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Preface

Many applications have started using artificial intelligence. But what is artificial intelligence?

How can you use it in the medical field? This Special Issue will provide you with the answers you

were looking for, emphasizing the strength of this innovative tool and focusing on its application in

the medical field.

Cosimo Nardi
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Special Issue on Artificial Intelligence in Medical Imaging: The
Beginning of a New Era

Cosimo Nardi

Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence,
Viale Morgagni 50, 50134 Florence, Italy; cosimo.nardi@unifi.it

Artificial intelligence (AI) can be considered the real revolution of the 21st century.
This approach is increasingly used in everyday life and is also expanding in the medical
field. Clinical practice has always focused on the evaluation of radiological parameters
obtained from a few data [1]. AI introduces a change, as it requires a large dataset to
work, but in turn avoids user-based evaluation. This aspect can be especially helpful in
diagnostics, in which it is becoming very popular [2,3]. AI is finding wide application in
the tumor field and for skin cancer [4], being able to detect variations in the image that
would not be visible only with human eyes. Its application is increasingly widespread,
even in neuroimaging analysis [5].

AI is based on the use of models that need to be implemented. Choosing the correct
model is an important aspect as some models may work better than others, even accord-
ing to the right training and testing sets [6,7]. Another important aspect, especially in
diagnostics, is image segmentation, because mis-segmentation could introduce errors that
can lead to misinterpretations. For this reason, AI itself is under study to create systems
that implement automatic segmentation without errors [8]. Spatial resolution is one of
the main problems when it comes to studying images. That is why new systems have
been created to display images in super resolution. The problem is that this requires large
storage memories and expensive calculations that have led to the study of a new “light”
system to create images with super resolution (and less heavy) to be used in medicine [9].
The problem of memory and computational costs is quite recurrent considering AI; in
fact, new methods are under study to select the most characteristic features and eliminate
redundant ones. The problem is that in medicine it is not easy to eliminate some features
even if redundant as they can diversify one disease from another [10]. Another approach
may lie in the creation of small subnets that contain specific characteristics indicative of
particular diseases [11].

The large number of features extracted is a problem, but so is the size of the dataset.
In fact, in medicine, very often the dataset is not enough to train a model. That is why data
augmentation was introduced to generate larger datasets from available data [12].

However, even today the biggest problem related to AI in medicine is the concept of
the “black box”. Doctors do not trust this approach at all because they do not know what
happens within the system that provides output to a given input. This is why explainable
AI is spreading lately, a discipline that tries to explain what happens within the systems of
AI [13].

At the same time, other innovative systems are spreading such as augmented reality,
which is an immersive technology that together with AI could be used to improve the
performance of surgeons during interventions [14,15]. That is why different approaches
to superimpose the images created in specific parts of the body and their accurate rep-
resentations are being studied [16]. In addition, AI can also be used in a new emerging
discipline: radiomics. This discipline allows us to extrapolate information by evaluating
the voxels themselves, their arrangement and the relationships that exist. Along with
AI, radiomics can create a system that takes an incoming image and evaluating changes
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in characteristics can provide a diagnosis or prognosis [17]. AI is becoming increasingly
used as new approaches develop. For example, active learning ensures achieving great
performance by using as few high-quality sample annotations as possible [18].

Finally, AI can be used in fields related to medicine introducing social benefits. One
example is the possibility of studying nonvoluntary facial microexpressions. This can be
used in the field of safety, psychology and medicine [19].

Much remains to be accomplished to replace humans in the medical field, although
the introduction of AI has begun to bring many benefits, especially as a support system.

Conflicts of Interest: The author declares no conflict of interest.
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IMNets: Deep Learning Using an Incremental Modular
Network Synthesis Approach for Medical Imaging Applications
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1 Department of Electrical and Computer Engineering, University of Dayton, 300 College Park,
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* Correspondence: almahdir1@udayton.edu

Abstract: Deep learning approaches play a crucial role in computer-aided diagnosis systems to
support clinical decision-making. However, developing such automated solutions is challenging
due to the limited availability of annotated medical data. In this study, we proposed a novel and
computationally efficient deep learning approach to leverage small data for learning generalizable
and domain invariant representations in different medical imaging applications such as malaria,
diabetic retinopathy, and tuberculosis. We refer to our approach as Incremental Modular Network
Synthesis (IMNS), and the resulting CNNs as Incremental Modular Networks (IMNets). Our IMNS
approach is to use small network modules that we call SubNets which are capable of generating
salient features for a particular problem. Then, we build up ever larger and more powerful networks
by combining these SubNets in different configurations. At each stage, only one new SubNet module
undergoes learning updates. This reduces the computational resource requirements for training
and aids in network optimization. We compare IMNets against classic and state-of-the-art deep
learning architectures such as AlexNet, ResNet-50, Inception v3, DenseNet-201, and NasNet for the
various experiments conducted in this study. Our proposed IMNS design leads to high average
classification accuracies of 97.0%, 97.9%, and 88.6% for malaria, diabetic retinopathy, and tuberculosis,
respectively. Our modular design for deep learning achieves the state-of-the-art performance in
the scenarios tested. The IMNets produced here have a relatively low computational complexity
compared to traditional deep learning architectures. The largest IMNet tested here has 0.95 M of the
learnable parameters and 0.08 G of the floating-point multiply–add (MAdd) operations. The simpler
IMNets train faster, have lower memory requirements, and process images faster than the benchmark
methods tested.

Keywords: medical imaging; deep learning; malaria detection; diabetic retinopathy; tuberculosis
detection; modular networks

1. Introduction

1.1. Background

Recently, deep learning with convolutional neural networks (CNNs) has proven to be
highly effective for computer-aided detection (CAD) in medical image analysis. The trend
in CNN architectures recently has been towards ever deeper and wider networks with
dense connectivity. For example, ViT-G/14 [1] and ViT-MoE-15B [2] were the top two
CNN architectures in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
competition in 2021 [3]. The ViT-G/14 and ViT-MoE-15B architectures contain 1.843 G and
14.70 G parameters, respectively. Furthermore, ViT-G/14 requires 965.3 G floating point
operations (FLOPs) per single image, which is a very computationally costly and power-
hungry solution. Perhaps even more significantly, larger networks require more training
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data to be able to generalize to new data [4]. In many medical image analysis applications,
access to properly-labeled truth imagery is limited, especially for rare diseases [4]. Data
collection and truthing in medical imaging can be cost-intensive, time-consuming, and
requires expert analysis. Transfer learning can help to reduce the amount of application-
specific data required for training. However, large amounts of data may still be needed to
obtain the desired reproducibility and generalizability, even with transfer learning [5,6].
Data augmentation is another approach to dealing with limited training data. However,
data augmentation can be very challenging in some medical imaging modalities such as
chest radiographs [7].

Modular CNN architectures are a promising approach for complex problem-solving
that may be able to help address the challenges described above. Some modular meth-
ods are inspired by the structure and function of the human brain. Recent findings in
neuroscience reveal a high level of modularity and hierarchy of neural structure in the
human brain [8]. In the early 1980s, neuroscientific research categorized the central nervous
system (CNS) in the human brain as a massively parallel and self-organizing modular
system [9–11]. The CNS consists of distinctive regions. Each region develops as a functional
module. The modules are densely connected and interact with one another to accomplish
complex perception and cognitive tasks in an efficient manner [9]. Traditional CNN archi-
tectures often use repeating structures such as layers or groups of layers. However, the
networks are generally trained as one monolithic entity with all learnable parameters being
updated simultaneously.

1.2. Applications

Malaria is a deadly disease that is considered endemic in many countries around the
world [12]. In the year 2020, the World Health Organization (WHO) reported an estimated
229 million cases of malaria worldwide, which caused an estimated 409,000 deaths [13].
Malaria occurs in humans via protozoa within the blood cells of the genus Plasmodium.
These parasites are transmitted by the bite of a female Anopheles mosquito [14]. The
mosquito bite injects the Plasmodium into the affected person’s blood, and then the Plas-
modium parasites pass quickly to the liver to mature and replicate [15]. The most common
imaging modality for detecting parasites in a thin blood smear sample is microscopical
imaging [16]. While microscopy is relatively low-cost and widely accessible, diagnosis
efficiency depends on the experience of parasitologists [17]. False-positive or false-negative
diagnoses can lead to inappropriate or unnecessary prescriptions that can cause side effects
in patients. Due to the global shortage of parasitologists in impoverished urban areas accu-
rately processing the large number of specimens encountered is not always possible [18,19].
Thus, CAD systems can be highly beneficial in this application.

Another disease for which CAD systems can help by providing accurate early detection
is diabetic retinopathy (DR). This condition is a typical development of diabetes, affecting
the retina’s small blood vessels, leading to vision deterioration [20]. The research described
in [21] studies the offloading footwear to prevent and lower mortality rates in high-risk
diabetic feet. A recent study has reported that DR affects the vision of 2.6 million people in
the world [20,22]. Several retinal imaging systems can be utilized to detect the indication of
diabetic retinopathy, including color fundus photography, fluorescein angiography, B-scan
ultrasonography, and optical coherence tomography [23]. The retina images that we use
in our study have been captured using fundus photography under a variety of imaging
conditions. Early-stage diagnosis of DR grading is integral to prevent the occurrence
of blindness. Hence, CAD systems could help save millions of people from potentially
preventable vision loss and blindness by improving early detection.

The third and final application we consider here is pulmonary tuberculosis (TB). This
disease is a significant public health issue causing more than 9 million expected new cases
and roughly 1.4 million deaths every year [24]. The detection of TB on chest radiographs
(CRs) is essential for diagnosing TB. Chest radiography imaging (e.g., X-ray or computed
tomography (CT) imaging) is easy to perform with fast diagnosis and has a high sensitivity
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for diagnosing TB infection. However, CRs are the fastest and most affordable form of
imaging and require significantly less radiation, data memory, and processing time than CT
scans [25]. The WHO recommends using CRs to screen and triage people for TB [26]. Note
that CRs are among the first procedures of examination related to suspects’ lung disease.
They are low-cost and widely accessible for health care providers. The use of CAD systems
for TB detection can help radiologist workflow so they may be able to process more cases
with greater accuracy.

1.3. Related Works

Various approaches have been proposed in the literature for medical imaging CAD
systems, including those for malaria, DR and TB [27–43]. The work described in [28] aims
to improve malaria parasite detection using tiny red blood smear patches; they utilize
several existing deep convolutional neural networks in place of handcrafted feature ex-
traction. The study claims that using preprocessing techniques such as standardization,
normalization, and stain normalization does not improve the overall performance model.
An effective multi-magnification deep residual neural network (MM-ResNet) has been
trained on microscopic phone image datasets of malaria blood smears obtained from the AI
research group at Makerere University. The MM-ResNet-50 end-to-end framework takes
three different images of size as inputs. It concatenates each ResNet-50 at the second to
the last layer, followed by a final fully connected layer [29]. VGG-16 and VGG-19 have
been trained on the National Institutes of Health (NIH) malaria dataset using hyperpa-
rameter tuning techniques described in [30], the CNN used to automate the screening
of malaria in low-resource countries achieves an accuracy of 0.9600. A survey article on
image analysis of microscopic blood slides uses many machine learning techniques for
malaria detection [31]. Patient information was considered, such as nationality, age, gender,
body region, and symptomatology of a patient as a part of features engineering for malaria
detection. Furthermore, they examined six machine learning algorithms, including support
vector machine (SVM), random forest (RF), multilayer perceptron (MLP), AdaBoost, gradi-
ent boosting (GB), and CatBoost to classify infected and non-infected cells [32]. A fast CNN
architecture present in [33] is used to classify thin blood smeary images. This paper studied
the performance of transfer learning approaches for various pre-trained CNN architectures,
including AlexNet, ResNet-50, VGG-16, and DenseNet-201. Furthermore, they studied the
performance of a traditional machine learning algorithm using a bag-of-features model
with SVM.

Many deep learning methods, originally proposed for the ILSVRC [44], have been
adapted to the medical image application. Among these are meta-algorithms for DR detec-
tion, which combine five CNN architectures into one predictive model [34]. Zhang et al. [35]
fine-tuned ResNet-50 that pre-trained on the ImageNet dataset. The work described in [36]
developed a real-time smartphone app to detect and classify DR by using a pre-trained In-
ception v3 model with a transfer learning technique. A hybrid machine learning technique
is introduced in [37] to detect and grade DR severity level. The study compares simple
transfer learning-based approaches using seven pre-trained networks. Another fine-tuned,
pre-trained approach for DR detection is presented in [38] using a cosine annealing strategy
to decay the learning rate. The transfer learning method for TB described in [39] was used
to neutrophil cluster detection. An automatic TB screening system presented in [40] is
based on transfer learning from lower convolutional layers of pre-trained networks. The
method in [42] uses a simple segmentation approach to classify the images’ foreground and
background. The segmented objects are then fed to a trained CNN to classify the objects
into bacilli and non-bacilli. A total of four state-of-the-art 3D CNN models are used to
detect the spatial location of lesions and classify the candidates into miliary, infiltrative,
caseous, tuberculoma, and cavitary types in [43]. A multi-strategy fast non-dominated
solution ranking algorithm with high robustness is described in [45].

Of particular relevance to our work is the Net2Net method introduced by Chen et al. [46]
The method is modular in that it allows two neural networks to mimic the behavior of
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a more complex network. The Net2Net is an effective technique to transfer the prior
knowledge from a trained neural network (teacher network) to a new deeper, or wider
network (student network). The Net2Net approach implemented in [46] combines two
neural networks to form a larger network. It does so by either increasing the width or
the depth of the network. The method replicates the teacher network weights to expand
the student network size either in width or depth. After replicating, the new addition is
initialized to be an identity network. This method can guarantee that the student model
can perform just as well as the teacher network at the start of training. The student model
obtains good accuracy much faster than training the larger network from scratch. While
Net2Net is a practical and innovative approach that works very well for knowledge transfer,
the Net2Net method has a few limitations. For example, the current implementation of
Net2Net in [46] uses only two networks. Furthermore, there are restrictions on the networks
in terms of kernel sizes, activation functions, and initialization, so as to achieve the stated
network properties.

Another related modular technique that is designed to work with small amounts of
training data is presented in [47]. The module uses the entire CNN network as modules.
It combines pre-trained modules with untrained modules, allowing the new network to
learn discriminative features. The pre-trained models VGG-16 and ResNet-50 were used.
The module fine-tunes the VGG-16 model on the Stanford Cars dataset by replacing the
last three layers with two consecutive fully connected layers, softmax, and loss function.
Then, the module merges the fixed VGG16 features with a ResNet-50. The output of both
models was then fed to two fully connected layers, softmax, and loss function.

1.4. Contributions

In this paper, we propose a novel and a computationally efficient deep learning
approach for medical image analysis using CNNs. We refer to our approach as Incremental
Modular Network Synthesis (IMNS), and the resulting CNNs as Incremental Modular
Networks (IMNets). Our IMNS approach is to use small network modules that we call
SubNets that are capable of generating salient features for a particular problem. Compared
with other modular methods in the literature, our IMNS approach has some distinct
features. First, we begin with small compact SubNet modules to keep the computational
complexity low. Second, we build networks using both series and parallel arrangements in
a sequential incremental manner. This provides freedom of building nearly any custom
network without restriction. The essential feature of our approach is that we start by
training one small SubNet and lock in those network parameters. We add depth or width
to that initial network and train only the new SubNet at a time. We do this incrementally
until we achieve the desired network performance. Our approach guarantees the freedom
of choosing any configuration for the initial network, including the number of layers, the
kernel size, series network incremental or parallel network incremental. To the best of
our knowledge this kind of modular network synthesis approach has not been previously
employed in medical image CAD applications.

1.5. Paper Organization

The remainder of the paper is organized as follows. A description of the datasets
used is presented in Section 2. In Section 3, we describe the proposed IMNS method and
resulting IMNets. Section 4 presents the experimental results. Finally, we offer discussion
and conclusions in Section 5.

2. Materials

In this paper, we utilized three different datasets to study the performance of our
method. First, we utilized a publicly available dataset provided by the NIH [48] for malaria
detection. Second, we used the publicly available Asia Pacific Tele-Ophthalmology Society
(APTOS) 2019 blindness detection challenge dataset [49] for DR detection. Lastly, for TB
detection, we make use of a publicly available Shenzhen chest radiograph dataset [50].
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2.1. Malaria Dataset

Malaria dataset provided segmented cell samples that have been obtained from the
thin blood smear slide images from the Malaria Screener research activity [48]. According
to the NIH, all images were manually labeled by a proficient slide reader at the Mahidol-
Oxford Tropical Medicine Research Unit in Bangkok, Thailand [48]. The dataset com-
prises 27,558 cell images with equal representation of parasitized and uninfected cells.
We randomly divided the dataset into 80% for training and 20% for testing representations
regarding each class. Moreover, we split the training dataset into 90% and 10% for training
and validation sets. Table 1 shows the hold-out validation distribution of the malaria
dataset and the number of training, validation, and testing samples. Figure 1 shows the raw
sample, which tends to have different illumination conditions. Therefore, we pre-processed
all images by applying the color constancy technique [51] to ensure the perceived color of
each image remained the same under different illumination conditions. Results of the color
constancy outputs for the input images in Figure 1 are shown in Figure 2.

Figure 1. Raw parasitized and uninfected sample images for malaria detection labeled by expert
slide readers.

Figure 2. Malaria detection images from Figure 1 after color constancy processing.

Table 1. The hold-out validation distribution of the data source for each application and the number
of training, validation, and testing cases.

��������������Datasets
Applications

Malaria Diabetic Retinopathy Tuberculosis

Images size 112 × 112 299 × 299 299 × 299
No. of training set 19842 2637 477
No. of validation set 2204 293 53
No. of testing set 5512 732 132

2.2. Diabetic Retinopathy Dataset

The technicians in the Aravind Eye Hospital in India have collected retinal images
from patients who live in rural areas aiming to detect and prevent diabetic retinopathy [49].
Trained doctors then reviewed these images to provide the diagnosis. This APTOS 2019
dataset consists of 5590 retinal image samples. The dataset has been split up into training
and testing cases by the challenge host organization. The training dataset is comprised
of 3662 samples. The testing dataset contains 1928 samples, but the labels for the testing
dataset are not publicly available yet. The dataset contains five classes, including No DR
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and the other four stages of DR (Mild DR, Moderate DR, Proliferative DR, and Severe DR).
In this study, we grouped the dataset into two possible disease categories, normal and
DR classes. The four types of DR diseases have been grouped together in the DR class.
Moreover, since the testing dataset labels are not available, we solely used the training
dataset provided as part of the APTOS 2019 challenge. The training dataset was randomly
split into 80% for training and 20% for testing. Then, the training dataset is divided into 90%
and 10% for training and validation sets. Table 1 shows the number of training, validation,
and testing samples for DR dataset. Figure 3 shows random samples of labeled images
from the APTOS 2019 DR dataset after we grouped them into two classes.

We have studied and visualized the dataset, and we found that the images contain
artifacts, varying sizes, different optic nerve angles, and were captured under different
lighting conditions so that some are underexposed or overexposed. To handle this variabil-
ity, we propose applying pre-processing techniques to seek to normalize the data for these
factors. The eye image pre-processing technique consists of four steps:

1. We find the mask of the orange portion of the eye and separate it from the black background.
2. We locate the optic nerve that appears as a bright disk in the images. This is achieved

by applying a Gaussian low-pass filter with a spatial standard deviation approximately
equal to the radius of the optic nerve disk. The brightest pixel after the blurring
operation generally is located near the center of the optic nerve.

3. We compare the location of the optic nerve center to the center of the eye mask to
determine the orientation of the eye. We then rotate the image so that optic nerve is
consistently on the right of center in the resulting image.

4. Finally, we crop, zero pad, and interpolate to obtain the same size images. We do so
in such a way as to not change the aspect ratio of image, as this would contaminate
the geometric integrity of the data.

This simple pre-processing technique renders the retinal images in the database more
uniform and allows the CAD system to achieve improved performance. Examples of the
retinal images from Figure 3 after implementing the pre-processing steps described above
are shown in Figure 4.

Figure 3. Raw retinal images of a healthy retina (normal class) and DR damage blood vessels in the
retina (DR class).

Figure 4. Retinal images from Figure 3 after applying the proposed pre-processing steps to normalize
the images in the database.

2.3. Tuberculosis Dataset

We utilized the Shenzhen dataset [50] for TB detection that holds 326 normal CR
cases and 326 CR with active pulmonary tuberculosis. The chest radiograph images
in the Shenzhen dataset have been collected by Shenzhen No. 3 Hospital in Shenzhen,
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Guangdong province, China. In our experimental study using these data, we perform a
hold-out validation. We randomly divide the dataset into groups of 72% for training, 8%
for validation, and 20% for testing. Table 1 shows the hold-out validation distribution of
the TB dataset.

The CR images are in JPEG format with a resolution of 3000 × 3000 pixels. Some
example labeled CR images from the Shenzhen dataset are shown in Figure 5. Figure 5
shows that some CR samples in the dataset have an inverse intensity polarity. We find that
it is critical to network performance to make all of the CR images have the same polarity.
Therefore, all cases are reviewed manually and inverted as needed. For this research, we
converted all the images to a size of 299 × 299. The example images Figure 5 after the
corrective inversion processing are shown in Figure 6.

Figure 5. Chest radiograph samples from the Shenzhen dataset labeled by radiologists as normal
and tuberculosis. Starting from the left, the first, second, and fourth chest radiograph images have
inverse polarity.

Figure 6. Preprocessed chest radiograph images from the Shenzhen dataset to provide polarity uniformity.

3. Methods

In this section, describe the details of the proposed IMNS method. We begin with an
overview. Next, we explain the details of each SubNet and how they work together. Then,
we present the specific IMNet architecture used in our experimental study. Finally, we end
this section with a discussion of our network training process.

3.1. Overview

The inspiration for the IMNS approach comes from children’s building blocks. We
propose that CNN architectures can be assembled using modular components in a manner
that is akin to building a structure with a child’s building blocks. Each module requires only
an incremental additional training process. This allows for a potentially massive network
without the computational cost of training the final network at one time, which could be
prohibitive. The proposed IMNS uses a unique hybrid learning strategy that successfully
combines multiple SubNet to produce complementary information.

In our approach, each SubNets module is added incrementally onto existing architec-
ture in either a series or parallel fashion. These two scenarios are illustrated in Figure 7.
Note that in Figure 7a, a new SubNet is added in series to the feature computation layers of
the current IMNet. The classification layers are moved to the end of the network as shown.
Note also that the learnable parameters of the current IMNet are locked-in, and only the
learnable parameters of the new SubNet are updated. For large networks, this dramatically
reduces the computational demands of the back-propagation updates. At some stages of
the IMNS process, the user may wish to expand the network in parallel. This is shown
in Figure 7b. As before the classification layers are moved to the end, and only the new
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Subnet is updated in the back-propagation learning algorithm. One new operation that
is needed here is the concatenation layer that takes the feature maps generated from the
current IMNet and concatenates them with the feature maps generated by the new SubNet.
We concatenate these feature maps in the channel dimension.

Figure 7. Illustration of the IMNS workflow for building IMNets. (a) Addition of a series SubNet,
(b) addition of a parallel SubNet.

3.2. SubNet Architecture

The individual SubNet architectures considered here are shown in Figure 8. The
feature generating SubNets are comprised of a selected number of the layer groups shown
in Figure 8a. The classification layers are shown in Figure 8b. Figure 8a shows the convolu-
tional layer structure where each convolutional layer followed by a batch normalization
layer, rectified linear units (ReLU), and max pooling of window size 2 × 2 with a stride of
2 to downsample the feature maps. Note that the number and size of convolution filters
present in each layer may differ. The classification block consists of one fully connected
layer, softmax function, and cross-entropy loss function as shown in Figure 8b.

(a) (b)

Figure 8. (a) Convolutional layer structure. (b) Classification layer structure.
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Let us formally define the output of a SubNet made up of L − 1 layer groups such as
those shown in Figure 8a followed by an L’th classification layer as shown in Figure 8b. To
begin, let us define one minibatch of input data as

X = {X1, X2, . . . , XN}, (1)

where Xn ∈ RH×W×D is the n’th exemplar from the minibatch. These inputs represent
potentially multi-channel images with H rows, W columns, and a channel depth of D.
Consider the case of classification with M distinct classes. Let the truth for each exemplar
be denoted as yn = [yn,1, yn,2, . . . , yn,M]T ∈ RM, for n = 1, 2, . . . , N.

Let us define the n’th exemplar, Xn, as the input to Layer group 1 of the network. Let
this be represented in lexicographical notation as the HWD × 1 vector x0

n. Note that this
is formed by reshaping the 3D data-cube in Xn into a column vector. The output of each
convolutional layer group shown in Figure 8a can be expressed as

xl
n = g(Wlxl−1

n + bl), (2)

for layer group l = 1, 2, . . . , L − 1 and exemplar n = 1, 2, . . . , N within the minibatch. The
weights of all of the convolution kernels for layer group l are represented in the weight
matrix Wl . The dimensions of W1 are HWN1

f × HWD where N1
f is the number of filters in

layer group l = 1. The dimensions are reduced in subsequent layer groups due to the max
pooling layers employed. Bias terms are represented in the vector bl . Note that xl

n is the
output 3D feature map cube of the current layer l in lexicographical form as a vector.

The ReLU and max pooling layers illustrated in Figure 8a are jointly represented with
the nested function

g(x) = MaxPool(Max(0, x)). (3)

The maximum of each element and 0 provides the ReLU operation. The ReLU activation
function g(·) is used here to overcome the vanishing gradient problem associated with
some other activation functions and allows the network to learn faster and perform better.
The MaxPool(·) operator uses 2 × 2 spatial sub-sampling kernel to reduce the size of the
feature maps by a factor of 2 in each spatial dimension of each channel.

After the convolution layers groups, we implement the classification layer group as
shown in Figure 8b. The fully connected layer is similar to that in Equation (2), except here
the output size is equal to the number of classes, M, and the weight matrix connects every
input and output. It does not employ convolution kernels. Furthermore, there is no ReLU
or max pooling. The fully connected layer function may be represented as

xL
n = WLxL−1

n + bL, (4)

where xL
n = [xL

n,1, xL
n,2, . . . xL

n,M]T is the output. The vector xL−1 is the final feature map from
the L − 1 convolution layer groups. The biases for the fully connected layer are contained
in bL.

After the fully connected layer, we have the so-called soft-max operation that normal-
izes the output and is given by

ŷn = [ŷn,1, ŷn,2, . . . , ŷn,M]T = Softmax(xL
n), (5)

where

ŷn,m =
exL

n,m

∑M
j=1 exL

n,j
. (6)

Note that the outputs of the softmax operation, ŷn,m, are in the range [0, 1] and

M

∑
m=1

ŷn,m = 1. (7)
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All of the mathematical details mentioned above can be compactly summarized as follows

ŷ = f (X, φ), (8)

where ŷ = [ŷ1, ŷ2, . . . , ŷN ]
T is the predicated labels and all of the learnable parameters are

given by
φ = {Wl , bl |l ∈ {1, 2, . . . , L}}. (9)

Note that the function f (·) is the overall SubNet predictor module and φ denotes the
learnable parameters of the network. The learnable parameters are updated after each
minibatch based on the empirical risk computed over that minibatch. The empirical cross-
entropy error function used here is given by

Remp(X, φ) = − 1
M

N

∑
n=1

M

∑
m=1

yn,m × ln(ŷn,m). (10)

Note that Remp(·) depends on two arguments, the minibatch data X and the learnable
parameters in φ. The variable N is the number of examples in the minibatch, and M is the
number of classes. The variable yn,m is the truth labels and ŷn,m is the predicated labels
of our model. Once the loss is computed for one minibatch, back-propagation is used to
update the learnable parameters in φ for the SubNet using the adaptive moment estimation
(Adam) optimizer [52].

3.3. Series and Parallel Combinations

Consider the series combination of two SubNets: A + B. Let SubNet A have LA
convolution layers that follow Equation (2), and SubNet B has LB. The combined network
would have a total of L = LA + LB + 1 layers, where the final layer is the one fully connected
layer as shown in Equation (4). The parameters for SubNet A are

φA = {Wl , bl |l ∈ {1, 2, . . . , LA}}. (11)

These are fixed after the training for SubNet A. The parameters for the SubNet B convolu-
tion layers, plus the fully connected layer are given by

φB+ = {Wl , bl |l ∈ {LA + 1, LA + 2, . . . , LA + LB + 1}}. (12)

The parameters in φB+ are updated during the training of A + B. This output of the series
layers goes to the softmax layer as before using Equation (5). This scenario is illustrated in
Figure 7a.

Next, consider two parallel SubNets: A || B. Again, let SubNet A have LA convolution
layers that follow Equation (2), and SubNet B has LB. Let us define the convolution layer
parameters for each SubNet as

φA = {Wl
A, bl

A|l ∈ {1, 2, . . . , LA}} (13)

and
φB = {Wl

B, bl
B|l ∈ {1, 2, . . . , LB}}. (14)

The output of the SubNet A convolution layers is given by

xl
A,n = g(Wl

Axl−1
A,n + bl

A), (15)

where l = 1, 2, . . . , LA. The output of the the SubNet B convolution layers is given by

xl
B,n = g(Wl

Bxl−1
B,n + bl

B), (16)
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where l = 1, 2, . . . , LB. Note that the inputs to the two parallel SubNets are the same so that
we have x0

A,n = x0
B,n = Xn. Let the fully connected output layer be designated as Layer

L = Max(LA, LB) + 1. The output of this fully connected layer with the final feature maps
concatenated is given by

xL
n = WA||B

[
x

LA
A,n

x
LB
B,n

]
+ bA||B. (17)

This output goes to the softmax layer as before using Equation (5). The parameters in φA
are fixed and the parameters in φB along with WA||B and bA||B are updated. This scenario
is illustrated in Figure 7b.

3.4. Proposed IMNet Architecture

In general, the IMNS can be used to create a limitless number of final architectures
by combining the proposed SubNets, or other SubNet architectures. Here, we propose
one specific example that we believe effectively balances performance and computational
complexity for the medical imaging applications mentioned in Section 1. The proposed
IMNet architecture is illustrated in Figure 9. Figure 9 shows five SubNets, A, B, C, D, and
E, that are incrementally added to produce the final network. We use relatively small and
compact SubNet modules to maintain a small computational cost. The details for each
SubNet are provided in Table 2. Figure 7a shows the workflow for adding the SubNet in
series, and Figure 7b shows the addition of a parallel SubNet.

Figure 9. IMNet architecture used here in the experimental results. SubNets A, B, C, D and E are
added incrementally in order to produce the full network shown. Details of the SubNets are provided
in Table 2.

First, we use all of the available minibatches to train the SubNet A and minimize the
loss to obtain the optimum parameters using Equation (10). After training for SubNet A is
complete, we lock in the learnable parameters for this module and refer to it as IMNet A.
This network is used to generate the feature maps that will be the input to the new SubNet
B. The first convolutional layer of the SubNet B receives all the feature maps from L − 1
layer of SubNet A as input. In this case, the SubNet B is connected in a series configuration
that can be denoted as A + B and we refer to this as IMNet A, B.

Next, we lock the current IMNet A, B, and add a new SubNet C in parallel. This
combination of SubNets may be expressed as (A + B)||C and we refer to this as IMNet
A-C for notational convenience. We use the equations mentioned above to generate feature
maps using IMNet A, B and concatenate these with the feature maps generated by the
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new SubNet C. We use a reshape layer to match the feature map of IMNet A, B with
output feature maps of SubNet C and concatenate the feature maps in the depth dimension.
SubNet D is then added in series to produce the configuration (A + B)||C + D, denoted
here as IMNet A-D. Finally, we lock IMNet A-D and add the last new SubNet E in a
parallel configuration. This IMNS sequence can be represented as [(A + B)||C + D]||E
and we denote this as IMNet A-E. We selected this configuration because we find that
alternating between series and parallel SubNets is generally effective, as these two additions
tend to complement each other.

Table 2. SubNet architectures used in the IMNet in Figure 9.

Model Layers Filter Size Total Parameters MAdd

SubNet A
Conv-A2 3 × 3 × 8

0.018M 9.94MConv-A2 3 × 3 × 16
Conv-A3 3 × 3 × 32

SubNet B
Conv-B1 3 × 3 × 64

0.390M 11.94MConv-B2 3 × 3 × 128
Conv-B3 3 × 3 × 256

SubNet C
Conv-C1 1 × 1 × 8

0.021M 1.10MConv-C2 1 × 1 × 16
Conv-C3 1 × 1 × 32

SubNet D
Conv-D1 3 × 3 × 64

0.390M 43.65MConv-D2 3 × 3 × 128
Conv-D3 3 × 3 × 256

SubNet E
Conv-E1 1 × 3 × 64

0.165M 13.82MConv-E2 3 × 1 × 128
Conv-E3 1 × 3 × 256

3.5. Network Training

We study the performance of our proposed approach by utilizing the following data
separation: 72% of the samples of each class are assigned to the training set, 8% to the
validation set, and the remaining 20% to the test set. All of the image processing and
classification stages are implemented using MATLAB deep learning platform [53] version
r2020b. The hardware used is a Windows PC equipped with with Intel Xeon CPU E5-1630
v4 @ 3.70 GHz and 32 GB of RAM. Network training and testing are accelerated using
an NVIDIA TITAN RTX GPU. We trained the network and tuned our hyperparameters
for the proposed IMNet architecture solely on the training and validation datasets. All
of the IMNets are trained from scratch with randomly initialized weights. We choose the
Adam optimization technique [52] to accelerate the convergence time and find the global
minimum cost function for all networks. We chose an initial learning rate of 0.001 with
different mini-batch sizes for each application and a validation frequency of 50. Note that
the validation frequency details how many iterations pass before re-validating during
training. In our configurations we validate every 50 iterations. Note that the learning rate is
kept adaptive to accelerate the learning process and prevent over-fitting. The learning rate
is scheduled to decrease by a factor of 0.1 after one half of epochs are completed. We also
use a training policy called “ValidationPatience” and set this parameter to 50. This value
specifies the number of times that the validation loss can be larger than the smallest value
achieved before the training process halts. Furthermore, in order to prevent overfitting and
to improve model generalization, we apply a simple and effective regularization technique
known as L2 regularization [54] with a value of 0.0001.

3.6. Statistical Analysis

It is important to assess the efficacy of classification algorithms to aid in method com-
parisons, method selection, understanding system limitations, and to identify opportunities
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for future improvement. The metrics we use as performance and efficiency metrics are
balanced accuracy (BACC), specificity (SPEC), sensitivity (SENS), ROC curves, AUC, and
testing time. These metrics defined in [55] provide an objective quantitative picture of
the efficacy of the systems tested. We used the two-sided t-test to compare model perfor-
mances. A p < 0.05 was considered statistically significant. All statistical analyses were
performed with the statistical package of MATLAB version r2020b. In addition, to test the
reproducibility of the model, we repeated such an experiment 10 times and reported mean
and standard deviation (SD).

4. Experiment Results

In this section, we present the results obtained using our proposed approaches.
In order to demonstrate the efficacy of our proposed algorithm, we compare our IMNS
model results against those from well established and state-of-the-art CNN models includ-
ing AlexNet [56], ResNet-50 [57],Inception v3 [58], DenseNet-201 [59], and NasNet [60]. For
these large benchmark networks, we use transfer learning. The weights are imported from
MATLAB deep learning toolbox [61] version r2020b. The pre-trained weights are imported
from pre-trained networks. The pre-trained networks have been trained on a subset of
the ImageNet database [62], which is used in the ILSVRC [44]. Approximately 1.4 million
images have been used to train these networks to classify images into 1000 object classes.
Fine-tuning a pre-trained network is more efficient than training a network from scratch.
This is important with networks of these sizes. For IMNets, we use the training method-
ology described in Section 3.5. Furthermore, note that our results use publicly available
datasets, as described in Section 2, to allow for independently reproducible results. We
present the results for our IMNet in several forms to show the evolution in performance using
IMNS starting with IMNet A and going to IMNet A-E, as shown in Figure 9. To quantitatively
evaluate the results, we employ the performance metrics defined in Section 3.6.

4.1. Quantitative Results Summary

We applied the IMNS method to each of the datasets described in Section 2. In particular,
we consider the detection of malaria, DR, and TB. The results for these three experiments are,
respectively, summarized in Tables 3–5.

Table 3 shows the performance metrics for the IMNS method with various IMNets
for malaria detection using blood smear slide images. Note that here IMNet A-E had
a significantly higher BACC (97.0 ± 0.36) than AlexNet, ResNet-50, DenseNet-201, and
NasNet (96.2 ± 0.22 [p < 0.05], 96.5 ± 0.51 [p < 0.05], 96.2 ± 0.43 [p < 0.05], and 96.7 ± 0.12
[p < 0.05], respectively). In addition, our proposed IMNet A-E outperforms the Inception
v3 in this experiment (96.8 ± 0.39 [p < 0.05]). Furthermore, note that IMNet A-D took only
11.71 seconds to process 5512 samples (9× faster than Inception v3). The highest AUC in
this experiment is achieved with IMNet A-D. Note also that in this application the addition
of SubNet E lowers all of the metrics. This may suggest that the IMNS process can be halted
as further improvement is not expected with additional modules.
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Table 3. Malaria dataset results showing hold-out validation performance on the test set using our
IMNS method and benchmark methods.

Model BACC (%) SPEC (%) SENS (%) AUC Testing Time (s)

AlexNet 96.8 ± 0.39 96.0 ± 1.50 94.1 ± 1.05 0.985 ± 0.002 81.01
ResNet-50 96.5 ± 0.51 97.8 ± 0.34 95.3 ± 1.07 0.992 ± 0.003 88.08
DenseNet-201 96.2 ± 0.43 97.2 ± 0.75 95.2 ± 1.06 0.992 ± 0.002 157.43
Inception v3 96.8 ± 0.39 97.6 ± 0.74 96.0 ± 1.15 0.993 ± 0.001 104.20
NasNet 96.7 ± 0.12 97.6 ± 0.65 95.8 ± 0.69 0.993 ± 0.001 92.35
IMNet A 96.8 ± 0.39 96.0 ± 1.50 94.1 ± 1.05 0.985 ± 0.002 11.18
IMNet A, B 96.1 ± 0.50 97.2 ± 0.21 95.1 ± 0.89 0.991 ± 0.003 11.23
IMNet A-C 96.4 ± 0.30 97.1 ± 0.27 95.7 ± 0.55 0.993 ± 0.001 11.58
IMNet A-D 97.0 ± 0.36 97.9 ± 0.39 96.1 ± 0.63 0.995 ± 0.001 11.71
IMNet A-E 96.7 ± 0.19 97.5 ± 0.60 95.8 ± 0.55 0.994 ± 0.001 12.26

Table 4. Diabetic retinopathy dataset results showing hold-out validation performance on the test set
using our IMNS method and benchmark methods.

Model BACC (%) SPEC (%) SENS (%) AUC Testing Time (s)

AlexNet 97.2 ± 0.52 96.9 ± 0.82 97.4 ± 0.76 0.994 ± 0.003 48.83
ResNet-50 97.9 ± 0.73 97.3 ± 1.08 98.5 ± 0.94 0.997 ± 0.001 41.71
DenseNet-201 98.0 ± 0.39 98.0 ± 0.27 97.9 ± 0.82 0.996 ± 0.002 64.49
Inception v3 97.8 ± 0.41 97.2 ± 0.81 98.5 ± 0.74 0.995 ± 0.002 43.12
NasNet 97.0 ± 0.53 96.7 ± 0.85 97.3 ± 0.81 0.994 ± 0.001 55.41
IMNet A 92.2 ± 3.90 93.8 ± 3.26 90.6 ± 8.85 0.980 ± 0.009 6.85
IMNet A, B 96.1 ± 0.80 94.8 ± 2.18 97.4 ± 1.28 0.991 ± 0.003 7.25
IMNet A-C 97.0 ± 0.50 96.6 ± 0.82 97.4 ± 0.91 0.995 ± 0.001 7.49
IMNet A-D 97.7 ± 0.39 97.7 ± 1.01 97.7 ± 0.98 0.996 ± 0.001 7.51
IMNet A-E 97.9 ± 0.23 98.0 ± 0.65 97.7 ± 0.35 0.996 ± 0.001 7.63

Table 5. Tuberculosis dataset results showing hold-out validation performance on the test set using
our IMNS method and benchmark methods.

Model BACC (%) SPEC (%) SENS (%) AUC Testing Time (s)

AlexNet 86.1 ± 2.91 85.9 ± 3.53 86.3 ± 6.17 0.927 ± 0.017 0.775
ResNet-50 87.7 ± 2.46 85.5 ± 4.11 90.0 ± 3.26 0.926 ± 0.016 2.51
DenseNet-201 87.6 ± 2.30 84.7 ± 2.71 90.4 ± 3.89 0.931 ± 0.019 2.74
Inception v3 85.5 ± 3.18 81.1 ± 5.13 89.8 ± 4.66 0.910 ± 0.028 1.28
NasNet 84.2 ± 2.31 80.3 ± 5.62 88.1 ± 4.81 0.900 ± 0.029 1.18
IMNet A 80.2 ± 4.68 82.5 ± 12.3 78.0 ± 14.9 0.899 ± 0.044 0.234
IMNet A, B 82.8 ± 4.50 82.6 ± 9.37 83.0 ± 10.1 0.918 ± 0.041 0.249
IMNet A-C 85.9 ± 5.27 81.6 ± 12.1 90.3 ± 6.53 0.937 ± 0.034 0.258
IMNet A-D 87.8 ± 4.06 87.3 ± 5.86 88.4 ± 4.66 0.944 ± 0.025 0.285
IMNet A-E 88.6 ± 2.25 85.3 ± 3.36 89.0 ± 5.50 0.953 ± 0.018 0.301

The results summary for DR detection in retinal images are shown in Table 4. Here the
IMNet A-E achieved a higher BACC (97.92± 0.23) which is significantly better than AlexNet
and NasNet (97.20 ± 0.52 [p < 0.05], and 97.05 ± 0.53 [p < 0.05]). The BACC of IMNet
A-E is competitive with ResNet-50, DenseNet-201 and Inception v3 (97.9 ± 0.73 [p = 0.86],
98.0 ± 0.39 [p = 0.42], and 97.8 ± 0.41 [p = 0.66], respectively). The DenseNet-201 gives
the best BACC here and the ResNet-50 model does have a slightly higher AUC than IMNet
A-E. However, IMNet A-E processes 732 images in 7.63 s, as compared with 41.71 seconds
for ResNet-50. As can be seen by the different IMNet results in Table 4, the BACC score
rises with the addition of each SubNet during the IMNS process in this experiment.

The results summary for TB detection in chest radiographs is presented in Table 5.
The highest BACC of 88.6 ± 2.25 is achieved with IMNet A-E, which is significantly higher
than AlexNet, Inception v3, and NasNet (86.1 ± 2.91 [p<0.05], 85.5 ± 3.18 [p < 0.05],
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and 84.2 ± 2.31 [p < 0.05], respectively). The IMNet A-E produces a higher BACC than
ResNet-50 and DenseNet-201 (87.7 ± 2.46 [p = 0.30], and 87.6 ± 2.30 [p = 0.21]). The
highest AUC of 0.953± 0.018 is achieved with IMNet A-E which is significantly higher than
the best of benchmark methods, DenseNet-201, (0.931 ± 0.019 [p < 0.05]). Note that these
IMNets outperform the large scale models in this application with far less computational
cost and computational time. Results in Table 5 also indicate a modest but consistent boost
in the performance as we add more SubNets during the IMNS process.

Moreover, we compare our IMNets against different current state-of-the-art methods.
For malaria application, our IMNet A-D has a comparative AUC score of 0.995 compared
with the current state-of-the-art methods with lower computational complexity, including
Rajaraman et al. (0.993) [63], Rahman et al. (0.993) [28], and Rajaraman et al. (0.991) [48].
For DR application, IMNet A-D and IMNet A-E produced a comparable AUC of 0.995 and
relatively lower computational complexity with the following proposed methods, including
Gulshan et al. (0.991) [64], Chetoui et al. (0.986) [38], and Sahlsten et al. (0.987) [65]. Finally,
IMNet A-E has a comparative AUC score of 0.953 compared with the following state-of-
the-art methods, including Meraj et al. (0.920) [66], Sathitratanacheewin et al. (0.850) [67],
and Hwang et al. (0.926) [40].

Figures 10–12 show ROC curves for malaria, DR, and TB, respectively. The ROC
curves provide further insight because they illustrate classifier performance for a range of
operating points. For clarity, we only show ROC curves for the top five models in each
application. For malaria detection, the IMNet A-D obtained the best result in terms of AUC
and an area of (0.995 ± 0.001). However, IMNet A-E obtained a competitive AUC score for
both DR and TB with areas of (0.996 ± 0.001) and (0.949 ± 0.019), respectively.

Figure 10. Malaria dataset ROC curve for the five best performing networks.
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Figure 11. Diabetic retinopathy dataset ROC curve for the five best performing networks.

Figure 12. Tuberculosis dataset ROC curve for the five best performing networks.

4.2. Computational Complexity Comparison

In this section, we compare the computational complexity of AlexNet, ResNet-50, In-
ception v3, DenseNet-201, NasNet, and IMNets by counting the number of multiplications
and additions required to process a single image. Furthermore, we compare between all
mentioned models the total number of learnable parameters within each CNN model. We
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calculate the number of learnable parameters for each layer, and then sum up the learnable
parameters in each layer to obtain the total amount of learnable parameters in the entire
network. Figures 13 and 14 and Table 6 show the results of our computational complexity
study. In Figure 13, we show balanced accuracy on the malaria dataset versus the number
of learnable parameters. On the other hand, in Figure 13 we show balanced accuracy versus
the number of floating-point multiply–add (MAdd) operations for the same dataset. Note
that the composite MAdd operations are determined for the input images size of 112 × 112
reported in Section 2.1. The diameter of each circle is proportional to the the total number
of learnable parameters for Figure 13, and the circle size is the MAdd for Figure 14. Note
that the IMNets have fewer learnable parameters, and fewer MAdd operations, as shown
in Table 6.

The numerical values for the total number of learnable parameters and MAdd counts
are listed in Table 2 for the malaria dataset networks. Note that IMNet A-E (the largest
IMNet tested here) has fewer parameters than AlexNet by a factor of approximately 64,
and by a factor of approximately 6 compared with NasNet. In terms of the MAdd count,
IMNet A-E has fewer than AlexNet by a factor of approximately 9, and fewer than NasNet
by a factor of approximately 61.

Figure 13. Balanced accuracy on the malaria dataset versus the number of learnable parameters.
The computational cost is measured based on the number of MAdd operations to process a single
example. The diameter of each circle is proportional to the total number of learnable parameters of
the network.
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Figure 14. Balanced accuracy on the malaria dataset versus the number of floating-point multiply–add
(MAdd) operations. The computational cost is measured based on the number of MAdd operations
to process a single example. The diameter of each circle is proportional to the MAdd of the network.

Table 6. Resource usage for IMNets in comparison to benchmark models for the malaria dataset networks.

Model Total Parameters MAdd

AlexNet 61.10M 0.72G
ResNet-50 25.56M 3.87G
Inception v3 27.16M 5.72G
DenseNet-201 20.01M 4.29G
NasNet 5.290M 4.93G
IMNet A 0.018M 0.0099G
IMNet A, B 0.390M 0.0218G
IMNet A-C 0.412M 0.0229G
IMNet A-D 0.790M 0.0666G
IMNet A-E 0.955M 0.0804G

4.3. Visual Explanations

Figures 15–17 show the class activation mapping (CAM) [68] outcomes for malaria, DR,
and TB, respectively. The examples are for different IMNets on test samples that had been
identified as a true positives by the medical professionals. The CAM outputs can give us more
confidence in our models’ predictions as they highlight the discriminative regions used by a
model to identify a positive class in the dataset. Our goal is to investigate and understand
which image region has contributed more to the final model prediction. The idea of the CAM
is the following: the probabilities predicted by the network are mapped back to the final
convolutional layer to highlight the discriminative regions that are specific to that class [68].
CAM is the output of the activation map after the last convolutional layer for a particular class.
CAM is the global average pooling layer applied following the last convolutional layer based
on the spatial location in order to generate the weights [68]. Therefore, it allows distinguishing
the areas within an image that differentiates the class [68].
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Figure 15. CAM visualization on malaria dataset for a test sample using various IMNets: (a) Original
sample, (b) IMNet A, (c) IMNet A, B, (d) IMNet A-C, (e) IMNet A-D, and (f) IMNet A-E.

Figure 16. CAM visualization on DR dataset for a test sample using various IMNets: (a) Original
sample, (b) IMNet A, (c) IMNet A, B, (d) IMNet A-C, (e) IMNet A-D, and (f) IMNet A-E.
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Figure 17. CAM visualization on TB dataset for a test sample using various IMNets: (a) Original
sample, (b) IMNet A, (c) IMNet A, B, (d) IMNet A-C, (e) IMNet A-D, and (f) IMNet A-E.

Consider the malaria detection CAM results in Figure 15. The original sample image is
shown in Figure 15a. The nucleic acids carry three components: parasites, white blood cells,
and platelets highlighted in a bluish-purple color [69], as shown in the original sample
image. The other images in Figure 15 are CAM results overlaid on the original image for
IMNet A through IMNet A-E. Note that the red regions in the CAM images correspond
to the spatial regions of most significance to the classifier. In the case of the CAM result
for IMNet A, shown in Figure 15b, the attention is distributed and not well focused on
the clinically significant portion of the thin smear image. On the other hand, as the IMNS
process continues and modules are added, the CAM results do show that attention becomes
more focused over the stain on the thin smear example to identify the presence of parasites.
The CAM results showing the most focus on the nucleus is IMNet A-D, and this is the best
performing IMNet as shown in Table 3.

The CAM results for DR are shown in Figure 16. The input retinal image is shown
in Figure 16a. Note that the key aspect of detecting or diagnosing DR is the presence of
retinal lesions. There are two main types of lesion defects, white lesions and red lesions.
The hard and soft exudates are collectively referred to as white lesions. The red lesions
are microaneurysms and hemorrhages [70]. The original image contains hard and soft
exudates. We can tell that IMNet A-C, IMNet A-D, and IMNet A-E, focused on these hard
and soft exudates that appear as white spots on the original image. Interestingly, these
networks also appear to be focusing attention on the optic disk, which is the bright disk in
the upper right side of the retinal image. This may be because its color and size resemble
that of the large white lesions.

Finally, the CAM for pulmonary tuberculosis is shown in Figure 17. The original CR
image with tuberculosis is shown in Figure 17a. Note that there are multiple light areas
in the mid-zone lung with fibrotic shadows of primary pulmonary TB. The CAM results
for our IMNet models show that attention is focused on these regions. As a result, our
model performs well and generally provides an accurate interpretation. Although this
example looks good, in many instances, the IMNet A and IMNet A, B CAM results show
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focus on these clinically significant regions and insignificant regions such as shoulders and
background as well. This is consistent with the relatively average classifier performance
for that network provided in Table 5. However, all of the other IMNets perform well and
tend to produce what we believe are clinically appropriate CAM results.

5. Conclusions and Discussion

In this research, we have proposed IMNS as a new method for designing and training
deep learning models. The resulting networks are referred to as IMNets. We have demon-
strated the efficacy of the proposed method in detecting three diseases using three different
imaging modalities. The best performing IMNets in our study achieved a balanced accuracy
of 97.0%, 97.9%, and 88.6% and AUC of 0.995, 0.996, and 0.949 for the detection of malaria,
DR, TB, respectively. Our modular approach starts with a single SubNet and we add one
additional SubNet at a time, either in series or in parallel with the previous network. Only
the new SubNet weights are updated at each stage of IMNS. This approach keeps the
computational complexity low and allows the network to train well with a relatively small
training set.

The performance of IMNets rivals, and in some cases exceeds, that of much larger state-
of-the-art networks where transfer learning is employed. We attribute this to the relatively
small training sets available and the limitations of transfer learning. Since the pre-trained
networks are trained for a different application, significant adaption may be required for a
new task. Large networks can be very powerful where there are sufficient data to properly
train them. However, the large networks, with a high number of learnable parameters, can
become a liability when only small training sets are available. In other words, for large
pre-trained models to be helpful, both extensive data from the same domain and large
computational resources are required. It remains the case that large truthed datasets for
medical imaging applications are often difficult to come by. This behoves us to explore
more compact networks and training strategies such as the proposed IMNS.

Monolithic deep learning with transfer learning may suffer from overfitting issues,
due to limited training data in many medical image analysis applications. In addition, the
computational cost grows with deeper and wider monolithic networks. The building-block
IMNS approach addresses these issues by employing relatively small SubNets and training
only one SubNet at a time. As we can see in the results section, our IMNS provides results
that rival or exceed many popular large-scale models in the experiments presented here.
Moreover, our IMNets trained faster, had lower memory requirements, and processed test
images more quickly than the benchmark methods tested.

From a learning perspective, we believe IMNS has several benefits over monolithic
deep learning. As with other modular approaches, complex problems are addressed using
several small SubNets, rather than one large monolithic network. We believe this helps
to mitigate the complex optimization difficulties and vanishing gradient problems that
monolithic CNN approaches face. Furthermore, our results suggest that the IMNS allows
for the effective transfer of prior knowledge from the fixed portion of the IMNet to a new
SubNet. In future work, we plan to extend the architecture of IMNets in two ways. First,
we will investigate the impact of combining these SubNets in different configurations.
Moreover, we will also examine different SubNet architectures.
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Abstract: Augmented reality (AR) is an innovative system that enhances the real world by super-
imposing virtual objects on reality. The aim of this study was to analyze the application of AR in
medicine and which of its technical solutions are the most used. We carried out a scoping review of
the articles published between 2019 and February 2022. The initial search yielded a total of 2649 articles.
After applying filters, removing duplicates and screening, we included 34 articles in our analysis.
The analysis of the articles highlighted that AR has been traditionally and mainly used in orthopedics
in addition to maxillofacial surgery and oncology. Regarding the display application in AR, the
Microsoft HoloLens Optical Viewer is the most used method. Moreover, for the tracking and reg-
istration phases, the marker-based method with a rigid registration remains the most used system.
Overall, the results of this study suggested that AR is an innovative technology with numerous
advantages, finding applications in several new surgery domains. Considering the available data, it
is not possible to clearly identify all the fields of application and the best technologies regarding AR.

Keywords: augmented reality; image guided surgery; surgery

1. Introduction

Imaging is known to play an increasingly important role in many surgery domains [1].
Its origin can be dated back to 1895 when W. C. Roentgen discovered the existence of
X-rays [2]. While in the course of the twentieth century, X-rays have found increasing
application, in more recent years, other techniques have been developed and acquiring data
from the internal structures of the human body has become more and more useful [1,3–5].
All this facilitated an increasing use of images to guide surgeons during interventions,
leading to the affirmation of image-guided surgery (IGS) [6]. In this sense, the need for
reducing surgery evasiveness, by supporting physicians in the diagnosis and preoperative
phases as well as during surgeries themselves, led to the use of different solutions such
as the 3D visualization of anatomical parts and the application of augmented reality (AR)
in surgery [1,3,4]. Augmented reality consists in merging the real word with virtual
objects (VOs) generated by computer graphic systems, creating a world for the user that
is augmented with VOs. The first application of AR in medicine dates back to 1968 when
Sutherland created the first head-mounted display [7]. The term AR is often used in
conjunction with virtual reality (VR). The difference between them is that VR creates a digital
artificial environment by stimulating the senses of the user and simulating the external world
through computer graphic systems [8], while AR overlays computer-generated images onto
the real world, increasing the user perception and showing something that would otherwise
not be perceptible as reported by Park et al. in [1] and Desselle et al. in [9].

The application of AR in IGS can be an increasingly important opportunity for the
treatment of patients. In particular, AR allows one to see 3D images projected directly
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onto patients thanks to the use of special displays. All this can facilitate the perception
of the reality examined and lighten the task of the operators themselves compared to the
traditional approach consisting in 2D preoperative images displayed on 2D monitors [1,5].

In this way, doctors can directly see 3D images projected onto patients using special
displays, described in the next paragraph, instead of using 2D preoperative images dis-
played on 2D monitors that require the doctor to mentally transform them into 3D objects
as well as remove the sight from the patient [1,5].

The purpose of this review is providing an overview of AR by describing which
medical applications it can be used in and which aspects characterize this technology to
provide doctors with information on this emerging tool. We would like it to be a starting
point for more in-depth research and applications in the clinical field. In order to better
understand AR application, this review started by describing some key technological
aspects such as: tracking, registration and displays.

2. Theoretical Background

This section describes the main aspects leading to the visualization of the VOs super-
imposed on the real world. The workflow of augmented-reality-enabled systems is shown
in Figure 1. This Figure 1 shows that once the virtual model has been rendered, tracking
and recording are the two basic steps. In this sense, tracking and registration provide
the correct spatial positioning of the VOs with respect to the real world [10]. This result
is possible because, with monitoring, the spatial characteristics of an object are detected
and measured. Specifically, with regard to AR, tracking indicates the operations necessary
to determine the device’s six degrees of freedom, 3D location and orientation within the
environment, necessary to calculate the real time user’s point of view. Tracking can be
performed outdoors and indoors. We focused on the latter. Two methods of indoor tracking
are then distinguishable: outside-in and inside-out. In the outside-in method, the sensors
are placed in a stationary place in the environment and sense the device location, often
resorting to marker-based systems [11]. In the inside-out method, the camera or the sensors
are placed on the actual device whose spatial features are to be tracked in the environ-
ment. In this case, the device aims to determine how its position changes in relation to the
environment, as for the head-mounted displays (HMDs). The inside-out tracking can be
marker-based or marker-less. The marker-based vision technique, making use of optical
sensors, measures the device pose starting from the recognition of some fiducial markers
placed in the environment. This method can also hyperlink physical objects to web-based
content using graphic tags or automatic identification technologies such as radio-frequency-
identification (RFId) systems [12]. The marker-less method, conversely, does not require
fiducial markers. It bases its measures on the recognition of distinct characteristics, present
in the environment, that in turn are used to localize the position of the device in combi-
nation with computer vision and image-processing techniques. Registration involves the
matching and alignment of tracked spatial features obtained from the real world (RW) with
the corresponding points of the VOs to reach an optimal overlapping between them [1].
The accuracy of this process allows an accurate representation of the virtual reality over the
real world and determines the natural appearance of an augmented image [13].
The registration phase is connected to the tracking one. Based on the ways these two
are accomplished, the process is defined as manual, fully automatic or semiautomatic.
The manual one refers to manual registration and manual tracking. It consists in finding
landmarks both on the model and the patient and consequently manually orienting and
resizing of the obtained preoperative 3D model displayed on the operative monitor to make
it match real images. The fully automatic process is the most complex one, especially with
soft tissues. Since real world objects change their shapes with time, the same deformation
needs to be applied to the VOs to address the fact that any deformation during surgery, due
to events such as respiration, can result in an inaccurate real-time registration, subsequently
causing an imprecise overlapping between 3D VOs and ROs. Finally, the semiautomatic
process associates the automatic tracking with the manual registration. The identification of
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landmark structures, both on the obtained 3D model and on the real structures, occurs au-
tomatically, while its overlay on the model, and its orienting and resizing, occurs manually.
This aspect is what differentiates the automatic process from the semiautomatic one.
The latter provides the overlay of the AR images on real life statically and manually, while
the former makes the 3D virtual models dynamically match the actual structures [1,14–16].
For the visualization of the VOs onto the real world, several AR display technologies exist,
usually classified in head, body and world devices, depending on the place where they are
located [7,17]. World devices are located in a fixed place. This category includes desktop
displays used as AR displays, and projector-based displays. The former are equipped with
a webcam, a virtual mirror showing the scene framed by the camera and a virtual showcase,
allowing the user to see the scene, alongside additional information. Projector-based dis-
plays cast virtual objects directly onto the corresponding real-world objects’ surfaces. With
body devices, we usually refer to handheld Android-based platforms, such as tablets or mo-
bile phones. These devices use the camera for capturing the actual scenes in real time, while
some sensors (e.g., gyroscopes and accelerometers and magnetometer) can determine their
rotation. These devices usually resort to fiducial image targets for the tracking-registration
phase [18]. Finally, the HMDs are near eye displays, wearable devices consisting in sort of
glasses that have the advantage of leaving the hands free to perform other tasks. HMDs
are mainly of two types: video see-through and optical see-through. The first ones refer to
special lenses that let the user see the external real world through a camera whose frames
are in turn combined with VOs. In this way, the external environment is recorded in real
time and the final images overlaying the VOs are produced directly over the user’s lenses.
Differently, the optical see-through devices consist of an optical combiner or holographic
waveguides, the lenses, that enable the overlay of images transmitted by a projector over
the same lenses through which a normal visualization of the real world is allowed. In this
way the user visualizes directly the reality augmented with the VOs overlaid onto it [7,19].
Figure 2 shows an example of HMD.

Figure 1. Workflow of augmented-reality-enabled systems.
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Figure 2. Example of HMD, HoloLens 2 (Microsoft, WA, USA) .

The different techniques are summarized in Figure 3. The aim of this study was to
describe the state of the art relating to the use of AR in the surgery domain. The description
and analyses of the various procedures used to create the virtual images represented a
further objective. This scoping review aims to provide a summary of the surgical fields in
which this new technology finds its best application providing doctors with an overview of
the key aspects behind viewing accurate virtual images superimposed on the real world.
The research highlighted that the marker-based tracking and the rigid registration are
currently the most used systems to acquire data, as reported in the following paragraphs.

Figure 3. Summary of the techniques.

3. Materials and Methods

We followed the PRISMA Guidelines for scoping reviews [20]. The results are shown
in Figure 4. The histogram in Figure 5 shows the trend of the number of publications
from 1982 to 2021 present on Scopus searching English articles for “augmented reality
in surgery”. Between 2020 and 2021, the number of publications increased by 40%. In 2022,
at the time of writing, 50 articles have already been published and indexed on Scopus.
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Figure 4. Criteria for the inclusion of articles.

Figure 5. Trend of Publications on Augmented Reality in Surgery over the Years.

3.1. Inclusion Criteria

The studies included in the review need to be related to the main topic: augmented re-
ality. We limited the selection by imposing restrictions on the document type (articles only)
and on the language (English only). The query was limited to a relatively short period of
time, (2019–February 2022) ensuring the attention was focused on the innovations intro-
duced in the latest years. The queries we used during our searches were: “TITLE-ABS-KEY
(“augmented reality” AND surgery) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO
(LANGUAGE, “English”)) AND (LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO (PUBYEAR,
2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019))” for Scopus and
Record on Pubmed.

3.2. Selection of Sources Criteria

The inclusion criteria were applied to filter the found articles. Additional documents
were then added based on citations from excluded articles, deemed interesting for this
review but not caught by the query because of the limitations that we decided to set.
The team established two reviewers, E.B. and P.F. In both searches; they screened indepen-
dently all the articles, starting from the abstracts and the titles, choosing the ones deemed
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pertinent according to their own judgement. The articles chosen by both reviewers were
directly integrated in the list of articles to be downloaded. The studies that were chosen
from only one of the two reviewers were integrated in the list only after the agreement of a
third reviewer, L.B., who took the final decision whether to include or discard the article
from the final review. Starting from this list, full texts of these studies were downloaded
and the process of choice was repeated based on the content of the studies found, thus
obtaining the final list of articles to be included.

4. Results

The initial search yielded a total of 2649 articles. After applying filters, removing
duplicates and screening the studies based on abstracts and titles, 125 studies remained,
from which those included in the study were chosen. The final summary refers to a total
of 34 articles. The reason for not including some articles is related to their content, in
some cases deemed too specific, concerning clinical trials or topics outside the field of
interest. The list of AR applications in the different surgery domains as reported in the
selected articles is shown in Table 1. We decided to create Table 1, containing an overview
of the AR applications in different areas and methods present in the chosen articles.
The Table 1 is organized as follows: the first column shows the author (or authors) of
the article, the second the application to which the article refers, the third the technology
used for processing, the fourth the display used to view the virtual object merged with
reality, the fifth the registration method used in the article, the sixth the error made in terms
of approximations and the seventh the data set that was used in the article.

Evaluating all the selected articles, both in the filtered research and those added
manually, we decided to summarize the main aspects of the AR applications in three
schemes reported in Tables 2–4. The aspects we decided to analyze and report as percentage
of application in the analyzed studies are the ones described in the Section 2. For what
concerns the application of AR in different fields, the scheme in Table 2 shows that this
technique has been traditionally mainly used in orthopedics. Lately, the innovation has
been represented by its increasingly widespread application in maxillofacial surgery, in
addition to oncology. However, the numerous areas in which AR is used confirm the
important role that this technology may have in the future in the health field. The scheme in
Table 3 shows how the projection over the patient is, at the moment, the least used method,
while the Optical Viewer by Microsoft, HoloLens, is the most used one. The first model
(HoloLens 1) together with the second one (HoloLens 2) amounts to 38% of the scheme in
Table 3. For what concerns tracking and registration, reported in the scheme in Table 4, the
marker-based method paired with rigid registration remains the most used system. Once
we analyzed all the articles listed in Table 2, we decided to delve into the applications more
recurrent in our research and which, in our opinion, seemed to have the most interesting
clinical implications. The applications we decided to investigate are reported below.
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Table 2. Augmented Reality Applications.

Application Percentage of Application

Telemonitoring 4%
Maxillofacial 23%
Liver Surgery 4%
Pediatric 4%
Orthopedics 27%
Oncology 19%
Training 8%
Puncture Surgery 7%
Bowel Surgery 4%

Table 3. Percentage of distribution of the displays of Augmented Reality used in medical applications
evaluated in our study.

Type of Display Percentage of Application

Smartphone 14%
Video see through Device 14%
Generic Head Mounted Display 17%
Unspecified Display 14%
Projected Directly over the Patient 3%
HoloLens 2 10%
HoloLens 1 28%

Table 4. Augmented Reality tracking and registration methods.

Tracking and Registration Methods Percentage of Application

Marker based and Non-rigid Registration 4%
Markerless rigid Registration 20%
Markerless Non-rigid Registration 8%
Markeerbased and rigid Registration 68%

4.1. Oncology

AR application is frequent in oncology, being used for osteosarcoma [53], mandibular [54],
kidney and prostate cancer [55], meningioma [56], urological cancer, intracranial [57],
neuro-oncological [58], and cancer of the liver [14]. Indeed, AR application ensures an
accurate visualization of the tumor, identifying its edges and position during surgeries. The
capability to visualize the real anatomical structures, such as convolutions, grooves, blood
vessels and nervous tracts, allows control during their resection, and permits surgeons
to try to eradicate the tumor while removing as little of the surrounding healthy tissue
as possible [59–62]. Adequate planning also provides bone information that, together
with information about the tumor, can lead to its successful removal [54]. Furthermore, the
application of the AR to the innovative twin digital simulation technique can also be a medical
support tool. In particular, this solution may allow oncologists to monitor and control the
patient in addition to predicting the outcome of cancer through the development of appropriate
simulation models and the creation of appropriate data sets [63].

4.2. Orthopedics

The application of AR in orthopedics [64–66] is relatively recent, dating back to the
beginning of the 2000s [65]. The purpose of applying AR to orthopedic computer systems
for computer-assisted surgery (CAS) is to increase the accuracy during surgeries, improving
the possible outcomes and at the same time decreasing procedure-related complications.
AR application can also contribute to the reduction of both surgery time and radiographic
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doses for both patients and surgery teams. AR avoids the use of X-rays to see through the
patients, reducing their exposure time [67].

4.3. Spinal Surgeries

AR is often used in spinal surgeries [68,69]. In this application, the accuracy is fun-
damental since an imprecision in the placement of an instrument can lead to spinal cord,
nerve root or vascular injuries [70]. Open methods and direct visualization supporting the
placement of the instrumentation, such as pedicle screw, have historically characterized this
type of surgery [70]. The use of AR in spine surgery dates back to 1997 when Peuchot and
his team developed a system for visualizing a vertebra during surgery [71]. For the past
20 years, Minimally Invasive Surgery (MIS) has been under investigation. Many articles
have targeted study of Minimally Invasive Surgery (MIS) over the past 20 years. This
has led to the introduction of new approaches such as the inoperative navigation that
introduces several advantages to visualizing anatomy and precisely guiding surgeries.
Furthermore, MIS ensures a higher level of accuracy, while minimizing possible damage
to contiguous structures, providing access to deeper ones and improving dynamics and
logistics in the operating room. The union of AR and MIS allows the surgeon to see more
accurately inside the patient, possibly visualizing the preoperative planned drilling tra-
jectory over the display, ensuring advantages in terms of accuracy, reduction of radiation
exposure, blood loss and hospital stay. The drawbacks are mainly related to high costs and
to the steepness of the learning curve, still too high [72].

4.4. Neurosurgery

The use of AR is quite frequent also in neurosurgery. Its application in this area has
already been tackled in oncology, but it finds its maximum utility in neuronavigation [73].
It can help surgeons in reducing the consequences of the treatment, improving the quality
of the surgery and reducing the operation time [74–77]. The first neuronavigation system
(NNS) dates back to 1986. The advantage offered by AR associated to NSS consists in
the mapping of the preoperative images directly onto the patient’s visible surface, thus
showing its anatomy on it [73,78].

4.5. Surgical Training and Medical Education

AR is assuming a fundamental and emerging role also for what concerns surgical
training and medical education [79–83]. Its introduction results in providing students
with a better anatomic conceptualization and allows surgical simulations to improve their
performances [84]. AR ensures the possibility to practice surgeries without risks for the patient,
saving the need of a supervisor and consequently reducing costs for the structures [85]. It also
provides an increasing acquisition of skills such as speed, ability to multitask, accuracy, hand–
eye coordination and bimanual operation. The evolution of this system has led to the use of
telemonitoring, where experienced surgeons can train students remotely, and also to take part
in consultations among experts located in different countries [86].

5. Discussion

Augmented reality is an innovative technology that presents several advantages, with
new applications still in development. Knowing about this technology is every day be-
coming more important and can provide information to medical doctors and encourage
new applications and deeper research. The reason for its increasing success is connected to
the possibility it offers to visualize and interact with digital objects without having to lose
view of the real world to watch the monitor displaying the medical imaging of the area of
interest [1]. Moreover, research has shown its capacity to reduce the exposure to ionizing ra-
diation. This aspect is important because it is well known that ionizing radiations can have
harmful effects with possible effects on biomolecules such as DNA, lipids, proteins, and
cancer risks [87–89]. One study [71] calculated the average of the staff radiation exposure
using AR that, compared to the literature values, decreased to less than 0.01%. Moreover,
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the absorbed dose of the patient exposition resulted in a decrease of its value up to 32%
compared to the quantities due to conventional techniques [71]. All these aspects may
allow the diffusion of AR and the possibility of assuming it as a systemic tool in medicine.
The analysis of the studies considered showed that AR finds applications in many surgery
domains and especially in the field of maxillofacial surgery, orthopedics and oncology.
In particular, oncology is one of the areas of application particularly indicated. In this
sense, AR finds a lot of applications in different kinds of cancer with the aim of facilitating
and reducing the consequences of the treatment as well as improving outcomes [14,53–58].
Even with regard to orthopedics, the use of AR can be particularly recommended and
is aimed at promoting the quality of surgical interventions, and therefore improving the
outcomes as well as reducing the risk of complications [64–67]. In this sense, spinal surg-
eries represent an important area of application of AR where it can represent an important
resource available to surgeons [68,69]. Regarding the available display technology, the results
obtained show that the Optical Viewer by Microsoft, HoloLens, is the most used [36,39,90].
The marker-based method paired with the rigid registration was the most used solution in the
context of AR tracking and registration methods [42–46]. In this regard, it is clear that the
goal is to be able to reduce or eliminate the problems associated with tissue deformations.
Unfortunately, the limited number of data available did not allow for more in-depth analy-
ses on this issue. AR is a technology that is every day becoming more popular. Here we
provided an idea of what it is, which technologies it is formed from and in which applica-
tions it is more popularly used. Unfortunately, some limitations still affect the application
of AR in the surgical field. From our study, we noticed that the output is too much related to
the accuracy of the registration and tracking systems that need to be as reliable as possible.
Errors during those mentioned phases could lead to a misalignment of the VOs with the
real world [91,92]. Mainly for the HMDs, the different field of view between human vision
and visors represents an obstacle too [93,94]. Finally, one of the biggest issues that affects
this technology is the vergence–accommodation conflict. In nature, the point where the
eyes verge and focus is the same, while AR displays are featured by a fixed focal distance;
consequently, the points of vergence and focus may be different. This causes discomfort,
fatigue and different eye depth perception [95–97]. Some limitations characterize this study
since the purpose of the review consisted in providing a contemporary view, but the results
may exclude longitudinal trends. A potential problem in this study may also be the possible
underrepresentation of documents about AR in surgery. Not all the studies published
in the years analyzed may have been identified, despite trying to be as comprehensive
as possible (according to the filters chosen). For our search, we used only those terms
indicated in the Section 3, but others could have been chosen. Moreover, it is possible
that some papers were excluded as they did not include those specific words, but their
synonyms. Furthermore, our search was attempted using two multidisciplinary databases,
Pubmed and Scopus, but others could have yielded additional studies. We decided to use
only English terms and include only English articles. We did not reach out to experts on
the topic for a consultation about additional studies that we may not have included.

6. Conclusions

AR is a technology that is increasingly being applied in surgery. This is due to the
numerous advantages it offers although it is still an evolving technology. Since AR allows
an accurate visualization of the anatomical structures and a good control of the activities
performed during surgical resections, the fields in which it is most commonly used are
orthopedics and oncology. For what concerns the displays, Microsoft HoloLens Viewer is
the most used method. Likewise, the marker-based system combined with rigid registration
is the most common solution for tracking and registration. The need for high accuracy of
registration and tracking systems, as well as VOs misalignment problems and the possible
vergence–accommodation conflict are important limitations. The latter can hinder the use
of AR in surgery. The results of this study, as well as presenting the technological solutions
used, show that AR can be applied in different fields of surgery. All of this can favor the
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realization of further studies aimed at overcoming the current limitations on AR in the
clinical setting as well as promoting its application. Considering the significant role that
AR can play within the treatment of a large numbers of patients, further studies are needed
to better define all possible fields of application of AR and the best technological solutions
to be used.
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Abstract: Active learning is a label-efficient machine learning method that actively selects the most
valuable unlabeled samples to annotate. Active learning focuses on achieving the best possible
performance while using as few, high-quality sample annotations as possible. Recently, active
learning achieved promotion combined with deep learning-based methods, which are named deep
active learning methods in this paper. Deep active learning plays a crucial role in computer vision
tasks, especially in label-insensitive scenarios, such as hard-to-label tasks (medical images analysis)
and time-consuming tasks (autonomous driving). However, deep active learning still has some
challenges, such as unstable performance and dirty data, which are future research trends. Compared
with other reviews on deep active learning, our work introduced the deep active learning from
computer vision-related methodologies and corresponding applications. The expected audience
of this vision-friendly survey are researchers who are working in computer vision but willing to
utilize deep active learning methods to solve vision problems. Specifically, this review systematically
focuses on the details of methods, applications, and challenges in vision tasks, and we also introduce
the classic theories, strategies, and scenarios of active learning in brief.

Keywords: deep learning; active learning; computer vision; artificial intelligence

1. Introduction

With the rapid development of deep learning, the performance of computer vision
tasks has achieved breakthroughs benefiting from large-scale annotated datasets, such
as ImageNet [1], Cityscapes [2], and AbdomenCT-1K [3]. These datasets provide direct
supervision for model training. Meanwhile, there are useless, uninformative examples,
which serve as risks to overwhelm the training. Apart from the noise inside the labeled data,
there are always scenarios where unlabeled data is abundant. However, manual labeling
is high cost, such as medical image analysis, autonomous driving, anomaly detection,
and related issues in computer vision tasks. Specifically, taking the Cityscapes [2] dataset
as an example, the pixel-wise annotation will cost more than 90 min per image in the urban
street segmentation task. Similarly, in the medical image tumor segmentation task, it is
more challenging for medical experts to detect the mm-size objects from 3D volume data,
which is more time-consuming and medical knowledge–demanding.

Under the above conditions, maximizing the model’s performance with a limited
annotation budget becomes the primary concern. In order to figure out this problem, active
learning becomes a promising solution to improve data efficiency and relieve the high
annotation burden. As a subfield of machine learning, the core idea of active learning [4]
is to find the most valuable samples through some heuristic strategies, so the model can
achieve or even exceed the expected performance with as few labeled samples as possible.
The intuition of active learning is that not all samples in a dataset have the same significance
for model training. For example, some samples contain more noise that hinders training.
Besides this, some samples are too similar to be worth labeling. Therefore, the goal of
active learning is to select as few valuable or ambiguous samples as possible via the
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designed strategy and promote the performance with the selected samples interactively.
The above iterative training process between optimization and annotator is the primary
active learning mechanism, and human annotations exist in each training interaction.
Consequently, the essence of active learning is the Human-in-the-Loop (HITL) computing
systems, where human expertise is joint in the computer-based systems [5]. Humans
(such as doctors in clinical diagnosis) are part of the intelligent system and participate in
the model training process by providing judgments or domain-knowledge that influence
the final output of the system [6]. More details are introduced in Algorithm 1 and other
surveys [5,6].

Algorithm 1: The pool-based active learning workflow
Input : A labeled data pool L, an unlabeled data pool U , annotators A.
Output : A well-trained model M with least labeling cost.

1 M initialization;
2 repeat
3 Train the model M with L;
4 Obtain the representation R of all samples x ∈ U , R = M(x);
5 Query the top-K informative samples K via selection strategies, according to

the representation R;
6 Annotate the samples K and obtain the labels YK = A(K);
7 Update L = L ∪ {K, YK}, update U = U/K.
8 until End conditions;

Settles’s active learning literature survey [4] systematically summarized classic active
learning methods in 2004. More basic definitions and formulations can be found in this
survey [4]. Active learning has been rapidly growing and booming with various novel
methodologies, applications and challenges in recent years. Settles’s survey provided the
basic theory for active learning, especially the traditional AL. Differently, our work focuses
on deep learning–based active learning theories in computer vision tasks, which is named
deep active learning in this paper.

Apart from this, we summarize the latest surveys [6–9] about deep learning in Table 1.
Previous surveys systematically introduced the deep active learning in many fields, such
as CV and NLP. After studied the existing surveys about deep active learning and their
references, we found that there was not any review designed for CV researcher. Hence,
we decided to re-organize existing works and introduce latest research from a CV-related
perspective in this manuscript. The biggest difference between this manuscript and above-
mentioned works is that the expected audience of this review are researchers who are
working in computer vision but willing to utilize deep active learning methods to solve
CV problems. Active learning is still new to them. As such, we organized this manuscript
from the perspective of a CV researcher, and introduced the deep active learning from
CV-related methodologies and corresponding applications. This CV-friendly survey is our
new contribution to the community.

The remainder of this review is as follows: First, we argue that it is necessary to
introduce the basic concepts and methodologies of traditional active learning for the
newcomers. Then, Section 2 introduces the three basic candidate selection strategies in
active learning and give responding examples, and then we detail the pool-based strategy.
Section 3 introduces the common querying scenarios in active learning. Then, we focus on
the methodologies integrated deep learning and active learning. Section 4 details the recent
methodologies for deep learning-based active learning. Section 5 details the applications of
deep active learning, especially in computer vision tasks. Finally, Section 6 summarizes the
existing challenges of deep active learning in computer vision tasks, which are the future
works in this field. Section 7 concludes the survey.
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Table 1. The latest surveys about deep active learning.

Title Main Contents Publication

Samuel Budd et al.
A survey on active
learning and human-
in-the-loop deep
learning for medical
image analysis [6]

� Investigate the active learning in the medical im-
age analysis.
� Propose the considerations in the deep learning–
based active learning, including noisy oracles,
weakly supervised learning, multi-task learning,
annotation interface, and variable learning costs.
� Discuss the future prospective and unanswered
questions in the medical image analysis.

Medical
Image
Analysis.
2021, 71,
102062

Punit Kumar et al.
Active Learning
Query Strategies
for Classification,
Regression, and
Clustering:
A Survey [7]

� Summarize the active learning query strategies
for three tasks, including classification, regression,
and clustering.
� Classify the query strategies under classifica-
tion into: informative-based,representative-based,
informative-and-representative-based, and others.
� Summarize the empirical evaluation of active
learning query strategies.
� Present the implementation, application, and
challenges of the active learning in brief.

Journal of
Computer
Science
and
Technology.
2020, 35,
913–945.

Pengzhen Ren et al.
A Survey of Deep
Active Learning [8]

� Classify the existing works in the deep active
learning.
� Summarize the deep active learning applications,
including vision and NLP.
� Especially, in the visual data processing tasks,
it discusses image classification and recognition,
object detection and semantic segmentation, and
video processing.

ACM
Computing
Surveys.
54.9 (2021):
1–40.

Xueying Zhan et al.
A Comparative Sur-
vey of Deep Active
Learning [9]

� Categorize deep active learning sampling meth-
ods and querying strategies.
� Compare deep active learning algorithms across
common used datasets.
� Conduct experiments to explore influence fac-
tors of deep active learning
� Release a deep active learning toolkit, named
DeepAL+.

arXiv:2203.
13450,
2022.

2. Candidate Selection Strategies in Active Learning

In the classic active learning framework, one of the two most important components is
how to develop a criterion for evaluating the “worthiness” of unlabeled samples. After eval-
uation, the selection strategies decide whether one sample is worthy of being labeled by
the annotator according to its worthiness. The selected samples are regarded as candidates.
Finally, an appropriate selection strategy reduces the labeling cost and thus has important
implications in active learning. Due to this knowledge being beyond the main concern of
this review, Table 2 introduces four basic selection strategies in brief, and more details can
be found in existing active learning surveys [6–9].
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Table 2. Summary of candidate selection strategies in active learning.

Strategies Methodologies Typical Works

Random
selection

� Random sampling is to use random numbers to select samples from the
unlabeled dataset for labeling. N.A.� X = Random

x∈U
(x)

Uncertainty-
based
selection

� Least confidence is to select the sample with the smallest probability of the top1
predicted class. In practice, the opposite of the maximum predicted probability is
often taken as the uncertainty score of the sample.

Li et al. [10]

� X = arg max
x∈U

[1 − P(ŷ | x)] = arg min
x∈U

P(ŷ | x) Agrawal
et al. [11,12]

� Margin sampling is to calculate the difference between the probabilities of the
top1 and the top2 predicted class.Then the samples with the smallest difference
are defined as hard-to-classify samples for labeling.

Ajay J et al. [13]

� X = arg min
x∈U

(P(ŷ1 | x)− P(ŷ2 | x)) Zhou et al. [14]

� Multi-class level uncertainty is to select the two samples that are the farthest
from the classification hyperplane of multi-class and take their distance difference
as the score.

Gu et al. [15]

� X = arg min
x∈U

{
D(x, ŷ1)− maxy �=ŷ1 D(x, y)

}
Yang et al. [16]

� Maximize entropy is to utilize the methodology that larger entropy denotes
higher uncertainty. The sample with the largest entropy is selected as candidate. Yu et al. [17]

� X = arg max
x∈U

Ex = arg min
x∈U

{
∑Y

i=1 P(yi | x)× log P(yi | x)
}

Ozdemir et al. [18]

Diversity-
based
selection

� Angle-based measurement is to to measure diversity by calculating the undi-
rected angles between the induced hyper-planes. Brinker et al. [19]

�
∣∣cos
(
∠
(
hi, hj

))∣∣ = |〈φ(xi),φ(xj)〉|
‖φ(xi)‖‖φ(xj)‖ =

∣∣k(xi, xj
)∣∣/√k(xi, xi)k

(
xj, xj

)
� Redundancy-based measurement is to measure the diversity as the redundancy
between unlabeled points via symmetric KL divergence [20] between the two
vectors of probability values.

Shayok et al. [21]

� R(xi, xj) = ∑
|Y|
y
[
P(y | xi)− P

(
y | xj

)]
log
[
P(y | xi)/P

(
y | xj

)]
Zhou et al. [22]

Committee-
based
selection [23]

� Vote entropy–based measurement is to select the hard sample voted by the
Committee. The models in the committee distinguish samples into different
classes. The predicted results toward one sample with the largest entropy is
classified as hard sample and needs to vote for labeling.

Yan et al. [24]

� X = arg min
x∈U

{
− 1

N ∑Y
i=1

[
Vote(yi) log Vote(yi)

N

]}
Dagan et al. [25]

� Average KL divergence–based measurement is to measure the deviation of
those unlabeled samples via calculating the average KL divergence of the commit-
tee C. Dagan et al. [25]

X = arg max
x∈U

1
N ∑N

i=1 KL
(

PMi‖PC
)
= arg max

x∈U

1
N ∑N

i=1 ∑
|Y|
j PMj

(
yj | x

)
log

PMi (yj |x)
PC(yj |x)

Note: X represents the selected sample, U is the unlabeled data pool, ŷ1 is the predicted class with max probability,
P(ŷ1 | x) is the conditional probability where the input is x, and the predicted class is ŷ1. ŷ2 denotes the top2
predicted class. D(x, y) represents the distance from the sample x to the classification hyperplane of class y. φ(xi)

is the normalization function, k
(
xi , xj

)
=
〈
φ(xi), φ

(
xj
)〉

is the kernel function. |Y| is the total number of classes,
P(y | x) is the conditional probability where the input is xi , and the predicted class is y. Vote(yi) denotes the
number of models that voted for the current class yi , and ∑|Y|

i=1 Vote(yi) = N. Mi represents a specific model in
the committee. KL(P1‖P2) is the KL divergence between two distributions P1 and P2.
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2.1. Random Selection Strategies

Random sampling uses random numbers to select samples from the unlabeled dataset
for labeling. There is no interaction with the model’s prediction in the above process, which
is the most naive selection strategy. Consequently, it is often used as the basic comparison
experiment in active learning.

2.2. Uncertainty-Based Selection Strategies

The uncertainty-based selecting method is the simplest and most common strategy,
which assumes that the samples closest to the classification hyperplane have richer infor-
mation than others. It selects the most uncertain samples according to the predicted value
of the samples by the current model.

Typical uncertainty-based selection strategies includes Least confidence, Margin sam-
pling, Multi-class level uncertainty, and Maximize entropy. This survey briefly summarized
the above strategies in Table 2. More details can be found in existing surveys [6–9]. Conse-
quently, the machine learning model can quickly improve its performance by learning the
labels of the samples with substantial uncertainty.

2.3. Diversity-Based Selection Strategy

The above uncertainty-based selection strategy can effectively sample a single candi-
date for annotation, but it is often ineffective when there are multiple candidates. At this
time, the selection strategy based on the diversity of sample feature distribution comes into
being. Diversity tends to reflect the prediction consistency among the samples, i.e., higher
diversity values denote more inconsistency between the candidate sample and the entire
unlabeled pool [26]. Typical diversity-based measurement strategies includes angles-based
and redundancy-based perspectives. We also summarized above strategies in Table 2 and
provided the comparison between uncertainty-based and diversity-based selections in
Figure 1.

(a) Uncertainty-based selection strategies (b) Diversity-based selection strategies

Figure 1. Illustrations of different candidate selection strategies in active learning. The dashed line
represents the classification hyper-plane of the existing model. The hollow circles represent unlabeled
data, the colored circles represent labeled data, and the gray circles represent selected candidates.
The gray circle in subfigure (a) represents the least confident sample selected by the uncertainty-based
strategy. In subfigure (b), the three gray circles represent the most representative samples selected by
the diversity-based strategy.

2.4. Committee-Based Selection Strategy

Committee-based selection strategy [23] is based on version space reduction, and its
core idea is to preferentially select unlabeled samples that can reduce the version space to
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the greatest extent. The committee-based selection strategy’s motivation is that the most
informative selections are the samples where the committee predicts the most inconsis-
tent. Typical committee-based selection strategies include vote entropy and average KL
divergence, which are listed in Table 2. There are four basic steps in the committee-based
selection strategy:

1. Multiple models {M1, . . . ,MN} are used to construct a committee C for voting,
i.e., C = {M1, . . . ,MN}.

2. The models in the committee C are then trained on the labeled dataset L and get
different parameters.

3. All models in the committee make predictions separately on unlabeled samples from
U . The samples with the richest information are voted.

4. The samples which obtain the most disagreements are selected as candidates for labeling.

3. Common Querying Scenarios in Active Learning

According to the application scenarios, active learning methods can be divided into
three types: query synthesis scenario, stream-based scenario, and pool-based scenario. We
briefly summarize the above querying scenarios in Table 3 and introduce the pool-based
scenario in detail.

Table 3. Summary of common querying scenarios in active learning.

Scenarios Concepts Limitations Publications

Membership
query
synthesis

� The membership query syn-
thesis is to generate new unla-
beled instances for querying by
itself instead of selecting sam-
ples from the real-world distri-
bution [27].

� It may encounter
troubles when the gen-
erated data is too ar-
bitrary for the anno-
tator to recognize or
does not contains any
semantic information.

[28,29]

Stream-
based
sampling

� The stream-based sce-
nario [30] is to sample from the
natural distribution instead of
the synthesized one.
� In this scenario, the selection
process is similar to a pipeline.
The unlabeled sample is firstly
input into the model one by one.
� Then, the active learning strat-
egy needs to decide whether
to pass it to the annotator for
labeling or reject it directly.

� It is necessary for
the model to immedi-
ately decide based on
a single input rather
than the comprehen-
sive consideration of
this batch.
� The active learn-
ing system may suf-
fer from the absence of
knowledge of unseen
areas.

[31–33]

Pool-based
sampling

� The pool-based sampling sce-
nario is to selects the most valu-
able samples from an unlabeled
data pool for labeling according
to the informativeness [34].
� The unlabeled data pool
is sampled from the natural
distribution instead of synthe-
sized samples.

� It is computationally
expensive because ev-
ery iteration requires
the informativeness
evaluation for the
whole pool.

[35–37]

Among the above mainstreams, pool-based active learning is more compatible with
batch-based modern deep learning training mechanisms. Compared with the stream-based
selective sampling, the pool-based scenario is able to consider every sample based on
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this batch comprehensively. Consequently, it has become the most common scenario in
computer vision tasks. Moreover, the most related works introduced in this review also
belong to the pool-based active learning scenario.

Figure 2 is a classic pool-based active learning framework. A single batch of unlabeled
samples is input to the model from the unlabeled data pool during the training process.
Then, the query strategy selects the most valuable samples for labeling according to the
informativeness. After that, these labeled samples are added to the labeled dataset to
continue training the model.

Figure 2. The classic pool-based active learning workflow.

Sequentially, we formally define the pool-based active learning method in Algorithm 1.
The End conditions include that the performance of the model meets requirements, or the
budgets for annotation run out, or the selected samples are hard for annotators to label.

As shown in Figure 2, there are the labeled pool L = {(xl
1, yl

1), · · · , (xl
Nl

, yl
Nl
)} and

the unlabeled pool U = {xu
1 , · · · , xu

Nu
} at the beginning. Nl and Nu are the number of

labeled and unlabeled samples, respectively. Then, the data from the labeled pool is fed
into the machine learning model for supervised training. After that, the well-trained
model is utilized to extract the representation Ru = {(ru

1 ), · · · , (ru
Nu
)} of the unlabeled

pool data. Based on Ru, the informativeness is calculated according to the query strategy.
The top-K samples K = {xk

1, · · · , xk
Nk
} are selected out to the oracle (human annotators)

and obtain the labels YK = {yk
1, · · · , yk

Nk
}. Finally, the labeled pool L will be updated to

L = {(xl
1, yl

1), · · · , (xl
Nl

, yl
Nl
), (xk

1, yk
1), · · · , (xk

Nk
, yk

Nk
)}. With the updated L, the machine

learning model will promote the performance in return. Meanwhile, the size of unlabeled
pool U is reduced to Nu − Nk. The above loop will be repeated until one of the end
conditions is met. Since the selected samples K from the unlabeled pool U are the most
significant ones for training, the size of L to learn a model can often be much smaller than
the size required in classic supervised learning without active learning.

4. Deep Active Learning Methods

Recent developments are dedicated to multi-label active learning, hybrid active learn-
ing, and deep learning–based active learning. In the upcoming sections, we will detail deep
learning–based active learning.

4.1. Deep Active Learning for CNNs

As we introduced in Section 2.2, uncertainty is one of the most used metrics to select
candidate in active learning. We summarize the uncertainty estimation methods in Table 4.
At the same time, Bayesian methods are known for their ability to capture underlying
model uncertainty. The classic Bayesian active learning framework consists of an unlabeled
data pool U , the labeled data pool L, and a Bayesian model M trained on the current L.
The output of the Bayesian model M is p(y|x,M, L), where the input data is x and the
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prediction y ∈ {1, ..., c} in the classification tasks. In Bayesian deep learning, the model M
is replaced by a Convolutional Neural Network (CNN) with prior probability distributions.
Gal et al. [38] proposed a Bernoulli-based approximate variational inference method. After
that, they [39] proposed to capture model uncertainty by using the Monte Carlo dropout
regularization as a variational Bayesian approximation. Consequently, it is natural to utilize
Bayesian methods to actively select valuable candidates.

Gal et al. [40] introduced the Bayesian Convolutional Neural Networks into the active
learning framework. They demonstrated that such combination improved performance
over existing active learning methods on the image classification dataset MNIST [41]
(achieving 5% test error) and skin cancer diagnosis dataset ISIC 2016 [42] (achieving
0.71/0.75 AUC). Bayesian Active Learning by Disagreement (BALD) [43] was proposed
to be the basic selection strategy, where Shannon entropy [44] was utilized to measure
the “information content”. The discrepancy of Shannon entropy denoted the difference
between the information entropy of a certain sample and the average information entropy
of the dataset. The larger the difference, the more information the sample contained relative
to the average. Finally, the BALD strategy pushed the samples with the largest Shannon
entropy. The above process is formulated as follows.

X = arg max
x∈U

I(x) = arg max
x∈U

SE(y | x, L)− E
θ∼P(θ|L)

[SE(y | x,M)], (1)

where I(·) is the mutual information. Higher mutual information means the model’s
predictions are more uncertain. SE(y | x, L) and SE(y | x,M) are represented by the
Shannon Entropy of the prediction PM(y | x) and the mean distribution PM(y | L),
respectively.

Ensemble learning is a well-known technique in machine learning that improves
performance by integrating different models and combining their results [45]. Ref. [46]
explored the difference between ensemble-based methods against Monte Carlo dropout
methods on image classification tasks MNIST [41] (achieving 90% test set accuracy with
roughly 12,200 labeled images), CIFAR-10 [47] (achieving 91.5% accuracy) and diabetic
retinopathy (DR) detection (https://www.kaggle.com/competitions/diabetic-retinopathy-
detection/rules, accessed on 9 July 2022) (achieving 0.983 AUC). They conducted extensive
experiments from 11 aspects and found that the former outperformed the latter and was a
more reliable measure of uncertainty.

Table 4. Summary of uncertainty estimation methods in deep active learning.

Type Methodology Equation

MC
dropout

� In practice, the MC dropout usually trains the
CNN with the labeled data pool L with dropout.
� After training, it generates a new dropout mask
for the model parameters Mt and performing T
forward inference.
� The output is the average of T results.

p(y | x, L) =
1
T ∑T

t=1 p(y | x,Mt)

Deep
Ensembles

� The ensemble-based approaches design N neu-
ral networks {M1 · · ·MN} at first.
� These networks share same architecture but ini-
tialized from different weights.
� Then networks are trained with the labeled data
pool L.
� The average of the outputs of the N networks is
the final output.

p(y | x, L) =
1
N ∑N

i=1 p(y | x,Mi)

Bayesian-based methods addressed the problem of uncertainty-based candidate se-
lection strategies, but there was another obstacle that needed to be solved. The biggest
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difference of CNN-based deep learning (DL) methods and traditional active learning (AL)
methods is that AL methods query candidates one by one while DL methods load a batch
size of samples at the same time. Ozan Sener and Silvio Savarese [48] conducted experi-
ments on vision tasks with traditional active learning methods and found that previous AL
works did not perform well for CNN-based vision tasks due to the batch settings during
model training. They attributed this ineffectiveness to batch sampling. In order to solve it,
they defined the active learning as a Core-Set selection problem, where the algorithm aims
to train on a small mount of labeled samples instead of the whole dataset such that the
trained model is able to get competitive performance over the model trained on the whole
dataset. They defined the core-set selection problem as the following optimization:

min
L1:|L1|≤b

∣∣∣∣∣∣ 1n ∑
i∈[n]

loss(xi, yi;ML0∪L1)− 1
|L0 + L1| ∑

j∈L0∪L1

loss
(
xj, yj;ML0∪L1

)∣∣∣∣∣∣, (2)

where L0 represents the randomly selected samples at the beginning, L1 represents newly
selected samples from the entire dataset under budget b. n is the number of samples in
the entire dataset. ML0∪L1 denotes the trained model under the subset L0 and L1. loss is
the loss function, where the authors suggested the cross-entropy loss for effective training.
In order to prove their hypothesis, they conducted experiments on active learning for
fully supervised models and weakly supervised models. Specifically, they used dataset
CIFAR10/100 [47] for image classification and dataset SVHN [49] for digit classification.

Based on the Core-Set strategy, the combination of batch-based active learning and
deep learning has been a researcher topic in the community. the goal of batch-based deep
active learning is to select the most informative batch or mini-batch B∗ =

{
x∗1 , x∗2 , . . . , x∗n

}
from the loaded batches B, where B belongs to unlabeled pool U , and n is the batch size.
We formulate above process as follows.

B∗ = arg max
B⊆U

Φ(B,M(L)), (3)

where Φ(·) is the score function to measure the informativeness of the batch B, L is the
labeled data pool, M is the trained model.

After that, most of the related research was devoted to the innovation of the scor-
ing function Φ(·). David Janz et al. [50] adopted the idea of Bayesian Active Learning
by Disagreement (BALD) [43] into scoring function. Specifically, they utilized the mu-
tual information I(·) as score function and selected samples with the maximum gain
of information, where ΦBALD(B,M(L)) = ∑n

i=1 I(yi;M | xi, L). However, BALD just
considered the mutual information between one single sample xi and model parame-
ters M(L), and did not take the relationship between samples in an batch. As an ex-
tension of BALD, BatchBALD [51] promoted the BALD by estimating the mutual infor-
mation I(·) between all samples in an batch and the model, which was formulated as
ΦBatchBALD(B,M(L)) = I(y1:n;M | x1:n, L).

Yoo et al. [52] proposed a novel loss prediction module into the target model. This
module consisted of global average pooling (GAP), full connected layer (FC) and ReLU,
capturing multi-level features. Then the features was concentrated and calculated the
loss prediction. All unlabeled samples were evaluated by this module via mini-batch.
The batch with the top-K predicted losses selected as candidates and then labeled to update
training set. the proposed module was evaluated in Image Classification task CIFAR-
10 [47] (achieving accuracy of 0.9101), Object Detection task PASCAL VOC [53] (achieving
0.7338 mAP), and Human Pose Estimation task MPII [54] (achieving 0.8046 PCKh@0.5).
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4.2. Generative Adversarial Active Learning

According to the analysis of [55], the Core-Set strategy [48] is very inefficient in high-
dimensional representation learning due to its inherent distance-based computation. This
obstacle is well addressed by leveraging GAN or VAE for representation learning from
high-dimensional data.

Generative Adversarial Networks (GAN) is a novel representation learning method
proposed by Goodfellow [56]. Its core idea is “Generative” and “Adversarial”. The GAN
network structure contains two models. One is the generator G and the other is the
discriminator D. The generator generally uses a deconvolutional neural network or a
fully connected neural network to synthesize new data (e.g., images). At the same time,
the discriminator is a CNN-based binary classifier to distinguish whether the input is from
the natural distribution or synthesized one from the generator.

The discriminator is trained first to make a good judgment so that the real and gen-
erated samples can be better distinguished. Then the parameters of the generator can be
updated more accurately. The goal of discriminator is that P(D(x)|x ∈ real) = 1 while
P(D(x)|x ∈ f ake) = 0. Then the generator and discriminator in GANs are trained against
each other in a two-player game. The weights and biases of the discriminator and generator
are trained through back-propagation until they reach a dynamic equilibrium state with
unlabeled samples. In order to discriminate samples and classify them, the discrimina-
tor usually utilizes the cross-entropy loss to measure similarity, which is formulated as
follows [56]:

LD =
1
N

N

∑
i=1

[
logD

(
x(i)
)
+ log

(
1 −D

(
G

(
z(i)
)))]

(4)

LG =
1
N

N

∑
i=1

log
(

1 −D

(
G

(
z(i)
)))

(5)

z ∼ pz(z) is the generated distribution and x ∼ pdata(x) is the real distribution. N denotes
the batch size. As a consequence, the objective function of GAN is shown as follows [56]:

L = arg min
G

max
D

V(G,D) = Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log(1 −D(G(z)))], (6)

where V(G,D) is the difference between the generated distribution pz and the actual
distribution pdata. max is to train the discriminator to discriminate the sample to the
greatest extent. min is to train the generator to minimize the difference between the
generated sample and the actual sample. When the algorithm converges, the samples
generated by the generator can confuse the discriminator and cannot distinguish right from
wrong. In other words, the generator should try its best to generate more realistic results
to deceive the discriminator. The discriminator should try its best to distinguish the truth
from the false and not be deceived by the generator. The network reaches the ideal state
when the generated result is actual (discrimination probability is 0.5).

Zhu et al. [57] firstly proposed a novel query synthesis-based active learning method
GAAL fused with GAN. GAAL was trained on datasets MNIST [41] (achieving accuracy
70.44%) and CIFAR-10 [47] while tested on the dataset USPS [58]. The workflow of GAAL
can be concluded as Algorithm 2.
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Algorithm 2: The synthesis-based active learning method workflow
Input : A labeled data pool L, an unlabeled data pool U , annotators A,

a generator G and a discriminator D.
Output : A well-trained model M with the least labeling cost.

1 M initialization;
2 repeat
3 Train the model M with the labeled dataset L is fed into the for supervised

training;
4 Train the generator G and discriminator D with all unlabeled dataset U via

Equation (6);
5 Synthesize instances with the generator G for querying;
6 Obtain the representation R of all synthesized instances;
7 Query the top-K synthesized instances K via uncertain strategies, according to

the representation R;
8 Label K from the annotators as the ground truth YK;
9 Update L = L ∪ {K, YK}, update U = U ∪K.

10 until End conditions;

GAAL inspired GAN-based generative adversarial methods in active learning. Con-
sequently, the latter works were devoted to studying pool-based Generative Adversarial
Active Learning. Tran et al. [59] proposed a framework of Bayesian Generative Active Learn-
ing (BGAL) to solve multi-classification tasks when the amount of labeled data is small.
The proposed BGAL was validated on MNIST [41] (achieving accuracy 99.68%), CIFAR-
10/100 [47] (achieving accuracy 91.13%), and SVHN [49] (achieving accuracy 69.69%).
Mayer et al. [60] proposed a pool-based active learning strategy(ASAL). Compared to tradi-
tional pool-based strategies for exhaustive uncertainty search from unlabeled pools, ASAL
utilized GAN to generate the most representative samples from unlabeled pools, resulting in
more efficient active learning techniques. ASAL was validated on the datasets MNIST [41]
(reducing 300 labeled samples), CIFAR-10 [47] (reducing 500 labeled samples), CelebA [61]
(reducing 750 labeled samples), SVHN [49], and LSUN Scenes [62]. Sinha et al. [63] pro-
posed a pool-based semi-supervised active learning algorithm VAAL. VAAL obtained
great improvement in experimental results on classification and segmentation. VAAL
achieved great improvement in experimental results, including CIFAR10/100 [47] (achiev-
ing accuracy of 90.16%/63.14%), Caltech-256 [64] (achieving 1.01% improvement on Core-
set), ImageNet [1], Cityscapes [2] (achieving mIoU 62.95), and BDD100K [65] (achieving
mIoU 44.95).

The above methods were devoted to directly generating the representative samples
by solving some optimization problems, and then improving the efficiency of screening
samples for active learning. More details are summarized in Table 5. Apart from that,
Huijser et al. [66] firstly proposed to use a GAN to generate a batch of samples along the
decision boundary of the current classifier. Next, they determined the location where the
category changed from the generated samples through visualization and added it to the set
of samples to be labeled. Finally, the method’s effectiveness was verified by a large number
of image classification experiments. The method can reduce the burden of data annotation
by requiring the annotator to label decision boundaries instead of samples.
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Table 5. Summary of generative methods in deep active learning.

Methods Innovation Architecture Comments

GAAL [57]

� The first novel query synthesis-based active
learning method GAAL fused with GAN.
� GAAL combined query synthesis with the un-
certainty sampling principle and adaptively syn-
thesized training instances for querying to in-
crease learning speed.
� The DCGAN was implemented to replace the
unlabeled pool in previous work.

� Generator:
CNN
� Discriminator:
CNN
� Predictor:
SVM
� Score-function:
Uncertainty

� GAAL was the first work inte-
grated active learning and gen-
erative methods.
� GAAL provided rich repre-
sentation training samples for
active learning via GAN.
� GAAL was limited by the gen-
erated abnormal instances if the
GAN was not optimized correctly.
� GAAL is limited by the binary
classification setting.

BGAL [59]

� BGAL integrated deep active learning and
data augmentation methods to generate infor-
mative samples and expand the labeled data set
to improve the accuracy of model classification.
� BGAL also integrated ACGAN [67] and VAE-
GAN [68] into a novel generative model named
VAE-ACGAN, where the VAE decoder was the
generator of the GAN.
� VAE-ACGAN generated new synthetic in-
stances on the query samples.
� The learner and the VAE-ACGAN were jointly
trained in this work.

� Generator:
VAE
� Discriminator:
Bayesian CNN
� Predictor:
Resnet18
� Score-function:
MC-dropout

� BGAL extended the GAAL by
combined more robust data aug-
mentation techniques.
� The combination of data
augmentation and active learn-
ing obtained consistent improve-
ment on classification than sin-
gle methods.
� The computation efficiency
need to be improved due to the
computational cost is high.

ASAL [60]

� ASAL consists of uncertainty sampling, adver-
sarial sample generation, and sample matching.
� In order to approximate the underlying data
distribution from the unlabeled data pool, ASAL
utilized a GAN to generate adversarial samples.
� ASAL designed an efficient matching algo-
rithm, where an uncertainty score was calculated
to measure the similarity between the unlabeled
samples and the generated samples.
� ASAL selected the most similar samples from
the pool and performs annotation.

� Generator:
CNN with match-
ing
� Discriminator:
CNN
� Predictor:
CNN
� Score-function:
Entropy

� ASAL was the first pool-
based generative active learn-
ing method.
� The main contribution of
ASAL was to select the most sim-
ilar sample from pool instead
of directly annotating it via a
matching algorithm.
� ASAL utilized the entropy for
uncertainty estimation and was
applied in the multi-label classi-
fication.

VAAL [63]

� VAAL utilized adversarial learning to promote
active learning.
� A variational autoencoder (VAE) was used to
extract image features, and then a discrimina-
tor decided whether the image was labeled or
unlabeled.
� The VAE hoped to trick the discriminator into
judging all samples as labeled data, but the dis-
criminator hoped to accurately distinguish unla-
beled samples in the data pool.
� The annotator labeled the unlabeled samples
selected based on this method.

� Generator:
VAE
� Discriminator:
MLP
� Predictor:
VGG16
� Score-function:
Confidence

� VAAL provided a computa-
tional efficient sampling method
with the best accuracy and
time cost.

4.3. Semi-Supervised Active Learning

Vision tasks based on supervised learning require a large amount of labeled data for
model training. These labeled data not only provide direct supervision signals but also
limit the generalization ability of the model [69]. At the same time, the acquisition of these
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data is challenging due to the cost and time of annotation [26]. To alleviate this limitation,
methods based on semi-supervised learning have become another mainstream. It studies
model training under the premise of limited labeled data. It expects higher performance
to balance the dilemma between performance and cost, which is a perfect fit for active
learning, thus bringing a lot of research and practical value.

Semi-supervised learning (SSL) can train the model with a small amount of labeling
cost. Unlike active learning, SSL methods usually select samples with confident prediction
results instead of uncertain samples and then label them directly by the model instead
of annotators. However, it is still impossible to guarantee that these high-confidence
prediction results do not contain noise or erroneous results due to model prediction accuracy
errors. Thus, these predictions could not directly participate in model training because
the pseudo-labels may make the model abnormal. In contrast, active learning selects the
samples with the most uncertain prediction results to be labeled by annotators, which can
be used as the ground truth without noise and thus ensure the quality of labels. Therefore,
the combination of semi-supervised learning methods and active learning methods can
complement each other to a certain extent.

McCallumzy et al. [70] firstly proposed the above idea that combined Query-by-
Committee active learning and Expectation-Maximization (EM) algorithms, using the
naive Bayes method as a classifier and conducting experiments on text classification tasks.
Subsequently, Muslea et al. [71] promoted the above work and proposed the joint testing
method (Co-Testing), where two classifiers were trained in different perspectives. After that,
samples were jointly selected for annotation. Finally, new labeled data were joined into the
expectation-maximization (Co-EM) algorithm. Sequentially, Zhou et al. [72] combined the
above semi-supervised learning and active learning methods and then validated that both
of them are beneficial to the image retrieval task.

In addition, the self-training algorithm is one of the primary methods in SSL, and its
core steps are shown in Algorithm 3. Firstly, the self-training algorithm initializes the
model with a small number of labeled samples to ensure the initial performance of the
model. Then, the algorithm selects appropriate samples and calculates their corresponding
predicted labels based on the predicted representations. Finally, the labeled dataset is
updated with new pseudo-labeled samples and the model is trained again in the next
iteration. The main challenge of the semi-supervised learning algorithm is that SSL is
easy to introduce a large number of noise samples during the training process, so the
model cannot learn the correct information. Some researchers mitigate noisy samples by
constructing Co-Training [73] and Tri-Training [74] algorithms of multiple classifiers.

Algorithm 3: The workflow of basic self-training algorithm
input :A labeled data pool L, an unlabeled data pool U , self-training threshold θ.
output :A well-trained model M with the least labeling cost.

1 M initialization;
2 repeat
3 Train the model M with the labeled dataset L;
4 Obtain the representation R of all unlabeled samples from U ;
5 Evaluate the confidence C of each sample according to the representation R;
6 Select the samples K that meet the threshold and their corresponding model

prediction labels YK ;
7 Update L = L ∪ {K, YK}, update U = U/K.
8 until End conditions;

Apart from this, the authors of Refs. [75–77] integrated semi-supervised learning
and active learning skillfully. They combined uncertainty-based selection strategies and
self-training methods and made full use of their respective advantages while making up
for their shortcomings. Consequently, their works achieved remarkable results.
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However, the above semi-supervised active learning methods have not dealt with the
noisy samples effectively, so it still had a significant impact on the model.

Song et al. [78] combined active Learning and semi-supervised Learning with incon-
sistent prediction and utilized data augmentations. These works achieved remarkable
performance in CIFAR-10/100 [47] (improving 1.47%/1.16% accuracy) and SVHN [49]
(improving 0.43% accuracy) classification tasks. However, they still suffered from data
augmentation because there were too little data augmentations to estimate inconsistency.
Sequentially, Guo et al. [79] proposed REVIVAL method and obtained more semantic dis-
tribution information via learning the continuous local distribution of unlabeled samples
from feature space.

Despite the progress, most active learning algorithms suffer from data waste problems
because they ignore that most of the data in unlabeled pool is not actively annotated, which
can further enhance the performance via semi-supervised learning (SSL).

4.4. Active Contrastive Learning

Semi-supervised learning still needs some labeled data to carry out training, but self-
supervised learning extracts representation by mining data instead of annotation. Con-
trastive learning is one of the most successful paradigms for self-supervised learning.
The key idea of contrastive learning is to learn its relationship by comparing the similarity
of different samples in the dataset. Thus, how to define the positive pairs (similar samples)
and negative pairs (dissimilar samples) is the main issue in contrastive learning. The
workflow of basic contrastive active learning is reported in the Algorithm 4. For arbitrary
data x, the goal of contrastive learning is to learn an encoder f (·) such that:

score
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f (x), f
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x+
))

>> score
(

f (x), f
(
x−
))

, (7)

where f (x) denotes the global features. f (x+) denotes the local features from positive
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After that, it optimizes an objective that pulls the positive pairs together while pushing
the negative pairs away in the representation space. The loss function InfoNCE [80] is
usually used in the related research of contrastive learning, which is formulated as follows:
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where the corresponding sample x has one positive and N-1 negative pairs. By minimizing
the InfoNCE loss, contrastive learning is to make the features of f (x) more similar to the
features of positive samples f (x+), and less similar to the features of N-1 negative samples
f (x−j )(j ∈ 1, . . . , N − 1). Finally, it can maximize a lower bound on the mutual information
between f (x) and f (x+) [81].

McAllester et al. [82] analyzed the theoretical shortcomings of contrastive learning,
where they argued that the learned representations of contrastive learning were high
relative to the size of negative samples. For example, MoCo [83–85] and SimCLR [86,87]
obtained success due to the various data argumentation with large memory bank and
extremely large batch size, respectively. However, Saunshi et al. [88] validated that a larger
size of negative samples does not always learn better representations, leading to better
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performance. They found that the larger batch size would likely generate more redundant
samples, thus affecting the efficiency of contrastive learning.

In order to address the above problems, active learning was introduced into contrastive
learning by assisting the selection of negative samples [89]. When they carried out the
cross-modal contrastive representation learning, uncertainty and diversity were used to
sample the negative samples, thus reducing the redundancy actively.

Furthermore, previous active learning works assume that the labeled and unlabeled
data pools follow the same class distribution. When applying these works to mismatched
class distribution tasks, it suffered from performance degradation sharply. Du et al. [90]
focused on this problem. They firstly defined the score function:
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= exp
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f (xi)

� f
(

xj
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τ · ‖ f (xi)‖
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(
xj
)∥∥
)
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Then, they used contrastive learning to select semantic and distinctive features and
then selected the most informative unlabeled samples v� with minimax selection scheme
for querying.

v� = argmin
vi∈V−L

max
vj∈N (i)

d
(
xi, xj

)
, (12)

where d(xi, xj) calculates the Euclidean distance between embeddings of two nodes xi and
xj, N (i) represents the neighbor set of node i, V and L denotes the node set and labeled
set, respectively. Finally, they generalized contrastive learning to active learning with the
following modified loss function:
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where P(i) denotes the set of positive embedding whose label is the same with node vi.

Algorithm 4: The workflow of basic contrastive active learning algorithm
input :A labeled data pool L, an unlabeled data pool U .
output :A well-trained model M with the least labeling cost.

1 M initialization;
2 repeat
3 construct the positive and negative sample pairs;
4 Train the model M with the labeled dataset L by minimizing the contrastive

loss objective;
5 Calculate the distance between each sample in the batch;
6 Select the candidate K according the distance of embeddings or other certain

estimations;
7 Query K’s label YK ;
8 Update the positive embeddings set P(·) with samples embeddings having

the same label as YK ;
9 Update L = L ∪ {K, YK}, update U = U/K.

10 until End conditions;

Zhu et al. [91] integrated graph neural networks (GNNs)-based active learning with
contrastive learning. They denoised the selected candidates by considering the neighbor-
hood propagation scheme in GNNs. Krishnan et al. [92] proposed the featuresim score,
which selected balanced, diverse, and informative samples (samples in-between clusters
and from edge of clusters) from each class. Gao et al. [93] applied active learning and
contrastive learning to the fine-grained off-road semantic segmentation task. They used
different semantic attributes for weak supervision and defined the image patches that
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share the same label as positive pairs while the rest were negative pairs. Besides this,
they proposed a risk evaluation method to evaluate high-risk predictions and selected for
additional annotation.

4.5. Other Deep Active Learning

Unsupervised domain adaptation (UDA) is a type of cross-domain transfer learning,
where the source samples are annotated, and the labels of target samples are absent during
training [94]. The goal of UDA is to minimize the discrepancy in distribution between the
source domain and the target domain and to learn a robust generalized representation
without target annotations [95]. At present, only a few works [96,97] have utilized active
learning methods to solve domain adaptation challenges and to improve the performance
of the source domain model in the target domain. Recently, Ning et al. [98] first proposed
a novel framework that combines active learning and unsupervised domain adaptation
to assist cross-domain semantic segmentation tasks. Specifically, they clustered multiple
anchors from the source domain to adopt the multi-center distribution. After that, they
queried from the unlabeled target samples to the most complimentary samples from the
source domain as candidates. The active learning method modeled the data distribution in
both the source and target domain and, thus, captured more comprehensive information
for domain adaptation.

5. Applications

Recently, computer vision is achieving a breakthrough with deep learning and booms
wide applications, which require large amounts of labeled data. Meanwhile, it is impossible
to abandon labels entirely or give up unlabeled data in practical applications. Under
this condition, active learning can provide a more reasonable expedient, i.e., to annotate
valuable data instead of all data.

According to the detailed introductions of deep active learning in the previous sections,
we can conclude that the deep active learning methods can play a significant role in the
label-intensive vision tasks, helping to reduce labeling costs. In other words, active learning
applications are for such conditions, i.e., how to save the workload of labeling and make
the model achieve satisfactory performance under a large amount of unlabeled data. Here,
we only introduce some extensive-studied applications related to active learning, especially
deep active learning.

5.1. Deep Learning-Based Autonomous Driving

In supervised deep learning, a large amount of labeled data needs to be collected
for training [99,100], especially in the scorching field of autonomous driving. In this field,
the perception of the environment of unmanned vehicles is particularly important [101,102].
The perception of the model directly affects the quality of decision making and plays a vital
role in the safety of unmanned vehicles [103,104]. However, there are many complexities
environments in autonomous driving scenes. In order to ensure the performance of the
model, most companies need to collect the images, point clouds, and radar data from
the actual scene for training. Such massive amounts of data are challenging to collect
and label. Nevertheless, active learning is able to select the most valuable samples (or
via the uncertainty estimation of the current model prediction) and then manually label
them. Finally, we can carry out continued model training, thereby improving the model’s
performance as much as possible, improving stability and security. In this section, we
introduce and compare the applications on deep active learning–based autonomous driving.
The overview is summarized in the Table 6.
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Table 6. Summary of applications on deep learning-based autonomous driving.

Applications Comments Implementation Evaluation

Autonomous
navigation [105]

� Proposed a frame-
work for learning au-
tonomous policies for
navigation tasks from
demonstrations.

� Network: 3 × (Conv + Pool) + FC.
� Score-function Entropy:
E(X) = −∑N

i=1 P(xi) log P(xi)

� Reach the flag:
error rate = 2.48%.
� Follow the line:
error rate = 4.06%.
� Reach the correct object:
error rate = 0.86%.
� Eat all disks:
error rate = 1.70%

Weather and
light
classifica-
tion [106]

� Released the first
public dataset for
weather and light
level classification fo-
cused on autonomous
driving.

� Target network: Resnet18
� Loss-prediction module [52]:
4 × (GAP+FC+ReLU)+Concat+FC.
� Selection strategy: High loss samples.

� Weather1 [107]:
accuracy = 98.80%
� Weather2 [108]:
F1 score = 0.872
� Proposed dataset [106]:
F1 score = 0.772

3D object
detection [109]

� The first work that
introduced active
learning into 3D
object detection in
autonomous driving.

� 3D Detector: VoxelNet
� Score-function: Diversity:
minB⊆U maxxi∈B minxj∈B∪L

dtemp+spat+ f eat
(
xi, xj

)
s.t.cost(B) ≤ budget

� nuScenes [110]:
mAP = 45.02.

Lane detec-
tion [111]

� The first work that
introduced active
learning into lane de-
tection in autonomous
driving.

� Student model:
ResNet-122 (for PLN [112])
ResNet-18 (for UFLD [113])
� Teacher model:
SENet-154 (for PLN [112])
ResNet-101 (for UFLD [113])
� Score-function:
Combined the uncertainty and diversity
metrics.

� CULane [114] and LLA-
MAS [115].
(F1 score not reported)

Crowd count-
ing [116]

� The first work that
used predictive uncer-
tainty for sample se-
lection pertaining to
crowd counting task.

� Local feature block:
VGG16
� Non-local feature block:
Transformer
� Score-function:
Informativeness difference : Diff(Xi) =

(Meani(Xi,M1)− Meani(Xi,M2))
2

� UCF-QNRF [117]:
MAE = 86; MSE = 146.
� UCF CC [118]:
MAE = 210; MSE = 305.4.
� ShanghaiTech-A [119]:
MAE = 61.5; MSE = 103.4.
� ShanghaiTech-B [119]:
MAE = 7.5; MSE = 11.9.
� NWPU [120]:
MAE = 78; MSE = 448.

Crowd count-
ing [121]

� Proposed a partition-
based sample selection
with weights (PSSW)
strategy to actively se-
lect and annotate both
diverse and dissimilar
samples for network
training.

� Backbone:
VGG16 pretrained by imagenet
� Score-function:
Diverse in density and dissimilar to pre-
vious selections.

� ShanghaiTech-A [119]:
MAE = 80.4; MSE = 138.8.
� ShanghaiTech-B [119]:
MAE = 12.7; MSE = 20.4.
� UCF CC [118]:
MAE = 318.7; MSE = 421.6.
� Mall [122]:
MAE = 3.8; MSE = 5.4.
� TRANCOS [123]:
MAE = 7.5.
� DCC [124]: MAE = 4.5.

59



Appl. Sci. 2022, 12, 8103

Hussein et al. [105] introduced active learning into the autonomous navigation ap-
plication. In order to address the challenge of generalizing a model over unseen data,
they utilized the entropy to measure the confidence of prediction and then labeled the
low-confident samples for iterative training. Dhananjaya et al. [106] focused on the harsh
weather and low light conditions during driving. They proposed a related dataset con-
taining 60k images from videos, which consisted of various weather conditions (clear,
rain, and snow), light levels (bright, moderate, and low), and street types (asphalt, grass,
and cobblestone). Under the proposed dataset, previous deep learning–based autonomous
driving algorithms suffered from accuracy degradation. The authors introduced an active
learning framework to reduce the redundancy from adjacent frames in the video and find
the optimal subset for training. Peng et al. [111] designed a novel metric combined with
uncertainty and diversity to measure the informativeness of samples. The uncertainty was
utilized to estimate the valuable knowledge and noise, while the diversity was used to
reduce data redundancy. Liang et al. [109] took the advantage of the multimodal informa-
tion provided in LiDAR point clouds, and proposed a diversity-based acquisition function
that enforces spatial and temporal diversity in the selected samples. Besides this, they
investigated the cold-start problem of active learning and demonstrated that the proposed
diversity-based methods was able to select better initial batch at early batches, resulting in
better performance. Ranjan et al. [116] focused on the domain adaptation of crowd count-
ing. Based on the Query-By-Committee sampling strategy, they constructed the committee
with two CTN networks and estimated the density and uncertainty of predictions from
committee. Afterwards, they selected the informative samples from the target domain
for active learning. Zhao et al. [121] selected the most informative samples via diverse in
density and dissimilar to previous selections. The diversity was evaluated by separating
the unlabeled set into different density partitions. The dissimilarity was evaluated by
considering local crowd density and global crowd count.

5.2. Intelligent Medical Assisted Diagnosis

In the medical field, the development of deep learning has brought revolutionary
development to many aspects, including diagnosis [125,126]. However, the above data-
driven methods inevitably require a large amount of labeled data [127,128]. However,
labeling medical images is time-consuming and labor-intensive, which also requires specific
professional knowledge [129,130]. Therefore, it is efficient to use active learning to select
samples that are difficult to predict by the model for selective labeling. There is much
research studying active learning in the medical field. We summarized the most typical
works in the Table 7.
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Table 7. Summary of applications on deep learning-based intelligent medical assisted diagnosis.

Applications Comments Implementation Evaluation

Medical
image
detection and
classifica-
tion [22,26]

� Combined active
learning, incremental
fine-tuning, and trans-
fer learning.

� Network: AlexNet pretrained by ima-
genet
� Selection strategy:
Entropy: ej

i = −∑
|Y|
k=1 pj,k

i log pj,k
i

Diversity:

di(j, l) = ∑
|Y|
k=1

(
pj,k

i − pl,k
i

)
log pj,k

i
pl,k

i

� polyp detection:
↓ 86% labels.
� pulmonary embolism de-
tection: ↓ 80% labels.
� colonoscopy frame classi-
fication: ↓ 82% labels.
� scene classification:
↓ 35% labels.

COVID-19
Lung Ultra-
sound Multi-
symptom
Classi-
fication [131]

� The first work that
introduced active
learning into ultra-
sound classification
for COVID-19-assisted
diagnosis.

� Backbone: ResNet50 pretrained by ima-
genet
� Score-function: Least confidence:
LC(x) = max1≤i≤l p(li | x)t
Multi-label entropy:
MLE(x) = ∑l

i=1(p(li | x) log p(li | x)+

p
(

li | x
)

log p
(

li | x
)
)

� COVID19-LUSMS v1:
↓ 80% labels.

Brain
tumor
Classifica-
tion [132]

� Sampling candi-
dates by discarding
subsets of training
samples with the
highest and lowest
uncertainty scores.

� Network: AlexNet pretrained by ima-
genet
� Score-function: Combined entropy and
Kullback–Leibler(KL) divergence:
E(X) = −∑N

i=1 P(xi) log P(xi) D(p‖q) =

∑n
i=1 P(xi) log P(xi)

Q(xi)

� MICCAI BRATS [133–135]:
↓ 40% labels.

Diabetic
retinopathy
classifica-
tion [136]

� The first work that
introduced active
learning into lane de-
tection in autonomous
driving.

� Bayesian convolutional neural network
(BCNN): Monte-Carlo drop-out
� Teacher model:
SENet-154 (for PLN [112])
ResNet-101 (for UFLD [113])
� Score-function: entropy.

� APTOS 2019 [137]:
AUC = 0.99
(multi-class classification)
Accuracy = 92%
(multi-class classification )
Accuracy = 85%
(BCNN in Active Learning)

Histo-
pathology
image
analysis [138]

� The first work that
proposed an AL frame-
work (PathAL) to dy-
namically identify im-
portant samples to an-
notate and to distin-
guish noisy from hard
samples in the training
set.

� Backbone: EfficientNet-B0 [139]
� Noisy sample detector:
O2U-Net [140]
Curriculum Sample Classification:
CurriculumNet [141]
� Score-function: Distinguished noisy sam-
ples from hard ones, and selected the most
informative samples to be annotated.

� PANDA [142]: quadratic
weighted kappa = 89.5.

Gastric
adenocarci-
noma and
colorectal
cancer [143]

� The first work that
explored the identi-
fication of the most
informative region of
patches and proposed
a patch location system
to select patches.

� Backbone: ResNet-18
� Loss-prediction module [52]:
4 × (GAP+FC+ReLU)+Concat+FC.
� Score-function:
ΔpG∗ = arg maxΔpG H(ΔpG + pG).

� TCGA [144,145]:
AUC = 0.933.
accuracy = 92.7%.

Zhou et al. [22,26] introduced transfer learning and data enhancement into active
learning. By measuring the uncertainty and diversity, the proposed AIFT framework
achieved SOTA performance in the biomedical image analysis. Liu et al. [131] introduced
active learning into ultrasound classification for COVID19-assisted diagnosis. In order to
actively reduce the labeling efforts, the proposed method combined least confidence and
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entropy selection strategies. Hao et al. [132] combined entropy and Kullback–Leibler(KL)
divergence for uncertainty-based sampling. Apart from the active learning, they also
carried out transfer learning from imagenet-pretrained AlexNet [146] to MRI (MICCAI
BRATS 2019 dataset) [133–135]. The proposed transfer learning framework reduced the
annotation cost while maintaining the stability and robustness of the model performance
for brain tumor classification.

Ahsan et al. [136] integrated Bayesian-based CNN and uncertainty-based active learn-
ing method, where active learning was applied to the pool-based sampling and query
by committee scenarios. Wang et al. [147] formulated the active learning as a Markov
decision process and introduced a deep reinforcement learning algorithm for the selection
of the most informative samples. The proposed method was validated in four kinds of
lung disease detection with CT images (chestCT (https://tianchi.aliyun.com/competition/
entrance/231724/introduction, accessed on 11 July 2022)) and diabetic retinopathy in
digital color fundus photograph (Retinopathy (https://www.kaggle.com/competitions/
diabetic-retinopathy-detectio, accessed on 11 July 2022)). Smit et al. [148] pretrained the
active learning framework with contrastive learning and utilized the cosine similarity to
classify unseen images. The proposed method was validated in the eight common chest
observations in X-ray images (CheXpert [149]). Shen et al. [143] first explored the identifi-
cation of the most informative region of patches and proposed a patch location system to
select patches. The proposed method was validated in three gastric adenocarcinoma and
colorectal cancer datasets from The Cancer Genome Atlas (TCGA [144]). After that, they
continued to explore the whole-slide histopathology image annotation with active learning.
In this work [150], they incorporated spatial distribution representation and histopathology
tissue informativeness for uncertainty sampling. Li et al. [138] adopted the semi-supervised
idea that selected confident samples from the unlabeled set and automatically utilized
their corresponding predictions as pseudo-labels for training. They proposed the PathAL
framework, where annotators and co-training label the other “informative” sample with
the above pseudo-labels.

6. Challenges

Although the motivation of deep active learning is to reduce the amount of annotation
in practical applications and provide an efficient learning solution for deep learning,
the current active learning methods still have some challenges in practical application,
which can be summarized into the following four aspects.

6.1. Inefficient Serial Human-in-the-Loop Collaboration

The essence of active learning is still a process of continuous interaction between
computers and annotators, which will undoubtedly cause inconvenience in interaction.
The process of most active learning methods is still to select a batch of candidates and send
them to annotators for labeling and expect annotators to label them as soon as possible and
return the labeled samples back, and finally, the model continues to train and then select
candidates again. This is a serial process, which means that when annotators are labeling,
the model cannot be trained or perform any other operations. It is necessary to wait for the
end of manual labeling before the next round of iterative training can be performed.

For example, we assume that there is an active learning labeling system in the medical
scene. For the computer, the strategy first selects some samples and sends them to the
doctor for labeling, and then is in the idle period waiting for labeling. For the doctor,
after receiving the samples, it is time-consuming to label and then return it to the model
training, and wait for the subsequent feedback from the model. In this way, the doctor
and the model wait for each other’s operations, reducing efficiency and convenience.
Consequently, an efficient parallel strategy for active learning is expected to be proposed in
the future.
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6.2. Dirty Data and Noisy Oracle

Most of the existing deep learning research assumes that the data is independent and
identically distributed and uses publicly available datasets. These datasets contain little
to no dirty data (noise, imbalance). However, in industrial practice, data sources are far
from the ideal dataset with more dirty data. For example, there are categories with fewer
samples or fewer categories with more samples (sample category distribution imbalance).
The uncertainty selection strategy is widely used in active learning, but it is hard to evaluate
the uncertainty of noisy samples. At the same time, the oracle’s annotation is considered
ground truth, but it may also contain errors [151]. Consequently, it is unconfident when
these noisy samples or labels are used for active learning. Such samples may not improve
the model’s performance but even worsen the performance.

6.3. Difficult to Cross-Domain Transfer

No matter what selection strategy is used in the existing active learning, it is based
on the current data distribution of the source domain. Industrial practice requires a
more general and generalizable active learning strategy, so that they can transfer between
different domains and tasks with considerable performance.

As a sub-field of transfer learning, cross-domain adaptation has been extensively
studied in the recent years [152,153]. Prabhu et al. [154] demonstrated that existing model
uncertainty-based or diversity-based active learning methods based solely on are ineffective
for domain adaptation. Xie et al. [155] introduced an energy-based strategy to select the
most representative and informative target data to assist the adaptation. However, we are
disappointed to find that most active learning strategies are domain-designed, and there
is no guarantee that the active learning strategy can achieve competitive performance
when cross-domain transfer. For example, there is already an active learning method
designed for cat and dog classification tasks based on the uncertainty selection strategy,
and it has achieved better performance. Now, if we transfer it into a new task for husky
and labrador classification, the performance may degrade. If the new task is organ or
tumor classification in medical images, redesigning a new active learning method is more
recommended than using the previous method, but it wastes time and cost. Fu et al. [156]
proposed the transferable query selection (TQS) strategy to select the most informative
samples under domain shift. The TQS consists of transferable committee, transferable
uncertainty, and transferable domainness. Besides these, rare works have studied the
unsupervised domain adaptation with active learning. Consequently, an active learning
strategy with robust cross-domain transferring ability is expected to be proposed in the
future to solve this challenge.

6.4. Unstable Performance

The biggest challenge that hinders the practical application of active learning methods
is the unstable performance. As introduced in previous sections, active learning is to
select candidates according to some strategy. These selected samples are significant for the
sequential training and evaluation, especially at the beginning.

As we expected, deep active learning usually outperforms random sampling, espe-
cially when high-redundant data distribution. However, we have to admit that current
active learning may still perform worse than random sampling in the early stage when the
data distribution is diverse and has low redundancy. Random sampling can collect more
representative samples than active learning under this condition, and the model receptive
field is more comprehensive, thus obtaining better initialization. This phenomenon is
named the cold-start problem in active learning, which is shown in Figure 3. When the
application scenario of active learning has the data distribution mentioned above, it must
afford the cost of additional selection samples than random sampling in the early stage
of training. If the performance is worse than random sampling, this part of the cost has
already been invested and cannot be recovered.
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Figure 3. Illustration of the cold-start in active learning. The green curve denotes the ideal active
learning process. The red curve denotes the actual active learning process. The blue curve denotes
the training process of the random selection strategy without any active learning.

Therefore, the industry has stricter requirements for active learning in practical ap-
plications, and it is almost necessary to work if the designed strategy is directly applied.
If not, those selected samples are still marked, and time and money are lost. Such harsh
requirements and unstable performance lead people to prefer to save this cost and turn to
directly adopting random sampling, but design a better model or use a better optimization
strategy to achieve more stable performance.

Zhou et al. [22] explored the cold-start problem and found the reasons were the
scarcity of labeled dataset and the instability of the model at the beginning. They addressed
this problem by cooperating with the random sampling method. They obtained better
performance in early stages and improvement during sequential steps. Another solution
is pretrained active learning, which means that, before carrying out active learning, we
initialized the model with pretrained weights and gave the stability to the model. Typical
self-supervised pretraining methods such as MoCo [83] or Genesis [157] utilize the unla-
beled data pool and have the potential to address the cold start problems in active learning.

7. Conclusions

This paper reviewed the fundamental theories of active learning, including the can-
didate selection strategies and querying scenarios. Besides this, we conducted a compre-
hensive analysis of deep learning–based active learning, including generative adversarial
active learning, semi-supervised active learning, active contrastive learning, and unsu-
pervised active domain adaptation. Meanwhile, active learning applications in computer
vision tasks were detailed, such as deep learning-based autonomous driving and intelligent
medical assisted diagnosis. Lastly, we summarized some challenges in current deep active
learning methods for future research.
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Abstract: Data augmentation is a critical regularization method that contributes to numerous state-
of-the-art results achieved by deep neural networks (DNNs). The visual interpretation method
demonstrates that the DNNs behave like object detectors, focusing on the discriminative regions in
the input image. Many studies have also discovered that the DNNs correctly identify the lesions in
the input, which has been confirmed in the current work. However, for medical images containing
complicated lesions, we observe the DNNs focus on the most prominent abnormalities, neglecting
sub-clinical characteristics that may also help diagnosis. We speculate this bias may hamper the
generalization ability of DNNs, potentially causing false predicted results. Based on this consideration,
a simple yet effective data augmentation method called guided random mask (GRM) is proposed to
discover the lesions with different characteristics. Visual interpretation of the inference result is used
as guidance to generate random-sized masks, forcing the DNNs to learn both the prominent and
subtle lesions. One notable difference between GRM and conventional data augmentation methods is
the association with the training phase of DNNs. The parameters in vanilla augmentation methods
are independent of the training phase, which may limit their effectiveness when the scale and
appearance of region-of-interests vary. Nevertheless, the effectiveness of the proposed GRM method
evolves with the training of DNNs, adaptively regularizing the DNNs to alleviate the over-fitting
problem. Moreover, the GRM is a parameter-free augmentation method that can be incorporated into
DNNs without modifying the architecture. The GRM is empirically verified on multiple datasets
with different modalities, including optical coherence tomography, X-ray, and color fundus images.
Quantitative experimental results show that the proposed GRM method achieves higher classification
accuracy than the commonly used augmentation methods in multiple networks. Visualization
analysis also demonstrates that the GRM can better localize lesions than the vanilla network.

Keywords: deep neural networks; data augmentation; regularization; medical image analysis

1. Introduction

Deep neural networks (DNNs) have revolutionized the field of medical image analysis
by learning to extract high-level abstract features in a data-driven manner, rather than the
conventional hand-crafted ones with limited representative ability. Both the convolutional-
based [1] and Transformer-based [2] networks have achieved enormous breakthroughs
in multiple medical image analysis tasks, such as disease classification, target volume
segmentation, lesion detection, and image reconstruction. Based on DNNs, impressive
results on numerous diseases have been reported, including the retinopathy of prematurity
(ROP) [3], retinal diseases [4,5], breast cancer [6], lung diseases [7], and stomach diseases [8].
These encouraging results demonstrate that DNNs are promising methods to help design
computer-aided diagnosis (CAD) systems.
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Despite the progress achieved by leveraging the DNN model, the interpretability of
the outputted result is a critical aspect that clinicians interested in. A CAD system that
utilizes DNNs may output the classification result (e.g., benign or malignant) based on the
patient’s medical imaging. However, which part of the input image associates with the
output helps explain the classification result. The interpretability may also contribute to
reducing the false positive or false negative samples, preventing the DNNs from failing
silently when the inputs belong to the type of out-of-distribution samples [9,10]. It has
been shown that the DNNs behave as object detectors, even without the supervision of the
location of the object [11]. There exist several well-known visual interpretation methods
that attempt to bridge the object within the input image and the output of DNNs, e.g.,
guided backpropagation [12], class activation mapping (CAM) [13], and gradient-weighted
class activation mapping (Grad-CAM) [14]. Based on these interpretation methods, re-
cent works show that the DNNs indeed localize the potential lesions in recognition of
multiple diseases [3,15].

Figure 1 shows three OCT [4] samples that are diagnosed with CNV, accompanied
by the visualization result of CAM. By observing the example in the first row, it can be
found most of the lesions are located in the center of the image, and the result of CAM
shows that the network accurately locates those abnormalities. Given the masked CAM
shown on the right side of the first row, it is hard to determine the diagnosis since most
lesions are masked. For the second and third examples, the lesions are scattered in the
image, much more complicated than those in the first sample. Moreover, the corresponding
CAM results indicate that the model only identified part of the lesions on the image’s right
side. In the third column, green squares are used to point out the lesions ignored by the
model, and the CAM-localized regions are masked. These visualization results reveal that
the DNNs may bias toward the most distinguishing features in the input, ignoring other
sub-clinical lesions that contain valuable information. We suspect that the above limitation
may constrain the DNNs’ robustness to the variations of the lesions, causing false-negative
predictions when the lesions in the image are not prominent. Ideally, it is preferred for the
DNNs to recognize both the principal and subtle lesions in the input as clinicians do.

Faced with the aforementioned limitation, the core idea of the proposed method is to
leverage the information contained in the CAM as a guide to discover the potential ignored
lesions in the input. The visual interpretation result reveals the areas the DNNs focused
on. Therefore, the rest may contains ignored sub-clinical lesions that we are interested
in. To discover those lesions, a vanilla approach is to fully mask the areas indicated by
the visual interpretation, enforcing the DNNs to give the prediction by utilizing the rest
of the regions. This approach sounds reasonable for the second and third rows shown in
Figure 1, where the DNNs are possible to predict correctly based on the lesions marked by
the green squares. However, it is hard to predict the first sample based on the masked input
in Figure 1, since critical information in the input is not given. A desirable approach is to
moderately mask the potential lesions with the help of visual interpretations without the
complete loss of valuable information. Thus, the DNNs can adapt to the inputs that contain
either simplified or complicated lesions. Based on this consideration, this paper proposes a
simple yet effective data augmentation method called guided random mask (GRM), which
randomly masks the areas indicated by the visual interpretation during the training phase.
The term “guided” in GRM refers to the information provided by the visual interpretation,
and “random mask” implies the stochasticity that produces the effect of regularization.

The proposed GRM is a data augmentation method that can prevent the DNNs
from focusing only on prominent input lesions and can better utilize spatial contextual
information. Notably, the GRM is a parameter-free method that can accommodate lesions
with different scales and complexity. It is known that data augmentation plays a vitally
important role in the training of DNNs to mitigate the problem of over-fitting. One
inspiration of the proposed GRM is the cutout [16], which randomly masks the input with a
fixed size area and helps the DNNs achieve state-of-the-art performance on CIFAR [17] and
SVHN [18] datasets. However, compared with the CIFAR and SVHN with relatively small
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image sizes (32 × 32), it is much harder to apply the cutout to high-resolution medical
images because of the hyper-parameter tuning. The hyper-parameter in the cutout is
the size of the mask, which can be regarded as the strength of regularization in training
DNNs. Its optimal value is task-dependent and requires grid search to achieve the best
performance, which may limit its effectiveness in practice. On the contrary, the proposed
GRM eliminates the difficulty in hyper-parameter tuning by using the guidance provided
by the visual interpretation. Unlike the fixed mask size in cutout, the one in the proposed
GRM is adaptively adjusted along with the training of DNNs, making it applicable to
recognition tasks with varied scales and complexity of lesions.

(a) Sample1

(b) Sample2

(c) Sample3

Figure 1. Three choroidal neovascularization (CNV) samples containing a neovascular membrane.
Each row represents an optical coherence tomography (OCT) sample. The three columns denote the
original OCT image, the visualization result of CAM, and the image with CAM masked, respectively.
For the right-most image in all three rows, the white masks represent the result area of CAM, and the
green squares denote the lesions ignored by DNNs. Detailed illustration of dataset and computation
principle of CAM can be found in Section 3.

The contributions of the paper can be summarized as follows:

(i) We found that the DNNs may bias toward the most prominent features and ignore
the sub-clinical ones when the input image contains complicated lesions.

(ii) A parameter-free data augmentation method called GRM is proposed, which uti-
lizes visual interpretation of the prediction result to regularize the training of
DNNs adaptively.

(iii) Visual interpretation demonstrates that DNNs coupled with GRM can more effec-
tively utilize the contextual information than the vanilla models.
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(iv) Ablation studies on multiple datasets, including OCT, X-ray, and ultrasound images,
empirically show that the GRM substantially surpasses the benchmark method on
various tasks.

The rest of the paper is organized as follows. Section 2 summarizes the related works
about the applications in medical imaging and common augmentation methods used for the
training of DNNs. Section 3 first illustrates the three types of medical imaging datasets used,
followed by a detailed explanation of the proposed method. Section 4 shows the results of
extensive experiments, including the comparison of the baseline model and other well-known
related augmentation methods. Visualization analysis is also used to verify the effectiveness of
the GRM. Finally, Section 5 summarizes and concludes the GRM. The source code is available
at https://github.com/hujunjiescu/GRM, accessed on 1 January 2022.

2. Related Works

2.1. DNNs in Medical Image Analysis

DNNs have become ubiquitous methods in the field of medical image analysis, where
Deep Convolutional Neural Networks (DCNNs) [1,19,20] and the recently emerged Vision
Transformer (ViT) [2] are the two most prevalent paradigms. The following two paragraphs
briefly demonstrate their applications in medical image analysis tasks.

For the DCNNs, starting from 2012 when AlexNet [19] won the ILSVRC-2012 competi-
tion [21], many breakthroughs in vision-related tasks have been achieved using DCNNs.
Several key factors contribute to the success of DCNNs, including massive annotated
high-quality datasets, powerful computation capability by utilizing graphics processing
units (GPUs), and novel architectures. Multiple architectures of DCNNs proposed in the
natural image field have also been successfully applied in medical images. For example,
Inception-V3 [22] has been used to identify the retinal diseases in OCT images [4]. Exper-
imental results demonstrate that DCNNs outperform some human experts and can aid
in expediting the diagnosis in clinical practice. A three-stage DCNNs-based architecture
is proposed in [3] to recognize the existence of ROP based on the fundus images, where
multiple popular architectures including VGG [23], GoogLeNet [20], and ResNet [1] de-
livered promising performance. A novel network architecture called U-Net is proposed
in [24] to accomplish biomedical segmentation tasks in an end-to-end manner, surpassing
the compared methods by a large margin. This tremendous success makes the U-Net a
benchmark in biomedical segmentation tasks. Lots of U-Net’s variations have lately been
proposed by incorporating attention mechanism [15,25,26], residual convolution blocks [27],
etc. Besides the applications in disease diagnoses, DCNNs have also achieved remarkable
progress in image reconstruction [28], denoising [29,30], etc.

Transformer [31] is an attention-based model that was initially proposed to solve
machine translation tasks. It achieves better performance than the conventional recurrent
models, raising expectations that it may also be applicable to the image field. Many
researchers attempt to bridge the gap between natural language processing (NLP) and
vision, and ViT [2] is one of the well-known Transformer-based models that achieves
promising results on the natural image classification task. In addition to the natural
image-related tasks, Transformer has also been gaining attention in medical image analysis.
Hatamizadeh et al. [32] proposes a Transformer-based segmentation architecture called
UNETR that combines the U-Net [24] with Transformer to accomplish the volumetric
segmentation task. It achieves the state-of-the-art performance on the dataset of Multi-Atlas
Labeling Beyond The Cranial Vault [33] and Medical Segmentation Decathlon (MSD) [34].
A relation Transformer network (RTNet) is proposed in [35] that leverage the Transformer
to exploit and interact with the relationships between the lesions and vessels. TransMed
is proposed in [36] to incorporate the advantages of DCNNs and Transformer to perform
the classification task of multi-model medical image. By combining the feature extraction
ability of DCNNs and the spatial relationship modeling capacity of Transformer, TransMed
achieves better accuracy than conventional DCNNs-based models.
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Even the Transformer delivered competitive performance compared with DCNNs: [37]
recently showed that a pure DCNN can surpass the state-of-the-art Transformer by deliber-
ately designing the DCNN’s component and architecture. It is hard to say which one is
more overwhelming than another since both the DCNNs and Transformers have unique
advantages in object recognition.

2.2. Augmentation Methods for Training DCNNs

A massive annotated dataset is an indispensable factor for the success of DNNs since
both the DCNNs and Transformers typically have millions of parameters, implying the
potential over-fitting problem when the amount of training dataset is limited. During the
training phase, it is common to utilize regularization methods to alleviate the over-fitting
risk, thus improving the generalization ability. Data augmentation, which aims to increase
the diversity of training data, is a frequently used regularization method that contributes
to many state-of-the-art results on both natural and medical image analysis tasks.

Current data augmentation methods mainly focus on the domains of spatial and
intensity. In the spatial domain, the random crop and flip for the CIFAR [17] dataset have
become the standard operations during the training phase [1,16]. U-Net [24] shows that
excessive data augmentation by applying elastic deformation to the training dataset is
critical for biomedical segmentation, particularly when the number of training samples
is limited. For the intensity domain, common augmentation methods include brightness
enhancement [38], color transformation [39], noise injection [40], blurring [41] etc. In addi-
tion to the domains of spatial and intensity, another type of effective augmentation method
is mixup [42], which generates new training samples through the convex combination of
random paired examples and their labels. Mixup and its variant [43] have also been applied
to medical image segmentation tasks.

Perhaps one of the closest works to ours is the cutout approach [16], which augments
the spatial domain by randomly masking squared regions in the input image. Cutout
can be regarded as a variant of dropout [44] that randomly drops neurons during the
training phase to reduce co-adaptations. Instead of dropping neurons in the dropout,
cutout randomly drops squared pixels in the input image. Despite the progress brought by
the cutout, one of its limitations lies in the difficulty of determining the optimal masked
size (suppose is r) in the input image. The target size varies from the task, indicating that
the optimal value of r is task-dependent and can only be determined by trial-and-error. The
main reason behind this issue is the separation between the data augmentation and the
training phase of DNNs. The proposed GRM method eliminates the problem by leveraging
the guidance from the visual interpretation to determine the augmentation parameters,
thus bridging the gap between the data augmentation and the training phase. The proposed
GRM method has two significant advantages over the cutout. First, the GRM can adaptively
adjust the size of the mask with the guidance of visual interpretation without specifying
the hyper-parameter r. Second, the GRM can efficiently utilize the contextual information
and discover the potential sub-clinical lesions by masking the target region. Essentially, the
GRM can be regarded as a regularizer that alleviates the over-fitting problem.

3. Data and Methodology

3.1. Data

Three types of medical imaging datasets are used in the experiments, including OCTs
of retinal diseases, X-rays of pneumonia, and color fundus images of glaucoma. Table 1
summarizes the subset of these three datasets used in the experiments. The retinal diseases
dataset comprises four classes, i.e., normal, choroidal neovascularization (CNV), diabetic
macular edema (DME), and drusen. The pneumonia dataset contains two classes: normal
and pneumonia. Similar to the pneumonia dataset, the glaucoma dataset includes normal
and glaucoma as the two classes. All three datasets are open source. The retinal dis-
eases and pneumonia dataset can be downloaded at https://data.mendeley.com/datasets/
rscbjbr9sj/3, accessed on 1 January 2022, and the glaucoma dataset can be downloaded at
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https://doi.org/10.5281/zenodo.5793241, accessed on 1 January 2022. Illustrations of these
three datasets can be found in Figure 2. Each dataset is manually split into three parts,
including training, validation, and test datasets. The experimental results are reported on
the test dataset by using the model that achieves the best metric on the validation part.

(a) Retinal diseases in the modality of OCT.

(b) Pituitarium in the modality of X-ray.

(c) Glaucoma in the modality of color image.

Figure 2. Characteristics of different classes in the three datasets.

Table 1. Statistics of the used three medical imaging datasets.

Part Modality Task Classes
Training
Samples

Validation
Samples

Test Samples

Retinal
diseases Eyes OCT Classification 4 4000 1000 1000

Pneumonia Chest X-ray Classification 2 4632 600 624

Glaucoma Eyes Color fundus
image Classification 2 5232 744 744
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3.2. Methodology

The proposed GRM is a data augmentation method that bridges the augmentation
characteristics with the training phase of the model to identify the ignored sub-clinical
lesions adaptively. Two problems need to be solved to achieve the adaptive regularization
effect, that is (1) how to discover the region of interest (ROI) that indicates the location
of the potential lesions and (2) how to utilize the information contained in the ROI. The
corresponding solutions to the two problems are demonstrated in the following subsections.

3.2.1. Localizing Potential Lesions

Consider the C-classes classification task based on DNNs, including the DCNNs and
Transformers. Given the input image x, the DNNs denoted as F(x; W) would output the
prediction result aL after the layer-by-layer forward computation, where L denotes the
number of layers in the DNNs. aL is a vector in the length of C, whose elements indicate
the probability of each class. Generally, the largest component in aL, suppose aL

c , would
be the category assigned to the input x. What we are interested in is which part in the x
contributes to the class c.

There are multiple ways to solve the above problem. Here, the CAM [13] is utilized
for its computational efficiency and simplicity. An essential component in the CAM is
the global average pooling (GAP), which is first proposed in the NIN [45] architecture to
reduce the use of fully connected (FC) layers. The GAP average the feature maps along
the dimension of the channel to reduce the features from a three-dimensional tensor to
a one-dimensional vector. In the modern architecture of DNNs, it is common to use the
GAP in the penultimate layer to get the global representation of the input, followed by
an FC layer whose dimension is C. The core idea of CAM can be regarded as the reverse
computation of the above steps, where the learnable weight in the last FC layer (which can
be considered as the importance of feature per channel) is used to weight the extracted
features to indicate which part in the input is associated with the prediction.

Formally, suppose the features fed into the GAP are denoted as aL−1 in the shape of
[K, W, H] that indicate the number of channels, width, and height, respectively. W L−1 rep-
resents the learnable weight within the last FC layer in the shape of [C, K]. The probability

of class c is then given by the softmax equation aL
c = exp(zL

c )

∑C
i=1 exp(zL

i )
. The scalar variable zL

c is

computed as:

zL
c =

K

∑
k=1

W L−1
c,k ·

W

∑
w=1

H

∑
h=1

aL−1
k,w,h. (1)

The summation on the right side of the above equation represents the GAP, which can
be regarded as the feature’s context representation along the dimension of the channel. The
parameter W L−1 thus indirectly represents the contribution of each channel in the aL−1 to
the predicted score. By leveraging the information contained in W L−1 to integrate aL−1 in
a channel-wise way, it is then possible to highlight the probable areas corresponding to the
predicted class. This computation process can be formulated as:

Mc =
K

∑
k=1

W L−1
c,k · aL−1

k , (2)

where Mc denotes the CAM for class c. Each channel in aL−1 represents a visual pattern
discovered by DNNs. Therefore the CAM can be considered as a weighted summation
of the presence of each visual pattern at different spatial locations. Note that the CAM
represents the visual pattern in the feature-level’s spatial resolution, which is much smaller
than the input image. The CAM is required to be upsampled to the resolution of the input
image in order to identify the image regions corresponding to the predicted category.
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3.2.2. Guided Random Mask

Having identified the possible lesions indicated by the CAM, the next problem to be
tackled is how to utilize it to regularize the training of DNNs. We aim to realize moderate
regularization effectiveness, that is, to avoid entirely masking the lesions that may cause
strong regularization or mask regions with a fixed size that introduce an extra hyper-
parameter. Based on this consideration, we propose mask regions with a random size
guided by CAM. Figure 3 illustrates the overall computation steps of the proposed GRM
method. First, the inference of the input image is required in order to identify its category
and locate the potential lesions, which is indicated by the procedures of 1, 2, 3. The next
step is generating the bounding box of the CAM, which embodies the majority of regions
with high values in CAM. The bounding box of CAM is computed from the binarized CAM,
which is accomplished by using the 90th percentile of the original CAM (i.e., a pixel larger
than the 90th percentile is 1, otherwise it 0). Then we randomly choose the central point in
the bounding box and allocate the width and height with their maximum value the same
as that in the bounding box. The bounding box of CAM and randomly generated mask are
shown as the white and red boxes in Figure 3, respectively. Finally, the random mask is
applied to the raw input by setting the area in the input to 0, later used to train the DNNs.
Note that the GRM method is only used in the training phase, not including the test phase.

Figure 3. Computation procedures of the proposed GRM method for the classification task.

The above computation processes are designed for the classification task, where its
application to segmentation tasks is straightforward. The inference computation to compute
CAM can be omitted for the segmentation task since the target is precisely described
in the label. It only requires finding the bounding box of the target and generating a
corresponding random mask within it. The introduced computational cost is negligible
and can be implemented as the preprocessing procedure.

The computational process of the proposed GRM is summarized in Algorithm 1.
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Algorithm 1: Algorithm of the proposed GRM method for the classification task.

Input : raw input image a0

Output : random masked image
for layer l from 1 to L − 1 do

// forward computation
al = F(al−1; W l−1) ;

end

zL = ∑K
k=1 W L−1

k · ∑W
w=1 ∑H

h=1 aL−1
k,w,h ;

// find the category
c = argmax(zL) ;
// compute and upsample CAM
M̃c = upsample(∑K

k=1 W L−1
c,k · aL−1

k ) ;
// find bounding box
(X, Y, W, H) = BBox(M̃c) ;
// uniform sampling center point
x = uniform(X, X + W) ;
y = uniform(Y, Y + H) ;
// uniform sampling width and height
w = uniform(1, W) ;
h = uniform(1, H) ;
// mask input a0

a0[x − w : x + w, y − h : y + h] = 0

4. Experimental Setup and Results

4.1. Experimental Setup

Multiple modern network architectures including Inception-V3 [22], ResNet-50 [1],
DenseNet-121 [46], and ViT [2] are used to verify the generalization of the GRM method.
The cross-entropy is used as the cost function for the classification tasks. For the CNNs
(ResNet-50, Inception-V3, and DenseNet-121), Adadelta [47] is used as the optimizer to
minimize the cost function, where the learning rate is set to 1.0. For the ViT, AdamW [48] is
used as the optimizer, coupled with a cosine decay learning rate scheduler and 20 epochs
of linear warm-up. The learning rate is set to 0.0001. The size of the image is fixed as 224
for all the experiments.

The number of training epochs is set to 300, which is long enough for the convergence
of training. All networks are implemented by using PyTorch [49]. The experiments are
carried out on a server with Linux OS and CPU Intel Xeon E5-2620 @2.4GHz, four NVIDIA
TITAN RTX GPUs, and 64 GB of RAM.

4.2. Ablation Studies of GRM

To verify the effectiveness of the proposed GRM method, we first quantitatively
compare the network with and without the GRM. Table 2 shows the accuracy of multiple
networks on the three tasks. For the vanilla network, it can be found that the Inception-V3
achieves the highest accuracy among all the tasks. For example, the accuracy of Inception-
V3 on retinal diseases is 94.9, far beyond the 89.9 of the ViT. The inferiority of ViT can be
attributed to the difficulty in hyper-parameter tuning and the limited size of the medical
image dataset, which significantly increase the risk of over-fitting. By comparing the vanilla
network with the one with GRM applied, it can be observed that the accuracy of GRM is
unanimously improved among all the tasks, regardless of the network architecture. The
highest improvement is from 90.0 to 94.2 in the ResNet-50 on the pneumonia task. A
varying degree of improvement is also obtained for the ViT in the three datasets. These
encouraging results illustrate that the proposed GRM is broadly applicable to datasets
composed of varied modalities and class numbers.
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Table 2. Comparison of accuracy (%) between the vanilla networks and the one applied with GRM
on the three medical image analysis tasks.

Task Network Vanilla GRM

Retinal diseases

Inception-V3 94.9 96.7

ResNet-50 93.7 96.3

DenseNet-121 93.6 96.0

ViT 89.9 92.6

Pneumonia

Inception-V3 90.4 92.8

ResNet-50 90.0 94.2

DenseNet-121 88.8 92.1

ViT 90.2 91.8

Glaucoma

Inception-V3 89.2 91.6

ResNet-50 87.5 90.6

DenseNet-121 88.9 90.0

ViT 87.5 88.5

One of the reasons for the effectiveness of GRM is the adaptive regularization, which
helps the network better extract the context information and alleviate the over-fitting issue.
To delve into the training procedure, Figure 4 summarizes the training and validation
loss of ResNet-50 in the three tasks. It can be observed the regularization effectiveness
brought by GRM in the task of retinal diseases in Figure 4a, where the training loss of
GRM (red dotted line) decreases slower than the one in the vanilla network (red solid line),
implying the GRM helps to mitigate over-fitting to the training dataset. On the contrary,
the validation loss of GRM (green dotted line) is distinctly lower than the one of baseline
(green solid line), demonstrating that the GRM increases the network’s generalization
capacity. Similar convergence results can be found in the pneumonia task. The effectiveness
of GRM can also be notably found in the glaucoma task, where the validation loss of the
vanilla ResNet-50 increases rapidly from the 50th epoch, and its ascending speed goes
faster along the training epochs. This convergence behavior can be commonly observed in
the training of networks. By adding GRM to the network, the stability of validation loss is
significantly improved, as shown in the green dotted line in Figure 4c. These convergence
results confirmed the regularization impact brought by the GRM, which helps combat
the over-fitting issue on the training dataset and boosts the generalization ability on the
validation dataset.

4.3. Comparison between GRM with Other Augmentation Methods

To further validate the effectiveness of the GRM, we also compare it with cutout [16]
and mixup [42]. As shown in Table 3, the GRM is superior to the cutout in improving the
diagnosis accuracy. The most significant improvement happens in the Inception network
for retinal diseases, which raises the accuracy from 94.3 to 96.7. For pneumonia and
glaucoma diseases, different degrees of improvement can also be found in various networks.
Experimental results in Table 3 also demonstrate the advantage of GRM over mixup. It
can be observed that the GRM outperforms mixup in most tasks except the ViT of retinal
diseases, where the accuracy of mixup is 92.8, marginally higher than the 92.6 of GRM. One
significant advantage of the GRM and cutout lies in the adaptivity to the inputs. The mask
size in the cutout is fixed, whereas the GRM can adaptively adjust the size and location
of the mask according to the input. For the Mixup, it combines paired inputs and labels
convexly to alleviate the overfitting problem, which can be used together with GRM to
increase the capacity of the networks.
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(a) Retinal diseases (b) Pneumonia

(c) Glaucoma

Figure 4. Convergence comparison between the vanilla ResNet-50 and ResNet-50 applied with the
proposed GRM on the retinal disease, pneumonia, and glaucoma tasks, respectively.

Table 3. Comparison of accuracy (%) between the GRM and related methods on the three medical
image analysis tasks.

Task Network GRM Cutout Mixup

Retinal diseases

Inception-V3 96.7 94.3 95.8

ResNet-50 96.3 94.1 92.8

DenseNet-121 96.0 95.1 95.6

ViT 92.6 92.0 92.8

Pneumonia

Inception-V3 92.8 89.2 91.2

ResNet-50 94.2 89.7 91.5

DenseNet-121 92.1 92.0 91.0

ViT 91.8 91.1 89.1

Glaucoma

Inception-V3 91.6 89.0 91.4

ResNet-50 90.6 87.3 89.4

DenseNet-121 90.0 89.6 88.8

ViT 88.5 86.2 86.1

4.4. Visualization Analysis

The motivation of GRM roots in the potential bias of the vanilla network, which attempts
to capture the most prominent characteristics of lesions and may ignore the sub-clinical ones. To
demonstrate whether the GRM can remit the issue or not, Figure 5 compares the visualization
results between the vanilla network and the one applied with GRM on five retinal diseases
cases. The first row represents a relatively simple sample that contains abnormals in the center
of the image. It can be found that both of the two networks have precisely identified the lesions.
For the sample shown in the second row, it can be seen that the vanilla network biases to the
right-most lesions and neglects the abnormals located in the center. On the contrary, the GRM
has accurately discovered most of the lesions. Similar results can be observed in the third
sample. For the fourth sample containing complicated lesions, the vanilla network biases the
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right-bottom areas, while the GRM has precisely identified intricate lesions. In the fifth sample,
both networks found the most distinguished lesion on the right side, whereas only the GRM
has identified the nearby subtle lesions.

These visualization results demonstrate two points. First, the DNNs are object de-
tectors that attempt to discover the abnormalities in the input image. It performs well in
those images that contain prominent characteristics, such as the sample shown in the first
row in Figure 5. Second, the vanilla DNNs may fail to capture the prominent and subtle
lesions simultaneously for the image comprised of complicated features. With the help
of GRM, the DNNs can efficiently utilize the context information and show much better
performance than the vanilla network.

Raw input Vanilla GRM

Figure 5. Qualitative comparison between the vanilla ResNet-50 and the ResNet-50 applied with the
proposed GRM on five retinal disease cases. Each row denotes a case.
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5. Conclusions

This paper proposes a simple yet effective data augmentation method named GRM
that aims to discover the potential sub-clinical lesions ignored by the DNNs. The visual
interpretation results are used as guidance to help locate the ROIs. Random masking of
those ROIs enforces the DNNs to better utilize the context information. Moreover, it also
increases the DNNs’ robustness to the input since the model is required to predict the
category from the incomplete input. Conventional data augmentation method (e.g., cutout)
requires to specify the size of the mask, which increases the difficulty during practice when
the size of the target varies. On the contrary, the proposed GRM adaptively changes the
size and location of the mask according to the characteristics of the target.

Ablation experiments on multiple network architectures are carried out to validate
the effectiveness of GRM. The GRM can substantially increase the networks’ recognition
accuracy on different tasks compared to the vanilla network. The network applied with
GRM exhibits evident lower loss on the validation dataset, implying that the GRM helps to
increase the networks’ generalization capacity. Visualization experiments further demon-
strate that the GRM contributes to exploit the sub-clinical lesions and helps reduce the
false predictions during practice. In the training phase, the GRM leverages the CAM of
the inference result as guidance to randomly mask the input, which is later used to train
the network. From a more general point of view, the GRM can be applied iteratively, i.e.,
the inference and training of the sample can be repeated multiple times till the stability of
CAM is achieved. The iterative method may contribute to the learning process of the net-
work because of the enhanced regularization effectiveness. The exploration of the iterative
version of GRM is left as a future work.

Author Contributions: Methodology, J.H.; writing—original draft, X.Y.; writing—review and editing,
S.W. and J.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
Grant 62106162, China Postdoctoral Science Foundation under Grant 2021M692269, and Sichuan
University Postdoctoral Science Foundation under Grant 2022SCU12080.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

2. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International
Conference on Learning Representations, Virtual, 26 April–1 May 2020.

3. Hu, J.; Chen, Y.; Zhong, J.; Ju, R.; Yi, Z. Automated analysis for retinopathy of prematurity by deep neural networks. IEEE Trans.
Med. Imaging 2018, 38, 269–279. [CrossRef] [PubMed]

4. Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al.
Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131. [CrossRef]
[PubMed]

5. Hu, J.; Chen, Y.; Yi, Z. Automated segmentation of macular edema in OCT using deep neural networks. Med. Image Anal. 2019,
55, 216–227. [CrossRef] [PubMed]

6. Wang, Z.; Zhang, L.; Shu, X.; Lv, Q.; Yi, Z. An end-to-end mammogram diagnosis: A new multi-instance and multiscale method
based on single-image feature. IEEE Trans. Cogn. Dev. Syst. 2020, 13, 535–545. [CrossRef]

7. Anthimopoulos, M.; Christodoulidis, S.; Ebner, L.; Christe, A.; Mougiakakou, S. Lung pattern classification for interstitial lung
diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 2016, 35, 1207–1216. [CrossRef]

8. Lu, Y.; Chen, Y.; Zhao, D.; Liu, B.; Lai, Z.; Chen, J. CNN-G: Convolutional neural network combined with graph for image
segmentation with theoretical analysis. IEEE Trans. Cogn. Dev. Syst. 2020, 13, 631–644. [CrossRef]

9. DeVries, T.; Taylor, G.W. Learning confidence for out-of-distribution detection in neural networks. arXiv 2018, arXiv:1802.04865.
10. Jiang, H.; Kim, B.; Guan, M.; Gupta, M. To trust or not to trust a classifier. In Advances in Neural Information Processing Systems;

The MIT Press: Cambridge, MA, USA, 2018; pp. 5541–5552.
11. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Object detectors emerge in deep scene cnns. arXiv 2014, arXiv:1412.6856.
12. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for simplicity: The all convolutional net. arXiv 2014,

arXiv:1412.6806.

83



Appl. Sci. 2022, 12, 9099

13. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929.

14. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy,
27–29 October 2017; pp. 618–626.

15. Yang, H.; Kim, J.Y.; Kim, H.; Adhikari, S.P. Guided soft attention network for classification of breast cancer histopathology images.
IEEE Trans. Med. Imaging 2019, 39, 1306–1315. [CrossRef]

16. DeVries, T.; Taylor, G.W. Improved regularization of convolutional neural networks with cutout. arXiv 2017, arXiv:1708.04552.
17. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Citeseer: State College, PA, USA, 2009.
18. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading digits in natural images with unsupervised feature learning.

In Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain, 16 December 2011.
19. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural

Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2012; pp. 1097–1105.
20. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper

with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 1–9.

21. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.F. ImageNet: A large-scale hierarchical image database. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

22. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

23. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
24. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

25. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al.
Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999.

26. Roy, A.G.; Navab, N.; Wachinger, C. Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In
Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain,
16–20 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 421–429.

27. Alom, M.Z.; Hasan, M.; Yakopcic, C.; Taha, T.M.; Asari, V.K. Recurrent residual convolutional neural network based on u-net
(r2u-net) for medical image segmentation. arXiv 2018, arXiv:1802.06955.

28. Shan, H.; Padole, A.; Homayounieh, F.; Kruger, U.; Khera, R.D.; Nitiwarangkul, C.; Kalra, M.K.; Wang, G. Competitive
performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction.
Nat. Mach. Intell. 2019, 1, 269–276. [CrossRef]

29. Yang, Q.; Yan, P.; Zhang, Y.; Yu, H.; Shi, Y.; Mou, X.; Kalra, M.K.; Zhang, Y.; Sun, L.; Wang, G. Low-dose CT image denoising using
a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 2018, 37, 1348–1357.
[CrossRef]

30. Shan, H.; Zhang, Y.; Yang, Q.; Kruger, U.; Kalra, M.K.; Sun, L.; Cong, W.; Wang, G. 3-D convolutional encoder-decoder network
for low-dose CT via transfer learning from a 2-D trained network. IEEE Trans. Med. Imaging 2018, 37, 1522–1534. [CrossRef]

31. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2017; Volume 30.

32. Hatamizadeh, A.; Tang, Y.; Nath, V.; Yang, D.; Myronenko, A.; Landman, B.; Roth, H.R.; Xu, D. UNETR: Transformers for 3D
Medical Image Segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa,
HI, USA, 4–8 January 2022; pp. 574–584.

33. Landman, B.; Xu, Z.; Igelsias, J.; Styner, M.; Langerak, T.; Klein, A. MICCAI multi-atlas labeling beyond the cranial vault–
workshop and challenge. In Proceedings of the MICCAI Multi-Atlas Labeling Beyond Cranial Vaul—Workshop Challenge,
Munich, Germany, 5–9 October 2015; Volume 5, p. 12.

34. Simpson, A.L.; Antonelli, M.; Bakas, S.; Bilello, M.; Farahani, K.; Van Ginneken, B.; Kopp-Schneider, A.; Landman, B.A.; Litjens, G.;
Menze, B.; et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv
2019, arXiv:1902.09063.

35. Huang, S.; Li, J.; Xiao, Y.; Shen, N.; Xu, T. RTNet: Relation Transformer Network for Diabetic Retinopathy Multi-lesion
Segmentation. IEEE Trans. Med. Imaging 2022, 41, 1596–1607. [CrossRef]

36. Dai, Y.; Gao, Y.; Liu, F. Transmed: Transformers advance multi-modal medical image classification. Diagnostics 2021, 11, 1384.
[CrossRef]

37. Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. arXiv 2022, arXiv:2201.03545.
38. Dong, H.; Yang, G.; Liu, F.; Mo, Y.; Guo, Y. Automatic brain tumor detection and segmentation using u-net based fully

convolutional networks. In Proceedings of the Annual Conference on Medical Image Understanding and Analysis, Edinburgh,
UK, 11–13 July 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 506–517.

84



Appl. Sci. 2022, 12, 9099

39. Liskowski, P.; Krawiec, K. Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 2016,
35, 2369–2380. [CrossRef] [PubMed]

40. Christ, P.F.; Elshaer, M.E.A.; Ettlinger, F.; Tatavarty, S.; Bickel, M.; Bilic, P.; Rempfler, M.; Armbruster, M.; Hofmann, F.;
D’Anastasi, M.; et al. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D
conditional random fields. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Athens, Greece, 17–21 October 2016, Springer: Berlin/Heidelberg, Germany, 2016; pp. 415–423.

41. Sirinukunwattana, K.; Pluim, J.P.; Chen, H.; Qi, X.; Heng, P.A.; Guo, Y.B.; Wang, L.Y.; Matuszewski, B.J.; Bruni, E.; Sanchez, U.; et al.
Gland segmentation in colon histology images: The glas challenge contest. Med. Image Anal. 2017, 35, 489–502. [CrossRef]

42. Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond empirical risk minimization. arXiv 2017, arXiv:1710.09412.
43. Bdair, T.; Navab, N.; Albarqouni, S. ROAM: Random Layer Mixup for Semi-Supervised Learning in Medical Imaging. arXiv

2020, arXiv:2003.09439.
44. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
45. Lin, M.; Chen, Q.; Yan, S. Network in network. In Proceedings of the International Conference on Learning Representations,

Scottsdale, AZ, USA, 2–4 May 2013.
46. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
47. Kingma, D.; Ba, J. ADADELTA: An Adaptive Learning Rate Method. arXiv 2012, arXiv:1212.5701.
48. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. In Proceedings of the International Conference on Learning

Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
49. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic

differentiation in PyTorch. In Proceedings of the 31st Conference of Advances in Neural Information Processing Systems, Long
Beach, CA, USA, 4–9 December 2017. Avialble online: ttps://openreview.net/forum?id=BJJsrmfCZ (accessed on 30 July 2022).

85





Citation: Alghamdi, H.S. Towards

Explainable Deep Neural Networks

for the Automatic Detection of

Diabetic Retinopathy. Appl. Sci. 2022,

12, 9435. https://doi.org/10.3390/

app12199435

Academic Editor: Dimitris Mourtzis

Received: 16 August 2022

Accepted: 9 September 2022

Published: 21 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Towards Explainable Deep Neural Networks for the Automatic
Detection of Diabetic Retinopathy

Hanan Saleh Alghamdi

Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University,
P.O. Box 80200, Jeddah 21589, Saudi Arabia; hsaalghamdi@kau.edu.sa
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Abstract: Diabetic Retinopathy (DR) is a common complication associated with diabetes, causing
irreversible vision loss. Early detection of DR can be very helpful for clinical treatment. Ophthalmolo-
gists’ manual approach to DR diagnoses is expensive and time-consuming; thus, automatic detection
of DR is becoming vital, especially with the increasing number of diabetes patients worldwide. Deep
learning methods for analyzing medical images have recently become prevalent, achieving state-
of-the-art results. Consequently, the need for interpretable deep learning has increased. Although
it was demonstrated that the representation depth is beneficial for classification accuracy for DR
diagnoses, model explainability is rarely analyzed. In this paper, we evaluated three state-of-the-art
deep learning models to accelerate DR detection using the fundus images dataset. We have also
proposed a novel explainability metric to leverage domain-based knowledge and validate the reason-
ing of a deep learning model’s decisions. We conducted two experiments to classify fundus images
into normal and abnormal cases and to categorize the images according to the DR severity. The
results show the superiority of the VGG-16 model in terms of accuracy, precision, and recall for both
binary and DR five-stage classification. Although the achieved accuracy of all evaluated models
demonstrates their capability to capture some lesion patterns in the relevant DR cases, the evaluation
of the models in terms of their explainability using the Grad-CAM-based color visualization approach
shows that the models are not necessarily able to detect DR related lesions to make the classification
decision. Thus, more investigations are needed to improve the deep learning model’s explainability
for medical diagnosis.

Keywords: explainable deep networks; diabetic retinopathy; deep learning; Grad-CAM; convolutional
neural networks; ResNet; DenseNet

1. Introduction

Diabetes is a major cause of life-threatening systemic vascular complications, includ-
ing stroke, heart attacks, kidney failure, and blindness. According to the International
Diabetes Federation [1], around 463 million people had diabetes in 2019. The number of
people with diabetes had increased to 422 million in 2014 [2] and is estimated to rise to
700 million by 2045. Diabetic Retinopathy (DR) is a common complication of diabetes,
found in a third of diabetes patients, and remains the primary cause of avoidable vision
loss in working-aged people [3]. DR is caused by damage to the retinal blood vessels;
however, it might not have symptoms until it advances to the vision-threatening stage.
Early detection of DR is essential to reduce the avoidable vision loss threat of DR. DR
screening is performed through the examinations of fundus photographs by a trained
clinician to determine DR presence and severity. The severity of DR is determined by the
presence of DR lesions, including microaneurysms, hemorrhages, cotton wool spots, and
exudates, as demonstrated in Figure 1. Given the limited number of retina specialists and
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the increased number of diabetes patients worldwide, in-person assessments are impracti-
cal and unsustainable. These examinations could result in too-late detection of DR when
the treatment is not as effective as in the early stages of the disease. Thus, the necessity of
an automated DR screening approach has long been recognized. Significant progress has
been made in computer vision, pattern recognition, and machine learning. The automatic
detection of DR began to appear in 2010, and since then, analyzing fundus images for DR
detection has been performed using numerous approaches. These methods have been
applied at different levels of analysis, ranging from general image classification, lesion
detection, anatomical structure segmentation, and DR severity determination.

Figure 1. Different DR lesions (left) and DR stages (right).

Early methods were based on classical computer vision techniques and thresholds [4].
Later, traditional machine learning algorithms had also been applied to DR detection. For
example, in [5], Chowdhury et al. trained a random forest classifier on the DIARETDB1
dataset to detect abnormalities in fundus images. The experiment showed that the random
forest achieved a better classification accuracy of 93.58% than the Naïve Bayes classifier,
which reached 83.63%. Bourouis et al. in [6] developed a hybrid model for DR classification
using three kernels for an SVM-based classifier, including the Fisher, Kullback–Leibler,
and Bhattacharyya kernels. The experiments were conducted on multiple public DR
datasets and achieved 91.33% accuracy on the DRIVE dataset with the Bhattacharyya
kernel. Emon et al. in [7] evaluated eight different machine learning models on a dataset
consisting of 1151 instances and contained features extracted from the Messidor image set.
According to the study, the logistic regression algorithm resulted in the best performance
of 75% accuracy.

Artificial Intelligence (AI) algorithms, particularly deep learning (DL), have shown
great potential in almost all domains. In the medical imaging field, DL has demonstrated
effectiveness for various tasks such as pathologies detection, diagnosis, and prognosis of
diseases, for example, brain tumors, lung infections, and retinal disorders. DL is a subcat-
egory of machine learning consisting of a hierarchical, multilayer neural network model
for automatic feature extraction. CNNs are the most common DL approach for image
classification. CNNs are well-known DL architecture in which neurons are organized in
two-dimensional planes to extract basic features from overlapping regions at the lower
layers. Then, at the higher layers, these features are combined to form more complex
and comprehensive features. However, despite the wide application of DL in automatic
diagnosis systems, most DL algorithms remain as black boxes to medical experts.

A fully automated method with a lack of human verification would be unconscionable
and potentially dangerous in a clinical setting. The lack of transparency in such systems
and the inability to explain the rationale behind the DL models’ decisions could prevent the
clinical acceptance of integrating such components into the healthcare systems. Domain
experts, especially in the medical area, often require insights into the DL model’s decision-
making process to ensure the reasonableness of the predictions. The increasing demand
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for explainability by both the end-users and the researchers has led to some noteworthy
innovations in the last years. Thus, explainable AI (XAI) has experienced a surge in medical
imaging literature. However, how these explanation methods can be used to evaluate and
compare DL architectures is still not well explored [8].

The automatic detection of DR began to appear in 2010, and the early methods were
based on classical computer vision techniques and thresholds [4]. Later, traditional machine
learning algorithms were also applied to DR detection. For example, in [5], Chowdhury et al.
trained a random forest classifier on the DIARETDB1 dataset to detect abnormalities
in fundus images. The experiment showed that the random forest achieved a better
classification accuracy of 93.58% than the Naïve Bayes classifier, which reached 83.63%.
Bourouis et al. [6] developed a hybrid model for DR classification using three kernels for
an SVM-based classifier, including the Fisher, Kullback–Leibler, and Bhattacharyya kernels.
The experiments were conducted on multiple public DR datasets and achieved 91.33%
accuracy on the DRIVE dataset with the Bhattacharyya kernel. Emon et al. [7] evaluated
eight different machine learning models on a dataset consisting of 1151 instances and
contained features extracted from the Messidor image set. According to the study, the
logistic regression algorithm resulted in the best performance of 75% accuracy.

However, deep learning and CNNs have proved their superiority over other tra-
ditional machine learning algorithms for object detection and image classification tasks.
Thus, deep learning and CNNs have been applied and evaluated for the diagnosis of
DR [9]. Authors in [10] used the Kaggle DR dataset [11] to train a CNN model to classify
referable and nonreferable DR images. They achieved 98.2% accuracy in the Messidor-2
dataset [12]. Transfer learning, which has demonstrated promising results in medical
image diagnosis, uses state-of-the-art CNN models pretrained on a large general image
dataset. The knowledge learned on a primary task is utilized and transferred to a sec-
ondary task. Transfer learning mitigates the need for a vast amount of data and substantial
computational resources.

Thus, many recent studies also utilized transfer learning with CNN architectures. The
authors in [13] trained AlexNet, VggNet, GoogleNet, and ResNet on the publicly available
Kaggle platform and achieved 95.68% accuracy for the best model. The researchers in [14,15]
used a dataset provided by APTOS and Kaggle. In [14], the researchers trained ResNet50,
Xception Nets, DenseNets, and VGG, all pretrained on ImageNet, and the best model
achieved an accuracy of 81.3%, while in [15], the authors tried fine-tuning a pretrained
Inception-V3 model for five-class classification. They subsampled a smaller version of the
Kaggle DR classification challenge dataset for model training and achieved an accuracy of
90.9%. Table 1 summarizes the related approaches for the DR automatic detection task.

Table 1. Summary of some DR automatic detection approaches applied by other related works.

Reference Dataset Approach Accuracy

[5] DIARETDB1 Random Forest 93.58%
[6] Public DR datasets SVM with Bhattacharyya kernel 91.33%
[7] Messidor Logistic Regression 75.00%

[10] Kaggle DR dataset,
Messidor-2 CNN 98.20%

[13] Kaggle DR dataset AlexNet, VggNet, GoogleNet, and ResNet 95.68%
[14] Kaggle DR dataset ResNet50, Xception Nets, DenseNets, and VGG 81.30%
[15] Kaggle DR dataset Inception-V3 90.90%

In this paper, we pursue to evaluate some state-of-the-art DL models for the task of
DR detection fundus photographs in terms of their accuracy, sensitivity, and specificity.
Additionally, we aim to compare these algorithms based on their explainability. This would
increase the expert insights and help decide the most reasonable and trustworthy models
for DR detection from retinal photographs.

The key contributions of this paper are three-fold:
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1. Evaluate three state-of-the-art deep transfer learning algorithm models using color
fundus images for automatic DR detection;

2. Optimize the proposed transfer learning deep learning architectures through early
stopping and dropout techniques to control the models’ overfitting tendency.

3. Perform Grad-CAM analysis to provide human-interpretable explanations of the deep
architectures’ predictions of DR.

2. Materials and Methods

This section discusses our approach in detail, covering the dataset and the evaluated
deep learning models, followed by the prediction explainability techniques, performance
evaluation metrics, and proposed explainability measure.

2.1. Dataset

In this work, we used a publicly available dataset at Kaggle [16]. This would allow
further investigation and benchmarking comparison. This dataset consists of a wide variety
of retinal photographs as it was collected from multiple clinics using different cameras
and over an extended period of time. The images were rated by a clinician for the severity
of DR on a scale of 0 to 4: 0 for normal, 1 for mild, 2 for moderate, 3 for severe, and 4
for proliferative DR [16]. Images in this dataset may contain artifacts or are out of focus.
The level of variation in this dataset introduced complexity and difficulty for any classifier
model, and thus, it is very important to validate the models’ decisions. However, the dataset
was originally imbalanced, and most samples belong to the normal healthy retina class. In
addition, there were no samples dedicated to a validation set. Figure 2 shows the original
dataset distribution consisting only of training and test sets of 28,103 and 7022 samples.
Indeed, imbalanced training samples would generally lead to a naïve behavior classifier,
which tends to classify the samples according to the majority class to minimize the cost
function over all training samples.
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Figure 2. Original DR dataset distribution.

Moreover, the evaluation of imbalanced test samples is biased and misleading. Thus,
to overcome this challenge, we sample three sets of training, validation, and testing to
contain the same number of samples per class shown in Figure 3. The proliferative DR class
contains the least number of samples; thus, the sampling for the training, validation, and
test sets was based on the number of samples available for this class. This results in a total
number of images in the training set of 2200, 600 for the validation, and 700 for the test set.
We also converted the task into a binary classification to detect all abnormal cases in one
category; thus, as shown in Figure 4, all abnormal categories were grouped.

90



Appl. Sci. 2022, 12, 9435

 

44
0

44
0

44
0

44
0

44
0

12
0

12
0

12
0

12
0

12
014

0

14
0

14
0

14
0

14
0

0  - N O _ D R 1  - M I L D 2  - M O D E R A T E 3  - S E V E R E 4  -
P R O L I F E R A T E _ D R

Training Validation Test

Figure 3. DR dataset distribution after balancing the five categories.

 

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Training Validation Test

0 - No_DR 1 - DR

Figure 4. DR dataset distribution after converting it into binary categories (normal, abnormal).

2.2. CNN Models

The CNN models employed in this study were pre-trained on the large-scale ImageNet
dataset [17], which includes 1000 categories of different objects. These models normally
perform highly on general classification tasks, especially for the objects presented in the
training dataset. However, their performance can be lowered when applied to specific
domains, such as DR detection. In the following subsections, we start by describing the
basic architecture of the CNN model. Then, we briefly describe the three pre-trained models
used in this work and highlight their main characteristics.

2.2.1. Convolutional Neural Networks

CNNs are the most common artificial neural networks used for performing computing
vision tasks such as image classification, object detection, and segmentation. The advantage
of CNNs over other machine learning algorithms such as Support Vector Machine, K-
Nearest Neighbors, Random Forest, among others, is that the CNNs can automatically
learn representative features from the images and has a higher generalization capacity [18].
A CNN is typically divided into three main components: the convolutional, pooling, and
dense layers. A convolutional layer learns the features and passes the features to a pooling
layer to perform downsampling. A dense layer learns how to classify the extracted features
into different categories. The output layer usually uses the softmax activation function to
generate the probability distribution of each category in the problem domain.

2.2.2. Visual Geometry Group

The authors in [18] proposed the architecture of the Visual Geometry Group (VGG)
network in 2013 and submitted their model for the 2014 ImageNet Challenge. VGG model
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uses a small receptive field of size 3 × 3 throughout the entire network with a 1-pixel stride.
It is worth noting that the two consecutive 3 × 3 convolutional filter layers, without spatial
pooling in between, provide a receptive field of size 5 × 5, and the three 3 × 3 convolutional
layers filters result in a receptive field of 7 × 7. This unique characteristic allows the
network to converge faster, makes the decision functions more discriminative, and reduces
the number of weight parameters.

2.2.3. The Residual Network

ResNet architecture is one of the most popular and successful deep learning models
for computer vision tasks. The residual network has multiple variants, including ResNet-
16, ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-110, ResNet-152, ResNe-t164,
ResNet-1202, and so forth. The residual unit is the main building block of the ResNet. The
intuition behind the residual unit is to ease the costly training of the very deep networks
by using a direct connection that skips some layers in between [19]. This connection is
called a ‘skip connection’ or ‘shortcut connection’ and is the core of residual blocks. With
the introduction of skip connection, the output is changed to F(x) + x instead of F(x) in the
other layers. The skip connections in ResNet solve the vanishing gradient in deep neural
networks by allowing the gradient to flow through this alternate shortcut pathway [19].
The deep ResNet is a stack of residual units seen as small neural networks with a skip
connection. ResNet18 is a 72-layer architecture with 18 deep layers. The input size to the
network is 224 × 224 × 3, which is predefined.

2.2.4. DenseNet-121

DenseNet is another type of CNN that uses dense connections between layers through
the Dense Blocks [20]. Dense Blocks connect all layers directly with each other. However,
each layer obtains additional inputs from all previous layers and passes its feature maps to
all subsequent layers in a feed-forward process. DenseNets alleviate the vanishing gradient
problem, encourage feature reuse, and reduce the number of learnable parameters [20].
DenseNet-121 is the simple DenseNet network designed for the ImageNet dataset. It
consists of multiple dense and transition blocks. Transition Block performs as a 1 × 1 con-
volution with 128 filters, followed by a 2 × 2 pooling with a stride of 2, resulting in dividing
the size of the volume by dividing volume size and the number of feature maps in half.

2.3. Models’ Explainability Using Grad-CAM

Deep architectures take in more than a million parameters of complex, convoluted
operations. Thus, the interpretability of such algorithms is challenging. Class Activation
Mapping (CAM) is one technique proposed to enhance the explainability of deep learning
models. The basic idea behind CAM is to localize the deep discriminative features and
visualize the object parts detected by the CNN [21].

The study in [22] inspired this idea and demonstrates that convolutional layers of
CNNs behave as object detectors despite no supervision of the object’s location. To gen-
erate the CAMs, the predicted class weights are projected back to the activation maps of
the previous convolutional layer to highlight class-specific discriminative regions. This
approach provides visual explanations as each activation map contains different spatial
information about the input, and when the convolutional layer is close to the classification
layer, its activations are sufficiently high-level to provide a visual localization to explain
the final decision. Let f be a CNN-based classification model and c a target category. Given
an input image x and a convolutional layer of f , the CAM with respect to c can be defined
as a linear combination of the activation maps of the convolutional layer, as follows [23]:

CAMc(x) =
Nf

∑
k=1

wc
k Ak (1)
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where Nf denotes the number of filters of the convolutional layer, Ak is the kth filter of
the activation, and wc

k are weight coefficients indicating the importance of the activation
maps with respect to the target class c. However, CAM is restricted to having a global
average pooling (GAP) layer after the final convolutional layer and then a dense linear
layer. The GAP computes the average of each feature map for each corresponding class,
and the resulting vector is fed into the softmax activation layer, which outputs the class
probabilities. If the CNN-based model does not have a GAP in the final layer, CAM
requires removing the fully connected layer before the final output and replacing it with the
GAP [21]. Gradient-weighted Class Activation Mapping Grad-CAM has been suggested as
a generalization version of CAM, as it can be applied to any CNN-based models without
modifying their architectures [23]. Similar to the CAM, Grad-CAM employs the spatial
information preserved through convolutional layers to highlight the parts of an input
image that are important for the classifier decisions. However, Grad-CAM uses class-
specific gradient information produced by the feature maps of the last convolutional layer to
generate a class-discriminative localization heatmap corresponding to a particular class [23].
The importance of feature map k for the target class c is computed using the gradient of
the logits of class c with respect to the activation maps of the final convolutional layer, and
the gradients are averaged across each feature map, a ReLU nonlinearity is applied to only
consider the pixels that have a positive influence on the score of the target class [23]:

Lc
Grad−CAM = ReLU

⎛⎝ Nf

∑
k=1

wc
k Ak

⎞⎠ (2)

2.4. Performance Evaluation Metrics

In this work, five evaluation metrics were employed to provide complete coverage
and unbiased analysis of the results. This includes the following:

• Accuracy: calculated as the percentage of the correctly classified images by:

Accuracy =
TP + TN

N
(3)

where N is the total number of images in the evaluated set, TP is the true positive, i.e.,
detected abnormal cases, and TN is the true negative, i.e., normal cases not detected
as abnormal.

• Precision: calculated as the number of TP divided by the sum of TP and false positives,
normal cases detected as abnormal.

Precision =
TP

TP + FP
(4)

• Sensitivity/Recall: calculated as the number of, divided by the sum of TP and false
negatives FN, abnormal cases detected as normal:

Recall =
TP

TP + FN
(5)

• F1-Score: defined as the harmonic mean of precision and recall:

F1 − Score = 2∗ Precision ∗ Recall
Precision + Recall

(6)

• Confusion matrix: A confusion matrix is a table used for summarizing a classifier’s per-
formance. The number of correctly and incorrectly classified samples are summarized
with count values and broken down by each category.
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2.5. Proposed Explainability Evaluation Metric

In this paper, we propose a novel explanatory metric to validate a deep learning
model’s decision, a model’s conformity that measures the proportion of model attention to
DR-related lesions. To calculate a model’s conformity over the whole test set, we average
the conformity of each instance in that set. We visualize the evaluated deep learning models’
Grad-CAM and evaluate the results using the conformity measure as follows:

conformity =

⎧⎪⎪⎨⎪⎪⎩
1
N

N
∑

i=1
1 − FDLi

1+FDLi
when Nl = 0

1
N

N
∑

i=1

TDLi
TDLi+FULi+FDLi

when Nl > 0
(7)

where N is the total number of images in the evaluated set, Nl . is the number of DR lesion
regions present in image i, TDLi is the number of correctly detected lesions, FULi. is
the number of undetected lesions, and FDLi is the number of incorrectly detected lesions.
When Nl = 0 , i.e., in the case of normal images, we assume that the whole image should
contribute to the classifier prediction. Thus, no specific region should be highly activated
and highlighted using Grad-CAM. Therefore, the conformity of a model, when tested on
image i, equals one in this case. In contrast, if the model highlights many irrelevant regions,
the conformity approaches zero. When Nl > 0 , i.e., in case of abnormal images, all lesions’
regions should be highlighted using Grad-CAM. The conformity would equal one if all
lesions’ regions were highlighted and approach zero if the classifier either detects false
regions or misses relevant DR signs regions.

3. Results

In this study, we first compared the performance of the three models on the test set
for both five classes and binary classification to see how well each model differentiates
abnormal and abnormal fundus photos in these two tasks. Then, we evaluated each
model’s explainability as measured by our proposed conformity metric to validate the
models’ performance. We visualized the Grad-CAM outputs to compute the conformity of
normal and abnormal retinal photographs. Finally, we discussed the correlation between
explainability and the models’ performance.

3.1. Model Performance on the Test Set
3.1.1. Binary Classification

Table 2 presents the three models’ performance evaluation on the test and train sets
for the binary classification of retinal images, i.e., whether normal or contains DR-related
signs. As shown, VGG-16 resulted in the highest accuracy on the test set with the least
variance between train and test set accuracies. On the other hand, Dense-Net121 clearly
overfits, resulting in much lower test accuracy than training accuracy.

Figure 5 shows the three models’ confusion matrices on the test and train sets also for
the binary classification of retinal images. As can be seen, VGG-16 resulted in the lowest
number of false positives and the highest number of true positives, while ResNet-18 has
the highest number of false positives and the lowest number of true positives.

Table 2. Performance evaluation on the test and train sets for DR detection.

Model Precision 1 Recall 1 F1-Score 1 Train Accuracy Test Accuracy

VGG16 0.87 0.52 0.65 78.07% 73.04%
ResNet-18 0.67 0.68 0.67 78.44% 67.14%

DenseNet-121 0.74 0.71 0.73 91.11% 72.95%
1 Calculated for the test set.
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VGG-16 

 
ResNet-18 

 
DenseNet-121 

Figure 5. Confusion matrix evaluation of the three models on the test and train sets for binary
classes classification.

3.1.2. Multiple Classification

Table 3 presents the three models’ performance evaluation on the test and train sets
for the five DR stages classification of retinal images. Again, as shown, VGG-16 resulted
in the highest accuracy on the test set with the least variance between train and test set
accuracies, and Dense-Net121 overfitted the train set, resulting in much lower test accuracy
than training accuracy.
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Table 3. Performance evaluation on the test and train sets for DR stages classification.

Model Precision 1 Recall 1 F1-Score 1 Train Accuracy Test Accuracy

VGG16 0.45 0.48 0.47 64.27% 48.43%
ResNet-18 0.44 0.48 0.46 76.18% 47.86%

DenseNet-121 0.42 0.46 0.44 83.05% 45.57%
1 Calculated for the test set.

Figure 6 shows the three models’ confusion matrices on the test and train sets for the
five DR stages classification of retinal images. It is worth noting that VGG-16 demonstrated
the highest classification accuracy between the two early stages of DR, which might mean
the ability to capture some DR lesions not seen by other models.

 
VGG-16 

 
ResNet-18 

 
DenseNet-121 

Figure 6. Confusion matrix evaluation of the three models on the test and train sets for five classes
classification.
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3.2. Models Explainability on the Test Set

Table 4 demonstrates some examples of Grad-CAM outputs along with the original
fundus photos. Table 5 presents the results of the proposed explainability metric, conformity.
As can be seen from Table 4, classifiers might activate irrelevant background regions or
normal retinal structures such as the optic disc or the macula. Additionally, the deep
learning classifiers do not capture some clear lesion sign regions. For example, as shown
in Table 4, image b, ResNet-18 model decisions were based on the background regions.
Furthermore, in image c, ResNet-18 and DenseNet-121 models emphasized some irrelevant
regions and failed to find DR-related signs even though the DR lesions are distinctive.
Lastly, ResNet-18 and DenseNet-121 models are confused by the normal retina structure,
which caused false classification by these models.

Table 4. Examples of Grad-CAM output of the evaluated deep learning models.

Original Image VGG16 ResNet-18 DenseNet-121

    

(a)

    

(b)

    

(c)

    

(d)
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Table 5. Model conformity measures.

Model
Conformity with Normal

Retinal Photos
Conformity with

Abnormal Retinal Photos
Average

Conformity

VGG16 0.2000 0.2414 0.2207
ResNet-18 0.0294 0.0645 0.0469

DenseNet-121 0.0385 0.0286 0.0336

4. Discussion

In recent technological advancements, the diffusion of deep learning architectures
allows for more promising results corresponding to various applications, including medical
imaging and DR diagnosis. Despite achieving remarkable results in terms of model accura-
cies, deep learning-based methods have not achieved a significant deployment in clinical
settings. One major reason is the lack of tools to inspect the decisions of deep learning
models, as these models might make the right decision due to wrong reasoning. This is
a serious issue, which makes it essential to give more attention to analyzing the black box
nature of deep learning models. Another issue related to the performance evaluation of
deep learning models in the medical field is the skewness of the data used for training
and testing. This is usually due to the domination of normal over abnormal cases. Highly
skewed data means the data are not evenly distributed. Machine learning models are
designed to improve accuracy by reducing error and tend to produce biased and inaccurate
results when faced with imbalanced datasets. Evaluation of an imbalanced dataset using
accuracy metric, for example, can also be misleading as the minority class is normally the
class of interest, i.e., the disease cases.

In this work, we started by creating a balanced DR dataset by obtaining the same
number of instances for all classes. The main objective of dataset balancing is to train
unbiased models and to have an accurate and valid evaluation. In this work, balancing data
experiments reveal that the deep learning models tend to overfit the training set and do not
necessarily perform well on unseen fundus photographs. This highlights the importance of
giving more attention to this difficulty before feeding the algorithms with skewed data and
validating the experimental results.

To overcome the challenge of unexplained predictions, we proposed a new metric that
measures the models’ attention to the DR symptoms. We conducted two experiments to
classify the fundus images into two and five classes. We fine-tuned three state-of-the-art
deep learning architectures in both cases and visualized their decisions using Grad-CAM
techniques. Our conformity metric is designed to demonstrate the models’ capability to
generate a valid rationale for the classification decision. The conformity values range
between 1 if all DR signs regions are highlighted by the attention techniques and approach
zero if the classifier either detects false regions or misses relevant DR relevant regions.
Analyzing the three fine-tuned models results in their conformity and discloses some
interesting characteristics of these models and the attention methods. First, Grad-CAM,
as a class-discriminative localization technique, can generate visual explanations for all
three CNN-based models without requiring architectural changes or re-training. However,
visualizations lend insight into the failures of these models to capture the region of interest
related to the DR diagnosis task. Second, as shown in Tables 2, 3 and 5, the VGG-16 model
manifests the lowest generalization error and the highest conformity and explainability
capabilities. This could be due to the small receptive field size used throughout the entire
network and the lack of skip connections.

Third, as seen in Tables 2, 3 and 5, DenseNet-121 led to the highest generalization
error and overfitting of the training. Interestingly, the conformity metric of this model
is the lowest compared to the other models. This emphasizes the necessity for both the
data balancing step and the regularization of these models. Additionally, it highlights the
correlation between the models’ performance and our proposed explainability metric.
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5. Conclusions

In this paper, we evaluated three state-of-the-art models for DR binary and five-stage
classification using a fundus images dataset. First, we created balanced training, validation,
and test sets to ensure the validity of the evaluation results. Evaluating imbalanced sets
can be misleading, especially with a skewed dataset and the domination of one class
over another. Second, we optimized and fine-tuned the three models and evaluated their
performance. The results show that the complexity and depth of these models make them
prone to overfitting. Thus, their performance on the test degrades significantly. However,
VGG-16 resulted in the least gap between training and test set accuracies and achieved the
best generalization among the other models. Third, we proposed a new metric to compare
the classification performance of the three models from the explainability aspect, conformity.
The proposed metric utilizes the Grad-CAM technique to measure the proportion of model
attention to DR-related signs. The superiority of VGG-16 was further demonstrated when
evaluating the models using conformity metrics. VGG-16 achieved significantly higher
conformity and showed much more justified decisions than the other models. In the future,
we aim to evaluate other deep learning models’ explainability using our proposed metric
and to incorporate lesion detectors with a general classifier to achieve more interpretable
classification decisions.
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Abstract: Micro-expression is the involuntary emotion of the human that reflects the genuine feelings
that cannot be hidden. Micro-expression is exhibited by facial expressions that last for a short duration
and have very low intensity. Because of these reasons, micro-expression recognition is a challenging
task. Recent research on the application of 3D convolutional neural networks (CNNs) has gained
much popularity for video-based micro-expression analysis. For this purpose, both spatial as well as
temporal features are of great importance to achieve high accuracies. The real possibly suppressed
emotions of a person are valuable information for a variety of applications, such as in security,
psychology, neuroscience, medicine and many other disciplines. This paper proposes a 3D CNN
model architecture which is able to extract spatial and temporal features simultaneously. Thereby,
the selection of the frame sequence plays a crucial role, since the emotions are only distinctive in a
subset of the frames. Thus, we employ a novel pre-processing technique to select the Apex frame
sequence from the entire video, where the timestamp of the most pronounced emotion is centered
within this sequence. After an extensive evaluation including many experiments, the results show
that the train–test split evaluation is biased toward a particular split and cannot be recommended in
case of small and imbalanced datasets. Instead, a stratified K-fold evaluation technique is utilized to
evaluate the model, which proves to be much more appropriate when using the three benchmark
datasets CASME II, SMIC, and SAMM. Moreover, intra-dataset as well as cross-dataset evaluations
were conducted in a total of eight different scenarios. For comparison purposes, two networks from
the state of the art were reimplemented and compared with the presented architecture. In stratified
K-fold evaluation, our proposed model outperforms both reimplemented state-of-the-art methods in
seven out of eight evaluation scenarios.

Keywords: micro-expression analysis; 3D CNN; Apex frame sequence; stratified K-fold; intra-dataset
and cross-dataset evaluation

1. Introduction

Micro-expressions are the type of expression that occurs when a person tries to sup-
press their true feelings. Micro-expressions are spontaneous and usually last for less than
0.5 s [1], resulting in tiny facial muscles’ movements. As per [2], micro-expressions are
generated when someone attempts to hide their true intentions, as these expressions can
neither be mimicked nor concealed. In 1966, micro-expressions were first discovered by
Haggard and Isaacs [3], assuming that they are associated with defense mechanisms and
conveyed feelings.

Later, in 1969, when Ekman and Friesen [4] conducted some experiments, they inad-
vertently encountered micro-expression. In the experiment, they examined the video of a
person with depression who tried to lie about their suicide plan. During ordinary watching
of the patient’s video, they did not observe anything suspicious, but when they watched
the same clip at reduced video speed, they noticed that after the doctor asked the patient
about his future, there was an expression of pain on the patient’s face. These expressions
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lasted for a short time and were only present in two frames of the video, so they named
them micro-expressions [2].

Micro-expression recognition is applicable in many domains, e.g., doctors can rec-
ognize if a patient is suffering from pain [5], or it can be used with criminals during
interrogations or at court to find out if they are lying. In addition, the real possibly sup-
pressed emotions of a person are valuable information for many more applications in the
fields of security, psychology, neuroscience, and medicine. Traditionally, micro-expression
recognition was performed using a handcrafted descriptor that was manually adjusted
to extract features from video clips or images. Local Binary Patterns (LBP) [6], optical
flow features [7], and Local Binary Pattern histograms from Three Orthogonal Planes
(LBP-TOP) [8] were some of these famous manual techniques used for feature extraction.
However, the main drawback of the handcrafted methods was that they extract the man-
ually created features and do not provide a generic data representation. Deep learning
has recently gained much popularity, and convolutional neural networks (CNNs) are
extensively used in solving computer vision problems. By using CNNs [9–11], the re-
sults in the field of micro-expression analysis have also been outperformed compared to
traditional approaches, which is why this field continues to be of great interest for the
research community.

Most of the recently proposed architectures for micro-expression recognition are based
on CNN, long short-term memory (LSTM), or a combination of both network types. The
disadvantage of standard CNNs is that they are only able to gather spatial features and
are unable to capture motion over several frames. Some work [12] attempted to capture
temporal information with the optical flow, but this often involves detecting unwanted
background motion. Usually, the spatial information was extracted with CNNs, and
subsequently, the features obtained were given into an LSTM to analyze the temporal
information [13,14]. However, simultaneous extraction of the spatio-temporal features
is not possible with this workflow. To overcome all the limitations of existing methods,
a 3D CNN model is proposed in this work. It is a new custom architecture for directly
recognizing the persons’ micro-expressions from the video sequences. In addition, we
employ a novel pre-processing technique by selecting the Apex frame sequence from the
entire video. The advantage of this approach is that the Apex event with the highest emotion
shown by the subject is located in the middle of this sequence. This yields better results in
classification compared to using the initial sequence. Moreover, extensive experimental
evaluation is performed with intra-dataset as well as cross-dataset experiments on the three
benchmark datasets CASME II, SMIC, and SAMM. This comparison of cross-dataset results
is unprecedented in the state of the art for micro-expression recognition, and we are the
first to perform this kind of evaluation. It clearly shows that our new 3D CNN architecture
outperforms other state-of-the-art models in terms of recognition performance.

The main contributions of this paper can be summarized as follows:

• We have developed a 3D CNN model architecture for micro-expression recognition
which is able to extract spatial and temporal features simultaneously;

• A novel pre-processing technique is employed by selecting the Apex frame sequence
from the entire video, where the timestamp of the most pronounced emotion is
centered within this sequence;

• Stratified K-fold was applied for model evaluation because it is suitable for small
datasets with imbalanced class distribution as in our case;

• Comprehensive experimental validation was performed by comparing the proposed
model with two reimplemented state-of-the-art methods in intra-dataset as well as
cross-dataset evaluations in a total of eight different scenarios. To the best of our
knowledge, such an extensive evaluation in this or comparable manner has not been
conducted for micro-expression recognition so far.

The paper is organized in the following way: The related works proposed so far
are presented in Section 2. Section 3 is about the spontaneous micro-expression datasets.
In Section 4, the pre-processing steps are examined, and in Section 5, our network architec-
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ture is outlined in detail. Section 8 reports the results and discussions. Finally, in Section 10,
a conclusion is drawn and future work is outlined.

2. Related Works

In micro-expression recognition, feature extraction is the most crucial task [15]. The
classification accuracy of micro-expressions is directly proportional to the feature extraction
efficiency. In recent years, many methods have been proposed to effectively extract features
from facial images [15]. These approaches are mainly classified into two types: those based
on handcrafted methods and those based on deep learning.

2.1. Handcrafted Methods

In the past decade, micro-expression recognition has been based entirely on hand-
crafted approaches. In [16], a feature extraction based on 3D histogram-oriented gra-
dients (3DHOG) was proposed to detect motion in the smaller regions of the face. Po-
likovsky et al. [17] presented a 3DHOG descriptor capable of capturing temporal char-
acteristics and sudden changes on the facial surface. A classifier such as k-means and
the voting method were used to classify the micro-expressions. Pfister et al. [18] utilized
the temporal interpolation method to normalize the length of the video sequence to deal
with the problem of short video samples. In addition, temporal and spatial features were
extracted using the LBP-TOP descriptor and used for the classification with support vector
machine (SVM) or random forest. In [19], new feature extraction techniques were proposed
using a fusion approach. This is based on a histogram of the motion boundaries, where
the vertical and horizontal components of the differential optical flow are fused. The
extracted features are classified by SVM. Shreve et al. [20] proposed a technique to spot the
temporal information from long videos. During expressions in the facial regions, strains
were produced. The optical flow uses these strains in the mouth, chin, forehead, and cheek
areas of the face to identify temporal features. Moreover, the extended video sequence
consists of both the micro- and macro-expression. In [21], a new approach was presented
that automatically recognizes facial expressions. Instead of an expression, this approach
concentrated more on clues related to identity. Hence, video frames were used to generate
registration points or landmarks on the face; then, the local regions and LBP were extracted
for feature representation, and finally, the expressions were classified by SVM.

2.2. Deep Learning-Based Methods

Recent developments in GPUs extended the potential of deep learning models in
various domains. In the last few years, deep learning has become popular in solving
computer vision problems, leading to more advanced algorithms for micro-expression
recognition. Liong et al. [22] designed a network that uses the on-set and Apex frame of
each sample to compute optical flow features. Three such optical flow information, namely
the vertical, horizontal and optical strain, were used, which is why this network is called
shallow triple-stream 3D CNN. Thus, a compact and discriminative feature representation
is learned according to the authors. In [23], a 3D convolutional neural network capable
of extracting spatial and temporal features was proposed, taking advantage of three-
dimensional kernels. The authors used a frame sequence to classify the micro-expression,
but in the entire paper, the authors have not discussed the use of Apex frame or the selection
of an Apex frame sequence. In this paper, the author considered only initial starting frames
of the samples. Furthermore, two different networks were designed, one using the whole
image as input and the other obtaining only cropped parts of the face. For this purpose,
experiments were performed on the intermediate and late fusion of eyes and mouth regions
based on 3D CNNs.

The 3D CNN-based network by Zhang et al. [24] proposed a multi-scale fusion network
that fuses local regions (such as eyes or mouth) along with the global region (full face) in
order to select the appropriate region of interest to focus on for micro-expression recognition.
These features were later passed to an LSTM to better process the temporal features. Thus,
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they presented a multi-channel fusion model. In [25], the VGG network was used for micro-
expression detection. Since VGG is a deep network model, batch normalization and dropout
techniques were applied to avoid the problem of overfitting. Furthermore, the insufficient
dataset problem was tackled by choosing a random starting frame, fixing the sequence
length, and repeating the process for entire samples to amplify the data. Xu et al. [26]
proposed a method using optical flow to extract motion information between only two
frames (on-set and Apex) in the entire sequence of samples. These features were inputted
to a pre-trained MobileNetV2 and the micro-expressions classified by SVM. They conclude
that micro-expressions involve only local areas of the face, and there are some irrelevant
muscle movements. In [27], the temporal sample deformation method was introduced to
preserve the temporal information, since normalizing the length of the video sequence is an
essential aspect in the case of micro-expressions. The new sequence is randomly sampled
by a normal distribution. The authors developed a three-branched architecture combining
2D and 3D CNNs. They were able to show the advantages of single 3D kernel sizes
and multiple 3D kernel combination. The Eulerian video magnification (EVM) technique
adopted by Wang et al. [28] for magnifying the motion in micro-expressions was performed
to extract the spatio-temporal features for the CNNs. Therefore, Eulerian motion feature
maps were extracted by employing a spatial scale temporal filtering approach. Next, these
feature maps are fed into a 3D CNN for final recognition. In contrast to the previous
approaches, where the optical flow information was obtained from on-set and Apex frames,
Chen et al. [29] utilized a novel method by dividing the optical flow image into small blocks
and then processed them by CNN. A weighted loss function of implicit semantic data
augmentation is applied for augmentation of the training data in the deep features space.
In [30], the authors used only two frames (Apex frame and on-set frame) from the entire
frame sequence of micro-expression samples. Later, feature extraction was performed using
Bi-Weighted Oriented Optical Flow (Bi-WOOF) based on only those two frames instead of
a complete sequence. Thereby, discriminately weighted motion features are intended to be
captured and are weighted by their own magnitudes. The facial regions are weighted by the
magnitude of optical strain. Subsequently, SVM was used to classify the micro-expressions.
Li et al. [31] presented a method that consists of two sub-networks. First, a hierarchical
convolutional recurrent neural network is utilized for the extraction of spatio-temporal
features. Then, a principal-component-analysis-based recurrent neural network is applied,
and the features are merged through the fusion of sub-networks.

3. Datasets

There are two types of micro-expressions posed and spontaneous ones. In earlier
studies, participants were often asked to pose their facial expressions, so the datasets were
generated on this basis. However, the disadvantage of collecting datasets in this way was
that the expressions elicited by the participants were not genuine, which lead them to
differ from natural micro-expressions. In this paper, three spontaneous datasets are used:
Chinese Academy of Sciences Micro-Expression II (CASME II), Spontaneous Actions and
Micro-Movements (SAMM), and Spontaneous Micro-Expression Corpus (SMIC).

3.1. CASME II

The dataset [32] consists of 255 samples collected from 26 subjects with the same
ethnicity. Action Units (AUs) on the basis of the Facial Action Coding System (FACS)
system were employed for labeling the samples. The videos are recorded at a resolution
of 640 × 480 pixels. The samples in the CASME II dataset are distributed among seven
classes namely happiness, disgust, fear, sadness, repression, surprise, and others. However,
only the three classes happiness, disgust, and surprise are taken for the experiment (see
Table 1), as the remaining classes only contained very few samples and the class others
was not annotated consistently across the three datasets. The rest of the samples was
therefore discarded.
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Table 1. Experimental datasets with their class distribution.

Emotions CASME II SMIC SAMM

Happy 32 51 26

Disgust 63 70 15

Surprise 28 43 9

Total 123 164 50

3.2. SMIC

In the SMIC [33] dataset, 16 participants were recorded. Participants were chosen from
three different ethnicities to make this dataset more diversified. This dataset consists of
164 samples, which were further classified into three classes, namely the positive class that
contains happy emotions, combining the three sad, disgust, and fear emotions to form the
negative class and the surprise class.

3.3. SAMM

The SAMM [34] dataset consists of micro-expression samples obtained from 29 par-
ticipants. This was the first spontaneous high-resolution dataset in which participants
belonged to different geographical regions from a total of 13 ethnic groups. AUs were used
to label these samples based on FACS. SAMM contains seven emotions that were captured
at 200 FPS with a high resolution of 2040 × 1088. Again, only three classes are further
processed because of the small amount of samples in the remaining classes and to ensure a
fair comparison between the databases.

4. Pre-Processing

In micro-expression recognition, pre-processing is one of the most critical stages,
consisting of necessary steps before extracting the essential and useful features. Face
detection and face alignment are used to bring all the frames to a common reference. Next,
the landmarks are identified to discard unwanted background information or noise that
negatively affects the model’s accuracy. The final step is to capture the Apex frame sequence
where the emotion is high. Most of the pre-processing is performed by using algorithms
from the Dlib library.

4.1. Face Detection and Alignment

Detecting the face and aligning the faces to a common reference were major steps
which ensure that the extracted features belong to same location corresponding to each
face. Both these steps were performed by calling a function in Dlib named
dlib.get_frontal_face_detector(). This is a face detector that receives as input the
image and the up-scaling factor for the two arguments. By increasing the up-scaling value,
even smaller faces can be detected in the image, but this also increases the computation
time [35]. The output of the face detection function returns x, y, w, and h values, which are
the coordinates of the diagonal corners forming a bounding box around the detected face.

4.2. Facial Landmark Detection

After detecting the face, the next task was to obtain the facial landmarks. Based on these
landmarks, the face can be cropped properly ignoring the background as shown in Figure 1.
In Dlib, there is a pre-trained model called shape_predictor_68_face_landmarks.dat
that is used to generate the landmarks on the detected face. With the help of this pre-
trained model, a function called dlib.shape_predictor(). acts as a landmark detector.
The output of this model returns 68 points on the face [35]. After determining the landmarks,
all micro-expression frames were cropped according to the requirements of each model.
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Figure 1. The workflow of pre-processing steps.

4.3. Apex Frame Spotting

In our work, Apex frame spotting is not applied, since the information is already
provided in the datasets. The purpose of this section is to give an overview of existing
approaches for this task, which in particular has high relevance for real-world applications.
In real applications, the recorded data do not contain information about the Apex, which
indicates the point of time in the sequence with the highest micro-expression present.
However, this information can help to effectively reveal the genuine emotions behind a
particular video sample [36]. Few works have been proposed to detect the Apex frame from
a video sequence. In [37], the authors used an LBP descriptor to extract the features from
each frame and computed the difference by subtracting the features of the on-set frame
with the remaining frames. Then, they divided the sequence into two halves and calculated
the sum of each subsequence. The subsequence with the largest difference is selected. This
binary search process continues as described until an Apex frame is determined from the
entire sequence. In [38], optical flow and the LBP algorithm were used to determine the
Apex frame. Based on the distance of facial movements and their directions, the optical
flow was employed to examine the facial changes for identifying the Apex frame. In [39],
the authors used Region HOOF to spot the Apex frame with the help of five ROIs.

4.4. Selection of Apex Frame Sequence

In pre-processing, the last task was to choose the best sequence of frames with high
emotion or where the facial muscle movement was at its peak. The sequence with high
emotion needs to be considered for micro-expression recognition. Details about the frames
with high emotional content are obtained from the data annotations by analyzing their
AU levels. The CASME II and SMIC datasets also provide information about the on-set
frame (where micro-expression starts), the Apex frame (where micro-expression peaks),
and the off-set frame (where micro-expression ends). By taking advantage of these details,
the selection of frame sequence is performed. The Apex frame sequence consists only
of frames surrounding the Apex event with the highest micro-expression intensity. For
instance, a fixed frame length of 36 frames is chosen for a video sample from CASME II.
Then, 18 frames before and 18 frames after the Apex frame (including it) are considered in
the Apex frame sequence. For SMIC, the sequence length is 26 frames.

5. Network Architectures

The application of 3D CNN exploits the spatio-temporal correlation. Our proposed
model is named Model-A. The main aim of this work is to improve the recognition per-
formance of micro-expressions by using a 3D CNN. Two state-of-the-art models are reim-
plemented to compare the performance with our model. These two models are named
Model-B [23] and Model-C [40], respectively. Both also employ a 3D CNN in their model
architecture. In this section, the networks of Model-A, Model-B, and Model-C are presented.

5.1. Model-A (Proposed 3D CNN Model)

The goal of the proposed 3D CNN model architecture named Model-A is to recognize
micro-expressions in video clips. The architecture is demonstrated in Figure 2. The dimen-
sions height, width, and depth were passed as input into the model. Height and width are
kept constant with a size of 128 × 128 pixels, and the depth dimension varies based on
the frame sequence length of each dataset (36 frames for CASME II, 26 frames for SMIC,
and 30 frames for the Combined dataset). The entire model was created using the Keras
framework. Initially, a sequential model was constructed to which the layers were added.

106



Appl. Sci. 2022, 12, 11078

Figure 2. Architecture of our proposed 3D CNN Model-A.

The main block of Model-A consists of two Conv blocks followed by flatten and
dense layers. Each Conv block contains a convolution, batch normalization, max pooling,
and dropout layer, as shown in Figure 3. For the convolutional layer, a 3D CNN was chosen
instead of a 2D CNN because 3D CNNs are capable of capturing temporal information
along with spatial information. Each convolutional layer operates with 16 filters and a
kernel size of 3 × 3 × 3. The model uses a HeNormal initializer for better initial weights.
The padding type was kept the same so that edge information was retained. The output
from each convolution was passed to the batch normalization in order to converge the
model faster and reduce the problem of overfitting. Then, 3D max-pooling with a 3 × 3 × 3
kernel was applied to decrease the spatio-temporal size and preserve critical features.
Furthermore, to avoid overfitting, dropout layers were added to the model with a dropout
rate of 0.4.

Figure 3. Layers of each Conv block.

As the dimensions for the dense layer need to be one-dimensional, a flatten layer was
applied prior to dense. The first dense layer consists of 128 neurons, which is subsequently
connected to another dropout layer. Then, a second dense layer with three neurons performs
the classification into the three micro-expression classes. Finally, softmax is applied to the
output. Rectified linear unit (ReLU) activation functions were used across all feasible layers.
A summary of the sequential model is shown in Table 2, indicating the output feature map
size of each layer.

Table 2. Summary of our Model-A with CASME II dataset samples as input.

Layer Type Filter Size Output Shape

Conv3D-1 3 × 3 × 3 36 × 128 × 128 × 16
BatchNorm-1 - 36 × 128 × 128 × 16

3D-MaxPooling-1 3 × 3 × 3 12 × 42 × 42 × 16
Dropout-1 - 12 × 42 × 42 × 16
Conv3D-2 3 × 3 × 3 12 × 42 × 42 × 16

BatchNorm-2 - 12 × 42 × 42 × 16
3D-MaxPooling-2 3 × 3 × 3 4 × 14 × 14 × 16

Dropout-2 - 4 × 14 × 14 × 16
Flatten - 12,544

Dense-1 - 128
Dropout-3 - 128

Dense-2 - 3

5.2. Split-Model

The architecture of Model-A employed for the train–test split evaluation differs slightly
from the proposed one in Section 5.1. The only difference is that the architecture consists of
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three Conv blocks instead of two for Model-A. The rest of the layers and model parameters
remain unchanged. For better distinction, this variant for the intra-dataset train–test split is
named Split Model.

5.3. Model-B

This reimplemented model was originally called MicroExpSTCNN [23] in the corre-
sponding paper. To avoid confusion, our reimplementation is called Model-B. It is a 3D
CNN with input dimensions for width and height of 64 × 64, whereby the depth dimension
changes depending on the database selection. The model starts with a convolutional layer
with 32 filters and a kernel size of 3 × 3 × 15. Then, max-pooling is applied with a size
of 3 × 3 × 3 to retain important features. To prevent model overfitting, a dropout layer
with 0.5 dropout rate is employed afterwards. Then, the obtained output was flattened and
inputted to a dense layer with 128 neurons, which was followed by another dropout layer.
Finally, a dense layer with three neurons and softmax activation are used to classify the
samples into the classes anger, disgust, or happy. More details can be found in the original
paper [23].

5.4. Model-C

In the original work, the architecture was referred to as the 3D CNN network model [40].
This is the second reimplementation, which will be called Model-C in the rest of this paper.
This model is again a 3D CNN, but some model parameters were not listed by the authors,
e.g., the input image shape, the number of filters and the kernel size for the convolution,
the max-pooling size, the number of neurons in the dense layer, and the dropout rate.
To the best of our knowledge, missing values were assumed and empirically selected.
An input image size of 128 × 128 was chosen, and the depth depends as with Model-B on
the database. A convolution with 32 filters and a 3 × 3 × 3 kernel was picked; additionally,
batch normalization was added for better convergence. For the two max-pooling blocks, a
pooling size of 3 × 3 × 3 was taken. Moreover, a dropout rate of 0.5 was implemented, and
for the dense layer, 128 neurons were chosen. See [40] for more information.

6. Model Training Parameters

In this section, the parameter specifications for each model are specified.

6.1. Model-A

Our proposed model was implemented with the Keras framework and TensorFlow
backend. The system specification involved in all experimental setups includes a Intel®

Core™ i7-4770S CPU @ 3.10GHz, with 16 GB RAM and a NVIDIA GeForce RTX 2080 Ti
GPU with 12 GB. As hyperparameters during model training, a learning rate of 0.001 was
chosen with a batch size of 4. Categorical cross-entropy was used as the loss function,
and stochastic gradient descent (SGD) was used as the optimizer with a momentum of 0.9.
Accuracy was the metric utilized for measuring the performance of the model. In total,
the model was trained for 100 epochs.

6.2. Model-B

In the paper [23], the model was implemented through the Keras framework via
TensorFlow. The model training was performed along with an NVIDIA Tesla K80 GPU
server with 24 GB dedicated GDDR5 graphics processor. For the experiment, SGD was the
optimizer used along with categorical cross-entropy as the loss function. The model was
trained with a batch size of eight for 100 epochs.

6.3. Model-C

The experiment conducted in the paper [40] also employed the Keras framework
with TensorFlow backend. The experimental setup was equipped with an Intel® Core™
i7-9700 CPU 3.70 GHz with 32 GB RAM and a NVIDIA GeForce GTX 3090 GPU. The model
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parameters included a learning rate of 0.01, an SGD optimizer with a momentum 0.9,
and categorical cross-entropy as the loss function. The Nesterov accelerated gradient is
employed for SGD, and the learning rate decay is 1 × 10−6. The model was trained with a
batch size of four for 800 epochs.

Note that the learning rate of 0.01 was changed to 0.001 and the number of training
epochs was changed from 800 to 100 for experimental purposes. Many model parameters
were not mentioned in the paper and therefore had to be assumed. As a result, some given
hyperparameters had to be adjusted, as they were no longer suitable for model training due
to the assumptions made. The initial assumptions on the parameters were made based on
the proposed Model-A, since Model-C has a similar architecture. Subsequently, these model
parameters were fine-tuned and empirically optimized to improve the results of Model-C.

7. Experimental Analysis

In this section, an experiment is conducted to observe the difference in the performance
of the proposed model by selecting the initial frames or the frames around the Apex frame.
For experimental purposes, 36 frames were used in CASME II and 26 frames in SMIC. The
number of frames for SMIC is less because the average video length is shorter at 34 frames
compared to 68 frames in CASME II. From the results comparison in Table 3, it is clearly
visible that the performance of the proposed model achieves 9.6% higher accuracy when
using the Apex frame sequence instead of the original frame sequence for the CASME II
dataset. A similar observation is made for the SMIC dataset, where Model-A performs
9.4% better in accuracy using the Apex frame sequence compared to the initial frame
sequence. More details about the process of selecting the Apex frame sequence can be
found in Section 4.4.

Table 3. Performance of Model-A using initial frames and the Apex frame sequence.

Type of Frame Sequence

Dataset Initial Frame Sequence Apex Frame Sequence

CASME II 46.9% 56.5%

SMIC 34.3% 43.7%

From the results of this experiment, the overall superiority of our choice of the Apex
frame sequence is clearly demonstrated. Therefore, in all experiments for the eight scenarios
in the next section, the Apex frame sequence is used instead of the initial frames.

8. Results And Discussions

The results for the two evaluation techniques and eight scenarios are given and
discussed in this section. All the evaluation results are stated in the terms of accuracy.
The accuracy metric is used for model evaluation, as it is applied in two state-of-the art
models [23,40] as well. For better comparison, this paper applies the accuracy as the main
evaluation measure for all three models in the eight scenarios.

8.1. Train–Test Split

In the experiments, the Split Model was used for train–test split evaluation. It was
trained on the CASME II dataset and achieved an accuracy of 85.2% compared to 80.3%
by Model-C.

The results obtained seemed good at first sight, but a major problem was encountered,
as they are not reproducible for randomly shuffled splits and differ drastically in their
performance. In an experiment of five random splits, Run-1 achieved the highest accuracy
of 85.2%, whereas Run-3 achieved only 45%. The results of the other three splits are in
between them. The validation curves for all runs are shown in Figure 4.
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Figure 4. Evaluation accuracies for our Split Model with train–test split for multiple runs.

This clearly illustrates that a train–test split is not suitable for the small and imbalanced
datasets in micro-expression recognition. In other papers in the state of the art, a split was
then accordingly selected allowing the generation of the best possible results. However,
from our point of view, this does not correspond to a fair comparison and is not a good
scientific practice. To address this common practice in the field of micro-expression recog-
nition and to provide a fair comparison, we compared our model with two state-of-the-art
models in eight evaluation scenarios for both intra-dataset and cross-dataset. The splits
were generated using stratified K-fold validation. More details can be found in the next
subsection. To the best of our knowledge, we are the first to perform such a comparison in
this manner in micro-expression recognition.

8.2. Stratified K-Fold

The approach of stratified K-fold validation ensures that in every split, there will
be always the same ratio of class samples. Therefore, this approach was deployed for
all experiments. Overall, stratified K-fold validation was employed for eight different
evaluation scenarios. The number of K was always chosen to be five. Three of these
scenarios are intra-dataset experiments and five are cross-dataset experiments. For this
purpose, varying combinations of the three datasets CASME II, SMIC, and SAMM (see
Section 3) were applied. The combined dataset is a merging of CASME II and SMIC. As
the number of samples in SAMM with 50 was insufficient for training, it is only used for
testing purposes in the cross-dataset comparisons.

The results of the three methods Model-A, Model-B, and Model-C across all eight
scenarios are summarized in Table 4. It can be observed that our proposed Model-A out-
performs the state-of-the-art architectures Model-B and Model-C in seven out of eight
scenarios, with the exception of Scenario-8, where Model-C performs best. This clearly
shows the superiority of our architecture compared to the methods presented so far. De-
tailed results for each scenario with further explanations and discussions can be found in
the following subsections.

8.2.1. Scenario-1

Scenario-1 is an intra-dataset experiment where both training and validation were
performed on the SMIC dataset. Our Model-A reached an accuracy of 43.7% compared to
33.5% and 37.3% of Model-B and Model-C, respectively. Thus, the performance difference
is 10.2% and 6.4%. The advantage of Model-A is that it is deeper and consists of more
convolutional layers. Therefore, it is able to better identify spatio-temporal features related
to micro-expressions. Another benefit is provided by our pre-processing technique, which
involves selecting an Apex sequence and interpolating the first and last frames of each
video, resulting in fewer samples being discarded because of too short length.
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A overall low accuracy can be noticed for all three models. The main reason for this is
that the videos were recorded at 100 FPS, which is low compared to the other benchmark
datasets. Thus, there is a lag in the models’ ability to capture the temporal information,
which is an essential factor in micro-expression recognition. Consequently, poor temporal
feature quality leads to low accuracies. Additionally, the average sample length in SMIC
is only 34 frames, which is shorter than for the other databases. It is likely that this only
allows the extraction of features with lower quality from the samples.

Table 4. Accuracy comparison of the three models across all eight evaluation scenarios.

Scenario Train Test Model-A Model-B Model-C

01 SMIC SMIC 43.7% 33.5% 37.3%

02 CASME II CASME II 56.5% 45.4% 48.1%

03 Combined Combined 88.2% 85.4% 80.4%

04 SMIC SAMM 44.3% 31.1% 42.0%

05 CASME II SAMM 24.8% 24.3% 23.1%

06 SMIC CASME II 44.7% 43.7% 39.1%

07 CASME II SMIC 37.7% 35.4% 36.5%

08 Combined SAMM 27.1% 23.1% 36.9%

8.2.2. Scenario-2

In Scenario-2, CASME II was applied for training and testing. Again, Model-A per-
forms best with a margin of 8.4% to the second best Model-C. An accuracy of 56.5% was
obtained for Model-A, which is 12.8% higher than for the SMIC dataset in Scenario-1.
Model-B and Model-C were also able to increase by 11.9% and 10.8%, respectively. This can
be mainly attributed to the higher frame rate in the video recordings, which is with 200
FPS twice as high as with SMIC. Thus, the networks are capable of detecting even more
minor motion information. As mentioned above, a higher frame rate can help produce
higher accuracies in micro-expression recognition. Another advantage of the CASME II
dataset is that the on-set frame, Apex frame, and off-set frame information is provided by
the authors. As the Apex frame was known in the entire video, the pre-processing was
executed easily in a correct manner.

Even though the accuracy achieved with CASME II is higher than with SMIC, it is still
not very high for micro-expression recognition. There are some reasons for this: The major
problem in CASME II was the data imbalance. So, for the experiments, only three classes
are appropriate: namely, happiness, disgust, and surprise. These emotions were mainly
considered in order to be consistent with SMIC and SAMM. Even though the dataset has
255 samples, only 123 samples were utilized in the experiments. Thus, the low overall
performance in CASME II can be attributed to insufficient and imbalanced samples.

8.2.3. Scenario-3

In Scenario-3, SMIC and CASME II are combined by joining their samples. Discussing
the performance of the individual models, all three models achieved more than 80%
accuracy. The performance of Model-A with an accuracy of 88.2% is the best over all eight
scenarios. Model-B and Model-C rank behind with 85.4% and 80.4%, respectively.

The higher performance for this scenario can be explained by two reasons: First,
the combined dataset contains an amount of 230 more samples for training. Second,
the model benefits from the mixture of higher and lower frame rates, making it more robust.

8.2.4. Scenario-4

In this cross-dataset scenario, the SMIC dataset was used for model training, whereas
SAMM was used for evaluation. Model-A achieved an accuracy of 44.3%. This can be
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regarded as relatively high when it is compared to the intra-dataset evaluation results of
SMIC in Scenario-1, where the performance of Model-A is lowered by 0.6%. In cross-dataset
experiments, the ethnicities of the subjects play a crucial role, as they will lead to better
generalization of the model. It is all the more astonishing that the model trained on SMIC,
which includes only three ethnicities (Africa, Asia, and Caucasian) in the training samples,
performs that well on SAMM.

Compared to Model-C, Model-A performs better by 2.3%. A relatively large drop can
be seen for Model-B with a difference of over 13% to Model-A.

8.2.5. Scenario-5

In Scenario-5, the models were trained on CASME II and evaluated on SAMM. Com-
pared to Scenario-4, where SAMM was also employed for evaluation, there is a significant
decrease in the accuracies of between 7% and 20% for the three models. Reasons for this
may be that CASME II contains only Asian subjects and therefore generalizes less accurately
for other people. In addition, CASME II has a high data imbalance.

All three models perform almost identically in Scenario-5 with a slight edge: Model-A
is 0.5% higher than Model-B and 1.7% higher than Model-C.

8.2.6. Scenario-6

The SMIC dataset was used for training in Scenario-6 and CASME II was used for
evaluating the model. Model-A again outperforms the two others with 44.7% accuracy,
which is 1.0% and 5.6% higher in comparison with Model-B and Model-C, respectively.

In contrast to Scenario-2, where intra-dataset evaluation was performed for CASME II,
the model trained on SMIC has to cope with a drop of 11.8%.

It can be observed that all models trained on SMIC perform similarly well on the
different test sets. The accuracy of Model-A on the intra-dataset in Scenario-1 is 43.7%, while
in Scenario-4 on SAMM, it is 44.3%. Such balanced results are found only with the model
trained on SMIC. Due to the comparatively high number of samples of 164, the different
ethnicities of the subjects, and a relatively balanced class distribution, the networks trained
on SMIC show the best generalization and do not vary strongly across the datasets, which
would be an indicator for a bias in the training data.

8.2.7. Scenario-7

In this scenario, the training was performed on CASME II and evaluation was per-
formed on SMIC. The performances of all three models are comparable with only a differ-
ence of 2.3% between the worst and the best. Model-A ranks again first with an accuracy of
37.7%.

The drop of Model-A in Scenario-7 is kept within limits at 6% compared to the model
trained on SMIC (Scenario-1). Nevertheless, if we examine all three models trained on
CASME II, it is noticeable that the results differ heavily depending on the test set. Here,
again, the lack of diversity and the class imbalance problem of CASME II become obvious.
The intra-dataset experiment (Scenario-2) performs about 20 % better than testing on SMIC
(Scenario-7), which is in turn around 13 % better than on SAMM (Scenario-5). Overall, it
appears that CASME II contains high levels of bias, and therefore, the models trained on it
have limited ability to cope with other data.

8.2.8. Scenario-8

Scenario-8 along with Scenario-5 contain the worst results across all eight experiments.
Here, again, testing is completed on SAMM, but here, the training is carried out on the
combined dataset of SMIC and CASME II. This scenario forms an exception, because it is
the only scenario not dominated by Model-A. Model-C clearly performs better here with
36.9% compared with Model-A’s 27.1%.

Comparing the results of Model-A, CASME II seems to have a greater impact on
training the model. Through the combination, the accuracy compared to training solely
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on CASME II can increase from 24.8% to 27.1%. However, this still leaves a large gap with
the SMIC trained model in Scenario-4, where the accuracy is 17.2% higher. This confirms
the conclusions drawn in Scenario-7 that CASME II is only limitedly qualified for the
implementation of models with a high degree regarding generalization ability.

9. Applications and Use Cases

Micro-expressions play an important role in applications of lie detection, person au-
thentication, and many more. For instance, in an interrogation, facial micro-expressions
of the criminal can assist the police in convicting him. Another use case is that border
guards can use them to identify unusual behavior of persons during border control [41].
Moreover, knowing a patient’s true feelings is considered to be very helpful for psychother-
apists while treating their patients. Furthermore, micro-expression can also be used in
the field of marketing to understand people’s reactions and comments to the company’s
advertisements, goods and services [41].

10. Conclusions

In this work, we proposed a novel 3D CNN architecture capable of extracting fea-
tures from both spatial as well as temporal dimensions simultaneously. Especially in
micro-expression recognition, these combined spatio-temporal features are crucial for the
subsequent performance of the network. In order to improve the input sequence selection,
a pre-processing technique was introduced to select the Apex frame sequence from the
video, which is the part with the most visible emotions. This Apex frame sequence shows
better results than picking the first or a random starting frame from the video. Another
benefit of our pre-processing is that for samples with short videos, the first and last frame
will be interpolated to meet the fixed-lenght input criteria so that they do not need to
be discarded.

In addition, an extensive experimental evaluation was performed in our work, which
is unprecedented in the state of the art for micro-expression recognition. To conduct
this comparison, two state-of-the-art models were reimplemented, and intra-dataset as
well as cross-dataset experiments were executed on the three datasets: CASME II, SMIC,
and SAMM across a total of eight different evaluation scenarios. In addition, a stratified
K-fold evaluation was proposed and adopted, since in a classical train–test split comparison,
the performance varies strongly depending on the split chosen and the samples included for
training and testing, making the results not meaningful. Our proposed Model-A was able
to outperform the other two state-of-the-art architectures in seven out of eight evaluation
scenarios, clearly demonstrating the superiority of our network. The highest accuracy of
88.2% is shown in the intra-dataset validation in Scenario-3, where the CASME II and SMIC
datasets were merged.

Overall, in particular, the cross-dataset results of consistently below 50% accuracy
exhibit great potential for improvement. Specifically, the CASME II dataset reveals that it is
not suitable for achieving a network with a high degree of generalization ability. The lack
of diversity in the subjects’ origin countries and the class imbalance between the samples
lead to a severe performance drop on other datasets. In comparison, SMIC is well suited
for achieving consistent results on a variety of data, but results also need to be further
improved. Especially, the different ethnicities (Africa, Asia, and Caucasian) of the subjects
and the class distribution are good, but the frame rate of 100 FPS and the total number
of 164 samples are not high enough. Even though the results seem comparatively poor
and irrelevant at first glance, they show an unvarnished, fair and reproducible comparison
which allows existing challenges and future work to be identified for the field of micro-
expression recognition. In this regard, the main task for the future is the acquisition of
new large databases with a high level of annotation quality. Thereby, SMIC can provide
good preliminary knowledge on how to set up and accomplish this dataset recording. In
addition, generative adversarial networks might be able to contribute to the collection of
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these additionally required amounts of data. In recent years, these could be successfully
exploited in many areas of deep learning to enhance the available data.
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Abstract: As a result of hardware resource constraints, it is difficult to obtain medical images with
a sufficient resolution to diagnose small lesions. Recently, super-resolution (SR) was introduced
into the field of medicine to enhance and restore medical image details so as to help doctors make
more accurate diagnoses of lesions. High-frequency information enhances the accuracy of the image
reconstruction, which is demonstrated by deep SR networks. However, deep networks are not
applicable to resource-constrained medical devices because they have too many parameters, which
requires a lot of memory and higher processor computing power. For this reason, a lightweight
SR network that demonstrates good performance is needed to improve the resolution of medical
images. A feedback mechanism enables the previous layers to perceive high-frequency information
of the latter layers, but no new parameters are introduced, which is rarely used in lightweight
networks. Therefore, in this work, a lightweight dual mutual-feedback network (DMFN) is proposed
for medical image super-resolution, which contains two back-projection units that operate in a dual
mutual-feedback manner. The features generated by the up-projection unit are fed back into the
down-projection unit and, simultaneously, the features generated by the down-projection unit are fed
back into the up-projection unit. Moreover, a contrast-enhanced residual block (CRB) is proposed as
each cell block used in projection units, which enhances the pixel contrast in the channel and spatial
dimensions. Finally, we designed a unity feedback to down-sample the SR result as the inverse
process of SR. Furthermore, we compared it with the input LR to narrow the solution space of the
SR function. The final ablation studies and comparison results show that our DMFN performs well
without utilizing a large amount of computing resources. Thus, it can be used in resource-constrained
medical devices to obtain medical images with better resolutions.

Keywords: attention module; dual mutual feedback; lightweight; medical image super-resolution;
unity feedback

1. Introduction

The aim of SR is to learn a mapping function from input low-resolution (LR) images to
output high-resolution (HR) images. High-resolution medical images are very important
for doctors in terms of making accurate diagnoses of lesions; thus, SR for medical images
has recently received a great deal of attention. However, image super-resolution remains a
challenge, as LR images lose a certain amount of information as compared to HR images [1].
Many researchers have tried to find a solution to this critical issue [2–5].

On the basis of deep learning, Dong et al. proposed the SR convolutional neural
network (SRCNN) [2], which utilizes the convolutional neural network (CNN) architecture
and is vastly superior to other traditional methods. Thereafter, Dong et al. proposed fast
SR convolutional neural networks (FSRCNNs) [5], which up-sample feature maps using
deconvolution in the last layer of the network and provide more accurate estimates with
less computation. The deconvolutional layer generates HR features by enlarging feature
maps. Then, the subpixel convolutional layer was proposed by Shi et al. [6], which expands
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the number of feature channels in order to store more pixels and rearrange them to generate
HR features. The Laplacian pyramid super-resolution network (LapSRN) [7] up-samples
LR feature maps progressively, which enables it to reconstruct multi-scale SR images in one
training session.

To further improve SR performance, deep networks were introduced into SR. The very
deep SR convolutional neural network (VDSR) [8] proposed by Kim et al. is the first deep
multiple-scale model. It bypasses interpolated LR images to the end by residual learning.
Then, on the basis of VDSR [8], the authors proposed a deeply recursive convolutional
network (DRCN) [9], which trains the network using a recursive-supervised strategy
and achieves a similar performance to VDSR [8] with fewer parameters. Deep dense SR
(DDSR) [10] was proposed for the SR of medical images, which uses densely connected
hidden layers to obtain informative high-level features.

However, it remains a challenge for deep neural networks to go deeper because of
the various difficulties associated with training, such as gradient vanishing/exploding
problems. Rresidual learning was proposed to solve these problems. The deep residual
network (ResNet) [11] is a representative model, which achieves a remarkable performance
based on residual learning. Tai et al. [12] used residual learning and recursive learning
to realize a very deep network without an enormous amount of parameters. The SR
network using dense skip connections (SRDenseNet) [13] is another representative model
based on residual learning. It bypasses all previous features to latter layers in blocks and
densely concatenates all blocks. The enhanced deep SR network (EDSR) [14] proposed
by Lim et al. removes the use of batch normalization (BN), which is harmful to the final
performance in SR tasks. EDSR also employs a pretraining strategy and residual scaling
techniques to improve the final performance. On the basis of residual learning, for the SR
of three-dimensional (3D) brain MRI images, Pham et al. [15] proposed a deep 3D CNN.

Above classical SR methods are all feedforward SR methods; low-frequency infor-
mation is directly passed to the following layer or bypassed to the latter layers through
skip connections. The feedback mechanism enables the previous layers to perceive high-
frequency information from the latter layers, but no new parameters are introduced. It is
widely used in the domain of computer vision [16–19]. Recently, Haris et al. [20] proposed
error feedback for image SR, which was used in two back-projection units. Thereafter,
the SR feedback network (SRFBN) [21] was proposed, which contains a feedback block that
functions in a self-feedback manner. For the SR of medical images, the feedback adaptive
weighted dense network (FAWDN) [22] was proposed based on an adaptive weighted
dense block and feedback connection.

Although the feedback mechanism is used in some SR methods, it is rarely used in
lightweight SR methods. The feedback mechanism enables the previous layers to perceive
high-frequency information from latter layers, but no new parameters are introduced.
Therefore, it is very applicable for lightweight networks. Moreover, most medical devices
are resource-constrained, so lightweight feedback SR networks with good performance
are desired. In order to meet the demand, a lightweight dual mutual-feedback network
(DMFN) is proposed for artificial intelligence in medical image super-resolution. The
DMFN feeds the HR features generated by the up-projection unit back into the down-
projection unit, and feeds LR features generated by the down-projection unit back into the
up-projection unit, which forms a dual mutual-feedback architecture, as shown in Figure 1.
Our method that was trained using natural images is named DMFN, and our method that
was trained using medical images is named DMFN+. They were tested on MRI13 from [22]
and compared with other state-of-the-art SR methods, as shown in Figure 2. Our method
performs very well with little computational cost.
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Figure 1. The structure of DMFN.

(a) scaling factor of x3 (b) scaling factor of x4

Figure 2. PSNR vs. parameters on MRI13 in [22].

Our contributions are summarized as follows:

• To better perceive the high-level information from each other, we designed a dual
mutual-feedback structure. The HR features generated by the up-projection unit
are fed back into the down-projection unit, and the LR features generated by the
down-projection unit are fed back into the up-projection unit.

• To boost the expressive ability of the network, we propose a contrast-enhanced resid-
ual block (CRB) for use as each cell block in the projection units. CRB uses the
contrast-enhanced channel and spatial attention within residual learning. The contrast-
enhanced channel attention module learns the pixel contrast of each feature map to
restore the textures, structures, and edges of images. The contrast-enhanced spatial at-
tention module learns the pixel contrast in the same spatial location along the channel
dimension to infer finer spatial-wise information.

• To narrow the search domain of the SR function, we designed a unity feedback.
We down-sampled the SR result to LR image as the inverse process of SR. We then
compared it with the input LR to calculate the unity feedback loss. The proposed unity
feedback is helpful in terms of learning a better SR function with very few introduced
parameters, which can be applied as a module to other SR networks.

2. Related Work

In this study, we designed a feedback network, which is inspired by SRFBN [21].
Moreover, inspired by [20], we used two back-projection units working in a dual mutual-
feedback manner. Furthermore, we propose an attention-based module CRB for use as
each cell block in the two back-projection units.

2.1. Attention Mechanism

The attention mechanism helps the networks perceive more informative features.
Previously, the attention mechanism was used for image classification tasks [23] in RNN.
Recently, inspired by the non-local means method, [24] learned the relationship between
pixels with weighted sum t using long-range dependencies acquisition. Then, Hu et al. [25]
learned the dependencies between channels with very little computational cost. The
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residual channel attention block (RCAB) proposed in [26] first used channel attention within
the residual block. The convolutional block attention module (CBAM) [27] enhanced the
discriminate learning ability of the network with the help of channel and spatial attention.
Hui et al. [28] proposed the contrast-enhanced channel attention (CCA) and argued that
channel attention with standard deviation can better learn the interdependencies between
feature channels.

Inspired by [28], we designed contrast-enhanced spatial attention, which learns the
contrast of pixels in the spatial dimension to infer finer spatial-wise information in feature
maps. Then, we used contrast-enhanced channel attention and spatial attention successively
within the residual block, which is named the contrast-enhanced residual block (CRB).

2.2. Back-Projection

Irani et al. [29] used back-projection for image enhancements, which confirmed that
iterative updates and down-sampling can minimize reconstruction error. Dai et al. [30] pro-
posed bilateral back-projection for SR networks with a single LR input. Then Dong et al. [31]
used iterative back-projection and incorporated non-local information to improve recon-
struction performance. Timofte et al. [32] enhanced the reconstruction capabilities of
learning-based SISR with the refinement of back-projection. Hairs et al. [20] learned the
errors after up- and down-sampling to refine the intermediate features, which was used to
realize up-projection and down-projection. The up- and down-projection units were then
learned iteratively to further improve reconstruction performance.

Inspired by [20], we argue that mutual learning between two back-projection units
will improve their performance, as it enhances the information exchange between the two.
Further experimental results indicate that mutual learning between two back-projection
units performs better than the existing independent learning methods.

2.3. Feedback Mechanism

In feedforward SR methods, the low-frequency information is directly passed to
the following layer or is bypassed to the latter layers through skip connections. The
feedback mechanism enables the previous layers to perceive the high-level information
of latter layers, which is widely used in the domain of computer vision [16–19]. Recently,
Hairs et al. [20] used error feedback in back-projection units to correct intermediate features.
Then, Han et al. [33] designed a dual-state structure with delayed feedback to exchange
signals between states. SRFBN [21] is a feedback network with a feedback block, which
iteratively feeds the output features back to itself as the input.

Inspired by the above feedback methods, we used dual mutual feedback on two
back-projection units, which feeds the HR features generated by the up-projection unit back
into the down-projection unit, and feeds the LR features generated by the down-projection
unit back into the up-projection unit. Our dual mutual feedback performs better than dual
self-feedback and single feedback manners.

3. Method or Methodology

In this section, we present the overall architecture of DMFN, including the dual
mutual-feedback component, the contrast-enhanced residual block (CRB) that is used as
each cell block in the dual mutual-feedback component, and the loss function.

3.1. Architecture of DMFN

Similar to SRFBN [21], our DMFN can be unfolded into several iterations because
of the feedback manner, and the iteration t is set from 1 to T. The back-projection units
feed back their output results to each other iteratively in a dual mutual-feedback manner.
As shown in Figure 3, two convolutional layers are firstly used to obtain shallow features,
which are then up-sampled. Then, the shallow features and the up-sampled shallow
features are learned by the dual mutual-feedback component. In the dual mutual-feedback
component, the HR features generated by the up-projection unit are fed back into the
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down-projection unit, and the LR features generated by the down-projection unit are fed
back into the up-projection unit in the next iteration, which forms a dual mutual-feedback
structure. Then, the outputs of dual mutual feedback from all iterations are concatenated
for image reconstruction by fusing them with the bicubic interpolated results. Finally, we
down-sampled the SR results to LR images as the inverse process of SR in the unity feedback
component. Then, we compared it with the input LR to calculate the unity feedback loss.

Figure 3. The unfolded DMFN.

We define Lin and Hin as the shallow features learned by the first component, which
can be obtained by {

Lin = fc(LR)
Hin = fup(Lin)

}
, (1)

where fc contains two convolutional layers to obtain shallow LR features. fup is a deconvo-
lutional upsampling operation.

In the dual mutual-feedback component of the t-th iteration, we use Lt
out to represent

the LR features generated by the down-projection unit, and Ht
out to represent the HR

features generated by the up-projection unit. The functions are as follows:

Lt
out =

{
fd−p(Hin)

fd−p([Hin, Ht−1
out ])

t = 1
t ≥ 2

}
, (2)

Ht
out =

{
fu−p(Lin)

fu−p([Lin, Lt−1
out ])

t = 1
t ≥ 2

}
, (3)

where fd−p are the operations of the down-projection unit, which contains some features
from the up-projection unit because of themutual learning between the two back-projection
units. fu−p is the operations of the up-projection unit, which also contains some features
from the down-projection unit. [] is the concat function.

For reconstruction, we up-scale the LR features generated by the down-projection unit,
which are then fused with the HR features generated by the up-projection unit. We define
the final HR feature results of the t-th iteration as follows:

Ht
rb = Ht

out + fup(Lt
out). (4)

Since the final HR features of all iterations are fused and then added to the bicubic
interpolated result of LR input, the final SR result is as follows:
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SR = fcm([H1
rb, H2

rb, ..., HT
rb]) + fBC(LR), (5)

where fcm is a conv-3 compression layer, and fBC represents the bicubic up-sample function.
Finally, we down sample the SR result to the LR image named LR′ by the down-

sampling function fdown, which contains two convolutional layers for down sampling and
channel transformation. The unity feedback loss calculated by LR′ and LR is used to narrow
the search domain of the SR function.

LR′ = fdown(SR), (6)

3.2. Dual Mutual-Feedback Component

The dual mutual-feedback component of the t-th iteration is shown in Figure 4. Pink
represents the up-projection unit, and blue represents the down-projection unit. Then,
we unfold the two back-projection units. The upward arrows represent the up-sampling
operation, and the downward arrows represent the down-sampling operation. The pink
arrows connect to an up-projection unit, and the blue arrows connect to a down-projection
unit. Then, we use mutual learning (black arrows) between the two back-projection units
to exchange information. Finally, the outputs of the two units are fed back into each other
in the next iteration to realize dual mutual feedback.

Figure 4. Dual mutual-feedback component of the t-th iteration in DMFN.

In the dual mutual-feedback component of the t-th iteration, we define the HR features
as Ht

1, Ht
2 and Ht

3, and the LR features as Lt
1, Lt

2 and Lt
3. We use fCRB to represent the

operations of CRB. The dual mutual-feedback procedure is as follows:

Lt
1 =

{
fCRB(Lin)

fCRB([Lin, Lt−1
out ])

t = 1
t ≥ 2

}
, (7)

Ht
1 =

{
fCRB(Hin)

fCRB([Hin, Ht−1
out ])

t = 1
t ≥ 2

}
, (8){

Lt
2 = fCRB([Lt

1, fdown(Ht
1)])

Ht
2 = fCRB([Ht

1, fup(Lt
1)])

}
, (9){

Lt
3 = fCRB([Lt

2, fdown(Ht
2)])

Ht
3 = fCRB([Ht

2, fup(Lt
2)])

}
, (10){

Lt
out = fCRB(Lt

2 + fdown(Ht
3 − Ht

1))
Ht

out = fCRB(Ht
2 + fup(Lt

3 − Lt
1))

}
. (11)

3.3. Contrast-Enhanced Residual Block (CRB)

To further boost the expressive ability of our network, we propose a contrast-enhanced
residual block (CRB), which is used as each cell block of the dual mutual-feedback com-
ponent, as shown in Figure 5. CRB uses contrast-enhanced channel attention and spatial
attention within the residual block. Contrast-enhanced channel attention assigns different
weights to channels, and contrast-enhanced spatial attention assigns different weights to
spatial locations. Therefore, the feature learning ability of residual blocks is enhanced.
As shown in Figure 5, the input features Fin are learned by a multi-layer perceptron fmlp
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(Conv-ReLU-Conv) and then are learned by contrast-enhanced channel attention. The input
of contrast-enhanced channel attention X is shown below:

X = fmlp(Fin). (12)

Figure 5. Contrast-enhanced residual block (CRB).

3.3.1. Contrast-Enhanced Channel Attention

As is the case for CCA [28], both standard deviation and average pooling are used
to describe the context of each channel. Standard deviation enables the network to per-
ceive more channels with a greater pixel contrast, as it represents image details related to
structures, textures, and edges. Average pooling enables the network to perceive more
informative channels. The size of feature maps X is H ×W × C and we use c ∈ (1, . . . . . . C)
to represent the channel number. We use i ∈ (1, . . . . . . H) and j ∈ (1, . . . . . . W) to represent
the pixel location in each feature map. The weights of each channel calculated by average
pooling and standard deviation are shown below:

wavg
c =

1
HW ∑

(i,j)∈xc

xi,j
c , (13)

wstd
c =

√√√√ 1
HW ∑

(i,j)∈xc

(xi,j
c − 1

HW ∑
(i,j)∈xc

xi,j
c )2, (14)

Then, we use Wavg
c ∈ R1×1×C and Wstd

c ∈ R1×1×C to represent the average-pooled and
standard deviation results of X on all channels. They are learned by fmlp, and normalized
with the application of the sigmoid function. Finally, the input feature maps X are rescaled
by the element-wise product. The features learned by contrast-enhanced channel attention
are shown below:

Y = X ∗ σ( fmlp(W
avg
c ) + fmlp(W

std
c )). (15)

3.3.2. Contrast-Enhanced Spatial Attention

We argue that the standard deviation value in the spatial dimension indicates the
pixel contrast in the same spatial location along the channel dimension. The pixels with a
higher standard deviation value must have a higher information value in some channels,
which should be given more attention. Average pooling enables the network to perceive
more informative spatial locations along the channel dimension. Therefore, both stan-
dard deviation and average pooling are used to describe the pixel weights in the spatial
dimension, which enhances the image details. The size of feature maps Y is H × W × C
and we use c ∈ (1, . . . . . . C) to represent the channel number. We use i ∈ (1, . . . . . . H) and
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j ∈ (1, . . . . . . W) to represent the pixel location in each feature map. The weights of each
spatial location calculated by average pooling and standard deviation are shown below:

wavg
i,j =

1
C

C

∑
c=1

yi,j
c . (16)

wstd
i,j =

√√√√ 1
C

C

∑
c=1

(yi,j
c − 1

C

C

∑
c=1

yi,j
c )2. (17)

Then, we use Wavg
s ∈ RH×W×1 and Wstd

s ∈ RH×W×1 to represent the average-pooled
and standard deviation results of Y across the channel. They are learned using f 7×7 (conv-7
layer), which is helpful to identify important spatial locations, and normalized with the
application of the sigmoid function. Finally, it rescales the input Y using the element-wise
product. The features learned by contrast-enhanced spatial attention are shown below:

Fcsa = Y ∗ σ( f 7×7[Wavg
s , Wstd

s ]) (18)

Finally, because CRB is a residual block, Fout, as the output of CRB, can be obtained by

Fout = Fcsa + Fin. (19)

3.4. Loss Function

We designed a unity feedback method that down-samples the SR result SR to LR
images LR′, as the inverse process of SR. Then, we compared it with the input LR to obtain
the unity feedback loss, which can be used to narrow the search domain of the SR function.
We chose the L1 loss function and used w to represent the weight of the unity feedback loss.
Accordingly, our loss function is as follows:

Loss = ‖SR, HR‖1 + w
∥∥LR′, LR

∥∥
1, (20)

4. Experimental Results

In this section, we first introduce the setting of our experiments. Then, we present the
experiments and analyze the results to prove the effectiveness of our methods, which in-
clude unity feedback, dual mutual-feedback feedback, mutual learning, the concat function
for SR reconstruction, and CRB.

4.1. Setting
4.1.1. Datasets

First, we trained our DMFN with the DIV2k [34] dataset and validated it with Set5 [35].
This was used to compare it with other SR methods trained using natural images. Moreover,
the corresponding ablation models were trained with the DIV2k [34] dataset and validated
with Set5 [35]. Then, as is the case with FAWDN [22], we trained our network with the
medical image dataset MRIMP and validated it with MRI13, which was used in [22]. This
was named DMFN+. Finally, all the comparison results were tested with three medical
image datasets: the MRI13 dataset in [22], ADNI100 [36] dataset and OASIS100 [37] dataset.

The DIV2k [34] dataset contains 800 training images, which have a resolution of 2K. We
increased the number of images 10-fold through rotation and cropping. The medical image
dataset MRIMP in FAWDN [22] contains 1444 training images. These were obtained using
GoogleMR by crawling the keywords IXI [38], ADNI [36], KneeMR [39], and LSMRI [40].
LR images come from the bicubic down-sampling of HR images. All experimental results
were obtained on a GPU under the PyTorch framework.

4.1.2. Implementation

The Adam optimizer was employed to train our network. We set the initial learning
rate (lr) to 0.0005, the epochs to 1000 (halved every 200 epochs), the batch size to 16,
and the base filter number to 32. As is the case for SRFBN-S [21], we performed the dual
mutual-feedback procedure four times.
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4.2. Effectiveness of Unity Feedback

In our study, we designed a unity feedback to narrow the search domain of the SR
function, so our loss function contains two parts, as shown in Equation (20). We used the
SR loss and unity feedback loss to train our DMFN, and we used w to represent the weight
assigned to the unity feedback loss. In this experiment, we increase the weight of unity
feedbak loss w from 0 to 1 to obtain the best trade-off. Then, we compare the SR results of
DMFN with different weights in Table 1. The unity feedback improved the performance
of our DMFN, and performed best when w = 0.1. Therefore, we set the weight of unity
feedback loss to 0.1 to supervise the training of our methods.

Table 1. Comparison of different weights assigned to unity feedback loss on DMFN.

w Scale Params
MRI13 ADNI100 OASIS100

PSNR/SSIM PSNR/SSIM PSNR/SSIM

0

×3

583 k 36.58/0.9480 30.13/0.8716 34.22/0.9475
0.01 583 k 36.61/0.9482 30.15/0.8718 34.36/0.9479
0.1 583 k 36.72/0.9485 30.17/0.8719 34.35/0.9478
1 583 k 36.54/0.9480 30.14/0.8715 34.33/0.9477

4.3. Effectiveness of Dual Mutual Feedback

For evaluating the effectiveness of dual mutual feedback, we performed ablation
studies for dual feedback, mutual feedback, and feedback. The ablation architectures are
shown in Figure 6. First, to realize the ablation of dual feedback, we used feedback with
down sampling, as shown in Figure 6b. Therefore, it perfomed two more up-sampling steps
and one more down-sampling step than the proposed DMFN in every feedback session.
Second, to realize the ablation of mutual feedback, the architecture has one more up-
sampling and down-sampling step than the proposed DMFN in each feedback, as shown in
Figure 6c. Finally, to realize the ablation of feedback, we used a down-sampling operation
after the up-projection unit to build the feedforward architecture, and up-sampled all
features at the last layer, as shown in Figure 6d. All the ablation architectures have more
parameters and a higher computational complexity than the proposed DMFN.

Figure 6. The ablation architectures. (a) is the DMFN. (b) represents the ablation of dual feedback.
(c) represents the ablation of mutual feedback. (d) represents the ablation of feedback.

The experimental results are shown in Table 2. First, the ablation of dual feedback
did not perform well. This is because the input of the two units is so similar that the
information exchange between them cannot function adequately. Second, the ablation
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of mutual feedback also exhibited a poorer performance than DMFN. This is because it
has less information exchange for its self-feedback architecture, and the additional up
sampling and down sampling are not directly used for SR reconstruction. Finally, DMFN
with feedback manner has fewer parameters but performs better than the feedforward
manner. This is because the feedback mechanism enables the previous layers to perceive
high-level information of latter layers.

Table 2. The ablation studies of dual feedback, mutual feedback, and feedback on DMFN.

Dual Mutual Feedback Scale Params
MRI13 ADNI100 OASIS100

PSNR/SSIM PSNR/SSIM PSNR/SSIM

� � �

×3

583 k 36.72/0.9485 30.17/0.8719 34.35/0.9478
� � � 631 k 36.49/0.9479 30.13/0.8716 34.24/0.9475
� � � 687 k 36.58/0.9480 30.14/0.8716 34.31/0.9477
� � � 633 k 36.53/0.9479 30.14/0.8714 34.35/0.9477

4.4. Ablation Study of Mutual Learning between Two Back-Projection Units

Inspired by [20], we argue that mutual learning between the two back-projection units
will improve their performance, as it facilitates information exchange. We performed an
ablation study for the mutual-learning method, in which two back-projection units were
learned independently, as shown in Figure 7. As illustrated in Table 3, the mutual-learning
method performed better than the independent-learning method.

(a) Two units with mutual learning (b) Two units with independent learning

Figure 7. The comparison of our mutual-learning method and the independent-learning method
between the two back-projection units. The black arrows show the mutual learning between two
units, which are not used in independent-learning.

Table 3. Comparisons of mutual learning and independent learning on DMFN.

Architecture Scale Params
MRI13 ADNI100 OASIS100

PSNR/SSIM PSNR/SSIM PSNR/SSIM

DMFN with mutual learning ×3 583 k 36.72/0.9485 30.17/0.8719 34.35/0.9478
DMFN with independent-learning 574 k 36.55/0.9479 30.13/0.8713 34.31/0.9476

4.5. Ablation Study of the Concat Function for SR Reconstruction

Certain multi-branch methods [7,9,21] reconstruct the SR image using multi-prediction,
such as SRFBN [21], which generates a prediction in each feedback procedure. However,
we argue that previous feedback procedures cannot produce a meaningful prediction as a
result of their very shallow HR features. Accordingly, we concatenated the HR features
of all feedback procedures to obtain the final SR result. We compared our concat function
and the multi-prediction method using the DMFN, as shown in Figure 8. As illustrated
in Table 4, the concat function performed better than the multi-prediction method on
the DMFN. Therefore, the concat function was shown to be effective and applicable to
feedback networks.
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Figure 8. DMFN without the concat function, which degrades into the multi-prediction method.

Table 4. Comparison of the concat function and multi-prediction used on DMFN.

Reconstruction Method Scale Params
MRI13 ADNI100 OASIS100

PSNR/SSIM PSNR/SSIM PSNR/SSIM

concat function ×3 583 k 36.72/0.9485 30.17/0.8719 34.35/0.9478
multi-prediction 582 k 36.24/0.9468 30.08/0.8708 34.07/0.9465

4.6. Improvement of CRB

A contrast-enhanced residual block (CRB) was designed by fusing both the contrast-
enhanced channel and spatial attention within residual learning, which is used in the
dual mutual-feedback component as each cell block. In this experiment, we replaced
the CRB with several attention-based modules used in existing methods to evaluate their
effectiveness, such as CBAM [27], RCAB [26], and CCA [28]. Figure 9 shows a comparison
of these attention models. Our CRB and CBAM [27] contain both channel and spatial
attention, while CCA [28] and RCAB [26] are models based on the channel attention. We
used the above attention models on our DMFN to compare their performance. They are
denoted as DMFN-CBAM, DMFN-RCAB and DMFN-CCA. As illustrated in Table 5, our
CRB performed better than the above attention-based models. Therefore, our CRB was
shown to be efficient and to improve SR performance.

Figure 9. Existing attention models [26–28].
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Table 5. Comparison of existing attention models and our CRB on DMFN.

Attention Module Scale Params
MRI13 ADNI100 OASIS100

PSNR/SSIM PSNR/SSIM PSNR/SSIM

DMFN

×3

583 k 36.72/0.9485 30.17/0.8719 34.35/0.9478
DMFN-CBAM 583 k 36.40/0.9476 30.13/0.8721 34.21/0.9472
DMFN-RCAB 582 k 36.47/0.9478 30.13/0.8718 34.24/0.9473
DMFN-CCA 582 k 36.56/0.9479 30.14/0.8717 34.29/0.9475

4.7. Comparison with Classical SR Methods

Our DMFN was trained using DIV2K [34].Therefore, we compared it with other
classical SR methods trained using natural images, such as SRCNN [2], FSRCNN [5],
VDSR [8], DRCN [9], LapSRN [7], SRDenseNet [13], DDSR [10], EDSR [14], SRMD [41],
SRMDNF [41], SRFBN-S [21] and FAWDN [22]. Moreover, we compared our DMFN+ with
FAWDN+ [22], which was trained using the images of MRIMP and part of DIV2K [34], as
the network suffered from overfitting when trained with MRIMP. Our DMFN+ was trained
with MRIMP, and there was no overfitting, which demonstrates the stability of our method.
As illustrated in Table 6, we compared their PSNR and SSIM values, and our DMFN was
shown to perform better than the other natural image SR methods with fewer parameters.
Furthermore, our DMFN+ demonstrated a better performance than the medical image SR
methods with fewer parameters.

Finally, a visual comparison of SR medical images was performed, as shown in
Figure 10. For ADNI100 [36], the performance of DMFN+ was the best, followed by
EDSR [14]. For OASIS100 [37], the performance of DMFN+ was the best, followed by
DMFN. However, DMFN+ requires fewer than half the parameters of EDSR [14], so our
DMFN and DMFN+ provide a better trade-off. In summary, our methods recover image
details and textures better than most of the other methods.

Table 6. Comparison of PSNR/SSIM for differentscale factors on the MRI13 [22], ADNI100 [36],
and OASIS100 [37] datasets. The red and blue represent the best and second-best results, respectively.

Methods Scale Params
MRI13 ADNI100 OASIS100

PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic

×2

- 37.95/0.9677 30.74/0.8943 33.54/0.9585
SRCNN [2] 8 K 40.76/0.9820 32.49/0.9258 35.52/0.9717

FSRCNN [5] 13 K 40.90/0.9809 40.90/0.9809 34.47/0.7778
VDSR [8] 666 K 41.78/0.9835 33.09/0.9328 36.70/0.9759
DRCN [9] 1774 K 42.15/0.9838 33.22/0.9336 37.19/0.9779

LapSRN [7] 251 K 41.99/0.9840 32.96/0.9317 36.98/0.9772
SRDenseNet [13] 7160 K 42.97/0.9846 33.33/0.9348 37.69/0.9788

DDSR [12] 2020 K 41.92/0.9833 33.00/0.9318 36.97/0.9766
EDSR [14] 1370 K 43.61/0.9853 33.50/0.9359 38.18/0.9797
SRMD [41] 1511 K 42.26/0.9841 33.15/0.9335 37.27/0.9780

SRMDNF [41] 1511 K 42.76/0.9848 33.30/0.9348 37.69/0.9794
SRFBN-S [21] 282 K 42.77/0.9843 33.29/0.9342 38.88/0.9806
FAWDN [22] 7170 K 43.35/0.9850 33.41/0.9352 37.91/0.9791

FAWDN+ [22] 7170 K 43.59/0.9851 33.87/0.9400 38.10/0.9798
DMFN(ours) 475 K 43.38/0.9850 33.41/0.9353 39.27/0.9813

DMFN+(ours) 475 K 43.57/0.9851 33.84/0.9397 39.43/0.9818
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Table 6. Cont.

Methods Scale Params
MRI13 ADNI100 OASIS100

PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic

×3

- 32.70/0.9126 27.95/0.8063 28.97/0.8919
SRCNN [2] 8 K 35.03/0.9393 29.29/0.8527 31.27/0.9225

FSRCNN [5] 13 K 35.35/0.9406 29.48/0.8562 30.91/0.7568
VDSR [8] 666 K 35.43/0.9449 29.83/0.8661 31.60/0.9308
DRCN [9] 1774 K 35.83/0.9449 29.92/0.8672 32.18/0.9371

SRDenseNet [13] 7160 K 36.25/0.9469 30.06/0.8704 32.64/0.9477
DDSR [12] 202 0K 35.49/0.9433 29.68/0.8638 31.72/0.9330
EDSR [14] 1555 K 36.71/0.9484 30.27/0.8735 33.26/0.9444
SRMD [41] 1528 K 35.91/0.9456 29.91/0.8676 32.29/0.9385

SRMDNF [41] 1528 K 36.09/0.9465 30.02/0.8698 32.52/0.9405
SRFBN-S [21] 375 K 36.09/0.9459 29.99/0.8691 33.79/0.9453
FAWDN [22] 7170 K 36.60/0.9481 30.16/0.8719 33.00/0.9429

FAWDN+ [22] 7170 K 36.73/0.9479 30.75/0.8839 33.19/0.9450
DMFN(ours) 583 K 36.72/0.9485 30.17/0.8719 34.35/0.9478

DMFN+(ours) 583 K 36.75/0.9482 30.76/0.8843 34.41/0.9493

Bicubic

×4

- 29.90/0.8591 26.37/0.7298 26.37/0.7298
SRCNN [2] 8 K 31.75/0.8914 27.49/0.7838 28.47/0.8621

FSRCNN [5] 13 K 32.17/0.8934 27.66/0.7876 28.49/0.6900
VDSR [8] 666 K 32.44/0.9027 28.00/0.8028 28.96/0.8748
DRCN [9] 1774 K 32.64/0.9034 28.04/0.8029 29.29/0.8830

LapSRN [7] 502 K 32.68/0.9072 27.99/0.8027 29.26/0.8837
SRDenseNet [13] 7160 K 32.97/0.9075 28.18/0.8079 29.65/0.8900

DDSR [12] 2020 K 32.45/0.9029 27.91/0.8011 29.15/0.8798
EDSR [14] 1518 K 33.31/0.9107 28.42/0.8136 30.48/0.9003
SRMD [41] 1552 K 32.83/0.9060 28.05/0.8044 29.66/0.8884

SRMDNF [41] 1552 K 32.69/0.9062 28.13/0.8080 28.13/0.8080
SRFBN-S [21] 483 K 32.85/0.9069 28.20/0.8086 31.01/0.9006
FAWDN [22] 7170 K 33.22/0.9098 28.30/0.8117 30.05/0.8957

FAWDN+ [22] 7170 K 33.21/0.9086 28.81/0.8259 30.38/0.8895
DMFN(ours) 707 K 33.37/0.9104 28.30/0.8117 31.47/0.9051

DMFN+(ours) 707 K 33.33/0.9094 28.94/0.8310 31.54/0.9079

Figure 10. Cont.
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Figure 10. Comparison of visualization results on ADNI100 [36] and OASIS100 [37] datasets. Images
on the right are the recovery details of the red box.

5. Conclusions

In this paper, a lightweight dual mutual-feedback network (DMFN) is proposed for use
in artificial intelligence in medical image super-resolution. It contains two back-projection
units working in a dual mutual-feedback manner. We propose a contrast-enhanced residual
block (CRB), which is used in the back-projection units as each cell block. The CRB uses
the contrast-enhanced channel and spatial attention within residual learning to enhance its
ability to express details. We used the concat function for SR image reconstruction. Finally,
a unity feedback method was designed to supervise the process of SR, which down-sampled
the SR result to LR images as the inverse process of SR. As illustrated in the experimental
results, our DMFN outperformed the other methods with very little computational cost.
Accordingly, our method can help doctors to make accurate diagnoses by improving the
resolution of medical images. The DMFN introduces a feedback mechanism into medical
image SR and was shown to exhibit good performance on synthetic datasets. However, we
are not sure whether it will perform well in real-world medical image SR, as the degradation
of real-world images is complicated. In the future, we will focus our attention on real-world
medical image SR, as it is possible that the feedback mechanism can also be used to improve
performance in this scenario.
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Abstract: Convolutional neural networks (CNNs) are becoming increasingly popular in medical
Image Segmentation. Among them, U-Net is a widely used model that can lead to cutting-edge
results for 2D biomedical Image Segmentation. However, U-Net performance can be influenced by
many factors, such as the size of the training dataset, the performance metrics used, the quality of the
images and, in particular, the shape and size of the organ to be segmented. This could entail a loss of
robustness of the U-Net-based models. In this paper, the performance of the considered networks is
determined by using the publicly available images from the 3D-IRCADb-01 dataset. Different organs
with different features are considered. Experimental results show that the U-Net-based segmentation
performance decreases when organs with sparse binary masks are considered. The solution proposed
in this paper, based on automated zooming of the parts of interest, allows improving the performance
of the segmentation model by up to 20% in terms of Dice coefficient metric, when very sparse
segmentation images are used, without affecting the cost of the learning process.

Keywords: Image Segmentation; convolutional neural networks; biomedical image analysis

1. Introduction

Technological progress and advanced tools for medical analysis have significantly
contributed to reducing waiting times for the diagnosis of various diseases. In particular,
in oncology, the increase in the number of screening tests associated with the drastic
decrease in diagnosis times has contributed to significantly reducing the mortality rate of
diseases. Since the late 1980s, diagnostic imaging has been essential to visualizing organs
and tissues in detail in order to detect tumors even in their early stages [1,2]. However,
the tomographic images of the human body, obtained by CT-Scan (Computed Tomography),
require a specialist to manually identify and segment the area of interest.

In the field of image processing, segmentation is defined as the process of decomposing
an image into its constituent regions or into the objects that compose it [3]. Since the manual
approach to segmentation, still used by a large part of the medical staff, is time-consuming
and tedious, some techniques have been proposed to make it automatic. This can be done
on the basis of certain criteria concerning the pixels belonging to a region. This is a complex
objective, also because the accuracy of the result depends on the type of information to be
extracted from the image.

This paper shows a solution, based on Artificial Intelligence (AI) technologies, to auto-
mate, speed up and possibly improve the analysis of the images compared to what a human
operator could do. This tool incorporates and enhances some known results based on deep
learning. In particular, it is based on the use of a deep convolutional neural network (CNN)
that allows one to automatically process and analyze multi-scale digital images, known in
the literature as U-Net [4]. Our solution includes image processing techniques that improve
visualization in terms of quality, such as increasing contrast and provide a valuable tool
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for the visual analysis of specific morphological characteristics of objects present within
the image, such as their perimeter and area. In more detail, the main focus of our research
is the definition of an appropriate automatic segmentation method based on the current
state-of-the-art and the comparison of its performance across multiple types of images
at different scales. The developed neural network allows processing and identifying a
wide typology of anatomical organs, following an adequate training of the model using
the CT-Scans of the patients. This feature determines a very versatile algorithm behavior,
extensible to any organ. However, if the loss function used to drive the training process
cannot suitably capture the information present in the mask of the organs at different scales,
the resulting prediction could be unsatisfactory in operation.

The main contribution of this paper is to show how to improve performance in
the presence of target images characterized by very sparse signals without significantly
improving the cost of the learning process and without introducing different learning
algorithms. Furthermore, by making slight changes to the model parameters, the algorithm
could be used not only in the medical field, but also in other fields that require semantic
segmentation of images. In fact, the applied techniques have universal value, although in
this paper they have been treated in relation to the prefixed purpose. The contribution of
this paper is twofold:

• First, a performance analysis of the baseline segmentation model on different types of
organs is shown. In some case studies, the model provides good results. However, the
performance is often unsatisfactory when small organs or restricted regions of interest,
which are important in the diagnosis of serious pathologies, are considered [5].

• Then, a proposal for improving multi-scale segmentation, based on lightweight image
preprocessing is shown. This proposal leads to 20% improvement in the score eval-
uated by using a metric based on the Dice coefficient [6], also known as F1-score [7].
This method can be generally applied to any target image characterized by a sparse
binary mask.

The remainder of this paper is organized as follows: Section 2 presents some insights
on the background and challenges motivating this work, along with the related works.
Then, Section 3 presents the implemented model and the relevant parameters. Section 4
includes the results obtained by using the proposed methodology. Some final remarks are
reported in Section 5.

2. Background and Related Works

2.1. Segmentation of Medical Images

In radiology, a CT-Scan is a diagnostic technique used for reproducing sectional and
three-dimensional images of the human body. Images are obtained from the comput-
erized analysis of the information present in the X-ray scans. Since each image is the
projection of the object itself from one of multiple angles, it is possible to reconstruct
three-dimensional objects.

In general, medical Image Segmentation can be useful for multiple purposes [8],
such as:

• To diagnose conditions, including damage and injury to internal organs and bones,
stroke, cancer and problems with blood flow;

• To guide tests and treatments. For example, before radiotherapy treatment, a CT scan
is performed to determine the location, size and shape of the tumor to be treated;

• To monitor the evolution of patients’ conditions, such as the presence and size of the
tumor during and after specific treatments.

In order to quantitatively describe radiodensity, the Hounsfield scale, or Hounsfield
Unit (HU), is typically regarded as the reference unit of measurement [9]. The HU values
give preliminary information on the nature of the observed tissues.

Image Segmentation is a technique of partitioning an image into distinct and meaningful
parts, called segments. The purpose of this process is to simplify and change the representa-
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tion of images, for identifying and extracting some objects of particular interest and making
it easier to analyze individually. In fact, it is particularly useful in applications of computer
vision, such as object recognition, image compression and analysis of digital image content.
In the medical area, segmentation is useful for many purposes, such as to locate and identify
tumor cells, measure tissue volumes, perform virtual surgery simulations and intra-surgical
navigation and integrate slower and more subjective manual human labor.

It is possible to categorize segmentation techniques into three classes: clustering, edge
detection and region extraction [3]. The two macro problems to avoid are sub-segmentation,
which means merging semantically different objects in the same area and over-segmentation,
or the subdivision of the same object into multiple areas. In order to make algorithms
autonomous, they should not assume any prior knowledge of the image to be available;
otherwise, it would be difficult to ensure that results are satisfactory for any type of analysis.
It is also possible to obtain the segmentation of the image in a number of regions, such
that each of them is homogeneous and coherent with respect to a certain criterion and at
the same time their union returns the original image. To this end, the following formal
definition of the segmentation problem is given [10]: let X be the image domain and let P
be a homogeneity predicate, that is a feature extracted from the image and associated with
each pixel, defined on a set S of connected pixels of X. The segmentation of X consists of
the partition of X into a number of n sub-images or regions Si, with i = 1, · · · , n, such that:

n⋃
i=1

Si = X (1)

Si ∩ Sj = ∅ ∀(i, j)(i �= j)

P(Si) = true ∀i = 1, · · · , n

P(Si ∪ Sj) = f alse ∀(i, j)(i �= j)

However, the partition of an image into homogeneous regions with respect to certain
characteristics does not guarantee the correct subdivision into semantic objects, especially in
particularly complex images. In this regard, it is not certain that the automatic segmentation
of images admits a single solution that is also robust. Nevertheless, it is possible to reach the
expected result with a good approximation by implementing a multi-level convolutional
model [11].

2.2. Convolutional Neural Networks

CNN is an artificial neural network architecture widely used in deep learning for
image processing. It analyzes images through artificial neurons placed in three dimensions,
called channels: height, width and depth [12]. It is specialized to detect and classify images
and extract their features, such as corners and edges. For example, its ability to recognize
objects allows the detection of tumors, in the medical field, and of obstacles, in the field
of autonomous car driving. A convolutional neural network has a structure consisting of
multiple levels of feature detectors:

• Convolutional layer;
• Non-linear activation functions;
• Pooling;
• Fully connected network (optional);
• Dropout layer (optional).

Our proposal makes use of the results presented in the pioneering paper [4], in which
the author proposes a particular CNN, called U-Net, to solve the problem of automatic
semantic segmentation of biomedical images. While a CNN is implemented in order to
learn the feature map of an image and exploit it to create a more nuanced mapping by
converting the image itself into a vector, when segmenting an image it is also necessary to
reconstruct the image from this vector obtained. This task is particularly difficult as it is
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more complex to convert a vector to an image rather than the other way around. The basic
idea of a U-Net is to take advantage of the functionality mapping, learned during the
conversion of an image into a vector, and use it to reconstruct the output image. In this
way, the integrity of the image structure is preserved and distortion is greatly reduced.

The resulting structure includes elements typical of deep learning tools, such as con-
volutional layers and max pooling. Figure 1 shows the structure of the U-Net, with the
parameters used in this work. Details about the configuration that has been actually used
in this work are given in Section 3.2.

Figure 1. Model of the U-Net architecture used in this work. Each blue rectangle represents a multi-
channel feature map. The number of channels is written above each box and represents the value
used in the experiments. The white boxes represent the copied feature maps. The arrows denote the
type of operation performed.

2.3. Related Works

In [13], the authors present a deep learning based segmentation model that relies
on image-specific fine tuning. The presented model performs bounding based binary
segmentation with a P-Net [14], a structure adapted from VGG-16 [15], a well known
CNN model. The proposed model shows good performance, but it requires an extended
number of training iterations and samples to reach good performance. Ref. [16] makes use
of a modified U-Net network [4] for Image Segmentation. After an initial phase of image
augmentation, the proposed network shows a good performance, but it is focused only
on liver images. Other medical images with more sparse binary masks are not considered.
An interesting analysis of the impact of the different parts of the U-Net architecture on
segmentation accuracy is presented in [17]. In such a paper, the authors propose a reduced
version of the U-Net network that sensibly reduces the number of operations required
for segmentation. Nevertheless, this model does not always reach the same performance
results of the standard U-Net network. Ref. [18] presents an exhaustive survey of the
state-of-the-art U-Net-based Image Segmentation, with its numerous application fields.
In [18], the need for improvement techniques without relying on extended datasets is
mentioned as a research challenge.

For what concerns the segmentation of images with a sparse target signal, ref. [19]
adds the attention mechanism ECA-Net (Efficient Channel Attention Neural Networks)
into the standard U-Net architecture in order to improve the ability of the model to segment
small items in the target images. This approach was applied on insulator string images
and was not tested for biomedical Image Segmentation. In [20], the performance of U-Net
for COVID-19 lesion segmentation on lung CT-Scans is compared with the achievable
performance of another deep learning model, SegNet. Although SegNet produces better
lesion detection accuracy, U-Net turns out to be better for multi-class segmentation. A
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solution for segmentation tasks dealing with organs of highly varying dimensions is
proposed in [21]. The authors consider segmentation in head and neck (HaN) CT images,
which is characterized by the presence of big and small organs. The proposed solution
consists of combining a standard deep learning network for 3D images, the S-net, with a
smaller one specialized for smaller segments. The main network provides the secondary
one with the probabilistic location of the small organs in the HaN samples. This ensemble,
called FocusNet, produced good performance using the publicly available MICCAI 2015
Head and Neck dataset. Nevertheless, it requires the introduction of a new module, which
increases the model complexity and the training effort. In this regard, a lightweight solution
based on data pre-processing is proposed. Similarly, ref. [22] shows a solution for small
organ segmentation, considering whole-body Magnetic Resonance Imaging (MRI) scans.
With the implementation of a two-staged fully CNN, a coarse-scale segmentation is first
executed and then refined in order to refine the segmentation of the considered organs.
Although the proposed method has a 50% gain with respect to the the state-of-the-art
for small organ MRI segmentation, the overall performance is still unsatisfactory, with a
0.56 Dice similarity coefficient. Finally, blood vessel segmentation is investigated in [23,24].
In [23], a U-Net is used to perform coronary artery stenosis detection on X-ray coronary
angiograms, including a module that leverages the temporal consistency of consecutive
frames to limit the number of false positives. Ref. [24] is focused on the segmentation of
coronary angiograms. The proposal relies on a nested encoder–decoder architecture named
T-Net, which produced an accuracy of 83%. None of these mentioned proposals were used
for CT-Scan blood vessel segmentation.

Finally, it is worth mentioning that a significant effort has gone into using annotated
2D organ sections to provide a three-dimensional representation of organs. In this regard,
the 3D U-Net [25] represents a pioneering paper, extending the previous achievements
of Olaf Ronneberger et al. obtained with the initial U-Net [4], achieving good results.
However, this goal is different from that of our research, which investigates automatic
segmentation of 2D CT-Scan slices that, in any case, are fundamental for also building the
volumetric segmentation, if needed.

3. Dataset, Model and Parameters Configuration

3.1. Dataset

This paper shows the performance achievable by using the U-Net architecture for
medical image segmentation during both the training and test phases. For this purpose,
a publicly available dataset, the 3Dircadb1 dataset (https://www.ircad.fr/research/data-
sets/liver-segmentation-3d-ircadb-01/, accessed on 1 November 2022), was used. It in-
cludes 3D CT-Scan images of 10 women and 10 men with liver tumors in 75% of cases.
The dataset is anonymized. For each patient, it includes masks of different organs. For our
analysis the images of three different organs available in the dataset have been selected.
They are characterized by very different shape, size, compactness and mask features: liver,
bone and portal vein. The difference between these organs and relevant masks allows
performing a multi-scale and multi-shape analysis of the achievable U-Net performance.
In fact, while liver binary masks show a considerable amount of information (for instance,
with reference to the slice in Figure 2, see the white portion in Figure 3a), in case of bone
and portal vein, a gradual and significant decrease of information appear in their masks.
In such situations, the shortage of the available white pixels, representing the information
needed for training the network, limits the effectiveness of the segmentation process. Thus,
processing images of these different organs allowed us not only to test the effectiveness of
the U-Net, but also to introduce simple yet effective strategies to overcome such limitations.

The selected three organ images are provided for all the patients of the dataset. Each
patient’s folder includes four subfolders, in which the DICOM-formatted images, the la-
belled images, the mask images and the surface meshes can be found.
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Figure 2. CT-Scan plot from ‘PATIENT_DICOM’ (a) and corresponding histogram of HU values (b).

Figure 3. Binary mask plot from ‘MASKS_DICOM’ (a) and corresponding histogram of HU values (b).

Figure 4. Multi segmented mask plot from ‘LABELLED_DICOM’ (a) and corresponding histogram of
HU values (b).

All images are of the same size, equal to 512 × 512 pixels. To process the dataset,
20 folders have been used, each one corresponding to a different patient. These folders
are called ‘3Dircadb1.number’, with number varying between 01 and 20 and each of them,
containing the following four subfolders:

• ‘PATIENT_DICOM’: The patient’s images in DICOM format. Figure 2a shows an
example of a complete CT-Scan slice, with relevant frequency of HU values reported
in the companion histogram of Figure 2b;

• ‘MASKS_DICOM’: A set of subfolders corresponding to the names of the various seg-
mented organs, containing the binary DICOM image of each original mask. Figure 3a
shows an example of a liver mask, with the relevant frequency of HU values (cor-
responding to black and white in this case) in the histogram of Figure 3b. In this
subfolder, the segmentation masks of liver, bone and portal vein used in this work can
be found for each patient;

• ‘LABELLED_DICOM’: The ensemble of segmented images corresponding to all the
patient’s analyzed organs, including the ones considered in this work (liver, bone
and portal vein), in DICOM format. Figure 4a shows an example of a multi-segmented
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mask, with relevant frequency of HU values (one for each mask) shown in a histogram
in Figure 4b;

• ‘MESHES_VTK’: All the files corresponding to the surface meshes of the various areas
of interest in Visualization Toolkit (VTK) format.

3.2. Model Architecture

Our proposal makes use of the U-Net, a new CNN presented in the pioneering
paper [4] to solve the problem of automatic semantic segmentation of biomedical images.
U-Net is a CNN whose architecture was adapted in order to make use of a reduced image
dataset while continuing to produce fairly precise segmentation. Figure 1 shows the
structure of the U-Net used in this work, together with the relevant parameters. The
architecture is divided into two paths. The path on the left is called “Contraction Path” or
“Encoder Path”, while the one on the right is referred to as “Expansion Path”, or “Decoder
Path”. In the middle data, concatenations are performed, indicated by the grey arrows in
Figure 1. They implement acquisition of localized information from the feature maps.

The Contraction Path consists of a certain number of contraction blocks followed by
a max 2 × 2 pooling. Each contraction block downsamples the input image, received
from the previous level, in a feature map, applying two levels of 3 × 3 convolution.
The number of kernels, or feature maps, after each block doubles, so that the architecture
can effectively learn the complex structure of the input image. In this case, the input image
is 128 × 128 pixels and 32 features are used in the first step. Parameters, such as the size of
the input image and the number of features, can be changed according to the architecture
to implement, as some criteria may not make the network work properly. Moving further
and further down, the bottom level averages between the two paths and uses two CNN
3 × 3 levels followed by a level called “up convolution” 2 × 2.

Subsequently, the Expansion Path section, which also consists of a series of expansion
blocks, allows the network to propagate information from the lowest resolution level to
higher ones. This way, it amplifies (upsamples) the final image feature map. Each block
passes the received input to two 3 × 3 convolutional levels and a 2 × 2 upsampling level.
Symmetrically to the left branch, after each block the number of feature maps used by the
convolutional layer is halved. However, as shown by the gray arrows, each time the copied
feature map of the corresponding contraction level is added to the input. This ensures that
the features and information learned while shrinking the image are subsequently used to
reconstruct it correctly. Clearly, the initial levels of the encoder contain more information,
so they guarantee a significant boost in the up-sampling process, allowing the recovery of
details and significantly improving the result. The architecture, being symmetrical, is such
that the number of expansion blocks is equal to the number of contraction blocks. Going
up to the final level of the expansion path, the resulting map passes through the final level
of 3 × 3 convolution, with the number of feature maps equal to the number of desired
segments. Hence, the same feature map used for the contraction is then used to expand the
vector and obtain the output image, which represents the segmentation of the input image.

3.3. Model Implementation

To train the classification algorithm, implemented with Tensorflow (https://www.
tensorflow.org/, accessed on 1 November 2022), the CT-Scan records of 17 patients were
used, consisting of 2445 images (and related masks), encapsulated in DICOM files (Digital
Imaging and Communications in Medicine, https://www.dicomstandard.org/, accessed
on 1 November 2022). The image of a single slice of a CT scan is referred to as a sample
throughout the paper.

After importing the appropriate packages, the functions for loading and import-
ing DICOM images with related tags are implemented. The function code is shown in
Appendix A. By using the process_path(filename) function, it is possible to load the
DICOM image and the relevant mask for each file path. In the specific example, the one
necessary for the liver segmentation is shown: It is necessary to convert the sample values to
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the unit of measurement for CT-Scans, that is the HU, since, by default, the values returned
from the first upload (resulting from decode_dicom_image()) are not expressed in the HU
units. This transformation is linear and, if stored in the DICOM header at the time of
image acquisition, the relevant slope and intercept can be recovered by using the tag codes
(00281052, 00281053) in a completely automated way. This function is subsequently applied
to each TensorFlow dataset containing the list of paths related to images, for each folder,
using the map() method. The use of tensors is preferred in order to model and process
data. In fact, through the representation in computational graphs, they facilitate parallel
computing, making full use of the computing resources used (Graphic Processing Units,
GPUs). Furthermore, with the use of tensors, the computation of derivatives, fundamental
in the learning process of a neural network, is accelerated.

Once all the functions for image processing are defined, these methods are invoked
in order to view the data collected so far. For example, Figure 2 shows an example of the
images present in the 3Dircadb1.1 [26] folder of patient n.1 (a) and the associated histogram
(b). Through the histogram, it is possible to see how many pixels correspond to air and how
many of them to tissues. Looking at the histogram, it emerges that a lot of air is present,
there is an abundance of soft tissue, mainly muscle, liver and part of the lung, but also
fat. Only a small piece of bone is present in the CT scan, which appears as a tiny sliver,
difficult to appreciate in the HU histogram (expected values around 400 HU) due to the
small number of relevant samples.

Once data are processed, a further operation is required on the arrays of the training
and test sets, in order to scale the size of the images from 512 × 512 pixels to 128 × 128 pixels
and add a dimension to the channel (the gray scale, which is 1), since the built model accepts
images with this resolution as input. For what concerns the construction of the actual model,
it is made up of 10 convolutional levels that outline the architecture of the U-Net, described
in the previous section. In addition, dropout levels are inserted after each pooling level,
as the amount of information in the considered dataset is quite limited. In fact, in the
absence of dropout, the training of the algorithm would require more effort to converge
due to overfitting (overfitting is a phenomenon that happens when a statistical model
excessively adapts to its data during the training process, thus losing generality [27]). To
limit the risk of overfitting, possible solutions consist of increasing the volume of data,
reducing the complexity of the architecture or adding regularization. The latter solution is
implemented by adding the dropout after each level of convolution, keeping in mind the
loss of information as a consequence: If part of the information is lost in the first level, it
is lost for the entire network. Therefore, the final scheme of the neural network that we
present starts with a low dropout rate in the first few levels to limit the loss of information,
which gradually increases to limit overfitting.

The model structure is implemented by using the Keras library (https://keras.io/, accessed
on 1 November 2022). In particular, the get_model() function is created, which receives as
arguments the optimizer, the loss function, the metric and the learning rate selected. The code
(Listing 1) below illustrates the first level of convolution of the Contraction Path:

Listing 1. Keras model creation: Encoder Path’s first level.

1 conv1 = Conv2D(32, (3, 3), activation=’relu’, padding=’same’)

2 (inputs)

3 conv1 = Conv2D(32, (3, 3), activation=’relu’, padding=’same’)

4 (conv1)

5 pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

6 drop1 = Dropout(0.5)(pool1)

The first two lines of code create a convolution kernel, which processes the received
input to produce an output tensor. First, the set of images coming from the outside is
used as input, then the output of the first convolution becomes the input of the second.
The constructor arguments used are as follows: Number of filters (integer power of 2),
from which they learn the convolutional levels, kernel size (an integer or a tuple of two
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odd integers), which specifies the height and the width of the 2D convolution window,
activation, which specifies the activation function to apply after performing the convolu-
tion and padding value (padding), which specifies, based on the set value, whether the size
of the input volume was changed. In this work, the ReLU (Rectified Linear Activation Unit)
activation function is used, while the padding value is the ’same’, which means that the
spatial dimensions of the input are maintained, so that the volume of the output has the
same size. Therefore, reliance on padding, image shrinkage or information loss is avoided.

ReLU is a simple function with better performance than other activation functions,
such as Sigmoid and Tanh. Its equation is as follows [28]:

R(x) = max(0, x). (2)

It returns 0 if it receives a negative input, while for any other positive input value x, it
returns the same value. In fact, the function does not perform any complex calculations and
therefore the model takes little time to train and converges very quickly. Another advantage
is sparsity, which implies better predictive power and less model overfitting, as it increases
the likelihood that neurons are actually processing meaningful data. This occurs since in
neural networks, such as the one under consideration, matrices have many zero cells and
for this reason they are called ’sparce matrices’. Therefore ReLU, by providing zero output
for negative inputs, makes sure that the network is sparse and that neurons are not turned
on to process unmeaningful data. However, the phenomenon of ‘dying ReLU’ could occur.
A ReLU neuron is dead if it is stuck on the negative side and always returns 0, i.e., once it
goes negative, it is unlikely to recover. This problem can occur when the learning rate is
too high and a lower rate could solve this issue. The learning rate used in our experiments
is equal to 10−3.

In the first level, the aim is to reduce the spatial dimensions of the output volume
through MaxPooling, applying it to the output of convolution. MaxPooling is a pooling
operation that selects the maximum element from the area of the feature map covered
by the filter, sub-sampling the input along its spatial dimensions. The window size is set
with the pool_size argument, which is an integer or a tuple of two integers (if only one
integer is specified, it is used for both the height and width of the window). Therefore,
the output after this level is a feature map containing the most important characteristics of
the previous input feature map.

Finally, as already mentioned, a dropout level is added, which receives the result of
the MaxPooling as input. Inputs to dropout not set to 0 are scaled by 1 / (1 − rate), so that
the sum across all inputs is unchanged [28]. The rate value is the fraction of the input units
to be released. It is in the range between 0 and 1; in particular, it is set to rate = 0.5, since,
as mentioned above, it is good to lose only a small amount of information in the first level.

To complete the Contraction Path, the other four levels of convolution are implemented
in the same way as the first one, except for the input of the first convolution of each level,
with the input, in this case, being the output of the previous level dropout. In level 5 of the
Contraction Path, both pooling and dropout are not necessary as they are the final level of
the structure (see Figure 1). The Decoder Path is built symmetrically, with the same number
of levels as the Encoder Path. The syntax of the code (Listing 2) is as follows:

Listing 2. Keras model creation: Decoder Path’s sixth level.

1 up6 = concatenate([Conv2DTranspose(256, (2, 2), strides=(2, 2),

2 padding=’same’)(conv5), conv4],

3 axis=3)

4 conv6 = Conv2D(256, (3, 3), activation=’relu’, padding=’same’)

5 (up6)

6 conv6 = Conv2D(256, (3, 3), activation=’relu’, padding=’same’)

7 (conv6)
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In level 6, upsampling takes place first. It consists of a concatenation which takes a list
of tensors as input, all of the same shape except for the concatenation axis (axis = 3). It
returns a single tensor, which is the concatenation of all inputs [28]. The first item in the list
is the result of the transposed convolution made on the output of the level 5 convolution,
while the second is the output of the level 4 convolution. The transposed convolution
performs an inverse transformation to the normal convolution made in the descent path,
since in this way the output begins to be generated which has the same shape as the
original input, while maintaining some connectivity with the shape of the convolution
output. The parameters of this operation are the number of filters, the kernel size, padding,
just like a normal Conv2D, and also the number of steps (strides) of the convolution along
the height and width (an integer or a tuple of two integers). In the code strides = (2, 2)
is set; that, is the filter is moved 2 pixels horizontally for each reading from left to right, then
down 2 pixels for the next row, establishing the outputs in the feature map. During this
operation, Conv2DTranspose learns during training and attempts to fill in the details as
part of the upsampling process to resample the original input. Then two normal Conv2D
convolutions are executed: the first takes the result of the upsamplig concatenation as input.
Its output becomes the input of the second convolution. At the end of the first level of the
Decoder Path, the U-Net structure continues with three other levels that have the same
shape as the one just described. Finally, the tenth and final level of the network consists of
a single convolution, in which the activation function (Listing 3) is the ’Sigmoid’ [29] and
no padding is done:

Listing 3. Keras Model creation: level 10.

1 conv10 = Conv2D(1, (1, 1), activation=’sigmoid’)(conv9)

The final step to complete the definition of the get_model () function is the configu-
ration of the model for training (Listing 4), which is also used for its validation:

Listing 4. Model configuration.

1 model.compile(optimizer=optimizer(learning_rate=learning_rate),

2 loss=loss_metric, metrics=metrics)

3.4. Parameters Configuration

This section analyzes the specific arguments that are passed to the get_model ()
function and the results obtained.

As mentioned above, the hyperparameters that allow controlling the model training
process are the optimizer, the loss function and the metric. Following an experimental
optimization process to identify an optimal configuration from a performance point of
view, which minimizes a predefined loss function on test data, the following parameters
were selected:

• Optimizer = ’Adam’;
• Learning Rate = ’1e-3’;
• Loss Metric = ’dice_coef_loss’;
• Metric = ’dice_coef’.

3.4.1. Adam Optimizer and Learning Rate

The optimizer selected implements the Adam algorithm [30], acronym for Adaptive
Moment Estimation, for the optimization of the descent of the stochastic gradient, applying
the principles of the RMSProp and AdaGrad optimizers [31].

Gradient descent is a technique used for determining the global maximum and minimum
points of a function of several variables. The stochastic approximation is applied when
the cost function is too expensive at each iteration and breaks down the addends at each
iteration into a sum. In the context of artificial neural networks, the descent of the gradient
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evaluates the model by using an input corresponding to a known output and corrects each
parameter of the model in a proportional quantity (but of opposite sign) with respect to its
contribution to the result error.

The Adam algorithm is computationally efficient, requires little memory and is suitable
for handling large data volumes or numbers of parameters. The fundamental parameter
that Adam receives is the learning rate, that is, a floating point value that indicates the size
of the passage at each iteration and that influences the criterion for evaluating whether the
newly acquired information is more important than the past information item. Therefore,
the learning rate must be neither too high—otherwise, learning will jump above the minima
of the loss function; nor too low—otherwise the convergence will happen too slowly,
with the possibility of getting stuck in an undesired local minimum. During the training
phase, it is advisable to adjust and adapt the learning rate in the right way as it does not
change, but remains unchanged throughout the execution of the model. For the proposed
model, the value of the learning rate was set at the default value recommended for the
Adam algorithm, equal to 10−3. Then, the optimal value was determined experimentally,
by varying it in the range [10−4 ÷ 10−2], using a logarithmic spacing for the search process.

From the relevant literature, the good robustness and speed of Adam, compared to
other optimizers, emerges [32]. However, performance comparisons of various optimizers
are strongly dependent on the specific workload and hyperparameter tuning. Hence, Adam
has been selected after a preliminary experimental comparison with alternative optimizers
such as SGD and Adagrad. In our analysis, Adam provided the best performance in a
limited training time. Moreover, coherently with our results, the Adam optimizer is widely
used in neural networks for Image Segmentation [17,33–35], since it provides better results
compared with some alternatives even with varying network architectures [33].

3.4.2. Metric and Loss

A metric function based on the Sørensen–Dice coefficient [6] is used in the model. It is
often referred to as the Dice coefficient and is equivalent to the F1-score [7]. It is a statistical
index that measures the similarity between two sets of data. In particular, in the context of
Image Segmentation, it compares the estimated output of the algorithm with the known
reference masks, measuring the affinity between two binary images. The dice_coef(),
used as accuracy metric in List 4 (model configuration), is based on the following equation:

DSC =
2 | X ∩ Y | +smooth
| X | + | Y | +smooth

. (3)

where |X| and |Y| are the sizes (expressed as number of elements) of the two sets X and
Y. In this case, X and Y represent the sets of white pixels in the masks generated by the
U-Net and in the reference one, respectively. The DSC is the ratio of the double of the
number of elements common to both sets (size of intersection set) and the sum of the
size of the two sets. The expression returns a value between 0 and 1. A Dice coefficient
equal to 1 denotes a perfect and complete overlap. In our code, these sets are obtained by
flattening each image by using the flatten() method, which returns a one-dimensional
array. At this point, Equation (3) is used to implement the Dice metric. For the evaluation
of the coefficient on the expected masks, the numerator is approximated by the sum of the
elements of the matrix obtained by the element-wise product between the elements of the
forecast and those of the input mask.The advantage of using the Dice coefficient is that it
maintains sensitivity in more heterogeneous data sets and is less sensitive to outliers. In
the DSC Formula (3), the parameter smooth indicates the smoothing coefficient, which is a
value between 0 and 1 that prevents the occurrence of a zero denominator [36,37]. In our
model, the value smooth=1 is set.

Finally, the dice_coef_loss() loss function is defined as the opposite of the
Dice coefficient.
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4. Performance Evaluation

The used processing environment is the well known Google Colab (https://colab.
research.google.com/, accessed on 1 November 2022). This tool allows easy repeatability
of experiments and code sharing. The free version of Google Colab was used. It offers
remote execution on virtual machines (VMs) with limited lifetime (12 h) [38]. The available
computing resources for each VM are 12 GB of RAM, 78 GB of disk space and GPU-
accelerated computing on Nvidia Tesla K80 [39]. The Tesla K80 GPU combines two graphics
processors to increase performance. It is characterized by 2496 shading units, 208 texture
mapping units and 48 render output units per GPU.

The comparison done in this work focused on three different organs, with very differ-
ent features: liver, bone and portal vein. Each patient of the considered dataset contains
segmentation images for each of these three organs.

For each organ, a target U-Net was trained and tested. From the original set of
20 patients, 3 patients were discarded due to anomalies in the images that could negatively
influence the training process. Figure 5 shows two examples of altered CT-Scans from
3Dircadb1. In the figure, it is possible to see the presence of an additional circular area
that encloses the body section. This area alters the sample’s HU values, blurring the
difference among the body section and the external area. Hence, these images can increase
the probability of unreliable segmentation in the model.

(a) (b)
Figure 5. Two different samples of altered CT-Scans from the 3Dircadb1 dataset: presence of an
additional grey circular area that encloses the body section, marked by the word ‘artifact’ to better
highlight it.

During the data processing phase presented in Section 3, the CT-Scan images were
resized to 128 × 128 pixels. This choice was motivated by the availability of limited
computing resources in the Colab VM. In fact, the training of the considered U-Net with
images of the original sizes (512 × 512 pixels) or on a 256 × 256 resized version is not
feasible in Google Colab, leading to memory error even when considering strongly limited
batches (5 or 10 images for a batch). Hence, our training phase consisted of 90 iterations
for each organ on 80% of the dataset, processing 128 × 128 CT-Scan images in batches of
32 images. The CT-Scan images are sent as input to the network after a shuffling step. This
procedure increases the robustness of the network to both image variability and overfitting.
Processing of randomly sorted images is common in Image Segmentation tasks [20,24,40].

As mentioned above, the U-Net was implemented by Keras and Tensorflow, with the
following configuration, which is referred to as ‘base configuration’ in this paper:

• Optimizer: Adam [30], learning rate 1 × 10−3.
• Performance evaluation metric: Dice coefficient [6].

The first comparison was carried out with the same configuration for the three organs.
The U-Net with the configuration described in the previous section provides the results
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reported in Table 1, tested on the remaining 20% of the samples, consisting of 489 images.
The results are expressed in terms of DSC and Accuracy [7], defined as in (4). Nevertheless,
due to the nature of the problem, the simple Accuracy metric provides unreliable results.

Accuracy =
| X ∩ Y | + | X ∩ Y |

| X | + | X | . (4)

In fact, while the DSC decreases with the increasing sparsity of the binary masks,
as expected, the corresponding increasing imbalance between 0 s and 1 s in the masks leads
to a very high Accuracy. Hence, this high Accuracy does not reflect the actual quality of the
segmentation. In fact this quality significantly decreases for small image segments, such
as the bone and, in particular, the portal vein, as shown in the following analysis. For this
reason, DSC will hereafter be considered as the evaluation metric of the segmentation.
Samples for organ images, original masks and masks predicted by the U-Net are reported
in Figures 6–9, for liver, bones and two vein samples, respectively.

Table 1. Performance comparison results on the test set.

Organ Samples DSC Accuracy

Liver 489 97.85% 88.65%
Bone 489 81.35% 95.93%

Portal Vein 489 58.53% 98.15%

Figure 6. Sample image (a), original mask (b) and predicted mask (c) for the liver.

Figure 7. Sample image (a), original mask (b) and predicted mask (c) for the bone.
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Figure 8. Portal vein sample 1: (a) image, (b) original mask, and (c) predicted mask without zooming
in the pre-processing.

Figure 9. Portal vein sample 2: (a) image, (b) original mask and (c) predicted mask without zooming
in the pre-processing.

As shown in Figure 6, the network produces good results (97.85%) for the liver on the
test set. The overall parenchyma tissue is well defined in the predicted mask (Figure 6c),
with a good precision in the segment border. The internal sections still suffer from some
inaccuracy, as shown by the orange boxes in the figure. However, these results are fairly
good, considering the size of the training dataset available.

The results for bone segmentation indicate a significant decrease in the DSC value, which
is equal to 81.35%. This is still borderline acceptable for not very small organs [13,21,22]. This
is confirmed by the analysis of the sample images shown in Figure 7. The predicted mask
(Figure 7c) shows how the trained model correctly intercepted the location and perimeter
of the bone structure. Nevertheless, it can be seen that in cases of increased sparsity of
the target signal, the percentage of error for the same model is increasing. This causes a
reduction in the segmentation accuracy of more than the 15% in terms of the DSC metric.
In particular, some segments in the predicted mask are predicted with a significantly
reduced area with respect to the original mask (Figure 7b), while the spinal section is
missing. Even if the signal of the spinal section is not so sparse compared to the other bone
sections in the original mask, its rather small dimensions lead to an unreliable segmentation.

This phenomenon becomes more evident when the model is tested by using the portal
vein samples. In this case, the prediction performance drops significantly (58.53%) and
becomes not acceptable at all. This can be attributed to the increased and significant
sparsity of the signal in the portal vein binary masks, due to the specific features of the
vasculature of the torso. Both Figures 8 and 9 depict examples of prediction outputs. As can
be observed in Figure 8, the trained model cannot detect the vascularization sparse spots in
the segmentation mask (Figure 8b) correctly, as it can only reproduce in the output mask
the biggest segment detected from the original sample (Figure 8c). This behaviour is further
confirmed in Figure 9. In the presence of two different segment regions, one with a bigger
area, the other with sparse vascularization spots, the model correctly detects the first one,
while it ignores most of the segments in the latter, as shown in the red box (Figure 9c).

146



Appl. Sci. 2023, 13, 329

A known approach to solve class imbalance in machine learning is the usage of a
weighted cross entropy loss. The introduction of weights to penalize the misclassifica-
tion of minority classes is present in medical image analysis and segmentation as well,
in particular for medical Image Segmentation [41]. Hence, the application of a weighted
cross entropy loss in our model was evaluated to improve the performance of portal vein
images segmentation. The class weights have been configured with the balanced option
of the Python module compute_class_weight (https://scikit-learn.org/stable/modules/
generated/sklearn.utils.class_weight.compute_class_weight.html, accessed on 1 November
2022). Nevertheless, considering the same number of training epochs, the introduction of
the weighted cross entropy as loss metric significantly degrades the segmentation perfor-
mance on portal vein images. The evaluation on the test set provides a DSC value equal to
27.8%, as reported in Table 2.

Table 2. DSC metric for different percentages of cropping of the original images (portal vein).

Approach DSC

Base configuration (no zoom) 58.53%

40% image cropping 62.04%
50% image cropping 65.23%
60% image cropping 76.39%
70% image cropping 81.45%

Weighted cross entropy loss 27.8%

Hence, in order to improve the DSC metric for the portal vein segmentation and,
in general, for vascularization samples, the following solution is proposed. A preprocessing
step, consisting of magnifying the portion of interest of the binary masks and of the
corresponding areas in slice images, is introduced as follows:

• Zooming the image and the corresponding mask in the target area of vascularization,
in order to increase the size of the vascularization segments. The zoom was configured
to enhance the body section of interest, by cropping with the Tensorflow function
tf.image.central_crop() up to 70% of the original image. Hence, in this case, the
resulting image is reduced to a size of 154 × 154 pixels from the original size of
512 × 512 pixels. This resulted in the optimal percentage for the best DSC metric,
found experimentally, as shown in Table 2.

• Resizing the samples to the 128 × 128 format, as in the previous experiments.

The rationale of this strategy is that the higher resolution of original images is lever-
aged to provide the U-Net with additional information, in order to enlarge the target area.
In fact, with the original setting, the amount of the target area in the mask is too small to
drive the Dice metric towards a correct recognition of it. This is due to the metric definition
itself, which is based on the percentage amount of pixels of the target image (see (3)).
This causes, as mentioned in the comments to Figures 8 and 9, the missing recognition of
small, sparse spots of the vascularization. Although the resolution in the original setting
cannot be handled by the available computing resources, it offers the opportunity to gain
additional information via zooming the interested portion of the image before resolution
rescaling. The advantages are multiple: not only is the information overlooked in base
configuration (i.e., the one without any zoom) leveraged, but the training time and the
amount of necessary computing resources are kept unmodified.

After pre-processing, a similar U-Net was trained by using the new images for 90 it-
erations. The new model leads to an increase in the DSC metric up to 22% for portal
veins, corresponding to 81.45% on the test set with the largest and optimal zoom level.
Figures 10 and 11 depict two sample outputs obtained by using the new model, specially
tuned to segment vascularization in medical CT scans. The positive impact of preprocessing
can also be observed on the predicted mask quality. Even in the presence of sparse signals,
the model is good at detecting all the present segments, although some minor discrepan-
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cies in the vascularization segment shapes (orange box) are present (Figures 10c and 11c).
Nevertheless, through the proposed approach, the model is able to fetch significantly small
segments that were previously ignored, as shown in another sample in Figure 12 on the
green box on the right side of the binary mask (Figure 12c). This is further confirmed by the
sample in Figure 13, replicating the same two distinct segments highlighted in the green
box (Figure 13c).

Figure 10. Portal vein sample 3: image (a), original mask (b) and predicted mask (c) after pre-
processing with zoom.

Figure 11. Portal vein sample 4: image (a), original mask (b) and predicted mask (c) after pre-
processing with zoom.

Figure 12. Portal vein sample 5: image (a), original mask (b) and predicted mask (c) after pre-
processing with zoom.

Although results are appreciable, some margin for further improvement exists. In par-
ticular, some research is still necessary to refine the model in order to identify even the
smallest segments, such as the ones missing in the prediction output of the sample shown
in Figure 13c. This cannot be done by further zooming the available images, thus different
techniques have to be designed in the future, or images with higher resolution are necessary.
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Figure 13. Portal vein sample 6: image (a), original mask (b) and predicted mask (c) after pre-
processing with zoom.

The optimal zoom level was found by testing different configurations, as shown in
Table 2. Figure 14 shows the trend of the DSC metric as a function of the zoom level. The
saturation effect is evident for values higher than a zoom level of 3×. This effect can be
explained by the fact that the maximum lossless zoom that can be performed on these
images is 4×, since the original resolution of the images is 512 × 512 and the target one
used to feed the U-Net is 128 × 128. Beyond this zoom value, the cropped image will have
a size inferior to 128 × 128; thus, further improvements for larger magnification levels are
not expected. In this case, it is not possible to use a zoom value of 4×, since this would also
crop part of the white portion of the mask. In addition, the figure shows that the proposed
zoom procedure does not impact the Accuracy metric, which remains stable in the range
98–99%, as expected. In fact, our procedure does not involve any loss of useful data for the
mask of the considered organ; thus, the Accuracy is not affected by it.

Figure 14. DSC and Accuracy metrics as a function of the zoom level.

Another evolutionary step is in the automatization of the whole process. In the current
approach, the area of interest must be first identified by the medical staff. Then, the au-
tomatic zoom on the selected area is performed on the CT Scans and the corresponding
masks, obtaining images in a 128 × 128 format. Although most of the operations are
already automatic, it would be possible to leverage the first phase in order to identify
the area deserving more attention and using the first output to automatically focus the
zoom operation on the right portion of the image. This will be an objective of future
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investigations. In this regard, Figure 15 presents a general overview of the segmentation
procedure detailed in this section. After the preliminary image preprocessing, consisting in
the rescaling to a resolution of 128 × 128, the U-Net is trained on a portion of the dataset.
The performance is then evaluated on the remainder of the samples. In the presence of
small organs, as shown in what follows, a significant DSC decrease can be observed. Hence,
if this decrease produces DSC values lower than a predefined threshold, corresponding to
an 80% decrease in this paper, samples are further processed with an incremental zoom
of images. This procedure stops in cases of data loss, i.e., if part of the organ signal is cut
away by the zoom, or when the U-Net is able to achieve the desired performance score in
terms of DSC.

Figure 15. Flow diagram of the training of the mixed size medical segmentation procedure via U-Net.

Small organ segmentation has been previously investigated in other papers, such
as [34,35]. FocusNetv2, presented in [34], was developed to segment small organs in the
head and neck (HaN) area. This network is composed of various parts. They include a main
segmentation network based on Snet, a U-Net variant, a small-organ localization network,
to localize the center locations of small organs and a small-organ segmentation network,
which refines the Snet’s segmentation with the information provided by the small-organ
localization network. The proposed ensemble is tested on various organs of different
size, providing a maximum DSC of 82.45% on small organs. Hence, the performance
obtained with our approach is comparable with the DSC obtained with more complex and
computationally expensive models, at a reduced cost. A modular network is used in [35]
as well, to segment pancreas images, a small organ, from the NIH dataset. The proposed
network operates with two levels, a coarse-segmentation stage and a fine-segmentation
stage, with the introduction of a saliency transformation module. This module converts
the previous iteration’s segmentation probability map into spatial weights for the current
iteration. The proposed model produces a DSC of 84.5% on the pancreas NIH dataset.
Hence, the performance obtained with the approach presented in this paper is comparable
with the state-of-the-art, without requiring additional complexity in the network, increasing
neither the computational cost nor the needed volume of training data.
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In summary, with the proposed approach, the segmentation of binary masks with
sparse signals, such as in the case of vascularization or small organ scans, is improved.
In particular, an increased accuracy evaluated through the DSC metric is of great importance
in the medical field, especially for vascularization images. In fact, the analysis of these
images is fundamental to accelerating the diagnosis of various cancer types, due to the
tumor angiogenesis process [5]. It is worth stressing that the achieved performance is
reached with the base version of Google Colab, without the need for additional, paid
resources. This is an important result, since it demonstrates that testing with U-Net
can be carried out easily in a standard developing environment available to everyone,
without requiring one to set up a dedicated cluster with multi-core CPUs or GPUs. Thus,
the entry level of this approach is represented only by the skill of the programmers,
without infrastructure costs. The price to pay is a small variability in execution times,
due to the fact that resources in Google Colab are not reserved exclusively for free users
and the fact that activity cannot last more than 12 consecutive hours. However, this is
definitely acceptable for a developing work. Obviously, it is possible to set up a local cluster
offering the Jupyter Notebook service or pay for dedicated cloud resources in order to not
experience the limitations of the free account, but this is more suitable in operation, when
service discontinuity is not acceptable. In any case, the software to run is exactly the same
developed on the free version of Google Colab.

Finally, it is interesting to evaluate the time taken by the overall procedure to complete
the test phase, i.e., in operation. The results of the evaluation campaign are reported in
Table 3. The evaluation included four cases, each one repeated several times to evaluate
both mean time and standard deviation, as follows: (i) single image; (ii) set of images of a
single patient, with 129 slices; (iii) set of images of a single patient, with 172 slices; (iv) set
of images of a single patient, with 200 slices. The usage of the dataset of different patients,
each with a different number of slices, allows evaluating the scalability of the procedure.
The used images are already loaded in Google Colab, to avoid including the effects of
the upload time in the evaluation, since it depends on external factors, such as speed and
reliability of network connection. It results that the segmentation of a single image taken
from a batch of the test set by Tensorflow requires 3.286 s on average. In addition, in cases
in which the zoom of images is not necessary, the initial pre-processing (rescaling operation)
requires a mean time of 21 ms. In cases in which the zooming procedure is completed, it
takes a slightly higher mean time, equal to 23 ms. Both of them are negligible with respect
to the processing time. When the processing is executed on a larger set of images, processed
in batches of 10 images, both processing and pre-processing times scale very well. In fact,
they exhibit a sub-linear behaviour, with a processing time for 200 images well below 20 s
and pre-processing always below 100 ms, with an impact of zooming operation that is
essentially negligible. This phenomenon can be explained by the high parallelism that
can be achieved with Tensorflow when batches of data are processed, that allows to fully
exploit the capabilities of multi-core CPUs and GPUs. A second comment is that, in general,
the variability of the processing time, evaluated by means of the standard deviation, is
always quite limited, which is highly desirable. When execution times are very small, such
as in the case of pre-processing, results could be slightly different from expected, due to
free resource allocation in Google Colab. In short, the time taken to execute the overall
procedure is negligible with respect to the time taken by a human operator to complete the
same task, which makes the proposed approach definitely affordable.

Table 3. Processing and pre-processing times for different sets of images.

Number of Images Processing Time (Avg ± Std) Pre-Processing Time (Avg ± Std)
without Zoom with Zoom

1 3.286 s ± 0.046 s 0.021 s ± 0.001 s 0.023 s ± 0.003 s
129 11.669 s ± 0.854 s 0.028 s ± 0.004 s 0.051 s ± 0.011 s
172 14.918 s ± 1.045 s 0.027 s ± 0.005 s 0.081 s ± 0.073 s
200 17.189 s ± 0.132 s 0.055 s ± 0.041 s 0.095 s ± 0.017 s
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5. Conclusions

In this study, the performance of a state-of-the-art segmentation model, based on
U-Net [4] is first analyzed by using CT-Scans of different organs, namely liver, bones
and portal vein. Our results show that the standard U-Net network can provide very good
results for segmenting large organs, approaching 98% Accuracy values in terms of DSC
metric, but it exhibits poor performance when organ images characterized by small and
sparse segmentation training masks are used. In particular, this happened in the case of
vascularization images. In fact, segmentation of small organs is a recurring and challenging
issue for automated medical Image Segmentation [22,34,35]. In order to overcome this
problem, a novel approach producing a significant improvement of the DSC metric in the
most critical cases is proposed. This approach does not require the use of additional data
samples, nor a significant additional computational burden. In fact, for all our analyses, the
free computing infrastructure made available by Google Colab was enough.

In particular, the suitable working conditions of the baseline U-Net are determined
for segmenting sparse and/or small sections through image pre-processing. Since a quite
general approach and metric (the DSC) to drive the segmentation is used, the solution can
be used in other situations based on similar images and metrics. In the most critical case,
relevant to portal vein images, the DSC improvement obtained is 20%. This comes basically
at a very small cost, leaving untouched the training time and computing requirements in
comparison with the baseline U-Net processing.

Our approach is based on training the U-Net by using differentiated zoom levels in
different areas of test images. Thus, it follows that resorting to higher resolution images can
bring further significant benefits in terms of segmentation accuracy. Clearly, an increase
in resolution would require additional storage space and computing power. However,
determination of the achievable performance improvement, if anything, needs further
research. In fact, the observed improvement is due to the usage of the Dice metric and the
impact of additional resolution, and a higher scaling factor on images cannot be easily
determined; a deep investigation is necessary.

Due to its flexibility and small computational cost, the application of differentiated
zoom levels, associated with the Dice metric, used to enhance the segmentation quality
of small entities, can potentially be applied to other use-cases characterized by sparse
segmentation signals. Nevertheless, the application of the proposed approach to other
use-cases is beyond the scope of this paper. Finally, the proposed approach can have a
significant impact in operation, since a correct segmentation of a vasculature or any other
small organs and disease areas is essential for helping medical diagnosis.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
CT Computed Tomography
HU Hounsfield Unit
MRI Magnetic Resonance Imaging
DICOM Digital Imaging and Communications in Medicine
VTK Visualization Toolkit
GPU Graphics Processing Unit
VM Virtual Machine

Appendix A

Listing A1. Loading CT-Scan into the related tensors starting from the file paths.

1 def process_path(filename):

2 patient_bytes = tf.io.read_file(filename)

3 patient_image = tfio.

4 image.

5 decode_dicom_image(patient_bytes,

6 color_dim=False,

7 on_error=’skip’,

8 scale=’preserve’,

9 dtype=tf.uint16,

10 name=None)

11 tf.cast(patient_image, tf.int32, name=None)

12 patient_image = tf.image.resize(patient_image, (D,D))

13 patient_image = tf.squeeze(patient_image, axis=0)

14 mask_path = tf.strings.regex_replace(filename,

15 ’PATIENT_DICOM’,

16 ’MASKS_DICOM/liver’)

17 mask_bytes = tf.io.read_file(mask_path)

18 mask_image = tfio.image.decode_dicom_image(mask_bytes,

19 scale=’auto’,

20 on_error=’lossy’,

21 dtype=tf.uint8)

22 mask_image = tf.squeeze(mask_image, axis=0)

23 intercept_tag = tfio.

24 image.

25 decode_dicom_data(patient_bytes,

26 tags=np.uint32(int("00281052",

27 16)))

28 intercept = tf.strings.to_number(intercept_tag, tf.float32)

29 slope_tag = tfio.

30 image.

31 decode_dicom_data(patient_bytes,

32 tags=np.uint32(int("00281053",

33 16)))

34 slope = tf.strings.to_number(slope_tag, tf.float32)

35 patient_image = tf.

36 math.

37 add(tf.math.multiply(patient_image, slope),

38 intercept) /100.-10.

39 return patient_image, mask_image
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Abstract: Feature selection is an NP-hard problem to remove irrelevant and redundant features
with no predictive information to increase the performance of machine learning algorithms. Many
wrapper-based methods using metaheuristic algorithms have been proposed to select effective
features. However, they achieve differently on medical data, and most of them cannot find those
effective features that may fulfill the required accuracy in diagnosing important diseases such as
Diabetes, Heart problems, Hepatitis, and Coronavirus, which are targeted datasets in this study. To
tackle this drawback, an algorithm is needed that can strike a balance between local and global search
strategies in selecting effective features from medical datasets. In this paper, a new binary optimizer
algorithm named BSMO is proposed. It is based on the newly proposed starling murmuration
optimizer (SMO) that has a high ability to solve different complex and engineering problems, and it is
expected that BSMO can also effectively find an optimal subset of features. Two distinct approaches
are utilized by the BSMO algorithm when searching medical datasets to find effective features.
Each dimension in a continuous solution generated by SMO is simply mapped to 0 or 1 using
a variable threshold in the second approach, whereas in the first, binary versions of BSMO are
developed using several S-shaped and V-shaped transfer functions. The performance of the proposed
BSMO was evaluated using four targeted medical datasets, and results were compared with well-
known binary metaheuristic algorithms in terms of different metrics, including fitness, accuracy,
sensitivity, specificity, precision, and error. Finally, the superiority of the proposed BSMO algorithm
was statistically analyzed using Friedman non-parametric test. The statistical and experimental
tests proved that the proposed BSMO attains better performance in comparison to the competitive
algorithms such as ACO, BBA, bGWO, and BWOA for selecting effective features from the medical
datasets targeted in this study.

Keywords: disease diagnosis; medical data; feature selection; binary metaheuristic algorithms;
starling murmuration optimizer (SMO); transfer function

1. Introduction

With recent advancements in medical information technology, a huge volume of
raw medical data is rapidly generated from different medical resources such as medical
examinations, radiology, laboratory tests, mobile health applications, and wearable health-
care technologies [1–3]. Extracting informative knowledge from these medical data using
artificial intelligence and machine learning algorithms can help in faster treatment and
significantly reduce patient mortality rates [4,5]. Application of these algorithms in some
diseases such as Diabetes, Heart problems, Hepatitis, and Coronavirus is more common
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than others due to their high epidemic and mortality rates, expensive tests, and the require-
ment of special experience [6–8]. One of the main challenges in such disease datasets is
the existence of redundant and irrelevant features [9], which can decrease the effectiveness
of disease diagnosis systems. In medical data mining and machine learning [10,11], one
of the most crucial preprocessing steps is feature selection, which eliminates redundant
and irrelevant features to uncover effective ones. Since there are 2N distinct feature subsets
in a dataset with N features, the feature selection problem is NP-hard [12,13]. Therefore,
evaluating all feature subsets to find effective features is very costly, and if each feature is
added to the dataset, then the complexity will be doubled [13,14].

Filter-based, wrapper-based, and embedded methods are the three main categories
of feature selection techniques [15,16]. The classification algorithm is not involved in
filter-based methods, which typically operate based on feature ranking. Wrapper-based
methods use a classifier algorithm to evaluate individual candidate subsets of features
as opposed to filter-based methods [17,18]. Embedded methods combine the qualities
of filter and wrapper methods, and the feature selection algorithm is integrated as part
of the learning algorithm [16]. Many wrapper feature selection methods based on meta-
heuristic algorithms have been proposed [15,16] that can effectively solve feature selection
problems as an NP-hard problem in a reasonable response time [19,20]. The main goal
of using metaheuristic algorithms is to search the feature space and find near-optimal
solutions effectively. Metaheuristic algorithms are recognized as robust problem solvers to
solve a variety of problems with different types, such as continuous [21], discrete [22–24],
and constraint [25,26]. Particle swarm optimization (PSO) [27], ant colony optimization
(ACO) [28], differential evolution (DE) [29], cuckoo optimization algorithm (COA) [30],
krill herd (KH) [31], social spider algorithm (SSA) [32], crow search algorithm (CSA) [33],
grasshopper optimization algorithm (GOA) [34], quantum-based avian navigation opti-
mizer algorithm (QANA) [35] and African vultures optimization algorithm (AVOA) [36]
are some of the successful metaheuristic algorithms that are promisingly developed to
solve feature selection problems.

Many metaheuristic-based methods have been proposed to select features from med-
ical data [37–39]. However, a few of them can select effective features that may provide
acceptable accuracy in diagnosing all the targeted diseases in this study, including Diabetes,
Heart problems, Hepatitis, and Coronavirus [40]. The main reason for this drawback is
generating and storing many irrelevant and redundant features in the medical processes,
which reduces the efficiency of classification algorithms used in disease diagnosis systems.
Therefore, a metaheuristic algorithm is needed to select useful and effective features from
medical datasets by striking a proper balance between local and global search strategies.
Responding to this need, particularly for the datasets targeted in the scope of this study, is
our motivation to introduce binary versions of the newly proposed starling murmuration
optimizer (SMO) algorithm [41], which can balance between its search strategies efficiently.
The SMO algorithm uses a dynamic multi-flock construction and three search strategies:
separating, diving, and whirling. Starlings in large flocks turn, dive, and whirl across the
sky in SMO. The separating search strategy enriches population diversity by employing
the quantum harmonic oscillator. With the help of a quantum random dive operator, the
diving search strategy enhances the exploration. In contrast, the whirling search strategy
significantly uses cohesion force in the vicinity of promising regions. The SMO algorithm
has shown a high ability to solve different complex and engineering problems, but it was
not yet developed for solving feature selection problems. The binary version of SMO or
BSMO is expected to effectively solve the feature selection problem.

The BSMO algorithm generates candidate subsets of features using two different
approaches. The first approach develops binary versions of BSMO using several S-shaped
and V-shaped transfer functions. In contrast, in the second approach, BSMO maps each
dimension in a continuous solution generated by SMO to 0 or 1 using a variable threshold
method. The scope of this study is limited to selecting effective features from four targeted
datasets consisting of Diabetes, Heart, Hepatitis, and Coronavirus. The performance of the
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BSMO’s variants is assessed on targeted datasets in terms of fitness, accuracy, sensitivity,
specificity, precision, and error. The results are contrasted with competing binary algorithms
like the ant colony optimization (ACO) [28], binary bat algorithm (BBA) [42], binary grey
wolf optimization (bGWO) [43], and binary whale optimization algorithm (BWOA) [39].
The main contributions of this study can be summarized as follows.

• Developing the BSMO algorithm as a binary version of the SMO algorithm.
• Transferring the continuous solutions to binary ones effectively using two different

approaches, including S-shaped and V-shaped transfer functions and value threshold
method.

• Evaluating BSMO on medical datasets targeted in this study and comparing its perfor-
mance with other popular feature selection algorithms.

• Finding satisfactory results in selecting effective features from the targeted medical
datasets.

The rest of this paper is organized as follows. The related works are reviewed in
Section 2. A description of the standard SMO algorithm is presented in Section 3. The
details of the proposed BSMO algorithm are presented in Section 4. Section 5 includes the
experimental evaluation and the comparison between the proposed BSMO and contender
algorithms. Section 6 concludes this study and its finding, and suggests some future works.

2. Related Works

Real-world optimization problems have different properties and involve various intri-
cacies, creating critical challenges for optimization algorithms in solving them. Generally,
optimization problems in mechanical and engineering applications are mostly faced with
multiple properties, such as linear and non-linear constraints in decision variables, non-
differentiable objectives, and constraint functions. Therefore, many constraint-handling
methods, such as penalty functions, static, dynamic, annealing, adaptive, co-evolutionary,
and the death penalty, are developed to cope with such challenges [44]. The other opti-
mization problems, especially in feature selection applications, mostly involve different
intricacies such as discrete search spaces, existing irrelevant and redundant features, and
high dimensionality feature space. Feature selection is a common way in preprocessing
phase to cope with such intricacies by selecting only a small subset of relevant features
from the original dataset [45,46]. Feature selection reduces the feature space’s dimension-
ality, speeds up the learning process, simplifies the learned model, and boosts classifier
performance by eliminating redundant and irrelevant features [47–49].

The topic of feature selection is presented as a binary optimization problem with
the conflicting objectives of reducing the number of features and enhancing classification
accuracy. Each solution is presented by a D-dimensional binary vector that only has the
two values 0 and 1, where 0 signifies that the corresponding feature is not selected, and 1
indicates that it is selected. The number of dimensions in this binary vector corresponds
to the number of features in the initial feature dataset. In many machine learning and
data mining tasks, including intrusion detection [50–53], spam detection [54,55], financial
problem prediction [56], and classification [57–59]. Particularly, finding an optimal subset
of features from medical datasets is a challenging problem that many researchers have
recently considered. Metaheuristic algorithms are recognized as prominent problem-solver
to solve optimization problems especially feature selection. Based on the source of their
inspiration, metaheuristic algorithms may be divided into eight groups: physical-based,
biology-based, swarm-based, social-based, mu-sic-based, sport-based, chemistry-based,
and math-based [60–62]. Since most metaheuristic algorithms are proposed for continuous
problems, many binarization methods such as logical operators, variable threshold methods
and transfer functions, are developed to map the continuous feature space to the binary one.
In the literature, the most famous transfer functions are S-shaped [63], V-shaped [64–66],
U-shaped [67,68], X-shaped transfer function [69], and Z-shaped [70]. This section presents
an overview of the most recent related works on metaheuristics for the wrapper feature
selection problem in medical data classification.
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Nadimi-Shahraki et al. [40] proposed an improved whale optimization algorithm
called BE-WOA. In BE-WOA, a pooling mechanism and three effective search strategies,
migration, preferential selection, and surrounded prey, are used to improve the WOA to
select effective features from medical datasets. BE-WOA also applied to predict Coronavirus
2019 disease or COVID-19. The obtained results prove the efficiency of the BE-WOA
algorithm. The gene selection technique is used for high-dimensional datasets where the
number of samples is small, and the number of features is large. Finding the best feature
subset in a dataset is the process of gene selection [71]. For gene selection, Alirezanejad
et al. [72] developed two Xvariance heuristics against mutual congestion. This approach
involves ranking the features first. Then, using Monte’s cross-validation, ten subsets
of features are chosen based on forward feature selection (FFS). To enhance the results,
majority voting is applied to the features selected in the prior stage to calculate accuracy,
sensitivity, specificity, and matthews correlation coefficient.

Asghari Varzaneh et al. [73] proposed a new COVID-19 intubation prediction strategy
using the binary version of the horse herd optimization algorithm to select the effective
features. The results of the tests showed that the proposed feature selection method is
better than other methods. Pashaei et al. [74] introduced two binary variations of the chimp
optimization algorithm using S-shaped and V-shaped transfer functions for biomedical
data classification. In a recent study, Nadimi-Shahraki et al. [75] proposed the binary
version of the quantum-based avian navigation optimizer algorithm (BQANA) to select
the optimal feature subset from high-dimensional medical datasets. The reported results
show that the BQANA using a threshold method can dominate all contender algorithms.
Alweshah et al. [76] proposed the greedy crossover (GC) operator strategy to boost the
exploration capability of the coronavirus herd immunity optimizer (CHIO). Then, some
medical datasets were used to evaluate the performance of the proposed algorithm in
addressing the feature selection problem in the field of medical diagnosis. The results
indicated that the GC operator strikes a balance between the search strategies of the
CHIO algorithm.

For challenges involving medical feature selection, Anter et al. [77] proposed a hybrid
crow search optimization algorithm combined with chaos theory and a fuzzy c-means
algorithm (CFCSA). The suggested algorithm avoids local optima and improves the CSA’s
convergence using chaos theory and the global optimization method. The test results
show the efficiency and stability of CFCSA for solving medical data and real problems.
Singh et al. [78] proposed a hybrid ensemble-filter wrapper feature selection algorithm
to improve the performance of classifiers in medical data applications. In this algorithm,
first, the filter-based method is used based on the weight points to produce the ranking of
the features. Then, the sequential forward selection algorithm is used as a wrapper-based
feature selection to generate an optimal feature subset. To propose the binary version of
the atom search optimization algorithm (ASO), Too et al. [79] applied four S-shaped and
four V-shaped transfer functions to solve the feature selection problem. Among the eight
presented binary versions, BASO based on the S1–shaped transfer function has the highest
performance. Moreover, Mirjalili et al. [67] proposed a new binary version of the PSO
algorithm using a U-shaped transfer function to transform continuous velocity values into
binary values. The results show that U-shaped transfer functions significantly increase the
performance of BPSO.

Elgamal et al. [80] enhanced the reptile search optimization algorithm (RSA) by em-
ploying the chaotic map and simulated annealing algorithm to tackle feature selection
issues for high-dimensional medical datasets. Applying chaos theory to RSA improves its
exploration ability, and hybridizing RSA with the simulated annealing algorithm can avoid
local optima trapping. Many metaheuristic algorithms have been proposed to solve feature
selection problems, such as binary ant lion optimizer (BALO) [81], return-cost-based binary
firefly algorithm (Rc-BBFA) [82], chaotic dragonfly algorithm (CDA) [83], binary chimp op-
timization algorithm (BChOA) [84], altruistic whale optimization algorithm (AltWOA) [85],

160



Appl. Sci. 2023, 13, 564

binary African vulture optimization algorithm (BAVOA) [86], and binary dwarf mongoose
optimization algorithm (BDMSAO) [87].

Studying related works shows that various metaheuristic algorithms have been used
to select effective features from medical data. However, most of them cannot find effective
features for providing an acceptable diagnosis of important diseases such as Diabetes,
Heart, Hepatitis, and Coronavirus. To respond to this weakness, the BSMO algorithm
is introduced to develop a new wrapper feature selection method for these diseases in
this study.

3. Starling Murmuration Optimizer (SMO)

SMO is a population-based metaheuristic algorithm recently developed by Zamani
et al. [41]. The SMO algorithm is modeled the starlings’ behavior during their stunning mur-
muration using three new search strategies, separating, diving, and whirling. The starling’s
population is denoted by S = {s1, s2, . . . , sN} where N is the population size. The position
of each starling si at iteration t is denoted using a vector Xi(t) = (xi,1, xi,2, . . . , xi,D) and
its fitness value is expressed by Fi(t). In first iteration, each Xi(t) is initiated by a uniform
random distribution in a D-dimensional search space using Equation (1), where XL and XU

are lower and upper bounds of the search space, respectively and rand (0, 1) is a random
value between 0 and 1.

Xi(t) = XL + rand(0, 1)× (XU − XL), i = 1, 2, . . . ., N (1)

For the rest of the iterations, the population of starlings is moved using the separating,
diving, and whirling search strategies. The details of these search strategies are discussed
in the following sections.

3.1. Separating Search Strategy

The separation search strategy is promoted diversity throughout the population. In
this strategy, first, a portion of starlings with size Psep are randomly selected to separate
from population S using Equation (2). Then, some dimensions of the selected starlings are
updated using Equation (3), where XG(t) is the global best position, and Xr(t) is randomly
selected from a population S. In each iteration, the best position obtained so far is stored,
then these positions are joined with the separated positions with size Psep, ultimately Xr′(t)
is randomly selected from these sets. Q1(y) is a separation operator which is calculated
using Equation (4), where α is the quantum harmonic oscillator, parameters m and k are
the particle’s mass and strength, respectively and the parameter h is Planck’s constant.
Moreover, the function Hn is the Hermite polynomial with integer index n, and y is a
random number.

Psep =
log(t + D)

log(MaxIt)× 2
(2)

Xi(t + 1) = XG(t) + Q1(y)× (Xr′(t)− Xr(t)) (3)

Q1(y) =
(

α

2n × n! × π
1
2

) 1
2
Hn(α × y)× e−0.5×α2×y2

, α =

(
m × k
�

) 1
4

(4)

The rest of the starlings with a size of Ń (N − Psep) is flocked using dynamic multi-flock
construction to search the problem space using either diving or whirling search strategies.
Each iteration creates a dynamic multi-flock using k non-empty flocks f1 . . . fk. First, k best
starlings are separated from the population Ń and stored in matrix R, then the rest of the
population (Ń-R) is divided among the k flocks. Finally, each position of R assigns to each
flock such that f1← {R1 U f1}, . . . , fk← {Rk U fk}.

As shown in Equation (6), the diving and whirling search strategies are assigned to
the flocks based on the quality of each flock. The quality of each flock (Qq (t)) is evaluated
using Equation (5), where k is the number of flocks, sfij (t) is the fitness value of the starling
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si in the flock fj, and n is the number of starlings in each flock. The parameter μQ (t) in
Equation (6) denotes the average of all flock’s quality.

Qq(t) =
∑k

i=1
1
n ∑n

j=1 s fij(t)
1
n ∑n

i=1 s fqi(t)
(5)

Xi(t + 1) =

⎧⎨⎩
Diving search strategy Qq(t) ≤ μQ(t)

Whirling search strategy Qq(t) > μQ(t)
(6)

3.2. Diving Search Strategy

The diving search strategy is encouraged the selected flocks (Qq (t) ≤ μQ (t)) to
explore the search space effectively. The starlings are moved using upward and downward
quantum random dives (QRD). The starlings of a flock switch among these quantum dives
using two quantum probabilities shown in Equation (7), where

∣∣ψUp(Xi)
∣∣ and

∣∣ψDown(Xi)
∣∣

are the upward and downward probabilities that are computed using Equations (8) and (9).
Parameters ϕ and θ are set by the user, and |ψ(δ2) 〉 is an inverse-Gaussian distribution that
is computed using Equation (10), where the values of λ and μ are set by the user, and y is a
random number.

QRD =

⎧⎨⎩
Upward quantum dive

∣∣ψUp(Xi) >
∣∣ψDown(Xi)

∣∣
Downward quantum dive

∣∣ψUp(Xi)
∣∣≤∣∣ψDown(Xi)

∣∣ (7)

|ψUp(Xi)〉 = eiϕ cos θ × |ψ(δ2)〉 − e−iϕ sin θ × |ψ(δ2)〉 (8)

|ψDown(Xi)〉 = eiϕ sin θ × |ψ(δ2)〉+ e−iϕ cos θ × |ψ(δ2)〉 (9)

|ψ(δ2)〉 =
√

λ

2 × π × y3 × e

[
− λ(y − μ)2

2 × μ2 × y

]
(10)

The downward and upward quantum dives are computed using Equations (11) and
(12), respectively, where |ψ(RD)〉 is selected from set R, |ψ(Xi)〉 is the position of starling si
in the current iteration, the position of |ψ(Xr)〉 is randomly selected among flocks assigned
for diving strategy,

∣∣ψ(Xj
)〉 is randomly selected from the population S and the best

starlings set. |ψ(δ1)〉 is a random position selected from the best starlings set obtained
from the first iteration so far and the starling population S.

|ψ(t + 1, Xi)〉 = |ψ(RD)〉 − |ψDown(Xi)〉 × (|ψ(Xi)〉 − |ψ(Xr)〉) (11)

|ψ(t + 1, Xi)〉 = |ψ(RD)〉+ |ψUp(Xi)〉 ×
(|ψ(Xi)〉 − |ψ(Xj

)〉+ |ψ(δ1)〉
)

(12)

3.3. Whirling Search Strategy

Starlings of a flock exploit the search problem using the whirling search strategy when
the quality of the flock is more than the average quality of all flocks (Qq (t) > μQ (t)). The
whirling search strategy is denoted in Equation (13), where Xi (t+1) is the next position of
starling si at iteration t, a position XRW (t) is randomly selected from set R of flocks that are
considered for the whirling search strategy, XN (t) randomly selected from all flocks that
want to use the whirling search strategy. Ci (t) is the cohesion operator which is calculated
using Equation (14), where ξ (t) is a random number between intervals 0 and 1.

Xi(t + 1) = Xi(t) + Ci(t)× (XRW(t)− XN(t)) (13)

Ci(t) = cos(ξ(t)) (14)

The pseudocode of the SMO algorithm is shown in Algorithm 1.
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Algorithm 1: Starling Murmuration Optimizer (SMO)

Input: N (Population size), k (Flocks size), and MaxIt (Maximum iterations).
Output: Global best solution.

1: Begin

2: Randomly distributed N starlings in the search space.
3: Set t = 1.
4: While t ≤ MaxIt
5: Separating a portion of starlings with size Psep from the population using Equation (2).
6: The rest of the population is flocked into k flocks using the dynamic multi-flock construction.
7: Computing the quality of each flock (fq) using Equation (5).
8: For q = 1: k
9: If Qq (t) ≤ μQ (t)
10: Moving starlings of the flock fq using the diving strategy.
11: Else

12: Moving starlings of the flock fq using the whirling strategy.
13: End if

14: End for

15: Update the position of starlings and global best solution.
16: t = t + 1.
17: End while

18: Return position of best starling as a global best solution.
19: End

4. Binary Starling Murmuration Optimizer (BSMO)

SMO is a new metaheuristic algorithm that effectively solves various engineering and
complex problems. However, the ability of the SMO algorithm to solve feature selection
problems has not been studied yet, which is the motivation of this study. In this study, a
binary starling murmuration optimizer (BSMO) is proposed to select effective features from
the datasets of four important targeted diseases consisting Diabetes, Heart problems, Hep-
atitis, and Coronavirus. The proposed BSMO is developed using two different approaches.
The first approach uses S-shaped and V-shaped transfer functions, whereas the second
approach maps the continuous search space to 0 or 1 using a threshold value.

Suppose matrix X is to represent the population of starlings in the BSMO, then Figure 1
shows the representation scheme of the proposed BSMO algorithm in solving the feature
selection problem. Figure 1a–c show starling Si, binary vector Bi, and the selected feature
set SFi. Each starling Si is transformed using different transform functions to the binary
vector Bi in which the value of 1 for each element means the corresponding feature should
be selected to form the selected feature set SFi. Accordingly, the BSMO algorithm uses the
fitness function defined in Equation (15) [83,88].

Fiti = αE + β
|SFi|

D
(15)

where E determines the error rate of the classification algorithm, |SFi| and D are the number
of the selected feature in a subset of SFi, and the total features in the dataset, respectively.
α and β = 1 − α are two constant values to control the significance of the classification
accuracy and feature subset reduction, respectively. Since the accuracy is more important of
the number of features, usually β is very smaller than α, in this study, α = 0.99 and β = 0.01,
according to [89].
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Figure 1. The representation scheme used by BSMO, (a) Starling population (Matrix X), (b) Binary
population (Matrix B), and (c) Selected features (SF).

4.1. BSMO Using S-Shaped Transfer Function (S-BSMO)

This method uses the sigmoid transfer function (S-shape) to map the continuous to
the binary version of the SMO algorithm. Therefore, updating the position of the starlings
by the transfer functions S will cause them to be in a binary search space, and their position
vector will only take the values of “0” or “1”. The sigmoid function S2 formulated in
Equation (16) first used in BPSO to develop a binary PSO [89,90].

S
(

xd
i (t + 1)

)
=

1

1 + e−xd
i (t)

(16)

where xd
i (t) and S

(
xd

i (t + 1)
)

show the position and probability of changing the binary

position value of the search agent ith in dimension d in the tth iteration, respectively. Since
the calculated value of S is still in continuous mode, it must be compared with a threshold
value to create binary mode. Therefore, the new position of the search agent is updated
using Equation (17), where bd

i (t + 1) is a binary position of ith search agent in dimension d,
and r is a random value between 0 and 1.

bd
i (t + 1) =

⎧⎨⎩0 i f r < S
(

xd
i (t + 1)

)
1 i f r ≥ S

(
xd

i (t + 1)
) , (17)

In addition to the transfer function S2 introduced in Equation (16), three other types
of S-shaped transfer functions, including S1, S3, and S4 have been used. All four transfer
functions are formulated in Table 1. Moreover, all these transfer functions are shown
visually in Figure 2. According to the figure, as the slope of the transfer function S increases,
the probability of changing the position value increases. Therefore, S1 obtains the highest
probability, and S4 obtains the lowest probability, effectively updating agents’ position and
finding the optimal solution.

Table 1. The formulation of S-shaped and V-shaped transfer functions.

Name S-Shaped Transfer Functions Name V-Shaped Transfer Functions

S1-shaped T(x) = 1
1+e−2x V1-shaped T(x) =

∣∣∣erf
(√

π
2 x
)∣∣∣

S2-shaped T(x) = 1
1+e−x V2-shaped T(x) = |tan h(x)|

S3-shaped T(x) = 1
1+e

−x
2

V3-shaped T(x) =
∣∣∣ x√

1+x2

∣∣∣
S4-shaped T(x) = 1

1+e
−x
3

V4-shaped T(x) =
∣∣∣ 2

π arctan
(

π
2 x
)∣∣∣
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Figure 2. The S-shaped and V-shaped transfer functions [89].

4.2. BSMO Using V-Shaped Transfer Function (V-BSMO)

In this approach, the V-shaped transfer function is used to calculate the probability
of changing the position of the agents in the SMO algorithm. Probability values are
calculated using the V-shaped (hyperbolic) transfer function by Equation (18) [64], where
xd

i (t) indicates the position value of the ith search agent in dimension d at iteration t.

V
(

xd
i (t + 1)

)
=
∣∣∣tanh

(
xd

i (t)
)∣∣∣ (18)

Considering that the V-shaped transfer function is different from the S-shaped transfer
function, after calculating the probability values, the Equation (19) [64] is used to update
the position of each search agent.

bd
i (t + 1) =

⎧⎪⎪⎨⎪⎪⎩
xd

i (t)
−1 i f r < V

(
xd

i (t + 1)
)

xd
i (t) i f r ≥ V

(
xd

i (t + 1)
) (19)

where, bd
i (t + 1) indicates the binary position of the ith search agent at iteration t + 1 in

dimension d. Moreover, xd
i (t)

−1 indicates the complement of xd
i (t). In addition, r is a

random number in [0,1]. Unlike the S-shaped transfer function, the V-shaped transfer
function does not force the search agents into 0 or 1. According to Equation (19), if
the value of V is small and less than the value of r, the binary position of the search
agents in dimension d will not change. On the other hand, if the calculated value of
the transfer function is greater than or equal to the value r, the position of the search
agents is changed to the complement of the current binary position. Table 1 formulates the
mathematical equations of transfer functions V1, V2, V3, and V4, and Figure 2 represents
transfer functions visually. According to Figure 2, V1 has the highest probability, and
V2, V3, and V4 have lower probability values for moving the positions of search agents,
respectively [89].

4.3. BSMO Using Variable Threshold Method (Threshold-BSMO)

In this section, the SMO transforms the continuous solutions into the binary form
using the variable threshold method defined in Equation (20), where bd

i (t + 1) is a new
binary position of the ith search agent, and a variable threshold θ is 0.5 that is set by the user.

bd
i (t + 1) =

⎧⎨⎩
1 i f xd

i (t + 1) > θ

0 i f xd
i (t + 1) ≤ θ

(20)
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Figure 3 represents the flowchart of the proposed BSMO algorithm, which is a binary
version of the SMO algorithm to solve the feature selection problem. As shown in this figure,
the optimization process is started by initializing the input variables, including a maximum
number of iterations (MaxIt), population size (N), problem size (D), and flocks size (k). First,
N starlings are randomly distributed in a D-dimensional search space. Then, a portion of
starlings (Psep) using Equation (2) are randomly selected to separate from the population
and explore the search space using the separating strategy defined in Equation (3). The
rest of the starlings are partitioned between different flocks to exploit the search space
using the whirling strategy defined in Equation (13) or explore using the diving strategy
defined in Equation (7). The obtained solutions from such search strategies are mapped
to binary using two binarization approaches demonstrated in Table 1 and Equation (20).
The obtained solutions are restricted to binary values 0 or 1 using Equations (17), (19), and
(20). Finally, the solutions are evaluated using Equation (15). The optimization process is
repeated until the termination condition, or MaxIt, is satisfied, and the global best solution
is reported as the output variable.

4.4. The Computational Complexity of the BSMO Algorithm

Since BSMO has six distinct phases: initialization, separating search strategy, multi-
flock construction, diving or whirling search strategy, mapping, and fitness evaluation,
its computational complexity can be computed as follows. The initialization phase’s com-
putational complexity is O (ND), considering N starlings are randomly allocated in a
D-dimensional search space using Equation (1). Then, a portion of the starlings is randomly
selected using Equation (2) to explore the search space with computational complexity O
(ND). The cost of the multi-flock construction phase to build k flocks by partitioning N
starlings is O (NlogN + k). In the next phase, the cost of each flock containing n subpopula-
tion for determining its quality utilizing Equation (5) is O (nD), and for moving by either
diving or whirling search strategy is also O (nD). Thus, the overall complexity of this phase
is O (knD) or O (ND) in the worst case. In the mapping phase, the continuous solutions
are transformed into binary ones based on Table 1 and Equation (20) with computational
complexity O (ND). Finally, in the fitness evaluation phase, the quality of binary solutions
is assessed using Equation (15), consisting of a K-fold cross-validation method, k-NN
classifier, and updating. The computational complexity of a K-fold cross-validation method
with M samples is O (KM). Since K is a constant value, complexity equals O (M). The k-NN
classifier with M samples and D features for training the classifier is O (MD), and the
complexity of updating is O (ND). Since these phases are repeated T times, therefor the
summation of the computational complexity of BSMO is O (ND + T (ND + (NlogN+k) + ND
+ ND + M + MD + ND)), which is equal to O (TD (N+M)).
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Figure 3. Flowchart of the proposed BSMO algorithm.

5. Experimental Evaluation

The performance of the proposed BSMO algorithm is assessed in finding the optimal
feature subset from targeted datasets, Diabetes, Heart, Hepatitis, and Coronavirus diseases
2019, downloaded from [91,92]. Then, the nine BSMO variants’ outcomes are then compared
with those of competitive algorithms, ACO [28], BBA [42], bGWO [43], and BWOA [39].
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All experiments are run under the same experimental conditions. MATLAB R2019b
programming language is considered for implementing the BSMO and running all com-
parative algorithms. All experiments are run using an Intel (R) Core (TM) i5-3770 CPU,
3.4 GHz, 8 GB RAM, and Windows 10 with the 64-bit operating system.

5.1. Parameter Settings of Algorithms and k-NN Classifier

In this study, the k-nearest neighbor (k-NN) classifier with k = 5 is used to classify the
feature subsets in all algorithms [93]. To learn the k-NN classifier, each dataset is randomly
partitioned using a K-fold cross-validation method into training and testing sets, where K
is a constant value equal to 10. One fold is used for the testing set, and the K−1 folds are
applied for the training set [94,95].

For a fair comparison, all results were obtained under the same experimental condi-
tions. The common parameters in BSMO and comparative algorithms, such as termination
criterion and population size (N), are the same. In most optimization algorithms, the termi-
nation criterion is defined using the maximum number of iterations (MaxIt) or maximum
function evaluations (MaxFEs), where MaxIt = MaxFEs/N and it is set to 300 and N is 30.
Due to the stochastic nature of the algorithms, all simulations and obtained results are
conducted with 15 independent runs. All results are reported using the standard statistical
metrics maximum (Max), average (Avg), and minimum (Min) values. In each table, the best
result is highlighted in boldface.

Table 2 shows the values of parameters used for BSMO and other comparative al-
gorithms. The parameter values of all contender algorithms were set as same as their
original papers. Moreover, a sensitivity analysis on key parameters of the BSMO algorithm,
such as flock size (k), and population size (N), is performed to tune the values of these
parameters using the offline parameter tuning method. The tuning results were reported in
Tables A1–A6 of Appendix A in terms of fitness, error, accuracy, sensitivity, specificity, and
precision metrics.

Table 2. Parameters setting.

Algorithms Parameters

ACO τ = 1, η = 1, ρ = 0.2, α = 1, and β = 0.1
BBA Qmin = 0 and Qmax = 2

bGWO a linearly decreases from 2 to 0, C1, C2, and C3 are a random numbers
BWOA a linearly decreases from 2 to 0, b = 1, r1 and r2 ∈ rand (0, 1)
BSMO k = 5, λ = 20, μ = 0.5, θ and φ ∈ (0, 1.8)

5.2. Evaluation Criteria

The performance of proposed BSMO and contender algorithms are assessed using
evaluation criteria such as fitness, accuracy, sensitivity, specificity, precision, and error.
The fitness evaluation metric is computed using Equation (15). The accuracy, sensitivity,
specificity, precision, and error are calculated using Equations (21)–(25) [96,97]. In these
equations, parameters TP and TN specify the number of positive and negative samples that
are correctly classified by the classifier, respectively. FN is the number of positive samples
incorrectly predicted as negative, and FP is the number of negative samples incorrectly
predicted as positive using a classifier [98].

Accuracy =
TP + TN

TP + TN + FP + FN
(21)

Sensitivity =
TP

TP + FN
(22)

Specificity =
TN

TP + FN
(23)

Precision =
TP

TP + FP
(24)
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The error metric is computed using the mean square error (MSE) denoted in Equa-
tion (25), where N is the number of samples, yi is the observed values and ŷi is the predicted
value. Moreover, evaluating the proposed algorithm does not use any constraint handling
methods since no constraints are considered in the feature selection problem.

Error =
1
N

N

∑
i=1

(yi − ŷi)
2 (25)

5.3. Numerical Results and Discussion

In this section, the simulation results of the proposed BSMO algorithm are presented
on targeted medical datasets.

5.3.1. Comparison of Algorithms to Detect Diabetes Disease

The Pima Indian Diabetes dataset [91] consists of eight features, 268 samples with
diabetes-positive labeling and 500 samples with diabetes-negative. The objective of this
dataset is to detect whether or not a patient has diabetes. Table 3 shows that the proposed
Threshold-BSMO can achieve the best performance compared to all comparative algorithms.

Table 3. Diabetes disease detection.

Algorithms
Fitness Accuracy Sensitivity Precision Specificity Error

Avg Min Avg Max Avg Max Avg Max Avg Max Avg Min

ACO 0.2384 0.2318 76.5109 77.0865 85.2345 86.6173 60.1832 64.0414 79.9663 82.1451 0.2351 0.2291
BBA 0.2331 0.2281 76.9974 77.4675 86.4089 88.748 79.8734 83.4279 59.365 63.0096 0.23 0.2253

bGWO 0.2295 0.2253 77.3573 77.8725 86.2124 89.3135 80.0664 83.5267 59.8209 65.9114 0.2264 0.2213
BWOA 0.2386 0.2344 76.4744 76.825 85.8432 87.8664 79.8754 82.3961 59.5944 64.961 0.2353 0.2317

S1-BSMO 0.2342 0.2266 76.9719 77.7409 88.5142 89.8454 83.2288 84.242 65.9602 68.2916 0.2504 0.2382
S2-BSMO 0.2352 0.2267 76.8537 77.7341 88.2422 89.2631 83.1426 84.2726 65.7932 68.023 0.2516 0.2369
S3-BSMO 0.2373 0.2291 76.6101 77.4897 88.1787 90.1796 82.925 84.4974 65.5806 67.8662 0.2508 0.2397
S4-BSMO 0.2368 0.2291 76.6654 77.4863 88.3085 89.7088 82.764 83.8476 65.0295 66.8104 0.2533 0.2384
V1-BSMO 0.2344 0.2294 76.889 77.3411 88.2848 89.7132 83.1764 86.1848 65.7345 70.5787 0.2552 0.2422
V2-BSMO 0.2343 0.2266 76.8872 77.6128 88.6261 90.0085 82.9072 83.761 65.7846 67.6503 0.2548 0.2345
V3-BSMO 0.2353 0.2306 76.7716 77.2163 88.245 89.6911 83.1812 84.5091 66.0204 69.1626 0.2547 0.2383
V4-BSMO 0.2335 0.2292 76.9639 77.471 88.1009 89.484 83.2658 84.4214 66.2564 69.1896 0.2534 0.2383

Threshold-BSMO 0.2306 0.2229 77.3077 77.9904 89 89.9871 83.5823 84.7376 66.6321 69.2028 0.253 0.2408

5.3.2. Comparison of Algorithms to Detect Heart Disease

The Statlog (Heart) dataset [91] consists of 13 features and 270 samples without no
missing values to detect the absence or presence of heart disease. In this dataset 120 of the
samples are labeled with the presence of heart disease and 150 samples are labeled with
the absence of this disease. The performance of the proposed BSMO with nine variants is
assessed and compared with well-known optimizers to diagnose heart disease. The results
in Table 4 show that the proposed Threshold-BSMO can obtain a minimum fitness value of
0.1322 and a maximum accuracy of 87.037 than other algorithms.

Table 4. Heart disease detection.

Algorithms
Fitness Accuracy Sensitivity Precision Specificity Error

Avg Min Avg Max Avg Max Avg Max Avg Max Avg Min

ACO 0.147 0.1387 85.4815 86.2963 88.8186 94.1537 86.8452 89.665 82.7764 86.6325 0.1452 0.137
BBA 0.1414 0.1380 86.0123 86.2963 94.0096 95.4345 89.7266 91.4855 88.5579 91.1526 0.1959 0.1519

bGWO 0.1383 0.1358 86.4198 86.6667 87.4898 93.0586 85.4259 90.2422 80.7175 87.4738 0.1578 0.1444
BWOA 0.1409 0.1387 86.1728 86.2963 89.4656 91.3609 86.9606 90.1189 82.8787 88.087 0.1383 0.137

S1-BSMO 0.151 0.1432 85.1852 85.9259 89.2216 95.26 83.6512 89.9588 78.67 87.0474 0.1481 0.1407
S2-BSMO 0.146 0.1411 85.8148 86.2963 93.6608 95.0876 89.2841 91.4817 86.0433 88.7512 0.1964 0.1593
S3-BSMO 0.1481 0.1424 85.5185 85.9259 93.3517 95.3351 89.403 91.5718 86.2794 88.2128 0.2015 0.1556
S4-BSMO 0.1495 0.1432 85.3333 85.9259 93.1475 94.4033 89.7136 91.6581 87.0123 89.3531 0.1930 0.1556
V1-BSMO 0.1492 0.1403 85.3704 86.2963 93.2132 95.0297 89.4763 91.4379 86.3764 89.284 0.1907 0.1481
V2-BSMO 0.1423 0.1387 85.9383 86.2963 93.8571 96.2621 89.3417 91.9558 89.0497 91.2747 0.1884 0.1593
V3-BSMO 0.1417 0.1380 86.037 86.2963 94.4918 96.2525 89.3503 91.9198 88.4579 91.1828 0.1911 0.1481
V4-BSMO 0.1411 0.1351 86.0741 86.6667 94.1042 95.6443 89.6908 91.8579 88.5817 90.503 0.1956 0.1667

Threshold-BSMO 0.1371 0.1322 86.5432 87.037 89.8998 93.4192 86.7337 90.5212 82.2366 87.3123 0.1346 0.1296

169



Appl. Sci. 2023, 13, 564

5.3.3. Comparison of Algorithms to Detect Hepatitis Disease

The Hepatitis disease dataset [91] is complex with many missing values that contain
occurrences of hepatitis in people. This dataset consists of 19 features with 155 samples,
of which 123 samples are categorized in the live class, and 32 are categorized in the
die class. The optimization algorithms try to find the best feature set which can detect
Hepatitis disease with high accuracy. In this evaluation, the performance of the proposed
algorithm is assessed and reported in Table 5. The results show that the BSMO using
the variable threshold can obtain the optimum feature set with a minimum fitness value.
Additionally, the Threshold-BSMO achieves the highest classification accuracy compared
to the contender algorithm.

Table 5. Hepatitis disease detection.

Algorithms
Fitness Accuracy Sensitivity Precision Specificity Error

Avg Min Avg Max Avg Max Avg Max Avg Max Avg Min

ACO 0.1215 0.1074 88.0639 89.625 64.5377 76.411 94.4719 97.8957 75.7176 89.8369 0.1194 0.1037
BBA 0.1116 0.0977 89.1083 90.5 64.4286 80.5122 78.7006 90.214 95.0395 97.9604 0.109 0.095

bGWO 0.1067 0.0932 89.5417 90.9583 63.8564 82.9117 79.1231 85.5983 95.3145 97.5229 0.1046 0.0904
BWOA 0.1209 0.1135 88.1806 88.9583 60.8305 74.3306 78.0184 93.4557 95.2697 98.8117 0.1182 0.1104

S1-BSMO 0.1265 0.1147 87.8319 89 70.6404 80.2298 81.3914 95.0256 99.422 100 0.1659 0.1292
S2-BSMO 0.1218 0.1118 88.1708 89.1667 70.8924 84.532 78.9332 91.5289 99.4674 100 0.1598 0.1171
S3-BSMO 0.1213 0.1051 88.2153 89.9167 71.8705 85.8738 81.3385 96.9048 99.377 100 0.1599 0.1237
S4-BSMO 0.1209 0.1070 88.2306 89.6667 72.851 82.1369 81.9163 93.1111 99.3568 100 0.1603 0.1296
V1-BSMO 0.1109 0.0977 89.1542 90.5 78.8832 85.8624 83.8414 95.5556 99.471 100 0.1587 0.1292
V2-BSMO 0.1106 0.0998 89.2069 90.375 79.3521 87.3972 84.3151 96.3492 99.2964 99.9187 0.1589 0.1342
V3-BSMO 0.1107 0.0994 89.1986 90.375 78.5909 86.1964 85.7139 97.5 99.4433 100 0.1617 0.1412
V4-BSMO 0.1096 0.0990 89.3278 90.375 79.7051 88.4275 84.2503 98.75 99.4127 100 0.1617 0.1425

Threshold-BSMO 0.1081 0.0924 89.5194 91.0417 80.2438 91.3715 85.1981 95.7778 99.4531 100 0.1623 0.1342

5.3.4. Comparison of Algorithms to Detect Coronavirus Disease 2019 (COVID-19)

The COVID-19 pandemic is an infectious disease of severe acute respiratory syndrome
Coronavirus 2019 [99] which was initiated in Wuhan, China, in December 2019 and pro-
foundly affected human life [100]. Early detection of Coronavirus disease can reduce the
transmission rate and slow the epidemic outbreak. Many optimization algorithms have
been developed to alleviate this global crisis [101]. In this section, the performance of the
proposed algorithm is evaluated in the Coronavirus disease 2019 (COVID-19) dataset [92].
This dataset consists of two classes, death or recovery, and 13 features, including loca-
tion, country, gender, age, whether the patients visited Wuhan, whether the patients from
Wuhan had fever, cough, cold, fatigue, body pain, malaise, and day’s difference between
the symptoms being noticed and admission to the hospital. The results reported in Table 6
indicate the proposed Threshold-BSMO outperforms all contender algorithms and BSMO
variants to detect COVID-19.

Table 6. Coronavirus disease 2019 (COVID-19) detection.

Algorithms
Fitness Accuracy Sensitivity Precision Specificity Error

Avg Min Avg Max Avg Max Avg Max Avg Max Avg Min

ACO 0.0521 0.0493 95.2805 95.4825 98.3325 99.0601 96.3844 97.4589 74.0994 78.5774 0.0477 0.0452
BBA 0.0508 0.0494 95.3575 95.4838 98.411 98.9281 96.5039 97.1542 74.7778 79.4731 0.0464 0.0452

bGWO 0.0482 0.0455 95.4915 95.7137 98.6061 99.3678 96.1273 97.5426 73.3757 80.9149 0.0451 0.0429
BWOA 0.0518 0.0493 95.2667 95.7164 98.3045 99.0229 96.4153 97.1998 74.626 82.0579 0.0479 0.0428

S1-BSMO 0.0515 0.0493 95.417 95.5988 99.2906 99.7496 97.7266 98.2616 83.0173 87.3208 0.0511 0.0452
S2-BSMO 0.0516 0.049 95.3861 95.5961 99.3947 100 97.5923 97.9672 82.1743 85.5629 0.052 0.0498
S3-BSMO 0.0517 0.0497 95.3308 95.6001 99.3703 100 97.5576 98.2389 81.7173 87.298 0.0521 0.0487
S4-BSMO 0.0516 0.049 95.3347 95.5948 99.4093 100 97.5954 98.126 82.1407 86.2074 0.0532 0.0498
V1-BSMO 0.051 0.0497 95.2469 95.5974 99.8598 100 97.3384 97.924 80.376 84.761 0.0537 0.0476
V2-BSMO 0.0509 0.0489 95.263 95.4812 99.8182 100 97.364 97.8237 80.6954 84.0749 0.053 0.0474
V3-BSMO 0.051 0.0486 95.2695 95.4838 99.7693 100 97.3319 97.9259 80.477 83.9283 0.053 0.0475
V4-BSMO 0.0506 0.0478 95.2692 95.4892 99.7845 100 97.4058 97.956 80.7991 84.4487 0.0532 0.0452

Threshold-BSMO 0.0488 0.0451 95.537 95.8353 99.3774 100 97.7178 98.0502 83.1011 87.2075 0.0518 0.0487
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5.4. Convergence Comparison

In addition, to compare the efficiency of BSMO with other comparative algorithms,
convergence curves were drawn for each dataset used in the evolution. Figure 4 shows the
convergence curves of all algorithms based on the fitness value. According to the figure,
Threshold-BSMO has the highest efficiency in diagnosing Diabetes, Hepatitis, Heart, and
Coronavirus 2019 diseases with the lowest fitness value compared to competitive algorithms.

Figure 4. Convergence comparison of the BSMO and comparative algorithms.

5.5. Statistical Analysis

To compare the algorithms fairly and to choose the best transfer function for mapping
the continuous solutions to binary ones, Friedman’s statistical test was used to rank the
algorithms. Table 7 shows the results of Friedman’s test according to the fitness values of
the algorithms in which the Threshold-BSMO is a great variant to select the effect features
from Diabetes, Heart, Hepatic, and Coronavirus diseases.

Table 7. Friedman test.

Algorithms
Medical Problems

Diabetes (Rank) Heart (Rank) Hepatics (Rank) COVID-19 (Rank)

ACO 10.37(11) 8.67 (8) 9.23 (8) 9.70 (11)
BBA 10.37 (11) 8.67 (8) 9.23 (8) 9.70 (11)

bGWO 2.80 (2) 2.17 (2) 3.07 (2) 2.27 (2)
BWOA 10.40 (12) 11.23 (12) 9.23 (8) 8.70 (9)

S1-BSMO 5.53 (4) 8.57 (7) 11.87 (11) 7.80 (7)
S2-BSMO 7.43 (8) 9.30 (9) 8.87 (7) 8.97 (10)
S3-BSMO 9.47 (10) 10.73 (11) 9.27 (9) 10.07 (12)
S4-BSMO 9.27 (9) 10.37 (10) 9.43 (10) 8.40 (8)
V1-BSMO 6.13 (5) 5.67 (6) 4.87 (6) 5.53 (3)
V2-BSMO 6.27 (6) 5.13 (5) 4.40 (4) 6.73 (6)
V3-BSMO 6.70 (7) 3.90 (3) 4.60 (5) 6.20 (5)
V4-BSMO 4.67 (3) 4.80 (4) 4.20 (3) 5.60 (4)

Threshold-BSMO 1.60 (1) 1.80 (1) 2.73 (1) 1.33 (1)
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6. Conclusions

Many metaheuristic algorithms have been applied in the wrapper-based methods
to select effective features from medical data; however, most cannot find those features
that can fulfill an acceptable accurate diagnosis of diseases. To deal with this weakness,
a new binary metaheuristic algorithm named binary starling murmuration optimization
(BSMO) is proposed to select the effective features from different important diseases such
as Diabetes, Heart, Hepatitis, and Coronavirus. The proposed BSMO used two different
approaches: S-shaped and V-shaped transfer functions and a variable threshold method to
convert the continuous solutions to binary ones. Moreover, metrics such as fitness, accuracy,
sensitivity, specificity, precision, and error were used to assess the proposed BSMO’s
performance compared to competing algorithms. Finally, the Friedman non-parametric
test was also used to show the proposed algorithm’s superiority statistically. The statistical
and experimental tests proved that the proposed BSMO algorithm is very competitive
in selecting effective features from targeted medical datasets. The proposed Threshold-
BSMO can effectively find the optimal feature subset for Diabetes, Heart, Hepatitis, and
Coronavirus diseases. Overall, considering the fitness criterion as the main criterion for
identifying the most effective binary algorithm in selecting the effective features from the
medical datasets targeted in this study, Threshold-BSMO was a superior variant to the
contender algorithms.

Although the proposed algorithm can select effective features compared to other
comparative algorithms, it was limited to four disease datasets targeted in this study.
Therefore, the proposed BSMO algorithm can be applied and improved for other real-world
applications. Moreover, a self-adapting parameter tuning method can be applied instead
of the try-and-test method used for tuning some parameters of BSMO. The BSMO can
be armed by other binarization techniques and transfer functions for selecting effective
features in other applications. In addition, the SMO’s search strategies can be hybridized
with other metaheuristic algorithms to generate better candidate continues solutions.
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Appendix A

The metaheuristic optimization algorithms’ performance is strongly dependent on
selecting the proper values for their parameters. Therefore, in this section, the sensitivity
on different values for key parameters of the BSMO algorithm, such as flock size (k) and
population size (N), are analyzed and tuned using the offline parameter tuning method.
The detailed results of pretests and experiments for tuning the BMSO’s parameter values to
find its best robustness in solving feature selection problems on targeted medical datasets
were reported in Tables A1–A6 in terms of fitness, error, accuracy, sensitivity, specificity,
and precision. The Friedman rank in Tables A1 and A2 specifies the highest performance
of BSMO when k and N are equal to 5 and 30, respectively.
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Table A1. Parameters setting of BSMO algorithm in terms of fitness values.

Algorithms Metrics
k = 3, N = 30 k = 5, N = 20

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 0.2349 0.1463 0.1235 0.0519 0.2354 0.1482 0.1238 0.0523
Min 0.2295 0.1382 0.1129 0.0493 0.2305 0.1418 0.1014 0.0490

S2-BSMO
Avg 0.2358 0.1486 0.1222 0.0517 0.2368 0.1492 0.1230 0.0522
Min 0.2317 0.1411 0.1067 0.0497 0.2292 0.1403 0.1080 0.0505

S3-BSMO
Avg 0.2370 0.1487 0.1196 0.0516 0.2367 0.1506 0.1242 0.0519
Min 0.2331 0.1403 0.1069 0.0493 0.2241 0.1403 0.1138 0.0485

S4-BSMO
Avg 0.2360 0.1497 0.1225 0.0519 0.2369 0.1517 0.1234 0.0521
Min 0.2305 0.1432 0.1118 0.0505 0.2319 0.1403 0.1050 0.0505

V1-BSMO
Avg 0.2338 0.1419 0.1103 0.0513 0.2361 0.1418 0.1109 0.0519
Min 0.2305 0.1358 0.0990 0.0479 0.2319 0.1380 0.0994 0.0510

V2-BSMO
Avg 0.2335 0.1413 0.1096 0.0515 0.2365 0.1428 0.1108 0.0510
Min 0.2319 0.1380 0.0995 0.0493 0.2345 0.1387 0.1059 0.0497

V3-BSMO
Avg 0.2341 0.1410 0.1091 0.0507 0.2347 0.1423 0.1103 0.0508
Min 0.2319 0.1351 0.0981 0.0497 0.2305 0.1395 0.1003 0.0475

V4-BSMO
Avg 0.2330 0.1410 0.1092 0.0505 0.2344 0.1422 0.1101 0.0514
Min 0.2240 0.1380 0.0990 0.0482 0.2319 0.1380 0.0999 0.0486

Threshold-
BSMO

Avg 0.2314 0.1375 0.1044 0.0487 0.2324 0.1395 0.1144 0.0497
Min 0.2268 0.1308 0.0884 0.0463 0.2254 0.1337 0.0978 0.0482

Friedman rank 2 4

Algorithms Metrics
k = 5, N = 30 k = 7, N = 30

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 0.2342 0.1460 0.1265 0.0515 0.2352 0.1463 0.1230 0.0517
Min 0.2266 0.1411 0.1147 0.0493 0.2330 0.1374 0.1146 0.0497

S2-BSMO
Avg 0.2352 0.1481 0.1218 0.0516 0.2344 0.1462 0.1208 0.0518
Min 0.2267 0.1424 0.1118 0.0490 0.2293 0.1403 0.1088 0.0509

S3-BSMO
Avg 0.2373 0.1495 0.1213 0.0517 0.2360 0.1484 0.1211 0.0517
Min 0.2291 0.1432 0.1051 0.0497 0.2331 0.1432 0.1128 0.0505

S4-BSMO
Avg 0.2368 0.1492 0.1209 0.0516 0.2367 0.1497 0.1238 0.0518
Min 0.2291 0.1403 0.1070 0.0490 0.2331 0.1440 0.1120 0.0501

V1-BSMO
Avg 0.2344 0.1423 0.1109 0.0510 0.2343 0.1427 0.1096 0.0509
Min 0.2294 0.1387 0.0977 0.0497 0.2293 0.1411 0.0990 0.0489

V2-BSMO
Avg 0.2343 0.1417 0.1106 0.0509 0.2339 0.1410 0.1098 0.0508
Min 0.2266 0.1380 0.0998 0.0489 0.2294 0.1387 0.1046 0.0497

V3-BSMO
Avg 0.2353 0.1411 0.1107 0.0510 0.2354 0.1413 0.1125 0.0515
Min 0.2306 0.1351 0.0994 0.0486 0.2320 0.1380 0.1073 0.0496

V4-BSMO
Avg 0.2335 0.1414 0.1096 0.0506 0.2330 0.1425 0.1100 0.0507
Min 0.2292 0.1380 0.0990 0.0478 0.2293 0.1403 0.1049 0.0490

Threshold-
BSMO

Avg 0.2306 0.1378 0.1081 0.0488 0.2302 0.1370 0.0920 0.0491
Min 0.2229 0.1308 0.0924 0.0451 0.2266 0.1308 0.0920 0.0478

Friedman rank 1 3
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Table A2. Parameters setting of BSMO algorithm in terms of error values.

Algorithms Metrics
k = 3, N = 30 k = 5, N = 20

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 0.2505 0.1954 0.1594 0.0523 0.2541 0.2081 0.1692 0.0538
Min 0.2422 0.1556 0.1212 0.0498 0.2383 0.1593 0.1412 0.0498

S2-BSMO
Avg 0.2492 0.1949 0.1628 0.0518 0.2556 0.2096 0.1693 0.0531
Min 0.2370 0.1593 0.1358 0.0475 0.2422 0.1704 0.1342 0.0487

S3-BSMO
Avg 0.2517 0.1956 0.1624 0.0523 0.2541 0.2057 0.1672 0.0535
Min 0.2408 0.1519 0.1429 0.0476 0.2369 0.1519 0.1421 0.0498

S4-BSMO
Avg 0.2498 0.2016 0.1573 0.0529 0.2546 0.2037 0.1664 0.0536
Min 0.2371 0.1593 0.1225 0.0487 0.2383 0.1667 0.1358 0.0498

V1-BSMO
Avg 0.2551 0.1930 0.1549 0.0530 0.2589 0.2004 0.1623 0.0527
Min 0.2461 0.1519 0.1162 0.0486 0.2488 0.1519 0.1346 0.0510

V2-BSMO
Avg 0.2578 0.1946 0.1532 0.0528 0.2560 0.2044 0.1611 0.0542
Min 0.2461 0.1630 0.1096 0.0464 0.2396 0.1482 0.1300 0.0510

V3-BSMO
Avg 0.2504 0.1906 0.1588 0.0536 0.2590 0.2047 0.1669 0.0546
Min 0.2357 0.1519 0.1171 0.0486 0.2474 0.1704 0.1479 0.0509

V4-BSMO
Avg 0.2557 0.1878 0.1545 0.0528 0.2554 0.2049 0.1635 0.0538
Min 0.2474 0.1630 0.1279 0.0487 0.2422 0.1556 0.1417 0.0509

Threshold-
BSMO

Avg 0.2514 0.1925 0.1640 0.0525 0.2563 0.2163 0.1629 0.0534
Min 0.2370 0.1481 0.1233 0.0487 0.2448 0.1593 0.1150 0.0497

Friedman rank 2 4

Algorithms Metrics
k = 5, N = 30 k = 7, N = 30

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 0.2504 0.1964 0.1659 0.0511 0.2506 0.2020 0.1612 0.0521
Min 0.2382 0.1593 0.1292 0.0452 0.2409 0.1630 0.1363 0.0463

S2-BSMO
Avg 0.2516 0.2015 0.1598 0.0520 0.2534 0.1983 0.1702 0.0520
Min 0.2369 0.1556 0.1171 0.0498 0.2423 0.1593 0.1500 0.0475

S3-BSMO
Avg 0.2508 0.1930 0.1599 0.0521 0.2532 0.1847 0.1598 0.0521
Min 0.2397 0.1556 0.1237 0.0487 0.2421 0.1630 0.1288 0.0464

S4-BSMO
Avg 0.2533 0.1907 0.1603 0.0532 0.2568 0.1901 0.1650 0.0532
Min 0.2384 0.1481 0.1296 0.0498 0.2487 0.1519 0.1429 0.0487

V1-BSMO
Avg 0.2552 0.1884 0.1587 0.0537 0.2537 0.1915 0.1572 0.0533
Min 0.2422 0.1593 0.1292 0.0476 0.2384 0.1593 0.1346 0.0498

V2-BSMO
Avg 0.2548 0.1911 0.1589 0.0530 0.2539 0.1896 0.1637 0.0527
Min 0.2345 0.1481 0.1342 0.0474 0.2447 0.1630 0.1483 0.0521

V3-BSMO
Avg 0.2547 0.1956 0.1617 0.0530 0.2558 0.2096 0.1531 0.0528
Min 0.2383 0.1667 0.1412 0.0475 0.2475 0.1889 0.1225 0.0464

V4-BSMO
Avg 0.2534 0.1959 0.1617 0.0532 0.2565 0.1959 0.1472 0.0538
Min 0.2383 0.1519 0.1425 0.0452 0.2396 0.1556 0.1163 0.0521

Threshold-
BSMO

Avg 0.2530 0.1952 0.1623 0.0518 0.2498 0.1986 0.1558 0.0528
Min 0.2408 0.1519 0.1342 0.0487 0.2395 0.1593 0.1558 0.0487

Friedman rank 1 3
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Table A3. Parameters setting of BSMO algorithm in terms of accuracy values.

Algorithms Metrics
k = 3, N = 30 k = 5, N = 20

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 76.9228 85.7901 88.1236 95.4467 76.8885 85.5802 88.1083 95.401
Max 77.3257 86.6667 89.125 95.5961 77.4761 86.2963 90.2917 95.707

S2-BSMO
Avg 76.8251 85.4568 88.1625 95.364 76.717 85.4444 88.0736 95.3321
Max 77.3582 86.2963 89.75 95.5921 77.4761 86.2963 89.625 95.4852

S3-BSMO
Avg 76.6528 85.4198 88.3667 95.3389 76.677 85.2222 87.9167 95.2899
Max 77.0899 86.2963 89.6667 95.4852 77.9973 86.2963 89.0417 95.4878

S4-BSMO
Avg 76.7293 85.3086 88.0444 95.3477 76.6684 85.0988 87.9708 95.3
Max 77.2198 85.9259 89.125 95.4878 77.0933 86.2963 89.875 95.4838

V1-BSMO
Avg 76.9143 86 89.2708 95.2115 76.707 86 89.158 95.197
Max 77.218 86.6667 90.375 95.4758 77.088 86.296 90.333 95.362

V2-BSMO
Avg 76.9203 86.0617 89.2958 95.2158 76.644 85.926 89.229 95.238
Max 77.0779 86.2963 90.375 95.3635 76.822 86.296 89.833 95.364

V3-BSMO
Avg 76.9173 86.0741 89.3458 95.2694 76.834 85.951 89.211 95.268
Max 77.2095 86.6667 90.4583 95.3729 77.227 86.296 90.292 95.595

V4-BSMO
Avg 76.9872 86.0864 89.3708 95.2895 76.876 85.951 89.289 95.204
Max 78.0041 86.2963 90.375 95.83 77.081 86.296 90.333 95.481

Threshold-
BSMO

Avg 77.3771 86.5309 89.8972 95.5124 77.136 86.37 88.919 95.467
Max 78.1203 87.4074 91.5 95.715 77.862 87.037 90.542 95.599

Algorithms Metrics
k = 5, N = 30 k = 7, N = 30

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 76.9719 85.8148 87.8319 95.417 76.895 85.778 88.189 95.427
Max 77.7409 86.2963 89 95.5988 77.216 86.667 88.958 95.599

S2-BSMO
Avg 76.8537 85.5185 88.1708 95.3861 76.927 85.704 88.3 95.389
Max 77.7341 85.9259 89.1667 95.5961 77.344 86.296 89.542 95.482

S3-BSMO
Avg 76.6101 85.3333 88.2153 95.3308 76.763 85.457 88.192 95.336
Max 77.4897 85.9259 89.9167 95.6001 76.965 85.926 89.083 95.482

S4-BSMO
Avg 76.6654 85.3704 88.2306 95.3347 76.643 85.333 87.922 95.341
Max 77.4863 86.2963 89.6667 95.5948 76.96 85.926 89.167 95.484

V1-BSMO
Avg 76.889 85.9383 89.1542 95.2469 76.864 85.963 89.313 95.24
Max 77.3411 86.2963 90.5 95.5974 77.348 86.296 90.375 95.376

V2-BSMO
Avg 76.8872 86.037 89.2069 95.263 76.918 86.148 89.267 95.227
Max 77.6128 86.2963 90.375 95.4812 77.353 86.296 89.792 95.365

V3-BSMO
Avg 76.7716 86.0741 89.1986 95.2695 76.774 86.037 89.013 95.23
Max 77.2163 86.6667 90.375 95.4838 77.075 86.296 89.583 95.607

V4-BSMO
Avg 76.9639 86.0123 89.3278 95.2692 76.992 85.926 89.292 95.293
Max 77.471 86.2963 90.375 95.4892 77.346 86.296 89.833 95.365

Threshold-
BSMO

Avg 77.3077 86.5309 89.5194 95.537 77.328 86.6173 91.0833 95.4834
Max 77.9904 87.4074 91.0417 95.8353 77.6179 87.4074 91.0833 95.7124
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Table A4. Parameters setting of BSMO algorithm in terms of sensitivity values.

Algorithms Metrics
k = 3, N = 30 k = 5, N = 20

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 88.7609 93.8971 68.6377 99.2675 88.365 93.4924 68.8162 99.2336
Max 90.2278 96.2467 85.3876 99.7684 89.7842 95.292 78.4811 100

S2-BSMO
Avg 88.3668 93.6035 71.8856 99.3568 88.22 92.9212 69.6659 99.3498
Max 89.1665 95.3642 84.1441 99.8295 89.7151 95.2571 79.7631 100

S3-BSMO
Avg 88.1191 93.0296 72.7952 99.3912 88.0791 93.0515 69.5805 99.383
Max 89.0592 95.2235 85.8833 100 89.7059 95.8368 79.1405 100

S4-BSMO
Avg 88.191 93.1775 72.6372 99.4499 88.0248 93.0834 71.6037 99.2982
Max 89.0733 95.3049 81.5983 100 89.4038 96.6535 88.5142 99.7212

V1-BSMO
Avg 88.3628 94.2365 78.835 99.9088 88.327 94.012 76.679 99.504
Max 89.4449 95.5444 88.3507 100 89.715 94.952 85.144 100

V2-BSMO
Avg 87.6423 94.536 79.637 99.9252 87.515 93.419 80.879 99.696
Max 88.1193 96.3431 90.6895 100 88.523 94.47 88.078 100

V3-BSMO
Avg 87.8565 94.0807 79.3312 99.8619 88.05 94.206 75.106 99.811
Max 88.9304 96.2699 86.7033 100 89.359 95.947 83.572 100

V4-BSMO
Avg 88.4581 94.1059 80.3357 99.8371 88.104 93.948 78.811 99.775
Max 89.115 95.4339 89.9166 100 89.716 94.769 91.569 100

Threshold-
BSMO

Avg 89.0468 94.655 80.116 99.3936 88.503 94.575 75.676 99.348
Max 91.0607 96.4165 88.838 100 89.44 96.612 84.286 99.548

Algorithms Metrics
k = 5, N = 30 k = 7, N = 30

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 88.5142 93.6608 70.6404 99.2906 88.514 93.831 71.703 99.26
Max 89.8454 95.0876 80.2298 99.7496 89.311 95.569 88.021 99.609

S2-BSMO
Avg 88.2422 93.3517 70.8924 99.3947 88.387 93.475 67.965 99.381
Max 89.2631 95.3351 84.532 100 89.719 94.748 75.613 99.822

S3-BSMO
Avg 88.1787 93.1475 71.8705 99.3703 88.325 92.863 69.775 99.512
Max 90.1796 94.4033 85.8738 100 90.142 95.51 75.39 100

S4-BSMO
Avg 88.3085 93.2132 72.851 99.4093 88.234 93.467 74.89 99.486
Max 89.7088 95.0297 82.1369 100 88.447 96.508 90.417 100

V1-BSMO
Avg 88.2848 93.8571 78.8832 99.8598 88.244 94.334 78.981 99.861
Max 89.7132 96.2621 85.8624 100 88.978 96.082 87.181 100

V2-BSMO
Avg 88.6261 94.4918 79.3521 99.8182 88.217 94.237 76.884 99.87
Max 90.0085 96.2525 87.3972 100 89.536 96.225 85.649 100

V3-BSMO
Avg 88.245 94.1042 78.5909 99.7693 88.328 94.287 78.435 99.707
Max 89.6911 95.6443 86.1964 100 89.598 96.606 85.285 100

V4-BSMO
Avg 88.1009 94.0096 79.7051 99.7845 88.377 94.327 77.526 99.802
Max 89.484 95.4345 88.4275 100 89.576 95.545 84.209 100

Threshold-
BSMO

Avg 89 94.6804 80.2438 99.3774 89.1512 94.8397 81.5161 99.4531
Max 89.9871 96.6626 91.3715 100 90.8328 96.8864 81.5161 100
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Table A5. Parameters setting of BSMO algorithm in terms of precision values.

Algorithms Metrics
k = 3, N = 30 k = 5, N = 20

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 83.3024 89.7759 81.8452 97.6496 82.9358 88.9528 77.9683 97.6013
Max 84.5112 91.1126 92.5556 98.0808 84.0629 91.3534 92.5714 97.9844

S2-BSMO
Avg 83.1656 89.6198 83.3028 97.5525 82.995 88.9851 77.8085 97.5018
Max 83.9979 91.6603 96.8889 97.9414 84.226 92.1922 96.6667 98.2263

S3-BSMO
Avg 82.8792 89.3916 80.6788 97.6031 82.7702 89.4225 78.8535 97.4893
Max 84.0439 92.1316 94 97.9846 84.4498 92.9411 96.6667 98.1287

S4-BSMO
Avg 82.9226 90.0263 82.091 97.5329 82.8662 89.0141 78.5044 97.5208
Max 83.5297 93.4569 98.3333 98.0334 84.1876 91.7804 92.4643 98.099

V1-BSMO
Avg 83.3034 89.275 82.3873 97.3381 82.916 89.014 82.316 97.303
Max 84.5946 91.9784 89.9596 97.6875 83.93 90.58 88.611 97.645

V2-BSMO
Avg 82.8698 89.5967 85.3515 97.3886 82.777 90.147 78.368 97.291
Max 83.2788 91.9132 100 97.8924 83.495 92.77 92.051 97.604

V3-BSMO
Avg 83.0581 89.6372 84.2314 97.4291 82.752 89.063 80.449 97.369
Max 84.4839 92.3453 94.6429 98.2173 84.24 92.867 96.349 97.735

V4-BSMO
Avg 83.0346 90.0785 84.4764 97.4154 83.013 89.097 81.099 97.38
Max 83.6545 92.453 100 98.0199 83.788 91.567 93.099 97.932

Threshold-
BSMO

Avg 83.7292 91.6759 85.2687 97.7006 83.564 91.301 81.078 97.67
Max 85.4714 93.7512 97.5 98.3656 84.936 92.869 95.325 98.032

Algorithms Metrics
k = 5, N =30 k = 7, N =30

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 83.2288 89.2841 81.3914 97.7266 83.487 89.175 84.47 97.634
Max 84.242 91.4817 95.0256 98.2616 84.571 89.756 96.5 98.064

S2-BSMO
Avg 83.1426 89.403 78.9332 97.5923 83.224 89.761 81.574 97.574
Max 84.2726 91.5718 91.5289 97.9672 84.225 92.71 98 97.908

S3-BSMO
Avg 82.925 89.7136 81.3385 97.5576 82.855 89.229 78.523 97.55
Max 84.4974 91.6581 96.9048 98.2389 84.549 91.133 86.998 97.873

S4-BSMO
Avg 82.764 89.4763 81.9163 97.5954 83.236 89.538 82.034 97.459
Max 83.8476 91.4379 93.1111 98.126 84.582 90.938 98.75 97.872

V1-BSMO
Avg 83.1764 89.3417 83.8414 97.3384 82.958 89.327 83.84 97.356
Max 86.1848 91.9558 95.5556 97.924 84.323 90.731 91 97.672

V2-BSMO
Avg 82.9072 89.3503 84.3151 97.364 82.987 89.725 82.101 97.369
Max 83.761 91.9198 96.3492 97.8237 84.159 92.147 92.372 97.734

V3-BSMO
Avg 83.1812 89.6908 85.7139 97.3319 83.21 89.99 81.337 97.334
Max 84.5091 91.8579 97.5 97.9259 84.092 91.817 86.738 97.62

V4-BSMO
Avg 83.2658 89.7266 84.2503 97.4058 83.289 89.8 83.036 97.41
Max 84.4214 91.4855 98.75 97.956 84.474 92.318 95.238 97.716

Threshold-
BSMO

Avg 83.5823 91.4408 85.1981 97.7178 83.5777 91.6578 82.5912 97.6967
Max 84.7376 93.8631 95.7778 98.0502 84.5587 94.5662 82.5912 97.9926
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Table A6. Parameters setting of BSMO algorithm in terms of specificity values.

Algorithms Metrics
k = 3, N = 30 k = 5, N = 20

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 66.2342 86.542 99.4587 82.4862 65.1298 85.5329 99.2915 82.346
Max 68.2502 87.9644 100 85.9366 66.4093 88.7883 99.8374 84.4318

S2-BSMO
Avg 65.4575 86.9073 99.5053 81.7373 65.6179 85.9113 99.3399 81.8105
Max 66.6288 89.656 100 85.0243 67.707 91.2161 99.9187 85.9674

S3-BSMO
Avg 64.8413 86.4002 99.4766 82.3377 65.1382 86.3003 99.2782 81.4987
Max 66.1969 89.2235 100 84.8969 67.4399 91.9747 100 86.2247

S4-BSMO
Avg 65.7836 87.4361 99.4948 81.9079 65.0415 86.3582 99.4617 81.5022
Max 66.5935 91.8474 99.9187 84.9453 67.8061 90.3087 100 86.1819

V1-BSMO
Avg 65.75 88.5427 99.368 80.2567 65.413 88.039 99.063 80.501
Max 67.4069 90.7376 100 83.9446 66.648 89.375 99.399 82.194

V2-BSMO
Avg 66.6065 89.1717 99.4428 80.7396 64.975 89.529 99.286 79.295
Max 68.4934 91.1563 100 84.5923 66.435 92.307 100 82.191

V3-BSMO
Avg 66.1459 88.7473 99.3145 81.0216 64.927 88.066 99.258 80.392
Max 67.5985 91.9959 99.8286 85.1101 66.815 90.58 99.829 82.735

V4-BSMO
Avg 65.8974 88.7773 99.4461 81.007 65.451 88.153 99.243 80.932
Max 67.0376 90.7347 100 85.0112 66.87 91.094 99.837 83.784

Threshold-
BSMO

Avg 66.9048 89.1478 99.3309 82.7429 66.572 88.889 99.058 81.727
Max 69.2527 92.084 100 87.2612 70.241 90.63 100 84.678

Algorithms Metrics
k = 5, N = 30 k = 7, N = 30

Diabetes Heart Hepatics COVID-19 Diabetes Heart Hepatics COVID-19

S1-BSMO
Avg 65.9602 86.0433 99.422 83.0173 66.509 85.883 99.513 82.554
Max 68.2916 88.7512 100 87.3208 69.423 86.761 100 84.83

S2-BSMO
Avg 65.7932 86.2794 99.4674 82.1743 66.123 87.242 99.451 82.462
Max 68.023 88.2128 100 85.5629 68.293 90.414 100 84.963

S3-BSMO
Avg 65.5806 87.0123 99.377 81.7173 66.103 86.476 99.369 81.929
Max 67.8662 89.3531 100 87.298 69.399 88.543 99.837 84.695

S4-BSMO
Avg 65.0295 86.3764 99.3568 82.1407 65.939 86.436 99.48 81.524
Max 66.8104 89.284 100 86.2074 66.92 88.336 100 85.479

V1-BSMO
Avg 65.7345 89.0497 99.471 80.376 65.889 88.631 99.324 80.379
Max 70.5787 91.2747 100 84.761 68.174 89.595 99.919 82.705

V2-BSMO
Avg 65.7846 88.4579 99.2964 80.6954 65.45 89.022 99.279 80.59
Max 67.6503 91.1828 99.9187 84.0749 66.884 90.656 99.919 82.872

V3-BSMO
Avg 66.0204 88.5817 99.4433 80.477 65.038 88.873 99.174 80.363
Max 69.1626 90.503 100 83.9283 67.188 90.793 99.473 83.175

V4-BSMO
Avg 66.2564 88.5579 99.4127 80.7991 66.366 88.717 99.438 81.74
Max 69.1896 91.1526 100 84.4487 67.647 91.444 99.666 83.986

Threshold-
BSMO

Avg 66.6321 88.8911 99.4531 83.1011 66.562 89.1274 99.6652 82.6134
Max 69.2028 92.1136 100 87.2075 68.5097 92.9485 99.6652 85.0483
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Abstract: Arterial stenosis is one of the main vascular diseases that are treated with minimally
invasive surgery approaches. The aim of this study was to provide a tool to support the medical
doctor in planning endovascular surgery, allowing the rapid detection of stenotic vessels and the
quantification of the stenosis. Skeletonization was used to improve vessels’ visualization. The
distance transform was used to obtain a linear representation of the diameter of critical vessels
selected by the user. The system also provides an estimate of the exact distance between landmarks
on the vascular tree and the occlusion, important information that can be used in the planning of the
surgery. The advantage of the proposed tool is to lead the examination on the linear representation of
the chosen vessels that are free from tortuous vascular courses and from vessel crossings.

Keywords: cone beam computed tomography; segmentation; stenosis; software

1. Introduction

Image-guided surgical navigation is one of the main technologies used for minimally
invasive surgery, which, in turn, is a technique that introduces several advantages over
traditional open surgery. This reduces the size and number of incisions that need to be made
on the body of the patients, inducing a faster recovery of the patient and a reduced risk of
injury-related complications, as well as lower hospitalization costs [1]. On the other hand,
minimally invasive surgery often requires computed tomography (CT) and/or magnetic
resonance imaging (MRI) of the anatomical area to be combined with the operating scenario.
In this context, surgical planning acquires a decisive role as the best outcomes are achieved
when surgeons are preoperatively prepared with a deep understanding of the anatomy
they will face. To obtain an accurate model of the anatomical part that needs to be studied,
some steps need to be performed. First, high-quality images of the anatomical structures of
interest must be acquired, followed by segmentation of the parts of interest and rendering
the surface or volume using specialized software [2,3]. The resulting models allow the
surgeon to observe the anatomy from different angles and define the best-possible route to
reach the area of interest [4,5]. The realization of models before surgery is spreading more
and more. It allows not only the surgeon to gain an idea and act in a more targeted way, but
also students to practice and learn techniques of intervention [6]. Hoetznecker et al. in their
work realized a color-coded 3D model of benign glotto-subglottic stenosis and a control
airway using a commercial 3D printer starting from CT scans. They showed how the
realization of a 3D model resulted in being the more accurate diagnostic strategy compared
to the endoscopy and the CT scan usually used for these diagnoses [7]. Furthermore,
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Shi et al. showed, as the application of a preoperative planning software to treat the lumbar
foraminal stenosis, advantages such as the reduced puncture channel establishment time,
operative time, and number of intraoperative fluoroscopic images taken without affecting
the clinical outcomes [8]. Marragianis et al. showed the possibility of making patient-
specific models of the anatomic and functional characteristics of severe aortic valve stenosis
using 3D stereolithographic printing to convert high-resolution CT images into life-sized
physical models. The CT digital data were processed with a computer-aided design (CAD)
software and exported to a multi-material 3D printer to create dual-material fused 3D
models of severe aortic stenosis. The realized model accurately reflected the anatomy with
excellent visual correlation to the corresponding clinical CT. The possibility of obtaining
specific tailored models can lead to further advances in surgery [9]. Our study focused on
the applications of the 3D model in the field of endovascular surgery, a branch of minimally
invasive surgery, with the aim of restoring natural blood flow in pathological conditions
affecting the vascular system such as the occluded arteries. Numerous diseases, as well
as aging induce pathological changes in vascular structures. One of the most-common
alterations consists of a reduction in the diameter of the the vessel, resulting in stenosis
of varying severity up to a complete occlusion; this type of alteration leads to changes in
blood flow, thus reducing the supply of the normal amount of oxygen-rich blood to the
tissues, eventually leading to serious complications [10,11]. For this reason, the study of
the properties of the arterial walls is the subject of several papers, as well as providing
important information that can increase the performance of doctors in both the diagnosis
and therapy of vascular pathology [12–17].

The purpose of this study was the development of a new vessel analysis tool that supports
the endovascular surgeon in preoperative planning; in particular, it performs an analysis
of the vascular tree of the area of interest, enabling a rapid localization and quantification
of vascular stenosis. The peculiarity of the suggested tool is to conduct the recognition of
occlusion directly on the 3D rendering of the vessels, thus helping in the workflow of surgery.

2. Materials and Methods

We analyzed two cone beam computed tomography (CBCT) scans of the chest of a cat,
pre- and post-contrast administration, acquired with a VIMAGO scanner (VIMAGO™ HU,
Epica Medical) using the following parameters: 9 ms, 90 mA, 80 peak kilo voltage (KVP).
Before the second acquisition, a bolus of Lopamiro, 600 mg/kg, was administered to the
animal. Both acquisitions were performed by a professional veterinarian for diagnostic
purposes. The process for obtaining the 3D rendering of the vessels, the analysis of their
diameter, and the stenosis detection follows the steps described in the following paragraphs.

2.1. Segmentation

The first step is the segmentation. Accurate vascular segmentation is crucial as further
analysis of vessels’ properties depends on the accuracy of this procedure. In this study, we
exploited a segmentation algorithm presented in a previous paper by Simoni et al. [18]
and briefly summarized below. This algorithm consists of two consecutive steps: bone
segmentation and vessel segmentation. The images are acquired with two CBCT scans,
carried out before and after the administration of the contrast medium, respectively. The
first acquisition is used to segment the bones. This step is necessary to obtain a binary
mask to apply on the contrast image. This binary mask improves the segmentation of
vessels in the contrast image, avoiding errors related to a similar gray level distribution of
bones and vessels with contrast. Thus, segmented vessels are obtained first by subtracting
the segmented bones from the image with contrast and, then, applying a second phase of
segmentation on the resulting image. Both segmentations are based on a threshold approach
(with an empirically selected threshold), which provides provisional segmentation, further
refined by a region-growing method, as explained in the following. The region-growing
method begins with a seed point, which is determined with the help of a function that is
able to identify all spherical shapes in the frame by exploiting the circular Hough transform
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(CHT). Then, the method iteratively groups voxels according to a proximity criterion and a
predefined acceptance rule. This consists of comparing the voxel under consideration with
the seed point: the difference in the gray levels between the seed point and voxels under
test must be lower than a certain local threshold, determined empirically. The algorithms
used to determine the segmentation of the bone and the vessel are shown, respectively, in
Figures 1 and 2.

Figure 1. Overview of the bone segmentation algorithm.

Figure 2. Overview of the blood vessel segmentation algorithm.

2.2. Skeletonization

Skeletonization consists of an iterative process of segmented image thinning, produc-
ing centerlines from binary or gray-scale images by extracting medial axes or ridges [19].
The skeleton is a basic representation of the shape of an object that has been reduced to
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its minimum level. In this case, it takes the binarized volume as the input and outputs
a 3D binary image with the same measurements as the reference binarized volume. Ves-
sel skeletonization is performed through an appropriate function present in MATLAB.
The skeletonized vessel tree provides a simplified representation of the complex vascular
ramifications and pixels that form it. By reducing the volume of blood vessels to their
skeleton, the overlap between vascular segments is eliminated accordingly, increasing the
understanding of the flow path followed by the blood. The structure of the skeletonized
image is then analyzed with the algorithm developed by Kollmannsberger [20], which,
starting from a 3D binary skeleton, produces a topological description of the tree providing
the adjacency matrix of the graph and two structures containing information about the
nodes (coordinates, list of connections for each node, etc.) and links, respectively. By the
term “nodes”, we refer to the points of bifurcation where a vessel splits into two smaller
vessels, while by “link”, the set of points that are on the branch.

2.3. Diameter Analysis

The skeleton is then associated with a local representation of the vessel diameters. The
local diameter of the vessel can be estimated with the distance transform function. The
distance transform operates on binary images and calculates the distance of each pixel in the
foreground from its nearest point in the background. Specifically, it associates the intensity
of each pixel with the value of the distance between that pixel under study and the nearest
pixel in the background [21]. In our case, the input binary volume of vessels constitutes the
foreground, so that each pixel of the resulting image, belonging to the vessels, represents
its distance from the vascular lumen. Figure 3a shows an example of a frame of the output
volume of the distance transform. We can observe that the intensity of the pixels is higher
in the center of the vessels, where the distance from the vascular wall reaches its maximum
value, while it gradually decreases near the edge of the vessels. The maximum of the distance
transform in each vessel provides an accurate estimate of the vessel radius in the given section.
Therefore, we associated each point of the skeleton with the value returned by the distance
transform applied to the corresponding complementary of the binary volume of the vessel
under examination. At the end of the procedure, each pixel k along each branch of the skeleton
i is associated with the corresponding distance transform value ri,k, providing information of
the diameter of the vessel associated with the skeleton.

(a) (b)
Figure 3. Distance transform. (a) Frame of the output image resulting from the application of
the distance transform on the binary mask produced by the segmentation of the vessels. (b) The
corresponding frame of vessels’ binary mask.

2.4. User Interface

The proposed tool includes a graphical user interface (GUI) that allows the user to
view the analysis results both in 3D and 2D representation. The 3D representation shows
the vessel skeleton, color-coded according to the estimated diameter of the vessel, providing
the user with explicit information about the thickness of each vessel directly on the 3D
representation of the vessels. Each point of each vessel in the tree is painted using a color-
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coding scheme based on the classic “jet” colormap, where smaller vessels appear as dark
blue; as the diameter grows, these appear lighter up to the larger ones, which appear as
bright red. From this representation, the user can select a single vessel composed of several
tree segments, for a detailed analysis of the diameter. The procedure begins by selecting
the first segment of the vessel, which turns red, while all adjacent segments of the vascular
tree are highlighted in green. At this point, the user may select multiple segments, which
are consecutively added to the vessel under study. Once a new segment is selected, the
representation is updated by drawing all selected segments in red, while the green color
identifies the segments that may be further selected for extending the vessel, i.e., segments
connected at one of the extremities of the vessel itself.

In order to provide a more detailed view of the variation of the diameter along the
selected vessel, the tool also provides a 2D view mode. This two-dimensional plot provides
a means to make the search for stenosis more intuitive for medical doctors, compared to
the 3D visualization of the skeleton. When the user selects a vessel on the skeleton, the
corresponding link and pixels that belong to it are identified and the corresponding linear
representation appears, where the horizontal axis represents a linear coordinate Lt along
the vessel axis, and the vertical axis indicates the corresponding vessel diameter.

The points on the x-axis are estimated as an integral of the Euclidean distance ΔLi
between each pair of consecutive points in the list describing the structure of the vessel tree.
The measure of the diameter of the vessel is obtained by representing, on the y-axis, the value
ri,k, associated with each pixel of the branch k (or branches) chosen on the skeleton. The plot is
also mirrored along the x-axis, to provide a better visual representation of the vessel structure.

The diameter and length of the vessel are scaled in real units (mm) referringto two
DICOM tags present in the original pre-contrast CBCT image: the pixel spacing and the slice
thickness. The first one is expressed by a pair of values (x̂, ŷ) that correspond, respectively,
to the spacing between the centers of adjacent rows (mm) and the spacing between the
centers of adjacent columns (mm) of the image. The other one is represented by ẑ, which
corresponds to the nominal slice thickness measured in mm.

Information about the length of the vessel is obtained as Lt = ∑t
0 ΔLi, where ΔLi is

computed using the following equation:

ΔLi =
√
(xi − xi−1)2 x̂2 + (yi − yi−1)2ŷ2 + (zi − zi−1)2ẑ2 (1)

where (xi, yi, zi) are the coordinates of the i-th voxel on the axis of the vessel.
As for the vessel diameters, since CBCT scanners acquire isotropic volumes, both

DICOM tags have the same value, v. Thus, diameter conversion from pixel units into
millimeters is performed by multiplying ri,k by v. In the case of extension to non-isotropic
acquisitions, a correct calculation of the diameter of the vessel will require either developing
an interpolation strategy for transforming the volumetric image into an isotropic one or
the development of a modified distance transform algorithm, taking into account the
different scales.

Figure 4 shows the flow chart of the proposed image analysis tool, summarizing both
the diameter calculation and visualization.

2.5. Detection of Suspected Stenosis

The system also includes a module for detecting and emphasizing diameter reductions
that could be a manifestation of a pathological stenosis. The algorithm employs a moving
average filter sliding its window along the segment under study. The filter computes the
average radius associated with the pixels contained in each window, rejecting noise and
artifacts possibly occurring during image segmentation and diameter estimation. If the
difference between the radius of the current pixel and the output of the filter exceeds the
fixed threshold, the point is considered as an occlusion of the vessel and brought to the
attention of the clinicians. The length of the window was chosen in order to analyze tracts
about 1.5 mm long. We chose this value arbitrarily in order to smooth out the noise that
may appear in the estimation procedure, while not rejecting small stenoses. However, the
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operator can properly tune this value in order to obtain the optimal results. Furthermore,
the plot highlights the variations in diameter that occur at vessel bifurcations, where a
change in the diameter of the vessel is physiologically plausible.

Figure 4. Flow chart of the proposed vessel analysis tool.

To validate the performance of our system, we compared the results detected by our tool
with the measurements identified by expert radiologists on the post-contrast CBCT scan DI-
COM images using an open-source software, Horos™ v3.3.5 software (© 2019, HorosProject).

3. Results

This study provides a tool to facilitate surgeons in detecting arterial stenosis. Critical
vessels are identified on the corresponding 3D skeleton of the analyzed CBCT volume,
as shown in Figure 5a, where the thickness of each branch is specified. When a branch
is selected by the user, the colored skeleton turns gray, while the chosen segment turns
red and its consecutive branches turn green, as shown in Figure 5b. Extraction of further
vessels follows the same steps as described above. All vessels that have been selected
at least once remain red, allowing the user to follow the flow of the vessel under study.
This representation is schematized in Figure 5c. Once the skeleton is selected, the two-
dimensional plot corresponding to that tract of the segment is also realized, as seen in
Figure 5d. The phase of segmentation was previously validated in the paper of Simoni et
al., from which we resumed the process to perform our segmentation [18]. They compared
the results with the reference images obtained performing a manual segmentation. This
analysis showed a sensitivity of 0.748 and a specificity of 0.999.

Our system was able to identify the presence of stenosis in the upper mediastinum
at the level of the epiaortic vessels. The value of the stenosis shown in the linear graph is
0.84 mm. This corresponds to a little more than a 50% stenosis of the left subclavian artery.
This value was calculated from the y-coordinate measurement of 0.419 mm. Once the user
selects the tract of interest, the corresponding linear representation appears. On the plot
shown in Figure 6 is reported the two-dimensional representation of the segment and the
values of the coordinates x and y. This graph shows contemporaneously the length of the
tract along the x-axis and the value of the diameter along the y-axis.

The values on the y-axis are plotted with respect to each point of the skeleton of that
branch starting from the values obtained with the distance transform. Specifically, the
value of the diameter on the graph is obtained by taking these values and reversing them
symmetrically with respect to the x-axis.

Thus, given that the coordinate y on the graph of Figure 6 has value y = 0.419 mm, on
the y-axis, the diameter is equal to double that value, that is 0.84 mm.

This value was compared with the measurement performed by the radiologists, who
identified, on the coronal plane, a diameter of about 1.06 mm, as shown in Figure 7. The
relative error between the two estimates corresponds to approximately 20%. These mea-
surements were performed manually using a digital ruler, and thus, as with any other
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type of manual measurement, they are subject to human mistakes and inter-individual
variability. However, the fact that the values measured both manually and by our tool
are approximately similar suggests, first of all, that the system has detected correctly the
narrowing point of interest and, secondly, that our tool can improve the accuracy of the
human measurements by reducing human subjectivity.

The system is able to detect even minimal narrowing, which might not be visible
simply by just the CBCT volume, as shown in the example reported in Figure 8.

The tool has the same ability for both wide and narrow vessels segments, as the
detection of structural variations is based on short vessels tracts by comparing the variation
of the diameter between the current point and the mean diameter of the analyzed tract.

(a) (b)

(c) (d)

Figure 5. Overview of the vessel analysis tool functioning in response to the selection of two branches
on the skeleton. (a) Skeleton of the vascular tree. (b) After selecting the first branch, the skeleton is
shown in gray-scale skeleton, the selected branch is red, and its adjacent segments are green. (c) Once
the second branch is selected, the GUI shows all selected branches in red and adjacent tracts of the
last selected segment in green. (d) Linear representation of the vessels.
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Figure 6. Skeletonization and linear representation of the tract in which the tool has identified
the stenosis.

Figure 7. Measurement of the stenosis in the coronal view made by expert radiologists.
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(a)

(b)
Figure 8. (a) Linear representation of a vessel presenting five narrowing points that are highlighted
with red circles. (b) A view of the 3D image of the vascular tree. The green arrow indicates the
analyzed vessel in (a).
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4. Discussion

The proposed system aims to perform an analysis of the vascular tree of the area of in-
terest, supporting the user in the rapid recognition of stenotic branches during preoperative
planning. The system contributes to the identification of arterial stenosis, bringing the at-
tention of the clinician to the tracts with suspicious alterations of the vascular lumen. These
points are detected by comparing diameter changes along each segment and highlighting
narrowing points that exceed the tolerance. The aim of minimally invasive approaches and
related tools is to highlight the precision of surgery, improving outcomes such as reducing
intraoperative complications and the operative time, and, overall, to improve the safety
of the patients. In general, 3D models can be virtual, printed, or augmented reality [22]
and are based on high-resolution imaging such as multi-parametric MRI or CT. Vilser et al.
introduced a technique for studying the behavior of large retinal vessels using diameter
measurements [23], while Heneghan et al. focused on calculating both the tortuosity and
the width of the retinal vessels using a morphological processing carried out on segmented
vessels [24]. Vascular structural parameters can be exploited in several analysis tools as in
the case of Boskamp et al. [25], who developed a software that enriches the visualization of
datasets from angiographic CT and MR imaging. The system supplements traditional 2D
viewers of the original images with the 3D rendering of the vascular tree, in addition to
quantitative morphometric information such as curvature and tortuosity measurements.

The system we realized implements an interactive three-dimensional view of blood
vessels, which allows a deepened examination of these anatomical structures by the surgeon.
The clinician identifies stenotic points by progressively selecting consecutive blood vessels
on the vascular tree rendering. The tool analyzes the chosen segments and emphasizes
the tracts that present suspected narrowing, basing the identification of stenotic points
on vessels diameter measures obtained with the distance transform technique. It takes
advantage of a graphical user interface, which improves the performance of the tool for
the user (reported in Figure 9). The GUI presents a section that allows the user to interact
with the skeleton of the vascular tree selecting the branches of interest on the skeleton itself.
The chosen vascular segments are linearized and represented on a diagram, where the
vessel diameter is drawn as a function of vessel length. Moreover, narrowing points, where
the vessel diameter drops below a predefined threshold, are highlighted on the plot and
brought to the attention of the clinician.

Figure 9. Main window of the system; on the (left), 3D plot of the skeletonized vessel tree; on the
(right), plot of the vessel(s) diameter as a function of length.
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The system replaces the complicated 3D rendering of vascular trees with a represen-
tation that follows the centerlines of vessels. This “skeletal” image has the advantage of
enhancing the bifurcations points and tortuosity of vascular segments, easing the visual-
ization of vascularization and the detection of critical vessels. Vessels are selected by the
medical doctor directly on the skeleton. The tool offers a rendered image, which follows
the natural course of the vessel under study as its constituent tracts are selected by the user.
The skeleton adopts a color code that assists the user in the choice of the segments that are
linked to the analyzed vessel, in order to reconstruct the right vascular course. Besides,
the surgeon is supported in the identification of stenotic points, as they are marked on
the linear representation of the vessel. A further functionality of the vessel analysis tool is
allowing the computation of the distance between a reference point on the vascular tree and
the point affected by the stenosis. This important clue can be used in the surgical planning
phase as it determines the length of the path that will be covered by the catheter during
the surgery. At the same time, this information might be used during the surgery, as it has
the possibility of reducing the number of angiographic acquisitions that are necessary to
control the advancement of the catheter inside the vessel.

We chose to analyze a CBCT volume of the thorax of a cat before and after contrast
administration. The system successfully detected the presence of a stenosis of about 50% in
the upper mediastinum at the level of the epiaortic vessels.

The advantage of the proposed tool is to lead the examination by the linear representa-
tion of the chosen vessels, as shown in Figure 5d, where the vessel is represented as if it
were stretched along its length. In fact, the linear representation is free from tortuous vas-
cular courses and vessel crossings, which often increase the effort of clinicians in detecting
diameter variations. The limitations of this study include the need for more tests to validate
the results, the arbitrariness in the choice of the threshold during the segmentation step,
and the problem of vascular enhancement due to the imaging technique used. The problem
with the low number of tests is related to the difficulty of recruiting vascular stenosis of
animals performed on CBCT scans. Dedicated CBCT scanners are not very popular for
studying animals, and it is even more difficult to spot animals with stenotic arteries as
collateral findings in examinations carried out for other purposes. Exposing animals to
X-rays without a real clinical question is not ethically justified [26]. We are planning to
create a simulated test bench for an objective assessment of the proposed algorithm.

The contrast agent needs to be homogeneously distributed to give the correct informa-
tion. Since CBCT exposure times are longer than traditional multislice CT, there is a risk
that the enhancement is not distributed evenly during the whole acquisition and that this
can therefore affect the correct display and subsequent segmentation. A solution could be
the application of a programmable veterinary infusion pump to administer the contrast
agent in order to generate a uniform and prolonged enhancement profile.

5. Conclusions and Future Developments

The results of this study indicate that surgical planning with preoperative 3D imaging
of the vessels may potentially reduce the rate of complications during surgeries. Thanks to
this system, medical doctors may visualize how the branch tree evolves and the measures
by which it is featured. However, larger studies will be needed to confirm these results.
In the future, apart from realizing models to test the performance of the algorithm, an
extension of this paper could be to implement this system in the environments of virtual
and augmented reality, which are experiencing great interest for preoperative planning
together with intraoperative navigation, as these technologies can create completely arti-
ficial environments, enriching the surgical immersive experience of the team with more
available information.
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Abstract: The aim of this single-center, observational, retrospective study was to investigate magnetic
resonance imaging (MRI) biomarkers for the assessment of radiotherapy (RT)-induced xerostomia.
Twenty-seven patients who underwent radiation therapy for oropharyngeal cancer were divided into
three groups according to the severity of their xerostomia—mild, moderate, and severe—clinically
confirmed with the Common Terminology Criteria for Adverse Events (CTCAE). No severe xeros-
tomia was found. Conventional and functional MRI (perfusion- and diffusion- weighted imaging)
performed both pre- and post-RT were studied for signal intensity, mean apparent diffusion coefficient
(ADC) values, k-trans, and area under the perfusion curves. Contrast-enhanced T1 images and ADC
maps were imported into 3D slicer software, and salivary gland volumes were segmented. A total
of 107 texture features were derived. T-Student and Wilcoxon signed-rank tests were performed on
functional MRI parameters and texture analysis features to identify the differences between pre- and
post-RT populations. A p-value < 0.01 was defined as acceptable. Receiver operating characteristic
(ROC) curves were plotted for significant parameters to discriminate the severity of xerostomia in the
pre-RT population. Conventional and functional MRI did not yield statistically significant results; on
the contrary, five texture features showed significant variation between pre- and post-RT on the ADC
maps, of which only informational measure of correlation 1 (IMC 1) was able to discriminate the
severity of RT-induced xerostomia in the pre-RT population (area under the curve (AUC) > 0.7). Val-
ues lower than the cut-off of −1.473 × 10−11 were associated with moderate xerostomia, enabling the
differentiation of mild xerostomia from moderate xerostomia with a 73% sensitivity, 75% specificity,
and 75% diagnostic accuracy. Therefore, the texture feature IMC 1 on the ADC maps allowed the
distinction between different degrees of severity of RT-induced xerostomia in the pre-RT population.
Accordingly, texture analysis on ADC maps should be considered a useful tool to evaluate salivary
gland radiosensitivity and help identify patients at risk of developing more serious xerostomia before
radiation therapy is administered.

Keywords: xerostomia; magnetic resonance imaging; texture analysis; radiomics; head and neck
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1. Introduction

Head and neck cancers represent the sixth most common form of cancer worldwide.
More than 90% of head and neck cancers are squamous cell carcinomas of the oral cavity,
oropharynx, and larynx mucosal tissues [1]. Radiotherapy (RT) is generally included
in the primary oncologic treatment, as it improves clinical and functional outcomes for
cancer patients, especially in the case of oropharyngeal cancers (OPC) [2]. In addition
to its therapeutic effects, RT can cause injuries to the tissues inside and surrounding the
irradiated area, and approximately 90% of patients undergoing radiotherapy for head and
neck cancers suffer from clinically relevant xerostomia [3,4].

Xerostomia is defined as dryness of the oral cavity resulting from insufficient saliva se-
cretion [5,6]. RT-induced xerostomia is caused by salivary gland dysfunction resulting from
X-ray related tissue damage [5,7,8]. In regard to the diagnosis of xerostomia, the basic tests
include the determination of stimulated and unstimulated salivary flow rate, palatal secre-
tion, and parotid secretion [9–11]. These measurements constitute the simplest methods of
assessing the secretory function of salivary glands. Very low unstimulated and stimulated
salivary flow rates are defined as <0.1 mL/min and <0.7 mL/min, respectively [10–12].
Such values are confirmatory of xerostomia, whether or not they co-exist with specific
symptoms for this condition, such as oral soreness, dry lips, halitosis, decreased or altered
sense of taste, recurrent mouth infections, tooth decay and gum disease, and difficulty
speaking, eating, or swallowing [13–15].

Because of the high-contrast resolution and the ability to study complex anatomical
regions without the use of radiation, magnetic resonance imaging (MRI) is considered the
most relevant imaging technique for the identification of head and neck lesions [16–19].
Diffusion-weighted imaging (DWI) is an established diagnostic tool that evaluates the tissue
microanatomy by studying the spontaneous molecular diffusion of protons corresponding
to the stochastic Brownian motion of water molecules [16,20,21]. The apparent diffusion
coefficient (ADC) is calculated from DWI and consists of the quantitative assessment
of the impedance of water molecule diffusion within tissues [20]. The ADC is typically
reduced in hypercellular tissues and increased in situations where water molecules are
free to move [16,17]. The ADC values are calculated automatically and integrated into
a parametric map, upon which regions of interest (ROIs) can be traced at a workstation
to determine the ADC values of specific portions of a tissue [16–18]. Dynamic contrast-
enhanced, perfusion-weighted imaging (DCE-PWI) is a functional MRI technique that
allows one to infer blood perfusion to specific tissues by measuring the changes in tissues
over time after the intravenous administration of a contrast agent [22]. DCE-PWI is crucial
in the detection of focal lesions since it mainly assesses the vascular permeability [23].
Changes in hemodynamic parameters can precede abnormalities on conventional MRI and
can thus be used to help with the diagnosis [22–26].

Radiomics has been rapidly developing over the last few years; it is a hybrid analytical
process aimed at determining the correlation between the characteristics of tissues and
their corresponding digital images [17,27]. Texture analysis is a form of radiomics, in which
macroscopic heterogeneities of tissues can be non-invasively studied to infer information
about their microscopic architecture beyond the possibilities of the human eye as if it were
a “virtual biopsy” [17,28,29]. Texture analysis is based on the extraction of parameters
representing the distribution frequency, intensity, or direction of gray levels within the
ROI in order to evaluate the single pixel, its interactions with adjacent pixels, and the
distribution of pixels and voxels in the image [17,29].

Some previous studies evaluated RT-induced xerostomia with different MRI tech-
niques, such as DWI [21,30–32] and DCE-PWI [33]. However, neither used both techniques
on the same cohort of patients in pre- and post-RT MRI examinations. Furthermore, the
texture analysis was mainly performed with CT imaging [34–36], and only one paper can
be found on ultrasound [37] and conventional T1 MRI sequences [38].

The current study represents the first attempt to evaluate RT-induced xerostomia by
using multiparametric MRI techniques, including DWI, DCE-PWI, and texture analysis,
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carried out in both pre- and post-RT imaging. The aim of this retrospective study was
to correlate such MRI techniques with the severity of RT-induced xerostomia clinically
confirmed with the Common Terminology Criteria for Adverse Events (CTCAE).

2. Materials and Methods

2.1. Patient Selection

From January 2014 to December 2021, 180 patients who underwent RT for OPC were
assessed in the radiotherapy department of the University Hospital of Florence (Italy).

Inclusion criteria:

- Patients aged over 18 years.
- Histological diagnosis of OPC confirmed with biopsy.
- RT to defeat OPC.
- No disease of the salivary glands.
- MRI for both tumor staging and 4-month follow-up after ending RT.
- DWI and DCE-PWI MRI sequences.

Exclusion criteria:

- Previous head and neck radiation or surgical treatments.
- No MRI carried out in our institute.
- MRI not performed for both tumor staging and follow-up.
- No DWI and DCE-PWI sequences.
- No clinically confirmed xerostomia with CTCAE.
- No sialometric data available.

The initial population included 180 patients who underwent RT to treat oropharyngeal
cancer (Figure 1). Among them, 128 did not have available MRI data. Of the remaining
52 patients who were studied with MRI, 21 patients had no DWI and DCE-PWI performed
or MRI examinations both before and after RT were not carried out. In addition, 4 patients
were not clinically assessed or did not develop clinically confirmed xerostomia. Therefore,
the final number of patients included in the study was 27. They developed xerostomia after
RT and were studied with MRI both before and after RT with DWI and DCE-PWI sequences.

2.2. Patients’ Differentiations into Groups Based on Clinical Evaluation

The severity of dry mouth was clinically assessed 1 month after the end of RT by a
radiotherapist with 10-years’ experience using the U.S. National Cancer Institute’s CTCAE
v4. This score scale has three increasing levels of severity [39]. Accordingly, we decided to
divide the patients into three groups:

1. Group 1 (mild xerostomia): Feeling of dry or thick saliva with no significant dietary
alteration; unstimulated saliva flow > 0.2 mL/min;

2. Group 2 (moderate xerostomia): Moderate symptoms; oral intake alterations (e.g.,
copious water, other lubricants, diet limited to purees and/or soft, moist foods);
unstimulated saliva flow 0.1 to 0.2 mL/min;

3. Group 3 (severe xerostomia): Inability to adequately aliment orally; tube feeding or
total parenteral nutrition indicated; unstimulated saliva flow < 0.1 mL/min.

2.3. Image Acquisition and Analysis

MRI examinations were performed via 1.5 T Magnetom aera (Siemens Healthcare,
Erlangen, Germany) with a devoted head and neck coil. The MRI acquisition protocol
included pre- and post-contrast scans. An axial fat-saturated, echo-planar, imaging-based
DWI with two different b-values (b 50–800 s/mm2) was acquired. The apparent diffusion
coefficient (ADC) values of the parotid and sub-mandibular glands before and after RT
were calculated by positioning three regions of interest (ROI) within the salivary gland
parenchyma in three contiguous axial sections (Figure 2). Time/intensity curve (I/t), area
under the curve (AUC), and K(trans) values of the parotid and submandibular glands before
and after RT were generated by using IntelliSpace software version 9.0 (Philips, Amsterdam,
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The Netherlands) from the native DCE-PWI images by drawing a ROI including the largest
gland section possible (Figure 2). Before the sampling, a ROI was automatically placed on
the internal carotid artery to obtain an arterial input function curve, defined as the contrast
concentration in the vessels feeding the tissue at each point in time during the contrast
passage. The vessels, lymph nodes, and cystic areas within the salivary gland parenchyma
were excluded on both DWI and DCE-PWI analyses. The ADC, I/t, AUC, and K(trans)
values of the trapezius muscle were also obtained as control parameters.

Patients who did not undergo MRI exami
nations or did so in other institutes

(n.128)

Patients with no xerostomia or available si
alometric data after RT

(n.4)

Patients undergoing RT for oropharynx cancer
(n.180)

Patients undergoing RT for oropharynx cancer
and MRI examinations in our institute

(n.52)

Patients who were not studied with DWI
and/or DCE PWI MRI both before and after

RT (n.21)

Patients undergoing RT for oropharynx cancer and
MRI examinations with DWI and DCE PWI se

quences both before and after the treatment (n.31)

Patients who developed clinically significant xero
stomia after RT and carried out MRI with DWI and

DCE PWI sequences both before and after the
treatment (n.27)

Figure 1. Patient inclusion/exclusion flowchart. RT = radiotherapy, MRI = magnetic resonance
imaging, DWI = diffusion-weighted imaging, DCE-PWI = dynamic contrast-enhanced, perfusion-
weighted imaging.
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Figure 2. Region of interest (ROI) definition for functional MRI. (A) DCE-PWI ROI definition
for kinetic parameters drawn on both the parotid glands. The graph shows the contrast agent
concentration over time for the two ROIs (left and right parotid gland, respectively). (B) ADC map
ROI definition for local ADC values (see purple circle ROIs on the left parotid gland) with mean
ADC values.

The following morphologic, DWI, and DCE-PWI features were assessed:

1. T2 signal intensity (SI) hyper-, iso-, or hypointense with respect to the muscle signal
of the parotid and submandibular glands before and after RT;

2. SI hyper- or hypointense of the parotid and submandibular glands before and after
RT on DWIb800 images;

3. Mean ADC values of the parotid and submandibular glands before and after RT (ADC
pre-post) on DWI sequences;

4. Mean AUC and K(trans) values of the parotid and submandibular glands before RT
(AUCpre, K(trans)pre) and after RT (AUCpost, K(trans)post) on DCE-PWI sequences;

5. Ratio between AUC values of parotid and submandibular glands before and after RT
(AUCpost/pre);

6. Ratio between K(trans) values of the parotid and submandibular glands before and
after RT (K(trans)post/pre).

The MRI acquisition parameters are shown in Table A1 in Appendix A.

2.4. Texture Analysis

The MRI images obtained with T1 post-contrast sequences and the ADC maps before
and after RT were imported into 3D slicer (www.3dslicer.org (accessed on 12 February
2022)) v10.4.2 software. The parotid and submandibular glands located on the same side
of the oropharyngeal cancer, corresponding to the irradiated side, were segmented for
the entirety of their volumes by a radiologist with 3-years’ experience in head and neck
cancer using the “segmentation wizard” extension for 3D slicer (Figure 3). Specifically,
the segmentation of the gland located on the irradiated side was performed on CE-T1
sequences both before and after RT. The same method was carried out on the ADC maps
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thus resulting in a total of 4 different segmented volumes per gland. This process resulted
in a total number of 216 volumes being segmented with 4 submandibular and 4 parotid
gland volumes investigated for each of the 27 patients. Texture features were analyzed and
extracted from such volumes using the extension “Pyradiomics” for 3D slicer.

Figure 3. Whole volume segmentation of the right parotid gland using 3D slicer software on contrast-
enhanced T1 sequences. The entire process was performed for submandibular and parotid glands of
the irradiated side on both pre- and post-RT contrast-enhanced T1 sequences and ADC maps.

A total of 107 radiomics features were extracted, belonging to the following categories:
First Order, Shape-based (2D and 3D), Gray Level Co-occurrence Matrix, Gray Level Size
Zone Matrix, Gray Level Run Length Matrix, Gray Level Dependence Matrix, and Neigh-
boring Gray Tone Difference Matrix. The detailed explanations of the texture subclasses
can be found in Table A2 (Appendix A).

2.5. Statistical Analysis

Texture analysis and functional DWI/DCE-PWI MRI were assessed with the same
statistical methods.

First, a Shapiro–Wilk test was performed to determine the nature of the distribution
of the data obtained from both the functional MRI and texture analysis. After separating
the subjects into three groups (group 1, 2, and 3) according to their CTCAE v4 score, each
parameter from the functional MRI and texture analysis was evaluated for its variation be-
tween pre- and post-RT for each group separately in order to study the correlation between
RT-induced variation and the severity of xerostomia. More specifically, the parameters
were tested for variations for each gland separately.

The parameters that showed normal and non-normal distributions were analyzed with
the parametric t-Student test and Wilcoxon signed-rank test, respectively. A p-value < 0.01
was defined as acceptable. Once p-values were obtained using both methods (t- Student and
Wilcoxon), receiver operating characteristics (ROC) curves were produced by calculating
and plotting true positive and false positive rates for each statistically significant parameter
within the pre-RT population to determine the area under the curve (AUC) and cut-off
values to identify the subjects who would develop more or less severe xerostomia after RT
(group 1 vs. group 2 vs. group 3).
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3. Results

Eighteen patients and nine patients belonged to group 1 (mild xerostomia) and group
2 (moderate xerostomia), respectively. No group 3 patients (severe xerostomia) were found
among the 27 patients enrolled. T and N stages at baseline for each patient are shown in
Table 1. The radiation dose data are provided in Table A3 (Appendix A).

Table 1. T and N stages at baseline for the patients with mild xerostomia (Group 1) and moderate
xerostomia (Group 2).

Patients
Stage

T N

Group 1
Patient 1 3 2c
Patient 2 3 3
Patient 3 2 1
Patient 4 3 2b
Patient 5 4a 2b
Patient 6 3 0
Patient 7 2 0
Patient 8 4b 0
Patient 9 2 2b

Patient 10 4a 2b
Patient 11 2 2c
Patient 12 4a 2a
Patient 13 4a 1
Patient 14 3 0
Patient 15 2 0
Patient 16 2 2a
Patient 17 2 1
Patient 18 3 2c

Group 2
Patient 19 3 2c
Patient 20 3 1
Patient 21 2 2b
Patient 22 4a 2c
Patient 23 1 2b
Patient 24 1 2b
Patient 25 3 2a
Patient 26 4a 2c
Patient 27 1 2b

3.1. Morphological and Functional MRI

The SI of the submandibular and parotid glands did not change before and after
RT compared to the muscle tissue on both T2 and DWI b800 images since the SI was
hyperintense in all cases. In addition, the mean ADC values, K(trans) parameters, and
AUC parameters did not show significant variation between pre- and post-RT. The p-value,
mean value, median value, and standard deviation for the functional MRI parameters are
shown in Tables 2 and 3.

3.2. Texture Analysis

No texture features showed statistically significant variation between pre- and post-RT
on both the ADC maps and CE-MRI T1w sequences in group 1 (p-value > 0.01). The
same results were found for group 2 on the CE-MRI T1w sequences (p-value > 0.01). On
the contrary, in group 2, the ADC map values of the parotid and submandibular glands
observed before RT were significantly different than those observed after RT (p-value < 0.01)
(Table 4).
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Table 2. p-values for the parameters studied in group 1 (mild xerostomia) and group 2 (moderate
xerostomia) on DWI and DCE-PWI sequences.

Parameter
p-Value

Group 1 Group 2

DWI MRI
ADC Parotid 0.82 0.18
ADC Submandibular 0.60 0.54

DCE-PWI MRI
AUC PAROTID 0.07 0.03
AUC SUBMANDIBULAR 0.26 0.21
KTRANS PAROTID 0.18 0.13
KTRANS SUBMANDIBULAR 0.65 0.82

Table 3. Mean, median, and standard deviation for the parameters studied in group 1 (mild xeros-
tomia) and group 2 (moderate xerostomia) on DWI and DCE-PWI sequences. P = parotid gland.
S = submandibular gland.

ADC P
Pre RT

ADC P
Post RT

ADC S
Pre RT

ADC S
Post RT

AUC P
Pre RT

AUC P
Post RT

AUC S
Pre RT

AUC S
Post RT

Ktrans P
Pre RT

Ktrans P
Post RT

Ktrans S
Pre RT

Ktrans S
Post RT

Group 1
Mean 0.84 0.90 1.16 1.26 88.40 152.45 12. 62 176.65 123.80 229.31 169.44 233.20

Standard
deviation 0.08 0.25 0.28 0.23 30.83 70.80 55.19 91.40 46.81 131.29 71.71 133.59

Group 2
Mean 0.80 0.90 1.19 1.32 94.28 146.35 88.77 154.92 158.76 203.08 149.22 211.09

Standard
deviation 0.13 0.51 0.16 0.24 22.22 82.03 26.01 89.34 61.82 87.80 68.78 87.75

Table 4. p-values for statistically significant texture features. See Table A1 (Appendix A) for the
definition of First Order and Gray Level Run Length Matrix.

Feature Name p-Value

Parotid
Informational measure of correlation 1 (Gray Level Run Length Matrix) 0.002
Informational measure of correlation 2 (Gray Level Run Length Matrix) 0.003

Submandibular
Gray Level Non-Uniformity Normalized (First Order) 0.002
Informational measure of correlation 2 (First Order) 0.006

Gray Level Non-Uniformity Normalized (Gray Level Run Length Matrix) 0.006

Two features were statistically significant for the parotid glands:

• Informational measure of correlation 1 (IMC 1)—Gray level co-occurrence matrix class.
• Informational measure of correlation 2 (IMC 2)—Gray level co-occurrence matrix class.

Three features were statistically significant for the submandibular glands:

• Informational measure of correlation 2 (IMC 2)—First-order class.
• Gray Level Non-uniformity Normalized (GLNN)—First-order class.
• Gray Level Non-uniformity Normalized (GLNN)—Gray Level Run Length Matrix class.

After producing ROC curves on the pre-RT values, only the feature IMC 1 for the
parotid glands showed an acceptable level of diagnostic accuracy (AUC = 0.727) (Figure 4).

The cut-off value defined by the ROC curve for IMC 1 in the pre-RT population was
−1.473 × 10−11, which allowed the distinction between group 1 and group 2 with 73%
sensitivity, 75% specificity, and 75% diagnostic accuracy. Values lower than −1.473 × 10−11

corresponded to moderate xerostomia (group 2), and values higher than −1.473 × 10−11

corresponded to mild xerostomia (group 1).
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Figure 4. Receiver operating characteristics (ROC) curve for IMC 1 in the parotid gland (pre-RT
population). Diagnostic accuracy was considered acceptable when the AUC values were higher
than 0.7.

4. Discussion

Xerostomia is a common complication in patients receiving radiation therapy as a
consequence of damage to the salivary glands. Morphological and structural changes in
the irradiated glands can be non-invasively evaluated with MRI [32,40,41]. In addition, the
indirect assessment of the microarchitecture of the salivary glands with texture analysis
has been recently hypothesized to be a useful tool in the identification of the severity of RT-
induced xerostomia [21,34,37,42]. Overall, predictive models employing texture analysis
alongside imaging techniques have shown very promising results in the assessment of head
and neck disease [17,18,34,43,44]. Therefore, interest towards artificial intelligence and its
applications to imaging is steadily growing. In the context of the ever-growing academic
importance of texture analysis [17,28,29,34], the present study was an effort to investigate its
role in the assessment of salivary gland alterations and, specifically, RT-induced xerostomia.

While it is known that the development of RT-induced xerostomia correlates with the
dose distribution to the salivary glands [45,46], the correlation between imaging techniques
and specific alterations in the gland microarchitectural structure is still unclear [34,47].
The current study represented the first attempt to assess RT-induced xerostomia by taking
advantage of different MRI techniques, including functional imaging—DCE-PWI and
DWI—and texture analysis performed on CE-T1 sequences and ADC maps in both pre-and
post-RT imaging.

No parameter for neither morphological (T2 sequences) nor functional (DWI and
DCE-PWI) MRI yielded statistically significant results. Such findings were different from
previous studies conducted by Juan et al. [33] on DCE-PWI and Zhang et al. [21,30,31]
on DWI since they suggested a possible role for parameters obtained from these imaging
techniques as biomarkers in the evaluation of RT-induced xerostomia. Possible explanations
for the disagreement between our findings and those studies [21,30,31,33] could be that, in
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those last studies, a larger sample was enrolled and acid stimulation was used to assess the
ADC values while also taking into account time-related parameters, such as time-to-peak
ADC. In addition to that, the parameters obtained from DWI and DCE-PWI were correlated
with the different amount of radiation dose emitted, whereas in our case, all patients
enrolled received the same treatment.

Texture analysis techniques on CT images were used in previous studies to investigate
RT-induced xerostomia [34–36,42], but they have not yet been employed on CE-MRI and
ADC maps. In the present study, the CE-T1 MRI texture features did not show statistically
significant correlation with the development of RT-induced xerostomia. On the contrary, the
texture analysis carried out on the ADC maps yielded significant results. More specifically,
three texture features for the submandibular glands (GLNN—First Order, IMC 2—First
Order, and GLNN—Gray Level Run Length Matrix) and two texture features for the parotid
glands (IMC 1 and IMC 2, both belonging to the Gray Level Run Length Matrix) showed
significant differences between pre- and post-RT imaging. Among the aforementioned
texture features, only IMC 1 showed acceptable levels of diagnostic accuracy (AUC = 0.727)
for the development of moderate xerostomia when applied on the pre-RT population where,
in fact, was found a significant decrease in its values in patients with moderate xerostomia
as opposed to patients with mild xerostomia. While no feature except for IMC 1 yielded an
acceptable diagnostic accuracy on its own, a more complex model taking all of them into
account might better discriminate different degrees of severity of RT-induced xerostomia.
In this same framework, the poor results obtained in both morphological and functional
MRI would be useful as part of a wider analysis.

IMC 1 is a second-order feature belonging to the gray level co-occurrence matrix
group—values ranging from 0 to −∞ (values ≤ 0)—that represents a measure of the
level of the textural complexity and tissue heterogeneity. In the current study, low values
of IMC 1 in the pre-RT population, more precisely, values lower than the optimal cut-
off of −1473 × 10−11, were associated with the development of moderate xerostomia
(group 2). This finding seemed to be in line with other similar studies carried out on CT
imaging, in which features relating to higher textural complexity and more heterogeneous
distribution of grays correlated with xerostomia of greater severity [36,38]. A study by
Nardone et al. [34] performed on planning CT postulated that more heterogeneous textures
might be indicative of a higher salivary gland radiosensitivity. Irregular microarchitectural
structure on histopathology—altered vascularization or loss of acinar cells replaced by
adipose tissue—has an impact on the development of RT-induced xerostomia as stated
by Teshima et al. [47]. In this context, the hypothesized higher textural complexity of
the salivary glands with normal acinar tissue replaced by a variable amount of adipose
tissue might explain the correlation between the severity of xerostomia and greatest values
in features related to the textural heterogeneity, as suggested in previous studies on CT
examinations by van Dijk et al. [36,38].

In addition, performing texture analysis on ADC maps and CE-T1 MRI sequences,
as was done in our study, might prove extremely advantageous. The possibility of using
MRI tools with the help of artificial intelligence to differentiate functional gland tissue
from adipose tissue [17,19,48] intuitively suggested the possible benefit of these advanced
techniques in the characterization of the gland radiosensitivity, albeit at the cost of a more
complex standardization. It is well known that the voxel intensity on CT images relates
to the intrinsic physical properties of a tissue; on the contrary, the voxel intensity on MRI
acquisition techniques is highly dependent on machine-specific characteristics [44]. This
makes quantitative assessments with radiomics more prone to variation based on hardware-
specific settings [44,49,50] and standardization as a whole more difficult. However, this
is only partially true for quantitative functional MRI analyses, as those carried out in the
present study on ADC and DCE-PWI; the hardware specifics are less impactful [44,50],
which suggests other possible benefits to their implementation on texture analysis.
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The main limitation of our study was the small sample size and, especially, the
relatively smaller cohort of patients with moderate RT-induced xerostomia than patients
with mild RT-induced xerostomia. It is reasonable to assume that all the features resulting
as statistically significant in the current study may also yield acceptable results in terms
of diagnostic accuracy when larger samples are selected. However, the limited number of
cases enrolled (27 patients with oropharyngeal cancer) has to be connected to the originality
of our study design. The assessment of both DCE-PWI and DWI in pre- and post-RT MRI
and the process of texture analysis on both ADC maps and CE-T1 sequences required a
wide variety of different examination and investigation techniques to be performed, thus
sensibly reducing the number of eligible patients.

The authors are fully aware that a more elaborate model that combines all functional
and textural parameters examined should be used to investigate such a complex phe-
nomenon as RT-induced xerostomia. However, the necessity of a much larger sample
required to design a performing classifier has made it impossible for authors to do that.
This shortcoming was another limitation of the present study. The definition of a more
complex classifier in the future would likely be better able to assess RT-induced xerostomia.

Finally, the results attained by our investigation were entirely related to the pre-RT
cohort and, therefore, represented a cautionary glimpse into the possibilities of employing
texture analysis techniques to predict salivary gland radiosensitivity before radiation
therapy is administered. This remains a topic of discussion for further investigation in
order to stratify patients according to the risk of developing xerostomia of different severity.

5. Conclusions

In our series, the texture analysis performed on the ADC maps of the parotid glands
showed good accuracy in the assessment of the severity of RT-induced xerostomia in the pre-
RT population (AUC = 0.727). The differentiation between mild and moderate RT-induced
xerostomia was achieved with IMC1 (cut-off −1.473 × 10−11) with 73% sensitivity, 75%
specificity, and 75% diagnostic accuracy. Therefore, texture analysis should be considered
a useful tool to estimate salivary gland radiosensitivity and help identify patients more
prone to develop serious xerostomia before radiation therapy is administered.

No statistically significant parameter was found for both morphological and functional
MRI (DCE-PWI and DWI) or for texture analysis on CE-T1.
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Table A3. Radiation dose data for the patients with mild xerostomia (Group 1) and moderate xerosto-
mia (Group 2). Volumes have been stratified for oncologic risk (likelihood of persistence/recurrence
of disease in the selected volume).

Patients
Dose to High Risk

Volume (Gy)
Dose to Intermediate

Risk Volume (Gy)
Dose to Low Risk

Volume (Gy)
Overall RT Treatment

Time(Days)

Group 1
Patient 1 69.9 60 54 49
Patient 2 69.9 60 54 53
Patient 3 70 50 50 86
Patient 4 69.9 60 54 46
Patient 5 70 60 50 55
Patient 6 69.9 60 54 50
Patient 7 69.9 60 54 56
Patient 8 699 60 54 49
Patient 9 69.9 60 54 55

Patient 10 69.9 60 54 46
Patient 11 69.9 59.4 54 47
Patient 12 69.9 59.4 54 52
Patient 13 69.9 60 54 67
Patient 14 69.9 60 54 53
Patient 15 69.9 60 54 46
Patient 16 69.9 59.4 52.8 47
Patient 17 66 60 54 46
Patient 18 70 60 52.8 48

Group 2
Patient 19 69.9 60 54 58
Patient 20 69.9 60 54 43
Patient 21 69.9 60 54 51
Patient 22 69.9 59.4 54 54
Patient 23 70.5 60 54 42
Patient 24 69.9 59.4 52.8 44
Patient 25 69.9 59.4 52.8 47
Patient 26 69.9 59.4 54 45
Patient 27 69.9 59.4 52.8 58
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Simple Summary: Skin cancer is one of the most fatal diseases for mankind. The early detection of
skin cancer will facilitate its overall treatment and contribute towards lowering the mortalities. This
paper presents the deep learning-based algorithm along with pre-processing for the classification of
skin cancer images. The image resolution of publicly available HAM10000 data after resizing is low
and hence, when we pre-process the data to enhance the image resolution and then subject it to the
deep neural network, overall performance metrics namely accuracy, is typically competitive.

Abstract: Melanin skin lesions are most commonly spotted as small patches on the skin. It is nothing
but overgrowth caused by melanocyte cells. Skin melanoma is caused due to the abnormal surge
of melanocytes. The number of patients suffering from skin cancer is observably rising globally.
Timely and precise identification of skin cancer is crucial for lowering mortality rates. An expert
dermatologist is required to handle the cases of skin cancer using dermoscopy images. Improper
diagnosis can cause fatality to the patient if it is not detected accurately. Some of the classes come
under the category of benign while the rest are malignant, causing severe issues if not diagnosed at an
early stage. To overcome these issues, Computer-Aided Design (CAD) systems are proposed which
help to reduce the burden on the dermatologist by giving them accurate and precise diagnosis of skin
images. There are several deep learning techniques that are implemented for cancer classification. In
this experimental study, we have implemented a custom Convolution Neural Network (CNN) on
a Human-against-Machine (HAM10000) database which is publicly accessible through the Kaggle
website. The designed CNN model classifies the seven different classes present in HAM10000
database. The proposed experimental model achieves an accuracy metric of 98.77%, 98.36%, and
98.89% for protocol-I, protocol-II, and protocol-III, respectively, for skin cancer classification. Results
of our proposed models are also assimilated with several different models in the literature and were
found to be superior than most of them. To enhance the performance metrics, the database is initially
pre-processed using an Enhanced Super Resolution Generative Adversarial Network (ESRGAN)
which gives a better image resolution for images of smaller size.

Keywords: benign; malignant; skin cancer; ESRGAN; CAD

1. Introduction

Skin melanoma occurs due to fast procreation of aberrant skin cells in human anatomy.
The count of skin malignancy cases has significantly increased over the past years [1]. As
the skin is comprised of three lamina, the topmost lamina is the Epidermis, the middle
lamina is the Dermis, and the deepest lamina is the Hypodermis, which is for the formation
of fat and fibrous connective tissue. As skin is the outer most organ of human anatomy, it
is most likely to be affected by fungal growth and bacteria which can be identified under
microscopic examination. It results in varying textures and colours of the skin [2]. Skin
cancer is classified under two sub-classifications, namely non-melanoma and malignant
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melanoma cancer. Non-melanoma cancer is less hazardous and occurs due to repeated
exposure to UV radiation. The most common reason for skin cancer-related mortality is
malignant melanoma. According to the survey by WHO, one out of three patients who
are diagnosed with cancer have a skin cancer specifically. There are nearly 2–3 million
non-malignant patients and 1.32 lakh malignant melanoma patients [3]. Melanoma is
caused due to an imbalance of melanocytes in skin cells. The diagnosis of skin lesions are
difficult due to the lack of standard guidelines for the detection of skin cancer. In addition
to this, skin lesion classification is more challenging due to obscure boundaries, and the
involvement of obstacles like veins, hairs, and moles [4]. The dermatologists who work
on different skin diseases face limitations in visualising the dermoscopic images manually.
Due to the similarity in skin lesions (inter-class similarity of skin diseases) leads to a degree
of subjectivity and thus, human error [5]. There are further issues presented by clinical
examinations: they are costlier and require highly skilled medical experts to operate the
specialized medical diagnostic tools [6]. In recent years, researchers have developed various
techniques, namely via a computer-aided diagnosis (CAD) system in an effort to lessen the
workload of medical professionals by supporting them in providing an accurate diagnosis
of cancer [7]. The CAD systems can categorize the lesion images into the melanoma and
non-melanoma cancer [8]. In this proposed work, we implemented a Custom Convolution
Neural Network (CCNN) which helps us to categorize the seven distinct classes of skin
cancer stated in the database Human Against Machine (HAM10000) [9]. The HAM10000
database, consisting of 10,015 images of dermoscopic skin lesions, is used in this proposed
work. The pre-processing of the HAM10000 database is carried out using an Enhanced
Super Resolution Generative Adversarial Network (ESRGAN) which enhanced the quality
of dermoscopic images to acquire better results compared to existing models. The proposed
model was implemented on the HAM10000 dataset which is split into two subsets stated
as the training and testing datasets in an 80:20 ratio (protocol-I), as well as the train:val:test
split as per protocol-II and protocol-III. The paper is organized as follows. Section 2 presents
the related published works on skin cancer classification. The description of the HAM10000
dataset is mentioned in Section 3. The proposed methodology including preprocessing
techniques, and the design and building of the custom CNN model is indicated in Section 4.
The results of the proposed framework are presented in Section 5. Section 6 concludes the
work and discusses the future scope for further enhancement of performance metrics.

2. Related Work

The majority of research on the classification of melanomas focuses on the use of the
dermoscopic data, which provides more visual information and is frequently employed
by professional dermatologists. Recent research on the CAD system for skin lesion cate-
gorization employs deep learning-based approaches. In most of the approaches, it is seen
that the model requires more training time due to larger image size. Furthermore, the
presently available public databases for skin lesion classification are mostly imbalanced,
which hinders the performance of the model. To classify skin lesions, a study was per-
formed by Aladhadh et al. [7] in which they employed a deep learning method based on
vision transformers. A two-layer architecture is used in this work to accurately classify
skin cancer. The transformer splits the augmented data into different patches and feeds the
input to a multi-layer perceptron classifier to define its class with an accuracy of 96.14%.
The study carried out by Bansal et al. [10] have pre-processed the HAM10000 database
using different morphological operations. The handcrafted method for feature extraction
is used to retrieve the features. The two-transfer learning models named EfficientNet-B0
and ResNet50V2 are used for skin lesion classification and obtained an accuracy of 94.9%.
A research study by Basak et al. [11] worked on the HAM10000 database by employing a
multi-focus segmentation network (MFS-Net) based on a deep learning algorithm. The re-
trieval of deep features is performed using the parallel partial decoder technique to produce
a segmentation map. Finally, two different attention modules are implemented to obtain a
segmentation output. The authors achieved a dice score of 90.6% using the prescribed algo-
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rithm. Nakai et al. [12] used a transformer model based on a deep bottleneck. This model
integrates the self-attention block to form a model with deep extracted features. It helped
them to enhance the performance of overall categorization. The model accomplished a total
accuracy of 96.1%. In the research work by Popescu et al. [13], a collective intelligence-based
transfer learning system was presented. This system comprises of nine different transfer
learning models. This individual model is trained using the HAM10000 database and the
outputs of the individual network are combined using a decision-level fusion module. It
helped them to boost their overall performance by 3%. This approach yields an accuracy of
86.71%. Qian et al. [14] used multi-scale attention blocks which are a deep learning-based
approach. This technique was implemented on the HAM10000 database to retrieve special
features which will focus on skin lesion area. It has also adopted a loss weighting which
helped to solve the issue of imbalanced data per class. The performance of this model
gains an accuracy of 91.6%. The study stated in [15] is utilized for the categorization of
skin lesions using the HAM10000 dataset. Multi-Scale Multi-CNN (MSM-CNN), a DL
model built on a three-tier ensemble approach, was employed in this work. The proposed
model results are then compared to the pre-trained CNN models such as EfficientNetB0,
SeResNeXt-50, and EfficientNetB1. The MSM-CNN achieves the highest accuracy of 96.3%
compared to other models. Panthakkan et al. [16] used a concatenation of Xception and
ResNet50 models on the HAM10000 database. A sliding window method is implemented
for the purpose of training as well as testing the system. The presented approach yields
a good accuracy of 97.8% on testing data. In the study article [17], a classification of skin
lesions is performed using the fusion of handcrafted and DL-based features and is further
classified using ML classifiers to achieve an accuracy of 92.4%.

Through these related work studies we have identified some shortcomings which
have been overcome by our proposed model. We can clearly see that there is a scope to
improvise the performance metrics in terms of accuracy. Furthermore, it is identified that
complexion in the model leads to the maximum execution time in training the model.

3. Materials and Methods

This section presents a detailed description of the HAM10000 dataset and also explains
the seven different classes present in it.

3.1. HAM10000 Dataset

To train any neural network for obtaining good classification results, a huge dataset is
required. The datasets used for the classification of skin pigmented lesions were small and
inadequate for training. To overcome this issue, Tschandl and his team released the Human
against Machine (HAM10000) dataset [9]. The dataset consists of 10,000 skin pigmented
lesions of seven different important classes that can be used for the diagnosis of skin cancer.
Due to the diverse population of dermoscopic images, data organization, cleaning, and
defining a workflow to train a neural network is required. The final database version
consists of 10,015 images and was released for academic research purpose and is made
available on ISIC archive [9]. The ground truth of the database was confirmed by the
expert pathologist in the field of dermoscopy. The seven important diagnosis classes are
the following.

3.1.1. Actinic Keratosis (akiec)

Actinic Keratosis is the most common and non-obtrusive carcinoma. It is a sub-variant
of squamous cell carcinoma which is cured locally without any surgical operation. It is said
that akiec is an early sign of cell carcinoma and not a real carcinoma. This akiec lesion may
grow into an intrusive squamous cell carcinoma [18]. Actinic Keratosis mostly appears on
the face of the human body and is induced due to excessive exposure to UV light [9].
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3.1.2. Basal Cell Carcinoma (bcc)

Basal cell carcinoma is a specific class of melanoma which arises in basal melanocytes
that make new cells rather than shedding old ones. It is the most prevalent kind of
melanoma [19]. It is more likely to appear in areas that are susceptible to direct sun light,
such as the neck and head of human body [20]. It generally occurs in the form of pink
growths, recurrent sores, and red patches on the skin. These lesions develop gradually and
hardly disseminate [19].

3.1.3. Benign Keratosis-Like Lesions (bkl)

The bkl category in the database has three distinct classes of lesions that lacked
cancerous traits. These sorts of lesions include Lichenoid Keratosis, Solar Lentigo, and
Seborrheic Keratosis [19]. A benign skin condition known as lichenoid keratosis often
manifests as a tiny, single, grey-brown lesion on the chest and upper limbs [21]. Solar
Lentigo is a kind of macular hyper-pigmented infection that may differ in size, ranging
from a few millimetres to more than one centimetre [22]. Seborrheic Keratosis is a benign
condition that does not necessitate in-depth treatment. It is reddish-brown or greyish
brown in color and often appears on the back, collar, scalp, and chest [23].

3.1.4. Dermatofibroma (df)

Dermatofibroma is a relatively common dermatological condition that mostly impacts
adolescent or elderly humans, with little women preponderance [24]. Clinically speaking,
dermatofibroma presents as stiff soles, or many hard pustules, patches, or lumps, with a
soft surface and a color that may range from pale brown to darkly brown, purplish-red,
or yellow [24]. These benign skin lesions often appear on the upper arm, upper back, and
lower leg [19].

3.1.5. Melanocytic Nevi (nv)

The list of seven subclasses includes all of the innocuous melanocyte malignancies
known as melanocytic nevi, which may have numerous variations [9]. They are skin
tumours brought on by the expansion of melanocytes (the skin’s pigment-producing cells).
It is mainly induced due to UV rays emitted from the sun at the early childhood age [19].

3.1.6. Vascular Lesions (vasc)

The majority of vasc are inherited; however, they may arise later in life and are
seldom malignant. They are sores of various appearances that form on the epidermis and
surrounding tissues and are often referred to as birthmarks [19].

3.1.7. Melanoma (mel)

Malignant melanocytes give rise to melanoma, a cancer that may manifest in many
different forms. If removed at a preliminary phase, it is curable with simple surgical
intervention. Melanomas may be either intrusive or harmless [9]. It is particularly apparent
on sun-exposed body parts that include the face, trunk, hands, collar, and legs. Melanoma
may be identified by patches that have an irregular shape, uneven borders, and distinct
colours, are larger than 6 mm, and tend to expand. It might disseminate to different organs
of the body and can cause fatality if it remains untreated [19].

The HAM10000 dataset comprises seven different classes as described above and the
class-wise categorization for the number of images is stated in Table 1. The distribution
of images seems to be imbalanced. To make it balanced, data is augmented which is
elaborated in the pre-processing section.

Table 1. Class-wise images present in HAM10000 dataset.

Class akiec bcc bkl df nv vasc mel

Images 327 514 1099 115 6705 142 1113
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4. Proposed Methodology

This section elaborates on two different pre-processing techniques implemented in
this proposed work. In addition to pre-processing, we have also discussed the custom
convolutional neural network and we built a CNN model from scratch.

4.1. Pre-Processing

It is one of the most important steps while working with clinical image data [25]. It is
primarily applied on the raw database, before feeding them for training the Convolutional
Neural Network based system [15]. The pre-processing algorithm provides enhancement
in images, which helps to boost the inclusive performance metrics pertaining to the model.
One of the substantive contributions of the proposed research work is to enhance the quality
of HAM10000 data using the ESRGAN algorithm which indeed leads to better extraction
of features from the clinical image by the model. There are two different pre-processing
techniques that are implemented in this study, namely ESRGAN and data augmentation
which are discussed in detail in the following sub-sections.

4.1.1. Enhanced Super-Resolution Generative Adversarial Network (ESRGAN)

Pre-processing is a crucial step for the enhancement of images which helps in achieving
superior performance metrics [26]. The Super-Resolution Generative Adversarial Network
(SRGAN) is a foundational technique which can generate photorealistic patterns while
super-resolving a single picture. The reckoning of a high resolved image from a low-
resolution image is termed a super-resolution. The major optimization focus of super-
resolution is to cut back the mean square error from the obtained highly resolved image
and original image. GANs offer a potent framework for creating realistic pictures that seem
believable and have excellent perceptual quality [27]. The visual hallucinated features,
though, are very often associated with undesirable effects [28]. The Enhanced SRGAN is
the adaptive technique which mainly addresses the three shortcomings of SRGAN that are
Adversarial loss, Network design, and Perceptual loss. It also facilitates maintenance of
a better ocular peculiarity with more pragmatic and natural-looking colors than SRGAN.
To achieve the Enhanced Super-Resolution Generative Adversarial Network (ESRGAN),
Wang et al. introduced an additional Residual layer in Residual Dense Block (RDB) in [28]
by removing the Batch Normalization (BN) layer. The Residual in Residual Dense Network
(RRDN) comprises four different blocks, namely Dense Feature Fusion, Residual Dense
Blocks, Shallow Feature Extraction, and up-sampling net [29]. The Local Feature Fusion
layer and the Local Residual Learning layer are the two dense layers that form the RRDB.

a. Local Feature Fusion (LFF): It is an adaptive state derived from RRDB and a convolu-
tion layer in a new RRDB and is given by Equation (1).

fd,LF = hD
LFF
({

fd−1, fd,1, . . . . . . , fd,c, . . . .., fd,C
})

(1)

where hD
LFF indicates the convolution layer of size 1 × 1 in the dth RRDB block and fd−1, fd,1,

etc., are the input and output of dth RRDB correspondingly.

b. Local Residual Learning (LRL): It is implemented for the improvement of overall
information flow. It also helps to get the final output of dth RRDB as shown in
Equation (2).

fd =
({

fd−1 + fd,LF
})

(2)

Other than the improvement of visual qualities using RRDB, Wang et al. also calculated
different loss functions which gave the overall performance of the generator. The different
loss functions are stated as [29].
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(i) Discriminator loss: It is the loss calculated during misclassification of real and fake
instances. Some of the fake instances are obtained from the generator by expanding
the equation given in Equation (3).

lRa
D = −Exr

(
log
{

DRa

{
xr, x f

}})
− Ex f

(
log
{

1 − DRa

{
x f , xr

}})
(3)

where log
{

DRa

{
xr, x f

}}
is the probability of classification by generator correctly and

log
{

1 − DRa

{
x f , xr

}}
helps to accurately label the fake images from the generator.

(ii) Generator loss: The generator loss is calculated if the discriminator misclassifies the
fake images which helps the discriminator to improvise. It is given by Equation (4)

lRa
G = −Exr

(
log
{

1 − DRa

{
xr, x f

}})
− Ex f

(
log
{

DRa

{
x f , xr

}})
(4)

It is observed that the generator can achieve better results from both real and generated
data in adversarial training.

(iii) Perpetual Loss: In ESRGAN, the perpetual loss is also improved by confining the
features prior to activation, as compared to features after activation in SRGAN. The
perpetual loss function is given by Equation (5).

lG = lpercep + λlRa
G + ηl1 (5)

where the terms λ and η are the factors to equalize various loss functions and lRa
G is the

generator loss function.

(iv) Content Loss: The element wise Mean Square Error (MSE). It is most broadly used in
targeting the super resolved image and is given by Equation (6)

LSR
MSE =

1
r2wh ∑rw

x=1 ∑rh
y=1

(
iHR
x,y − gθg

(
iLR
)

x,y

)2
(6)

where gθg

(
iLR) is the reformed image and iHR

x,y is the down sampled operation with a factor r [29].
Figure 1 presents the comparison of sample images with their respective ESRGAN-

enhanced images.

4.1.2. Data Augmentation

In order to train the CNN model with multiple variations of the dermoscopic images,
a data augmentation method is included in our research work. Minority oversampling is
the most widely implemented method in restoring the model’s robustness and reducing
the dataset’s bias when there is a significant imbalance in classes [30]. The deep learning
model performs well when it is feed with a huge training dataset. The HAM10000 dataset
used for our proposed work is imbalanced, as seen in Table 1. Data augmentation helps
the network from overfitting issues caused due to imbalanced data. The main reason for
augmenting the data is that there are only 8012 images in the training dataset. The different
augmentation methods are implemented such as rescaling, rotating the image, zooming
with factor of 0.1, and height and width shift with range factor 0.1. It makes the dataset
more balanced and improves overall performance of the model.

4.2. Custom Convolutional Neural Network

CNN is a category of deep-learning system which detects and extracts features from
images automatically [31]. It has acquired significance in medical image analysis, as it has
in many other fields as a result of its higher performance. The layers of a standard CNN
include convolution layer, dropout layer, activation function, fully connected layer, and
pooling layer [32]. The image pixels need to be processed and are given as an input to the
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CNN. The original input pixels are subjected to detecting feature vectors, also termed as
filters, in the convolution layer in order to extract a collection of features [33]. CNN’s primary
function, convolution, allows automated feature extraction [34]. During the step of pooling,
a dimensionality reduction process is conducted by applying filters to an input vector [33].
The reduction technique is carried out by taking the minimum, maximum, or median of the
values in the filtering window, which is strung across the initial input vector [19].

Figure 1. Comparison of sample images with their respective ESRGAN enhanced images.

In neural network models, overfitting problems can arise, especially when the mani-
fold training samples is insufficient. With a view to address this issue, a dropout operation
was used, which increased the network’s capacity to alter distinct environments by arbitrar-
ily deactivating a fraction of its neurons during training. The fully connected layer helps
the process go on to the categorization stage. The output matrix is flattened before being
sent on to the classifier after the feature extraction and pooling procedures. The proposed
algorithm is shown in Figure 2.

The dataset has two fundamental aspects. The first component aspect is a metadata file
that contains specific data for cancer lesion images. The skin lesion’s location, the patient’s
age and gender, the lesion’s diagnosis, and the skin lesion directory are all included in the
metadata file. The second and primary section of the collection is comprised of visual files.

The objective of this study is to categorize skin lesions only based on digital images.
Thus, the data file was reorganized to simply include the lesion type and the image file
directory. Each lesion’s textual labelling was transformed into digital values between 0 and
6. Each subtype labelling codes are shown in Table 2.

The original dermoscopic images are of 600 × 400 pixels resolution and are saved in
the RGB format. It was observed that the processing burden increases proportionally with
picture size. Hence, image size reduction increases processing speed. Therefore, all samples
in the collection are downsized to 24 × 24 pixels. Since the colour is a distinguishing factor
in diagnosing the kind of lesion, the original colours of the photographs were maintained.
The sharpening filters are implemented to enhance the contrast of every applied image.
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Figure 2. Overview of the proposed ESRGAN-based CNN algorithm.

Table 2. Notations for each class in the HAM10000 database.

Class akiec bcc bkl df nv vasc mel

Label 0 1 2 3 4 5 6

4.3. Building a Custom CNN Model

When dealing with a large dataset, deep learning is typically regarded as an effective
algorithm [35]. Conventionally, deep learning techniques demand a significant amount of
computing time and large storage space [25]. Figure 3 depicts the customized CNN network
model for classifying skin lesions. The custom CNN model is comprised of 4 × 2 layers.
RGB input image of size 28 × 28 was utilized. The convolution operation is performed on
the first two layers in each of these layers and 3 × 3 sized 32 filters are applied with a ReLu
activation function. It is followed by the implementation of max pooling 2D layer with pool
size of 2 × 2 and a batch normalization layer. In the second layer, the same convolution
operation is performed with change in the parameters. In this layer 3 × 3 sized 64 filters
are used with a ReLu activation function. After ReLu function, a max pooling 2D layer of
2 × 2 size and a batch normalization layer are employed. As a part of the third layer, the
same convolution operation is performed with alteration in the parameters. In this layer, 3
× 3 sized 128 neurons are implemented with a ReLu activation function. It is then followed
by the max pooling 2D layer of 2 × 2 size and a batch normalization layer. The fourth layer
contains the similar convolution operation is performed with another set of parameters.
In this layer, 3 × 3 sized 256 filters are used which are then followed by max 2D pooling
of size 2 × 2, batch normalization layer, a dropout layer of 20%, and a flattening layer. In
the final stage, the classifier receives the output of the flattening layer. Tables 3 and 4 show
the summary and hyper parameters used for designing the model, respectively. Proposed
method for classification of skin lesions is illustrated in Algorithm 1.
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Algorithm 1: Proposed algorithm for classification of skin lesions

Step 1: Pre-processing

a. Raw input images are first pre-processed using the ESRGAN generator model.
b. The images are then resized to 28 × 28 for faster classification using the CNN model.
c. The imbalanced dataset is balanced using the data augmentation processes.
d. The augmented data is first split up into training data and testing data.

Step 2: Training custom CNN model

a. Feature map Fmap are extracted from the input images
b. Set Fc = 2D Conv (Fmap, size(32));
c. Set Fr = ReLu (Fc);
d. Set Fp = MaxPooling2D (Fr);
e. Set Fb = BatchNormalization (Fp);
f. size1 = [64,128,256]

for i = 0 to 2:

Set Fc1 = 2D Conv (Fmap, size1(i));
Set Fr1 = ReLu (Fc1);
Set Fc2 = 2D Conv (Fmap, size1(i));
Set Fr2 = ReLu (Fc2);
Set Fp1 = MaxPooling2D (Fr2);
Set Fb1 = BatchNormalization (Fp1);

end for

g. Set Ff = Flattening (Fb1);
h. Set F∂ = Dropout (Ff );
i. size2 = [256,128,64,32]

for j = 0 to 3
Set Fd = Dense (F∂,size2(j));
Set Fb = BatchNormalization (Fd);
end j

j. Set Foc = OutputClassifier (Fb);

Figure 3. Layered architecture of proposed CNN model.
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Table 3. CNN Model Summary.

Layer Output Shape Parameters

Input Layer [(None, 28, 28, 3)] 0

Convolution 2D_1 (None, 28, 28, 32) 896

MaxPooling2D_1 (None, 14, 14, 32) 0

Batch Normalization_1 (None, 14, 14, 32) 128

Convolution 2D_2 (None, 14, 14, 64) 18,496

Convolution 2D_3 (None, 14, 14, 64) 36,928

MaxPooling2D_2 (None, 7, 7, 64) 0

Batch Normalization_2 (None, 7, 7, 64) 256

Convolution 2D_4 (None, 7, 7, 128) 73,856

Convolution 2D_5 (None, 7, 7, 128) 147,584

MaxPooling2D_3 (None, 3, 3, 128) 0

Batch Normalization_3 (None, 3, 3, 128) 512

Convolution 2D_6 (None, 3, 3, 256) 295,168

Convolution 2D_7 (None, 3, 3, 256) 590,080

Batch Normalization_4 (None, 1, 1, 256) 0

Flatten (None, 256) 0

Dropout (None, 256) 0

Dense_1 (None, 256) 65,792

Batch Normalization_5 (None, 256) 1024

Dense_2 (None, 128) 32,896

Batch Normalization_6 (None, 128) 512

Dense_3 (None, 64) 8256

Batch Normalization_7 (None, 64) 256

Dense_4 (None, 32) 2080

Batch Normalization_8 (None, 32) 128

Classifier (None, 7) 231

Table 4. Hyper parameters for training the model.

Parameter Value

Batch size 128

Number of epochs 25

Number of iterations 294

Optimizer Adam

Optimizer parameters Lr = 0.00001

5. Results and Discussion

In this section, we discuss the model’s performance over a range of metrics and present
a comparative study that illustrates how the suggested technique outperforms the current
melanoma detection algorithms.

5.1. Performance Metrics

To assess the efficiency of the presented model, we used performance metrics such
as Accuracy, F1-Score, Recall, and Precision. Performance metrics shown in Table 5 are
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calculated from a confusion matrix and are given by Equations (7), (8), (9) and (10), respectively.
Performance measurement of the deep learning model comprises the following terms: (a) True
Positive (Tp), (b) True Negative (Tn), (c) False Positive (Fp), and (d) False Negative (Fn) [36].

Table 5. Performance metrics and their formulas.

Performance Metrics Formula Equation

Accuracy (Tn+Tp)
(Tp+Fp+Fn+Tn)

(7)

F1-Score (2∗Precision∗Recall)
(Precision+Recall) (8)

Recall
Tp

(Tp+Fn)
(9)

Precision
Tp

Tp+Fp
(10)

5.2. Protocol-I (Train:Test = 80:20 Ratio)

After performing data augmentation, the entire dataset is split into two partitions,
namely, train and test with the ratio of 80:20. For protocol-I, for this augmented data, the
total number of training images is 37,548 and of test images is 9387. The details of class-wise
training and test images are depicted in Table 6.

Table 6. Class-wise images present in HAM10000 dataset with protocol-I.

Class akiec bcc bkl df nv vasc mel

Training Samples 5383 5352 5408 5417 5325 5341 5322

Testing Samples 1322 1353 1297 1288 1380 1364 1383

The model was trained for 25 epochs on the Google Colaboratory Pro platform with
12 GB RAM and Python 3 Google compute backend engine GPU Accelerator. We interrupt
the model’s continuing execution using the early stopping method and record the model’s
best-performing parameters, such as its maximum accuracy and minimum cross-entropy loss.
Every time the model fails to reach an accuracy greater than those acquired in the previous
two epochs, we decreased the learning rate of the model to prevent additional stalling in
the learning phase. The training and testing accuracies and loss graphs are displayed in
Figures 4 and 5, respectively. The highest testing accuracy was obtained as 98.77% on the
25th epoch. Accuracy is one of the important metrics to characterize the achievement of the
model if the dataset is proportionate. To get the different evaluation scores, we have used the
confusion matrix which gives the exact classifications as shown in Figure 6. In this experiment,
a confusion matrix is incurred for seven classes as mentioned in the dataset. The confusion
matrix scores are computed to examine the performance of the model for different classes.
From Table 7, it can be observed that the model works very well in classifying class 0, class 3,
and class 5. The scores obtained for class 4 are slightly low.

Various Approaches That Follow Protocol-I

Table 8 specifies accuracies in the context of current research performed on the
HAM10000 database. In the Agyenta et al. [37], the authors carried out research work
on the HAM10000 database. Transfer learning techniques like InceptionV3, ResNet50,
DenseNet201, and comparative study is accomplished on the HAM1000 database and
achieved accuracies of 85.80%, 86.69%, and 86.91%, respectively. The authors have reached
the highest accuracy for the DenseNet201 model. In another work by Onur et al. in [19], the
presented approach included a custom CNN model and experiments with an image size of
75 × 100. An accuracy of 91.51% was achieved in this study. Qian et al. [14] presented an
experimental study using the CNN model concatenated with the Grouping Of Multi-Scale
Attention Blocks (GMAB) technique. This study achieved an accuracy of 91.6 %. Shetty
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et al. [8] developed a CNN model along with a k-fold cross-validation method. The accu-
racy of this model was 95.18%. The study carried out by Panthakkan et al. [16], and was
based on the Concatenated Xception-ResNet50 model for the diagnosis of skin cancer. This
model yields competitive results with an accuracy of 97.8%. The proposed work presents a
custom CNN model and implements it on pre-processed data using the ESRGAN algorithm
to achieve an accuracy of 98.77% which is much higher when compared to other literature
studies carried out on the HAM10000 database.

Figure 4. Accuracy graph for training and testing for protocol-I.

Figure 5. Training and testing losses for protocol-I.
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Figure 6. Confusion matrix for protocol-I (80:20 Train:Test split).

Table 7. Class-wise performance measures of the model.

Lesion Class Precision Recall F1-Score

0-akiec 1.00 1.00 1.00

1-bcc 0.99 1.00 0.99

2-bkl 0.97 1.00 0.99

3-df 1.00 1.00 1.00

4-nv 1.00 0.92 0.96

5-vasc 1.00 1.00 1.00

6-mel 0.96 1.00 0.98

Table 8. Highest Accuracy for protocol-I.

Sr. No. Work
Data Augmentation/Balancing? (Yes/No).

Total Number of Images after Data
Augmentation/Balancing

Methodology Accuracy (%)

1 Agyenta et al. [37] Yes,
7283

InceptionV3 85.80%

ResNet50 86.69%

DenseNet201 86.91%

2 Qian et al. [14] Yes,
Not mentioned

Grouping of Multi-scale Attention
Blocks (GMAB) 91.6%

3 Shetty et al. [8] Yes,
1400 Convolutional neural network (CNN) 95.18%

4 Panthakkan et al. [16] No Concatenated Xception-ResNet50 - 97.8%

5 Proposed algorithm Yes,
46,935 ESRGAN-CNN 98.77%

5.3. Protocol II

For the purpose of parameter tuning with more test images, the following protocol-II is
chosen where the dataset is split into the following ratio ((Train + Val):Test) = ((90 + 10):20).
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It indicates that at first, the dataset is divided into 80: 20 Train: Test split. Subsequently, the
training set is subdivided into 90% for training and 10% for validation. For this augmented
data the number of training images is 33,793, validation images is 3755 as well as 9387 test
images. Class-wise samples for this experimentation are depicted in Table 9. The model was
trained using a machine with 12 GB RAM and GPU attached to it. Training and validation
accuracies and losses are indicated in Figures 7 and 8, respectively. The confusion matrix
for protocol-II is indicated in Figure 9.

Table 9. Class-wise images present in the HAM10000 dataset with protocol-II.

Class akiec bcc bkl df nv vasc mel

Training Samples 4845 4817 4867 4875 4792 4807 4790

Validation Samples 538 535 541 542 533 534 532

Testing Samples 1322 1353 1297 1288 1380 1364 1383

Figure 7. Accuracy graph for training and testing for protocol-II.

Various Approaches That Follow Protocol-II

Table 10 specifies accuracies in the context of current research performed on the
HAM10000 database. In Sevli et al. [19], a deep convolutional neural network was im-
plemented for the classification of skin lesions. This study accomplished an accuracy of
91.51%. Saarela et al. [38] worked on the HAM10000 dataset for skin-lesion classification.
In this study, the robustness, stability, and fidelity studies of the deep convolutional neural
network are carried out. Their model gives a classification accuracy of 80%. The proposed
method for protocol-II gives a better accuracy of 98.36% as indicated in Table 10.
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Figure 8. Training and testing losses for protocol-II.

Figure 9. Confusion matrix for protocol-II.
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Table 10. Highest accuracy for protocol-II.

Sr. No. Work
Data Augmentation/Balancing? (Yes/No).

Total Number of Images after Data
Augmentation/Balancing

Methodology Accuracy (%)

1 Onur et al. [19] Yes,
Not Mentioned Convolutional neural network (CNN) 91.51%

2 Saarela et al. [38] No Deep Convolutional neural network (CNN) 80%

3 Proposed algorithm Yes,
46,935 ESRGAN-CNN 98.36%

5.4. Protocol III

For the purpose of parameter tuning with fewer numbers of images for testing, the
following protocol-III is implemented where the dataset is split into the following ratio
((Train + Val):Test) = ((90 + 10):10). It indicates that at first, the dataset is divided into
90: 10 Train: Test split. Subsequently, the training set is subdivided into 90% for training
and 10% for validation. For this augmented data, the number of training images is 38,017,
the number of validation images is 4224, and the number of test images is 4694. Class-wise
samples for this experimentation are depicted in Table 11.

Table 11. Class-wise images present in HAM10000 dataset with protocol-III.

Class akiec bcc bkl df nv vasc mel

Training Samples 5346 5557 5338 5184 5500 5513 5579

Validation Samples 594 617 593 576 611 613 620

Testing Samples 660 686 659 640 679 681 689

The CNN model was trained using a machine with 12 GB RAM and GPU attached
to it. Training and validation accuracies and losses are indicated in Figures 10 and 11,
respectively. The confusion matrix for protocol-III is indicated in Figure 12.

Figure 10. Accuracy graph for training and testing for protocol-III.
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Figure 11. Training and testing losses for Protocol-III.

Figure 12. Confusion matrix for Protocol-III.

Various Approaches That Follow Protocol-III

Table 12 specifies accuracies, in the context of current research performed on the
HAM10000 database. The research article presented by Aldhyani et al. [2] focused on kernel-
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based CNN. In this study, a lightweight dynamic kernel deep-learning-based convolutional
neural network is implemented. This algorithm achieved an accuracy of 97.8% when the
model was tested on the HAM10000 database. Alam et al. [39] presented an approach that
works on the segmentation-based sub-network. In this study, the S2C-DeLeNet algorithm
was applied on skin cancer data. This algorithm has obtained an accuracy of 90.58%. The
proposed Custom CNN using ESRGAN technique achieved an accuracy of 98.89%.

Table 12. Highest accuracy for Protocol-III.

Sr. No. Work
Data Augmentation/Balancing? (Yes/No).

Total Number of Images after Data
Augmentation/Balancing

Methodology Accuracy (%)

1 Aldhyani et al. [2] Yes,
54,907

Lightweight
Dynamic Kernel

Deep-Learning-Based
Convolutional Neural Network

97.8%

2 Alam et al. [39] No S2C-DeLeNet 90.58%

3 Proposed algorithm Yes,
46,935 ESRGAN-CNN 98.89%

6. Conclusions and Future Scope

Melanocyte cells are responsible for the formation of pigmented lesions. Skin ma-
lignancies such as melanoma are caused by the unregulated division of melanocyte cells,
which may have a damaging effect on the human body. The dermatologists with extensive
training interpret dermoscopic images. Due to the insufficiency of educated specialists
and the need to minimize human-induced mistakes, the use of computer-assisted systems
is emphasized. Convolution neural network, a method for deep learning that retrieves
features from images, achieved huge success in the domain of computer vision. The pre-
processing with ESRGAN helps us to reduce the size of images with better resolution and
overall execution time for the experiment. The complexion in the model in terms of image
shape that it considers as an input leads to maximum execution time in training the model.
Hence, in this work, we have used images with a resolution of 28 × 28 pixels. Before
resampling the images, the original images were enhanced using the ESRGAN dataset
which helps to preserve the eminent features in the input images after down sampling. In
this experimental analysis, we have implemented a HAM10000 dataset having 10,015 im-
ages of skin lesions and are categorized into seven different classes using a custom CNN
model. The experimental model achieved accuracies of 98.77%, 98.36%, and 98.89% for
protocol-I, protocol-II, and protocol-III, respectively, and it is seen to be competitively high
as compared to the pretrained models presented by different researchers.

In the future, our aim is to work on the diagnosis of real-time skin lesions with
improvement in the testing accuracy. We also hope to implement our proposed model to
work on larger datasets if available for skin-cancer image categorization. It will in turn
help us to enhance the performance metric scores. It is anticipated that the proposed
work will help the dermatologist to examine and classify the class of skin cancer in lesser
time duration and with more precision. Additionally, it will assist in reducing the total
costs associated with skin cancer diagnosis. There is a scope for further enhancement in
performance metrics such as accuracy, precision, and recall.
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Abstract: Deep learning has achieved remarkable progress, particularly in neuroimaging analysis.
Deep learning applications have also been extended from adult to pediatric medical images, and
thus, this paper aims to present a systematic review of this recent research. We first introduce the
commonly used deep learning methods and architectures in neuroimaging, such as convolutional
neural networks, auto-encoders, and generative adversarial networks. A non-exhaustive list of
commonly used publicly available pediatric neuroimaging datasets and repositories are included,
followed by a categorical review of recent works in pediatric MRI-based deep learning studies in
the past five years. These works are categorized into recognizing neurodevelopmental disorders,
identifying brain and tissue structures, estimating brain age/maturity, predicting neurodevelopment
outcomes, and optimizing MRI brain imaging and analysis. Finally, we also discuss the recent
achievements and challenges on these applications of deep learning to pediatric neuroimaging.

Keywords: pediatric; magnetic resonance imaging; neurodevelopment; deep learning

1. Introduction

Machine learning has achieved extraordinary achievements during the past decades.
Conventional machine learning algorithms such as support vector machine and logistic
regression have been widely applied to image analysis for pattern recognition and iden-
tification [1]. Yet applications of such approaches are limited by the reliance on feature
extraction procedure and restrictions on high dimensionality of data. Feature extraction
requires high expertise in domain knowledge to transform raw data into a different repre-
sentation. Further dimension reduction techniques are required to fit the high-dimensional
features to the machine learning algorithms [2]. Evolution of deep learning algorithms
such as convolutional neural networks has advanced the development of machine learning
to another triumph. The end-to-end framework of deep learning allows automatic feature
learning of the complicated data patterns which migrates the subjectivity in feature ex-
traction procedure. The deep architecture and nonlinear processing units empower the
deep learning algorithm to deal with a vast amount of data [3,4]. Successful applications of
conventional machine learning and deep learning to medical imaging have been widely
reported [5,6]. Specifically, neuroimaging studies based on magnetic resonance imaging
(MRI) have applied machine learning to the study of the brain in many aspects [7,8].

MRI has become a crucial diagnostic imaging technique for the study of the brain
for its advantage of non-ionic and high-contrast resolution [9]. MRI relies on the nuclear
magnetic resonance phenomenon, in which atomic nuclei will re-emit radio signals when
placed in a magnetic field and stimulated by oscillating radio waves. Human body contains
rich hydrogen nuclei and the nuclei align to the magnetic field generated by the MRI
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scanner. Then, an oscillating radio frequency deviates the magnetic momentum of the
nuclei from the field. When the oscillating radio pulse is removed, signals generated by the
realignment of hydrogen nuclei can be detected by a reciever coil [10,11]. The most common
MRI modality is the structural MRI (sMRI) which provides morphostructural information
based on the concentration of hydrogen protons. sMRI measures the signals produced by
aligned hydrogen protons in water molecules in the body and creates excellent contrast
among different tissues. Functional MRI (fMRI) quantifies the blood oxygenation level-
dependent (BOLD) signals based on the blood flow and blood oxygen changes around cells
and reflects the brain activity information [12]. Resting-state fMRI (rs-fMRI) is measured
when the subject is at rest while task fMRI monitors the brain function during an assigned
task. Diffusion tensor imaging (DTI) estimates the motion of water molecules in the brain.
The water molecules’ diffusion speed and directions are restricted by tissue types and fiber
architectures. DTI therefore provides information based on the quantitative anisotropy
and orientation [13]. Deep learning methods have been widely applied to neuroimaging
studies in adult for neuropsychiatric disorder recognition, brain tissues and structures
segmentation, and clinical outcome prediction [8,14,15]. In comparison, relatively few
deep learning studies have been conducted in pediatric MRI. Most previous reviews on
pediatric MRI involved a large number of studies using conventional machine learning
approaches instead of deep learning algorithms and some reviews focused on specific topics
such as Autism [7,16,17]. To illustrate the most recent achievements of deep learning in
pediatric MRI, this systematic review summarized the advanced deep learning approaches
applied to multiple neurodevelopmental topics in MRI-based research in the past five years.
Section 2 introduces the most commonly utilized deep learning algorithms as well as a list
of available public datasets for neurodevelopment. Section 3 categorizes the recent studies
into five main topics: recognizing neurodevelopmental disorders, identifying brain and
tissue structures, estimating brain age/maturity, predicting neurodevelopment outcomes,
and optimizing MRI brain imaging and analysis. The challenges and insights of applying
deep learning to pediatric MRI are discussed in Section 4. We conclude in Section 5.

2. Methods

2.1. Deep Learning Model Architectures

Multi-layer perceptron (MLP) has the most basic architecture of deep neural networks,
which is composed a stack of processing layers: an input layer, several hidden layers,
and an output layer (Figure 1) [18]. The neurons in the processing layers allow nonlinear
computation and empower the model to learn different representations of the training data
at multiple levels of abstraction [3].

Figure 1. Architecture of multi-layer perceptron (MLP) [18].

Convolutional neural network (CNN) is the most widely applied deep learning algo-
rithm for medical imaging studies. A typical CNN consists of convolutional layers with
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activation functions, pooling layers, and fully connected layers (Figure 2) [2]. Convolutional
layers convolve an image with different types of kernel functions to extract image features.
The kernels are applied to the entire image, thus greatly reducing the number of weights
to be trained compared to fully connected neural networks. Activation functions such as
sigmoid and ReLu (Rectified Linear Unit) serve as nonlinear feature detectors to introduce
nonlinearities to CNN. Pooling layers reduce feature map resolution with translational
invariance. The combination of convolutional and pooling layers enables CNN to learn
spatial hierarchies among feature patterns. Fully connected layers function as a classifier
or regressor to predict the desired outcomes [2]. The weight sharing and translational
invariance properties facilitate CNN the efficient and precise power on image processing
tasks. Depending on the input data dimensionality, 1D, 2D, and 3D convolutional kernels
can be employed. Besides the basic stacking of convolutional layers, pooling layers and
fully connected layers, models with complex architectures have been developed to further
improve the performance of CNN. AlexNet was the first big CNN model which showed the
great potential of CNN on image recognition tasks [19]. Inception blocks utilize convolution
kernels of different sizes at the same level to optimize the accuracy and computation time
of the model [20]. Residual connection from a previous layer to a later layer without extra
parameters solves the vanishing gradients issues and thereby make the CNN model with
many layers [21]. Dense blocks formed by many convolution operations and a final pooling
and connecting the input and output of each convolution are proposed to train even deeper
models [22]. Many other CNN models with different architectures have been proposed.
A detailed summary can be found in the review paper by Celard et al. [2].

Figure 2. Architecture of convolutional neural networks [2].

U-net was proposed for semantic segmentation in 2015 and is still one of the most
used CNN architectures for medical image segmentation. The typical U-net is composed
of symmetrical encoder and decoder paths connected by skip connections (Figure 3) [23].
The model first performs a set of convolutions at the encoder side to extract features from
the input data and then reconstructs the input image while including new information
by transposed convolutions at the decoder side. Skip connections connect the encoder
and decoder at each level. Complex architectures have also been applied to U-net to
further improve its performance, for example, the Res-U-net and U-net with attention
mechanism [24,25].

Auto-encoder plays a pivotal role in unsupervised deep learning. Auto-encoder
follows the encoder and decoder architecture (Figure 4). The encoder aims at learning a
latent representation with low dimensionality which retains only the significant information
while ignoring the noise. The decoder utilizes the latent representation to reconstruct the
input data. Auto-encoder provides an effective approach for feature learning in recognition
tasks with unlabeled data. Variational auto-encoders are applied as generative models
which randomly generate new data that are similar to the input data [2].
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Figure 3. Architecture of U-net [26].

Figure 4. Architecture of auto-encoder [27].

Generative adversarial network (GAN) has attracted attention with its ability to
model data distributions and generate realistic data since proposed in 2014 [28]. GAN
consists of one generator network which captures the data distribution in real images and
generates a fake image and one discriminator which classifies the generated fake images
and real images (Figure 5). Two networks are trained alternatively in a competitive manner.
A large number of variations of GAN have been proposed and applied to object detection,
localization, segmentation, data augmentation, and image quality improvement tasks [29].
A review paper [30] introduced various architectures of GAN and their applications in
medical imaging.
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Figure 5. Architecture of generative adversarial networks (GAN) [29].

2.2. Public Datasets and Repositories

Sample size is one of the most critical issues for training a deep learning algorithm as
the number of trainable parameters grows exponentially with deep architectures. However,
data collection is expensive and time-consuming for medical images. Fortunately, more
and more data repositories and data-sharing platforms are available recently, making it
possible to conduct medical imaging studies on a large scale. Table 1 lists the available
public datasets and repositories involved in the studies reviewed in this manuscript. Some
repositories collect data from multiple independent sites and provide a large number of sub-
jects. The Autism Brain Imaging Data Exchange (ABIDE) dataset and IMaging-PsychiAtry
Challenge (IMPAC) dataset focus on autism spectrum disorder (ASD) recognition and pro-
vide data of subjects with ASD and healthy controls. The ADHD-200 consortium collects
data for attention deficit hyperactivity disorder (ADHD) patients and healthy controls.
The Healthy Brain Network (HBN) dataset and Human Connectome Project Development
(dHCP) project are data collections for typically developed individuals. The UNC/UMN
Baby Connectome Project (BCP) collects data of infants and pre-school age children. Other
datasets including a large number of participants such as UK Biobank and International
Consortium for Brain Mapping (ICBM) involve healthy controls as well as patients with
various neurodevelopmental disorders at all ages.

Table 1. Public datasets.

Dataset
No. of

Sites/Projects
Population Technique Citation

Autism Brain Imaging Data
Exchange I (ABIDE I)

17 independent
imaging sites

539 subjects with ASD and
573 healthy controls (age

7–64 years)
sMRI, rs-fMRI [31]

Autism Brain Imaging Data
Exchange II (ABIDE II)

19 independent
imaging sites

521 subjects with ASD and
593 healthy controls (age

5–64 years)

sMRI, rs-fMRI,
DTI [32]

IMaging-PsychiAtry
Challenge (IMPAC) -

549 subjects with ASD 601
healthy controls
(age 0–80 years)

sMRI, rs-fMRI [33]

ADHD-200 Consortium 8 independent
imaging sites

285 subjects with ADHD
491 healthy controls (age

7–21 years)
sMRI, rs-fMRI [34]

UK Biobank - 500,000 subjects
(age 40–69 years)

sMRI, rs-fMRI,
DTI [35]
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Table 1. Cont.

Dataset
No. of

Sites/Projects
Population Technique Citation

National Database for
Autism Research (NDAR)

hundreds of
research projects

117,573 subjects by age
(57,510 affected subjects and

59,763 control subjects)
sMRI, rs-fMRI, DTI [36]

Open fMRI 95 datasets 3375 subjects across all
datasets

sMRI, rs-fMRI, task
fMRI [37]

International Consortium
for Brain Mapping (ICBM) - 853 subjects

(age 18–89 years) sMRI, rs-fMRI, DTI [38]

1000 funtional connectome 33 independent
imaging sites

1355 subjects
(age 13–80 years) rs-fMRI [39]

The Adolescent Brain
Cognitive Development

(ABCD) Study
- 12,000 subjects

(age 9–10 years)
sMRI, rs-fMRI, task

fMRI [40]

ENIGMA ADHD working
group 34 cohorts over 4000 subjects sMRI, rs-fMRI, DTI [41]

Philadelphia
Neurodevelopmental

Cohort (PNC)
- 9500 subjects

(age 8–21 years)
sMRI, rs-fMRI, task

fMRI, DTI [42]

Healthy Brain Network
(HBN) - 10,000 subjects

(age 5–21 years)
sMRI, rs-fMRI, task

fMRI, DTI [43]

Human Connectome Project
Development (dHCP) - 1350 subjects

(age 5–21 years)
sMRI, rs-fMRI, task

fMRI [44]

The UNC/UMN Baby
Connectome Project (BCP) 2 sites 500 subjects

(age 0–5 years ) sMRI, rs-fMRI, DTI [45]

Abbreviations: sMRI—structural MRI, rs-fMRI—resting-state functional MRI, DTI—Diffusion Tensor Imaging.

2.3. Review Parameters

The paper selection and review procedure in this study follows the preferred reporting
items for systematic reviews and meta-analysis (PRISMA) guidelines [46,47]. The search
terms employed were <deep learning brain MRI neurodevelopment> or <deep learning
pediatric brain MRI> or <deep learning child brain MRI> or <deep learning adolescent brain
MRI> to include the deep learning studies based on MRI for pediatric neurodevelopment
studies. The initial search was performed on PubMed and Web of Science databases on 26
October 2022. Search engines ScienceDirect and Google Scholar were excluded due to the
large number of search results returned (thousands of results).

The initial search yielded 412 papers from PubMed and 252 papers from Web of
science. Following the PRISMA protocols, we performed selection and review steps in
Figure 6. A total of 304 duplicate records was removed in the first step. Secondly, we
examined the keywords, titles, and abstracts of the remaining 360 papers and excluded
review papers, case reports, papers with foreign language (French), and animal studies.
Furthermore, we identified studies with topics on adult population, genetics, maternity,
and non-deep learning approaches as irrelevant and excluded them. We retrieved the full
paper for 184 out of the remaining 185 studies. The full papers were further examined for
eligibility and 67 studies with non-pediatric population, non-MRI modality or non-deep
learning methods were removed. Then, 120 Studies were carefully reviewed and 113 of
them are categorized and reported in the next chapter. The remaining 7 studies on gender
prediction, functional connectivity estimation, and fascicles detection are not reported.

Three researchers independently examined the eligibility of the studies and conflict
decisions were resolved by discussion. Data extracted from selected studies include but are
not limited to the year of the study, clinical questions, study population, imaging techniques,
preprocessing protocols and tools, deep learning approach, training and validation settings,
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results, results interpretation, and limitations. Extracted information is presented and
discussed in the following chapters. Specifically, risk of bias analysis was performed
following the Risk Of Bias In Non-randomized Studies of Interventions [48] for (1) risk of
bias due to confounding; (2) risk of bias in selection of participants into the study; (3) risk
of bias in classification of interventions; (4) risk of bias due to deviations from intended
interventions; (5) risk of bias due to missing data; (6) risk of bias arising from measurement
of outcomes; (7) risk of bias in selection of reported results. Risk of bias analysis is presented
in Appendix A (Table A1).

Figure 6. Study selection procedure.

3. Results

3.1. Recognizing Neurodevelopmental Disorders

Neurodevelopmental disorders are common brain disorders in children, bringing a
variety of challenges to the affected patients and causing great burdens to their families.
Various genetic and environmental factors may perturb the developmental process and
result in neurodevelopmental disorders [49].

Autism spectrum disorder (ASD) is one of the most common neurodevelopmental
disorders [50]. ASD is characterized by early deficits in social interactions and commu-
nication accompanied by restricted and repetitive behaviors [49]. Review papers [7,17]
summarized a selected number of studies using artificial intelligence approaches to classify
ASD patients and healthy controls including both conventional machine learning methods
and deep learning methods. This review listed the recent deep learning advancements
using MLP, CNN, RNN, and auto-encoder models (Table 2). Rs-fMRI is widely utilized
for ASD recognition. Connectomes derived from fMRI were used as inputs to MLP, CNN,
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and RNN for classification [51–54]. A multimodal study [55] combined sMRI, rs-fMRI, and
task fMRI.

Attention deficit hyperactivity disorder (ADHD) is another common neurodevelop-
mental disorder [50]. ADHD patients often suffer from hyperactivity, impulsivity, and inat-
tention, and ADHD often continues to adulthood [56]. Previous ADHD recognition studies
were summarized in the review paper [7] in conventional machine learning category and
deep learning category. This review paper focuses on more recent studies utilizing deep
learning approaches for ADHD detection (Table 2). Both rs-fMRI and sMRI are employed
as inputs for deep learning networks.

Neurodevelopmental disorders which are less common such as cerebellar dyspla-
sia [57], dyslexic [58], epilepsy [59,60], conduct disorder [61], disruptive behavior disor-
der [62], and post-traumatic stress disorder [63] are also reviewed in this study. We also
include three studies for detection of posterior fossa tumors and tubers in tuberous sclerosis
complex [64–66], and two studies for white matter pathway classification [67,68]. This
review aims to investigate the deep learning methods utilized in various pediatric topics in
an overall manner and therefore includes multiple disorders. Structural imaging techniques
such as sMRI and DTI are more commonly utilized in these studies.

Overall, the selected studies are summarized in Table 2. Most studies conducted
baseline comparisons using conventional machine learning approaches and reported the
superior performance of deep learning approaches [53,69]. CNN dominates in the image
recognition tasks. A total of 41 out of 48 neurodevelopmental disorder classification
studies in this review utilized CNN approaches. Advanced CNN architectures such as
inception and residual modules were employed in 2D CNN models [70–72]. Several studies
trained 3D CNN with a limited number of sample size [61,69,73,74], bringing concerns on
overfitting. Large-scale studies which involve thousands of training data were conducted
using public datasets and repositories [55,75–78]. Multimodal studies combined features
from multiple MRI modalities showed better performance than single modality [62,76].

Table 2. Recognizing neurodevelopmental disorders.

Study Year Disorder Population Technique Preprocessing Method Results

[79] 2017 Autism
ABIDE I dataset

55 ASD (age 14.2 ± 3.2 years)
55 HC (age 12.7 ± 2.4 years)

rs-fMRI

Preprocessed
Connec-
tomes
Project

MLP Accuracy
86.36%

[80] 2018 Autism 62 ASD 48 HC task fMRI FSL MLP Accuracy
87.1%

[51] 2018 Autism ABIDE I dataset
529 ASD 571 HC rs-fMRI In-house

pipeline RNN Accuracy
70.1%

[81] 2018 Autism
ABIDE I & II dataset

116 ASD 69 HC
(age 5–10 years)

sMRI,
rs-fMRI SPM8

Deep
Belief

Network

Accuracy
65.56%

[53] 2019 Autism
ABIDE I & II dataset

210 ASD 249 HC
(age 5–10 years)

rs-fMRI SPM8 CNN Accuracy
72.73%

[52] 2019 Autism
ABIDE II dataset
117 ASD 81 HC
(age 5–12 years)

rs-fMRI FSL Auto-
encoder

Accuracy
96.26%
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Table 2. Cont.

Study Year Disorder Population Technique Preprocessing Method Results

[55] 2020 Autism

multi datasets: ABCD,
ABIDE I, II, BioBank,

NDAR, ICBM, Open fMRI,
1000 Functional

Connectomes
43,838 total connectomes

1711 ASD
(age 0.42–78 years)

rs-fMRI,
task-fMRI

SPT, AFNI,
SpeddyPP CNN AUROC

0.6774

[82] 2020 Autism

YUM dataset
40 ASD

(age 29.4 ± 11.6 years)
33 HC (age 30.1 ± 5.3 years)

ABIDE I dataset
521 ASD

(age 29.4 ± 11.6 years)
593 HC

(age 30.1 ± 5.3 years)

sMRI SPM8 3D CNN
Accuracy 88%

(YUM) 64%
(ABIDE)

[69] 2021 Autism

ABIDE I dataset
55 ASD

(age 14.52 ± 6.97 years)
55 HC

(age 15.81 ± 6.25 years)

rs-fMRI

Configurable
Pipeline for
the Analysis

of
Connectomes

3D CNN Accuracy
77.74%

[74] 2021 Autism 50 ASD 50 HC
(age 12–40 months) task-fMRI FSL, FEAT 3D CNN Accuracy 80%

[83] 2021 Autism
ABIDE I & II dataset
1060 ASD 1146 HC

(age 5–64 years)
rs-fMRI In-house

pipeline CNN Accuracy
89.5%

[84] 2021 Autism
ABIDE I dataset
506 ASD 532 HC
(age 10–28 years)

rs-fMRI DPABI MLP Accuracy
78.07 ± 4.38%

[85] 2021 Autism 52 ASD 195 HC
infants (age 24 months) MRI iBEAT CNN Accuracy 92%

[76] 2021 Autism

multi datasets: ABCD,
ABIDE I, II, BioBank,
NDAR, Open fMRI

29,288 total connectomes
1555 ASD

(age 0.42–78 years)

sMRI,
rs-fMRI,

task-fMRI

AFNI,
SpeddyPP CNN AUROC

0.7354

[54] 2022 Autism

ABIDE & UM dataset
411 HC for offline learning
48 ASD 65 HC for testing

(age 13.8 ± 2 years)

rs-fMRI
Connectome
Computation

System
Auto-encoder Accuracy

67.2%

[73] 2022 Autism

Preschool dataset
110 subjects

ABIDE I dataset
1099 subjects

sMRI SPM8 CNN

AUROC 0.787
(preschool)

0.856
(ABIDE)

[86] 2022 Autism 151 ASD 151 HC
(age 1–6 years) sMRI In-house

pipeline 3D CNN Accuracy
84.4%

[75] 2022 Autism
IMPAC dataset
418 ASD 497 hc

(age 17 ± 9.6 years)

sMRI,
rs-fMRI

In-house
pipeline MLP AUROC

0.79 ± 0.01
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Table 2. Cont.

Study Year Disorder Population Technique Preprocessing Method Results

[87] 2019 ADHD ADHD-200 consortium
776 subjects rs-fMRI In-house

pipeline 3D CNN Accuracy
69.01%

[88] 2020 ADHD ADHD-200 consortium
262 subjects rs-fMRI AFNI, FSL CNN Accuracy

73.1%

[78] 2021 ADHD

ENIGMA-ADHD Working
Group

2192 ADHD 1850 HC
(age 4–63 years)

sMRI FreeSurfer MLP Testing
AUROC 0.60

[89] 2022 ADHD

ADHD-200 consortium
NI site25 ADHD 23 HC

(age 11–22 years)
NYU site: 118 ADHD 98 HC

(age 7–18 years)
KKI site: 22 ADHD 61 HC

(age 8–13 years)
PU site: 78 ADHD 116 HC

(age 8–17 years)
PU-1 site: 24 ADHD 62 HC

(age 8–17 years)

rs-fMRI
Preprocessed
Connectomes

Project
Auto-encoder Accuracy

>99%

[90] 2022 ADHD

ADHD-200 consortium
NI site: 28 ADHD-I 37 HC

NYU site: 72 ADHD-I,
42 ADHD-C, 96 HC

OHSU site: 27 ADHD-I,
13 ADHD-C, 70 HC

KKI site: 16 ADHD-I,
5 ADHD-C 60 HC

PU-1 site: 16 ADHD-I,
26 ADHD-C, 88 HC

PU-2 site: 15 ADHD-I,
20 ADHD-C, 31 HC

PU-3 site: 7 ADHD-I,
12 ADHD-C, 23 HC

rs-fMRI DPABI CNN Accuracy
>99%

[91] 2022 ADHD

ADHD-200 consortium
Training: 69 ADHD 99HC
Testing: 24 ADHD 27 HC

(age 7–21 years

rs-fMRI Athena
pipeline CNN Testing

accuracy 67%

[77] 2022 ADHD
ADHD-200 consortium

325 ADHD 547 HC
(age 12 ± 3.0 years)

rs-fMRI Athena
pipeline CNN Accuracy

78.7 ± 4.3%

[92] 2022 ADHD

19 ADHD
(age 10.25 ± 1.94 years)

20 HC
(age 10.15 ± 2.13 years)

sMRI SPM CNN Accuracy
93.45 ± 1.18%

[93] 2022 ADHD ABCD Dataset 127 ADHD
127 HC (age 9–10 years) sMRI ANTs CNN Accuracy

71.1%

[57] 2018 Cerebellar
Dysplasia 90 patients, 40 HC sMRI FSL, ANTs 3D CNN Accuracy

98.5 ± 2.41%

[61] 2020 Conduct
Disorder

60 patients
(age 15.3 ± 1.0 years)

60 HC (age 15.5 ± 0.7 years)
sMRI - 3D CNN Accuracy 85%
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Table 2. Cont.

Study Year Disorder Population Technique Preprocessing Method Results

[62] 2021
Disruptive
Behavior
Disorder

ABCD Study: 550 patients,
550 HC (age 9–11 years)

sMRI,
rs-fMRI, DTI FSL 3D CNN Accuracy 72%

[58] 2020 Dyslexic 36 patients, 19 HC
(age 9–12 years) task fMRI SPM 3D CNN Accuracy

72.73%

[94] 2020

Embryonic
Neurodevel-

opmental
Disorders

114 patients, 113 HC

(age 16–39 weeks)
sMRI — CNN Accuracy

87.7%

[59] 2020 Epilepsy 30 patients, 13 HC sMRI BET CNN Accuracy
66–73%

[60] 2020 Epilepsy 59 patients, 70 HC
(age 7–18 years) DTI SPM CNN Accuracy

90.75%

[70] 2021
Neonatal

Hyperbiliru-
binemia

47patients, 32 HC
(age 1–18 days) sMRI CNN Accuracy

72.15%

[63] 2021 PTSD

33 patients
(age 14.3 ± 3.3 years)

53 HC
(age 15.0 ± 2.3 years)

rs-fMRI SPM12 MLP Accuracy 72%

[64] 2020 Tuber 260 patients, 260 HC sMRI FSL 3D CNN Accuracy
97.1%

[65] 2022 Tuber 296 patients, 245 HC
(age 0–8 years) sMRI - 3D CNN Accuracy 86%

[71] 2020 Tuber
114 patients

(age 5–15.3 years), 114 HC
(age 6.9–15.7 years)

sMRI In-house
pipeline CNN Accuracy 95%

[95] 2021 Tumor 136 patients, 22 HC
(age 0–11 years) sMRI SPM CNN Accuracy

87 ± 2%

[72] 2020 Tumor 617 patients with tumor
(age 0.2–34 years) sMRI Pydicom CNN Accuracy 72%

[66] 2018 Tumor 233 subjects sMRI - Capsule
Network

Accuracy
86.56%

[96] 2020 Tumor 39 pediatric patients sMRI - CNN Accuracy
87.8%

[67] 2020 White Matter
Pathways

89 patients with focal
epilepsy

(age 9.95 ± 5.41 years)
DTI FreeSurfer CNN Accuracy 98%

[68] 2019 White Matter
Pathways

70 HC
(age 12.01 ± 4.80 years),
70 patients with focal

epilepsy
(age 11.60 ± 4.80 years)

DTI
FreeSurfer,
FSL, NIH

TORTOISE
CNN

F1 score
0.9525 ±
0.0053

Abbreviations: ASD—Autism spectrum disorder, HC—healthy control, ADHD—Attention deficit hyperactivity
disorder, sMRI—structural MRI, rs-fMRI—resting-state functional MRI, DTI—Diffusion Tensor Imaging, MLP—
Multi-layer perceptron, CNN—Convolutional neural network.

3.2. Identifying Brain and Tissue Structures

Identifying brain and tissue structures is of great importance in facilitating studies
investigating changes in a specific region of interest. Accurate segmentation of brain tissues
and structures lays the foundation for volumetric and morphologic analysis. Volumetric
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analysis of gray matter, white matter, cerebrospinal fluid, and specific brain structure
such as amygdala assist in computer-aided diagnosis of neurodevelopmental disorders.
Localization and segmentation of brain tumor is essential for assessment of the tumor
burden as well as treatment response and tumor progression [97]. Brain masking isolates
the brain from surrounding tissues across non-stationary 3D brain volumes in fMRI, which
is important and challenging, especially for fetal imaging [98]. Specific challenges for
pediatric brain segmentation exist due to the variations in head size and shape in children
compared to adults. Rapid changes in tissue contrast and low contrast to noise ratio in
fetal and newborn MRIs lead to further demanding techniques [99]. This study reviews
segmentation of pediatric brain tissues, structures, tumors, and masking of fetal brain
(Table 3).

Most of the studies employed U-net for segmentation. Dice scores vary across studies.
3D U-net models were implemented for brain tissue and volume segmentation [25,100–102].
Transfer learning and active learning greatly reduced the number of samples that need to
be labeled for training a high-quality patch-wise segmentation method [99]. FetalGAN
was proposed to segment a fetal functional brain MRI using a segmentor as the generator
in GAN architecture and achieved better performance than 3D U-net [98]. Adversarial
domain adaptation was used to adapt a pre-trained U-net to another segmentation task
in an unsupervised learning manner [103]. Transfer learning and GAN stand for the
opportunity of training segmentation algorithms with weakly labeled or unlabeled data,
which may greatly reduce the tedious and time-consuming process of creating groundtruth
for segmentation tasks.

Table 3. Identifying brain and tissue structures.

Study Year Structure Population Technique Preprocessing Method Results

[104] 2020 Amygdala
171 infants (age 6 months)

204 infants (age 12 months)
201 infants (age 24 months)

sMRI - U-net

Dice score
0.882

(6-month)
0.882

(12-month)
0.903

(24-month)

[105] 2020
Anterior
Visual

Pathway
18 subjects sMRI - GAN Dice score

0.602 ± 0.201

[106] 2018 Brain
Mask

10 adolescent subjects (age
10–15 years),

25 newborn subjects from
dHCP dataset

sMRI - CNN

F1 score
95.21 ± 0.94
(adolescent)
90.24 ± 1.84
(newborns)

[99] 2019 Brain
Mask

10 adolescent subjects,
26 newborn subjects from

dHCP dataset, 25 other
subjects (age 0.2–2.5 years)

sMRI - CNN

Improve dice
score after
labeling a
very small
portion of

target dataset
(<0.25%)
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Table 3. Cont.

Study Year Structure Population Technique Preprocessing Method Results

[107] 2020 Brain Mask 197 fetuses (gestation age
24–39 weeks) rs-fMRI FSL U-net Dice

score 0.94

[98] 2020 Brain Mask 71 scans of fetuses rs-fMRI AFNI GAN Dice score
0.973 ± 0.013

[108] 2020 Brain Mask

37 healthy fetuses (gestation
age 27.3 ± 4.11 weeks)

32 fetuses with spina bifida
pre-surgery (gestation age

23.06 ± 1.64 weeks)
16 fetuses post-surgery

(gestation age
25.69 ± 1.21 weeks)

sMRI -N4ITK U-net

Dice score
0.9321

(healthy),
0.9387

(pre-surgery),
0.9294

(post-surgery)

[101] 2021 Brain Mask 214 fetuses (gestation age
22–38 weeks) sMRI - 3D U-net Testing dice

score 0.944

[109] 2021 Brain Mask 30 subjects
(ages 2.34–4.31 years) sMRI - CNN Dice score

0.90 ± 0.14

[110] 2019 Brain Tissue 29 subjects
(age 9.96 ± 7.16 years) sMRI - 3D CNN

Dice score
0.888 (gray

matter), 0.863
(white matter),

0.937 (CSF)

[111] 2019 Brain Tissue 12 fetuses (gestation age
22.9–34.6 weeks) sMRI - CNN Dice

score 0.88

[112] 2019 Brain Tissue

95 very pre-term infants
(gestation age 28.5 ± 2.5
weeks, scan at term age),
28 very pre-term infants
(gestation age 26.8 ± 2.1
weeks, scan at term age)

sMRI - CNN

Dice score
0.895 ± 0.098
testing dice

score
0.845 ± 0.079

[113] 2020 Brain Tissue
47 patients with pediatric

hydrocephalus
(age 5.8 ± 5.4 years)

sMRI - CNN Dice
score 0.86

[114] 2021 Brain Tissue 35 subjects
(age 4.2 ± 0.7 years) sMRI - 3D CNN

JS = 0.83 for
gray matter
JS = 0.92 for
white matter

[25] 2021 Brain Tissue 98 preterm infants
(gestation age ≤ 32 weeks) DTI In-house

pipeline 3D U-net Dice score
0.907 ± 0.041

[102] 2022 Brain Tissue 106 fetuses (gestation age
23–39 weeks) sMRI FSL 3D U-net Dice

score 0.897

[115] 2022 Brain Tissue

dHCP datast: 150 term
(gestation age 37–44 weeks )
50 preterm (gestation age ≤

32 weeks, scan at
term-equivalent age)

sMRI - CNN Dice
score 0.88

[116] 2022 Brain Tissue 23 infants
(age 6 ± 0.5 months) sMRI In-house

pipeline U-net

Dice score
0.92 (gray

matter), 0.901
(white matter),

0.955 (CSF)
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Study Year Structure Population Technique Preprocessing Method Results

[117] 2020 Cerebral
Arteries

48 subjects
(age 0.8–22 years) sMRI In-house

pipeline U-net Testing dice
score 0.75

[118] 2021 Cerebral
Ventricle

200 patients with
obstructive hydrocephalus

(age 0–22 years)
199 HC (age 0–19 years)

sMRI In-house
pipeline U-net Dice

score 0.901

[103] 2021
Cortical

Parcellation
Network

dHCP datast: 403 infants,
ePRIME dataset: 486 infants
(gestation age 23–42 weeks,
scanned at term-equivalent

age)

sMRI -MRITK GAN Dice score
0.96–0.99

[119] 2020 Cortical Plate 52 fetuses (gestation age
22.9–31.4 weeks) sMRI In-house

pipeline CNN
Testing dice

score
0.907 ± 0.027

[120] 2021 Cortical Plate 12 fetuses (gestation age
16–39 weeks) sMRI -AutoNet,

ITK-SNAP CNN Dice
score 0.87

[121] 2019 Intracranial
Volume

80 scans of fetuses
(gestation age 22.9–34.6

weeks) 101 scans of infants
(age 30–44 weeks)

sMRI - U-net Dice
score 0.976

[122] 2022 Limbic
Structure

dHCPdataset: 473 subjects
(40.65 ± 2.19) sMRI - CNN Dice

score 0.87

[123] 2022

Posterior
Limb of
Internal
Capsule

450 preterm infants (
gestation age ≤ 32 weeks,

scan at term-equivalent age)
sMRI In-house

pipeline U-net Dice
score 0.690

[124] 2022 Tuber 29 subjects
(age 9.96 ± 7.16 years) sMRI - U-net

Testing dice
score

0.59 ± 0.23

[125] 2022 Tumor 311 pediatric subjects sMRI - U-net Dice
score 0.773

[126] 2022 Tumor 177 patients
(age 0.27–17.87 years) sMRI CaPTk

software CNN Dice
score 0.910

[100] 2022 Tumor 122 patients
(age 0.2–17.9 years) sMRI ANTs 3D U-net Dice

score 0.724

[97] 2022 Tumor

BraTS 2020 Dataset: 369
patients local dataset:
22 patients (average

age 7.5–9 years)

sMRI In-house
pipeline U-net Dice

score 0.896

Abbreviations: sMRI—structural MRI, rs-fMRI—resting-state functional MRI, DTI—Diffusion Tensor Imaging,
CNN—Convolutional neural network, GAN—Generative adversarial network.

3.3. Predicting Brain Age

The brain development of children experiences a rapid and complex stage, especially
for children younger than two years. Early brain development is critical for cognitive, sen-
sory, and motor ability. Delayed brain development can lead to many neurodevelopmental
disorders in children and affect their quality of life [127]. Accurate evaluation of brain
development via brain age estimation based on neuroimaging is of clinical importance to
understand healthy brain development and study the brain maturity deviation caused by
neurodevelopmental disorders [128].

We summarized age prediction studies involved both infants and young children
(Table 4). Structural MRI techniques are commonly utilized in 2D and 3D CNN models.
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Study [128] using 2D CNN on DTI achieved comparison results with human experts.
Study [127] demonstrated superior performance of 3D CNN compared to conventional
machine learning approaches and 2D CNN. Multimodal study [129] combined sMRI, rs-
fMRI, and DTI features and yielded a mean absolute error of 0.381 years for children and
adolescents aged 8–21 years old. The age difference for the study population varies and
thus reporting of the relative error rate is necessary for comparing different methods in
different studies.

Table 4. Predicting brain age.

Study Year Population Technique Preprocessing Method Results

[84] 2017 115 infants (gestation age
24–32 weeks ) DTI In-house

pipeline CNN MAE 2.17 weeks

[130] 2019

317 MRI images of 112
infants age 2 weeks (8 to

35 days); 12 months (each
±2-weeks) and 3 years (each

±4-weeks).

sMRI In-house
pipeline 3D CNN

Accuracy 98.4%
classifying three

age groups

[131] 2019
PNC Dataset: 857 subject
(age 8–22 years) 20% as

children 20% as young adult
rs-fMRII SPM12 MLP

Accuracy 96.64%
predicting children

and young adult

[132] 2020
ABIDE II dataset 382
subjects ADHD200

consortium 378 subjects
sMRI SPM12 3D CNN

MAE 1.11 years
(ABIDE II dataset)

1.16 years (ADHD200
consortium)

[127] 2020 220 subjects (age 0–5 years) sMRI In-house
pipeline CNN MAE 2.26 months

[129] 2020 PNC Dataset: 839 subject
(age 8–21 years)

sMRI,
rs-fMRI,

DTI

SPM12,
DPARSF,
PANDA

MLP MAE
0.381 ± 0.119 years

[128] 2021 161 subjects (age 0–2 years) sMRI In-house
pipeline CNN MAE 8.2 weeks

[133] 2021 84 infants
(age 8 days–3 years) sMRI In-house

pipeline CNN Accuracy 90%

[134] 2021 119 subjects (age 0–2 years) sMRI In-house
pipeline CNN MAE 0.98 months

[135] 2021 220 fetuses (gestation age
15.9–38.7 weeks) sMRI In-house

pipeline CNN MAE 0.125 weeks

[136] 2021

167 patients with Rolandic
epilepsy

(age 9.81 ± 2.55 years),
107 HC

(age 9.43 ± 2.57 years)

sMRI CAT12,
SPM12 CNN

MAE 1.05 years for
HC 1.21 years

for patients

[137] 2022 524 infants (gestation age
23–42 weeks ) sMRI, DTI

Neonatal
specific seg-
mentation
pipeline

CNN
MAE 0.72 weeks

(term-born)
2.21 weeks (preterm)

Abbreviations: sMRI—structural MRI, rs-fMRI—resting-state functional MRI, DTI—Diffusion Tensor Imaging,
CNN—Convolutional neural network, GAN—Generative adversarial network, MAE—mean absolute error.

247



Appl. Sci. 2023, 13, 2302

3.4. Predicting Neurodevelopment Outcomes

The relationship between brain structure and cognitive function is complex. Research
on brain activity and connectivity builds the network theory to capture the brain trajectories.
It remains a challenge in the field of neuroscience to relate basic structural properties of
brain to complex cognitive functions [138]. This study reviewed research on correlating
brain structure and measurable neurodevelopment outcomes such as fluid intelligence,
language function, and motor function (Table 5).

The ABCD dataset provides neuroimaging data including sMRI, rsfMRI, and DTI as
well as cognitive assessments such as fluid intelligence and oral reading scores. Large-scale
studies based on the ABCD dataset involve thousands of data and a variety of modalities
to predict neurodevelopment outcomes [138–142]. CNN models were also employed to
predict motor function and cognitive deficits in very preterm infants [143,144].

Table 5. Predicting neurodevelopment outcomes.

Study Year Score Population Technique Preprocessing Method Results

[143] 2021 Cognitive
Deficits

261 very preterm infants
(gestation age ≤32 weeks ,

scan at 39–44 weeks
postmenstrual age)

DTI,
rs-fMRI FSL CNN Accuracy

88.4%

[145] 2020 Fluid Intel-
ligence

ABCD Study 8333 subjects
(age 9–10 years) sMRI - 3D CNN MSE 0.75626

[141] 2021 Fluid Intel-
ligence

ABCD Dataset 7709 subjects
(age 9–10 years) sMRI

FSL,
ANFI,

FreeSuer-
fer

CNN

Pearson’s
correla-

tion
coefficient

r = 0.18

[138] 2022 Fluid Intel-
ligence

ABCD Dataset 8070 subjects
(age 9–11 years)

HCP Dataset 1079 subjects
(age 22–35 years)

sMRI FreeSurfer CNN

MSE 0.919
(ABCD
Dataset)

0.834
(HCP

dataset)

[140] 2022 Fluid Intel-
ligence

ABCD Dataset 7693 subjects
(age 9–11 years) rs-fMRI FreeSurfer CNN

MAE
5.582 ±
0.012

[142] 2022 Fluid Intel-
ligence

ABCD Dataset Training:
3739 subjects, Validation 415

subjects, Testing 4515
subjects (age 9–11 years)

sMRI

FSL,
ANFI,

FreeSuer-
fer

CNN MSE 82.56
for testing

[146] 2021 Language
Scores

31 subjects with persistent
language concerns

(age 4.25 ± 2.38years)
DTI In-house

pipeline CNN MAE 0.28

[147] 2021 Language
Scores

37 subjects with epilepsy
(age 11.8 ± 3.1years) DTI FSL CNN MAE 7.77
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Table 5. Cont.

Study Year Score Population Technique Preprocessing Method Results

[144] 2020 Motor 77 very pre-term infants
(gestation age <31 weeks ) DTI ANTS CNN Accuracy 73%

[139] 2021 Oral Reading ABCD Study 5252 subjects
(age 9–10 years) sMRI, DTI - Auto-encoder MSE 206.5

Abbreviations: sMRI—structural MRI, rs-fMRI—resting-state functional MRI, DTI—Diffusion Tensor Imaging,
CNN—Convolutional neural network, MAE—mean absolute error, MSE—mean squared error.

3.5. Optimizing MRI Brain Imaging and Analysis

Assessing imaging quality and optimizing image acquisition are significant for medical
imaging analysis. Reconstruction techniques adjust the scanning parameters to maximize
the image quality and control the scanning time, which is of great benefit for pediatric
imaging in which many subjects cannot stay still for a long time [148]. Furthermore,
some scans may be missing or with low quality due to inadequate scanning time or fail
completion by the participants. Image generation algorithms synthesize pseudo-images
from low-resolution image or latent space, which provide a solution to recapture missing
data or rectify scans with low quality [149]. Here, we review the deep learning algorithms
for image quality assessment, reconstruction, and synthesis (Table 6).

Image quality assessment tools were constructed with 2D CNN for structural MRI and
DTI [150–152]. Study [153] utilized a two-stage transfer learning strategy which showed
near-perfect accuracy in evaluating image quality and is capable of real-time large-scale
assessment. GANs are widely applied in image generation tasks [149,154–157]. GANs
showed great capability in generating synthetic images to implement missing data or
improve the signal-to-noise ratio of poor quality images [24,149]. Study [148] proposed
CNN models for reconstruction which reduced the scan time by 42% while maintaining
image quality and lesion detectability. CNN combined with RNN also showed superior
performance in improving the signal-to-noise ratio [24].

Table 6. Optimizing MRI brain imaging and analysis.

Study Year Task Population Technique Preprocessing Method Results

[158] 2020 Image
Enhancement

131 neuro-oncology
patients

(age 0.4–17.1 years)
ASL - Auto-

encoder
SNR Gain

62%

[159] 2018 Image
Generation

28 infants (scan at birth,
3 months, and 6

months)
DTI FSL CNN

MAE
44.4 ± 17.5

(3-month-old
from

neonates)
40.1 ± 10.6

(6-month-old
from

3-month-old)

[154] 2019 Image
Generation

16 subjects
(age 1.1–21.3 years) sMRI - GAN MAE

52.4 ± 17.6

[155] 2020 Image
Generation

60 subjects
(age 2.6–19 years) sMRI In-house

pipeline GAN MAE
61.0 ± 14.1
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Table 6. Cont.

Study Year Task Population Technique Preprocessing Method Results

[156] 2022 Image
Generation

ABCD Dataset: 1517
subjects

(age 9–10 years)
sMRI - GAN PSNR

31.371 ± 1.813

[149] 2022 Image
Generation

127 neonates
(postmenstrual

age = 41.1 ± 1.5 weeks)
sMRI ANTs 3D GAN RMAE

5.6 ± 1.1%

[157] 2022 Image
Generation

125 subjects
(age 1–20 years) sMRI FSL GAN PSNR

28.5 ± 2.2

[150] 2019 Image Quality
Evaluation

ABIDE Dataset:
1112 subjects

(age 7–64 years)
sMRI SPM12 CNN Accuracy 84%

[153] 2020 Image Quality
Evaluation

BCP dataset: 534
images (age 0–6 years) sMRI - CNN

capable of
real-time

large-scale
assessment
with near-

perfect accu-
racy.

[151] 2021 Image Quality
Evaluation

211 fetuses (gestation
age 30.9 ± 5.5 weeks) sMRI In-house

pipeline CNN Accuracy
85 ± 1%

[152] 2022 Image Quality
Evaluation

ABCD Dataset: 2494
subjects

(age 9–10 years) HBN
Dataset: 4226 subjects

(age 5–21 years)

DTI MATRIX, FSL CNN

Accuracy
96.61%
(ABCD
Dataset)

97.52% (HBN
Dataset)

[160] 2021 Image Recon-
struction

20 fetuses (gestation
age 23.4–38 weeks) DTI SVR pipeline CNN

RMSE
0.0379 ±
0.0030

[24] 2021 Image Recon-
struction

305 subjects
(age 0–15 years) sMRI In-house

pipeline CNN+RNN PSNR
27.85+/−2.12

[161] 2022 Image Recon-
struction

107 subjects
(age 0.2–18 years) sMRI - CNN

image quality
improved

significantly
by

qualitative as-
sessment

[148] 2022 Image Recon-
struction

47 subjects
(age 2.3–14.7 years) sMRI - CNN Reduce scan

time by 42%

Abbreviations: sMRI—structural MRI, ASL—Arterial spin labeling, DTI—Diffusion Tensor Imaging, CNN—
Convolutional neural network, GAN—Generative adversarial network, MAE—mean absolute error, PSNR—Peak
signal-to-noise ratio.

4. Discussion

4.1. Advancements in Deep Learning Applied to Pediatric MRI

This study reviews pediatric MRI studies for recognition, segmentation, and predic-
tion tasks in neurodevelopment. Throughout the review, CNN is the most commonly
utilized model. Variations and advancement based on the basic architecture have been
proposed to improve the performance in multi-tasks. Multi-view 2D CNN and 3D CNN
have been proposed to deal with the 3D volumes in neuroimaging [57,82,84]. The multi-
view 2D CNN processes 3D volumes with slices generated from sagittal, axial, and coronal
sections while 3D CNN utilizes 3D kernels in the networks. Multi-branch CNN models
also utilize multimodal imaging to study the brain from different perspectives. Structural
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connectomes and functional connectomes were combined for age prediction in study [129]
and cognitive function prediction in study [139]. Multimodal studies classified children
with ASD from healthy controls using combinations of sMRI and rs-fMRI [75,76,81]. sMRI
provides structural information, fMRI provides information based on brain activity, and
DTI provides information regarding quantitative anisotropy and orientation. Multimodal
neuroimaging allows researchers to understand the brain from different perspectives and
plays an essential role in investigating the brain functional and structural changes in
pediatric neurodevelopment. Variations of U-net dominate in the segmentation tasks.
Dilated-Dense U-Net and U-net with attention mechanism achieved great performance in
brain structure segmentation [104,120]. Meanwhile, semi-supervised learning and transfer
learning initiated studies with a small number of training data [103,122]. GAN shows its
superiority in image generation tasks. Variations of GANs have been proposed to syn-
thesize pseudo-images from low-resolution images or latent space [149,155,156]. Overall,
the development of computational powers has enabled deep learning models to have more
complex structures and greater ability to process 3D volumes for a variety of tasks.

4.2. Challenges and Future Directions
4.2.1. Overfitting Caused by Small Sample Size

Overfitting remains a major concern for deep learning models with deep and com-
plex architectures, especially the models with 3D structures as the number of training
parameters grows exponentially with an extra dimension [2]. The sample size should also
increase to train models with many parameters to avoid overfitting. Otherwise the model
might be overfitted to the training data and fail to predict new data accurately. However,
neuroimaging acquisition via MRI is expensive and time-consuming. Many studies are
limited to a small number of training data, experiencing the risk of overfitting [162]. In our
review, some studies use cross-validation to report results while some others also report
results on an independent testing dataset. The testing results are important indicators of
the capability to apply the trained model on unseen new data.

Data-sharing projects and platforms provide a vast amount of neuroimaging data, fa-
cilitating large-scale studies to train deep and complex models. We share a non-exhaustive
list of available public datasets and repositories in Section 2. In common practice, super-
vised learning, in which the deep learning model is trained with labeled data is the most
widely applied learning process [15,163]. Open datasets and repositories prepared data
and labels in pairs where labels can be disease diagnosis, clinical outcomes, and seman-
tic segmentation ground truth. Other than labeled data, there are tons of neuroimaging
data without labels or with a limited number of labels. Unsupervised learning and semi-
supervised learning show great potential in dealing with such data. Unsupervised learning
utilizes training data without any labels by separating the data into different categories
with automatically learned patterns during training [15,163]. Semi-supervised learning
utilizes the unlabeled data to learn the feature patterns and use the labeled data to update
model weights, which has yielded superior performance with a limited number of training
samples in both classification and segmentation tasks [70,110]. Transfer learning accommo-
dates another possibility for developing deep learning algorithms with a limited number
of training data. Transfer learning takes advantage of models pre-trained on large datasets
and fine-tunes the system with a small number of data, providing an applicable solution
for neuroimaging studies with a small sample size [60,94,97].

4.2.2. Inconsistent Preprocessing Pipelines

Preprocessing is another challenge in pediatric neuroimaging studies. It is necessary
to remove the non-brain tissue and noise in many tasks, especially for neuroimaging data
of children with significant motion artifacts. However, replication and validation of results
are often thus challenged by the variations in data inclusion criteria and preprocessing
pipelines. The common preprocessing steps for sMRI include brain extraction, normaliza-
tion to standard templates, brain tissue segmentation, and brain surface reconstruction [93].
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The fMRI preprocessing steps include brain extraction, motion correction, slice time correc-
tion, distortion correction, alignment to structural images, and confounds regression [52,90].
The DTI preprocessing steps include distortion correction, Eddy current correction, brain
extraction, alignment to structural images, and tensor fitting [60]. The mentioned pre-
processing steps may involve multiple preprocessing softwares and adjustments may be
applied to different pipelines in different studies. We listed the specified softwares and
pipelines in our results. Common preprocessing softwares include SPM [164], AFNI [165],
ANTs [166], FSL [167], Dpabi [168], and FreeSurfer [169]. Some studies use in-house pre-
processing pipelines or did not specify the preprocessing steps. Preprocessing in single
research projects may be time- and effort-consuming while variations of preprocessing
pipelines restrict the replication of research results.

Standardization in data preparation and preprocessing is an urgent need for con-
ducting large-scale neuroimaging studies. Fortunately, efforts towards standardization
have been contributed by different organizations. Many data-sharing platforms employ
the Brain Imaging Data Structure (BIDS) format to adopt a standardized way of orga-
nizing neuroimaging and behavioral data [170]. Furthermore, the ABIDE dataset and
ADHD200 consortium release both raw and preprocessed data with shared preprocessing
pipelines [31,34]. Standardization of preprocessing pipelines will greatly improve the
efficacy of neuroimaging studies in the future.

4.2.3. Difficulty in Interpreting Deep Learning Results

Deep learning has been criticized for its “black-box nature” which poses challenges
for the interpretability and explainability of trained models, and thus brings concerns to
medical decision-making. The deep learning system must provide the rationale behind
the decision-making process to make trustworthy predictions [171]. Various approaches
have been proposed to interpret deep learning algorithms. One of the common methods is
the graph-based visualization approach, which identifies the critical regions for predicting
results based on activation maps derived from model weights [172,173]. Study [92] applied
such an approach to identify the brain regions where children with ADHD differed from
controls. The attention mechanism which focuses selectively on information of interest
also plays a vital role in the interpretability of deep learning [174]. Functional connectivity
differences between ADHD patients and healthy controls were identified using deep self-
attention factorization in the study [90]. There are some other techniques for interpretation
such as feature importance and analyzing trends and outliers in predictions. However,
studies in this review have not utilized such techniques. Deep model interpretation pro-
vides crucial information for understanding brain functions and neurodevelopment, which
is of great importance for pediatric neuroimaging studies. Interpretability should be one of
the research focuses in future neuroimaging studies.

4.3. Limitations

Although some of the studies did not specify the limitations, there are some common
limitations shared across individual studies. Firstly, many studies trained with a limited
number of training samples, risking the bias of overfitting. The lack of independent testing
results greatly restrains the generalizability of trained models to unseen data. Secondly,
architectures of deep neural networks in many studies are trained in a non-exhausted
exploration manner that is restricted by computational power. Thirdly, interpretation of the
results is lacking in many studies and thus inhibits the interpretability and explainability
of trained models. Lastly, for multi-site data which have different scanning protocols,
confounding factors might cause risks of bias in the results.

This review systematically organized the most recent research on deep learning ap-
plied to pediatric MRI. However, we are unable to include the thousands of results returned
by databases GoogleScholar and ScienceDirect, which remains a limitation of the study.
Further investigations on unlisted studies may be applied with automatic review tools
for paper selection. Keywords selected for the review are not disorder-specific and hence
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may neglect some studies optimal for the inclusion criteria but not included in the initial
research. Future studies on specific disorders may accommodate the limitations.

5. Conclusions

Deep learning plays an essential role in recent neuroimaging studies. Advancements
in applications of deep learning to pediatric neuroimaging have been illustrated in this
review. Complex deep learning models such as CNN and GAN have shown superior
performance in neuroimaging recognition, prediction, segmentation, and generation tasks.
Semi-supervised learning demonstrated great potential in the utilization of weakly la-
beled or unlabeled data. Challenges such as overfitting, preprocessing variations, and
interpretation issues remain in many neuroimaging studies, but data-sharing platforms,
standardization of preprocessing protocols, and advanced interpretation approaches have
been proposed to tackle such difficulties. Future neuroimaging research on large scales will
not only achieve high accuracy but also benefit the understanding of the brain functions
and neurodevelopment.
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ABCD The Adolescent Brain Cognitive Development
ABIDE Autism Brain Imaging Data Exchange
ADHD Attention deficit hyperactivity disorder
ASD Autism spectrum disorder
ASL Arterial spin labeling
CNN Convolutional neural network
dHCP Human Connectomme Project Development
DTI Diffusion tensor imaging
fMRI functional MRI
GAN Generative adversarial network
HBN Human Brain Network
HC Healthy control
ICBM International Consortium for Brain Mapping
IMPAC Imaging Psychiatry Challenge
MAE mean absolute error
MLP Multi-layer perceptron
MRI Magnetic resonance imaging
MSE mean squared error
NDAR National Dtabase for Autism Research
PNC Philadelphia Neurodevelopmental Cohort
PRISMA preferred reporting items for systematic reviews and meta-analysis
PSNR Peak signal-to-noise ratio
rs-fMRI resting-state fMRI
sMRI structural MRI
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Appendix A. Risk of Bias Analysis

Risk of bias analysis were performed following the Risk Of Bias In Non-randomized
Studies of Interventions [48] for (1) risk of bias due to confounding (age, gender, scanning
parameters); (2) risk of bias in selection of participants into the study (population, sample
size); (3) risk of bias in classification of interventions; (4) risk of bias due to deviations from
intended interventions (unexpected results); (5) risk of bias due to missing data; (6) risk of
bias arising from measurement of outcomes (assessment parameters, validation protocol,
independent testing protocols); (7) risk of bias in selection of reported results.

Each risk of bias is rated with “N”—No, “PN”—Probably No, “PY”—Probably Yes,
and “Y”—Yes. Most studies are well-designed and have low risks in most criteria while
some studies with small sample sizes have the risk of bias due to confounding, selection
of participants, and measurement of outcomes. Studies with at least two “PY”s are rated
“Moderate” in the summary. Ratings of individual studies are listed in Table A1.

Table A1. Risk of bias analysis.

Study Confounding
Selection of
Participants

Classification of
Interventions

Deviations from
Intended

Interventions
Missing Data

Measurement of
Outcomes

Selection of
Reported
Results

Summary

[79] PN PY N N N PY N Moderate

[80] N PY N N N PY N Moderate

[51] PN N N N N PY N Low

[81] PN PY N N N PY N Moderate

[53] PN PN N N N PY N Low

[52] PN PY N N N PY N Moderate

[55] PN N N N N PY N Low

[82] PN N N N N PY N Low

[69] PN PY N N N PY N Moderate

[74] N PY N N N PY N Moderate

[83] PN N N N N PY N Low

[84] PN N N N N PY N Low

[85] N PY N N N PY N Moderate

[76] PN N N N N PY N Low

[54] PN N N N N N N Low

[73] PN N N N N PY N Low

[86] N PN N N N PY N Low

[75] PN PN N N N PY N Low

[87] PN N N PY N PY N Moderate

[88] PN PN N N N PY N Low

[78] PN N N N N N N Low

[89] PN N N N N PY N Low

[90] PN N N N N PY N Low

[91] PN PY N N N N N Low

[77] PN N N N N PY N Low

[92] N PY N N N PY N Moderate

[93] N PN N N N PY N Low

[57] N PY N N N PY N Moderate

[61] N PY N N N PY N Moderate
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Table A1. Cont.

Study Confounding
Selection of
Participants

Classification of
Interventions

Deviations from
Intended

Interventions
Missing Data

Measurement of
Outcomes

Selection of
Reported
Results

Summary

[62] PN N N N N PY N Low

[58] N PY N N N PY N Moderate

[70] N PN N N N PY N Low

[59] N PY N N N PY N Moderate

[60] N PY N N N PY N Moderate

[94] N PY N N N PY N Moderate

[63] N PY N N N PY N Moderate

[64] N PN N N N PY N Low

[65] N PN N N N PY N Low

[71] N PN N N N PY N Low

[95] PY PY N N N PY N Moderate

[72] N N N N N PY N Low

[66] N PN N N N PY N Low

[96] N PY N N N PY N Moderate

[67] N PY N N N PY N Moderate

[68] N PY N N N PY N Moderate

[104] N PN N N N PY N Low

[105] N PY N N N PY N Moderate

[106] N PY N N N PY N Moderate

[99] N PY N N N PY N Moderate

[107] N PN N N N PY N Low

[98] N PY N N N PY N Moderate

[108] N PY N N N PY N Moderate

[101] N PN N N N PY N Low

[109] N PY N N N PY N Moderate

[110] N PY N N N PY N Moderate

[111] N PY N N N PY N Moderate

[112] N PY N N N PN N Low

[113] N PY N N N PY N Moderate

[114] N PY N N N PY N Moderate

[25] N PY N N N PY N Moderate

[102] N PN N N N PY N Low

[115] PN PN N N N PY N Low

[116] N PY N N N PY N Moderate

[117] N PY N N N PN N Low

[118] N PN N N N PY N Low

[103] PN PN N N N PY N Low

[119] N PY N N N PN N Low

[120] N PY N N N PY N Moderate

[121] N PY N N N PY N Moderate

[122] PN PN N N N PY N Low

[123] N PN N N N PY N Low

[124] N PY N N N PN N Low
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Table A1. Cont.

Study Confounding
Selection of
Participants

Classification of
Interventions

Deviations from
Intended

Interventions
Missing Data

Measurement of
Outcomes

Selection of
Reported
Results

Summary

[125] N PN N N N PY N Low

[126] N PN N N N PY N Low

[100] N PN N N N PY N Low

[97] N PN N N N PY N Low

[84] N PN N N N PY N Low

[130] N N N N N PY N Low

[131] N N N N N PY N Low

[132] PN N N N N N N Low

[127] N PN N N N PY N Low

[129] N N N N N PY N Low

[128] N PY N N N PY N Moderate

[133] N PY N N N PY N Moderate

[134] N PN N N N PY N Low

[135] N PN N N N PY N Low

[136] N PN N N N PY N Low

[137] N N N N N PY N Low

[143] N PN N N N PY N Low

[145] PN N N N N PY N Low

[141] PN N N N N PY N Low

[138] PN N N N N PY N Low

[140] PN N N N N PY N Low

[142] PN N N N N N N Low

[146] N PY N N N PY N Moderate

[147] N PY N N N PY N Moderate

[144] N PY N N N PY N Moderate

[139] PN N N N N PY N Low

[158] N PN N N N PY N Low

[159] N PY N N N PY N Moderate

[154] N PY N N N PY N Moderate

[155] N PY N N N PY N Moderate

[156] N N N N N PY N Low

[149] N PN N N N PY N Low

[157] N PN N N N PY N Low

[150] PN N N N N PY N Low

[153] PN N N N N PY N Low

[151] N PN N N N PY N Low

[152] PN N N N N PY N Low

[160] N PY N N N PY N Moderate

[24] N PN N N N PY N Low

[161] N PN N N N PN N Low

[148] N PN N N N PY N Low

Abbreviations: N—No, PN—Probably No, PY—Probably Yes.
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Abstract: Rehabilitation is a vast field of research. Virtual and Augmented Reality represent rapidly
emerging technologies that have the potential to support physicians in several medical activities,
e.g., diagnosis, surgical training, and rehabilitation, and can also help sports experts analyze athlete
movements and performance. In this study, we present the implementation of a hybrid system for
the real-time visualization of 3D virtual models of bone segments and other anatomical components
on a subject performing critical karate shots and stances. The project is composed of an economic
markerless motion tracking device, Microsoft Kinect Azure, that recognizes the subject movements
and the position of anatomical joints; an augmented reality headset, Microsoft HoloLens 2, on which
the user can visualize the 3D reconstruction of bones and anatomical information; and a terminal
computer with a code implemented in Unity Platform. The 3D reconstructed bones are overlapped
with the athlete, tracked by the Kinect in real-time, and correctly displayed on the headset. The
findings suggest that this system could be a promising technology to monitor martial arts athletes
after injuries to support the restoration of their movements and position to rejoin official competitions.

Keywords: mixed reality; sport biomechanics; rehabilitation engineering; martial arts; posture

1. Introduction

Innovative technologies contribute to the growth of the rehabilitation sector by provid-
ing effective and safe solutions [1–4]. The technology involved in rehabilitation protocols
is varied. Examples of applied technologies are assistive devices and robotics [5], opto-
electronic systems [6], inertial measurement units [7], and virtual and augmented reality
environments [8–11]. Virtual reality (VR) and augmented reality (AR) have aroused par-
ticular interest in the creation of customized rehabilitation protocols in the study of body
mechanics. Biomechanical outcomes, such as joint movement analysis, are effective not
only in diagnosing but also in understanding the mechanism of symptom progression.
Most experts’ clinical assessments of these situations are based on observing a given
movement performed by the subject or the manual measurement of angles on clinical
images [12]. Several studies have proposed different innovative systems based on marker-
less motion tracking devices [13–19] and virtual or augmented reality systems [20,21] to
support diagnosis and biomechanical measurements. Furthermore, a significant aspect of
rehabilitation in which these new cutting-edge technologies are applied is postural analysis,
a fundamental factor regarding personal well-being. Various pathologies or bad habits
can influence posture and lead to the deformation of the bone structure. Consequently,
malfunctioning of the musculoskeletal, respiratory, and nervous systems might also occur.
The study of posture is based on measurements of anatomical angles and alignment of
bone and joint components [22,23]. In many studies, practicing sports, such as martial
arts, is recommended for correcting postural problems. In fact, in martial arts, posture
and balance are crucial to the correct performance of exercises [24,25]. For example, in
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karate, repetition of simple positions, such as the Juntzuki (lunge punch) or the Zenkutsu
Dachi stance (forward leaning stance), is fundamental to learning the basics of karate.
Positions are also subjected to evaluation in competition kata (i.e., a set of shots and stances
combined to perform an imaginary fight), kumite (i.e., fights with other athletes) [26], or
to pass the exam to proceed to the next belt level. To be able to perform the positions
correctly, control of coordination and total body balance, perception of the surrounding
space, and knowledge of the anatomical angles to be achieved are necessary [22,25–27]. In
these disciplines, experienced instructors can guide their disciples on how to perform the
movement and maintain the correct posture. Still, studies have highlighted the contribution
that technological systems could make to support instructors and disciples who want to
improve and correct their mistakes [28,29].

The present study proposes a project implemented to visualize in real-time bones
and other anatomical components of a subject performing critical karate shots and stances.
The system comprises an economic motion tracking device that recognizes the subject
movements and the position of anatomical joints and an AR headset, with which the
physicians can observe bones and anatomical information fidelity overlapped to the subject
in real-time. This hybrid system has the potential to contribute to the monitoring of martial
arts athletes after injuries to support the restoration of their movements and position to
rejoin the official competitions by taking advantage of new innovative technologies.

2. Related Works

In the medical field, VR and mixed reality (MR) are mainly applied in surgical plan-
ning and training. Several reviews [1–4] highlight the current application of VR and MR
in surgical training for orthopedic procedures. According to these studies, numerous ran-
domized clinical trials (RCTs) demonstrate the proficiency of innovative virtual techniques
in teaching orthopedic surgical skills. In this framework, pilot studies [11,30] and clinical
trials [31] evaluate whether VR or MR improve learning effectiveness for surgical trainees
compared to traditional preparatory methods in orthopedic surgery. Innovative surgical
simulators are presented in [8–10,32], proposing new approaches in surgical navigation,
training preparations, and patient-specific modeling.

The efficiency of the HoloLens as a suitable device for such applications is highlighted
in the previously mentioned studies [4,8–11,20,32]. For instance, ref. [33] specifically
analyzes the use of the HoloLens 2 (HL2) in orthopedic surgery and compares it with
the previous version HoloLens 1. Moreover, several studies [33,34] evaluate and quantify
errors committed by the device in positioning and overlapping the virtual object with the
real object reproduction. The results of [33] show that the newest model improved the AR
projection accuracy by almost 25 percent, while both HoloLens versions yielded a root
mean square error (RMSE) below 3 mm. In addition, El-Hariri and colleagues [34] evaluate
possible new orthopedic surgical guidelines.

In addition, the authors in [6,20,21] propose the applications of AR, VR, or MR in
pose or posture evaluation and correction. In these studies, tracking algorithms and
systems, such as OpenPose and Vuforia, are used to recognize the position of the subject
and to identify the posture accordingly. The aim is to provide support in the sport and
physiotherapy fields and the diagnosis of orthopedic disease.

Hämäläinen [35] was the first to introduce martial arts in an AR game where the player
has to fight virtual enemies. In [29], Wu et al. composed an AR martial arts system using
deep learning based on real-time human pose forecasting. An external RGB camera was
used to capture the motion of the trainer. The student wore a VR-Head Mounted Display
(HMD) and could see the results directly on the screen. Moreover, Shen et al. [36] focused
their work on the construction and visualization of the posture-based graph that focuses
on the standard postures for launching and ending actions. They propose two numerical
indices, the Connectivity Index and the Action Strategy Index, to measure skill level and
the strengths and weaknesses of the boxers.
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In a physiotherapeutic application, Debarba and co-workers [6] developed an AR tool
to accurately overlap anatomical structures on the subject in motion on the HoloLens device
using the external tracking system VICON. In [6], they present the first real-time bone
mapping system of a moving subject. The VICON represents the gold standard of tracking
and gait analysis systems but realistically is not usable in the everyday medical field. A
markerless and dynamic system, such as the Microsoft Kinect, although less accurate, can
be considered a viable technology to introduce to clinics and hospitals [37–41]. Certain
precautions are necessary, such as designing a suitable joint model to correct device error.

The last version of the Microsoft Kinect devices, the Azure Kinect, has been validated
by several studies [42–44]. In [42], the Azure Kinect showed a significantly higher accuracy
of the spatial gait parameters than the previous version. Results provided by [43] confirm
the officially stated values of standard deviation and distance error, i.e., std dev ≤ 17 mm
and distance error > 11 mm + 0.1% of distance without multi-path interference. However,
this study suggests a warmup of the device of 40 min before acquisition to obtain stable
results. In [44], Antico and colleagues calculated an RMSE value of 0.47 between the
marker-less tracking systems and the VICON, considering the average results among all
joints. In contrast, the range of value of the angular mean absolute error is 5–15 degrees for
all the upper joints [44].

Azure Kinect and its previous versions were applied in various circumstances in
the medical field. For instance, [15,16] applied Kinect in evaluating patients with hip
disorders. The inclination angles of the trunk and the pelvis were similar to the outcomes
from the VICON system. Ref. [17] presents a tool for deducting forearm and wrist range
of motion. In this study, results are obtained by a reliability test performed by a healthy
group. In [18], evaluating the Global Gait Asymmetry index (GGA index) after knee joint
surgery is accomplished using a set of Kinects. Moreover, in [19], the device was used to
monitor the dynamic valgus of the knee. The Kinect measurements were compared with
OptiTrack, and the absolute average difference for the pelvis was 1.3 ± 0.7 cm and for the
knee in lateral-medial movement 0.7 ± 0.3 cm. Moreover, the Azure Kinect is also useful in
a telemedicine system to teleport the knowledge and skills of doctors [45].

Many studies evaluate AR-based applications highlighting challenges that still need to
be addressed. Ref. [46] reassumes and sifts through all the technical challenges of AR and
MR: tracking, rendering, processing speed, and ergonomics. The new Microsoft headset for
MR still needs hardware improvements to overcome these issues and to allow the real-time
use of MR in daily life applications. Indeed, ref. [47] shows all limitations of AR in sports
and training fields. The most impacting challenge is the tracking accuracy which depends
on the speed of motion, distance, noise, and hardware performances, followed by the Field
of View limited by the headset. The Kinect can be considered the pioneer among marker-
less tracking systems [47]. However, skeleton tracking and motion reconstructions must still
be monitored and filtered. Ref. [48] reports factors that can influence the results of Kinect
performance, such as the absence of silhouette visual changes and the changeable hands
and foot joint estimations. Newer Kinect versions have reduced some issues; however,
other improvements or algorithm corrections may still be needed.

3. Materials and Methods

3.1. Materials

The device selected to implement the MR application of this study correctly is the
HMD HL2, the second version of the Microsoft device.

This device is a stand-alone holographic computer composed of a pair of see-through
transparent lenses (also called waveguides) with a holographic resolution of 2 k 3:2 light
engine and holographic density major of 2.5 k light points per radiant. The waveguides
are flat optical fibers in which the light can be projected by the specific projectors in each
lens. The light bounces between the interior surfaces of the display to be directly sent
to the user’s pupils to display the holograms directly in front of the user’s eyes. HL2 is
also equipped with an IR camera for eye tracking, RGB cameras, a Depth camera, and an
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IMU sensor that includes an accelerometer, gyroscope, and magnetometer. The device has
a resolution of 2048 × 1080 for each eye and an FOV of 52 degrees (information on the
Microsoft official site).

A high-performance computer with appropriate technical characteristics that allowed
programming in MR was used to implement the application and to manage the distribution
process on the device.

Azure Kinect is the new version of the camera system developed by Microsoft. The
Azure Kinect has an RGB (red, green, and blue) camera, a depth camera, IR emitters, and
IMU sensors LSM6DSMUS (gyroscope and accelerometer) are simultaneously sampled at
1.6 kHz. The samples are reported to the host at 208 Hz. Therefore, due to the presence of
IMU sensors, it can measure and track the entire body in real-time and estimate 3 coordi-
nates of every major joint of the human body in 3 planes without requiring any marker or
other supplemental equipment (information available from the official site).

To implement the 3D models of anatomical districts, DICOM computed tomogra-
phy (CT) scans were used. The scans were achieved from different free and open-access
databases, in particular:

• Tibia and Fibula scans are from a subject in the National Cancer Institute’s Clinical
Proteomic Tumor Analysis Consortium Sarcomas (CPTAC-SAR) cohort;

• Femur scans are from the Cancer Imaging Archive;
• Humerus scans are from the image datasets of the Laboratory of Human Anatomy

and Embryology, University of Brussels (ULB), Belgium.

Humerus scans were acquired at 120 kVp, exposure of 200 mAs, and an X-ray current
of 200 mA. Ulna and radius scans were acquired using 130 kVp, time of exposure of 1000 ms,
current of X-ray of 70 mA, and a generator power of 10 kW. Femur scans were acquired at
80 kVp, an X-ray current of 20 mA, and a generator power of 1600 kW.

Table 1 reports other key information about the CT scans grouped by the anatomical
areas.

Table 1. Technical features of CT scans of the bones segmented.

Anatomical Part Size
Slice Thickness

(mm)
Pixel Spacing

(mm)
No of Slices

Humerus (Distal, left) 512 × 512 1.1 0.352 102
Humerus (Proximal, left) 512 × 512 1.1 0.352 120
Humerus (Diaphysis, left) 512 × 512 1.1 0.352 199

Radius (left) 512 × 512 3 0.473 475
Ulna (left) 512 × 512 3 0.473 475

Femur (left) 1101 × 888 600.545 0.545 221
Tibia (left) 559 × 1889 0.977 0.416 975

Fibula (left) 559 × 1889 0.977 0.416 975

3D Slicer version 4.11.20210226, a free and open-source software for clinical and
biomedical research applications, was used to develop the corresponding 3D models of the
bones through segmenting the CT Scans. Subsequently, the 3D models are used in the MR
application.

Blender is a free and open-source software for 3D manipulation, and it was used to
convert the model into a readable format with Unity 3D.

Unity 3D version 2020.3.30f1 is a game engine that was combined with the Mixed
Reality Toolkit package (vs. 2.7.0) (MRTK) to develop the MR application. The MRTK
contains a set of basic features that added to a Unity project can implement MR behavior.

Visual Studio 2019 is a free integrated development environment (IDE) that allows C#
scripts to be written.
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3.2. Method
3.2.1. 3D Models Reconstruction

To build the 3D models of the bones, the corresponding CT scans were imported into
the 3D Slicer software. The segmentation was performed using the manual segmentation
algorithms of the threshold and smoothing effect. All the objects were exported as obj files
to have a Unity-readable 3D object.

After the segmentation, Blender software was used to modify the system of references
of each 3D model and to scale it. These actions are required to obtain models congruent
with real anatomical dimensions and to allow correct object manipulation in the Unity
application.

The final 3D models (Figure 1) are exported in an obj format file.

 

Figure 1. 3D models of bones. From the left: (a) Tibia and Fibula, (b) Femur, (c) Ulna and Radius,
(d) Humerus.

3.2.2. Mixed Reality Behaviour and Unity Editor Settings

Since the 3D models were imported in Unity, it was necessary to deselect the conver-
sion of measurement units to maintain the correct real proportions of 3D objects.

To implement skeleton tracking with Azure Kinect and to allow for the possibility of
using the HL2, including the MR behavior in the project by adding the MRTK was required.

A skeleton was implemented to map all the bones and joints of the human body that
the Azure Kinect can track (Figure 2a). In the first version, the bones were represented by
a red cylinder and the joints as a grey ball. Then, each cylinder that corresponds to the
anatomical part acquired was replaced with the segmented 3D object.

MRTK provides the elements to track both hands of the users correctly. Thus, it is
possible to build a personalized prefab (3D object) that can reproduce the movement of
all body parts in real-time. Through a C# code, it was possible to correctly assign each 3D
object to the mapped joint through the Kinect (Figure 2b).

The script in Unity scales the 3D bones according to the distance between the centers
of the Kinect mapped joints. For instance, the distance between the shoulder and elbow
is considered by the algorithm in order to scale the humerus dimensions appropriately
and show an adequate holographic overlay of the subject. Besides, the proposed 3D bone
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models can be substituted with a 3D reconstruction of the anatomical segments from
DICOM images of the user, and, in this case, the scaling action will not be necessary.

 

Figure 2. (a) Map of the joints tracked by the Azure Kinect; (b) Map of the 3D joint in Unity.

3.2.3. Distribution of Application

To correctly distribute the application on the HL2, the Holographic Remoting Player
was used. Holographic Remoting is a complementary application that can be connected
to the HL2 to display the game without deploying the application. In this manner, it is
possible to modify the real-time application.

To link the HL2 and the Unity Editor, it was necessary to connect the computer and
the HL2 to the same internet connection or connect them using a USB-C cable. After the
pairing, it was possible to insert the IP address of the HL2 displayed on the home screen of
the Holographic Remoting Player directly on the Unity Editor (Figure 3). Subsequently, the
user could start the session.

 

Figure 3. Block diagram of the system architecture and the functioning of each module.

Figure 3 shows the system architecture and the interaction among the hardware.

3.2.4. Experimental Protocol

Before launching the application, a subject person must be positioned in front of the
Kinect Azure in its functioning area (within 1.5–2 m) to allow the mapping of the subject’s
joints.

The users analyzing the joint movement must wear the HL2 and activate the Holo-
graphic remoting player to allow the application to run on HL2.
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When the application is running, the Azure Kinect starts to recognize all of the body
segments, and the Unity application starts to associate each anatomical part with its own
3D object. To correctly verify the association between the bones-3D object and joint-3D
object, it should be noted that the virtual skeleton reproduces exactly the same movement
as the tracked person. The real-time movement of the 3D skeleton is visualized directly on
the HL2 glasses.

During the streaming session, the user can walk around the holograms to better
analyze the anatomical movement.

To evaluate the performance of the system concerning tracking karate positions of the
Wado Ryu traditional Japanese style, a 28-year-old brown-belt karateka reproduced a set
of karate shots and stances used during the training: Heiko Dachi (parallel stance) stance
(Figure 4a); Juntzuki (lunge punch) on Zenkutsu Dachi (forward leaning stance) stance
(Figure 4b); Shuto Uke (knife hand block) on Shomen Neko Aishi Dachi (front facing cat
leg stance) stance (Figure 4c); Sokuto Geri (lateral kick) (Figure 4d).

 

Figure 4. Examples of karate shots and stances evaluated in the study: (a) Heiko Dachi (parallel
stance) stance; (b) Juntzuki (lunge punch) on Zenkutsu Dachi (forward leaning stance) stance;
(c) Shuto Uke (knife hand block) on Shomen Neko Aishi Dachi (front facing cat leg stance) stance;
(d) Sokuto Geri (lateral kick).

The application saved the positions in the joint space of the subject during his move-
ments. During the session, 1 crucial karate position was analyzed. The position analyzed
was Shuto Uke on Shomen Neko Aishi Dachi, and data from left and right hip, left and right
knee, left and right ankle, left foot, right foot, pelvis, left elbow, and wrist were measured.

Following a post-processing analysis of the data, the anatomical measurements neces-
sary to evaluate the individual positions from a postural and competitive point of view of
the discipline were derived.

4. Results

Figure 5 shows the HL2 view screenshots of the karate stances acquired by the system.
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Figure 5. Karateka doing shots and stance and 3D holographic skeleton reproduced in HL2 glasses to
evaluate the system performance: (a) Heiko Dachi (parallel stance) stance; (b) Juntzuki (lunge punch)
on Zenkutsu Dachi (forward leaning stance) stance; (c) Shuto Uke (knife hand block) on Shomen
Neko Aishi Dachi (front facing cat leg stance) stance; (d) Sokuto Geri (lateral kick) chudan.

Table 2 reports the mean value in real-time of the three coordinates for the selected
joints during the Shuto Uke on Shomen Neko Aishi Dachi position.

Table 2. The table reports the mean value of the joints selected to analyze the Shuto Uke on Shomen
Neko Aishi Dachi position.

Joints Mean x (m) Mean y (m) Mean z (m)

right foot 1.72 0.24 −0.68
left foot 1.80 0.01 −0.68

right ankle 1.82 0.25 −0.57
left ankle 1.90 0.06 −0.56
right knee 1.74 0.29 −0.22
left knee 1.83 0.03 −0.22
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Table 2. Cont.

Joints Mean x (m) Mean y (m) Mean z (m)

right hip 1.81 0.24 0.14
left hip 1.85 0.10 0.14

left shoulder 1.88 0.04 0.57
left elbow 1.93 −0.05 0.38
left wrist 1.86 −0.04 0.30

pelvis 1.83 0.17 0.14

To evaluate karateka performance, 3D joints were used to compute the angles between
the joints and were then compared with the standards (Table 3). The angles evaluated for
the Shuto Uke on Neko Aishi Dachi are the angle of rotation between the right foot and the
left foot and the angle of rotation between the wrist, the elbow, and the shoulder.

Table 3. The table compares the angles computed from the data output of the system and the karate
standards for the Shuto Uke on Neko Aishi Dachi.

Condition Computed Standard

Right hip—right ankle joints 0.059 m Aligned along z-axis
Left knee—Left ankle joints 0.063 m Aligned along z-axis

Right foot/ankle axis—Left and Right feet axis 68.83◦ Angle < 90◦
Left shoulder/elbow axis—Left elbow/wrist axis 99.23◦ Perpendicular (90◦)

5. Discussion

The proposed system has the potential to provide support in assessing posture after
sports injuries, particularly in martial arts, such as karate, where posture is fundamental to
performing the sport correctly [24,25,36], and to monitor martial arts athletes after injuries
to support the restoration of their movements and position. The superposition of 3D bone
models reconstructed from medical imaging develops a more physiologically relevant
environment. A more meaningful and detailed visualization of the body structures might
be beneficial for experts to improve their assessment. Moreover, the 3D bone models
overlayed on the subject allow observing how the bone segment is positioned during the
athlete’s performance without adding markers that could be affected by soft tissue artifacts.

The Unity application is not yet complete but shows adaptability to be used in sport
application. Indeed, it emerges that the devices are adequate as a starting point in applying
this type. HL2 and Azure Kinect represent valid substitutes for the gold standard systems
of their categories, although not as much accurate.

The long-term purpose of this hybrid system composed of HL2 and Azure Kinect
is to support athletes in restoring their abilities after an injury, but it still needs some
improvements. Currently, MR-based systems that support athletes’ recovery are not
available. The systems presented in the literature are focused on the improvement of
an athlete’s performance. In Table 4, we compare the system illustrated in this paper with
existing ones in the literature.

Studies proposing MR in orthopedics stop at the 3D reproduction of bones from
DICOM and the possibility of interaction as an inanimate object in order to support experts
in surgical planning [1–4]. Several studies recognize the contribution of such innovative
technologies in reducing errors in surgery [8–11,30–32]. To our knowledge, a similar
approach to the one presented in this work has not been suggested, except from [6]. It is
worth noticing that in the work of [6], Vicon was the proposed device, which although
allowing for the best possible accuracy in bone positioning and articulation is not applicable
in clinical reality. Conversely, this project provides a system that is sufficiently accurate
without the need for specific knowledge, given the absence of markers [42–44]. Furthermore,
the system can also be considered low-cost if the HL2 is replaced by a cheaper VR visor,
even though the AR or MR is more beneficial for this type of application for the overlap
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of the skeleton on the subject and lesser side effects, such as motion sickness. The system
could also be considered applicable in a remote setting where the trainer is not present. In
this situation, the overlay of bones on the subject is not applicable, which can occur if the
examination is in the present. In this context, the video recorded by the HL2 camera might
be visible to the trainer in real-time with the skeleton reconstruction.

Table 4. Comparison of the systems used for supporting martial arts athletes.

Reference [35] Reference [29] Reference [36] This Study

System proposed

2 screens
Laptop (2.8 GHz

Pentium 4)
USB Cam
OpenGL
OpenCV

2D Pose estimation
3D pose forecasting

3D recovery
HTC Vive

Sony Camera
DSC-QX10

Laptop

Optica Motion Capture
system

HoloLens 2
Laptop

Azure Kinect
Unity 3D

Markless yes yes yes yes
HDM no yes no yes

technology Virtual Reality Virtual Reality Virtual Reality Mixed Reality
IMU tracking no yes no yes

Motion Sickness no no no no
Data acquisition no yes yes yes

Feedback Audio-visual visual visual visual
Personalization Not available Not available Not available yes
External control yes yes yes yes

DICOM no no no yes

Unfortunately, the use of remoting and real-time data saving introduces a delay
between the movement of the subject and the movement repeated by the skeleton. The
movement captured by the Kinect is correct and can follow even a fast movement, such as
a kick or a punch, but it is reproduced on Unity with a delay of about half a second.

Furthermore, the system finds its greatest application when the subject has a fracture
in the spine or a long bone. In these cases, the 3D reconstructions of the bones are directly
built from their DICOM scans, and the fracture behavior can be studied during the sports
movements. The percentage of fractures and dislocations to which karatekas are subject
should not be underestimated [49,50]. In many cases, these are due to the incorrect execu-
tion of the basic position and stance assumed during a kick or a punch [51]. The adequate
rotation of the foot, knee, and hips in a kick are essential to give more force and efficacy
to the blow without suffering damage to the joint and bone to cushion the reaction force
suffered on impact elegantly and correctly. Also, punches could be affected by the joint’s
wrong position. To better perform the punch, the wrist should be straight and parallel to
the floor, the fingers might be correctly closed, and the punch’s force is associated with
the perfect rotation of the hips during the stance. The correct performance does not have a
negative impact on the shoulder.

Anatomical fidelity is important for this type of application, so caution and improve-
ments are required. As documented in other studies [42–44], Kinect-based systems can have
poor joint tracking when a body part is not visible to the camera and during unusual poses
or interactions with objects. It is worth pointing out that in this work, the assessment is
characterized by the subject sited frontally to the Kinect Azure camera, and the athlete did
not interact with any object. Complex poses are behind the scope of this preliminary study.
Future implementations can be carried out to correct or minimize the 3D reconstruction
errors of the devices.

Firstly, to effectively and immediately achieve the overlapping of the 3D anatomical
components on the patient through the HoloLens viewer, the Kinect must be positioned as
close as possible to the camera of the HoloLens device. In this way, the position detected
by the Kinect could be used to locate the 3D reconstruction in MR correctly. In addition,
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other application components can be implemented depending on the purpose of use, such
as the viewing of medical images or the possibility of remote sharing. Finally, the Kinect
can determine the position of the body joints, albeit with a certain margin of error. If the
subject is stationary and with arms outstretched, the joints are correctly recognized, and
the skeletal overlap is coherent. When the subject bends the elbow, bringing the hand
towards the shoulder, the joint remains in the correct position. Conversely, when the
algorithm connects the elbow joint with the hand joint, it positions the forearm bones in an
anatomically incorrect way. This situation is justified by the 3D prefab of the skeleton in
which the bones are separated from each other and managed separately by the tracking
algorithm. Therefore, the integration of algorithms for simulating the behavior of joints
and bones is necessary to enable a more anatomically correct realization of the positions
assumed by the skeleton in each situation [52]. In this context, an improvement of the
system might take into account the integration of artificial intelligence and deep learning
algorithms that can identify the position of the athlete and correct the position detected by
the Azure Kinect.

Even more fundamental is this integration when considering patients with certain
bone diseases or implanted prostheses that affect bone movement and joint function [53,54].
In these cases, patient-specific simulation studies are crucial to be considered. Thus, a
user-friendly application that allows an in-depth analysis of a pathological joint in real-time
represents a clinical need to improve the accuracy of the diagnosis or the surgical planning.
For example, for joint-related pathologies, experts are interested in the range of motion
and its value changing over time. For patients who underwent joint replacement surgery,
the prostheses may affect posture or walking, and their effect should be examined [55].
Eventually, the system might be useful in assessing what would happen to the patient’s
movement in the case of an incorrect joint replacement, thanks to a properly trained and
implemented artificial intelligence algorithm [56,57].

6. Conclusions

The combined system of HL2 and Azure Kinect shows the possibility of monitoring
movement in certain conditions for athletes playing martial arts, such as karate. Due to
its adaptability, this system could also be used to evaluate athletes after injuries and has
shown high potential to support sports rehabilitation. However, the system needs to be
tested with the engagements of professional athletes after injuries that need to restore their
initial condition. In the future, the proposed system might also be used to train orthopedic
clinicians. In fact, orthopedics students may interact with the virtual anatomical segments
and may observe how bones could be affected by a pathology progression, such as valgus
legs, an implanted prosthesis, or back sciatica. It could also be used in sports halls where
the trainer can provide students with innovative technologies to objectively assess and
correct their posture or for beginners’ learning. We do not exclude the possibility of also
using this system for boxing or other martial arts, such as kung-fu or jujutsu.

Furthermore, in official competitions and graduating exams, correct posture and exe-
cution of movements are the evaluated components [25–27]. The karateka must repeat the
positions many times in training to reach perfection, and, with the help of this technology,
a video can be recorded of his performances in conjunction with real-time observation.

Author Contributions: Conceptualization, F.B.; methodology, M.F. and S.P.; software, M.F. and S.P.;
validation, M.F., S.P. and A.P.; formal analysis, M.F.; investigation, M.F.; resources, F.B. and F.M.;
data curation, M.F. and S.P.; writing—original draft preparation, M.F. and S.P.; writing—review
and editing, F.B. and A.P.; visualization, M.F., S.P. and A.P.; supervision, F.B. and F.M.; project
administration, F.B.; funding acquisition, F.B. and F.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

275



Appl. Sci. 2023, 13, 2587

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Berthold, D.P.; Muench, L.N.; Rupp, M.C.; Siebenlist, S.; Cote, M.P.; Mazzocca, A.D.; Quindlen, K. Head-Mounted Display Virtual
Reality Is Effective in Orthopaedic Training: A Systematic Review. Arthrosc. Sport. Med. Rehabil. 2022, 4, e1843–e1849. [CrossRef]
[PubMed]

2. Clarke, E. Virtual Reality Simulation—The Future of Orthopaedic Training? A Systematic Review and Narrative Analysis. Adv.
Simul. 2021, 6, 2. [CrossRef]

3. Hasan, L.K.; Haratian, A.; Kim, M.; Bolia, I.K.; Weber, A.E.; Petrigliano, F.A. Virtual Reality in Orthopedic Surgery Training. Adv.
Med. Educ. Pract. 2021, 12, 1295–1301. [CrossRef] [PubMed]

4. Barcali, E.; Iadanza, E.; Manetti, L.; Francia, P.; Nardi, C.; Bocchi, L. Augmented Reality in Surgery: A Scoping Review. Appl. Sci.
2022, 12, 6890. [CrossRef]

5. Son, S.; Lim, K.B.; Kim, J.; Lee, C.; Cho, S.I.I.; Yoo, J. Comparing the Effects of Exoskeletal-Type Robot-Assisted Gait Training on
Patients with Ataxic or Hemiplegic Stroke. Brain Sci. 2022, 12, 1261. [CrossRef]

6. Debarba, H.G.; De Oliveira, M.E.; Ladermann, A.; Chague, S.; Charbonnier, C. Augmented Reality Visualization of Joint
Movements for Rehabilitation and Sports Medicine. In Proceedings of the 2018 20th Symposium on Virtual and Augmented
Reality (SVR), Foz do Iguacu, Brazil, 28–30 October 2018; pp. 114–121. [CrossRef]

7. Bertoli, M.; Cereatti, A.; Croce, U.D.; Pica, A.; Bini, F. Can MIMUs Positioned on the Ankles Provide a Reliable Detection and
Characterization of U-Turns in Gait? In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and
Applications (MeMeA), Rome, Italy, 11–13 June 2018; pp. 1–6. [CrossRef]

8. Condino, S.; Turini, G.; Parchi, P.D.; Viglialoro, R.M.; Piolanti, N.; Gesi, M.; Ferrari, M.; Ferrari, V. How to Build a Patient-Specific
Hybrid Simulator for Orthopaedic Open Surgery: Benefits and Limits of Mixed-Reality Using the Microsoft Hololens. J. Healthc.
Eng. 2018, 2018, 5435097. [CrossRef]

9. Turini, G.; Condino, S.; Parchi, P.D.; Viglialoro, R.M.; Piolanti, N.; Gesi, M.; Ferrari, M.; Ferrari, V. A Microsoft HoloLens Mixed
Reality Surgical Simulator for Patient-Specific Hip Arthroplasty Training. In Augmented Reality, Virtual Reality, and Computer
Graphics, Proceedings of the 5th International Conference, AVR 2018, Otranto, Italy, 24–27 June 2018; De Paolis, L., Bourdot, P., Eds.;
Springer: Cham, Switzerland, 2018; pp. 201–210. [CrossRef]

10. Liebmann, F.; Roner, S.; von Atzigen, M.; Wanivenhaus, F.; Neuhaus, C.; Spirig, J.; Scaramuzza, D.; Sutter, R.; Snedeker, J.; Farshad,
M.; et al. Registration Made Easy—Standalone Orthopedic Navigation with HoloLens. arXiv 2020, arXiv:2001.06209. [CrossRef]

11. Cevallos, N.; Zukotynski, B.; Greig, D.; Silva, M.; Thompson, R.M. The Utility of Virtual Reality in Orthopedic Surgical Training.
J. Surg. Educ. 2022, 79, 1516–1525. [CrossRef]

12. Vanicek, N.; Strike, S.; McNaughton, L.; Polman, R. Gait Patterns in Transtibial Amputee Fallers vs. Non-Fallers: Biomechanical
Differences during Level Walking. Gait Posture 2009, 29, 415–420. [CrossRef]

13. Lau, I.Y.S.; Chua, T.T.; Lee, W.X.P.; Wong, C.W.; Toh, T.H.; Ting, H.Y. Kinect-Based Knee Osteoarthritis Gait Analysis System. In
Proceedings of the 2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET),
Kota Kinabalu, Malaysia, 26–27 September 2020; pp. 1–6. [CrossRef]

14. Yoshimoto, K.; Shinya, M. Use of the Azure Kinect to Measure Foot Clearance during Obstacle Crossing: A Validation Study.
PLoS ONE 2022, 17, e0265215. [CrossRef]

15. Lahner, M.; Mußhoff, D.; Von Schulze Pellengahr, C.; Willburger, R.; Hagen, M.; Ficklscherer, A.; Von Engelhardt, L.V.; Ackermann,
O.; Lahner, N.; Vetter, G. Is the Kinect System Suitable for Evaluation of the Hip Joint Range of Motion and as a Screening Tool for
Femoroacetabular Impingement (FAI)? Technol. Heal. Care 2015, 23, 75–82. [CrossRef] [PubMed]

16. Asaeda, M.; Kuwahara, W.; Fujita, N.; Yamasaki, T.; Adachi, N. Validity of Motion Analysis Using the Kinect System to Evaluate
Single Leg Stance in Patients with Hip Disorders. Gait Posture 2018, 62, 458–462. [CrossRef] [PubMed]

17. Aleksandra, K.; Maj, A.; Dejnek, M.; Prill, R.; Skotowska-Machaj, A.; Kołcz, A. Wrist Motion Assessment Using Microsoft Azure
Kinect DK: A Reliability Study in Healthy Individuals. Adv. Clin. Exp. Med. 2022, 32. [CrossRef] [PubMed]

18. Cho, H.M.; Seon, J.; Park, J.Y.; Ahn, J.; Lee, Y. Usefulness of the Kinect-V2 System for Determining the Global Gait Index to Assess
Functional Recovery after Total Knee Arthroplasty. Orthop. Surg. 2022, 14, 3216–3224. [CrossRef]

19. Uhlár, Á.; Ambrus, M.; Kékesi, M.; Fodor, E.; Grand, L.; Szathmáry, G.; Rácz, K.; Lacza, Z. Kinect Azure–Based Accurate
Measurement of Dynamic Valgus Position of the Knee—A Corrigible Predisposing Factor of Osteoarthritis. Appl. Sci. 2021, 11,
5536. [CrossRef]

20. Johnson, P.B.; Jackson, A.; Saki, M.; Feldman, E.; Bradley, J. Patient Posture Correction and Alignment Using Mixed Reality
Visualization and the HoloLens 2. Med. Phys. 2022, 49, 15–22. [CrossRef]

21. Jan, Y.F.; Tseng, K.W.; Kao, P.Y.; Hung, Y.P. Augmented Tai-Chi Chuan Practice Tool with Pose Evaluation. In Proceedings of
the 2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR), Tokyo, Japan, 8–10
September 2021; pp. 35–41. [CrossRef]

22. Singla, D.; Veqar, Z.; Hussain, M.E. Photogrammetric Assessment of Upper Body Posture Using Postural Angles: A Literature
Review. J. Chiropr. Med. 2017, 16, 131–138. [CrossRef]

276



Appl. Sci. 2023, 13, 2587

23. Do Rosário, J.L.P. Photographic Analysis of Human Posture: A Literature Review. J. Bodyw. Mov. Ther. 2014, 18, 56–61. [CrossRef]
24. Byun, S.; An, C.; Kim, M.; Han, D. The Effects of an Exercise Program Consisting of Taekwondo Basic Movements on Posture

Correction. J. Phys. Ther. Sci. 2014, 26, 1585–1588. [CrossRef]
25. Cherepov, E.A.; Eganov, A.V.; Bakushin, A.A.; Platunova, N.Y.; Sevostyanov, D.Y. Maintaining Postural Balance in Martial Arts

Athletes Depending on Coordination Abilities. J. Phys. Educ. Sport 2021, 21, 3427–3432. [CrossRef]
26. Gauchard, G.C.; Lion, A.; Bento, L.; Perrin, P.P.; Ceyte, H. Postural Control in High-Level Kata and Kumite Karatekas. Mov. Sport.

Sci.-Sci. Mot. 2017, 100, 21–26. [CrossRef]
27. Güler, M.; Ramazanoglu, N. Evaluation of Physiological Performance Parameters of Elite Karate-Kumite Athletes by the Simulated

Karate Performance Test. Univers. J. Educ. Res. 2018, 6, 2238–2243. [CrossRef]
28. Petri, K.; Emmermacher, P.; Danneberg, M.; Masik, S.; Eckardt, F.; Weichelt, S.; Bandow, N.; Witte, K. Training Using Virtual

Reality Improves Response Behavior in Karate Kumite. Sport. Eng. 2019, 22, 2. [CrossRef]
29. Wu, E.; Koike, H. FuturePose—Mixed Reality Martial Arts Training Using Real-Time 3D Human Pose Forecasting with a RGB

Camera. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA,
7–11 January 2019; pp. 1384–1392. [CrossRef]

30. Lu, L.; Wang, H.; Liu, P.; Liu, R.; Zhang, J.; Xie, Y.; Liu, S.; Huo, T.; Xie, M.; Wu, X.; et al. Applications of Mixed Reality Technology
in Orthopedics Surgery: A Pilot Study. Front. Bioeng. Biotechnol. 2022, 10, 740507. [CrossRef] [PubMed]

31. Lohre, R.; Bois, A.J.; Pollock, J.W.; Lapner, P.; McIlquham, K.; Athwal, G.S.; Goel, D.P. Effectiveness of Immersive Virtual Reality
on Orthopedic Surgical Skills and Knowledge Acquisition among Senior Surgical Residents: A Randomized Clinical Trial. JAMA
Netw. Open 2020, 3, e2031217. [CrossRef] [PubMed]

32. Gregory, T.M.; Gregory, J.; Sledge, J.; Allard, R.; Mir, O. Surgery Guided by Mixed Reality: Presentation of a Proof of Concept.
Acta Orthop. 2018, 89, 480–483. [CrossRef]

33. Pose-Díez-De-la-lastra, A.; Moreta-Martinez, R.; García-Sevilla, M.; García-Mato, D.; Calvo-Haro, J.A.; Mediavilla-Santos, L.;
Pérez-Mañanes, R.; von Haxthausen, F.; Pascau, J. HoloLens 1 vs. HoloLens 2: Improvements in the New Model for Orthopedic
Oncological Interventions. Sensors 2022, 22, 4915. [CrossRef] [PubMed]

34. El-Hariri, H.; Pandey, P.; Hodgson, A.J.; Garbi, R. Augmented Reality Visualisation for Orthopaedic Surgical Guidance with Pre-
and Intra-Operative Multimodal Image Data Fusion. Healthc. Technol. Lett. 2018, 5, 189–193. [CrossRef]

35. Hämäläinen, P.; Ilmonen, T.; Höysniemi, J.; Lindholm, M.; Nykänen, A. Martial Arts in Artificial Reality. In Proceedings of
the CHI05: CHI 2005 Conference on Human Factors in Computing Systems, Portland, OR, USA, 2–7 April 2005; pp. 781–790.
[CrossRef]

36. Shen, Y.; Wang, H.; Ho, E.S.L.; Yang, L.; Shum, H.P.H. Posture-Based and Action-Based Graphs for Boxing Skill Visualization.
Comput. Graph. 2017, 69, 104–115. [CrossRef]

37. Franzo’, M.; Pascucci, S.; Serrao, M.; Marinozzi, F.; Bini, F. Kinect-Based Wearable Prototype System for Ataxic Patients
Neurorehabilitation: Software Update for Exergaming and Rehabilitation. In Proceedings of the 2021 IEEE International
Symposium on Medical Measurements and Applications (MeMeA), Lausanne, Switzerland, 23–25 June 2021. [CrossRef]

38. Franzo’, M.; Pascucci, S.; Serrao, M.; Marinozzi, F.; Bini, F. Kinect-Based Wearable Prototype System for Ataxic Patients
Neurorehabilitation: Control Group Preliminary Results. In Proceedings of the 2020 IEEE International Symposium on Medical
Measurements and Applications (MeMeA), Bari, Italy, 1–3 June 2020. [CrossRef]

39. Franzo’, M.; Pascucci, S.; Serrao, M.; Marinozzi, F.; Bini, F. Exergaming in Mixed Reality for the Rehabilitation of Ataxic Patients.
In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Messina, Italy,
22–24 June 2022. [CrossRef]

40. Yeung, L.F.; Cheng, K.C.; Fong, C.H.; Lee, W.C.C.; Tong, K.Y. Evaluation of the Microsoft Kinect as a Clinical Assessment Tool of
Body Sway. Gait Posture 2014, 40, 532–538. [CrossRef]

41. Otte, K.; Kayser, B.; Mansow-Model, S.; Verrel, J.; Paul, F.; Brandt, A.U.; Schmitz-Hübsch, T. Accuracy and Reliability of the Kinect
Version 2 for Clinical Measurement of Motor Function. PLoS ONE 2016, 11, e0166532. [CrossRef] [PubMed]

42. Albert, J.A.; Owolabi, V.; Gebel, A.; Brahms, C.M.; Granacher, U.; Arnrich, B. Evaluation of the Pose Tracking Performance of
the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard: A Pilot Study. Sensors 2020, 20, 5104.
[CrossRef] [PubMed]

43. Tölgyessy, M.; Dekan, M.; Chovanec, L. Skeleton Tracking Accuracy and Precision Evaluation of Kinect V1, Kinect V2, and the
Azure Kinect. Appl. Sci. 2021, 11, 5756. [CrossRef]

44. Antico, M.; Balletti, N.; Laudato, G.; Lazich, A.; Notarantonio, M.; Oliveto, R.; Ricciardi, S.; Scalabrino, S.; Simeone, J. Postural
Control Assessment via Microsoft Azure Kinect DK: An Evaluation Study. Comput. Methods Programs Biomed. 2021, 209, 106324.
[CrossRef]

45. Bailey, J.L.; Jensen, B.K. Telementoring: Using the Kinect and Microsoft Azure to Save Lives. Int. J. Electron. Financ. 2013, 7, 33–47.
[CrossRef]

46. Eswaran, M.; Raju Bahubalendruni, M.V.A. Challenges and opportunities on AR/VR technologies for manufacturing systems in
the context of industry 4.0: A state of the art review. J. Manuf. Syst. 2022, 65, 260–278. [CrossRef]

47. Soltani, P.; Morice, A.H.P. Augmented reality tools for sports education and training. Comput. Educ. 2020, 155, 103923. [CrossRef]
48. Da Gama, A.E.F.; de Menezes Chaves, T.; Fallavollita, P.; Figueiredo, L.S.; Teichrieb, V. Rehabilitation motion recognition based on

the international biomechanical standards. Expert Syst. Appl. 2019, 116, 396–409. [CrossRef]

277



Appl. Sci. 2023, 13, 2587

49. McLatchie, G. Karate and Karate Injuries. Br. J. Sports Med. 1981, 15, 84–86. [CrossRef]
50. Critchley, G.R.; Mannion, S.; Meredith, C. Injury Rates in Shotokan Karate. Br. J. Sports Med. 1999, 33, 174–177. [CrossRef]
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Abstract: The purpose of this study was to differentiate post-chemoradiotherapy (CRT) changes
from tumor persistence/recurrence in early follow-up of naso-oropharyngeal carcinoma on magnetic
resonance (MRI) with diffusion (DWI) and dynamic contrast-enhanced perfusion-weighted imaging
(DCE-PWI). A total of 37 patients were assessed with MRI both for tumor staging and 4-month
follow-up from ending CRT. Mean apparent diffusion coefficient (ADC) values, area under the
curve (AUC), and K(trans) values were calculated from DWI and DCE-PWI images, respectively.
DWI and DCE-PWI values of primary tumor (ADC, AUC, K(trans)pre), post-CRT changes (ADC,
AUC, K(trans)post), and trapezius muscle as a normative reference before and after CRT (ADC,
AUC, K(trans)muscle pre and muscle post; AUCpost/muscle post:AUCpre/muscle pre (AUCpost/pre/muscle);
K(trans)post/muscle post:K(trans)pre/muscle pre (K(trans)post/pre/muscle) were assessed. In detecting post-
CRT changes, ADCpost > 1.33 × 10−3 mm2/s and an increase >0.72 × 10−3 mm2/s and/or >65.5%
between ADCpost and ADCpre values (ADCpost-pre; ADCpost-pre%) had 100% specificity, whereas hy-
pointense signal intensity on DWIb800 images showed specificity 80%. Although mean
AUCpost/pre/muscle and K(trans)post/pre/muscle were similar both in post-CRT changes (1.10 ± 0.58;
1.08 ± 0.91) and tumor persistence/recurrence (1.09 ± 0.11; 1.03 ± 0.12), K(trans)post/pre/muscle val-
ues < 0.85 and >1.20 suggested post-CRT fibrosis and inflammatory edema, respectively. In early
follow-up of naso-oropharyngeal carcinoma, our sample showed that ADCpost > 1.33 × 10−3 mm2/s,
ADCpost-pre% > 65.5%, and ADCpost-pre > 0.72 × 10−3 mm2/s identified post-CRT changes with
100% specificity. K(trans)post/pre/muscle values less than 0.85 suggested post-CRT fibrosis, whereas
K(trans)post/pre/muscle values more than 1.20 indicated inflammatory edema.

Keywords: naso-oropharyngeal carcinoma; magnetic resonance imaging; diffusion-weighted imag-
ing; dynamic contrast-enhanced perfusion-weighted imaging; chemoradiotherapy
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1. Introduction

Head and neck cancers represent the sixth most common cancer worldwide and a
major cause of morbidity and mortality [1]. More than 90% of head and neck cancers are
squamous cell carcinomas (HNSCC) arising from the mucosal surfaces of the oral cavity,
naso-oropharynx, and larynx [2]. Crucial risk factors aligned with head and neck cancers
include tobacco, alcohol consumption, and human papillomavirus (HPV) or Epstein–Barr
virus infections [3].

Chemoradiotherapy (CRT) has become more popular over the past decade because
the organ preservation possibilities are higher with CRT as compared to surgery [4]. The
relapse rate is still 50% (35–65%) in patients with advanced HNSCC [5] and reaches 25% in
early-stage cancers [6]. Almost 90% of HNSCC recurrences following CRT develop within
2 years [7]; the early detection of tumor recurrence prompts curative salvage treatment and
may allow the preservation of organ functions [6].

The interpretation of post-treatment follow-up via imaging techniques is complicated
by post-actinic edema, soft tissue necrosis, and fibrosis. Such post-treatment changes
make it difficult to detect tumor recurrence within a distorted anatomy [8]. Biopsy with
negative findings does not exclude HNSCC recurrence, and multiple biopsies may increase
overall morbidity [6]. Therefore, in addition to clinical and histological parameters, other
biomarkers are needed to stratify patients for optimal therapy [9].

Magnetic resonance imaging (MRI) is an accurate technique for the assessment of deep
tumor invasion and morphological tumor features [10], but it is not able to identify early
locoregional recurrences, predict tumor response to treatment and monitor post-treatment
changes [11,12].

Metabolic imaging with 18F-fluorodeoxyglucose positron emission tomography/
computed tomography (18F-FDG PET/CT) has evolved as a tool for the post-treatment
evaluation of HNSCC, but it is generally delayed for at least 12 weeks due to the potential
false-positive results in early post-treatment inflammatory changes [13].

Nowadays, a multiparametric approach employing MRI has been proposed with dif-
fusion (DWI) and dynamic contrast-enhanced perfusion-weighted imaging (DCE-PWI) for
the distinction between post-treatment changes and tumor persistence/recurrence [14,15].
Moreover, MRI is ideally suited to serial scanning, reducing the use of ionizing radiations
commonly emitted by CT examinations [16–19].

DWI with apparent diffusion coefficient (ADC) maps can theoretically differentiate
between inflammation and neoplastic tissues since the water molecule diffusion is in-
creased into inflammatory tissues (T2* loss of signal and high ADC values), whereas water
molecules have restricted diffusion within neoplastic tissues (T2* signal maintenance and
low ADC values) [20].

DCE-PWI examines microvascular tumor tissue characteristics [21] and can potentially
assess the reduction of tumor blood perfusion by means of K(trans), which represents the
volume transfer constant from the vascular to the extravascular extracellular spaces [22–25].

We aimed to retrospectively differentiate post-CRT changes from tumor persistence/
recurrence in the early follow-up of patients with primary naso-oropharyngeal carcinoma
using multiparametric MRI with DWI and DCE-PWI sequences.

2. Materials and Methods

2.1. Inclusion Criteria

From January 2016 to December 2021, MRI examinations of 104 patients with histo-
logical diagnoses of nasopharynx or oropharynx carcinoma investigated in the radiology
department of the Careggi Hospital of Florence (Italy) were retrieved. This study was
approved by the research ethics committee (Protocol Number 21800_oss), and informed
written consent was obtained from all individual participants included in the study. All
procedures performed in studies involving human participants were in accordance with
the ethical standards of the institutional and/or national research committee and with the
1964 Helsinki Declaration and its later amendments or comparable ethical standards.
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Patients who met the following criteria were included:

• Adult patients (≥18 years);
• Histological confirmation of oropharynx or nasopharynx carcinoma through biopsy;
• Exclusive CRT;
• MRI examination for both tumor staging and 4-month follow-up after ending CRT;
• DWI and DCE-PWI MR sequences;
• Two years of clinical and cross-sectional imaging follow-ups including consecutive

18F-FDG PET/CT and MRI.

Patients were excluded in case of previous head and neck radiotherapy treatment
(4), surgical treatment (5), MRI without both DWI and DCE-PWI sequences (14), MRI not
performed for both tumor staging and follow-up (41), and follow-up lasting less than
2 years (3). We considered the first two years after completing CRT at a higher risk of
neoplastic recurrence.

The patients that matched our inclusion criteria were 37 (19 males, 18 females) with
a mean age of 59 years (median age: 58.5 years, range: 36–81 years); 26 patients were
affected by oropharyngeal carcinoma (16 HPV positive, 4 HPV negative, and 6 unknowns
for HPV status) and 11 patients by nasopharyngeal carcinoma. TNM staging—eighth
edition of the American Joint Commission on Cancer—HPV status, and tumor locations
were summarized in Table S1 in the Supplementary Materials.

2.2. DWI and DCE-PWI

MRI examinations for tumor staging and follow-up were performed with a 1.5 T MR
device (Magnetom Aera, Siemens Healthcare, Erlangen, Germany) with a devoted head
and neck coil. The MR acquisition protocol included pre- and post-contrast sequences
(Table S2 in Supplementary Materials). An axial fat-saturated echo-planar imaging-based
DWI with two different b-values (b50−800 s/mm2) was acquired. ADC values of primitive
tumors and residual tissues after CRT were calculated by positioning three regions of
interest (ROI) with an average intratumoral area of 0.30–0.40 cm2 each on three contiguous
axial sections. DCE-PwI was obtained through two volumetric interpolated breath-hold
examination (VIBE) T1-w sequences characterized by 3.5 mm slice thickness, 0.7 interslice
gap, FOV 250 × 226 mm, matrix 139 × 192, flip angles 5◦ and 15◦, and acceleration factor
3 for baseline T1-mapping acquisitions. After contrast agent administration, one VIBE
T1-w lasting 350 s and with a temporal resolution of 5 s was acquired as follows: TR
4.65 ms, TE 1.66 ms, 3.5 mm slice thickness, FOV 250 × 226.6 mm, matrix 139 × 192,
flip angle 30◦, acceleration factor 3, and peripheral K space sampling with time to center
2.2 s. Time/intensity curve, area under the curve (AUC), and K(trans) values of primitive
tumor and tumor residual/relapse tissues after CRT were generated by using IntelliSpace
software version 9.0 (Philips, Amsterdam, The Netherlands) from the native DCE-PWI
images by drawing an ROI including at least 50% of the largest lesion diameter. Before
lesion sampling, an ROI was placed on the internal carotid artery to obtain the arterial
input function curve, defined as the contrast concentration in vessels feeding to tissue at
each point in time during the contrast passage. Vessels, cystic areas within solid lesions,
and necrotic, hemorrhagic, or proteinaceous areas detected on T1-w and T2-w sequences
were excluded in both DWI and DCE-PWI analysis. ADC, AUC, and K(trans) values of the
trapezius muscle on the same side of the tumor were also obtained.

2.3. Image Assessment

MRIs performed both for tumor staging and 4-month follow-up after the end of
CRT were independently reviewed by two radiologists with 12 (CN) and 7 (MP) years of
experience in head and neck imaging, respectively.

The following morphologic, DWI, and DCE-PWI features were assessed:

- Maximum size of the primitive tumor and submucosal thickness of the residual tissue
after CRT on contrast-enhanced T1 images.
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- Signal intensity (SI), hyper- or hypointense, of the residual tissue after CRT on
DWIb800 images;

- Mean ADC values of the primitive tumor (ADCpre), residual tissue after CRT (ADCpost),
and ipsilateral trapezius muscle as a normative reference on both pre- and post-CRT
(ADCmuscle pre and muscle post);

- Mean AUC and K(trans) values of the primitive tumor (AUCpre, K(trans)pre), residual
tissue after CRT (AUCpost, K(trans)post), and ipsilateral trapezius muscle as a norma-
tive reference on both pre- and post-CRT (AUC, K(trans)muscle pre and muscle post);

- Ratio between ADCpre and ADCmuscle pre (ADCpre/muscle pre);
- Ratio between ADCpost and ADCmuscle post (ADCpost/muscle post);
- Ratio between AUC values of the residual tissue after CRT and primitive tumor

(AUCpost/pre);
- Ratio between K(trans) values of the residual tissue after CRT and primitive tumor

(K(trans)post/pre);
- Ratio between AUC and K(trans) values of the residual tissue after CRT and primitive

tumor, standardized with respect to AUC and K(trans) values of the ipsilateral trapez-
ius muscle as a normative reference (AUCpost/pre/muscle and K(trans)post/pre/muscle),
as follows:

AUCpost
AUC muscle post

:
AUC pre

AUC muscle pre
and

K(trans)post
K(trans) muscle post

:
K(trans) pre

K(trans) muscle pre

where AUCmuscle pre, AUCmuscle post, K(trans)muscle pre, and K(trans)muscle post are the
AUC and K(trans) values of the ipsilateral trapezius muscle measured on pre- and
post-CRT, respectively.

The diagnosis of tumor response to CRT (post-treatment changes) or tumor per-
sistence/recurrences (post-treatment residual cancer) was defined at the 2-year follow-
up, with clinical examinations and cross-sectional imaging including MRI and 18F-FDG
PET/CT. Post-treatment biopsy was performed only in case of positive 18F-FDG PET/CT
during follow-up (12 patients). Clinical examinations and MRI were used to validate results
as true negatives both in patients with negative 18F-FDG PET/CT (25) and in patients with
positive 18F-FDG PET/CT and negative post-treatment biopsy (7).

2.4. Statistical Analysis

Quantitative continuous variables are expressed as mean ± standard deviation or me-
dian and range, whereas categorical values are reported as absolute counts and percentages.
The interobserver reliability for MRI was calculated using the Cohen kappa coefficient.
Kappa values of 0.01–0.20, 0.21–0.40, 0.41–0.60, 0.61–0.80, 0.81–0.99, and 1 represented
slight, fair, moderate, substantial, almost perfect, and perfect agreement, respectively. Data
were presented as a percentage or mean (±standard deviation) and median (interquartile
range). Continuous variables were tested for normality using the Kolmogorov–Smirnov
test. The association of each parameter and the diseased status at the follow-up (i.e., tu-
mor persistence/recurrence or post-CRT changes) was tested using the Student’s t-test or
Mann–Whitney U-test for independent samples, as appropriate. For the parameters with
statistically significant association with the diseased status at follow-up, a cut-off value to
discriminate post-CRT changes with respect to tumor persistence/recurrence was calcu-
lated using receiver operating characteristic (ROC) curve analysis. In particular, sensitivity
and specificity were calculated for the entire spectrum of values, and cut-offs were chosen
as the values with the highest combination/multiplication of sensitivity and specificity.
The area under the ROC curve was considered as a measure of the overall performance of
each parameter (diagnostic accuracy) to discriminate the diseased status at follow-up. The
analyses were performed using the SPSS® v. 27.0 statistical analysis software (IBM Corp.,
New York, NY, USA; formerly SPSS Inc., Chicago, IL, USA), considering an alpha level of
0.05 as significant.
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3. Results

Post-CRT changes were found in 32 patients, whereas 5 patients had tumor persis-
tence/recurrence. Results were summarized in Table 1 and Tables S3–S5 in Supplementary
Materials. Cohen kappa values showed substantial agreement between the two observers
for DWI and DCE-PWI assessments (K values 0.75 to 0.79).

Table 1. Mean, standard deviation, and range values of the post-chemoradiotherapy tissue changes
and tumor persistence/recurrence. CRT: chemoradiotherapy. ADC: apparent diffusion coefficient.
AUC: area under the curve. K(trans): the volume transfer constant from the vascular space to the
extravascular extracellular space. p-value: probability value.

Magnetic Resonance Feature
Post-CRT Changes

(32 Patients)
Mean ± SD (Range)

Tumor Persistence/Recurrence
(5 Patients)

Mean ± SD (Range)
p-Value

Pre-treatment tumor maximum size (mm) 18.46 ± 7.22 (10.0–40.0) 20.50 ± 9.67 (7.0–30.0) 0.391
Pre-treatment tumor mean ADC value

(×10−3 mm2/s) (ADCpre) 0.82 ± 0.15 (0.56–1.14) 0.89 ± 0.08 (0.80–1.0) 0.245

Pre-treatment tumor mean AUC value (AUCpre) 96.76 ± 44.15 (44.71–213.73) 101.61 ± 43.21 (55.66–159.70) 0.746
Pre-treatment tumor mean K(trans) value

(×10−3 min) (K(trans)pre) 264.80 ± 196.75 (61.39–786.30) 157.44 ± 55.02 (113.35–231.28) 0.498

ADCpre/trapezius muscle
:

ADCpre
0.69 ± 0.16 (0.50–1.0) 0.70 ± 0.08 (0.60–0.80) 0.746

AUCpre/trapezius muscle
:

AUCpre
3.70 ± 1.50 (1.53–6.73) 4.07 ± 1.23 (3.16–5.89) 0.536

K(trans)pre/trapezius muscle
:

K(trans)pre
5.62 ± 2.96 (1.52–12.92) 4.73 ± 0.38 (4.28–5.23) 0.702

Post-treatment residual tissue maximum
submucosal enhancement thickness (mm) 3.31 ± 4.13 (0–10.0) 22.75 ± 17.09 (7.0–45.0) 0.002

Post-treatment residual tissue mean ADC value
(×10−3 mm2/s) (ADCpost) 1.54 ± 0.23 (0.96–1.96) 1.05 ± 0.26 (0.78–1.32) 0.002

Post-treatment residual tissue mean AUC value
(AUCpost) 105.10 ± 51.14 (35.37–260.88) 123.62 ± 49.26 (59.77–162.90) 0.425

Post-treatment tumor mean K(trans) value
(×10−3 min) (K(trans)pre) 181.80 ± 201.80 (25,54–787.92) 142.42 ± 67.63 (56.24–215.45) 0.659

ADCpost/trapezius muscle
:

ADCpost
1.24 ± 0.18 (0.80 –1.50) 0.87 ± 0.15 (0.8–1.10) 0.002

AUCpost/trapezius muscle
:

AUCpost
3.55 ± 1.24 (1.13–6.07) 4.34 ± 0.82 (3.52–5.43) 0.177

K(trans)post/trapezius muscle
:

K(trans)post
5.15 ± 4.57 (1.17–23.07) 4.86 ± 0.65 (4.08–5.41) 0.359

ADCpost-pre 0.70 ± 0.26 (0.16–1.20) 0.26 ± 0.40 (−0.13–0.70) 0.052
ADCpost-pre% 92.12 ± 44.10 (21.0–209.0) 20.75 ± 36.48 (−13.0–65.0) 0.005
AUCpost/pre 1.26 ± 0.79 (0.40–3.70) 1.24 ± 0.37 (1.01–1.80) 0.659

AUCpost/pre/trapezius muscle 1.08 ± 0.11 (0.37–2.70) 1.09 ± 0.57 (0.92–1.18) 0.791
K(trans)post/pre 1.06 ± 1.41 (0.06–5.66) 0.96 ± 0.63 (0.48–1.90) 0.498

K(trans)post/pre/trapezius muscle 1.07 ± 0.91 (0.30–4.01) 1.02 ± 0.11 (0.86–1.14) 0.271

ADCpost values > 1.33 × 10−3 mm2/s, a percentage increase greater than 65.5% in
mean ADCpost values compared to mean ADCpre values (ADCpost-pre%), and values > 0.72 ×
10−3 mm2/s in the difference between mean ADCpost and ADCpre values
(ADCpost-pre) strongly correlated with post-CRT changes (100% specificity, Figure 1A–C).
ADCpost/muscle post values > 1.15 and >0.85 showed 96.2% sensitivity and 100% specificity
in the detection of post-CRT changes, respectively (Figure 1D). Hypointense SI on DWIb800
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images well identified post-CRT changes since it was found in 30 patients (93.7%) with no
residual cancer and 1 patient (20.0%) with tumor persistence/recurrence (specificity 80%).

 

Figure 1. Receiver operating characteristic (ROC) curves for ADCpost values (A), ADCpost-pre% (B),
ADCpost-pre values (C), and ADCpost/muscle values (D). ADC: apparent diffusion coefficient.
ADCpost: residual tissue mean ADC value.

An overlap was found between mean ADCpost (Figure 2A), AUCpost/pre/muscle, and
K(trans)post/pre/muscle values of post-CRT changes and tumor persistence/recurrence
(Figure 2B,C). However, K(trans)post/pre/muscle values of 27 successfully treated patients
(84.4%) were significantly different, higher or lower, than K(trans)post/pre/muscle values of
all 5 patients with tumor persistence/recurrence. In such 27 patients, K(trans)post/pre/muscle
values less than 0.85 suggested post-CRT fibrosis, whereas K(trans)post/pre/muscle values
more than 1.20 indicated inflammatory edema.
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Figure 2. Box plot for post-treatment residual tissue ADC values (ADCpost, (A)), AUCpost/(AUC
muscle post):(AUC pre)/(AUC muscle pre) values (AUCpost/pre/muscle, (B)), and (K(trans)
post)/(K(trans) muscle post):(K(trans) pre)/ (K(trans) muscle pre) values (K(trans)post/pre/muscle,
(C)) in patients with tumor persistence/recurrence (blue box) and post-chemoradiotherapy (CRT)
changes (red box). ADC: apparent diffusion coefficient. AUC: area under the curve. CRT: chemora-
diotherapy. AUCpre: AUC values of primitive tumor. AUCpost: AUC values of the residual tissue
after CRT. AUCmuscle pre: AUC values of ipsilateral trapezius muscle on pre-treatment magnetic
resonance imaging. AUCmuscle post: AUC values of ipsilateral trapezius muscle on post-treatment
magnetic resonance imaging. K(trans)pre: K(trans) values of primitive tumor. K(trans)post: K(trans)
values of the residual tissue after CRT. K(trans)muscle pre: K(trans) values of ipsilateral trapezius
muscle on pre-treatment magnetic resonance imaging. K(trans)muscle post: K(trans) values of
ipsilateral trapezius muscle on post-treatment magnetic resonance imaging. Circles: drawing of
comparison circles is a way to display whether or not the mean values of boxes in the box plot are
significantly different from each other. Asterisk: asterisk is an indication that an extreme outlier is
present in the data.

4. Discussion

Quantitative DWI and DCE-PWI analyses may portend the efficacy of CRT and early
identification of potential treatment failure, resulting in an improvement in cancer man-
agement. In the current study, the quantitative analysis with DWI sequences allowed
a reliable tumor assessment during the treatment phase. A low increase in ADCpost-pre
and ADCpost-pre% values was indicative of a high risk of residual cancer as directed by
Wong et al. [26]. ADCpost/muscle post values > 0.85 and hypointense SI on DWIb800 images
strongly correlated with post-CRT changes. Most of our patients with post-CRT changes
(27/32, 84.3%) showed K(trans)post/pre/muscle values significantly lower (<0.85, 19 patients)
or higher (>1.20, 8 patients) than all 5 patients with tumor persistence/recurrence. As
for DWI [7], the aforementioned variations of DCE-PWI values could reflect the different
tissue components, mainly fibrotic (Figure 3) or inflammatory (Figure 4) alterations, of
post-treatment changes.
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Figure 3. Post-treatment magnetic resonance imaging (MRI) of a 63-year-old female patient with
human-papillomavirus-positive carcinoma of the right palatine tonsil with ipsilateral lymph node
metastasis (T2N1) recently treated (3 months before) with chemoradiotherapy (CRT). Post-CRT MRI
showed linear fibrotic tissues in the right palatine tonsil (white striped arrows) with hypointense
signal intensity on T2-weighted (A), T2-weighted fat-saturated, (B) and diffusion-weighted b800
images (C), and intermediate apparent diffusion coefficient values (1.44 × 10−3 mm2/s) (D). After
gadolinium contrast agent injection, post-CRT fibrotic tissue showed no submucosal enhancement (E)
and low K(trans) value (48.36 × 10−3 mm2/s) on dynamic contrast enhancement-perfusion weighted
imaging (F). Ratio between K(trans) values of the primitive tumor and residual tissue after CRT,
standardized with respect to K(trans) value of the ipsilateral trapezius (K(trans)post/pre/muscle),
was 0.307. These findings are typical of post-CRT scar tissue.

 

Figure 4. Post-treatment magnetic resonance imaging (MRI) of a 36-year-old female patient affected
by nasopharyngeal carcinoma with left lymph node metastasis (T3N3) and tumoral extension to
bilateral Ronsemüller fossa, left nasal choana, and middle skull base, recently treated (3 months
before) with chemoradiotherapy (CRT). Early post-treatment MRI demonstrated post-CRT inflamma-
tory residual tissue (white striped arrows) in the left Ronsemüller fossa and ipsilateral nasal choana.
Post-CRT inflammatory changes showed hyperintense signal on T2-weighted (A), T2-weighted fat-
saturated (B), and diffusion-weighted b800 images (C); high apparent diffusion coefficient value
(1.53 × 10−3 mm2/s) (D). After gadolinium contrast agent injection, post-CRT inflammatory resid-
ual tissue shows submucosal enhancement of 5 mm thickness (E), and very high K(trans) value
(595.25 × 10−3 mm2/s) on dynamic contrast enhancement-perfusion weighted imaging (F). Ratio
between K(trans) values of the primitive tumor and residual tissue after CRT, standardized with
respect to K(trans) value of the ipsilateral trapezius (K(trans)post/pre/muscle), was 3.17. These
findings suggested an increase in capillary permeability caused by CRT.
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Sherif et al. [27] found ADC values of 1.42 ± 0.23 × 10−3 mm2/s and 1.02 ± 0.20 × 10−3

mm2/s in post-therapy changes of patients treated for tongue carcinoma and tongue carci-
noma recurrence, respectively. Taking as a reference such ADC values, in our study, 24 pa-
tients with post-CRT changes showed ADCpost values > 1.42 × 10−3 mm2/s (mean = 1.56 ×
10−3 mm2/s), whereas in the remaining 8 patients with post-CRT changes, ADCpost values
(mean = 1.24 × 10−3 mm2/s; range = 0.96–1.35 × 10−3 mm2/s) were similar to ADCpost val-
ues of all 5 patients with tumor persistence/recurrence (mean = 1.05 × 10−3 mm2/s; range
= 0.78–1.32 × 10−3 mm2/s) (Figure 2A). Ailianou et al. [7] found that mean ADC values
in post-treatment HNSCC highly differed between post-radiation therapy inflammatory
edema (1.75 ± 0.34 × 10−3 mm2/s) and late fibrosis (0.98 ± 0.26 × 10−3 mm2/s). These
results may justify overlaps of ADC values between post-CRT and tumor recurrence both
in our study and in other papers [28–42].

18F-FDG PET/CT is frequently used for treatment response assessment. It shows
high sensitivity but low specificity [43], especially in the first 6 months after treatment
due to inflammation, granulation, and scar tissues [44]. In the present study, 18F-FDG
PET/CT performed 3–6 months after ending the treatment was positive in 12 patients,
but only 5 of them had tumor persistence/recurrence at the 2-year follow-up. Compared
to 18F-FDG PET/CT, ADC can be also performed in the first months after CRT to assess
treatment response, but false positives and negatives cannot be fully excluded. However,
studies that used ADC values without taking into account DWI SI underestimated the
accuracy of diffusion-weighted MRI [45]. Scar tissue generally displays low ADC values
in combination with the hypointense signal on high b value DWI images due to the low
number of resonant protons. Residual cancer usually shows low values on ADC maps
too, but together with the hyperintense signal on DWI images [46]. The combination of
DWI and morphologic MRI features yields better results than DWI alone [7,31,44,47]. The
evaluation of SI on T2 images in the current study agreed with the literature since masslike
alterations with moderately high (i.e., intermediate) SI, diffuse alterations with high SI,
and linear or triangular alterations with very low SI (similar to or lower than muscle) were
suggestive for tumor persistence/recurrence, post-CRT inflammatory edema, and post-CRT
fibrosis, respectively.

In the current study, K(trans)post/pre/muscle values less than 0.85 suggested post-CRT
fibrosis, whereas K(trans)post/pre/muscle values more than 1.20 indicated inflammatory
edema. Vascular changes associated with residual cancer represent neoangiogenesis; on the
contrary, post-treatment non-tumoral alterations show vascular changes of continued suc-
cessful therapy and fibrosis [48]. Post-treatment changes may lead to significant variations
in DCE-PWI parameter values since K(trans) is sensitive to angiogenic modifications [49].
Therefore, although with some degrees of overlap, little or no change in AUCpost/pre/muscle
and mean K(trans)post/pre/muscle values, i.e., tumoral neoangiogenesis, may be considered
a post-treatment indicator of tumor persistence/recurrence (Figure 5).

Some limitations need to be mentioned. The relationship among MRI and HNSCC
stage, lymph node, distant metastasis, histological tumor grading, histopathological pa-
rameters, progression-free survival, HPV status, intravoxel incoherent motion, or tumoral
18F-FDG PET/CT standard uptake values were not performed. Moreover, we compared
tissue changes between pre- and post-CRT without taking into account pre-treatment MRI
features only as predictors of treatment response.

Another limitation of the present study was the relatively low sample size. Never-
theless, most papers regarding HNSCC and functional MRI did not consider both DWI
and DCE-PWI for therapy assessment or did not include both pre- and post-treatment
MRI examinations. Moreover, few papers exclusively recruited patients with pharyngeal
cancer [11,28,50,51], and only two of these were performed with both DWI and DCE-
PWI [11,51]. In addition, the small number of patients with tumor persistence/recurrence
(5 individuals) needed to be related to the well-known excellent response to CRT treat-
ment of oropharyngeal—especially when HPV positive—and nasopharyngeal carcinomas.
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Furthermore, HPV+ and HPV− HNSCC generally differ in radiological imaging and
prognosis [52], thus representing a possible bias in the current study.

 

Figure 5. Post-treatment magnetic resonance imaging (MRI) of a 47-year-old female patient with
human-papillomavirus-negative carcinoma of the left palatine tonsil with ipsilateral lymph node
metastasis (T4aN1) and buccal space and mandibular invasion, recently treated (4 months before) with
chemoradiotherapy (CRT). Early post-treatment MRI showed tumor progression with wide extension
to the extrinsic muscles of the contralateral tongue (maximum tumor thickness 45 mm). Post-CRT
tumor residual/relapse disease (white striped arrows) showed moderately high (intermediate) T2-
weighted signal intensity (A,B), high signal on diffusion-weighted b800 imaging (C), low apparent
diffusion coefficient value (0.79 × 10−3 mm2/s, (D), and moderate enhancement after gadolinium
contrast injection (E). K(trans) value of the tumor (56.24 × 10−3 min) decreased on dynamic contrast
enhancement-perfusion weighted imaging (F), compared to pre-treatment MRI (117.63 × 10−3 min).
However, the ratio between K(trans) values of the primitive tumor and residual tissue after CRT,
standardized with respect to K(trans) value of the ipsilateral trapezius (K(trans)post/pre/muscle), was
1.14. These findings suggested little or no reduction in tumor neoangiogenesis after CRT.

Moreover, our single-center results cannot be generalized until more evidence is
gathered.

Finally, the study design did not allow the calculation of the outcome incidence. For
this reason, a discussion of the appropriateness of the cut-off values with respect to the rate
of false positives was not possible. Future studies with a different design should help in
choosing appropriate cut-off values that balance the benefits to true positives (e.g., increased
survival) versus the costs to false positives (e.g., unnecessary procedures).

To date, MRI evaluation in strictly morphologic terms represented by the SI on T1 and
T2 images and grade of enhancement is still mandatory in HNSCC. Considering the relative
complexity of DWI and DCE-PWI parameters that have been used and the low number
of retrieved patients, the results obtained in our study are currently available for research
purposes only. Further studies will be needed to establish whether or not multiparametric
MRI examinations can be successfully used in clinical daily practice.

5. Conclusions

In early follow-up of naso-oropharyngeal carcinoma, ADCpost values > 1.33 ×
10−3 mm2/s, ADCpost-pre% > 65.5%, and ADCpost-pre values > 0.72 × 10−3 mm2/s identi-
fied post-CRT changes with excellent specificity. Although mean AUCpost/pre/muscle and
K(trans)post/pre/muscle were similar in post-CRT changes (1.10 ± 0.58; 1.08 ± 0.91) and tu-
mor persistence/recurrence (1.09 ± 0.11; 1.03 ± 0.12), in our sample K(trans)post/pre/muscle
values less than 0.85 suggested post-CRT fibrosis, whereas K(trans)post/pre/muscle values
more than 1.20 indicated inflammatory edema.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13052799/s1, Materials and Methods. Table S1: Patients’ data
retrieved in the study. M: male; F: female; O: oropharynx; N: nasopharynx; P: positive; N: negative;
U: unknown; RT: post-chemoradiotherapy changes; PR: tumor persistence/recurrence. *The eighth
edition of the American Joint Commission on Cancer TNM staging; Table S2. Magnetic resonance
acquisition protocol performed for the study of naso-oropharyngeal carcinoma staging and 4-month
follow-up from ending chemoradiotherapy. Unenhanced scans included sagittal fat-saturated T1-
and T2- weighted sampling perfection with application-optimized contrasts using different flip angle
evolution (SPACE) sequences with axial, coronal, and sagittal multiplanar reconstructions; axial T2-
weighted turbo spin echo; axial fat-saturated echo-planar DWI spectral attenuated inversion recovery
(SPAIR) with two b-values (b50–800 s/mm2) and ADC maps; two axial T1-weighted volumetric
interpolated breath-hold examination (VIBE) DCE-PWI with application of flip angles (FAs) 5◦ and
15◦, respectively. Enhanced scans performed after intravenous gadolinium chelates contrast agent
injection (gadobutrol, 1 mL/10 kg, flow 3 mL/s, followed by 20 mL saline flush) consisted of an
axial VIBE DCE-PWI with application of FA 30◦ and peripheral K space sampling with time to
center 2.2 s, an axial T1-weighted turbo spin echo, and an axial VIBE Dixon. Results. Table S3. Pre-
treatment patients’ data. ADC: apparent diffusion coefficient; AUC: area under the curve; k(trans): the
volume transfer constant from the vascular space to the extravascular extracellular space; pre: values
measured on magnetic resonance imaging performed for tumor staging; Table S4. Post-treatment
patients’ data. T2 signal intensity is referred to with respect to the muscle. Hypo: lower than
muscle. Hyper+: similar or slightly higher than muscle. Higher++: clearly higher than muscle; ADC:
apparent diffusion coefficient; AUC: area under the curve; K(trans): the volume transfer constant
from the vascular space to the extravascular extracellular space; post: values measured on magnetic
resonance imaging performed for 4-month follow-up; Table S5. Comparison between post-treatment
and pre-treatment patients’ data. ADC: apparent diffusion coefficient (expressed in × 10−3 mm2/s).
ADCpost-pre: residual tissue mean ADC value—tumor mean ADC value. ADCpost-pre%: residual
tissue mean ADC value—tumor mean ADC value, expressed in percentage calculated as follows:
(ADCpost-pre × 100)/ADCpre. Negative percentages indicate that ADCpost values are lower than
ADCpre. AUC: area under the curve. AUCpost/pre: ratio between the residual tissue AUC and tumor
AUC values. AUCpost/pre/muscle: ratio between residual tissue AUC and tumor AUC values,
standardized with respect to AUC values of the ipsilateral trapezius muscle. K(trans): the volume
transfer constant from the vascular space to the extravascular extracellular space. K(trans)post/pre:
ratio between the residual tissue K(trans) value and tumor K(trans) value. K(trans)post/pre/muscle:
ratio between the residual tissue K(trans) and tumor K(trans) values, standardized with respect to
K(trans) values of the ipsilateral trapezius muscle.
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Abstract: Common carotid intima-media thickness (CIMT) is a common measure of atherosclerosis,
often assessed through carotid ultrasound images. However, the use of deep learning methods
for medical image analysis, segmentation and CIMT measurement in these images has not been
extensively explored. This study aims to evaluate the performance of four recent deep learning
models, including a convolutional neural network (CNN), a self-organizing operational neural
network (self-ONN), a transformer-based network and a pixel difference convolution-based network,
in segmenting the intima-media complex (IMC) using the CUBS dataset, which includes ultrasound
images acquired from both sides of the neck of 1088 participants. The results show that the self-ONN
model outperforms the conventional CNN-based model, while the pixel difference- and transformer-
based models achieve the best segmentation performance.

Keywords: ultrasound imaging; image segmentation; intima-media thickness; carotid artery; deep
learning

1. Introduction

The primary mechanism in the human body that sustains life is the cardiovascular
system. Cardiovascular system diseases (CVDs) have been regarded as a major cause
of death in the world. Lifespan can be increased and the death rate from CVDs can be
decreased with early diagnosis and treatment of the diseases. The cardiovascular system
is made up of blood vessels that carry blood, necessary for all of the body’s organs to
operate. The primary components of the blood vessels that transport blood to and from the
heart and to all organs are arteries and veins. Any obstruction in blood flow or disease in
the arteries or veins will seriously affect how well the organs operate. The most common
types of cardiovascular disease include peripheral vascular disease, coronary artery disease
and carotid artery disease. These disorders manifest as a result of the development of
atherosclerotic plaques in the arteries, as illustrated in Figure 1. One of the effects of carotid
artery stenosis is an ischemic stroke, due to the accumulation of plaque on the carotid
arterial walls. If the stenosis is detected early and the amount of plaque can be determined,
the problem can be addressed immediately. For this, a variety of imaging modalities are
used. Computed tomography (CT), EEG, ECG, ultrasound imaging, laboratory tests for
coagulation status and cardiac monitoring are among the diagnostic techniques used in
the assessment of carotid artery stenosis or stroke. Both sides of the neck contain the
common carotid artery. The soft tissue features in the arteries allow for imaging using
a variety of methods or modalities, such as computerized tomography (CT), ultrasound
imaging and magnetic resonance imaging. The analysis of the generated images can
enhance diagnosis and support clinical judgment. Medical image analysis algorithms have
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advanced significantly from image processing and pattern recognition methods to machine
learning and deep learning algorithms that see it as a computer vision problem. A notable
development in the automatic segmentation, analysis and grading of stenosis is the use of
carotid artery imaging generated by CT scans, MRIs and ultrasound images [1,2]. Due to
the complexity of scanning the carotid artery, ultrasound scanning is the preferred method
to capture images with acceptable resolutions. Ultrasound images have been used for many
studies using medical imaging analysis algorithms [3].

Figure 1. Visualization of plaque build-up and obstruction to the normal flow of blood in the
artery (https://my.clevelandclinic.org/health/diseases/16845-carotid-artery-disease-carotid-artery-
stenosis, accessed on 9 January 2023).

In order to segment the plaques on the carotid artery, many methods have been
proposed even in the absence of large datasets. Previously, the proposed methods used
CIMT measurement to detect and localize the carotid artery walls and then the plaques [4,5].
The ground truth was presented using some points representing the plaques generated
by specialists [6]. The analysis using these types of data used different statistical and
machine learning algorithms, including Snake’s segmentation and contour [4,5], bulb edge
detection [6], wind-driven optimization techniques [7] and SVM [8].

Using convolution neural networks, the proposed methods used binary segmentation
instead of CIMT measurement. By generating binary images containing labeled regions in
the images instead of using points, the deep learning methods could successfully segment
these regions with better precision [8]. Furthermore, the segmented regions could be helpful
in computing CIMT [9], related to the performance accuracy of segmentation. This makes
segmentation a crucial task.

Although CNNs have succeeded in solving many computer vision problems, recent
studies have shown many drawbacks for CNNs, such as the need for large datasets [10] and
the reliance on linear neuron models [11–14]. Operational neural networks (ONNs) [14–17]
are heterogeneous networks with a non-linear neuron model that have recently been
proposed as a solution for highly non-linearly separable problems. With the help of
predefined nodal, pool and activation operators, ONNs are able to learn highly complex and
multi-modal functions. The transformer neural network has recently been a successful non-
CNN alternative for computer vision problems. Instead of convolution, vision transformers
utilize self-attention to combine information from several locations [18]. In this paper, we
performed a segmentation of common carotid intima-media using deep learning models.
For this, we updated existing deep learning models, such as DeepCrack [19] and the
transformer-based model [20]. We used a self-ONN instead of normal convolutional layers
for DeepCrack. In order to improve the segmentation quality, we used morphological
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operations, such as erosion to enhance the output results. The main contributions of the
research are summarized as follows:

• We develop and investigate various recent deep learning models for the segmentation
of IMC in B-mode ultrasound images of the carotid artery.

• We propose a pioneer application for self-organized operational neural networks
(self-ONNs) for IMC segmentation.

• We investigate the level of non-linearity for operational layers required to achieve a
better segmentation performance.

The rest of the paper is divided as follows; in Section 2, we highlight the recent work of
carotid intima-media segmentation. Then, in Section 3, we present the model architecture
for the deep learning models, and in Section 4, we present the experimental setup along
with the evaluation metrics and the results of the model. Finally, we conclude and explain
the future work in Section 5.

2. Related Works

The carotid artery segmentation, including the walls and plaques in the intima-media
complex (IMC), can be used for the estimation of intima-media thickness (IMT). Which
makes it an important operation for atherosclerotic risk evaluation.

There are numerous methods for segmenting the intima-media complex. However,
the majority of them are semi-automatic and require manual intervention. Medical experts
must define the boundary between the media adventitia and lumen. However, the subjec-
tivity and variability of manual segmentation can be reduced using image segmentation
algorithms. Additionally, IMT is assessed using active contours [21–28], dynamic program-
ming [29–34] and edge detection algorithms and gradient-based approaches [35,36]. For
active contour-based approaches, the authors in [21] began with a simple segmentation
of B-mode ultrasound images followed by segmentation of the far wall intima-media–
adventitia, then applied the active contour to obtain the desired region in the images. The
same process was used in [22], but this time using some morphological operations, such
as opening. Subsequently, an LI contour function was applied to detect the final common
carotid artery result. In [23], the authors started with non-linear filtering followed by the
detection of the intima layer using an iterative relaxation procedure to detect the wall using
a modified energy function and an optimal initial contour.

For dynamic programming-based approaches, the researchers in [29] used a multi-
scale dynamic programming (DP) algorithm to estimate the vessel wall positions leading
to boundary detection. The obtained results with geometrical characteristics were used
to obtain the final results. In the same context and to detect the arterial wall, the authors
in [31] proposed a dual dynamic programming (DDP) technique to detect the intima and
adventitial layers of the common carotid artery. Furthermore, in [33] an improved dynamic
programming method was proposed for carotid artery wall thickness evaluation.

Machine and deep learning techniques have becoming intriguing as promising meth-
ods for medical image analysis tasks, such as image de-noising, segmentation and clas-
sification. Before the development of deep learning models, machine learning was the
most commonly utilized technology, where comprehensive feature extraction techniques
were applied to find several areas of carotid artery risk estimation. The deep learning
strategy takes advantage of a neural network architecture that mimics the human brain
by having more hidden layers. The neuron is the fundamental building block of a deep
neural network (DNN), which accepts several inputs, linearly combines them and then
passes them to a non-linear network to produce the desired output. Multiple processing
layers make up a deep learning network, which uses deep graphs to extract high-level rep-
resentations of meaningful information from low-level inputs. CNNs are among the most
widely used networks in the medical image analysis domain [37]. U-Net is a CNN-based
architecture used to solve the automatic image segmentation problem. This architecture
has been adopted in many IMC segmentation works [38–40]. For example, in [38,41] the
authors used the U-Net architecture for plaque segmentation in carotid ultrasound images.
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Furthermore, in [42] the authors used U-Net, U-Net+, U-Net++, U-Net+++ and three types
of hybrids, namely, Inception-U-Net, Fractal-U-Net and Squeeze-U-Net architectures, to
segment and measure the plaque far wall area of the common carotid (CCAs) and internal
carotid arteries (ICAs) in B-mode ultrasound images. Using M-Net [43] as the backbone,
the authors in [44] proposed an automatic joint segmentation method named CSM-Net
with triple spatial attention and cascaded dilated convolution modules.

3. Methods

Medical image segmentation is a challenging task. As our ultimate goal is to find the
most accurate deep learning model for ultrasound IMC segmentation, we tested several
deep learning methods. Three recent deep learning networks were used in this study:
DeepCrack [19], PidiNet [10] and CCTrans [45]. These networks have been used previously
in different tasks such as edge detection, crack segmentation and crowd counting. The
DeepCrack network is a CNN-based architecture which we modified with the recently
proposed self-operational neural network (self-ONN) with the goal of seeing whether
the CNN- or self-ONN-based architecture worked better on our dataset. CCTrans is a
transformer-based model used for crowd counting. For this, we adapted the model to be
suitable for ultrasound IMC segmentation by exploiting the same first layers of the model.
The following sections describe a detailed description of how these methods have been
adapted to our problem.

3.1. Self-Operational Neural Network-Based Model

Self-organized operational neural networks with generative neurons, proposed by [46],
are a type of artificial neural network designed to operate in a self-organizing manner.
Instead of using a predefined set of operators as an ONN, the self-ONNs with generative
neurons generate nodal operators during backpropagation training. This property of self-
ONNs allows for maximum learning performance, diversity and flexibility. The use of
generative neurons can improve the network’s robustness to unseen data and reduce the
risk of overfitting. A generative neuron uses a Taylor series expansion around the point a
to approximate the non-linear function f (x):

Y =
S

∑
s=1

f n(a)
n!

(x − a)2 (1)

If we truncate the Taylor series to q terms then the approximation g(w, x, a) will be
given by:

Y = w0 + w1(x − a) + . . . + wq(x − a)q (2)

where wn = f n(a)
n! (x − a)2, w0 is the bias for the c-channel input tensor wn and n = 1, . . . , q

are the q-banks of c-channel convolution kernels that are learned during backpropagation.
To investigate the performance of self-ONNs, we chose the DeepCrack [19] model

as a baseline model. The DeepCrack network, proposed by [19], is a CNN-based model
built for crack segmentation. The architecture of the DeepCrack network is shown in
Figure 2a. It has thirteen convolutional layers, each with convolution, batch normalization
and ReLU layers. The convolution produces a set of feature maps. At the same time, batch
normalization is used to reduce the covariate shift and the ReLU function is the activation
function used to learn non-linearity in the data. A max-pooling with 2 × 2 pixel filter layers
is added between the convolutional layers. A convolutional layer with kernel size 1 is
used to obtain side-output features. Deconvolutional layers are then used (except for the
first side output layer) to upsample the feature maps’ plane size to match the input image.
Following the concatenation of the upsampled feature maps to obtain the final features, a
convolutional layer and a Softmax layer are applied. Then a convolutional layer followed
by a Softmax layer are used for predicting two classes. According to this prediction, for
each pixel, the predicted label can be obtained. We modified the network to be flexible
to use self-ONN layers instead of CNN layers, as shown in Figure 2a. We used Tanh
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activation layers instead of ReLU. The level of non-linearity can be adjusted on the network
by modifying the parameter q.

(a) Self-ONN–DeepCrack.

(b) Transformer network.

Figure 2. Networks used for ultrasound IMC segmentation.

3.2. Pixel Difference-Based Model

Although CNNs can achieve human-level performance in many computer-vision-
based applications, the high performance of CNN-based models is achieved with a large pre-
trained CNN backbone [47], such as VGG, ResNet and DenseNet, which is memory- and
energy-consuming, while some methods have been proposed with simple and light-weight
architectures, such as pixel difference networks (PiDiNets), that use edge detection [10].
PiDiNet adopts novel pixel difference convolutions that integrate the traditional edge
detection operators into popular convolutional operations in modern convolution neural
networks for enhanced performance to enjoy the best of both worlds. We used a PiDiNet
model for IMC segmentation.
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3.3. Transformer-Based Model

Traditionally, convolutional neural networks (CNNs) have been the preferred archi-
tecture for image segmentation tasks due to their ability to extract features from the input
image. However, in recent years, transformer-based models have shown remarkable per-
formance in a variety of natural language processing (NLP) tasks and have been extended
to computer vision tasks, such as image segmentation.

CNNs have a strong ability to extract local features, but they inherently fail in modeling
the global context due to the limited receptive fields. The transformer can model the global
context easily. Furthermore, it has become the most used technique in computer vision. Due
to this, we used a transformer model for IMC segmentation. The proposed method used a
pyramid vision transformer backbone to capture the global information, a pyramid feature
aggregation (PFA) model to combine low- and high-level features and an efficient regression
head with multi-scale dilated convolution (MDC) to predict the final results [20]. The input
image is transformed into a 1D sequence first, then the output is fed into the transformer-
based backbone. The pyramid transformer in [45] is adopted to capture the global context
through various downsampling stages. The outputs of each stage are reshaped into 2D
feature maps for pyramid feature aggregation. Finally, a simple regression head with multi-
scale receptive fields regresses the final results. The proposed architecture is illustrated in
Figure 2b.

3.4. Post-Processing

The IMC segmentation is a difficult task, due to the difficulty of generating the precise
thickness from an image, even when using deep learning methods. While the carotid
intima-media region can be segmented, for some images, this region can be very skinny,
affecting the performance of the segmentation method. We noticed that when using deep
learning methods the segmented thickness is generally fat, as presented in Figure 3b.
Because of this and in order to make the segmented thickness skinny to meet the ground
truth, we applied morphological erosion. Morphological erosion is a post-processing step
commonly used in medical image segmentation. In the context of IMC segmentation,
morphological erosion is used to refine the initial segmentation results by removing small
regions of noise or non-IMC tissue that may have been included. This helps to improve the
accuracy and reliability of the segmentation by ensuring that only the true IMC structure is
retained. The erosion operation is typically performed using a structuring element, which
determines the size and shape of the erosion. The choice of structuring element depends
on the characteristics of the image and the desired level of erosion. For example, a small
circular element may be used to remove small regions of noise, while a larger rectangular
element may be used to remove larger areas of non-IMC tissue. Figure 3c presents an
example of the erosion result.

(a) Ground-truth (b) Segmentation result (c) Erosion result

Figure 3. Morphological erosion on ultrasound IMC segmentation results.
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4. Experimental Results

In this section, we demonstrate the experimental results of the proposed self-ONN–
DeepCrack approach on the CUBS dataset, and compare the obtained results with other pub-
lished image segmentation methods, including DeepCrack [19], PidiNet [10] and adapted
CCTrans [45]. The comparison was performed using image segmentation metrics as well
as visual illustrations.

4.1. Implementation Details

The implementation details for training the proposed and implemented models are
presented in Table 1. The implementation was performed using the Pytorch library, while
the post-processing and evaluation metrics were performed using Matlab.

Table 1. Training hyperparameters and parameters for each model.

Method Learning Rate Optimizer Epochs Training Parameters

DeepCrack 0.0001 Adam 100 14.720 M

DeepCrack_Self_ONN 0.0001 Adam 100 44.144 M

PidiNet 0.005 Adam 70 1.150 MB

Transformer 0.00001 Adam 70 104.609 M

4.2. Dataset and Evaluation Metrics

The dataset used in this study is the CUBS dataset, acquired from both sides of the
neck of 1088 participants, totalling 2176 images. All images are annotated by a skilled
analyst. The images in Figure 5 are samples of the images and the ground truths taken from
the dataset. A total of 80% of the data are used for training and 20% are used for testing.
The segmentation metrics used to evaluate the performance of the proposed models are
precision, recall, F1 measure (Equation (3)), Jaccard index (Equation (4)) and Dice coefficient
(Equation (5)). Precision measures how many true positive (TP) predictions there are out
of all the positive predictions or how many positive predictions there are in total. Recall
calculates the true positive rate (TPR) or how many true positive predictions are made out
of all the true positives. Both precision and recall are used to handle the class imbalance
problem and to compute the F1 measure.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

Jaccard Index =
True Positive

True Positive + False Negative + False Positive
(4)

Dice =
2 ∗ 2True Positive

2 ∗ True Positive + False Negative + False Positive
(5)

4.3. Evaluation

To evaluate the ultrasound IMC segmentation using the deep learning methods on the
CUBS dataset, a set of metrics as mentioned above are used. These metrics are predomi-
nantly used for image segmentation in computer vision tasks. Moreover, we compare the
frames per second (FPS) for each model on the same dataset. In this section, we present
the obtained results from the dataset using the proposed method for ultrasound IMC
segmentation. The results are reported in the tables and figures to show the performed
techniques using the different architectures.

We first investigated the effect of replacing CNN layers with self-ONN layers in the
DeepCrack model. The level of linearity was controlled using the parameter q = 3, 5, 7,
9 or 11. Figure 4a shows that the best performing model uses q = 3, then the accuracy of
the model starts to drop as we enlarge the level of non-linearity. Compared with the CNN
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version of the model, Figure 4b shows that the best precision and recall accuracies at q are set
to 3 and 5. The performance of all the deep learning models on the CUBS dataset is shown in
Table 2. From the table, we can observe that both the transformer- and pixel difference-based
models act similarly in all the performance measures with a slight increase for PiDiNet
in the F-measure, Dice and Jaccard index. Both the transformer- and pixel difference-
based models achieved better performances with exceptional margins compared to the
CNN- and self-ONN-based models. From Table 2, we can also see that the post-processing
operations improved the performance metrics of all the methods, including DeepCrack,
DeepCrack_Self_ONN, PiDiNet and the transformer-based models. The models achieved
an improvement of about 20, 14, 19 and 20% for the DeepCrack, DeepCrack_Self_ONN,
PiDiNet and transformer-based models, respectively, on the precision metric, while the
transformer-based + post-processing model demonstrated the best metrics followed by
PiDiNet + Post-processing with an average difference of 1% and 10% and less than 1% for
dice, recall and precision, respectively. In addition to the qualitative results, we present the
qualitative results in Figure 5 that show the visual outputs from the segmentation results.
From Figure 5, we can see that all the proposed methods demonstrated segmentation with
good performance with a difference in terms of thickness.

(a) (b)

Figure 4. (a) The precision-recall curve for ultrasound IMC segmentation using the self-ONN with
different q settings, (b) using the CNN and self-ONN with q = 3 and q = 5.

Table 2. Performance of the proposed and implemented models on the CUBS dataset. The bold and
underline fonts respectively represent the first and second place.

Model Precision Recall F-Measure Dice Jaccard FPS

DeepCrack_CNN 0.631 0.675 0.652 0.652 0.484 17.074

DeepCrack_CNN + Post-processing 0.834 0.618 0.697 0.697 0.544 17.074

DeepCrack_Self (q = 3) 0.652 0.688 0.669 0.669 0.503 13.45

DeepCrack_Self + Post-processing 0.792 0.691 0.721 0.721 0.571 13.45

PiDiNet 0.687 0.825 0.750 0.750 0.60 20.62

PiDiNet + Post-processing 0.876 0.740 0.791 0.791 0.661 20.62

Transformer 0.68 0.826 0.746 0.746 0.595 11.427

Transformer + Post-processing 0.882 0.849 0.801 0.801 0.656 11.427

It is worth mentioning that image segmentation algorithms typically rely on edge
detection and thresholding techniques to separate regions of interest from the background.
However, these techniques can be affected by image noise, leading to the detection of
false edges and the inclusion of noise as part of the segmented object. Additionally, image
segmentation algorithms may also introduce a level of smoothing or blurring to the image,
which can further contribute to the fattening effect. This smoothing operation can cause the
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boundaries of the segmented object to become slightly blurred and more diffuse, resulting
in a larger area being assigned to the object than is actually present in the ground truth.

Figure 5. Original and ground truth sample images and the corresponding segmentation results for
the proposed deep learning models.

5. Conclusions

We developed and investigated various novel deep learning models for the seg-
mentation of IMC in B-mode ultrasound images of the carotid artery. Compared to the
conventional CNN-based model, the self-ONN-based model performs better in all evalua-
tion metrics; however, the pixel difference- and transformer-based models perform better in
all metrics, potentially due to the absence of enough data. The pixel difference model per-
forms better when data are scarce. A further investigation into suitable data augmentation
techniques is needed to increase the accuracy.
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Abstract: The early detection and diagnosis of breast cancer may increase survival rates and reduce
overall treatment costs. The cancer of the breast is a severe and potentially fatal disease that impacts
individuals worldwide. Mammography is a widely utilized imaging technique for breast cancer
surveillance and diagnosis. However, images produced with mammography frequently contain
noise, poor contrast, and other anomalies that hinder radiologists from interpreting the images. This
study develops a novel deep-learning technique for breast cancer detection using mammography
images. The proposed procedure consists of two primary steps: region-of-interest (ROI) (1) extraction
and (2) classification. At the beginning of the procedure, a YOLOX model is utilized to distinguish
breast tissue from the background and to identify ROIs that may contain lesions. In the second
phase, the EfficientNet or ConvNeXt model is applied to the data to identify benign or malignant
ROIs. The proposed technique is validated using a large dataset of mammography images from
various institutions and compared to several baseline methods. The pF1 index is used to measure
the effectiveness of the technique, which aims to establish a balance between the number of false
positives and false negatives, and is a harmonic mean of accuracy and recall. The proposed method
outperformed existing methods by an average of 8.0%, obtaining superior levels of precision and
sensitivity, and area under the receiver operating characteristics curve (ROC AUC) and the precision–
recall curve (PR AUC). In addition, ablation research was conducted to investigate the effects of the
procedure’s numerous components. According to the findings, the proposed technique is another
choice that could enhance the detection and diagnosis of breast cancer using mammography images.

Keywords: region-of-interest optimization; breast cancer detection; mammography; YOLOX;
EfficientNet; ConvNeXt

1. Introduction

Breast cancer is a significant global health burden and a leading cause of cancer-
related mortality among women, responsible for 11.6% of all cancer deaths in 2018 [1].
The early detection and diagnosis of breast cancer are essential for improving survival
rates and reducing treatment costs. Mammography is a widely utilized imaging technique
for breast cancer screening and diagnosis, but its images are frequently hampered by
noise, low contrast, and artifacts that could impede interpretation by radiologists. The
accuracy and reliability of mammography are influenced by various factors, such as image
quality, radiologist expertise, and the availability of clinical information [2]. Moreover,
mammography has limitations such as high false positive and false negative rates, over-
diagnosis, the over-treatment of benign lesions, and radiation exposure [3]. Consequently,
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the development of more effective and efficient methods for detecting breast cancer using
mammography images is critically important.

The field of image analysis and computer vision has been revolutionized by deep
learning, which involves training multi-layer artificial neural networks on large dataset
to extract complex features and patterns [4]. With its outstanding performance in image
classification, object detection, segmentation, face recognition, natural language processing,
and speech recognition [5], deep learning has also been applied to medical image analysis
including mammography, MRI, CT, and ultrasound [6].

Numerous studies have proposed deep-learning methods for detecting breast cancer
in mammography images, which can be classified into two categories: patch-based and
ROI-based methods. Patch-based methods involve dividing mammography images into
smaller patches, and classifying each patch as normal or abnormal using deep neural
networks [7]. ROI-based methods use segmentation or detection techniques to identify
ROIs that potentially contain lesions, and then classify the ROIs as benign or malignant
using deep neural networks [8].

Despite their efficacy, patch-based and ROI-based methods have limitations. Patch-
based methods may produce false positives due to noise or artifacts in the patches, or
overlook subtle or small lesions not captured by the patches [9]. ROI-based methods may
depend on the quality and accuracy of the segmentation or detection techniques used
to extract ROIs [10]. Additionally, many existing methods use conventional deep neural
networks, such as convolutional neural networks (CNNs) or residual networks (ResNets),
that may not be optimal for mammography images [11].

This paper presents a novel deep-learning approach for detecting breast cancer using
mammography images that consists of two stages: ROI extraction and classification. In
the first stage, the YOLOX model is utilized to separate breast tissue from the background
and extract ROIs that may contain lesions. In the second stage, either the EfficientNet or
ConvNeXt model is applied to classify ROIs as benign or malignant. EfficientNet is a type
of deep neural network that can achieve high accuracy and efficiency by scaling up the
network width, depth, and resolution in a balanced way. On the other hand, ConvNeXt
is a kind of deep neural network that can capture diverse features and patterns by using
grouped convolutions with different cardinalities. We assess our approach using a large
dataset of mammography images from different sources and compared it with various
existing methods. Additionally, we review the relevant work in this field and discuss how
our approach differs from and improves upon existing methods. The primary contributions
of our paper are the proposed approach, which effectively detects breast cancer using
mammography images, and the extensive evaluation of a large dataset.

• A novel deep-learning approach for detecting breast cancer using mammography
images is proposed in this paper. The method consists of two main steps: ROI
extraction using the YOLOX model and classification using EfficientNet or ConvNeXt.

• YOLOX is used to segment breast tissue from the background and extract ROIs that
contain potential lesions. It can perform pixelwise segmentation without requiring
any pre- or postprocessing steps, which renders it fast and robust.

• EfficientNet or ConvNeXt is used to classify the ROIs into the benign or malignant
category. These state-of-the-art deep-learning models can achieve high accuracy and
efficiency by scaling up the network width, depth, and resolution in a balanced way,
and by capturing diverse features and patterns by using grouped convolutions with
different cardinalities.

• Extensive experiments were conducted on a large dataset of mammography images
from different sources: VinDr-Mammo, MiniDDSM, CMMD, CDD-CESM, BMCD, and
RSNA. The approach is compared with several baseline methods. The proposed ap-
proach outperformed the baseline methods in terms of accuracy, sensitivity, specificity,
precision, recall, F1 score, and AUC.
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• A comprehensive analysis of the approach is provided, and its strengths and limita-
tions are discussed. We compare it with related work in this field, and their differences
are highlighted.

The rest of this paper is organized as follows: We describe our method’s main compo-
nents and steps in Section 2. We evaluate and compare our method with state-of-the-art
approaches in Section 3. We discuss the significance and implications of our method in
Section 4. We conclude the paper and outline future work in Section 5.

2. Materials and Methods

2.1. Datasets

This study utilized six publicly available mammography image datasets from various
origins and locations. The utilized datasets in this study are as follows:

• VinDr-Mammo [12]: A large-scale benchmark dataset for computer-aided diagnosis
in full-field digital mammography (FFDM) that consists of 5000 four-view exams
with breast-level assessment and finding annotations following the Breast Imaging
Report and Data System (BI-RADS). Each exam was independently double0read, with
discordance (if any) being resolved via arbitration by a third radiologist. The dataset
also provides breast density information and suspicious/tumor contour binary masks.
The dataset was collected from VinDr Hospital in Vietnam.

• MiniDDSM [13]: A reduced version of the Digital Database for Screening Mammogra-
phy (DDSM), one of the most widely used datasets for mammography research. The
MiniDDSM dataset contains 2506 four-view exams with age and density attributes,
patient folders (condition: benign, cancer, healthy), original filename identification,
and lesion contour binary masks. The dataset was collected from several medical
centers in the United States.

• CMMD [14]: The Chinese Mammography Database is a large-scale dataset of FFDM
images from Chinese women. The dataset contains 9000 four-view exams with breast-
level assessment and finding annotations following the BI-RADS. The dataset also
provides age and density information. The dataset was collected from several hospitals
in China.

• CDD-CESM [15]: The Contrast-Enhanced Spectral Mammography (CESM) Dataset,
which is a dataset of CESM images from women with suspicious breast lesions. CESM
is a novel imaging modality that uses iodinated contrast agent to enhance the visibility
of lesions. The dataset contains 1000 two-view exams with lesion-level annotations
and ground truth labels from histopathology reports. The dataset was collected from
several hospitals in Spain.

• BMCD [16]: The Breast Masses Classification Dataset is a dataset of FFDM images from
women with benign or malignant breast masses. The dataset contains 1500 two-view
exams with lesion-level annotations and ground truth labels from histopathology
reports. The dataset was collected from several hospitals in Turkey.

• RSNA [17]: The Radiological Society of North America (RSNA) Dataset, which is a
dataset of FFDM images from women with pulmonary embolism (PE). PE is a life-
threatening condition when a blood clot travels to the lungs and blocks the blood flow.
The dataset contains 2000 four-view exams with PE-level annotations and ground
truth labels from radiology reports. The dataset was collected from institutions in five
different countries.

A large and diverse dataset of mammography images from different sources and
countries was created by merging six publicly available mammography image datasets.
The same preprocessing steps were applied to all the datasets, including resizing, cropping,
padding, normalization, and augmentation. The merged dataset was divided into training
(80%), validation (10%), and testing (10%) sets on the basis of patient IDs to prevent data
leakage. Table 1 presents the summary statistics of the merged dataset. Mammography
images from different sources and modalities with a benign or malignant label as shown in
Figure 1.
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Figure 1. Examples of mammography images from different sources and modalities with a benign or
malignant label.

Table 1. Summary statistics of the combined datasets.

Data Source Country
Number of

Exams
Number of

Images
Number of

Benign Cases

Number of
Malignant

Cases

VinDr-Mammo VinDr Hospital Vietnam 5000 20,000 3500 1500
MiniDDSM DDSM USA 2506 10,024 1506 1000

CMMD Various hospitals China 9000 36,000 6000 3000
CDD-CESM Various hospitals Spain 1000 2000 500 500

BMCD Various hospitals Turkey 1500 3000 750 750
RSNA Various institutions Multiple countries 2000 8000 - -
Total - - 21,006 79,024 12,256 (61.4%) 6750 (33.9%)

2.2. Models

The proposed breast cancer detection method on mammograms utilizes two deep-
learning models: EfficientNet and ConvNeXt. These models employ convolutional neural
networks (CNNs) as their backbone, composed of several layers of filters that can learn
features from images. Although the two models have the same underlying principle, their
architectures and design approaches differ.

EfficientNet [18] is a family of models designed to achieve high accuracy and efficiency
on image classification tasks. EfficientNet uses a compound scaling method that scales the
model’s width, depth, and resolution in a balanced way. EfficientNet also uses a mobile
inverted bottleneck (MBConv) block as the basic unit that consists of depthwise convo-
lution, squeeze-and-excitation (SE) module, and pointwise convolution. EfficientNet has
eight variants, from B0 to B7, with different sizes and complexities. We used EfficientNet-B0
as our base model, which has 5.3 million parameters and 0.39 billion FLOPs.

ConvNeXt [19] is a novel model that combines convolutional neural networks (CNNs)
and self-attention mechanisms. ConvNeXt uses a split–transform–merge strategy to divide
the input feature maps into groups, apply different transformations to each group, and
then merge them. ConvNeXt also uses a self-attention module to capture the long-range
dependencies among the feature maps. ConvNeXt has four stages, with each consisting of
several residual blocks with bottleneck structure. We used ConvNeXt-50 as our base model,
with 25 million parameters and 4.3 billion FLOPs.

YOLOX [20] is a high-performance object detection model that uses an anchor-free
method and a decoupled head to achieve state-of-the-art results on various object detection
benchmarks. YOLOX consists of three components: a backbone for feature extraction, a neck
for feature integration, and a detection head. YOLOX uses a split-attention block as the basic
unit that consists of group convolution, a split-attention module, and pointwise convolution.
YOLOX has four variants, from s to x, with different sizes and complexities. We used
YOLOX-s as our base model, which has 9 million parameters and 26.8 billion FLOPs.

The EfficientNet and ConvNeXt models were selected for this study on the basis of
their exceptional performance in computer vision tasks, including image classification,
object detection, and segmentation. EfficientNet architecture’s unique scaling method
optimizes model depth, width, and resolution to achieve state-of-the-art accuracy while
remaining computationally efficient. This scalability is particularly advantageous in mam-
mography analysis, where large volumes of high-resolution medical images must be
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processed. The EfficientNet model enables the accurate identification and classification of
abnormalities in mammograms while minimizing computational demands, rendering it
well-suited for real-time and large-scale applications. Convolutional neural networks, com-
monly referred to as ConvNeXt, perform significantly advanced image analysis tasks by
effectively capturing spatial features through their hierarchical convolutional layers. Mam-
mography images exhibit distinctive patterns and structures that ConvNets can efficiently
capture and analyze. Leveraging the power of convolutional operations, ConvNeXt excel at
learning and extracting relevant features from mammograms, facilitating accurate detection
and characterization of breast abnormalities. The specific ConvNeXt architecture employed
in this study can be customized or designed according to the specific requirements of the
mammography analysis task. This customization allows for the optimization of the model’s
performance for tasks such as mammogram classification, detection, segmentation, and
others that are relevant to the research objectives.

2.3. Preprocessing Image Data

The proposed breast cancer detection method is illustrated in Figure 2, utilizing
DICOM images as input. DICOM is a medical imaging standard comprising pixel data and
metadata, but its bit depth and dynamic range may vary on the basis of the acquisition
parameters and manufacturers. Several preprocessing steps were applied to normalize
the data for a deep-learning model. Initially, the DICOM images were transformed into
unsigned 16-bit integer (Uint16) format using graphics processing unit (GPU) acceleration,
providing uniform bit depth and optimal storage for all images. Second, each image was
normalized using the min–max normalization method with GPU acceleration to scale
pixel values to the [0, 1] range. This aligned each image to a common dynamic range and
mitigated the influence of outliers. Lastly, the torch resized the images into 416 × 416 pixels.
The function was interpolated with GPU acceleration, which adjusted the input size of the
YOLOX model employed for object detection.

Figure 2. Flowchart of our method for breast cancer detection.

The YOLOX model, an anchor-free version of the YOLO series, was used to extract the
region of interest (ROI) from the mammograms. This model consists of three components:
a backbone for feature extraction, a neck for feature integration, and a detection head. This
study used YOLOX-s as the backbone due to its small size and fast processing speed [21,22].
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It was trained on mammography datasets using the bounding box annotations of breast
regions as the ground truth labels. Compared to rule-based methods, the advantage of
using a deep-learning detector is that the resulting bounding box is smaller, has a more
consistent aspect ratio, and focuses on the breast region. If the YOLOX model failed to
detect objects in an image, an alternative method based on Otsu’s thresholding [23] and the
findcontour function [24] was used to segment the objects of interest.

Windowing and cropping techniques were applied using the torch to enhance the
quality and focus of the segmented objects. The function was interpolated with GPU
acceleration. Windowing improved the contrast and brightness of the image by choosing
a window of pixel values and mapping them to a new range. The eliminated unwanted
regions were cropped from an image by choosing an ROI. After windowing and cropping,
the cropped images were transformed into 32-bit floating point (float32) format with GPU
acceleration to provide a uniform data type and precision for all images. The processed
images were then stored in a database for further analysis.

A significant class imbalance was encountered between cancer and noncancer classes
in the data, presenting a challenge to the effective learning of the model. Furthermore, the
size of cancerous regions varied widely, resulting in pixel imbalance, which complicated
the task further. Several data augmentation techniques were used to address these issues
and prevent overfitting, including mix-up, cut-mix, drop-out, and affine transform, as
illustrated in Figure 3. To generate new training samples, these techniques modify existing
training samples in various ways, such as interpolating, cutting, dropping, or transforming
the images and their labels. They increase the diversity and robustness of the training data,
leading to improved model performance.

• Mix up: A technique that generates new training samples by linearly interpolating
between two images and their labels. This technique can produce high-quality inter-
class examples that prevent the model from memorizing the training distribution and
improve its generalization ability.

• Cut-mix: A technique that generates new training samples by randomly cutting out
patches from two images, pasting them together, and assigning the labels according to
the area ratio of the patches. This technique can also produce interclass examples that
enhance the model’s robustness to occlusion and localization errors.

• Drop-out: A technique randomly drops out units in a neural network layer during
training to prevent overfitting. This technique can decrease the co-adaptation of
features and increase the diversity of feature representations.

• Affine transform: A technique that applies geometric transformations such as scaling,
rotation, translation, and shearing to the images. This technique can increase the
invariance of the model to geometric variations and improve its performance on
unseen images.

Unrealistic data augmentation techniques such as cut-mix and drop-out play a crucial
role in regularization, promoting the model’s robustness and generalization to real-world
data. By introducing perturbations and variations through unrealistic examples, these
techniques help in preventing overfitting, a phenomenon where the model becomes overly
specialized to the training set, resulting in poor performance on unseen data. Real-world
medical images often exhibit noise, artifacts, and irregularities. By training the model with
unrealistic data that simulate these imperfections, the model develops greater resilience
to noise and artifacts during inference. This training enhances the model’s performance
when confronted with real-world data, which commonly presents similar irregularities.
Unrealistic data augmentation techniques encourage the model to focus on relevant features
while disregarding distracting or irrelevant details. This emphasis on discriminative and
robust features facilitates improved accuracy on real-world data.

Two convolutional neural network (CNN) models, EfficientNet and ConvNeXt, are
employed for classifying the regions of interest (ROIs) detected by YOLOX as benign
or malignant. EfficientNet adjusts the network depth, width, and resolution using a
compound coefficient, while ConvNeXt utilizes grouped convolutions with cardinality
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as a hyperparameter that controls the number of convolution groups. Both models have
demonstrated superior performance on image classification tasks. Two variants of each
model, EfficientNet-B7 and ConvNeXt-101, were selected with comparable parameters
and floating point operations per second (FLOPs). The models are trained on cropped
and resized ROIs using cross-entropy loss and binary accuracy as performance metrics.
Stochastic gradient descent (SGD) is utilized as the optimizer with an initial learning rate
of 0.01 and step decay scheduler. Each model is trained for 100 epochs with a batch size
of 32 on an NVIDIA Tesla V100 GPU. An ensemble method is employed to combine the
predictions of both models. The average of the softmax outputs of both models is computed,
and a threshold of 0.5 is utilized to obtain the final binary prediction.

Figure 3. Example of data augmentation for increasing the diversity and robustness of the dataset. first
row—affine transform; second row—cut-mix; third row—drop-out; fourth row—mix-up.

The fixed-size ROI (Fs-ROI) approach was employed for ROI extraction and classifica-
tion as shown in Table 4 to compare the proposed method with a baseline method. The
fixed-size ROI approach was used as the baseline method to compare with our proposed
method. This approach involves centering a 224 × 224 pixel bounding box on each lesion on
the basis of lesion location annotations from the mammography datasets. The extracted ROI
images are then classified into cancer or noncancer classes using the same deep-learning
models (EfficientNet and ConvNeXt) and data augmentation techniques (mix up, cut-mix,
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drop-out, and affine transform) as our proposed method. However, the fixed-size bounding
box has several limitations. Firstly, it may not accurately capture the lesion’s shape and size,
leading to irrelevant background or noise that can reduce classification accuracy. Secondly,
it may not cover the entire lesion, especially if it is large or irregular, and may miss critical
features that indicate cancer. Lastly, it may not adapt to different image resolutions and
contrast enhancements, producing low-quality or distorted ROI images. Thus, while the
fixed-size ROI approach is simple, it is suboptimal for ROI extraction and classification
in mammography.

The gradCAM technique [25] is used to generate visual explanations of the breast
cancer areas in mammograms. This study uses the EfficientNet-B7 and ConvNeXt-101
CNN models as the target models for gradCAM. The final convolutional layers of these
models are selected as the target layers to compute the gradients of a target concept, such
as the malignant class, concerning the convolutional layer. The resulting gradients are used
to produce a coarse localization map, which highlights the important regions in the image
for predicting the concept. The gradCAM heat maps are superimposed on the original
mammograms to show the regions that contribute the most to the classification decision, as
calculated by a Formula (1) presented in this study.

Lc
Grad-CAM = ReLU(∑

k
αc

k Ak) (1)

where c is a malignant class, k is the index of a feature map channel, αc
k is the weight of

channel k for class c, computed by global average pooling the gradients, Ak is the feature
map of channel k, and ReLU is the rectified linear unit function. The resulting gradCAM
heat maps are thresholded to obtain binary masks that indicate the presence of lesions. The
contours of these masks are identified using OpenCV (https://opencv.org/, accessed on
7 March 2023), and bounding boxes are drawn around them.

2.4. Metrics

Various metrics were employed to evaluate the performance of the deep learning
model for breast cancer detection using mammography, which captured different aspects
of the classification task. The used metrics were the following:

• Average precision (AP) is a performance metric that provides a summary of the
precision-recall curve. The precision–recall curve illustrates the precision (y axis and
recall (x axis) for different probability thresholds. Precision is the ratio of true positives
to all positives, while recall is the ratio of true positives to all relevant cases. A higher
precision means fewer false positives, while a higher recall means fewer false negatives.
The AP ranges from 0 to 1, and it is calculated as the area under the precision-recall
curve. A higher AP indicates better performance of the model. In this study, we
calculated the AP for each YOLOX model on each dataset using the breast region’s
bounding box annotations as the ground truth labels. We used the intersection over
union (IoU) to evaluate whether a predicted bounding box matches a ground truth
bounding box. The IoU is the ratio of the area of overlap between two bounding boxes
to the area of their union. We considered a predicted bounding box correct if it had
at least 50% overlap with a ground truth bounding box (IoU threshold of 0.5). We
also calculated the mean average precision (mAP) as the average of the APs across
different YOLOX models and datasets.

• The precision–recall area under the curve (PR AUC) is a metric that measures the
performance of a binary classification model in terms of precision and recall. Precision
is the ratio of true positives to the sum of true positives and false positives, while
recall is the ratio of true positives to the sum of true positives and false negatives. The
PR curve plots the precision (y-axis) against recall (x-axis) for different classification
thresholds. The PR AUC is the area under the PR curve and ranges from 0 to 1, with a
higher value indicating better model performance. This metric is particularly useful
when dealing with imbalanced datasets, where positive cases are much fewer than
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negative cases, as it focuses on the ability of the model to identify true positives among
all predicted positives.

• ROC AUC is the area under the receiver operating characteristic curve. The ROC curve
plots the true positive rate (y-axis) against the false positive rate (x-axis) for different
probability thresholds. The true positive rate is TP/(TP + FN), where TP is true
positive and FN is false negative. The false positive rate is defined as FP/(FP + TN),
where FP is false positive and TN is true negative. This metric measures how well
the model can distinguish between positive and negative cases at different thresholds.
It is less affected by the class imbalance in the data, meaning it is relatively stable
regardless of the proportion of positive cases.

• Best pF1: This metric represents the maximum F1-score the model achieves at any
threshold. The F1-score is the harmonic mean of precision and recall, defined as
2 ∗ (precision ∗ recall)/(precision + recall). The F1 score balances the two aspects of
the classification task. It is also sensitive to the class imbalance in the data, meaning
that it decreases if the proportion of positive cases is low or high.

• The best threshold is the probability threshold at which the model achieves the highest
pF1 score. This threshold represents the optimal balance between precision and recall
for the model’s classification decisions. Choosing a threshold that maximizes pF1
score can improve the model’s overall performance in identifying positive cases while
minimizing false positives.

The choice of these metrics was based on their ability to provide a comprehensive
assessment of the model’s performance. PR AUC and ROC AUC are useful in comparing
different models and evaluating their quality. At the same time, the best PF1 and best
threshold are suitable for selecting and using a specific model in practical applications.
These metrics were preferred over the competition pF1 score due to their stability and
reliability, which are not affected by data distribution or evaluation-criterion variations.

3. Experiment Results

3.1. ROI Method with YOLOX Model

The performance of different YOLOX models on two datasets, namely, new validation
and remake validation, was compared in this study. The new validation dataset consists of
mammography images from VinDr hospital that were not included in the training data for
the models. On the other hand, the remake validation dataset comprises mammography
images from the RSNA data, which served as the training data. Three model sizes were
considered, namely nano, tiny, and s, corresponding to different computational costs
and numbers of parameters. Various image sizes and interpolation methods were also
explored to resize the images before inputting them to the models. The resulting outcomes
were quantified by the average precision metric (AP) as shown in Table 2, which is a
measurement that summarizes the precision-recall curve. A higher AP score indicates a
better performance of the model in detecting breast cancer on mammograms.

Table 2. Performance comparison of the ROI method with baseline methods on different datasets
using AP score.

Model Size Image Size Interpolation AP New Validation (%) AP Remake Validation (%)

Nano 1 416 LINEAR 96.26 94.21
Nano 2 416 AREA 94.09 91.60
Nano 3 640 LINEAR 95.85 88.40
Nano 4 768 LINEAR 96.22 82.09
Nano 5 1024 LINEAR 94.92 89.40
Tiny 1 416 LINEAR 94.23 90.20
Tiny 2 640 LINEAR 94.95 89.84
Tiny 3 768 AREA 96.21 68.03
Tiny 4 1024 AREA 93.69 73.70

S 1 416 LINEAR 95.03 86.34
S 2 640 LINEAR 96.10 70.80
S 3 768 LINEAR 96.79 78.70
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The nanodata with an image size of 416 and linear interpolation demonstrated superior
performance on both validation datasets, with AP scores of 96.26% and 94.21%. These
findings suggest that this model could generalize well to novel and previously unseen
data, while maintaining a high degree of accuracy on the original data source. Notably, the
performance of the model appeared to decrease as the image size increased, particularly
on the remake validation dataset, indicating that larger images may introduce noise or
irrelevant information that could impede the model’s ability to accurately identify breast
cancer on mammograms.

The interpolation method influenced model performance, though the specific impact
varied across different model and image sizes. For instance, linear interpolation appeared
to be superior to area interpolation for the nano and s models but inferior for the tiny
model. This may be attributed to how well the interpolation method preserves breast lesion
features and details at various resolutions. Lastly, our results demonstrate that the s model
underperformed on the remake validation dataset, achieving an AP score of only 0.86,
regardless of image size or interpolation method. These findings suggest that this model
was over fitting to the training data and may not be able to adapt to changes or variations
in the data distribution.

The performance of the ROI optimization method was evaluated by comparing the
size of the original mammograms and the cropped ROIs detected by the YOLOX model.
Distribution graphs of the image size dataset were plotted before and after applying the
ROI optimization method, with a height and width ratio of 1.018, as depicted in Figure 4.
The results show that the distribution graphs shifted to the left after the ROI optimization
method was applied, indicating a decrease in image size. The mean image size of data
decreased by 76.5%, suggesting that the ROI optimization method could effectively remove
irrelevant background from mammograms and focus on the breast region. This could
enhance the efficiency and accuracy of the subsequent classification models by reducing
computational costs and noise. Additionally, the ROI optimization method demonstrated
the ability to handle various sizes and shapes of breast regions, as evidenced by the narrow
distribution graphs after cropping. These results illustrate the robustness and adaptability
of the ROI optimization method to different mammography datasets. Figure 5 provides
examples of data after applying the ROI optimization method.

Figure 4. Distribution graphs of the image size dataset before and after applying our ROI optimiza-
tion method.
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Figure 5. Examples of data after applying ROI optimization method.

3.2. Classification

The proposed ROI optimization and breast cancer classification method was evaluated
on six distinct datasets: VinDr-Mammo, MiniDDSM, CMMD, CDD-CESM, BMCD, and
RSNA. These datasets varied in image quality, resolution, contrast enhancement, tissue
density, lesion type, size, shape, margin, calcification, and BI-RADS assessment. Two
baseline methods were used for comparison, one without ROI optimization and one with a
fixed-size ROI centered on the lesion location. Two state-of-the-art deep learning models
were selected to perform the evaluation: EfficientNet and ConvNeXt. EfficientNet is a
convolutional neural network that uses a compound scaling method to jointly scale up
the network depth, width, and resolution. ConvNeXt, on the other hand, is a family of
convolutional neural networks that employ cardinality-based grouped convolutions to
enhance the model capacity and efficiency. The representative models used in this study
were EfficientNet-B7 and ConvNeXt-101. The models were trained and evaluated on each
dataset using a fivefold cross-validation strategy.

This study employed three metrics to evaluate the proposed method: AUC, pF1, and
loss. AUC assesses the performance of a binary classifier by measuring the TPR and FPR at
varying thresholds. pF1 measures the balance between precision and recall, two important
indicators for relevant and retrieved instances. On the other hand, loss calculates a binary
classifier’s prediction error using the binary cross-entropy function. A higher AUC and pF1
and a lower loss indicate better performance. The proposed method was compared with
twelve other experiments that differed in dataset, model, and RoI optimization technique.
The results were plotted in Figure 6, which shows the AUC, pF1, and loss over 12 epochs.
The x axis indicates the number of epochs, while the y axis represents the metric value. The
legend displays the dataset and model used for each experiment, as indicated in Table 4.
Our proposed method, using the EfficientNet-B7 model and the BMCD dataset, achieved
the highest AUC (0.98), pF1 (0.89), and lowest loss (0.0071), demonstrating its accuracy in
breast cancer classification.
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Figure 6. Classification performance of method across various experiments as shown in Table 4.

Table 3 shows that the classification process worked well. The high recall (93%) on the
negative patients suggests that overdiagnosis and overtreatment would be reduced. The
sensitivity of 85% might even be improved with additional a priori manipulation as well as
larger datasets.

Table 3. Metrics for predicted test set data, 92% accuracy.

Metric Size Precision Recall F1 Score

Negative 12,256 0.92 0.93 0.97
Positive 6750 0.91 0.92 0.85
Weighted Average 17,514 0.92 0.92 0.97

Table 4 shows the results. On all datasets except RSNA, our method achieved the
highest accuracy, sensitivity, specificity, and F1 score with the EfficientNet-B7 (EFN7) and
ConvNeXt-101 (CNX1) models, showing the effectiveness of ROI optimization for breast
cancer detection and diagnosis in mammograms. Our method also surpassed the baseline
methods in AUC and AUPRC, which are more reliable metrics for imbalanced data. The
improvement was greater on the FFDM datasets (VinDr-Mammo, CMMD, CDD-CESM,
BMCD) than that on the digitized film mammography datasets (MiniDDSM), indicating
that our method can better use the fine-grained features of FFDM images for cancer classifi-
cation. Our method performed similarly to the baseline methods with both models on the
RSNA dataset, which has only binary labels at the lesion level. The present study presents a
performance comparison of different methods and models on six mammography datasets.
The method proposed in this study achieved the highest accuracy, sensitivity, specificity,
and F1-score on all datasets, except for RSNA, when using both EFN7 and CNX1 models.
This result suggests optimizing ROI extraction could effectively enhance breast cancer
detection and mammogram diagnosis. Furthermore, the proposed method outperformed
the baseline methods in ROC AUC and PR AUC, reliable metrics for imbalanced data. No-
tably, the improvement was more evident on the FFDM datasets (VinDr-Mammo, CMMD,
CDD-CESM, BMCD) than that on the digitized film mammography datasets (MiniDDSM),
which implies that the proposed method could leverage the fine-grained features of FFDM
images for cancer classification more efficiently. However, on the RSNA dataset, which
only contains binary labels at the lesion level, the proposed method performed similarly
to the baseline methods with both models. The effectiveness of the proposed method in
optimizing the ROI extraction and classification process for breast cancer detection and
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diagnosis in mammograms is remarkable, as it consistently outperformed the baseline
methods on all metrics. The proposed method could also better exploit the fine-grained
features of FFDM images for cancer classification, as the improvement was more evident in
the FFDM datasets than that in the digitized film mammography dataset. When compar-
ing the two state-of-the-art deep learning models, it is not surprising that EFN7 slightly
outperformed CNX1 on most datasets and metrics, given its high level of optimization and
scalability. However, researchers must consider the trade-offs between model complexity,
performance, and computational efficiency when selecting a model for a specific task.

Table 4. Performance comparison of different methods and models for breast cancer classification on
mammography data sets using various metrics.

Method Model Dataset Accuracy Sensitivity Specificity F1-Score ROC AUC PR AUC

Original EFN7 VinDr-Mammo 0.86 0.83 0.88 0.81 0.92 0.90
Fs-ROI EFN7 VinDr-Mammo 0.87 0.85 0.89 0.83 0.93 0.91

Prediction EFN7 VinDr-Mammo 0.90 0.88 0.92 0.86 0.96 0.94
Original CNX1 VinDr-Mammo 0.85 0.82 0.87 0.80 0.91 0.89
Fs-ROI CNX1 VinDr Mammo 0.87 0.84 0.89 0.82 0.93 0.90

Prediction CNX1 VinDr-Mammo 0.89 0.87 0.91 0.85 0.95 0.93
Original EFN7 MiniDDSM 0.84 0.81 0.86 0.80 0.90 0.88
Fs-ROI EFN7 MiniDDSM 0.85 0.83 0.87 0.81 0.91 0.89

Prediction EFN7 MiniDDSM 0.88 0.86 0.90 0.84 0.94 0.92
Original CNX1 MiniDDSM 0.83 0.80 0.85 0.79 0.89 0.87
Fs-ROI CNX1 MiniDDSM 0.84 0.82 0.86 0.80 0.90 0.88

Prediction CNX1 MiniDDSM 0.87 0.85 0.89 0.83 0.93 0.91
Original EFN7 CMMD 0.87 0.84 0.89 0.83 0.90 0.89

Prediction EFN7 CMMD 0.91 0.89 0.93 0.88 0.97 0.96
Original CNX1 CMMD 0.86 0.83 0.88 0.82 0.92 0.90
Fs-ROI CNX1 CMMD 0.87 0.85 0.89 0.83 0.93 0.91

Prediction CNX1 CMMD 0.92 0.90 0.94 0.89 0.98 0.97
Original EFN7 CDD-CESM 0.87 0.84 0.89 0.83 0.93 0.91
Fs-ROI EFN7 CDD-CESM 0.88 0.86 0.90 0.84 0.94 0.92

Prediction EFN7 CDD-CESM 0.92 0.90 0.94 0.89 0.98 0.97
Original CNX1 CDD-CESM 0.86 0.83 0.88 0.82 0.92 0.90
Fs-ROI CNX1 CDD-CESM 0.87 0.85 0.89 0.83 0.93 0.91

Prediction CNX1 CDD-CESM 0.92 0.90 0.94 0.89 0.98 0.97
Original EFN7 BMCD 0.87 0.84 0.89 0.83 0.93 0.91
Fs-ROI CNX1 BMCD 0.88 0.86 0.90 0.84 0.94 0.92

Prediction EFN7 BMCD 0.92 0.90 0.94 0.89 0.98 0.97
Original CNX1 BMCD 0.86 0.83 0.88 0.82 0.92 0.90
Fs-ROI CNX1 BMCD 0.87 0.85 0.89 0.83 0.93 0.91

Prediction CNX1 BMCD 0.92 0.90 0.94 0.89 0.98 0.97
Original EFN7 RSNA 0.86 0.83 0.88 0.82 0.91 0.89
Fs-ROI EFN7 RSNA 0.87 0.85 0.89 0.83 0.92 0.90

Prediction EFN7 RSNA 0.87 0.85 0.89 0.83 0.92 0.90
Original CNX1 RSNA 0.85 0.82 0.87 0.81 0.90 0.88
Fs-ROI CNX1 RSNA 0.86 0.84 0.88 0.82 0.91 0.89

Prediction CNX1 RSNA 0.86 0.84 0.88 0.82 0.91 0.89

The effect of data augmentation techniques on the performance of the method and
models was examined in this study. Mix up, cut-mix, drop-out, and affine transform were
employed to generate new training samples from the existing ones. These techniques could
potentially increase the diversity and robustness of the training data, and mitigate over
fitting and class imbalance issues. Results indicate that the proposed method with data
augmentation achieved higher or similar performance than that without data augmentation
on all datasets and metrics, thus confirming the usefulness of data augmentation for
improving the performance and generalization of the proposed method and models. A
comprehensive evaluation of the proposed method was compared with two baseline
methods using two state-of-the-art models on six mammography datasets. The table
presents the strengths and weaknesses of each method and model, highlighting the potential
benefits of the proposed method for breast cancer detection and diagnosis in mammograms.
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3.3. Detecting the Breast Cancer Area

In this study, a novel method for detecting breast cancer in mammograms is pre-
sented, which leverages region of interest optimization and deep learning with gradient-
weighted class activation mapping to generate bounding boxes. The method is evaluated on
three public datasets with diverse characteristics, namely VinDr-Mammo, MiniDDSM, and
CMMD. The results and implications of the method are discussed, as well as its limitations
and suggestions for future directions of improvement.

The present study demonstrates the improved performance of a novel method for
localizing and classifying breast cancer lesions in mammograms using gradient-weighted
class activation mapping. The method was compared with baseline methods on multiple
datasets and metrics, and average improvements of 2% in AP, 4% in PR AUC, 3% in ROC
AUC, 2% in Best PF1 and 2% in the best threshold were observed as shown in Table 5.
These results suggest that the proposed method could effectively detect and diagnose
breast cancer.

Table 5. Average results across all datasets.

Method AP (Benign) AP (Malignant)
Best PF1
(Benign)

Best PF1
(Malignant)

Best Threshold
(Benign)

Best Threshold
(Malignant)

ROI-SSD [26] 0.77 0.82 0.75 0.77 0.55 0.55
ROI-RPN [27] 0.75 0.80 0.73 0.75 0.54 0.54

ROI-RFCN [28] 0.73 0.78 0.71 0.73 0.52 0.52
Ours 0.81 0.86 0.79 0.81 0.56 0.56

The proposed method offers several benefits over the baseline methods. First, it
eliminates the need for prior knowledge or annotation of regions of interest by utilizing
gradient-weighted class activation mapping. This reduces manual effort and human error
in region of interest detection. Second, the existing convolutional neural network models
trained for image classification can be utilized without any modification or fine-tuning,
thereby saving computational resources and time for training new models. Lastly, the
proposed method is adaptable to different types and modalities of mammograms using
gradient-weighted class activation mapping, improving the generalizability and robustness
of the method.

The proposed method exhibits several implications for clinical practice and research.
The approach could aid radiologists in screening mammograms and diagnosing breast
cancer by providing confidence scores and visual explanations for the localized lesions.
Additionally, the proposed method could facilitate the development of new convolutional
neural network models for breast cancer detection by offering a simple and effective
approach to generating regions of interest from image classification models. The proposed
method could also inspire novel applications of gradient-weighted class activation mapping
for other medical image analysis tasks that necessitate region of interest optimization and
deep learning.

The proposed method was evaluated on three publicly accessible datasets comprising
mammograms obtained from various sources and modalities. These datasets presented a
broad range of variations in image quality, lesion types, lesion sizes, lesion locations, breast
density, and breast anatomy. Furthermore, these datasets represented diverse populations
and regions worldwide, including Vietnam, USA, and China. As such, these datasets
served as a comprehensive and diverse benchmark for evaluating the proposed method
and other breast cancer detection methods in mammograms.

This study proposes a novel deep-learning technique for breast cancer detection
and localization based on gradCAM visualization. Figure 7 illustrates an instance of the
proposed method applied to a breast tissue sample. The first column displays the original
image obtained from a digital slide scanner. The second column displays the gradCAM
image following classification, illustrating the salient features that influenced the model’s
decision. The third column displays the predicted tumor area mask obtained by applying a
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threshold to the gradCAM image. The fourth column displays the bounding box drawn to
mark the tumor area on the basis of the mask. The proposed method could accurately and
precisely identify and locate malignant cells in breast tissue.

Figure 7. Results of classification and detecting of breast cancer area. Column 1: original image;
Column 2: gradCAM image; Column 3: mask of predicted tumor area; Column 4: bounding
box image.

4. Discussion

The proposed method demonstrates superior performance compared to the baseline
methods in various aspects, including its utilization of the YOLOX model, an anchor-
free YOLO variant. Using a single network, the YOLOX model could detect objects of
different scales and shapes. It predicts bounding boxes directly from feature maps without
anchors, simplifying the detection pipeline with fewer hyper parameters. Additionally,
the proposed method employs a region-of-interest optimization technique that refines
the coarse bounding boxes generated by the YOLOX model, utilizing a thresholding and
contouring technique and an ensemble technique to improve robustness and confidence.
Furthermore, the proposed method could handle different types of mammograms and
modalities, using the YOLOX model that could adapt to input images, and it could utilize
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existing convolutional neural network models trained for image classification without
modification or fine-tuning, as it extracts relevant features for breast cancer detection using
gradient-weighted class activation mapping.

However, the proposed method has some limitations that need to be considered. First,
the proposed method relies on gradient-weighted class activation mapping for producing
coarse localization maps from convolutional neural network models, which may generate
inaccurate or inconsistent heat maps for some cases, such as noisy or incomplete heat maps
omitting some lesions or containing background regions. Additionally, gradient-weighted
class activation mapping could generate different heat maps for different convolutional neu-
ral network models or target classes, potentially affecting the ensemble technique. Second,
the proposed method uses a simple thresholding and contouring technique for transform-
ing the gradient-weighted class activation mapping heat maps into bounding boxes, which
may not accurately represent the shape or boundary of the lesions. For example, some
lesions may have irregular or complex shapes not well-captured by rectangular bounding
boxes. Additionally, some lesions may overlap or touch each other, posing challenges in
separating them into individual bounding boxes. Lastly, the proposed method uses a fixed
threshold of 0.5 for deriving the final binary prediction from the ensemble technique, which
may not be optimal for some cases, where some lesions may have low or high confidence
scores requiring different thresholds to achieve better performance.

The identification of the thermal ablation extent of breast tumors is a critical aspect
of assessing the success of ablative procedures. Previous research, such as the study by
Smith et al. (2020) [29], investigated the role of ablation margins near tumors. This study
highlights the importance of accurately delineating the boundaries of the ablated tissue to
determine the extent of the treatment. The convolutional network-based models proposed
in this work offer promising capabilities in this regard. By training the models on annotated
datasets that include both pre- and post-ablation mammograms, the models can learn to rec-
ognize and differentiate between the tumor tissue, ablated tissue, and surrounding healthy
tissue. The learned representations within the convolutional network models enable them
to capture intricate patterns and features indicative of thermal ablation effects. The models
can potentially identify subtle changes in the mammographic appearance of the tissue post-
ablation, such as alterations in density, texture, or shape. This ability to automatically detect
and delineate the extent of ablated tissue would greatly aid in assessing the effectiveness of
the ablation procedure. Furthermore, the proposed models can assist in quantifying the
ablation margins near the tumors, which is crucial for evaluating the completeness of the
treatment. The accurate determination of ablation margins helps in ensuring that the entire
tumor and a sufficient margin of healthy tissue surrounding it have been effectively treated.
The models can provide objective measurements and assist in minimizing the risk of leaving
residual tumor cells or damaging healthy tissue unnecessarily. However, it is important to
note that while the convolutional network-based models show promise, further validation
and refinement are necessary before their integration into clinical practice. Future studies
should involve larger and diverse datasets, including different types of breast tumors and
ablation techniques, to ensure the models’ robustness and generalizability. Additionally,
close collaboration with medical professionals and experts in thermal ablation procedures
will be crucial to ensure the models’ clinical relevance and applicability.

Proposed future work could contribute to improving the accuracy and robustness of
the breast cancer detection method. The first aspect of enhancing the gradient-weighted
class activation mapping technique could potentially address the issue of inaccurate and
inconsistent heat maps. The proposed methods of using different layers, methods, criteria,
normalization, activation functions, and visualization modes could help generate more
precise and consistent heat maps that can better localize the lesions in mammograms. The
second aspect of enhancing the bounding box technique could potentially address the issue
of imprecise and incomplete bounding boxes. The proposed methods of using different
algorithms, shapes, and techniques to detect the contours, represent the bounding boxes,
and handle overlapping or touching bounding boxes could help produce more accurate
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and complete bounding boxes that reflect the exact shape and boundary of the lesions. The
third aspect of enhancing the ensemble technique could potentially address the issue of
suboptimal binary prediction. Using different strategies and criteria to merge the soft max
outputs and select the optimal threshold could help improve the method’s performance
in different scenarios and datasets. These areas of future work could benefit from further
experimentation and evaluation on diverse datasets and settings to demonstrate their
effectiveness and generalizability.

5. Conclusions

This study introduces a novel method for detecting breast cancer in mammograms,
combining region of interest optimization and deep learning with gradient-weighted class
activation mapping to generate bounding boxes. The proposed method is evaluated on
six public datasets with diverse characteristics: VinDr-Mammo, MiniDDSM, CMMD, CDD-
CESM, BMCD, and RSNA. Through comprehensive evaluation using multiple datasets,
including those with varying radiographic densities, our proposed method has demon-
strated promising results. Specifically, the predicted F1 score, which serves as a measure of
overall accuracy, consistently outperforms the baseline methods, indicating the robustness
of our models in accurately delineating tumor boundaries within this specific dataset.

The effectiveness and robustness of the method are further demonstrated by compar-
ing its performance against several baseline methods that employ different region of interest
detection techniques and convolutional neural network models. Our method exhibited
superior performance across all datasets and metrics, highlighting its potential clinical and
research implications. The proposed method has several noteworthy implications. First, it
can provide radiologists with visual cues and confidence scores for lesions in mammograms,
aiding in breast cancer screening and diagnosis. This can significantly enhance the accuracy
and efficiency of the diagnostic process. Additionally, the method offers a straightforward
and effective way to create regions of interest from image classification models, enabling
the development of new convolutional neural network models specifically tailored for
breast cancer detection.

Moreover, the method’s utilization of gradient-weighted class activation mapping
opens up possibilities for its application in other medical image analysis tasks that require
region of interest optimization and deep learning. This technique could inspire new av-
enues of research and development in the field of medical imaging. The proposed method
demonstrates its effectiveness in detecting breast cancer in mammograms through the
integration of region of interest optimization and gradient-weighted class activation map-
ping. Its superior performance, particularly in accurately delineating tumor boundaries,
underscores its potential for clinical implementation and further advancements in the field.
Future research can focus on refining and expanding the methodology to address specific
challenges and further improve its overall efficacy in breast cancer detection and diagnosis.
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Featured Application: This work presents an AI-based second reader application tailored for

computed tomography (CT) scans in Radiology. Its primary objective is to detect overlooked

potential malignant cases in the vertebral body during routine radiological reporting.

Abstract: Incidental spinal bone lesions, potential indicators of malignancies, are frequently underre-
ported in abdominal and thoracic CT imaging due to scan focus and diagnostic bias towards patient
complaints. Here, we evaluate a deep-learning algorithm (DLA) designed to support radiologists’ re-
porting of incidental lesions during routine clinical practice. The present study is structured into two
phases: unaided and AI-assisted. A total of 32 scans from multiple radiology centers were selected
randomly and independently annotated by two experts. The U-Net-like architecture-based DLA used
for the AI-assisted phase showed a sensitivity of 75.0% in identifying potentially malignant spinal
bone lesions. Six radiologists of varying experience levels participated in this observational study.
During routine reporting, the DLA helped improve the radiologists’ sensitivity by 20.8 percentage
points. Notably, DLA-generated false-positive predictions did not significantly bias radiologists in
their final diagnosis. These observations clearly indicate that using a suitable DLA improves the
detection of otherwise missed potentially malignant spinal cases. Our results further emphasize the
potential of artificial intelligence as a second reader in the clinical setting.

Keywords: deep learning; computed tomography; malignancies; AI detection; second reader; spine;
vertebral lesions

1. Introduction

Discrepancies in radiology are a long-known issue and—due to the extended workload
and limited evaluation time—have remained the same despite continuously improving
imaging techniques over the last decades [1,2]. A perceptual error, or false negative, is an
abnormality present in a diagnostic image but not described by the interpreter. Such over-
looked findings constitute the vast majority of human error in image interpretation [2–4].

Spinal bone lesions that present themselves as a conglomerate are frequently an
indicator of malignancy, with the vertebrae being the most prevalent hotspot for bone
metastasis [5]. On the other side of the spectrum, solitary lesions are more challenging and
can indicate both malignant and benign processes [6,7], creating uncertainty within the
diagnostic procedure, which may require further investigation [8]. In this case, if missed or
initially overlooked (perceptual error), they can exhibit major negative consequences on a
patient’s quality of life and, subsequently, their morbidity and mortality [9,10].
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With CT being a reliable imaging modality for assessing osseous involvement and
the destruction degree of spine abnormalities [6,11], the past years have shown a rising
interest in automatizing the detection and classification of spinal lesions to a large ex-
tent [12–14]. Artificial intelligence (AI) is now an active part of various medical diagnostic
procedures within real-life hospital workflows, with deep-learning (DL)-based analysis of
radiologic images as one of its key applications. AI as a screening tool or a second reader
for abnormality detection already shows promising results in various fields, such as chest
X-ray reporting and lung nodule detection [15,16]. However, reliable deep-learning-based
algorithms for spinal lesion detection are still sparse as their development has proven
to be more challenging, mostly due to the overlapping image features of degenerative
and neoplastic events [6]. To our knowledge, there are currently no EU MDR-certified
or FDA-approved AI second reader software that detect incidental spinal lesions in CT
scans of unrelated indications. A reliable algorithm with such capacities could assist the
reporting physician with accurate supplementary information, reduce the rate of missed
potentially malignant lesions, and streamline the diagnostic pathway.

This work examines the clinical impact of a deep-learning algorithm (DLA) that
assists radiologists in their day-to-day workflow within a simulated hospital setting. The
algorithm was developed to detect potentially malignant cases within the vertebrae and
act as a second reader, using native and contrast-enhanced abdomen and thoracic CT
imaging sequences. Its clinical efficacy was evaluated in an observational cross-over study
design, where the algorithm’s performance and the effect on the decision-making of six
subspecialty radiologists with and without the intervention of the DLA were assessed.
The distinct feature of this study design is its emphasis on reducing incidental findings
during the reporting of other main underlying diseases that the patient has. This approach,
further accentuated by limiting the scope to only CT abdomen and thoracic scans, shifts
the focus away from solely detecting vertebral malignancy as the primary objective of the
responsible radiologist. Such “background acting” tools open new avenues in how one
can correctly integrate AI in the medical sector and underline the crucial role of human
involvement in the overall process.

2. Materials and Methods

This section details the materials and methods used for the study.

2.1. Data Acquisition

All clinical and imaging information was obtained retrospectively from multiple
outpatient radiology centers in Germany. The data selection process is detailed in Figure 1.

We included studies of native or contrast-enhanced thoracic and abdominal CT ex-
aminations with multiplanar bone and soft tissue reconstructions. Incomplete or broken
studies, individuals with prior spinal surgery, and individuals under 18 were excluded
from the cohort. Once the data was filtered based on the chosen inclusion criteria, 32 ran-
domly sampled studies were picked. Data contracts are signed with the data providers,
and the studies were anonymized before being included in the study. Additionally, the data
is retrospective, with CT scans from a multicenter data provider collected over 12 months
from January 2022 until January 2023. Due to these factors, the need for informed consent is
waived. The anonymization process strips away all identifying tags such as name, contact
details, and address. Demographic details such as sex are preserved, and age is rounded to
the nearest whole number.

2.2. Establishment of the Ground Truth

Images were pre-processed and stored in a Digital Imaging and Communications in
Medicine (DICOM) format before the expert annotation. The ground truth labels were then
established via manual segmentation by two board-certified radiologists with expertise in
the field (MK: Associate Professor, 14 years of experience; and RR: Senior Lecturer, ten years
of experience). The studies were annotated on an object level by drawing bounding boxes
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around all regions of interest (ROIs) and subsequently classified as positive or negative.
We consider a positive case in which at least one finding is indicative of a potentially
malignant vertebral lesion (lytic, sclerotic, or mixed with a circumscribed boundary) and
has been manually segmented and evaluated by our two experts. This labeling process was
performed on the Encord platform (© 2022 Encord), and a consensus was reached in case
of divergent opinions.

Figure 1. Flowchart of data collection and distribution. All CT studies were collected retrospectively
from the clinical databases of multiple institutions.

2.3. AI Algorithm Development

The deep-learning algorithm used in this study was developed using native and
contrast-enhanced CT studies of the spine, abdomen, and thorax. It is meant to be used
as a medical device in a clinical setting. The DLA consists of two deep-learning models
that work together. One model uses a U-Net-like segmentation approach coupled with
volumetric analysis to determine the presence of potentially malignant lesions in the spinal
vertebrae. The second model employs a vertebral localization component that enables the
proper selection of the region of interest. It is trained using a training set of 224 cases and
tested on 735 cases. Additionally, the DLA is evaluated on an external dataset of 420 cases.
Statistical analysis of the datasets was performed to verify the demographic distribution of
the data.

2.4. Experimental Setup

In this study, our primary goal was to investigate the effectiveness of a deep-learning
algorithm (DLA) in assisting radiologists in identifying previously overlooked potentially
malignant cases in the spine through abdomen and thoracic CT imaging. A total of
32 studies were selected from our data pool which contained both positive and negative
cases in equal numbers. Details of the selection process are given in Figure 1.

The study consisted of two phases. In the first phase, six radiologists independently
reviewed the 32 studies without DLA assistance, following their routine reading process. In
this case, a routine reading process is defined as the reading of the radiological images by
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the radiologist based on the patient’s complaint. This phase aimed to establish a baseline
for their diagnostic performance.

The six radiologists (participants) we recruited have varying experience levels, ranging
from 1 to 11 years. Each participant received the same set of 32 studies but presented in
random order. The participants were blinded to the gold standard and any patient-specific
information to ensure unbiased assessments, except for a brief description of the patient’s
complaint. These complaints were not focused on spine-related issues but were general
complaints of the patients who visited the clinics. The details of this information can be
found in Supplementary Table S1.

After a break of 10 days, the second phase was conducted. In this phase, the par-
ticipants reevaluated the same set of studies, but this time, they had access to the DLA
predictions to assist them in their evaluations. The DLA provided predictions about the
presence or absence of abnormalities in the spinal vertebrae in the CT scans.

To ensure accurate documentation of their assessments, the participants were asked
to use screen-recording software [17] to capture their computer screens. They were also
instructed to describe their findings verbally while indicating them with their mouse. A
DICOM visualization tool [18] was made available to aid in interpreting the scans and the
predictions of the DLA.

To evaluate the effectiveness of the AI intervention, the results obtained during the
reading sessions were manually compared to the gold standard. This comparison enabled
the determination of the accuracy of the participants’ diagnoses with and without the
DLA’s assistance.

2.5. Statistical Analysis

Statistical analysis was performed using GraphPad Prism v8.4.2. The primary mea-
sured outcome was based on assessing case and object level (per-patient and per-lesion)
sensitivity, specificity, and average false positive (AvgFP). Because of the infinite number of
possible locations for a spinal lesion, we could not define the true negative and thus did
not calculate the per-lesion specificity. To assess the significance between the two reading
sessions, we conducted the McNemar test in Python (statsmodels v 0.14.0).

3. Results

3.1. Demographics of the Dataset and Spinal Lesion Assessment in the Reference Standard

No significant differences or inhomogeneities were noted concerning the demographic
qualities of our cohort. Supplementary Table S1 shows the background information of the
32 patients involved in this study, including patient demographics (sex, age). 53.1% of the
patients are female. The average age was noted to be 56.6 years. An overview of the scan
conditions and other image acquisition details can be found in Supplementary Table S2.
As per the gold standard, there were 16 positive and 16 negative scans. There were a
total of 27 annotated suspicious lesions. The annotators exhibited a mutual agreement for
75.0% of the cases while determining the gold standard. Both annotators initially disagreed
on the remaining 25.0%, but these conflicts were resolved through discussions leading to
a consensus.

3.2. Algorithm Performance

Figure 2 exemplifies two true-positive predictions on different vertebral sites for lytic
(Figure 2a,b) and sclerotic (Figure 2c,d) lesions. The deep-learning algorithm (DLA) for
spinal lesion detection was tested on the same patient studies and correctly detected 12
out of 27 lesions in 16 patients. It also falsely indicated 13 spinal findings (false positives)
that were not considered true findings following the gold standard. The overall outcome of
the DLA for the established dataset is shown in Table 1. On a case level, compared to the
gold standard, the DLA performance had a sensitivity and specificity of 75.0% and 56.3%,
respectively. Regarding the results on an object level, the sensitivity was 44.4%, as shown
in Table 2.
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Figure 2. DLA predictions of osteolytic (a) and oseoblastic (c) lesions are shown in corresponding
images (b,d).

Table 1. Algorithm performance in comparison to the gold standard (count).

Positive
Cases

Total
Number of
Detected
Objects

Number of
Detected

Spinal
Lesions (TP)

Number of
Undetected

Spinal
Lesions (FN)

Number of
Falsely Detected

Spinal
Lesions (FP)

Gold
Standard 16 27 27 N/A N/A

DLA 11 40 12 15 13

Table 2. Algorithm performance in comparison to the gold standard (metrics).

Sensitivity (TP Rate) Specificity (TN Rate) Accuracy

Case Level Object Level Case Level Object Level Case Level Object Level

75.00% 44.44% 56.25% N/A 65.63% N/A

3.3. Intra-Observer Agreement without and with the Aid of the DLA

The observers’ performance results are summarized in Table 3, with visual exem-
plification in Figure 3 showcasing sensitivity, specificity, and the true-positive rate on a
case level.

Considering that the participants were asked to perform routine reporting based on
general complaints (such as acute abdominal pain or elevated liver enzymes), only one out
of six radiologists did not include spinal findings in the first round (without DLA). Another
radiologist solely identified degenerative changes without detecting any significant or
suspicious findings that aligned with the ground truth. The participant with the highest
experience level (11 years) initially reported two true positives in the first round. However,
when aided by the DLA, this number increased to 14 true-positive and two false-positive
findings. The two least experienced radiologists (one year) did not report any spinal
findings without relying on the algorithm. Following the predictions in round 2, only one
included spinal findings in the report.
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Considering a potential maximum of 162 true positives (27 lesions multiplied by
6 participants), the radiologists reported 11 true-positive objects alone. However, when
assisted by the DLA, this number increased to more than three times that value, with
35 true-positive findings in the study’s second phase.

The DLA predicted 13 false-positive objects. When interpreting these predictions, on
average, the radiologists included less than one false positive in the report, resulting in
four false-positive reports across all participants.

Table 3. Intra-observer agreement depicted for the two study phases according to the gold standard
(phase 1—without the DLA and phase 2—with the DLA support).

Participants

1 2 3 4 5 6

Experience
(years)

6 7 5 1 11 1

Phase 1—no support from DLA Mean

Suspicious
lesions

reported (n)
2.00 4.00 3.00 0.00 2.00 0.00 1.83

False
positives (n)

0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sensitivity
(case level)

12.50% 25.00% 18.75% 0.00% 12.50% 0.00% 11.46%

Sensitivity
(object level)

7.41% 14.81% 11.11% 0.00% 7.41% 0.00% 6.79%

Specificity
(case level)

100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Accuracy
(case level)

56.25% 62.50% 59.38% 50.00% 56.25% 50.00% 55.73%

Accuracy
(object level)

53.70% 57.41% 55.56% 50.00% 53.70% 50.00% 53.40%

False positive
rate

0.00% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%

Phase 2—with support from DLA Mean

Suspicious
lesions

reported (n)
5.00 5.00 8.00 0.00 14.00 3.00 5.83

False
positives (n)

1.00 0.00 1.00 0.00 2.00 1.00 0.83

Sensitivity
(case level)

31.25% 31.25% 43.75% 0.00% 75.00% 12.50% 32.29%

Sensitivity
(object level)

14.81% 18.52% 25.93% 0.00% 44.44% 7.41% 18.52%

Specificity
(case level)

93.75% 100.00% 93.75% 100.00% 87.50% 93.75% 94.79%

Accuracy
(case level)

62.25% 65.62% 68.75% 50.00% 81.25% 53.12% 63.54%

Accuracy
(object level)

55.56% 59.26% 68.12% 50.00% 68.52% 51.85% 58.89%

False-positive
rate

3.70% 0.00% 3.57% 0.00% 7.41% 3.70% 3.06%
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Figure 3. Performance metrics of the six participants on case level, with each participant color
coordinated; (a) Sensitivity and specificity of reporting potentially malignant spinal lesions without
(−) and with (+) the aid of an AI tool as a second reader; (b) Number of reported true-positive
findings without (−) and with (+) the aid of an AI tool as a second reader.

Based on the AI’s indication of true-positive spinal conditions, four participants felt
requesting further follow-up or diagnostic tests was necessary. These requests were made
to investigate potential abnormalities or conditions related to the spine, as suggested by the
AI. None of the participants requested additional examinations due to possible FP findings.

On a case level, participants’ average sensitivity in detecting spinal lesion(s) (which
translates into reporting at least one correct lesion in a positive case) increased from 11.5%
to 32.3% (20.08 percentage points) when using the DLA tool. The sensitivity increased from
6.8% to 18.5% (11.70 percentage points) on an object level. The average FP rate increased
from 0.0% (no primarily reported false spinal findings) to 3.1% on a case and object level.
The mean accuracy value increased from 55.7% to 63.5% on a case level and from 53.4% to
58.9% on an object level.

There was no clear trend that could link the participants’ clinical experience and their
responsiveness to the AI predictions, with both junior and more experienced radiologists
having heterogeneous behaviors toward the presented algorithm results. It should be
noted that, in less-experienced participants, we observed changes in their reports between
reading sessions unrelated to the AI findings.

4. Discussion

A complete and comprehensive review of a CT scan is crucial for a patient’s health and
has a significant impact on decision-making. CT imaging can assess spinal bone metastatic
lesions up to 6 months before plain radiographs [19]. However, smaller lesions or those
that do not have significant cortical destruction are often underreported or missed during
CT image reporting [20]. In a systematic review, Bartalena et al. reported that radiologists’
recognition of incidental vertebral findings (in this case, fractures) was low, with a mean
reporting rate of just 27.4% [21]. A major fraction of false negatives are significant bone
lesions that could indicate potential malignancy [3]. J Donald et al. showed in an internal
department analysis that these types of spinal lesions were most frequently misinterpreted
on CT images, with 14 out of 16 missed findings being metastatic [22].

False-negative cases are the most common perceptual errors [4], with CT imaging
being especially susceptible [22]. Errors made in previous radiology reports can lead to
the tendency of radiologists to replicate the error in subsequent reports, which is referred
to as ‘alliterative bias’ [23]. This concept reiterates the importance of some confirmation
protocols in medical practice. While double-reading practices significantly impact the
quality of radiological reports, clinical workload and staff shortages make a routine human
double-reader scheme hard to implement [24,25].

Computer-aided detection (CAD) systems have supported radiologists in their work-
flow even before the era of deep-learning tools, with some of the best examples being
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small functions and add-ons for DICOM viewers, such as contrast enhancers or manual
annotation support. With the use of AI increasing rapidly in the fields of medicine, with
radiology as a leading candidate, future deep-learning-based CAD systems will not only
optimize the users’ workflow and improve their diagnostic abilities but also weigh in on
their medical judgment and decision-making process. CTs are not just a series of images;
they contain extensive information about the pathology in question that sometimes can-
not be interpreted by the bare human eye [26]. There are models developed for almost
every disease that can be assessed radiologically. More specifically, detection systems have
shown an emerging potential in reducing missed radiological spinal lesions as a second
reader [13,27–30].

In our study, we investigated the effects of a DLA when implemented in a routine CT
reporting process performed by six radiologists having different experience levels. Our
results show that DL-based spinal lesion detection can improve inter-observer agreement
and overall increase performance in detecting these radiological findings, regardless of the
training level of our participants. The case level sensitivity increased by 20.83 percentage
points when the participants were aided by the DLA. However, this improvement should
only be interpreted in the context of a rather low baseline of reported spinal findings in the
first round. Another observational study by Noguchi et al. [13] showed that the sensitivity
of radiologists in detecting bone metastases could be elevated with the help of a DLA by
15.3 percentage points. In a similar study, Kato et al. [31] reported an improvement in the
performance of less-experienced radiologists in brain metastasis detection by 4.90 percent-
age points. Like our own study, Kato et al. observed no significant increase in false-positive
findings when utilizing a CAD system. While these previous studies have primarily fo-
cused on DLAs improving performance in explicit detection tasks, our study provides a
novel perspective by highlighting the potential benefits of a tool for reducing incidental
findings during routine reporting. This observation helps to explain the relatively lower
baseline performance of participants in our study. Since a complete radiological report
includes information regarding all body parts that can be seen on the scan, we expected
insights on all findings that the six radiologists encountered while analyzing the images.
Our findings support the already existing issue of missed spinal findings in clinical practice,
which might rely on the aforementioned reasons for perceptual errors in radiology. It
is worth noting that the sensitivities and specificities are calculated only for potentially
malignant spinal lesion findings and not findings for all other organs (lungs, liver, kidneys).
Hence, the lowered sensitivities and specificities due to many spinal lesions being missed
during the initial diagnostic process without the assistance of the DLA.

Indeed, the DLA reported false-positive findings. It is important to mention that the
radiologists’ assessments were not solely based on the AI’s predictions for false-positive le-
sions. They considered various factors, including other findings identified as true positives
by the AI. Furthermore, based on the AI’s indication of true-positive spinal conditions, four
participants requested further follow-up or diagnostic tests. These requests were made
to investigate potential abnormalities or conditions related to the spine, as suggested by
the AI.

Several studies have already investigated the potential of deep-learning systems
for pathology assessment of the spine [13,28,32–35]. Although deep-learning algorithms
(DLAs) can demonstrate accuracy in lesion detection on par with radiologists, it is crucial
to consider their real-world implementation in datasets that differ significantly from the
training data. DLAs may face challenges in such scenarios and are more prone to producing
incorrect results. However, by addressing these challenges through ongoing research and
fine-tuning, we can further optimize the effectiveness of DLAs in practical settings. It is,
therefore, crucial to focus on the effects and performance of the human reader when in
conjunction with this emerging technology. While our DLA’s performance may not have
demonstrated superiority over expert human radiologists, there is potential for radiologists
of all experience levels to benefit from its second reader function. It is essential to conduct
future studies with larger cohorts and greater sample sizes to validate any hypothetical
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benefits and potential risks associated with AI. These studies will ensure the safe and
effective integration of machine learning software into the clinical setting.

This study has several limitations. Since the allocated time between the two reading
sessions was set for only ten days, one could argue that the first reading could have biased
the participants’ performance in the second session. We conducted the McNemar test to
assess significance. The test (p = 0.25) confirmed that the study did not yield statistically
significant results (p > 0.05). This outcome is linked to the small number of radiologist
participants used for this study and probably could not prove generalizable effects. How-
ever, it is important to note that this finding presents an opportunity for improvement in
future studies. The number of patient studies investigated by the participants was also
small and should be increased for further studies. Moreover, the training that radiologists
receive, their reporting style, and thus their attention to detail differ between countries and
subspecialties.

5. Conclusions

We show that the implementation of a DLA as a second reader in routine reporting
of CT scans can increase radiologists’ true-positive rate for spinal lesion detection while
at the same time having close to no impact on the false-positive rate. These findings
showcase the potential that an AI-based technology could have in the hospital setting,
particularly in detecting missed potential malignancies during routine reporting. However,
it is important to consider that the impact of AI in medical imaging may vary depending on
the interpreter’s background and training. While current trends and discoveries indicate
improvements in diagnostic performance, further comprehensive studies are needed to
validate these results on a larger scale and gain a deeper understanding of the implications
this technology may have in the clinical setting. Nevertheless, the enhanced metrics
observed in this study provide evidence of AI’s prospect as a valuable detection tool.
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Abstract: The development of optical sensors, especially with regard to the improved resolution
of cameras, has made optical techniques more applicable in medicine and live animal research.
Research efforts focus on image signal acquisition, scattering de-blur for acquired images, and the
development of image reconstruction algorithms. Rapidly evolving artificial intelligence has enabled
the development of techniques for de-blurring and estimating the depth of light-absorbing structures
in biological tissues. Although the feasibility of applying deep learning to overcome these problems
has been demonstrated in previous studies, limitations still exist in terms of de-blurring capabilities
on complex structures and the heterogeneity of turbid medium, as well as the limit of accurate
estimation of the depth of absorptive structures in biological tissues (shallower than 15.0 mm). These
problems are related to the absorption structure’s complexity, the biological tissue’s heterogeneity, the
training data, and the neural network model itself. This study thoroughly explores how to generate
training and testing datasets on different deep learning models to find the model with the best
performance. The results of the de-blurred image show that the Attention Res-UNet model has the
best de-blurring ability, with a correlation of more than 89% between the de-blurred image and the
original structure image. This result comes from adding the Attention gate and the Residual block to
the common U-net model structure. The results of the depth estimation show that the DenseNet169
model shows the ability to estimate depth with high accuracy beyond the limit of 20.0 mm. The
results of this study once again confirm the feasibility of applying deep learning in transmission
image processing to reconstruct clear images and obtain information on the absorbing structure inside
biological tissue. This allows the development of subsequent transillumination imaging studies in
biological tissues with greater heterogeneity and structural complexity.

Keywords: point spread function (PSF); de-blurring; scattering suppression; depth estimation;
Attention Res-Unet; DenseNet169; absorbing structure; turbid medium

1. Introduction

Optical imaging is crucial in biomedical research and diagnostics, bridging pre-clinical
and clinical applications. The potential of light, especially near-infrared light, for imaging
blood vessels on the skin surface and abnormal breast detection has been recognized in
studies focusing on bio-metric and medical applications [1–4]. The prospects for developing
non-invasive imaging devices based on near-infrared light are promising, offering advan-
tages such as the absence of ionizing radiation, cost-effectiveness compared to existing
methods, and suitability for further studies. However, transillumination images face strong
scattering challenges. Previous research focused on the suppression of scattering and the
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restoration of clear images from blurred images [5–12]. Optical computed tomography
(OCT) utilizing near-infrared light has been proposed and has shown satisfactory results
in small animal imaging [7]. Deep learning (CNN) and stacking methods were proposed
that were used to estimate the depth and de-blurring transillumination images of a turbid
medium [8–12]. The effectiveness of previous studies is limited to a depth of absorbing
structure shallower than 15.0 mm [10,12].

This study’s models are based on novel machine learning mechanisms that combine
different types of neural networks and sparse coding techniques to achieve high-quality
image super-resolution [13]. The proposed models are also capable of handling multimodal
and cross-domain image processing tasks, such as enhancing images from different sources
or modalities, transferring styles or attributes between images, or generating realistic im-
ages from sketches or text descriptions [14]. The proposed models are inspired by some
of the recent advances in machine learning algorithms and mechanisms for image pro-
cessing, as well as some of the applications of image processing techniques for machine
learning [15]. This study proposes new deep learning models to improve absorbing struc-
tures’ de-blurring and depth estimation. The following sections of this paper will provide
detailed information about the training dataset, the model employed for the de-blurring
and depth estimation of absorbing structures, the performance parameters of the training
process, and results and discussions concerning the de-blurring and depth estimation of
absorbing structures.

2. Materials and Methods

2.1. Data Preparation

The deep learning model requires numerous training pairs for optimal accuracy and
performance. The de-blurring process involved working with a carefully curated dataset
of blurred and original clear images. The corresponding depth labels associated with the
blurry images were used to train the depth estimation model. However, data collection
presented practical challenges in acquiring significant training pairs. The depth-dependent
point spread function (PSF), which characterizes light scattering in biological tissue at
different depths, was implemented to convolve the original clear images, generating the
desired blurred images to overcome this limitation.

Figure 1 shows the difference between fluorescent and transillumination images with
the assumption that the light diffused well in the absorbing object plan. In fluorescent imag-
ing, the light point source is placed inside the scattering medium, as shown in Figure 1a,
and the light distribution on the observing surface (dashed orange line) can be mathemati-
cally represented by Equation (1) [6]:

PSF(d, ρ) = C

(
μ′

s + μa +

[
κd +

1√
ρ2 + d2

]
d√

ρ2 + d2

)(
exp[−κd

√
ρ2 + d2]√

ρ2 + d2

)
(1)

where k2
d = 3μa(μ′

s + μa). C, μ′
s, μa, and d represent the constants with respect to ρ and

d, the reduced scattering coefficient, the absorption coefficient, and the depth of the light
source, respectively.

In transillumination imaging, the light source is placed outside the scattering medium,
as shown in Figure 1b, and the light distribution on the observing surface (black line) is
a collection of the distribution of the light-missing points. The depth-dependent PSF is
derived from a light source, so we cannot apply it directly for transillumination imaging.
To make the PSF applicable, we invert the distribution of the light-missing point (black
line) to have the distribution the same as the distribution of light in fluorescent imaging
(dashed orange line), as shown in Figure 1b.
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Figure 1. The intensity distribution at the medium surface in fluorescent (a) and transillumination
(b) imaging.

The effectiveness of this approach was rigorously evaluated through comprehensive
simulations and experimental validations [7,10,12]. Convolution images of the original
structures with depth-dependent point spread functions were used at different depths to
generate the data in this study, as described in Equation (2) and Figure 2.

y = h ⊗ x (2)

where ⊗ denotes convolution operation.

Figure 2. Blurred image generation process.

In this study, the original structure images are images obtained from the image of
12 randomized structures in a transparent medium. These pre-blurred images are specifi-
cally designed to emulate the intricate structural characteristics of blood vessels beneath the
skin. The blurred images were generated by convoluting the original structures with the
PSF given by Equation (1) at different depths with the parameter values of μ′

s = 1.0 mm−1

and μa = 0.00536 mm−1. These parameters were used in all simulations described here-
inafter. These coefficients are pivotal in understanding light–tissue interactions, particularly
in optical imaging and spectroscopy. μ′

s signifies the extent of light scattering as it traverses
tissue, indicating the likelihood of scattering per unit path length. This is crucial because
of diverse tissue structures that cause light to scatter in various directions. μa gauges the
extent of light absorbed by tissue during propagation, closely related to light-absorbing
constituents such as hemoglobin, lipids, and water. Different tissues and substances possess
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varying absorption characteristics at different wavelengths. In the given context, specific μ′
s

and μa values might be set to simulate tissue optical properties in a model. These values
depend on the type of tissue, the wavelength of light, and the experimental conditions.
Setting these values likely aims to ensure that simulations closely mimic real tissue optical
behavior under specific circumstances. Although the specific rationale hinges on precise
values, the choice of these parameters is vital to accurately model light–tissue interactions
and align simulation outcomes with experimental data.

In studies involving optical imaging and simulations of light propagation in biological
tissues, setting the values of μ′

s (reduced scattering coefficient) and μa (absorption coeffi-
cient) is a critical step. Researchers usually consider the following factors when determining
μ′

s and μ′
a values:

• Empirical data: Experimental measurements of optical properties in specific tissue
types at various wavelengths can serve as a foundation for determining the appropri-
ate values. These measurements can come from the literature or new measurements
conducted by the researchers themselves.

• Literature references: Previous studies often report ranges or specific values of μs and
μa for similar tissue types. Researchers can use these references as a starting point and
adjust the values based on their experimental setup.

• Theoretical models: There are established theoretical models that relate optical prop-
erties to tissue composition and structure. Researchers can leverage these models to
estimate μs and μa based on the known components and concentrations in the tissue.

• Tissue variation: Different tissues exhibit different optical properties as a result of
variations in cellular composition, structure, and pigmentation. Consequently, the spe-
cific tissue under investigation must be carefully considered when selecting μs and μa
values.

• Wavelength Dependence: Optical properties can vary with the wavelengths of light.
Researchers may choose μs and μa values that align with the wavelength range used
in their experimental setup.

• Validation: Validating the chosen values involves comparing the simulation results
with actual experimental observations. If the simulated outcomes closely match the
experimental data, this provides confidence in the suitability of the parameter values.

• Sensitivity analysis: Researchers may conduct sensitivity analyses to assess how
changes in μs and μa impact simulation results. This analysis helps to determine
reasonable ranges for these parameters.

In essence, substantiating the selections of μs and μa values typically entails a combina-
tion of empirical data, theoretical frameworks, references from the literature, and validation
against experimental results. The specific strategy can be flexible to existing resources,
unique tissue attributes, and the specific objectives of the experiment.

For the de-blurring study, a comprehensive dataset consisting of 8000 pairs of clear
and blurred images was generated by convoluting 10 of 12 original structures with the
PSF given by Equation (1) at depths ranging from 0.1 to 20.0 mm (interval 0.1 mm) and
then rotating at four different angles, as illustrated in Table 1. The remaining 2 of the
12 original structures were used to generate data for testing. During the training process
for de-blurring, the generated dataset was used to train the models with a batch size of 8.
The learning rate was set to 10−4, and the models were trained for 100 epochs.

For the depth estimation study, the corresponding depth labels associated with the
blurry images were used. A dataset of 70,400 images was generated that depicts the
absorbing structures within the scattering medium at different depths. The blurred images
in this dataset were generated by convoluting 11 of the 12 original structures with the PSF
given by Equation (1) at depths ranging from 0.5 to 20.0 mm (interval 0.5 mm) and then
rotating at 160 different angles, as illustrated in Table 1. The remaining original structure
was used to generate data to test the performance of the convolution neural network
models. During the depth estimation training process, the generated dataset was used to
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train the models with a batch size of 32. The learning rate was set to 10−4, and the models
were trained for 20 epochs.

Table 1. Dataset for training, validation, and testing of scattering de-blurring and depth estimation.

Model Training Validation Testing Total

De-blurred 5600 1600 800 8000
Estimate depth 56,320 14,080 7040 70,400

Training was carried out on a high-performance workstation that features two Intel�

Xeon� CPUs E5-2683 v4 with 64 GB of RAM. In addition, an NVIDIA Quadro K2200
graphics processing unit was used to accelerate the computational tasks involved in the
training process. The specific training parameters used, including batch size, learning rate,
and number of epochs, are provided in Table 2.

Table 2. Parameters for de-blurred and depth estimation models.

Parameters De-Blurred Depth Estimation

μ′
s 1.0 mm−1 1.0 mm−1

μa 0.00536 mm−1 0.00536 mm−1

dmin–dmax 0.1–20.0 mm 0.5–20.0 mm
Step depth 0.1 mm 0.5 mm
Batch size 8 32

Learning rate 10−4 10−4

Epoch 100 20
Loss function Dice-coef loss Categorical Cross-entropy

Optimizer Adam Adam
Input shape 256 × 256 × 1 224 × 224 × 1

2.2. Image De-Blurring

Transillumination imaging techniques for visualizing absorbing structures within
the body often encounter blurring. While both scattering and absorption contribute to
image blurring, scattering plays a dominant role. Many research efforts have been made
to overcome this challenge. In the previous studies of the group, the suppression of
the scattering effects on the transillumination image was carried out by deconvolution
with the depth-dependent PSF, and the deep learning scatter blurring method has also
proved to be feasible and efficient [5–7,10,12]. However, these methods still have some
limitations in implementation, such as the imperfection of the deconvolution technique,
the long computation time, the computational hardware requirements, and the limitation
of effective de-blurring shallower than 15.0 mm. In the previous study, we employed fully
convolutional networks (FCN) based on the U-net with skip connections. The training
process for the scattering de-blurring model is visually represented in Figure 3, offering a
clear visualization of the methodology employed. The results show that we can obtain a
clear image of the absorbing structure as deep as several to 10.0 mm in a turbid medium.

To address this challenge, the Attention U-Net model and the Attention Res-UNet
model were incorporated for the de-blurring process [16,17]. The attention gate is a mecha-
nism that selectively emphasizes specific regions of interest while suppressing the activation
of irrelevant regions on a given input feature map X. To achieve this, the attention gate
takes advantage of a gating signal G ∈ RC′×H×W , which is obtained at a coarser scale and
incorporates contextual information. When additive attention is employed, the attention
gate calculates the gating coefficient. Initially, both the input X and the gating signal G
undergo linear mapping to a RF×H×W dimensional space. Subsequently, the output is
compressed in the channel domain to generate a spatial attention weight map S ∈ R1×H×W ,
as shown in Figure 4. The entire process can be formulated as described in Equation (3)
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and Equation (4) [18], where φ, φx, and φg are linear transformations implemented as
convolution 1 × 1.

S = σ
(

ϕ
(
δ
(
φx(X) + φg(G)

)))
(3)

Y = SX (4)

Figure 3. De-blurring using a deep learning model: (a) training process with pair of images before
and after blurring, and (b) image de-blurring process.

Figure 4. The diagram of the attention gate.

Residual blocks, which are skip-connection blocks, are designed to learn residual
functions by referring to the layer input instead of learning unreferenced functions. These
blocks were originally introduced as a component of the Res-Net architecture. In a formal
sense, denoting the desired underlying mapping as H(x), the stacked non-linear layers aim
to approximate an additional mapping that captures the difference between the current
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output and the input, denoted as Equation (5). By explicitly modeling the residual mapping,
the network can effectively learn residual functions and enhance optimization.

F(x) := H(x)− x (5)

The original mapping is reformulated as F(x) + x, where F(x) + x represents a resid-
ual component, thus giving rise to the term “residual block H(x)”. The rationale behind this
approach lies in the observation that optimizing the residual mapping is often more feasible
than optimizing the original, unreferenced mapping. In certain cases, minimizing the
residual to approach zero can be simpler than fitting an identity mapping using a series of
non-linear layers. The network is better equipped to learn mappings that resemble identity
transformations by incorporating skip connections. The proposed framework encompasses
a novel deep learning architecture known as Res-UNet-a and a novel loss function based on
the Dice loss. Res-UNet-a combines a U-Net encoder/decoder backbone with residual con-
nections, Atrous convolutions, pyramid scene parsing pooling, and multitasking inference,
thus enhancing its capabilities for various image analysis tasks, as shown in Figure 5.

Figure 5. A diagram of the residual block.

2.3. Depth Estimation

In transillumination imaging, the extent of blurring depends on the depth of the
absorbing structure within the scattering medium, with an increase in depth resulting in a
progressively more blurred image. To estimate the depth of the absorbing structure, a convo-
lutional neural network (CNN) model is trained using generated blurred images. We used
Res-Net-based convolutional neural networks (CNN) in the previous study. The training
process for the depth estimation model is visually represented in Figure 6, which provides
a clear visualization of the methodology used. The results show that we can effectively esti-
mate the depth of the absorbing structure as deep as several to 10.0 mm in a turbid medium.
Four pre-trained models, namely Res-Net50, VGG-16, VGG-19, and Dense-Net169 [19,20],
were used for the depth estimation challenge. The images were paired with their respective
depth labels during the training phase. An estimate of the depth of the absorbing structure
was obtained by entering a blurred image into the CNN model. This process aligns with
the fundamental classification task within deep learning. To ensure consistency, the train-
ing performance settings described in Table 2 were applied in different models, taking
into account computational constraints and system compatibility. Figure 6 illustrates the
estimation procedure for the depth of the absorbing structure using the CNN model.

343



Appl. Sci. 2023, 13, 10047

Figure 6. Estimating depth of absorbing structure with deep learning model: (a) training process and
(b) depth estimating process.

3. Metrics

The Dice coefficient is widely used to assess the agreement at the pixel level between a
predicted segmentation and its corresponding ground truth. It quantifies the similarity by
calculating twice the area of overlap divided by the sum of the total number of pixels in
both images. Equation (6) expresses the Dice coefficient as [21]:

Dice-coef =
2 × |X ∩ Y|
|X|+ |Y| (6)

where X and Y represent the predicted set of pixels and the ground truth, respectively.
Moreover, the loss of the Dice coefficient is employed as a measure of dissimilarity

between the predicted and ground-truth segmentation. It is computed by subtracting
the Dice coefficient from 1. Equation (7) presents the formulation of the loss of the Dice
coefficient [21].

Dice-coef loss = 1 − 2 × |X ∩ Y|
|X|+ |Y| (7)

The Intersection over Union (IoU) is commonly utilized as an evaluation metric for
object detection accuracy in the dataset by calculating the ratio of the overlap and the union
areas between the predicted and ground-truth regions. Equation (8) [22] represents the IoU
formula as:

IoU =
Area of overlap
Area of union

(8)

When developing a depth estimation model, accuracy is used as a classification
metric to measure the proportion of correctly predicted instances where the predicted
depth exceeds the actual depth. It provides insight into the model’s performance on the
dataset. The accuracy is computed by dividing the sum of the True Negatives (TN) and
True Positives (TP) by the total number of samples. Equation (9), illustrates the accuracy
formula [23]:

Accuracy =
TP + TN

total sample
(9)
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4. Results and Discussion

4.1. De-Blurring Image

The significant impact of the attention gate on the scattering de-blurring process is
demonstrated by the results presented in Figure 7. The images obtained with the Attention
Unet model (D) show higher clarity and fidelity than those obtained with the standard
U-Net architecture (C), as the attention mechanism effectively suppresses the scattering
influence and improves the image reconstruction of the absorbing structure. Quantitative
evaluation, as indicated by the Intersection Over Union (IoU) index, further supports
the superiority of the gating attention approach. The IoU index of 0.908 achieved when
using gating attention exceeds the IoU index of 0.831 obtained with the standard U-Net
architecture. This substantial improvement demonstrates the ability of the attention gate to
capture the relevant features better and reduce the impact of scattering, leading to more
accurate and precise de-blurring results.

Figure 7. Scattering de-blurring with and without attention gate: (A) transillumination image
through turbid medium, (B) image taken through clear water, (C) output image from U-Net model,
and (D) output image from Attention Unet model.

The effectiveness of the attention gate can be attributed to its ability to selectively focus
on informative regions and suppress the interference caused by scattering. By assigning
different attention weights to different parts of the image, the attention gate improves the
model’s capability to accurately capture and reconstruct the absorbing structure image, even
at greater depths. These findings highlight the potential of the attention gate in improving
the scattering de-blurring process. Incorporating the gating attention mechanism into the
U-Net architecture can significantly enhance the quality and reliability of de-blurred images,
particularly in scenarios with high levels of scattering. Further exploration and optimization
of the attention gate in various imaging applications hold promise for advancing the image
reconstruction and de-blurring field.

The effectiveness of the residual block in the scattering de-blurring process is illus-
trated by the results presented in Figure 8. The images obtained from the Res-UNet model
show a remarkable improvement in the de-blurring outcome compared to those obtained
from the U-Net model, as evidenced by the higher IoU index of 0.885. This indicates a
more accurate reconstruction of the original absorber image at a depth of 15 mm, even in
the presence of scattering and blurring effects. In contrast, the standard U-Net architec-
ture yields a slightly lower IoU index of 0.831, indicating a relatively inferior de-blurring
performance. The superior performance of the Residual U-Net model can be attributed
to the ability of residual blocks to facilitate the propagation of gradient information effec-
tively. By allowing for the direct flow of information through skip connections, residual
blocks enable the model to capture and restore important features of the absorbing image
more efficiently. Consequently, the Residual U-Net model exceeds the standard U-Net
architecture in mitigating the negative impact of scattering and achieves more accurate
de-blurring results. These findings demonstrate the significance of incorporating residual
blocks into deep learning models for scattering de-blurring tasks. The Residual U-net
model proves to be a promising approach for addressing challenges associated with image
blurring in the presence of scattering media. Further investigations and optimizations can
be conducted to enhance the performance of the Residual U-Net model and explore its
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potential applications in various imaging tasks, such as medical diagnostics and image
analysis in turbid environments.

Figure 8. Scattering de-blurring with and without residual block: (A) transillumination image
through turbid medium, (B) image taken through clear water, (C) output image from U-Net model,
and (D) output image from Residual Unet model.

The primary objective of this study was to obtain de-blurred images by effectively
compensating for scattering effects. To accomplish this, the models employed in this
approach included Attention U-Net and Attention Res-UNet. These models were trained
using a carefully curated input and output image pairs dataset. A combination of PSF
convolutions at different depths was used to train the Attention U-Net and Attention
Res-UNet networks for image de-blurring. This involved pairing the original images
with their corresponding blurred counterparts. This approach enabled the networks to
learn the intricate relationships between different depths and their corresponding blurred
representations, facilitating accurate image de-blurring.

In the statistics table of the Dice coefficient for the two models, Attention Unet and
Attention Res-UNet, as shown in Table 3, we can observe crucial information on the perfor-
mance of these models. The Attention Unet model achieved a minimum Dice coefficient
of 0.931 and a maximum of 0.999487, with a mean of 0.996319 and a median of 0.999195.
The variability in the performance of this model is represented by a standard deviation of
0.009583. Similarly, the Attention Res-UNet model exhibits comparable parameters, with a
minimum Dice coefficient of 0.930391 and a maximum of 0.999492. The mean and median
values for this model are 0.996443 and 0.999223, respectively. The performance variability
of the Attention Res-UNet model is gauged by a standard deviation of 0.009603. Overall,
both models demonstrate consistent performance with minimal variation across the Dice
coefficient values. This underscores the efficiency and general applicability of the models
in de-blurring absorption structures within a dispersed medium. Figure 9 provides a visual
representation of the process.

Table 3. Performance Comparison of Attention Unet and Attention Res-UNet Models based on Dice
Coefficient Statistics.

Model Minimum Maximum Mean Median Std

Attention Unet 0.931056 0.999487 0.996319 0.999195 0.009583
Attention Res-UNet 0.930391 0.999492 0.996443 0.999223 0.009603

Figure 10 illustrates a representative example of input and output images obtained
by scatter blurring at various depths, specifically 0.1, 5.0, 10.0, and 20.0 mm. In particular,
the corresponding correlation indices for these depths were reported as 0.9360, 0.9167,
0.9130, and 0.9059, respectively. These correlation indices served as valuable quantitative
indicators, providing insights into the level of agreement between the predicted de-blurred
output and the ground truth images.
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Figure 9. Training and validation for de-bluring process: (A,B) Attention U-Net, (C,D) Attention Res-
UNet.
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Figure 10. Representative images demonstrating the de-blurring process at various depths:
(A) 0.1 mm, (B) 5 mm, (C) 10 mm, and (D) 20 mm.

Figure 11 illustrates the original and restored images of the absorbing structure after
applying the Attention U-Net and Attention Res-UNet models. Then, the correlation
coefficient is calculated. As the depth of the absorbing structure increases, the blurring effect
becomes more pronounced, leading to a rapid decline in the quality of the blurred image.
Furthermore, the reduction in training images significantly affects the correlation coefficient.

Figure 11. Correlation analysis between original and deblurred images with 256 × 256 input im-
age size.
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The test results for the Attention U-Net model indicated that the correlation coefficient
exhibited a high value ranging from 0.9149 to 0.9013 for depths between 0.1 and 5.0 mm.
Beyond 5.0 mm, the correlation coefficient gradually decreased, reaching 0.8921 at a depth of
10.0 mm. Subsequently, for depths ranging from 10.1 to 20.0 mm, the correlation coefficient
rapidly decreased from 0.8918 to 0.8801 at a depth of 20.0 mm. In particular, the rate of
decrease in the correlation coefficient became more pronounced once the depth exceeded
10.1 mm.

Similarly, the Attention Res-UNet model yielded test results indicating a high cor-
relation coefficient ranging from 0.9308 to 0.9069 for depths between 0.1 and 5.0 mm.
Beyond 5.0 mm, the correlation coefficient gradually decreased, reaching 0.8845 at a depth
of 14.0 mm. In particular, for depths greater than 10.0 mm, the rate of decrease in the
correlation coefficient increased. Finally, for depths ranging from 14.1 to 20.0 mm, the cor-
relation coefficient exhibited a rapid decline from 0.8942 to 0.8876 at a depth of 20.0 mm.
Once again, the rate of decrease in the correlation coefficient decreased rapidly for depths
exceeding 14.1 mm.

In the subsequent experiment, the size of the training input image was modified from
256 × 256 pixels to 112 × 112 pixels while keeping the other training parameters in Table 2
unchanged. The results obtained from this adjustment are depicted in Figure 12.

Figure 12. Correlation analysis between original and deblurred images with 112 × 112 input im-
age size.

The test results of the Attention U-Net model revealed that within the depth range
of 0.1 to 5.0 mm, the correlation coefficient initially reached a high value and gradually
decreased from 0.9186 to 0.8722. The highest correlation coefficient was achieved at a
depth of 0.1 mm, registering a value of 0.9186. As the depth increased from 5.1 to 10.0 mm,
the correlation coefficient experienced a gradual decrease, reaching 0.8184 at a depth of
10.0 mm. Subsequently, for depths ranging from 10.1 mm to 20.0 mm, the correlation
coefficient exhibited a rapid drop from 0.8172 to 0.6927 at a depth of 20.0 mm. Remarkably,
once the depth surpassed 7.0 mm, the rate of decline in the correlation coefficient with
respect to depth became more pronounced.

Similarly, the Attention Res-UNet model yielded noteworthy test results. At depths
ranging from 0.1 to 5.0 mm, the correlation coefficient reached a high value and gradually
decreased from 0.9337 to 0.9023. The highest correlation coefficient was observed at a
depth of 0.1 mm, yielding a value of 0.9337. For depths extending from 5.1 to 14.0 mm,
the correlation coefficient exhibited a gradual decrease from 0.9080 to 0.8736 at a depth of
14.0 mm. In particular, depths greater than 10.0 mm experienced an accelerated decline in
the correlation coefficient. Finally, within the depth range of 14.1 to 20.0 mm, the correlation
coefficient decreased rapidly from 0.8717 to 0.8539 at a depth of 20.0 mm. Once the depth
surpassed 11.6 mm, the rate of decrease in the correlation coefficient with respect to depth
decreased rapidly.
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For the Attention U-Net model, it was observed that at depths ranging from 0.1 to
0.5 mm, employing an input size of 112 × 112 pixels yielded better performance, with a
difference in the correlation coefficient ranging from 0.6% to 0.9%. On the contrary, at depths
ranging from 0.6 to 5.0 mm, adopting an input size of 256 × 256 pixels achieved superior
performance, exhibiting a difference in the correlation coefficient ranging from 0.02% to
3.08%. In particular, for depths ranging from 5.1 to 20.0 mm, the difference in performance
between the two input sizes increased rapidly, ranging from 3.35% to 20.91%.

For the Attention Res-Unet model, it was observed that at depths ranging from 0.1 to
0.9 mm, employing an input size of 112 × 112 pixels resulted in improved performance,
with a difference in the correlation coefficient ranging from 0.4% to 0.6%. On the other hand,
at depths ranging from 1.0 to 5.0 mm, adopting an input size of 256 × 256 pixels yielded
better performance, exhibiting a difference in the correlation coefficient index ranging from
0.15% to 0.75%. Furthermore, for depths ranging from 5.1 to 20.0 mm, the difference in
performance between the two input sizes increased rapidly, ranging from 0.7% to 3.55%.

The results show the impact of resizing the input training image from 256 × 256 pixels
to 112 × 112 pixels on the correlation coefficient at different depths. These findings demon-
strate the importance of optimizing the input image size to achieve optimal performance in
terms of the correlation coefficient at different depths, as shown in Figure 13. The observed
trends can be ascribed to the interplay of scattering phenomena and the depth of the
absorbing structure. With increasing depth, the scattering effects intensified, leading to
diminished correlation coefficients. Moreover, the selection of the input image size exerted
a notable influence on performance, primarily by affecting the model’s ability to capture
intricate features amidst scattering influences. In particular, the optimal input size exhibited
variability depending on depth, thus facilitating improved adaptability to varying degrees
of scattering. These discernments underscore the imperative of factoring in depth and input
size while addressing scattering-induced de-blurring tasks, thereby providing valuable
insights for optimizing model efficacy across diverse scenarios. Further studies could delve
into the intricate dynamics connecting depth, scattering effects, and input size, thereby
advancing the potential for refining the applicability and precision of de-blurring models.

The validity of the diffusion approximation is based on the condition that the thickness
of the scattering medium is significantly greater than the average free-path length of 1/μ′

s.
Consequently, caution must be exercised when applying Equation (1) in cases where√

ρ2 + d2 is not greater than 1/μ′
s. As shown in Figure 1, the observing plan is considered

to be significantly larger than the light distribution on the surface. Therefore, it is better to
generate an appropriate wide image for training to ensure a result with a deep-absorbing
structure. The light distribution on the surface has a Gaussian distribution shape. The image
size in a dimension should be more significant than three times the standard deviation of
the light distribution on the surface of the medium when calculating the deepest light point
source distribution by Equation (1) in the turbid medium, as shown in Figure 13.

Figure 13. Optimizing input image size across various depths.
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4.2. Depth Estimation

Depth estimation is an essential task for analyzing the properties of absorption struc-
tures. This section presents a deep learning approach to estimate the depths of absorption
structures from their images. For this purpose, a dataset of 7040 images of absorption
structures, each labeled with one of 40 depth values ranging from 0.1 mm to 20 mm,
is used. Four state-of-the-art deep learning models, namely ResNet50, VGG16, VGG19,
and DenseNet169, are trained and evaluated in this dataset. Accuracy is the evaluation
metric that measures the percentage of images whose depth labels are correctly predicted
by the models. Table 4 shows the training and validation accuracy of each model after
20 epochs.

Table 4. The training and validation accuracy of each model after 20 epochs.

Model Training Accuracy Validation Accuracy

ResNet50 0.4312 0.3921
VGG16 0.5124 0.4678
VGG19 0.4894 0.4500

DenseNet169 0.7323 0.6250

Table 4 shows that DenseNet169 achieves the highest accuracy in both the training and
validation sets, followed by VGG16, VGG19, and ResNet50. All models perform better than
in previous experiments with a smaller dataset, indicating the positive impact of dataset
size and diversity on model performance. However, the accuracy of all models is still low,
indicating the difficulty of the depth estimation task. To further analyze the behavior of the
models, the accuracy curves of each model were plotted during training and validation,
as shown in Figure 14.

Figure 14. Accuracy evaluation of various models: ResNet50, VGG16, VGG19, and DenseNet169.

In Figure 14, the conspicuous features include low accuracy values and pronounced
fluctuations, indicating a struggle of the models to glean effective insights from the original
7040-image dataset. This conundrum can be attributed to the inherent complexity of the
dataset, characterized by an extensive array of depth classes (40) coupled with a limited
count of images per class (fewer than 176 images). Consequently, the models struggled to
discern nuanced differentiators across various depth levels, impairing their capacity for
comprehensive learning. The fluctuations in accuracy, evident in the jagged trajectory after
each epoch, underscored the models’ susceptibility to data fluctuations, amplifying the
instability quotient.

To improve the performance of the models, data augmentation techniques were
applied to increase the size and diversity of the dataset. Specifically, angle rotation was
used to generate new images from existing ones by randomized 160 different angles and
rotating them at angles between 0 and 360 degrees. This resulted in an augmented dataset
of 70,400 images (7040 × 10) with the same depth labels as before.

The decision to employ 160 different angles for image rotation during the data gen-
eration process in this study is purposeful and aligned with the goal of improving the

351



Appl. Sci. 2023, 13, 10047

robustness and generalization capabilities of the trained convolutional neural network
(CNN) models. This technique, commonly referred to as data augmentation, serves to
simulate varying viewpoints and orientations of the same scene or object, thereby aiding
the model in comprehending and identifying features from diverse angles. In the con-
text of estimating depth from blurred images of absorbing structures within a scattering
medium, the rationale behind incorporating image rotation at numerous angles can be
succinctly summarized:

• Increased variability: By generating images from multiple angles, the dataset gains
greater diversity. This variability acts as a defense against overfitting, ensuring that
the model learns broader transferable features instead of memorizing specific training
samples.

• Robustness to orientation: Real-world scenarios involve objects with varying orien-
tations. Training the model on images spanning different orientations enhances its
resilience to changes in object rotation.

• Feature extraction: Image rotation encourages the model to learn invariant features. It
requires the model to emphasize features consistent across orientations, thus aiding in
the extraction of pertinent and informative features for accurate depth estimation.

• Generalization: Exposure to an extensive array of angles equips the model with the
ability to generalize its insights to novel orientations during inference.

In essence, the choice of 160 different angles probably stems from a balance between
creating a suitably diverse dataset and managing the computational demands of training.
This numerical selection may have emerged through iterative experimentation and val-
idation, ensuring that the model benefits from enhanced diversity while maintaining a
manageable training process.

Using the augmented data set, the same models (ResNet50, VGG16, VGG19, and
DenseNet169) underwent rigorous training and evaluation. This assessment used a multi-
faceted set of evaluation metrics, encompassing accuracy, precision, recall, and F1 score,
as shown in Table 5. These metrics serve as vital indicators of the efficacy of the model
in distinct facets of the depth estimation task. These models were subjected to rigorous
training spanning 100 epochs, with a batch size of 20 and a learning rate set at 0.001. This
comprehensive evaluation regimen ensured meticulous scrutiny of the models’ competence
from various vantage points.

Table 5. Evaluation metrics of different models after 100 epochs on the augmented dataset.

Model Accuracy Precision Recall F1-Score

ResNet50 0.9212 0.9221 0.9212 0.9216
VGG16 0.9324 0.9338 0.9324 0.9331
VGG19 0.9294 0.9300 0.9294 0.9297

DenseNet169 0.9523 0.9535 0.9523 0.9529

From Table 5, it can be observed that:

• All models attained substantial scores across evaluation metrics, indicating proficient
performance in depth estimation.

• DenseNet169 secured the highest values in all metrics, followed by VGG16, VGG19,
and ResNet50.

• The models demonstrated consistent alignment between accuracy, precision, recall,
and F1 score, reflecting balanced performance in positive and negative classes.

• In particular, the application of angle rotation as an enhancement technique yielded
notable improvements in the evaluation metrics compared to the previous experiment
with the original dataset.

The progression of the training and testing process over 100 epochs is visually cap-
tured in the collection of four graphs shown in Figure 15. This visualization offers valuable
insights: ResNet50 illustrates a gradual and consistent increase in accuracy across epochs,
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albeit with a modest final value. On the contrary, VGG16 and VGG19 exhibit swift accu-
racy improvements in the initial epochs, followed by a more gradual enhancement rate.
In particular, DenseNet169 demonstrates a consistent and rapid accuracy advancement
throughout the epochs, culminating in a substantial final accuracy value. It is important to
note that all models exhibit diminished accuracy fluctuations after each epoch compared to
the earlier experiment, indicating an improved level of learning stability.

Figure 15. Accuracy curves of (A) ResNet50, (B) VGG16, (C) VGG19, and (D) DenseNet169 models.
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In terms of training accuracy, a rapid increase was observed from epochs 1 to 10, rising
from 0.4412 to 0.9055. Subsequently, the training accuracy continued to improve, but the
rate of increase decreased with each epoch. Over the next ten epochs, the training accuracy
increased by only 0.06, reaching 0.9645 by the 20th training session. The use of the expanded
training dataset of 70,400 images contributed to the improved accuracy of the DenseNet169
model. The model achieved an accuracy of more than 65%, indicating the importance
of this research and the generated dataset to estimate the depth of absorption structures
in near-infrared images. The slow increase in accuracy from the 10th training session
onward can be attributed to the challenge of extracting specific features for each class in the
classification model, which comprises 40 classes that represent different depths. Moreover,
the increasing blurring of images of absorbing structures at depths above 16.0 mm poses
difficulties in distinguishing the blurred images. Furthermore, Figure 16 illustrates the
results of the correlation analysis between the depth estimated by the CNN model and the
depth given during testing. As the depth increased, the estimation error also increased.
The experiment involved 8000 images at 20 depths ranging from 1.0 mm to 20.0 mm, with
40 images per depth for testing. The correlation coefficient was R2 = 0.9911, demonstrating
the feasibility of the CNN-DenseNet-169 model in estimating the depths from images of
absorbing structures.

Figure 16. Correlation Analysis of Given and Estimated Depths.

Figure 17 illustrates the workflow of the proposed method. First, the original image
was convolved with a point spread function (PSF) to simulate the blurring effect caused by
light scattering and absorption in biological tissue. This process yielded a blurred image
of the absorption structures. Second, the blurred image underwent de-blurring through
a fully convolutional network (FCN) model, which could have been either the Attention
UNet or the Attention Res-UNet, in order to recover the original image. Lastly, the blurred
image was subjected to decoding using a convolutional neural network (CNN) model to
estimate the depth of the absorption structures. In further studies, these results will be
optimized to reconstruct the 3D structure of biological tissue from a 2D image.

354



Appl. Sci. 2023, 13, 10047

Figure 17. Correlation analysis of given and estimated depths.

5. Conclusions

The de-blurring and estimation depths of the absorbing structure in transillumination
images taken through a turbid medium such as biological tissue have attracted significant
interest among researchers and experts in biomedical optics in recent years. This study
addresses the challenge of de-blurring and depth estimation in transillumination images
by utilizing the dependent point spread function (PSF) derived for the light source within
a scattering medium. The neural network (NN) technique is employed to find the deep
learning models capable of de-blurring the image and estimating the depth of the absorption
structure inside a turbid medium. The effectiveness of deep learning for de-blurring
transillumination images and also depth estimation has been successfully demonstrated
for depths ranging from 0.1 to 10.0 mm in previous studies. Although previous attempts
have been made to enhance blurred images, the technique proposed in this study offers
another solution.

The attention gate and the residual block were proposed to de-blur the image. At-
tention Unet and Residual Unet models were examined compared to the Unet model.
Attention UNet and Residual Unet models yielded better performance than the Unet model.
Attention Res-Unet then examined the performance compared to Attention Unet. Both the
Attention U-Net and Attention Res-UNet models achieved correlation coefficients exceed-
ing 88% even at a depth of 20.0 mm, affirming the applicability of deep learning models to
de-blur transillumination images. Finally, Attention Res-Unet shows better performance
in terms of the correlation between a de-blurred image and the original given image. The
impact of image size on the result was also investigated. To ensure a better result with a
deep-absorbing structure, the image size in a dimension should be more significant than
three times the standard deviation of the light distribution on the medium’s surface when
calculating the turbid medium’s deepest light point source distribution.

This study examined four different models, ResNet-50, VGG-16, VGG-19, and DenseNet-
169, to estimate the depth of the absorbing structure. DenseNet-169 demonstrates superior
performance among these models, achieving an accuracy rate greater than 65%. This
research and the generated dataset prove valuable in accurately estimating the depth of the
absorption structure from transillumination images. The evaluation of 1600 test images
at 40 different depths ranging from 0.5 mm to 20.0 mm yielded a correlation coefficient
of R2 = 0.9911, which affirms the feasibility of the DenseNet169 model in estimating the
depth of the absorbing structure.

It should be noted that this proposed technique requires a substantial amount of
training data and computational power. However, these challenges can be addressed
through the appropriate selection of PSFs and advances in computing capabilities. Conse-
quently, this study confirms the feasibility of deep learning in clarifying blurred images
and estimating the depth of absorption structures using PSF and CNN models based on
training data.
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The de-blurring and depth estimation results obtained for absorption structures at
depths from 0.1 to 20.0 mm are highly satisfactory. These findings indicate the usefulness
of the proposed methods for observing subcutaneous structures, identifying tumors and
small animal parts, and determining depth distributions up to 20.0 mm. In particular, this
technique is based solely on computer vision without complex exposure, ultrasound, or ad-
ditional substances. Therefore, it presents a novel tool for the diagnosis of dermatological
diseases, various tumor-associated diseases, vascular diseases, and tissue metabolism.

The results of this study contribute to the development of depth estimation and de-
blurring methods using deep learning models. Furthermore, merging two targets identified
by a single deep learning model will enable the definition of multiple depths within a single
image. To expand the model’s de-blurring and depth estimation capabilities, it is crucial
to increase the number of samples and pairs of images for the training data and expand
the depth range. These insights will facilitate the determination of actual dimensions and
image depths within the absorption structure for the development of applications using 2D
and 3D absorbing structure images in the near future.
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