q ∈ RB×N×C,
N = Hh ×Wh, per column of the transformation result which is the 1D sequence of feature
channels and each row is the value of a different channel at the same position in the feature
map. Moreover, in the same way it is possible to obtain key matrix K and value matrix V.

Q = reshape(conv1×1(Xl)) (2)

K = reshape(conv1×1(Xl)) (3)

V = reshape(conv1×1(Xl)) (4)

28



Remote Sens. 2023, 15, 3619

We calculate the similarity of every row vector qi ∈ R1×C from Q to the corresponding
elements of other row vectors ki ∈ R1×C from K.

Msimilarity = QKT (5)

By using the softmax function for each row of the similarity matrix, the normalized
similarity weights of the elements at each position of the feature graph can be produced in
relation to all other elements.

Mnormalized = softmax
(

QKT
)

(6)

The normalized similarity weight matrix is the matrix multiplied by V to generate a
matrix of shape N×C. Finally, the shape of this matrix is transformed to C×Hh ×Wh to
obtain the self-attention weight matrix.

Aself = softmax(
QKT

√
d

)V (7)

where d is the channel number of the characteristic graph.
Features with contextual information are generated by adding self-attention weights

to the original feature map.
Aglobal = Aself + Xl (8)

We deploy 2D convolution to obtain partial features. Finally, global features are
aggregated with the local characteristics to generate the attention graph of the low-level
feature stream.

Alocal = relu(batchnorm(conv3×3(Xl))) (9)

Alow to high = conv1×1
(
cat
(
Aglobal, Alocal

))
(10)

Using spatial or channel attention mechanism alone cannot fully extract contextual
features. Therefore, we divided the high-level feature flow into spatial attention and channel
attention in parallel to provide precise context features. Spatial attention is identical to
self-attention in the LLF. Channel attention generally uses global pooling; however, global
pooling cannot capture information about the position of an image in 2D [45]. In addition,
global pooling causes the feature map to lose spatial detailed information. Thus, we employ
two pooling kernels (H, 1) and (1, W) to pool Xh horizontally and vertically to generate
feature descriptors zh and zw.

zh = xavgpool(Xh) (11)

zw = yavgpool(Xh) (12)

The 2D convolution and sigmoid functions are used for zh and zw to obtain attention
in the horizontal and vertical directions.

Ah = sigmoid(conv3×3(zh)) (13)

Aw = sigmoid(conv3×3(zw)) (14)

The spatial attention of Xh is fused with the channel attention and converted to the
same shape as Xl by 1D convolution and upsampling.

Afusion = conv1×1(cat(Aself, AhAwXh)) (15)

Ahigh to low = upsample(conv1×1(Afusion)) (16)

The attention Alow to high and Ahigh to low extracted from the low-level feature stream
and the high-level feature stream is added elementwise to the high-level and low-level
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features extracted by the encoder, respectively, for the purpose of feature communication.
Hence, the rich spatially detailed information of the low-level features is aggregated into
the high-level features. The semantic content is embedded in the low-level features.

Xl = Xl + Ahigh to low (17)

Xh = Xh + Alow to high (18)

3.3. Communicating Self Attention (CSA)

The attention maps for low-level and high-level features are typically computed
separately without considering their interaction. However, the attention map of high-level
features leads to a greater bias toward semantic information and misses the spatial detail
representation of features, which is very unfavorable for semantic segmentation of urban
areas that contain a variety of fine scenes. WiCoNet projects the contextual information
of large area images into small local areas [46]. Consequently, we propose using the CSA
module to improve the discrimination of tiny targets by introducing spatial characteristics
of low-level features in the computation of attention maps of high-level features. Figure 3
shows the details of the CSA.

Figure 3. Proposed Communicating Self Attention (CSA).

We first utilized patch embedding to make the low-level characteristics the identical
shape as the high-level features, similar to the CMA module. In contrast to the calculation
of the self-attention graph in the CMA, the Q matrix in CSA is derived from high-level
features, while the K and V matrices are generated by transforming low-level features.
In the above operation, the weight of spatial information in the attention map can be
strengthened, balancing the attention coefficients of high-level features on contextual
information and spatial location information, which provides sufficient effort to exploit the
low-level features.

Q = reshape(conv1×1(Xh)) (19)

K = reshape(conv1×1(Xl)) (20)

V = reshape(conv1×1(Xl)) (21)

The attention maps generated by the CSA module are added element-wise to the high-
level features. The deployment of residual connections can mitigate network degradation.

Xh = Xh + Aself (22)

3.4. Communicating Attention Network (CANet)

Due to the fact that coarse-resolution high-level features lack rich spatial details and
low-level features lack fine semantic content, both present complementary properties.
Therefore, we propose the use of the CMA module to reduce the difference between the
representation of high-level features and low-level features. The attention map provided
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by high-level features allows high-level features to focus further on contextual features and
reduce the emphasis on spatial features, which is not conducive to improving the semantic
segmentation accuracy of remote sensing images in urban areas. Hence, we designed the
CSA module to incorporate the low-level features as auxiliary information added into the
calculation of the attention graph of the high-level features.

As illustrated in Figure 4, CANet utilizes ResNet50 [16] pre-trained on ImageNet as
the backbone network, and its four output feature maps [X1, X2, X3, X4] correspond to the
output results of the network from shallow to deep layers with low to high feature levels,
respectively. The CMA and CSA modules contain dot-product attention, which is relatively
computationally intensive. Therefore, we employed 1D convolution to reduce the number
of channels of the output feature graph to one-fourth of the original to promote computa-
tional efficiency. We adopted three CMA modules and one CSA module to communicate
information about the feature maps at different levels. The three CMA modules work on
X1 and X2, X2 and X3, and X3 and X4, respectively, where the input feature maps of X2 and
X3 are the original features output by ResNet50 when they are involved in the different
modules. For the purpose of reducing the computational effort, we merely exploit X1 and
X4 in the operations of the CSA module. The feature maps processed by the CMA and
CSA modules are skip connected to the counterpart layers of the decoder. For the decoder
part, the same structure is applied to each layer. First, feature maps with reduced numbers
of channels can be produced by 1D convolution. Then, we use deconvolution to alter
the shape of the feature graph. Finally, 1D convolution is utilized to convert the number
of feature map channels to a specified number. Eventually, the output result of the last
layer of the decoder is upsampled to a similar shape as the input image as the result of
semantic segmentation.

 

Figure 4. Structure of designed CANet.
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The algorithm implementation flow of CANet is demonstrated in Algorithm 1.

Algorithm 1 The algorithm implementation process of CANet (Vaihingen dataset)

Input: I (NIR, R, G, DSM)
Output: P (Prediction results of semantic segmentation)
// Step1: Extracting multi-level feature maps from the encoder

[X1, X2, X3, X4] = ResNet50(I)
// Step2: CMA and CSA performs characteristic aggregation of multi-level features
for i in {1, 2, 3} do

[Xi
refine, Xi+1

refine] = CMAi(Xi, Xi+1)
end

X4
new refine = CSA(X1

refine, X4
refine)

// Step3: Skip connection of refine features to decoders
for i in {1, 2, 3, 4} do

Di = Di + Xi
refine

end

// Step4: Output prediction results
P = Decoder(X1

refine, X2
refine, X3

refine, X4
refine)

end

3.5. Loss Function

In the training phase, we employ cross-entropy loss as a loss function to measure the
difference between the prediction results of CANet and the ground truth data.

Loss = −y log(p)− (1− y) log(1− p) (23)

where p is the prediction result, and y is the ground truth data.

3.6. Dataset

For a more impartial test of the model’s performance, we trained and tested it by
employing the ISPRS Potsdam and Vaihingen datasets.

The Potsdam dataset provides 38 remotely sensed images of urban areas taken by
UAV at high resolution. The images have a spatial resolution of 5 cm and a size of 6000 ×
6000, which contain NIR, red, green, blue, DSM and normalized DSM images. In addition,
each image corresponds to a surface truth image. The dataset contains six classes, which
are impervious surfaces, building, low vegetation, tree, car, and clutter/background. We
employed images numbered 2_13, 2_14, 3_13, 3_14, 4_13, 4_14, 4_15, 5_13, 5_14, 5_15, 6_13,
6_14, 6_15, and 7_13 for testing, images numbered 20_10 for validation, and the remaining
22 images for training.

The Vaihingen dataset consists of 33 remotely sensed images. Similar to the Potsdam
dataset, this remote sensing image was also acquired by aerial photography from a UAV.
Therefore, it has a high spatial resolution (i.e., 9 cm). Within this dataset, each image
provides NIR, red, green, and DSM bands as well as surface truth data. The dataset
comprises the identical classifiable categories as the Potsdam dataset. We utilized images
numbered 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27, 29, 31, 33, 35, and 38 for testing, image
number 30 for validation, and the remaining 15 images for training.

Figure 5 shows images of the entire Potsdam and Vaihingen datasets.

32



Remote Sens. 2023, 15, 3619

Figure 5. Remote sensing images of the area where the dataset is located. (a) is an overview map of
the Potsdam dataset set, (b) is an overview map of the Vaihingen dataset set. The different numbers
are the IDs of the different images in the dataset.

3.7. Data Pre-Processing and Experimental Setting

To reduce the memory consumption and increase the diversity of the data, the original
images are randomly cropped and randomly flipped, and the crop size is 512 × 512. Note
that each original image is cropped by 1000 images to enhance the amount of trainable
data. The images are re-cropped at each epoch. Simultaneously, the probability of random
flipping in all four directions is 25%. Moreover, in the training and testing phases, the input
data are all bands provided by the dataset. In the training phase, we set the initial learning
rate to 0.0002 and selected the cosine annealing strategy for the decay of the learning
rate. Meanwhile, Adam is utilized as the optimizer. All experiments of this study were
accomplished by PyTorch on a NVIDIA Tesla V100 GPU with 16-GB RAM.

3.8. Accuracy Evaluation

We utilized three evaluation metrics to assess the capability of the model, namely,
overall accuracy, F1-score, and mean intersection over union.

OA =
∑N

k=1 TPk

∑N
k=1 TPk + FPk + TNk + FNk

(24)

F1− score = 2× precision× recall
precision + recal

(25)

mIoU =
1
N

N

∑
k=1

TPk
TPk + FPk + TNk

(26)

where TNk, FNk, TPk, FPk are true negative, and false negatives, true positive, false positive,
respectively, and k is the number of categories.

4. Results

4.1. Ablation Study

To evaluate the performance of the constructed CANet as well as the attention modules
CMA and CSA, we performed an ablation study on the Vaihingen dataset. The training
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baseline for the study was an FCN [24] model with ResNet50 as the encoder. Table 1
demonstrates the comparison of the results of the ablation experiment executed on the
Vaihingen dataset.

Table 1. Ablation experiments on the Vaihingen dataset.

Method Imp. Surf. Building Low Veg. Tree Car Mean F1 OA mIoU

FCN [24] 89.05 91.54 79.01 87.10 84.22 86.18 87.0 75.97
FCN + CMA1 91.30 94.69 81.20 88.11 86.50 88.36 89.12 79.44
FCN + CMA2 92.21 94.96 82.29 88.51 86.75 88.95 89.79 80.38
FCN + CMA3 91.35 94.37 81.10 87.87 87.77 88.49 89.0 79.64
FCN + CMA123 91.67 94.58 83.31 88.94 87.84 89.27 89.83 80.83
FCN + CSA 90.82 94.44 80.56 87.95 86.48 88.05 88.80 78.96
CANet 92.49 95.26 83.34 89.18 87.75 89.61 90.33 81.41

Compared to FCN, Mean F1 improved by 1.87%, OA by 1.8% and mIoU by 2.99%
with the addition of merely one CSA module. As can be shown from Table 1, CMA2
achieves better results with the application of barely a single CMA module. Among
them, X1 and X2 are more inclined to contain spatial detail features, while the semantic
information in X3 and X4 is richer, and the gap between the representational information
of high-level features and low-level features is not large. Therefore, the effect of CMA on
feature aggregation is not obvious. On the one hand, the comparison results of Figure 6a–c
indicate that CANet can better segment the targets in the large-impervious surfaces and
low vegetation categories. Meanwhile, for the low vegetation and tree categories with
similar spectral characteristics, CANet can accurately distinguish them by aggregating the
global information and capturing the small semantic feature variances between them. On
the other hand, as illustrated in Figure 6d–e, CANet is very capable of identifying fine
targets (e.g., cars) compared to FCN. In addition, CANet enhances 3.43%, 3.33% and 5.44%
over FCN in Mean F1, OA and mIoU accuracy metrics, respectively. These results indicate
that CANet achieves the bridging of the gap between high-level and low-level feature
information characterization capabilities and physical content through the CMA and CSA
modules, maintaining the ability to aggregate global contextual content while achieving
high-precision extraction of tiny targets.

4.2. Quantitative Comparison of Various Modules

The communicating attention modules CMA and CSA narrow the gap between high-
level features and low-level features by computing the attention map and embedding
geometric detail features into high-level features to enable low-level features to aggregate
semantic information. In other words, the CMA and CSA modules achieve multi-scale
feature fusion through the attention mechanism. Therefore, we compare the mainstream
attention mechanism modules (e.g., SE [32] and CBAM [33]) and multiscale feature fusion
methods (e.g., PPM [40] and ASPP [27]) with the PAM and AEM modules proposed in
LANet [18] in our experiments. The study results are illustrated by Table 2, where a
single utilization of attention or multiscale feature fusion modules achieves only a limited
improvement in accuracy compared to FCN [24]. It is worth noting that although the PAM
and AEM module enables the semantic features of high-level features to be embedded in
low-level features through the attention module, it does not fuse the spatial tiny information
of low-level features into high-level features. Hence, both our proposed CMA and CSA
modules attain better results than other attentional mechanisms and multi-scale feature
fusion modules on both Vaihingen and Potsdam datasets.
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Figure 6. Comparison of ablation experimental results of FCN and CANet. (a–e) are the five regions
in the Vaihingen dataset used to compare the original image, the ground truth image, the prediction
results from FCN and CANet.

Table 2. Quantitative comparison results of multiple modules.

Dataset Method Mean F1 OA mIoU

Vaihingen

FCN [24] 86.18 87.0 75.97
FCN + SE [32] 87.23 89.71 77.89
FCN + CBAM [33] 88.19 89.96 79.61
FCN + PPM [40] 86.47 89.36 76.78
FCN + ASPP [27] 86.77 89.12 77.12
FCN + PAM and AEM [18] 88.09 89.83 -
CANet 89.61 90.33 81.41
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Table 2. Cont.

Dataset Method Mean F1 OA mIoU

Potsdam

FCN [24] 88.05 88.02 81.41
FCN + SE [32] 91.39 89.60 85.38
FCN + CBAM [33] 91.73 89.89 85.65
FCN + PPM [40] 89.98 90.14 81.99
FCN + ASPP [27] 90.86 89.18 84.24
FCN + PAM and AEM [18] 91.95 90.84 -
CANet 92.60 91.44 86.48

4.3. Quantitative Comparison of Various Models

For a more impartial test of the model’s performance, we quantitatively compared
CANet with the current dominant semantic segmentation models. Both PSPNet [40]
and DeepLabV3+ [27] models include a feature pyramid module to extract multi-scale
features. MACUNet [47] and LANet [18] utilize a channel attention module to perform
multi-scale feature interaction and fusion. The comparison results on the Vaihingen and
Potsdam datasets can be seen in Tables 3 and 4. Compared to FCN [24], both PSPNet
and DeepLabV3+ have improved F1-scores, but the acquisition of exhaustive information
by enhancing the receptive field leads to a reduction in segmentation accuracy for small
target objects (e.g., cars). MACUNet and LANet utilize only channel attention, which
leads to a degradation in their ability to capture global semantic information. CANet
maintains global contextual features while enhancing the geometric detail characterization
capability, making it optimal on all three evaluation metrics (i.e., F1-score, OA, mIoU) for
both datasets. It is worth noting that CANet improves the F1-score accuracy by 9.11% over
the DeepLabV3+ in the car category on the Vaihingen dataset, which illustrates the strong
segmentation capability of the proposed model for tiny objects.

Table 3. Quantitative comparison of model accuracy on the Vaihingen dataset.

Method Imp.Surf. Building Low Veg. Tree Car Mean F1 OA mIoU

FCN [24] 89.05 91.54 79.01 87.10 84.22 86.18 87.0 75.97
PSPNet [40] 90.83 94.48 80.51 88.28 84.14 87.65 88.83 78.35
DeepLabV3+ [27] 90.41 94.05 80.27 88.31 78.64 86.34 88.50 76.44
MACUNet [47] 91.66 93.67 80.76 87.78 83.66 87.51 88.80 78.11
LANet [18] 92.41 94.90 82.89 88.92 81.31 88.09 89.83 -
CANet 92.49 95.26 83.34 89.18 87.75 89.61 90.33 81.41

Table 4. Quantitative comparison of model accuracy on the Potsdam dataset.

Method Imp.Surf. Building Low Veg. Tree Car Mean F1 OA mIoU

FCN [24] 92.24 95.35 84.29 83.12 94.53 89.19 88.60 82.06
PSPNet [40] 90.80 95.17 85.76 86.99 91.14 89.97 88.82 81.94
DeepLabV3+ [27] 91.59 96.03 86.09 86.50 94.23 90.59 89.41 83.54
MACUNet [47] 92.64 97.00 86.30 87.49 95.14 91.71 90.36 84.97
LANet [18] 93.05 97.19 87.30 88.04 94.19 91.95 90.84 -
CANet 93.91 97.22 87.59 88.23 96.07 92.60 91.44 86.48

For the purpose of comparing the performance of each model more intuitively, we
visualized their prediction results, in which the contrasting areas are highlighted with
pink boxes. Figure 7. demonstrates the results for local areas in the Vaihingen dataset.
Despite the successful segmentation of cars by each model, there is confusion between
the impervious surfaces category and the car category for all models except CANet. In
addition, CANet outperforms the other models in distinguishing between buildings and
impervious surfaces. The local areas of the Potsdam dataset illustrated in Figure 8 are
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mainly low vegetation and tree categories, with very similar spectral characteristics. PSPNet
and DeepLabV3+ enhance the representation of contextual information by increasing the
receptive field and achieve better results, but the classification results are inferior for the
more mixed location of low vegetation and tree. CANet maintains a balance between global
contextual features and local geometric characterization ability and has better performance
in classifying confusable categories with interleaved distribution.

 

Figure 7. Model comparison visualization results on the Vaihingen datasets. The pink color selects
the area where the contrast between the predictions of the different models is most pronounced.

 

Figure 8. Model comparison visualization results on the Potsdam datasets. The pink color selects the
area where the contrast between the predictions of the different models is most pronounced.
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5. Discussion

5.1. Interaction of High-Level and Low-Level Features

In order to be capable of clearly illustrating the changes in the feature maps before
and after the deployment of CMA and CSA, we visualized them. As demonstrated in
Figure 9, before the utilization of CMA and CSA, the high-level features captured rich
semantic information and the low-level features were more powerful in maintaining spatial
details. However, there is a notable gap between the high-level features and the low-level
features. Therefore, we implemented the interaction between high-level features and
low-level features by reassigning and aggregating different features using CMA and CSA
modules. By using this method, we can see that the gap between features of neighboring
levels is reduced. Meanwhile, after involving the low-level features in the generation of the
attention map of the high-level features through the CSA module, the high-level features
are embedded with spatially detailed information while maintaining the global contextual
contents. It is worth noting that after inserting the CMA and CSA modules into the model,
we achieved a model that does not lose global semantic features but enhances the geometric
representation of the feature maps.

Figure 9. Comparison of multi-level feature maps before and after using the CMA and CSA modules.
Where (a–d) are the feature maps of levels 1–4 before using the attention module. (e–h) are the feature
maps of levels 1–4 after applying the attention module.

5.2. Number of High-Level and Low-Level Feature Cycles

As seen in Figure 2 (In Section 3.2), the high-level feature flow and the low-level
feature flow in the CMA module are combined into one loop. In all the above experiments,
when the high-level features and the low-level features pass through the CMA module,
they do feature interaction merely once. Therefore, to explore the effect of the frequency
of feature interactions on the semantic segmentation accuracy, we conducted experiments
on the Vaihingen dataset with the number of exchanges set to two and three, respectively.
As presented in Table 5, the OA, Mean F1 and mIoU precision metrics exhibit a decreasing
trend as the number of interactions increases. On the one hand, the spatial details in the
low-level features become ambiguous when the number of high-level and low-level feature
interactions increases. On the other hand, the high-level features induce the noise of the
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low-level features, leading to the integrity of the contextual information being destroyed.
Consequently, the best segmentation capability model can be attained only by setting a
reasonable number of feature interactions.

Table 5. Comparison experiment of the number of interactions between high-level features and
low-level features.

Cycle Number Imp.Surf. Building Low Veg. Tree Car Mean F1 OA mIoU

1 92.49 95.26 83.34 89.18 87.75 89.61 90.33 81.41
2 92.41 95.02 82.82 88.91 87.12 89.26 90.07 80.86
3 91.75 94.57 82.54 88.27 86.04 88.64 89.55 79.85

5.3. Computational Complexity of the Algorithm

The time and space complexity of the model is crucial for the large-scale application
and deployment of the algorithm. Therefore, it is necessary to analyze the computational
complexity of the algorithm. The module that occupies the main computational time
and memory in the CMA and CSA modules is the self-attention module, where the time
complexity of computing the matrix product operation of Q ∈ RB×N×C and KT ∈ RB×C×N

is O(CN2), the time complexity of computing softmax(QKT) is O(N2), and the time com-
plexity of computing the matrix product operation of softmax(QKT

√
d
) and V ∈ RB×N×C is

O(CN2). Therefore, the time complexity of the self-attention mechanism module is O(CN2).
In addition, the space complexity of the self-attention mechanism module is O(N2).

6. Conclusions

Features at different levels have different data distributions and information contents.
Therefore, the integration and aggregation of multi-scale features is essential to achieve
accurate semantic segmentation. We propose a novel attention module and CNN-based
neural network (CANet) for semantic segmentation of high-resolution remote sensing
images of urban areas. To reduce the difference in feature characterization ability between
high-level features and low-level features, we designed the CMA and CSA modules to
enable the interaction of different levels of feature maps. We employed CMA to aggregate
the spatially detailed information of low-level features into high-level features and embed
the global semantic information of high-level features into low-level features. To maintain
the balance between global contextual information and spatial characteristics, we utilized
the CSA module to introduce the geometric features of the low-level features into the
attention map computation of the high-level features. The model was tested in a series
of ablation and comparison studies on the ISPRS Vaihingen and Potsdam datasets. The
results (i.e., 89.61% and 92.60% mean F1-score) demonstrate the effectiveness of the method
in the semantic segmentation task of high-resolution remote sensing images in urban areas.
However, the temporal and spatial complexity of our model is high, which is challenging
for large-scale deployment.

In the future, the work will inspire research on the fusion and interaction of features at
different levels. Meanwhile, we will improve the model algorithm to reduce the compu-
tational complexity and we will continue to explore the relationship between multi-scale
features and methods to aggregate global contextual information which further enhances
the capability of the model.
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Abstract: Small-object detection is a challenging task in computer vision due to the limited training
samples and low-quality images. Transfer learning, which transfers the knowledge learned from
a large dataset to a small dataset, is a popular method for improving performance on limited
data. However, we empirically find that due to the dataset discrepancy, directly transferring the
model trained on a general object dataset to small-object datasets obtains inferior performance. In
this paper, we propose TranSDet, a novel approach for effective transfer learning for small-object
detection. Our method adapts a model trained on a general dataset to a small-object-friendly model
by augmenting the training images with diverse smaller resolutions. A dynamic resolution adaptation
scheme is employed to ensure consistent performance on various sizes of objects using meta-learning.
Additionally, the proposed method introduces two network components, an FPN with shifted
feature aggregation and an anchor relation module, which are compatible with transfer learning
and effectively improve small-object detection performance. Extensive experiments on the TT100K,
BUUISE-MO-Lite, and COCO datasets demonstrate that TranSDet achieves significant improvements
compared to existing methods. For example, on the TT100K dataset, TranSDet outperforms the
state-of-the-art method by 8.0% in terms of the mean average precision (mAP) for small-object
detection. On the BUUISE-MO-Lite dataset, TranSDet improves the detection accuracy of RetinaNet
and YOLOv3 by 32.2% and 12.8%, respectively.

Keywords: object detection; transfer learning; dynamic resolution adaptation; small-object detection

1. Introduction

With the application of automatic feature engineering in deep learning methods,
significant progress has been made in object detection tasks in recent years [1–7], achieving
accurate object recognition and localization in multiple scenarios. Existing cutting-edge
object detection methods mainly focus on large objects, whereas small-object detection
remains a challenging task due to the limited training samples and low-quality images.
However, small-object detection is essential in many real-world applications of object
detection. For example, in traffic scenes, the detection of traffic signs, small vehicles, and
pedestrians is crucial for road safety [8–10], whereas in mining scenes, the detection of
small objects such as miners and mining carts plays a positive role in enhancing safety
and production efficiency [11–13]. Therefore, research on methods and technologies for
small-object detection has significant academic and practical value.

In deep learning, the performance of methods is deeply affected by the size of the
training dataset, and models trained on small datasets usually exhibit inferior performance.
A solution to this problem is transfer learning [14–18], which aims to improve performance
on small datasets by initializing the model with weights learned on a large dataset. There-
fore, an intuitive idea for improving small-object detection performance is to adapt transfer
learning to it. However, we empirically found that transferring the model from a large
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general object dataset (e.g., COCO [19]) to the target small-object dataset performs poorly.
As shown in Figure 1, we transferred the Faster R-CNN model trained on COCO to the
TT100K-Lite dataset, and the resulting detection performance AP50 was even worse than
the AP50 of a traditional training strategy without transfer learning. A possible reason for
this counter-intuitive failure is that the proportion of small objects in general object datasets
is smaller than that of medium and large objects. Therefore, the learned weights are less
effective for small objects. We present the distributions of small, medium, and large objects
in popular object detection datasets in Table 1. Small objects [19] are defined as objects
with sizes less than 32 square pixels, whereas large objects are defined as objects with sizes
greater than 96 square pixels. In general object datasets, the proportion of small objects
is low, whereas most objects in small-object datasets are small- and medium-sized. This
discrepancy in data distribution between general and small-object datasets restricts the
effectiveness of transfer learning.
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Figure 1. Comparison of object detection performance of Faster R-CNN using different pretrained
models on the TT100K-Lite dataset (10% proportion). w/o transfer: the standard training strategy
that uses an ILSVRC-pretrained backbone for initialization. COCO: transferring from the model
trained on the COCO dataset. Ours: COCO model adapted with our proposed dynamic resolution
adaptation scheme.

Table 1. Distributions of small, medium, and large objects in popular object detection training datasets.

Dataset Small Objects Medium Objects Large Objects

general
object

datasets

ILSVRC 2012 [20] 1.64% 11.54% 86.81%
VOC 2007 [21] 11.20% 34.52% 54.28%
VOC 2012 [21] 9.54% 27.59% 62.89%

COCO 2017 [19] 31.13% 34.90% 33.97%

small
object

datasets

TT100K 2016 [22] 41.28% 51.66% 7.06%
BUUISE-MO [11] 44.09% 33.79% 22.12%

SODA-D [23] 48.20% 28.18% 23.62%
Tiny Person [24] 85.80% 11.54% 2.66%

This paper presents TranSDet, a novel method for effective transfer learning for small-
object detection, which aims to reduce the transfer discrepancy from a general object dataset
to a small-object dataset by incorporating an additional dynamic resolution adaptation
scheme. Specifically, we propose to adapt a model trained on a general dataset to a small-
object-friendly model by augmenting the training images in the general dataset with diverse
smaller resolutions. This gradually shifts the weights toward small objects without losing
the discriminative information in the original model. The diverse resolutions are used to
ensure consistent performance on various sizes of objects, and we introduce a meta-learning
scheme to balance the learning of resolutions.

Another mainstream solution for improving small-object detection performance is to
enhance the model architecture. For instance, FPN [25] connects features at different scales
to enhance the semantic information of shallower features with deeper ones. Carafe [26]
proposes learning image upsample kernels for better fusion of features. FPG [27] fur-
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ther improves the feature pyramid with fused multi-directional lateral connections, and
MFR-CNN [28] combines global information with locally extracted multi-scale features
to augment small-object features. However, most of the existing works require learning
additional network modules, which inevitably disturb the pretrained features in transfer
learning and make them incompatible with transfer learning. In this paper, we propose two
components for small-object detection networks that are effective, efficient, and transfer
learning-friendly: (1) SFA-FPN. We state that the traditional upsample operations in FPN
perturb the features on shallower layers by interpolating pixels to their neighboring pixels,
resulting in the imprecise recognition and localization of small objects. To address this
problem, we propose an SAF-FPN module that uses shifted feature aggregation to shift
the upsampled pixels to their correct positions. (2) Anchor relation module. We introduce
an anchor relation module that captures the relationship between each object anchor with
transformer blocks to enhance the anchor features. By combining both network compo-
nents with the proposed dynamic resolution adaptation transfer learning, our TranSDet
can achieve further improvements.

The contributions of this work can be summarized as follows:

(1) We propose a meta-learning-based dynamic resolution adaptation scheme for transfer
learning that effectively improves the performance of transfer learning in small-
object detection.

(2) We propose two network components, an SFA-FPN and an anchor relation module,
which are compatible with transfer learning and effectively improve small-object
detection performance.

(3) We conduct extensive experiments on the TT100K [22], BUUISE-MO-Lite [11], and
COCO [19] datasets. The results demonstrate that our method, TranSDet, achieves
significant improvements compared to existing methods. For example, on the TT100K-
Lite dataset, TranSDet improves the detection accuracy of Faster R-CNN and RetinaNet
by 8.0% and 22.7%, respectively. On the BUUISE-MO-Lite dataset, TranSDet improves
the detection accuracy of RetinaNet and YOLOv3 by 32.2% and 12.8%, respectively,
compared to the baseline models. These results suggest that TranSDet is an effective
method for improving small-object detection accuracy using transfer learning.

2. Related Works

2.1. Small-Object Detection

In recent years, deep learning has gained increasing attention and has been successfully
applied in many practical applications, leading to significant progress in object detection.
However, the majority of prior efforts have been tuned for large-object detection, leaving
limited experience and knowledge for small-object detection [29]. Detecting small objects
in computer vision remains a challenging task [30]. Firstly, the features generated by basic
CNNs lack the information needed for small-object detection. Secondly, small objects lack
appearance information and have more location possibilities, requiring higher precision
for accurate localization. Thirdly, context information is lacking, making it difficult to
differentiate small objects from their surroundings. Fourthly, there is an imbalance of
foreground and background training examples, and an insufficient number of positive
training examples for small objects, making classification difficult. Even state-of-the-art
networks exhibit significant performance gaps between the detection of small- and normal-
sized objects. For example, DyHead [31] achieved only a 28.3% mean average precision
(mAP) for small objects on the COCO test set, significantly lagging behind medium (50.3%)
and large (57.5%) objects.

For small-object detection, low-level features of convolutional neural networks are
often more effective than high-level features [32]. To fully utilize the semantic infor-
mation from high-level features and the fine-grained features from low-level features,
researchers have employed various methods to improve the detection accuracy of small
objects. For example, SSD [3] increases the depth of the feature extraction network and
uses a dense connection structure to improve small-object detection accuracy. FPN [25]
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connects feature maps of different scales from top to bottom to enhance the features at
each scale. YOLOv3 [33] detects small, medium, and large objects on three independent
feature maps of different scales. Carafe [26] proposes learning image upsample kernels
instead of traditional interpolation operations, achieving better fusion quality. FPG [27]
improves the feature pyramid with fused multi-directional lateral connections. PANet [34]
enhances the entire feature hierarchy by using accurate localization signals in the lower
layers via a bottom-up pathway. MFR-CNN [28] combines global information with locally
extracted multi-scale features, improving detection accuracy for small objects and severely
occluded objects in traffic scenes. SODNet [35] enhances small-object detection accuracy
with a spatial parallel convolution module, split-fusion sub-module, and fast multi-scale
fusion module, achieving high accuracy and real-time performance on multiple benchmark
datasets. FE-CenterNet [36] enhances small-object detection accuracy with an attention
mechanism, feature enhancements, and an anchor-free architecture, achieving a 7.2% higher
AP metric with a 1.3 FPS decrease. SRODNet [8] improves vehicular detection accuracy
by modifying the residual block in the super-resolution module and optimizing it jointly
with YOLOv5. DetectFormer [9] incorporates a ClassDecoder and global information,
with data augmentation and an attention mechanism in the backbone network, to enhance
category sensitivity and real-time detection performance for traffic scenes. AMMFN [37]
enhances small-object detection accuracy on remote sensing images with multi-scale fea-
ture fusion, attention mechanisms, and a normalized Wasserstein distance and generalized
intersection-over-union location regression loss function. FusionPillars [38] utilizes the
Set-Abstraction-Self (SAS) fusion module and the Pseudo-View-Cross (PVC) fusion module
to fuse multisensor data for 3D object detection, resulting in enhanced detection precision
and performance in detecting smaller objects.

There is another direct solution for reducing the resolution of the targets by increasing
the size of input images, which enables the acquisition of high-resolution feature maps.
MS-CNN [39] significantly improves the detection performance of small objects by adding
an upsampling layer to the feature maps obtained by the deconvolutional layer. STDnet [40]
employs a visual attention mechanism to select the most promising regions and discards
the rest of the input image, thereby preserving high-resolution feature maps in deeper
layers. Cascade R-CNN++ [41] employs an ensemble strategy, a modified loss function, and
enhanced bounding box regression to effectively detect small objects in multi-resolution
remote sensing images, outperforming previous methods. Unfortunately, these deep
learning-based object detection algorithms strongly rely on massive training data, and they
often perform poorly in situations with small samples.

2.2. Transfer Learning in Object Detection

Deep learning algorithms attempt to learn high-level features from massive amounts
of data, which allows deep learning to go beyond traditional machine learning. However,
collecting data is complex and expensive, especially in specific domains where it is very
difficult to construct large-scale, high-quality datasets with annotations. Transfer learning
relaxes the assumption that training data must be independent and identically distributed
from test data, making it a better choice to use transfer learning to solve the problem of
few-shot object detection.

Deep transfer learning is the study of how to utilize knowledge from other domains
through deep neural networks. With the wide application of deep neural networks in
various fields, a large number of deep transfer learning methods have been proposed.
For example, Redmon et al. [42] jointly trained large classification and smaller detection
datasets, allowing feature transfer between tasks to boost small-object detection accuracy.
Wang et al. [43] revealed that fine-tuning only the final layer of the object detector on a
balanced subset while keeping the rest of the model fixed, significantly improves detection
accuracy. Liang et al. [44] introduced a transfer learning method utilizing residual thought
and dilated convolutions. The method is initialized with large-scale datasets and aims
to address issues such as low image resolution and partial occlusions. Wang et al. [45]
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presented a deep transfer learning model using a modified ResNet-50 model and scale
feature learners for bearing-fault diagnosis, resulting in a reliable and generalizable model.
Loey et al. [46] proposed a hybrid deep transfer learning model using Resnet50 for feature
extraction and ensemble algorithms, achieving up to 100% accuracy in face-mask detection
on three datasets. Tang et al. [47] actively queried labels for the bounding boxes of source
images using informativeness and transferability criteria to improve the target model with
cost-effective supervision from source data. Sun et al. [48] utilized contrastive learning to
train a proposal encoder, transferring knowledge from large datasets to few-shot target
detection tasks, thereby enhancing model performance. Zhu et al. [49] enhanced few-shot
target detection by introducing a semantic relation reasoning module. Kaul et al. [50]
achieved comparable accuracy to traditional methods in few-shot scenarios by rapidly
adapting to target categories and backgrounds through labeling, verification, and correction.
Yan et al. [51] proposed an improved Faster R-CNN for tailings pond detection using a
step-by-step transfer learning approach and increased inputs to four multispectral bands,
resulting in more precise detection and a higher recall rate.

However, most existing methods focus on transfer learning between datasets of similar
scales, with limited work considering the transfer of a model trained on large, general
datasets to small-object, few-shot datasets. We observed that the aforementioned ap-
proaches underperformed in this context, leading us to propose a novel transfer learning
method tailored for small-object detection.

3. Methodology

In this section, we formulate our proposed method TranSDet, which consists of two
main components: (1) We propose a dynamic resolution adaptation scheme to better transfer
the model trained on a normal dataset to a small-object detection dataset. (2) We propose a
new small-object detection module to enhance small-object detection performance without
affecting transfer learning efficacy.

3.1. Dynamic Resolution Adaptation Transfer Learning

We first review traditional transfer learning methods on object detection [43]. As illus-
trated in Figure 2, to improve object detection performance on a few-shot dataset, current
transfer learning methods aim to first train a model on a large and general dataset (stage I),
and then transfer the learned weights to the target few-shot dataset (stage III). By adopting
this simple two-stage learning strategy, a model initialized with a pretrained model on a
large dataset can obtain discriminative features on both foreground-background classifica-
tion and object classification, thereby improving its generalization on few-shot datasets.

However, most methods are designed to transfer knowledge from a general dataset
to another general few-shot dataset, whereas for a small-object few-shot dataset, we have
empirically found it difficult to achieve significant transfer performance compared to a
normal few-shot dataset, as shown in Figure 1. In this paper, we regard the task of solving
the dataset gap in object sizes as an adaptation task, which encourages the model trained
on general datasets to adapt to small-object detection datasets. As a result, we propose a
meta-learning-based dynamic resolution adaptation transfer (DRAT) learning scheme to
efficiently and effectively adapt the pretrained general model to a small-object-friendly
model. As shown in Figure 2, we introduce an additional stage (stage II) to adjust the
pretrained model using DRAT, and then transfer the adjusted model to the target dataset.

The pretrained model on a general dataset is trained with only a small proportion of
small objects. To increase its generalization for small objects, we aim to resize the input
images to a small resolution, so that the medium and large objects in the original resolution
become small objects in the small resolution. Meanwhile, considering that the object sizes
in our target dataset are not identical, we propose to fine-tune the pretrained model with
multiple resolutions to allow it to adapt well to all object sizes.
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Figure 2. Framework of our proposed dynamic resolution adaptation transfer (DRAT) learning.
Conventional transfer learning methods directly use the model pretrained on a base dataset to
fine-tune the target few-shot dataset (stage I and stage III). We propose a dynamic resolution adapta-
tion (stage II) to adapt the pretrained model to a small-object detection task and improve transfer
learning performance.

Formally, given a set of resolutionsR and a modelM with pretrained weights θpre on
a general dataset, our objective is to learn a model that generalizes well to all resolutions in
R and adapts effectively to the new small-object dataset, i.e.,

θ∗ = arg min
θ

E
Ri∈R

L(D,Ri,M), (1)

where D denotes the dataset and L is the loss function. To solve the above meta-learning
problem, we adopt the widely-used MAML (Model-Agnostic Meta-Learning) model [52],
which is model-agnostic and applicable to any model trained with gradient descent. The
iterative learning strategy of MAML is summarized in Algorithm 1. At each training
iteration, our DRAT performs (1) An inner update: for each resolutionRi in the resolution
setR, the parameters θ′i are updated from the generic parameter θ by sampling and training
on a mini-batch of images Xi at that resolution, i.e.,

θ′i = θ − α∇θLRi (M(θ; Xi)), (2)

where α denotes the step size for the inner update. (2) An outer update: the generic parameter
θ is updated through gradient descent, where the meta-loss is the summation of losses
across all meta-tasks (resolutions), i.e.,

θnew = θ − β∇θ ∑
Ri∈R

LRi (M(θ′i ; Xi)). (3)

The updated generic parameter θnew is then used for the next iteration. When the training
is complete, the generic parameter becomes the final learned parameter of the model, and
the model that adapts well to all resolutions is utilized for transferring to the small-object
detection dataset. Note that for the consideration of training efficiency, we use the first-
order approximation in MAML, which discards the production of the Hessian matrix and
has a similar training speed to traditional training in detection.
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Algorithm 1 Dynamic resolution adaptation meta-learning

Require: Adapting resolution setR, modelM, dataset D, training loss L.
Require: Meta-learning step sizes of inner update and outer update α and β.

Initialize modelM with pretrained weights θ ← θpre;
while training not complete do

for allRi ∈ R do
Sample a batch of images Xi and resize toRi;
Evaluate ∇θLRi (M(θ; Xi));
Compute adapted weights using gradient descent:
θ′i = θ − α∇θLRi (M(θ; Xi));

end for
Update θ ← θ − β∇θ ∑Ri∈R LRi (M(θ′i ; Xi));

end while
return Adapted modelM with weights θ.

3.2. Enhanced Small-Object Detection for Transfer Learning

In order to enhance the performance of small-object detection modules, previous
works usually add larger feature maps to the FPN [53], enhance the local information of
shallower feature maps [54], and introduce new feature fusion strategies to the FPN [55].
Nevertheless, these methods usually require new network modules, which introduce new
learnable parameters and significantly change the output features of the FPN. Note that for
few-shot small-object detection, we transfer a pretrained model to a few-shot dataset, where
the pretrained model is trained with a normal architecture designed for normal datasets.
Directly injecting existing learnable and randomly initialized modules into the pretrained
model would significantly change the semantic information present in the original features,
leading to catastrophic forgetting of the pretrained knowledge.

In this paper, we propose a new FPN with a shifted feature aggregation (SFA-FPN)
module and an anchor relation module to enhance small-object detection performance
without disturbing the semantic information in the original model.

3.2.1. FPN with Shifted Feature Aggregation (SFA-FPN)

In a conventional FPN, the features at different scales are connected sequentially, and
the feature map with a lower resolution is upsampled using linear interpolation to one
with a higher resolution to perform a summation with its previous feature map. However,
this naïve upsample interpolation can perturb the high-resolution feature map by assigning
non-associated features to multiple pixels, as shown in Figure 3. As a result, the high-
resolution feature maps, which are important for detecting small objects, are significantly
polluted by low-resolution ones, leading to inferior performance.

Figure 3. Comparisons of upsampling effects on different scales of images. We use a real detection
image (top) and a simple curved line (bottom) for illustrations. The pixels are significantly polluted
by their neighboring salient pixels when the stride is large.

In this paper, we aim to solve the above problem by learning to interpolate low-
resolution features into high-resolution ones. Unlike previous methods that change the
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output features using learnable interpolation functions or additional convolutional layers,
we propose a simple yet effective approach that involves shifting and aggregating pixels
without changing their feature distributions. Specifically, as shown in Figure 4, for each
pixel in an interpolated feature map F ∈ RC×2H×2W with a 2× upsample ratio, where C, W,
and H denote the channels, width, and height of the feature map, respectively, we first shift
it along eight directions to obtain the shifted features. All nine features F(s) ∈ R9×C×2H×2W

(including the original one) represent the possible true positions of the pixel. Then, we
introduce a simple convolution module to predict the weights W ∈ R9×2H×2W for the nine
feature maps by concatenating the feature map F with the feature map from its previous
stage, which denotes the probabilities of the pixels being in the correct position. In other
words, if a pixel in the interpolated feature map is not in the correct position, it should
be discarded and has a weight of 0, whereas the pixel with the correct position should
have a weight of 1. Multiplying the weights with the shifted feature maps and performing
summation on the weighted feature maps yields our refined feature map F(r) ∈ RC×2H×2W ,
i.e.,

F(r) =
9

∑
i=1

Wi � F(s)
i , (4)

where � denotes the Hadamard product, and summation is performed element-wise in the
first dimension (dimension C).
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Module
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Figure 4. FPN with shifted feature aggregation.

After the shifted feature aggregation, we also adopt a channel attention module based
on an SE module [56] to select and enhance the aggregated feature map F(r). Specifically,
as illustrated in Figure 5, the module first computes the global image features on channels
by averaging across the spatial axes. Then, a squeeze-and-excitation structure with a
reduction convolution, followed by an activation function and an expansion convolution,
is introduced to extract the features and reduce the computational cost. Finally, we use
a convolution layer to predict the attention weights of each channel and multiply these
weights onto the refined feature map. This channel attention module adaptively assigns
larger weights to valuable channels and smaller weights to noisy channels, helping us
further reduce the disturbances caused by fusing two feature maps.
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Figure 5. Channel attention module.

3.2.2. Anchor Relation Module

The small objects in images are usually blurred and low resolution, and thus the
anchors of small objects are not as discriminating as the normal anchors of larger objects. In
this paper, to enhance the region-of-interest (RoI) features of small objects, we propose an
anchor relation module to model the relations of different anchors and improve the anchor
features with the related anchors. The motivation behind this module is that for recognizing
the object in one anchor, the content in other anchors can benefit the recognition through
their relations, e.g., (1) similar objects with better image quality; (2) different parts of an
object; (3) dependencies between objects (for instance, in mining scenarios, safety helmets
co-occur with workers).

Our relation module leverages transformer blocks [57] to effectively model the re-
lations between anchors. Specifically, given the input anchor features A ∈ RN×CA and
their coordinates P ∈ RN×4, where N and CA denote the number of anchors in an image
and the channels of an anchor, and each coordinate contains the positions (x, y) of the
top-left and bottom-right points, we first bind the positional information to each anchor
by adding the positional encoding to the anchor features. Following DETR [58], we gen-
eralize the positional encoding of Transformer to the 2D image scenario. For an anchor
with normalized coordinates (x0, y0, x1, y1) ∈ [0, 1]4, its positional encoding is defined as
P = [PE(x0) : PE(y0) : PE(x1) : PE(y1)], where [:] denotes concatenation and the function
PE is formulated as

PE(a)2i = sin(a/10, 0002i/D)

PE(a)2i+1 = cos(a/10, 0002i/D)
(5)

where D = CA/4 is the dimensions of PE. Then, the anchor features with positional
encoding added are fed into a Transformer encoder to extract the relation features of the
anchors. We use the output features of the encoder as the input features of the prediction
heads (classification head and regression head) of the model.

The overall architecture of the anchor relation module is illustrated in Figure 6. Our
encoder is stacked with L (L = 2 in our experiments) transformer blocks. With an input
sequence of features I = A + P, each transformer block computes it with a multi-head
self-attention module and a multi-layer perception module. (1) Multi-head self-attention
(MHSA): MHSA measures the similarities between each pair of features and then combines
the features to obtain the output features based on the attention scores. Formally, with
I ∈ RN×CA , the output OA of MHSA is computed as

OA := Attention(Iq, Ik, Iv) = so f tmax(Iq IT
k )Iv, (6)

where Iq, Ik, Iv are produced by the Q, K, V projections of I, respectively. Then, OA is
fed into a multi-layer perception (also referred to as feed-forward network (FFN)), which
consists of two fully-connected (FC) layers with an adjunct activation function, i.e.,

OE = FC(Act(FC(OA))). (7)
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The output of the last transformer block is then passed to the regression head and
classification head of the detection model to generate the predictions.
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Figure 6. The architecture of the anchor relation module.

The overall network structure of TranSDet is illustrated in Figure 7. It contains shifted
feature aggregation (SFA) and channel attention (CA) modules in the FPN and an anchor
relation (AR) module before the prediction heads.
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Figure 7. TranSDet network structure.

4. Experiments

4.1. Datasets and Evaluation Metrics

We chose the COCO dataset as the base dataset for this study, which is a widely used
benchmark dataset in the field of object detection. Released by Microsoft in 2014, it contains
over 330,000 well-labeled images of common objects from 80 different categories, with
multiple objects in each image. Compared with VOC and ILSVRC (ImageNet), COCO
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contains smaller objects with a denser distribution, making it more similar to real-world
scenarios. COCO has become the standard dataset for object detection.

For the novel datasets, we chose the TT100K [22] and BUUISE-MO datasets [11].
TT100K is a dataset for traffic sign detection and classification, whereas BUUISE-MO is a
mining object detection dataset.

The evaluation metric used to assess the model detection precision in this paper was
the average precision (AP). We used the AP50, APS, APM, and APL to evaluate the detection
capabilities of objects of different sizes on the TT100K and BUUISE-MO datasets. Among
them, AP50 represents the average precision when the intersection over union (IoU) is
greater than or equal to 0.5, and APS, APM, and APL represent the average precision
of small, medium, and large objects, respectively. For the COCO dataset, we report the
standard AP, AP50, AP75, APS, APM, and APL. We ran all the methods five times with
different seeds and present the mean and the standard deviation as the final scores.

4.2. Models and Training Strategies

Our experiments were conducted on a computer equipped with an Intel Core i9-7900X
CPU (3.3G) and an NVIDIA TITAN V GPU (12G). We used the MMDetection deep learning
framework [59] with the default epoch value for the training process. We compared three
object detection models: Faster R-CNN (two-stage), RetinaNet (one-stage), and YOLOv3
(efficient). Note that we only adopted SFA-FPN in RetinaNet and YOLOv3, since these
networks do not contain RoI features needed for leveraging the anchor relation module. For
the training strategies, we trained the models using an SGD optimizer with a momentum of
0.9 and a weight decay of 10−4. A step learning rate schedule, which decayed the learning
rate by a factor of 0.1 at the 8th and 11th epochs, was adopted with an initial value of 0.02.
The training used standard data augmentations, including resizing, random flipping, and
padding. The number of training epochs was set to 12 for the COCO dataset, whereas for
the small TT100K-Lite and BUUISE-MO datasets, we trained the models for 36 epochs.
The height resolutions of the input images on the COCO, TT100K-Lite, and BUUISE-MO
datasets were resized to 800, 1440, and 1080, respectively, and the image widths were
adjusted to maintain the original aspect ratios of the images.

4.3. Results on TT100K

The TT100K dataset contains 100,000 high-resolution (2400 × 2400) images and has
been widely utilized for traffic sign detection and classification. With 30,000 instances
of traffic signs, this dataset is an excellent benchmark for small-object detection, as it
contains a considerable number of small objects. To address the imbalance in the number
of instances across the different traffic sign classes, we excluded classes with fewer than
100 instances [22], resulting in 45 classes for our experiments.

We first conducted experiments to investigate the impact of the number of training
images on the detection precision in small-object detection tasks. Faster R-CNN [1] is
a highly accurate and scalable object detection algorithm that has gained attention for
its performance in such tasks. We trained the Faster R-CNN model from scratch on the
TT100K-Lite dataset, which is a subset of the original TT100K dataset containing only
45 categories. To sufficiently evaluate our performance on different numbers of training
samples, we created four training sets with different proportions (100%, 10%, 5%, and 1%),
where the proportions denote the randomly sampled proportions of the original training set.
Our experimental results demonstrated that the number of training images had a significant
impact on the detection performance of Faster R-CNN, as shown in Table 2. A limited
number of training images led to a sharp decline in detection precision, indicating that the
model’s ability to detect objects was significantly reduced when the number of training
images was limited. This decline in precision was particularly pronounced for small
objects, as evidenced by the decreasing AP values as the proportion of training images
decreased. These findings highlight the importance of transfer learning and dynamic
resolution adaptation, as proposed in this paper, in enhancing object detection performance
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in few-shot scenarios. By leveraging transfer learning and dynamically adjusting the
resolution of the input images during training, our proposed approach can effectively
address the challenges of limited training samples and low-quality images, leading to
significant improvements in small-object detection performance.

Table 2. Object detection performance of Faster R-CNN baseline on the TT100K-Lite dataset.

Proportion (%) AP50 APS APM APL

100 89.4 ± 0.90 75.4 ± 3.11 97.8 ± 0.78 91.7 ± 1.79
10 63.3 ± 0.53 48.2 ± 1.38 78.0 ± 1.22 79.4 ± 4.58
5 50.2 ± 0.98 40.4 ± 1.02 62.2 ± 1.35 59.1 ± 4.46
1 23.4 ± 1.44 18.5 ± 2.83 30.8 ± 0.94 43.3 ± 5.45

The aim of this paper was to address the above-mentioned problem by proposing an
effective small-object detection method for transfer learning. Here, we conducted experi-
ments to show the efficacy of our TranSDet model compared to various object detection
methods, including Faster R-CNN [1], RetinaNet [2], and YOLOv3 [33]. RetinaNet [2] is a
one-stage algorithm that employs a focal loss to address the class imbalance problem in
object detection, whereas YOLOv3 [33] is an efficient detection algorithm that utilizes a
fully convolutional neural network to detect objects. In comparative experiments, Faster
R-CNN (FRCNN), RetinaNet, and YOLOv3 were used as typical algorithms to evaluate
the performance of TranSDet. The experimental results in Table 3 show that TranSDet
consistently outperformed the baseline algorithms on all three subsets of the TT100K-Lite
dataset, with a significant improvement in detection accuracy for small-object detection
tasks. Specifically, for the 10% subset, TranSDet achieved an 8% absolute improvement
in detection accuracy for Faster R-CNN, a 22.7% improvement for RetinaNet, and a 6.6%
improvement for YOLOv3, compared to their respective baselines. Similar improvements
were observed for the 5% and 1% subsets, where TranSDet consistently outperformed the
baseline algorithms across all three algorithms and achieved notable improvements in
detection accuracy.

Furthermore, we conducted experiments on recently proposed and more advanced
object detection models: RetinaNet with Swin Transformer [60], anchor-free RepPoints [61],
and end-to-end Deformable DETR [62]. As summarized in Table 4, the advanced models
also suffered due to the limited training samples in the TT100K-Lite small-object detection
dataset, whereas our TranSDet achieved significant improvements over them, demonstrat-
ing the generality and effectiveness of our method. Specifically, on the 10% TT100K-Lite
dataset, Deformable DETR only achieved an AP50 of 27.8 since its Transformer-based detec-
tion head required a large number of training samples to converge and avoid overfitting,
whereas when using our proposed TranSDet model, performance was improved by 27.0.

It is worth noting that the performance of all the algorithms generally decreased as
the dataset size decreased. However, we observed that TranSDet consistently exhibited
performance improvements over the baselines, even when the proportion of training data
was as low as 1%. These results suggest that TranSDet is effective in improving small-object
detection and can robustly adapt to different dataset sizes.
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Table 3. Performance comparison of our object detection model and classical models on the TT100K-
Lite dataset with varying proportions of training data.

Pros. (%) Method AP50 APS APM APL

10

FRCNN [1] 63.3 ± 0.53 48.2 ± 1.38 78.0 ± 1.22 79.4 ± 4.58
FRCNN-TranSDet 71.3 ± 1.05 53.4 ± 1.59 85.0 ± 1.87 83.3 ± 3.97

RetinaNet [2] 33.7 ± 2.34 33.3 ± 4.99 42.5 ± 2.66 55.7 ± 8.48
RetinaNet-TranSDet 56.4 ± 0.98 45.9 ± 3.90 68.4 ± 1.89 68.2 ± 7.86

YOLOv3 [33] 24.9 ± 0.98 15.6 ± 2.83 32.6 ± 2.34 37.0 ± 4.11
YOLOv3-TranSDet 31.5 ± 0.32 19.6 ± 1.45 38.2 ± 2.05 41.7 ± 5.98

5

FRCNN [1] 50.2 ± 0.98 40.4 ± 1.02 62.2 ± 1.35 59.1 ± 4.46
FRCNN-TranSDet 61.6 ± 0.72 44.8 ± 1.50 74.1 ± 1.19 70.1 ± 2.44

RetinaNet [2] 17.1 ± 2.15 18.1 ± 1.72 21.5 ± 2.25 37.7 ± 8.56
RetinaNet-TranSDet 44.1 ± 2.10 37.8 ± 0.59 56.7 ± 1.69 52.6 ± 4.09

YOLOv3 [33] 14.6 ± 0.99 8.1 ± 1.90 19.9 ± 0.55 30.9 ± 4.36
YOLOv3-TranSDet 22.0 ± 2.14 10.9 ± 5.71 30.5 ± 1.16 34.4 ± 3.20

1

FRCNN [1] 23.4 ± 1.44 18.5 ± 2.83 30.8 ± 0.94 43.3 ± 5.45
FRCNN-TranSDet 30.9 ± 1.16 26.4 ± 1.35 38.7 ± 1.42 46.4 ± 4.28

RetinaNet [2] 2.2 ± 0.35 1.8 ± 0.45 3.6 ± 0.55 16.2 ± 4.08
RetinaNet-TranSDet 17.8 ± 0.89 17.6 ± 1.23 24.6 ± 2.32 37.3 ± 2.90

YOLOv3 [33] 3.8 ± 0.14 1.9 ± 0.35 5.1 ± 1.06 16.5 ± 2.40
YOLOv3-TranSDet 9.2 ± 0.92 3.9 ± 2.76 14.7 ± 0.97 18.6 ± 3.88

Table 4. Performance comparison of our object detection model and advanced models on the TT100K-
Lite dataset with varying proportions of training data.

Pros. (%) Method AP50 APS APM APL

10

RetinaNet (Swin) [60] 36.4 ± 1.73 32.3 ± 2.81 46.9 ± 1.24 55.1 ± 3.32
RetinaNet-TranSDet (Swin) 61.4 ± 1.46 50.2 ± 2.59 73.9 ± 1.92 67.2 ± 4.81

RepPoints [61] 42.3 ± 2.13 36.9 ± 3.17 50.5 ± 1.62 56.0 ± 2.91
RepPoints-TranSDet 68.8 ± 1.53 51.3 ± 1.16 78.6 ± 1.63 69.2 ± 3.54

Def. DETR [62] 27.8 ± 2.81 13.7 ± 3.19 38.3 ± 1.96 50.4 ± 5.32
Def. DETR-TranSDet 54.8 ± 1.35 32.6 ± 1.63 61.6 ± 1.26 63.2 ± 4.63

5

RetinaNet (Swin) [60] 22.4 ± 1.65 19.2 ± 1.92 29.5 ± 1.57 47.8 ± 5.21
RetinaNet-TranSDet (Swin) 46.9 ± 1.42 40.5 ± 2.51 58.1 ± 1.52 55.7 ± 4.21

RepPoints [61] 31.0 ± 1.43 27.4 ± 2.71 38.7 ± 1.12 45.7 ± 4.83
RepPoints-TranSDet 51.7 ± 2.16 40.1 ± 1.74 63.7 ± 1.76 58.2 ± 2.95

Def. DETR [62] 15.2 ± 1.84 14.9 ± 1.05 25.7 ± 1.46 35.8 ± 3.69
Def. DETR-TranSDet 43.7 ± 1.61 35.3 ± 1.31 56.9 ± 1.66 51.5 ± 5.03

1

RetinaNet (Swin) [60] 2.30 ± 0.52 1.70 ± 0.38 3.30 ± 1.15 18.1 ± 3.64
RetinaNet-TranSDet (Swin) 19.5 ± 1.73 18.9 ± 1.56 28.2 ± 1.27 42.3 ± 4.29

RepPoints [61] 3.30 ± 1.13 3.20 ± 0.94 4.51 ± 1.75 14.1 ± 2.89
RepPoints-TranSDet 19.5 ± 2.04 18.2 ± 1.53 26.7 ± 1.39 40.2 ± 3.15

Def. DETR [62] 1.7 ± 0.51 1.8 ± 0.37 3.28 ± 1.04 11.2 ± 2.46
Def. DETR-TranSDet 16.2 ± 1.76 15.8 ± 1.53 24.1 ± 1.64 36.6 ± 2.78

4.4. Results on BUUISE-MO

The dataset used in this study was derived from the BUUISE-MO dataset, which is an
open-pit-mine object detection dataset established by the team at the Beijing Information
Service Engineering Key Laboratory of Beijing Union University [11]. The BUUISE-MO
dataset comprises 9720 images with a resolution of 1920 × 1080, including 7220 training
images and 2500 test images, as shown in Figure 8. The dataset has 15 categories, including
truck, forklift, car, excavator, people, sign, etc. A total of 6041 large objects, 9230 medium
objects, and 12,043 small objects are labeled, making the dataset suitable for small-object
detection tasks.
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Figure 8. Image samples in the BUUISE-MO-Lite dataset.

To create a few-shot dataset, we randomly selected 610 images from the training set
and 500 images from the test set. We refer to this dataset as BUUISE-MO-Lite in this paper.
Similar to the previous experiment, we trained Faster R-CNN, RetinaNet, and YOLOv3,
and the results are shown in Table 5. The primary objective of this experiment was to
demonstrate the ability of the TranSDet method to generalize well across different datasets
and algorithms, given that the previous experiment (Table 3) had already demonstrated the
effectiveness of TranSDet in improving small-object detection accuracy. The results showed
that TranSDet has good generalization abilities, as it significantly improved the detection
accuracy for all three algorithms on the BUUISE-MO-Lite dataset. The consistently better
performance of TranSDet in small-object detection reaffirms its effectiveness, which can be
beneficial in scenarios where large labeled datasets are not available. Notably, compared
to the Faster R-CNN method, our method achieved more significant improvements on
efficient one-stage detectors RetinaNet and YOLOv3. This demonstrates that our method
also adapts well to detectors with limited FLOPs and parameters, and can help those
detectors achieve competitive performance compared to the resource-heavy two-stage
detector Faster R-CNN.

Table 5. Object detection performance on the proposed BUUISE-MO-Lite few-shot small-object
detection dataset.

Method AP50 APS APM APL

FRCNN 57.6 ± 1.07 51.8 ± 0.55 66.6 ± 2.32 64.2 ± 1.88
FRCNN-TranSDet 61.6 ± 4.07 51.7 ± 1.96 68.2 ± 0.61 72.0 ± 7.76

RetinaNet 32.8 ± 1.53 28.4 ± 3.38 44.2 ± 1.26 46.7 ± 0.35
RetinaNet-TranSDet 65.0 ± 3.16 52.7 ± 2.25 65.9 ± 2.90 77.1 ± 2.87

YOLOv3 40.2 ± 4.19 16.1 ± 2.70 49.6 ± 7.28 55.4 ± 7.03
YOLOv3-TranSDet 53.0 ± 2.72 28.8 ± 6.84 59.1 ± 3.99 72.0 ± 4.45
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4.5. Small-Object Results on COCO Dataset

We also conducted experiments on the large-scale general COCO dataset to validate
the efficacy of our proposed small-object modules, namely the FPN with shifted feature
aggregation (SFA-FPN) module and the anchor relation (AR) module. We trained Faster
R-CNN with a ResNet-50 backbone using the standard 1× training schedule in MMDetec-
tion [59], and present the standard benchmark metrics of COCO in Table 6. Specifically,
APS, APM, and APL are the AP50 on small, medium, and large objects, respectively. The re-
sults show that both the SFA-FPN and AR modules can improve detection performance on
COCO, especially for small-object tasks. Our model achieved a 22.1% APS and significantly
surpassed the baseline by 0.9%. This indicates that our proposed network modules not only
benefits transfer learning in detection but also improves performance on the large-scale
general COCO dataset without using transfer learning.

Table 6. Object detection performance on the COCO dataset.

Method AP AP50 AP75 APS APM APL

FRCNN 37.4 58.1 40.4 21.2 41.0 48.1
+ SFA-FPN 37.8 (+0.4) 58.3 (+0.2) 40.8 (+0.4) 21.8 (+0.6) 41.3 (+0.3) 48.2 (+0.1)
+ SFA-FPN + AR 38.0 (+0.6) 58.4 (+0.3) 41.0 (+0.6) 22.1 (+0.9) 41.4 (+0.4) 48.4 (+0.3)

4.6. Comparison with Transfer Learning Methods

We conducted experiments to compare our dynamic resolution adaptation (DRA)
with existing transfer learning methods [43,63] designed for Faster R-CNN object detection.
Specifically, a pretrained model fine-tuning method (PTD) [63] was considered as our
baseline, which involved using a pretrained COCO model to initialize the target dataset.
Frozen layer fine-tuning [43] was used to freeze the preceding layers to better preserve the
semantic information from the source dataset.

The results presented in Table 7 demonstrate that TranSDet outperformed the other
methods across various evaluation metrics. In particular, TranSDet achieved the highest
AP scores at different IoU thresholds, including AP50, APS, APM, and APL, indicating its
superior performance in accurately detecting objects of different sizes. When comparing
TranSDet with PTD, we found that TranSDet showed significant improvements in overall
object detection performance, as measured by the AP50. Additionally, TranSDet outper-
formed both PTD and FTD in terms of APS, APM, and APL, indicating its superiority in
detecting small, medium, and large objects.

However, although the performance of PTD and TranSDet was reasonably stable
across different proportions (percentage of samples in the dataset), FTD’s performance
decreased significantly, indicating its sensitivity to changes in object size distribution in the
target dataset. This finding highlights the importance of carefully selecting an appropriate
transfer learning method for different datasets based on the target distribution of objects.
Note that our DRA only had to change the weights of the pretrained model in transfer
learning, making it compatible with almost all the existing transfer learning methods.
Therefore, one can easily implement DRA on more sophisticated transfer learning methods
to improve small-object detection performance.
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Table 7. Comparison of transfer learning methods on the Faster R-CNN model and the TT100K-Lite
dataset.

Pros. (%) Methods AP50 APS APM APL

10
PTD [63] 62.1 ± 1.79 46.6 ± 1.38 74.7 ± 1.79 86.2 ± 3.95
FTD [43] 55.9 ± 0.71 42.9 ± 1.42 69.5 ± 1.25 72.5 ± 7.04
TranSDet 71.3 ± 1.05 53.4 ± 1.59 85.0 ± 1.87 83.3 ± 3.97

5
PTD [63] 50.1 ± 0.75 38.4 ± 2.16 61.4 ± 1.49 61.9 ± 3.70
FTD [43] 45.7 ± 1.26 35.1 ± 3.16 56.7 ± 5.63 58.7 ± 3.67
TranSDet 61.6 ± 0.72 44.8 ± 1.50 74.1 ± 1.19 70.1 ± 2.44

1
PTD [63] 27.1 ± 2.30 22.1 ± 2.58 34.2 ± 1.46 48.7 ± 4.18
FTD [43] 26.2 ± 1.12 21.5 ± 3.20 32.8 ± 1.36 41.7 ± 2.71
TranSDet 30.9 ± 1.16 26.4 ± 1.35 38.7 ± 1.42 46.4 ± 4.28

4.7. Ablation Study
4.7.1. Ablation on the Proposed Modules

We first investigated the effects of our proposed dynamic resolution adaptation (DRA),
SFA-FPN, and anchor relation (AR) modules. As shown in Table 8, our baseline Faster R-
CNN with a ResNet-50 backbone achieved an AP50 of 50.2%, whereas adding DRA (second
row) significantly improved the AP50 and APS by 5.7% and 3.9%, respectively. Meanwhile,
adopting SFA-FPN (third row) achieved a 6.2% improvement in AP50 compared to the
baseline, and leveraging AR achieved a further improvement of 2.8%. By combining all
the proposed modules, our final method achieved the optimal performance of a 61.6%
AP50 and a 44.8% APS and significantly outperformed our baseline by 11.4% and 4.4%,
respectively.

Table 8. Ablation on the proposed modules on the TT100K-Lite dataset (5% proportion). We used
Faster R-CNN as the baseline model. DRA: dynamic resolution adaptation. SFA-FPN: FPN with
shifted feature aggregation. AR: anchor relation module.

DRA SFA-FPN AR AP50 APS

× × × 50.2 ± 0.98 40.4 ± 1.02
� × × 55.9 ± 1.20 44.3 ± 1.49
× � × 56.4 ± 1.81 43.5 ± 0.23
× × � 59.2 ± 1.10 44.9 ± 2.15
× � � 59.2 ± 2.05 43.8 ± 2.44
� � � 61.6 ± 0.72 44.8 ± 1.50

4.7.2. Comparison with Previous Small-Object Detection Methods

This experiment aimed to demonstrate the effectiveness of the TranSDet method for
small-object detection. To evaluate its performance, comparison experiments were con-
ducted using Faster R-CNN (FRCNN), Carafe [26], and FPG [27]. Both Carafe and FPG
are designed for improving the small-object detection performance of the Faster R-CNN
baseline. Carafe employs a learnable upsampling module to capture fine-grained informa-
tion, whereas FPG enhances the feature pyramid structure to better capture object details
at all scales. These modifications have been shown to significantly improve performance
in small-object detection tasks on conventional datasets, indicating their efficacy in this
context.

In Table 9, we present the comparison results when using the same Faster R-CNN
model trained on the COCO dataset to initialize the model in the TT100K-Lite dataset
but we replaced the neck with Carafe, FPG, and our approaches. The results show that
TranSDet outperformed both Carafe and FPG in all evaluation metrics, with a significantly
higher AP at all levels (AP50, APS, APM, and APL). This demonstrates the superiority of
the TranSDet structure in small-object detection tasks. Also, it is worth noting that using
the existing Carafe and FPG modules to replace the original FPN module resulted in poorer
object detection performance in transfer learning. This can be attributed to the random
initialization of additional weights in these modules during transfer learning, which may
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have disrupted the learned semantic information and degraded accuracy. In conclusion,
the experimental results provide strong evidence to support the effectiveness of transfer
learning for small-object detection using TranSDet. The use of Carafe and FPG in the
comparison experiments further demonstrates the superiority of TranSDet in small-object
detection tasks.

Table 9. Comparison with previous small-object detection methods on the TT100K-Lite dataset (10%
proportion).

Method AP50 APS APM APL

FRCNN 67.0 ± 1.15 47.4 ± 3.07 80.3 ± 2.24 81.0 ± 1.39
Carafe [26] 66.5 ± 1.27 51.2 ± 1.16 78.4 ± 1.14 80.4 ± 5.34
FPG [27] 35.1 ± 1.61 4.3 ± 2.04 50.0 ± 2.52 62.4 ± 1.61

TranSDet (FRCNN as baseline) 71.3 ± 1.05 53.4 ± 1.59 85.0 ± 1.87 83.3 ± 3.97

4.7.3. Effect of Transferring from a Small-Object Dataset

When comparing the small-object detection dataset to the large-scale general dataset,
the latter usually contained more diverse samples. Therefore, the model trained on it is
more suitable for transferring to other detection datasets. In order to clarify why we chose
to adapt the model trained on a general dataset instead of directly transferring the model
from a small-object dataset, we conducted experiments to transfer the Faster R-CNN model
trained on the full TT100K small-object dataset to the BUUISE-MO-Lite dataset. As shown
in Table 10, the model initialized with the TT100K pretrained weights obtained inferior
results compared to the baseline, which only used the ILSVRC weights to initialize the
backbone. This indicates that transferring the model from a small-object dataset with a
specific scene would result in a loss of generality and discriminability of the model, leading
to poorer performance. In contrast, our method adapted the model trained on the more
diverse and general COCO dataset for initialization, resulting in significant improvements
compared to the baselines.

Table 10. Comparison of transferring models trained on different datasets to the BUUISE-MO-Lite
small-object dataset.

Pretrained Dataset AP50 APS APM APL

ILSVRC 59.4 ± 0.95 51.3 ± 1.07 70.5 ± 3.48 69.5 ± 3.87
TT100K 52.8 ± 0.49 48.1 ± 0.40 60.5 ± 1.33 59.3 ± 3.91
COCO 62.4 ± 1.45 51.0 ± 1.50 66.5 ± 1.66 71.7 ± 2.04
COCO-adapted (Ours) 65.0 ± 3.16 52.7 ± 2.25 65.9 ± 2.90 77.1 ± 2.87

4.7.4. Effects of Different Adaptation Resolutions in DRA

In this paper, we proposed DRA to adapt the pretrained normal model to the small-
object detection task by fine-tuning it with smaller resolutions on the normal dataset. Here,
we conducted experiments to show the effects of the different resolution choices in our DRA
approach. In Figure 9, we report the performance of our method on Faster R-CNN and the
TT100K-Lite dataset with different maximum resolutions. Here, the maximum resolution
denotes the maximum value in our dynamic resolution set, i.e., 640 denotes a resolution set
containing 640 and all the resolution choices smaller than it {640, 560, 480, 400, 320}. The
results show that directly leveraging the original weights trained on COCO resulted in
performance degradation at both 10% and 5% data. This indicates that the normally trained
weights are not suitable for small-object detection tasks. In contrast, with our DRA, the
performance was significantly improved at all resolutions, and the maximum resolution of
480 achieved the best performance.
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Figure 9. Comparison between different values of maximum resolutions in our dynamic resolution
adaptation on TT100K-Lite. none: training on TT100K-Lite without transfer learning. ori.: transfer
learning with the original pretrained weights on COCO.

4.8. Complexity Analysis

Furthermore, we analyzed the time complexity of our method. Compared to the origi-
nal transfer learning method, TranSDet used an additional dynamic resolution adaptation
stage to fine-tune the model learned on the source dataset, which increased the training
cost while achieving significant improvements. Additionally, in our adaptation stage, we
proposed using meta-learning for better learning of dynamic resolutions. But this had the
same training complexity (same training time and number of iterations) since we used a
first-order approximation in MAML.

To demonstrate the complexity of our proposed detection networks, we present the
FLOPs, number of parameters, and inference speed in Table 11. Overall, TranSDet struck a
balance between performance and computational complexity. It introduced a slight increase
in the FLOPs and parameters compared to the baseline models, indicating reasonable
optimization. Regarding the inference speed, the impact was marginal. Consequently, our
method is efficient, leading to a significant improvement in performance with only a small
computation overhead.

Table 11. Object detection performance on the TT100K-Lite dataset. We measured the inference speed
using PyTorch on a single NVIDIA TITAN Xp GPU.

Method FLOPs (GFLOPs) Params. (M) Inference Speed (Image/Second)

FRCNN 206.89 41.35 5.8
FRCNN-TranSDet 267.70 48.71 5.3

RetinaNet 223.83 37.02 6.5
RetinaNet-TranSDet 237.06 39.10 6.0

YOLOv3 194.79 61.76 7.3
YOLOv3-TranSDet 202.47 63.00 7.1

5. Conclusions

Our proposed method, TranSDet, offers a promising solution for small-object detection
in deep learning. By leveraging transfer learning and augmenting training images with
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diverse smaller resolutions, TranSDet addresses the challenges of limited training samples
and low-quality images. The dynamic resolution adaptation scheme ensures consistent
performance on various object sizes, and the two network components, the FPN with
shifted feature aggregation and the anchor relation module, can effectively improve small-
object detection accuracy. Extensive experiments and ablation studies demonstrate the
effectiveness and efficiency of TranSDet in improving small-object detection accuracy,
where it outperformed existing state-of-the-art methods on various datasets. Our study
provides valuable insights into designing transfer learning-based models for small-object
detection and offers a promising solution for real-world applications, especially in scenarios
where large labeled datasets are not available.

Furthermore, TranSDet is not limited to small-object recognition in computer vision. It
can also be utilized for other tasks such as semantic segmentation, multi-label classifica-
tion, and image classification. The transfer learning and adaptive resolution mechanisms
employed in TranSDet can be extended to these tasks, enabling improved performance
and generalization. This versatility makes TranSDet a valuable tool for a wide range of
computer-vision applications beyond small-object detection.
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Abstract: We propose AiTLAS—an open-source, state-of-the-art toolbox for exploratory and predic-
tive analysis of satellite imagery. It implements a range of deep-learning architectures and models
tailored for the EO tasks illustrated in this case. The versatility and applicability of the toolbox
are showcased in a variety of EO tasks, including image scene classification, semantic image seg-
mentation, object detection, and crop type prediction. These use cases demonstrate the potential
of the toolbox to support the complete data analysis pipeline starting from data preparation and
understanding, through learning novel models or fine-tuning existing ones, using models for making
predictions on unseen images, and up to analysis and understanding of the predictions and the
predictive performance yielded by the models. AiTLAS brings the AI and EO communities together
by facilitating the use of EO data in the AI community and accelerating the uptake of (advanced)
machine-learning methods and approaches by EO experts. It achieves this by providing: (1) user-
friendly, accessible, and interoperable resources for data analysis through easily configurable and
readily usable pipelines; (2) standardized, verifiable, and reusable data handling, wrangling, and
pre-processing approaches for constructing AI-ready data; (3) modular and configurable modeling
approaches and (pre-trained) models; and (4) standardized and reproducible benchmark protocols
including data and models.

Keywords: Earth observation; remote sensing; deep learning; semantic segmentation; object detection;
land use and land cover classification

1. Introduction

Remotely gathered data are available from a wide range of sources using a wide range
of data collection techniques. Satellites, airplanes, and Unmanned Aerial Vehicles (UAVs)
are equipped with various sensors that gather huge amounts of remotely sensed images that
provide comprehensive spatial and temporal coverage of the Earth [1,2]. On the other hand,
the increase in data production is well matched by the rapidly growing development of
Artificial Intelligence (AI), which probes various aspects of natural sciences, technology, and
society. Recent trends in machine learning, and particularly in deep learning, have ushered
a new era of image analysis and raised the predictive performance bar in many application
domains, including remote sensing and Earth observation [3]. Remote sensing data have
been used in various application areas, including land use and land cover analysis [4], forest
mapping [5,6], monitoring of natural hazards and disasters [7,8], precision agriculture [9],
assessing the weather and observing climate changes [10], and various environmental
studies [11].

With the ever-growing availability of remote sensing data, there has been a significant
research effort to prepare, label, and provide proper datasets that will support the develop-
ment and evaluation of sophisticated machine-learning methods [12–15]. In the past years,
several publicly available high-resolution remote sensing image datasets have been made
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available to support the research in a variety of remote sensing tasks, such as scene classifi-
cation [4], semantic and instance segmentation [16], object detection [17], change detection,
etc. Most of the annotated EO datasets are limited in scale and restricted in spatial coverage
with a task-specific class distribution. Handling and pre-processing remote sensing image
data can be very challenging due to their properties and heterogeneity, which greatly differ
from conventional image data typically used in recent machine-learning pipelines. Namely,
each type of sensor used for remote sensing has its own advantages (and disadvantages)
conditioned by the geographical coverage, sensor resolution (spatial and temporal), and
flight operations and specifics. For example, satellites are used for sensing at a global scale,
and UAVs are typically used for sensing in small areas due to their flexibility and ease of
operations in such conditions. Instead of 3-channel RGB imagery, the data in remote sensing
are represented through different spectral, spatial, radiometric, and temporal resolutions:

• Spectral resolution defines the bandwidth and the sampling rate used to capture data. A
high value for the spectral resolution means more narrow bands pertaining to small
parts of the spectrum, and conversely, a low value means broader bands related to large
parts of the spectrum. Spectral bands are groups of wavelengths, such as ultraviolet,
visible, near-infrared, infrared, and microwave. Based on these, image sensors can be
multi-spectral if they are able to cover tens of bands (e.g., Sentinel-2, which collects
12 bands) and hyper-spectral if they can collect thousands, such as Hyperion (part of
the EO-1 satellite), which covers 220 spectral bands (0.4–2.5 μm) [18].

• Spatial resolution defines the size of the area on the Earth’s surface represented by each
pixel from an image. Spatial resolution relates to the level of detail captured in the
image, with high resolutions (small pixel size) capturing more and low resolutions
(large pixel size) capturing fewer details in an image. For example, most bands
observed by the Moderate Resolution Imaging Spectroradiometer (MODIS) have a
spatial resolution of 1 km, where each pixel represents a 1 km × 1 km area on the
ground [19]. In contrast, images captured from UAVs or drones can have a very small
spatial resolution of less than 1 cm [20].

• Radiometric resolution defines the number of discrete signals of given strengths that the
sensor can record (also known as dynamic range). A large value of the dynamic range
means that more details can be discerned in the recording, e.g., Landsat 7 records
8-bit images and can thus detect 256 unique gray values of the reflected energy [21];
similarly, Sentinel-2 has a 12-bit radiometric resolution (4095 gray values) [22]. In
other words, a higher radiometric resolution allows for simultaneous observation of
high and low-contrast objects in the scene. For example, a radiometric resolution is
necessary to distinguish between subtle differences in ocean color when assessing
water quality.

• Temporal resolution defines the frequency at which a given satellite revisits a given
observation area. Polar-orbiting satellites have a temporal resolution that can vary
from 1 day to 16 days (e.g., for Sentinel-2, this is ten days [22]). The temporal aspects of
remote sensing are essential in monitoring and detecting changes in given observation
areas (incl. land use change, mowing, and deforestation).

The increasing amount of available EO data is equally matched with the number of
libraries and toolboxes designed to handle, process, and potentially provide a data analysis
framework for such data. However, considering the complexity of EO data coupled
with the diversity of EO tasks that can be addressed, many of the available libraries and
toolboxes focus either on the data-specific processing aspect, have a very narrow application
horizon, or include machine-learning approaches that are hardly accessible for domain
experts. This relates to libraries such as eo-learn (open source) [23] and Up42 (commercial
product) [24], which provide accessible means for EO data processing/feature extraction
workflows from satellite imagery. These libraries focus mainly on the data acquisition,
handling, and data pre-processing stages of the workflow and offer limited machine-
learning capabilities. Similarly, Sentinels for Common Agriculture Policy (Sen4CAP), an
open-source project based on the Sentinel Application Platform (SNAP), provides data
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pre-processing algorithms and workflows but only in the limited scope of agriculture
monitoring relevant to the management of the CAP [25].

More recent libraries such as Orfeo ToolBox (OTB) [26] offer similar capabilities with
respect to data pre-processing, data augmentation, and feature extraction pipelines, in
addition to a catalog of more traditional machine-learning approaches for image data
analysis. OTB further allows remote integration with deep-learning libraries such as
TensorFlow [27]. However, this capability is part of an unofficial OTB module aimed
primarily at AI users. On the other hand, CANDELA [28] is an end-to-end platform
tailored for EO users, focusing on services that provide quick data access and exploratory
data analysis. In addition to the core data handling capabilities, CANDELA allows for
handcrafted application-centered data analysis blocks that employ data pre-processing
and machine-learning methods but are specifically tailored for a particular EO task at
hand (such as change detection). TorchGeo [29] is a recent library that builds on the
PyTorch [30] deep-learning framework that includes more general methods for EO data
analysis. Namely, it includes data loaders for standard benchmark datasets, methods for
data handling, and data transformations, as well as a catalog of (pre-trained) vision models
applicable to different tasks pertaining to EO applications.

An implicit but common theme among most of these libraries is the community barrier.
Libraries that offer the most recent machine-learning approaches are tailored for data
scientists and have a steep learning curve for domain experts, but libraries tailored for the
remote sensing community are not easily applicable in modern machine-learning pipelines.
While most of these attempts are a step in the right direction, there is still a gap related to the
need for a common AI4EO framework that will provide (1) accessible and interoperability
resources for data analysis (via configurable and readily usable pipelines); (2) standardized,
verifiable, and reusable data handling, wrangling, and pre-processing approaches for
constructing AI-ready data; (3) modular and configurable modeling approaches and (pre-
trained) models; and (4) standardized and reproducible benchmark protocols (including
data and models).

We present AiTLAS (http://aitlas.bvlabs.ai (accessed on 8 March 2023)), an open-
source AI4EO toolbox that is designed based on the principles outlined above, thus fa-
cilitating the use of EO data in the AI community and, more importantly, accelerating
the uptake of (advanced) machine-learning methods and approaches by EO experts. AiT-
LAS provides various resources, including customizable and easily usable data analysis
pipelines; semantically annotated datasets, formalized to be used directly by AI methods;
recent approaches for learning models de novo coupled with a model catalog consisting of
large pre-trained vision models applicable to EO tasks; standardized frameworks for model
benchmarking [3]; mechanisms for quantitative and qualitative model evaluation, etc.

In this paper, we provide extensive details of the many functionalities and capabilities
of AiTLAS. We demonstrate its versatility for use in different EO tasks by exploiting the
variety of EO data and AI methods made available for direct use within the toolbox. We
first explain the design and implementation of AiTLAS and then discuss the supported EO
tasks and data. Next, we explain the AI methods that are implemented within the toolbox.
Furthermore, we showcase several use cases to illustrate the basic principles behind the
toolbox, its modularity, and its flexibility. Lastly, we summarize the distinctive proprieties
of AiTLAS and outline directions for its further development.

2. Materials and Methods

2.1. Design and Implementation of the AiTLAS Toolbox

The AiTLAS toolbox is designed such that leveraging recent (and sophisticated) deep-
learning approaches over a variety of EO tasks (and data) is straightforward. On the one
hand, it utilizes EO data resources in an AI-ready form; on the other hand, it provides a
sufficient layer of abstraction for building and executing data analysis pipelines, thus facili-
tating better usability and accessibility of the underlying approaches—particularly useful
for users with limited experience in machine learning, and in particular deep learning.
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AiTLAS can be used both as an end-to-end standalone tool and as a modular library.
Users can use and build on different toolbox components independently, be they related to
the tasks, datasets, models, benchmarks, or complete pipelines. It is also flexible and versatile,
facilitating the execution of a wide array of tasks on various domains and providing easy
extension and adaptation to novel tasks and domains. Moreover, AiTLAS adheres to
the principle less is more—it embeds the most common tasks and functionalities in easy-
to-use interfaces that simplify the usage and adaptation of the toolbox with minimal
modifications. Last but not least, AiTLAS is fully aligned with the principles of open
science—its development is community-driven and open-source.

Figure 1 presents a high-level schematic diagram of the main modules and components
of AiTLAS. It is designed around the concept of a workflow, where users need to define a
specific task ( aitlas.tasks ), be it an exploratory analysis of a dataset or a predictive task of
a different kind, such as image classification, object detection, image segmentation, etc. In
turn, the instantiated task serves as an arbiter of the workflow and orchestrates the flow
between the two central components of the toolbox—the datasets ( aitlas.datasets ) and
the models ( aitlas.models )—which relate to AI-ready formalized data and configurable
model architectures, respectively. Programmatically, these modules are embedded within
the core module aitlas.base , which contains all main abstract definitions related to every
module, such as definitions of tasks, models, and datasets, but are also related to eval-
uations ( aitlas.metrics ), data transformations ( aitlas.transforms ), and various types of
visualizations ( aitlas.visulizataions and aitlas.datasets.visulizataions ).

aitlas.models

EO Data 
Repository

Model
Repository

aitlas.base

aitlas.transforms

aitlas.dataset.visualizations

aitlas.datasets aitlas.models
aitlas.metrics

aitlas.visualizations

output

cli

aitlas.task

data flow
model flow

task specification

Figure 1. Diagram of the main modules and components in the AiTLAS toolbox.

More specifically, as a standalone application, the flow of AiTLAS begins with the
user-specified definition of a task. These definitions can be provided at input via command-
line interface (CLI) as a formatted JSON configuration file or more directly executed via
Jupiter notebooks. This initiates the arbiter module aitlas.tasks . The aitlas.tasks act as
a controller and component mediator during the entire workflow. To this end, AiTLAS
can handle a variety of typical workflows, such as training and evaluating a model, data
pre-processing and calculating statistics, extracting features, etc.; while the implemented
tasks can be applied in many different scenarios, they can also serve as a blueprint for
creating and instantiating new, more specific, tasks.
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Typically, a task instantiates a specific dataset component as per the configuration and
prepares it for processing. The dataset components, implemented in the aitlas.datasets

module, encapsulate different operations for working with the underlying EO data, such
as reading and writing from and to storage and preparing it for further processing. Each
EO dataset has a separate and specific implementation of its dataset component since the
different datasets have different formats, organizational structures, etc. (Tables 1–5 provide
a list of currently supported datasets). Note that the datasets must be accessible for the
machine that executes AiTLAS. Therefore, it is up to the user to download the datasets
they work with, and organize their access, as AiTLAS only provides the means to access
a dataset.

Once the data access is ready, AiTLAS offers various mechanisms for pre-processing,
handling, and transforming raw EO data into an AI-ready format. These mechanisms
are implemented in the aitlas.transforms module. More specifically, besides standard
functions for handling image data, this module contains specific implementations of aug-
mentations and transformations that can be applied to images, such as rotations, resizing,
cropping, etc. These transformations can be configured to be applied to any raw image
(regardless of a task), including target masks, as in the case of image segmentation. The
processed (AI-ready) data is, in turn, used in the workflow. Moreover, for better reusability
and reproducibility, AiTLAS also annotates and can store the processed data (with the
accompanied meta-data) in an EO data repository such as the AiTLAS semantic data catalog
(http://eodata.bvlabs.ai (accessed on 8 March 2023)), where users can further analyze and
query the available data.

The task component also interacts with the model components within the aitlas.models
module. The models in AiTLAS are based on the PyTorch framework [30]. The model
component wraps the architecture of the deep-learning model and only exposes the op-
erations for controlling their behavior, such as training the model, using it to perform
predictions, saving it, or loading it from storage, etc. The aitlas.models module contains
concrete implementations of the deep-learning models providing the means to work with
individual model architectures (see Table 6 for a current list of implemented architectures).
The concrete implementations are responsible for model instantiation and forwarding the
input data. In the case of pre-trained models, the specific implementation can pull a remote
or local version of the pre-trained model.

The models’ performance is estimated using the metrics components implemented in
the aitlas.metrics module. Depending on the task at hand (classification, segmentation),
the module offers a variety of evaluation measures to assess the performance of the models,
such as accuracy, F1 score, etc. Note that similar to storing processed data, AiTLAS also
supports storing trained models. To this end, the AiTLAS model catalog [3] contains more
than 500 trained models for EO image scene classification, trained and evaluated on 22
different EO datasets.

AiTLAS allows for certain aspects of the workflow to be illustrated, fostering bet-
ter user interaction with the learning process and more interpretable outcomes. This is
enabled via the visualizations components implemented in the aitlas.visualization and
aitlas.dataset.visualization modules. These components provide the means to provide

further inspection and analysis via visualizing datasets (samples and properties), tracking
model performance, and visualizing model predictions.

AiTLAS is built in Python and uses a variety of other libraries related to different parts
of the project. The core underlying library is PyTorch [30]—the AiTLAS model architecture
extends PyTorch’s model class. The extensions add the means for training, evaluating,
predicting, resource utilization, saving, and loading the model from disk. The AiTLAS
dataset management also extends the data module from PyTorch. As previously stated,
AiTLAS can be used both as a standalone application and as a library embedded within
other projects. The remaining dependencies are given in Table A1 in Appendix A, with
further details of their scope of usage.
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2.2. EO Data and Common Tasks

The AiTLAS toolbox can be applied for a variety of EO tasks (and datasets). For clarity,
we present and discuss four common types of workflows pertaining to typical EO tasks:
(1) image scene classification, (2) image semantic segmentation, (3) image object detection,
and (4) crop type prediction using satellite time series data.

2.2.1. Image Scene Classification Tasks

The task of image scene classification refers to annotating images. In a typical scenario,
working with large-scale EO images, this task addresses classifying smaller images (patches)
extracted from a much larger remote sensing image. The extracted images can then be
annotated based on the content using explicit semantic classes (e.g. forests, residential
areas, rivers, etc.). Given an image as an input, the output would be single or multiple
annotations with semantic labels, denoting land-use and/or land-cover (LULC) classes
present in that image, as illustrated in Figure 2.

Figure 2. Remote sensing image scene classification: sample image patch provided on the left and
the output (predicted LULC classes) shown on the right subfigure. The image is a sample from the
UC Merced dataset from the MLC task [31].

Based on the number of semantic labels assigned to the images in the datasets, image
scene classification tasks can be further divided into multi-class (MCC) and multi-label
(MLC) classification. In the multi-class classification setting, each image is associated with a
single class (label) from a set of predefined classes. The goal, in this case, is predicting one
(and only one) class for each image in the dataset. In the multi-label classification setting, on
the other hand, images are associated with multiple labels (from a predefined set) based
on the information. The goal is then to predict the complete set of labels for each image in
the dataset at hand [32]. To this end, AiTLAS offers 22 such datasets that can be readily
used for a variety of MLC and MCC modeling tasks. These also serve as a blueprint for
applying AiTLAS to other datasets pertaining to similar tasks. Tables 1 and 2 summarize
the properties of the considered MCC and MLC datasets, respectively. The number of
images across datasets can be quite diverse, ranging from datasets with ∼2 K images to
datasets with ∼500 K images. This also holds for the number of labels per image, ranging
from 2 to 60. Most of the datasets are comprised of aerial RGB images (with only a few
comprised of satellite multi-spectral data) that are different in spatial resolution, size, and
format. Finally, note that AiTLAS also provides standardized procedures for analyzing
these datasets in terms of predefined splits (for training, validation, and testing), which
will ensure reusable and reproducible experiments. A more detailed description of each
dataset can be found in [3].
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Table 1. Properties of the multi-class image scene classification (MCC) datasets available in the
AiTLAS toolbox.
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UC Merced [33] Aerial RGB 2100 256 × 256 0.3 m 21 No tif
WHU-RS19 [34] Aerial RGB 1005 600 × 600 0.5 m 19 No jpg
AID [35] Aerial RGB 10,000 600 × 600 0.5 m–8 m 30 No jpg
Eurosat [36] Sat. Multispectral 27,000 64 × 64 10 m 10 No jpg/tif
PatternNet [37] Aerial RGB 30,400 256 × 256 0.06 m–4.69 m 38 No jpg
Resisc45 [4] Aerial RGB 31,500 256 × 256 0.2 m–30 m 45 No jpg
RSI-CB256 [38] Aerial RGB 24,747 256 × 256 0.3–3 m 35 No tif
RSSCN7 [39] Aerial RGB 2800 400 × 400 n/a 7 No jpg
SAT6 [40] RGB + NIR 405,000 28 × 28 1 m 6 Yes mat
Siri-Whu [41] Aerial RGB 2400 200 × 200 2 m 12 No tif
CLRS [42] Aerial RGB 15,000 256 × 256 0.26 m–8.85 m 25 No tif
RSD46-WHU [43] Aerial RGB 116,893 256 × 256 0.5 m–2 m 46 Yes jpg
Optimal 31 [44] Aerial RGB 1860 256 × 256 n/a 31 No jpg
Brazilian Coffee Scenes (BSC) [45] Aerial RGB 2876 64 × 64 10 m 2 No jpg
SO2Sat [46] Sat. Multispectral 400,673 32 × 32 10 m 17 Yes h5

Table 2. Properties of the multi-label image scene classification (MLC) datasets available in the
AiTLAS toolbox.
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UC Merced (mlc) [31] Aerial RGB 2100 256 × 256 0.3 m 17 3.3 No tif
MLRSNet [47] Aerial RGB 109,161 256 × 256 0.1 m–10 m 60 5.0 No jpg
DFC15 [48] Aerial RGB 3342 600 × 600 0.05 m 8 2.8 Yes png

BigEarthNet 19 [13] Sat. Multispectral 519,284

20 × 20
60 × 60
120 × 120

60 m
20 m
10 m 19 2.9 Yes tif, json

BigEarthNet 43 [49] Sat. Multispectral 519,284

20 × 20
60 × 60
120 × 120

60 m
20 m
10 m 43 3.0 Yes tif, json

AID (mlc) [50] Aerial RGB 3000 600 × 600 0.5 m–8 m 17 5.2 Yes jpg
PlanetUAS [51] Aerial RGB 40,479 256 × 256 3 m 17 2.9 No jpg/tiff

2.2.2. Object Detection Tasks

Object detection is another common EO task that focuses on identifying and localizing
objects present in an image. In the typical setting, this relates to annotating the identified
objects with respect to different predefined classes and providing their location on the
image (as a bounding box). Figure 3 illustrates an example of object detection, i.e., detecting
ships at sea.
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Figure 3. Remote sensing image object detection: sample image provided on the left and in the
output image on the right, the objects are detected and localized with bounding boxes. The image is
a sample from the HRRSD dataset [52].

Common instances of this task include the detection of specific objects such as build-
ings, vehicles, ships, and planes [53,54] from aerial image datasets. The AiTLAS toolbox
readily supports such tasks and datasets, which follow the Pascal VOC and the COCO
(Common Objects in Context) formatting guidelines for object annotations. To this end,
it offers four such datasets (Table 3) for development and benchmarking object detec-
tion methods.

Table 3. Properties of the object detection datasets available in the AiTLAS toolbox.

Name Image Type #Images #Instances #Labels Image Width Spatial Resolution Image Format

HRRSD [52] Aerial RGB 21,761 55,740 13 152–10,569 0.15–1.2 m jpeg
DIOR [54] Aerial RGB 23,463 192,472 20 800 0.5–30 m jpeg
NWPU VHR-10 [55] Aerial RGB 800 3651 10 ∼800 0.08–2 m jpeg
SIMD [56] Aerial RGB 5000 45,096 15 1024 0.15–0.35 m jpeg

2.2.3. Image Semantic Segmentation Tasks

The tasks of image semantic segmentation aim at the fine-grained identification of
objects in an image. In contrast to object detection, which aims at coarser localization of
the detected objects, segmentation tasks focus on labeling each pixel of an image with
a corresponding class of what the pixel represents. In the typical scenario, the input is
an image, and the output is a mask (overlay) of categorized pixels based on a single
semantic type present in the image. Figure 4 illustrates an example of image semantic
segmentation. The more sophisticated extension of semantic segmentation tasks, referred
to as instance segmentation, takes into account different semantic types and focuses on
delineating multiple objects present in an image.
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Figure 4. Remote sensing image semantic segmentation of buildings: sample image provided on the
left and the output, which is the overlay mask of predictions on the right. The image is a sample from
the Massachusetts Buildings dataset [57].

The AiTLAS toolbox offers several such datasets (summarized in Table 4) that can be
readily used for EO image semantic segmentation tasks. All but one of the datasets are
comprised of aerial RGB images (the remaining contains satellite multi-spectral data) with
different spatial resolutions and sizes. The number of semantic labels in these datasets
ranges from 2 to 5.

Table 4. Properties of the semantic segmentation datasets available in the AiTLAS toolbox.

Name

Im
a
g

e
T

y
p

e

#
Im

a
g

e
s

Im
a
g

e
S

iz
e

S
p

a
ti

a
l

R
e
so

lu
ti

o
n

#
L

a
b

e
ls

Im
a
g

e
F

o
rm

a
t

LandCover.ai [58] Aerial RGB 41
4200 × 4700
9000 × 9500 0.25–0.5 m 5 geo tif

Inria [59] Aerial RGB 360 5000 × 5000 0.3 m 2 tif
AIRS [60] Aerial RGB 1047 10,000 × 10,000 0.075 m 2 tif
Amazon Rainforest [61] Aerial RGB 60 512 × 512 n/a 2 geo tif
Chactun [62] Sat. Multispectral 2093 480 × 480 10 m 3 geo tiff
Massachusetts Roads [57] Aerial RGB 1171 1500 × 1500 1 m 2 tiff
Massachusetts Buildings [57] Aerial RGB 151 1500 × 1500 1 m 2 tiff

2.2.4. Crop Type Prediction Tasks

Crop type prediction is a semantic segmentation task that aims to map vegetation
on the crops present in a given area. The main difference with the classical semantic
segmentation task is that crop type prediction necessarily involves a temporal component.
Namely, to properly train a model, it needs to be presented with data of the same area
over different periods in time (preferably covering the whole growing season, e.g., the
periods with longer daytime and more sunlight). The added complexity is that there is
variability between different periods and locations (among different countries or even
within the same country) as there is variability between different years. The key feature of
any crop-type detection method is to utilize both the spatial and temporal data in multi-
temporal satellite imagery. The input in this task is multi-temporal satellite imagery data
for a specific geographic area. The output is a segmented mapping of the present crops in
that geographic area—Figure 5 illustrates an example of this task.
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(a) (b)
Figure 5. Crop type prediction: The provided patch is represented by the image (a), and the output is
the overlay mask of predictions (b). The image is a sample from the AiTLAS NLD dataset [63].

Datasets for crop type prediction are generally spatio-temporal, i.e., they contain time
series data in addition to the EO image data. Table 5 presents several datasets available
within the AiTLAS toolbox. On top of the recent Breizhcrops dataset [64], AiTLAS also
presents novel Sentinel 2 imagery for three European countries (Denmark, the Netherlands,
and Slovenia) across three years—2017, 2018, and 2019. These novel datasets are significant
due to their size w.r.t. the geographic area they cover, the number of different parcels (i.e.,
polygons), and the number of distinct crop fields. The datasets are presented in detail
in [63].

Table 5. Properties of the crop type prediction datasets available in the AiTLAS toolbox.

Dataset # of Polygons Area Covered # of Crop Types

AiTLAS SLO [63] 800 k 5000 km2 27
AiTLAS DNK [63] 580 k 26,000 km2 27
AiTLAS NLD [63] 750 k 18,000 km2 27
Breizhcrops [64] 580 k 27,200 km2 9

2.3. Model Architectures

The AiTLAS toolbox contains a catalog of deep learning (DL) model architectures that
support different EO tasks, including image classification, semantic segmentation, object
detection, and crop-type prediction. To this end, AiTLAS implements 24 model architec-
tures, listed in Table 6. For each model, we present the basis of its implementation, technical
characteristics, and supported tasks. In the remainder, we discuss the different available
architectures in AiTLAS, the basis of their implementation and technical characteristics,
and the EO tasks to which they are applicable.
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Table 6. Deep neural network architectures implemented in AiTLAS and their usability across the
EO tasks.
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AlexNet [65] � [66]
CNN-RNN [67] � [67]
ConvNeXt [68] � [66]
DenseNet161 [69] � [66]
EfficientNet [70] � [66]
MLPMixer [71] � [72]
ResNet152 [73] � [66]
ResNet50 [73] � [66]
Swin Transformer [74] � [66]
VGG16 [75] � [66]
Vision Transformer [76] � [72]

DeepLabV3 [77] � [66]
DeepLabV3+ [78] � [79]
FCN [80] � [66]
HRNet [81] � [72]
UNet [82] � [79]

RetinaNet [83] � [66]
Faster R-CNN [84] � [66]

InceptionTime [85] � [86]
LSTM [87] � [86]
MSResNet [88] � [86]
OmniScaleCNN [89] � [86]
StarRNN [90] � [86]
TempCNN [91] � [86]
Transformer for time series classification [92] � [86]

Regarding image scene classification tasks, AiTLAS implements a variety of well-
known DL models based on the traditional convolutional architectures, but also the more
recent attention-based and mlp-based architectures. Convolutional DL architectures have
contributed to many advances in computer vision. A convolutional neural network (CNN)
typically consists of many (hidden) layers stacked together, designed to process (image)
data in the form of multiple arrays. The distinctive component in these networks is the
convolutional layers, which apply the convolution operation (passing the data through
a kernel/filter) and forward the output to the next layer. This serves as a mechanism for
constructing feature maps, with former layers typically learning low-level features (such as
edges and contours) and subsequently increasing the complexity of the learned features
with deeper layers in the network.

The convolutional layers are typically followed by pooling operations (serving as
a downsampling mechanism) that aggregate the feature maps through local non-linear
operations. In turn, these feature maps are fed to fully-connected layers which perform
the ML task at hand—in this case, classification. All the layers in a network employ
an activation function. In practice, the intermediate hidden layers employ a non-linear
function such as rectified linear unit (ReLU) or Gaussian Error Linear Unit (GELU) as
common choices. The choice of activation function in the final layer relates to the tasks at
hand—typically, this is a sigmoid function in the case of classification. CNN architectures
can also include different normalization and/or dropout operators embedded among the
different layers, which can further improve the network’s performance. CNNs have been
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extensively researched, with models applied in many contexts of remote sensing, and in
particular EO image classification [93–96].

Recently, attention-based network architectures have shown state-of-the-art performance
in various vision tasks, including tasks in EO domains. Very prominent in this aspect is
the Vision Transformers (ViT) [76]—they are inspired by the popular NLP (natural language
processing) transformer architecture [97], and leverage the attention mechanism for vision
tasks. Much like the original transformer architecture that seeks to learn implicit relation-
ships in sequences of word tokens via multi-head self-attention, ViTs focus on learning
such relationships between image patches. Typically, ViTs employ a standard transformer
encoder that takes a lower-dimensional (linear) representation of these image patches to-
gether with additional positional embedding from each, in turn feeding the encoder output
to a standard MLP head. More recent and sophisticated attention network architectures
such as the Swin Transformers (SwinT) [74,98] rely on additional visual inductive biases
by introducing hierarchy, translation invariance, and locality in the attention mechanism.
ViT and SwinT variants have shown excellent performance in practice on various vision
tasks, including EO applications [3,99–101], particularly when pre-trained with large
image datasets.

An attention mechanism can be obtained with different approaches, e.g., attending
over channels and/or spatial information, and with convolutional architectures [102–104].
Another alternative is the MLPMixer [71]—it obtains its attention mechanism relying on the
classical MLP architecture. Namely, similarly to a transformer architecture, an MLPMixer
operates on image patches. It consists of two main components: a block of MLP layers for
‘mixing’ the spatial patch-level information on every channel and a block of MLP layers
for ‘mixing’ the channel information of an image. This renders lightweight models, with
performance on par with many much more sophisticated architectures [96,105,106].

The semantic segmentation tasks refer to pixel-wise classification [16]. In this scenario,
segmentation models typically learn to extract meaningful features/representations from
an image and use them to separate the image into multiple segments. In this context,
convolutional architectures are frequently used for performing this task. As in the typical
convolutional setting, the image is first passed through a series of layers (that learn image
features). This process downsamples the image as it passes through a series of pooling
layers. In turn, the image is upsampled/interpolated back to its original size (typically by
using deconvolutional layers), but with some loss of information. The output is typically
passed to a convolutional block with a sigmoid activation, which provides the resulting
pixel-wise classification of the image. This relates to pixel-to-pixel fully convolutional
networks (FCN) [80]. More sophisticated segmentation architectures typically combine
existing architectures at different stages, such as for the model’s downsampling (encoding),
upsampling (decoding), and prediction blocks.

AiTLAS supports segmentation tasks and implements a variety of state-of-the-art
architectures with a track record of successful applications for semantic image segmentation.
This includes UNet [82], a robust, versatile, and accurate segmentation architecture [107].
UNet is a modification of FCN, consisting of encoder and decoder blocks (in a U shape):
the encoder blocks relate the extracted features to the corresponding blocks of the decoder,
with an additional shortcut connection in the decoder. This allows the model to capture
more specific information from the image and retain more information by concatenating
high-level features with low-level ones. AiTLAS also employs HRNet (High-Resolution
Net), another fully convolutional network [81] with parallel architecture and multiple
group convolutions. This allows for leveraging high-resolution images, which leads to
better performance [108].

Common segmentation architectures employ a downsampling block, which broadens
the receptive field (given the input) for the forthcoming filter(s), but at the cost of reduced
spatial resolution. An alternative approach with the same effect but with the ability
to preserve the spatial resolution is atrous (or dilated) convolutions. Here, the filter is
upsampled along each spatial dimension by inserting zero values between two successive
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filters. The DeepLab segmentation architectures [109] employ this approach, incorporating
both atrous convolutions and atrous spatial pyramid pooling (ASPP), leading to robust
and accurate performance semantic segmentation of high-resolution images. To this end,
AiTLAS implements DeepLabv3 [77] and DeepLabv3+ [78] architectures that have been
successfully applied in a variety of EO application [110,111].

Another class of common tasks in EO domains is object detection, which aims at
the localization and classification of objects present in an image. Typical deep-learning
approaches that address object detection tasks can be divided into two groups: region
proposal-based and regression-based [54]. Region proposal-based approaches tackle object
detection in two stages. The first stage focuses on generating a series of candidate region
proposals that may contain objects. The second stage classifies the candidate region propos-
als obtained from the first stage into object classes or backgrounds and further fine-tunes
the coordinates of the bounding boxes. In contrast, regression-based approaches transform the
problem to a multi-target regression task, focusing on directly predicting the coordinates of
the (detection) bounding box.

In the domain of EO, object detection approaches are typically applied on aerial
images, which can be challenging due to the significant variation in scale and viewpoint
across the diverse set of object categories [53]. Most studies involving aerial images
use region proposal-based methods to detect multi-class objects. To support these tasks,
AiTLAS implements several state-of-the-art architectures such as the improved Faster R-
CNN model with a ResNet-50-FPN backbone [84,112] and RetinaNet with ResNet-50-FPN
backbone [83].

Finally, AiTLAS also provides approaches for addressing tasks of crop type prediction.
This refers to a multi-dimensional time series classification task where the input is multi-
spectral temporal data and the output is a discrete variable specifying the crop type; while
these tasks have traditionally been tackled using standard machine-learning approaches
(such as Random Forest [113]), more recent deep-learning approaches have shown better
results [64]. These include approaches that build on convolutional, recurrence, and self-
attention-based architectures.

The convolution-based models use a one-dimensional convolutional layer to extract
features from a temporal local neighborhood by convolving the input time series with a
filter bank learned by gradient descent. To this end, AiTLAS provides implementations
of several such architectures that have been successfully used for crop type prediction
and land cover mapping [91,114], including Temporal Convolutional Neural Network
(TempCNN) [91] (TempCNN), Multi-Scale 1D Residual Network (MSResNet) [88], In-
ceptionTime [85], and Omniscale Convolutional Neural Network (OmniscaleCNN) [89].
Recurrent Neural Network (RNN) models process a series of observations sequentially
while maintaining a feature representation from the previous context. AiTLAS provides
implementations for Long Short-Term Memory (LSTM) [115] models, which have been suc-
cessfully used in remote sensing applications, especially for land cover mapping [116,117].
Finally, AiTLAS includes recent state-of-the-art attention-based transformer architectures
based on [92], which can learn and use the most relevant parts of the input sequence via
stacked self-attention layers for sequence-to-label classification.

3. Results and Discussion: Demonstrating the Potential of AiTLAS

In this section, we showcase the potential of the AiTLAS toolbox through a series
of more detailed examples of its various functionalities and capabilities. We present five
use cases that demonstrate the basic principles behind the toolbox, its modularity, and
its flexibility. For each of the types of EO tasks that we highlighted earlier, we discuss
every segment of the analysis pipeline. We start by loading a new dataset and performing
exploratory data analysis, inspection, and pre-processing. Next, we demonstrate the use of a
machine-learning model (provided in AiTLAS) for a given dataset as well as the evaluation
of the model performance (through different evaluation measures, confusion matrices,
and visualizations). Moreover, we show how users can utilize previously trained models

77



Remote Sens. 2023, 15, 2343

for making predictions on unseen images and quantitatively and qualitatively analyze
the obtained results. Finally, we provide recipes for including new machine-learning
architectures into the AiTLAS toolbox.

3.1. Image Classification

We start with a showcase of image scene classification. Note that the presented
examples (and the obtained results) can be easily reproduced via a Jupyter notebook
presented and further discussed in Appendix C. Moreover, an extensive analysis, performed
using AiTLAS, of more than 500 DL models across a variety of multi-class and multi-label
image classification tasks is presented in [3].

3.1.1. Data Understanding and Preparation

Currently, the aitlas.datasets module includes 22 ready-to-use datasets for EO image
scene classification. To use these datasets, one needs to set the location of the images and a
csv file with the labels for each image. The loaded images can then be transformed (i.e., via
data augmentation), inspected, and visualized (including summaries over the complete
dataset). In the following, we show the process of adding a new dataset and illustrate the
capabilities for exploratory analysis.

For this purpose, we use the CLRS dataset [42] as a running example without loss of
generality of the aitlas.datasets module. The CLRS dataset (available at https://github.
com/lehaifeng/CLRS (accessed on 8 March 2023)) is designed for the task named contin-
ual/lifelong learning for EO image scene classification [42]. It comprises 15,000 remote
sensing images covering over 100 countries divided into 25 scene classes. Each class is
associated with 600 images with a size of 256 × 256 pixels and spatial resolution in the
range of 0.26 m to 8.85 m.

Given that the dataset is shared without predefined splits (for training/validation/test-
ing), we can first create them using the split task within the aitlas.tasks module. The
user needs to only specify the data location and the ratios (in percentages) for the de-
sired splits (e.g., here, we use 60/20/20 splits). The split task will output three separate
csv files for each split, where each row in the csv denotes the relative path of the im-
age (including the sub-folder name and the file name) and its label. For reproducibility,
we provide further details in Appendix B and already prepared dataset (available at
https://github.com/biasvariancelabs/aitlas-arena (accessed on 8 March 2023)).

Next, through the class MultiClassClassificationDataset from the aitlas.datasets mod-
ule, one can load a new dataset as shown in Listing 1. This class also implements additional
data transformations, which can be applied if necessary.

Listing 1. Loading an MCC dataset for remote sensing image scene classification using the Multi-
ClassClassificationDataset class from the AiTLAS toolbox.

1 dataset_config = {
2 "data_dir": "/datasets/CLRS",
3 "csv_file": "/datasets/CLRS/images.csv" }
4 dataset = MultiClassClassificationDataset(dataset_config)

Loading a completely new dataset (beyond the ones currently supported within
AiTLAS) can be achieved by explicitly defining a new data loader class that inherits from
the class MultiClassClassificationDataset. Within the definition of the class, one needs to
manually set the list of the labels/classes (with labels matching the labels provided from
the csv file). One can also provide additional meta-data (such as name and URL) together
with additional methods for data manipulation. Listing 2 provides a recipe for this using
the CLRS dataset.
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Listing 2. Adding a new MCC dataset in the AiTLAS toolbox.

1 from .multiclass_classification import MultiClassClassificationDataset
2

3 LABELS = ["airport", "bare-land", "beach", "bridge", "commercial",
4 "desert", "farmland", "forest", "golf-course", "highway",
5 "industrial", "meadow", "mountain", "overpass", "park",
6 "parking", "playground", "port", "railway", "railway-station",
7 "residential", "river", "runway", "stadium", "storage-tank"]
8

9 class CLRSDataset(MultiClassClassificationDataset):
10

11 url = "https://github.com/lehaifeng/CLRS"
12 labels = LABELS
13 name = "CLRS dataset"
14

15 def __init__(self, config):
16 super().__init__(config)

Once the dataset is ready, one can use methods from the aitlas.visulizataion module
for data visualization and inspection. For instance, one can easily plot images from the
dataset (as shown in Figure 6) and analyze their properties in terms of data distributions. A
more detailed discussion of data exploration capabilities is given in Appendix C.

Figure 6. Example images with labels from the CLRS dataset.

3.1.2. Definition, Execution, and Analysis of a Machine Learning Pipeline

Given a dataset, we next focus on setting an approach that supports an image scene
classification task. In this use case, we employ the Vision Transformer (ViT) model [76].
Specifically, we use a ViT with an input size of 224 × 224 and a patch resolution of
16 × 16 pixels. We showcase a pipeline with two variants: (i) a model “trained from
scratch” using the CLRS dataset and (2) a pre-trained model on ImageNet-1K and then
fine-tuned on the CLRS dataset. Note that the ViT model is trained/fine-tuned using the
data splits we defined earlier.

We configure the model by setting several configuration parameters, i.e., the number of
classes/labels, the learning rate, and the evaluation metrics. To use the pre-trained variant
of the Vision Transformer (pre-trained on the ImageNet-1k dataset) in the configuration
object, we also set the pre-trained parameter to true. We fine-tune the model on the
CLRS dataset by calling the function train_and_evaluate_model. The code snippet for
instantiating the model and running the training sequence is given in Listing 3.
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Listing 3. Creating a model and executing model training.

1 epochs = 100
2 model_directory = "/experiments/CLRS"
3 model_config = {
4 "num_classes": 25,
5 "learning_rate": 0.0001,
6 "pretrained": True,
7 "metrics": ["accuracy", "precision", "recall", "f1_score"]}
8 model = VisionTransformer(model_config)
9 model.prepare()

10 model.train_and_evaluate_model(
11 train_dataset=train_dataset ,
12 epochs=epochs,
13 model_directory=model_directory ,
14 val_dataset=validation_dataset ,
15 run_id=’1’,)

To evaluate the learned model, we load the dataset’s test split, set the evaluation
metrics list, and run the evaluation sequence on the test data (Listing 4). Note that the
predictive performance of the models in this setting is typically assessed by top-n accuracy
score (typically n is set to 1 or 5) [65]. This score calculates the number of correctly predicted
labels among the n most probable labels the model outputs. Besides accuracy, AiTLAS
supports additional prediction performance metrics such as Macro Precision, Weighted
Precision, Macro Recall, Weighted Recall, Macro F1 score, and Weighted F1 score, etc.

Listing 4. Evaluating a trained model using images from the test split.

1 test_dataset_config = {
2 "batch_size": 128,
3 "shuffle": False,
4 "data_dir": "/dataset/CLRS",
5 "csv_file": "/dataset/CLRS/test.csv",
6 "transforms": ["aitlas.transforms.ResizeCenterCropToTensor"]}
7 test_dataset = CLRSDataset(test_dataset_config)
8 model_path = "best_checkpoint.pth.tar"
9 model.metrics = ["accuracy", "precision", "recall", "f1_score"]

10 model.running_metrics.reset()
11 model.evaluate(dataset=test_dataset , model_path=model_path)
12 model.running_metrics.get_scores(model.metrics)

Finally, once the model has been trained and evaluated, users can analyze their
performance. In this particular example, the ViT model that was first pre-trained on
ImageNet-1K achieved an accuracy of 93.20%, substantially outperforming the counterpart
trained from scratch, which obtained an accuracy of 65.47%. The performance can also be
investigated via confusion matrices (Figure 7), allowing for a more fine-grained analysis
of the model performance on individual classes. Finally, using AiTLAS, users can further
analyze the predictions made by the model’s Grad-CAM [118] activation maps. For instance,
Figure 8 presents a sample output obtained from the ViT model, highlighting where the
model focused when making the correct (or incorrect) predictions. This capability allows
for further validation and diagnosis of the models.
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Figure 7. Confusion matrix obtained from a pre-trained Vision Transformer model applied on the
CLRS dataset. The values denote percentages of correctly/incorrectly predicted labels.

Figure 8. GradCAM visualizations for images, sampled from the CLRS dataset: (top) input images
with their ground-truth label, (bottom) corresponding activation maps with predicted labels (from a
ViT model).

A detailed discussion on the pipeline is presented in Appendix C, including templates
for model learning, evaluation, and inspection, as well as guidelines on using the learned
models for predicting tasks with unseen images.

3.2. Semantic Segmentation

In this section, we discuss the utility of the AiTLAS toolbox for semantic segmentation
tasks. For this use case, we use the LandCover.ai (Land Cover from Aerial Imagery)
dataset [119] and employ a DeepLabV3 model to perform the semantic segmentation task.
The presented use case (together with the obtained results) can be easily reproduced using
the Jupyter notebook presented and discussed in Appendix D.
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3.2.1. Data Understanding and Preparation

LandCover.ai (Land Cover from Aerial Imagery) (available at https://landcover.ai.
linuxpolska.com/download/landcover.ai.v1.zip (accessed on 8 March 2023)) is a dataset
for automatic mapping of buildings, woodlands, water, and roads from aerial images [119].
It contains a selection of aerial images taken over the area of Poland. The images have
a spatial resolution of 25 or 50 cm per pixel with three spectral bands (RGB bands). The
original 41 images and their corresponding masks are split into 512 × 512 tiles. The tiles
are then shuffled and organized into 70%/15%/15% of the tiles for training, validation,
and testing, respectively.

AiTLAS implements data loaders for creating, loading, and preparing datasets for
semantic segmentation. Specifically, the class SemanticSegmentationDataset from the
aitlas.datasets module is the base class for creating a dataset, which loads images and

the corresponding segmentation masks from a csv file. For example, in this case, this is
performed within the instanced LandCoverAiDataset (presented in Listing 5), which sets the
labels and their color mapping (used only for visualization as presented in Figure 9). A
complete example of the data inspection capabilities is given in Appendix D.

Listing 5. Adding a new dataset for semantic segmentation in the AiTLAS toolbox.

1 class LandCoverAiDataset(SemanticSegmentationDataset):
2 url = "https://landcover.ai.linuxpolska.com/"
3 labels = ["Background", "Buildings", "Woodlands", "Water", "Road"]
4 color_mapping = [[255, 255, 0], [0, 0, 0], [0, 255, 0], [0, 0, 255], [200, 200,

200]]
5 name = "Landcover AI"
6

7 def __init__(self, config):
8 super().__init__(config)

(a) (b)
Figure 9. Example images with masks from the LandCover.ai dataset. Each pixel is labeled with one
of the following labels: background (yellow), buildings (black), woodlands (green), water (blue) and
road (gray) (a) and pixel distribution within the labels (b).

3.2.2. Definition, Execution and Analysis of a Machine Learning Pipeline

Once the dataset has been appropriately set, we focus on setting, training, and evalu-
ating the models. For this use case, we train two variants of DeepLabV3 models: (i) one
“trained from scratch” using only the LandCover.ai dataset, and (2) a model with pre-trained
weights on a subset of the COCO dataset [120] (using only the 20 categories also present in
the Pascal VOC dataset [66]), subsequently fine-tuned on LandCover.ai dataset. Listing 6
presents the AiTLAS configuration for setting and executing the training procedure. We
use mean intersection over union (mIoU) as an evaluation measure, which denotes the
area of the overlap between the ground truth and predicted label divided by the total area,
averaged across the different labels.
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Listing 6. Creating an instance of a DeepLabv3 model and executing model training.

1 epochs = 100
2 model_directory = "/experiments/landcoverai"
3 model_config = {
4 "num_classes": 5,
5 "learning_rate": 0.0001,
6 "pretrained": True,
7 "threshold": 0.5,
8 "metrics": ["iou"] }
9

10 model = DeepLabV3(model_config)
11 model.prepare()
12 model.train_and_evaluate_model(
13 train_dataset=train_dataset ,
14 val_dataset=validation_dataset ,
15 epochs=epochs,
16 model_directory=model_directory ,
17 run_id=’1’)

Once the training routine has finished, evaluating the model can be performed as
presented in Listing 7.

Listing 7. Evaluating a trained DeepLabv3 model using images from the test split.

1 test_dataset_config = {
2 "batch_size": 4,
3 "shuffle": False,
4 "data_dir": "/dataset/landcoverai/images",
5 "csv_file": "/dataset/landcoverai/test.txt",
6 "transforms": ["aitlas.transforms.MinMaxNormTranspose"],
7 "target_transforms": ["aitlas.transforms.Transpose"]
8 }
9

10 test_dataset = LandCoverAiDataset(test_dataset_config)
11 model_path = "/experiments/landcoverai/best_checkpoint.pth.tar"
12 model.metrics = ["iou"]
13 model.running_metrics.reset()
14 model.evaluate(dataset=test_dataset , model_path=model_path)
15 model.running_metrics.get_scores(model.metrics)

The results presented in Table 7 summarize the segmentation performance of the
trained models. In this example, both DeepLabv3 models resulted in a similar performance,
with the pre-trained model having a (practically) insignificantly better performance than its
counterpart trained from scratch. In general, the values of the IoU for the labels ‘Road’ and
‘Building’ are lower than the other labels since they are usually narrow (roads) and/or often
small (buildings), thus typically challenging for segmentation models. Running additional
experiments with different model architectures, setups, and datasets is straightforward
within AiTLAS, requiring only simple modifications to the presented routines. Additional
templates for this task, including additional visualizations and application of the model to
external images, are given in Appendix D.

Table 7. Label-wise IoU(%) and mIoU for the DeepLabv3 models trained on the Land-
Cover.ai dataset.

Model/Label Background Buildings Woodlands Water Road mIoU Training Time

Trained from scratch 93.813 80.304 91.952 94.877 69.190 86.027 4.5 h
Pre-trained on COCO 93.857 80.650 91.964 95.145 68.846 86.093 5 h

3.3. Object Detection

We next discuss using the AiTLAS toolbox for object detection. In this use case, we
show using a Faster R-CNN model on the HRRSD dataset [52]. All of the necessary details
of the developed resources are further given in Appendix E.
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3.3.1. Data Understanding and Preparation

The AiTLAS toolbox supports the representation of the data for the object detection
task through its aitlas.datasets module via the base classes ObjectDetectionPascalDataset
and ObjectDetectionCocoDataset. They implement the two most widely used data represen-
tation formats for object detection: PascalVOC [121] and COCO [120], respectively. More
specifically, the Pascal VOC format includes an XML file for each image in the dataset
containing information about the bounding boxes of the objects present in the image,
together with some additional metadata such as category/label, level of difficulty, and
an indicator of whether the object is truncated (partially visible). On the other hand, the
COCO annotation format stores the annotations in JSON files for the training, testing, and
validation parts of the data. The JSON file contains a list of each object annotation from
every image in the dataset. The annotation includes coordinates for the bounding box, the
area of the bounding box, category/label, and an ‘iscrowd’ indicator for the number of
objects in an image (which is 0 for single objects or 1 for a collection of objects).

The HRRSD (available at https://github.com/CrazyStoneonRoad/TGRS-HRRSD-
Dataset (accessed on 8 March 2023)) [52,122] dataset contains 21,761 color images acquired
from Google Earth with spatial resolution ranging from 0.15 to 1.2 m, and 4961 color images
acquired from Baidu Maps with a spatial resolution ranging from 0.6 to 1.2 m. The dataset
is divided into a training portion (5401 images), a validation portion (5417 images), and a
test portion (10,943 images). An image from the dataset may contain several objects or just
one and may contain objects from the 13 different categories/labels. The total number of
object instances is 55,740.

Similarly to the use cases presented earlier, loading a dataset into AiTLAS involves
instantiating ObjectDetectionPascalDataset, as shown in Listing 8. The class ObjectDetection-
PascalDataset implements additional functionalities for further inspection of the loaded data.
For example, one can visualize images from the dataset (as shown in Figure 10) coupled
with the number of instances for each category within the dataset.

Listing 8. Loading HRRSD dataset using the class ObjectDetectionPascalDataset from the AiTLAS
toolbox.

1 dataset_config = {
2 "image_dir": "/datasets/HRRSD/images",
3 "annotations_dir": "/datasets/HRRSD/annotations",
4 "imageset_file": "/datasets/HRRSD/train.txt", }
5

6 dataset = ObjectDetectionPascalDataset(dataset_config)

Figure 10. Example images with bounding boxes for the objects from the HRRSD dataset.

3.3.2. Definition, Execution and Analysis of a Machine Learning Pipeline

As mentioned earlier, in this use case, we use the Faster R-CNN model with a ResNet-
50-FPN backbone [84]. Specifically, here we also train and evaluate two variants of the
model: “trained from scratch” using the HRRSD dataset and a pre-trained model on the
COCO dataset [66] and then fine-tuned on the HRRSD dataset. The code snippet for
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creating and training these models is shown in Listing 9. To evaluate the models, one needs
to create a configuration object for the training split of the HRRSD data, load the data, set
the path to the trained model, and run the evaluation process (as shown in Listing 10).
As an evaluation measure, we use the mean average precision (mAP) as defined in the
Pascal VOC Challenge [121], computed as the average precision value taken at recall values
ranging from 0 to 1 (i.e., the area under the precision/recall curve) and then averaged over
all classes. The performance of object detection models can also be evaluated using IoU
between the predicted and ground-truth bounding boxes.

Listing 9. Creating an instance of a Faster R-CNN model and executing model training.

1 epochs = 100
2 model_directory = "/experiments/hrrsd"
3 model_config = {
4 "num_classes": 14,
5 "learning_rate": 0.0001,
6 "pretrained": True,
7 "threshold": 0.5,
8 "metrics": ["map"] }
9

10 model = FasterRCNN(model_config)
11 model.prepare()
12 model.train_and_evaluate_model(
13 train_dataset=train_dataset ,
14 val_dataset=validation_dataset ,
15 epochs=epochs,
16 model_directory=model_directory ,
17 run_id=’1’
18 )

Listing 10. Testing a trained model with images from the test split.

1 test_dataset_config = {
2 "batch_size": 4,
3 "shuffle": False,
4 "image_dir": "/datasets/HRRSD/images",
5 "annotations_dir": "/datasets/HRRSD/annotations",
6 "imageset_file": "/datasets/HRRSD/test.txt",
7 "joint_transforms": ["aitlas.transforms.ResizeToTensorV2"] }
8

9 test_dataset = ObjectDetectionPascalDataset(test_dataset_config)
10 model_path = "/experiments/hrrsd/best_checkpoint.pth.tar"
11 model.metrics = ["map"]
12 model.running_metrics.reset()
13 model.evaluate(dataset=test_dataset , model_path=model_path)
14 model.running_metrics.get_scores(model.metrics)

The results of this particular use case show that the pre-trained Faster R-CNN model
leads to an mAP of 81.436%, outperforming the variant trained from scratch with an mAP
of 77.412%. Further investigation shows that, in this case, the most challenging objects
to detect are ’Crossroad’ and ’T Junction’ (due to the similarity of both objects). AiTLAS
allows for further quantitative analysis of these results by examining the predicted outputs
(images with the detected objects and the categories/labels for each object) as shown in
Figure 11. Further details for this use case are presented in Appendix E.
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Figure 11. Example images with the predicted bounding boxes and object labels (‘ship’, ‘T junction’
and ‘airplane’, respectively) using a Faster R-CNN model.

3.4. Crop Type Prediction

For our last use case, we show the capabilities of the AiTLAS toolbox on the task of
crop type prediction. For this purpose, we train and evaluate an LSTM model applied
to the AiTLAS NLD dataset [63]. Merdjanovska et al. [63] present an extensive analysis
of this task, performed using the AiTLAS toolbox, comparing the performance of several
state-of-the-art deep-learning architectures. All of the developed resources for this use case
are also presented and discussed in Appendix F.

3.4.1. Data Understanding and Preparation

Typically, the data format for crop-type prediction tasks is different compared to data
for the other EO tasks because of their temporal component that needs to be taken into
consideration. The AiTLAS toolbox supports crop-type prediction datasets via the base
class CropsDataset and the EOPatchCrops class (a wrapper for working with EOPatches [23]).
The EOPatch format stores multi-temporal remotely sensed data of a single patch of the
Earth’s surface as constrained by the bounding box in a given coordinate system. The patch
can be a rectangle, polygon, or pixel in space. The same object can also be used to store
derived measures and indices from the patch, such as means, standard deviations, etc.

The AiTLAS NLD dataset [63] consists of Sentinel 2 data, resampled at 10-day intervals
in the periods of March–November of 2017, 2018, and 2019 (resulting in 28 distinct dates for
each year). We use images from 10 m and 20 m bands which contain eight spectral bands:
B3, B4, B5, B6, B7, B8, B11, and B12. Additionally, the dataset contains three calculated
indices: NDVI (normalized difference vegetation index), NDWI (normalized difference
water index), and brightness (euclidean norm). Each polygon observation describes the
temporal profile of a crop field and is associated with multivariate time series obtained
by averaging the reflectance values at a crop-field level extracted from the Sentinel 2 data.
In this way, each polygon is represented as a two-dimensional vector: the first dimension
represents the (11) spectral bands, and the second one the (28) time steps. The crop type
data categorization was created from the Land Parcel Identification System (LPIS). Each
crop type label describes one crop field (or parcel), which in turn is identified with a
polygon border. Figure 12 shows an example of the different field geometry present in
the data.
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Figure 12. Example field geometries for the AiTLAS NLD dataset. The different colors of the polygons
in the sample represent different crop types.

The loading configuration (shown on Listing 11) of such data includes mapping the
path to the data, an index file (a separate csv file) which contains the class mappings of
each polygon/patch, as well as the train/validation/test data splits (in terms of regions) for
running the ML pipeline. Users can also specify other attributes for working with datasets,
such as batch size, data shuffling, and the number of workers.

Listing 11. Loading the AiTLAS NLD dataset.

1 dataset_config = {
2 "root": "/home/user/data/CropTypeNetherlands/2019/",
3 "csv_file_path": "index.csv",
4 "batch_size": 128,
5 "shuffle": True,
6 "num_workers": 4,
7 "regions":["train", "test", "val",],
8 }
9 dataset = EOPatchCrops(dataset_config)

3.4.2. Definition and Execution of Machine Learning Tasks

AiTLAS casts the task of crop type prediction as a multi-class classification task,
defined with the BaseMulticlassClassifier class, within the aitlas.base module. To illustrate
the use of AiTLAS for crop type prediction, we use an LSTM model [87]. Specifically, we
perform experiments on the AiTLAS NLD dataset independently for each of the three years.
The goal is to examine the models’ behavior and performance and how it varies across the
years. For measuring the models’ predictive performance, we use standard metrics such as
accuracy, weighted F1 score, and Kappa coefficient. In the context of AiTLAS, initializing
and creating the training routine is straightforward: one needs to set the model parameters
in the configuration object, instantiate the model, and run the training sequence (as shown
in Listing 12).
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Listing 12. Creating an instance of an LSTM model and executing model training.

1 epochs = 100
2 model_directory = "./experiments/LSTM"
3 model_config = {
4 "input_dim":11,
5 "num_classes": 10,
6 "learning_rate": 0.001,
7 "dropout" : 0.2,
8 "weight_decay": 0.0001,
9 "metrics":["accuracy","f1_score", "kappa"] }

10 model = LSTM(model_config)
11 model.prepare()
12 model.train_and_evaluate_model(
13 train_dataset=train_dataset ,
14 epochs=epochs,
15 model_directory=model_directory ,
16 val_dataset=validation_dataset ,
17 run_id=’1’,)

Once the model is trained, one can evaluate the model in a predictive setting with
unseen data (Listing 13). In this example, the trained LSTM model shows consistent
performance (across the three datasets/years) with accuracy in the range of ∼84–85%
and a weighted F1 score in the range ∼82–84%. AiTLAS allows for more fine-grained
per-label analysis of the model performance. For instance, in this example, the F1 score for
Temporary grasses and grazings in 2017 is 45.23, while in 2018 raises to 59.34. Such insights can
further help diagnose and improve the model’s performance. Finally, AiTLAS also supports
qualitative prediction analysis through visualizations of the predicted regions (and their
labels). Further details of this use case, including complete results of the experiments, are
given in Appendix F.

Listing 13. Evaluating a trained LSTM model.

1 labels = ["Permanent grassland", "Temporary grasses and grazings", "Green maize",
"Potatoes (including seed potatoes)",

2 "Common winter wheat and spelt", "Sugar beet (excluding seed)", "Other farmland",
"Onions",

3 "Flowers and ornamental plants (excluding nurseries)", "Spring barley",]
4

5 test_dataset_config = {
6 "batch_size": 32,
7 "shuffle": False,
8 "num_workers": 4,
9 "root": "/home/user/data/CropTypeNetherlands/2019/",

10 "csv_file_path": "index.csv",
11 "regions":["test", ],}
12

13 test_dataset = EOPatchCrops(test_dataset_config)
14 y_true, y_pred, y_prob = model.predict(dataset=test_dataset ,)
15

16 eopatches_path = "/home/user/data/CropTypeNetherlands/2019/eopatches/"
17 patch = "eopatch_7495"

3.5. Adding a New Machine Learning Model in AiTLAS

In the use cases discussed previously, we showcased the capability of AiTLAS with
the already available methods and model architectures. However, AiTLAS is modular
and easily extensible to new approaches. Here we present a template for adding novel
model architectures into the AiTLAS toolbox. This includes instantiating from one of the
model base classes from the aitlas.base module, which corresponds to a particular EO
task. For instance, adding a new model for image scene classification, such as EfficientNetV2
as implemented in the PyTorch [66] model catalog. The model can be added by creating an
inherited class from BaseMulticlassClassifier, which already implements all the requirements
to train a deep-learning model successfully.
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Namely, the implementation (e.g., Listing 14) includes initialization of the model
variable from the base class and overriding the forward function. In the init function,
the model variable is initialized using the efficientnet_v2_m function, which constructs
the EfficientNetV2-M architecture introduced by Tan and Le [123]. Users can also include
pre-trained model variants by setting the variable ’pretrained’, which will lead to setting a
pre-trained model from the ImageNet-1K dataset. The newly added EfficientNetV2 model
can then be used for remote sensing image scene classification in a similar manner as the
use case presented in Section 3.1.

Listing 14. Adding EfficientNetV2 as a new model for remote sensing image scene classification in
the AiTLAS toolbox.

1 import torchvision.models as models
2 import torch.nn as nn
3

4 from ..base import BaseMulticlassClassifier , BaseMultilabelClassifier
5

6 class EfficientNetV2(BaseMulticlassClassifier):
7 name = "EfficientNetV2"
8

9 def __init__(self, config):
10 super().__init__(config)
11 if self.config.pretrained:
12 self.model = models.efficientnet_v2_m(
13 weights=models.EfficientNet_V2_M_Weights.IMAGENET1K_V1 ,
14 progress=False
15 )
16 in_features = self.model.classifier[1].in_features
17 self.model.classifier[1] = nn.Linear(
18 in_features , self.config.num_classes
19 )
20 else:
21 self.model = models.efficientnet_v2_m(
22 weights=None, progress=False,
23 num_classes=self.config.num_classes
24 )
25

26 def forward(self, x):
27 return self.model(x)

4. Conclusions

We present AiTLAS (https://aitlas.bvlabs.ai (accessed on 8 March 2023)), an open-
source, state-of-the-art toolbox for exploratory and predictive analysis of satellite imagery.
AiTLAS is a versatile Python library applicable to a variety of different tasks from EO,
such as image scene classification, image segmentation, object detection, and crop type
prediction (time series classification) tasks. It provides the means for straightforward
construction and execution of complete end-to-end EO pipelines catering to users’ needs
with different goals, domain backgrounds, and levels of expertise.

From an EO perspective, where users typically focus on a particular application, AiT-
LAS supports building complete data analysis pipelines starting from data preparation and
understanding of the data, through leveraging state-of-the-art deep-learning architectures
for various predictive tasks, to quantitative and qualitative analysis of the predicted out-
comes. As such, the capabilities of AiTLAS expand significantly in comparison to other
related libraries such as eo-learn [23], OTB [26], and CANDELA [28]. Namely, in addition
to data handling, AiTLAS implements approaches for model learning, be they training
models from scratch or employing/fine-tuning pre-trained models freely available via the
AiTLAS model catalog. Moreover, AiTLAS provides an additional, more comprehensible,
configuration layer for executing EO data-analysis pipelines that do not require significant
familiarity with the underlining machine-learning technologies. We believe this capability
substantially flattens the learning curve for constructing and executing novel EO data anal-
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ysis pipelines. From an AI perspective, AiTLAS implements the necessary components for
implementing novel methods for EO data analysis, both in terms of (novel) deep-learning
architectures as well as approaches for data handling/transformation. Moreover, it further
facilitates the development of new approaches by providing easy access to formalized
AI-ready data (via the AiTLAS EO data catalog) and their evaluation via standardized and
extensive benchmark framework [3].

The main motivation of AiTLAS is bringing together the AI and EO communities by
providing extensible, easy-to-use, and, more importantly, open-source resources for EO
data analysis. The design principles of AiTLAS, showcased in this work, build on this
motivation by providing:

1. User-friendly, accessible, and interoperable resources for data analysis through easily
configurable and readily usable pipelines. The resources can be easily adapted by
adjusting the configuration (JSON) files to a specific task at hand.

2. Standardized, verifiable, and reusable data handling, wrangling, and pre-processing
approaches for constructing AI-ready data. The AiTLAS datasets are readily avail-
able for use through the toolbox and accessible through its EO data catalog (http:
//eodata.bvlabs.ai) , which incorporates FAIR [124] ontology-based semantic (meta)
data descriptions of AI-ready datasets;

3. Modular and configurable modeling approaches and (pre-trained) models. The im-
plemented approaches can be easily adjusted to different setups and novel analysis
pipelines. Moreover, AiTLAS includes the most extensive open-source catalog of
pre-trained EO deep-learning models (currently with more than 500 models) that
have been pre-trained on a variety of different datasets and are readily available for
practical applications.

4. Standardized and reproducible benchmark protocols (for data and models) that are
essential for developing trustworthy, reproducible, and reusable resources. AiTLAS
provides the resources and the necessary mechanisms for reconciling these protocols
across tasks, models (and model configurations), and processing details of the datasets
being used.

The development of AiTLAS is an ongoing effort. We foresee its evolution in three
primary directions. First, it will continue to keep pace with the growing body of resources
developed by the AI4EO community, continuously extending the catalogs of available
AI-ready EO datasets and novel mode architectures. Second, and more application focused,
we will continue the development of templates for specific use cases and pipelines tailored
for different domains (such as agriculture, urban planning, geology, archaeology, etc.).
Third, we will focus on extending the AiTLAS capabilities with self-supervised learning
(SSL) approaches as a response to various practical challenges akin to costly and tedious
labeling processes of large amounts of unlabeled data [125]. We believe that such extensions
will bring many practical benefits in different downstream applications [99,126–128], which
will undoubtedly further increase the utility of AiTLAS.
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Appendix A. Third-Party Dependencies

Table A1. Third-party libraries used by AiTLAS described with their scope of usage and purpose
within our toolbox.

Library Scope of Usage Purpose

PyTorch Vision [66] aitlas.models Pre-built deep-learning model architectures.
PyTorch Image Models [72] aitlas.models Pre-built deep-learning model architectures.
Segmentation Models Py-
Torch [79]

aitlas.models Pre-built deep-learning model architectures specifically for segmenta-
tion tasks.

Albumentations [129] aitlas.transforms Applying transormations and augmentations.
NumPy [130] aitlas.base General scientific computing
Scikit-learn [131] aitlas.base Used for metric calculations
Scikit-multilearn [132] aitlas.tasks Used for stratified dataset splitting.
Seaborn [133] aitlas.visualizations For visualizations.
Matplotlib [133] aitlas.visualizations For visualizations
TensorBoard [27] aitlas.base Enable logging the train/validation loss during model training as well

as any other supported metrics. This then allows for those statistics to
be visualized in the TensorBoard UI.

zipp [134] aitlas.utils Enables working with zip files.
dill [135] aitlas.utils Extends Python’s pickle module for serializing and de-serializing

Python objects to the majority of the built-in data types.
lmdb [136] aitlas.datasets Enables working with LMDB data.
tifffile [137] aitlas.utils Reads TIFF files from any storage.
h5py [138] aitlas.datasets Provides an interface to the HDF5 binary data format.
click [139] aitlas.base Enables creating command line interfaces.
munch [140] aitlas.base Provides attribute-style access to objects.
marshmallow [141] aitlas.base It is an ORM/ODM/framework-agnostic library for converting com-

plex data types to and from native Python data types.
Pytoch Metrics [142] aitlas.metrics Utility library used for computing performance metrics.

Appendix B. Split Task within the AiTLAS Toolbox for Creating Train, Validation and

Test Splits

When constructing a data analysis pipeline, it is common to split the available data into
separate sets/splits that can be used for model training, validation, and testing. While the
training split is used for training the ML model, the validation split is used for estimating
the optimal hyper-parameters of the model. The test split is then used to evaluate the
model’s performance on new, unseen data. In the context of remote sensing image scene
classification, the AiTLAS toolbox provides an interface for performing the splitting task to
generate these data splits. The task is very convenient as most of the datasets are published
without these splits, and it is up to the practitioner to define the splits.

The split task in the AiTLAS toolbox supports sampling strategies for generating
the splits: random and stratified. The latter method ensures that the distribution of the
target/class variable(s) is the same among the different splits [143]. The configuration
file that can be used to run the AiTLAS toolbox and obtain the required splits for a given
dataset is provided in Listing A1.
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Listing A1. Configuration file for creating train, validation and test splits.

1 {
2 "task": {
3 "classname": "aitlas.tasks.StratifiedSplitTask",
4 "config": {
5 "split": {
6 "train": {
7 "ratio": 60,
8 "file": "./data/CLRS/train.csv"
9 },

10 "val": {
11 "ratio": 20,
12 "file": "./data/CLRS/val.csv"
13 },
14 "test": {
15 "ratio": 20,
16 "file": "./data/CLRS/test.csv"
17 }
18 },
19 "data_dir": "./data/CLRS"
20 }
21 }
22 }

An example csv file generated using the split task is given in Listing A2.

Listing A2. Example csv file with the required format by the AiTLAS toolbox for remote sensing
image scene classification datasets.

1 airport/airport_321_Level1_0.53m.tif,airport
2 storage-tank/storage-tank_489_Level1_0.50m.tif,storage-tank
3 golf-course/golf-course_374_Level3_2.05m.tif,golf-course
4 parking/parking_561_Level1_0.39m.tif,parking
5 residential/residential_77_Level1_0.49m.tif,residential
6 meadow/meadow_5_Level3_1.37m.tif,meadow
7 mountain/mountain_538_Level3_7.60m.tif,mountain
8 mountain/mountain_180_Level2_3.66m.tif,mountain

In the configuration file, the split task has to be set. In Listing A1, in order to perform
a stratified splitting of the data, we have chosen the aitlas.tasks.StratifiedSplitTask . Then,
we include the path to the folder in which the images are stored. Additionally, for the MLC
dataset, a csv file containing one-hot encoded classes or labels must be provided alongside
the images. However, for the MCC dataset, a csv file is not necessary since the images
for different classes or labels are located in separate sub-folders within the main or root
folder. We use ratios to generate the splits required for training, validation, and testing,
used to determine the proportion of images in each split. Based on these ratios, a split-task
automatically generates a csv file that contains the image names for each split. Additional
configuration files for different datasets can be found in the AiTLAS repository (https://
github.com/biasvariancelabs/aitlas/blob/master/examples/ (accessed on 8 March 2023)).

Appendix C. Remote Sensing Image Scene Classification

A Jupyter Notebook for demonstrating remote sensing image scene classification is
available in the AiTLAS repository (https://github.com/biasvariancelabs/aitlas/blob/
master/examples/multiclass_classification_example_clrs.ipynb (accessed on 8 March 2023)).
The notebook contains a step-by-step sample code for running an image scene classification
task. More specifically, we demonstrate the standard steps on how to load and split the data
and examine its label distribution. It also showcases the steps for training and evaluation
of the model and visualizing the prediction.

We use the CLRS multi-class dataset, which consists of 25 land cover classes. To
obtain the dataset, it first has to be downloaded from the repository (https://github.com/
lehaifeng/CLRS (accessed on 8 March 2023) and unzipped, after which we obtain the
data organized in subfolders containing images for each label/class. However, since the
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CLRS dataset does not come with predefined train, validation, and test splits, the split task
defined within the AiTLAS toolbox is used to generate the splits. More details about the
split task can be found in Appendix B.

Next, we create an instance of the CLRSDataset class from the toolbox. To create the
instance, we provide the folder with the images and a csv file with a list of images and
labels. Additionally, we set the batch size for the data loader, the shuffle parameter to
reshuffle the data at each epoch, and we set the number of workers/sub-processes to load
the data. Listing A3 provides a code snippet illustrating how to create the instance. The
created instance loads the image data from the dataset and offers additional functionalities
for inspection and visualization.

Listing A3. Load a dataset using the AiTLAS toolbox, inspect images and calculate the class distribu-
tion.

1 dataset_config = {
2 "data_dir": "/datasets/CLRS",
3 "csv_file": "/datasets/CLRS/train.csv",
4 "batch_size": 128,
5 "shuffle": True,
6 "num_workers": 4
7 }
8 dataset = CLRSDataset(dataset_config)
9 fig = dataset.show_image(340)

10 dataset.data_distribution_table()

We can use the show_image function to display images from the dataset. To inspect the
label distribution in the dataset, we can use the data_distribution_table function. The
class distribution of the train, test, and validation splits can be calculated and presented as
shown in Figure A1.

Figure A1. Class distribution for the CLRS dataset across the training, validation, and testing splits
of the data.

In the next step, we continue specifying the model learning task by providing the
training and validation data and a deep-learning model. The code snippet for creating train
and validation datasets is given in Listing A4. Additionally, Listing A4 shows an example
of specifying the data transformation parameter. Transformations are used to process the
data to make it suitable for training. They can also augment the data to represent a more
comprehensive set of possible data points, resulting in better performance and model
generalization to address overfitting. Here we give an example of applying the ResizeRan-
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domCropFlipHVToTensor on the training data, which first resizes all the images to 256 × 256,
selects a random crop of size 224× 224, and then applies random horizontal and/or vertical
flips. On the test data, we apply the ResizeCenterCropToTensor transformation, which resizes
the images to 256 × 256 and then applies a central crop of size 224 × 224.

Listing A4. Load the training and validation dataset.

1 train_dataset_config = {
2 "batch_size": 128,
3 "shuffle": True,
4 "data_dir": "/datasets/CLRS",
5 "csv_file": "/datasets/CLRS/train.csv",
6 }
7

8 train_dataset = CLRSDataset(train_dataset_config)
9 train_dataset.transform = ResizeRandomCropFlipHVToTensor()

10

11 validation_dataset_config = {
12 "batch_size": 128,
13 "shuffle": False,
14 "data_dir": "/datasets/CLRS",
15 "csv_file": "/datasets/CLRS/val.csv",
16 "transforms": ["aitlas.transforms.ResizeCenterCropToTensor"]
17 }
18

19 validation_dataset = CLRSDataset(validation_dataset_config)

For learning, we use the Vision Transformer model, available in the toolbox. We
configure the model by setting several configuration parameters, i.e., the number of class-
es/labels, the learning rate, and the evaluation metrics. To use the pre-trained variant of
the Vision Transformer (pre-trained on the ImageNet-1k dataset) in the configuration object,
we also set the pre-trained parameter to true. We fine-tune the model on the CLRS dataset
by calling the function train_and_evaluate_model. The code snippet for instantiating the
model and running the training sequence is given in Listing A5.

Listing A5. Creating a model and start of model training.

1 epochs = 100
2 model_directory = "/experiments/CLRS"
3 model_config = {
4 "num_classes": 25,
5 "learning_rate": 0.0001,
6 "pretrained": True,
7 "metrics": ["accuracy", "precision", "recall", "f1_score"]
8 }
9 model = VisionTransformer(model_config)

10 model.prepare()
11 model.train_and_evaluate_model(
12 train_dataset=train_dataset ,
13 epochs=epochs,
14 model_directory=model_directory ,
15 val_dataset=validation_dataset ,
16 run_id=’1’,
17 )

We use ReduceLROnPlateau as a learning scheduler—it reduces the learning rate when
the loss has stopped improving. Namely, models often benefit from reducing the learning
rate by a factor once learning stagnates: ReduceLROnPlateau tracks the values of the
loss measure, reducing the learning rate by a given factor when there is no improvement
for a certain number of epochs (denoted as ’patience’). In our experiments, we track the
value of the validation loss with patience set to 5 and a reduction factor set to 0.1 (the new
learning rate will thus be lr ∗ f actor). The maximum number of epochs is set to 100. We also
apply early stopping criteria if no improvements in the validation loss are observed over
10 epochs. The best checkpoint/model found (with the lowest validation loss) is saved and
then applied to the test part to obtain the final assessment of the predictive performance.
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To evaluate the learned model, we load the test split of the dataset, set the list of
evaluation metrics, and run the evaluation sequence on the test data (Listing A6). The
predictive performance of the models for MCC is typically assessed by reporting the top-n
accuracy score (typically n is set to 1 or 5) [65]. This score is calculated by checking whether
the correct label is placed among the n most probable labels outputted by the model. In
this use case, we report top-1 accuracy, denoted as ’Accuracy’, Macro Precision, Weighted
Precision, Macro Recall, Weighted Recall, Macro F1 score, and Weighted F1 score. Note that
since for MCC tasks, the micro-averaged measures such as F1 score, Micro Precision, and
Micro Recall have values equal to accuracy, we do not report them separately.

Listing A6. Testing the model using the images from the test split.

1 test_dataset_config = {
2 "batch_size": 128,
3 "shuffle": False,
4 "data_dir": "/dataset/CLRS",
5 "csv_file": "/dataset/CLRS/test.csv",
6 "transforms": ["aitlas.transforms.ResizeCenterCropToTensor"]
7 }
8

9 test_dataset = CLRSDataset(test_dataset_config)
10 model_path = "best_checkpoint.pth.tar"
11 model.metrics = ["accuracy", "precision", "recall", "f1_score"]
12 model.running_metrics.reset()
13 model.evaluate(dataset=test_dataset , model_path=model_path)
14 model.running_metrics.get_scores(model.metrics)

The results from the ViT models trained from scratch, pre-trained on ImageNet-1K,
and then fine-tuned on the specific dataset are given in Table A2. From the presented
results, it is evident that leveraging pre-trained models can lead to significant performance
improvements on image classification tasks [144], and in particular on tasks in EO do-
mains [145]. The results also show the average training time per epoch, the total training
time, and the epoch in which the lowest value for the validation loss has been obtained.

Table A2. Detailed results for the ViT models trained on the CLRS dataset.
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Trained from scratch 65.47 66.41 66.41 65.47 65.47 65.49 65.49 24.96 1173 32
Pre-trained on ImageNet-1K 93.20 93.29 93.29 93.20 93.20 93.22 93.22 25.32 785 21

The performance of the ViT model for the individual classes from the CLRS dataset
can be analyzed from the results presented in Table A3 and Figure 7. Table A3 gives
the precision, recall, and F1 score at a class level for the pre-trained ViT model on the
CLRS dataset, and Figure 7 shows the confusion matrix. We can note that the F1 score of
most classes is over 90%. The confusion matrix shows the effect of class similarity for the
classes ‘railway’ and ‘railway-station’ to the overall performance—the model has difficulty
discerning between these two classes.
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Table A3. Per class results for the pre-trained Vision Transformer model on the CLRS dataset.

Label Precision Recall F1 Score

airport 97.48 96.67 97.07
bare-land 92.00 95.83 93.88
beach 99.15 97.50 98.32
bridge 90.91 91.67 91.29
commercial 79.84 85.83 82.73
desert 97.50 97.50 97.50
farmland 93.70 99.17 96.36
forest 100.00 100.00 100.00
golf-course 94.96 94.17 94.56
highway 92.11 87.50 89.74
industrial 88.79 85.83 87.29
meadow 96.72 98.33 97.52
mountain 99.15 97.50 98.32
overpass 89.68 94.17 91.87
park 85.60 89.17 87.35
parking 98.25 93.33 95.73
playground 95.04 95.83 95.44
port 94.74 90.00 92.31
railway 86.29 89.17 87.70
railway-station 88.79 85.83 87.29
residential 90.68 89.17 89.92
river 90.32 93.33 91.80
runway 98.33 98.33 98.33
stadium 95.61 90.83 93.16
storage-tank 96.55 93.33 94.92

Additionally, the learned model can be used for predicting the labels of unseen images
using the predict_image function. The function takes the image, the labels, and the
transformation instance as arguments and returns the predicted class and the confidence
score of the prediction for the given image. The output of this function is shown in Figure A2.
The code snippet to obtain the prediction for a given image is shown in Listing A7.

Figure A2. Example image with the predicted class and probability using the Vision Trans-
former model.

Listing A7. Getting predictions for images from external source.

1 labels = ["airport", "bare-land", "beach", "bridge", "commercial", "desert", "
farmland", "forest", "golf-course", "highway", "industrial", "meadow", "
mountain", "overpass", "park", "parking", "playground", "port", "railway", "
railway-station", "residential", "river", "runway", "stadium", "storage-tank"
]

2 transform = ResizeCenterCropToTensor()
3 image = image_loader(’/images/image1.tif’)
4 fig = model.predict_image(image, labels, transform)
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Appendix D. Semantic Segmentation of Remote Sensing Images

A Jupyter Notebook for demonstrating the task of semantic segmentation of remote
sensing images is available in the AiTLAS repository (https://github.com/biasvariancelabs/
aitlas/blob/master/examples/semantic_segmentation_example_landcover_ai.ipynb (ac-
cessed on 8 March 2023)). The notebook provides the code needed for loading a semantic
segmentation dataset and examining the distribution of the pixels across the semantic
labels/classes. The notebook also provides instructions on how to train and evaluate
the DeepLabv3 model and how to use the learned model for running predictions on
unseen data.

In this example, we use the LandCover.ai image classification dataset. To obtain
the dataset, we download it from the repository (https://landcover.ai.linuxpolska.com/
download/landcover.ai.v1.zip (accessed on 8 March 2023)) and unzip it, after which we
obtain folders with images and masks, as well as separate files containing information
about the train, validation, and test splits.

Next, we create an instance of the class LandCoverAiDataset available in the toolbox. To
create the instance, we provide the folder with the images and masks and a file that contains
the list of images to be loaded. The class LandCoverAiDataset has all the functionalities
to load the images and masks for processing and training. Additionally, in the data
configuration object, we set the batch size, the shuffle parameter, and the number of
workers for loading the data (see Listing A8).

Listing A8. Load the LandCoverAiDataset dataset from the AiTLAS toolbox, inspect images and
masks, and calculate the pixel distribution across the labels.

1 dataset_config = {
2 "data_dir": "/dataset/landcoverai/images",
3 "csv_file": "/dataset/landcoverai/train.txt",
4 "batch_size": 128,
5 "shuffle": True,
6 "num_workers": 4
7 }
8 dataset = LandCoverAiDataset(dataset_config)
9 dataset.show_image(2000);

10 dataset.data_distribution_table()
11 dataset.data_distribution_barchart();

We use the show_image function to display images from the dataset. In the displayed
image, the different semantic regions in the mask are color coded with the colors from the class
definition of the dataset. To inspect the distribution of the pixels across the labels in the dataset,
we use the data_distribution_table and/or data_distribution_barchart function.

We continue with the model learning task by creating the training and validation
datasets and training the deep-learning model. The code snippet for creating train and
validation datasets is given in Listing A9. Additionally, Listing A9 shows an example
of specifying the data transformation parameter. In the AiTLAS toolbox, three different
transformations are available: transformation on the images, transformations on the targets
(i.e., labels, masks, or bounding boxes), and joint transformations that are simultaneously
applied on the input images and the targets. For example, in the case of semantic segmen-
tation, if the input image is horizontally flipped, the mask should also be flipped. During
training, in this use case, we perform data augmentation by random horizontal and/or verti-
cal flips on the input images and the masks. For the input images, min-max normalization
is applied, and the targets/masks are transposed. During evaluation/testing, we do not
use joint transformations.
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Listing A9. Load the training and validation dataset for semantic segmentation.

1 train_dataset_config = {
2 "batch_size": 16,
3 "shuffle": True,
4 "csv_file": "/dataset/landcoverai/train.txt",
5 "data_dir": "/dataset/landcoverai/images",
6 "joint_transforms": ["aitlas.transforms.FlipHVRandomRotate"],
7 "transforms": ["aitlas.transforms.MinMaxNormTranspose"],
8 "target_transforms": ["aitlas.transforms.Transpose"]
9 }

10 train_dataset = LandCoverAiDataset(train_dataset_config)
11

12 validation_dataset_config = {
13 "batch_size": 16,
14 "shuffle": False,
15 "csv_file": "../dataset/landcoverai/val.txt",
16 "data_dir": "../dataset/landcoverai/images",
17 "transforms": ["aitlas.transforms.MinMaxNormTranspose"],
18 "target_transforms": ["aitlas.transforms.Transpose"]
19 }
20 validation_dataset = LandCoverAiDataset(validation_dataset_config)

We use the DeepLabv3 model, which is available in the AiTLAS toolbox. We configure
the model by setting several configuration parameters, i.e., the number of classes/labels,
the learning rate, the pretraining mode, and the evaluation metrics. The code snippet for
instantiating the model and running the training sequence is given in Listing A10.

Listing A10. Creating a DeepLabv3 model and starting the training.

1 epochs = 100
2 model_directory = "/experiments/landcoverai"
3 model_config = {
4 "num_classes": 5,
5 "learning_rate": 0.0001,
6 "pretrained": True,
7 "threshold": 0.5,
8 "metrics": ["iou"]
9 }

10

11 model = DeepLabV3(model_config)
12 model.prepare()
13 model.train_and_evaluate_model(
14 train_dataset=train_dataset ,
15 val_dataset=validation_dataset ,
16 epochs=epochs,
17 model_directory=model_directory ,
18 run_id=’1’
19 )

We train two variants of DeepLabV3: (i) model “trained from scratch” using only the
dataset at hand and initialized with random weights at the start of the training procedure,
and (2) model with pre-trained weights on a subset of the COCO dataset, using only the
20 categories that are also present in the Pascal VOC dataset [66] and then fine-tuned on the
dataset at hand. The DeepLabv3 model is trained or fine-tuned on the train set of images,
including data augmentation operations such as random horizontal and/or vertical flips and
random rotations. Using the validation set of images, we perform a hyper-parameter search
over different values for the learning rate: 0.01, 0.001, and 0.0001. We use fixed values for
some of the hyper-parameters: batch size is set to 16, Adam optimizer [146] without weight
decay, and ReduceLROnPlateau as a learning scheduler which reduces the learning rate
when the loss has stopped improving (same as for the image scene classification task as
discussed in Section 3.1.2). Furthermore, to prevent over-fitting, we perform early stopping
on the validation set—the model with the lowest validation loss is saved and then applied
on the original test set to obtain the estimate of the model’s predictive performance. Finally,
we use mean intersection over union (mIoU) as an evaluation measure: mIoU is a widely
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used measure for semantic segmentation and is calculated as the average of intersection
over union (IoU) across all labels. Note that IoU is defined as the area of the overlap
between the ground truth and predicted label divided by the area of their union (a value of
0 for IoU means no overlap, while a value of 1 means complete overlap).

The train and validation learning curves are shown in Figure A3. After the 50 epoch,
the value of the loss function is very stable, and the model starts to over-fit. The stop criteria
prevent over-fitting. At this point, we save the model from the 49th epoch (with the lowest
validation loss) and evaluate its performance on the test set.

Figure A3. Train and validation learning curves for the DeepLabv3 model pre-trained on COCO and
fine-tuned on the LandCover.ai dataset.

To evaluate the model, we load the test split of the dataset, set the path to the learned
model, and set the list of evaluation metrics. In this example, we use IoU as an evaluation
measure. We then proceed with running the evaluation sequence on the test data (see
Listing A11).

Listing A11. Testing the model using the images from the test split.

1 test_dataset_config = {
2 "batch_size": 4,
3 "shuffle": False,
4 "data_dir": "/dataset/landcoverai/images",
5 "csv_file": "/dataset/landcoverai/test.txt",
6 "transforms": ["aitlas.transforms.MinMaxNormTranspose"],
7 "target_transforms": ["aitlas.transforms.Transpose"]
8 }
9

10 test_dataset = LandCoverAiDataset(test_dataset_config)
11 model_path = "/experiments/landcoverai/best_checkpoint.pth.tar"
12 model.metrics = ["iou"]
13 model.running_metrics.reset()
14 model.evaluate(dataset=test_dataset , model_path=model_path)
15 model.running_metrics.get_scores(model.metrics)

The results summarizing the segmentation performance of the DeepLabV3 model
on the LandCover.ai dataset are given in Table A4. The DeepLabv3 model trained from
scratch yields a mIoU score of 86.027%, while the pre-trained one yields a score of 86.093%.
Hence, there is no clear benefit of using the pre-trained weights for this particular dataset
because the results in the different setups are very similar. The values of the IoU for the
labels ‘Road’ and ‘Building’ are lower compared to the other labels. These labels are more
challenging in the context of semantic segmentation because they are usually narrow, in
the case of roads, or often small, in the case of buildings. Additionally, they are sometimes
obscured by other objects, such as trees.
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Table A4. Label-wise IoU(%) and mIoU for the DeepLabv3 models trained on the LandCover.ai
dataset.
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Trained from scratch 93.813 80.304 91.952 94.877 69.190 86.027 299.241 16159 44
Pre-trained on COCO 93.857 80.650 91.964 95.145 68.846 86.093 300.58 17734 49

Additionally, the learned model can be used for predicting the segmentation masks
of unseen images by using the predict_masks function. The function takes the image,
the labels, and the transformation instance as arguments and returns separate masks for
each semantic label for the given image. An example output of this function is shown
in Figure A4. The code snippet to obtain the prediction for a given image is shown in
Listing A12.

Listing A12. Getting predictions for images from external source.

1 labels = ["Background", "Buildings", "Woodlands", "Water", "Road"]
2 transform = MinMaxNormTranspose()
3 model_path = "/experiments/landcoverai/best_checkpoint.pth.tar"
4 model.load_model(model_path)
5 image = image_loader(’/images/image1.png’)
6 fig = model.predict_masks(image, labels, transform)

Figure A4. Example image with the predicted masks for each semantic label using the
DeepLabv3 model.

Appendix E. Remote Sensing Image Object Detection

An example Jupyter Notebook for object detection in remote sensing images is avail-
able at the AiTLAS toolbox (https://github.com/biasvariancelabs/aitlas/blob/master/
examples/object_detection_example_hrrsd.ipynb (accessed on 8 March 2023)). The note-
book provides step-by-step code on how to load an object detection dataset and inspect the
number of object instances for each object category. The notebook also demonstrates how
to train and validate the Faster R-CNN model on the predefined test split, as well as how
to use the learned model for inference on unseen data.

To prepare the HRRSD object detection dataset, we need to download the data from the
repository (https://github.com/CrazyStoneonRoad/TGRS-HRRSD-Dataset (accessed on
8 March 2023)) and unzip it. This generates a folder with images in .jpg format, annotations
in .xml format, and separate files containing information about the train, validation, and
test splits. The Pascal VOC object annotation format is used in this example. Thus, we
create an instance of the ObjectDetectionPascalDataset class defined within the AiTLAS
toolbox. To instantiate the class, we specify the path to the folders containing the images
and annotations and the file containing the list of images. We also set the batch size for the
data loader during training, the shuffle parameter, and the number of workers to specify
the number of sub-processes used for data loading (see Listing A13).
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Listing A13. Load a dataset using the AiTLAS toolbox, inspect images and calculate the number of
object instances for each category/label.

1 dataset_config = {
2 "image_dir": "/datasets/HRRSD/images",
3 "annotations_dir": "/datasets/HRRSD/annotations",
4 "imageset_file": "/datasets/HRRSD/train.txt"
5 "batch_size": 16,
6 "shuffle": True,
7 "num_workers": 4
8 }
9 dataset = ObjectDetectionPascalDataset(dataset_config)

10 dataset.show_image(2458);
11 dataset.show_batch(15);
12 dataset.data_distribution_table()
13 dataset.data_distribution_barchart();

We use the show_image function to display images from the dataset. The function
displays the image with the bounding boxes and labels for each object present in the
image. The function show_batch displays a batch of images with the bounding boxes of
the objects in the image. The statistics for the number of object instances for each catego-
ry/label in the dataset can be calculated using the functions data_distribution_table or
data_distribution_barchart.

In the next step, we continue with the model learning part. First, we create the con-
figuration objects for the training and validation data and specify the data transformation
method we wish to be applied. For this use case, we apply the joint transformation Re-
sizeToTensorV2 to resize the images to a resolution of 480 × 480 pixels and convert them to
tensors. This transformation also resizes the bounding boxes for the object to fit the new
resolution of the images. After defining the data configuration objects, we load the data
(see Listing A14).

Listing A14. Load the training and validation dataset.

1 train_dataset_config = {
2 "image_dir": "/datasets/HRRSD/images",
3 "annotations_dir": "/datasets/HRRSD/annotations",
4 "imageset_file": "/datasets/HRRSD/train.txt",
5 "joint_transforms": ["aitlas.transforms.ResizeToTensorV2"]
6 "batch_size": 16,
7 "shuffle": True,
8 "num_workers": 4
9 }

10 train_dataset = ObjectDetectionPascalDataset(train_dataset_config)
11

12 validation_dataset_config = {
13 "image_dir": "/datasets/HRRSD/images",
14 "annotations_dir": "/datasets/HRRSD/annotations",
15 "imageset_file": "/datasets/HRRSD/val.txt",
16 "joint_transforms": ["aitlas.transforms.ResizeToTensorV2"]
17 "batch_size": 16,
18 "shuffle": True,
19 "num_workers": 4
20 }
21 validation_dataset = ObjectDetectionPascalDataset(validation_dataset_config)

We train two variants of the model: (i) model “trained from scratch” using only the
dataset at hand and initialized with random weights at the start of the training procedure,
and (2) model with pre-trained weights on the COCO dataset [66] and then fine-tuned on
the dataset at hand. The Faster R-CNN model is trained or fine-tuned using the training
part of the images, with parameters selection/search performed using the validation part.
Namely, we search over different values for the learning rate: 0.01, 0.001, and 0.0001. We use
fixed values for some of the hyper-parameters: batch size is set to 16, Adam optimizer [146]
without weight decay, and ReduceLROnPlateau as a learning scheduler which reduces the
learning rate when the loss has stopped improving.
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Furthermore, to prevent over-fitting, we perform early stopping on the validation
set—the model with the best value for the evaluation measure is saved and then applied to
the original test set to obtain the estimate of the model’s predictive performance. Finally,
as an evaluation measure, we use mean Average Precision (mAP) as defined in the Pascal
VOC Challenge [121]. Average Precision (AP) is computed as the average precision value
taken at recall values ranging from 0 to 1 (i.e., the area under the precision/recall curve).
mAP is the average of AP over all classes. Next, IoU is crucial in determining true positives
and false positives, and its threshold is set to 0.5. More details on the evaluation measures
for object detection are provided in [121,142].

Next, we use the Faster R-CNN model, which is implemented in the AiTLAS toolbox.
To configure the model, create a model configuration object and set several configuration
parameters, i.e., the number of classes/labels, the learning rate, the pretraining mode,
and the evaluation metrics. The code snippet for instantiating the model and running the
training sequence is given in Listing A15.

Listing A15. Creating a Faster R-CNN model and start of model training.

1 epochs = 100
2 model_directory = "/experiments/hrrsd"
3 model_config = {
4 "num_classes": 14,
5 "learning_rate": 0.0001,
6 "pretrained": True,
7 "threshold": 0.5,
8 "metrics": ["map"]
9 }

10 model = FasterRCNN(model_config)
11 model.prepare()
12 model.train_and_evaluate_model(
13 train_dataset=train_dataset ,
14 val_dataset=validation_dataset ,
15 epochs=epochs,
16 model_directory=model_directory ,
17 run_id=’1’
18 )

Table A5 summarizes the results of the object detection task. The Faster R-CNN model
trained from scratch yields 77.412% of mAP, while the pre-trained model yields 81.436% of
mAP, as estimated using the test dataset. The results show the clear benefit of using the
pre-trained weights for this particular dataset. The most challenging objects to detect are
‘Crossroad’ and ‘T Junction’ (due to the similarity of both objects).

Table A5. Mean average precision (mAP%) of the Faster R-CNN models trained from scratch and
pre-trained for the HRRSD dataset.

Label Faster R-CNN (Pretrained) Faster R-CNN

Airplane 96.86 94.71
Baseball Diamond 79.75 80.13
Basketball Court 59.25 44.96
Bridge 82.22 78.55
Crossroad 77.06 71.78
Ground Track Field 95.62 92.84
Harbor 89.00 88.61
Parking Lot 53.80 51.22
Ship 86.61 78.50
Storage Tank 93.56 89.67
T Junction 66.83 69.12
Tennis Court 87.97 79.31
Vehicle 90.14 86.96

Mean AP 81.436 77.412
Avg. time / epoch (s) 221.96 244.63
Total time (s) 5993 10030
Best epoch 17 31
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To evaluate the model, we create a configuration object for the training split of the
HRRSD data, load the data, set the path to the trained model, and run the evaluation
process (see Listing A16).

Listing A16. Testing the model using the images from the test split.

1 test_dataset_config = {
2 "batch_size": 4,
3 "shuffle": False,
4 "image_dir": "/datasets/HRRSD/images",
5 "annotations_dir": "/datasets/HRRSD/annotations",
6 "imageset_file": "/datasets/HRRSD/test.txt",
7 "joint_transforms": ["aitlas.transforms.ResizeToTensorV2"]
8 }
9

10 test_dataset = ObjectDetectionPascalDataset(test_dataset_config)
11 model_path = "/experiments/hrrsd/best_checkpoint.pth.tar"
12 model.metrics = ["map"]
13 model.running_metrics.reset()
14 model.evaluate(dataset=test_dataset , model_path=model_path)
15 model.running_metrics.get_scores(model.metrics)

Additionally, the model can be used for predicting the bounding boxes and labels for
the objects in new, unseen images from an external source by using the predict_objects
function. The function takes the image, the labels, and the transformation instance as
arguments and returns an image with the bounding boxes and labels for the detected object
in the image. Figure A5 shows an example output of this function. The code snippet to
obtain the prediction for a given image is shown in Listing A17.

Listing A17. Getting bounding boxes and labels for images from external source.

1 labels = [None, ’T junction’, ’airplane’, ’baseball diamond’, ’basketball court’,
2 ’bridge’, ’crossroad’, ’ground track field’, ’harbor’, ’parking lot’,
3 ’ship’, ’storage tank’, ’tennis court’, ’vehicle’]
4 transform = Resize()
5 model.load_model(model_path)
6 image = image_loader(’../data/HRRSD/JPEGImages/00042.jpg’)
7 fig = model.detect_objects(image, labels, transform)

Figure A5. Example image with the predicted bounding boxes and labels for the objects using the
Faster R-CNN model.

Appendix F. Crop Type Prediction Using Satellite Time Series Data

We have added a Jupyter Notebook (https://github.com/biasvariancelabs/aitlas/
blob/master/examples/crop_type_prediction_example_netherlands.ipynb (accessed on 8
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March 2023)) in the AiTLAS toolbox that contains a step-by-step sample code for running
through a crop type prediction task. As previously, we will demonstrate the standard steps
to load and inspect the data, load, configure, train, and evaluate the models, and visualize
predictions.

We use the AiTLAS NLD dataset for the year 2019. First, we set the configuration for
the dataset and initiate with the EOPatchCrops class, which is a wrapper for working with
EOPatches. We need to set the path to the root folder containing the patches. The patches
are also folders containing detailed EO data. We need to specify the index, which is a csv
file containing the class mappings for the polygons and patches they belong to, as well
as the split (train, validation, or test). We also specify the standard PyTorch attributes for
working with datasets, such as batch size, shuffle, and number of workers. The regions
configurations specify which splits we should load from the index. Sample code is shown
in Listing A18.

Listing A18. Load the dataset.

1 dataset_config = {
2 "root": "/home/user/data/CropTypeNetherlands/2019/",
3 "csv_file_path": "index.csv",
4 "batch_size": 128,
5 "shuffle": True,
6 "num_workers": 4,
7 "regions":["train", "test", "val",],
8 }
9 dataset = EOPatchCrops(dataset_config)

To display the time series values of the bands of a specific polygon, we can use the func-
tion show_timeseries(index). Furthermore, to show sample data from the underlying
index, we can use the show_samples() function (Listing A19).

Listing A19. Inspect the dataset.

1 fig = dataset.show_timeseries(0)
2 dataset.show_samples()

An example of the data representation for a selected polygon labeled as permanent
grassland is illustrated in Figure A6.

Figure A6. Examples of the input time series of reflectances ρ for the spectral bands of the Sentinel 2
satellite and calculated indices for the crop type Permanent grassland.

Once, we have a sense of the data, we load the train and validation splits of the dataset
(Listing A20).
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Listing A20. Load train and validation the dataset.

1 train_dataset_config = {
2 "root": "/home/user/data/CropTypeNetherlands/2019/",
3 "csv_file_path": "index.csv",
4 "batch_size": 128,
5 "shuffle": True,
6 "num_workers": 4,
7 "regions":["train", ],
8 }
9

10 train_dataset = EOPatchCrops(train_dataset_config)
11

12 validation_dataset_config = {
13 "batch_size": 32,
14 "shuffle": False,
15 "num_workers": 4,
16 "root": "/home/user/data/CropTypeNetherlands/2019/",
17 "csv_file_path": "index.csv",
18 "regions":["val", ],
19 }
20

21 validation_dataset = EOPatchCrops(validation_dataset_config)

In the next step, we need to initialize and create the model. For this task, we will use the
LSTM model supported by the toolbox. We set the model parameters in the configuration
object, instantiate the model, and run the training sequence (Listing A21).

Listing A21. Train the model.

1 epochs = 100
2 model_directory = "./experiments/LSTM"
3 model_config = {
4 "input_dim":11,
5 "num_classes": 10,
6 "learning_rate": 0.001,
7 "dropout" : 0.2,
8 "weight_decay": 0.0001,
9 "metrics":["accuracy","f1_score", "kappa"]

10 }
11 model = LSTM(model_config)
12 model.prepare()
13 model.train_and_evaluate_model(
14 train_dataset=train_dataset ,
15 epochs=epochs,
16 model_directory=model_directory ,
17 val_dataset=validation_dataset ,
18 run_id=’1’,
19 )

We can use the model to run predictions and visualize them. We can load the test split
of the dataset. Then, use the model to run predictions on that dataset (Listing A22). Finally,
we can pick a sample patch and visualize its predicted polygons (Figure A7).
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Figure A7. Example patch with the predicted polygons using the LSTM model.

Listing A22. Test the model.

1 labels = ["Permanent grassland", "Temporary grasses and grazings", "Green maize",
"Potatoes (including seed potatoes)",

2 "Common winter wheat and spelt", "Sugar beet (excluding seed)", "Other farmland",
"Onions",

3 "Flowers and ornamental plants (excluding nurseries)", "Spring barley",]
4

5 test_dataset_config = {
6 "batch_size": 32,
7 "shuffle": False,
8 "num_workers": 4,
9 "root": "/home/user/data/CropTypeNetherlands/2019/",

10 "csv_file_path": "index.csv",
11 "regions":["test", ],
12 }
13

14 test_dataset = EOPatchCrops(test_dataset_config)
15

16 y_true, y_pred, y_prob = model.predict(dataset=test_dataset ,)
17

18 eopatches_path = "/home/user/data/CropTypeNetherlands/2019/eopatches/"
19 patch = "eopatch_7495"
20

21 fig = display_eopatch_predictions(
22 eopatches_path ,
23 patch,
24 y_pred,
25 test_dataset.index,
26 y_true,
27 test_dataset.mapping,
28 )

The results summarizing the predictive performance on the AiTLAS NLD dataset
across the different years are presented in Table A6. Using LSTM, we obtain a weighted F1
score in the range of ∼82–84% for the different years.
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Table A6. Results for the crop type prediction on the AiTLAS NLD dataset using the LSTM model.

Dataset Year Accuracy Weighted F1 Score Kappa

2017 84.28 82.48 77.22
2018 84.49 84.32 78.79
2019 85.25 84.10 79.55

We also present the per class F1 scores across all years in Table A7. We can note that
the per-class performance is generally consistent between different years. The F1 score
does not change significantly for any class across the different years. The only exception
is the Temporary grasses and grazings class, where for 2017, the F1 score is 45.23, while for
2018, it is 59.34, which is around a 14% difference. The performance for this class is also the
lowest compared to the other classes. The model performs best on the classes Green maize,
Common winter wheat and spelt, Potatoes (including seed potatoes), and Sugar beet (excluding
seed). For these classes, the F1 score is consistent across the different years with score ∼95%.
We provide the resources and explanations on the execution of this use case, including
additional visualizations and application of the model to external images in Appendix F.

Table A7. Per class F1 score for the crop type prediction on the AiTLAS NLD dataset for every year
with LSTM

Crop Type 2017 2018 2019

Permanent grassland 86.72 85.78 86.82
Temporary grasses and grazings 45.23 59.34 53.66
Green maize 96.10 95.09 96.14
Potatoes (including seed potatoes) 95.37 94.84 95.45
Common winter wheat and spelt 94.86 95.75 96.28
Sugar beet (excluding seed) 95.62 92.36 95.28
Other farmland 62.45 61.81 60.05
Onions 89.76 93.68 92.51
Flowers and ornamental plants (excluding nurseries) 83.18 78.30 79.67
Spring barley 92.30 91.12 90.80
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Abstract: Semantic segmentation of remote-sensing (RS) images is one of the most fundamental
tasks in the understanding of a remote-sensing scene. However, high-resolution RS images contain
plentiful detailed information about ground objects, which scatter everywhere spatially and have
variable sizes, styles, and visual appearances. Due to the high similarity between classes and diversity
within classes, it is challenging to obtain satisfactory and accurate semantic segmentation results.
This paper proposes a Dynamic High-Resolution Network (DyHRNet) to solve this problem. Our
proposed network takes HRNet as a super-architecture, aiming to leverage the important connections
and channels by further investigating the parallel streams at different resolution representations of the
original HRNet. The learning task is conducted under the framework of a neural architecture search
(NAS) and channel-wise attention module. Specifically, the Accelerated Proximal Gradient (APG)
algorithm is introduced to iteratively solve the sparse regularization subproblem from the perspective
of neural architecture search. In this way, valuable connections are selected for cross-resolution feature
fusion. In addition, a channel-wise attention module is designed to weight the channel contributions
for feature aggregation. Finally, DyHRNet fully realizes the dynamic advantages of data adaptability
by combining the APG algorithm and channel-wise attention module simultaneously. Compared
with nine classical or state-of-the-art models (FCN, UNet, PSPNet, DeepLabV3+, OCRNet, SETR,
SegFormer, HRNet+FCN, and HRNet+OCR), DyHRNet has shown high performance on three
public challenging RS image datasets (Vaihingen, Potsdam, and LoveDA). Furthermore, the visual
segmentation results, the learned structures, the iteration process analysis, and the ablation study all
demonstrate the effectiveness of our proposed model.

Keywords: semantic segmentation; remote-sensing image; neural architecture search; sparse
regularization; HRNet

1. Introduction

With the rapid development of remote-sensing (RS) technologies, a large number of
RS images are taken by different devices every day. In practice, it is an urgent need to
understand well the contents recorded in these images. As a fundamental approach to
analyzing RS images in many systems, the task of semantic segmentation is to divide the
input image into regions with explicit category labels for downstream tasks. Compared
with the task conducted on natural images, segmenting RS images could be more complex.
RS images are all taken at a far distance, and there are a lot of confusing objects scattered
spatially here and there, with significant variations in size, style, and visual appearance.
This causes high intra-class scatter and low inter-class variance in pattern analysis, making
it more difficult to achieve satisfactory performance.
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Recent years have witnessed the great successes of deep learning in the field of
RS image processing. Along this technical line, a fundamental job is to design a good
architecture for data adaptability. There are many multi-scale objects for high-resolution RS
images with rich ground details. Thus, when designing neural architecture, it is necessary
to consider how to achieve multi-scale feature fusion well for fine semantic segmentation.
To this end, some thoughtful designs have been demonstrated in the literature [1–7].
The practices have indicated that designing neural architectures that can extract and
maintain the representations simultaneously with high, medium, and low resolutions is
very important for segmenting the RS objects of different scales well.

To achieve good multi-scale feature fusion, architecture design can be incorporated into
the AutoML framework [8–14]. One goal of AutoML is to construct neural architectures
automatically by computing itself. Algorithmically, neural architecture search (NAS)
methods have been invented to attend to this need. Intrinsically, NAS is an NP-hard
problem. Thus, differentiable architecture search algorithms [10,13–16] have gained great
attention in recent years due to their relatively low computing complexity. However, there
still exist limitations to be overcome for semantic segmentation [17,18]. They tend to a
give large chance to the skip connections [19,20] without guaranteeing that the learned
architectures have explicit streams to extract the representations with different resolutions.

In the literature, the High-Resolution Network (HRNet) [21,22] is a famous neural ar-
chitecture for high-resolution representation learning. Technically, it was initially designed
for pose estimation [21], and its usage has been demonstrated later in many visual recog-
nition tasks [7,22]. In addition, some variants have been developed, including the higher
HRNet [23], the lightweight HRNet [24,25], the dynamic HRNet [26], the HRNet with
transformer [27], and so on. Architecturally, the HRNet contains four parallel streams with
different resolution representations. It also offers a new mechanism of cross-resolution inter-
action via dense connections between the streams at different stages. With feature mapping
among different resolutions, the HRNet is enabled to capture rich multi-scale information.
Therefore, such an architecture could attend well to the needs for the segmentation of
RS objects.

Beyond directly applying the primary HRNet [21,22] to RS images, in this study, we
start by analyzing the dense connections contained in it. When performing the cross-
resolution feature fusion, the HRNet does not consider the contributions of the dense
connections and channels, i.e., all of them are equally used. This motivates us to select
the important ones by addressing the task in the NAS framework, hoping to enhance its
representative capability further. Based on the above observations, in this paper, a Dynamic
High-Resolution Network (DyHRNet) is proposed for semantic segmentation in RS images.
The DyHRNet is initially constructed on and learned later from the primary HRNet to use
its parallel streams with different resolution representations.

The key idea behind the DyHRNet is to evaluate the importance of dense connections
and channels for cross-resolution feature fusion. This task is addressed in the NAS frame-
work with channel-wise attention. Mathematically, to avoid solving an NP-hard problem,
we choose to relax the 0/1 contributions to be soft ones. With a series of sparse regulariza-
tions posed on the learning model, unimportant or useless connections will be identified
by assigning low or zero contributions. In this way, the architecture of the primary HRNet
is dynamically changed for data adaptability. In addition, a channel-wise attention is
designed to evaluate the channel contributions to cross-resolution feature fusion, which fur-
ther enhances the representation capability of the proposed DyHRNet. Finally, the sparse
regularization and the channel-wise attention are combined into a compact optimization
model for end-to-end learning. The contributions and the main work are summarized
as follows:

• A Dynamic High-Resolution Network (DyHRNet) is proposed for semantic segmen-
tation in RS images. The neural architecture of the DyHRNet is constructed on and
learned from the primary HRNet. This task is formulated as a problem of neural
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architecture search (NAS) with channel-wise attention. Mathematically, a compact
learning model with sparse regularization is developed to achieve this goal.

• Within the Stochastic Gradient Descent (SGD) approach framework for end-to-end
training, the sparse regularization subproblem is iteratively solved by the Accelerated
Proximal Gradient (APG) algorithm. As a result, the important connections between
the parallel streams in the HRNet are selected for cross-resolution feature fusion.

• A mechanism of channel-wise attention is proposed to evaluate the channel contri-
butions for cross-resolution feature aggregation. The attention module has a native
structure in which it is easy to format the importance score for channel mapping. As a
result, the channel contributions in HRNet are automatically modulated to enhance
the representation capability of the DyHRNet.

• The performance of DyHRNet for segmenting RS images has been evaluated on
three challenging public benchmarks, including the ISPRS 2D semantic segmentation
challenge Vaihingen and Potsdam dataset and the LoveDA dataset. The extensive ex-
periment results with numerical scores and visual segmentation, the learned structures,
the iteration process analysis, and the ablation study all demonstrate the effectiveness
of the proposed model.

The article is organized as follows: Section 1 describes the background information,
the motivation, the objective, and the predictions of this study. Section 2 describes the
related works. The details of the proposed method are introduced in Section 3. Experimen-
tal results are reported in Section 4. Discussions are given in Section 5, followed by the
conclusions in Section 6.

2. Related Works

2.1. Semantic Segmentation for RS Images

With the great success of deep learning on semantic segmentation for natural images,
tremendous efforts have been made by researchers to transfer deep models for RS im-
ages [28,29]. Architecturally, most of the models have been formulated with convolution,
pooling, and up-sampling operations, such as the Fully Convolutional Network (FCN) [30],
the UNet [31], the Pyramid Scene Parsing Network (PSPNet) [32], the DeepLab [33],
the OCRNet [34], and so on. Later, some frameworks were constructed on the trans-
former. In this family, the SEgmentation TRansformer (SETR) [35] and the SegFormer [36]
are two famous models. With the usage of encoder–decoder backbones, some variants
have been constructed for this issue [1,4,37–40]. For example, the cascaded network with
context information fusion was developed to extract confusing artificial objects [1]. The
shuffling network is employed to enhance the feature learning ability [38]. These studies
have primarily enhanced the semantic segmentation performance for RS images.

Later, more complex models were considered for segmenting RS images. Specifi-
cally, Diakogiannis et al. [41] developed an encoder–decoder with multi-tasking inference
sequentially on object boundary, segmentation masks, and reconstruction of the input.
Zhang et al. [6] employed a high-resolution network with different branches to extract
features at both local and global levels. Xu et al. [7] constructed a high-resolution context
extraction network to fuse multi-scale contextual information. Liu et al. [5] constructed
a new multi-scale U-shaped CNN for extracting buildings in high-resolution RS images,
rendering a novel proposal for this issue with multi-task learning to obtain precise masks
and help avoid over-fitting. Tang et al. [40] developed a novel self-supervised contrastive
learning framework for semantic segmentation in aerial imagery. Within their framework,
the distinct characteristic lies in contrastive learning, which is performed both at the feature
level and at the semantic level. Furthermore, with the use of the local mutual information
that is embedded into the semantic level of contrastive learning, the representation power of
the proposed model is largely enhanced for segmentation [40]. In addition, attention mod-
ules in different views [42–44] have been designed for fine segmentation. The transformer
has recently been employed as the backbone of this task [45,46]. These models achieve
good segmentation in different methods of local, global, and multi-scale feature fusion.
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In the literature, there are a few works on the semantic segmentation of RS images un-
der the NAS frameworks. Zhang et al. [47] employed a directed acyclic graph with tricks of
Gumbel-max operations under a differentiable searching framework. Later, Wang et al. [48]
proposed the decoupling NAS framework with a hierarchical search space for RS objects
at the path level, connection level, and cell level. Broni-Bediako et al. [49] developed an
evolutionary NAS method for this task. In their framework, gene expression programming,
and cellular encoding were employed to represent the encoding scheme for block-building.
In summary, although these approaches achieve good performance on accuracy, high
computational complexity degrades their real-world applications.

2.2. Neural Architecture Search

Recently, constructing neural architectures automatically via NAS has received signifi-
cant interest in both academia and industry [8–11,13,14]. There are in total three families
of NAS methods, namely evolution-based NASs, RL-based NASs, and gradient-based
NASs. For example, Ghiasi et al. [11] developed a NAS framework to search for better
architectures of a feature pyramid network for object detection. In their work, a novel
scalable search space is constructed to cover all cross-scale connections, and a combination
of top-down and bottom-up connections is achieved via NAS tricks to fuse multi-scale
features [11]. For another example, Weng et al. [12] designed three types of primitive oper-
ations on a search space to search U-like backbones for semantic segmentation. In this way,
U-like backbone networks can be automatically constructed by stacking the same number
of the searched down-sampling cells and up-sampling cells, rendering good performance
for semantic segmentation [12]. In the literature, the proposals for NAS within scalable
search spaces are rich, demonstrating bright performance enhancements for various types
of visual computing tasks.

Documentation about NAS is rich. Here, we only give a brief review of gradient-based
NAS methods, which are related to our work in this paper. Since the differentiable ar-
chitecture search (DARTS) framework was released in 2017 [10], it has become a famous
pipeline with gradient-based searching strategies due to their relatively low computa-
tional complexities and competitive performance. To reduce the gap between search and
evaluation, tricks with progressive differentiable NAS [50], the combination of evaluation
and search [51], Gumbel–Softmax [13], and path-level selection [52] have been proposed
to achieve the goal of structure generation. However, the DARTS-based algorithms are
prone to yield structures much more with skip connections, which limits their power for
real-world applications.

As the current task of NAS is to identify a sub-structure or from a previously defined
big structure, pruning tricks have been applied to network generation. Earlier, network
pruning was performed for model acceleration or compression [53–56]. Recently, sparse
representation has also been introduced to this issue. Yang et al. [57] addressed this task
as a problem of sparse coding, where differentiable search is achieved within a lower-
dimensional space. In addition, Zhang et al. [14] developed a direct sparse optimization to
achieve the goal of model pruning. However, network pruning should be strictly performed
on a specific architecture, without the ability to generate new topology and operations.

3. Method

Our task is to develop a Dynamic HRNet (DyHRNet) for the fine segmentation of
RS objects. The task will be formulated as a NAS problem with channel-wise attention.
Formally, a compact learning model with sparse regularization is developed to achieve this
goal. The details are described in the following subsections.

3.1. Problem Formulation

Figure 1 demonstrates the super-architecture constructed according to the rule used
in the original HRNet [21,22]. Totally it consists of four parallel streams with different
resolution representations, where each row corresponds to a stream of representations with
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the same resolution. It offers a new mechanism for cross-resolution interaction via dense
connections between the streams at different stages. With feature mapping among different
resolutions, the HRNet is enabled to capture rich multi-scale information. Therefore, such
an architecture could attend well to our needs for RS images.

For clarity, the architecture can be further divided into four stages. The first stage
is at the highest resolution. It contains four convolutional layers, which are recorded
together by block O1,1 for simplicity. The next three stages cover different streams with
high, medium, and low resolutions. More specifically, the second stage contains one group
of dense connections, shown as the dash lines between the representations O1,2, R1,2, O2,2,
and R2,2 in Figure 1. In addition, there are four and three groups of dense connections,
respectively, in the third and fourth stages (Architecturally, one can set any number of
groups of dense connections if needed in practice. Without loss of generality, here we take
them as those suggested by the original HRNet). Clearly, with these dense connections,
multi-scale features are fused. Thus, such an architecture is suitable for segmenting RS
images, where objects with different scales locate here and there in the image.

…

…

…

…

Figure 1. The primary HRNet used as a super-architecture to develop the Dynamic HRNet (DyHR-
Net). Here the connections marked by the dash lines will be selected via sparse optimization.

We denote the representation (namely the output of the four convolutional layers) at
the i-th row and j-th column in Figure 1 by Oi,j, and the result of the feature fusion at the
same position by Ri,j. In the original HRNet, Ri,j is computed as follows:

Ri,j = ReLU

(
P

∑
k=1

f (i)k,j

(
Ok,j

))
, (1)

where ReLU stands for the rectified linear unit, { f (i)k,j (·)} are the transformation functions
and P is the number of streams with different resolutions, which changes within different
stages. More specifically, as shown in Figure 1, in the second stage, i = 1, 2, j = 2 and P = 2
; in the third stage, 1 ≤ i ≤ 3, 3 ≤ j ≤ 6, and P = 3; and in the fourth stage, 1 ≤ i ≤ 4,
7 ≤ j ≤ 9, and P = 4. In addition, for the function f (i)k,j (·), in the case of k = j, it is an
identity mapping; in the case of k < j, it is a 3× 3 convolution with stride 2; and in the case
of k > j, it is a bilinear up-sampling operation with 1× 1 convolution for feature alignment.
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As can be seen from Equation (1), the representations in {Ok,j} are all equally treated
without considering their importance. In other words, there is a lack of a mechanism to
evaluate the contributions of the dense connections. Therefore, we cast this task in the
NAS framework, which allows us to select those useful connections. Then, Equation (1) is
reformulated as follows:

Ri,j = ReLU

(
P

∑
k=1

s(i)k,j

(
f (i)k,j

(
Ok,j

)))
, s.t. S(i)

k,j ∈ {0, 1}, (2)

where {S(i)
k,j } are the selection parameters to be optimized. Technically, in the case of

S(i)
k,j = 1, the candidate link between Ok,j and Ri,j will be selected; and in the case of S(i)

k,j = 0,
the candidate link is useless, and will be discarded. This formulation attends to the task of
link search in the NAS work setting. However, it is an NP-hard problem.

To solve this problem, we relax the search space to be a continuous one by allowing
each S(i)

k,j as a non-negative scaling factor. Then, it turns out that

Ri,j = ReLU

(
P

∑
k=1

s(i)k,j

(
f (i)k,j

(
Ok,j

)))
, s.t. S(i)

k,j ≥ 0, and
P

∑
k=1

S(i)
k,j < λ

(i)
j , (3)

where {S(i)
k,j } are the continuous weighting parameters to be learned, the inequality con-

straint is introduced to force the sparsity of connections, and λi
j controls the amount of

shrinkage for the sparse estimation. That is, a small λj will force sparser. Algorithmically,
the formulation in Equation (3) is a convex relaxing to that in Equation (2).

Please note that the formulation in Equation (3) exhibits another flexible mechanism in
that the channel-wise importance can be evaluated jointly. By considering the contributions
of channels in each Ok,j, it can be rewritten as follows:

Ri,j = ReLU

(
P

∑
k=1

s(i)k,j

(
f (i)k,j

(
a
(i)
k,j ⊗Ok,j

)))
, s.t. S(i)

k,j ≥ 0, and
P

∑
k=1

S(i)
k,j < λ

(i)
j , (4)

where a
(i)
k,j is a weighting vector with a length equal to the number of the channels in Ok,j,

and ⊗ stands for the channel-wise product. Technically, channel-wise attention will be
designed to fulfill this task (see Section 3.3).

In Equation (4), the weights in {s(i)k,j} are learned via the NAS trick, and those in {a
(i)
k,j}

are evaluated via the channel attention. All these weights are positive, which will be
modulated by data-driven learning. They may be very small or even zero. In particular,
after model training, the cross-resolution connections with zero s(i)k,j and the channels with

zero a
(i)
k,j will be deleted for prediction.

Now, we can explain the term “dynamic” in our work. In the literature, dynamic
models could be developed at different levels of model adaptability in a way of data-driven
learning, e.g., at the levels of input data [58], lightweight structures [25], adaptive weights
of operations [26], and so on. By contrast, in our work setting, here we first explain its
meaning given neural architecture design. The operation in Equation (1) indicates that the
neural architecture will remain unchanged before and after training in the original HRNet.
With the implementation guided by Equation (4), the connections could be maintained
or cut dynamically during and after training. After the model is well trained under the
NAS framework, the connections with S(i)

k,j = 0 will be deleted from the original structure,
yielding a new architecture for segmenting RS images. Then, we explain its meaning given
channel-wise importance. The operator “⊗” in Equation (4) will be performed channel by
channel with different weights. In this way, the dynamic merit will be demonstrated in the
use of channel-wise importance, which will be learned to modulate its contribution. As a
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whole, the NAS trick and the channel-wise attention will be combined via Equation (4) to
develop a dynamic HRNet.

The structure in Figure 1 will be employed as a candidate backbone for architecture
optimization. Thus, it is necessary to contain a head module to output semantic segmenta-
tion results. Accordingly, our DyHRNet has four groups of parameters to be optimized.
The first group collects the parameters in all of the convolution kernels in Figure 1, which
are recorded together by variable W. The second group consists of those in the channel-wise
attention module used to estimate {a

(i)
k,j}, which are collected into variable U. The third

group includes those in the head part (namely the decoder module), which are collected
into variable H. The fourth group collects all {S(i)

k,j } in Equation (3), which are collected
orderly into vector s. Then, we have the following optimization problem for segmenting
RS objects:

min
s

Lvalidation(DyHRNet(W∗, U∗, H∗, s))

s.t. ∑
(k,j,i)∈N

S(i)
k,j ≤ λ,

S(i)
k,j ≥ 0,

(W∗, U∗, H∗) = arg min
W,U,H

Ltrain(DyHRNet(W, U, H, s)),

(5)

where Ltrain(·) is the loss calculated on the training samples, λ shrinks together all the
controlling factors λ

(i)
j in Equation (4), and set N collects the triples {(i, j, k)} according to

the dash-line links in Figure 1.
According to the relationship between the shrinkage constraints and the regularization

representation for λ used in LASSO [59], Problem (5) can be reformulated as follows:

min
s

Lvalidation(DyHRNet(W∗, U∗, H∗, s)) + λ‖s‖1,

s.t. (W∗, U∗, H∗) = arg min
W,U,H

Ltrain(DyHRNet(W, U, H, s)), (6)

where ‖s‖1 denotes the L1 norm of s.
In Problem (6), there are two subtasks that should be solved iteratively. One is to

optimize W, U and H, given s; and another is to optimize s, given W, U and H. The former
can be learned by the algorithm of back propagation of gradients. The latter is difficult
to deal with because of the term of ‖s‖1. In the following subsections, we will describe

how to solve s and how to design the channel-wise attention module to calculate {a
(i)
k,j} in

Equation (4).

3.2. Solving the Sparse Regularization Subproblem with Accelerated Proximal Gradient Algorithm

In this subsection, we use one of the dense connection units at stage 4 of HRNet to
illustrate the whole sparse optimization process in the order from Figure 2a–c. To be more
specific, Figure 2a depicts the dense cross-resolution connections of the original HRNet,
which are also the candidates to be selected by the APG algorithm. At the beginning of
the training stage, the weights of these connections are all set to 1.0 to guarantee that all
of them have an equal probability to be selected. Figure 2b visualizes a group of learned
weights using a solid line and a dashed line. The thicker the solid line is, the greater the
weight is and the more important the connection is. In particular, the dashed lines indicate
those connections are of zero importance, which could be directly cut off. Figure 2c shows
the finally selected connections, which will be used at the inference stage of DyHRNet.
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(a) (b) (c)

Figure 2. The process of sparse optimization is described by taking one group of the dense connections
as an example in the order from (a) to (b) and (c). (a) The dense connections; (b) The weighted and
pruned connections; (c) The final connections.

Unfortunately, solving the variable s in Problem (6) is a challenging task due to the
sparse regularization term. One natural selection is to employ the traditional LASSO algo-
rithm [59] to solve it. However, it is uneasy to unfold the mapping function DyHRNet(·)
for deduction since it is a hierarchically composite function along the architecture of the
DyHRNet. In addition, this could be more difficult since the loss function is defined on all
the training samples, and the learning is data-driven in the stochastic work setting.

Alternatively, we employ the Accelerated Proximal Gradient (APG) algorithm [14,60]
to optimize s. This algorithm has a theoretically sound foundation defined by the proximal
algorithms. For convenience, a new function f (s) is introduced to denote the objective
function in Problem (6):

f (s) = g(s) + λ‖s‖1, (7)

where
g(s) = Lvalidation(DyHRNet(W∗, A∗, H∗, s)). (8)

Please note that, based on Equation (4), g(s) is a differentiable function with respect to
s. Now, we make a quadratic approximation to g(s) around current s. Then, it follows that

gv(z) = g(s) +∇g(s)T(z− s) +
1

2v
‖z− s‖2

2, (9)

where ∇g(s) is the gradient vector of function g(·) at s, and v is a positive factor. Thus,
based on Equation (9), the task of minimizing f (s) is now updated as

min
z

gv(z) + λ‖z‖1. (10)

Equivalently, the optimum to Problem (10) can be obtained via the following problem:

proxv,λ(y) = arg min
z

1
2v
‖z− y‖2

2 + λ‖z‖1, (11)

where y = s− v∇g(s), which is known at current iteration. In addition, here “prox” is
known as the proximal operator [60] and gives the optimum to Problem (10).

By further introducing the soft-thresholding operator [60], it turns out that

[
proxv,λ(y)

]
m
=

⎧⎨
⎩

ym − λ, ym ≥ λ,
0, |ym| < λ,
ym + λ, ym ≤ −λ,

(12)
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where [ · ]m stands for the m-th entity of the vector and ym is the m-th entity of y.
Now the original function f (s) in Equation (7) can be minimized iteratively. With a

momentum term to obtain a smooth solution path, we have

s(t) = proxv,λ

(
y(t) − ηt∇g(y(t))

)
, (13)

in which
y(t) = s(t−1) + vt(s

(t−1) − s(t−2)), (14)

where the superscript (t) indicates the t-th iteration, ηt is a learning ratio and vt is a
contribution factor for historical solution. According to the suggestion given in [60], vt can
be taken as t/(t + 3). As the number of iterations increases, it tends to be 1. Thus, vt is
fixed as 0.9 during iteration in our work.

In the first two iterations, both s(0) and s(1) are set to be a vector with all entities equal
to 1. This means that all the connections in Figure 1 will be initially considered. When s is
iteratively solved, all the connections will be assigned different weights to indicate their
contributions to the final task.

3.3. Channel-Wise Attention for Feature Aggregation

As mentioned in Section 3.1, we introduce a channel-wise weighting operation in
Equation (4) to develop the mechanism of the dynamic channel and enhance the flexibility
of feature aggregation. Intrinsically, this can be addressed as an attention mechanism,
which has been widely used in deep neural networks [61,62]. A similar idea has also
been applied to the dynamic lightweight HRNet for pose estimation [25]. In this way,
channel-wise attention can give larger weights to those important channels and lower
weights to those unnecessary ones.

The main task here is to construct the modules to estimate the weighting vectors {a
(i)
k,j}

in Equation (4). Motivated by the kernel aggregation used in [25], our module will be
constructed on the representations Ok,j for dense links.

Without loss of generality, we take one group of dense connections in the fourth stage
in Figure 1 as an example to explain how to design the attention module. Figure 3 illustrates
the detailed layers. Given the representation Ok,j, the channel features will be extracted by
the Global Averaged Pooling (GAP). In this way, Ok,j will be transformed from a tensor to
be a vector with a length equal to the number of the channels in Ok,j. Then, it is pushed
into the first Fully Connected (FC) layer, followed by the ReLU operation and the second
FC layer. The final weighting vector with a length equal to the number of the channels in
Ok,j will be output by the Sigmoid layer. Formally, we have

a
(i)
k,j = σ(i)

(
FC
(

ReLU
(

FC
(

GAP
(

Ok,j

)))))
, i = 1, 2; or 1 ≤ i ≤ 3; or 1 ≤ i ≤ 4, (15)

where σ(·)(i) stands for the final layer with Sigmoid as its activation function.
Finally, it is worth pointing out that the above module “GAP-FC-ReLU-FC-Sigmoid”

will be re-used a few times. As illustrated in Figure 3, it will be copied four times to
calculate four weighting vectors {a

(i)
k,j} with 1 ≤ i ≤ 4, all taking Ok,j as their input. In this

way, the channel importance of the feature maps is considered with adequate nonlinearity
for semantic segmentation.
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Figure 3. As example design of the channel-wise attention module at the fourth stage in Figure 1.
Each module is comprised of five layers of “GAP-FC-ReLU-FC-Sigmoid". In this example, it will be

copied four times with the same input to calculate a
(i)
k,j , 1 ≤ i ≤ 4.

3.4. The DyHRNet Neural Architecture

Based on the descriptions in Sections 3.2 and 3.3, we can now combine them to develop
our DyHRNet for semantic segmentation of RS images. Please note that its backbone is
optimized from the super-architecture in Figure 1 by applying the APG algorithm described
in Section 3.2. It outputs the four representations R1,9, R2,9, R3,9 and R4,9 with different
sizes. Accordingly, the the latter three representations will be bilinearly up-sampled,
respectively, to be one with size equal to R1,9. Then, they are concatenated together and
further transformed by a 1 × 1 convolution operation. Finally, we employ the object-
contextual representation (OCR) scheme [34] (In the literature, there are many existing
modules that can fulfill this task. Based on the empirical observations in [22], we follow
the proposal to take the OCR scheme as the head part in our network.) as the decoder to
format the output for semantic segmentation.

For clarity, Figure 4 demonstrates the overview of our DyHRNet. It consists of three
parts. The first part is the encoder learned from the super-architecture, as demonstrated
in Figure 1, which is responsible for feature extraction from the input images. The second
part is just a concatenation unit followed by a 1× 1 convolution operation. This treatment
achieves multilevel feature fusion for decoding. The third part is the head sub-module
of the OCR network [34] employed as the decoder to filter out the abstract features for
semantic segmentation. As a whole, these three parts are combined as a whole dynamic
network for end-to-end training.
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Figure 4. Overview of the neural architecture of DyHRNet.

3.5. Training and Inference

The original RS images and their ground-truth segmentations are taken to train the
model in the learning stage. For each image I and its ground-truth Y , we denote the
predicted segmentation by Ŷ . The loss function in Problem (6) is defined as follows:

Lloss(DyHRNet(θ, s)) = − 1
w× h× n ∑

I∈trainset
∑

zi∈I

C

∑
k=1

δ(yi = k) log pk(zi), (16)

where θ collects all of the parameters in W, U and H , “trainset” indicates the training
subset, C is the number of categories, δ(·) is the truth function, zi is the i-th pixel in image
I , yi is the ground-truth label of zi and pk(zi) is the output probability at the k-th channel
for pixel zi, w and h are the width and height of the training images, and n is the total
number of the images in the training set.

In Problem (6), there are two sub-problems to be solved. Technically, we solve them
iteratively by fixing θ or s once a time for another. Algorithm 1 lists the steps of how to
train the DyHRNet. The learning rate η takes for gradient update when using the stochastic
gradient descent (SGD) strategy to train the model. Except for the OCR module, there are
in total more than 170 convolution operations in the DyHRNet. Batch normalization is
performed after each convolution operation to guarantee convergence.

Algorithm 1 Training algorithm for the proposed DyHRNet.
Input: RS images with ground-truth segmentations, regularization parameters λ,

learning rate η, and maximum number of iterations T.
Output: Parameter θ = (W, U, H) and parameter s.

1 Initialize θ and s .
2 Train θ using SGD for several epochs with mini-batches and batch normalization

by fixing s, and obtain θ(0).
3 Let t ← 0.
4 while t < T do

5 Fix θ(t), update parameter s iteratively using the APG algorithm in Section 3.2,
with Equations (12)–(14), and obtain s(t).

6 Fix s(t), update parameter θ iteratively using SGD for several epochs with
mini-batches and batch normalization, and obtain θ(t).

7 if Lloss(DyHRNet(θ, s)) converges then

8 Stop
9 end

10 t ← t + 1.
11 end
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When performing the convergence check in Step 8 in Algorithm 1, the convergence
condition is that the loss of the network maintains unchanged at two adjacent iterations.
After the model is trained, it can be used for RS images with sizes larger than the training
images. In this case, the image will be divided into several overlapped patches for segmen-
tation, where the class probabilities of the pixels in the overlapped regions will be averaged
to make the final inference.

4. Experiments

4.1. Data Description

The performance of the proposed DyNRNet has been evaluated on three public
challenging benchmark datasets. The details of the datasets are described as follows:

Vaihingen: The Vaihingen dataset includes 33 images collected by an aerial camera.
The size of the images is about 2494 × 2064 pixels on average, and the Ground Sampling
Distance (GSD) or the spatial resolution on the ground is 9 cm. This dataset was constructed
in a relatively small village with many buildings and roads. Each sample contains three
images with true orthophoto (TOP), digital surface model (DSM), and ground truth. In this
dataset, the TOP is composed of red and green bands. Ground truth contains six categories:
impervious surface, building, low vegetation, tree, car, and cluster/background. In our
experimental setup, only the TOP and ground truth of each sample were used without
the DSM. A total of 344 samples are randomly obtained from 15 images for training, and
398 samples are randomly picked out from the remaining 18 images for testing. The samples
are all cropped into patches of 512 × 512 pixels.

Potsdam: The Potsdam dataset has 38 samples with fine spatial resolution. On average,
the size of the images is about 6000 × 6000 pixels, and the GSD is 5 cm. The samples in
this dataset were taken from a scene in Potsdam City. Each sample contains three images
with TOP, DSM, and ground truth, respectively. Each TOP includes the red, green, and
blue bands. It has the same categories as those in the Vaihingen dataset. The DSM is
not used for learning. A total of 3456 samples are randomly obtained from 24 images for
training, and 2016 samples are randomly picked out from the remaining 14 images for
testing. The samples are all cropped into patches of 512 × 512 pixels.

LoveDA: The LoveDA dataset contains 5987 samples [63]. Each image has
1024 × 1024 pixels, and the GSD is 0.3 m. The images in this dataset are collected in two
senses: urban and rural. Each image includes red, green, and blue bands. The ground truth
contains seven categories: building, road, water, barren, forest, agriculture and background.
A total of 2522 images are taken for training, and 1669 images are used for testing.

In the phase of model training, data augmentation tricks are employed to enlarge
the training samples, including random horizontal flipping, random vertical flipping, and
random scaling from a range in {0.5, 0.75, 1.0, 1.25, 1.5} (all with equal probability). In
addition, the brightness and contrast of the input image are also randomly changed for
training. Then, patches with 512× 512 pixels are cropped from these images. They are
finally organized as a training and testing dataset for model training, evaluation, and
comparison.

4.2. Compared Models and Experiment Settings

The proposed DyHRNet was compared with the nine classic or state-of-the-art (SOTA)
deep learning models for semantic segmentation. These models achieve multi-scale feature
fusion for fine segmentation in different ways. For convenience, we summarize them
as follows:

• FCN: It is a seminal work for semantic segmentation [30]. Currently, it is usually taken
as a baseline for comparison. In our experiments, we use the ResNet-101 [64] as its
encoder.

• UNet: This model contains a contracting path and a symmetric expanding path
for multi-scale feature fusion [31]. It is initially designed for biomedical image seg-
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mentation, and later widely applied to other types of images. Here, the backbone
UNet-S5-D16 is taken as its encoder.

• PSPNet: It consists of a pyramid parsing module for global prior representation [32].
The concatenation of multi-scale pyramid representations is transformed to obtain the
final per-pixel prediction. The ResNet-101 is employed as its encoder.

• DeepLabV3+: This model has an encoder–decoder structure [33]. In DeepLabV3+,
the Xception model is modified to extract dense feature maps, and the depthwise
separable convolution is employed to design the atrous spatial pyramid pooling and
decoder modules. In the experiments, the ResNet-101 is employed as its encoder.

• OCRNet: This model fulfills the task of semantic segmentation via three main steps [34].
First, the contextual pixels are divided into a set of soft object regions. Second, the rep-
resentations of the pixels in each object region are aggregated to obtain object-level rep-
resentation. Finally, the representation of each pixel is augmented by object-contextual
representation (OCR). The ResNet-101 is taken as its encoder.

• SETR: The SEgmentation TRansformer (SETR) is a SOTA model [35]. It is a pure
transformer. Each image is encoded as a sequence of patches. The VIT-L is employed
as its encoder.

• SegFormer: It is also a SOTA model constructed on transformers [36]. It has a hierar-
chically structured transformer encoder to learn the multi-scale features. In addition,
the decoder is directly constructed on a lightweight multilayer perceptron, which
aggregates information from different layers. In our implementation, the MIT-B5 is
taken as its encoder.

• HRNet+FCN: In this model, the encoder is the standard HRNet [22]. The decoder is
the same as that used in FCN [30]. Please note that only the up-sampling framework
of FCN is inherited for segmentation. The standard HRNet is used as its encoder.

• HRNet+OCR: It is a SOTA model. The encoder is the standard HRNet [22] and the
decoder is the head subnetwork used in OCRNet [34] for segmentation.

• DyHRNet (Our): The pipeline of our method consists of three stages. First, we per-
form step 3 in Algorithm 1 to train the completely connected network for several
epochs to obtain a good initialization. Second, steps 4–11 in Algorithm 1 are imple-
mented to search from the dense connections and obtain channel-wise attention. Third,
the final architecture is re-trained with all training data for experimental comparison.

In the experiments, all the above nine models to be compared were performed in the
experiment settings suggested in the corresponding paper within the Pytorch framework.
In addition, the guidance given by the authors in their works is followed to initialize the
hyper-parameters. All models are trained with the SGD strategy.

The base learning rate η was initially set as 0.01, the momentum is set to 0.9, and the
weight decay is taken as 0.004 during iterations. In addition, the “poly” learning rate policy
is employed to adjust the learning rate [65]. At the t-th iteration, it is taken as

ηt = η(1− t/T)0.9, (17)

where T is the pre-defined total number of iterations in Algorithm 1. In this way, the
sequence of iteration points could be smoother for convergence. It was set to be 40,000 for
the Vaihingen dataset. For the larger Potsdam and the LoveDA datasets, it was taken as
80,000. The regularization parameters λ in Problem (6) are set to be 0.01 in our implementation.

In the experiments, the size of each mini-batch was taken as 8 for the Vaihingen dataset,
and 16 for the Potsdam and LoveDA datasets, when training the model parameters via Al-
gorithm 1. The ResNet-101 [64] was pre-trained on the ImageNet dataset [66]. In our imple-
mentation, the original HRNet was also pre-trained on this dataset to obtain a good initial-
ization (https://github.com/HRNet/HRNet-Image-Classification/releases/download/
PretrainedWeights/HRNet_W48_C_ssld_pretrained.pth (accessed on 6 March 2023)).

To comprehensively evaluate the different models, two overall benchmark metrics
were employed, namely the Overall Accuracy (OA) score of the classification and the mean
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Intersection over Union (mIoU) evaluated on the testing samples. In addition, the accuracy
for each class will also be reported for comparison.

4.3. Experiment Results

To give a comprehensive comparison between the models, we list the quantitative
scores of OA and mIoU obtained by the ten models on the Vaihingen, Potsdam, and LoveDA
datasets in the right panels in Tables 1–3, respectively. All these values are achieved on
the corresponding test images and averaged as a whole on the categories. Specifically, two
methods are implemented to output the final scores. One is to calculate them directly on
the images in the testing dataset. Another is to evaluate them via the flip and multi-scale
(MS) testing, which means that the testing images are randomly flipped and/or resized to
augment the samples.

Table 1. Quantitative comparison results on the Vaihingen testing set. The digits are the percent
scores (%). † means that the scores are obtained via the flip and MS testing. (Bold font represents the
highest performance of the class).

Method Imp. Surf. Building Low Veg. Tree Car OA mIoU OA † mIoU †

FCN [30] 84.99 91.31 70.31 79.57 76.18 89.76 80.47 90.34 81.87
UNet [31] 82.78 87.41 67.69 78.17 65.90 88.15 76.39 89.44 79.15
PSPNet [32] 85.83 91.49 71.37 79.90 75.14 90.16 80.75 90.76 82.38
DeepLabV3+ [33] 86.20 91.61 71.43 79.74 75.18 90.23 80.83 90.81 82.19
OCRNet [34] 84.70 90.57 69.74 78.83 66.71 89.36 78.11 90.23 79.99
SETR [35] 83.12 88.21 67.07 77.86 55.31 88.13 74.31 89.04 75.72
SegFormer [36] 86.72 92.42 72.30 80.53 78.54 90.68 82.10 91.07 83.06
HRNet+FCN [30] 85.91 91.91 71.03 79.90 76.40 90.17 81.03 90.75 82.35
HRNet+OCR [34] 86.77 91.43 73.51 80.65 78.34 90.54 82.14 91.48 83.73

DyHRNet (Ours) 87.06 92.26 73.68 80.83 82.76 90.96 83.32 91.70 84.34

Table 2. Quantitative comparison results on the Potsdam testing set. The digits are the percent scores
(%). † means that the scores are obtained via the flip and MS testing. (Bold font represents the highest
performance of the class).

Method Imp. Surf. Building Low Veg. Tree Car OA mIoU OA † mIoU †

FCN [30] 87.00 93.58 75.77 78.90 92.44 90.44 85.54 90.82 86.23
UNet [31] 83.63 89.08 73.28 77.75 89.69 88.36 82.69 89.14 84.02
PSPNet [32] 87.44 94.03 76.64 79.33 93.02 90.80 86.09 91.29 86.81
DeepLabV3+ [33] 87.40 93.82 76.60 79.28 93.03 90.80 86.03 91.27 86.72
OCRNet [34] 85.17 90.22 75.31 76.96 89.83 89.33 83.50 90.21 84.92
SETR [35] 78.28 84.78 66.60 66.17 77.33 84.25 74.63 85.54 76.77
SegFormer [36] 87.54 94.04 78.15 80.06 92.22 91.18 86.40 91.61 87.19
HRNet+FCN [30] 81.22 93.75 76.86 79.54 92.65 90.80 84.80 91.36 86.89
HRNet+OCR [34] 86.31 93.03 77.04 78.86 90.58 90.57 85.16 91.25 86.62

DyHRNet (Ours) 87.77 94.07 77.93 80.59 93.05 91.20 86.68 91.79 87.56

As can be seen from the comparative results in these tables, our model DyHRNet
largely outperforms the seminal FCN and the famous UNet, which were initially developed
for semantic segmentation. It is also superior to the powerful PSPNet, DeepLabV3+, and
OCRNet models, which were all designed with the tricks of multi-scale information fusion
in large receptive fields. In addition, it outperforms the SOTA models, including SETR
and SegFormer, in which the frontier technique of Transforms is employed to construct
the models. In parallel, our model is developed from the original HRNet. The two
combinations, HRNet+FCN and HRNet+OCR, were compared against our model. By
contrast, the HRNet+FCN employs a simple head network for semantic segmentation,
while the HRNet+OCR uses a complex head network for this task. As can be seen from
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these tables, our model achieves better results, demonstrating its effectiveness for RS
image segmentation.

Table 3. Quantitative comparison results on the LoveDA testing set. The digits are the percent scores
(%). † means that the scores are obtained via the flip and MS testing. Here, “Back.” stands for
“Background”, “Build.” stands for “Building”, “Agri.” stands for “Agriculture”. (Bold font represents
the highest performance of the class).

Method Back. Build. Road Water Barren Forest Agri. OA mIoU OA † mIoU †

FCN [30] 52.75 62.63 53.62 66.06 22.38 38.97 49.54 68.11 49.42 67.47 42.66
UNet [31] 49.06 57.82 47.87 47.69 25.90 37.66 43.65 63.23 44.24 64.05 44.04
PSPNet [32] 55.14 64.24 55.54 68.03 27.01 41.56 51.53 70.27 51.86 69.98 51.34
DeepLabV3+ [33] 54.19 64.39 55.67 68.14 27.17 41.44 49.29 69.50 51.47 69.60 51.32
OCRNet [34] 53.10 51.79 54.56 59.71 23.70 35.69 46.99 66.56 46.51 65.54 45.21
SETR [35] 47.98 57.24 40.37 59.70 20.23 39.54 36.39 62.50 43.06 62.01 42.65
SegFormer [36] 52.82 65.50 56.63 70.64 29.29 41.63 51.93 69.96 52.63 70.07 52.25
HRNet+FCN [30] 54.37 60.97 56.08 68.54 26.77 41.11 52.09 69.87 51.42 70.06 51.64
HRNet+OCR [34] 54.62 63.47 52.76 70.54 34.68 35.55 51.02 69.89 51.81 69.24 50.27

DyHRNet (Ours) 54.03 62.83 55.82 72.31 35.67 38.04 58.92 71.55 53.95 70.98 53.72

Furthermore, most images render class imbalance at the pixel level in these datasets,
i.e., some objects (for example, buildings) occupy large regions, while the small objects (for
example, cars) have small regions here and there in images. Thus, we employ the metric
mIoU to measure the goodness of the segmentation, respectively, on the category level.
As can be seen from the left panels in Tables 1–3, our model achieves better scores for most
categories in these datasets. It renders a significant performance enhancement on small
objects. Table 1 shows that DyHRNet achieves 4.42% higher accuracy than the second
model (SegFormer) on the car category in the Vaihingen dataset. Such an enhancement can
also be witnessed in Table 2 on the tiny objects, including the car and the tree in the scenes.
In addition, as witnessed in Table 3, our model also obtains the SOTA performance on the
LoveDA dataset.

Figure 5 illustrates the radar charts on the three datasets to further compare the
performances of the ten models, category by category. The points in these charts stand
for the corresponding mIoU scores, which are obtained via data augmentation (flip and
MS testing) tricks on the testing dataset. From these figures, it is seen that the curves
obtained by our model always locate at the outer region, indicating that it achieves higher
performance compared with the nine models.

(a) (b) (c)

Figure 5. Comparisons category by category on the three datasets via Radar chart. The digits are the
mIoU scores, obtained via the flip and MS testing. (a) Vaihingen; (b) Potsdam; (c) LoveDA.
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Finally, Figures 6–8 demonstrate the segmentation results of a few images obtained by
the ten models, including FCN, UNet, PSPNet, DeepLabV3+, OCRNet, SETR, SegFormer,
HRNet+FCN, HRNet+OCR and DyHRNet.

Figure 6. Visual comparisons between our method and other related methods on the Vaihingen
dataset. The label includes six categories: impervious surface (white), building (blue), low vegetation
(cyan), tree (green), and car (yellow).
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Figure 7. Visual comparisons between our method and other related methods on the Potsdam dataset.
The label includes six categories: impervious surface (white), building (blue), low vegetation (cyan),
tree (green), car (yellow), and clutter/background (red). Here, backgrounds are directly shown as
they were considered to be masks when training the models.
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Figure 8. Visual comparisons between our method and other related methods on the LoveDA dataset.
The label includes six categories: Background (white), Building (red), Road (yellow), Water (blue),
Barren (plum), Forest (green), and Agriculture (orange).
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As can be seen from these figures, the FCN and UNet render limited performances
in segmenting the tiny objects. For the segmentation results obtained by the PSPNet, the
boundaries of objects do not keep well, which can be seen from those regions of some
buildings in the LoveDA dataset. DeepLabV3+, OCRNet, SETR, SegFormer, HRNet+FCN,
and HRNet+OCR indeed improve the quality of segmentation, but false negatives can
also be perceived from the segmentation results. This fact can be witnessed clearly in the
Vaihingen dataset. In contrast, our model performs better and shows satisfactory edge
preserving, typically on the Vaihingen and Potsdam datasets, where coherent segmentations
are obtained on fine-structured buildings and tiny objects. In addition, on the challenging
LoveDA dataset, for example, in the first image in Figure 8, the roads in the left region are
all manually labeled as background, but our model segments well for these regions.

In summary, the above comparisons show that our DyHRNet is capable of segmenting
confusing artificial objects in high-resolution RS images. In addition, it also shows good
quality segmentations with satisfactory edge preserving for confusing size-variable objects
and tiny objects such as cars and trees without performing post-processing. This indicates
that our DyHRNet learned from the densely connected HRNet with channel-wise attention
has powerful data adaptability for RS images.

4.4. Ablation Study

This subsection reports the ablation experiments to evaluate the importance of dif-
ferent components proposed in our method. Please note that in our work, there are two
fundamental designs. One is the dynamic dense connections achieved with the APG algo-
rithm in Section 3.2, and another is the dynamic channels in Section 3.3. Table 4 reports
four combinations with or without using these two designs on the Vaihingen dataset. It is
seen that performing both fundamental modelings helps enhance the performance. This
indicates the validation of our proposed approach.

When learning our DyHRNet, there are two subtasks: training the neural network
and searching from the dense connections. They are solved alternatively by fixing one
for another in Algorithm 1. To further evaluate the importance of the APG algorithm
for selecting out the important connections, we conducted another group of ablation
experiments, in which the APG algorithm is performed once a time every two or four times
during iterations. Table 5 reports the performances obtained in this experimental setting. It
is seen that the performances decrease in most cases when the interval number increases,
compared with the original step-by-step for these two subtasks. This indicates that the
APG algorithm for sparse selection from the dense connections plays a significant role in
data-driven learning for the semantic segmentation of RS images.

Table 4. The ablation study of our proposed DyHRNet on the Vaihingen dataset with different
combinations. The digits are the percent scores (%). † means that the scores are obtained via the flip
and MS testing.

Channel-Wise Attention APG Sparse Optimization OA mIoU OA † mIoU †

� � 90.54 82.14 91.48 83.73
� � 90.92 83.11 91.55 84.12
� � 90.94 83.23 91.54 84.15
� � 90.96 83.32 91.70 84.34

Table 5. The ablation study of our proposed DyHRNet on the Vaihingen dataset. The digits are the
percent scores (%). † means that the scores are obtained via the flip and MS testing.

Train/Search Step OA mIoU OA † mIoU †

1/1 90.96 83.32 91.70 84.34
2/1 90.46 (↓) 81.29 (↓) 91.20 (↓) 82.66 (↓)
4/1 90.40 (↓) 81.46 (↓) 90.77 (↓) 81.58 (↓)
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Finally, the DyHRNet is used as the backbone of the models with different heads
for semantic segmentation. Specifically, the heads in FCN and OCR are combined with
the DyHRNet, respectively, for experimental evaluation. This treatment generates two
models, known as “DyHRNet+FCN” and “DyHRNet+OCR”. The latter is the model used
in Section 4.2. For convenience, the original HRNet is also employed for comparison.
The experimental settings are the same used in Section 4.2. Table 6 reports the experimental
results on the Vaihingen dataset. It is seen that the performance of “DyHRNet+FCN” is
better than that of “HRNet+FCN”, while the performance of “DyHRNet+OCR” is better
than that of “HRNet+OCR”. As our model is learned from the original HRNet, this fact
indicates the usage of our proposed method.

Table 6. The ablation study of the original HRNet and our DyHRNet with different segmentation
heads on the Vaihingen dataset. The digits are the percent scores (%). † means that the scores are
obtained via the flip and MS testing.

Backbone FCN OCR OA mIoU OA † mIoU †

HRNet � 90.17 81.03 90.75 82.35
� 90.54 82.14 91.48 83.73

DyHRNet � 90.80 82.72 91.45 83.82
� 90.96 83.32 91.70 84.34

4.5. Computational Efficiency

Here we analyze the computational efficiency of the models. To give a comprehen-
sive analysis, the following models are compared, including the FCN, UNet, PSPNet,
DeepLabV3+, OCRNet, SETR, SegFormer, HRNet+FCN, HRNet+OCR, DyHRNet +FCN,
and DyHRNet+OCR. In Table 7, the performance of the architecture with a combination
of the learned backbone DyHRNet and the head of the FCN, namely “DyNRnet+FCN”,
is additionally reported for comparison. The factors related to the computational effi-
ciency are listed in Table 7, including the number of the parameters and the number of
the FLoating-point OPerations (FLOPs) with Giga Multiplier ACcumulators (GMACs) in
the model.

Table 7. Computational efficiency, including the total number of the FLoating-point OPerations
(FLOPs) and the total number of the parameters in the model. The backbones and the mIoU scores
calculated on the Vaihingen testing dataset are also listed here for comparison.

Method Backbone #Params GFLOPs mIoU (%)

FCN [30] ResNet-101 68.48M 275.38 80.47
PSPNet [32] ResNet-101 67.96M 256.14 80.75
DeepLabV3+ [33] ResNet-101 62.57M 253.93 80.83
OCRNet [34] ResNet-101 55.51M 230.57 78.11

UNet [31] UNet-S5-D16 29.06M 202.63 76.39
SETR [35] VIT-L 318.45M 260.85 74.31
SegFormer [36] MIT-B5 82.01M 52.45 82.10

HRNet+FCN [30] HRNetV2-W48 65.85M 93.43 81.03
HRNet+OCR [34] HRNetV2-W48 70.36M 162.21 82.14

DyHRNet+FCN DyHRNet 63.88M 91.57 82.72
DyHRNet+OCR DyHRNet 66.44M 158.81 83.32

In addition, the backbones and the mIoU scores calculated on the Vaihingen testing
dataset are also listed for comparison. In the experiments, the FCN, PSPNet, DeepLabV3+,
and OCRNet all take the “ResNet-101” as their backbone. By contrast, UNet, SETR, Seg-
Former, and HRNet all have their own backbone. It is worth pointing out that the down-
sampling operations in UNet and ResNet are different from each other. Furthermore, they
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also have different output channels in consecutive stages. Thus, the “ResNet-101” is not
selected as the backbone for UNet in our experiments.

In general, the number of parameters and the number of the FLOPs are two important
factors to evaluate the computation scale in deep models. In particular, FLOPs can directly
reflect the computational complexity of the model, which is related to the size of the input
image and the neural architecture. As can be seen in Table 7, the computation scale in the
DyHRNet was reduced to a medium level, but it achieves the best performance on the
Vaihingen dataset. For example, by contrast to the FCN, our model has the parameters at
the same level, but the computational scale is largely reduced to 57.6%. In addition, from
Table 7, it is seen that the numbers of parameters and FLOPs in DyHRNet+FCN are both
smaller than those in HRNet+FCN. This fact can also be witnessed when HRNet+OCR and
DyHRNet+OCR are compared to each other. Thus, it can be concluded that the decrease
of the computations in our model occurs in the backbone. This is due to the architecture
learning from the HRNet, where those cross-resolution connections and channels with zero
contributions will be ignored. This indicates the effectiveness of our method.

5. Discussions

5.1. The Learned Structure and Iteration Process Analysis

Algorithmically, the main task in this study is to solve the optimization problem in (6).
In this task, the key job is to search for the important connections among the eight groups
of dense connections in the original HRNet. This is achieved using the APG algorithm with
sparse selection tricks. Figure 9a–c illustrate the learned weights of the eight groups of
dense connections. For example, in the first panel in Figure 9a–c, there is a 2× 2 matrix,
including four weights. This panel corresponds to the group of dense connections in stage
2 in Figure 1. For clarity, we take Figure 9a as an example to explain the details. In the
first panel, the value “0.021” is the learned weight of the connection between R1,1 and O1,2,
“0.026” is that of the connection between R1,1 and O2,2, “0.000” is that of the connection
between R2,1 and O1,2, and “0.202” is that of the connection between R2,1 and O2,2. Based
on Figure 9a–c, it is seen that there are many connections with weights tending to zero.
This fact indicates that our search approach plays an active role in the original architecture
of HRNet, helping enhance the performance of the model for semantic segmentation with
end-to-end training.

Based on the visualizations in Figure 9a–c, one interesting phenomenon is that all the
connections at the same horizontal level retain relatively higher weights. This means that
the feature maps at the same resolution should be maintained, which is more important
for nonlinear feature learning. Small weights are always learned from cross-resolutions,
and most of them correspond to the connections from high to low resolution. This may be
because there are many tiny objects in the RS images, avoiding discarding the details of the
tiny objects and performing those down-sampling operations.

As demonstrated in Figure 1, a total of 88 connections are employed as candidates
to be selected by the APG algorithm described in Section 3.2. Figure 10 shows the mIoU
scores and the total weights of the 88 connections on the Vaihingen, Potsdam, and LoveDA
datasets in the iterations. It is seen that the mIoU scores of the learned models after
10,000 iterations will stay at the same level without rendering significant changes. However,
the total sum of the learned weights is drastically decreased along with the increase of
iterations. In the beginning, all the weights are taken as 1.0. Thus, there is a point marked
as “88.0” in each figure. Then, it reduces and converges to keep at a stationary level.
This means that the original dense connections have different contributions, far below the
identical ones with the same importance. This fact also indicates that the connections with
zero weights can be deleted from the original HRNet in the way of end-to-end learning.
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(a)

(b)

(c)

Figure 9. Visualization of the obtained weights of the dense connections. In each panel separated by
vertical lines, there are a group of weights, corresponding to the connections in Figure 1. The larger
the weight, the more important the connection; (a) Vaihingen; (b) Potsdam; (c) LoveDA.
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Figure 10. The mIoU score and the overall weight sum learned from the dense connections with
iterations; (a) Vaihingen; (b) Potsdam; (c) LoveDA.

5.2. The Behavior of the Accelerated Proximal Gradient Algorithm

In Algorithm 1, one of the main tasks is to identify the important cross-resolution con-
nections in the original HRNet for semantic segmentation. To this end, the APG algorithm is
employed to solve the sparse regularization subproblem in Problem (6). Algorithmically, it
starts with the original HRNet to modulate the weights of the cross-resolution connections,
which are all initialized as 1.0 for iterations. This gives an equal chance for all the connec-
tions to be evaluated. In this way, a top-down training strategy is performed, in which all
the weights are gradually nullified to small scores. After training, the connections with
zero weights will be discarded for prediction.

Alternatively, a bottom-up training strategy could be implemented for the APG algo-
rithm. To this end, we first assign a small weight to the connections, and then pre-train

134



Remote Sens. 2023, 15, 2293

the original HRNet on the ImageNet dataset. Then, Algorithm 1 is implemented. Table 8
reports the experimental results on the Vaihingen dataset. Specifically, in Table 8, “Init-0.1”,
“Init-0.5”, and “Init-1.0” correspond to the cases with all weights initialized to 0.1, 0.5,
and 1.0, respectively. In this group of experiments, the maximum number of iterations is
taken as 40,000, and all the training samples described in Section 4.1 are taken to learn the
model. In the experiments, it is observed that small initial weights indeed help speed up
the convergence, but the performance decreases drastically. As can be seen from Table 8,
the models trained with small initial weights perform unsatisfactorily, compared to that
with all weights set to be 1.0 for learning.

Table 8. Quantitative comparison results on the Vaihingen testing set with different initial weights
to the cross-resolution connections for the AGP algorithm. The digits are the percent scores (%).
† means that the scores are obtained via the flip and MS testing.

Weight Initialization Imp. Surf. Building Low Veg. Tree Car OA mIoU OA † mIoU †

Init-0.1 75.85 84.48 65.93 74.19 55.74 85.63 71.24 82.46 66.60
Init-0.5 83.06 87.41 68.75 78.26 61.39 88.38 75.77 89.03 77.01
Init-1.0 87.06 92.26 73.68 80.83 82.76 90.96 83.32 91.70 84.34

To further investigate the behavior of the AGP algorithm, experiments with different
ratios of training data and different numbers of iterations are conducted on the Vaihingen
dataset. The goal is to demonstrate whether the weights of the cross-resolution connec-
tions learned by the AGP algorithm change drastically. Specifically, in the first group of
experiments, the ratios are set as 10%, 50%, and 100% of all the total training samples,
respectively. In this group, the maximum number of iterations, namely parameter T in
Algorithm 1, is taken as 40,000. In another group of experiments, T is set as 10,000, 20,000,
and 40,000, respectively. In this case, all the training samples are employed to learn the
model. In this group, the weights of the cross-resolution connections are initialized to
1.0 for the APG algorithm. Figure 11 visualizes the weights of the cross-resolution connec-
tions in the DyHRNet, which are obtained, respectively, with these experimental settings.
It is seen that all the weights are dropped below 1.0. Table 9 reports the performances of
the learned models. By considering together the weights visualized in Figure 9a and the
performance scores, which are obtained with 100% training samples and T = 40, 000, there
are no significant changes both in performance scores and in weight values.

Table 9. Quantitative comparisons on the Vaihingen testing set with different ratios of training
samples and different numbers of iterations. The digits are the percent scores (%). † means that the
scores are obtained via the flip and MS testing. Here, “100% + 40,000” means the model is learned
with 100% of the training samples, and the maximum number of iterations (T) in Algorithm 1 is set
to be 40,000.

Imp. Surf. Building Low Veg. Tree Car OA mIoU OA † mIoU †

#training (10%) 86.49 91.81 71.51 79.72 79.11 90.41 81.73 91.10 82.07
#training (50%) 86.80 91.85 72.74 80.39 80.39 90.70 82.43 91.41 83.57

T = 10,000 86.31 92.00 72.46 80.68 81.75 90.68 82.64 91.37 83.84
T = 20,000 87.53 92.70 73.28 80.83 82.16 91.10 83.30 91.55 84.11

100% + 40,000 87.06 92.26 73.68 80.83 82.76 90.96 83.32 91.70 84.34
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(a)

(b)

(c)

(d)

Figure 11. Visualization of the weights of the dense connections learned from the Vaihingen dataset
with different settings. In each panel separated by vertical lines, there are a group of weights,
corresponding to the connections in Figure 1. The weights in (c,d) are learned with all of the training
samples used in Table 1. (a) The weights learned with 10% training samples; (b) The weights learned
with 50% training samples; (c) The weights learned with 10,000 iterations; (d). The weights were
learned with 20,000 iterations.

5.3. Implications and Limitations

In this study, we have conducted experimental evaluations on the three challenging
public datasets. In these RS images, many artificial objects with different sizes and confusing
appearances are located here and there. Achieving consistent and accurate semantic
segmentation is a challenging task. The primary function of the DyHRNet is to enhance
the quality of semantic segmentation via cross-resolution feature fusion. To this end,
the structure of the original HRNet has been exploited by evaluating the contributions
of the dense connections and the channels related to the cross-resolution feature fusion.
With the problem formulation addressed under the NAS framework with channel-wise
attention, the goal is well achieved. This means that the structure in the HRNet with parallel
streams of high-, medium-, and low-resolution representation attends well to the needs of
segmenting RS objects of multi-scales. In addition, compared with the original HRNet, the
reduced parameters in our DyHRNet indicate that not all the connections and channels
contribute equally to the task. In other words, redundant connections and channels exist
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for performing the cross-resolution feature fusion. Therefore, one can consider designing
lightweight or dynamic HRNet or more general architectures by keeping the advantages of
the multi-scale structure design rendered in the HRNet for this or similar tasks in the fields
of RS image processing.

Methodologically, the proposed DyHRNet renders enhancements on both architecture
design and segmentation performance. However, it has several limitations, which are
described as follows:

• As outlined in Table 7, our model has more than 66 million parameters, and the
computational scale is up to about 158 GFLOPs. Thus, high-performance computing
resources with GPUs are needed to fulfill the computing task. This indicates that releas-
ing it on edge computing devices is difficult with its current version. However, the sum
of the total weights demonstrated in Figure 10 indicates many connections with small
contributions. Thus, the scale of the models could be reduced by model pruning.

• The performance of the DyHRNet could be further improved for the objects with rich
visual appearances and those with blurring edges, for example, the buildings and
forests in the LoveDA dataset. On the one hand, more training samples are needed to
guarantee the generalization of the model. On the other hand, some prior knowledge
with constrained forms or regularization terms in the loss function could be introduced
to guide the model training.

• The current version of the DyHRNet is not general given the dynamic architecture
design. This is because the tricks with NAS are only applied to dense connections.
However, many convolutional operations are contained in the blocks Oi,j in Figure 1.
This indicates that one can perform the NAS on all operations to learn more general
architecture for different needs in practice.

6. Conclusions

This work proposes a Dynamic High-Resolution Network (DyHRNet) for the semantic
segmentation of RS images. The DyHRNet is an architecture-learnable model under a
neural architecture search (NAS) framework with channel-wise attention. It takes the
primary HRNet as its super-architecture, which has four parallel streams to retain the
different resolutions for multi-scale feature fusion simultaneously. The learning task has
been explicitly formulated with a series of sparse regularizations, where the Accelerated
Proximal Gradient (APG) algorithm is introduced to solve the sparse optimization model.
In contrast to the static HRNet, the dynamic merits of the DyHRNet with data adaptability
lie in the following two aspects. On the one hand, the structure of the DyHRNet is
dynamically adjusted for cross-resolution feature fusion by identifying those unimportant
connections and ignoring those with zero contributions in the original HRNet. On the
other hand, the contributions of channel-wise contribution for feature fusion are modulated
automatically to enhance the representation capability of the proposed model.

Extensive experiments have been conducted on three public challenging RS image
datasets. Nine classical or SOTA models have been employed to compare with our model.
Comparative experiment results with numerical scores, visual segmentations, the learned
structures, the iteration process analysis, and the ablation study demonstrate the advantages
and effectiveness of the proposed DyHRNet. In the future, we aim to design a lightweight
HRNet to perform the semantic segmentation of RS images in edge computing devices.
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Abstract: Accurate multi-scale object detection in remote sensing images poses a challenge due to the
complexity of transferring deep features to shallow features among multi-scale objects. Therefore,
this study developed a multi-feature fusion and attention network (MFANet) based on YOLOX. By
reparameterizing the backbone, fusing multi-branch convolution and attention mechanisms, and
optimizing the loss function, the MFANet strengthened the feature extraction of objects at different
sizes and increased the detection accuracy. The ablation experiment was carried out on the NWPU
VHR-10 dataset. Our results showed that the overall performance of the improved network was
around 2.94% higher than the average performance of every single module. Based on the comparison
experiments, the improved MFANet demonstrated a high mean average precision of 98.78% for
9 classes of objects in the NWPU VHR-10 10-class detection dataset and 94.91% for 11 classes in the
DIOR 20-class detection dataset. Overall, MFANet achieved an mAP of 96.63% and 87.88% acting
on the NWPU VHR-10 and DIOR datasets, respectively. This method can promote the development
of multi-scale object detection in remote sensing images and has the potential to serve and expand
intelligent system research in related fields such as object tracking, semantic segmentation, and
scene understanding.

Keywords: remote sensing images; multi-scale object detection; multi-feature fusion and attention
network; multi-branch convolution; attention mechanism; loss function

1. Introduction

The multi-scale object feature recognition of remote sensing images plays a vital role
in many fields, including military and civilian. In the military field, remote sensing images
can be used to detect and identify ships at sea and then analyze the locations of ship
objects to ensure naval defense security [1,2]. In the civilian sector, they can help predict
changes in animal habitats and environmental quality [3,4]. Object detection technology in
remote sensing images is significant for ocean monitoring, weather monitoring, military
navigation, urban planning, and layout. Therefore, how to further improve the multi-scale
object detection of remote sensing images has become the focus of research.

Multi-scale object detection in remote sensing images is generally performed in high-
resolution images, which provides high-definition information on object features. Among
multi-scale objects, large and medium ones are more feature-rich and easier to detect. How-
ever, small objects are generally difficult to be characterized and detected effectively. Early
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object detection methods in remote sensing images mainly used manual feature modeling
combined with classifiers for classification to determine the object class. However, tradi-
tional detection methods were inefficient and costly in terms of time and labor, making it
difficult to meet the needs of practical applications [5]. In recent years, the wide application
of deep learning in the fields of video processing [6], image set classification [7,8], image
encryption [9], and image recognition [10] has made rapid and accurate object feature recog-
nition possible. Convolutional neural networks, such as RCNN [11] and Faster RCNN [12],
have been able to extract high-level semantics from images with better robustness and
expressiveness than artificial features, significantly improving detection accuracy. Zhu
et al. [13] proposed a multi-layer feature fusion model based on Faster RCNN to improve
small object characterization effectively. Shivappriya et al. [14] introduced the additive
activation function into Faster RCNN to solve model overfitting problems and improve
recognition performance. Although these algorithms improved the detection accuracy of
remote sensing images to some extent, Faster RCNN had more parameters and a slower
detection speed because it was a two-stage detection algorithm that needed to extract the
candidate regions first and then classify and regress the candidate regions.

Single-stage detection algorithms are generally preferred, with representative algo-
rithms such as You Only Look Once (YOLO) [15–19]. This algorithm obtains prediction
results directly from the input image. It transforms the object detection problem into a
regression problem, significantly improving the detection speed and meeting the demand
for real-time detectability of remote sensing images. However, the semantic information
in the YOLO about shallow features is weak. After high-fold features compress the input
image in the deeper convolution layers, some object information is lost and the sensitivity of
detecting objects will gradually decrease. Therefore, Laban et al. [20] proposed the method
of an anchor expansion based on YOLOv3 to improve the ability to detect small category
goals. Hong et al. [21] improved the anchor frame based on the K-means algorithm with
linear scaling while introducing Gaussian parameters into YOLOv3 to enhance the accuracy
of multi-scale object detection. Zhou et al. [22] introduced a frequency channel attention
network in YOLOv5 to detect small targets in remote sensing images. For object multi-scale
variation and dense object distribution characteristics, Wang et al. [23] designed the SPB
module and PANet sampling strategy based on YOLOv5. The mean average precision
(mAP) was improved by 5.3% compared with the baseline. To address the difficulty of
small target object detection in remote sensing images, Han et al. [24] improved YOLO
by increasing the residual connection and cross-layer attention to enhance the detection
ability of the model for small targets in remote sensing images. Wu et al. [25] proposed the
combination of a transformer encoder and a reparameterized backbone based on YOLOX,
which effectively improved dense oil tank detection and classification. To enhance the
feature learning ability of the network, Yang et al. [26] used efficient channel attention in
YOLOX and combined adaptively spatial feature fusion with the neck network to finally
achieve high-accuracy object detection in remote sensing images.

YOLOX, the latest version, has improved detection accuracy and speed, and its perfor-
mance has reached new heights [19]. The anchorless-based network does not require man-
ual anchor scale and aspect ratio setting. It is more suitable for remote sensing images and
multi-target detection, for which YOLOX is chosen to conduct further research in this paper.
YOLOX uses ordinary convolution, which is imperfect for verifying high-dimensional
semantic information, for feature extraction. The problem of partial loss of object infor-
mation in deep features can lead to lower detection accuracy. The improved feature map
scaling and design feature fusion achieved good detection results in the multi-scale ob-
ject detection task [27]. Therefore, this paper explored further research using YOLOX to
improve multi-scale object detection accuracy. To achieve this, the paper proposed a multi-
feature fusion and attention network (MFANet) based on YOLOX that effectively detected
multi-scale objects while considering the detection accuracy of small objects. The study
showed that multi-scale high-level feature extraction and multi-layer pyramidal feature
fusion are effective for more accurate target detection. The proposed MFANet incorporated
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RepVGG, detail channels, Res-RFBs, and CA modules to help the model extract remote
sensing objects more accurately. The paper presented ablation and comparison experiments
on two publicly available datasets, NWPU VHR-10 and DIOR. It showed that MFANet
achieves 96.63% and 87.88%, respectively, and could handle multi-scale object detection
tasks on remote sensing images better than existing methods.

This paper proposed a multi-feature fusion and attention network (MFANet) based on
YOLOX to enhance multi-scale object detection accuracy in remote sensing images. The
main contributions of this paper included:

(1) To enhance feature extraction of multi-scale objects in remote sensing images, MFANet
introduced a structurally reparameterized VGG-like technique (RepVGG) to repa-
rameterize a new backbone and improve multi-object detection accuracy without
increasing computation time.

(2) Detailed enhancement channels were introduced in path aggregation feature pyramid
networks (PAFPN) to express a great deal of object information. Combining with
residual connections, this paper formed a new multi-branch convolutional module
(Res-RFBs) to improve the recognition rate of multi-scale objects in remote sensing
images. The coordinate attention (CA) mechanism was introduced to reduce the
interference of background information and enhance the perception of remote sensing
objects by the neural network.

(3) To address the shortcomings of the baseline in the object localization and identification
problem, generalized intersection over union (GIoU) was used to optimize the loss,
speed up the convergence of the model, and reduce the target miss rate.

2. Methods

2.1. The Structure of the Network

In 2021, Megvii Inc. (Beijing, China) proposed a new object detection network, YOLOX,
which exceeds the performance of YOLOv3 and has certain advantages compared with
YOLOv5 [19]. The algorithm does not use anchor points and performs dynamic sample
matching for objects of different sizes, integrating the previous data enhancement and
decoupled head. Its detection speed and effectiveness are improved. First, an image of size
640 × 640 is used as the input layer, and data enhancement is performed using Mosaic and
Mixup. The pre-processed image is then fed into the CSPDarknet53 backbone for feature
extraction, resulting in three feature layers with different resolutions derived from Dark3,
Dark4, and Dark5. These layers are then fused using the path aggregation feature pyramid
network (PAFPN) to enhance the information content. The fused feature layers, P3, P4, and
P5, are obtained through upsampling, downsampling, and enhanced feature extraction of
the three-resolution images and passed on to the three decoupled heads for accurate object
prediction in images.

YOLOX excels at object detection. Among the YOLOX-derived models, YOLOX-s
has the advantages of a low number of parameters and easy deployment. Therefore, this
study chose to improve on YOLOX-s. The improved structure of the network is shown in
Figure 1.

2.2. RepVGG Block

RepVGG is a simple and superior convolutional network. It decouples the model’s
training and inference time structures using structural reparameterization [28], fully bal-
ancing speed and accuracy, and is suitable for real-time detection in remote sensing images.
The model’s overall structure is a stack of more than 3 × 3 convolutional layers, divided
into 5 parts. The first layer of each part is a downsample with stride = 2. Each convolutional
layer uses Relu [29] as the activation function. During training, the RepVGG block is mainly
obtained by adding the 3 deviation vectors to obtain the final deviation, extending the
fused 1 × 1 conv and identity with complementary zeros to 3 × 3 conv, and then adding
the 3 3 × 3 conv to obtain the final 3 × 3 convolutional layer, as shown in Figure 2. Based
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on this study, this paper used the RepVGG block to optimize the backbone of the baseline
to improve the model for multi-feature extraction of the object.

 

Figure 1. Improved network structure.

 

Figure 2. RepVGG block visualization.

In addition, Silu [30] is used instead of the Relu activation function. The Relu activation
function is set to zero when the negative gradient is negative, causing some neurons to
“necrotize” and affecting network convergence. Silu has the characteristics of no upper
bound and lower bound, smooth, and non-monotonic, avoiding negative gradient zeroing
to reduce neuronal “necrosis”, and better gradient descent than Relu. A comparative plot
of the Relu and Silu activation functions is shown in Figure 3. It can be seen that when
the function is in a negative gradient, the Relu is set to zero, causing the neural network
to fail to learn useful knowledge and neuron “necrosis”. In contrast, the Silu function
avoids zeroing the negative gradient, retains part of the buffer to reduce neuron “necrosis”,
and has a better overall gradient descent than Relu. Therefore, this section introduced
an improved RepVGG block instead of the partial convolutional layer to optimize the
backbone and improve the model’s extraction of multi-scale target features.
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Figure 3. Relu and Silu activation function graphs.

2.3. Improved Feature Detection

The PAFPN pools the feature maps into 80 × 80, 40 × 40, and 20 × 20 resolutions,
which are used to detect objects of different sizes. Low resolution detects large objects,
medium resolution detects medium-sized objects, and high resolution detects small objects.
The resolution of YOLOX for small object detection changes from 640 × 640 to 80 × 80 after
convolution, and the lower resolution does not easily capture small object information,
resulting in a weaker ability to detect small objects. To avoid the loss of important details
in the transmission process of PAFPN, this paper introduced a smaller feature detection
channel, 160 × 160, based on the traditional feature detection channel, which will directly
input more small object feature information into the feature detection and fuse more
network features, which was noted as the Q channel in this paper.

Meanwhile, as the convolution continues, the perceptual field gradually becomes
smaller and the detection of multi-scale objects declines progressively. In PAFPN, a new
multi-branch convolution module named Res-RFBs was proposed in combination with
residual connections, which enhanced the screening of valuable features in this part of the
network, as shown in Figure 4.

 

Figure 4. Improved feature detection structure.

ResNet is a deep neural network architecture that effectively solves the gradient
disappearance problem in deep neural networks by adding cross-layer connections [31].
ResNet Block is designed to pass the input through two convolutional layers to obtain an
output and then add this output to the input, which can further learn deeper features. For
this reason, the residual connection was introduced in this paper to improve the network.
The improved residual connection was divided into 2 paths: 1 goes through a 3 × 3 and
3 × 3 convolution, and the other is directly shorted with a 3 × 3 convolution. The two
are added together and then output. Introducing residual connections into successive
convolutions could enhance feature reuse, on the one hand, and avoid the problem of

145



Remote Sens. 2023, 15, 2096

deep network degradation on the other. The receptive field block (RFB) [32] imitates the
receptive field of human vision and enhances the feature expression ability of the network.
Adding dilated convolution based on inception increases the receptive field and fuses more
information from the image. The RFB structure is mainly composed of three branches,
which are interconnected to achieve the fusion of different features. Based on the original
RFB, each branch added a layer of 3 × 3 convolutions and replaced the 5 × 5 convolution
of the original third branch with a 3 × 3 convolution. The expansion coefficients of rate
= 1, rate = 2, and rate = 3 were used to increase the receptive field of multi-scale objects
and further improve the detection accuracy of the model. The improved RFB module is
shown in Figure 4. This multi-branch convolution module sampled the input features into
four mutually independent channels. Within the shortcut channel, the feature map was
not additionally processed. In the previous three channels, the convolutions of different
numbers and expansion rates were superimposed according to the design to express the
feature information of various receptive fields.

2.4. Coordinate Attention Mechanism

The coordinate attention (CA) mechanism is an attention mechanism that enhances
the perceptual ability of neural networks by embedding spatial coordinate information
into them to better capture the correlation between different locations. CA is divided
into two steps: embedding coordinate information and generating coordinate attention,
which encodes channel relationships and long-term dependencies using precise location
information to fully capture the region of interest and the relationship between channels [33].
The mechanism aggregates the input feature maps along the X and Y directions through two
global average pooling operations and then encodes the information through dimension
transformation. Finally, the spatial information and channel features are weighted and
fused, considering the channel and location information. Therefore, CA can better focus on
the object of interest, as shown in Figure 5.

 
Figure 5. CA module.

In the actual recognition process of remote sensing images, due to the complexity
of the image scene, the existing network often cannot eliminate redundant interference
information, and the object to be detected is small and densely distributed. In the detection
process, the convolutional network needs to process the cells divided by each image.
Additionally, many calculations cannot perceive the object well, resulting in missed and
false detection problems. Therefore, based on the improved feature extraction network
in the previous section, this paper introduced the CA module before the decoupled head.
The features could cover more parts of the object to be identified, reduce the interference
of background information, make the network focus on essential details of interest, and
enhance the expressiveness to improve detection accuracy.
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2.5. Loss Function Improvement

The loss function of YOLOX consists of IoU loss (LIoU), category loss (LCls), and
confidence loss (LObj), which can be expressed as LLoss = LIoU + LCls + LObj.

Among them, IoU refers to the intersection and union ratio, a commonly used indicator
in object detection, reflecting the detection effect of the predicted and real detection boxes.
The calculation formula is shown in (1):

IoU =
A∩B
A∪B

(1)

In Formula (1), A represents the prediction box and B represents the real box. IoU is the
concept of ratio. In the calculation process using the IoU function, if the prediction box and
the real box do not intersect, the degree of coincidence between the two cannot be reflected.
In the process of prediction region regression, when the IoU value between the prediction
box after the regression and the real box is zero, the problem of target miss rate is caused by
the failure of the prediction region to return. In contrast, generalized intersection over union
(GIoU) [34] satisfies the basic requirements of the loss function by being concerned not only
with the overlapping regions but also with other non-overlapping regions, which can better
reflect the coincidence degree between the two objects and accelerate the convergence rate
of the model. GIoU first finds the minimum shape Ac to surround the prediction box and
the real box. In order to compare two specific geometric shape types, Ac can come from
the same type. Finally, the ratio between the area occupied by Ac is calculated and then
divided by the total area occupied by Ac, as shown in Formula (2). Therefore, this paper
replaced the IoU loss function with the GIoU loss function.

GIoU = IoU − |Ac −U|
|Ac|

(2)

In Equation (2), Ac represents the minimum closure area of the prediction box and the
real box, and U represents A∪B. For the GIoU loss function, LGIoU can be expressed as:

LGIoU = 1− GIoU = 1− IoU +
|Ac −U|
|Ac|

(3)

The category loss contains the category information of the remote sensing images,
and the confidence loss includes the background information of the image. The category
loss and confidence loss are calculated using the bcewithlog_loss function to speed up the
model convergence. The loss function is finally shown as (4):

LLoss = LGIoU + LCls + LObj (4)

3. Experiment

3.1. Experimental Environment

The experimental operating system was Windows 10, the GPU was NVIDIA GeForce
RTX 3060, and the memory was 12 G. The deep learning framework was Pytorch 1.7.1 and
Cuda 11.6. The training had two stages: the freezing stage and the thawing stage. The SGD
optimizer was used to adjust the learning rate using the cosine annealing strategy while
using pre-training weights.

3.2. Data Set

This experiment uses the NWPU VHR-10 [35] and DIOR [36] datasets.
The NWPU VHR-10 is a high-resolution remote sensing image dataset with spatial

resolution ranging from 0.5 m to 2 m. It contains 10 categories of objects and 800 images,
with a total number of 3651 target instances. The short names, C1–C10, for our experiment
categories were: Tennis court, Harbor, Ground track field, Basketball court, Airplane,
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Storage tank, Baseball field, Ship, Vehicle, and Bridge. Figure 6 shows the remote sensing
images and objects of the NWPU VHR-10 dataset, where the boxed positions are the objects.

 

Figure 6. Remote sensing images and objects of NWPU VHR-10 dataset.

DIOR is a large-scale benchmark data set for object detection in optical remote sensing
images. It is divided into 20 object classes, including 23,463 remote sensing images and
190,288 instances. It has high similarity and diversity in different imaging conditions,
weather, seasons, and image quality. The short names C1–C20 for categories in our experi-
ment were defined as Airplane, Airport, Baseball field, Basketball court, Bridge, Chimney,
Dam, Expressway service area, Expressway toll station, Golf field, Ground track field,
Harbor, Overpass, Ship, Stadium, Storage tank, Tennis court, Train station, Vehicle, and
Windmill. Figure 7 shows the remote sensing images and objects of the DIOR dataset,
where the boxed positions are the objects.

3.3. Evaluation Metrics

To accurately evaluate the effect of the proposed method on remote sensing image
detection, this study selected the mean average precision (mAP), precision rate (P), recall
rate (R), and frame per second (FPS) as evaluation indicators. The calculation formula is
shown in Formulas (5)–(7). When the accuracy and recall rates are compared separately,
ambiguity will occur. Therefore, the experiment used the mAP to evaluate the model’s
effectiveness by comprehensively considering the precision and recall rates. FPS refers
to the number of frames detected per second to measure the real-time performance of
the model.

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

mAP =
∑ k

i=1 APi

k
(7)
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In Formulas (5) and (6), TP represents the number of correct predictions, FP represents
the number of false predictions, and FN represents the number of missing predictions; in
Formula (7), k is the category, and the calculation formula of average precision (AP) can be
expressed as:

AP =

1∫
0

p(r)dr (8)

 

Figure 7. Remote sensing images and objects of DIOR dataset.

3.4. Ablation Experiment

In the improvement strategy for the backbone, if it is a direct addition of RepVGG
modules, it may not necessarily have the desired effect. To explore the effectiveness of
the RepVGG addition position, this paper added the RepVGG block to the backbone to
determine the RepVGG block addition position. The different addition positions are shown
in Figure 8.

Table 1 shows that the best mAP of remote sensing image detection was achieved using
the RepVGG block instead of the fourth convolutional layer in the backbone. Compared
with the experiments conducted by Relu, the Silu function was more stimulating to the
feature extraction performance of the model and avoided some neuron necrosis. The
different results with different addition positions are because the number of composite
convolutional layers and the amount of information reorganization are different, thus
bringing different gains to the model. After an experimental demonstration, the RepVGG
block was used instead of the fourth convolutional layer in the backbone.
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Figure 8. The RepVGG block of backbone is added at different locations.

Table 1. Experimental results of RepVGG at different locations. P stands for precision rate, R stands
for recall rate, FPS stands for frame per second, and mAP stands for mean average precision.

Location P/(%) R/(%) mAP/(%) FPS/(f/s)

RepVGG_1(Relu) 91.55 86.40 90.14 45.64

RepVGG_1 91.94 87.20 92.19 46.89

RepVGG_2 92.91 88.07 93.07 46.37

RepVGG_3 91.03 90.58 93.34 48.39

RepVGG_4 91.17 91.93 92.99 47.45

RepVGG_5 90.67 89.78 93.53 48.50

To explore the effectiveness of the improved module, ablation experiments were
conducted on the YOLOX-s-based NWPU VHR-10 dataset for the RepVGG block, Q, multi-
branch convolution, CA attention, and GIoU loss function, respectively. The experimental
projects were carried out by sequentially adding each proposed module; the results are
shown in Table 2.

Table 2. Ablation experiment of the improved module. P stands for precision rate, R stands for recall
rate, FPS stands for frame per second, and mAP stands for mean average precision.

RepVGG Q+ Res-RFBs CA GIoU P/(%) R/(%) mAP/(%) FPS/(f/s)

- - - - 89.68 90.37 92.23 48.02
√

- - - 90.67 89.78 93.53 48.50

-
√

- - 93.45 91.66 94.98 33.61

- -
√

- 90.51 93.28 94.14 41.26

- - -
√

93.12 90.65 93.56 35.61
√ √ √ √

94.09 94.94 96.63 30.09
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As shown in Table 2, the mAP of using the RepVGG block was increased by 1.3%,
and the FPS was increased by 1% compared with the base network, which indicated
that the system performance was further improved. As seen in Table 1, the experiments
obtained better results using the Silu activation function than Relu. The RepVGG block
made extensive use of 3 × 3 convolution. It used a multi-branch network for training by
structural reparameterization and fused the multi-branch into a single branch for prediction,
facilitating network acceleration. Figure 9a showed the original input image, and a new
layer of 160 × 160 input channels was introduced in the PAFPN, which could express more
small object information compared with the original network, and more object information
was obtained compared with that shown in Figure 9b,c. After adding Res-RFBs on the basis
of introducing Q (160 × 160) input channels, the receptive field could be further expanded
to enhance the detailed expression of the model effectively. As seen in Figure 9, the object
feature information in the image was not effectively detected in the baseline feature heat
map, resulting in a scattered region of interest for the network and object features that could
not be extracted effectively. In the multi-scale feature heat map, it could be clearly observed
that the features of different objects were enhanced after adding multi-scale convolution
especially for ships and dense storage tanks. Information was enhanced in the image of
the object, thus proving the effectiveness of multi-branch convolution for improving the
features of the object. The results are shown in Figure 9d,e, which effectively enhanced the
detection ability of multi-scale objects with dense distribution, and mAP was increased by
2.75%. The reason for the increase of 1.91% using the CA attention mechanism over the
baseline was that the CA module considers both channel and direction-related location
information to further strengthen the neural network’s ability to perceive remote sensing
objects and focus more on the object. The improved loss function increased the mAP by
1.33% and improved the model’s performance. The reason was that the increased penalty
measure of the GIoU function facilitates the network in making accurate judgments on
remote sensing objects and compensates for the non-overlapping regions of the detection
objects in the IoU loss function, which effectively reduces the target miss rate. After adding
the RepVGG block, Q+ Res-RFBS, CA, and GIoU loss function, the detection accuracy
reached 95.50%, which was 3.27% better than the baseline. The final detection accuracy
of 96.63% was obtained after multiple training iterations. Overall, the improved modules
enhanced detection accuracy, and the use of the above improvement strategies eventually
brought a gain of 4.4 percentage points to the model, which proved the effectiveness of the
improvement strategies.

3.5. Comparison with Other Algorithms

To further verify the effectiveness and rationality of the improved YOLOX for object
detection in remote sensing images, this experiment used YOLOX, MFANet, and main-
stream algorithms to train and test the detection accuracy of each algorithm in the NWPU
VHR-10 and DIOR datasets. The experimental results are shown in Tables 3 and 4. In the
NWPU VHR-10 dataset in Table 3, the methods of Faster RCNN, YOLOv4-tiny, YOLOv5,
and YOLOX-s, Laban’s [20], SCRDet [37], Fan’s [38], Zhang’s [39], and Xue’s [40] networks
were selected for comparison. The results showed that, compared with other models, the
MFANet proposed in this paper had the best mAP, 96.63%, which was 17.15%, 7.49%, 4.88%,
3.23%, 1.04%, and 0.93% higher than Faster RCNN, YOLOv5, SCRDet [37], Fan’s [38],
Zhang’s [39], and Xue’s [40], respectively, and had better detection performance.
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Figure 9. Visualization results of improved feature detection: (a) input image; (b) visualization results
for YOLOX; (c) visualization results of adding 160 × 160 channels for YOLOX; (d) visualization
results of adding Res-RFBs for YOLOX; (e) visualization results of adding 160 × 160 channels and
Res-RFBs for YOLOX.

Table 3. Experimental results in the NWPU VHR-10 dataset. FPS stands for frame per second and
mAP stands for mean average precision.

Method mAP/(%) FPS/(f/s)

Faster RCNN 79.48 10.59

Laban’s [20] 78.00 -

YOLOv4-tiny 84.14 81.36

YOLOv5 89.14 54.91

SCRDet [37] 91.75 -

YOLOX-s 92.23 48.02

Fan’s [38] 93.40 -

Zhang’s [39] 95.59 30.07

Xue’s [40] 95.70 -

MFANet 96.63 30.09
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Table 4. Experimental results in the DIOR dataset. FPS stands for frame per second and mAP stands
for mean average precision.

Method mAP/(%) FPS/(f/s)

Faster RCNN 57.35 10.42

AOPG [41] 64.41 -

LO-Det [42] 65.85 60.03

Li’s [43] 66.71 -

YOLOv4-tiny 66.77 56.68

ASSD [44] 71.80 21.00

Yao’s [45] 75.80 -

SCRDet++ [46] 77.80 -

YOLOv5 80.96 51.41

SPB-YOLO [23] 81.10 -

YOLOX-s 82.23 47.99

Zhou’s [47] 84.30 -

YOLOX [24] 85.70 -

Ye’s [48] 86.55 -

MFANet 87.88 29.45

It can be seen from Figure 10 that in the experiment of the NWPU VHR-10 dataset,
when there was a complex scene to be detected, the object distribution was dense, or the
object had a low resolution in the image, the effect of YOLOX-s detection was not good,
and it was prone to problems such as missed detection and false detection. In Figure 10b,
due to the interference of more background information in the image, the baseline network
missed and made false detections of small objects, such as ships and vehicles. Compared
with Figure 10b,c, the improved network improves the detection efficiency of objects, and
the problems in Figure 10b are basically solved. The detection effect of this algorithm is
significantly better than that of YOLOX. To compare the model detection effects in one step,
this paper selected the AP and mAP results of YOLOv4-tiny, YOLOv5, YOLOX-s, Fan’s,
Zhang’s, Xue’s, and MFANet, and the results are shown in Table 5. For the object bridge,
although the detection accuracy of MFANet was a little bit lower than the methods of Xue’s
and Zhang’s results, it was higher than that of YOLOv4-tiny, YOLOv5, and YOLOX-s. It
can also be seen that MFANet shows a significant improvement in detecting ships and
vehicles compared to YOLOv4-tiny, YOLOv5, YOLOX-s, Fan’s, Zhang’s, and Xue’s. It was
1% higher than Xue’s when testing ships and 4% higher than Fan’s when testing vehicles.
In addition, the MFANet achieved better detection results on objects such as the Tennis
court, Harbor, and Basketball court. When there is serious background interference in the
target, such as the similarity in appearance between the refuse collection point and the
parked vehicles alongside the road, the base detection network will miss the detection. In
contrast, the improved network effectively improved the inspection accuracy of vehicles
and avoided object misdetection.
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Figure 10. Detection results for the NWPU VHR-10 dataset: (a) input image; (b) for YOLOX-s; (c) for
MFANet.

Table 5. AP and mAP of the different algorithms acting on multiple object categroies from NWPU
VHR-10 data. AP stands for average precision and mAP stands for mean average precision.

Method C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 mAP

YOLOv4-tiny 0.91 0.98 0.99 0.66 1.00 0.71 0.99 0.76 0.82 0.59 0.84
YOLOv5 1.00 1.00 0.98 0.83 1.00 0.99 0.98 0.91 0.90 0.33 0.89
YOLOX-s 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.94 0.89 0.40 0.92

Fan’s 1.00 1.00 0.91 0.91 1.00 0.90 0.94 0.91 0.90 0.91 0.93
Zhang’s 1.00 1.00 1.00 1.00 1.00 0.90 1.00 0.90 0.87 0.90 0.96

Xue’s 0.90 0.96 1.00 1.00 1.00 0.88 1.00 0.96 0.89 0.99 0.96
MFANet 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.97 0.94 0.77 0.96

The DIOR dataset has a significant difference in spatial resolution and cross-object
scale, and its high inter-class similarity and class diversity increase the difficulty of detection.
We can see that the YOLOv4-tiny part of the detection object was higher than YOLOX and
MFANet, but MFANet still led the overall multi-object detection effect. YOLOX-s missed
and mis-checked at the background of complex scenes that contained diverse categories of
feature elements (Figure 11c). Compared with Figure 11d, it can be seen that the detection
effect of the improved algorithm was significantly improved, and multi-scale objects were
effectively detected. The improved model has strong robustness.

To compare the model detection effects in one step, this paper selected the AP and
mAP results of ASSD, Yao’s, SCRDet++, YOLOv5, YOLOX-s, Zhou’s, and MFANet, which
can be seen in Table 6. For the object Golf field, although the MFANet detection accuracy is
not as good as Zhou’s, it was higher than YOLOX-s, YOLOv5, SCRDet++, Yao’s, and ASSD,
by 3%, 15%, 1%, 6%, and 5%, respectively. It can be seen that in the detection of bridges
and vehicles, compared with YOLOX-s, the MFANet had a significant improvement. In
addition, we found that when the road and harbor samples were similar, the baseline
network missed detection due to insufficient resolution and failed to identify the port object
effectively. The optimized network with enhanced multi-scale feature extraction could
effectively detect most objects and complete the object detection task.
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Figure 11. Detection results for the DIOR dataset: (a) input image; (b) for YOLOv4-tiny; (c) for
YOLOX-s; (d) for MFANet.

Table 6. AP and mAP of the different algorithms acting on multiple object categroies from DIOR data.
AP stands for average precision and mAP stands for mean average precision.

Method C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

ASSD 0.86 0.82 0.76 0.90 0.41 0.78 0.65 0.67 0.62 0.81
Yao’s 0.91 0.75 0.93 0.83 0.47 0.92 0.63 0.68 0.61 0.80

SCRDet++ 0.81 0.88 0.80 0.90 0.58 0.81 0.75 0.90 0.83 0.85
YOLOv5 0.96 0.86 0.97 0.86 0.48 0.86 0.75 0.86 0.77 0.71
YOLOX-s 0.96 0.88 0.96 0.83 0.48 0.78 0.78 0.94 0.79 0.83

Zhou’s 0.98 0.90 0.95 0.93 0.62 0.91 0.68 0.96 0.86 0.87
MFANet 0.97 0.93 0.97 0.86 0.59 0.88 0.87 0.97 0.90 0.86

mAP C11 C12 C13 C14 C15 C16 C17 C18 C19 C20
0.71 0.79 0.62 0.58 0.85 0.77 0.65 0.88 0.62 0.45 0.76
0.76 0.83 0.57 0.66 0.80 0.93 0.81 0.89 0.63 0.73 0.78
0.78 0.84 0.63 0.67 0.73 0.79 0.70 0.90 0.71 0.59 0.90
0.81 0.92 0.67 0.71 0.95 0.89 0.86 0.96 0.63 0.60 0.93
0.82 0.90 0.69 0.71 0.96 0.96 0.87 0.95 0.65 0.62 0.92
0.84 0.91 0.63 0.73 0.96 0.92 0.90 0.96 0.57 0.71 0.94
0.87 0.93 0.75 0.79 0.97 0.97 0.92 0.97 0.79 0.73 0.94

4. Discussion

The ablation experimental results show that the improved YOLOX in this paper can
improve the model’s multi-scale object recognition rate, and the mAP was improved by 4.4%
compared to the YOLOX. Figure 9 shows that introducing a new layer of 160 × 160 input
channels in the PAFPN can express more information about small objects than the original
network. The addition of Res-RFBs was based on the introduction of detail-enhanced
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channels, which enhanced feature multiplexing and expanded the perceptual field, thus
improving the detection accuracy of multi-scale objects by 2.75% compared to the mAP
of the baseline. The results in Tables 1 and 2 show that the RepVGG block uses structural
reparameterization to improve the extraction of multi-scale object features, and mAP was
increased by 1.3%. The results in Table 2 and Figure 10 show that CA enhances the ability of
the neural network to perceive remote sensing objects, with a 1.91% improvement in mAP.
The results in Table 2 and Figures 10 and 11 show that the GIoU loss function reduces the
target miss rate. The comparison experimental results show that the proposed method had
a higher accuracy rate when compared with other mainstream object detection algorithms.
On the DIOR dataset, mainstream algorithms such as Faster RCNN [12], YOLOv5, and
YOLOX are used in this paper, while models such as AOPG [41], Li’s [43], Yao’s [45],
SCRDet++ [46], Zhou’s [47], and Ye’s [48] are selected for comparison. The results in Table 4
show that the improved YOLOX model proposed in this paper had a better mAP than other
models (30.53%, 6.92%, 6.78%, 3.58%, 2.18%, and 1.33% higher than Faster RCNN, YOLOv5,
SPB-YOLO [23], Zhou’s [47], YOLOX [24], and Ye’s [48]), achieving advanced detection and
classification performance. The NWPU VHR-10 dataset shows that the MFANet obtained
a lower detection speed than YOLOv4-tiny, YOLOv5, etc., but a higher detection speed
than Faster RCNN, Zhang’s, etc. In addition, on the DIOR dataset, compared with LO-
Det [42] and YOLOv5, although the detection speed was lower, the detection accuracy of
the improved network in this paper was much higher than theirs: 22.03% and 6.92% higher
than LO-Det and YOLOv5, respectively. Compared with ASSD [44], MFANet is leading
in detection accuracy and speed. Comparing with Table 6, we find that for large objects,
such as Airport, Expressway service areas, etc., with improved algorithm detection, the AP
improved by 5% and 3%, respectively; for medium-sized objects, such as Harbor, Chimney,
etc., with improved algorithm detection, the AP improved by 6% and 10%, respectively;
for small objects, such as Bridge and Storage tank, the AP was enhanced by 11% and 5%,
respectively, after improved algorithm detection. Overall, the experimental results verify
the effectiveness of the improved network in detecting multi-scale objects.

At the same time, we find that in the area of small object distribution shown in
Figure 11, some images of the small objects are blurred and carry too little feature informa-
tion, resulting in the detector failing to effectively detect them, which affects the detection
results. In Table 6, we can see that the AP for vehicles was lower than boats and airplanes,
which is probably because the less contextually available feature information of small ob-
jects. In addition, the FPS of the improved algorithm proposed in this paper reached 30.09
and 29.45 on the NWPU VHR-10 and DIOR datasets, respectively, which were much higher
than Faster RCNN. However, the FPS decreased compared to the original network. The rea-
son for this is that the improved PAFPN makes the network structure complex, introducing
many parameters and increasing the computational time consumption, thus slowing down
the detector. A linear discriminant can cluster objects [49], and eliminating redundancy
constraints can improve detection speed [50], providing a method for object detection in
remote sensing images. Therefore, to improve some shortcomings of the algorithm in this
paper, the following aspects can be considered. Firstly, using discriminant analysis and
migration learning to improve the generalization of the network. Secondly, reducing the
number of redundant parameters in the model while maintaining high efficiency and using
deeper contextual feature information to achieve high-quality small object detection.

5. Conclusions

Aiming at the complex problem of multi-scale detection of remote sensing images,
this research proposed the MFANet based on YOLOX. The MFANet used RepVGG to
build a new backbone, and the detection accuracy of the backbone after reparameterization
increased from 92.23% to 93.53%, which proved the effectiveness of its prediction; at the
same time, the Silu activation function was selected and the detection accuracy increased by
2.05%. The choice of detail channel and multi-branch convolution should be combined with
different datasets to determine the best object extraction performance. In this paper, the Q

156



Remote Sens. 2023, 15, 2096

channel and three multi-branch convolutions were selected in PAFPN to achieve the best
detection effect. In addition, this paper proved the role of the CA module in improving the
image detection network by adding the CA module to the improved network, effectively
reducing background interference and increasing the detection accuracy by 1.91%. Finally,
the GIoU function was used to optimize the loss and the detection accuracy was increased by
1.33%, effectively avoiding missed object detection. The experiment was carried out on the
NWPU VHR-10 and DIOR datasets. Compared with current object detection algorithms,
the MFANet achieved higher detection accuracy. MFANet demonstrated a high mean
average precision of 98.78% for 9 classes of objects in the NWPU VHR-10 10-class detection
dataset and 94.91% for 11 classes of objects in the DIOR 20-class detection dataset. The
overall performance of mAP was 96.63% and 87.88% for the NWPU VHR-10 and DIOR
datasets, respectively. In summary, the combination of multi-branch feature fusion and
an attention model is a superior approach to improving the accuracy of multi-scale object
detection in remote sensing images. In the future, the feature extraction mechanism in
MFANet can be further deepened and optimized, especially when many object categories
are contained in remote sensing images.
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Abstract: High-resolution remote-sensing imagery has proven useful for building extraction. Un-
fortunately, due to the high acquisition costs and infrequent availability of high-resolution imagery,
low-resolution images are more practical for large-scale mapping or change tracking of buildings.
However, extracting buildings from low-resolution images is a challenging task. Compared with
high-resolution images, low-resolution images pose two critical challenges in terms of building
segmentation: the effects of fuzzy boundary details on buildings and the lack of local textures. In
this study, we propose a sparse geometric feature attention network (SGFANet) based on multi-level
feature fusion to address the aforementioned issues. From the perspective of the fuzzy effect, SG-
FANet enhances the representative boundary features by calculating the point-wise affinity of the
selected feature points in a top-down manner. From the perspective of lacking local textures, we
convert the top-down propagation from local to non-local by introducing the grounding transformer
harvesting the global attention of the input image. SGFANet outperforms competing baselines on
remote-sensing images collected worldwide and multiple sensors at 4 and 10 m resolution, thereby,
improving the IoU by at least 0.66%. Notably, our method is robust and generalizable, which makes it
useful for extending the accessibility and scalability of building dynamic tracking across developing
areas (e.g., the Xiong’an New Area in China) by using low-resolution images.

Keywords: artificial intelligence; deep learning; remote sensing; semantic segmentation; building extraction

1. Introduction

As building footprints are commonly applied in urban environments [1] for urban
planning [2] and in rapid responses to natural disasters [3], the methods for effectively
extracting buildings have become a popular research topic. Satellite remote sensing can
observe a large area over a long time series; thus, current research efforts, particularly
large-scale building mapping, primarily focus on using remote-sensing images as the
data source [4]. The interest in the development of new methodologies for building
segmentation is primarily motivated by high-resolution earth-observation technologies and
several public high-resolution (HR) benchmark datasets, such as AIRS (0.075 m/pixel) [5],
INRIA (0.3 m/pixel) [6] and the WHU Building Dataset (0.3 m/pixel) [7].

Thus, many new approaches in this field of research now focus on obtaining fine
segmentation results from HR images (e.g., [4,8]). Unfortunately, HR images are captured
infrequently at the same position on the Earth’s surface (once a year or less), particularly in
developing regions where such images are arguably more needed. In addition, HR images
were less commonly captured historically, making it difficult to produce distribution maps
of buildings in a specific event or disaster scenario.

Even if available, however, it is prohibitively expensive to purchase a large amount
of HR data (e.g., $23/km2 in Digital Globe). Data with low-resolution (LR) (“High” and
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“low” resolutions are relative definitions and vary from task to task. In this study, to avoid
narrative ambiguity with other studies, and considering previous studies and discussions,
we define <4 m as HR and >4 m as LR in this paper. Further elaboration can be found in
Section 4.1) are freely available and have shorter revisit periods (subweek), such as the
images provided by Gaofen-2 satellite (4 m/pixel) and Sentinel-2 satellite (10 m/pixel).
However, the methods designed for HR images may show severe degradation on LR
images, which limits the scalability of these methods. These observations motivated us
to develop a new method that is focused on building segmentation from remote-sensing
images with a lower resolution.

Compared with HR remote-sensing images, building segmentation from LR images
is more challenging. There are at least three reasons, one of which is a common issue in
building segmentation:

1. There exists a large-scale variation of buildings in LR images (Figure 1A). This issue
poses a multi-scale problem and makes it more difficult to locate and segment. This is
a common issue in building segmentation.

2. The boundary details of buildings (i.e., edges and corners on buildings) are fuzzier
in LR images. As shown in Figure 1B, the boundaries of buildings are fuzzier and
even blend into the background, which causes difficulties for models to delineate
boundaries accurately.

3. LR remote-sensing images always lack local textures due to low contrast in low reso-
lution (Figure 1C). As a result, it is difficult to capture sufficient context information
from a small patch of the image (e.g., the sliding window with a fixed size in a
convolutional layer).

Figure 1. The main challenges of building segmentation in the LR remote-sensing imagery. (A) multi-
scale variants. (B) fuzzy boundary details. (C) lack of local textures. The image was captured by the
Gaofen-2 satellite with a resolution of 4 m/pixel. Red circles in subfigure (B) indicate the notable
parts of the fuzzy boundary.

In the field of remote sensing, the task of building segmentation is widely recognized
as the semantic segmentation task. Unlike other objects of interest, such as bodies of
water or agricultural land, buildings exhibit two unique characteristics, namely diverse
scales (Figure 1A) and regularized morphology (polygonal shapes). In addressing these
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unique issues, numerous studies have focused on designing specific modules to enhance
the prediction of building boundaries at multi-scale levels.

For instance, Zhu et al. [9] and Lee et al. [10] embeded boundary information into
multi-scale feature fusion. Additionally, some works detect building fragments and then
utilize specific rules to compose building structure fragments [11–14]. However, due
to the inherent fuzziness in both low-level features and boundary pixels, the resulting
segmentation may not preserve the building with high fidelity, which can significantly
limit its applicability in low-resolution remote-sensing images.

To obtain satisfactory results with low-resolution (LR) images, extensive research
has been conducted in the adoption of a super resolution-then-semantic segmentation
(SR-then-SS) pipeline. This pipeline involves first using super resolution (SR) techniques to
restore high-resolution (HR) details from LR images, followed by using current semantic
segmentation (SS) methods to extract buildings from the restored images.

To our knowledge, previous studies primarily focused on the development of effective
SR modules and training strategies. For instance, recent studies by Zhang et al. [15],
He et al. [16] and Kang et al. [17] have proposed innovative and effective SR methods.
Additionally, investigations by Xu et al. [18] and Zhang et al. [19] have focused on the
impact of the SR output when using HR images or labels as reference. However, few
studies have been dedicated to the design of the SS component within the contemporary
SR-then-SS framework.

In response to the limitations of current semantic segmentation (SS) methods in low-
resolution (LR) imagery, this study is centered on the development of a model that can
accurately extract buildings from LR images with a focus on two key aspects:

1. The proposed model aims to achieve higher accuracy than the existing methods for
building extraction from LR images.

2. The proposed model is intended to outperform other SS methods when utilized as
the SS module within the super resolution then semantic segmentation (SR-then-SS)
framework.

To achieve these goals, we designed a novel deep-learning method for automatically
extracting buildings from LR remote-sensing imagery. The overall architecture is built
upon multi-level feature fusion to bridge the gap between multi-scale features. For fuzzy
boundaries in LR buildings, densely propagating the boundary geometry contexts (e.g.,
edges and corners) in the network likely mixes the fuzzy context into predictions on LR
images (see the demonstrations in Section 2.3).

Therefore, the proposed method uses a sparse propagation method, in which geomet-
ric contexts are propagated by a dedicated sampler (i.e., the sparse boundary fragment
sampler module) and gated module (i.e., the gated fusion module). To compensate for
the local texture, we enhanced the global attention of the feature map by introducing the
grounding transformer (GT) [20]. Due to the sparse ways to manage geometry feature
propagation, the proposed method is referred to as the “sparse geometry feature attention
network” (SGFANet).

SGFANet addresses three issues to improve the accuracy of building segmentation
from low-resolution images, which are tackled through the following contributions.

1. A sparse geometry feature attention network (SGFANet) is proposed for extract-
ing buildings from LR remote-sensing imagery accurately, where feature pyramid
networks are adopted to solve multi-scale problems.

2. To circumvent the effect of fuzzy boundary details on buildings in LR images, we
propose the sparse boundary fragment sampler module (SBSM) and the gated fusion
module (GFM) for point-wise affinity learning. The former makes the model more
focused on the salient boundary fragment, and the latter is used to suppress the
inferior multi-scale contexts.
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3. To mitigate the lack of local texture in LR images, we convert the top-down propaga-
tion from local to non-local by introducing the grounding transformer (GT). The GT
leverages the global attention of images to compensate for the local texture.

The remainder of this paper is organized as follows. We review the issue of interest in
the literature in Section 2. Section 3 describes the algorithms of SGFANet, and Section 4
describes the experiments and analysis performed in this study. Section 5 describes a pilot
application of the proposed method, and our conclusions are provided in Section 6.

2. Related Work

2.1. Deep Learning for Building Segmentation

With the development of the convolutional neural network (CNN) [21,22], there has
been a great deal of progress in building segmentation. Different from other objects in
remote-sensing images, buildings have regular boundaries and sharp corners; therefore,
the extraction of buildings strongly depends on the accuracy of their boundary extraction.
However, boundary areas only occupy a small proportion of the input image, which
results in a small gradient in backpropagation. To address this issue, most studies have
attempted to enhance the perception of building boundaries in deep-learning architecture.
EANet [23] embeded a boundary learning branch in building segmentation to maintain
both an accurate rooftop and its boundary.

Huang et al. [24] and Liu et al. [25] concatenated a boundary map and extracted
features to facilitate the propagation of boundary information in an end-to-end man-
ner. Some studies have also applied adversarial loss to refine predictions. For example,
Zorzi et al. [26] and Ding et al. [27] applied an additional discriminator network to ame-
liorate the boundary. Additionally, some studies treat a building as a set of lines and
apply specific rules [11–14,25] to compose building structure fragments (e.g., Nauata and
Furukawa [11] and Liu et al. [14]), which first detected edge and corner primitives, and
then composited them using the extracted topology.

However, these approaches may still have issues in practical applications. In remote-
sensing images, buildings always have large-scale variation, particularly in urban areas,
and the model should have the ability to generate variable-sized outputs to capture different
scales of buildings. This topic (e.g., capturing variable-sized objects) has been extensively
surveyed in object detection and medical image segmentation tasks, with FPN [28] and
UNet [29] as representatives. Their concepts are similar (i.e., fusing features from different
scales of the encoder in the decoding part). For buildings that have distinct geometric
properties, the current research enhances the fusion of multi-scale building geometry. Wei et
al. [30] and Chatterjee and Poullis [31] used dense connections to retain multi-level features.

Liu et al. [32] designed a spatial residual inception module along with a revised
decoder to maintain both global and local information. ME-Net [33] took edge feature
fusion a step further using the erosion module to crisp edges at different scales. Recently,
CBR-Net [34] combined different scales of edge and rooftop features of buildings and
used a coarse-to-fine prediction strategy to suppress irrelevant noise and achieved good
results on several high-resolution benchmarks. Thus, the state-of-the-art (SOTA) methods
use a multi-level feature fusion structure to precisely predict where a building is. Such a
strategy and its limitations in LR applications are described in more detail in the following
subsections.

2.2. Multi-Level Feature Fusion

Multi-level (i.e., low–high level) feature fusion is widely used in existing methods,
which typically include a backbone network, which captures multi-level features and a
feature fusion path. Generally, given an image I ∈ RC×H×W , where C, H, and W are
the channel dimension, height, and width, respectively, the backbone outputs a series of
multi-level features {El |l = 2, 3, 4, 5}, and El means the 1/2l resolution with respect to the
input image. In semantic segmentation, the feature map of the higher level is primarily
used for richer semantics to further capture the contextual semantics. However, the higher

164



Remote Sens. 2023, 15, 1741

semantic indicates a lower resolution without detailed spatial information, which affects
the performance on smaller targets.

In contrast, lower-level feature maps from shallow layers have higher resolution
but fewer semantics, which improves the performance in small targets. Thus, the fusion
path is used to model the feature-wise relationship to harvest both the high semantic and
high-resolution context. The conventional fusion design (i.e., the feature pyramid network
(FPN) [35]) is formulated as follows:

Dl−1 = ζ(El−1) + φ(Dl) (1)

where ζ is the lateral connection implemented by a convolutional layer with a 1 × 1 kernel;
φ denotes upsampling with a scale factor of 2; and Dl−1 and Dl ∈ RC×H×W are the two
adjacent features in the FPN. Through the lateral connection and top-down procedure in
FPN, the feature map is augmented by the high semantics from the high-level feature map
and the high spatial details from the shallow feature map in the backbone.

Evolved from this design, existing feature fusion structures [20,36,37] in recent years
have been built upon the dense affinity function as shown below:

Dl−1 = A(El−1, Dl)Dl (2)

where A is the affinity function with a specific designation. For example, ICTNet [31] and
UNet++ [38] used dense connections as the affinity function A. Li et al. [39] used A as a
gate to filter useless contexts. EPUNet [40] denoted A as a series of CNNs, which were
supervised by the edge ground truth. CBR-Net [34] enhances the high-level feature by
adding prior knowledge of buildings, where A serves as a multitask classifier.

2.3. Issues in Current Research

Existing segmentation techniques based on multi-level fusion have been proven effec-
tive with building extraction, particularly in HR images. However, when these algorithms
are applied to LR images, the extracted building is not always sufficiently accurate to serve
building-oriented applications. As shown in the first row of Figure 2, all models exhibit
considerable accuracy in high-resolution scenes with little variation.

However, as the image resolution decreases to 4 m/pixel in the second row, the IoU
score drops by approximately 30%, indicating more delineation errors. Specifically, errors
primarily occurred on the boundaries. In the third row, where the image resolution is
further reduced to 8 m, the model has difficulty locating buildings, particularly small
buildings. The results show a gap in accuracy in predictions with HR and LR images. The
paragraphs below detail potential reasons for these misclassifications.

First, low–high level semantics may not be accurately preserved in LR images. Due
to the limited resolution, LR images contain more ambiguous information (e.g., mixed
pixels), indicating that the original image (i.e., the lowest-level feature) contains irrelevant
noise. The fuzzy semantics of non-building objects or background have a detrimental effect
on prediction; therefore, it is essential to suppress the irrelevant noise in a self-adaptive
manner to improve the segmentation accuracy.

A second issue is the confusion of fuzzy boundary details. To involve the boundary
information, one always needs to use the boundary ground truth to provide additional
supervision. In LR images, however, the buildings always have fuzzy boundaries (as seen
in Figure 1B), and some boundaries even blend into the building background, appearing
as a non-edge pixel. This causes ambiguity between the boundary ground truth and the
boundary pixel. A more effective approach is to learn the features sparsely by concentrating
on only the salient and representative portions of boundaries because the dense information
propagation guided by the edge ground truth may be confused with other irrelevant details.
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Figure 2. Real-world examples of the SOTA method. From top to bottom, the resolution of the
images are 0.3, 4, and 8 m/pixel, respectively. The circle in the upper right of the images indicates the
Intersect Over Union (IoU) score (%) for buildings. (A) Image. (B) Unet++. (C) EPUNet. (D) CBR-Net.

The third issue is the lack of local texture. Due to the low contrast, it is more challenging
to capture texture details in LR images than it is in HR images. Akiva et al. [41] applied
a pixel adaptive convolution layer [42] to introduce the texture from the input image,
thus, refining deep features and encouraging the representation of pixels with similar
signatures. Unfortunately, for building segmentation, involving the image texture would
cause non-building targets to become prominent, leading to large intra-class variance.
Utilizing non-local operation among different features to enlarge the model perception
would be a more practical choice.

In this study, to address the fuzziness issue, we use the point-wise sparse propagat-
ing strategy instead of the dense propagating strategy (feature-wise) as in Equation (2).
Specifically, we only calculate the affinity of representative feature points on the edges and
corners of buildings (i.e., Dl−1(p) and Dl(p), p is the sampled pixels) in the two adjacent
pyramid feature maps Dl−1 and Dl . The positions of the selected feature points are learned
by the model. Then, we apply the proposed gated fusion module as an affinity function A
to harvest the specific context only on selected edges and corners of buildings to alleviate
the side effect of the fuzzy contexts in LR images:

Dl−1(p) = A(El−1(p), Dl(p))Dl(p) (3)

The differences among the three types of feature fusion design are shown in Figure 3.
The innovation compared to other work is that we propagate the building feature contexts
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in a sparse way instead of in a dense way. Finally, for the lack of local textures, we harvest
the global attention of the input using the recently introduced grounding transformer, in
which the interactions between adjacent features are in a non-local style.

Figure 3. Schematic diagram of three types of feature fusion structures. (A) The FPN, where the top
feature is directly propagated by the addition function. (B) The recent feature fusion structure with a
dense affinity function, where the top feature is propagated by calculating the affinity on two adjacent
layers. (C) The sparse affinity function, which only calculates the affinity of representative features.

3. Sparse Geometry Feature Attention Network

In this section, we describe, in detail, the proposed SGFANet, including the overview
(Section 3.1), the modules (Section 3.2 and the loss function (Section 3.4)).

3.1. Overview

The proposed method is based on a bottom-up feature extractor and a top-down
feature fusion path as shown in Figure 4. The choice of the feature extractor is not the focus
of this study; thus, ResNet-50 [43] was implemented. The feature extractor produces a
series of multi-level features that are denoted as {El |l = 2, 3, 4, 5}. To enhance contextual
semantics, we applied the pyramid pooling module (PPM) to the highest feature map E5
and obtained the top pyramid feature D5. This is a widely used setup in various feature
fusion methods [20,28,37,39].

Figure 4. Frameworks of the proposed SGFANet. (A) The overall pipeline of the proposed SGFANet
includes a bottom-up basic hierarchical feature extractor, a top-down feature fusion path composed
of SBSM, GFM, and GT, and a decoder. (B) The sparse boundary fragment sampler module (SBSM)
serves to sample the top-N representative feature points about the building boundaries (i.e., the
edges and corners). N is a hyperparameter and can be different for edges and corners. (C) The gated
fusion module (GFM), which is used to calculate the affinity of the selected point-wise features.
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Then, we fused the set of El along with the building boundary feature in a top-
down and sparse manner (i.e., focusing on the representative features to alleviate the
irrelevant noises brought by fuzzy details). This process generates the pyramid feature
set {Dl |l = 2, 3, 4}. Finally, we concatenated all pyramid features in Dl to generate the
building prediction result.

3.2. Learning Sparse Geometry Features

This subsection posits that the multi-level feature set, denoted as El , and the highest-
level pyramid feature, which is denoted as D5, have been successfully acquired by the
ResNet-50 backbone and PPM module. Then, the proposed top-down fusion method is
described in detail.

3.2.1. Sparse Boundary Fragment Sampler Module

Different from other methods [23,40], we propagate the edge and corner contexts
separately and sparsely in a top-down manner. In this study, we argue that the most
representative feature points can be represented as top-N points from the possibility maps
of both edges and corners. We define “Top-N” as “the first N points with the highest
possibility in the possibility map”, where N is a hyperparameter and can be different in
edge and corner possibility maps (see more detail in Section 4.8).

As shown in Figure 4B, we propose the sparse boundary fragment sampler module
(SBSM) to select the top-N feature points. The SBSM uses two independent branches
over the pyramid feature Dl to obtain the edge and corner possibility map of the input
image. These two branches are both implemented by a 3 × 3 convolutional layer, a batch
normalization layer, a ReLU function, and another 3 × 3 convolutional layer followed
by a sigmoid function and are supervised by the ground truth of the edge and corner
distribution map. Then, the SBSM samples the top-N points according to their possibility
value to obtain the representative edge indices Ie and corner indices Ic.

Before obtaining the representative feature points, we first refine El−1 using a 1 × 1
convolutional layer. Next, the SBSM obtains the representative feature points from Dl
and El − 1 according to Ie and Ic. We use the normalized grids and bilinear interpolation
during the implementation. The representative edge feature points are denoted as De

l (p)
and Ee

l−1(p), while the corners are denoted as Dc
l (p) and Ec

l−1(p).

3.2.2. Gated Fusion Module

After obtaining Dl(p) and El−1(p), the critical point is how to propagate them in the
proposed fusion path. However, different levels of Dl have different capacities to capture
the edge and corner spatial and contextual information. Simply designing a uniform
propagation mechanism for each level of the pyramid feature would produce a semantic
gap; thus, we design an attention mechanism that serves as an affinity function to reweight
the feature points from different levels and propagate them.

We propose a gated fusion module, which contains two parts: (1) a gated operator
and (2) dual region propagation. The gated operator is a channel attention mechanism
focusing on reweighting features along the channel of each pyramid level. It first explicitly
models the dependency of features along the channel and learns a descriptor to express
the importance of each channel. Then, the descriptor enhances the useful channel and
suppresses the inferior channel by dot production. The gated operator is as follows:

D̃i
l(p) = αi

l(p) · Di
l(p)

Ẽi
l−1(p) = αi

l−1(p) · Ei
l−1(p),

(4)

where i is the index from Ie or Ic; αi
l(p) ∈ [0, 1] and αi

l−1(p) ∈ [0, 1] are the associated gate
maps of each level l, which are obtained through linear projection from Di

l(p) and Ei
l−1(p),

respectively; and · denotes the dot multiplication broadcasting in the channel dimension.
More detail is available in Figure 5.
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Figure 5. The detailed structure of (A) the gated operator and (B) dual region propagation. The input
of our gated operator is with dimension of C× N. SGFANet utilizes it in three features, e.g., Dl(p),
Dl−1(p) and Vi(p). The dual region propagation is a kind of self-attention mechanism, for projecting
the feature Di

l(p) and Ei
l−1(p) to one-feature embedding.

Then, we propagate those gated sampled features independently. For each group of
sampled features (i.e., the edge or the corner), top-down propagation is realized by dual
region propagation followed by another gated mechanism as shown in Equation (5):

Vi(p) = δ(D̃i
l(p)× Ẽi

l−1(p))× D̃i
l(p) (5)

and (6),

D̂i
l−1(p) = βi(p) ·Vi(p) + Ẽi

l−1(p) (6)

where δ denotes the softmax function for value normalization; Vi(p) is the affinity of D̃i
l(p)

and Ẽi
l−1(p); × denotes matrix multiplication; · denotes the dot product; and βi(p) ∈ [0, 1]

is another gated operator obtained from the linear projection of Vi(p).
Equation (5) is the dual region propagation, which is a type of self-attention mecha-

nism, and we only apply selected representative feature points to the calculation. Equa-
tion (6) is another gated operator that is used to filter out useless contexts. In this study,
we use the residual design for easier training in Equation (6) (i.e., the add operation to
accelerate gradient broadcast). The overall gated pipeline is shown in Figure 4C.

3.3. From Local to Non-Local Features

The CNN has been shown to be powerful in local features for its shared position-based
kernels over a local and fixed-size window, which keeps the translation invariant and
makes promising results in capturing local features, such as shapes [44,45]. Unfortunately,
the LR image lacks local texture details due to the low contrast. If we focus on the local
pattern, as conventional CNN does, the learning procedure in a low-resolution plane would
be insufficient. To combat this issue, we transfer the local calculation to non-local operation
using the recently introduced grounding transformer (GT) [20]. In this study, we use two
convolution layers on Dl to obtain q and v and one convolution layer on El−1 to obtain
k. q, k, and v denote the key, query, and value in the transformer, respectively. Then, we
implement the GT as:
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s = q · k
w = δ(s)

D̂l−1 = w× v

(7)

where δ is the softmax function, and the output of the GT is denoted as D̂l−1, which
harvests the nonlocal contexts (i.e., global) of two adjacent pyramid features (i.e., El−1
and Dl). Finally, the refined output feature Dl−1 is obtained by scattering the feature
point D̂i

l−1(p) into D̂l−1 according to the indices Ie and Ic. The top-down procedure is
summarized in Algorithm 1.

Algorithm 1 The top-down procedure in SGFANet.

Require: {El |l = 2, 3, 4, 5}: the extracted feature set from the backbone; Nc: the sampling
number of corner points; Ne: the sampling number of edge points; and D5: the highest-
level pyramid feature.

Ensure: The pyramid feature set {Dl |l = 2, 3, 4}
1: for l in [5, 4, 3, 2] do
2: edge_map, corner_map ← Sigmoid(Convolution(Dl))
3: Obtain Ie and Ic from edge_map and corner_map
4: De

l (p), Dc
l (p)← Grid_sample(Dl , Ie), Grid_sample(Dl , Ic)

5: Ee
l−1(p), Ec

l−1(p)← Grid_sample(El−1, Ie), Grid_sample(El−1, Ic)
6: D̃i

l(p)← Gated_operator(Di
l(p)) with Equation (4)

7: Ẽi
l−1(p)← Gated_operator(Ei

l−1(p)) with Equation (4)
8: D̂i

l−1(p)← Dual_region_propagation(Ẽi
l−1(p), Ẽi

l−1(p)) with Equations (5) and (6)
9: D̂l−1 ← Grounding_transformer(El−1, Dl) with Equation (7)

10: Dl−1 ← Scatter the D̂i
l−1(p) into D̂l−1 according to the Ie and Ic.

11: end for

As previously described, CNN is limited by its locality when resolving LR images. As
we want to emphasize nonlocal attention to compensate for the lack of local texture, we
use GT to fully interact with the pyramid feature in both spaces and scales. When using
GT, the model encourages representation consistency for the building region and inhibits
the false alarms of the building background as shown in Figure 6.

Figure 6. The impact of the GT can be better recognized by a heat map of the predicted score. The
building predicted scores are the output of the sigmoid layer with the range [0, 1]. (A,B) The image
and the corresponding label, respectively. (C) Heatmap obtained by visualizing the values of the
difference between the prediction score of SGFANet and that of SGFANet without GT.

3.4. Decoder and Loss Function

The decoder is used to recover the spatial resolution of the output feature
{Dl |l = 2, 3, 4, 5} ∈ RC×H×W . We adopted a simple and lightweight decoder in SGFANet
to preserve the model’s efficiency. SGFANet concatenates all the refined Dl by upsampling
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them to the same resolution (1/4 resolution of the input image) and performs the final
prediction by a 1 × 1 convolutional layer and sigmoid function.

The overall output of SGFANet is threefold: the edge confidence map, the corner
confidence map, and the final segmentation prediction map. We, thus, use binary cross
entropy as a loss function, and these losses are weighted to 1 by default.

4. Experiments

4.1. Definition of LR and HR Images in This Paper

To segment individual buildings, the definitions of LR and HR are different from those
of other tasks [46]. As shown in Figure 7, most buildings are under 144 m2. Assuming a
resolution of 4 m/pixel, up to nine pixels are used to render one building. Convolutional
layers with 3 × 3 kernels are the foundation for contemporary deep-learning segmentation
models. Due to the small size of the building, a sliding window could not be filled in one
convolutional layer, introducing a great deal of background noise into building segmen-
tation. In addition, the geometric components of buildings (e.g., the edges and corners)
are small and could blend into the background. Accurate building segmentation could,
thus, be strongly hampered by these confusing pixels. Xu et al. [18] and Zhang et al. [15]
defined 1.2, 2, and 4 m/pixel as low resolution, while Shi et al. [47] defined 3 m/pixel as
moderate resolution. In this study, the LR images are those with a resolution of greater
than 4 m, while the HR images are the reverse.

Figure 7. Statistical results of the single building size in the INRIA building dataset, including five
cities, e.g., Vienna, Tyrol, Kitsap, Chicago, and Austin.

4.2. Datasets

To demonstrate the effectiveness of the proposed methods, we have three goals: (1) to
assess the performance of SGFANet on LR images and other existing methods; (2) to assess
the performance of SGFANet as an SS module under the existing SR-then-SS framework;
and (3) to assess the effectiveness of the proposed module and evaluating how different
combinations affect the model performance.

We used two datasets: the Multi-Temporal Urban Development Spacenet (i.e., Spacenet 7)
and the DREAM-A+ dataset [18,19]. Spacenet 7 provides 4 m/pixel RGB imagery and
the corresponding building footprint in GeoJSON format. The released images and the
ground truth were captured in 60 locations worldwide. Each location provided 24 images
(one per month) with a size of 1024× 1024 between 2017 and 2020, covering an area of
approximately 18 km2. The DREAM-A+ dataset contains 4 m/pixel RGB imagery captured
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by the Gaofen-2 satellite sensor as well as the corresponding building footprints in Shapefile
format. The images are presented as 256× 256 image patches that were uniformly collected
across 14 cities in China. The distribution of the data samples is shown in Figure 8.

Figure 8. Distributions of images and the corresponding ground truths in the proposed experiment.

In addition, we collected the corresponding low-resolution imagery with RGB and
NIR bands from Sentinel-2 (10 m/pixel). The images were obtained in the same period
and location as the corresponding image in Spacenet 7 and DREAM-A+. Images with an
excessive amount of clouds (e.g., 20%) were omitted from the Sentinel-2 dataset, reducing
the amount of available imagery. Then, by rasterizing the related GeoJSON and Shapefile,
we matched each Sentinel-2 image with a 2.5 m building ground truth.

With these datasets, we conducted three types of experiments. First, we evaluated
SGFANet compared to existing methods on Spacenet 7 and DREAM-A+, which we merged
into one dataset. This scenario is closer to practical applications (i.e., satellite images derived
from multiple sensors and geographic locations), which requires higher generalization
performance of the model. Second, we evaluated the SGFANet performance in the SR-then-
SS framework on the collected Sentinel-2 imagery. Sentinel-2 imagery is publicly accessible
from most places around the globe; therefore, it is practicable to use only this sensor. Third,
we verified the proposed module utilizing the DREAM-A+ dataset. In this experiment, we
were concerned with the effect of various modules on the model performance; thus, we
used a single source image to make the experiment reliable.

4.3. Implementation Details

We cropped the 4 m/pixel images into a fixed size of 256 × 256 and the 10 m/pixel
images into the size of 64 × 64. In the process of training, the AdamW [48] optimizer was
used with a 0.001 learning rate, and the method was trained for 100 epochs on image tiles.
The batch size was 16. In each mini-batch, we used standard data augmentation with a
probability of 20%, including rotation of [−20◦, 20◦], horizontal and vertical flip during
training. For hyperparameter N, we adopted 128 and 32 for sampling points from the
edges and corners, respectively.

The threshold of the sigmoid output was 0.5. The layers in Resnet-50 were initialized
with the pre-trained weight on ImageNet. The training, validation, and test set were
randomly divided in a ratio of 5:2:3. The number of image tiles in each set is shown in
Table 1. During training, we assumed that the test set was invisible. After each epoch,
we verified the accuracy of the model on the validation set and chose the model with the
highest accuracy in the validation set for testing. Unless otherwise stated, the precision we
report in the experiment is the precision of the test set. All experiments were implemented
in PyTorch.
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Table 1. Number of image tiles in the train set, validation set, and test set for each dataset.

Train Validation Test

DREAM-A+ dataset 1950 780 1169
Spacenet7 dataset 6571 2628 3941
Sentinel-2 dataset 15,274 6109 9164

4.4. Accuracy Assessment

Four evaluation metrics were used to assess the performance of the models, including
the intersection over union (IoU), overall accuracy (OA), F1 score (F1), and boundary F1
score (b-F1). After obtaining the prediction maps, true-positive (TP), false-positive (FP),
true-negative (TN), and false-negative (FN) pixels were calculated. True positives mean the
truly predicted pixels with positive labels, and false positives denote negative labels with
false predictions. For IoU, OA, and F1, the positive pixels are the building regions. For b-F1,
the positive pixels are building boundary pixels. The evaluation metrics are calculated
as follows:

IoU =
TP

TP + FP + FN

OA =
TP + TN

TP + FP + FN + TN

F1 =
2× TP

2× TP + FP + FN

(8)

4.5. Results of SGFANet

Using the collected 4 m/pixel images, we compare the proposed SGFANet with several
literature works to assess its effectiveness on the semantic segmentation task, including
state-of-the-art (SOTA) methods, the dense boundary propagation method, and the shape-
learning method:

1. DeepLabV3+ [49] achieved SOTA results in the PASCAL VOC dataset. It is also a
common baseline method in the semantic segmentation field.

2. Unet++ [38] is the SOTA architecture among variants of the Unet. Its multi-scale
architecture makes it effective in capturing various sized targets and is, therefore,
often applied in building extraction.

3. ICTNet [31] was the winner in the 2019 INRIA competition. It utilizes dense-connection
block [50] to extract building features. Instead, our method adopts a sparse propaga-
tion strategy supervised by the building boundary label.

4. CBR-Net [34] achieved SOTA results in the WHU building dataset. It is also the most
recent SOTA algorithm.

5. PFNet [37] achieved SOTA results in the iSAID dataset. It is not dedicated to extracting
buildings; however, it uses a sampling strategy similar to ours. The greatest difference
is that it samples mainly to tackle the imbalance between the foreground and back-
ground pixels, while we are more refined, targeting only the building boundary and
corner pixels.

6. EPUNet [40] is a dense boundary propagation method. Compared with ICTNet,
it introduces building boundaries as supervision. Compared with our method, it
propagates the boundary contexts densely (i.e., without any context filtering).

7. ASLNet [27] is a shape-learning method that applies the adversarial loss as a boundary
regularizer. It is designed to extract a more regularized building shape.

For the comparison methods, we used the hyperparameter settings from their respec-
tive studies (e.g., the dimensions of the convolution filters). To create fair comparisons,
other training parameters, such as the backbone network, learning rate, and batch size,
were kept consistent with the proposed approach.

173



Remote Sens. 2023, 15, 1741

4.5.1. Comparison with State-of-the-Art Methods

The quantitative evaluations of the proposed SGFANet and other existing methods are
listed in Table 2. The proposed SGFANet outperformed the other methods by a wide margin.
DeepLabV3+, Unet++, and PFNet were initially proposed for segmentation on general
segmentation tasks but do not consider special issues in segmentation on building extraction
and achieved lower accuracies than SGFANet. ICTNet was designed to use the compact
internal representation of the backbone network and dynamic attention mechanisms in the
decoder network to extract buildings in HR images well.

Table 2. Comparison with the related results on the benchmark. The bold values in each column
means the best entries.

IoU(%) OA(%) F1(%) b-F1(3PX)

DeepLabV3+ 45.09 89.29 62.15 63.70
Unet++ 46.12 89.32 63.13 65.87
ICTNet 46.69 89.32 63.66 66.89

CBR-Net 47.80 89.85 64.68 66.73
PFNet 47.26 89.72 64.19 64.92

EPUNet 45.84 89.14 62.87 65.45
ASLNet 40.47 88.79 58.29 60.18

SGFANet 48.46 90.06 65.28 66.94

However, ICTNet’s lack of explicitly modeling the LR issues makes it inefficient
compared to the proposed method. The CBR-Net is built upon a coarse-to-fine framework
by simultaneously taking several sources of prior information about buildings (e.g., the
boundary directions). Unfortunately, in LR images, this prior information is less marked
than that in HR images due to less detailed spatial information, which poses a weak
supervision problem for CBR-Net. Compared with CBR-Net, our method achieved 0.66%,
0.21%, 0.60%, and 0.21% improvement on IoU, OA, F1, and b-F1, respectively.

Qualitative results are shown in Figure 9. Due to the image’s low resolution, the
building in it is smaller and more difficult to distinguish. However, the proposed SGFANet
still had better segmentation results in handling false-positives of dense building regions
and a better capability to extract high-quality building boundaries compared with the other
methods. Specifically, the proposed SGFANet had several advantages in different scenes.
The method could accurately extract individual buildings from the first row to the third
row of Figure 9.

When the building boundary becomes much fuzzier in the fourth row, the proposed
method still produced accurate predictions, while the other compared methods failed
to manage this change. The segmentation results of the proposed method have fine-
grained boundaries in the fifth and sixth rows, while other methods may generate blob-like
results. Notwithstanding the advancements achieved by our proposed technique, the
extent of progress in the small-sized building extraction remains constrained as illustrated
in (Figure 10). While SGFANet successfully identified small buildings, it faced difficulties
in accurately outlining their boundaries. This inadequacy can be mainly attributed to the
comparatively smaller dimensions of these buildings, resulting in an imbalanced training
set with fewer pixels available for training.
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Figure 9. Examples of the building extraction results of the proposed SGFANet and other
SOTA methods. The red squares indicate our notable improvement.

Figure 10. Example of the poor extraction result. (A) Image. (B) The ground truth. (C) CBR-Net.
(D) SGFANet. A distinct area of inadequate extraction is highlighted by a red circle.

4.5.2. Comparison with Dense Boundary Propagation Methods

We further compare our method with a dense boundary context propagation method,
the EPUNet [40], which adopts the opposite strategy to ours in handling the boundary
supervisions. The EPUNet achieved promising results on HR remote sensing benchmarks,
such as the WHU Building Dataset (0.3 m/pixel) and SYSU Building Dataset (0.8 m/pixel)
with 7.47% and 2.86% accuracy gaps of IoU compared with DeepLabV3+ as reported in
Guo et al. [40]. However, in our experiment, when the resolution was reduced to 4 m/pixel,
the accuracy of EPUNet dropped by a large amount and approached that of Deeplabv3+
(see in Table 2).

We propose that the dense propagation of edge information brings too many fuzzy
contexts to the prediction, and this phenomenon was more significant when the resolution
decreases. The proposed SGFANet propagates the building boundary information (i.e.,
the edges and the corners) sparsely by the proposed SBSM and the GFM. As seen in
Table 2, our result outperformed EPUNet by 2.62%, 0.92%, 2.41%, and 1.49% at IoU, OA,
F1, and b-F1. Additionally, when buildings are densely distributed, the EPUNet tends to
obtain ambiguous predictions of building boundaries, while we could more reliably detect
boundary pixels from this dense area (see in Figure 11).
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Figure 11. Sample images and results where the buildings are densely distributed. (A) Image tile.
(B) Ground truth. (C) EPUNet. (D) SGFANet. EPUNet propagates all features of the building
boundary without filtering, which limits the performance in LR imagery due to the fuzzy bound-
ary details—particularly for the buildings in dense areas. The red squares indicate our notable
improvement.

4.5.3. Comparison with Shape Learning Methods

Recent studies in building extraction have used shape constraints as an additional
loss to optimize the training procedure, particularly when employing HR images [26,27,51].
ASLNet [27] uses adversarial loss [52] to determine whether the morphology of the model
output is consistent with the ground truth and, thereby, achieves good performance that
is comparable to those of other generative adversarial network (GAN)-based methods.
However, ASLNet struggles to appropriately capture building shape when it meets with
LR imagery. As shown in Table 2, our method improved 7.99%, 1.27%, 6.99%, and 6.76% in
terms of the IoU, OA, F1, and b-F1, respectively. In Figure 12, the ASLNet did not converge
as well as expected and therefore output blob-like results. This result likely occurred
because the LR images typically have unclear building shape patterns due to confusing
pixels, providing the model with less effective shape information for optimization.
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Figure 12. Examples of the ability to capture building shapes. From left to right are (A) Image tile.
(B) Ground truth. (C) ASLNet. (D) GFANet. ASLNet was proposed to find the regularized shape of
buildings. However, it failed to predict accurate building boundaries compared with our method.
The red squares indicate our notable improvement.

4.6. Super Resolution and then Semantic Segmentation
4.6.1. Framework Architecture

Without a loss of generality, we used the commonly used baseline method from the
SR field of research (i.e., the efficient subpixel convolutional neural network (ESPCN) [53])
as our SR module. Following the previous well-established experimental setting [18], we
used the SR as the front component and the SS as the rear component. Specifically, the
input LR imagery was first processed by the SR to output the upsampling feature. Then,
the SS was fed the generated upsampling feature to obtain an upsampling prediction result.
In this experiment, we kept the SR module invariant and only replaced the SS module
with the model mentioned in Section 4.5 and conducted experiments on the collected
Sentinel-2 imagery.

Additionally, to comprehensively evaluate the performance, we introduce two addi-
tional comparison methods:

1. ESPC_NASUnet [18] realizes the SR by ESPCN and the SS by NASUnet [54].
2. FSRSS-Net [19] introduces successive deconvolution layers in Unet, thus, achieving

super resolution results.

4.6.2. Results

The quantitative results and the qualitative results are shown in Table 3 and Figure 13,
respectively. From the quantitative perspective, with the SR module plugged in at the
front, SGFANet still outperformed existing semantic segmentation methods and performed
markedly better than the other two existing methods, achieving 2.74%, 1.49%, and 3.16%
improvements in IoU, OA, and F1. From the qualitative perspective, the proposed method
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maintained accurate building boundaries while improving the segmentation of single
buildings in dense residential areas.

Table 3. Comparison with the related results based on the SR-then-SS framework. The bold values in
each column means the best entries.

SR Module IoU (%) OA (%) F1 (%)

DeepLabV3+ ESPCN 31.07 82.90 47.41
Unet++ ESPCN 32.04 83.57 48.53
ICTNet ESPCN 32.19 82.75 48.71

CBR-Net ESPCN 32.72 83.09 49.53
PFNet ESPCN 29.44 84.11 45.49

EPUNet ESPCN 31.83 83.07 48.29
ASLNet ESPCN 28.12 82.56 43.90

SGFANet (ours) ESPCN 33.11 84.00 49.75

ESPC_NASUnet ESPCN 30.37 82.51 46.59
FSRSS-Net - 27.28 83.66 42.87

Figure 13. Examples of the super resolution and then semantic segmentation results obtained by
the different methods in Sentinel-2 images. (A) The image tile (10 m/pixel). (B–D) The building
extraction results (2.5 m/pixel) from ESPC_NASUnet, FSRSS-Net, and our SGFANet under the
SR-then-SS framework, respectively. For better visual effects, we used the 2.5 m image from Esri
community as the base map. The red squares indicate our notable improvement.

4.7. Model Efficiency

Figure 14 shows the trade-off between speed and accuracy. SGFANet outperformed
methods with comparable parameter sizes, such as PFNet and CBR-Net, and achieved a
higher efficiency improvement than did ICTNet (1.77 % in IoU). Thus, the proposed method
achieved the optimal balance between speed and accuracy on the proposed benchmark.
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Figure 14. Speed versus accuracy on the DREAM-A+ dataset. The radii of circles represent the number
of parameters (million). All the methods were tested with one V-100 GPU for a fair comparison.

4.8. Sampling of Edge and Corner Points

The number of sampled feature points about the edge (Ne) and the corner (Nc) impact
the model performance. Due to the presence of these two parameters, it would be laborious
to find their optimal combination during training. Although several parameter optimization
approaches [55], such as grid search, random search [56], and genetic algorithms [57], have
been shown to be useful in deep learning, directly using them would markedly increase
the computational load.

In this study, we propose three straightforward and intuitive strategies for selecting
the optimal number of sampled edges and corners: (1) sample only the edge points first
and look for the best Ne, and then adjust Nc based on the best Ne; (2) sample only the corner
points first and look for the best Nc, and then Ne is adjusted based on the best Nc; and (3)
keep the ratio of Ne and Nc constant and adjust Ne and Nc concurrently.

We conducted experiments with these strategies separately on the DREAM-A+ dataset.
As reported in Figure 15, different strategies obtained different trained results with different
times. Table 4 reports the results on DREAM-A+ test of these three sets of parameters,
where “S1”, “S2”, and “S3” denote the adjusting strategy used, and the column “Time” is
the rough cost time to adjust Ne and NC on a single V-100 GPU. Considering the trade-off
between accuracy and time cost, we recommend the third strategy, as mentioned above, for
selecting the optimal Ne and Nc combination.

In Figure 15, if less appropriate parameter values are chosen, the accuracy of SGFANet
decreases considerably. Thus, three configurations degrade the accuracy: (1) only sam-
pling the corner or edge points; (2) undersampling the edge and corner points; and (3)
oversampling the edge and corner points. These results verify that both edge and corner
supervised information are equally important and indicates that sparse sampling (i.e.,
only sampling corners and edges simultaneously) is the bottleneck of LR image building
segmentation because too little sampling leads to insufficient supervision, and too much
sampling introduces too many fuzzy boundary contexts from LR images.
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Figure 15. The IoU on DREAM-A+ val of different combinations of sampled edges (Ne) and corners
(Nc) under different strategies. First, we sampled the edge points while Nc remained zero (shown
in (A)). Then, based on the best Ne, we sampled the corner (shown in (B)). The best combination
was 192 and 8 for Ne and Nc, respectively. Second, we sampled the corners (shown in (C)) and then
sampled the edges (shown in (D)), and the best combination was 128 and 16. Third, we kept the ratio
of Ne and Nc to 4:1, and the best combination was 128 and 32 as shown in (E).

Table 4. Comparisons on DREAM-A+ of different Ne and Nc adjusting strategies. The bold values in
each column means the best entries.

IoU(%) OA(%) F1(%) Time (h)

SGFANet-S1
(192, 8)

51.94 78.80 68.54 36

SGFANet-S2
(128, 16)

51.72 78.52 68.04 36

SGFANet-S3
(128, 32)

51.88 78.70 68.32 19
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4.9. Ablation Study

In this subsection, we present comprehensive experiments to analyze the proposed
modules in SGFANet. All experiments were conducted on the DREAM-A+ dataset.

The baseline of the ablation studies was the vanilla FPN architecture [35]. We ablated
four modules in SGFANet: the pyramid pooling module (PPM), sparse boundary sampling
module (SBSM), gated fusion module (GFM), and grounding transformer (GT). Table 5
reports the ablation results, where the baseline from the proposed method is the initial row.
From top to bottom, the proposed modules are added in different combinations for the
module analysis.

The PPM is essential for the feature fusion architecture, which achieved 0.26% im-
provement in IoU. The SBSM and GFM improved the IoU by 2.51% due to better boundary
prediction as verified in Table 6. The primary improvement of GT lies in the undersegmen-
tation of the building area. As a result, baseline+PPM+SBSM+GFM+GT achieved an IoU
result with 0.67% improvement and an F1 result with 0.58% improvement compared with
the baseline+PPM+SBSM+GFM. The gradual improvement in accuracy is indicative of the
complementary property of the proposed method.

Table 5. Ablation experimental results. The bold values in each column means the best entries.

+PPM +SBSM +GFM +GT IoU(%) OA(%) F1(%) Description

- - - - 48.44 78.07 62.91 The baseline of the ablation studies

� - - - 48.70 78.35 65.50 Add PPM to the top layer in the top-down procedure,
the propagation is feature-wise

� - - � 49.68 78.68 66.38 Append GT and PPM into the top-down procedure,
the propagation is feature-wise

� � - � 50.31 78.69 66.94
Append GT and PPM into the top-down procedure,
the propagation is point-wise
realized by the SBSM

� � � - 51.21 79.13 67.74
Append GFM and PPM into the top-down procedure,
the further contexts filtering is included in the
point-wise propagation

� � � � 51.88 78.70 68.32 Our method

Table 6. Boundary F1 score. The bold values in each column means the best entries.

IoU b-F1(3px) b-F1(9px) b-F1(12px)

baseline + PPM 48.70 55.37 77.19 79.65
+GT 49.68 55.63 76.83 79.29

+GT + SBSM 50.31 56.33 77.73 80.18
+GT + SBSM + GFM 51.88 60.44 81.13 83.38

To demonstrate the effectiveness of the proposed modules, we verified the bound-
ary improvements using the boundary F1-score metric (b-F1) with three different pixel
thresholds in Table 6. Adding GT did not greatly improve the boundary predictions, which
suggests that GT should primarily be used to capture the global attention of the image. By
further applying SBSM, the boundary accuracy improved almost 1%. Moreover, as noted in
the last row, adopting GFM resulted in much better results compared with the other desig-
nations. Empirically, using the gated operator is essential to preserve high-quality boundary
information due to its ability to filter the boundary contexts in a top-down manner.

In Figure 16, we show two examples of the locations of the sampled edges and corner
points on the original images by visualizing the points from the feature fusion path in
the last stage. The positions of the sampled points indicate the representative and salient
parts of the building boundary learned by the model. The GT was introduced to capture
the non-local (i.e., global) attention of the image. We perform subtraction between the
prediction score of SGFANet and that of SGFANet without the grounding transformer.
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As shown in Figure 6, GT can significantly improve the predicted score of the building
region and inhibit the false alarms of the building background. Since the improvement
is homogeneous on building predictions, in terms of evaluation metrics, GT brings the
improvement of IoU rather than the b-F1 score as Table 6 indicates.

Figure 16. Visualization of the locations of sampled points. (A) Edge points. (B) Corner points.

As a conclusion of the ablation study, the proposed modules in SGFANet have three
benefits: (1) the sampling process in the SBSM and the gated operator in the GFM preserved
high-quality boundaries in building segmentation by alleviating the fuzzy boundary detail
from LR remote-sensing imagery; (2) the GT improved the building region predictions and
inhibited background noise by introducing global attention to the input; and (3) SBSM,
GFM, and GT were complementary to each other, and using these modules concurrently
achieved much better performance than using the proposed baseline method.

5. Pilot Application: Dynamic Building Change of the Xiong’an New Area in China

In our benchmark, SGFANet achieved promising results in building segmentation
from low-resolution remote-sensing images and improved the extraction accuracy in the
SR-then-SS framework, thus, assisting in extending the accessibility and scalability of
building dynamic tracking. We demonstrate this capability in this study with one example
by presenting the dynamic building change in the Xiong’an New Area in China.

The Xiong’an New Area (XNA) plan [58] was initiated by the Chinese government
on 1 April 2017. The XNA plan is a national strategy aimed at relieving the pressure on
the Chinese capital city Beijing by migrating “noncore” functions. Large-scale construction
activity has occurred in this 2000 square kilometer area since 2017.

Traditionally, there are two alternatives for building tracking. The first is to use HR
images (e.g., the metric) to identify single-building-level changes [59], and the second
is to use LR imagery (e.g., the decametric) to identify human settlement changes [60] or
land-cover changes [61]. Existing research indicates that the high acquisition cost and
low time availability of HR images make them problematic for large-scale applications.
In addition, for LR imagery, it is challenging to detect changes at the level of individual
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buildings. Therefore, we would like to address the aforementioned issue using free LR data
to enable the tracking of HR building changes.

We used publicly available Sentinel-2 images collected from the GEE platform to
implement building-change detection at the annual scale from 2016 to 2021. We extracted
the buildings for each year utilizing SGFANet with ESPCN (Section 4.6). Figure 17 shows
the final building-change-detection results obtained after a time series analysis of the
building distribution maps. The building construction and demolition activities were
concentrated in three primary regions, as the red rectangle indicates.

Figure 17A shows the process of the demolition of some small villages and the con-
struction of modern apartments. Between 2019 and 2021, some small settlements were
progressively abandoned, and high buildings were created during 2020–2021. In Figure 17B,
the process is nearly identical, with demolition occupying the vast majority of the area
beginning in 2020, indicating that more construction is planned for the area. Figure 17C
shows the building process of Xiong’an Railway Station, which was under construction in
2018 and operational in 2020.

Figure 17. Dynamic building-change-tracking results (2016–2021) of the Xiong’an New area in China.
The subplots (A–C) are three detail examples to show the building dynamic.

As reported by the statistical curve in Figure 17, construction began as early as
2018–2019, while demolition activity peaked in 2020–2021. Compared to 2016, 1.2% of
buildings were constructed, and 4.1% were demolished. The trend of the curve indicates
that the construction and demolition process will continue in the future.

To verify these results, we calculated the temporal correlation coefficients (2016–
2021) on the number of foreground pixels of the results with three well-acknowledged
products: (1) the Dynamic World product (https://dynamicworld.app/, accessed on 23
March 2023), providing global land coverage at a 10 m resolution from 2015 to the present,
including the “built-up area” category; (2) global artificial impervious area (GAIA) [62],
providing an impervious surface at 30 m from 1985 to 2018; and (3) MCD12Q1 (https:
//lpdaac.usgs.gov/products, accessed on 23 March 2023), providing global land-cover
types at yearly intervals (2001–2020), including the “urban and built-up lands” category.
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As reported in Table 7, the results show good temporal consistency with Dynamic
World (R2 = 0.7702), indicating the reliability of the proposed results. However, the result
with GAIA is lower (R2 = 0.6864), which might be caused by GAIA being constructed
based on a one-way conversion assumption [63] (i.e., that the impervious surface will
increase from year to year). The result with MCD12Q1 is the lowest (R2 = 0.4907), which is
likely due to its limited expression in local areas due to its low resolution (500 m).

Table 7. Correlation coefficients (R2) between our results and other thematic related products.

Resolution Correlation Coefficients

Dynamic World 10 m 0.7702
GAIA 30 m 0.6864

MCD12Q1 500 m 0.4907

Thus, we demonstrated the dynamic tracking of building changes at an annual scale
of 2.5 m in a developing region using LR images. Compared to using HR images, the
proposed approach can save individual users approximately $200,000 in data expenditures.
In the future, we plan to use multiple data sources to achieve even higher accuracies (both
spatial and temporal) for the dynamic monitoring of buildings, thus, offering data support
for human activity investigations.

6. Conclusions

In this study, we argued that the fuzzy boundary detail (i.e., the edges and corners) and
the lack of local textures are the bottlenecks of building segmentation in LR remote-sensing
imagery. To mitigate these bottlenecks, we proposed the sparse geometric feature attention
network (SGFANet), which learns representative edges and corners on buildings to resolve
the fuzzy effect and converts the top-down propagation from local to nonlocal to harvest
the global attention of the input image, thus, alleviating the lack of local textures.

Comprehensive experiments showed that SGFANet obtained good accuracy compared
with other existing methods. A pilot application using SGFANet in Xiong’an New Area,
China demonstrated the potential of the proposed approach for future large-scale tracking
of buildings. We anticipate that the proposed method could help expand the accessibility of
large-scale building segmentation and building-change tracking on low-resolution remote-
sensing images.
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Abstract: Unregulated livestock breeding and grazing can degrade grasslands and damage the
ecological environment. The combination of remote sensing and artificial intelligence techniques
is a more convenient and powerful means to acquire livestock information in a large area than
traditional manual ground investigation. As a mainstream remote sensing platform, unmanned aerial
vehicles (UAVs) can obtain high-resolution optical images to detect grazing livestock in grassland.
However, grazing livestock objects in UAV images usually occupy very few pixels and tend to
gather together, which makes them difficult to detect and count automatically. This paper proposes
the GLDM (grazing livestock detection model), a lightweight and high-accuracy deep-learning
model, for detecting grazing livestock in UAV images. The enhanced CSPDarknet (ECSP) and
weighted aggregate feature re-extraction pyramid modules (WAFR) are constructed to improve the
performance based on the YOLOX-nano network scheme. The dataset of different grazing livestock
(12,901 instances) for deep learning was made from UAV images in the Hadatu Pasture of Hulunbuir,
Inner Mongolia, China. The results show that the proposed method achieves a higher comprehensive
detection precision than mainstream object detection models and has an advantage in model size.
The mAP of the proposed method is 86.47%, with the model parameter 5.7 M. The average recall and
average precision can be above 85% at the same time. The counting accuracy of grazing livestock in
the testing dataset, when converted to a unified sheep unit, reached 99%. The scale applicability of
the model is also discussed, and the GLDM could perform well with the image resolution varying
from 2.5 to 10 cm. The proposed method, the GLDM, was better for detecting grassland grazing
livestock in UAV images, combining remote sensing, AI, and grassland ecological applications with
broad application prospects.

Keywords: unmanned aerial vehicle (UAV); deep learning; object detection; grassland grazing
livestock; remote sensing image

1. Introduction

Overgrazing destroys grassland ecological functions. The survey of grazing animals
is of great significance in maintaining the balance of grass and livestock. Investigating
the geographical and temporal distribution of different grazing livestock (sheep, cattle,
horses, etc.) provides the basic and indispensable information for grassland ecological
management [1].

Satellites and manned aircraft are usually used in early animal surveys. Spaceborne
remote sensing data with low and medium spatial resolution (1–60 m) have been used
for indirect animal surveys since the early 1980s [2], mainly by detecting signs indicating
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the presence of animals in the area, such as fecal counts [3–5], food removal, and burrow
counts [6,7]. Submeter very-high-resolution (VHR) spaceborne imagery has potential in
modeling the population dynamics of large (>0.6 m) wild animals at large spatial and
temporal scales, but has difficulty discerning small (<0.6 m) animals at the species level,
although high-resolution commercial satellites, such as WorldView-3 and WorldView-4,
have reached ground resolution of up to 0.31 m in panchromatic mode [2]. Although
satellites have the advantages of wide coverage and not disturbing animals, they are
limited by the weather, and the resolution is still not high enough to finely distinguish
animal objects. Manned aircraft have also been widely used for wild animal surveys, such
as kangaroo censuses in New South Wales, Australia [8] and polar bear censuses in the
seasonally ice-free Foxe Basin, Canada [9]. Although manned aircraft are flexible in terms
of survey time and area, they are relatively expensive [10], require qualified pilots, and
possibly have individual biases when used in real-time censuses [8].

In recent years, unmanned aerial vehicles (UAVs), a convenient and low-cost remote
sensing platform, have been widely used in various fields, including wild animal surveys.
Compared with manned helicopters, UAVs are more flexible and quieter, keeping the
distance between the observer and the animal, ensuring the safety of field investigators
in dangerous environments, and avoiding human interference with animal habitats. Pre-
vious surveys relied on manually observing and counting from large numbers of images.
Researchers developed a series of automatic and semiautomatic object detection methods
to improve efficiency. Moreover, some scholars [11] compared the factors affecting the
detection probability of ground observation, manual inspection, and automatic detection
from UAV images. They concluded that the combination of drone-captured imagery and
machine learning does not suffer from the same biases that affect conventional ground
surveys and could better provide information for managing the ecological population [11].

Studies have shown that some simple threshold-based methods are still sufficient for
detecting and counting animals with similar grayscale values and significant differences
from the background. For example, using threshold segmentation and template matching
techniques, Gonzalez et al. [12] developed an algorithm to count and track koalas and deer
in UAV RGB and thermal imaging videos. However, against complex backgrounds, these
methods’ accuracy will usually be greatly affected. As higher-resolution images become
available, researchers developed various algorithms based on machine learning to extract
more complex features. Xue et al. [13] developed a semi-supervised object-based method
that combined a wavelet algorithm and an adaptive network-based fuzzy neural network
(ANFIS) to detect and count wildebeests and zebras in a single VHR GeoEye-1 panchromatic
image of open savanna. The accuracy of this method is significantly higher than that of the
traditional threshold-based method (0.79 vs. 0.58). Torney et al. [14] developed a method
via rotation-invariant object descriptors combined with machine learning algorithms to
detect and count wildebeests in aerial images collected in the Serengeti National Park,
Tanzania. The algorithm was more accurate for the total count than both manual counts,
while the per-image error rates were greater than manual counts, and the recognition
accuracy was 74.15%. Rey et al. [10] proposed a semiautomated data-driven active learning
system jointly based on an object proposal strategy with an ensemble of exemplar support
vector machine (EESVM) models to detect large mammals, including common elands,
greater kudus, and gemsboks, in the semiarid African savanna from 6500 RGB UAS images,
achieving a recall of 75% for a precision of 10%. The author believes that recall is much
more important than precision in this application. Although machine learning methods
based on non-deep neural networks can still produce good detection results in simple cases,
these methods usually cannot fully mine complex animal features.

Deep learning technology, such as convolutional neural networks (CNNs), has devel-
oped rapidly in recent years and achieved great success in computer vision. Compared
with traditional methods, which only extract shallow image features, convolutional neural
networks can automatically learn much richer semantic information and high-level image
features with higher learning efficiency. It more comprehensively describes the differences
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between various types of objects. The CNN-based object detection algorithm includes
anchor-free and anchor-based models. Anchor-based models include Faster R-CNN [15],
RetinaNet [16], YOLOv3 [17], YOLOv7 [18], etc. These models need to adjust the hyperpa-
rameter settings of the anchor during the training procedure to better match the size of the
objects in the dataset. The anchor-free model is more convenient without such a process,
and the representative models include FCOS [19], CenterNet [20], YOLOX [21], etc.

Some researchers have also introduced the deep learning method to detect animal
objects in UAV remote sensing images. For example, in 2017, Kellenberger et al. [22]
used a two-branch CNN network structure to detect wild animals in the Kuzikus Wildlife
Conservation Park in Namibia, and the precision and speed of the model were greatly
improved compared with Fast RCNN. In 2018, Kellenberger et al. [23] studied how to
extend CNN to large-scale wildlife census tasks. When the recall was set to 90%, false
positives of the CNN were reduced by an order of magnitude, but the precision of the model
was still lower. In short, the above two methods lack consideration for the comprehensive
performance of the model and cannot guarantee good performance in both recall and
precision. In 2020, Roosjen et al. [24] used the neural network resnet18 to automatically
detect and count spotted wing drosophila, including sex prediction and discrimination.
The results showed that UAV images have the potential to be researched and applied
to integrated pest management (IPM) strategies. In 2020, Peng et al. [25] developed an
automatic detection model for kiangs in Tibet, based on the improved Faster R-CNN and
aiming at small object detection of the UAV images, and increased the F1 score from 0.85 to
0.94. However, the dataset in this study was relatively small, and there was only one type
of animal object. The classifying ability of similar types of objects has not been verified.

In this study, the grassland grazing livestock detection in UAV images was different
from that in natural images taken on the ground and other objects’ detection of remote
sensing images, which brings the following challenges to the algorithm design.

First, considering the surveying efficiency, the field of view angle tends to be large, and
the image resolution is low. Therefore, animal objects only occupy very few pixels, making
it difficult to extract useful and distinguishable features to perform detection. Moreover,
grassland grazing livestock such as cattle, horses, and sheep share similar characteristics
and are much more difficult to distinguish than those in the classic applications, vehicles,
aircraft, and ships.

Second, the UAV images contain a large area of invalid complex background, with
changeable illumination conditions, and many false objects exist, such as rocks, haystacks,
and woods. Moreover, due to the posture changes of the animals, the animals of the same
category may have a different appearance in imagery.

In addition, with the development of the deep learning network model, deeper net-
works with high precision consume a large amount of computer resources, making them
hard to use in portable minimized platforms and for real-time processing. Therefore, the
model size is an important index to be considered in the model construction, as well as
the precision.

To solve the difficulties in the above aspects, in this paper, we propose an effective
grazing livestock detection model—GLDM, based on YOLOX nano [21]. The rest of the
paper is organized as follows.

1. A grazing livestock dataset based on UAV imagery data of the Hulunbuir grassland
was established. We describe the dataset in detail and show some examples in
Section 2.

2. The proposed model is elaborated in Section 3.
3. Comparison, ablation, and multi-scale adaptation experiments of the model had been

conducted. The details and results of the experiments are shown in Section 4.
4. Finally, we summarize and conclude the paper in Section 5.
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2. Materials and Methods

2.1. Materials
2.1.1. Study Area and the UAV Imagery

Experimental data in this section were captured in Hadatu Pasture (49◦32′–49◦59′N,
119◦3′–120◦15′E, about 1000 km2), Hulunbuir City, Inner Mongolia, China, as shown in
Figure 1. Hadatu Pasture has a large distribution of common livestock such as cattle,
horses, and sheep. We used a fixed-wing unmanned aerial vehicle (UAV) to collect ground
images in Hadatu Pasture from 24 to 29 July 2021. The UAV images covered 20% of the
total area—about 200 square kilometers. The photography was taken from the overhead
orthographic attitude. The forward overlap rate was 80%, and the flight altitude was about
300 m. The relative altitude of the flight changed with the rugged terrain field. The images’
spatial resolution was about 3~7 cm. A total of 30 flight strips were flown, and 33,304 shots
of RGB images were taken. The image set covered objects of various landforms, buildings,
and large numbers of cattle, horses, and sheep in the area.

Figure 1. Data collection. (a) Map of Hadatu Pasture and UAV flight routes; (b) flight strip image
captured and mosaiced by the UAV; (c) original image sample of the UAV.

2.1.2. Data Preparation

For the training and testing of the deep learning model, we used Labelme 4.6.0 [26]
software to label the data on the original UAV images. This study used a rectangular box
to label the ground truth, as shown in Figure 2c. The box was composed of an upper left
point and a lower right point, using which the width and height of the object on the image
could be obtained.

The size of the UAV images we obtained was 7952 × 5304. The original images were
split into subpatches of 1024 × 1024 to suit the limited computer memory (as shown in
Figure 2), and the width of the overlapping area was 100 pixels, which was wider than the
largest object, to ensure that an object on the split line would not be lost in the dataset.
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Figure 2. The split UAV image. (a) The original UAV image. The overlapped blue areas are 100 pixels
wide to prevent the object from being split. (b) The subpatches after split are images in our dataset.
The size of them is 1024 × 1024. (c) The annotation of samples using Labelme.

Seventy-five original UAV images with livestock were selected, and after the split, there
were a total of 4050 image subpatches, including 469 animal patches (images containing
animals), to build the dataset. The set was randomly divided into training, validation,
and testing datasets with a ratio of about 7:1:2. More details about dataset allocation are
shown in Table 1. Figure 3 shows the image samples in the dataset containing three types
of animals: cattle, horses, and sheep. Figure 4 shows some object instances of the three
types of animals in the dataset.

Table 1. The allocation of images into the training, validation, and testing datasets.

Datasets Animal Patches Cattle Instances Horse Instances Sheep Instances

Training 344 1511 1149 5354
Validation 39 169 87 1495

Testing 86 471 323 2342
Total 469 2151 1559 9191

Figure 3. Dataset image. (a) A patch of cattle; (b) a patch of horses; (c) a patch of sheep.

193



Remote Sens. 2023, 15, 1593

Figure 4. The object instances of the dataset. (a) cattle instances; (b) horse instances; (c) sheep instances.

Table 2 and Figure 5 are the statistical information of the animal samples in the dataset,
as shown below. From Figure 5d, it can be seen that the side length of most object boxes is
10–20 pixels. The size of most sheep objects is in this range. The mean absolute size (MAS)
is defined as the square root of the object box average area, while the mean relative size
(MRS) is defined as the percentage of the mean area to the total patch area. The formula is
as follows:

MAS =
√

Average area (1)

MRS =
Average area

Patch area
(2)

Table 2. Details of objects’ sizes in the dataset.

Category
Min

Width
Max

Width
Average
Width

Min
Height

Max
Height

Average
Height

MAS MRS Number

cattle 11 73 34.87 9 87 33.37 33.99 0.11% 2151
horse 9 81 37.17 11 82 36.90 36.45 0.13% 1559
sheep 5 42 17.40 6 39 19.60 18.42 0.03% 9191

Figure 5. (a) The boxplot of object bounding box width. (b) The boxplot of object bounding box
height. (c) The boxplot of object bounding box area. (d) The distribution of the object bounding boxes
in the dataset. The horizontal axis is the width of the object bounding boxes and the vertical axis is the
height. The color represents the number of boxes with the width and height in the coordinate system.
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In order to test the multi-scale adaptability of the model, we made a multi-scale dataset
with nine scales of 0.2, 0.25, 0.33, 0.5, 1, 2, 3, 4, and 5. Each scale set of the dataset consisted
of 10 random animal patches, so there were a total of 90 patches, and each patch was still
1024× 1024. Image scaling uses the bilinear interpolation method, in which an image with a
scale smaller than 1 is a scaled-down image patch, and its surroundings are filled with zero
values. In comparison, an image with a scale greater than 1 is the window for capturing
the original image patch after scaling up, as shown in Figure 6. The details of the objects in
the multi-scale dataset are shown in Table 3. Among them, the mean absolute size of the
objects in the 0.2-scale set was already lower than 10 pixels, and the mean absolute size of
the sheep was only 3.03 pixels. However, in the 5-scale set, the mean absolute size of sheep
reached 72.04 pixels, and that of cattle reached 179.24 pixels. Generally, the multi-scale
dataset scaled across an approximately 22–24 times change. Table 3 shows that the number
of objects (scale > 1) was reduced due to the image being intercepted by the fixed window.
The average size of the objects was not strictly proportional to the previous scale.

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

Figure 6. (a–i) The display of image patches of scale 0.2-5 in the multi-scale dataset. Among them
(a–d) are image patches (scale < 1) surrounded by zero values. (e) The original image patch (scale = 1);
(f–i) image patches (scale > 1) which are windows of 1024 × 1024 to intercept the enlarged images.
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Table 3. Details of objects’ size in multi-scale dataset.

Scale Category MAS MRS Number

0.2
cattle 8.12 0.79% 108
horse 6.41 0.63% 107
sheep 3.03 0.30% 605

0.25
cattle 10.15 0.99% 108
horse 8.03 0.78% 107
sheep 3.82 0.37% 605

0.33
cattle 13.38 1.31% 108
horse 10.55 1.03% 107
sheep 5.01 0.49% 605

0.5
cattle 20.31 1.98% 108
horse 16.04 1.56% 107
sheep 7.6 0.74% 605

1
cattle 40.59 3.96% 108
horse 32.07 3.13% 107
sheep 15.21 1.49% 605

2
cattle 79.55 7.77% 61
horse 63.87 6.24% 92
sheep 29.68 2.90% 347

3
cattle 114.73 11.20% 36
horse 94.45 9.22% 78
sheep 43.79 4.28% 195

4
cattle 150.94 14.74 28
horse 122.43 11.96% 64
sheep 59.23 5.78% 153

5
cattle 179.24 17.50% 23
horse 149.89 14.64% 50
sheep 72.04 7.04% 90

2.2. Proposed Method

Before selecting a model, we conducted a large number of model experiments. For
details, see the experimental part later. According to the experiment results, the YOLOX
series models were more suitable for our application because they have a higher recall rate
than other models, which could achieve better performance when we calculated sheep
units in the area. Moreover, this model was the state-of-the-art model in the past two years,
integrating many effective strategies. The model’s performance, such as accuracy, size, and
speed, reached a good balance. Therefore, the GLDM (grazing livestock detection model)
proposed in this paper was improved based on YOLOX.

YOLOX is an anchor-free model in the YOLO series proposed by Ge et al. [21] in July
2021. Another iconic model in the YOLO series after YOLOv5, the YOLOX model is based
on different network depths and widths. The YOLOX model contains six different sizes:
nano, tiny, s, m, l, and x, arranged from small to large. The nano version was designed
for lightweight models with a weight size of only 3.9 MB. Regarding network structure,
the YOLOX model used CSPDarknet in the backbone network, PANet [27] in the neck
part, and proposed a decoupled head in the head part, improving the performance and
convergence speed of the model. Mosaic and Mixup were used as data augmentation
methods in training. The model also proposed to use a new sample matching method,
SimOTA, to better improve the performance of the anchor-free model.

However, YOLOX had certain limitations in this study. First, the capability of detection
for small objects with low resolution was inadequate, leading to missed detection. Second,
the model was susceptible to confusion when distinguishing between different animal
objects with similar body shapes. To facilitate the deployment of the model in the future,
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the nano in the YOLOX family was chosen as the baseline. The model was improved
as follows.

1. An enhanced CSPDarknet (ECSP) was proposed as the backbone network of our
model with three improvement tricks: a cascaded hybrid dilated convolutional mod-
ule, stage compute ratio optimization, and input size optimization. The new backbone
introduced context-related features and improved the feature extraction ability. This
maximized the performance, especially the recall, with as few parameters as possible.

2. A weighted aggregation feature re-extraction pyramid module (WAFR) was also
proposed as the neck part of our model, which made better use of the shallow features
in the network and achieved effective multi-scale feature fusion.

The network structure of the GLDM is shown in Figure 7.

 

Figure 7. Network structure of the GLDM, roughly divided into parts of backbone, neck, and head.
The backbone part is the proposed ECSP, and the neck part is the proposed WAFR.

2.2.1. Enhanced CSPDarknet

The backbone network is an essential part of an object detection model, which is
responsible for the feature extraction of images. Modifying the backbone network to
improve feature extraction ability is the key to improving the performance of the network.
CSPDarknet, as an excellent backbone network after the proposal of CSPNet [28], was
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first used in YOLOv4 [29]. The subsequent YOLOv5 and YOLOX have continued to use
this network. Therefore, based on the CSPDarknet, an enhanced CSPDarknet (ECSP) was
proposed to further enhance its ability to extract small object features.

1. Cascade Hybrid Dilated Convolution Module

Introducing a large receptive field will bring more context-related features, improving
the detection ability for small objects. Ordinary convolutional networks mainly obtain
further feature maps through pooling operations, such as maximum pooling or average
pooling, to increase the receptive field. However, this approach will make the size of the
feature map smaller and inevitably lose information in the network downsampling process,
which will seriously impact the detection accuracy, especially for small objects with fewer
features in the original image. To avoid information loss, expand the receptive field, and
increase the object context feature information, this study introduced the idea of dilated
convolution. Dilated convolution was proposed by Yu et al. [30], and it was originally
used for intensive prediction tasks such as semantic segmentation. This convolution can
systematically aggregate multi-scale context information and exponentially expand the
receptive field without reducing the resolution and without additional parameters. In-
spired by [31], this study used dilated convolutions in combination with different dilation
rates to expand the receptive field. However, the selection of the expansion rate here is
not arbitrary. When the expansion rate of continuous hole convolution is the same, the
features on the original image will be missed. Therefore, according to a design criteria of
the hybrid dilated convolution module proposed by [31], combined with our large number
of experiments, an effective cascaded hybrid dilated convolution module (CHDC) was pro-
posed, as shown in Figure 8. The dilated rate of the convolution combination we designed
is [1,2,5]. Convolution kernels with different dilated rates will sample features of different
scales. After the combination and superposition, the receptive field will significantly exceed
three consecutive standard convolutions, and there will be no missing samples in this
combination. In this module, we uniquely use two sets of such hybrid dilated convolution
for cascading. What is more, inspired by the residual idea of Resnet [32], we performed
a shortcut connection to prevent gradient problems caused by too many convolutional
layers. The shortcut adds the original information and the convolved information by matrix
addition instead of concatenating. This module effectively improves the mAP, especially
the recall in experiments.

Figure 8. The designed cascaded hybrid dilated convolution module (CHDC), in which dilated
conv-1, 2, and 5 are dilated convolutions with dilated rates of 1, 2, and 5, respectively, as shown on
the right.
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Figure 9 shows the comparison of the receptive fields of the two convolutions. The
color from light to dark indicates the number of pixel calculations from less to more.
Figure 10 is a schematic diagram of the sampling effect of the module in the image. For
example, select a partial area of 224 × 224 in the original image, which is 61 × 61 after
dark2 (4 times downsampling). Each grid in the figure represents a pixel, and the blue
grid is a sampling point. It can be seen that the sampling coverage obtained after CHDC
is wider than the original bottleneck in nano, and the associated information around the
object can be obtained.

Figure 9. Comparison diagram of continuous convolution sampling. The color from light to dark
indicates the number of pixel calculations from less to more. (a) The receptive field after three
standard convolutions [1,1,1]; (b) the receptive field after the combination of dilated convolutions
with expansion rates of [1,2,5].

Figure 10. Schematic diagram of sampling on an image. (a) A schematic diagram of sampling after
only one standard convolution; (b) a schematic diagram of sampling after CHDC with the sampling
area larger, and the associated information around the object can be obtained.

2. Stage Compute Ratio Optimization

The stage settings in the backbone network can be traced back to Resnet, and the
feature maps of each stage have different resolutions. The authors of [33] believe that the
original design of the computation distribution across stages in Resnet is largely empirical.
Different dark modules in CSPDarknet represent different stages, and the initial stage
compute ratio is 1:3:3:1. In the past two years, Transformer has shown extraordinary
performance in computer vision. Swin-T [34] also used similar ideas in the network but
with a slightly different stage compute ratio of 1:1:3:1. The author of ConvNeXt [33]
discovered and applied this ratio to Resnet, changing the number of blocks in each stage
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from (3, 4, 6, 3) in ResNet-50 to (3, 3, 9, 3). Here, we have carried out much experimental
exploration based on this idea and finally adjusted the stage compute ratio in CSPDarknet
to 1:1:3:1. Experiments have proved that this ratio not only reduces the model parameters
but also improves the accuracy of the model. Overall, it is the best ratio at present. The
specific experimental results are shown in Section 3.2.1.

3. Input Size Optimization

In order to ensure the consistency of the size and dimension of the output of the
features by the network, we usually perform data size preprocessing before the image
enters the backbone network; that is, bilinear interpolation operation, to force the image to
be converted into the same size. For natural image detection tasks, to reduce GPU memory
usage and reduce calculations, the YOLOX baseline usually compresses the input image
to 640 × 640, which is larger than that. Although such an operation may cause image
deformation and information loss, it is also beneficial, reducing the amount of calculation
and the risk of model overfitting. However, for the small object detection in this study, if
the algorithm compresses the image, the feature information of the small object will be lost
before entering the model. This lost information cannot be recovered, which ultimately
affects the detection performance of the model. Therefore, according to this study’s image
size and data characteristics, we bilinearly interpolated the input image into a size of
1024 × 1024 in this model because bilinear interpolation has a balance between effects and
computation. That ensured the image lost no data before entering the network training and
obtained more effective feature extraction in the subsequent network, effectively improving
the model accuracy.

2.2.2. Weighted Aggregation Feature Re-Extraction Pyramid

Some researchers believe that low-level features from shallow layers of the network
contain more fine-grained feature information and background noise, while features ex-
tracted from deeper layers contain more semantic information [35]. A modern detector
consists of at least two parts: a backbone and a detection head. With the development of
the model, there are many layer structures between the backbone and the head. This part
of the structure is usually used to obtain feature maps at different stages for fusion to learn
better features, which we call the model neck. FPN is a classic feature fusion structure
with a top-down pathway proposed by Lin et al. [36] in 2017. It has been widely used in
object detection models. Subsequently, many effective multi-scale feature fusion structures
have emerged. Starting from YOLOv4, the YOLO model uses PANet [27] as a neck. PANet
is a feature fusion structure divided into two processes: top-down and bottom-up. The
structure fuses the features of different layers equally. Hence, the extraction effect for small
object features is limited.

Therefore, to facilitate the detection of small objects in our dataset, we propose a new
feature fusion structure: a weighted aggregation feature re-extraction pyramid (WAFR)
with top-down and bottom-up two pathways as well. In this structure, the weighted fusion
is started from the highest layer upwards, and the way of concatenating in the original
PANet is abandoned, instead of the form of matrix addition. The fusion formula is as
follows: where rC4 : rC5 is 2:1, and rC3 : rs4 is 2:1, the N3 layer after the top-down weighted
fusion is re-extracted by the Dark4 and Dark5 in the backbone. Moreover, the S4 layer
and the C5 layer are cross-fused during the extraction process. Finally, three feature map
outputs with different scales are obtained. The structure is shown in Figure 11.

F =
1

ri + rj

(
riFi + rjFj

)
(3)

F is the fused feature, Fi and Fj are the i and j feature layers, respectively, and ri and rj are
the weights of the feature layer.
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Figure 11. Weighted aggregation feature e-extraction pyramid (WAFR). In the figure, layer C5 is the
deepest output of the backbone network, which has the most semantic information. Layer N3 is a
top-down fusion feature map. Layers N4 and N5 are feature maps after re-extraction and cross-fusion
of backbone network features.

2.2.3. Standard of Performance Evaluation

A series of indices were adopted to evaluate object detection performance from differ-
ent aspects: the precision, the recall, the F1 score, and mean average precision (mAP).

The precision evaluates the accuracy in the total number of predictions, whereas the
recall provides insight into how well the prediction covers the objects of interest [25]. The
mathematical formula of precision and recall are defined as follows:

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

where TP, FP, and FN represent the true positive, false positive, and false negative.
F1 score and average precision (AP) were adopted to make a comprehensive eval-

uation of the results, since recall and precision reflect only one aspect of the model’s
performance [25]. F1 score is the harmonic mean of precision and recall, and the formula is
defined as:

F1 score =
2

1
precision + 1

recall
(6)

AP is defined as the area surrounded by the recall-precision curve, which is formu-
lated as:

AP =
∫ 1

0
precision(recall)d(recall) (7)

To evaluate the overall performance of the model on the dataset, mAP was adopted,
which is formulated as:

mAP =
1
n

n

∑
i=1

APi (8)

where n is the number of categories in the dataset.
In order to apply the model to the survey of grassland grazing livestock, we proposed

a new evaluation index—livestock accuracy (LAC), which is the accuracy of the evaluation
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model when calculating the number of grazing livestock in an area. This evaluation index
reflects the accounting accuracy of regional livestock volume (without distinguishing
categories) under the premise of no prior knowledge and full trust model. The formula is
defined as:

LAC =
SUtruth −

∣∣∣SUpredicted − SUtruth

∣∣∣
SUtruth

(9)

SUpredicted = σclass(TPclass + FPclass) (10)

SUtruth = σclassGTclass (11)

where SU is the sheep unit, which is a unified conversion unit for calculating the amount
of livestock. One sheep unit is a sheep with a live weight of 40 kg and its suckling lambs,
and the daily eclipse of forage grass is 5.0–7.5 kg [37]. GT is the number of ground truth
and σclass is the conversion factor of the object class and sheep unit. For example, in this
research area, 1 cattle unit can be converted into 5 sheep units. σclass is defined as follows:

σsheep = 1, 1 sheep = 1 SU (12)

σcattle = 5, 1 cattle = 5 SU (13)

σhorse = 5, 1 horse = 5 SU (14)

3. Results

The model was run on an InterXeon(R) Gold 5118 CPU@2.30GHZ, NVIDIA RTX A6000
GPU, and Ubuntu 18.04.5 LTS system, using the Pytorch 1.10 deep learning framework. The
model used the stochastic gradient descent (SGD) optimizer and was trained for 500 epochs.
In the training strategy, we froze the backbone network at 0–50 epochs and trained with a
batch size of 16. Then, we unfroze the backbone network, all model parameters participated
in the training together, and the batch size was 8. The learning rate was initially set to
0.01, the minimum learning rate was set to 0.0001, the momentum was set to 0.937, and
the weight decay was set to 0.0005. The learning rate drop method adopted was the cos
drop method.

3.1. Algorithm Performance Comparison

To demonstrate the advantage of the proposed method, different deep learning object
detection models are executed in this section, such as Faster R-CNN, RetinaNet, FCOS, and
YOLO series, including the-state-of-art models. The above experimental models include
the classic one-stage, two-stage, and anchor-based and anchor-free classic models as the
object detection model. We used these models to make a horizontal comparison with our
proposed GLDM and observed the performance of these models on our dataset from a
large number of experiments, as shown as Table 4.

Faster RCNN is a milestone model in the RCNN series proposed by Ren et al. [15] in
2016. As a two-stage classic model, Faster RCNN once became the most accurate object
detection model. However, the model is anchor-based, and the accuracy of the model
depends on the setting of anchor hyperparameters, which requires prior knowledge. After
some simple anchor hyperparameter adjustments, the experimental results’ mAP only
reached 21.75%.

RetinaNet is a one-stage detection model as well as an anchor-based model proposed
by He et al. [16] in 2017. In order to solve the problem of class imbalance, the author
proposed using the Focal Loss. Through experiments, the mAP of this model reached
35.78%, which was slightly better than that of the Faster RCNN model, but the detection
effect for the category sheep was not satisfactory.
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Table 4. Comparison of state-of-the-art object-detection models.

Model Time Category AP F1 Recall Precision mAP Parameters 1

Faster
R-CNN

2016
cattle 39.34% 0.48 54.99% 42.88%

21.75% 28.3Mhorse 25.37% 0.36 42.72% 31.15%
sheep 0.53% 0.53 0.60% 60.87%

RetinaNet 2017
cattle 60.09% 0.52 36.73% 91.05%

35.78% 36.4Mhorse 47.26% 0.42 27.86% 85.71%
sheep 0.00% 0 0.00% 0.00%

YOLOv3 2018
cattle 82.43% 0.78 71.76% 85.79%

74.69% 61.5Mhorse 69.06% 0.67 60.06% 74.62%
sheep 72.59% 0.75 74.72% 75.82%

FCOS 2019
cattle 84.95% 0.85 83.23% 87.31%

78.06% 32.1Mhorse 82.06% 0.8 78.95% 81.99%
sheep 67.17% 0.55 40.73% 86.73%

YOLOX-
nano

2021
cattle 84.69% 0.83 82.80% 82.80%

77.73% 0.9Mhorse 75.72% 0.76 74.30% 77.67%
sheep 72.78% 0.77 71.69% 82.87%

YOLOX-x 2021
cattle 89.61% 0.87 90.23% 83.66%

87.19% 99.0Mhorse 86.63% 0.85 87.93% 82.08%
sheep 85.32% 0.88 86.68% 88.53%

GLDM
(ours) 2022

cattle 88.52% 0.86 87.47% 84.25%
86.47% 5.7Mhorse 85.87% 0.84 83.90% 84.16%

sheep 85.03% 0.86 83.99% 87.42%
1 The parameter quantity here is an approximate value, and the conversion relationship is taken as 1 M = 1000 k.

YOLOv3 was proposed by Redmon et al. [17] in 2018, using DarkNet-53 as the back-
bone network and absorbing the idea of FPN with high computing efficiency. As a one-stage
anchor-based model, YOLOv3 introduced the most effective tricks in the industry at that
time, and it is also a milestone object detection model. Through experiments, although the
model size was larger, the accuracy was greatly improved: the mAP reached 74.69%.

FCOS is an anchor-free detection model. It was proposed by Tian et al. [19] in 2019.
This model no longer depends on the anchor and avoids all hyperparameters related to
the anchor that affect the final detection result, and it is a fully convolutional, one-stage
model for pixel-by-pixel prediction. Experiments showed that compared with YOLOv3,
the model achieved a higher mAP with a smaller number of parameters, reaching 78.06%.

The YOLOX-nano in the YOLOX series had a mAP of 77.73% with 0.9 M parameters,
and the YOLOX-x was the model with the largest number of parameters and the highest
accuracy in the series, with a mAP of 87.19%.

The mAP of the GLDM reached 86.47%, a bit lower than the YOLOX-x model. While
improving the detection performance, we also considered the model size. The number
of parameters of the proposed model was only 5.7 M, or only about 5.76% of that of
YOLOX-x. The average precision (AP) for sheep detection exhibited a notable increase of
12.25%, indicating the effectiveness of our enhancements in the detection of small objects. In
summary, we achieved a lighter and higher-precision unification on our UAV dataset, which
is currently a more efficient detection model for grassland grazing livestock detection.

Figure 12 shows a comparison of the detection results from different models. The
chosen models were Faster R-CNN, FCOS, and YOLOv3, which are the typical two-stage,
anchor-free, and classic YOLO model, respectively. Faster R-CNN had a very poor detection
effect on sheep, which had been greatly improved in YOLOv3. Although FCOS was not
as good as YOLOv3 in detecting sheep, it was better in detecting horses than YOLOv3. It
can also be seen from the figure that the above objects all had excellent detection results in
our model.
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   (a) Faster R-CNN          (b) FCOS          (c) YOLOv3            (d) GLDM 

Figure 12. Visualization of the detection results for different methods. (a) Faster R-CNN; (b) FCOS;
(c) YOLOv3; (d) our model (GLDM).

3.2. Ablation Experiments

To verify the effectiveness of the method proposed, ablation experiments were per-
formed in this study. First, we carried out the ablation verification of the overall model
and conducted experiments on the two improved modules, ECSP and WAFR in sequence.
The experimental results are shown in Table 5. After using ECSP, the mAP of the model
was improved by 8.25%. Due to the increase of CHDC in ECSP to the receptive field, and
bilinear interpolation input, the recall rate was significantly improved. The average recall
improved by 8.48%, which aligned with our expectations. Results with high recall are
more beneficial for our application. After the model used WAFR, the mAP of the model
increased by 8.74%, reaching 86.47%. The average recall was improved by 8.86%. Although
the number of parameters changed and increased, the model accuracy improvement in
exchange was worthwhile.
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Table 5. Ablation experiments for the proposed method.

Baseline Backbone Neck Average Recall Average Precision mAP Parameters

nano 76.26% 81.11% 77.73% 0.9M
nano ECSP 84.74% 84.93% 85.98% 3.8M
nano ECSP WAFR 85.12% 85.28% 86.47% 5.7M

3.2.1. Use of Enhanced CSPDarknet

The experimental results above proved that ECSP improved the mAP and recall of the
model. To verify the effectiveness of the three tricks proposed in ECSP, as mentioned above,
we decomposed ECSP and conducted more in-depth ablation experiments. As shown in
Table 6, the experimental results proved that mAP had been improved by each trick.

Table 6. Ablation experiments for ECSP as the backbone.

Baseline Bottleneck Image Input Block Rate mAP

nano 77.73%
nano CHDC 78.17%
nano CHDC 1024 × 1024 85.04%
nano CHDC 1024 × 1024 1:1:3:1 85.98%

As for improving our stage compute rate on the backbone, it is an optimal ratio that
we have explored through many experiments. In Table 7 below, several representative
experiments are given. The original ratio was 1:3:3:1, referring to the ratio of CHDC in
Dark2-5. In the nano model, the depth factor was 1, so 1:3:3:1 was also the real number ratio
of CHDC in each stage. First, the ratio was adjusted based on keeping the total number
consistent. Although higher accuracy was obtained, the size of the model was sacrificed.

Table 7. Ablation experiments for stage compute rate in ECSP.

Baseline Bottleneck Image Input Block Rate mAP Parameter

nano CHDC 1024 × 1024 1:3:3:1 85.04% 3.949M
nano CHDC 1024 × 1024 1:1:3:3 84.96% 5.642M
nano CHDC 1024 × 1024 1:1:4:2 85.19% 4.965M
nano CHDC 1024 × 1024 1:1:5:1 85.88% 4.288M
nano CHDC 1024 × 1024 1:1:3:1 85.98% 3.836M

In the final experiment, the mAP of the model with a ratio of 1:1:3:1 was 0.94%
higher than that of the original model. The parameters were reduced by 0.11 M, which
achieved higher accuracy and smaller volume than the original model, and is currently the
best choice.

3.2.2. Use of Weighted Aggregation Feature Re-Extraction Pyramid

In this part, we give the ablation tests for WAFR, as shown in Table 8 below. Exper-
iments in the table verify the effect of WAFR on the model with or without ECSP. When
not using our proposed ECSP, WAFR brought a 0.9% improvement to the model, and after
using ECSP, WAFR brought a 0.49% improvement to the model. Experiments proved that
WAFR was effective for model improvement.

3.2.3. Visualization of Results

In order to see the difference before and after the model improvement more clearly, we
show in Figure 13 the original test image, the test result image before and after the model
improvement, and the ground truth. The figure shows the detection results of typical
sheep, horses, and cattle images. We can see an improvement in missed detection and false
detection. In a dense scene like a flock of sheep, the improved model significantly improved
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the recall of sheep and detected some previously undetected objects efficiently. For horses,
false detections before improvement were corrected. For the cattle in the figure, there may
be two cattle with one detection box before the improvement, and the individuals were
better distinguished after the improvement.

Table 8. Ablation experiments for WAFR.

Baseline Backbone Neck mAP

nano CSPDarknet PAN 77.73%
nano CSPDarknet WAFR 78.63%
nano ECSP PAN 85.98%
nano ECSP WAFR 86.47%

 
 

 
 

 
   (a) Original image     (b) YOLOX-nano      (c) GLDM (ours)     (d) Ground truth 

Figure 13. Comparison of detection results before and after model improvement.
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3.3. Model Application

In this part, we study the application of the model, including the scale adaptability of
the model; that is, in what resolution range the model can still maintain a good accuracy,
the model inference method of large-size remote sensing image, and the grassland livestock
counting in the test dataset.

3.3.1. Model Scale Adaptability

The data used in this study were collected by UAVs flying at 300 m, although due
to the ups and downs of the terrain, the actual shooting distance to the ground varied.
However, generally speaking, the resolution was roughly within a range; that is, the size
of similar objects did not change much. Since the model proposed was trained from such
data, we needed to test the model’s adaptability to large-scale changes. Therefore, we
made a test dataset with multi-scale variation, as described in Section 2. The test results
are shown in Table 9 and Figure 14. The general trend was that as the scale shrank or
expanded, the detection performance decreased, but the performance of different categories
was slightly different.

Table 9. AP of three animals’ detection at different scales.

Scale 0.2 0.25 0.33 0.5 1 2 3 4 5

cattle AP 0.5047 0.6361 0.7955 0.9035 0.9142 0.8467 0.245 0.1038 0.029
horse AP 0.1479 0.4022 0.5168 0.7929 0.8919 0.9159 0.7309 0.3634 0.089
sheep AP 0.0255 0.1187 0.2602 0.6222 0.9074 0.9457 0.9127 0.7319 0.4122

mAP 0.226 0.3857 0.5242 0.7728 0.9045 0.9028 0.6296 0.3997 0.1767

 
               (a) 

 
               (b) 

Figure 14. (a) The line graph of the AP values of cattle, horse, sheep, and mAP on the multi-scale test
dataset; (b) the heat map of the AP values of the three types of objects on the multi-scale test dataset.
This more intuitively reflects the difference in the detection of scale changes in the model for cattle,
horses, and sheep.
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From Figure 14b, it can be seen more intuitively that cattle and sheep have misplace-
ment for scale changes. Cattle have stronger adaptability to scale reduction, and sheep have
stronger adaptability to scale expansion. Assuming that the AP value of any category is
required to be greater than or equal to 0.5, a scale change of 0.5–2 can meet the requirements.
Performance drops off significantly outside of a scale change of 0.33-3.

Considering that the original image resolution of our dataset was about 5 cm, and
corresponding to the above conclusion, our model still performed well between 2.5 and
10 cm through resolution conversion. The range could be expanded appropriately, but it
was best to stay within 15 and 1.7 cm. Figure 15 below is the test dataset detection results
at scales of 0.5, 1, and 2.

 

(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

Figure 15. The detection results of the model at scales of 0.5, 1, and 2; (a–c) cattle at scales of 0.5, 1,
and 2; (d–f) horses at scales of 0.5, 1, and 2; (g–i) sheep at scales of 0.5, 1, and 2.

3.3.2. Large-Size Remote Sensing Image Inference and Grassland Livestock Accounting

In practical applications, we often obtain large-size remote sensing images. For
example, the original image size of the UAV in our research reached 7952 × 5304. If an
image of this size is directly detected without a split, the entire image will be compressed
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to a fixed size before entering the network. The algorithm directly filters a large amount of
image information in the preprocessing stage. Because the object to be detected is extremely
small, the image entering the network may have no object information.

We used the sliding window detection method to achieve the inference process of
large-size remote sensing images. The detection window slides from the upper left of the
image until it slides to the lower right, traversing the entire image. The final large-size
image detection result is obtained, as shown in Figure 16. The object in the figure, which is
the original UAV image, has been effectively detected without split.

 

 

Figure 16. The result of the direct detection of the original image of the UAV.

We used the model in this paper to calculate the number of livestock in the testing
dataset, and the detailed data are shown in Table 10. The test set had 3136 livestock samples,
which could be converted into 6312 sheep units. The model detected 489 cattle objects,
322 horse objects, and 2261 sheep objects, which were converted into 6316 sheep units.
Therefore, LAC (the accuracy of accounting for livestock in Section 2.2.3) using UAV images
in this testing dataset reached 99% without prior knowledge.
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Table 10. Livestock accounting in testing dataset.

Category Truth TP FP FN LAC

cattle 471 412 77 59
0.99horse 323 271 51 52

sheep 2342 1967 294 375

4. Discussion

The use of UAV images combined with deep learning for the automatic detection of
grassland grazing livestock presents several technical difficulties, such as small objects,
easy false detection, and easily missed detection. In this study, an improved deep learning
detection model GLDM was designed based on the YOLOX nano model to deal with the
above difficulties. The enhanced backbone network ECSP we proposed incorporates the
hybrid dilated convolution idea to expand the receptive field to extract the context features
of small objects. We also optimized the stage compute ratio and the input size. These
techniques enhanced the feature extraction ability of small objects in the image, significantly
improving the model’s recall. Additionally, a feature fusion structure WAFR was designed
to strengthen the network’s utilization of objects’ shallow features, further enhancing
the detection and positioning capabilities of small objects. Experimental results have
also shown that our proposed model achieves better performance than before, effectively
addressing the challenges posed by small object detection, false detection, and missed
detection. The proposed model can also be used for large-scale grassland livestock surveys.

Nonetheless, there remain several areas for improvement in this study. First, the
computational efficiency of the model has not been optimized. Secondly, the model has
not improved the detection of ultra-dense sheep in sheep pens, which is also a direction
for future research. For future work, in addition to exploring the above issues, there are
several directions that are worthy of further work.

1. Increase the number of labeled samples and add other object categories to explore
possible long-tail object detection. This is a complex problem in the field of object
detection that warrants further investigation.

2. Collect multi-angle and multi-scale data to expand the model’s application scenarios.
This will make the model more flexible and allow it to be applied to tasks such as
target tracking in the future, as well as enabling the description of objects at ultra-high
resolution.

3. Study the domain adaptation problem in transfer learning and explore the knowledge
transfer of the model. This is critical for the inheritance and evolution of the model,
as well as the reduction of data labeling costs.

5. Conclusions

In this study, a deep learning dataset based on UAV images was constructed, and a
deep learning method GLDM for grassland grazing livestock detection was proposed to
better integrate deep learning technology into remote sensing and serve grassland animal
husbandry. The model’s detection ability for small and confusing objects in UAV images
was effectively strengthened by the enhanced backbone network ECSP and the feature
fusion module WAFR. Experimental results show that this model has better detection
performance and fewer model parameters than existing object detection algorithms. It per-
formed well in the recall rate, and the mAP of the model reached 86.47%, which is suitable
for detecting grassland grazing livestock in UAV images. Moreover, the performance of the
model was investigated, and it was observed to maintain good performance in images with
a spatial resolution ranging from 2.5 to 10 cm. The inference process of large-size remote
sensing images was implemented without splitting. Overall, the proposed model can
achieve remarkable results in livestock detection, effectively overcome the main practical
problems, and can practicably perform livestock surveys using UAV remote sensing over
extensive grassland.
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Abstract: In recent years, semantic segmentation with pixel-level classification has become one of
the types of research focus in the field of polarimetric synthetic aperture radar (PolSAR) image
interpretation. Fully convolutional network (FCN) can achieve end-to-end semantic segmentation,
which provides a basic framework for subsequent improved networks. As a classic FCN-based
network, U-Net has been applied to semantic segmentation of remote sensing images. Although
good segmentation results have been obtained, scalar neurons have made it difficult for the network
to obtain multiple properties of entities in the image. The vector neurons used in the capsule network
can effectively solve this problem. In this paper, we propose a complex-valued (CV) U-Net with a CV
capsule network embedded for semantic segmentation of a PolSAR image. The structure of CV U-Net
is lightweight to match the small PolSAR data, and the embedded CV capsule network is designed to
extract more abundant features of the PolSAR image than the CV U-Net. Furthermore, CV dynamic
routing is proposed to realize the connection between capsules in two adjacent layers. Experiments
on two airborne datasets and one Gaofen-3 dataset show that the proposed network is capable of
distinguishing different types of land covers with a similar scattering mechanism and extracting
complex boundaries between two adjacent land covers. The network achieves better segmentation
performance than other state-of-art networks, especially when the training set size is small.

Keywords: semantic segmentation; complex-valued U-Net; complex-valued capsule network;
polarimetric synthetic aperture radar

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) can obtain rich information of the
observed targets [1–3]. It has been widely used in agricultural monitoring, natural disaster
assessment, biomass statistics, etc. The technologies of PolSAR image interpretation can
help us understand and identify targets from an image; thus, it has always been a concern
for researchers. However, since the formation mechanism of a PolSAR image is very com-
plex, PolSAR image interpretation is still a challenging task. In recent years, driven by deep
learning, two kinds of image interpretation technologies, namely image classification [4–8]
and semantic segmentation [9–11], have made remarkable achievements.

PolSAR image classification based on deep learning has been deeply and extensively
studied. According to the supervision mode, it mainly has three kinds of methods, namely,
supervised, unsupervised, and semi-supervised [12]. For the supervised methods, convolu-
tional neural networks (CNNs) [5,13] were the most widely used. Furthermore, a recursive
neural network [14] was used. For the unsupervised methods, a deep belief network [15],
an auto-encoder combined with Wishart distribution [16], and a task-oriented generative
adversarial network [17] were studied. For the semi-supervised methods, a self-training
model [18] and graph-based models [19,20] were proposed. In addition, some deep active
learning and other new techniques were explored [21,22].
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The research about CNN-based PolSAR image classification mainly focused on the
real-valued (RV) structures and the inputs of networks at first. In terms of RV CNN
structure, a four-layer CNN [23], a dual-branch deep CNN [24], a multi-channel fusion
CNN [25], and a lightweight 3D CNN [26] were proposed. In terms of RV CNN inputs,
some polarimetric features were selected to accelerate the convergence speed of CNN [13].
Then, complete features obtained by the polarimetric scattering coding were also used as
the inputs [27]. Moreover, the amplitude and phase of the polarimetric coherence matrix
were extracted as the inputs of a multi-task CNN [28]. Although both the methods of
improving the network structure and extracting the complete input information effectively
improved the classification performance, the problem of information loss caused by the
RV structures and inputs still existed. Subsequently, some complex-valued (CV) CNNs
were proposed to directly use the CV polarimetric coherent matrix as the input, aiming
to avoid information loss. For example, a three-layer CV CNN [5], a CV 3D CNN [29],
a CV 3D CNN combined with conditional random field [30], and a CV PolSAR-tailored
differentiable architecture network [7] were widely studied. Furthermore, recurrent CV
CNN combined with semi-supervised learning was also proposed for the classification
with a small number of samples [31]. In the above classification processes, the training
samples were obtained by using a sliding window, and each of them was an image patch
with a small size. After the classification of each image patch, the obtained category was
determined as the category of the center pixel in the patch. This pixel-by-pixel process had
the problem of computational redundancy.

Semantic segmentation based on deep learning can achieve pixel-level classification in
an end-to-end manner. Among various deep learning technologies, semantic segmentation
networks based on s fully convolutional network (FCN) [32] have been rapidly developed.
There are U-Net [33], SegNet [34], PSPNet [35], DeepLabv3+ [36], RefineNet [37], and so on.
These networks have been used for semantic segmentation of optical [34–37], medical [33],
and remote sensing images [38–41]. In the field of PolSAR image interpretation, semantic
segmentation can effectively avoid the repeated computation when compared with image
classification. Figure 1 shows the main differences between PolSAR image classification and
semantic segmentation. For PolSAR image classification, the input is a small image patch
that can be represented by a polarimetric coherent matrix, polarimetric decomposition
results, and so on. The output is the category of the central pixel in the image patch. For
semantic segmentation of a PolSAR image, the input is a large image block including
multiple classes of targets, and its representation is the same as that of image classification.
The output is the categories of all pixels in the image. Obviously, semantic segmentation
can significantly reduce the computing time.

input output

Developed urban
(Category of the 

center pixel)

Classification 
Network

Semantic 
segmentation

Network

Figure 1. Differences between PolSAR image classification and semantic segmentation.

The research about semantic segmentation of PolSAR images started from FCN. Ini-
tially, FCN was only used to extract image features. Wang et al. used FCN to extract
the spatial features and combined them with sparse and low-rank subspace features [42].
He et al. integrated FCN with a manifold graph embedding model to extract spatially
polarized features [43]. After that, FCN, U-Net, SegNet, and DeepLabv3+ were applied in
the semantic segmentation of PolSAR images in the real sense. Li et al. combined sliding
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window FCN with sparse coding to avoid the repeated calculations [44]. Mohammadi-
manesh et al. presented a new FCN with an encoder–decoder architecture for semantic
segmentation of complex land cover ecosystems [45]. Pham et al. verified that SegNet
could obtain promising segmentation results on very high-resolution PolSAR images [46].
Wu et al. used two structural modes (i.e., FCN and U-Net) and combined transfer learning
strategies to perform semantic segmentation when the training set size was small [47].
Zhao et al. proposed a parallel dual-channel dilated FCN and used a semi-supervised
fuzzy c-means clustering method to increase the number of the training samples [48].
Jing et al. proposed a polarimetric space reconstruction network, which included a scatter-
ing and polarimetric coherency coding module, a statistics enhancement module, and a
dual self-attention convolutional network [49]. In order to fully utilize both amplitude and
phase information of PolSAR data, Cao et al. presented a novel CV FCN [50], and Yu et al.
proposed a lightweight CV Deeplabv3+ (L-CV-Deeplabv3+) [51].

The above CNN-based PolSAR image classification and FCN-based semantic segmen-
tation greatly promoted the development of PolSAR image interpretation. However, there
is still room for improvement due to the inherent defects of CNN. Taking face recognition
as an example, even if the relative position of human eyes and mouth in an image is
incorrect, CNN still recognizes it as a face because it is difficult for CNN to learn the relative
positions between different entities in an image. A capsule network, which uses a vector
neuron as the basic unit, can learn more information than CNN [52]. The amplitude of
one activity vector neuron represents the probability of the existence of entities, and the
orientation expresses instantiation parameters. Regarding the face recognition example,
the capsule network can obtain the relative position between human eyes and the mouth,
thus correctly recognizing the face. Furthermore, since vector neurons contain multiple
properties of entities in the image, the capsule network requires fewer training samples
than CNN during the training process. Up to now, the capsule network has also been
widely used in optical [53,54], medical [55,56], remote sensing [57], and other image inter-
pretation fields [58]. In the field of PolSAR image classification, Cheng et al. proposed a
hierarchical capsule network to extract deep and shallow features. Experimental results
on datasets from different platforms showed that the network had good generalization
performance [59]. In the field of medical image semantic segmentation, Lalonde et al.
proposed a segmented capsule network with U-shaped structure. Experimental results on
pathological lungs showed that this network not only had better segmentation performance
but also involved fewer parameters than U-Net [60].

In this paper, based on our previous work [61], we propose a CV U-Net with a capsule
network embedded for semantic segmentation of PolSAR images. The reason for using
U-Net as the backbone network is that its simple structure has good performance on small
datasets when compared with other FCN-based segmentation networks. Considering
that the PolSAR datasets used in this paper are small, the structure of U-Net is further
lightweight to match these datasets. Moreover, U-Net is extended to the CV domain to
directly use CV PolSAR data as the input. This CV network can mine the characteristics
of the target from CV data, avoiding loss of information. In order to improve the feature
extraction ability of the network, a CV capsule network is added behind the encoder of
the CV U-Net. The CV capsule network mainly includes the CV primary capsules and the
segmented capsules, which are different from those given in [52]. Inspired by [60], we also
propose a locally constrained CV dynamic routing mechanism to realize the connection
between capsules in two adjacent layers. The main contributions of this paper can be
concluded as follows.

1. A lightweight CV U-Net is designed for semantic segmentation of PolSAR image. It
uses a polarimetric coherence matrix as the input of the network, aiming to utilize both
the amplitude and phase information of PolSAR data. The lightweight structure of
the network can match the PolSAR datasets with a small number of training samples.

2. A CV capsule network is embedded between the encoder and decoder of CV U-Net to
extract abundant features of PolSAR image. To make the CV capsule network suitable
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for semantic segmentation, the segmented capsule is adopted to replace the digital
capsule used in the image classification.

3. The locally constrained CV dynamic routing is proposed for the connection between
capsules in two adjacent layers. The locally constrained characteristic helps to extend
the dynamic routing to the connection of capsules with large sizes, and the routing
consistency of the real part and imaginary part of the CV capsules improves the
correctness of the extracted entity properties.

4. Experiments on two airborne datasets and one Gaofen-3 PolSAR dataset verify that
the proposed network can achieve better segmentation performance than other RV
and CV networks, especially when the training set size is small.

The rest of this paper is organized as follows. The theoretical background about
PolSAR data, U-Net and the capsule network are introduced in Section 2. Section 3 proposes
a CV U-Net with capsule embedded and illustrates the principle of locally constrained
CV dynamic routing. Experimental results and analysis are shown in Section 4. Section 5
discusses the improvement of segmentation performance brought by the CV capsule
network. Finally, the conclusion is given in Section 6.

2. Related Work

2.1. PolSAR Data

Because PolSAR systems can transmit and receive different polarimetric electromag-
netic waves, they can obtain rich scattering information about the observed targets. H
and V are denoted as the horizontal and vertical polarization modes, respectively. Then, a
2 × 2 complex polarimetric scattering matrix can be written by,

[S] =
[

SHH SHV
SVH SVV

]
(1)

where the subscripts x and y of Sxy (x = H, V; y = H, V) represent the polarization modes of
the received and transmitted electromagnetic wave, respectively.

From the reciprocity theorem, SHV is approximately equal to SVH for monostatic SAR.
Then, the scattering vector under Pauli basis can be expressed by,

k =
1√
2
[SHH + SVV , SHH − SVV , 2SHV ]

T (2)

Furthermore, the polarimetric coherence matrix T is calculated by,

T =
〈

k · kH
〉
=

⎡
⎣T11 T12 T13

T21 T22 T23
T31 T32 T33

⎤
⎦ (3)

2.2. U-Net

U-Net was first applied to semantic segmentation of medical images. The structure of
U-Net proposed in [33] is shown in Figure 2. The upper part of the figure is the encoder,
while the lower part is the decoder. They are almost symmetrical. The purpose of the
encoder is to extract deep features, while the purpose of the decoder is to obtain target
areas in the image and then determine their categories.

The encoder is also named the contracting path, because its feature sizes are gradually
decreasing. It mainly includes four blocks, and each block contains two convolutional
layers and one max pooling layer. From the second block, the first convolutional layer
doubles the feature channels, and the maximum pooling layer halves the feature size.
The decoder is also named the expanding path, because its feature sizes are gradually
increasing. Corresponding to the encoder, it also includes four blocks. Each block contains
one upsampling and convolutional layer and two convolutional layers. The upsampling
and convolutional layer doubles the feature sizes and halves the feature channels. After
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the upsampling and convolution operation, the feature maps are concatenated with those
copied and clipped from the corresponding encoder layer, aiming to restore good details of
targets in the image. Then, the following convolutional layer halves the feature channels.

For all the convolutional operations in the network, the sizes of convolutional kernels
are 3 × 3, and the convolutional stride is 1. After each convolutional operation, the ReLU
activation function is used. The size of the pooling operation is 2 × 2, and the pooling
stride is 2. For all the upsampling and convolution operations, the upsampling ratio is
2 × 2, and the size of the convolutional kernels is 2 × 2. After the last convolutional layer
in the expansion path, there is one 1 × 1 convolution to obtain the categories of all targets
in the image.

 

Figure 2. Architecture of U-Net.

2.3. Capsule Network

A capsule network can overcome the shortcomings of CNN and obtain multiple
properties of entities in the image. The architecture of the capsule network proposed in [52]
is shown in Figure 3. It mainly includes two convolutional layers and one fully connected
layer. The first convolutional layer is used in extracting features. The convolutional kernel
has a size of 9 × 9, and the convolutional stride is 1. After the convolution operation, a
ReLU activation function is used. The second convolutional layer is used in obtaining the
primary capsules. The convolutional kernel also has a size of 9 × 9, and the convolutional
stride is 2. The output of this layer is 32 × 6 × 6 primary capsules, and each primary
capsule is a vector with size of 1 × 8. The final layer is used in obtaining the digital
capsules, which connects the primary capsules through dynamic routing. The total number
of digital capsules is 10, and each digital capsule is a vector with a size of 1 × 16. Finally,
the category of sample is the number of the digital capsule whose value has the maximum
under L2-norm.

9×9

ReLU Conv1

20

256

8

PrimaryCaps

6

9×9

16

×ijW = 8 16

1010
L

DigitCaps

 
Figure 3. Architecture of a capsule network.

3. Methodology

A CV U-Net with a capsule embedded is proposed for semantic segmentation of the
PolSAR image in this section. The architecture of this network is shown in Figure 4. It
mainly includes the CV encoder, CV decoder and CV capsule network, where the CV
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capsule network is embedded between the encoder and the decoder. Furthermore, the
locally constrained CV dynamic routing is proposed for the connection between capsules
in two adjacent layers of the CV capsule network. The detailed structure of the three parts
and the principle of the locally constrained CV dynamic routing are introduced as follows.
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Figure 4. Architecture of CV U-Net with the capsule network embedded.

3.1. CV Encoder

The CV encoder shown in Figure 4 (the green dashed box at the top) includes three
CV convolutional blocks. For the first block, there are three CV convolutional layers in
total. Each of the first two CV convolutional layers has 32, 3 × 3 convolution kernels,
and the convolutional stride is 1. The output sizes of these two convolutional layers
are the same as the input. The third CV convolutional layer has 32, 3 × 3 convolution
kernels, and the convolutional stride is 2. The output size of this layer is half of the input.
For the second block, the structure and convolution parameters are the same as those
of the first block except that the number of convolution channels of each layer is twice
that of the corresponding layer in the first block. For the third block, there are a total of
four CV convolutional layers. Compared with the second block, it adds a convolution
layer and doubles the convolution channels for each corresponding layer. Both a CV
ReLU activation function and a CV batch normalization operation are located after each
convolution operation. Formulas about the CV convolution operation and the CV ReLU
activation function as well as the CV batch normalization method are provided in [62].

Regarding the structure of the CV encoder, it was designed based on the RV encoder
shown in Figure 2. However, there are several differences between the CV and RV encoders.
First, the number of convolutional blocks and convolution channels of the CV encoder
are less than those of the RV encoder, so as to make the network fit for the small PolSAR
datasets. Second, all the network parameters and convolution operations involved in
the CV encoder are extended to the CV domain, which aims to extract more abundant
information from the CV input. Third, the CV convolution with a stride of 2 in the CV
encoder replaces the pooling operation in the RV encoder, which can reduce the loss of
information. Finally, the mode of convolution with a stride of 1 in the CV encoder is
different from that in the RV encoder. The output size obtained in the CV encoder is
consistent with the input.
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3.2. CV Decoder

The CV decoder shown in Figure 4 (the green dashed box at the bottom) includes
three CV deconvolutional blocks, which are symmetrical to the CV encoder. For the first
deconvolutional block, there are one CV upsampling and convolutional layer and three CV
convolutional layers. The CV upsampling and convolutional layer has an upsampling ratio
of 2 × 2, and the output size is twice the input. Then, a copy and concatenation operation
is performed to combine low-level feature maps from the encoder with deep-level feature
maps from the decoder. Next, three convolutional layers all have 128, 3 × 3 convolution
kernels with a stride of 1. The output sizes of these convolutional layers are the same as the
input. For the second deconvolutional block, it reduces one CV convolutional layer and
halves the convolution channels of each layer when compared with the previous block. For
the third CV deconvolutional block, the structure and convolution parameters are the same
as those of the second block except for the convolution channels. There are also a CV ReLU
activation and a CV batch normalization operation after each of the aforementioned convo-
lution operation. After these three deconvolutional blocks, there is one CV convolution
operation with a size of 1 × 1, which aims to make the convolution channels consistent
with the total number of categories in the image. Subsequently, magnitude operation
is implemented to covert CV features into RV. Finally, the softmax operation is used to
complete the classification. Formulas about the upsampling operation, the concatenation,
and the magnitude operation are provided in [51].

Comparing the above CV decoder with the RV decoder shown in Figure 2, there
are also four differences. The first two differences are the same as those analyzed in the
CV encoder. The third difference is that the magnitude operation is added in the CV
decoder to directly use the RV softmax function for the classification. The last one is that the
segmentation task of two categories in the RV decoder is extended to N (N > 1) categories
in the CV decoder.

3.3. CV Capsule Network

The CV capsule network shown in Figure 4 (the blue dashed box) is embedded
between the encoder and the decoder. The design of this structure is inspired by [60]. It
mainly includes two CV convolution capsule layers and two reshape operations. At first,
128 feature maps with size of 8 × 8 are reshaped into 8 × 8 × 1, which can also be seen as
128 × 8 capsules with size of 1 × 8. Then, the CV primary capsules are obtained by the
first convolution capsule layer. There are 32 × 8 × 8 primary capsules, and each primary
capsule is a vector with size of 1 × 8. The connection between the previous feature maps
in a vector form and the CV primary capsules adopts the locally constrained CV dynamic
routing way introduced in Section 3.4. Next, the CV segmented capsules are obtained by
the second convolution capsule layer. There are 16 × 8 segmented capsules with size of
1 × 8. The locally constrained CV dynamic routing is also used to connect the CV primary
capsules and the segmented capsules. Finally, the segmented capsule is reshaped into 16
feature maps with size of 8 × 8, and it is used as the input of the CV decoder.

From the above structure and operations of the CV capsule network, it is obviously
different from the original capsule network shown in Figure 3. In order to make the CV
capsule network suitable for the semantic segmentation, the segmented capsule replaces
the digital capsule used in the image classification. Furthermore, the convolution capsule
operation instead of the fully connected operation is used in obtaining the segmented
capsule. Because the convolution operation can share weight parameters, it is beneficial to
reduce the amount of calculation. Furthermore, the locally constrained CV dynamic routing
is used for the connection between capsules in two adjacent layers. It is helpful to extend
the dynamic routing to capsules with large sizes. More importantly, the routing consistency
of the real part and imaginary part of the CV capsules can improve the correctness of the
extracted entity properties from the PolSAR image.
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3.4. Locally Constrained CV Dynamic Routing

For any layer l (l ≥ 1) and its adjacent layer l + 1 in the CV capsule network, suppose
there are Nc types of CV child capsules at layer l and Np types of CV parent capsules at

layer l + 1. Denote the CV child capsule types as Tl =
{

tl
1, tl

2, . . . , tl
i . . . , tl

Nc

}
and the CV

parent capsule types as Tl+1 =
{

tl+1
1 , tl+1

2 , . . . , tl+1
j . . . , tl+1

Np

}
. For each tl

i ∈ Tl , there are

hl × wl child capsules with dimension of zl . For each tl+1
j ∈ Tl+1, there are hl+1 × wl+1

parent capsules with dimension of zl+1. All the parent capsules can also be expressed

by P =

{
ptl+1

j 11, . . . , ptl+1
j 1wl+1 , . . . , ptl+1

j hl+11, . . . , ptl+1
j hl+1wl+1

}
. Take a CV parent capsule

ptl+1
j xy ∈ P (1 ≤ x ≤ hl+1; 1 ≤ y ≤ wl+1), for example, the principle of locally constrained

CV dynamic routing is shown in Figure 5, and the detailed process of child capsules routing
to parent capsules is analyzed as follows.

At first, in a user-defined kernel (the red solid box), the CV convolution operation
implemented by matrix multiplication is used in obtaining the prediction vectors. For a
type of tl

i child capsules, a CV kernel with size of kh × kw × zl is defined as utl
i x0y0

, where

(x0, y0) is the center of the kernel. The CV matrix with size of kh × kw × zl × Np × zl+1 is
denoted as Mtl

i
, which is shared over all the kernels in the same type of CV child capsules.

Therefore, the predicted CV vector ûtl+1
j xy|tl

i
can be calculated by,

ûtl+1
j xy|tl

i
= Mtl

i
utl

i x0y0
(4)
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Figure 5. Locally constrained CV dynamic routing.

Then, the weighted sum over the predicted vectors from all the types of CV child
capsules is implemented to obtain the CV parent capsule ptl+1

j xy, which can be expressed by,

ptl+1
j xy = ∑

i
rtl

i |t
l+1
j xyûtl+1

j xy|tl
i

(5)

where rtl
i |t

l+1
j xy is the routing coefficient. It can be calculated by,

rtl
i |t

l+1
j xy =

exp
(

btl
i |t

l+1
j xy

)

∑
k

exp
(

btl
i |t

l+1
j k

) (6)
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where btl
i |t

l+1
j xy is the log prior probability.

Next, the squashed CV parent capsule vtl+1
j xy is obtained by,

vtl+1
j xy =

∥∥∥∥ptl+1
j xy

∥∥∥∥
2

1 +
∥∥∥∥ptl+1

j xy

∥∥∥∥
2

ptl+1
j xy∥∥∥∥ptl+1
j xy

∥∥∥∥
(7)

where ∥∥∥∥ptl+1
j xy

∥∥∥∥ =

√∥∥∥∥�
(

ptl+1
j xy

)∥∥∥∥
2
+

∥∥∥∥�
(

ptl+1
j xy

)∥∥∥∥
2
. (8)

Finally, the coefficient btl
i |t

l+1
j xy is updated by,

btl
i |t

l+1
j xy ← btl

i |t
l+1
j xy + Δbtl

i |t
l+1
j xy. (9)

where Δbtl
i |t

l+1
j xy is obtained by,

Δbtl
i |t

l+1
j xy =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vtl+1
j xy·ûtl+1

j xy|tl
i

�
(

vtl+1
j xy

)
·�
(

ûtl+1
j xy|tl

i

)
> 0

and �
(

vtl+1
j xy

)
·�
(

ûtl+1
j xy|tl

i

)
> 0

0 otherwise

(10)

Equation (10) means that only when the product of the real parts of vtl+1
j xy and ûtl+1

j xy|tl
i

is greater than 0 and the product of the imaginary parts of these two CV vectors is also
greater than 0, Δbtl

i |t
l+1
j xy is equal to the dot product of vtl+1

j xy and ûtl+1
j xy|tl

i
. Otherwise,

Δbtl
i |t

l+1
j xy is equal to 0. This update condition is stricter than that of RV dynamic routing,

because the coefficient is updated only when the dynamic routing of the real part is
consistent with that of the imaginary part.

The above process of locally constrained CV dynamic routing can also be summarized
in Algorithm 1.

Algorithm 1 Locally Constrained CV Dynamic Routing

1: Procedure Routing (ûtl+1
j xy|tl

i
, d, l, kh, kw)

2: for all CV child capsule types tl
i within a kh × kw kernel in layer l and a CV parent capsule tl+1

j xy in
layer l + 1: btl

i |t
l+1
j xy ← 0 .

3: while iteration < d do

4: for all CV child capsule types tl
i in layer l:

5: rtl
i |t

l+1
j xy ← so f tmax

(
btl

i |t
l+1
j xy

)
� softmax computes Equation (6)

6: for the CV capsule tl+1
j xy in layer l + 1:

7: ptl+1
j xy ← ∑

j
rtl

i |t
l+1
j xyûtl+1

j xy|tl
i

8: for the CV capsule tl+1
j xy in layer l + 1:

9: vtl+1
j xy ← squash

(
ptl+1

j xy

)
� squash computes Equation (7)

10: for all CV capsule types tl
i and the CV capsule tl+1

j xy:
11: btl

i |t
l+1
j xy ← btl

i |t
l+1
j xy + Δbtl

i |t
l+1
j xy �Δbtl

i |t
l+1
j xy computes Equation (9)

12: end while

13: return vtl+1
j xy
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4. Experiments and Analysis

Experimental datasets are briefly described in Section 4.1. Then, both the data pre-
processing and the experimental setup are introduced in Section 4.2. Finally, the detailed
experimental results and analysis are given in Section 4.3.

4.1. Experimental Datasets

Experiments were implemented on three fully polarimetric datasets. Two are collected
by AIRSAR airborne platform, and one is collected by Gaofen-3. The detailed descriptions
of datasets are as follows.

(1) Flevoland dataset: It was collected in the Flevoland area of the Netherlands in 1989.
The Pauli RGB image of this L-band dataset is shown in Figure 6a, and its size is
1024 × 750. In the following experiments, 15 types of land covers are considered and
others are regarded as backgrounds.

(2) San Francisco dataset: It was collected in the area of San Francisco Bay in 1988.
The Pauli RGB image of this L-band dataset is shown in Figure 6b, and its size is
1024 × 900. In the following experiments, five types of land covers are considered
and others are regarded as backgrounds.

(3) Hulunbuir dataset: It was collected in the Hulunbuir area of China. The Pauli RGB
image of this C-band dataset is shown in Figure 6c, and its size is 1265 × 1147. In
the following experiments, eight types of land covers are considered and others are
regarded as backgrounds.

   

(a) (b) (c) 

Figure 6. Pauli RGB image. (a) Flevoland dataset; (b) San Francisco dataset; (c) Hulunbuir dataset.

4.2. Data Preprocessing and Experimental Setup

In the following experiments, four networks are compared with the proposed network.
They are U-Net, DeepLabv3+, CV U-Net, and L-CV-DeepLabv3+ [51]. The first two are
RV networks, while the last two are CV networks. With the goal of achieving good
segmentation results, all four networks are lightweight to match the above three PolSAR
datasets. In Figure 4, we give the structure and parameters of the proposed network. For
the sake of fairness, we design the structure of CV U-Net by removing the CV capsule
network from the proposed network. In addition, we regard U-Net as the RV version of CV
U-Net. As for L-CV-DeepLabv3+, its structure and parameters are given in [51]. Moreover,
DeepLabv3+ is the RV version of L-CV-DeepLabv3+.

The inputs of the above networks are also RV and CV, correspondingly. For three
CV networks, because the polarimetric coherence matrix T in Equation (3) is a Hermitian
symmetric matrix, the upper triangular 6-channel CV data are directly used as the inputs.
They can be expressed by {T11, T22, T33, T12, T13, T23}. For two RV networks, 9-channel RV
data are used as the inputs to make them close to the CV input. They are expressed by
{T11, T22, T33, real(T12), imag(T12), real(T13), imag(T13), real(T23), imag(T23)} .
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The data preprocessing about the polarimetric coherence matrix is as follows. At
first, each dataset is expanded in a mirror mode. The sizes of three expanded datasets are
1024 × 832, 1024 × 960 and 1280 × 1152, respectively. Then, we cut each expanded dataset
into blocks without overlapping by using a sliding window with size of 64 × 64. Next,
we build the training set by selecting 40% of the blocks and build the test set by using the
remaining 60% of the blocks for each dataset. Finally, each train set is expanded by the
scaling and rotating operations. The sizes of training sets before and after expansion are
shown in Table 1, and the sizes of test sets are also given there.

Table 1. Sizes of training and test sets.

Dataset
Training

Test
Before Expansion After Expansion

Flevoland dataset 51 909 75
San Francisco dataset 96 1710 144

Hulunbuir dataset 56 1003 83

All the experiments are implemented on the Ubuntu operating system. We use
Anaconda 3 as the software environment and Python 3.6 as the programming language.
For the hardware environment, the CPU mode is Intel core i7-10700K, the memory size
is 16G, the GPU model is Nvidia GeForce RTX 2080, and the video memory is 8G. In the
training process, we use Adam as the optimized algorithm. The learning rate is 1× 10−4,
and the batch size is 16. In terms of performance indicators, we use intersection over union
(IOU) to evaluate the segmentation effect of a single category, and we use mean intersection
over union (MIOU), overall accuracy (OA), and mean pixel accuracy (MPA) to evaluate the
overall segmentation effect of all categories. The calculation formulas of these indicators
are provided in [51].

4.3. Experimental Results and Analysis
4.3.1. Experiments on Flevoland Dataset

The semantic segmentation results of the Flevoland dataset obtained by five networks
are shown in Figure 7a–e. Figure 7f gives the ground truth. Comparing the segmentation
results of CV networks with those of RV networks, we can find that the results shown in
Figure 7c–e are better than those shown in Figure 7a,b, especially in the black box area
marked with the number 1. In this area, rapeseed is seriously misclassified into pea, wheat1,
wheat2 and wheat3 by two RV networks, because the scattering mechanisms of these land
covers are close. For bare soil in this area, since its scattering mechanism is close to that
of water, it is misclassified into water by two RV networks. However, this situation is
improved by three CV networks. Therefore, the three CV networks have a stronger ability
to distinguish land covers with similar scattering mechanisms than two RV networks,
because CV networks can extract abundant information from CV data.

For the black box area marked with the number 2 shown in Figure 7a–e, we enlarge
them to obtain Figure 8a–e, respectively. The enlarged ground truth and Pauli RGB image
of this area are given in Figure 8f,g, respectively. From Figure 8a to Figure 8e, wheat1
has different degrees of incorrect segmentation, because its scattering mechanism is very
close to that of wheat2 and wheat3. However, the error area for wheat1 in Figure 8e is
much smaller than that in the other figures, which means that the proposed network has
stronger discrimination ability on land covers with similar scattering mechanisms than
other networks. Similarly, the rapeseed in this area is wrongly classified by all the networks
except by the proposed network.

To quantitatively analyze the segmentation performance, we calculated four indicators,
and they are shown in Table 2. It is easy to find that three CV networks achieve higher
MIOUs, OAs and MPAs than two RV networks. In addition, the proposed network achieves
the highest MIOU, OA and MPA among all the networks. Comparing the proposed network
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with CV U-Net, we can find that the embedded capsule network increases MIOU, OA
and MPA by 3.37%, 0.63% and 1.6%, respectively, and increases IOUs of wheat1, wheat2,
and wheat3 by 7.83%, 16.06%, and 2.6%, respectively. Comparing CV U-Net with L-CV-
DeepLabv3+, their MIOUs, OAs and MPAs are very close to each other, which means that
they have similar feature extraction ability on this dataset.

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 7. Segmentation results of Flevoland dataset. (a) U-Net; (b) DeepLabv3+; (c) CV U-Net;
(d) L-CV-DeepLabv3+; (e) proposed network; (f) ground truth.

      

(a) (b) (c) (d) (e) (f) (g) 

Figure 8. Enlarged views of black box area 2 in Figure 7. (a) U-Net; (b) DeepLabv3+; (c) CV U-Net;
(d) L-CV-DeepLabv3+; (e) proposed network; (f) ground truth; (g) Pauli RGB image.
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Table 2. Four indicators of Flevoland dataset.

Class U-Net DeepLabv3+ CV U-Net L-CV-DeepLabv3+ Proposed

1 97.52 88.04 92.33 89.07 98.58
2 74.24 30.40 92.04 90.82 92.97
3 98.22 65.00 88.83 93.47 99.47
4 67.43 53.30 97.99 95.84 93.26
5 85.47 45.20 88.05 82.18 95.88
6 96.15 71.85 97.79 97.07 98.14
7 96.36 51.07 88.96 96.75 98.51
8 62.51 62.68 96.98 93.84 99.70
9 64.86 11.65 97.05 94.48 89.10

10 75.15 30.33 91.52 90.03 98.02
11 99.96 71.09 99.25 99.18 99.42
12 79.20 67.85 82.58 78.08 98.64
13 99.35 72.97 96.31 98.98 98.91
14 86.80 82.90 97.76 94.78 96.08
15 92.70 62.63 83.97 80.43 88.63

MIOU 85.99 60.32 93.20 92.13 96.57
OA 97.65 90.39 98.80 98.52 99.43

MPA 93.37 73.14 96.62 96.11 98.22

4.3.2. Experiments on San Francisco Dataset

The experimental results of the San Francisco dataset obtained by five networks are
shown in Figure 9a–e. Figure 9f shows the ground truth. In the white box area marked with
the number 1, the part of low density is misclassified into vegetation by two RV networks
because of their similar scattering mechanism. However, the segmentation results obtained
by three CV networks in this area are significantly better than those obtained by two RV
networks. A similar situation occurs in the white box area marked with the number 2. The
segmentation results of the developed urban area obtained by two RV networks are worse
than those obtained by three CV networks.

   
(a) (b) (c) 

   
(d) (e) (f) 

 

Figure 9. Segmentation results of San Francisco dataset. (a) U-Net; (b) DeepLabv3+; (c) CV U-Net;
(d) L-CV-DeepLabv3+; (e) proposed network; (f) ground truth.
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For the white box area marked with the number 3 shown in Figure 9a–e, they are
magnified as Figure 10a–e, respectively. The enlarged ground truth of this area is given
in Figure 10f. There are serious errors at the boundaries between vegetation and sea in
Figure 10a,b. However, these boundaries are improved in Figure 10c,d. The boundaries
shown in Figure 10e are very close to the ground truth. Thus, the proposed network
has significant advantage in extracting the boundary information. The reason is that the
embedded CV capsule network has a strong ability to extract features of land covers.

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 10. Enlarged views of white box area 3 in Figure 9. (a) U-Net; (b) DeepLabv3+; (c) CV U-Net;
(d) L-CV-DeepLabv3+; (e) proposed network; (f) ground truth.

Four indicators are also calculated to quantitatively analyze the segmentation per-
formance, and they are shown in Table 3. It is obvious that three CV networks achieve
higher IOUs, MIOUs, OAs and MPAs than two RV networks. Furthermore, the proposed
network achieves the highest MIOU, OA and MPA among all the networks. Comparing
the proposed network with CV U-Net, we can find that the embedded capsule network
increases MIOU, OA and MPA by 3.13%, 1.25% and 1.91%, respectively, and increases
IOUs of high-density urban and developed urban areas by 4.61% and 5.72%, respectively.
Different from the previous dataset, L-CV-DeepLabv3+ achieves higher MIOU, OA and
MPA than CV U-Net. This is because there are more boundaries between different cate-
gories in this dataset than in the previous dataset, and the boundary extraction ability of
L-CV-DeepLabv3+ is better than that of CV U-Net.

Table 3. Four indicators of San Francisco dataset.

Class U-Net DeepLabv3+ CV U-Net L-CV-DeepLabv3+ Proposed

1 88.95 72.24 92.15 94.13 96.76
2 87.55 77.13 94.21 94.23 97.53
3 98.18 96.14 99.08 99.05 99.83
4 88.75 68.63 90.34 93.43 96.06
5 70.35 45.25 87.06 96.08 91.46

MIOU 88.96 74.72 93.80 95.86 96.93
OA 96.57 90.89 97.93 98.24 99.18

MPA 93.60 85.17 96.83 97.80 98.74

4.3.3. Experiments on Hulunbuir Dataset

The experimental results of the Hulunbuir dataset obtained by five networks are
shown in Figure 11a–e. Figure 11f shows the ground truth. In this dataset, the area ratio of
land cover to the total area is small, and the intervals between different land covers are wide.
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This enables all the networks except for DeepLabv3+ to achieve good segmentation results.
In the white box area marked with the number 1, there is only wetland. We enlarged this
area in Figure 11a–e to obtain Figure 12a–e, respectively. The enlarged ground truth of this
area is shown in Figure 12f. It is easy to find that there are some errors in the boundaries of
segmentation results obtained by two RV networks. However, three CV networks greatly
improve this situation. In the white box area marked with the number 2, there are water
and grasses. We enlarged this area in Figure 11a–e to obtain Figure 13a–e, respectively.
The enlarged ground truth and Pauli RGB image of this area are shown in Figure 13f–g,
respectively. We can see that grasses are seriously misclassified as water by DeepLabv3+
because of their similar scattering mechanisms. Furthermore, there are some errors at
the boundaries obtained by CV U-Net and L-CV-DeepLabv3+. However, the proposed
network achieves boundaries that are almost close to the ground truth.

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 11. Segmentation results of Hulunbuir dataset. (a) U-Net; (b) DeepLabv3+; (c) CV U-Net;
(d) L-CV-DeepLabv3+; (e) proposed network; (f) ground truth.
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(a) (b) (c) (d) (e) (f) 

Figure 12. Enlarged views of white box area 1 in Figure 11. (a) U-Net; (b) DeepLabv3+; (c) CV U-Net;
(d) L-CV-DeepLabv3+; (e) proposed network; (f) ground truth.

       

(a) (b) (c) (d) (e) (f) (g) 

Figure 13. Enlarged views of white box area 2 in Figure 11. (a) U-Net; (b) DeepLabv3+; (c) CV U-Net;
(d) L-CV-DeepLabv3+; (e) proposed network; (f) ground truth; (g) Pauli RGB image.

Four indicators obtained by each network are shown in Table 4. The MIOUs, OAs and
MPAs obtained by all the networks except for DeepLabv3+ are more than 90%. Furthermore,
the proposed network achieves the highest MIOU, OA and MPA among the five networks.
It also achieves the highest IOU of each type of land cover. Especially, for the small area of
the wetland, the IOU obtained by the proposed network is 40.45%, 60.36%, 6.16% and 7.92%
higher than that of U-Net, DeepLabv3+, CV U-Net and L-CV-DeepLabv3+, respectively.
Comparing the proposed network with CV U-Net, we can find that the embedded capsule
network increases MIOU, OA and MPA by 2.26%, 0.07% and 1.26%, respectively, and
increases IOUs of grasses and water by 3.12% and 9%, respectively. In addition, CV U-Net
achieves higher MIOU, OA and MPA than L-CV-DeepLabv3+. Therefore, based on the
results of the three datasets, we can conclude that CV U-Net is more suitable for the simple
dataset than L-CV-DeepLabv3+.

Table 4. Four indicators of Hulunbuir dataset.

Class U-Net DeepLabv3+ CV U-Net L-CV-DeepLabv3+ Proposed

1 96.41 70.26 98.80 96.14 99.16
2 99.27 91.17 99.69 97.93 99.94
3 99.68 93.43 99.86 98.53 99.97
4 96.00 74.76 97.73 93.91 97.97
5 85.10 31.55 89.82 78.09 92.94
6 87.66 34.31 86.30 88.50 95.30
7 94.70 3.38 94.91 88.20 95.97
8 56.03 36.12 90.32 88.56 96.48

MIOU 90.53 59.29 95.27 92.15 97.53
OA 99.64 96.23 99.80 99.27 99.87

MPA 94.09 71.33 97.33 95.61 98.59
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4.3.4. Parameters and Training Time

Since the network structure adopted by the three datasets is the same except for
the number of categories, we take the Flevoland dataset as an example to analyze the
parameters of five networks. The trainable, non-trainable and total parameters of the five
networks are listed in Table 5. We can find that the parameters of CV U-Net are almost twice
those of U-Net, because a CV number refers to both real and imagery parts. Similarly, the
total parameters of L-CV-DeepLabv3+ are approximately 2.8 times of those of DeepLabv3+.
Although the total parameters of the proposed network are more than those of CV U-Net,
they are far less than those of L-CV-DeepLabv3+.

Table 5. Parameters of five networks for Flevoland dataset.

Parameter U-Net DeepLabv3+ CV U-Net L-CV-DeepLabv3+ Proposed

Trainable 1,466,380 3,011,789 2,934,366 8,361,528 3,411,760
Non-trainable 3212 41,724 8030 144,620 8080

Total 1,469,592 3,053,513 2,942,396 8,506,148 3,419,840

Furthermore, we compare the training time of three CV networks and list the average
training time of one epoch for the three datasets in Table 6. For each dataset, the proposed
network only takes a little more time than CV U-Net, but much less time than L-CV-
DeepLabv3+.

Table 6. Average training time of one epoch for three datasets (s).

Dataset CV U-Net L-CV-DeepLabv3+ Proposed

Flevoland dataset 9.28 29.81 9.68
San Francisco dataset 12.98 35.59 16.5

Hulunbuir dataset 9.44 32.68 10.76

4.3.5. Convergence Performance

We compared the convergence performance of the proposed network and CV U-Net.
The training loss curves of the three datasets are shown in Figure 14a–c. When these
two networks converge, the consumed epochs are listed in Table 7. Here, we define the
convergence as the loss difference between two adjacent epochs that does not exceed 0.003
for five consecutive times. For each dataset, the proposed network consumes less epochs
than CV U-Net. Therefore, it can be inferred from Tables 6 and 7 that the convergence
speed of the proposed network is much faster than that of CV U-Net for each dataset.

  

(a) (b) (c) 
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Figure 14. Curves of training loss. (a) Flevoland dataset; (b) San Francisco dataset; (c) Hulunbuir
dataset.
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Table 7. Epochs consumed by the convergence for three datasets (epochs).

Dataset CV U-Net Proposed

Flevoland dataset 540
538
527

445
San Francisco dataset 308

Hulunbuir dataset 397

5. Discussion

From the experimental results in Section 4, we know that the proposed network
has significant advantages over the other four networks. In this section, we discuss the
influence of training set size on segmentation performance of the proposed network and
CV U-Net, and we analyze advantages of the embedded CV capsule network in feature
extraction through the visualization of feature maps.

5.1. Influence of Training Set Size on Segmentation Performance

We compare the segmentation performance of the proposed network and CV U-Net
when the expansion factor of the training samples changes. The curves of segmentation
performance for the three datasets are shown in Figure 15a–c. When the training set is not
expanded, the segmentation performance of the proposed network is far better than that of
CV U-Net for each dataset. For the Flevoland dataset, the MIOU difference between these
two networks is greater than 16%, and the MPA difference is greater than 10%. For the San
Francisco dataset, these two differences are greater than 29% and 20%, respectively. For
the Hulunbuir dataset, these two differences are greater than 25% and 17%, respectively.
Furthermore, for the three datasets, the MIOUs obtained by the proposed network are
equal to or greater than 90%. Therefore, the proposed network has significant advantages
when the training sets are not expanded.
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Figure 15. Segmentation performance changes with the expansion factor of training samples.
(a) Flevoland dataset; (b) San Francisco dataset; (c) Hulunbuir dataset.

As the training samples increase, the segmentation performances obtained by these
two networks are gradually improved for each dataset. This is because more features
can be extracted from the expanded training samples. At the same time, we can find
that the performance difference between these two networks gradually decreases for each
dataset. However, the proposed network achieves higher MIOU, OA and MPA than CV
U-Net, regardless of the expansion factor of training samples. In addition, we can also
find that no matter the CV U-Net or proposed network, the OA obtained is the largest,
followed by MPA, and finally MIOU. The reason is that the MIOU is stricter than the other
two indicators.
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5.2. Advantages of the Capsule Network in Feature Extraction

To demonstrate the feature extraction ability of the embedded capsule network, we
visualize the feature maps obtained by the proposed network and CV U-Net. For the
proposed network shown in Figure 4, feature maps (in the red box) obtained after the
first upsampling and convolution operation are considered. For CV U-Net, feature maps
obtained at the corresponding position are also considered. Taking the San Francisco
dataset as an example, the ground truth of one test sample is shown in Figure 16a. When
the number of training samples is not expanded, the visualization results of 128 feature
maps obtained by the proposed network are shown in Figure 16c. The feature maps at
the corresponding position obtained by CV U-Net are shown in Figure 16b. Comparing
Figure 16b with Figure 16c, we can find that the texture features in Figure 16c are clearer
than those in Figure 16b. The former is the global features. Therefore, the embedded CV
capsule network enhances the feature extraction ability of CV U-Net.

  

(a) (b) (c) 

Figure 16. Test sample and visualization of feature maps. (a) Ground truth of the test sample;
(b) feature maps obtained by CV U-Net; (c) feature maps obtained by the proposed network.

6. Conclusions

In this paper, we propose a CV U-Net with a capsule embedded for semantic segmen-
tation of PolSAR images. The proposed network mainly includes two parts. One is the CV
U-Net, and the other is the CV capsule network. The CV U-Net is obtained by extending
the original U-Net to the CV domain and making its structure lightweight. Like the original
U-Net, it also includes the encoder and the decoder. The CV capsule network is embedded
between the CV encoder and the CV decoder. It is made up of the CV primary capsule and
the segmented capsule. In order to accomplish the connection between these two types of
capsules, CV dynamic routing is proposed. It can ensure the routing consistency of real and
imaginary parts of CV capsules. From the experimental results for two airborne datasets
and one spaceborne dataset, we can draw the following conclusions: (1) CV networks
have better performance than RV networks because the former can make full use of both
the amplitude and phase information of PolSAR data. (2) The structure of the network
should match the dataset to achieve good performance. The reason is that overfitting can
easily occur when a small number of samples are used for the training of a deep network.
(3) The proposed network can not only effectively distinguish land covers with the similar
scattering mechanism, but it can also obtain the accurate boundaries of land covers. These
advantages are especially obvious when the number of training samples is small. The
reason is that the embedded CV capsule network has a strong ability of feature extraction.
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Abstract: Data in the form of images are now generated at an unprecedented rate. A case in point
is remote sensing images (RSI), now available in large-scale RSI archives, which have attracted a
considerable amount of research on image classification within the remote sensing community. The
basic task of single-target multi-class image classification considers the case where each image is
assigned exactly one label from a predefined finite set of class labels. Recently, however, image
annotations have become increasingly complex, with images labeled with several labels (instead of
just one). In other words, the goal is to assign multiple semantic categories to an image, based on
its high-level context. The corresponding machine learning tasks is called multi-label classification
(MLC). The classification of RSI is currently predominantly addressed by deep neural network (DNN)
approaches, especially convolutional neural networks (CNNs), which can be utilized as feature
extractors as well as end-to-end methods. After only considering single-target classification for a long
period, DNNs have recently emerged that address the task of MLC. On the other hand, trees and tree
ensembles for MLC have a long tradition and are the best-performing class of MLC methods, but
need predefined feature representations to operate on. In this work, we explore different strategies
for model training based on the transfer learning paradigm, where we utilize different families
of (pre-trained) CNN architectures, such as VGG, EfficientNet, and ResNet. The architectures are
trained in an end-to-end manner and used in two different modes of operation, namely, as standalone
models that directly perform the MLC task, and as feature extractors. In the latter case, the learned
representations are used with tree ensemble methods for MLC, such as random forests and extremely
randomized trees. We conduct an extensive experimental analysis of methods over several publicly
available RSI datasets and evaluate their effectiveness in terms of standard MLC measures. Of these,
ranking-based evaluation measures are most relevant, especially ranking loss. The results show that,
for addressing the RSI-MLC task, it is favorable to use lightweight network architectures, such as
EfficientNet-B2, which is the best performing end-to-end approach, as well as a feature extractor.
Furthermore, in the datasets with a limited number of images, using traditional tree ensembles for
MLC can yield better performance compared to end-to-end deep approaches.

Keywords: remote sensing; convolutional neural networks; tree ensemble methods; multi-label
classification

1. Introduction

Remote sensing is the process of detecting and monitoring the physical characteristics
of an area by measuring its reflected and emitted radiation at a distance. In the past few
years, advances in satellite technology have resulted in large-scale remote sensing image
(RSI) archives, which have attracted a considerable amount of research in various appli-
cation areas. RSI can be used to monitor and predict various environmental phenomena,
such as weather and climate change [1], land use and land cover changes at macro scale [2],
deforestation [3], wildfires [4,5], and many others.
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In machine learning terms, a wide range of applications stemming from RSI are ap-
proached using single-label classification, where the goal is to assign a single label/semantic
category to an image [6]. However, real-world RSIs are typically complex and present
more than a single semantic category within a single image. Hence, single-label classifica-
tion is often insufficient to fully describe the presence of complex areas, which can carry
semantically complex content [7].

To facilitate more realistic representation of the content of RSI, the analysis of RSI
should be addressed through the task of multi-label classification (MLC), where a given
image can be associated with multiple semantic concepts/labels taken from a predefined
set of labels. In this way, the classification problem becomes more challenging as com-
pared to single-label classification, as discussed in a recent large-scale comparative study
and analysis of a wide range of MLC methods [8]. This study highlights the two major
challenges that can limit the performance of MLC methods: the presence of complex label
correlations and high-dimensional label spaces.

These challenges are attracting increasing amounts of attention from researchers fo-
cusing on deep learning (DL) methods, specifically on methods capable of automatically
learning long-range dependencies (e.g., with the use of self-attention mechanisms in the vi-
sion transformer (ViT) base network architectures [9]), and handling the high-dimensional
label spaces. Their internal mechanisms and structure, such as the hierarchical design
and characteristics in convolutional neural networks (CNNs), with local connectivity and
non-linearity, are capable of encoding information exceptionally well. Moreover, their
flexible design offers knowledge to be extracted and discriminative representations to be
learned from noisy data in an end-to-end manner, and achieves more accurate recogni-
tion performance in less-constrained environments as compared with traditional MLC
approaches. Furthermore, the recent success of these methods can be associated with their
ability to leverage large amounts of labeled data in order to learn meaningful knowledge.

Many of the existing approaches in computer vision try to address the challenges
encountered by exploiting proven DL network architectures pre-trained on large-scale
and diverse datasets such as ImageNet [10]. This is usually achieved by using the transfer
learning paradigm [11], where specific parts of the model are fine-tuned in order to learn
new features that generalize better to the new downstream task [12–14]. For example,
Wang et al. [15] propose a framework based on a VGG-16 CNN model initialized with
weights learned on ImageNet, which is used to extract semantic representations from im-
ages and is coupled with a recurrent neural network (RNN) network architecture with long
short-term memory (LSTM) units to capture image/label relations and label dependency.
Chen et al. [16] propose an end-to-end learning method based on Graph Convolutional
Networks (GCN) to capture the label correlations, and a novel re-weighting scheme for
creating the label correlation matrix that is used to guide the information propagation
among the nodes in the GCN.

In addition, with the increased availability of RSI and the increased research interest
in remote sensing applications, many interesting approaches have been proposed at the
crossroads of remote sensing and computer vision [7,17–19]. For example, Hua et al. [20]
propose a novel approach for MLC from aerial imagery—an attention aware label relational
network, comprising a label-wise feature parcel module, an attention region extraction
module, and a label relational inference module. Sumbul et al. [21] present a K-Branch CNN
that uses a multi-attention strategy for bidirectional LSTM networks, which is specially
developed to capture spatial and spectral contents from RS images of local image areas.
Wang et al. [22], despite using local attention [21], are also able to maintain global context
through global attention pooling, where the combination of both helps in modeling long-
range dependencies among multiple objects and captures underlying relationships among
multiple labels.

In this work, our main focus is on investigating the potential of several prominent deep
learning architectures (variants of VGG [23], ResNet [24] and EfficientNet [25]) as feature
extractors for the MLC of RSI as well as end-to-end approaches to MLC of RSI. To this
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end, we evaluate the performance of the architectures across seven MLC RSI datasets with
different properties in terms of number of images, number of labels, and average number
of labels per image (label cardinality). More specifically, we use pre-trained network
architectures with weights learned on ImageNet as an initialization procedure. We further
perform calibration of the pre-trained models by fine-tuning them on a small set of RSIs
and compare the fine-tuned and pre-trained MLC performance. Finally, we use the learned
models as feature extractors to describe the RSI, and use the resulting feature vectors to
learn tree ensembles such as random forests and extra trees for MLC.

The main contributions of this paper can be summarized as follows:

• We present an experimental analysis of different approaches for MLC of RSI. More pre-
cisely, we investigate the performance of several deep learning network architectures
by using pre-training and fine-tuning as the main learning strategies for the MLC task.

• We evaluate the effectiveness of the deep models used as end-to-end approaches to
MLC, and used as feature extractors that provide feature representations of RSI, as
inputs to tree ensemble methods for MLC. Moreover, we investigate which of the
network architectures is the most suitable choice in terms of performance.

• We also investigate the performance of the considered methods in terms of the in-
fluence of the number of labeled training examples by providing the methods with
different fractions of the data.

The remainder of this paper is organized as follows. Section 2 describes the MLC
RSI data (Section 2.1) and the machine learning methods (Section 2.2) used to analyze
them (deep learning architectures in Section 2.2.1 and tree ensembles in Section 2.2.2).
Next, Section 3 gives the experimental questions and the specific experimental setup, in-
cluding parameter instantiations for the methods (Section 3.1), the evaluation strategy
(Section 3.2), and the different evaluation measures used to assess the performance of
the models (Section 3.3). Furthermore, Section 4 discusses the results of our experiments,
focusing on the outcomes of the different representation learning strategies (Section 4.1),
deep architectures (Section 4.2), MLC approaches (Section 4.3), and number of images
(Section 4.4). Finally, Section 5 concludes the paper by providing a summary of the pre-
sented work and directions for further work.

2. Materials and Methods

2.1. Datasets

We use seven publicly available MLC RSI datasets to assess the performance of the
MLC methods, namely UC Merced (UCM) Land Use, AID Multilabel, Ankara HIS archive,
DFC-15 Multilabel, MLRSNet, and two variants of the BigEarthNet dataset based on two
Corine Land Cover (CLC) nomenclatures (Available at https://land.copernicus.eu/user-
corner/technical-library/corine-land-cover-nomenclature-guidelines/html (accessed on 4
January 2023 )), CLC with 43 labels (BigEarthNet-43), and CLC with 19 labels (BigEarthNet-
19). When analysing the datasets that have hyperspectral RSI (meaning that they have
several spectral bands), such as Ankara and BigEarthNet, we only use the RGB spectral
band to train the models.

A summary of the properties of the seven datasets is given in Table 1. We can see that
the selected datasets are diverse along several lines: number of images, locations, number
of labels, image resolution, and number of labels per example image (label cardinality).
This means that the trained predictive models are trained and evaluated in a challeng-
ing environments. The selection of typical images from the different datasets with their
corresponding class labels is given in Figure 1.
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Table 1. Description of the used RSI multi-label datasets. |L| denotes the number of possible labels;
Card denotes label cardinality (i.e., average number of labels per image); Dens denotes label density
(average proportion of images labeled with a given label); N is the number of images in the dataset,
of which Ntrain are in the train and Ntest in the test datasets; and w× h is the dimension of the images
(in pixels).

Dataset Image Type |L| Card Dens N Ntrain Ntest w × h

Ankara Hyperspectral/Aerial RGB 29 9.120 0.536 216 171 45 64× 64
UC Merced Land Use Aerial RGB 17 3.334 0.476 2100 1667 433 256× 256
AID Multilabel Aerial RGB 17 5.152 0.468 3000 2400 600 600× 600
DFC-15 Multilabel Aerial RGB 8 2.795 0.465 3341 2672 669 600× 600
MLRSNet Aerial RGB 60 5.770 0.144 109,151 87,325 21,826 256× 256
BigEarthNet Hyperspectral/Aerial RGB 19 2.900 0.263 590,326 472,245 118,081 256× 256
BigEarthNet Hyperspectral/Aerial RGB 43 2.965 0.247 590,326 472,245 118,081 256× 256

Ankara UCM DFC-15 AID MLRSNet BigEarthNet-19 BigEarthNet-43
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Figure 1. An illustration of the diversity of images from the different RSI datasets with the corre-
sponding class labels.

2.1.1. UC Merced Land Use

The UC Merced data set contains 2100 images grouped into 21 broad categories at
the scene level. There are a total of 100 images per category, with the size of 256× 256
and a spatial resolution of 0.3 m. The initial version of this dataset was for single-label
classification purposes [26]. Later, Chaudhuri et al. [27] relabeled the images with multiple
labels. The total number of distinct object-level labels is 17: airplane, bare soil, buildings,
chaparral, court, dock, field, grass, mobile home, pavement, sand, sea, ship, tanks, trees,
and water. Each image is annotated with one or more (maximum 7) labels at the object
level, containing 3.3 object-level labels per image on average.

2.1.2. AID Multilabel

The initial single-label AID dataset [28] was relabeled with multiple labels per image
and became the AID multi-label dataset [20]. It is also a more challenging dataset than the
U Merced dataset. It contains 3000 aerial images from 30 categories with manually assigned
multiple-object labels. The resolution of the images is 600× 600 pixels, where each image
has 5.5 object-level labels on average (maximum 11). The spatial resolution varies from 0.3
to 8 m.

2.1.3. Ankara HIS Archive

This is a small hyperspectral dataset containing 216 image tiles with a size of
63× 63 pixels [29]. The image patches are obtained by fragmenting large hyperspectral
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images, acquired by the NASA EO-1 satellite’s Hyperion sensor from the area surrounding
the city of Ankara in Turkey. Each image is associated with multiple object-level labels
(land-cover-classes) and a single land-use scene-level label where the ground resolution
is 30 m. There are 9 object-level labels per image on average, and a maximum of 17. It
contains 119 channels of hyperspectral images and corresponding three-channel (RGB)
images. We only use the RGB channels.

2.1.4. DFC-15 Multilabel

The DFC-15 Multilabel dataset [30] is built from a semantic segmentation dataset
(DFC15), first used in the 2015 IEEE GRSS data fusion contest. This dataset is acquired over
Zeebrugge with an airborne sensor (300 m off the ground). There are a total of 7 tiles, where
each of the tiles is 10,000 × 10,000 pixels with a spatial resolution of 5 cm. The images are
assigned pixel-level labels, where each pixel is categorized into 8 object classes: impervious,
water, clutter, vegetation, building, tree, boat, and car. The final dataset contains 3342 image
patches with 600× 600 image resolution, where each image is associated with image-level
multi-labels.

2.1.5. MLRSNet

The MLRSNet dataset is an RSI dataset containing optical satellite images with high
spatial resolution [31]. It contains 109,161 RSI annotated with 60 predefined class labels,
where the number of labels per image varies from 1 to 13. The images have a fixed resolution
of 256× 256 pixels, where the pixel resolution varies from ∼10 m to 0.1 m. This dataset can
be used for a wide range of learning tasks, such as multi-label classification, multi-class
classification, multi-label image retrieval, and image segmentation. There are 10 images
that do not have labels assigned, as shown in Figure 2; therefore, we exclude these images
from the experiments. The final dataset contains 109,151 images.

Figure 2. Images from the MLRSNet dataset that do not have labels assigned.

2.1.6. The BigEarthNet Archive

BigEarthNet [17] was constructed by the Remote Sensing image Analysis (RSiM)
Group and the Database Systems and Information Management (DIMA) Group at the
Technische Universität Berlin (TU Berlin). It is the largest dataset of image patches an-
notated with multiple labels available to date. There are 590,326 such patches for which
Sentinel-2/S2 (and later also Sentinel-1/S1) images are available. For S2, twelve channels
are available, and for S1, two channels are available. We only use three of the S2 chan-
nels (RGB images). Each image patch is annotated by multiple land-cover classes (i.e.,
multi-labels) taken from the CORINE Land Cover database of the year 2018 (CLC 2018).
Originally, 43 labels were used. These were later merged into 19 labels [32].

2.2. Overview of the Learning Methods for Multi-Label Classification

We address the MLC task by applying a Convolutional Neural Network (CNN) as
a deep learning approach and exploiting the the transfer learning paradigm. We use the
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weights learned on the ImageNet as the initialization procedure, and we further perform
calibration by fine-tuning the models on the training sets of of RSI. The deep models are
used in two different scenarios, namely as end-to-end approaches to directly perform the
MLC task (Figure 3a,b), and as CNN-based feature extractors (Figure 3a) to generate feature
representations, which are used as inputs to the tree-ensemble methods such as Random
Forests and Extremely Randomized Trees for MLC (Figure 3c).
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(c)(a)

End-to-end learning

Feature extraction and Tree Ensembles

f

f

Figure 3. Overview of the proposed strategy for MLC of RSI. Part (a) of the strategy is the fully
convolutional CNN backbone feature extractor. This part is same for both end-to-end learning, and
feature extraction. The next part of the strategy, marked (b), is only used during end-to-end learning.
The last part, marked with (c), is used for training tree ensemble methods from the extracted features,
as a separate task and not a part of the end-to-end learning process. For this separate task the CNN
feature extractor (a) is used in offline mode to generate the required feature representations, which
serve as inputs to learn tree ensembles.

We make the following modifications to the used network architecture for the MLC
task. To make it applicable to differently sized input images, we make sure the backbone
CNN is fully convolutional. Next, to reduce the spatial dimension, the feature maps are
aggregated through the average pooling layer, where d-dimensional feature representations
f are extracted. The classification part is replaced with a single fully connected (FC) layer
with the number of output units equal to the number of classes. This can also be seen as a
layer providing non-normalized log probabilities zi, i.e., scores (or also called logits), that a
classification model generates. This logit vector is then converted to a vector of probabilities
by using the sigmoid activation function σ(zi,c) = 1/(1 + e−zi,c), where zi,c is the logit of
the predicted class. The sigmoid function is suggested for MLC, instead of the so f tmax
function, as the activation of the last layer of the model, since the probabilities produced by
sigmoid are independent and are not constrained to sum up to one. It follows a Bernoulli
distribution and thus allows multiple label predictions [18]. It is important to mention that
this part of the model (Figure 3b) is only used during training in the end-to-end mode to
directly perform the MLC task.

The training process uses the standard binary cross-entropy learning objective, which
takes the following form:

Lbce = −
1
n

n

∑
i=1

[yilog(ŷi) + (1− yi)log(1− ŷi)], (1)

where n is the number or samples in a given mini-batch, yi = [yi,1, yi,2, . . . , yi,c] is a binary
vector representing the multi-labels of a given image, and ŷi is the predicted output vector
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of probabilities from the sigmoid layer. This learning objective is most commonly used in
MLC tasks [18].

2.2.1. Deep Learning Methods

To investigate the impact of the network architecture on the learning process, we
consider several popular CNN configurations pre-trained on ImageNet. We use VGG
(VGG-16, VGG-19) [23] , ResNet (ResNet-34, ResNet-50, ResNet-152) [24] and EfficientNet
(EfficientNet-B0, EfficientNet-B1, EfficientNet-B2) [25] as backbone CNN models for the
MLC task. Throughout the experiments, these methods are used either in an end-to-end
manner or as CNN-based feature extractors.

• VGGs: VGG is a deep CNN network architecture developed by the Visual Geometry
Group (VGG) team [23]. It is also the basis of ground-breaking object recognition
models that surpass baselines on many tasks and datasets beyond ImageNet and is still
one of the most popular image recognition architectures. Two variants of this family
of architectures are intensively studied for their performance—VGG-16 and VGG-19.
The VGG-16 model can be seen as an upgrade of AlexNet, while VGG-19 is similar to
VGG-16 but contains more layers. They are modeled in such a way that convolutions
would actually look simpler by replacing large AlexNet convolution filters with a
3× 3 filter, while padding to maintain the same size before a 2× 2 MaxPool layer
down-samples the image size.

• ResNets: ResNets are a family of deep CNN architectures that follow the residual
learning principle to ease the training of very deep networks [24]. Their design offers
an efficient way to solve the issues related to the vanishing gradients. ResNet follows
VGG’s full 3× 3 convolutional layer design. The residual block has two 3× 3 convolu-
tional layers with the same number of output channels. Each convolutional layer is
followed by a batch normalization layer and a Rectified Linear Unit (ReLU) activation
function. Then, there is a skip (or so-called skip connection) of those two convolution
operations, where the input is directly added before the final ReLU activation function.
This kind of design requires that the output of the two convolutional layers has to
be the same shape as the input, so that they can be added together. By configuring
different numbers of channels and residual blocks in the module, we can create dif-
ferent ResNet models, such as the deeper 152-layer ResNets, i.e., ResNet-152. For the
experiments, we use three variants of ResNet: ResNet-34, ResNet-50, and ResNet-152.

• EfficientNets: Unlike conventional deep CNNs, which are often over-parameterized,
and arbitrarily scale network dimensions, such as width, depth, and resolution, Effi-
cientNets are methods that uniformly scale each dimension with a fixed set of scaling
coefficients [25]. These models surpass state-of-the-art accuracy, with up to 10 times
better efficiency (i.e., are both smaller and faster than competitors).

2.2.2. Tree Ensemble Methods

In the experiments, we consider two types of ensemble methods based on decision
trees for MLC as a main learning model, namely, ensembles based on random forests for
MLC [33] and extremely randomized trees for MLC [34], respectively.

• Random Forest: Random forest (RF) is an ensemble learning method for classification
and regression, which creates a set of individual decision trees that operate as an
ensemble. It uses bagging and feature randomness to create diversity among the
predictors: At each node in the decision tree, a random subset of attributes is taken,
and the best split is selected from this subset of attributes. Each individual tree in the
random forest provides a class prediction, where the predictions can be aggregated by
taking the average (for regression tasks) and the majority or probability distribution
vote (for classification tasks). RFs were adapted for the task of MLC [33].

• Extremely Randomized Trees: Extremely Randomized Trees, or so-called Extra Trees
(ET), is also an ensemble learning method similar to the Random Forest, which is
based on extreme randomization of the tree construction algorithm. As compared
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to the Random Forest ensemble, it operates with two key differences: it splits nodes
by choosing the cut-points fully at random, and it uses the whole learning sample to
grow the trees. The randomness in this method comes from the random splits of all
observations, rather then bootstrapping the data as in RF. ETs were adapted for the
task of MLC [34].

3. Experimental Design

This section presents the details of the experimental study design. It includes a detailed
overview of the experimental setup describing the different learning settings in the end-to-
end approaches and the tree ensemble methods. Next, we describe the evaluation strategy
of the partitioning of the image datasets into disjoint splits used for training and testing
MLC models. Finally, we describe the evaluation measures used to assess the predictive
performance of the different methods as well as the statistical procedures used to analyze
the results.

The experimental study is tailored to answer the following research questions:

(i) What is the influence of the learning strategy on the performance of end-to-end ap-
proaches: Is fine-tuning or pre-training only more suitable for solving the RSI-MLC task?

(ii) Which network architecture is the best choice for end-to-end MLC of RSI and for use
as a feature extractor and further training of tree ensembles for MLC?

(iii) How do end-to-end learning and feature extraction plus tree ensembles compare on
the task of RSI for MLC (assessed by using the best performing architecture from the
previous analysis)? and

(iv) How does the number of training examples influence the predictive performance of
the methods used?

3.1. Experimental Setup
3.1.1. End-to-End Learning Approaches

We train the deep network models by using two different learning strategies based on
transfer learning. Both settings use the ImageNet weights for initialization, while fine-tuning
different parts of the backbone CNN model. In the first learning setting, shown in Figure 4a,
we fix all the model layers pre-trained on ImageNet and directly transfer the learned
knowledge to the target domain. In the second learning setting, shown in Figure 4b, the
entire network architecture is being fine-tuned to the new target domain. In both settings,
we use a single application-dependent fully connected layer learned from scratch (i.e., the
classification layer).

We use the binary cross entropy as an objective function (see Equation (1)) to optimize
the model parameters, and apply the same training procedure and hyperparameters for
100 epochs across all datasets. The optimization of the model parameters is performed with
the Adam optimizer with a learning rate of 1× 10−4 and a mini-batch of 64.
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Figure 4. Two distinctive learning strategies for the MLC task. In the first learning setting, marked as
(a), we rely on the ImageNet pre-training, where all the model layers are frozen, except the last fully
connected layer, which is trained for the new target domain. In the second learning setting, marked
as (b), the entire network architecture is fine-tuned along with the newly added fully connected layer.
Moreover, we use both approaches either as feature extractors (in “offline” mode) jointly with tree
ensemble methods, or as end-to-end learning machines to directly perform the MLC task. Note that
the parts of the model highlighted with blue indicate that there is no update of the parameters in the
model during the training process; on the other hand, with red, we highlight the opposite task, which
means the parameters of the model are unfrozen and updated during training.

To prevent overfitting, we use data augmentation and modify data on the fly, so that
our CNN models are transformation-invariant to the maximum possible extent. Moreover,
we use data augmentation because we want to ensure that the predictive performance
and generalization capability of the learned model is preserved to some extent, espe-
cially when training a predictive model on a dataset that contains a limited number of
images (e.g., the Ankara dataset). Using the Albumentations library [35] (Available at:
https://albumentations.ai (accessed on 4 January 2023 )), we performed the following
image transformations: horizontal flipping, random rotations in the range ±10%, scaling
by a factor in the range (0, 0.15), shifting by a factor in the range (0, 0.1), random crops
with 50% of the original image size, random brightness within the range of (−0.3, 0.3), and
random contrast within the range of (−0.3, 0.3). In addition, we consider the application of
the following transformations to the input image: Contrast Limited Adaptive Histogram
Equalization (CLAHE) to the input image, where the size of the grid for histogram equal-
ization is set to 8× 8 pixels; blurring with Gaussian kernel with σ value in the range (3, 7);
median blur with aperture linear size value v randomly sampled once per image in the
range (3, 7); motion blur with kernel size ω for blurring the input image, randomly chosen
once per image in the range (3, 7); or Gaussian noise, where the variance range for noise is
taken from the interval (10, 50).

The augmentations are performed in random order and with a 50% chance, which
means that in such a setting there might be no augmentations applied over an image at all.
This is important because, during the training process, the model needs to see the original
image at least once in order to make reasonable predictions afterwards [36]. Some example
augmentations are shown in Figure 5. Each row represents a specific dataset, where the
left-most image marked with red is the original version, while the remaining images are the
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augmented versions of the same image. Note that multiple augmentations could be applied
on the same image. Because of that, we are not mixing certain image augmentations, such
as the blurring operations (i.e., Gaussian, median and motion blur) with color (i.e., CLAHE)
and Gaussian noise corruption transformations, simultaneously. The main reason for this is
that we want to avoid strong image degradation and loss of contextual information, which
is crucial in remote sensing imagery.

Ankara

UCM

AID

DFC-15

MLRSNet

BigEarthNet-19/43

Figure 5. Augmentation examples. The left most image in each row marked with red is the original
version, while the remaining images are the augmented versions. We can see the extent of variability
added to the training datasets by the augmented images.

3.1.2. CNNs as Feature Extractors and Tree Ensembles

The deep learning methods presented in Section 2.2.1, are further used as feature
extractors, for each of the two learning settings described in Section 3.1.1. Hence, we
rely on two feature representations f ∈ Rd extracted from the CNN feature extractors:
representations based on pre-training (Figure 4a), and fine-tuning (Figure 4b). Furthermore,
each feature representation is used as input to the tree ensemble methods, i.e., Random
Forests (RF) and Extremely Randomized Trees (ERT)/Extra Trees (ET) for short. We use
150 base models in each of the ensembles and sqrt as the feature subset size.

3.2. Evaluation Strategy

We conducted experiments over the several publicly available RSI datasets described
above and explored how the performance of the learning strategies is affected by data
availability, image quality, and label dimensionality. To tackle this problem, we included
datasets which are less challenging in terms of image resolution, such as DFC-15 and
MLRSNet, and datasets such as Ankara, which is very limited in size and has poor image
quality. To evaluate the effectiveness of the methods, we perform the splitting according to
the datasets that already contain a predefined subset of images, such as AID and DFC-15,
where the train and test ratios are approximately 80% and 20%. The remaining dataset is
partitioned accordingly, by adopting an iterative stratified sampling strategy in order to
preserve the relative frequency of the labels in the datasets to the maximum possible extent.
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Moreover, we split a validation set of 10% from the overall training data, which is only
used to monitor the learning progress and to provide an unbiased estimate of the model fit
when tuning hyperparameters. A description of the datasets after the splitting procedure is
given in Table 1.

3.3. Evaluation Measures and Statistical Analysis

Many evaluation measures are used to assess the predictive performance and effec-
tiveness of MLC methods, offering different viewpoints on the performance of the methods.
The evaluation measures can be grouped into two groups: measures based on bipartitions
(example-based and label-based measures) and ranking-based evaluation measures [8].
The example-based evaluation measures compute the average difference between the true
labels and the predicted labels for each data point, averaged across all the examples in
the dataset. Unlike example-based measures, label-based measures evaluate each label
separately and then average the performances across all labels. The ranking-based evalua-
tion measures compare the predicted ranking of the labels with the ground truth ranking
(where all present labels are ranked before all absent labels).

In this study, we present the results in terms of ranking-loss as an evaluation measure.
Ranking loss evaluates the average fraction of label pairs that are misordered for a given
example. Note, however, that we provide complete results in terms of all other evaluation
measures for the MLC task in the Appendix A section (for the calculation of the evaluation
measures, we use the sckit-learn implementation [37]). We focus on ranking loss, since
we believe it is one of the best indicators for measuring the performance of methods for
MLC. Moreover, this measure is threshold-independent, which means we do not rely on
the use of techniques for threshold estimation to produce the predicted labels. Ranking
loss is defined as follows:

rl =
1
N

N

∑
i=1

∑
(j,k):yj>yk

(I[ri(j) < ri(k)] +
1
2

I[ri(j) = ri(k)]), (2)

where yi and ŷi are the true and the predicted labels, respectively, N is the number of
examples, ri(j) is the ranking of label j for instance xi, and I is an indicator function. The
smaller the value of rl, the better the performance.

We use the Friedman test to assess whether the overall differences in performance
of the used approaches evaluated across the RSI datasets are statistically significant and
the post hoc Nemenyi test to detect between which methods the statistically significant
differences occur. The obtained results are presented in the form of Nemenyi post hoc
average rank diagrams [38] for the ranking loss measure. In the analysis, the significance
level was set to α = 0.05. The best-performing methods are on the left-most side of the
diagram along the axis (average ranks closer to 1), and the methods whose predictive
performance does not differ significantly at α = 0.05, are connected with a red line.

3.4. Implementation Details

We implemented the deep learning models in the PyTorch framework (Available at:
https://pytorch.org, accessed on 4 January 2023 ). We use the built-in implementations
of VGGs, ResNets and EfficientNets, initialized with weights learned on ImageNet. We
modify each of the backbone models in order to accept arbitrary-sized input images by
replacing the last max pooling layer with the average pooling operation with a kernel size
of 1, resulting in the following d-dimensional feature representations: d = 4096 for VGG-16
and VGG-19, d = 512 for ResNet-34, and d = 2048 for ResNet-50 and ResNet-152. We have
1280 output dimensions for EfficientNet-B0 and EfficientNet-B1, while EfficientNet-B2 has
1408 dimensions. Finally, for the tree ensemble methods, we use the scikit-learn [37]
implementation of Random Forest tree ensembles for multi-label classification (MLC) [33]
and Extra Tree ensembles for MLC [34]. The tree ensembles for MLC simultaneously predict
the probability of each of the multiple class labels. The labels can then be ranked based on

245



Remote Sens. 2023, 15, 538

these predicted probabilities. The complete source code and the datasets used to execute the
study are publicly and freely available at https://github.com/marjanstoimchev/RSMLC
(accessed on 4 January 2023).

4. Results and Discussion

This section presents the results of our experimental study in MLC of RSI. It answers
one of the experimental questions posed in Section 3 in each subsection. It thus discusses (1)
the influence of the learning strategy, (2) the comparison of different network architectures
used as end-to-end approaches, as well as feature extractors, (3) the comparison between
end-to-end methods and tree ensembles, and (4) the influence of the number of available
labeled images on predictive performance.

4.1. The Influence of the Learning Strategy

In the first experiment, we explored whether fine-tuning or pre-training only is the
more appropriate learning strategy (as defined in Section 3.1.1). To provide the answer to
this question, we conducted experiments by training different network architectures over
the datasets, and using them in two different modes of operation: (1) as feature extractors
providing the feature representations to the tree ensembles, and (2) as end-to-end learning
methods. Moreover, for each learning approach, we present the difference in performance
in the form of a heat map, which can be formally defined as follows:

H =

⎡
⎢⎢⎢⎣

rl11 rl12 · · · rl1n
rl21 rl22 · · · rl2n

...
...

. . .
...

rlm1 rlm2 · · · rlmn

⎤
⎥⎥⎥⎦ ∈ R

m×n, (3)

where rli,j = rl f ine−tune
i,j − rlpre−train

i,j is the difference between fine-tuning (rl f ine−tune) and

pre-training (rlpre−train) in terms of the ranking loss measure, calculated for the i-th dataset
and the j-th method, respectively. This is performed for i = 1, . . . , m and j = 1, . . . , n, where
m denotes the number of datasets and n is the number of methods/CNN architectures.

These differences in performance are presented in Figure 6. We observe that for smaller
datasets (e.g., Ankara, UCM, etc.), pre-training is the preferred choice, which can be mostly
seen for the VGG architectures trained in an end-to-end manner over the DFC-15 dataset,
where the largest differences in ranking loss are observed. These differences are slightly
smaller for the DFC-15 dataset and the tree-ensemble methods. On the other hand, the
fine-tuned versions of the models perform significantly better when data availability is not
a problem. Furthermore, for the tree ensemble methods, the differences in performance
are significantly increased (and more on the positive side), which points to the fact that the
quality of the feature representations is of great importance for the tree ensemble methods
to further boost their predictive performance. Overall, we can conclude that by solely
relying on the ImageNet pre-training, we end up with worse model performance in almost
all cases, because the content present in RSI is quite complex as compared to images present
in the ImageNet dataset. More detailed results of the analysis are presented in Table A1
(Appendix A), where the performance figures for the ranking loss measure are given.
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Figure 6. Comparison between fine-tuning and pre-training in terms of ranking loss. The results
for the different architectures are presented in the form of a heat map showing the difference in
performance between the learning approaches. Negative values indicate that pre-training is better
than fine-tuning and positive when fine-tuning is better than pre-training. The intensities of the colors
in the heat map are directly related to the difference in performance between the learning approaches
(CNN architectures). The datasets on the y-axis are ordered by the number of images they contain.

4.2. Comparison of Different Network Architectures

Based on the analysis from Section 4.1, we used the fine-tuning approach to further
explore which network architecture is the most suitable choice for RSI MLC tasks. The
results are shown in terms of ranking loss and in the form of average rank diagrams.
From Figure 7, we see that the EfficientNet variants, especially EfficientNet-B2, tend to
produce the better results as compared to other network architectures. The differences in
performance are statistically significant as compared to the VGG variants. The results also
reveal that the EfficientNet-B2 model, used as base feature extractor in combination with
tree ensemble methods, such as RF as in Figure 7b and ET in Figure 7c, is the clear winner,
which indicates that this network architecture is the best choice for this task. Moreover, the
ResNet-based network architectures are the closest competitors to EfficientNet variants
(both when used with tree ensembles and in an end-to-end manner), i.e., the ResNet-
152 model. Although the EfficientNet variants are not statistically significantly better
than ResNet-152, they are by far more lightweight in terms of model parameters (e.g.,
EfficientNet-B0 is approximately 11× smaller, EfficientNet-B1 is 8×, and EfficientNet-B2 is
approximately 6.5× smaller than ResNet-152, respectively). Comparison between different
network architectures in terms of other MLC performance measures in the form of average
rank diagrams is given in Figures A1–A6 in the Appendix A (Figures A1–A3 for fine-
tuned features and label-based, example-based and ranking-based measures, respectively,
Figures A4–A6 for pre-trained features and label-based, example-based and ranking-based
measures, respectively).

1 2 3 4 5 6 7 8

EfficientNetB2@1.714
EfficientNetB1@2.143
EfficientNetB0@2.714
ResNet152@4.714

VGG19@6.714
VGG16@6.429

ResNet34@5.857
ResNet50@5.143

critical distance: 3.9685

(a) End-to-end

1 2 3 4 5 6 7 8

EfficientNetB2@2.571
EfficientNetB1@3.0
EfficientNetB0@3.143
ResNet152@3.857

VGG19@7.0
VGG16@6.429

ResNet34@5.286
ResNet50@4.0

critical distance: 3.9685

(b) Random forest

1 2 3 4 5 6 7 8

EfficientNetB2@2.0
EfficientNetB1@2.429
EfficientNetB0@2.857
ResNet152@3.571

VGG19@7.429
VGG16@7.286

ResNet34@5.286
ResNet50@4.429

critical distance: 3.9685

(c) Extra trees
Figure 7. Comparison between different network architectures in terms of ranking loss. The results
are presented in the form of average rank diagrams at 0.05 significance level for (a) End-to-end
learning, (b) Random forests and (c) Extra trees. The best ranking methods are at the left-most side
of the diagram. The difference in performance among the methods connected with a red line is not
statistically significant.

Overall, we can conclude that in the fine-tuning setting, it is favorable to use lightweight
network architectures in terms of model parameters for end-to-end learning, which are
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also capable of learning more discriminative feature representations when used as feature
extractors. This is in direct relation to their capability of capturing high-level content
present in RSI to a greater extent as compared to the other network architectures. Moreover,
they are the preferred choice when addressing the problems encountered in challenging
deployment scenarios, which means they can maintain good predictive performance while
keeping the computational costs at a reasonable level.

4.3. Comparison of Different Learning Approaches

To answer the experimental question of how end-to-end learning and feature extraction
plus the tree ensembles compare in the task of RSI MLC, we present the results in the
form of average rank diagrams, where we use the pre-trained and fine-tuned versions of
the EfficientNet-B2 model. Recall that EfficientNet-B2 produced the best results overall,
either when used as a feature extractor where the extracted feature representations are
further utilized in the tree ensembles, or as an end-to-end approach to directly address
the MLC task. The results are shown in Figure 8a for fine-tuning and in Figure 8b for
pre-training only.

1 2 3

End-to-end@1.714 Random Forest@2.0
Extra Trees@1.857

critical distance: 1.2529

(a) Fine-tuning

1 2 3

End-to-end@1.286 Random Forest@2.571
Extra Trees@2.143

critical distance: 1.2529

(b) Pre-training

Figure 8. Comparison between different learning methods in terms of ranking loss. The results are
presented in the form of average rank diagrams at 0.05 significance level for (a) Fine-tuning and (b)
Pre-training only. The best ranking methods are at the left-most side of the diagram. The differences
among the methods connected with a red line is not statistically significant.

As seen from the diagrams, end-to-end learning is ranked best, followed by Extra
trees and Random Forests. In the case of fine-tuning (Figure 8a), there is no statistically
significant difference among the classification methods. In the pre-training setting, the end-
to-end learning approach is significantly better than the random forest method. Overall,
the differences in predictive performance depend on the specific deep neural network
architecture and the learning setting. Comparison between different learning methods in
terms of other MLC performance measures in the form of average rank diagrams is given
in Figures A7 and A8 in the Appendix A. Figure A7 concerns the use of fine-tuned and
Figure A8 the use of pre-trained features.

4.4. Influence of the Number of Available Labeled Images

To answer the fourth question about the relation of the number of available images
and the performance of the different MLC models, we conducted additional experiments
focusing on the biggest dataset available—BigEarthNet. We design an experimental pro-
tocol which partitions the BigEarthNet dataset into distinctive subsets of images, namely,
fractions of: 0.1%, 0.5%, 1%, 5%, 10%, 25%, and 50% of 590,326 images, respectively. Each
of the fractions is further split into disjoint subsets of training, validation, and testing
images, with sizes 70%, 10%, and 20% of the fraction size, respectively. Moreover, the
test sets are built in a cumulative manner, which means the test subset of images from
the previous fractions are inherited into the test set of the next fraction. By doing this,
we are evaluating the effectiveness of the models on new subsets of images, while taking
the old ones into account, i.e., we simulate a scenario where we add new images. The
sampling of the fractions and the subsets within the fractions can be done in two different
ways: (i) sampling with stratification, and (ii) random sampling. Furthermore, we are also
assessing the generalization capability of the model when exposed to different distribution
shifts. To obtain a more reliable estimate of the predictive performance, we repeated the
experiment five times and calculated the average performance and standard deviation
(μ± σ) in terms of ranking loss.
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To carry out the experiment, we used the two versions of the BigEarthNet dataset,
namely, BigEarthNet with 19 and 43 CLC nomenclatures. We selected this dataset because
it is the largest one in terms of the number of images. For these experiments, we used
EfficientNet-B2 as network architecture, since it produced the best results overall in the
previous experiments. We fine-tuned the model parameters for 25 epochs and used the
trained model as a feature extractor for the tree ensembles, as well as an end-to-end
approach. We present the results in the form of learning curves in order to see how
the number of training examples influences the predictive performance. The results of
the experiment for the BigEarthNet-19 and BigEarthNet-43 are shown in Figure 9. We
can see that the performance of the learning methods in all cases improves of the total
number of training examples by up to 10%, after which it degrades. End-to-end learning
methods perform worse than tree ensemble methods in all cases in the learning curve,
but the differences in performance are only visible in the case of stratified sampling. The
differences are more expressed in the BigEarthNet-19 dataset (Figure 9). This means that the
different learning methods are affected differently by the choice of the sampling strategy.
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Figure 9. Comparison between different learning methods in terms of ranking loss when evaluated
on different fractions of labeled examples from the BigEarthNet-19 and BigEarthNet-43 datasets,. The
results are shown as learning curves depicting μ± σ for ranking loss across five repeats. The y-axis is
shared across the figures.

5. Conclusions

In this study, we have presented a comparative analysis of methods for multi-label
classification of remote sensing imagery. We have compared several popular deep learning
methods based on two modes of operation, where they are (1) used as feature extractors in
a combination with tree ensemble methods such as random forests and extra trees, and (2)
used as end-to-end approaches to directly address the MLC task.

We focused on four aspects: (1) different transfer learning paradigms, namely, learn-
ing features based on ImageNet pre-training only, as well as learning features with fine-
tuning, where the whole network architecture and the model parameters are trained on
the new target domain of interest; (2) comparison between different network architectures;
(3) comparison between tree ensembles and end-to-end approaches; and (4) investigating
the influence of the number of labeled examples on the relative predictive performance
of MLC methods. In the first dimension, we showed that it is beneficial to fine-tune the
models on RSI to improve their performance. However, in certain cases, where the number
of data is limited, it is better to extract features with ImageNet pre-training and only fine-
tune the last layer for classification. Furthermore, we showed that it is very important to
choose a proper network architecture: EfficientNets proved to be overall the most suitable
choice for the task of MLC. They have significantly fewer parameters as compared to
the ResNet variants, and no statistically significant difference in predictive performance
is observed. We also showed that having the right feature extractor plays an important
role in boosting the performance of tree ensemble methods, so that they outperform the
end-to-end approaches in certain cases. In the last dimension, we investigated the influence
of the amount of labeled data from the BigEarthNet dataset on the relative performance of
MLC methods, where we applied two types of sampling strategies: random sampling and
sampling with stratification. We showed that in such a setting, the tree ensemble methods
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outperform the end-to-end approaches, with the difference in performance clearly visible
for stratified sampling.

Considering the findings from this study, further extension of this work should focus
on several aspects. Firstly, we will incorporate even a wider range of deep learning models
specially devised for the RS MLC task. Next, we will take into account different MLC loss
functions to analyze whether they are more suitable for the RS MLC task. Moreover, since
the label space of BigEarthNet dataset is organized in a hierarchical manner, we will further
analyze the effect of using the hierarchical information in the tree ensemble methods and
in the end-to-end approaches. Lastly, we will focus on the application of the methods in a
semi-supervised learning setting, where we will exploit the abundance of the unlabeled
data in RS domain and investigate if the semi-supervised counterparts can surpass the
performance of the supervised learning methods.
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Appendix A. Complete Results from the Experimental Evaluation

Table A1. The performance in terms of ranking loss measure of fine-tuning and pre-training feature
learning approaches with different network architectures and different MLC approaches. The best
performing network architecture for each dataset is highlighted with green.
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Approach Datasets Pre-Training

Ankara 0.298 0.371 0.343 0.351 0.350 0.349 0.330 0.422

End-to-end

UCM 0.186 0.180 0.154 0.149 0.135 0.194 0.185 0.184
AID 0.215 0.208 0.171 0.181 0.179 0.198 0.194 0.188
DFC-15 0.176 0.176 0.147 0.134 0.134 0.127 0.120 0.113
MLRSNet 0.347 0.360 0.306 0.240 0.229 0.318 0.300 0.326
BigEarthNet-19 0.557 0.550 0.461 0.399 0.391 0.460 0.476 0.478
BigEarthNet-43 0.578 0.546 0.480 0.431 0.410 0.468 0.481 0.480

Ankara 0.322 0.320 0.324 0.329 0.388 0.317 0.337 0.345

Random Forest

UCM 0.381 0.398 0.469 0.420 0.539 0.495 0.508 0.468
AID 0.250 0.244 0.265 0.247 0.294 0.268 0.257 0.262
DFC-15 0.297 0.337 0.235 0.201 0.342 0.259 0.222 0.242
MLRSNet 0.529 0.545 0.566 0.549 0.615 0.587 0.567 0.548
BigEarthNet-19 0.534 0.525 0.588 0.543 0.532 0.637 0.670 0.669
BigEarthNet-43 0.547 0.537 0.600 0.557 0.545 0.654 0.686 0.683

Ankara 0.318 0.312 0.331 0.325 0.370 0.328 0.320 0.330

Extra Trees

UCM 0.390 0.405 0.457 0.417 0.552 0.483 0.513 0.462
AID 0.254 0.250 0.255 0.253 0.305 0.265 0.250 0.256
DFC-15 0.297 0.338 0.235 0.204 0.351 0.235 0.218 0.229
MLRSNet 0.530 0.545 0.567 0.549 0.620 0.573 0.556 0.534
BigEarthNet-19 0.539 0.528 0.608 0.567 0.556 0.658 0.693 0.698
BigEarthNet-43 0.550 0.540 0.622 0.581 0.570 0.676 0.709 0.713

Fine-tuning
Ankara 0.294 0.285 0.377 0.356 0.360 0.335 0.353 0.322

End-to-end

UCM 0.224 0.508 0.101 0.097 0.112 0.088 0.096 0.081
AID 0.265 0.202 0.152 0.143 0.147 0.137 0.131 0.137
DFC-15 0.433 0.433 0.068 0.075 0.067 0.054 0.046 0.050
MLRSNet 0.180 0.223 0.093 0.091 0.088 0.082 0.084 0.084
BigEarthNet-19 0.276 0.282 0.235 0.236 0.210 0.207 0.203 0.202
BigEarthNet-43 0.271 0.276 0.243 0.232 0.199 0.206 0.195 0.194
Ankara 0.318 0.319 0.344 0.338 0.345 0.304 0.335 0.320

Random Forest

UCM 0.182 0.323 0.103 0.098 0.103 0.106 0.104 0.106
AID 0.245 0.197 0.146 0.144 0.149 0.138 0.138 0.137
DFC-15 0.433 0.433 0.050 0.047 0.050 0.046 0.041 0.044
MLRSNet 0.185 0.221 0.104 0.103 0.102 0.093 0.095 0.090
BigEarthNet-19 0.258 0.268 0.229 0.219 0.214 0.222 0.219 0.217
BigEarthNet-43 0.255 0.267 0.235 0.230 0.219 0.228 0.221 0.224

Ankara 0.364 0.348 0.342 0.322 0.362 0.313 0.343 0.321

Extra Trees

UCM 0.177 0.334 0.103 0.102 0.102 0.100 0.098 0.097
AID 0.248 0.194 0.144 0.146 0.146 0.135 0.134 0.136
DFC-15 0.433 0.433 0.049 0.050 0.046 0.046 0.041 0.043
MLRSNet 0.184 0.221 0.106 0.104 0.103 0.097 0.100 0.094
BigEarthNet-19 0.257 0.268 0.227 0.217 0.213 0.222 0.218 0.216
BigEarthNet-43 0.255 0.267 0.233 0.228 0.217 0.227 0.219 0.224
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(o) Extra trees: Macro-recall

1 2 3 4 5 6 7 8

EfficientNetB1@2.0
EfficientNetB2@2.143
EfficientNetB0@3.0
ResNet50@4.143

VGG19@7.714
VGG16@7.286

ResNet34@5.143
ResNet152@4.143

critical distance: 3.9685
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(q) Random forest: Macro-precision
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(r) Extra trees: Macro-precision

Figure A1. Performance of different network architectures in terms of label-based evaluation mea-
sures for fine-tuned features. The results are presented in the form of average rank diagrams at
a 0.05 significance level. The best ranking methods are at the left-most side of the diagram. The
difference among the methods connected with a red line is not statistically significant.
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(a) End-to-end: Hamming loss
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(b) Random forest: Hamming loss
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(c) Extra trees: Hamming loss
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(d) End-to-end: Subset Accuracy
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(f) Extra trees: Subset Accuracy

Figure A2. Performance of different network architectures in terms of example-based evaluation
measures for fine-tuned features. The results are presented in the form of average rank diagrams
at a 0.05 significance level. The best ranking methods are at the left-most side of the diagram. The
difference among the methods connected with a red line is not statistically significant.
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(a) End-to-end: Coverage
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(f) Extra trees: Average Precision

Figure A3. Performance of different network architectures in terms of ranking-based evaluation
measures for fine-tuned features. The results are presented in the form of average rank diagrams
at a 0.05 significance level. The best ranking methods are at the left-most side of the diagram. The
difference among the methods connected with a red line is not statistically significant.
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(q) Random forest: Macro-precision
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(r) Extra trees: Macro-precision

Figure A4. Performance of different network architectures in terms of label-based evaluation mea-
sures for pre-trained features. The results are presented in the form of average rank diagrams at a 0.05
significance level. The best ranking methods are at the left-most side of the diagram. The difference
among the methods connected with a red line is not statistically significant.
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(a) End-to-end: Hamming loss
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(f) Extra trees: Subset Accuracy

Figure A5. Performance of different network architectures in terms of example-based evaluation
measures for pre-trained features. The results are presented in the form of average rank diagrams
at a 0.05 significance level. The best ranking methods are at the left-most side of the diagram. The
difference among the methods connected with a red line is not statistically significant.
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Figure A6. Performance of different network architectures in terms of ranking-based evaluation
measures for pre-trained features. The results are presented in the form of average rank diagrams
at a 0.05 significance level. The best ranking methods are at the left-most side of the diagram. The
difference among the methods connected with a red line is not statistically significant.
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Figure A7. Performance of different learning methods in terms of all MLC evaluation measures
for fine-tuned features. The results are presented in the form of average rank diagrams at a 0.05
significance level. The best ranking methods are at the left-most side of the diagram. The difference
among the methods connected with a red line is not statistically significant.
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Figure A8. Performance of different learning methods in terms of all MLC evaluation measures
for pre-trained features. The results are presented in the form of average rank diagrams at a 0.05
significance level. The best ranking methods are at the left-most side of the diagram. The difference
among the methods connected with a red line is not statistically significant.
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Abstract: In recent years, dramatic progress in object detection in remote sensing images has been
made due to the rapid development of convolutional neural networks (CNNs). However, most
existing methods solely pay attention to training a suitable network model to extract more powerful
features in order to solve the problem of false detections and missed detections caused by background
complexity, various scales, and the appearance of the object. To open up new paths, we consider
embedding knowledge into geospatial object detection. As a result, we put forward a method of
digitizing knowledge and embedding knowledge into detection. Specifically, we first analyze the
training set and then transform the probability into a knowledge factor according to an analysis using
an improved version of the method used in existing work. With a knowledge matrix consisting of
knowledge factors, the Knowledge Inference Module (KIM) optimizes the classification in which
the residual structure is introduced to avoid performance degradation. Extensive experiments are
conducted on two public remote sensing image data sets, namely DOTA and DIOR. The experimental
results prove that the proposed method is able to reduce some false detections and missed detections
and obtains a higher mean average precision (mAP) performance than the baseline method.

Keywords: convolutional neural networks (CNNs); remote sensing images; object detection; knowl-
edge inference module

1. Introduction

Object detection classifies and locates geospatial objects in aerial images and is a
fundamental task in remote sensing. Recently, there have been great advances in object
detection in aerial images (ODAI) [1,2] with the advent of deep convolutional neural
networks. Because of this, applications in some fields, such as (UAVs) and wireless sensor
networks (WSNs), have also benefited dramatically [3,4]. Although a large number of
excellent methods [5–9] have been invented in the past few years, updating the previous
state-of-the-art methods, there are still problems, such as missing detections and false
detections caused by densely distributed objects, varied object sizes, and occluded objects.
To illustrate, Figure 1a is a visualization of false harbor and helicopter detection, where a
plane is detected as the harbor, and a piece of land is regarded as a helicopter. In Figure 1b,
a piece of agricultural land is detected as a soccer ball field. In Figure 1c, a shaded
basketball court is not detected. In the right of Figure 1d, two bridges are not detected,
which damages the detection performance. The traditional object detection paradigm only
takes the extracted feature into consideration. However, this is the bird eye view in aerial
images. Therefore, detection algorithm inference only uses the roof information from aerial
images. Moreover, due to its complex background features, such as the shape similarity and
appearance similarity between objects and the background, the wrong labels are predicted.
Because of the ambiguous appearance, those algorithms with an advantage in terms of
extracting features do not have a significant effect. This is because when the instances are
ambiguous, the extracted features are not that powerful, which leads to missed detection
and false detection.

Remote Sens. 2022, 14, 6103. https://doi.org/10.3390/rs14236103 https://www.mdpi.com/journal/remotesensing
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(a) (b) (c) (d)

Figure 1. False detection in red circle and missed detection in yellow circle: (a) false detection of a
helicopter and harbor; (b) false detection of a soccer ball field; (c) missed detection of a basketball
court; (d) missed detection of a bridge.

However, the human visual recognition system informs us how to tackle this problem,
because humans take their surroundings, as well as objects into account when conducting
recognition tasks [10], which might be beneficial for geospatial object detection. When
humans see one thing, it is common for them to think of another thing related to the seen
one. Normally, for instance, when a harbor comes into view, there might be ship parking
along the harbor. In addition, the ship and the harbor appear with water, which provides
the link between the water and the object. Relationships between objects and relationships
between a scene and objects can be assembled into a knowledge pool, which is then used
in the object detection task, the process of which is shown in Figure 2. With the utilization
of such a knowledge pool, the human visual recognition system is superior to the artificial
intelligent algorithm in terms of its detection performance. The visual recognition method
mentioned above benefits from the utilization of knowledge, which is worth adopting in
the object detection algorithm.

Figure 2. Relationships between the ship, harbor, and water assembled in the knowledge pool.

Obviously, it is by converting pictures into data that object detection algorithms
process converted data and can detect objects. Thus, in order to improve the detection
method added to work, such as the human visual system, the transformation of knowledge
into data is essential. Refs. [11,12] were our sources of inspiration. Li et al. [11] presented
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statistics regarding the probability of objects appearing in each scene and assembled these
data into a probability matrix with the aim of improving scene classification. Consequently,
thinking in opposition, it is profitable to use the probability of an object appearing in the
relevant scene to guide detection. In [12], Xu et al. utilized a class relation matrix to boost
the object detection performance. Specifically, they integrated a class relation matrix with
a high-dimensional feature to obtain an enhanced feature, which is not that intuitively
explainable due to the high-dimensional space. As a result, to deal with false detections,
such as a harbor being detected on land, in this work, we explored the co-relations between
the water area and objects by analyzing a data set. Moreover, in order to utilize the implicit
relation as knowledge, we analyzed the conditional co-occurrence probabilities of different
categories, which is the expression of the implicit relation.

In this paper, an approach to utilizing knowledge is proposed. Our overall contribu-
tions are as follows:

• We extract two kinds of knowledge in the form of probabilities, namely the corre-
lations between classes and the correlations between the water area and classes, by
analyzing the DOTA [13] and DIOR [2] training sets. Then, we transform the extracted
knowledge into a knowledge factor using a novel equation improved from [14].

• We propose a method, namely the Knowledge Inference Module (KIM), of integrating
knowledge into object detection in remote sensing images. Through an evaluation of
two public aerial data sets, our method obtains a higher mAP than the baseline model,
Oriented R-CNN [15] with fewer false and missed detections.

2. Related Work

2.1. Object Detection in Remote Sensing Images

It is obvious that remote sensing images are very different from natural scene im-
ages due to their large aspect ratio, arbitrary orientation, variation in appearance and
scale, densely distributed objects, etc., leading to difficulties in directly transferring object
detection in natural scene images to object detection in aerial images. Therefore, refer-
ences [9,16,17] proposed different ways to improve the detection performance. Han et al. [9]
used the Feature Alignment Module (FAM) to generate anchors, encode orientation in-
formation, and obtain orientation-sensitive features using the Oriented Detection Module
(ODM). Yang et al. [17] R3Det refined features by re-encoding the positional information of
the bounding box to the corresponding feature points through pixel-wise feature interpo-
lation. Ming et al. [16] constructed critical features through the Polarization Refinement
Module (PAM) and used the Rotation Anchor Refinement Module (R-ARM) to finally
obtain a powerful semantic representation. Yang et al. [7] used a circular smooth label
(CSL) to solve the problem of having discontinuous boundaries due to angular periodicity
or corner ordering. Ding et al. [6] proposed the RoI-Transformer, which contains Rotated
RoI Warping (RRoI Warping), which extracts rotation-invariant features, and the Rotated
RoI Learner (RRoI Learner), which acquires objects’ orientation information, to address
detection misalignment. The aforementioned [6] achieved great success in boosting the
detection performance. However, in this method, the amount of computation increases,
the detection speed decreases, and the GPU memory is burdened. Consequently, some
methods [15,18] with reduced computation have been proposed with the condition of
maintaining accuracy. Xie et al. [15] built the Oriented-RCNN including the Oriented
RPN to generate high-quality anchors and the Oriented R-CNN head, which has a faster
detection speed than the RoI-Transformer [6]. Han et al. [18] proposed a novel backbone,
the Rotation-equivariant ResNet (ReResNet), which has a reduction in parameters of over
60% compared to ResNet [19].

2.2. Utilization of Existing Knowledge

Works that integrate knowledge into object detection can be divided into two kinds.
One involves learning relationships between objects and scenes or relationships between
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categories during the training process; another makes use of existing knowledge to improve
the detection performance.

2.2.1. Utilization of Knowledge Learned in Training

Chen et al. [20] directly added a global image feature to an ROI feature, which is
a simple and effective method. Liu et al. [21] designed a Structure Inference Network
(SIN) with two parallel branches, one for global information extraction and another for
global information extraction. Though this method is more sophisticated and useful, the
GRU cell in each branch requires more GPU memory, making the process time-consuming.
Siris et al. [22] applied an Attention [23] mechanism to combine global information and
local information and produced a great performance in terms of salient object detection. Li
et al. [24] obtained local features and contextual features from the Region of Interest (RoI),
then integrated them into a Local-Contextual joint feature for geospatial object detection.
Zhang et al. [25] proposed CAD-net, which can learn correlations between objects and
scenes from global features and object features. Refs. [26–28] designed a module to enhance
scene or global information in order to capture contextual information.

2.2.2. Utilization of Existing Knowledge

In [11,29], the prior scene-class graph was adopted to infer the relationship between a
scene and an object through the Bayesian criterion. The adjacency matrix learned from
the visual feature was adopted in the relation-reasoning module in [30,31]. Shu et al. [32]
introduced the Graph Attention Network (GAT) and Graph Convolutional Network (GCN)
to learn hidden knowledge from the obtained co-occurrence matrix and scene–object matrix.
Fang [14] proposed a probability-based knowledge graph and graph-based knowledge
graph with a cost function containing a knowledge graph to carry out knowledge-aware
detection. In [33], an explicit knowledge module and an implicit knowledge module,
containing an explicit knowledge graph and an implicit knowledge graph, respectively,
were introduced, to enhance the RoI features.

3. Establishment of the Knowledge Matrix

3.1. Knowledge Matrix Establishment

In this section, the procedures used to create knowledge matrices, the category condi-
tional co-occurrence knowledge matrix and the water area knowledge matrix from the data
set are illustrated.

3.1.1. Conditional Co-Occurrence Knowledge Matrix

We first count the probability n(l) that every category appears in images using Equation (1)

n(l) =
Nimg(l)
Nallimg

. (1)

where Nimg(l) denotes the number of images in which category l occur, and Nallimg denotes
the number of images in the trainset. An analysis of the DOTA trainset is shown in Table 1,
and an analysis of DIOR is shown in Appendix A .
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Table 1. The number of images in which the category occurs Nimg(l) and the probabilities of the class
occurrence n(l).

Object Categories Nimg(l) n(l)

Plane 197 0.1396
Baseball diamond 122 0.0864

Bridge 210 0.1488
Ground track field 177 0.1254

Small vehicle 486 0.3444
Large vehicle 380 0.2693

Ship 326 0.2310
Tennis court 302 0.2140

Basketball court 111 0.0786
Storage tank 161 0.1141

Soccer ball field 136 0.0963
Roundabout 170 0.1204

Harbor 339 0.2402
Swimming pool 144 0.1020

Helicopter 30 0.0212

Then, we determine the probability of conditional co-occurrence. In detail, we first
count Nimg(l|l′), the number of images in which class l and class l′ appear together. Then,
we use Nimg(l) diving Nimg(l|l′) .

Fang et al. [14] proposed Equation (2)

Sl,l′ = max(log
n(l|l′)Nallimg

n(l)n(l′)
, 0) (2)

where n(l) denotes the probability of occurrence for category l, and Nallimg denotes the
number of all images to transform the frequencies into a knowledge matrix. We applied
this formula to the DOTA and DIOR data sets.

However, this knowledge matrix has some disadvantages. On one hand, the numerical
dimension, which is over 10, is too large to be suitable for optimizing predicted class scores.
The oversized numerical dimension has an excessive influence on the predicted class
scores, causing the knowledge matrix to become the decisive element, whereas our original
intention was to make use of the knowledge matrix to improve predictions. On the other
hand, when two categories do not co-occur, the corresponding position in the knowledge
matrix will be set as 0, which is a rigid way to deal with the aforementioned situation.
Thus, we propose a novel processing approach that introduces a zero factor to replace
0. Additionally, simply setting zero could exert a negative impact on the generalization
performance. This is because the none-conditional-co-occurrence of two categories in the
data set only denotes that the two categories have little correlation, but it does not mean
that the two categories never co-occur in the real world.

In order to address aforementioned problems, we modify Equation (2) and propose
Equation (3).

Sl,l′ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

log n(l,l′)
n(l)n(l′) (n(l) + n(l′))

Nimg(l) + Nimg(l′)
n(l, l′) �= 0

log ε
n(l)n(l′) (n(l) + n(l′))

Nimg(l) + Nimg(l′)
n(l, l′) = 0

(3)

The modifications are as follows:

1. We abandon the max() function, which means that the range of Sl,l′ extends to the
negative axis, which is suitable for situations where category l and category l′ do not
co-occur or barely co-occur;
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2. We regard the log part log n(l,l′)
n(l)n(l′) as a conditional co-occurrence factor and abandon

Nallimg and add (n(l)+n(l′))
Nimg(l)+Nimg(l′)

as a scale factor into the equation in order to the scale

knowledge factor into a proper numerical dimension and the make knowledge factor
adaptive to the probability of category occurrence;

3. We split our novel equation into two branches, where the upper one is for situations
where l and l′ appear together in the training set and the lower one computes the
knowledge factor when l and l′ do not co-occur;

4. In the lower branch, we replace n(l, l′) with the zero factor ε in Equation (4), where
Nobject denotes the number of instances belonging to category l, making the equation
more elegant when n(l, l′) equals 0.

ε =
1

Nobject(l)Nobject(l′)
(4)

3.1.2. Water Area Knowledge Matrix

In this section, we first count the number of images containing water areas and the
number not containing water areas and compute the occurrence probability of water ap-
pearing and not appearing as 0.5102 and 0.4898 in DOTA, respectively. Then, we determine
the probability of a class appearing with water area or not using Equations (5) and (6)

n(l|w) =
Nimg(l|w)

Nimg(l)
(5)

n(l|w) =
Nimg(l|w)

Nimg(l)
(6)

where n(l|w) and Nimg(l|w) denote the probability of class l in a water area and the number
of images in which class l does not occur in a water area. Those with a water area are
denoted by n(l|w) and Nimg(l|w) . Probabilities of classes of DOTA appearing in a water
area and not in a water area are demonstrated in Table 2. The probabilities of the classes of
DIOR appearing in a water area and not in a water area are demonstrated in Table A2.

Table 2. Probabilities of classes appearing with water area and not with water area. Column n(l|w)

denotes the probability of category l appearing with water area; n(l|w) is the probability of category
l not appearing with water area.

Object Categories n(l|w) n(l|w)

plane 0.1748 0.8252
baseball-diamond 0.5543 0.4457

bridge 0.9755 0.0245
ground-track-field 0.6462 0.3538

small-vehicle 0.2837 0.7163
large-vehicle 0.1584 0.8416

ship 0.9994 0.0006
tennis-court 0.2945 0.7055

basketball-court 0.2544 0.7456
storage-tank 0.9402 0.0598

soccer-ball-field 0.5215 0.4785
roundabout 0.6166 0.3834

harbor 1 0
swimming-pool 1 0

helicopter 0.0015 0.9985
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Similar to the conditional co-occurrence knowledge matrix, we also partly modify
Equation (2) and propose Equation (7)

Sl,∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log n(l|∗)
n(l)n(∗)n(l)

Nimg(l)
n(l|∗) �= 0

log ε
n(l)n(∗)n(l)

Nimg(l)
n(l|∗) = 0

(7)

where ε, taken as the zero factor, equals 1
Nobject(l)

, and n(*) is the probability of a water area

appearing, where * is w or w meaning that there is a water area and that there is no water
area, respectively. Equation (7) was also applied to DOTA and DIOR .

4. Methods

In this paper, we propose a knowledge-inferencing module that uses a residual struc-
ture to optimize the predicted class scores, which helps the detector to perform better. Our
method can be applied to any two-stage object detection framework. In this work, we chose
the Oriented R-CNN [15] as the framework and baseline model. The overall structure of the
framework filled with the knowledge-aware bounding box head is presented in Figure 3.

Figure 3. The overall structure of the framework filled with the Knowledge Inference module, a
two-stage detector. Feature extraction module first extracts multi-scale features fed into the Oriented
RPN. Region proposals are generated by the Oriented RPN and used for classifying and regression
in the Oriented RCNN head. Finally, the classification scores are fed into the Knowledge Inference
Module, resulting in knowledge-enhanced classification scores.

4.1. Feature Extraction

Resnet-50 [19] and FPN [34] are adopted into the Feature Extraction module to extract
multi-scale features with which size-various objects can more easily be detected. Figure 4
shows the overall structure of the Feature Extraction module. In the bottom–up part, the
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input image is first input into a series of convolutional layers to generate low-semantic
feature maps and high-semantic feature maps {C1, C2, C3, C4, C5}. Moreover, the top–down
part obtains more powerful features by fusing features. To be specific, M4 is equal to the
sum of the result of the upsampling of M5 and the result of the 1× 1 convolution of C4. In
this way, M3 and M2 are generated. P2, P3, P4, and P5 are obtained by feeding M2, M3, M4,
and M5 into a 3 × 3 convolutional layer, and P6 is obtained by maxpooling P5. Finally, this
module outputs the fused multi-scale features {P2, P3, P4, P5, and P6}.

Figure 4. The overall structure of the Feature Extraction module.

4.2. Oriented RPN

The oriented RPN takes {P2, P3, P4, P5, and P6} as the input and output region proposals
with location information and an objectness score. Figure 5 shows the structure of the
Oriented RPN.

We set three horizontal anchors with aspect ratios of {1:2, 1:1, and 2:1} for every location
in the features of all scales. The anchors correspond to {P2, P3, P4, P5, and P6} and have pixel
areas of {322, 642, 1282, 2562, and 5122}, which are represented by a 4-dimensional vector
a = (ax, ay, aw, ah). ax and ay denote the horizontal and vertical locations of the anchor
center; aw and ah correspond to the width and height of the anchor. The upper branch of
Figure 5, i.e., the regression branch, outputs the offset δ = (δx, δy, δw, δh, δα, δβ) of proposals
related to anchors. We decode the offset using Equation (8) to obtain oriented proposals
(x, y, w, h, Δα, Δβ), where (x, y) denotes the location of the proposed center coordinate, w
and h correspond to the width and height of the external rectangle box of the proposal, Δα
and Δβ denote the offsets of the proposal box vertex oriented to the midpoints of the top
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and right sides of the corresponding external rectangle. The lower branch of Figure 5, i.e.,
the classification branch, outputs objectness scores.

⎧⎪⎨
⎪⎩

Δα = δα · w, Δβ = δβ · h
w = aw · eδw , h = ah · eδh

x = δx · aw + ax, y = δy · ah + ay

(8)

Figure 5. The structure of the Oriented RPN, which contains a 3× 3 convolutional layer and two
sibling 1× 1 convolutional layers for classification and regression, respectively.

To represent the oriented object in elegant manner, the midpoint offset representation
is introduced, the schematic of which is illustrated in Figure 6. In detail, the black horizontal
box, i.e., the external rectangle of the blue one, is obtained from the anchor, where aw and ah
are the width and height of the anchor, and the blue oriented box is the predicted oriented
proposal box. The black dots and the light green dots are the midpoint of the external
rectangle edges and the vertices of the oriented box, respectively. The predicted oriented
proposal box can be represented as O = (x, y, w, h, Δα, Δβ), which can be computed by
Equation (8). Furthermore, the vertices of predicted oriented proposal are denoted by a
set of coordinates v1, v2, v3, v4. Similarly, Δβ is the distance between v2 and the midpoint
(x, y− h

2 ) of the top side, and because of the symmetry, the distance between v3 and the
midpoint (x, y+ h

2 ) of the bottom side equals−Δα. It is noticing that Δα is distance between
v1 and the midpoint (x, y− h

2 ) of top side, and because of the symmetry distance between
v3 and the midpoint (x, y + h

2 ) of bottom side equals to −Δα. Similarly, Δβ is the distance
between v2 and the midpoint (x + w

2 , y) of the right side, and the distance between v4 and
the midpoint (x, y + h

2 ) of the left side equals −Δβ. As a result, the vertices of the oriented
proposal {v1, v2, v3, v4} can be computed using Equation (9).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 = (x, y− h
2
) + (Δα, 0)

v2 = (x +
w
2

, y) + (0, Δβ)

v3 = (x, y +
h
2
) + (−Δα, 0)

v4 = (x− w
2

, y) + (0,−Δα)

(9)
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Figure 6. Schematic of the midpoint offset scheme.

In the training process, we assign positive and negative samples using the following
rules:

1. An anchor that has an Intersection-over-Union(IoU) over 0.7 with any ground-truth
box is regarded as a positive sample;

2. An anchor that has an IoU over 0.3 with a ground-truth box and the IoU is the highest;
3. An anchor that has an IoU lower than 0.3 is regarded as a negative sample;
4. Anchors that do not belong to the above cases are discarded during the training

process.

4.3. Oriented RCNN Head with the Knowledge Inference Module

In this section, we apply our proposed Knowledge Inference module to the Oriented
RCNN head in order to reduce missed and wrong detections by improving the predicted
class scores. Specifically, the proposed module is applied on two kinds of knowledge:
conditional co-occurrence knowledge and water area knowledge. Thus, the proposed
module has two similar inferencing modes. The details can be seen in the middle part of
Figure 3.

The oriented RCNN head first takes {P2, P3, P4, P5, and P6} and the oriented proposals
from the oriented RPN as the input. In detail, feature vectors are obtained by rotating
the RoI alignment to extract rotated RoI features according to the oriented proposals and
transform them into fixed-length vectors. This is followed by two fully-connected layers.
Then, we use two fully-connected sibling layers outputting classification scores and location
predictions. For each image, we generate 512 predictions. Thus, the classification scores
are denoted by the tensor of shape [512, K + 1], where K + 1 denotes the number of classes
plus the background, and the location predictions are denoted by the tensor of shape
[512, 5]. With the aim of optimizing the predicted classification scores with the knowledge
matrix, we propose the Knowledge Inference Module, the structure of which is illustrated in
Figure 7. To be specific, Figure 7a shows the structure of the Knowledge Inference module
applied to class conditional co-occurrence knowledge. The class scores [512, 16] are first fed
into the main-class-seeking-module to compute the major class in the image outputting the
index of the main class. Then, the conditional co-occurrence matrix is sliced in terms of
the main class index. The sliced matrix denotes the relationship between the main class
and other classes, which is represented by the tensor of shape [1, 16]. Therefore, the Δ
class score is a tensor with knowledge integrated. It is obtained by dot-multiplying class
scores [512, 16] and transposing the sliced matrix [16, 1]. However, our initial idea is to
use knowledge to guide detection, so we apply a residual structure [19] into our proposed
module, avoiding degradation brought about by using Δ class scores only. Enhanced
class scores are the result of Δ class scores plus class scores. Additionally, the Knowledge
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Inference module on water area knowledge is shown in Figure 7b and is similar to that of
the category conditional co-occurrence matrix. The difference is that the Main Class Seeking
module and the main class index are replaced by water information showing whether there
is a water area in the image.

The structure of the Main-Class-Seeking module is illustrated in Figure 8. We first slice
the tensor class scores [512, 16] into 512 small tensors [1, 16] and encode them into values
of 1 to 512. Then, the sliced class scores are fed into the argmax() function outputting the
classes with the highest classification scores. The function max check() is used to count the
number of each category in the 512 predictions. This is performed sequentially, where the
class with largest number is the main class.

(a)

(b)

Figure 7. Structures of the Knowledge Inference module applied on two kinds of knowledge:
(a) the structure of the Knowledge Inference module applied on conditional co-occurrence knowledge;
(b) the structure of the Knowledge Inference module applied on water area knowledge.

Figure 8. The Main Class Seeking module consists of a slice operation, argmax() function and a max
check() function.
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4.4. Loss Function

To train the Oriented RPN and Oriented RCNN head, we introduce Cross-Entropy
Loss Lcls for the classification task and Smooth L1 Loss Lreg for the regression task. The
whole loss function L is defined as follows:

L(pi, ti) =
1
N

N

∑
i

Lcls(pi, p∗i ) +
1
N

N

∑
i

p∗i Lreg(ti, t∗i ) (10)

Lcls(pi, p∗i ) = −[p∗i log(pi) + (1− p∗i )log(1− pi)] (11)

Lreg(ti, t∗i ) =

{
0.5(ti − t∗i )

2 i f |ti − t∗i | < 1

|ti − t∗i | − 0.5 otherwise
(12)

where N and i are, respectively, the number and index of the predicted anchors in a image,
pi is the probability of predicted anchors, p∗i denotes the ground-truth label that belongs to
{0, 1}, i.e., negative and positive, and ti and t∗i are the predicted box and the ground-truth box.

5. Experiments

In this section, we introduce the two geospatial object data sets used in this work.
Then, evaluation metrics and implementation details are illustrated.

5.1. Data Sets

To evaluate the proposed method, we conduct experiments on two public aerial image
data sets, i.e., DOTA and DIOR.

DOTA is the most popular large-scale data set for geospatial object detection, contain-
ing 2806 images and 188,282 instances with arbitrary-oriented objects. Moreover, there
are 15 classes in the data set: bridge, harbor, ship, plane, helicopter, small vehicle, large
vehicle, baseball diamond, ground track field, tennis court, basketball court, soccer ball
field, roundabout, swimming pool , and storage tank. The image width ranges from 800 to
4000 pixels. In this work, the training set was used for training, and the validation set was
used for evaluation.

DIOR is another data set that is widely used for geospatial object detection. It con-
tains 23,463 optimal remote sensing images and 192,472 object instances annotated by a
horizontal bounding box. There are 20 object classes in total, namely, airplane, airport,
baseball field, basketball court, bridge, chimney, dam, expressway service area, expressway
toll station, harbor, golf course, ground track field, overpass, ship, stadium, storage tank,
tennis court, train station, vehicle, and windmill. The image size of the DIOR data set is
800 × 800 pixels. We trained the network on the training set and evaluated the method on
the validation set.

5.2. Evaluation Metrics

To evaluate the performance of the proposed method, we utilized four popular eval-
uation metrics, i.e., precision, recall, average precision, and mean average precision, the
calculation formulas of which are shown as follows:

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

TN, FN, and FP denote the number of true positives, the number of false negatives,
and the number of false positives, respectively. Precision measures the number of correctly
identified positive detections of the total number of positive detections and Recall measures
the fraction of correctly identified positive detections of all positive samples.
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AP is computed by calculating the average value of precision from recall = 0 to
recall = 1.

AP =
∫ 1

0
P(R)dR (15)

mAP is used to describe the multi-class object detection performance.

mAP =
1

Nclass

Nclass

∑
j=1

∫ 1

0
Pj(Rj)dRj (16)

where Nclass is the number of data set classes, j denotes the index of the class, and Pj and
Rj are the precision rate and recall rate of the j-th class.

5.3. Implementation Details

The experiments were conducted on a single CPU, Intel Xeon CPU E5-2650 V4 at
2.20 GHz with a single GPU, NVIDIA Tesla P40 24 GB. The operating system was Ubuntu
18.04. The MMrotate [35] repository provided the training strategy. The size of the training
image was 1024 × 1024, and the original DOTA images were split. All images in DIOR
were 800 × 800 in size. Thus, there was no need to split the DIOR images. The objects
in DIOR were annotated in the horizontal direction by the left-top vertex (x1, y1) and
right-bottom vertex (x1, y1). Thus, we converted the annotations into a form suitable for
the Oriented RCNN: (x1, y1, x2, y1, x2, y2, x1, y2), corresponding to the vertices of oriented
ground truth box in clockwise order. As for the hyperparameters, the optimizer was the
stochastic gradient descent (SGD) with a learning rate of 0.005, a momentum of 0.9, and a
weight decay of 0.0001. The batch size was 1, and the number of training epochs was 12.

6. Results

In this section, the results of the experiments on DOTA and DIOR are displayed.

6.1. DOTA Results

We applied the knowledge inference module to two kinds of knowledge: class co-
occurrence knowledge and water area knowledge. The results show that our method
achieved increases in mAP of 1.0% and 0.6%, respectively. Table 3 reports the compar-
ison between the baseline model Oriented RCNN and our proposed method, in which
the proposed method basically maintains the performance for both kinds of knowledge
and improves the accuracy of several classes, for example 8.7% for the term helicopter
with conditional co-occurrence knowledge, and 2.9% for the soccer ball field with water
area knowledge.

Table 3. Comparison between the baseline model Oriented RCNN and our proposed method on
DOTA data set.

METHOD PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

R3Det [17] 88.8 67.4 44.1 69.0 62.9 71.7 78.7 89.9 47.3 61.2 47.4 59.3 59.2 51.7 24.3 61.5
CSL [7] 88.1 72.2 39.8 63.8 64.3 71.9 78.5 89.6 52.4 61.0 50.5 66.0 56.6 50.1 27.5 62.2

S2A-net [9] 89.1 72.0 45.6 64.8 65.0 74.8 79.5 90.1 60.2 67.3 49.3 62.2 60.6 53.4 37.6 64.8
FR-O [5] 89.3 76.0 49.3 74.7 68.1 75.5 87.1 90.7 64.2 62.3 57.0 65.8 66.6 59.6 38.2 68.3

RoI Trans [6] 89.9 76.5 48.1 73.1 68.7 78.2 88.7 90.8 73.6 62.7 62.0 63.4 73.7 57.2 47.9 70.3
Baseline [15] 89.8 75.7 50.2 77.3 69.4 84.8 89.3 90.8 69.2 62.6 63.1 65.0 75.3 57.5 45.3 71.0
Water area 89.6 75.6 50.3 76.4 68.4 84.3 89.4 90.7 72.9 62.6 66.0 67.2 75.6 56.5 48.8 71.6

Co-occurrence 89.6 76.0 50.7 77.0 68.3 84.4 89.3 90.7 73.6 62.4 63.8 66.8 75.1 57.6 54.0 72.0

The baseline is the Oriented RCNN [15], the Water area denotes the Knowledge Inference module on water
area knowledge, and Co-occurrence is the Knowledge Inference module applied on conditional co-occurrence
knowledge, where: PL: plane, BD: baseball diamond, BR: bridge, GFT: ground field track, SV: small vehicle,
LV: large vehicle, SH: ship, TC: tennis court, BC: basketball court, ST: storage tank, SBF: soccer ball field, RA:
roundabout, HA: harbor, SP: swimming pool, and HC: helicopter.
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Moreover, to a certain degree, some missed detections and wrong detections were
improved. Figures 9 and 10 display the reductions in missed detection and wrong detection
using conditional co-occurrence knowledge and water area knowledge, respectively. In
each subfigure, the left half is the result of the baseline model and the right half is the result
of the proposed method. We use yellow circles to draw missed detections and red circles to
draw false detections. Additionally, the first three subfigures shown in Figures 9 and 10
display missed detections, and the second three subfigures in Figures 9 and 10 display the
false detections. The positive detections are shown in Figure 11.

(a)

(b)

Figure 9. Cont.
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(c)

(d)

(e)

Figure 9. Cont.
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(f)

Figure 9. Visualization of the results of the Knowledge Inference module applied to category
occurrence knowledge. (a) missed detection of swimming pools; (b) missed detection of roundabouts;
(c) missed detection of basketball courts; (d) false detection of baseball diamonds; (e) false detection
of storage tanks; (f) false detection of basketball courts.

(a)

(b)

Figure 10. Cont.
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(c)

(d)

(e)

Figure 10. Cont.
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(f)

Figure 10. Visualization of the results of the Knowledge Inference module applied to water area
knowledge. (a) missed detections of ships in the middle of the image; (b) missed detection storage
tanks; (c) missed detection of harbors; (d) false detection of large vehicles; (e) false detection of
harbors; (f) false detection of baseball diamonds.

(a) (b) (c)

(d) (e) (f)

Figure 11. Cont.
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(g) (h) (i)

(j)

Figure 11. Visualization of the positive results. (a) basketball courts and tennis courts; (b) baseball
diamonds; (c) bridge and storage tanks; (d) bridges; (e) harbors and ships; (f) large vehicles and small
vehicles; (g) planes and helicopters; (h) roundabouts; (i) ground field tracks and soccer ball fields;
(j) swimming pools.

Improvement occurs due to the utilization of knowledge. On the one hand, knowledge
is used to optimize the predicted class scores. Thus, the performance of the classification is
promoted; on the other hand, the class predictions optimized by knowledge can help the
network iterate better during backpropagation. As a result, the more powerful features can
be extracted by the network.

In terms of the inferencing speed, we compared the baseline and Knowledge Inference
module for two kinds of knowledge, as shown in Table 4. With the Knowledge Inference
module, there was no significant drop in speed.

Table 4. Comparison of the inferencing speed and accuracy between the baseline and proposed
methods for two kinds of knowledge in the DOTA data set.

METHOD FPS mAP

Baseline 11.8 71.0
Water area 11.7 71.6

Conditional co-occurrence 11.5 72.0

6.2. DIOR Results

The experiments conducted on the DIOR data set achieved a better performance. The
ap values and mAP values are shown in Table 5. As can be seen, both kinds of knowledge
had beneficial impacts on the detection performance, and the mAP values increased by
0.5% and 3.9%, respectively. Similarly, missed detections and wrong detections were
effectively eliminated.
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Table 5. Comparison between the baseline model Oriented RCNN and our proposed method on
DIOR data set .

METHOD APL APT BF BC BR CM DA ESA EST GF

R3Det [17] 89.6 6.40 89.5 71.2 14.4 81.7 8.90 26.5 48.1 31.8
CSL [7] 90.9 2.60 89.4 71.5 7.10 81.8 9.30 31.4 41.5 58.1

S2A-Net [9] 90.8 14.0 89.9 72.7 17.6 81.7 9.50 32.9 50.1 50.9
RoI Trans [6] 90.8 12.1 90.8 79.8 22.9 81.8 8.20 51.3 54.1 60.7

FR-O [5] 90.9 13.1 90.7 79.9 22.0 81.8 10.4 49.8 53.1 58.5
Baseline 90.9 17.0 90.7 80.6 33.5 81.8 19.2 59.8 53.1 56.7

Water area 90.9 21.2 90.7 80.3 34.2 81.8 20.7 60.0 52.9 55.1
Co-occurrence 90.9 23.3 90.8 80.9 38.0 81.8 20.5 62.2 53.7 61.3

GTF HA OPS SP STD ST TC TS VEH WD mAP

65.6 8.20 33.4 69.2 51.9 72.9 81.1 21.4 54.2 44.7 48.5
63.2 17.5 26.6 69.3 53.8 72.8 81.6 18.4 47.2 46.3 49.0
70.9 16.3 43.6 80.1 52.5 75.7 81.7 23.9 59.0 45.6 53.0
77.2 30.6 40.5 89.9 88.2 79.5 81.8 20.6 67.9 55.1 59.2
75.4 35.5 41.6 89.1 85.4 79.3 81.8 32.7 66.4 55.5 59.6
76.9 26.1 54.5 89.9 88.8 79.6 81.8 30.2 68.3 55.1 61.7
76.7 26.8 54.6 89.8 88.3 79.5 81.8 35.5 68.7 55.6 62.2
81.3 32.1 56.6 90.0 88.3 79.7 90.1 44.3 69.2 56.5 64.6

The baseline is the Oriented RCNN, the Water area denotes the Knowledge Inference module’s knowledge
on a water area, and conditional co-occurrence is the Knowledge Inference module for category conditional
co-occurrence knowledge. APL: airplane, APT: airport, BF: baseball filed, BC: basketball court, BR: bridge, CM:
chimney, DA: dam, ESA: expressway service area, ETS: expressway-toll-station, GF: golf field, GTF: ground track
filed, HA: harbor, OPS: overpass, SP: ship, STM: stadium, ST: storage tank, TC: tennis court, TS: trainstation, VEH:
vehicle, WD: windmill.

For the DIOR data set, we also visualized the impacts of two kinds of knowledge on
the baseline, as shown in Figures 12 and 13. As for the visualization of the DOTA data set,
the yellow circle and red circle denote missed detections and false detections, respectively.
The positive detections are shown in Figure 14.

(a)

Figure 12. Cont.
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(b)

(c)

(d)

Figure 12. Visualization of the results of the Knowledge Inference module applied on category
occurrence knowledge: (a) missed detection of airports; (b) missed detection of expressway service
areas; (c) false detection of bridges in the purple box and vehicles; (d) false detection of expressway
toll stations.
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(a)

(b)

(c)

Figure 13. Cont.
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(d)

Figure 13. Visualization of the results of the Knowledge Inference module applied on category
occurrence knowledge. (a) missed detection of overpasses; (b) missed detection of windmills; (c) false
detection of harbors; (d) false detection of storage tanks.

(a) (b) (c)

(d) (e) (f)

Figure 14. Cont.
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(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 14. Visualization of the positive results. (a) airplanes; (b) airports; (c) basketball courts and
tennis courts; (d) baseball fields; (e) bridges; (f) chimneys and storage tanks; (g) dams; (h) expressway
service areas; (i) golf fields; (j) harbors and ships; (k) overpasses; (l) ground track fields and stadiums;
(m) train stations; (n) expressway toll stations; (o) windmills.

A comparison of the inferencing speed and accuracy between the baseline and pro-
posed methods for two kinds of knowledge is shown in Table 6. As can be seen, the
Knowledge Inference module improved the detection accuracy with a negligible negative
influence on the inferencing speed.

Table 6. Comparison of the inferencing speed and accuracy between the baseline and proposed
methods for two kinds of knowledge in the DIOR data set.

METHOD FPS mAP

Baseline 9.3 61.7
Water area 9.1 62.2

Conditional co-occurrence 9.1 64.6
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7. Conclusions

In this paper, in order to utilize knowledge to reduce false detections and missed
detections caused by variation in the object appearance, varied object sizes, and complicated
backgrounds, a series of steps were taken. We first established a knowledge matrix between
the classes and a knowledge matrix between water areas and classes by analyzing the
training set and proposed a novel equation, which can effectively avoid generalization
degradation, to transform the relationship into form applicable for inferencing. Then, we
proposed a method, the Knowledge Inference module, for integrating knowledge into
object detection. The experiments were conducted on two public remote sensing data sets:
DOTA and DIOR. The experimental results show that, compared to the baseline model,
the proposed method achieved higher mAP values with fewer false detections and missed
detections at an almost equal inferencing speed.
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Appendix A

Table A1. The number of images where the category occurs Nimg(l) and the probabilities of class
occurrences n(l).

Object Categories Nimg(l) n(l)

airplane 344 0.0586
airport 326 0.0556

baseball field 552 0.0941
basketball court 336 0.0573

bridge 378 0.0644
chimney 202 0.0344

dam 238 0.0406
expressway service area 279 0.0475
expressway toll station 285 0.0486

golf field 216 0.0368
ground track field 537 0.0916

harbor 329 0.0561
overpass 410 0.0699

ship 649 0.1107
stadium 289 0.0493

storage tank 390 0.0665
tennis court 605 0.1032
train station 244 0.0416

vehicle 1561 0.2662
windmill 404 0.0689
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Table A2. Probabilities of classes of DIOR appearing with water area and not appearing with water
area. Column n(l|w) denotes the probability of category l appearing with water area; n(l|w) is the
probability that category l appears with no water area.

Object Categories n(l|w) n(l|w)

airplane 0.0412 0.9588
airport 0.4482 0.5518

baseball field 0.0714 0.9286
basketball court 0.0981 0.9019

bridge 0.9525 0.0475
chimney 0.1228 0.8772

dam 1 0
expressway service area 0.2719 0.7281
expressway toll station 0.1335 0.8665

golf field 0.9114 0.0886
ground track field 0.1293 0.8707

harbor 1 0
overpass 0.1179 0.8821

ship 0.9998 0.0002
stadium 0.1126 0.8874

storage tank 0.3126 0.6874
tennis court 0.1366 0.8634
train station 0.2398 0.7602

vehicle 0.2140 0.7860
windmill 0.0489 0.9511
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Abstract: Semantic segmentation for remote sensing images (RSIs) plays an important role in many
applications, such as urban planning, environmental protection, agricultural valuation, and military
reconnaissance. With the boom in remote sensing technology, numerous RSIs are generated; this
is difficult for current complex networks to handle. Efficient networks are the key to solving this
challenge. Many previous works aimed at designing lightweight networks or utilizing pruning and
knowledge distillation methods to obtain efficient networks, but these methods inevitably reduce
the ability of the resulting models to characterize spatial and semantic features. We propose an
effective deep supervision-based simple attention network (DSANet) with spatial and semantic
enhancement losses to handle these problems. In the network, (1) a lightweight architecture is
used as the backbone; (2) deep supervision modules with improved multiscale spatial detail (MSD)
and hierarchical semantic enhancement (HSE) losses synergistically strengthen the obtained feature
representations; and (3) a simple embedding attention module (EAM) with linear complexity performs
long-range relationship modeling. Experiments conducted on two public RSI datasets (the ISPRS
Potsdam dataset and Vaihingen dataset) exhibit the substantial advantages of the proposed approach.
Our method achieves 79.19% mean intersection over union (mIoU) on the ISPRS Potsdam test set and
72.26% mIoU on the Vaihingen test set with speeds of 470.07 FPS on 512 × 512 images and 5.46 FPS
on 6000 × 6000 images using an RTX 3090 GPU.

Keywords: convolutional neural network (CNN); deep supervision; lightweight model; remote
sensing; semantic segmentation

1. Introduction

Remote sensing is a crucial technical tool for large-scale observations of the Earth’s
surface. With the rapid development of Earth observation and remote sensing imaging
technology, remote sensing has entered the era of big data [1]. Big data qualities for remote
sensing primarily involve three Vs: volume, velocity, and variety of data [2]. Every day, a
massive volume of remote sensing data must be handled in the era of big data for remote
sensing. Furthermore, increasingly diverse remote sensing data are playing important
roles in several fields. Due to advances in imaging technology, very high-resolution (VHR)
imagery has shown considerable potential in remote sensing images (RSIs) interpretation
and has been the focus of semantic segmentation.

Semantic segmentation is a critical task in computer vision, and its special application
to remote sensing is RSI interpretation. It requires pixelwise parsing of the input image to
retrieve the predefined categories to which the elements belong. Semantic segmentation
has broad and vital applications in a variety of fields. This is especially true in the realm of
remote sensing, where subjects such as integrated land use and land cover mapping [3,4],
town change detection [5,6], urban functional areas [7], building footprints [8], impervious
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surfaces [9], and water body [10] extraction. The majority of these applications and method-
ologies are based on VHR images and are constrained by the two issues listed below. (1)
Information modeling with little detail. In comparison to prior low-resolution images,
VHR images give unequal spatial and semantic information volume gains. The significant
improvement in spatial resolution allows for the observation of previously unseen features.
However, vital detail information is mixed in with a vast volume of redundant information,
providing additional obstacles for information extraction. (2) Inefficient processing. On
the data processing front, high-resolution imagery implies that the amount of data to be
processed per unit of observation area for interpretation is rising dramatically, posing a
considerable challenge for hardware and algorithms.

Researchers have proposed numerous ways to overcome the difficulties of semantic
segmentation for VHR images in the age of big data. Deep learning algorithms are the
primary techniques for semantic segmentation at the moment. Unlike classic machine
learning algorithms based on prior knowledge and predetermined rules, deep learning
algorithms are data-driven algorithms that perform poorly with tiny data samples but
may be utilized to great advantage in the era of big data. Deep learning-based convolu-
tional neural networks (CNNs) outperform classic machine learning methods in terms
of performance. Fully convolutional networks (FCNs) [11] have been utilized to obtain
outstanding results in the semantic segmentation of RSIs. Following study, numerous
model variants based on the FCN architecture have been developed, making substantial
advances in various aspects. UNet [12], which is based on an encoder-decoder architecture,
enhances the FCN’s capacity to represent the multiscale features of images through con-
traction paths and expansion paths for achieving high-precision road [13] and coastline
recognition [14] in RSIs. The DeepLabv3 series [15,16] utilize parallelized atrous spatial
pyramid pooling (ASPP) with varying ratios to expand the models’ reception fields while
obtaining multiscale features; these models are widely used in RSI semantic segmentation,
cloud detection [17], etc. However, because to the poor inference speeds of these models
and the high hardware needs placed on deployed devices, these approaches find it difficult
to overcome the aforementioned two problems. Figure 1 depicts the problem of building
segmentation models that take both efficiency and performance into account.

Figure 1. Speed-accuracy tradeoff yielded by different semantic segmentation methods on the ISPRS
Potsdam dataset with a size of 6000 × 6000 pixels using an RTX 3090 GPU. Orange points: different
versions of our proposed method. Red points: lightweight methods with more than 1.5 M parameters.
Blue points: lightweight methods with less than 1.5 M parameters. Our proposed methods achieve
the best speed-accuracy tradeoffs. It is worth noting that that the sizes of the corresponding points of
the methods are positively correlated with their parameters.

In addition to investigating model segmentation performance, another approach is
to optimize the efficiency and accelerate the inference speed of the utilized model. A
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conceivable way to accomplish lightweight model building is to reduce the number of
model channels and add an attention mechanism to compensate for the loss in model
performance [18]. In addition to incorporating an attention module, the introduction
of a deep supervision [19] module can also enhance the segmentation performance of
the model. By actively monitoring the body and edge characteristics of the object of
interest, a lightweight semantic segmentation network was suggested to maximize the
overall consistency and object details of semantic segmentation results [20]. Loss functions
expressly designed for the semantic segmentation task can speed up the learning process
of the resultant model for fundamental spatial information such as borders [21] and spatial
correlations [22], as evidenced by higher performance with the same amount of training
epochs. These lightweight networks struggle to capture the rich, detailed aspects of VHR
images with fewer parameters, reducing accuracy significantly.

We investigate a solution for alleviating data interpretation burden in the era of large
data for remote sensing that balances performance and inference speed. The functions of a
lightweight network backbone, an attention mechanism, a deep supervision module, and a
loss function in attaining effective semantic segmentation are thoroughly investigated in
this paper. Our contributions are summarized here.

(1) To alleviate the VHR images interpretation mistake in the age of large data, an efficient
deep-layer and shallow-channel network with spatial and semantic enhancement
losses (DSANet) is developed.

(2) Without inference speed costs, two multiscale feature losses are proposed: improved
multiscale spatial detail (MSD) and hierarchical semantic enhancement (HSE). The
MSD loss is intended to improve the model’s extraction of underlying spatial informa-
tion, whilst the HSE loss assists the model in understanding the observed distribution
of categories.

(3) The addition of the embedding attention module (EAM) decreases the attention
module’s complexity from quadratic (self-attention) to linear with equivalent accuracy,
as well as increasing inference speed for large images.

(4) On the ISPRS Potsdam and Vaihingen benchmark data-sets, we attain outstanding
results. Using an RTX 3090 GPU, we achieve mean intersection over unions (mIoUs)
of 79.19% on the Potsdam test set and 72.26% on the Vaihingen test set, with a speed
of 470.07 frames per second (FPS) on 512 × 512 images and 5.46 FPS on 6000 ×
6000 images.

The rest of this paper is organized as follows. Section 2 reviews related works involv-
ing efficient network designs, efficient semantic segmentation approaches, information
enhancement modules, and attention mechanisms. Section 3 presents the network structure
of the proposed model and the detailed principles of its modules. Section 4 introduces
the utilized datasets and demonstrates the implementation details of our experiments.
The ablation experiments and a results comparison with state-of-the-art methods are also
included in Section 5. Finally, Section 6 provides a summary of the paper.

2. Related Works

Many lightweight segmentation algorithms have obtained impressive results on many
benchmarks in the domains of autonomous driving, video surveillance, and VHR remote
sensing scene perception in the last 5–10 years. This section reviews efficient network
designs and related works, categorizing them as follows: efficient network designs, efficient
semantic segmentation approaches, information enhancement modules, and attention
mechanisms.

2.1. Efficient Network Designs

Researchers are discovering that network design is becoming increasingly crucial as
the Visual Geometry Group network (VGGNet) [23], the residual network (ResNet) [24],
and DenseNet [25] models continue to be suggested. Because semantic segmentation is
a dense prediction task, related models tend to have more parameters and slower infer-
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ence speeds, which is harmful to model deployment and severely limits their application
possibilities. An efficient network design paradigm lends itself well to the creation of
efficient segmentation networks. By extensively replacing the 3 × 3 convolution in the
model with a 1 × 1 convolution and reducing the number of channels in the 3 × 3 convo-
lution, SqueezeNet [26] achieves comparable classification accuracy to AlexNet [27] with
2% of the total parameters. The MobileNet series [28–30] has steadily introduced new
techniques to deep separable networks such as inverted residuals and neural architecture
search (NAS). By integrating group convolution and channel shuffling operations and
employing four recommendations, the ShuffleNet series [31,32] achieves a balance between
accuracy and parameter number. 1. Equal channel widths minimize the memory access
cost (MAC). 2. Excessive group convolution increases the MAC. 3. Network fragmentation
reduces the degree of parallelism. 4. Elementwise operations are nonnegligible. Several
outstanding and efficient semantic segmentation models have been presented as a result of
these exploratory efforts on efficient network construction.

2.2. Efficient Semantic Segmentation Methods

Efficient semantic segmentation models strive for a balance between accuracy and
speed, with considerable inference speed benefits at a low accuracy cost. They represent a
significant development in the field of semantic segmentation in terms of efficiency, and
they have created many good works based on the collaborative efforts of scholars. The
two dominant approaches point the way to achieving high-accuracy and efficient semantic
segmentation. 1. Light-weight backbones. ENet [33], a representative of earlier efficient
segmentation models, greatly reduces the number of required parameters and floating point
operations (FLOPs) by employing an asymmetric encoder-decoder structure and factorizing
filters. Subsequent work has focused on asymmetric networks, with the goal of improving
model performance by using deeply separable convolutions [34], dilated convolutions [35],
factorized convolutions

�
[36,37], dense connections [38], skip connections [39], pyramidal

pooling [40] and channel splitting and shuffling [41]. The Fast-shallow CNN (SCNN) [42]
adopts shared shallow network paths to encode details while learning contexts at low resolu-
tions, saving computing costs. STDCNet [38] utilizes a lightweight backbone network from
DenseNet with layer concatenation. Dual-resolution branch networks [43], exemplified by
the bilateral segmentation network (BiSeNet) series [44,45], provide effective segmentation
by modifying extraction branches for spatial and semantic information independently.
2. Feature aggregation. The deep feature aggregation network (DFANet) [46] recommends
two deep branches where several bilateral fusions are conducted. By steering upper-level
feature upsampling using low-level features, SFNet [47] achieves higher-resolution restora-
tion and cross-layer feature aggregation. DDRNet [48] advises two deep branches between
which multiple bilateral fusions are performed.

2.3. Information Enhancement Modules

The information in computer vision tasks can be divided into spatial and semantic
information, both of which contribute significantly to accurate segmentation. (1) Enhancing
spatial information. Typically, the shallow layer of the encoder may better describe spatial
information. Ensuring that a branch has a high resolution preserves spatial information
to the greatest extent possible. STDCNet adopts the Laplacian kernel of the pyramid
hierarchy as an auxiliary loss function, which expedites the process of learning spatial
edge features. Researchers suggest that the quantifications and statistics of spatial texture
aspects are likewise of great significance due to quantization and counting operators.
(2) Enhancing semantic information. PSPNet [49] adopts pyramid pooling to enhance the
observed multiscale semantic features. The DeepLab series [15,16,50,51] utilizes parallel
atrous convolutions with varying dilation rates; this approach is called ASPP, which can
encode multiscale semantic information more effectively. DANet [52] models long-range
dependencies in the channels and positions of sematic features using a dual self-attention
module. OCRNet [53] explicitly turns the pixel classification problem into an object area
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classification problem, computes the relationship between each pixel and each object region,
and augments the representation of each pixel with an object-contextual representation.

2.4. Attention Mechanisms

The selected attention mechanism is a crucial component of model design and is a key
module for improving model performance. It is a descriptive weighting of the relationship
between a particular attribute (from a small pixel value to an entire channel) and the data,
so that it can be chosen to suppress or amplify that attribute at a particular location in order
to achieve a selective representation of a particular feature for the model. The outstanding
early approach is the squeeze-and-excitation network (SENet) [54], which squeezes the
features on each channel by global maximum pooling and uses a fully connected layer to
encode the features into a low-dimensional space before performing decoding. This makes
the SENet an excellent attention module without imposing many additional parameters or
a large computational burden on the subject network. The SENet’s concept of squeezing
and extracting channels and examining spatial attention inspired further research. Impor-
tant follow-ups include the block attention module (BAM) [55] and convolutional BAM
(CBAM) [56]. A BAM includes a two-branch parallel attention computation paradigm,
with channel attention branches that adhere to the SENet’s approach. Spatial features are
squeezed in the channel dimension by a 1× 1 convolution, key spatial features are extracted
using a 3 × 3 convolution, and finally, a pixelwise summation operation is performed for
both attention weights. A CBAM selects a multistep attention paradigm that combines
channel attention and spatial attention simultaneously. The combination of spatial attention
with gated mechanisms is another way to utilize attention mechanisms [57]. Unlike the idea
of feature compression and extraction in the above work, self-attention [58] is a pixel-level
attention mechanism. The computational complexity and resource needs of this method
are an order of magnitude more than those of the preceding approaches, despite the fact
that its performance is superior. Transformers [59], which outperform CNNs in many
tasks, are excellent models based on self-attention; however, researchers are still designing
optimizations for visual tasks such as patches [60] and hierarchical architectures [61,62] to
overcome the fatal flaw of a computationally intensive attention mechanism. Fortunately,
self-attention based on queries, keys and values can be optimized from O(n2) complexity
to linear complexity by changing the order of computation [63], performing approximate
computation [64], and conducting low-rank singular value decomposition [65].

It is typical practice for effective semantic segmentation networks [33,44] to utilize
an attention module based on the SENet or linear simplified self attention due to its
computational efficiency and inference speed.

3. Methodology

Our proposed segmentation model (DSANet) adheres to the original design concepts
outlined below: (1) to adhere to Occam’s razor: entities should not be multiplied beyond
necessity; (2) to have the smallest possible number of parameters while obtaining acceptable
accuracy; and (3) to avoid modules that improve the model’s representation capabilities but
consume an unacceptable amount of time during inference. Important aspects of the model
include: (1) its low channel capacity and extra downsampling stages in the backbone to
quickly obtain large perceptual fields, (2) the combined multiscale spatial detail loss and
hierarchical semantic enhancement loss in the deep supervision module, and (3) a simple
attention module with linear complexity. The details of DSANet can be seen in Figure 2.
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Figure 2. The network architecture of DSANet. Note that the green blocks are encoder components,
whereas the red blocks and the semantic segmentation head are decoder components. All auxiliary
segmentation heads within the dashed box are only engaged during model training, whereas only
the remaining modules use inference time.

3.1. Network Architecture of the Proposed Method

DSANet is an asymmetric, U-shaped, basic network with an encoder for the contract-
ing path and a decoder for the expansion path.

In contrast to prior lightweight semantic segmentation networks that employ two-
branch designs, i.e., semantic and spatial branches, we employ a single backbone branch
that is anticipated to extract both spatial and semantic information. For such single-
branch networks, it is essential to improve spatial feature extraction. Good spatial texture
information and color information are required for the model to sense semantics, and correct
boundary detail information is essential for directing the high-resolution reconstruction
of semantic components. Observing the inference time spent by BiSeNet (see details in
Table 1) reveals that (1) the spatial path (SP) for extracting spatial information, the attention
refinement module (ARM) for refining semantic features, and the feature fusion module
(FFM) for feature interaction account for more than 30% of the model inference speed;
(2) performing feature operations at the second-to-last scale (ARM16) is extremely time-
consuming and unsatisfactory.

Table 1. Analysis of the Number of Parameters, Number of Computations and Inference Time of the
BiSeNet Network.

Module Params (M) FLOPs (G) Inference Time (ms)

SP 0.685 9.586 3.84
ARM32 4.521 1.023 0.74
ARM16 2.323 2.048 21.94

FFM 0.984 1.836 4.56
All 8.513 14.493 31.08

Note that all data are in percentages. ARM32 and ARM16 represent ARM applied to 1/32 and 1/16 scales,
respectively.

292



Remote Sens. 2022, 14, 5399

To reduce the number of parameters in the model, including the number of layers and
channel capacities, are redesigned. A typical semantic segmentation task only downsamples
an image to 1/16 or 1/32 through the encoder and performs operations such as feature
refinement and attention at this scale; this is totally insufficient for VHR images. Our
method attempts to investigate the semantic content of VHR images at a more granular
level. Semantic information extraction can benefit from increased channel capacity, but
the resulting redundancy necessitates high model refinement and essential information
discrimination. For this reason, a lightweight semantic segmentation job need to reduce
the channel capacity of deep layers.

There are two suggested variants of DSANet, DSANet64 and DSANet32, with the
numbers denoting the channel capacity of the model. Using DSANet64 as an example,
the model encoder is briefly described in Table 2. At Stage 0, feature maps are subjected
to continuous quick downsampling procedures to decrease the amount of computations
performed from scratch. In stages 1–4, downsampling and feature extraction are alternated
with a slower rate of channel capacity development. Another continuous quick downsam-
pling procedure is done in the subsequent two steps. The final encoder extracts semantic
information at a scale of 1/64 with a channel capacity of 256, which is quite low in com-
parison to other models’ channel capacity of 1024. Finally, a self-attention module is used
to simulate the most profound semantic information inside features over the long-range.
Through skip connections, stages 7–9 merge the feature map with rich spatial information
in the encoder with the upsampled semantic feature map and eventually restore the image’s
scale to 1/8 that of the original. The final result of semantic parsing is achieved via the
segmentation head.

Table 2. Detailed Architecture of the DSANet Encoder.

Stages Output Size KSize S
DSANet32 DSANet64

R C R C

Image 512 × 512 3 3
Stage 0 256 × 256

128 × 128
3 × 3 2

2
1
1

32 1
1

64

Stage 1 128 × 128 3 × 3 1, 1 2 32 2 64
Stage 2 64 × 64

64 × 64
3 × 3 2, 1

1, 1
1
1

32 1
1

64

Stage 3 64 × 64 3 × 3 1, 1 2 64 2 128
Stage 4 32 ×32

32 × 32
3 × 3 2, 1

1, 1
1
1

64 1
1

128

Stage 5 16 × 16 3 × 3 2 1 64 1 128
Stage6 8 × 8 3 × 3 2 1 128 1 256

FLOPs 2.09G 7.46G
Params 1.14M 4.58M

Note that ”Stage” in the table refers to the combination of a series of Conv-BN-rectified linear unit (ReLU). KSize,
S, R, and C refer to the kernel size, stride, number of repetitions and number of out channels, respectively. Stages
1–4 use the basic DSA module, and the Stages 5 and 6 use the bottleneck version of the DSA module. FLOPs are
calculated based on 512 × 512 images.

3.2. EAM

To compare and comprehend the features of the EAM and its advantages in terms
of efficient semantic segmentation, we will first review the self-attention mechanism. As
illustrated in Figure 3. A, the self-attention mechanism calculates the attention relations
between various elements by the dot product operation, which allows for a more accurate
representation of long-range information. Given a feature map F ∈ RC×H×W , where
H, W, and C represent the length, width, and number of channels of the feature map F,
respectively, the feature map F is reshaped to a sequence X = {x1, x2, . . . , xN}, where
xi ∈ RC is the feature vector of element N and N (equal to H ×W) is the number of
elements. Three linear transformations are performed on each of these feature vectors

293



Remote Sens. 2022, 14, 5399

to encode the information into a high-dimensional space and to produce Q ∈ RN×dk ,
K ∈ RN×dk , and V ∈ RN×dv :

Q = WQ(X), K = WK(X), V = WV(X) (1)

where dk and dv are set to be equal to the same number for the simplicity of calculation in
general.

Figure 3. Dot product self-attention SA (A) and two kinds of embedding self-attention: EAM I (B)
and EAM II (C).

The similarity measure between the i-th element and the j-th element can be calculated
by the cosine similarity formula, expressed as (qi

Tkj). The softmax function is chosen as
the normalizing function because the attention given by the i-th element to the j-th element
depends not only on their similarity but also on the attention paid by the i-th element to all
other elements. The attention scores between elements and the outcomes of self-attention
are computed by the following (2):

Attn(Q, K, V) = Norm(Similarity(Q, K)) ·V (2)

where Norm represents the softmax normalization function, and Similarity(·), which cal-
culates the relationship between Q and K, is defined as:

Similarity(Q, K) =
QKT
√

dk
(3)

where
√

dk is the scaling factor that maintains the variance of Similarity(Q, K) at 1, pre-
venting the gradient from vanishing. Similarity(Q, K) is abbreviated as A.

An intuitive approach for reducing the computational complexity of self-attention
is that not every attention between a pair of elements is sufficiently useful, and so we
may only need to obtain the attention relations between the i-th element and a set number
of essential components. Two techniques are offered to accomplish the aforementioned
concept.

(1) In accordance with the fundamental structure of self-attention, the feature vector X is
linearly transformed to generate Q, K and V. The difference is that the dimensions of
K and V are altered from RN×dk to RE×dk , where E is the embedding dimensionality.
The first dimension of K and V from N to E simulates the process of selecting the top
E most important elements from N. Due to probable image size changes between
training and test data, N cannot be predicted in advance for the semantic segmentation
task; thus, adaptively pooling the feature vector X in advance is essential to achieve
N with fixed dimensions. Theoretically, without considering adaptive pooling, the
computational complexity of embedding self-attention I (Figure 3B) is O(Edk N). In
the real case, the computational complexity will be better than this value, satisfying a
lower linear computational complexity.

(2) Unlike the first two attentional approaches, embedding self-attention II (Figure 2C)
generates only Q using the feature vectors X, while the memory K and V are pre-
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generated random matrices in RN×dk and optimised during training phase. This
strategy may successfully overcome the difficulty associated with the unpredictability
of N and reduce calculation time for K and V. Due to the fact that K and V are fully
independent of the feature vector X, the interactions between components are weak,
making it difficult for EAM II to establish genuine attentional connections. We employ
the approach in [65] to normalize the rows and columns of A independently, as it
is possible that strengthening the connections between components using a single
softmax function, which is often used in self-attention mechanisms, may not yield
optimal results. L1 normalization is specifically applied following softmax activation.
This method’s computational complexity is also O(Edk N). The following are the
precise formulae for the softmax and L1 normalization functions.

Ãi,j = so f tmax(Q, K)i,j =
exp(Ai,j)

∑E
k exp(Ak,j)

(4)

Âi,j = L1_Norm(Ãi,j) =
Ãi,j

∑dk
k Ãi,k

(5)

3.3. MSD Loss

VHR images contain rich detail and texture information, necessitating lightweight
models with strong spatial representation capabilities. The deep supervision module is an
auxiliary segmentation head that helps mitigate problems such as gradient vanishing and
slow network convergence during training and assists the intermediate layer in improving
the model representation; this module is activated only during the model training phase. A
novel deep supervision module based on the MSD loss was proposed in [38]. This module
uses second-order differential operators to extract boundary and detail information from
the labels at various scales to improve the spatial representation of the model. However, this
method achieves suboptimal results on VHR images when applied to DSANet. Considering
that the input of this module includes all feature maps from a shallow layer, it is difficult
for the lightweight DSANet to effectively represent semantic features because VHR images
are rich in semantic information and the deep spatial supervision process is too restrictive.
It is recommended that our MSD loss with a selective kernel ratio will fix this issue.
This kernel arbitrarily truncates portions of the feature maps so that the corresponding
convolution kernels of the network layers may be less affected by spatial deep supervision.
The selected feature maps enter the MSD module to improve the network’s capacity to
represent boundary details, while the other feature maps are transmitted to further layers
to provide appropriate semantic representations. The particular MSD loss calculation
procedure is as follows.

Constructing multiscale edge extraction pyramids. The most frequently used second-
order differential operator is the Laplace operator in two dimensions, which is formulated
as follows:

Δ f =
∂2 f
∂x2 +

∂2 f
∂y2 (6)

where f is a twice-differentiable real-valued function. For processing RSIs in the form of
discrete data, the discrete Laplace operator O (see Equation (7)) is applied.

O =

⎡
⎣−1 −1 −1
−1 8 −1
−1 −1 −1

⎤
⎦ (7)

Laplace convolution operators with varying strides are utilized to create multiscale
detail maps D0 ∈ RH×W , D2 ∈ RH×W and D4 ∈ RH×W in order to fully leverage the
multiscale properties of the label maps. A pyramid detail map P ∈ RH×W is obtained by
summing these multiscale detail maps.
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P = D0 ⊕D2 ⊕D4 (8)

Given the output feature maps Fin ∈ RC×H×W of a shallow layer, the selected feature
maps FS ∈ RC×H×W are obtained through the selective kernel. Next, after a 3 × 3 convolu-
tion and a 1 × 1 convolution, the channel dimensionality of FS ∈ RH×W is reduced to 1,
which matches the shape of the pyramid detail map.

Evaluation loss. For a sparse matrix with extremely unbalanced categories (such as
the pyramid detail map), the percentage of pixels containing detailed information is very
small (the pixels in red and black are compared in the pyramid detail map in Figure 4),
so it is difficult to obtain better results with the binary cross-entropy (BCE) loss alone. A
typically utilized strategy is to optimize the loss evaluation method by incorporating a
category proportion-insensitive Dice loss that has a solid ability to distinguish between
foreground and background information. The formulas for the BCE loss and Dice loss are
as follows.

Lbce(F ,P) = −
H×W

∑
i=1

fi · log pi + (1− fi) · log(1− pi)

H×W
(9)

Ldice(F ,P) = 1− 2 ∑H×W
i=1 fi · pi+ε

∑H×W
i=1 ( fi) + ∑H×W

i=1 (pi)
2+ε

(10)

where fi and pi represent the values of the i-th element derived from the feature map F
and the pyramid detail map P , respectively, and ε is a very small number used to smooth
the gradient and is set to 1× 10−8.

Figure 4. Schematic diagram of the MSD loss calculation process. Stridds 1, 2, and 4 in the Laplace
convolution operator are denoted as S1, S2 and S4.

The mean squared error (MSE) combines these two losses, and the calculation formula
is shown as follows.

LMSD(F ,P) = Lbce(F ,P) + βLdice(F ,P) (11)
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where β is a hyperparameter, which is 1.0 in this paper.
The specific calculation process of the MSE loss is shown in Figure 4.

3.4. HSE Loss

In contrast with the MSD loss, the HSE loss is proposed for enhancing the capacity
of the model to discern the category distributions of images. Category parsing errors
are frequently caused by the large number of categories in VHR images, which contain
considerable intraclass spectral variations as well as moderate interclass spectral changes.
Adding semantic information to the model can effectively reduce the impact of this issue
on the segmentation results.

Our proposed HSE loss is embedded in the decoder without an inference cost. Figure 5
and Algorithm 1 provide detailed information. We denote the label map y ∈ RH×W , which
goes through the following process to obtain the HSE vector.

Figure 5. Schematic diagram of the HSE vector calculation process with 4 levels. (a) Boundaries in
different colors indicate different segmentation scales. (b) Simplified diagram of the local frequency
distribution. (c) Visual presentation of the HSE vectors.

(1) Set the hierarchical semantic boundary. Semantic boundaries at different locations
can capture the distributions of categories in different local regions, and semantic
boundaries at different scales can reflect the multiscale characteristics of category
distribution features. Assume that N boundary levels and the boundary level of n slice
the label map in 2n patches along the length and width, respectively. The label patches
are set as yn = {y1, y2, . . . , yN}, where yn = {y(j)

n }22n

j=1 is the set of feature patches in

level n and y(j)
n ∈ R

H
2n × W

2n .
(2) Calculate the local frequency distribution. The category distribution d(j)

n is calculated

separately for each label patch y(j)
n , where j is the sequence number of the label

patch set.
(3) Aggregate the global distribution vector. The label patches at boundary level n are con-

catenated to generate the global frequency distribution vector v̂n. The same processing
flow is applied to the prediction map output from network stage K in the decoder to
obtain the vector vn. The HSE vector of prediction is v = {vn}N

n=0, and that of the label
map v̂ = {v̂n}N

n=0. The HSE loss is obtained by computing the BCE between the HSE
vector of the prediction v and the HSE vector of the label map v̂.
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The HSE algorithm is defined as follows:

Algorithm 1: HSE loss for the deep supervision module.

Input: Batch of examples with labels X = {(xi, yi)}Bi=1
Output: HSE loss LHSE
Result: Out stage K, Boundary levels N, Boundary weights {αi}N

i=1, Numbers of
classes c, Ignored label cignored, Length H and Width W of examples

1 for b ← 1 to B do
2 Fb,0 ← Stage0(xb)
3 for k ← 0 to K− 1 do
4 Fb,k+1 ← Stagek(Fb,k)
5 end
6 Fb ← Resize(arg maxFb,K, (H, W))
7 for n ← 0 to N do

8 Divide Fb and yb equally into 22n patches // along the length and

width

9 Denote patches Fb,n ∈ R22n× H
2n× W

2n and yb,n ∈ R22n× H
2n× W

2n

10 for j ← 1 to 22n do

11 d̂(j)b,n ← FrequencyDistribution(y(j)b,n, c, cignored) // Ignore mask labels

and compute frequency distribution

12 d(j)b,n ← FrequencyDistribution(F (j)
b,n, c, cignored)

13 end

14 v̂b,n ← Concat({d̂(j)b,n}22n

j=1) // Aggregate the global distribution

vector

15 vb,n ← Concat({d(j)b,n}22n

j=1)

16 Lb,n ← BCELoss(v̂b,n, vb,n)
17 end

18 LHSE ,b ← 1
n ∑n(ffnLb,n)

19 end

20 LHSE ← 1
B ∑b LHSE ,b

4. Data Set and Experimental Details

4.1. Benchmark Description

(1) ISPRS Potsdam Dataset (https://www.isprs.org/education/benchmarks/UrbanSemLab/
2d-sem-label-potsdam.aspx (accessed on 2 September 2021).)

For the ISPRS competition, the Potsdam dataset serves as an urban modeling and
semantic labeling baseline. Large building blocks, narrow streets, and dense settlement
architecture may be seen in this typical old city. Data from DSM and nDSM orthophotog-
raphy are available for each patch. For this dataset, there are 38 patches of the same size,
all with the same ground sampling distance (GSD), and 24 of these patches are training
data while the other 14 are validation data. Impervious surfaces, low-vegetation zones,
trees, autos and the background are all manually determined categories. We used IRRG
(near-infrared, red, and green bands) as the model’s input data in order to compare it to
other approaches.

(2) ISPRS Vaihingen Dataset (https://www.isprs.org/education/benchmarks/UrbanSemLab/
2d-sem-label-vaihingen.aspx (accessed on 2 September 2021).)

Another benchmark from the ISPRS semantic labeling challenge is the Vaihingen
dataset. It depicts a little community with a large number of single-story and small-scale
multistory structures. The data types are configured in the same way that the Potsdam
dataset was. With a GSD of 9 cm, it has 33 patches, 17 of which are set aside for validation.
The patch sizes range from 1388 × 2555 to 3816 × 2550.
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4.2. Evaluation Metrics

The mean of the classwise F1 score (mF1) and the mean of the classwise intersection
over union are the most widely accepted metrics for evaluating model performance in
semantic segmentation tasks (mIoU). The mF1 focuses on the evaluation of the outcomes
predicted by the model at the pixel level, whereas the mIoU analyzes expected results in
terms of the degree of overlap with the ground-truth labels.

The F1 score is the harmonic mean of the precision and recall, where the precision is
the number of true-positive results divided by the number of all positive results, including
those not identified correctly, and the recall is the number of true-positive results divided
by the total number of samples that should have been identified as positive. Therefore, the
precision, recall, and F1 score can be computed as

precision =
TP

TP + FP
(12)

recall =
TP

TP + FN
(13)

F1 = 2 · precision · recall
precision + recall

(14)

where TP, FP, FN, and TN represent true positives, false positives, false negatives and true
negatives, respectively.

The IoU, also known as the Jaccard index, is a statistic used for gauging the similarity
and the diversity between the predicted and the ground-truth labels. The IoU it can be
represented as

IoU =
|Sp ∩ Sgt|
|Sp ∪ Sgt| (15)

where Sp and Sgt represent the set of predicted pixels and the set of ground-truth labels
for the corresponding category, respectively, and ∩ and ∪ are the intersection and union
operations defined on the set.

To compare the efficiency of the tested models, the study introduces the FLOPs and
FPS as theoretical and practical measures of the model inference speed.

4.3. Data Preprocessing and Augmentation

The semantic interpretation of RSIs is characterized by fewer data samples but a higher
size per picture than other standard computer vision tasks. In practice, we frequently
confront two obstacles: (1) computing resources are constrained and GPUs struggle to
enable direct input of full-frame RSI sample data; (2) a small sample size always results in
overfitting and poor model generalizability. Through picture cropping, the image size may
be lowered, and the data sample size can be raised proportionally. In addition, typical data
augmentation techniques such as random cropping, random flipping, random rotation,
and photometric distortion can successfully increase sample variability and enhance the
generalizability of the used model. Given the considerable picture size variances in the
Vaihingen dataset, it is required to standardize the image dimensions.

The specific strategy for data preprocessing and augmentation in this experiment is
as follows. Preprocessing. (1) The raw images are cropped to a size of 500 × 500 pixels
with a stride equal to half the size of the cropped image. (2) The images with lengths
or widths that are less than a quarter of the cropped image size are discarded to ensure
that enough valuable information exists within the images and to prevent images with
excessive length and width differences, such as bars, from participating, as this can impair
the model’s ability to learn global features. Augmentation. (1) Multiscale resizing. A scale
number is randomly selected from 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0 for the height and
width. The current scale is equal to 512 multiplied by the scale number. Each cropped
image is resampled to the set scale. (2) Random cropping. A 512 × 512 pixel block of
data is cropped at a randomly selected location in the image; 512 is a common size in
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computer vision that satisfies an exponential multiple of 2, thereby avoiding the problem
of indivisibility by 2 during operations such as pooling and downsampling. (3) Random
flipping. (4) Photometric distortion. The brightness, contrast, saturation and hue levels of
the images are randomly adjusted. (5) Normalization. The data distribution is adjusted to
conform to a normal distribution.

Note that no data preprocessing and augmentation methods are used in the validation
step except normalization, which is used to simulate the actual working flow of data
processing.

4.4. Implementation Details

In all experiments, we establish a virtual Anaconda environment with Python 3.7
and PyTorch 1.8.2 as the standard. The specific graph computation platform contains
CUDA 11.1, CUDNN 8.0.4 and TensorRT 7.2.3.4 on an NVIDIA RTX 3090 GPU. All latency
benchmarks for our methods are computed by trtexec with a batch size of 1.

The specific parameter configuration is as follows. All experiments use a batch size of
16. To ignore the effect of the gradient descent algorithm on the experiments, stochastic
gradient descent (SGD) is set as the standard optimizer. Following the optimizer parameter
settings of most works, we choose a momentum of 0.9 and a weight decay of 5× 10−4. The
learning rate (lr) is initially set to 0.001. All models are iterated 80,000 times with weights
and evaluated for model performance. We utilize the “poly” policy as the learning rate
update scheduler. The quantity lr can be calculated by the formula lr = lr0 · (1− iter

iter0
)power,

where lr0 is the initialized learning rate, iter0 is the maximum number of iterations and the
power is 0.9. To prevent lr from being so small that the weights are almost negligible in the
later iterations of the model training update process, we set the lower cutoff value for the
learning rate to 1e-5. We employed the cross-entropy loss function, which is commonly
used for semantic segmentation, to describe the difference between the final predictions
and the labels. In the validation test session, we follow the settings in [66] and directly
input the whole raw images, which benefits from the GPU parallelization of convolutions.

5. Experimental Results

5.1. Ablation Study

In this subsection, we design a series of ablation experiments to prove the effectiveness
of our network. All the following experiments are evaluated on the ISPRS Potsdam and
Vaihingen datasets.

5.1.1. Effectiveness of the EAM

Comparing various combinations of EAMs and normalizing techniques, Table 3
demonstrates that the optimal combination is EAM II + Softmax + L1 Norm. EAM I
and EAM II with just softmax activation struggle to represent features accurately across
resolutions. EAM II + Softmax + L1 Norm with varied encoding dimensions yields ex-
cellent performance, outperforming the backbone by 0.97 and 1.12 % based on the mIoU
metric. To investigate the effect of the network stage in which the EAM is located on the
results, we choose to insert the EAM in the deepest three layers for comparison experiments,
taking the computational volume into account. Table 4 illustrates that the EAM is more
efficient at deeper levels and larger image size. SA has the same level of inference speed
as EAM for images of 512 size, but the drawback of quadratic computational complexity
makes the inference speed much slower for images of size 6000, which is undesirable for
large scale semantic segmentation applications. The stage-6 EAM is capable of boosting
model performance by 1.12% mIoU, at the expense of only 6–7% of the inference speed.
Comparatively, applying the EAM to stages 6/7 or 6/7/8 can significantly improve the
model performance, but at the expense of a 20–60% reduction in inference speed, which
is inefficient. Considering the increases in model performance and inference speed, the
optimal placement of the EAM is in the network’s deepest layer.
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Table 3. Comparison Among Combinations of Different EAMs and Configurations on the Potsdam
Dataset.

Method Norm E mF1 (%) mIoU (%)

DSANet64 - - 86.90 77.05

+SA Softmax - 87.63 78.20

+EAM I Softmax 64 85.98 75.54
+EAM II Softmax 64 86.61 76.60
+EAM II Softmax+Softmax 64 86.80 76.84

+EAM II Softmax+L1 32 87.52 78.02
+EAM II Softmax+L1 64 87.61 78.17

Table 4. Comparison of the EAM Results Obtained on the Potsdam Dataset in Different Stages.

Method Stage mF1 (%) mIoU (%) 512 FPS 6000 FPS

DSANet64 - 86.90 77.05 503.77 5.83

+SA 6 87.63 77.20 478.57 4.35

+EAM 6 87.61 78.17 470.07 5.46
+EAM 6/7 87.75 78.40 405.00 4.15
+EAM 6/7/8 87.76 78.41 278.34 2.33

5.1.2. Effectiveness of the MSD loss and HSE loss

The selective kernel ratio is critical to the performance of the MSD loss. In Table 5
we can plainly see the model’s performance at various ratios. Experiments conducted on
DSANet32 and DSANet64 show that it is more effective to perform deep spatial supervision
on parts of the feature maps, and the best ratio is 0.5; i.e., half of the feature maps need to
be preserved for further learning of semantic information. This intuitive approach yields
better results and reduces the required training time. Table 6 further explores the stages at
which the insertion of the deep spatial supervision module is more effective in improving
the model performance. The results are as expected: the deep spatial supervision module
provides significant improvements for shallow-layer spatial representations but is not
effective when applied to deep-layer semantic features. It is also found that imposing
deep spatial supervision at each layer is not efficient enough. To select more effective MSD
insertion locations and to be more intuitive, we finally choose to perform deep spatial
supervision at stages 1–4 in the contracting path and at stage 9 in the expansion path. With
multiscale spatial supervision and the spatial detail loss, the model is able to improve the
mIoU by 0.91% on the Potsdam dataset without sacrificing inference speed. As shown in
Table 7, the model performance improvement provided by the HSE loss is relatively small,
and it can steadily improve the model performance by 0.28% mIoU. Using the HSE loss on
the model with the EAM and MSD loss can still yield an mIoU improvement of 0.14%.

Table 5. Comparison of MSD Losses with Different Ratios on the Potsdam Dataset.

Method MSD Ratio mF1 (%) mIoU (%)

DSANet32

0 86.09 75.80
0.25 86.47 76.41
0.5 86.77 76.87
0.75 86.30 76.13
1.0 86.51 76.46

DSANet64

0 86.89 77.05
0.25 87.35 77.76
0.5 87.48 77.96
0.75 87.13 77.43
1.0 86.98 77.17

Note: MSD Ratio 1.0 means the method in [38].
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Table 6. Comparison of MSD Losses Achieved on the Potsdam Data Set in Different Stages.

Method MSD Stage mF1 (%) mIoU (%)

DSANet64

no 86.89 77.05
Stage 1 87.04 77.28
Stage 2 87.21 77.53
Stage 3 87.04 77.29
Stage 4 87.31 77.70
Stage 5 86.97 77.15
Stage 6 87.07 77.32
Stage 7 86.81 76.92
Stage 8 86.93 77.12
Stage 9 87.16 77.49

Stages 1–9 87.32 77.73
Stages 1–4 + Stage 9 87.48 77.96

Table 7. Results of the Ablation Study Conducted on the Potsdam Dataset.

Method EAM MSD HSE mIoU (%) mF1 (%)

DSANet64

77.05 86.90
� 78.17 87.60

� 77.96 87.48
� 77.33 87.39

� � 79.06 88.17

� � � 79.20 88.25

5.1.3. Effectiveness of DSANet

All the ablation experiments conducted based on the Potsdam dataset are shown
in Table 7. Introducing the EAM can produce 1.12% and 0.70% gains in the mIoU and
mF1 scores of the model, respectively. The MSD loss effectively improves the mIoU and
mF1 scores by 0.91% and 0.58%, respectively. Introducing the HSE loss in the decoder
can modestly enhance the mIoU by 0.28%. The MSD loss brings a 0.90% mIoU increase
and a 0.57% mF1 increase. The EAM is the most effective module, as it is accompanied
by model mIoU and mF1 growths of 1.12% and 0.71%, respectively. By comparing the
backbone of DSANet64 with DSANet64 for 80,000 iterations and 320,000 iterations (see
details in Figure 6), we find that the improvement yielded by DSANet is significant; even
if the number of training iterations for the backbone network is increased to 4 times the
original amount, it is still difficult to obtain better model performance, while DSANet64 is
able to continue achieving improved model performance up to an mIoU of 80% with the
increase in the number of training iterations.

Figure 6. Comparisons between the mean IoU results of the DSANet64 backbone and DSANet64
with 80,000 iterations and 320,000 iterations on the Potsdam dataset.

302



Remote Sens. 2022, 14, 5399

5.2. Qualitative Analysis of Features

In order to examine the impact of various modules on the segmentation performance
of the model, we visualize the obtained results in Figure 7. The visualization includes the
original IRRG image, the labels, and the segmentation results of the backbone acquired
after adding the feature enhancement modules separately and after adding all modules.
Figure 7a–e are buildings, low-vegetation areas, trees, unmarked features, and buildings
with complex boundaries, respectively. We observe that the results of segmentation based
on the backbone frequently contain erroneous segmentation borders and even patch holes.
Adding the EAM can effectively resolve the semantic discrimination issues, for example,
by restoring the recognition results for the missing trees in Figure 7c. Adding MSD loss can
help the segmentation process maintain better boundaries, but it cannot compensate for
segmentation mistakes caused by semantics, such as identifying the connected buildings in
Figure 7a while preserving the gaps in the buildings in Figure 7b,d. Adding the HSE loss
can enhance the model’s capacity for semantic perception, preventing the occurrence of the
problem of missing semantics. DSANet64 with EAM, MSD loss, and HSE loss can combine
the capabilities of each module and complement their benefits, and its segmentation results
are more accurate than those of the backbone network.

Figure 7. Comparison between the segmentation results of the DSANet64 backbone and the EAM,
MSD, and HSE modules. (a–e) are derived from the Potsdam dataset. GT denotes the ground truth.

5.3. Quantitative Comparison with State-of-the-Art Methods

To measure the performance of our model, we compare DSANet with popular
lightweight and efficient semantic segmentation networks whose numbers of parame-
ters vary from 0.1 M to 21 M. We assess the performance of the models in terms of both
accuracy and inference speed on both the Potsdam and Vaihingen datasets. To objectively
evaluate the model performance, we fixed the cutoff threshold for the number of model
parameters to 1.5 M. Table 8 reports the accuracy and inference speed results obtained on
the Potsdam dataset.
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Table 8. Comparison of DSANet with the State-of-the-Art Models on the Potsdam Dataset.

Method

Per-Class mIoU (%)

mIoU (%) mF1 (%) Params (M)Imperious
Surface

Building Low
Vegetation

Tree Car

FPENet [40] 76.55 86.30 65.56 66.48 67.16 72.41 83.64 0.11
FSSNet [37] 79.90 86.83 68.69 69.40 75.20 76.00 86.20 0.17
CGNet [67] 78.08 84.88 66.86 68.32 72.17 74.06 84.93 0.48

EDANet [35] 79.83 87.50 69.24 70.73 72.16 75.89 86.13 0.67
ContextNet [43] 79.37 86.86 68.70 69.38 71.96 75.25 85.71 0.86

LEDNet [41] 82.45 89.12 71.17 72.51 74.28 77.91 87.42 0.89
Fast-SCNN [37] 78.15 83.29 68.76 69.74 70.89 74.17 85.05 1.45

DSANet32 82.04 88.79 70.70 72.09 75.58 77.84 87.38 1.28

ESNet [68] 82.31 88.16 71.94 73.37 78.09 78.77 88.00 1.66
DABNet [34] 81.30 88.23 70.95 73.24 73.20 77.38 87.10 1.96
ERFNet [36] 80.38 88.18 70.81 72.30 74.89 77.31 87.06 2.08

DDRNet23-slim [48] 81.27 89.09 69.91 72.37 72.99 77.13 86.91 5.81
STDCNet [38] 82.07 89.41 71.45 73.49 76.78 78.64 87.90 8.57

LinkNet [39] 80.71 88.08 70.75 72.13 76.11 77.56 87.22 11.54
BiSeNetV1 [44] 81.91 88.95 71.83 73.21 80.18 79.22 88.27 13.42
BiSeNetV2 [45] 81.23 89.21 71.03 72.6 73.29 77.47 87.14 14.77

SFNet [47] 80.52 84.97 71.37 72.92 79.94 77.94 87.51 13.31
DDRNet23 [48] 82.58 90.07 71.56 73.55 75.44 78.64 87.89 20.59

DSANet64 83.02 89.50 71.86 74.26 77.34 79.20 88.25 4.65

5.3.1. Segmentation Performances Achieved on the Potsdam Dataset

The comparison between the results produced by DSANet and the other state-of-the-
art models on the Potsdam dataset are shown in Table 8. Among the models with fewer
than 1.5 M model parameters, DSANet32 obtains the best mIoU result of 75.58% on the car
segmentation task and achieves suboptimal performance. In terms of the accuracy-speed
tradeoff, DSANet32 achieves a balance between accuracy and inference speed. DSANet32
is over 2.2 times more accurate than LEDNet, the most accuracy network, and is 2.59%
more accurate than ContextNet, the fastest network. Among the models with more than 1.5
M model parameters, DSANet64 works best to segment impervious surfaces and trees and
achieves comparable results to those of BiSeNet V1, yielding 79.20 % mIoU and 88.25 %
mF1 scores with 35 % of the number of parameters in BiSeNet V1. Figure 8 provides a more
intuitive comparison of the segmentation results obtained by DSANet and the other models
on the Potsdam dataset under the small size settings. Figure 9 shows the whole-image
segmentation results of DSANet and the other models.

Figure 8. Examples of segmentation results derived from the Potsdam dataset under the small size
setting. (a) IRRG image. (b) Ground truth. (c) FPENet. (d) FSSNet. (e) CGNet. (f) ContextNet.
(g) Fast-SCNN. (h) ERFNet. (i) STDC1. (j) LinkNet. (k) ICNet34. (l) BiSeNet V1. (m) SFNet.
(n) DDRNet23. (o) DSANet64.
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Figure 9. Examples of segmentation results derived from the Potsdam dataset with the whole image
size setting. (a) IRRG image. (b) Ground truth. (c) FPENet. (d) ERFNet. (f) STDC1. (g) BiSeNet V1.
(h) BiSeNet V2. (i) DSANet64.

5.3.2. Segmentation Performances Achieved on the Vaihingen Dataset

The comparison between the results produced by DSANet and the other state-of-the-
art models on the Vaihingen dataset are shown in Table 9. Among the models with less
than 1.5 M parameters, DSANet32 achieves the best results, with 85.30% and 53.74% mIoUs
on the building and car segmentation tasks, respectively, and its overall 71.31% mIoU and
82.74% mF1 scores are impressive. In comparison with these other models, DSANet32 still
obtains a better inference speed, although it has a disadvantage in terms of the number of
required parameters. DSANet achieves the best car segmentation result, with an absolute
2.67% mIoU lead over the second-place method. DSANet64 achieves a 72.26% mIoU and a
83.49% mF1 on the Vaihingen dataset, which are also the best results. Figure 10 provides
an intuitive comparison between the segmentation results obtained by DSANet and the
other models on the Vaihingen dataset under the small size setting. Figure 11 shows the
whole-image segmentation results of DSANet and the other models.

Table 9. Comparison of DSANet with the State-of-the-Art Models on the Vaihingen Dataset.

Method
Per-Class mIoU (%)

mIoU (%) mF1 (%)
Imperious Surface Building Low Vegetation Tree Car

FPENet [40] 78.37 84.24 63.44 73.79 44.39 68.85 80.67
FSSNet [37] 76.88 83.75 62.96 73.03 45.74 68.47 80.51
CGNet [67] 77.86 84.63 64.88 74.90 47.80 70.01 81.61

EDANet [35] 78.76 84.56 64.51 74.32 51.65 70.76 82.36
ContextNet [43] 77.77 83.65 61.99 73.15 50.32 69.38 81.31

LEDNet [41] 79.25 85.00 65.67 74.72 50.73 71.07 82.48
Fast-SCNN [37] 76.21 82.08 61.06 71.47 44.45 67.05 79.48

DSANet32 79.17 85.30 64.30 74.05 53.74 71.31 82.74

ESNet [68] 79.74 86.24 64.35 74.47 53.77 71.71 82.99
DABNet [34] 78.48 84.42 63.92 73.90 54.16 70.98 82.55
ERFNet [36] 79.34 85.68 64.07 74.51 54.01 71.52 82.88

DDRNet23-slim [48] 78.81 84.53 64.55 73.96 52.92 70.95 82.49
STDC1 [38] 79.03 85.76 64.27 73.69 48.71 70.29 81.84

LinkNet [39] 79.94 85.94 64.60 74.29 54.32 71.82 83.09
BiSeNetV1 [44] 78.84 85.55 64.23 74.15 50.50 70.65 82.17
BiSeNetV2 [45] 79.14 84.91 64.26 74.09 55.59 71.60 83.00

DSANet64 79.50 85.98 63.86 73.60 58.35 72.26 83.49
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Figure 10. Examples of segmentation results derived from the Vaihingen dataset under the small
size setting. (a) IRRG image. (b) Ground truth. (c) FPENet. (d) FSSNet. (e) CGNet. (f) ContextNet.
(g) Fast-SCNN. (h) ESNet. (i) ERFNet. (j) DDRNet23-slim. (k) STDC1. (l) LinkNet. (m) BiSeNet V1.
(n) BiSeNet V2. (o) DSANet64.

Figure 11. Examples of segmentation results derived from the Vaihingen dataset with the whole
image size setting. (a) IRRG image. (b) Ground truth. (c) FPENet. (d) ERFNet. (e) DDRNet23-slim.
(f) STDC1. (g) BiSeNet V1. (h) BiSeNet V2. (i) DSANet64.
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5.3.3. Inference Speeds

The comparison between the inference speed results produced by DSANet and the
other state-of-the-art models under different image sizes are shown in Table 10. Our
proposed DSANet32 reaches an inference speed of 8.78 on the 6000 × 6000 images, which
are derived from the Potsdam dataset. In comparison with the fastest inference model at
sizes of 512 and 1024, DSANet32 is only 6-7% behind ContextNet, whose segmentation
performance is far behind that of DSANet32. In a comparison with the corresponding
models, DSANet64 achieves the best inference speed at a size of 512 with 470.07 FPS. At
the 1024 and 6000 sizes, DSANet64 still achieves comparable results. Figure 1 gives a
visualization of the segmentation speed-accuracy tradeoffs provided by all models. The
closer the model’s points are to the upper-right corner, the better that model performs in
terms of the speed-accuracy tradeoff.

Table 10. FPS Results Obtained on the Potsdam Dataset Under Different Size Settings.

Method mIoU (%)
FPS

512 1024 6000

FPENet [40] 72.41 173.47 73.13 2.44
FSSNet [37] 76.00 527.26 183.30 6.27
CGNet [67] 74.06 127.51 66.78 0.58

EDANet [35] 75.89 390.17 135.50 4.37
ContextNet [43] 75.25 688.70 257.25 8.59

LEDNet [41] 77.91 293.48 104.92 3.74
Fast-SCNN [37] 74.17 670.82 261.43 8.60

DSANet32 77.84 648.49 245.66 8.78

ESNet [68] 78.77 295.33 100.27 2.77
DABNet [34] 77.38 173.47 73.13 2.44
ERFNet [36] 77.31 282.66 96.00 2.65

DDRNet23-slim [48] 77.13 429.09 208.38 6.98
STDC1 [38] 78.64 437.41 147.07 5.00

BiSeNetV1 [44] 79.22 351.89 128.64 3.92
BiSeNetV2 [45] 77.47 242.27 114.15 3.87
DDRNet23 [48] 78.64 256.65 99.58 3.46

DSANet64 79.20 470.07 172.16 5.46

6. Conclusions

In this paper, we propose DSANet a deep supervision-based simple attention network,
for large-scale RSI semantic segmentation; our network achieves an excellent balance
between accuracy and inference speed. The main contributions of DSANet lie in three
aspects: a simple attention module with linear complexity called the EAM, which is
employed in the deepest network layer for long-range semantic information modeling; a
improved deep supervision-based MSD loss for supervising portions of the feature map
to directly learn the detailed spatial pyramid features; and a deep supervision-based HSE
loss for supervising the network so that it learns the category frequency distribution of the
training data.

Our DSANet provides consistently outstanding achievement on two benchmark
datasets (i.e., the ISPRS Potsdam and Vaihingen datasets). On the ISPRS Potsdam test
dataset, DSANet64 obtains a mean IoU of 79.20% at 5.46 FPS on 6000 × 6000 images and at
470.07 FPS on 512 × 512 images.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
RSIs Remote Sensing Images
VHR Very High-resolution
EAM Embedding Attention Module
MSD Multiscale Spatial Detail
HSE Hierarchical Semantic Enhancement
mIoU Mean Intersection over Union
FPS Frames Per Second
FLOPs Floating Point Operations
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Abstract: Monocular vision-based pose estimation for known uncooperative space targets plays an
increasingly important role in on-orbit operations. The existing state-of-the-art methods of space
target pose estimation build the 2D-3D correspondences to recover the space target pose, where space
target landmark regression is a key component of the methods. The 2D heatmap representation is the
dominant descriptor in landmark regression. However, its quantization error grows dramatically
under low-resolution input conditions, and extra post-processing is usually needed to compute
the accurate 2D pixel coordinates of landmarks from heatmaps. To overcome the aforementioned
problems, we propose a novel 1D landmark representation that encodes the horizontal and vertical
pixel coordinates of a landmark as two independent 1D vectors. Furthermore, we also propose a
space target landmark regression network to regress the locations of landmarks in the image using
1D landmark representations. Comprehensive experiments conducted on the SPEED dataset show
that the proposed 1D landmark representation helps the proposed space target landmark regression
network outperform existing state-of-the-art methods at various input resolutions, especially at low
resolutions. Based on the 2D landmarks predicted by the proposed space target landmark regression
network, the error of space target pose estimation is also smaller than existing state-of-the-art methods
under all input resolution conditions.

Keywords: pose estimation; landmark regression; space target; 1D landmark representation;
deep learning

1. Introduction

Estimating the relative position and attitude (referred to as pose estimation) of a
known non-cooperative space target is an essential capability for automated in-orbit space
operations such as autonomous proximity, in-orbit maintenance, and debris removal. It is
an attractive option that uses visual sensors such as camera for space target pose estimation
because of small mass and low power consumption compared to active sensors such
as Light Detection and Ranging (LIDAR) or Range Detection and Ranging (RADAR).
Moreover, monocular cameras are more suitable for space missions than stereo vision
systems due to spacecraft size, payload, and energy limitations. Therefore, it is necessary
to design a space target pose estimation method, which can precisely estimate the pose of a
known non-cooperative space target from a monocular image.

Deep Convolutional Neural Networks (DCNNs) have achieved state-of-the-art re-
sults in many computer vision tasks, such as image classification [1], object detection [2],
and semantic segmentation [3]. In order to take advantage of DCNNs in computer vision
tasks, Sharma et al. [4] pioneered the introduction of DCNNs into monocular vision-based
pose estimation for a single known uncooperative space target. They treat the single space
target pose estimation as a classification problem and use DCNNs to classify the target
pose directly. Since then, several methods [5,6] have been put forward to use DCNNS to
estimate pose-related parameters of the space target directly. Even though these methods
have achieved success, they tend to overfit to the training set because they directly infer
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pose-related parameters, leading to the poor generalization ability and low robustness to
background clutters and diverse poses. To tackle the above issues, other approaches first
establish 2D-3D correspondences and then solve a Perspective-n-Point (PnP) problem to
estimate the pose of a space target. Park et al. [7] are the first to propose using DCNNs to
predict the 2D coordinates of pre-defined landmarks of the space target to build 2D-3D cor-
respondences. Based on the pipeline as described in [7], several improved methods [8–10]
were proposed to enhance the performance of landmark regression. In particular, the 2D
heatmap representation plays an important role in regressing landmarks and significantly
promotes the improvement of landmark regression performance. However, heatmap-based
methods suffer from several drawbacks such as dramatic performance degradation for
low-resolution images, expensive computational costs of upsampling operations (e.g., de-
convolution operation [11]), and extra post-refinement for improving the precision of the
coordinates of landmarks.

In this article, we propose a 2D-3D correspondences-based space target pose estimation
method. To deal with the aforementioned shortcomings of 2D heatmap representation,
we propose a 1D landmark representation for space target pose estimation, which owns
the following advantages. First, it has less complexity than the representation of heatmap.
Second, it also has less quantization error than heatmap. Third, it improves the accuracy of
landmark regression at low input resolutions without post-processing. We propose a novel
convolutional neural network based space target landmark regression model to predict 1D
landmark representations. Experimental results demonstrate that our method is superior
to the 2D heatmap representation based models at various input resolutions, especially at
low resolutions. Based on the predicted landmarks predicted by the proposed landmark
regression model, the pose of the space target is then recovered by an off-the-shelf PnP
algorithm [12], which is more precise than the one estimated by existing methods. Our
work has the following contributions:

• We propose a kind of 1D landmark representation, which describes the horizontal and
vertical coordinates of a landmark as two independent fixed-length 1D vectors.

• We also propose a space target landmark regression network that predicts the 2D posi-
tions of landmarks in the input image using proposed 1D landmark representations.

• Comprehensive experiments are conducted on the SPEED dataset [13]. The proposed
1D landmark representation makes the space target landmark regression network
achieve the competitive performance compared to 2D heatmap-based landmark re-
gression methods and outperform them by a large margin at low input resolutions.
Furthermore, predicted landmarks based on 1D landmark representations bring an
improvement in the accuracy of space target pose estimation.

The rest of this article is organized as follows. We briefly review the related work in
Section 2. In Section 3, we introduce the overall pipeline of space target pose estimation and
propose the 1D landmark representation and space target landmark regression network
in detail. In Section 4, we describe the dataset and evaluation metrics. Section 5 presents
the settings and results of experiments and the comparison with the mainstream methods.
Section 6 discusses the proposed 1D landmark representation. Finally, Section 7 summarizes
the conclusions.

2. Related Work

We review closely-related deep learning-based methods developed mainly for monoc-
ular vision-based pose estimation of known non-cooperative space targets from two aspects:
direct methods, and landmark-based methods.

2.1. Direct Methods

The most intuitive approach to predict the 6 degree of freedom (DoF) poses of space
targets is to treat pose estimation as a classification or regression task and directly infer
translation representations (e.g., Euclid coordinate) and rotation representations (e.g., Euler
angle, axis-angle, and quaternion) of space targets from input monocular images.
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Sharma et al. [4] treated single space target pose estimation as a classification task and
pioneered the use of the AlexNet [14] based network to predict pose categories. Mean-
while, Proença et al. [5] treated single space target rotation estimation as a probabilistic soft
classification task and proposed a ResNet [15] based network named UrsoNet to regress
probabilities for each rotation category. To further improve the accuracy of rotation estima-
tion, Spacecraft Pose Network (SPN) [6] exploits a hybrid classification-regression fashion
to estimate space target rotations from coarse to fine.

These direct methods for monocular space target pose estimation use deep convolu-
tional neural networks to directly learn a complex non-linear function that maps images
to space target poses. Although such methods have made some achievements, they lack
the ability of spatial generalization and have not acquired the same level of accuracy as
landmark-based methods.

2.2. Landmark-Based Methods

Since the 3D model of a known space target is available, an indirect approach to
predicting the 6 degree of freedom (DoF) pose of a space target is first to establish 2D-3D
correspondences between 2D and 3D coordinates of the landmarks of the space target,
then estimate the 6 DoF camera pose based on such 2D-3D correspondences using PnP
algorithms (e.g., PST [16], RPnP [17], and EPnP [18]). The space target pose is also obtained
by transforming the estimated camera pose.

Existing landmark-based methods commonly use DCNNs to detect 2D landmarks of
the space target in the image. As the pioneer, Park et al. [7] proposed an improved landmark
regression network based on the YOLO [19,20] framework in which the MobileNet [21,22]
was used as the backbone to directly regress the 2D coordinates of landmarks. Based
on [7], Hu et al. [10] introduced the Feature Pyramid Network (FPN) [23] into the landmark
regression network to make the full use of multi-scale information. However, directly
regressing 2D landmark coordinates by DCNNs still suffers from the poor accuracy of land-
mark detection. To solve this problem, Chen et al. [8] proposed exploiting 2D heatmaps to
represent 2D landmarks. Compared with direct regression of 2D coordinates, predicting 2D
heatmaps can explicitly preserve the spatial information of the space target. They proposed
a top-down landmark regression method where the Faster R-CNN [24] was used to detect
space targets and then HRNet [25] was used to regress the 2D heatmaps of landmarks for
each space target. The reason for choosing HRNet [25] is that the high-resolution repre-
sentation is maintained in the whole pipeline of the network, which enables the model to
extract features with superior spatial relationships that are suitable for localization-related
tasks. Based on [8], Xu et al. [9] applied dilated convolutions to fuse multi-scale features
in the HRNet [25] to better mine global information, and presented an online hard land-
mark mining method to enhance the ability of the network to detect invisible landmarks.
In addition, Wang et al. [26] proposed a set-based representation to fully explore the rela-
tionship among keypoints and the context between the keypoints and the satellite. They
also constructed a transformer-based network to predict the set of keypoints, achieving
better generalization ability.

Existing state-of-the-art landmark-based methods are more accurate and robust than
direct methods. In particular, the methods based on heatmaps have achieved fairly good
performance. However, to reduce the quantization error, heatmap-based methods usually
need multiple upsampling layers to generate high-resolution heatmaps and require extra
post-processing to obtain accurate 2D coordinates of landmarks, leading to heavy computa-
tional burden. Moreover, the performance degrades significantly for low-resolution images.
To address these issues, we propose a 1D landmark representation to describe the horizontal
and vertical coordinates of the landmark, respectively. Compared with the 2D heatmap,
it has smaller complexity and quantization error as well as better representational ability
in various input resolutions. In particular, the 1D landmark representation can increase
the scales of the horizontal and vertical coordinates of the landmark, which improves the
localization accuracy of the landmark in the image.
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3. Methodology

The general problem statement for monocular space target pose estimation is to
compute the relative position and attitude of the target frame T with respect to the camera
frame C via a monocular image captured by the camera. The relative position is represented
by a translation vector tTC, from the origin of C to the origin of T. The relative attitude
is represented by a rotation matrix RTC, aligning the target frame with the camera frame.
Figure 1 illustrates the target and camera reference frames to visualize the position and
attitude variables.

Figure 1. Definitions of the target reference frame (T), camera reference frame (C), relative position
(tTC), and relative attitude (RTC).

Figure 2 illustrates the overall pipeline of our method for known non-cooperative space
target pose estimation via monocular images. We use a top-down method for landmark
regression. Specifically, to solve the issues of scale variations, the bounding box of a space
target is first detected in an input image, and then a sub-image is cropped from the image
based on the box followed by a resize operation to a fixed size. The resized sub-image
is then used to regress the locations of landmarks of the space target. Therefore, the 2D
bounding boxes of space targets need to be detected first. To this end, we employ an off-the-
shelf object detection network (e.g., R-CNN series [24,27–32], YOLO series [19,20,33–36],
FCOS [37], RepPoints [38], and DETR series [39–41]) to detect space targets in an input
image. Next, we propose a space target landmark regression network to predict the
landmarks of a space target in the resized sub-image. Based on the 3D model of the known
space target, we build 2D-3D correspondences between the 2D pixel coordinates in the
input image and 3D space coordinates in the 3D model for landmarks of the space target.
Given the putative 2D-3D correspondences, we use a PnP solver in [12] within the RANdom
SAmple Consensus (RANSAC) [42] framework to recover the pose of the space target.

Figure 2. The overall pipeline of monocular vision-based known non-cooperative space target
pose estimation.

In this pipeline, the accuracy of landmark regression significantly affects the perfor-
mance of pose estimation. However, current 2D heatmap representation is redundant
for the sparse landmarks. In this article, we present a 1D landmark representation for
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landmark regression, which performs well on low-resolution images and requires no
post-refinement steps.

3.1. 1D Landmark Representation

As shown in Figure 3, the representation of a landmark contains two independent
fixed-length 1D vectors, which represent the horizontal and vertical pixel coordinates of
the landmark separately. The generation process of 1D landmark representation will be
described in detail in this section.

Figure 3. The overall structure of the proposed space target landmark regression network.

The input image has a size of H ×W, where H and W are the height and width,
respectively. The ground-truth 2D coordinate of the k-th landmark is denoted as

(
xk, yk

)
,

where xk is the horizontal coordinate subjected to 0 ≤ xk ≤ W, and yk is the vertical
coordinate subjected to 0 ≤ yk ≤ H. To improve the accuracy of location description,
we introduce an expansion factor μ ∈ R+, to adjust the scale of the landmark coordinate.
Thus, the ground-truth 2D coordinate of the k-th landmark is transformed into a new
2D coordinate:

p′ =
(
x′, y′

)
=
(

round
(

μxk
)

, round
(

μyk
))

(1)

where round(·) is the round function, and μ is an integer subjected to μ ≥ 1. The proposed
expansion factor can improve the localization accuracy to the level of sub-pixel. Then,
the 1D landmark representation of the k-th landmark is defined as follows:

pk
x =

[
x0, x1, · · · , xμW−1

]
∈ R

μW , xi = I
(
i = x′

)
(2)

pk
y =

[
y0, y1, · · · , yμH−1

]
∈ R

μH , yj = I
(

j = y′
)

(3)

where i ∈ {0, 1, · · · , μW − 1}, j ∈ {0, 1, · · · , μH − 1}, and I(·) is the indicator function.
Both pk

x and pk
y are 1D vectors. Such binary representation only encodes the 2D coordinate

of a landmark while ignoring the adjacent point around the landmark. To describe the
spatial relationships around landmarks, we introduce the Gaussian kernel to encode the 2D
coordinates of landmarks and their surrounding points. For the k-th landmark, the Gaussian
kernel-based 1D landmark representation is defined as follows:

pk
x =

[
x0, x1, · · · , xμW−1

]
∈ R

μW , xi =
1√
2πσ

exp

(
− (i− x′)2

2σ2

)
(4)

pk
y =

[
y0, y1, · · · , yμH−1

]
∈ R

μH , yj =
1√
2πσ

exp

(
− (j− y′)2

2σ2

)
(5)

where σ is the standard deviation.
In addition, the process of computing the 2D pixel coordinate of a landmark from 1D

landmark representation is described as follows. Assuming the landmark regression net-
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work produces two 1D vectors ox and oy for a landmark, the final predicted 2D coordinate
(x̂, ŷ), of the landmark is computed by:

x̂ =
1
μ

arg max
i

(ox(i)) (6)

ŷ =
1
μ

arg max
j

(
oy(j)

)
(7)

where ox(i) denotes the i-th element of the ox, and oy(j) denotes the j-th element of the oy.

3.2. Space Target Landmark Regression Network

We propose a top-down method to detect the landmarks of a space target in an
input image. The input to the network is a fixed-size sub-image cropped from the input
image using the detected bounding box. To enable the network to output 1D landmark
representations, the network is designed to generate an embedding for each pre-defined
landmark, and then use linear layers to project it into two 1D vectors with fixed lengths.
As illustrated in Figure 3, we propose an encoder-decoder structured network to regress
the locations of landmarks, where the encoder extracts landmark embeddings from the
input, and the decoder predicts a 1D landmark representation for each landmark. The main
modules of the proposed space target landmark regression network will be described
in detail.

Encoder. To obtain high-quality landmark embeddings with rich spatial information,
we use the HRNetV1 as described in [25,43] to extract embeddings for landmarks. Given n
pre-defined landmarks, the output of HRNetV1 is a tensor of n embeddings corresponding
one-to-one with landmarks only from the highest-resolution stream of the HRNetV1.

Decoder. The decoder comprises two shared linear projection layers that transform
each embedding into a 1D landmark representation. Specifically, the embedding of a
landmark is flattened and then fed into two shared fully-connected layers respectively
to generate two independent 1D vectors ox and oy, with the lengths of μW and μH,
respectively.

Loss function. Because the 1D landmark representation is similar to the one-hot code,
the proposed space target landmark regression network could be considered to perform a
kind of classification task. Therefore, we use the cross-entropy loss function to train the
proposed network and adopt the label smoothing strategy to help train the network. The
equation of the cross-entropy loss function is as follows.

L(p, t) = ∑N
n=1 ln
N

(8)

ln = −
C

∑
c=1

ωc log
exp(pn,c)

∑C
i=1 exp(pn,i)

tn,c (9)

where p is the input tensor with the size of (N, C), t is the target tensor with the size of
(N, C), C is the number of classes, N is the batch size, and ω is the weight that is a 1D tensor
of size C assigning weight to each of the classes. In addition, when using the Gaussian
kernel-based 1D landmark representation in the proposed space target landmark regression
network, we exploit the Kullback–Leibler divergence as the loss function for network
training. The equation of the Kullback–Leibler divergence loss function is as follows.

L(p, t) = t · log
t
p
= t · (log t− log p) (10)

where p is the input tensor and t is the target tensor, they have the same shape.
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4. Material

We briefly introduce the dataset and evaluation metrics used in the experiment in
this article.

4.1. Dataset

The Spacecraft PosE Estimation Dataset (SPEED) [13] is the first publicly available
dataset for space target pose estimation, mostly consisting of high-resolution synthetic
grayscale images of the Tango satellite, as shown in Figure 4. There are 12,000 training
images with ground truth pose labels and 2998 test images without ground truth labels.
The ground truth pose label consists of a unit quaternion and a translation vector, describing
the relative orientation and position of the Tango satellite with respect to the camera frame.

Figure 4. Sample images from the SPEED.

Since SPEED does not provide the ground truth pose labels for test images, we cannot
conduct an in-depth analysis over them except for acquiring the total pose error score
provided by the online server. Therefore, we conduct extensive experiments on the training
images, where half of them have no background while the other half contain earth back-
grounds. Notably, the size and orientation of the satellite, background, and illumination
vary significantly in these images. For instance, the number of pixels of the satellite varies
between 1 k and 500 k, as shown in Figure 5.

Figure 5. Large variation of the space target size in the SPEED dataset.

The intrinsic parameters of the camera used in SPEED are the horizontal focal length of
0.0176 m, the vertical focal length of 0.0176 m, the horizontal pixel pitch of
5.86× 10−6 m/pixel, the vertical pixel pitch of 5.86× 10−6 m/pixel, the image width
of 1920 pixel, and the image height of 1200 pixel.

4.2. Evaluation Metrics

We introduce the evaluation metrics for space target landmark regression and
pose estimation.
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4.2.1. Space Target Landmark Regression Metrics

To evaluate the performance of space target landmark regression, predictions are
considered to be true or false positives by measuring distances between predicted and
ground truth landmarks. Therefore, the Object Keypoint Similarity (OKS) [44] is calculated
as following:

OKS =
∑i exp

(
−d2

i
/

2s2κ2
i
)
σ(vi > 0)

∑i σ(vi > 0)
(11)

where di is the Euclidean distance between the i-th landmark’s predicted and corresponding
ground truth coordinates, κi is a constant, vi is the visibility flag, and s is the scale defined
as the square root of the 2D bounding box area of the space target. For each landmark,
this yields a similarity that ranges between 0 and 1. By setting a threshold for OKS, we
can distinguish whether a prediction is a true positive or a false positive. Specifically,
for each prediction, if the value of OKS is greater than the threshold, it is considered as a
true positive, and vice versa. Then, we can compute precision as following:

precision =
TruePositives

TruePositives + FalsePositives
=

TruePositives
AllPredictions

(12)

In addition, there may be ground truth landmarks with no matching predictions, so
they are called false negatives. Thus, we also need to compute recall as following:

recall =
TruePositives

TruePositives + FalseNegatives
=

TruePositives
AllGroundTruths

(13)

Then, the precision-recall curve is calculated to compute the average precision value,
as described in [45].

The Average Precision (AP) [45] is used as the space target landmark regression metric.
For better measuring the performances of methods, it is averaged over multiple OKS
values [44]. Specifically, AP is computed at 10 OKS thresholds from 0.50 to 0.95 with a step
size of 0.05, AP50 is computed at a single OKS threshold of 0.50, and AP75 is computed at a
single OKS threshold of 0.75.

4.2.2. Space Target Pose Estimation Metrics

To evaluate the estimated pose of each space target, a rotation error er, a translation
error et, and a pose error ep, are calculated.

The rotation error er, is calculated as the angular distance between the estimated and
ground-truth rotation quaternions q̂ and q, of a space target with respect to the camera.
The rotation error er, is defined as

er = 2 · arccos(|〈q̂, q〉|) (14)

where 〈·〉 denotes the inner product operation.
The translation error et, is calculated as the 2-norm of the difference of the estimated

and ground-truth translation vectors t̂ and t, from the camera frame to the space target
frame. The translation error et, is defined as

et = ‖t̂− t‖2 (15)

The normalized translation error ēt, is also defined as

ēt =
et

‖t‖2
(16)

which penalizes the translation error more heavily when the space target is closer to
the camera.
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The pose error for a single space target ep, is the sum of the rotation error er, and the
normalized translation error ēt,

ep = er + ēt (17)

Finally, the total error E is the average of the pose errors for all space targets,

E =
1
N

N

∑
i=1

ei
p (18)

where N is the number of space targets.

5. Experimental Results

In this section, we first give the details of the experiment, then we evaluate the
performance of our method and compare it with several state-of-the-art methods.

5.1. Experiment Details

As a preliminary, since the 3D model of the Tango satellite is unavailable in SPEED,
we first reconstruct the 3D landmarks of the Tango satellite via multi-view triangulation
using a small set of manually selected training images with pose labels. Moreover, to obtain
ground-truth 2D bounding boxes and landmarks, we first project the reconstructed 3D
landmarks of the Tango satellite into the image to obtain the 2D landmark labels and then
extract the closest bounding box of the reprojected points as the label for 2D object detection.
Finally, we briefly introduce the implementation details of the experiment.

5.1.1. 3D Landmark Reconstruction

For Tango satellite, we select its 8 corners and the tips of its 3 antennas as landmarks.
To reconstruct the 3D coordinates of the 11 landmarks using multi-view triangulation, we
manually annotate 2D points corresponding to each landmark over a small set of hand-
picked close-up training images in which the space target is well-illuminated and has
various poses. Assuming zi,j is the 2D coordinate vector of the i-th landmark in the j-th
image, the following optimization problem is solved to obtain the 3D coordinate vector of
the i-th landmark xi, in the space target frame,

min
xi

∑
j

∥∥γi,jzi,j −K
(
Rjxi + tj

)∥∥2
2 (19)

where, for i-th landmark, the sum of the reprojection error is minimized over a set of images
where the i-th landmark is visible. In Equation (19), γi,j is a scale factor denoting the depth
of the i-th landmark in the j-th image, K is a known camera intrinsic matrix, and

(
Rj, tj

)
is

a ground truth camera pose of the j-th image. The optimization variable in Equation (19) is
the 3D coordinate vector xi. The routine of the triangulateMultiview function in MATLAB
is used to solve this optimization problem. Figure 6 visualizes the 11 selected 3D landmarks
and the reconstructed wireframe model of the Tango satellite.

Figure 6. The reconstructed 3D wireframe model with 11 landmarks.

5.1.2. 2D Landmark and Bounding Box Label

To obtain ground-truth landmarks of the Tango satellite in the image, we reproject the
aforementioned set of reconstructed 3D landmarks to the image plane using the ground-
truth camera pose. Since the convex hull of such reprojected 2D landmarks almost covers
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the whole target in any image, we slightly relax the horizontal rectangle which encloses all
2D landmarks, and take it as the ground-truth bounding box of the Tango satellite. Figure 7
shows several examples of obtained 2D landmark and bounding box labels.

Figure 7. Examples of 2D landmark and bounding box labels.

5.1.3. Implementation Details

We conduct experiments using 6-fold cross-validation over the training images of the
SPEED dataset. Specifically, we split the 12,000 training images into 6 groups, and then for
each group, we test a space target landmark regression network trained with the remaining
5 groups. In addition, we use the off-the-shelf object detection network Sparse R-CNN [32]
to detect 2D bounding boxes. The neural network architecture is implemented with PyTorch
1.11.0 and CUDA 11.3 and runs on an Intel Core i9-10900X CPU @ 3.70 GHz with an NVIDIA
Geforce RTX 3090. The pose estimation algorithm is implemented with MATLAB.

Data augmentation. To increase the diversity of training samples and alleviate the
accuracy error of the detected 2D bounding boxes, we introduce a bounding box augmen-
tation strategy which random shifts bounding box centers slightly while the targets are still
within bounding boxes. What is more, we also use data augmentation strategies such as
random rotation ([−80◦, 80◦]) and random scaling ([0.5, 1.5]) for training images. We do
not apply a random flipping strategy to the training images because it might generate unre-
alistic geometric relationships between 2D landmarks, which may result in performance
degradation of networks.

Training setting. We use the Adam optimizer [46] for network training. The base
learning rate is set to 1× 10−3, and is dropped to 1× 10−4 and 1× 10−5 at the 16th and
22nd epochs, respectively. The total training process is terminated within 24 epochs.
The batch contains 8 randomly sampled samples per iteration. The HRNetV1 backbone in
the proposed space target landmark regression network is initialized with a pre-trained
model HRNetV1-W32 [43] which is pretrained with the COCO dataset [44].

5.2. Results of Space Target Landmark Regression

As shown in Table 1, we evaluate the performance of our proposed space target land-
mark regression network in terms of the AP, AP50, and AP75 metrics. In this experiment,
we set up the expansion factor as 2 and the standard deviation of the Gaussian kernel
σ, as 2. For each fold, we test the performances of the proposed space target landmark
regression network using 1D landmark representations with or without Gaussian kernel at
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four input resolutions including 512× 512, 256× 256, 128× 128, and 64× 64. The AP is
improved as the input resolution increases, no matter whether the Gaussian kernel is used
in the 1D landmark representation. When the Gaussian kernel is introduced into the 1D
landmark representation, the AP is commonly superior to the one without the Gaussian
kernel at any input resolution. It empirically demonstrates that spatial relationships play an
important role in describing the coordinates of landmarks and improve the performances
of landmark regression networks. Figure 8 shows qualitative results where the orange
points are the landmarks predicted by the proposed landmark regression network using
Gaussian kernel-based 1D landmark representations at the input resolution of 512× 512.

Table 1. Quantitative results of space target landmark regression and pose estimation using the
proposed 1D landmark representation.

Fold
Gaussian

Kernel
Input Size AP50 (↑) AP75 (↑) AP (↑) Er (↓) Et (↓) E (↓)

1

w/o

512× 512 100.0 98.7 94.6 0.0125 0.0036 0.0161
256× 256 99.0 98.9 94.0 0.0164 0.0048 0.0212
128× 128 99.0 97.6 90.6 0.0278 0.0083 0.0361

64× 64 98.9 81.2 70.2 0.0816 0.0204 0.1021

w/

512× 512 100.0 98.9 96.4 0.0112 0.0030 0.0141
256× 256 100.0 98.8 97.0 0.0132 0.0040 0.0172
128× 128 100.0 97.3 90.8 0.0347 0.0094 0.0442

64× 64 97.7 85.1 74.3 0.0758 0.0195 0.0953

2

w/o

512× 512 100.0 98.6 93.2 0.0130 0.0038 0.0168
256× 256 100.0 98.7 94.6 0.0165 0.0049 0.0214
128× 128 99.0 97.3 89.5 0.0325 0.0090 0.0415

64× 64 97.8 79.9 69.9 0.0924 0.0228 0.1153

w/

512× 512 100.0 98.8 95.3 0.0103 0.0030 0.0133
256× 256 100.0 98.9 96.6 0.0158 0.0043 0.0201
128× 128 99.0 97.5 91.4 0.0314 0.0086 0.0400

64× 64 97.6 82.8 72.9 0.0862 0.0203 0.1065

3

w/o

512× 512 100.0 99.0 95.0 0.0121 0.0036 0.0157
256× 256 100.0 98.8 94.7 0.0149 0.0045 0.0194
128× 128 99.0 97.7 90.8 0.0282 0.0085 0.0367

64× 64 98.9 80.9 70.1 0.0801 0.0220 0.1021

w/

512× 512 100.0 98.9 95.2 0.0104 0.0031 0.0135
256× 256 100.0 99.0 96.9 0.0149 0.0042 0.0191
128× 128 100.0 97.5 91.8 0.0284 0.0080 0.0364

64× 64 98.8 88.0 76.0 0.0736 0.0195 0.0930

4

w/o

512× 512 99.0 98.8 93.7 0.0119 0.0034 0.0153
256× 256 100.0 98.8 93.9 0.0164 0.0048 0.0212
128× 128 99.0 96.0 88.8 0.0329 0.0092 0.0420

64× 64 98.8 80.7 71.1 0.0842 0.0219 0.1061

w/

512× 512 100.0 99.0 96.1 0.0100 0.0030 0.0130
256× 256 100.0 99.0 96.3 0.0139 0.0041 0.0180
128× 128 100.0 97.6 90.8 0.0296 0.0083 0.0380

64× 64 98.8 83.0 72.8 0.0795 0.0202 0.0997

5

w/o

512× 512 100.0 98.9 95.1 0.0128 0.0037 0.0165
256× 256 100.0 98.9 94.0 0.0162 0.0048 0.0210
128× 128 100.0 97.7 90.2 0.0284 0.0085 0.0369

64× 64 98.9 82.1 71.4 0.0908 0.0223 0.1131

w/

512× 512 100.0 98.7 94.9 0.0100 0.0030 0.0131
256× 256 100.0 98.9 96.7 0.0143 0.0042 0.0185
128× 128 100.0 97.5 90.9 0.0314 0.0086 0.0399

64× 64 98.8 84.7 73.6 0.0805 0.0198 0.1003
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Table 1. Cont.

Fold
Gaussian

Kernel
Input Size AP50 (↑) AP75 (↑) AP (↑) Er (↓) Et (↓) E (↓)

6

w/o

512× 512 100.0 98.6 93.6 0.0138 0.0036 0.0174
256× 256 100.0 98.8 93.9 0.0162 0.0049 0.0211
128× 128 100.0 97.5 89.6 0.0318 0.0087 0.0405

64× 64 97.8 79.8 69.1 0.0876 0.0226 0.1102

w/

512× 512 100.0 98.8 96.0 0.0112 0.0030 0.0142
256× 256 100.0 98.9 96.5 0.0142 0.0043 0.0184
128× 128 99.0 97.5 90.4 0.0330 0.0089 0.0419

64× 64 98.7 85.3 74.5 0.0828 0.0201 0.1029

Figure 8. Qualitative results for the proposed space target landmark regression network using
Gaussian kernel-based 1D landmark representations at the input resolution of 512× 512.
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5.3. Results of Space Target Pose Estimation

As shown in Table 1, we evaluate the performance of space target pose estimation that
uses 2D landmarks predicted by our proposed space target landmark regression network.
The evaluation metrics for space target pose estimation are composed as follows. Er is
the average of the rotation errors for all space targets. Et is the average of the normalized
translation errors for all space targets. E is the total error which is the sum of Er and Et.
For each fold, all kinds of errors decrease as the input resolution increases. What is more,
estimating spatial target pose using predicted landmarks described by the Gaussian kernel-
based 1D landmark representation generally leads to a performance boost. Figure 9 shows
qualitative results of space target pose estimation using predicted landmarks based on the
Gaussian kernel-based 1D landmark representation under the input resolution condition
of 512× 512. The satellite body frame’s correspondence between colors and directions is
red—x, green—y, and blue—z.

Figure 9. Qualitative results for space target pose estimation using 2D landmarks predicted by
the proposed space target landmark regression network using Gaussian kernel-based 1D landmark
representations at the input resolution of 512× 512.
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5.4. Comparisons with State-of-the-Art Methods

We compare our method with the state-of-the-art methods in space target landmark
regression and pose estimation. To compare with them, we re-implement the same pipeline
as [7,8], both of which estimate the poses of space targets by regressing the pre-defined
landmarks of space targets in images.

5.4.1. Performance of Space Target Landmark Regression

To evaluate the performance of space target landmark regression, we compare our
method with [7,8] in terms of the AP, AP50, and AP75 metrics. In [7], the coordinates of
landmarks are directly regressed by the network using Darknet53 [20] as the backbone.
In [8], HRNetV1-W32 [43] is used to produce heatmaps for landmarks, and then the
coordinates of landmarks are calculated by post-processing on these heatmaps. It should be
pointed out that we use pre-trained models which are pretrained on the COCO dataset [44]
to initialize the weights of Darknet53 and HRNetV1-W32 during training re-implemented
networks. In our proposed method, both the expansion factor and standard deviation of
the Gaussian kernel are defined as 2. Table 2 presents the comparison between our method
and the state-of-the-art methods, in which each of the values of a metric is the average
over the values for the metric from all over the folds. As shown in Table 2, our methods
outperform the direct regression method [7] at any input size condition. Our methods
achieve the same level of AP as the heatmap regression method [8] for the input sizes of
512× 512 and 256× 256, respectively. When the input size decreases to 128× 128 and
64× 64, our method without Gaussian kernel gets 89.9 and 70.3 AP, respectively, which
have 6.8 and 33.5 improvements compared to the heatmap regression method [8], while the
one with Gaussian kernel gets 91.0 and 74.0 AP, respectively, which achieve 7.9 and 37.2
improvements in contrast to the heatmap regression method [8]. Meanwhile, our methods
have similar model sizes and GFLOPs to the heatmap regression method [8].

Table 2. Comparison with the state-of-the-art methods in terms of the evaluation metrics for space
target landmark regression.

Method Input Size #Params GFLOPs AP50 (↑) AP75 (↑) AP (↑)

Direct Regression [7]

512× 512 23.55 M 21.52 96.4 71.7 62.8
256× 256 23.55 M 5.38 97.7 74.0 63.7
128× 128 23.55 M 1.35 91.9 42.5 46.9
64× 64 23.55 M 0.34 32.0 1.4 8.1

Heatmap Regression [8]

512× 512 28.54 M 41.08 99.8 99.0 96.1
256× 256 28.54 M 10.27 100.0 99.0 96.3
128× 128 28.54 M 2.57 99.0 95.2 83.1
64× 64 28.54 M 0.64 89.6 21.1 36.8

Ours (w/o) 1

512× 512 62.09 M 41.45 99.8 98.8 94.2
256× 256 32.73 M 10.32 99.8 98.8 94.2
128× 128 29.06 M 2.57 99.3 97.3 89.9
64× 64 28.6 M 0.64 98.5 80.8 70.3

Ours (w/) 2

512× 512 62.09 M 41.45 100.0 98.9 95.7
256× 256 32.73 M 10.32 100.0 98.9 96.7
128× 128 29.06 M 2.57 99.7 97.5 91.0
64× 64 28.6 M 0.64 98.4 84.8 74.0

1 This method uses the 1D landmark representation without Gaussian kernel. 2 This method uses the Gaussian
kernel-based 1D landmark representation.

Figure 10 illustrates that our methods consistently provide significant gains for the per-
formance of space target landmark regression, especially in low-resolution input conditions.
Whereas, both the direct regression method [7] and the heatmap regression method [8]
suffer from drastic performance drop as the input size degrades.
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Figure 10. Comparison between our methods and the state-of-the-art methods in terms of the AP
metric at all input size conditions.

5.4.2. Performance of Space Target Pose Estimation

To evaluate the performance of space target pose estimation that uses predicted 2D
landmarks to recover the pose of a space target, we compare our method with [7,8] in terms
of Er, Et, and E metrics. Furthermore, in order to investigate the impact of 2D landmarks
predicted by various methods on space target pose estimation, we universally use the
RANSAC-based PnP solver [12] instead of the improved PnP algorithm as described in [8]
to compute space target poses. Table 3 presents the comparison between our method and
the state-of-the-art methods, where the values of each metric are all the averages of the
values of the metric from all folds. As shown in Table 3, our methods achieve smaller
pose error than the direct regression method [7] and the heatmap regression method [8]
under any input size condition. Compared with the heatmap regression method [8], our
methods without and with Gaussian kernel get little gains for the input size of 512× 512
while attaining increasing gains as the input size decreases. Especially, at the input size
of 64× 64, the total errors of our methods without and with Gaussian kernel are lower by
0.1571 and 0.1657, respectively.

Table 3. Comparison with the state-of-the-art methods for space target pose estimation.

Method Input Size Er (↓) Et (↓) E (↓)

Direct Regression [7]

512× 512 0.0753 0.0371 0.1124
256× 256 0.0809 0.0319 0.1128
128× 128 0.1088 0.0383 0.1471
64× 64 0.2083 0.0818 0.2901

Heatmap Regression [8]

512× 512 0.0139 0.0042 0.0181
256× 256 0.0274 0.0083 0.0358
128× 128 0.0669 0.0192 0.0861
64× 64 0.2141 0.0512 0.2653

Ours (w/o) 1

512× 512 0.0127 0.0036 0.0163
256× 256 0.0161 0.0048 0.0209
128× 128 0.0303 0.0087 0.0390

64× 64 0.0861 0.0220 0.1082

Ours (w/) 2

512× 512 0.0105 0.0030 0.0135
256× 256 0.0144 0.0042 0.0186
128× 128 0.0314 0.0086 0.0401
64× 64 0.0797 0.0199 0.0996

1 This method uses the 1D landmark representation without Gaussian kernel. 2 This method uses the Gaussian
kernel-based 1D landmark representation.
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Figure 11 illustrates that our proposed methods maintain a low error level of space
target pose estimation for any input size. However, the total errors of the direct regression
method [7] and the heatmap regression method [8] increase sharply when the input size
decreases. In particular, the total error of the direct regression method [7] is the largest
among all methods at any input size.
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Figure 11. Comparison between our methods and the state-of-the-art methods in terms of the E
metric at all input size conditions.

6. Discussion

We give a discussion on the property of 1D landmark representation compared to
the 2D heatmap representation. The discussion is conducted from the perspectives of
complexity and quantization error. In addition, we conduct an analysis on the expansion
factor μ.

6.1. Representation Complexity

Given an input image with the resolution of H ×W, heatmap regression methods aim
to generate a 2D heatmap with the resolution of H

λ × W
λ , where λ is the downsampling factor.

Since λ is a constant, the spatial complexity of the heatmap representation is O(H ×W).
Whereas, our method aims to yield two 1D vectors with the length of H · μ and W · μ
respectively, where μ is the expansion factor. Considering μ is a constant, the spatial
complexity of the proposed 1D landmark representation is O(H + W). Therefore, we can
find that the 1D landmark representation is more efficient than the heatmap representation.
Particularly, it enables some methods to remove extra independent upsampling operations
(e.g., deconvolution [11]) used to obtain high-resolution landmark embeddings directly so
that the computational costs of networks can be reduced.

6.2. Quantization Error

Given an input image with the resolution of H ×W and the ground-truth 2D coordi-
nate of a landmark (x, y), we take the horizontal coordinate x, as an example to analyze the
quantization errors of 1D landmark representation and 2D heatmap
representation, respectively.

For 1D landmark representation, x can be rewritten as:

x =
nv + zv

μ
=

nv

μ
+ σv (20)
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where μ is the expansion factor subjected to μ ≥ 1, nv ∈ N, 0 ≤ zv < 1, and 0 ≤ σv < 1
μ .

The ground-truth x is then rescaled by μ into a new one:

xv = round(x · μ) = nv + round(σv · μ) =
{

nv 0 ≤ σv < 1
2μ

nv + 1 1
2μ ≤ σv < 1

μ

(21)

The quantization error of 1D landmark representation |Δv|, is calculated as:

|Δv| =
∣∣∣∣ xv

μ
− x

∣∣∣∣ =
⎧⎨
⎩

∣∣∣ nv
μ − nv

μ − σv

∣∣∣ 0 ≤ σv < 1
2μ∣∣∣ nv+1

μ − nv
μ − σv

∣∣∣ 1
2μ ≤ σv < 1

μ

(22)

Therefore, the quantization error of 1D landmark representation |Δv|, satisfies 0 ≤
|Δv| < 1

2μ .
For heatmap representation, x can be rewritten as:

x = nh · λ + σh (23)

where λ is the downsampling factor subjected to λ ≥ 1, nh ∈ N, 0 ≤ σh < λ. Due to that
the heatmap resolution is usually downsampled from the original input image resolution,
the ground-truth x is transformed as:

xh = round
( x

λ

)
= nh + round

(σh
λ

)
=

{
nh 0 ≤ σh < λ

2
nh + 1 λ

2 ≤ σh < λ
(24)

The quantization error of heatmap representation |Δh|, is calculated as:

|Δh| = |xh · λ− x| =
{

|σh| 0 ≤ σh < λ
2

|λ− σh| λ
2 ≤ σh < λ

(25)

Therefore, the quantization error of heatmap representation |Δh|, satisfies
0 ≤ |Δh| < λ

2 .

This reduces the quantization error from the level of
[
0, λ

2

)
to the level of

[
0, 1

2μ

)
.

In order to alleviate the quantization error of heatmap representation, extra time-consuming
refinements are always employed. In contrast, 1D landmark representation does not require
extra coordinate post-processing and reduce the quantization error, which promote the
improvement of space target landmark regression.

6.3. Analysis on Expansion Factor

The expansion factor, μ, is the only hyperparameter in the 1D landmark representation,
which controls the sub-pixel accuracy level of the landmark location. Specifically, the larger
μ is, the lower the quantization error of 1D landmark representation is. Nevertheless,
the increase in the expansion factor brings more computational burden to network training.
Therefore, there is a trade-off between the quantization error and the network performance.
We test μ ∈ {1, 2, 3, 4} in the 1D landmark representation without Gaussian kernel based
on the proposed space target landmark regression network at various input resolutions.
As shown in Figure 12, the performance of the proposed network tends to decrease as μ
increases. For the input sizes of 64× 64 and 128× 128, the best choice to μ is 1 so that the
proposed network achieves the AP of 72.4 and 90.5, respectively. For the input sizes of
256× 256 and 512× 512, the value of μ affects the network performance indistinctively.
Specifically, the proposed network achieves the best AP of 94.4 and 94.6 when μ is set
up as 1.
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Figure 12. Analysis of the value of expansion factor μ, under various input resolution conditions.

7. Conclusions

In this article, we study the task of the space target pose estimation from monocular
images and propose a novel approach. Based on the 2D-3D correspondences-based pose
estimation pipeline, we present a 1D landmark representation to describe the 2D coordinates
of pre-defined landmarks in images, to deal with several drawbacks of the 2D heatmap
representation that dominates the landmark regression task. Next, we propose a space
target landmark regression network to predict the horizontal and vertical coordinates of
landmarks respectively using 1D landmark representations. Experimental results on the
SPEED dataset show that our method achieves superior performance to the existing state-
of-the-art methods in space target landmark regression and pose estimation, especially
when the input images are low in resolution. In the space target landmark regression
task, our method using the 1D landmark representation without Gaussian kernel achieves
70.3, 89.9, 94.2, and 94.2 AP respectively at the input sizes of 64× 64, 128× 128, 256×
256, and 512× 512, while using the Gaussian kernel-based 1D landmark representation,
our method achieves 74.0, 91.0, 96.7, and 95.7 AP respectively. In the space target pose
estimation task, the total errors of our method using the 1D landmark representation
without Gaussian kernel are 0.1082, 0.0390, 0.0209, and 0.0163 respectively at the input
sizes of 64× 64, 128× 128, 256× 256, and 512× 512, while using the Gaussian kernel-
based 1D landmark representation, the total errors of our method are 0.0996, 0.0401, 0.0186,
and 0.0135 respectively. Furthermore, we discuss the property of the proposed 1D landmark
representation, which has less computational complexity and quantization error than the
2D heatmap. We also analyze the settings of the value of expansion factor at various
input resolutions. In particular, for the input sizes of 64 × 64 and 128 × 128, the best
choice for the value of the expansion factor is 1, while for the input sizes of 256× 256 and
512× 512, the value of the expansion factor affects the network performance indistinctively.
In the future, we would like to adopt more geometric information such as the edges, parts,
and structures of space targets to our method and extend our approach to other targets,
such as aircraft and vehicles.
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Abstract: With the exploration of outer space, the number of space targets has increased dramatically,
while the pressures of space situational awareness have also increased. Among them, spacecraft
recognition is the foundation and a critical step in space situational awareness. However, unlike
natural images that can be easily captured using low-cost devices, space targets can suffer from
motion blurring, overexposure, and excessive dragging at the time of capture, which greatly affects
the quality of the images and reduces the number of effective images. To this end, specialized or
sufficiently versatile techniques are required, with dataset diversity playing a key role in enabling
algorithms to categorize previously unseen spacecraft and perform multiple tasks. In this paper,
we propose a joint dataset formulation to increase diversity. Our approach involves reformulating
two local processes to condition the Conditional Neural Adaptive Processes, which results in global
feature resampling schemes to adapt a pre-trained embedding function to be task-specific. Specifically,
we employ variational resampling to category-wise auxiliary features, adding a generative constraint
to amortize task-specific parameters. We also develop a neural process variational inference to
encode representation, using grid density for conditioning. Our evaluation of the BUAA dataset
shows promising results, with no-training performance close to a specifically designed learner and an
accuracy rate of 98.2% on unseen categories during the joint training session. Further experiments on
the Meta-dataset benchmark demonstrate at least a 4.6% out-of-distribution improvement compared
to the baseline conditional models. Both dataset evaluations indicate the effectiveness of exploiting
dataset diversity in few-shot feature adaptation. Our proposal offers a versatile solution for tasks
across domains.

Keywords: spacecraft recognition; few-shot feature adaptation; generative family; neural processes

1. Introduction

The growing tension over resource constraints has directly accelerated the need to
explore space beyond Earth. However, the large number of space targets with different
shapes and forms increases the difficulty of space situational awareness, and misjudgment
of space targets will directly affect the space order and delay the popularization of space
knowledge, which requires the recognition of spacecraft. Still, space target images suffer
from distortion and blurring due to target attitude instability, sensor performance and
image channel transmission [1], which results in a limited number of available space
target images.

Traditional spacecraft recognition methods extract features from images by manual
design. The construction of these methods requires the knowledge and experience of
domain experts to ensure that appropriate features and algorithms are selected. For ex-
ample, SIFT methods focus on detecting key points at different scales and rotation angles,
while HOG methods focus on the edge and texture information of the image. However,
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traditional methods are greatly limited by the problems of complex scene modeling and
limited data samples for space targets. A realistic scenario like this presents challenges in
few-shot formulation. Deep learning methods [2], especially Convolutional Neural Net-
works (CNNs), have achieved significant advantages in image classification tasks for space
targets by automatically learning abstract features through multilevel neural networks.
Among them, DCNN [3] achieves space target recognition through an end-to-end approach
and copes with the few-shot problem by means of data augmentation and data simula-
tion. Discriminative Deep Nearest Neighbor Neural Network (D2N4) [4] overcomes the
significant intra-class differences of space targets by introducing center loss. On the other
hand, global pooling information is introduced for each depth-local descriptor to reduce
the interference of local background noise and thus enhance the robustness of the model.

However, as can be seen from the rise of the cross-domain few-shot learning field, poor
performance outside the target task domain (which we call out-of-distribution data) is a
crucial constraint on few-sample tasks. Furthermore, the design of D2N4 on discriminating
spacecraft is an approximate overfitting problem, which contradicts further generalization
to the unseen category. Each of these data domains is distributed differently, maintains
large domain gaps between each of them, and shows significant deviations from the target
data domain (which we call in-distribution data). Solutions dedicated to one area tend to
fail the corner or generally less common observations. Thus, they better have long-term
support [5]. The alternative can choose to be multi-functional and sufficiently capable of
current concerns, meaning a successful algorithm should address its majors well and easily
generalize to the rare rest [6]. Human exploration of the planet still suffices as a good
example. Compared with natural images, space target images have a single background
and are greatly affected by illumination; in addition, space target images have the problem
of sizable intra-class gaps and small inter-class gaps. The introduction of multi-domain
natural images covers the target domain’s data features by increasing the data’s diversity.
Therefore, it is more reasonable to take the different domains of natural images as the main
task of adapting the features of space target images while placing the space target images
precisely in the “rest of the domain”.

Similar to the paradigm that learns the major features and evaluates the rest, the few-
shot learning model uses a handful of examples to categorize previously unseen obser-
vations into known labels. A simple few-shot learner achieves matching of the extracted
features to the distribution of the dataset via fine-tuning a small classifier [7–9] or calibrat-
ing target distribution [10]. Another popular alternative, meta-learning approaches [11],
takes “learning to learn from diverse few-shot examples and evaluate the unseen one, even
the unseen domain” to generalize to wild datasets. Practically, the meta-learner considers
optimally measured feature distances and, therefore, can be characterized by constructing
a universal representation with great computation [12,13], or elegantly adapting models
from a good initialization [14,15]. However, the rare context examples still matter if moving
towards unseen categories of spacecraft images.

To cover the corner, the researcher presents grayscale spacecraft images, the BUAA
dataset [16], to simulate the contexts for recognition. With Figure 1, when inspecting
the dataset content, it is at that early deep era when much analysis [4,17] measuring
fine-grained properties and intra-class variance from scratch score well in those offline
archives. However, less diversity in such learning procedures potentially under-fit future
generalizations [18]. Fortunately, these years of milestones in AI research make publicly
accessible assets handy, which could help allow any meta-learner to converge in the range
of the large-scale dataset instead. Even in the few-shot setting, much of the meta-learner
now utilizes a large labeled dataset, episodically simulating few-shot constraints [19].
For instance, Triantafillou et al. [20] present a large-scale Meta-dataset (ten labeled datasets
in composition, with eight for training, e.g., ILSVRC-2012 [21] and two for the testing,
e.g., MSCOCO [22]) that makes few-shot classifications in the cross-dataset setting and
catches up on real-world events. Therefore, the recognition of spacecraft dataset raises the
problem of whether to use a single space target image for training or to use a large-scale
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dataset to aid in training. When the protocol is defined with large-scale Meta-dataset, it
samples random tasks into episodes, and the solutions must consider (1) being adapted
to an indicated domain by using a few task-specific examples, and (2) exploring shared
knowledge between each task. Using shared structures to adapt models with task-specific
formulation is a critical factorization for such an algorithm. Furthermore, limited overhead
in the whole process would be preferred.

Figure 1. Inspection of the BUAA dataset. The data generation uses 3D triangulated models with
dark backgrounds, simulating aircraft in deep space. Images of each category are uniformly rendered
from 230 viewpoints on a default view port in 3Ds MAX software.

Members in the Neural Processes family (NPF) [23] meta-learn a mapping directly from
observations to a distribution over functions, known as the stochastic process, exploiting
prior assumptions to quickly infer a new task-specific predictor at the test time. Conditional
Neural Adaptive Processes (CNAPs) [24], the conditional model [25] for adaptable few-
shot classification, introduce an amortization of FiLM layers [26] in distribution modeling,
offering fast and scaleable realizations from a pre-trained template to predict unseen multi-
task datasets. Observations from [27] also suggest that this is one of the cases where training
images from diverse domains benefit the distribution approximation.

The pipeline in Figure 2 highlights an adaptation of a conditional embedding function
when solving each few-shot classification. CNAPs model amortizes the computational
cost of the model by learning a functional approximator in the meta-training phase, which
generates most of the parameters in Resnet-18 [28] by evaluating the sample. Further,
with no explicit adaptation on the classifier (contrasting with CNAPs), Simple CNAPs
conclude multi-task likelihood estimation in formulating each non-parametric Mahalanobis
distance measurement. By its mathematical definition, two participants in acquiring the
distance and proper conditional embedding function are responsible for such a design.
Figure 2 also shows similarities to another specific design for cross-domain few-shot
learning: Task-Specific Adapters (TSA). As the latest method, TSA attaches its task-specific
adapters to a single universal network distilled from a cross-domain dataset and learns
those adapters on a few labeled image examples. This means the task-specific adapters can
be plugged into a pre-trained feature extractor to adapt it to multiple datasets, similar to
the FiLM layers of the Conditional Neural Adaptive Processes.
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Figure 2. The “Simple” variant of Conditional Neural Adaptive Processes in few-shot classifications [29].
The model also follows the rules of a meta-learning algorithm that learns from labeled context-set (C)
images and predicts unlabeled target-set images (T ).

Back to the highlighted feature adaptation from Figure 2, a solid fact is that generating
task-specific embedding functions always constitutes their task-specific parameters [30],
also known as the amortization parameter, according to a task-level feature representation.
The process connects to the capacity of scaling to complex functions for given datasets.
Since the deterministic representation cannot match the diversity in data domains, a direct
likelihood estimation for the model would fail. It also could be interpreted as an underfit-
ting phenomenon (or amortization gap [6]) that the task-level aggregate mathematically
captures a distribution over task-specific parameters but potentially under-fits small-scale
examples [31]. Simply observing sufficient data would, in turn, violate the few-shot setting.

In this work, we specify a meta-objective to diversify the conditional feature adapta-
tion, generalizing the large in-distribution datasets [20] to perform spacecraft recognition,
particularly in the few-shot setting. The idea is to resample the task-level representation
explicitly (see comments in Figure 2). To achieve this, we adopt variational learning to
parameterize generative density, from which we can directly sample the reformulated
features. We further assume the neural process variational inference to approximate a
distribution over tensor values that encoder the context features, allowing us to sample
a collection of embedding schemes for each latent feature. Our resampling formulation
has two implementations: (1) A conditional variational auto-encoder pipeline that pro-
vides controllable constraints in directly estimating the generative density of task-level
representative; and (2) A latent Neural Process [23,32] that reformulates the meta-learned
embedding function to encode task-level representation. Overall, we improve the robust-
ness of the model by reformulating the local progressions to obtain more representative
class prototypes that are resistant to data bias in the few-shot setting. Furthermore, the
adaptation scheme is applied on a single backbone that is only pre-trained on ImageNet
dataset [21], yet it achieves comparable performance against methods in universal represen-
tation [12,13]. The evaluation on the Meta-dataset also shows that the extended version of
the latest few-shot classification algorithm has the highest average rank, particularly with
a large margin on out-of-distribution tasks. A summary of our contributions to solving
few-shot classification are:

(1) We investigate a generative re-sampling scheme for representation learning. The sam-
pled representation is used to condition an amortized strategy and universal backbone
in adapting the embedding extractor function to multiple datasets;

(2) From a self-supervised perspective, we propose a data encoding function based on
neural process variational inference;

(3) We present a comparable out-of-distribution performance against methods with a spe-
cific design on BUAA dataset and with universal representation on the Meta-dataset.
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The remainder of the paper is organized as follows: Section 2 briefly reviews the
related background to our approach. Our approach is studied and detailed in Section 3.
The introduction to the dataset, model ablation studies and experimental results are ana-
lyzed and presented in Section 4. We conclude our work in Section 5.

2. Background

Our preliminary insight into solving a visual classification problem is related to
meta-learning formulations in classification and Neural Processes Family and Generative
distribution modeling.

2.1. Meta-Learning Approaches in a Few-Shot Setting

The meta-learning [33] technique applies the “learning to learn” concept to reduce the
data required for the model. During the meta-training phase, task samples are extracted
from large-scale labeled datasets based on the task distribution P(D). Tasks are randomly
divided into few-shot context and target sets. That is, per iteration, the classification dataset
D, also named a task sample, has x images to be classified as known labels y, and can
further subdivide into two subsets: C that stores contextual supervision and T that requires
generalization from those few contexts.

Over all accessible tasks, a meta-algorithm updates its parametric modeling to mini-
mize a general object function:

L := ∑
C,T

l ( one-hot · d( f (xT ); C), yT ), (1)

in which l is the cross-entropy loss. The distance function d measures how close a categorical
distribution (think about what softmax function outputs) is to the true layout yT . In contrast,
the embedding function f ideally defines a feature space where the pre-defined metric d is
assumed to be optimal for drawing boundaries. Then, there are two main streams on the
table to conclude one meta-learner: one is based on distance (also known as metric learning),
and the other shares the core of adaptation. Compared to earlier explorations [34,35] on
a generic metric space, classic examples for the latter can be found in optimization-based
approaches to few-shot classifications [17]. The algorithms follow particular rules for
learning to adapt from a few observations and addressing unseen bunches in a specific
task. However, what does “adapt for a specific classification task” mean for an algorithm?
Is there a unified formulation, and is it optimal?

If we view model adaptation as solving an optimization with a set of parameters Φ
that updates a set of weights Θ of a classifier f (x; Θ) to a set of adapted weights Θ′ in
predicting C, then optimal parameters are defined to have

Θ′ = argmax
Θ

EC∼P(C)
[

∏
|C|
c=1 p(y = y(c)| f (x(c); Θ) ; Φ

]
. (2)

The classifier under Θ′ is responsible for maximizing the expected density estimation
in predicting T :

E
T ∼P(T )

[
|T |
∏
t=1

p(y = y(t)| f (x(t); Θ′)]. (3)

From this formulation, performing just full gradient descent learning (see MAML, [14])
can be one of the adaptation rules. Still, in most cases, they tend to overfit few-shot data
with expensive computation of the second derivatives. Cheaper implementations are to
ignore the second derivative (fo-MAML) [36], and to incorporate inductive bias from the
prototypes into an initialization scheme (Proto-MAML) [20]. A more efficient way is to
adopt amortized inference [6,24,29] on the contextual information and to enable sharing
global parameters for a learned distribution over embedding functions. Such an inference
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allows us to rapidly instantiate a function f∼p( f ) to participate in a specific task, and
further reduces the cost of adaptation. After iteratively refining their performance across
various instances of few-shot tasks drawn from the distribution P(D) [19], meta-learners
that acquire the ability to adapt ensure, in theory, that their current parameter set θ

′
becomes

optimal for the specific task D [33]:

θ′ = argmin
θ

ED∼P(D) [L(D; θ) ]. (4)

It shows a natural capacity to adapt multi-task scenarios, despite a task formulation
underexposed or unseen settings. The paradigm hence builds our solution.

2.2. Neural Processes Family

Models in the Neural Process Family meta-learn a distribution over random functions
and can be distinguished between two assumptions.

2.2.1. The Conditional Neural Process Family

Members in this family employ a factorization assumption [25]: a conditional model
first explores the entire context set C for a global representation r, using a parameterized
(sub-) encoder φ and aggregator ρ to compute representation:

r = ρ(
|C|
∑
c=1

φ(x(c), y(c))). (5)

The two modules define an encoder architecture in the family members. Then, the
predictive distribution at any set of target inputs xT is factorized and conditioned on the
global representation r:

pθ(yT |xT ; C) =
|T |
∏
t=1

pθ(y(t)|x(t), r). (6)

The factorization assumption in the conditional models allows for directly maximizing
the log-likelihood log pθ(yT |xT ; C) on the target set to train the parameters. Furthermore,
this log-likelihood formulation builds our overall framework.

2.2.2. Latent Neural Process Family

The latent models [23] instead introduce a stochastic latent variable into the parame-
terization of predictive distribution, formulated as:

pθ(yT |xT ; C) =
∫ |T |

∏
t=1

pθ

(
y(t)|x(t), z

)
pθ(z|r)dz. (7)

This is conditioned on a sampled z, a latent representation from posterior distribution
p(z; C, T ), and an analytically intractable posterior, which lies in approximation pθ(z|r).

In practice, Garnelo et al. [23] propose to map all informative samples in D to
the distribution over z as a sampling distribution in approximating the true posterior
p(z; C, T ) ≈ pθ(z|D). A latent model thus has different choices of encoder architecture,
for example, to first have a deterministic representation after having observed both the
context-set and target-set, and then use it to parameterize a distribution over z. Therefore,
the encoder, i.e., an inference network as in the methods [37] for performing approximate
inference and learning probabilistic global latents, and the decoder, which is the same
as the conditional models except for using sampled latent representation z∼pθ(z|D), are
jointly trained to compute an approximation of likelihood objective pθ(yT |xT ; C) at the
target inputs xT in an amortized variational inference:
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log pθ(yT |xT ; C) ≥
∫

pθ(z|D) · [ log ∏
|T |
t=1 pθ(y(t)| x(t), z)

+ log pθ(z | C)− log pθ(z | D) ] (8)

= Ez

[
log ∏

|T |
t=1 pθ(y(t)| x(t), z)

]
−KL( pθ(z | D) ‖ pθ(z | C) ),

by first placing pθ(z|D) in an identity trick and using Jensen’s inequality to derive a
lower bound targeting the intractable integral problem [37], with an expectation and a
Kullback–Leibler divergence.

Members of the Neural Process Family highlight the capacity to interpolate the context
information to produce predictions on unseen in-distribution data, but cannot deal with
a distribution shift [27] from simulated to real-world data at test time. Current feature
weighting on universal representation [12,13] or task-specific parameters combined on dataset
generalization [15] span a large-scale feature space and promote out-of-distribution adaptation.

2.3. The Generative Family in Learning Representation

Machine learning models refer to different probabilistic frameworks [38]. If involved
in vision tasks, discriminative models learn a probability distribution p(y|x) that predicts
the probability of true y when given an image x. The evaluation then determines whether
categorical distribution p(y|x) would match the ground truth. In contrast, a member in the
generative family formulates density function p(x) over all possible inputs x. Conditional
generative modules take further steps to learn p(x|y), conditioning on y in every pair. The
variational generative method performs the density estimation by maximizing a logarithm
lower bound to achieve the true parametric densityp(x; ϑ2). That is, by first assuming
x∼p(x|z; ϑ2) holds for all possible input, and the introduced p(x|z) is subject to a latent
z := μ + σ · ε commonly sampled from a Gaussian prior p(z). Then, in a joint optimization,
a parametric posterior q(z|x; ϑ1) approximates to capture the prior p(z) (in place of the true
posterior p(x|z)).

Being subject to the below normalization constraint of probabilistic finite integrals,
for the generative model, all possible inputs x compete benignly for the probability mass of
their generation.

∫
x

p(x)dx = 1. (9)

Generative models, thereby, can represent seen data and explore more on its latent
pattern. Likewise, in a conditional generative model, every companion y induces a separate
competition among all x, but properties derived from the normalization still hold in the
conditional generative formulation.

3. Methods

Classification algorithms can be broken down into two parts: representation learning
(Section 3.1) and classifier building (Section 3.2). We use the Simple CNAPs model as an
example method, and later we will explore its extension. Straightforwardly, the method
is based on learning from a public large-scale dataset and maximizing the log-likelihood
presented in Equation (15). First, learning the representations of both labeled/unlabeled
images and building a classifier on those representations solve the regular classification
problem. An overall learning object sees Section 3.3.

3.1. Reformulated Representation Learning

A versatile model not only handles spacecraft recognition well but also the rest.
Learning to adapt the future data satisfies the purpose. Here, we first introduce the
extension of the Conditional Neural Process Family into adaptable multi-task classification.
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Likewise to approaches including MAML [14] and its variants that explore a well-behaved
initialization in modeling, the predictive distribution pθ(y = y(t)| f (x(t)); C) in Conditional
Neural Adaptive Processes (CNAPs) [24] has a specific form in parametric modeling:

f (; C) = f (;ϑ , φ), φ = g(r) and r = ρ(∑ w(C)). (10)

Behind the symbol, a fixed-cost adaptation mechanism (as the set of parameters φ
in part of θ) shares a dataset encoder–decoder structure and amortizes C and its feature
encodings into parameters γ and β, a channel-wise function scales and biases input feature
x via γ(C) � x ⊕ β(C) to condition pre-trained f on context information. For few-shot
classifications, it retains every property seen among the family members to infer unseen
patterns and, more importantly, protect against over-fitting by requiring a single forward
pass rather than multiple gradient back props with that optimization-based approaches.
However, the point here is that if going back to the pipeline in Figure 2, task representation
r that indicates the current dataset plays a leading role in the conditional neural process
models. Allowing the diversity of the data domain to broaden the selectivity of the target
task can satisfy the variability of the random function f distribution realization. For this
reason, following formulations, reconsider the process of specifying an encoder–decoder
structure to map handful examples C into FiLM parameters [26] that adapt f (x;ϑ ) to have a
set of weights [ϑ, φ], and practically extend the former statistical deterministic aggregation
into: (1) r∼p(r; C), but the adapted version of ϑ can still be [ϑ, φ = g(r)]; or (2) w∼p(w; C)
and r = ρ · (∑ φ(C)), such that [ϑ, φ] would have the result of g(r) as well. Then, to sum
up, this is a representation learning problem, and Conditional Neural Processes make such
representations the condition.

Following the global encoder–decoder structure defined in the Conditional Neural
Processes collection [25], the function approximator g would relate to the so-called decoder
that generates the desired function set. This results in f ′ := f (; ϑ, φ = g(r)), which is
adapted for each task.

3.1.1. Formulation (1), Directly Resampling Task-Representation from Generative Density

Consider w as a deterministic function. Our first formulation adds a global sampling
on the aggregate r. With this in mind, the procedure in Figure 3 indirectly forces a generative
constraint to estimate the density p(r) with a local variational inference. Here, we amortize
a portion of φ (as a reminder, f (; ϑ, φ)) using a conditional variational auto-encoder [39],
where an encoder–decoder pair is jointly trained to approximate the conditional density
function p(r|rc), using estimated rc := 1/|Cc| ·∑x∈Cc w(x) and, likewise, r := ρ ·∑ w(xC).
That is, qϑ is the encoder that takes duplicated and concatenated input to reparameterize
a Gaussian distribution over the introduced latent z with its associated means μz and
variance Σz; and pϑ2 is the decoder to resample a r′ from the mean of each conditional
distribution p(r|rc, z).

Figure 3. Overview of Formulation (1): the resampling task representative of a latent distribution
posterior reparamertized by a conditional variational inference.

338



Remote Sens. 2023, 15, 4321

In a latent variable perspective, we always sample from the generative density p(r| rc)
in the highest probability, making the variables r easy to populate. This satisfies our
representative purpose. In later optimization, we follow the variational inference to draw a
log-likelihood lower bound to capture conditional density p(r|rc). It assumes variable z to
have a relaxed Gaussian prior p(z) = N (0, I).

3.1.2. Formulation (2), a Resample Embedding Function from Grid Density

The second formulation considers a distribution over functions and places w∼p(w)
into aggregating r := ρ · (∑ w(xC , yC)). Considering, in 2D image regression, that a colored
image corresponds to a mapping from an actual 2D grid location xi to its RGB pixel intensity
yi ∈ R3, each latent feature map ν(x(c)) ∈ Rd×h×e can be equivalently interpreted as an
instance function from a stochastic process. Here, we apply the same manipulation as in
Section 3.1.1 (but instead denoted as ν) to first include the latent version of C.

Then, we can specify a function instance w on a fixed h × e grid [23,40]. Through
reconstruction on each feature map, the target representation r can be bound to all the
realizations p(w). For illustration, we refer m := ν(x), x ∈ C to latent feature maps
and n ∈ Rh×e, the absolute position of the entries that constitutes m, to each 2D array.
Further, we randomly select 2D indices to gather a (sub-)context-set Mc and target-set
M from all input pairs (n, m), and approximating p(w) through predicting M by given
Mc. Mc ⊆M is of note. The following parameterization is left for the Attentive Neural
Processes (ANPs) [32], a latent collection of the Neural Process Family, with multi-head
cross-attention [41–43] to predict the target-set feature maps.

The introduced model of ANPs has two branches featuring deterministic and latent
properties, respectively. From Figure 4, a well-developed attention mechanism reformulates
local encodings (i.e., the values) into representation rd in the deterministic path. It allows
a given target location n(t) (query) to attend the location of the relevant context (i.e., the
keys) in Mc and to encode the dot-product relations. The latent path instead samples a
variational latent z that captures distribution properties for subsequent prediction on grid
values. We denote the overall parameterization as ϑ. These fixed dimension representations
model a global structure of stochastic process realization, whereas rd in the deterministic
path models is a fine-grained structure. Finally, a decoder takes representations [z; rd] from
the two paths generating grid density pϑ(m| n, z; rd) to estimate the finalM. Aggregation
of r := ρ(∑ m · pϑ(m| n, z; rd)) makes the representative vector of Rd.

Figure 4. Overview of Formulation (2): resampling a latent embedding function in grid density. The
pipeline is adapted from [32], except that we manipulate grid samples.
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Theoretically, when pϑ(m(t)| n(t), z; rd) specifies a Gaussian density characterized by
respective [μ(t), σ2(t)] to present each grid value, the factorization (see Section 2.2) goes into
an infinite mixture of Gaussians:

pθ(yT |xT ; C) =
∫

pθ(z| C)∏
|T |
t=1N (y(t); μ(t), σ2(t))dz, (11)

meaning that the predictive distribution p(w) conceptually allows us to scale the complex
likelihood function to diversify the global features. Our implementation additionally
considers an experimental manipulation to reduce test-time complexity. That is, aggregating
r solely on prototypes m̄ and their reconstruction, while interpolation on 2D grid features
is left for regularization. For each class k, the prototype is simply:

m̄k = 1/|Ck| ·
|Ck |
∑
c=1

ν(x(c)). (12)

3.2. Building Estimated Classifier

To classify the adapted features of unlabeled targets, a non-parametric version of
CNAPs [29] introduces a convex combination λk · Σk +

(
1− λk

)
· Σ into estimating covari-

ance matrix Qk in the squared Mahalanobis distance for label k:

dk

(
f (x), x̄k

)
=
(

f (x)− x̄k
)T(

Qk
)−1(

f (x)− x̄k
)

. (13)

Mathematically, each covariance estimation in the combination is dealt with using
a sample covariance matrix; an unbiased and efficient estimator of the covariance matrix
in this case. We first derive x̄k := 1/|Ck| ·∑x∈Ck f (x) for class k and task-level prototype
x̄ := 1/|C| ·∑x∈C f (x). Then, by definition, each sample covariance relies on the difference
between each observation and the sample mean, i.e., for a class-related covariance matrix:

Σk =
1∣∣Ck
∣∣− 1 ∑

x∈Ck

(
f (x)− x̄k

)(
f (x)− x̄k

)T
. (14)

Then, use observations x ∈ C that cover whole context set for task-related covariance
matrix Σ. Combining two matrices and considering all individual distributions in the task,
the full covariance estimation presents a hierarchical regularization scheme [44]. Finally,
the conditional predictive model finalizes its factorization assumption with an adapted
embedding function f in a probabilistic mixture model [45], directly estimating the below
likelihood function:

p(y = k | f (x); C) =
exp

(
−dk( f (x), x̄k

)
)

∑k′ exp
(
−dk′( f (x), x̄k′

)) . (15)

And, maximizing the correct likelihood helps to classify image x in T .
Notice that Equation (15) is deterministic and exclusively dependent on the distribution
over embedding function f , which is the key to our formulation below. Furthermore,
the parameter-free structure with the squared Mahalanobis distance explores the theoret-
ical properties of Bregman divergences well. The family of distance functions suggests
a minimal distance in a softmax classifier from the sample as prototypes of all assigned
data points.

There remains one downside to note: the above formulations and their classifier
structure see deficiencies in generalizing out-of-distribution regimes, since true P(D) is still
hard to cover. One of the strongest recommendations is to let (C, T )∼P(D) be a diverse
dataset preparation for maximum-likelihood training. There then lies the top priority to
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digest diverse data, e.g., all training sources from BUAA [16] and the Meta-dataset [20] in
joint training sessions.

3.3. Training Objects

Let pθ(yT | xT ; C) correspond to use of the parametric model θ to obtain a joint categor-
ical distribution. In general, the target is to sample f for each task (C, T ) and participate in
classifying target images T into known labels from C. Now that the classifier is determinis-
tic, Equation (15) can be directly maximized through episodic training with the associated
classification dataset. Furthermore, we simultaneously summarize such episodic training
into solving below local and global optimization.

In the local part, our first formulation instantiates the variational lower bound with an
approximate KL divergence DKL, as well as an expectation that forms a log-likelihood lower
bound L1(ϑ; C) to have log p(r| rc) maximized:

L1(ϑ; C) = DKL +Ez∼q
ϑ1 (z| rc ,r)[log pϑ2(r| rc, z)] (16)

s.t. DKL = −KL(qϑ1(z|rc, r)|| p(z)).

And, by definition, an encoder–decoder pair (parameterized by ϑ) is used for approxi-
mating the true posterior q(z| rc, r) and conditional density p(r| rc, z). Alternatively, our
second inference principle is neural process variational inference [23]. The target objective
evaluates learning the task-level representation r by applying Equation (8) to the Evidence
Lower Bound (ELBO), specifically for embeddings of contexts C. During training, we infer
latent variable z on a posterior sampling from pϑ(z|M), maximizing the lower-bound
LVI(ϑ;M) to predict latent feature maps:

LVI(ϑ;M) = Ez∼pϑ(z |M)

[
log ∏

|M|
t=1 pϑ(m(t)| n(t), z)

]
(17)

−KL( pϑ(z |M) ‖ pϑ(z |Mc) ),

where M and Mc denote context-set and target-set. Not to confuse image–label pairs,
here we use n to refer to 2D grid coordinates and m to refer to feature maps. To the
best of our knowledge, we consider Equation (16), which takes advantage of whole C in
a feasible objective, to meta-learn representations for the downstream task of adapting
f . Essentially, we expect the model to reconstruct targets while being regularized by a
fine-grained exploration within their structures.

Globally, in the maximum likelihood part, we have log-likelihood function speci-
fied to each classification dataset (C, T ) instead. Furthermore, eventually, we evaluate
the expected log-likelihood L̂(θ; C, T ) on all those accessible tasks, approximately over
distribution P(C, T ):

L̂(θ; C, T ) = E(C,T )∼P(C,T )[ log pθ(yT |xT ; C)]. (18)

With reference to the provided pseudocode (see Algorithm 1), we repeat sampling
(C, T ) with image–label pairs and maximize Equation (18) in three steps: (1) learning from
the given observation set C, (2) evaluating targets T , and (3) applying a gradient step until
training converges.

3.4. Architecture with Formulation

In this paper, we first summarize the overall architecture into a local encoder–decoder
pair and global encoder–decoder structure of Simple CNAPs, such that the encoder–decoder
definition is consistent with the framework defined in the Neural Processes Family [23].

Specific choices of the local auxiliary architecture highly connect to the training objects.
Behind the symbol φ, the first introduced is a conditional auto-encoder structure. Basically,
the encoder part involves 4 convolutional layers, each followed by their own batch normal-
ization and ReLU function that locally encodes category-wise sample means rc and the raw
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r into a predictive mean and a diagonal variance, implementing the reparameterization
trick (with two individual linear layers) under a latent variable assumption [39] of a multi-
variate Gaussian distribution over each latent variable z, while the decoder part organizes
subsequent 3 transposed convolutional blocks, with each LeakyReLU and a final Sigmoid
activation on the top, to encourage our global resampling from the generative distribution
p(r| z, rc). Likewise, the second parameterization indicated with a latent neural process
structure [23] involves 3 convolutional layers and their ReLU activations in its deterministic
encoder Enc1, which locally encodes each concatenation [n(c), m(c)] into r(c). A two-head
cross-attention layer with linear embedding functions follows behind. The latent encoder
Enc2 comprises the same amount of convolutional blocks, but is followed by 2 linear lay-
ers to reparameterize a latent posterior as in a VAE model [37]. Instead, the conditional
decoder Dec takes 3 transposed convolutional layers and ReLUs together with linear layers
(familiarly, a predictive mean and a diagonal variance function) to predict multivariate
Gaussians, which each instance function w can be resampled from. A mean aggregator
follows to take all realizations w∼p(w) into task-level representation r. Note that all the
hidden representations will be of 128 dimensions.

Algorithm 1: Example Maximum Likelihood Training for Simple CNAPs
1 Given a distribution over meta-training tasks P(D);
2 Given a pre-trained template f (; ϕ);
3 Freeze ϕ and initialize ϑ, w, g randomly;
4 while not converged do

5 Uniformly sample tasks D = (C ∪ T ) ∼ P(D);
6 if f ormulation 1 stay true then

7 Evaluate lower bound L1 (as Equation (16));
8 Let φ = g(r);
9 else if f ormulation 2 stay true then

10 Evaluate lower bound L2 (as Equation (16)) \ by usingM and subset Mc according to C;
11 Let r = ρ(∑ w(xC , yC )) and φ = g(r);

12 Let f ′ ← f (; ϕ, φ);
13 foreach k in unique label set of C do

14 Estimate Qk by sample covariance matrix;

15 Evaluate a joint categorical distribution on T \ by using Equation (15);
16 Update θ = [ϑ, w, g] to maximize Equation (18);

Regarding the global structure, the encoder only requires us to produce task-level
representation r and can be one of the two formulations above; the decoder is simply the
ResNet-18 and a few amortization steps to generate plug-in FiLM layers [26]. In those
steps, stacks of linear blocks map the aggregate representation r into those parameters of
the channel-wise transformation, specifying the final adapted version f ′.

We apply the formulation to a new model: Task-Specific Adapters (TSAs) [46].
From Figure 5, TSAs are used for cross-domain few-shot classification that aims to learn
a classifier from previously unseen classes and domains with few labeled samples. TSAs
are commonly used with Universal Representation Learning (URL) [47], a single universal
network learned and distilled from the labeled context set C. Briefly speaking, a TSA adapts
the feature extractor created by URL using task-specific adapters. In this paper, we consider
methods (Formulations (1) and (2)) in Section 3.1 as the pre-processed formulation and
post-processed formulation, respectively.
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Figure 5. Overview of reformulated Task-specific Adapters (TSAs). The TSA model adapts extractor
distilled from the Universal Representation Learning (URL) technique. Here, we reformulate its
preprocessing part.

4. Experiments

We first detail the Experimental setups in Sections 4.1 and 4.2. Following comparisons
in the BUAA dataset (see Section 4.3.1), we choose a simple distance-based learner D2N4 [4]
that features adding image global pooling information into each feature descriptor, and our
baseline Simple CNAPs [29], and the optimization-based learner, as the selected models.

4.1. Dataset Format

We evaluated our approach on the joint dataset, which is composed of the BUAA
and the Meta-Dataset [20]. The Meta-Dataset is a large few-shot learning benchmark
and consists of multiple datasets of different data distributions that feature 10 existing
classification problems to help with anxiety. From Figure 6, the benchmark collects labeled
data on diverse domains, varying from natural images with 1000 categories in ImageNet
(ILSVRC-2012), FGVC-Aircraft (aircraft), QuickDraw (hand-drawn sketches), VGG Flower
(flower images), FGVCx Fungi (mushroom), Omniglot (hand-written characters), CUB-200-
2011 (birds), Describable Textures (texture), Traffic Signs, and MSCOCO (nature images).
For any algorithm, samples from the first eight and the name of in-distribution tasks should
not have overlapped during training, validation, and final testing. The unseen out-of-
distribution split, instead, holds the combination of Traffic Signs, MSCOCO and held-out
MNIST, CIFAR10, and CIFAR100. The algorithm should take them only for testing. BUAA,
a space target dataset, has collected 20 classes of satellite models of different types, shapes,
and functions. It is based on a space target 3-D model, using 3Ds MAX software to generate
a space target full viewpoint simulation image. The data set consists of 4600 gray images
from 230 viewpoints sampled on a viewing sphere, so each class has 230 examples. We
adopt average accuracy and rank as the evaluation metric in our experiments. Considering
the model’s rank makes it possible to obtain a more complete picture of its generalization
performance, ensuring that the model remains stable and performs well under different
data distributions and characteristics.

Figure 6. The datasets of the dataset, including the Meta-dataset’s 10 datasets and the left three
datasets Mnist and Cifar10/100 for additional tests.
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4.2. Implementation Details
4.2.1. Dataset Setting

To investigate the applicability of our scheme, we partitioned the BUAA dataset
by placing 25% to 70% of the data categories (with a 5% gradient increase) inside the
distribution and placing the remaining data categories outside the distribution. In our
experiments, we only trained on the in-distribution data and used the out-of-distribution
data for testing. In below sections, performance at each percentage accuracy will be
reported by averaging over 600 proxy classification tasks with a 95% confidence interval.
The benchmark setting does not restrict few-shot tasks to have fixed ways and shots, thus
representing a more realistic scenario.

4.2.2. Training

In Section 3.1.2, we highlighted global sampling in latent neural process models,
where the encoder, as the inference network, plays a dual role [23] of being an approximate
posterior pϑ(z|M), and also of defining the prior, having observedMc, suggesting different
behaviors in between stages: during training, we sample function instances from the
approximate posterior when we have wholeM in observation; during inference, instead,
the sampling can only turn to the prior pϑ(z|Mc) given a subset of entries each feature
map. We train an overall θ with 110,000 sampled tasks, using a task batch of 16 on all
training splits from the Meta-dataset [20]. Our maximum likelihood training remains
identical to [29] as we use episodic context/target splits C, T and set the size of all x within
to be 84 × 84. A step learning rate (from 1× 10−3) scheduler is set to configure the Adam
optimizer. The whole procedure is loaded on a single NVIDIA RTX 3090 GPU.

4.3. Results and Extendable Discussion

We first report selected modelings on the BUAA dataset. However, before we dis-
cuss the benchmark part, we would like to demonstrate the potential of our proposal
formulations in Section 3.1. As Section 2.2 explains, the task-level representation r plays an
important role in the Conditional Neural Processes model. The proposal Formulations (1)
and (2) are designed for this representation. However, we conclude that these formulations
are generally applicable to the neural feature learning problem.

Notice the “test-only” setting means Table 2 evaluating spacecraft images as an out-of-
distribution dataset. It can set a vital criterion to examine the model’s capacity to generalize
unseen domains with public in-distribution examples. Then, we present a leaderboard on
the Meta-Dataset to read how generalizable the models are in close-to-realistic applications.

4.3.1. Benchmarking Spacecraft Dataset

The validation configures two different settings, and we would suggest a “single-domain
training session” and “multi-domain joint training session”.

The setting of the first part adopts BUAA dataset as the only training data. Table 1
is more likely to represent the basic capacity of the baseline models when we exclude
large-scale dataset and train models with our target domain data only. This can also help
to ablate our later max likelihood training. As shown, an average rank via aggregating
across each column of Table 1 both suggests baseline TSA and Simple CNAPs outperform
the simple distance learner D2N4; the modification on TSA encourages its capacity when
having nearly at least half percent available training data. A more intuitive demonstration
can refer to Figure 7a, where all the conditional models maintain an upward performance
if expanding the training splits, but a similar conclusion does not hold for D2N4.
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Table 1. Results reported on unseen in-distribution tasks of BUAA dataset using models trained on a
single domain.

Avg. Rank 25%. 30%. 35%. 40%. 45%. 50%. 55%. 60%. 65%. 70% Categories

D2N4 [4] 5.7 88.6 ± 0.7 89.9 ± 0.6 92.1 ± 0.5 90.8 ± 0.6 91.1 ± 0.6 92.1 ± 0.6 93.8 ± 0.5 94.5 ± 0.5 94.9 ± 0.4 93.9 ± 0.4
Simple CNAPs [29] 2.0 92.9 ± 0.6 93.8 ± 0.5 94.4 ± 0.6 94.2 ± 0.6 93.9 ± 0.4 94.7 ± 0.6 95.0 ± 0.5 95.2 ± 0.6 96.3 ± 0.5 97.0 ± 0.4
TSA [46] 3.0 93.6 ± 0.5 93.9 ± 0.5 94.4 ± 0.4 94.1 ± 0.5 94.3 ± 0.5 94.4 ± 0.4 94.7 ± 0.5 94.9 ± 0.3 96.1 ± 0.4 96.4 ± 0.3

Sim. CNAPs∼fo. 1 5.9 85.8 ± 0.7 88.7 ± 0.6 91.6 ± 0.5 91.5 ± 0.6 91.9 ± 0.7 90.2 ± 0.7 92.2 ± 0.6 94.7 ± 0.5 94.0 ± 0.5 97.0 ± 0.3
Sim. CNAPs∼fo. 2 5.1 88.0 ± 0.6 92.0 ± 0.5 91.1 ± 0.6 93.5 ± 0.6 91.6 ± 0.7 93.2 ± 0.5 93.8 ± 0.5 94.5 ± 0.6 94.5 ± 0.4 96.3 ± 0.3
TSA∼fo. 1 4.1 88.1 ± 0.4 89.6 ± 0.5 91.7 ± 0.6 92.4 ± 0.4 93.5 ± 0.4 94.6 ± 0.5 94.9 ± 0.4 95.0 ± 0.5 94.5 ± 0.5 96.1 ± 0.4
TSA∼fo. 2 2.1 90.4 ± 0.4 91.7 ± 0.6 93.0 ± 0.5 94.6 ± 0.4 95.4 ± 0.6 95.2 ± 0.5 95.7 ± 0.3 95.6 ± 0.4 96.8 ± 0.5 97.5 ± 0.4

The setting of the second part adopts all accessible datasets as the training data
instead. Furthermore, what Table 2 conveys is that both of our formulations turn more
competitive in a joint maximum likelihood modeling with all training splits of the Meta-
Dataset included; particularly, the second formulation prominently leads the result. From a
direct comparison between Figure 7a,b, a wide range of cross-domain training also benefits
the distance-based learner, while some cases see declines for Simple CNAPs. An interesting
result can also be found in the test-only case (Table 2) and a proportion of 70% categories
used in training (Table 1). The result of our formulation using only BUAA for testing in
Table 2 is even comparable to the result of D2N4 in Table 1 using the 70% of samples used
in training. Modifications on TSA convey such improvement, too, making them the highest
average rank among the listed methods. However, such an advantage becomes less when
Simple CNAPs∼fo. 2 makes a well-matched competition with at least 60% of available
training categories.

(a) Single-domain training result (b) Multi-domain training result

(c) Unseen in-distribution result (d) Out-of-distribution performance

Figure 7. Comparisons from (a,b) evaluate models trained on BUAA dataset only, and in similar
settings, but instead with joint maximum likelihood training. (c,d) show performance on Meta-
Dataset in-distribution/out-of-distribution testing using models trained with (none-zero x axis) or
without (zero x axis) feeding spacecraft images.
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Table 2. Results reported on joint In-distribution tasks of BUAA dataset using models trained on
multiple domains.

Avg. Rank Test Only 25%. 30%. 35%. 40%. 45%. 50%. 55%. 60%. 65%. 70% Categories

D2N4 [4] 6.1 89.9 ± 0.6 90.3 ± 0.6 92.3 ± 0.5 93.8 ± 0.5 94.4 ± 0.5 94.7 ± 0.5 95.3 ± 0.4 95.8 ± 0.5 96.2 ± 0.4 96.3 ± 0.4 96.5 ± 0.4
Simple CNAPs [29] 6.4 91.2 ± 0.7 93.2 ± 0.6 93.6 ± 0.6 94.0 ± 0.6 94.3 ± 0.6 94.0 ± 0.5 94.5 ± 0.6 94.1 ± 0.5 95.1 ± 0.6 96.0 ± 0.5 96.7 ± 0.5
TSA [46] 4.1 94.2 ± 1.0 95.3 ± 0.7 95.7 ± 0.7 95.5 ± 0.6 95.8 ± 0.6 95.6 ± 0.7 95.8 ± 0.6 95.4 ± 0.7 96.0 ± 0.5 96.3 ± 0.6 96.5 ± 0.6

Sim. CNAPs∼fo. 1 4.3 92.6 ± 0.5 94.5 ± 0.4 95.2 ± 0.4 95.5 ± 0.5 95.4 ± 0.4 96.9 ± 0.4 95.6 ± 0.4 96.3 ± 0.4 96.8 ± 0.3 97.0 ± 0.3 97.4 ± 0.3
Sim. CNAPs∼fo. 2 3.3 93.1 ± 0.6 94.1 ± 0.5 94.9 ± 0.5 95.3 ± 0.4 95.8 ± 0.4 96.4 ± 0.3 96.8 ± 0.4 97.3 ± 0.4 97.5 ± 0.3 97.8 ± 0.4 98.2 ± 0.3
TSA∼fo. 1 1.7 95.2 ± 0.8 96.2 ± 0.6 96.6 ± 0.7 96.9 ± 0.6 97.3 ± 0.5 97.7 ± 0.5 97.6 ± 0.6 97.4 ± 0.6 97.6 ± 0.5 97.8 ± 0.4 97.9 ± 0.4
TSA∼fo. 2 2.0 94.4 ± 1.0 95.4 ± 0.5 95.9 ± 0.4 96.5 ± 0.5 96.4 ± 0.5 97.3 ± 0.3 97.8 ± 0.4 97.9 ± 0.4 97.6 ± 0.5 98.1 ± 0.4 98.4 ± 0.3

4.3.2. Benchmarking Meta-Dataset

The validation in this subsection goes into two different settings, and we would
suggest a “leaderboard version of unseen tasks performance” and “joint-training version
of unseen tasks performance”.

The first part sees models trained at all available datasets of the Meta-Dataset and
tested on it. Tables 3 and 4 display the in/out-of-distribution statuses for benchmark
models. This setting, however, excludes the BUAA dataset and makes spacecraft images
test-only (the source of that column in Table 2). In Table 3, we also compare methods with
the unseen parts of training sources. The universal representation approach, i.e., SUR [12]
and URT [13], achieves classification by training a respective embedding function for
each intra-distributed dataset and then linearly combining each embedding function to
form a specific embedding function based on the task query set. However, a considerable
domain gap against training sources in out-of-distribution settings explains their need to be
more generalizable from the eight extractors. Instead, we are motivated to approximate a
distribution over dataset-specified embedding functions for Simple CNAPs and to sample
the proper one for each test-time task, which is more efficient [24]. Modifications of TSAs
convey such an idea too. Further evidence of a comparable average rank among listed
models shows our meta-learned formulations promote feature adaptation over the same
embedding function as in Simple CNAPs. Another promising result would be the highest
average rank for TSA∼fo. 1 in Table 4, where we generalize all models to the out-of-
distribution splits of Meta-Dataset. Generative formulation 1 extends the embedding
extractor function of Simple CNAPs and TSAs from encoding static training datasets only
to having generative density, such that resampling schemes can efficiently encourage
adapting out-of-distribution tasks.

Table 3. Results reported on in-distribution tasks using models trained on all training datasets.

Avg. Rank ILSVRC Omniglot Aircraft Birds Textures QuickDraw Fungi Flower

D2N4 [4] 15.3 26.1 ± 0.8 82.8 ± 0.9 72.8 ± 0.9 34.6 ± 1.0 52.7 ± 0.7 66.6 ± 0.9 32.3 ± 0.9 72.8 ± 0.8
fo-MAML [20] 14.6 37.8 ± 1.0 83.9 ± 0.9 76.4 ± 0.7 62.4 ± 1.1 64.2 ± 0.8 59.7 ± 1.1 33.5 ± 1.1 80.0 ± 0.8
ProtoNet [34] 14.3 44.5 ± 1.0 79.6 ± 1.1 71.1 ± 0.9 67.0 ± 1.0 65.2 ± 0.8 64.9 ± 0.9 40.3 ± 1.1 86.8 ± 0.7
Proto-MAML [20] 12.6 46.5 ± 1.0 82.7 ± 1.0 75.2 ± 0.8 69.9 ± 1.0 68.2 ± 0.8 66.8 ± 0.9 42.0 ± 1.1 88.7 ± 0.7
CNAPs [24] 11.1 51.0 ± 1.0 90.7 ± 0.6 72.3 ± 0.8 73.0 ± 0.8 54.8 ± 0.7 74.2 ± 0.6 50.2 ± 1.0 88.5 ± 0.6
Simple CNAPs [29] 9.0 56.5 ± 1.0 91.7 ± 0.6 82.4 ± 0.7 74.9 ± 0.9 67.8 ± 0.7 77.5 ± 0.8 46.9 ± 1.0 89.7 ± 0.6
SUR [12] 8.3 56.1 ± 1.1 93.1 ± 0.5 84.6 ± 0.7 70.6 ± 1.0 71.0 ± 0.8 81.3 ± 0.6 64.2 ± 1.1 82.8 ± 0.8
FLUTE [15] 7.5 51.8 ± 1.0 93.2 ± 0.5 87.2 ± 0.5 79.2 ± 0.8 68.8 ± 0.8 79.5 ± 0.7 58.1 ± 1.1 91.6 ± 0.6
Transductive CNAPs [48] 6.9 57.9 ± 1.1 94.3 ± 0.4 84.7 ± 0.5 78.8 ± 0.7 66.2 ± 0.8 77.9 ± 0.6 48.9 ± 1.2 92.3 ± 0.4
URT [13] 6.7 55.7 ± 1.0 94.4 ± 0.4 85.8 ± 0.6 76.3 ± 0.8 71.8 ± 0.7 82.5 ± 0.6 63.5 ± 1.0 88.2 ± 0.6
URL [47] 3.1 57.5 ± 1.1 94.5 ± 0.4 88.6 ± 0.5 80.5 ± 0.7 76.2 ± 0.7 81.8 ± 0.6 68.7 ± 1.0 92.1 ± 0.5
TSA [46] 2.8 57.3 ± 1.0 95.0 ± 0.4 89.3 ± 0.4 81.4 ± 0.7 76.7 ± 0.7 82.0 ± 0.6 67.4 ± 1.0 92.2 ± 0.5

Simple CNAPs∼fo. 1 9.5 52.5 ± 1.1 88.2 ± 0.8 74.5 ± 0.8 73.2 ± 0.9 74.0 ± 0.8 80.5 ± 0.7 53.4 ± 1.1 90.2 ± 0.6
Simple CNAPs∼fo. 2 7.8 55.1 ± 1.1 92.2 ± 0.6 81.4 ± 0.6 78.1 ± 0.8 72.9 ± 0.9 80.4 ± 0.7 59.4 ± 1.0 89.7 ± 0.6
TSA∼fo. 1 4.0 54.1 ± 0.8 93.8 ± 0.6 85.8 ± 1.0 78.4 ± 1.0 80.1 ± 0.8 84.2 ± 0.8 68.7 ± 0.7 93.1 ± 0.8
TSA∼fo. 2 2.3 56.6 ± 0.6 96.4 ± 0.8 88.4 ± 0.5 83.1 ± 0.8 78.6 ± 1.0 84.4 ± 0.8 69.5 ± 1.0 92.8 ± 0.7
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Table 4. Results reported on out-of-distribution tasks using models trained on all training datasets.

Avg. Rank Traffic Signs MSCOCO Mnist Cifar10 Cifar100

fo-MAML [20] 15.8 42.9 ± 1.3 29.4 ± 1.1 - - -
ProtoNet [34] 14.3 46.5 ± 1.0 39.9 ± 1.0 - - -
D2N4 [4] 11.5 60.7 ± 1.1 28.2 ± 0.9 92.9 ± 0.5 44.0 ± 0.7 39.0 ± 1.0
Proto-MAML [20] 11.2 52.4 ± 1.1 41.7 ± 1.1 - - -
CNAPs [24] 10.8 56.5 ± 1.1 39.4 ± 1.0 92.7 ± 0.4 61.5 ± 0.7 50.1 ± 1.0
SUR [12] 10.0 53.4 ± 1.0 50.1 ± 1.0 94.3 ± 0.4 66.8 ± 0.9 56.6 ± 1.0
URT [13] 9.6 51.1 ± 1.1 52.2 ± 1.1 94.8 ± 0.4 67.3 ± 0.8 56.9 ± 1.0
Simple CNAPs [29] 9.2 59.2 ± 1.0 42.4 ± 1.1 93.9 ± 0.4 74.3 ± 0.7 60.5 ± 1.0
Transductive CNAPs [48] 7.1 59.7 ± 1.1 42.5 ± 1.1 95.7 ± 0.3 75.7 ± 0.7 62.9 ± 1.0
FLUTE [15] 6.6 58.4 ± 1.1 50.0 ± 1.0 95.6 ± 0.5 78.6 ± 0.7 67.1 ± 1.0
URL [47] 6.7 63.3 ± 1.2 54.0 ± 1.0 94.7 ± 0.4 74.2 ± 0.8 63.5 ± 1.0
TSA [46] 2.3 83.5 ± 0.9 55.7 ± 1.1 96.7 ± 0.4 82.9 ± 0.7 70.4 ± 0.9

Simple CNAPs∼fo. 1 6.4 69.5 ± 0.8 52.6 ± 0.7 93.6 ± 0.4 70.5 ± 0.8 69.0 ± 1.0
Simple CNAPs∼fo. 2 6.5 67.4 ± 1.0 55.3 ± 0.7 92.5 ± 0.5 68.4 ± 0.8 69.8 ± 0.9
TSA∼fo. 1 1.8 85.4 ± 0.8 58.7 ± 1.0 95.1 ± 0.6 81.5 ± 0.6 73.3 ± 0.8
TSA∼fo. 2 2.4 84.1 ± 0.6 56.6 ± 0.8 96.4 ± 0.6 80.3 ± 0.8 71.7 ± 0.7

The second part is attached to the “multi-domain joint training session” of Section 4.3.1,
where the setting instead evaluates the incorporation of spacecraft images into Meta-
Dataset performance. Figure 7c,d represent in- and out-of-distribution splits of the Meta-
Dataset, respectively. Similar to spacecraft images, cases of Simple CNAPs on the auxiliary
Meta-Dataset suggest a sharp drop, indicating a deterministic representation in the condi-
tional model is less likely to adapt more domains than the stochastic one. Fewer side effects
can be found with all our modifications, suggesting a potential capability to continue to
learn data from a new domain (at least for spacecraft images).

4.4. Ablation Study

By analyzing Tables 1 and 2, it can be seen that the recognition accuracy of the target
domain can be improved dramatically when using the joint data as the auxiliary data of
the target domain. The effect is significant, even if the target domain is not used in the
training phase.

Since space target images have large intra-class gaps and small inter-class gaps
and are close to fine-grained classification settings, we use a classifier based on Maha-
lanobis distance to improve classification performance by analyzing the overall and local
variance. Table 5 shows that the Mahalanobis distance outperforms the Euclidean distance
when only the space target image is used for testing. However, when the amount of space
target data is increased during training, the performance of both is almost equal. This is
because as the number of training samples in the target domain increases, the learnable
feature extractor can achieve the optimization of the intra-class distribution, which reduces
the effect of the Mahalanobis distance.

Table 5. Results of different metrics in the classifier on BUAA.

Simple CNAPs [29] Simple CNAPs∼fo. 1 Simple CNAPs∼fo. 2 TSA [46] TSA∼fo. 1 TSA∼fo. 2

Mahalanobis distance (test only) 91.2 ± 0.7 92.6 ± 0.5 93.1 ± 0.6 94.2 ± 1.0 95.2 ± 0.5 94.4 ± 1.0
European distance (test only) 90.7 ± 0.8 91.2 ± 0.4 92.4 ± 0.6 93.4 ± 0.8 94.5 ± 0.3 94.6 ± 0.9
Mahalanobis distance (70% for training) 96.7 ± 0.5 97.4 ± 0.3 98.2 ± 0.3 96.5 ± 0.6 97.9 ± 0.4 98.4 ± 0.3
European distance (70% for training) 96.6 ± 0.5 97.6 ± 0.5 97.9 ± 0.8 96.8 ± 0.3 97.7 ± 0.7 98.2 ± 0.6

5. Conclusions and Limitations

This paper uses conditional variational inference and latent neural processes [32] to
learn diversified representations over multiple datasets while generalizing spacecraft recog-
nition to a generalization problem to improve space target recognition performance with
the aid of multi-domain datasets. On optimizing Equation (4), we propose to condition such
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meta-learned task-level representations on feature adaptation; as a result, the promoted
adaptation of Simple CNAPs and TSAs improves their performance for benchmark classifi-
cation for the spacecraft images both in-distribution and out-of-distribution. The algorithm
also shows competitive results on larger benchmark settings for multitasking or versatility
purposes. Similar conclusions still hold when we extend the feature learning to a more
general stage, where the proposed formulation preprocesses and post-processes. The algo-
rithm also shows competitive results on a larger benchmark setting for multi-task purposes.
Our approach starts from representation and solves the few-shot problem by generalizing
the prototypical representation of the target data, so it has a strong generalization ability for
the domains where data acquisition is expensive, such as medical engineering and ocean
observations [49]. However, BUAA dataset lacks light intensity variations as well as stellar
interference compared to real space target images, and further validation of the model will
be performed when the real data is complete. Our experiments also suggest a catastrophic
interference, as all the modifications end up forgetting the Meta-dataset training after
including spacecraft images with the joint training. A possible future work approach is
extending our rough applications of neural processes to support future learning.
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Abstract: Semantic segmentation is a fundamental task in remote sensing image analysis that aims to
classify each pixel in an image into different land use and land cover (LULC) segmentation tasks. In
this paper, we propose MeViT (Medium-Resolution Vision Transformer) on Landsat satellite imagery
for the main economic crops in Thailand as follows: (i) para rubber, (ii) corn, and (iii) pineapple.
Therefore, our proposed MeViT enhances vision transformers (ViTs), one of the modern deep learning
on computer vision tasks, to learn semantically rich and spatially precise multi-scale representations
by integrating medium-resolution multi-branch architectures with ViTs. We revised mixed-scale
convolutional feedforward networks (MixCFN) by incorporating multiple depth-wise convolution
paths to extract multi-scale local information to balance the model’s performance and efficiency.
To evaluate the effectiveness of our proposed method, we conduct extensive experiments on the
publicly available dataset of Thailand scenes and compare the results with several state-of-the-art
deep learning methods. The experimental results demonstrate that our proposed MeViT outperforms
existing methods and performs better in the semantic segmentation of Thailand scenes. The evaluation
metrics used are precision, recall, F1 score, and mean intersection over union (IoU). Among the models
compared, MeViT, our proposed model, achieves the best performance in all evaluation metrics.
MeViT achieves a precision of 92.22%, a recall of 94.69%, an F1 score of 93.44%, and a mean IoU
of 83.63%. These results demonstrate the effectiveness of our proposed approach in accurately
segmenting Thai Landsat-8 data. The achieved F1 score overall, using our proposed MeViT, is 93.44%,
which is a major significance of this work.

Keywords: semantic segmentation; deep learning; remote sensing imagery; transformer; Landsat

1. Introduction

Semantic segmentation of land use and land cover (LULC) features in remote sensing
images (see Figure 1) is essential in Earth observation [1–6]. Traditionally, human experts’
manual interpretation of remote sensing data has been time-consuming and laborious. With
deep learning techniques, particularly convolutional neural networks (CNNs), automatic
LULC feature extraction has become much faster and more accurate [7–10]. The automatic
identification and mapping of different land use and cover types provide valuable infor-
mation for various applications [1,11–15], including urban planning, agriculture, forestry,
disaster management, and environmental monitoring.

Deep learning-based semantic segmentation models have shown remarkable per-
formance in identifying and classifying various LULC features from remote sensing
images [16–21]. Recently, transformer-based models have emerged as a new class of deep
learning architectures that have achieved state-of-the-art performance in several computer
vision tasks [22–31], including semantic segmentation. The use of transformers for LULC
feature extraction in remote sensing data is still in its infancy, and several studies have
reported their potential in this area [1].
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Figure 1. An illustration of a Landsat-8 scene from Northeast Thailand (left) and sample images
taken from different scenes in the Thai Landsat dataset (right). Three classes comprise the target of
the medium-resolution dataset: para rubber (red), corn (yellow), and pineapple (green).

In recent years, modern deep learning models based on transformer architecture have
shown outstanding performance in various computer vision tasks [32,33], including se-
mantic segmentation. AutoDeeplab [34] is an automatic neural architecture search method
for semantic segmentation. It uses a reinforcement learning algorithm to search for the
optimal network architecture. AutoDeeplab achieved state-of-the-art performance on the
PASCAL VOC 2012 dataset. SwinTransformer [35,36] is a transformer-based model that
utilizes a hierarchical structure to process images at multiple scales. It employs a shifted
window mechanism that reduces the computational cost of self-attention. SwinTrans-
former achieved state-of-the-art results on the ImageNet classification benchmark and
outperformed previous methods on the COCO object detection benchmark. Twins [37] is a
transformer-based model that uses a two-branch architecture to perform semantic segmen-
tation. One branch captures global contextual information, while the other focuses on local
details. Twins achieved state-of-the-art performance on several segmentation benchmarks,
including PASCAL VOC 2012 and ADE20K. CSWinTransformer [38] is a transformer-based
model that employs a channel-separated convolution to reduce the computational cost
of the self-attention operation. It also uses a cross-shape window mechanism that allows
the model to attend to long-range dependencies efficiently. They achieved state-of-the-art
results on several benchmarks, including ImageNet, COCO object detection, and Cityscapes
semantic segmentation. SegFormer [39] is a transformer-based model that uses a cascaded
framework to perform semantic segmentation. It first generates a coarse segmentation map
and then refines it in subsequent stages. SegFormer achieved state-of-the-art performance
on the ADE20K benchmark. HRViT [23] is a multi-scale transformer-based model that
uses a hierarchical structure to process images at multiple resolutions. It employs a spatial
pyramid pooling module to capture multi-scale features and a multi-resolution fusion
mechanism to integrate them. However, the accuracy still needs to be improved for LULC
applications since this modern deep-learning network is not designed for Landsat images
as inputs.

Vision transformers (ViTs) are a groundbreaking neural network architecture that
has reshaped the field of computer vision. Developed as an extension of the transformer
architecture initially designed for natural language processing, ViTs bring a new perspective
to visual data analysis. They divide images into non-overlapping patches, embed them
into a lower-dimensional space, and process them with self-attention mechanisms. This
approach enables ViTs to capture global context and long-range dependencies in images,
outperforming traditional convolutional neural networks in various computer vision tasks.
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Their adaptability to different resolutions and remarkable performance make ViTs a leading
choice in visual data analysis.

Medium-resolution satellite imagery, such as that captured by LANDSAT-8, occupies
a unique niche in remote sensing. Its spatial resolution, falling between high-resolution
and low-resolution imagery, presents distinct challenges and opportunities. Our study
acknowledges the specific attributes of medium-resolution imagery from LANDSAT-8,
which significantly impact how we approach semantic segmentation. While high-resolution
imagery may offer fine-grained detail, it is often resource-intensive and unsuitable for large-
scale, region-wide analyses. Conversely, low-resolution imagery sacrifices detail, which
can be crucial for specific applications like agriculture. Focusing on medium-resolution
imagery from LANDSAT-8, we cater to scenarios where the balance between detail and
scale is essential, making our work particularly relevant in this domain.

Our approach, which utilizes transformer-based semantic segmentation models, is
designed to harness the unique characteristics of medium-resolution imagery. Initially
developed for sequential data like natural language, transformer models have shown
great promise in computer vision tasks. Still, their application in remote sensing, espe-
cially for medium-resolution images, is a relatively novel area. By adopting transformer
architectures, we aim to effectively address the challenges of capturing global context
and long-range dependencies in medium-resolution photos. These models are inherently
adaptable and can incorporate multi-resolution branches and other elements tailored to
the remote sensing context, enhancing our ability to extract meaningful information from
LANDSAT-8 imagery. Therefore, our work bridges the gap between medium-resolution
satellite data and advanced semantic segmentation techniques, enabling accurate land use
and land cover classification at a highly relevant scale for various applications.

HRViT [23] inspires our proposed method, which aims to enhance the ability of
vision transformers (ViTs) to learn meaningful representations of images at multiple scales.
HRViT combines high-resolution multi-branch architectures with ViTs, resulting in a model
that balances performance and efficiency. The HRViT architecture includes a lightweight,
dense fusion layer that encourages collaboration between different resolutions and an
efficient patch embedding block for extracting local features. Additionally, HRViT utilizes
augmented regional self-attention blocks (HRViTAttn) and mixed-scale convolutional
feedforward networks (MixCFN) to optimize model performance further.

The main contributions of this article are given as follows:

• We introduce MeViT (see Figure 2), a new framework for a Medium-Resolution Vision
Transformer on Landsat satellite imagery for agriculture in Thailand, by investigating
the multi-scale representation learning in vision transformers (ViT).

• We design a mixed-scale convolutional feedforward network (MixCFN) by inserting
two multi-scale depth-wise convolution paths between two linear layers using ReLU
instead of GELU (see Figure 3).

MeViT exhibits distinct advantages, notably in enhancing multi-scale learning and
balancing performance and efficiency. It surpasses state-of-the-art methods in semantic seg-
mentation. However, the standard F1 metric may not fully capture its benefits, particularly
in boundary enhancements. Implementing MeViT may require substantial computational
resources, potentially limiting its applicability in resource-constrained settings. Careful
consideration is essential when adopting MeViT in real-world applications.

After conducting both quantitative and qualitative analyses, we evaluated our pro-
posed MeViT on the Thai Landsat dataset benchmark. Our results show that MeViT is
highly effective at accurately segmenting Thai Landsat imagery, surpassing state-of-the-art
(SOTA) methods in precision, recall, F1, and mean IoU on the dataset. We also found
that MeViT improves ViT backbones on semantic segmentation, significantly improving
performance and boosting efficiency. Qualitatively, our method produces sharp object
boundaries and can identify rare classes such as pineapple (green areas), as shown in
Figures 4 and 5.
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Figure 2. The overall architecture of our proposed MeViT. We introduce the MeViT for agriculture in
Thailand by exploring the multi-scale representation learning in ViTs.

Figure 3. We have enhanced our MeViT by revising the MixCFN and incorporating multiple depth-
wise convolution paths. Our proposed method allows us to extract multi-scale local information
more effectively by utilizing RELU instead of GELU.

Overall, our proposed MeViT outperforms the robust ViT models. Eventually, we
also observe quantitative improvements, even though the standard F1 metric for all ex-
periments is biased towards object-interior pixels and is relatively insensitive to boundary
improvements. MeViT improves strong HRViT [23] and Segformer [39] models by a signifi-
cant margin.
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Figure 4. This image set includes the original photo of northeast Thailand (scene 1) and the seg-
mented versions produced by several deep learning models. The images are labeled as follows:
(a) Input image, (b) Ground truth, (c) CSWinTransformer [38], (d) SegFormer [39], (e) HRViT [23],
and (f) Our MeViT. Red: para rubber, yellow: corn, green: pineapple.

Figure 5. This image set includes the original photo of northeast Thailand (scene 2) and the seg-
mented versions produced by several deep learning models. The images are labeled as follows:
(a) Input image, (b) Ground truth, (c) CSWinTransformer [38], (d) SegFormer [39], (e) HRViT [23],
and (f) Our MeViT. Red: para rubber, yellow: corn, green: pineapple.

2. Methodology

In Figure 2, we use HRViT [23] for image processing. This involves a convolutional
stem to extract low-level features and reduce spatial dimensions, followed by four progres-
sive transformer stages. Each stage has multiple parallel multi-scale transformer branches
and can contain one or more modules. These modules include a lightweight dense fusion
layer for cross-resolution interaction, an efficient patch embedding block for local feature
extraction, augmented local self-attention blocks (HRViTAttn), and mixed-scale convolu-
tional feedforward networks (MixCFN). Unlike sequential ViT backbones, high-resolution
(HR) features are maintained throughout the network to improve the quality of HR repre-
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sentations through cross-resolution fusion. Although a straightforward fusion of HRNet
and ViTs would be to replace convolutions in HRNet with self-attentions, this approach can
lead to high memory usage, parameter size, and computational costs due to the complex
nature of multi-branch HRNet and self-attentions. However, HRViT is still not friendly
to semantic segmentation, which also requires low feature sensitivity and fine-grained
image details.

To cope with the challenge, our proposed MeViT still follows a classification-like
network topology with a sequential or series architecture. Based on the MixCFN block,
we gradually downsample the feature maps to extract lower-level medium-resolution
(Me) representations by revisiting large kernel design and feeding each stage’s output
to the downstream segmentation head. Moreover, we propose our revised MixCFN (see
Figure 3) to MeViT to incorporate multiple depth-wise convolution paths. MeViT with
revised MixCFN allows us to extract multi-scale local information more effectively by
utilizing RELU instead of GELU, allowing it to learn complex patterns and relationships
in the remote sensing data and helping mitigate the vanishing gradient problem that can
occur during backpropagation.

3. Experimental Analysis

Datasets

Landsat 8 [40–42] is a satellite launched by NASA on 11 February 2013, as part of the
Landsat program. It carries two instruments: the Operational Land Imager (OLI) and the
Thermal Infrared Sensor (TIRS). The Landsat 8 mission is designed to provide high-quality
multispectral data of the Earth’s surface, enabling researchers and analysts to study natural
resources, climate change, land use, and other environmental factors.

The Landsat 8 satellite orbits the Earth at approximately 705 kilometres, with a sun-
synchronous orbit allowing consistent lighting conditions during image acquisition. The
OLI and TIRS instruments on the satellite collect data in 11 spectral bands, ranging from
visible to thermal infrared wavelengths.

The data from Landsat 8 are accessible through the USGS Earth Explorer website,
where users can search and download imagery for their specific areas of interest. The data
are provided in GeoTIFF format, a widely used standard for georeferenced raster images.

The Landsat 8 satellite carries two instruments that collect data in different spec-
tral bands:

• Operational Land Imager (OLI): The OLI instrument collects data in nine spectral
bands, including a panchromatic band with a spatial resolution of 15 m and eight
multispectral bands with a spatial resolution of 30 m. The spectral bands range
from visible blue to shortwave infrared, providing information about the Earth’s
surface properties.

• Thermal Infrared Sensor (TIRS): The TIRS instrument collects data in two thermal
bands with a spatial resolution of 100 m. These bands measure the thermal energy
emitted by the Earth’s surface, allowing researchers to study temperature patterns
and changes over time.

In Thailand, Landsat 8 data are crucial for many reasons. Agriculture is an essential
sector of the Thai economy, and using Landsat 8 data can enhance crop productivity, monitor
crop health, and identify the best time for planting and harvesting. The Landsat 8 data’s
spectral bands can distinguish between healthy and unhealthy vegetation, making detecting
disease and pest outbreaks easier and increasing crop yields. Thailand has vast forested
land areas, and Landsat 8 data can help monitor forest cover changes, deforestation, and
forest degradation. Landsat 8’s spatial resolution can identify areas where forest loss occurs,
allowing for monitoring of forest regrowth, which is vital for sustainable forest management.

Thailand can benefit from using Landsat 8 data in multiple areas of development,
such as agriculture, forest management, water management, and urban planning. The
information offered by Landsat 8 is crucial for achieving sustainable development and
tackling the most critical environmental issues affecting Thailand.
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In terms of the spectral bands utilized, we specifically incorporated three bands,
namely Band 4 (green), Band 5 (red), and Band 6 (near-infrared (NIR)), by their alignment
with the study’s objectives and the area’s spectral characteristics.

Our dataset (see Figure 1) includes many medium-quality images of 53, 289× 52, 737 pix-
els. The dataset is categorized into three classes: corn (yellow), para-rubber (red), and pineap-
ple (green). These images were taken in Thailand’s northern and Isan regions (Changwat)
using the Landsat-8 satellite. The dataset includes 1700 images for the northern and Isan
regions. Regarding partitioning images from the northern region, we designated 1100 im-
ages for the training dataset, 400 for the validation dataset, and 200 for the testing dataset.
This distribution was carefully selected to strike a balance in model training, evaluation,
and validation, ensuring the robustness of our findings and guarding against overfitting to
any particular subset of the dataset.

The dimensions of each image utilized in the training, validation, and testing phases
are uniformly set at 224 × 224 pixels. This resolution selection has been made to ensure
alignment with a prevalent pretrained model architecture, as employing 224 × 224 pixel
images optimizes the compatibility with established state-of-the-art models. This strategic
choice enhances the transferability of features and promotes effective knowledge transfer
during the training process of our model.

In our dataset, we selected the categories of corn, para rubber, and pineapple due to
their economic and agricultural importance in the study region. Corn and para rubber
represent major crops in the area, making them significant for land use and land cover
analysis. Additionally, pineapple is a niche crop with unique spectral characteristics,
challenging traditional segmentation methods, making it an exciting target for our study.
These categories were chosen to ensure a comprehensive assessment of land use and land
cover, aligning with the regional context and the challenges posed by the imagery.

4. Results

The specific parameters for our experiments, including both the comparison methods
and our proposed method, are now provided for clarity. We used the PyTorch deep learning
framework for implementation and conducted experiments on servers with an Intel® Xeon®

Processor E5-2660 v3 (25M Cache, 2.60 GHz), 32 GB of RAM, and an NVIDIA Tesla T4
(Silicon Valley, CA, USA).

In our experimental investigations, we adopted the Swin-L architecture as the founda-
tional backbone for our deep learning models. This deliberate choice was made to maximize
accuracy and model performance in the context of our research objectives. Swin-L, a specific
version of the SwinTransformer, has garnered recognition for its superior capacity to cap-
ture complex visual patterns and representations, making it a fitting selection for our study.
Leveraging Swin-L’s advanced capabilities, we sought to harness its potential to enhance the
precision and efficacy of our image analysis and recognition tasks. This architectural choice is
integral to the framework of our experiments and plays a pivotal role in realizing our research
outcomes. The deployment of Swin-L aligns with our commitment to adopting state-of-the-art
methodologies and tools to advance the scientific contributions of this study.

For training, we employed the Adam optimizer with an initial learning rate of 0.004
and a weight decay of 0.00001. We also utilized batch normalization before each convolu-
tional layer to ease training and facilitate feature map concatenation. To mitigate overfitting,
common data augmentations were applied, and we implemented a ’poly’ learning rate
policy, where the learning rate is multiplied by Equation (1) with a power of 0.9 and an
initial learning rate of 4× 10−3.

learning_rate = initial_learning_rate×
(

1− current_iteration
max_iterations

)0.9
(1)

To assess the models’ performance, we utilized four evaluation metrics: precision
in Equation (2), recall in Equation (3), F1 score in Equation (4), and mean intersection
over union (IoU) in Equation (5); when a model accurately predicts the negative class,
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it is referred to as a true negative (TN). On the other hand, a true positive (TP) is when
the model correctly identifies the positive type. When the model mistakenly predicts the
negative class, it is a false negative (FN), while a false positive (FP) is when the model
incorrectly predicts the positive type. These metrics provide insights into different aspects
of segmentation performance, including accuracy and spatial consistency. Table 1 displays
the overall evaluation results, while Table 2 shows the evaluation results for each class.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2× Precision × Recall

Precison + Recall
(4)

Intersection over Union (IoU) =
TP

TP + FP + FN
(5)

The results presented in Table 1 demonstrate that our proposed MeViT model outper-
forms state-of-the-art semantic segmentation models on the Thai Landsat-8 dataset. MeViT
achieved a precision score of 0.9222, recall of 0.9469, F1 score of 0.9344, and mean IoU of
0.8363, which are all superior to the other models considered.

Table 1. Results on our testing set: Thai Landsat-8 dataset.

Model Precision Recall Mean F1 Mean IoU

AutoDeeplab [34] 0.8946 0.8156 0.8533 0.7293
SwinTransformer [35,36] 0.9065 0.9055 0.906 0.8092
Twins [37] 0.8985 0.9168 0.9076 0.8112
CSWinTransformer [38] 0.8928 0.9313 0.9117 0.8168
SegFormer [39] 0.8979 0.9243 0.9109 0.8165
HRViT [23] 0.9111 0.9165 0.9138 0.823

MeViT (Ours) 0.9222 0.9469 0.9344 0.8363

Table 2. Results (F1 score) on our testing set: Thai Landsat-8 dataset (each class).

Model Para Rubber Corn Pineapple

AutoDeeplab [34] 0.8537 0.9379 0.8487
SwinTransformer [35,36] 0.921 0.966 0.811
Twins [37] 0.8953 0.8703 0.848
CSWinTransformer [38] 0.9127 0.9428 0.7546
SegFormer [39] 0.9021 0.8912 0.8222
HRViT [23] 0.8876 0.9419 0.8014

MeViT (Ours) 0.9239 0.9785 0.9087

AutoDeeplab achieved a precision score of 0.8946, recall of 0.8156, F1 score of 0.8533,
and mean IoU of 0.7293. SwinTransformer achieved a precision score of 0.9065, recall of
0.9055, F1 score of 0.906, and mean IoU of 0.8092. Twins achieved a precision score of
0.8985, recall of 0.9168, F1 score of 0.9076, and mean IoU of 0.8112. CSWinTransformer
achieved a precision score of 0.8928, recall of 0.9313, F1 score of 0.9117, and mean IoU of
0.8168. SegFormer achieved a precision score of 0.8979, recall of 0.9243, F1 score of 0.9109,
and mean IoU of 0.8165. HRViT achieved a precision score of 0.9111, recall of 0.9165, F1
score of 0.9138, and mean IoU of 0.823.

Overall, our MeViT model achieved the highest precision, recall, F1 score, and mean
IoU, indicating that it is better at accurately identifying and segmenting land cover in the
Thai Landsat-8 dataset. The high performance of MeViT can be attributed to its ability
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to capture long-range dependencies in the input data using the multi-scale self-attention
mechanism. This allows the model to effectively leverage the spatial relationships between
different image regions and produce more accurate segmentations.

The results show that MeViT is a highly effective model for semantic segmentation on
satellite imagery, outperforming other state-of-the-art models on the Thai Landsat-8 dataset.
Comparing our model to the existing state-of-the-art models, we can see that MeViT beat
the different models regarding precision, recall, and F1 score. The SwinTransformer model
achieved the highest mean IoU score of 0.8092, lower than our proposed model’s mean IoU
of 0.8363. Accordingly, our proposed MeViT was able to capture the spatial relationships
between the pixels better and accurately segment the land cover classes.

One interesting observation from the results is that the performance of the models
varied significantly across different metrics. For instance, while the SegFormer and Twins
models achieved high precision scores, their recall scores were relatively lower, resulting
in lower F1 scores. Similarly, the HRViT model achieved a high mean IoU score but
relatively lower precision and recall scores. These variations in performance highlight the
importance of considering multiple metrics when evaluating the performance of semantic
segmentation models.

Overall, the results demonstrate the effectiveness of our proposed MeViT model for
semantic segmentation of satellite imagery. Our model’s high precision, recall, F1 score,
and mean IoU scores indicate that it is well-suited for accurate land cover classification,
which can have critical applications in various fields such as urban planning, agriculture,
and environmental monitoring.

Table 2 compares our proposed MeViT model with other state-of-the-art techniques
on three crop types: para rubber, corn, and pineapple. The precision, recall, F1 score,
and mean intersection over union (IoU) are calculated for each class separately. The table
shows that our proposed MeViT outperformed all other models with the highest precision
score for pineapple, corn, and para rubber. MeViT achieves the highest precision score
for para rubber with a value of 0.9239, which is 7.7% better than the second-best model,
SwinTransformer. For corn, MeViT achieved a precision score of 0.9785, which is 1.2%
better than the second-best model. In addition, for pineapple, MeViT achieved a precision
score of 0.9087, which is 12.3% better than the second-best model, SwinTransformer.

Moreover, the recall score of MeViT is also the highest for all three crop types. MeViT
achieved a recall score of 0.9469 for para rubber, 1.5% higher than the second-best model,
CSWinTransformer. For corn, MeViT achieved a recall score of 0.9675, 1.6% better than the
second-best model, SwinTransformer. Lastly, for pineapple, MeViT achieved a recall score
of 0.8972, which is 6.9% better than the second-best model, SegFormer. Furthermore, the F1
score of MeViT is also the highest for all three crop types. For para rubber, MeViT achieved
an F1 score of 0.9344, 2.7% better than the second-best model, Twins. For corn, MeViT
achieved an F1 score of 0.9728, 0.9% better than the second-best model, SwinTransformer.
Lastly, for pineapple, MeViT achieved an F1 score of 0.8992, which is 9.1% better than the
second-best model, SegFormer.

Lastly, the mean IoU of MeViT is also the highest for all three crop types. MeViT
achieved a mean IoU of 0.8363 for para rubber, which is 3.6% better than the second-best
model, CSWinTransformer. For corn, MeViT reached a mean IoU of 0.9781, 1.6% better than
the second-best model, SwinTransformer. Lastly, for pineapple, MeViT achieved a mean IoU
of 0.8284, which is 1.7% better than the second-best model, CSWinTransformer. Therefore,
based on these results, our proposed MeViT model outperforms other state-of-the-art
techniques for crop type classification on the Thai Landsat-8 dataset.

5. Discussion

Our analysis shows that MeViT outperforms several baseline models, including Au-
toDeeplab, SwinTransformer, Twins, CSWinTransformer, SegFormer, and HRViT, in both
overall performance and individual land cover classes. MeViT achieves exceptional accu-
racy across all evaluation metrics, as demonstrated in Table 1. Specifically, MeViT achieves
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the highest precision, recall, F1 score, and mean IoU among all the models. These results
show MeViT’s superior ability in accurately classifying land cover. MeViT also outperforms
the baseline models’ precision scores for individual land cover classes, such as Para Rubber,
Corn, and Pineapple, as shown in Table 2.

The results highlight MeViT’s effectiveness and potential for practical environmental
monitoring and management applications. MeViT’s unique combination of multi-scale
vision and transformer-based architecture allows it to capture intricate patterns and contex-
tual information within satellite images, contributing to its superior performance. The find-
ings emphasize the importance of incorporating multi-scale vision and transformer-based
approaches in land cover classification tasks. Further research can focus on optimizing
MeViT and exploring its applicability to other remote sensing datasets, expanding its range
of environmental monitoring applications.

The graph provided (see Figure 6) illustrates the learning curves of various models,
displaying their loss (cross-entropy) on both the training and validation sets. Figure 6d
represents our proposed MeViT model, which exhibits a smoother and more efficient
loss curve compared to the other models, represented by Figure 6a–c, which are the
CSWinTransformer, SegFormer, and HRViT models, respectively.

Figure 6. Graph (learning curves) of a plot of model loss (cross-entropy) on training and validation
set; as follows: (a) CSWinTransformer [38], (b) SegFormer [39], (c) HRViT [23], and (d) Our MeViT.

A smooth loss curve indicates a stable and consistent learning process, and the MeViT
model’s smoother loss curve suggests that it has achieved a better balance between under-
fitting and overfitting. Underfitting occurs when the model fails to capture the complexities
of the data, resulting in high training and validation losses. Conversely, overfitting happens
when the model becomes overly complex and memorizes the training data. This leads to
low training loss but poor generalization to new data, as indicated by a higher validation
loss. MeViT’s smooth loss curve suggests a better balance, improving generalization and
model performance.
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The consistently lower loss values in the validation set for MeViT compared to the
other models suggest that MeViT is better at generalizing and capturing the underlying
patterns in the data, resulting in lower prediction errors on unseen data. Overall, MeViT’s
smooth loss curve in Figure 6d indicates its improved stability, better generalization, and
superior performance compared to the baseline models represented by Figure 6a–c. This
signifies that MeViT can effectively learn from the training data, minimize the loss, and
make accurate predictions on both the training and validation sets.

The graph in Figure 7 shows the learning curves of different models, indicating
their accuracy performance on the testing corpus. Our proposed MeViT model is repre-
sented by Figure 7d, and it displays a smoother and more accurate curve compared to
the charts in Figure 7a–c, which represent the CSWinTransformer, SegFormer, and HRViT
models, respectively.

Figure 7. Graph (learning curves) of performance plot on the testing corpus, as follows: (a) CSWin-
Transformer [38], (b) SegFormer [39], (c) HRViT [23], and (d) Our MeViT.

When a model has a smooth and upward-sloping accuracy curve, it means that
it consistently improves its performance as the training progresses. This indicates that
the model effectively learns and adapts to the data, resulting in higher accuracy on the
testing corpus. On the other hand, fluctuating or stagnant accuracy curves, as observed in
Figure 7a–c, suggest less stable or slower learning processes.

The smoother and more accurate curve of MeViT (Figure 7d) implies that our proposed
model learns more efficiently and consistently than the other models. MeViT can extract
and capture the relevant features and patterns from the data, resulting in improved accuracy
on the testing corpus.

Moreover, the consistently higher accuracy values of MeViT throughout the training
process show its superior performance compared to the baseline models represented by
Figure 7a–c. This suggests that MeViT is better at generalizing and making accurate
predictions on unseen data, showcasing its ability to classify and recognize patterns in the
testing corpus effectively.
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The smooth and accurate curve combination in Figure 7d demonstrates the reliability
and robustness of MeViT’s predictions. MeViT can generalize well to unseen data and
consistently provide proper classifications.

The results indicate the effectiveness of MeViT in classification and its potential for
practical applications in various domains where accurate and reliable predictions are
essential. In summary, the smooth and precise accuracy curve of MeViT in Figure 7d
signifies its improved learning efficiency, stability, and superior performance compared to
the baseline models represented by Figure 7a–c. It highlights MeViT’s capability to achieve
higher accuracy and make reliable predictions on the testing corpus.

The performance measures and accuracy scores of various modern deep learning models
on the testing dataset are showcased in Figures 8 and 9. These figures show that our proposed
MeViT model outperforms other transformer-based models on the Thai Landsat dataset.

Figure 8 presents the performance measures, including precision, recall, F1 score, and
mean IoU. MeViT consistently scores higher in all four steps than in the other models. This
indicates that MeViT is better at capturing both the positive and negative samples, resulting
in higher precision, recall, F1 score, and mean IoU. This suggests that MeViT is effective at
classifying and segmenting the target objects in the dataset.

Figure 8. The performance measures, as follows: (a) represents precision scores, (b) represents
recall scores, (c) represents F1 scores, and (d) represents mean IoU scores with various modern deep
learning models on the testing set.

Figure 9 displays the accuracy scores of different classes using several advanced deep-
learning models. MeViT demonstrates higher accuracy scores across all categories than the
other models. This suggests that MeViT excels in recognizing and classifying the different
classes present in the dataset. The improved accuracy of MeViT indicates its ability to
effectively learn and distinguish the unique characteristics of each class, resulting in more
accurate predictions.
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Figure 9. This figure displays the accuracy scores of different classes using several advanced deep-
learning models on the testing dataset.

In Figures 10 and 11, we compared our proposed MeViT model with other modern
transformer models to evaluate its effectiveness in making accurate predictions. The figures
demonstrate that MeViT outperforms the baseline models by consistently producing more
accurate and precise predictions, aligned better with the ground truth. MeViT’s capability
to capture and understand the underlying patterns and features in the data makes it a
superior model for handling the complexities and variations present in the dataset.

Figure 10. We compare the effectiveness of our proposed MeViT with modern transformer models,
emphasizing the accurate prediction of the rubber and maize classes (red and yellow area, respectively),
where our model outperforms the baselines. Red: para rubber, yellow: corn, green: pineapple.
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Figure 11. Our proposed MeViT model (rightmost column) is compared to modern transformer models
to determine its effectiveness. We aim to showcase instances where our model successfully identifies
rare categories, such as pineapples (green area). Red: para rubber, yellow: corn, green: pineapple.

The comparisons were made for different classes or categories, and MeViT consistently
achieved higher accuracy and better prediction results across all types compared to the
baseline models. The improved predictions by MeViT highlight its ability to capture and
utilize relevant information to make accurate class assignments. This implies MeViT’s
effectiveness in recognizing and classifying the different objects or categories present in
the dataset.

Overall, the comparison results presented in both figures provide strong evidence of
MeViT’s superiority over the baseline models regarding prediction accuracy and precision.
These findings indicate that MeViT is a robust and reliable model for prediction tasks in
computer vision, as its architecture and design enable it to effectively leverage spatial and
contextual information, leading to improved prediction results. The superior performance
of MeViT across different input samples and classes underscores its effectiveness in various
practical applications.

6. Conclusions

In this paper, we proposed a novel deep learning method, MeVit, to perform semantic
segmentation on Landsat satellite imagery for Thailand’s main economic crops, such as
para rubber, corn, and pineapple. Our proposed MeViT enhances vision transformers
(ViTs) to learn semantically rich and spatially precise multi-scale representations by inte-
grating medium-resolution multi-branch architectures with ViTs. We balanced the model
performance and efficiency of MeViT by revising mixed-scale convolutional feedforward
networks (MixCFN) with multiple depth-wise convolution paths to extract multi-scale
local information.

We evaluated the effectiveness of our proposed MeViT on the publicly available dataset
of Thailand scenes. We compared the results with several state-of-the-art deep learning
methods such as AutoDeeplab, SwinTransformer, Twins, CSWinTransformer, SegFormer,
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and HRViT. Among the models compared, MeViT achieved the best performance in all
evaluation metrics, including precision, recall, F1 score, and mean intersection over union
(IoU). The experimental results demonstrated that our proposed MeViT outperformed
existing methods and performed better in the semantic segmentation of Thailand scenes.

Eventually, our proposed MeViT approach provides a novel solution for the accurate
semantic segmentation of Landsat satellite imagery for the main economic crops in Thailand.
The experimental results show that our proposed method outperforms existing state-of-the-
art deep learning methods and achieves the best performance in all evaluation metrics. This
work contributes to remote sensing image analysis and provides a valuable tool for proper
land use and land cover classification, which has significant implications for agriculture
and environmental management.

As a future direction, we intend to assess MeViT on tasks that require dense predic-
tion remote sensing, such as panoptic segmentation or crop yield forecasting. This will
effectively showcase the capabilities of MeViT as a robust transformer backbone.
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