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Preface

SmallSats are changing the paradigm in Earth remote sensing, taking advantage of innovative

payloads. As such, the operation of constellations of these instruments has the potential to observe

the Earth’s dynamic processes with a higher spatiotemporal sampling than traditional techniques.

In particular, the so-called Global Navigation Satellite Systems Reflectometry (GNSS-R) is a type of

L-band passive multi-static radar (as many transmitters as navigation satellites are in view) that

provides a wide swath of up to 1500 km. GNSS-R spatiotemporal sampling properties could

provide new process insights on mesoscale studies, wind speed determination, soil moisture content

determination, vegetation water content monitoring, etc.

This reprint is intended to prompt the development of a potential virtual network of satellites,

providing inter-comparable data to the scientific community, based on the new GRSS Standard for

GNSS-Reflectometry. New and novel GNSS-R scientific applications, methodologies, and retrieval

algorithms are the focus of this reprint, including contributions from academia, international space

agencies, and private industry.

We thank all contributing authors for their interest in this project. It is our great pleasure to

share this reprint with you and the wider GNSS-R community. We encourage all members of the

community to contemplate and envisage the future of this remote sensing technique, and to continue

working together in a coordinated manner.

Hugo Carreno-Luengo and Chun-Liang Lin

Editors

ix





remote sensing 

Review

The CYGNSS Mission: On-Going Science Team Investigations

Hugo Carreno-Luengo 1,*, Juan A. Crespo 2, Ruzbeh Akbar 3, Alexandra Bringer 4, April Warnock 5, Mary Morris 2

and Chris Ruf 1

Citation: Carreno-Luengo, H.;

Crespo, J.A.; Akbar, R.; Bringer, A.;

Warnock, A.; Morris, M.; Ruf, C. The

CYGNSS Mission: On-Going Science

Team Investigations. Remote Sens.

2021, 13, 1814. https://doi.org/

10.3390/rs13091814

Academic Editor: Emanuele Santi

Received: 1 March 2021

Accepted: 1 May 2021

Published: 6 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Climate and Space Sciences and Engineering Department, University of Michigan (UM),
Ann Arbor, MI 48104, USA; cruf@umich.edu

2 Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, CA 91125, USA;
juan.a.crespo@jpl.nasa.gov (J.A.C.); mary.g.morris@jpl.nasa.gov (M.M.)

3 Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; rakbar@mit.edu
4 Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA;

bringer.1@osu.edu
5 SRI International, Ann Arbor, MI 48105, USA; april.warnock@sri.com
* Correspondence: carreno@umich.edu; Tel.: +1-734-764-6561

Abstract: In 2012, the National Aeronautics and Space Administration (NASA) selected the CYclone
Global Navigation Satellite System (CYGNSS) mission coordinated by the University of Michigan
(UM) as a low-cost and high-science Earth Venture Mission. The CYGNSS mission was originally
proposed for ocean surface wind speed estimation over Tropical Cyclones (TCs) using Earth-reflected
Global Positioning System (GPS) signals, as signals of opportunity. The orbital configuration of each
CYGNSS satellite is a circular Low Earth Orbit (LEO) with an altitude ~520 km and an inclination
angle of ~35◦. Each single Delay Doppler Mapping Instrument (DDMI) aboard the eight CYGNSS
microsatellites collects forward scattered signals along four specular directions (incidence angle
of the incident wave equals incidence angle of the reflected wave) corresponding to four different
transmitting GPS spacecrafts, simultaneously. As such, CYGNSS allows one to sample the Earth’s
surface along 32 tracks simultaneously, within a wide range of the satellites’ elevation angles over
tropical latitudes. Following the Earth Science Division 2020 Senior Review, NASA announced
recently it is extending the CYGNSS mission through 30 September 2023. The extended CYGNSS
mission phase is focused on both ocean and land surface scientific investigations. In addition to
ocean surface wind speed estimation, CYGNSS has also shown a significant ability to retrieve several
geophysical parameters over land surfaces, such as Soil Moisture Content (SMC), Above Ground
Biomass (AGB), and surface water extent. The on-going science team investigations are presented in
this article.

Keywords: CYGNSS; GNSS-R; science investigations; ocean; land; atmosphere

1. Introduction

The CYGNSS Science Team [1–5] is composed of a wide variety of researchers, working
in a collaborative and coordinated manner to further advance the use of CYGNSS for Global
Navigation Satellite Systems Reflectometry (GNSS-R) Earth remote sensing [6–8].

GNSS-R is a type of L-band passive multi-bistatic radar, which uses the navigation
spacecrafts which are in view as transmitters. GNSS-R provides global coverage, full
temporal availability, and sampling of the Earth’s surface over several tracks within a
wide area up to ~1500 km. One potential disadvantage is the degraded spatial resolution
under the incoherent scattering regime. The use of GNSS radio-navigation signals for Earth
remote sensing has been investigated since it was originally proposed for mesoscale ocean
altimetry by the European Space Agency (ESA) [9]. The first in-orbit proof-of-concept study
was an experiment performed at the Jet Propulsion Laboratory (JPL) using the Space-borne
Imaging Radar-C (SIR-C) on-board the Space Shuttle [10]. This experiment motivated
the development of GNSS-R. At present, several GNSS-R space-borne studies have been

Remote Sens. 2021, 13, 1814. https://doi.org/10.3390/rs13091814 https://www.mdpi.com/journal/remotesensing
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performed with several satellites, including United Kingdom (UK) Disaster Monitoring
System-1 (DMC-1) [11], UK Techdemosat-1 (TDS-1) [12], Soil Moisture Active Passive
(SMAP) [13], and the CYGNSS 8 microsatellites constellation [3] which is the first-ever
operational GNSS-R mission.

The CYGNSS Science Team (Figure 1, Table 1) holds two Science Team meetings every
year to coordinate such activities, and to share our most recent results. The last 2020
conference was held in UM (virtual conference) in June 2020 (Figure 1). This conference
was structured along six different sessions covering all of our research topics: Session
1 (CYGNSS Mission Overview and Data Products I), Session 2 (CYGNSS Data Products
II), Session 3 (Land Processes I), Session 4 (Land Processes II), Session 5 (Altimetry and
Tropical Cyclones and Tropical Convection I), and Session 6 (Tropical Cyclones and Tropical
Convection II). This article provides a synoptic overview of the meeting.

Table 1. Some key-members of the CYGNSS Science Team. The full list is available in [14].

Member Chris Ruf

Home Institution University of Michigan
CYGNSS Role Principal Investigator

Areas Earth environment remote sensing methods, instrumentation, atmosphere

Member Mahta Moghaddam

Home Institution University of Southern California
CYGNSS Role Terrestrial Science Lead, Co-I

Areas Inverse scattering, subsurface characterization, water resources

Member Derek Posselt

Home Institution Jet Propulsion Laboratory, California Institute of Technology
CYGNSS Role Atmospheric Science Lead, Co-I

Areas Clouds and precipitation, data assimilation, uncertainty quantification

Member Ruzbeh Akbar

Home Institution Massachusetts Institute of Technology
CYGNSS Role Soil moisture sensor networks, calibration, and validation

Areas Microwave remote sensing of Earth, hydrology, wireless sensor networks

Member Alexandra Bringer

Home Institution The Ohio State University
CYGNSS Role CYGNSS Science Team member

Areas Microwave remote sensing of the Earth, ocean and land applications

Member Juan A. Crespo

Home Institution Jet Propulsion Laboratory, California Institute of Technology
CYGNSS Role Competed Science Team Member, CYGNSS ocean surface heat flux product

Areas Extratropical cyclones & air-sea fluxes

Member Mary Morris

Home Institution Jet Propulsion Laboratory, California Institute of Technology
CYGNSS Role CYGNSS Science Team member

Areas Metereological and hydrological applications, Earth sciences

Member April Warnock

Home Institution SRI International
CYGNSS Role CYGNSS Science Team member

Areas Hydrology/storm surge modeling

Member Hugo Carreno-Luengo

Home Institution University of Michigan
CYGNSS Role CYGNSS Science Team member

Areas Surface scattering, Earth sciences
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Figure 1. Zoom-derived photo of some Science Team members attending the June 2020
CYGNSS meeting.

2. Methodology, Results, and Discussions

2.1. Data Products

CYGNSS is within the NASA’s Earth System Science Pathfinder (ESSP) program. The
original goal of CYGNSS was to further advance extreme weather predictions with a focus
on TCs inner core process studies. CYGNSS was designed to resolve the lack of accuracy
with current TCs intensity forecasts, which lie in inadequate measurements and modeling
of the inner core. The inaccurate measurements result from two main aspects:

3
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• Traditional remote sensing techniques are blind to much of the inner core ocean surface
when intense precipitation is in the eye wall and inner rain bands.

• Traditional high-inclination orbit and wide-swath surface wind imagers do not pro-
vide an enough temporal sampling of the dynamically evolving (genesis and rapid
intensification) phases of the TCs life cycle.

CYGNSS was specifically designed to address these two limitations by combining
the use of GNSS-R with the sampling properties of a constellation of eight microsatel-
lites [15–19]. CYGNSS provides an unprecedented spatiotemporal resolution of the Earth’s
surface thanks to the multi-static nature of GNSS-R and the use of such a dense constel-
lation of microsatellites. CYGNSS is the first operational GNSS-R mission launched into
space, in 2016.

Since CYGNSS’s launch in December 2016, various science data products (Figure 2)
have been created, such as an expansion of its wind speed measurements, ocean surface
heat flux measurements, and land observations [20]. These scientific data products expand
CYGNSS’s core mission beyond TCs observations and bolster its reach and influence within
the Earth science community. The results presented here focus on some of these products
that have been developed and published since launch. All CYGNSS data products available
to the public are distributed by the Physical Oceanography Distributed Active Archive
Center (PODAAC).

Session 1: CYGNSS Mission Overview and Data Products I
The current v2.1 CYGNSS mission science data products assume that the GPS transmit

power is constant. The Climate Data Record (CDR) v1.0 was released in May 2020 to
improve product performance. This is the most stable, and most accurate product currently
available. Current v3.0 products incorporate real time monitoring of GPS power. At present,
all eight CYGNSS spacecrafts are healthy and operating nominally. There was the open call
“A.27 CYGNSS Competed Science Team” within NASA Research Opportunities in Space
and Earth Science (ROSES) 2020 with the following research topics: Atmospheric River
Generation and Development, Wetland Methane Emissions, Dynamic Inland Water Mask
Development, Process, Coupling and Feedback Studies, and Weather and Storm Surge
Data Assimilation Studies. This ROSES seeks to support the continued use of both the
ocean and land data products through scientific investigations and end-user applications.

Several significant advances in ocean research activities were presented by the CYGNSS
Science Team. By comparing the CYGNSS measured Mean-Square Slope (MSS) and mod-
ified Wave-Watch 3 (WW3) modeled MSS, it was shown that the mean MSS ratio has a
dependence on both GPS Pseudo-Random Noise codes (PRNs) and CYGNSS Flight Models
(FMs) (starboard and port antennas). A new end-to-end CYGNSS Level 1 calibration
approach was proposed in [21] to: (1) improve the data quality of the CYGNSS Level 1
calibration and the Level 2 wind speed and MSS products; and (2) improve our understand-
ing of the impacts of wind-wave and swell-wave on the GNSS-R ocean observations. The
detailed performance assessments will be reported in the future. Sensitivity in CYGNSS
data to wind direction was demonstrated by computing the kurtosis over areas in the
glistening zone of different size and symmetry. CYGNSS raw Intermediate Frequency (IF)
data processing at Institute of Space Sciences (ICE)—Institute of Space Studies of Catalonia
(IEEC) demonstrated potential applications over land, inland water bodies, and in extreme
events (e.g., hurricanes and floods) and regions of great geophysical interest (e.g., Hi-
malayan glaciers). Finally, variational wind speed retrievals of uncalibrated CYGNSS data
demonstrated a better response to high winds than the Advanced SCATterometer (ASCAT)
radars and similar response as the Soil Moisture Ocean Salinity (SMOS) mission (Figure 3).

4



Remote Sens. 2021, 13, 1814

Figure 2. Data processing flow of the CYGNSS data products [19].

5



Remote Sens. 2021, 13, 1814

Figure 3. Sentinel-1A and -1B wind retrievals for Typhoon “Trami”, acquired on Sep 28 9:35 (lower) and Sep 29 9:27 (upper)
2018, approximately 24 h apart (from https://cyclobs.ifremer.fr, 3 April 2021). The colored tracks are CYGNSS passes
~8 h before the first Synthetic Aperture Radar (SAR) wind field image (Sep 28, between 00:50 and 01:26) when the eye was
further South. The CYGNSS wind retrievals for each of the tracks, estimated by A. Rius et al. [22], are shown in black dots
(“Est” legend) in the panels surrounding the images. The red dots are for European Centre for Medium-Range Weather
Forecasts (ECMWF) ERA-5 wind speeds interpolated to the CYGNSS tracks, and Advanced SCATterometer ASCAT-A/B
are shown in blue circles when co-located.

Session 2: Data Products II
A CYGNSS L1 land product was developed by the University Corporation for At-

mospheric Research (UCAR). This L1 land product [23] contains variables also found in
the L1 ocean product, such as position, velocity, time, attitude, and antenna gain, while
eliminates variables that were only applicable to ocean applications. The sandbox version
of this product is available to all the Science Team members and includes almost all land
bodies observed within CYGNSS coverage and a 50 km “skirt” of the ocean; however, very
high-altitude regions, such as the Tibetan Plateau are not available due to on-board open
loop tracker limitations.

In order to better assist with the CYGNSS wind speed product, several institutions
including the National Oceanic and Atmospheric Administration (NOAA) have developed
CYGNSS L2 wind speed products, which have been released through the PODAAC. As
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compared to the original CYGNSS L2 wind speed product, the NOAA version is gridded
into 25 × 25 km grid cells, and it uses a custom Geophysical Model Function (GMF) with
a track-wise debiasing algorithm. At the time of this meeting, the presenters highlighted
some of the minor changes going into v1.1 of the product, such as, e.g., resolving an
issue with the star tracker flag, which led to an 18% increase in daily data on some dates.
Most importantly, v1.1 of the CYGNSS-NOAA winds have led to improvements in wind
speed retrievals within the cores of TCs. This product (Figure 4) was released through
the PODAAC during the last fall, with data availability from March 2017 through the
present [24].

Figure 4. Full day of wind speed observations (m/s) on 30 August 2020 from the NOAA CYGNSS L2 Science Wind Speed
25-km v1.1 product.

An ocean surface heat flux product was released in August 2019, which combines
CYGNSS L2 winds with reanalysis data from Modern-Era Retrospective analysis for Re-
search and Applications (MERRA-2) in order to estimate the latent and sensible heat fluxes
at each CYGNSS specular point [25]. An update of L2 CDR v1.0 of the CYGNSS ocean
surface heat flux product was released in October 2020. As compared to the original version
(Science Data Record (SDR) v1.0), the latest version of this product uses the CDR v1.0 L2
winds from CYGNSS, leading to a slightly improved performance as compared to buoy
data and improved data availability for the Fully Developed Seas (FDS) versions of these
products. Additionally, MERRA-2 variables are now matched in time and space to CYGNSS
specular points using a tri-linear interpolation method rather than nearest neighbor, which
has removed some biases and fixed issues near land. Similar to the CYGNSS-NOAA prod-
uct, this product has been released through the PODAAC (Figure 5), with data availability
from March 2017 through the present (with a 1-month data release latency) [26].

Figure 5. Full day of latent heat flux (W/m2) observations on 30 August 2020 from the CYGNSS L2 Ocean Surface Heat
Flux CDR v1.0 product.

NASA JPL serves as the primary data lead for CYGNSS within PODAAC, and contin-
ually provides updates to the CYGNSS Science Team regarding data publication. At the
time of the meeting, the L1 ocean product remained the most popular CYGNSS product
being downloaded, and the CYGNSS usage from October 2019 to May 2020 rebounded
to pre-FTP retirement levels. It was also noted that by early 2021, cloud services for select
datasets would become operational. Around the time of the meeting, PODAAC’s web
portal went through a revitalization to improve the user experience. This includes listing

7
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all of the CYGNSS’s data products on a single organized page, allowing users to have a
better access to the CYGNSS’s scientific data products.

2.2. Land Surfaces

The use of GNSS-R for land-surface applications requires additional considerations
because the dielectric properties of this scattering medium have significantly more vari-
ability than that of the ocean surface. Here, we provide some of the latest findings of the
CYGNSS mission, including key-results, discussions, and on-going research activities. At
present, a significant number of researchers within the CYGNSS Science Team are working
on land surface applications, which remain less explored than ocean products.

Session 3: Land Processes I
The first Land Processes Session consists of a series of presentations and discussions

focusing on the use of CYGNSS data and observations related to (a) surface SMC estimation,
(b) creation of dynamic inland water body masks, and (c) advancements in forward GNSS-
R-related electromagnetic scattering and forward models. GNSS-R-like observations have
been shown to be sensitive to changes in surface SMC [27–31] as well as the presence
(or absence) of inland water bodies [32,33]. More recently, a 3 km CYGNSS Signal-to-
Noise SNR-based surface SMC estimation approach was developed in [30], with results
comparable to those by the NASA SMAP mission [34] and unbiased Root-Mean-Squared
(ubRMSE) on the order of 0.045 m3/m3. Given this background, the following briefly
summarizes the key finding from each of the session’s presentations.

Forward scattering properties of Earth-reflected GNSS signals were evaluated over
land surfaces. The CYGNSS End-to-End Simulator (E2ES) was updated. A GNSS-R model
capable of evaluating both the incoherent and the coherent scattering terms was developed
based on the Huygens–Kirchhoff principle [35]. Results demonstrated the impact of higher
order Fresnel zones on the spatial resolution of GNSS-R over heterogeneous areas, showing
“ringing” fluctuations in the reflected power near high-contrast boundaries.

An inland water body detection method was also presented during this session. The
method [36] demonstrates the utility of ~2 years CYGNSS Level-1 Delay-Doppler Maps
(DDM) to create [1,3] km water masks (Figure 6). Inland water surfaces at L-band are
presumed smooth enough such that specular scattering is the dominant features in the
observed DDM. Therefore, by deploying a DMM coherence persistence and detection
method [30], mapping inlands becomes possible. The derived inland water body masks
were qualitatively and quantitively compared to, and validated against, historical (30 years)
water body occurrence maps by Pekel et al. [37]. False-positive areas were identified and
removed via comparison to the Pekel occurrence maps, and examination of high-quality
Digital Elevation Maps (DEM). Areas with persistent coherence, unknown water bodies,
and exceptionally flat surfaces were also removed. The current analysis was based on
~2 years of CYGNSS observations. Additional investigation to identify false-positive and
improve the overall detection method is required.

Russo et al. [38] outlined an entropy-based CYGNSS coherence detector—via eigen-
value decomposition of the DDMs—which, overall showed good agreement with wetland
maps derived from Advanced Land Observing Satellite-2 (ALOS-2). However, the current
method does not discriminate between open water and flooded vegetation and merits
further investigation. Additionally, Russo et al. outlined a newly initiated research project
with the ultimate goal of fusing CYGNSS-derived wetland with future wetland products
from the NASA-ISRO Synthetic Aperture Radar (NISAR) mission. The primary motivation
of this work was to develop the GNSS-R/SAR framework for future CYGNSS/NASA-ISRO
(NISAR) activities.

Santi et al. [39,40] presented a series of Artificial Neural Network (ANN) imple-
mentations to use CYGNSS SNR observations to estimate various geophysical properties.
Specifically, a multi-layer ANN model was trained to estimate AGB and tree height using
CYGNSS SNR observations which uses training and reference data from the Geocarbon
Pan-tropical forest maps by Avitabile et al. and tree height maps derived by the Geoscience
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Laser Altimeter System (GLAS) instrument aboard the Ice, Cloud, and land Elevation
Satellite (ICESat-1)

 

Figure 6. The 1−km land water body mask derived from CYGNSS L1 coherence-detection by
M. Al-Khaldi et al. The map was generated using 1 year of CYGNSS data.

Recent theoretical developments in GNSS-R and scattering models over rough surfaces
were also presented in this session [41]. Results and model validation efforts over the San
Luis Valley, CO, showed promising matchups with the CYGNSS L1 Bistatic Radar Cross
Section (BRCS). However, these studies also stressed the importance of accurately capturing
and modeling multi-scale surface roughness and topographic effects.

This session also included several topics about retrieval and characterization of SMC
and vegetation properties. A machine learning approach using random forest regression
was presented to estimate SMC at a global scale [42]. The model was trained and generated
using the reflectivity and relevant geophysical data layers, such as Normalized Difference
Vegetation Index (NVDI) and DEM maps, along with SMC from the International Soil Mois-
ture Network (ISMN). Results were validated over the Contiguous United States (CONUS)
with consistent spatial patterns and magnitudes as those observed by the SMAP mission.

Similarly, by deriving a semi-analytical expression of vegetation transmissivity, and
soil reflectivity, it was demonstrated how SMAP and CYGNSS observations can be concur-
rently leveraged to estimate either the Vegetation Optical Depth (VOD) and the SMC [43]
(Figure 7). Additionally, a newly initiated study by Pu et al. sought to examine the effects of
assimilation SMAP and CYGNSS SMC in near-surface weather forecasting models. This on-
going study showed that CYGNSS-derived SMC assimilation is on par with SMAP-based
forecasts. However, further investigation is required to better quantify the added value by
CYGNSS for SMC assimilation. Prior work by Pu et al. [44,45], however, demonstrates that
strongly coupled land-surface assimilation frameworks which assimilate in situ, or SMAP,
soil moisture can provide additional short-range and near-surface weather forecasting. The
effects of CYGNSS SMC assimilation will be reported in future studies.

The use of CYGNSS high resolution ~3 km SMC maps was demonstrated by an exper-
imental study supported by SERVIR [46]. This CYGNSS product, along with the ~3 km
Land Information Systems (LIS) surface model, Integrated Multi-satellitE Retrievals for
GPM (IMERG) rainfall, and Visible Infrared Imaging Radiometer Suite (VIRRS) vegetation
information, was leveraged for locust monitoring applications in East Africa. SERVIR
is a joint venture between NASA and the U.S. Agency for International Development.
The SERVIR program is collaborating with regional entities in West and East Africa to
evaluate the utility of Earth observations (EO), and their contribution to operational desert
locust monitoring and tracking systems supported by the United Nations (UN) Food and
Agriculture Organization (FAO).
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Figure 7. Example of CYGNSS-derived VOD by Xu et al.

Session 4: Land Processes II
Several studies have demonstrated the importance of coherent scattering of the GPS

reflected signal over land [23,36,47–49]. In general, for coherent returns to exist, the GPS
signal has to be reflected over very large flat areas with the surface RMSE height lower than
~10 cm at L-Band as presented in [50]. Recent analysis suggests that coherent returns are
therefore mostly associated with the presence of inland water bodies [51,52]. This session
will provide updates on current research using the SNR to detect inland water bodies.
For land applications, surface roughness is a critical parameter for scattering models as
detailed in the session. This surface roughness can be estimated using lidar airborne
measurements [53]. Reflectometry has been used in various studies for land applications
especially for retrieving SMC [53–56]. In this session, an update on the existing and
potential calibration and validation sites for soil moisture applications is provided.

The first three presentations demonstrated the potential of the use of CYGNSS over
land surfaces to detect and monitor water extent over short time scales [57]. The first
method analyzed the distribution of time series of SNR for a given pixel to define dry
and wet areas. With this method, a dynamic water extend mask can therefore be derived.
Several case studies showed good correlation with rainfall events and the Pekel mask
considered as the truth. Sensitivity of CYGNSS to water extent changes over short time
scales was demonstrated by analyzing the spatial SNR variations with the seasonality of
the Pascagoula River. Better detection results were obtained with a higher sampling rate.
Finally, an investigation on the impact of land characteristics, such as SMC, surface water,
topography and Vegetation Water Content (VWC) on the coherence of CYGNSS reflected
signals was presented. The coherence was quantified using the tracked carrier phase from
CYGNSS raw IF data. It was concluded that the coherent scattering term is most often
present over inland water bodies.

The next topic of this session was assessing the impact of surface roughness, which
is a critical parameter for correctly assessing the scattering of GNSS signals over land
surfaces. A theoretical model was developed to decompose the surface into topography
elevation and slopes, small-scale surface roughness, and surface correlation length. This
new parametrization of the surface was tested using several classical forward-scattering
models, including Geometrical Optics, Physical Optics, and Numerical Maxwell Model 3D
(NMM3D). The modeled DDMs were then compared to CYGNSS-derived DDMs, showing
a good agreement. In May 2020, experimental activities were performed along two cal/val
sites over the San Luis Valley to characterize the small-scale surface roughness using
lidar. Lidar-derived DEMs were generated at two different spatial resolutions, ~10 cm
and ~30 cm.

The last three presentations dealt with actual and potential SMC cal/val sites for
CYGNSS. First, an update was provided about the status of the SOILSCAPE in situ SMC
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sensor networks, that were installed in two cal/val sites in the San Luis Valley. All sensors
were shown to be working properly. Calibration of the SMC measurements is in process.
New potential cal/val sites have been identified in the USA (Walnut Glutch, AZ, White
Sands, NM) and in New Zealand. New Zealand cal/val sites are particularly of interest
because the next generation GNSS-R receiver [58] is going to be installed on a regional
Air New Zealand commercial aircraft to complement CYGNSS data, and to test this new
receiver in preparation of a potential CYGNSS follow-on mission. An extensive analysis
of the coverage provided by one Air New Zealand commercial aircraft was performed
to identify the best cal/val site locations for SMC and wetlands studies. These locations
were cross-compared with the CYGNSS coverage, showing several overlapping sites. This
project will advance terrestrial and coastal retrievals, by generating long-term datasets with
high spatial resolution and high spatiotemporal sampling. In addition, in support of this
project, the deployment of the next-generation GNSS-R receiver on one Air New Zealand
aircraft was simulated to get a better understanding of the differences of the reflected
signal acquired on an aircraft as compared to a satellite. Flight paths, flight frequency, and
GNSS-R coverage were analyzed. It was found to have promising coverage, except for
some mountain regions in the South Island (Figure 8). Installing this new receiver on one
aircraft will provide a large amount of information over both ocean and several land cover
types. It was concluded that the extension to a fleet of regional aircrafts will generate an
unprecedented GNSS-R scientifically valuable dataset.

Figure 8. Simulated number of GNSS-R measurements over 1-year, considering just 1-single Air New
Zealand aircraft by Linnabary et al.

2.3. Ocean Surfaces

The primary goal of the CYGNSS mission is to provide insight into the rapid intensifi-
cation of TCs and to better measure their windspeeds. To this end, a number of studies
since the mission’s inception have focused on the application of CYGNSS data products to
the study of TCs and tropical convection. Up until the release of the v3 winds data product,
most of these studies have used simulated CYGNSS data for algorithm development. For
example, Morris and Ruf developed parametric methods for filling in the gaps in the
CYGNSS measurements [59], and for characterizing the size, structure, and strength of
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a TC [60]. Several studies have used simulated CYGNSS winds to develop assimilation
methods for improving tropical cyclone track and intensity forecasts [61–64]. Simulated
CYGNSS winds have also been used to demonstrate convective activity monitoring [65].
With the successful development of the v3 winds data products, these studies have transi-
tioned to the application of actual CYGNSS observations for applications such as improving
storm center estimates [66] and developing a surface heat flux product [25]. Sessions 5–6 of
the Science Team meeting focus on the progress made for ocean-based applications: TCs
and other science applications, improving weather forecasts, and ocean altimetry.

Session 5: Altimetry and Tropical Cyclones and Tropical Convection I
A new approach has been developed to incorporate CYGNSS winds into storm surge

models, using machine learning to determine a predictive model for CYGNSS winds in
the future, based on Global Forecast System (GFS) forecast data and parametric model
representation of the CYGNSS inner core TCs winds. The use of CYGNSS in conjunction
with ancillary satellite data to measure diurnal wind variations was presented, including
also initial results from a “rapid change detector” that is being developed to detect rapid
changes to the wind field, which could be used to signal convective activity. Preliminary
results of identifying early cyclogenesis from easterly waves using CYGNSS data were
highlighted. The modality of the identification comes from the findings of increased
L2 latent heat flux and surface wind speeds leading up to tropical cyclone genesis. An
update on comparisons of CYGNSS MSSs to those derived from buoy measurements
and a coupled atmospheric-wave-ocean model, confirmed the importance of including
short wave contributions to the MSS in the models to match the observed MSS values.
Validation efforts have been performed for the CYGNSS CDR v.1 products using data from
microwave radiometers, including SMAP, WindSat and Advanced Microwave Scanning
Radiometer (AMSR-2). A comparison of the wind speeds indicates that the CDR v.1 Young
Sea/Limited Fetch (YSLF) winds are more accurate than the v2.1 wind speeds but still
are poorly correlated to the other microwave radiometer wind speeds. The CYGNSS-
NOAA wind speeds however, correlated well with the SMAP, AMSR2 and WindSat winds.
Results of data assimilation of CYGNSS L1 DDMs into ECMWF background winds, where
the resulting wind speeds, with and without the CYGNSS L1 DDM, were compared to
scatterometer winds from the ASCAT-A, and B and the OceanSat Scatterometer (OSCAT).

The assimilation of the CYGNSS data (Figure 9) improved the ECMWF background
at specular points predominantly for wind speeds < 15 m/s. Matched filter retrievals
were applied for maximum CYGNSS TCs winds, using the Willoughby–Darling–Rahn
model [67]. After eliminating storms that violated the model’s assumptions, good results
were obtained for the matched filter output. An update of CYGNSS L1 data for ocean
altimetry was presented, showing a number of improvements and corrections, including
waveform pre-processing, delay compensation, and re-tracking. New results were pre-
sented for a case study in the Caribbean. Finally, an overview of several CYGNSS-based
altimetry methods was presented, showing an accuracy on the order of several meters. Fu-
ture improvements are likely to be achieved in accounting better for tides, and ionosphere
and troposphere delays.

Session 6: Tropical Cyclones and Tropical Convection II
The final session of the June 2020 CYGNSS Science Team meeting focused on the use

of the L2 wind speed products for improving forecasts and wind field analyses of TCs and
tropical convection. CYGNSS provides wind speed data that can be used for storm surge
predictions, which is a major source of destruction for communities lying in the paths of
a storm. Simulations showed the storm surge from the Hurricane Harvey (2017), which
were driven in part by wind speed observations from CYGNSS. Efforts were performed to
diagnose the structure of TCs’ wind fields using the CYGNSS wind speed observations
and found that, given good quality data from CYGNSS, the size of the wind field can be
determined. A methodology for creating storm wind fields that move with the storm over
time was also presented (Figure 10). These datasets are available in PODAAC, alongside
other CYGNSS products [68].
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Figure 9. Assimilating CYGNSS DDMs into ECMWF background winds to improve surface wind forecasts: [top] demon-
strating the ECMWF background at 150 km resolution, [middle] analysis field with the DDM assimilation, and [bottom] the
difference between the two. Image by F. Huang et al.

Apart from analysis of storm wind fields, the observations from CYGNSS are also
being used to improve weather forecasts. Efforts to improve the initialization of weather
model simulations with CYGNSS observations were presented, including also information
about where CYGNSS improves the forecasts of TCs. Throughout the session, team
members compared techniques for quality control and optimal ingestion of wind speed
data from CYGNSS.

CYGNSS is also playing a role in studies of tropical convection, where other obser-
vations suffer in heavy precipitation. Simulations of tropical convection with a coupled
atmosphere, ocean, wave model were described, along with a comparison of simulated
winds with those observed by CYGNSS. A number of on-going investigations examined
CYGNSS observations near tropical oceanic thunderstorms, including an examination of
the characteristics of the data in storms with and without lightning [69]. The importance of
wind-driven fluxes on the Madden Julian Oscillation (MJO), using CYGNSS data was high-
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lighted [70]. Finally, it is worth highlighting that several team members are using CYGNSS
data to study the processes of air-sea interaction in weather and climate science [71].

Figure 10. CYGNSS-derived wind speed retrievals over the Hurricane Florence by D. Mayers et al.

3. Conclusions and Final Remarks

NASA’s CYGNSS 8 microsatellite-constellation is the first-ever operational GNSS-R
mission, revolutionizing several scientific fields within our community, and attracting
new members from different communities such as microwave radiometry and SAR. The
number of GNSS-R scientific publications within our community continues to increase
significantly thanks to the open-access CYGNSS products available at the PODAAC. This
was a nice start, but the CYGNSS Science Team is a dynamic community always looking
to improve products and apply them to new scientific applications. In this scenario,
around 50% of the Science Team members are now involved with applications over land
surfaces, including SMC, AGB, and water surface. The key enabling events were improving
calibration procedures, product spatial resolution (e.g., reducing date integration to 0.5 s
from 1 s), geolocation, metadata quality, and a more agile web for downlinking data.

The recent mission extension by NASA will enable the continuation of investigations
by the CYGNSS Science Team. We will continue to contribute to the wider remote sensing
community with our new and novel results, with the objective of advancing our under-
standing of key dynamic processes over the Earth’s surface. With this article, we welcome
new members to participate in the CYGNSS mission.
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Above Ground Biomass (AGB)
Advanced Land Observing Satellite-2 (ALOS-2)
Advanced Microwave Scanning Radiometer (AMSR-2)
Advanced SCATterometer (ASCAT)
Artificial Neural Network (ANN)
Bistatic Radar Cross Section (BRCS)
Climate Data Record (CDR)
Contiguous United States (CONUS)
Cyclone Global Navigation Satellite System (CYGNSS)
Delay Doppler Map (DDM)
Delay Doppler Mapping Instrument (DDMI)
Digital Elevation Model (DEM)
Disaster Monitoring System-1 (DMC-1)
Earth Observation (EO)
Earth System Science Pathfinder (ESSP)
End-to-End Simulator (E2ES)
European Centre for Medium-Range Weather Forecasts (ECMWF)
European Space Agency (ESA)
Flight Model (FM)
Food and Agriculture Organization (FAO)
Fully Developed Seas (FDS)
Physical Oceanography Distributed Active Archive Center (PODAAC)
Geophysical Model Function (GMF)
Global Forecast System (GFS)
Global Navigation Satellite Systems (GNSS)
Global Positioning System (GPS)
Institute of Space Sciences (ICE)
Institute of Space Studies of Catalonia (IEEC)
Intermediate Frequency (IF)
International Soil Moisture Network (ISMN)
Jet Propulsion Laboratory (JPL)
Land Information Systems (LIS)
Low Earth Orbit (LEO)
Madden Julian Oscillation (MJO)
Maxwell Model 3D (NMM3D)
Mean-Square Slope (MSS)
Modern-Era Retrospective analysis for Research and Applications (MERRA-2)
Multi-satellitE Retrievals for GPM (IMERG)
National Aeronautics and Space Administration (NASA)
NASA-ISRO (NISAR)
National Oceanic and Atmospheric Administration (NOAA)
Normalized Difference Vegetation Index (NVDI)
OceanSat Scatterometer (OSCAT)
Pseudo-Random Noise (PRN)Research Opportunities in Space and Earth Science (ROSES)
Science Data Record (SDR)
Signal-to-Noise Ratio (SNR)
Soil Moisture Active Passive (SMAP)
Soil Moisture Content (SMC)
Soil Moisture Ocean Salinity (SMOS)Space-borne Imaging Radar-C (SIR-C)

16



Remote Sens. 2021, 13, 1814

Synthetic Aperture Radar (SAR)
TechDemoSat-1 (TDS-1)
Tropical Cyclone (TC)
United Kingdom (UK)United Nations (UN)
University Corporation for Atmospheric Research (UCAR)
University of Michigan (UM)
Vegetation Optical Depth (VOD)
Vegetation Water Content (VWC)
Visible Infrared Imaging Radiometer Suite (VIRRS)
Wave-Watch 3 (WW3)
Young Sea/Limited Fetch (YSLF)
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Abstract: Using large constellations of smallsats, mission designers can improve sampling density and
coverage. We develop performance metrics that characterize key sampling properties for applications
in numerical weather prediction and optimize orbit design parameters of the constellation with
respect to those metrics. Orbits are defined by a set of Keplerian elements, and the relationship
between those elements and the spatial and temporal coverage metrics are examined in order to
maximize global and zonal (latitude-dependent) coverage. Additional optimization is performed
by dividing a constellation into multiple orbit planes. An iterative method can be applied to this
design process to compare the performance of current and previous designs. The main objective of
this work is the design of optimized configurations of satellites in low Earth orbiting constellations
to maximize the spatial and temporal sampling and coverage provided by its sensors. The key
innovations developed are a new cost function which measures the temporal sampling properties of
a satellite constellation, and the use of it together with existing cost functions for spatial sampling to
design satellite constellations that optimize performance with respect to both performance metrics.

Keywords: constellation design; CYGNSS; GNSS reflectometry; SpOCK

1. Introduction

The proliferation of smallsats and the small but highly capable scientific sensors
on them have ushered in a new era of Earth remote sensing from space. Technology
development lifecycles have been shortened, new and improved sensors can reach space
more quickly, both launch vehicle and satellite costs have been reduced dramatically, and
it is now both possible and affordable to consider flying large constellations of remote
sensing instruments [1]. Notably, large constellations of smallsats in low Earth orbit have
the potential to significantly improve upon the spatial and temporal sampling densities
provided by a single traditional large satellite [2]. The improvement in sampling density
with number of spacecraft is generally intuitive—more of them spread out around the
globe will tend to sample more places at the same time and to sample the same place more
frequently. We consider here the optimization problems of:

1. Achieving a particular sampling density with the minimum number of satellites;
2. Maximizing the sampling density for a given number of satellites; and
3. Spreading out the samples at each location in time to better resolve diurnal variability

and support the initialization of numerical weather prediction models.

The optimization is performed with respect to specific orbit parameters of the constel-
lation, namely the number and orientation of orbit planes and the number of satellites in
each plane. When quantifying the notion of sampling density, it is helpful to consider a spe-
cific type and design of remote sensing instrument. Our optimization study is performed
with respect to a Global Navigation Satellite System Reflectometry (GNSS-R) sensor. These
sensors are the receiver half of a bistatic radar system in which the transmitters are the
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existing constellation of navigation satellites, such as GPS and Galileo. Measurements of
GNSS signals scattered back into space from the Earth surface contain information about a
wide variety of scientifically valuable geophysical surface conditions [3–7]. The relevant
instrument design parameters to be considered are the number of simultaneous GNSS
surface reflections observed and the gain and field of view of the antenna through which
the observations are made. The former design parameter affects the signal processing
complexity and power requirement of the instrument, and the latter parameter affects the
size and mass of the antenna. GNSS-R sensors are compatible with smallsats [8,9] and have
been demonstrated to provide improved sampling density in small constellations [10], so
are a natural type of measurement to consider for this study.

The satellite constellation design space being considered here is an extension of
the point design used by the NASA CYGNSS mission [11]. Its constellation consists
of 8 identical spacecraft spaced roughly equally around a single orbit plane at an altitude
of ~525 km and an inclination angle of 35◦. Each CYGNSS spacecraft carries a GNSS-R
sensor capable of measuring 4 simultaneous surface reflections.

2. Discussion of Orbital Parameters, Sampling Process, and SpOCK

2.1. Constellation Design Baseline Assumptions

The achievable coverage of a constellation of remote sensing satellites is determined by
both the orbit placements of the satellites within the constellation as well as the capability
of the instruments carried on each satellite making the observations. Each individual
satellite’s orbit is defined by the traditional six Keplarian elements: eccentricity, semi-major
axis, inclination, right ascension of the ascending node (RAAN), argument of periapsis
(AoP) and true anomaly [12]. For purposes of remote sensing efficacy, the key design factors
of the instrument itself include antenna configuration, number of parallel observations,
and minimum observation signal strength. The principle design considerations for the con-
stellation are the total number of satellites and their orbits relative to each other. Analyzing
all the possible combinations of satellites, their orbits, and instrument configurations is not
impractical. Therefore, we have made several assumptions and simplifications in order to
isolate and evaluate the primary parameters driving the overall measurement coverage
performance. This reduces the number of constellation design variables to a manageable
and useful subset. The simulations below all include the following orbit and instrument
configuration constraints and assumptions:

1. All satellites are in circular orbits (eccentricy = 0, AoP not relevant), all satellites
within an orbital plane are equally spaced (true anomalies fixed), all satellites in the
constellation are at the same altitude (semi-major axis fixed). The number of satellites,
the angular spacing of the orbit planes and the inclinations of the orbit planes are the
three remaining variables considered in the constellation design;

2. The instruments on each satellite are constrained as follows: a dual antenna configu-
ration of either (a) the NASA CYGNSS mission antennas or (b) a larger dual antenna
design for the higher altitude orbit simulations. The instruments are all capable of
tracking up to 16 specular reflection measurements in parallel, based on the current
estimated capability of the next generation of GNSS-R instruments [13]. The signal
strength required for viable land and ocean observations is based on CYGNSS re-
trievals vs. range corrected gain (RCG), which considers both antenna gain and path
losses for individual surface measurements [14,15].

Using the above assumptions and constraints on the GNSS-R constellation config-
uration, the design parameters considered have been reduced to a manageable number:
number of planes (incl. number of satellites per plane), inclinations of the planes, and
minimum observation RCG. Each is explored individually in the sections below. The results
and analysis are intended to examine the impacts of the design parameters on sampling
and Earth coverage properties for possible future constellation missions.
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2.2. Overview of Observation Sampling Process and Instrument Considerations
2.2.1. GNSS-R Surface Reflection Global Distribution

The global distribution of GNSS-R surface observations is the result of an asynchronous
process between the orbits of the transmitting GNSS satellites (GPS, Galileo, SBAS, etc.)
in Medium Earth Orbit (MEO, ~20,200 km altitude) and occasionally Geostationary orbit
(~35,786 km altitude) and a constellation of Low Earth Orbit (less than 2000 km altitude)
receivers below the transmitters. The GNSS-R observation point is the Earth surface location
between the transmitter and receiver that results in a forward specular reflection in the
direction of the receiver. An Illustration of three example GNSS-R reflection geometries is
shown in Figure 1, with the transmitters above and outside the figure and a single LEO
receiver capturing the parallel surface reflections. The specular reflection location point
between transmitter and receiver at a single epoch can be calculated using an iterative
process as described in [3]. The resulting total of GNSS-R surface reflection points is
therefore driven by the pseudo-random alignment of the multiple GNSS satellites and the
multiple LEO receivers that result in fortuitous surface reflection locations in the receiver
antenna footprint of the GNSS-R instruments. The number of GNSS transmitters can well
exceed 100 if multiple constellations are utilized (GPS, Galileo, Beidou, GLONASS) for
example, while the optimal number of receivers can range into several dozen in varied
orbits resulting in a dense web of overlapping surface observations. Given the large
numbers of transmitters and receivers a simulation is used to generate these large data
sets of surface observation points over time (nominally one day). The achieved GNSS-
R observation coverage was then analyzed with respect to optimizing the spatial and
temporal coverage metrics described below.

 

Figure 1. General illustration of three GNSS-R reflection specular points captures by a single LEO
receiver. Reprinted with permission from ref. [16], Copyright: 2014, IEEE.

2.2.2. GNSS-R Instrument Dependencies

The GNSS-R observation distributions are highly dependent on multiple instrument
configuration parameters. The number of viable science observations generated by a given
instrument on a single satellite is constrained by two primary instrument capabilities:
(a) the processing bandwidth of the instrument and the resulting number of available
surface specular points it is capable of processing into science observations and (b) the
surface area coverage of the nadir oriented GNSS-R science antennas which are required to
capture the reflected signals with sufficient SNR to be usable. Other secondary spacecraft
specific system requirements such as satellite down-link capability, attitude knowledge and
other aspects are not analyzed here and assumed to be sufficient for the scenarios studied
in this analysis.
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In this analysis, the processing bandwidth of the GNSS-R instrument considers two
cases: the existing on-orbit performance of the CYGNSS GNSS-R instrument which is
capable of tracking 4 parallel reflections from GPS only [4], and a next Generation GNSS-
R instrument (NGRx) which has shown in initial testing to be capable of tracking up
to 16 parallel GNSS reflections from both GPS and Galileo [13]. It is possible that at some
point in the future instruments will be capable of tracking more parallel reflections. How-
ever, we believe that 16 is a realistic estimate of the state-of-the-art GNSS-R instrument
capability and grounds this analysis in existing hardware performance.

The surface coverage of the GNSS-R instrument antennas is also a key element in
filtering the actual observations suitable for science applications. As expected, reflections
captured in the main high gain lobes of the reflection antennas result in higher SNR obser-
vations and generally better retrievals. In this regard, we have extensive data based on the
achieved performance of the CYGNSS constellation where it has been observed that ocean
wind speed observations can be achieved within the mission error requirements at range
corrected gain (RCG) levels of 15 and above [17]. This allows us to assess additional instru-
ment antenna configurations with respect to this threshold and make realistic judgments as
to what specular points will result in viable science observations and which specular points
to omit due to low quality. In the subsequent analysis, we simulate both the actual CYGNSS
antennas as well as theoretical enhanced antennas to assess the performance of different
antenna gains and beam widths, as well as at alternative spacecraft altitudes to provide a
more complete trade-space with respect to various spacecraft instrument configurations.

2.3. SpOCK and Its Operation

Although there are a multitude of functional mission simulation tools available for
commercial and research applications, the Spacecraft Orbital Characterization Kit (SpOCK)
can better predict the performances of and provide data for mission inputs that operate in a
manner similar to CYGNSS. The central capability of SpOCK is a high accuracy numerical
propagator of spacecraft orbits and computations of ancillary parameters [18]. The C-based
programming of SpOCK allows for data variables, including CYGNSS specular points, to
be easily added or subtracted in accordance with user preferences.

When creating constellations for SpOCK simulations, users can select the orbital
parameters of individual satellites as well as controlling data processing tools. In text-based
input files, users first describe how many satellites will be in the constellation, then provide
both the individual sets of orbital parameters of each satellite and the antenna pattern used
by all satellites. These inputs are read by SpOCK’s C-based simulator, and outputs are
provided at a user-specified time delta in the form of multiple data files. Among these
outputs is the list of constellation’s detected specular points, data that is necessary for
CYGNSS’s atmospheric measurements and may not be reported by other simulation tools.
Using these written output files, various performance metrics can be calculated in other
programs.

2.4. Performance Metrics

The spatial coverage performance of the various constellation configurations consid-
ered is quantified by a Zonal Spatial Coverage (ZSC) metric. The Earth surface is first
divided up into a 25 km grid in latitude and longitude. All grid cells in which at least
one observation is made within a 24 h period are noted. Then, the percentage of grid cells
sampled across all longitudes is computed in each latitude zone and that percentage is
reported as a function of latitude.

We quantify the temporal coverage performance of our analyzed constellations using a
Zonal Temporal Coverage (ZTC) metric. The analysis uses the same equidistant geo-spatial
grid covering the entire surface of the Earth as was used for the ZSC. The simulation
calculates a binary decision in every grid cell over a chosen time interval. If there was
one or more observations in a given grid cell, the cell is labelled with a one (1). If no
observations occurred, it would be labeled with a zero (0). The time interval we use in our
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analysis is six hours, with four total time intervals in a day. Therefore, the maximum ZTC
coverage a location on Earth could achieve per day is 4 (i.e., at least one observation was
made in each of the 4 6 h intervals in the day). This 6 h quantization of the 24 h cycle was
chosen to support the input data assimilation needs of major weather prediction models
with a 6-hourly reporting interval (e.g., the NOAA/NCEP Global Forecast System (GFS)
and the ECMWF High Resolution 10-day Forecast (HRES). By matching our ZTC interval
to the needs of the models, we address the potential value of GNSS-R observations for use
by these major operational models. Naturally, analysis of other intervals with other metrics
is possible. Previous studies of the sampling properties of similar satellite constellations
have considered the time separation between successive samples in the same grid cell [19].
Our approach expands upon this prior work by considering the ZTC as defined above to
provide a more practical and useful quantification of the temporal sampling properties as
they relate to the use of the measurements by numerical weather prediction models.

For each of the constellation configurations considered below, sampling performance
is derived from a population of sample times and locations generated by an orbit simulation
model. The model propagates the orbital locations for each of the science observatories as
well as all members of the GPS, Galileo and SBAS constellations of GNSS satellites. At each
one-second time step over the course of a 24 h period, the locations of all possible surface
reflections are determined for signals propagating from every GNSS satellite transmitter
to every science observatory receiver via specular point reflection by the Earth surface. In
addition to the time and location of each sample, the value of the receive antenna gain in the
direction of the specular point reflection is also noted. This allows the signal-to-noise-ratio
quality of the received signal to be determined.

3. GNSS-R Coverage Simulations

3.1. Effect of Orbit Inclincation on Constellation Coverage

One critical design feature of a constellation is the orbit inclination of its satellites. The
inclination of a satellite’s orbit determines the maximum possible latitude of its surface
observations and hence affects the global distribution of its spatial coverage. The inclination
will also affect the frequency with which samples are made at different latitudes, which in
turn determines the ZTC. These two performance considerations should both be considered
in the design optimization process.

For this study, we consider design options in which one third of the total number
of satellites is distributed between each of three orbit planes at distinct inclinations. We
analyzed three cases, one where all three planes have an inclination of 30◦, another where
the three planes have inclinations of 30◦, 60◦ and 90◦, and a third where all three planes
have an inclination of 90◦.

The ZSC results of these simulations are illustrated in Figures 2–4. Although these
images depict a single orbit of these three constellations over a period of 1 h, 40 min,
and 30 s, they can be extrapolated to form the full 24 h spatial coverage maps. The
maximum inclination of the constellation can be seen to limit its latitudinal coverage. The
coverage will not exceed the inclination by more than 10◦ north or south. For instance,
the constellation with three planes at an inclination of 30◦ has non-zero ZSC at latitudes
slightly lower than 40◦ north and south. However, after extrapolating the three orbit maps,
this truncated coverage will contrast with the almost 100% ZSC performance demonstrated
by the 30◦-60◦-90◦ and 90◦-90◦-90◦ inclination constellations. In these situations where
the maximum inclination of the constellation is set to 90◦, the constellations are capable of
taking measurements over the entire Earth.
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Figure 2. Single-Orbit Spatial Coverage for 3-Plane 30◦-30◦-30◦ constellation at 800 km, 16 parallel
measurements per sampling, and operating with an RCG Threshold of 15. The lower maximum
inclination limits spatial coverage to below 40◦ latitude.

Figure 3. Single-Orbit Spatial Coverage for 3-Plane 30◦-60◦-90◦ constellation at 800 km, 16 parallel
measurements per sampling, and operating with an RCG Threshold of 15. The inclination distribution
provides greater coverage at the various orbit peaks, allowing for a greater GSC than the 30◦-30◦-30◦

constellation.
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Figure 4. Single-Orbit Spatial Coverage for 3-Plane 90◦-90◦-90◦ constellation at 800 km, 16 parallel
measurements per sampling, and operating with an RCG Threshold of 15. The 90◦ maximum plane
inclination allows the constellation to achieve near 100% GSC after 24 h.

The ZTC results of these simulations are illustrated in Figure 5. When all constellation
planes operate at the same inclination, the ZTC peaks around those latitudes. However,
when the plane inclinations are more evenly spaced between latitude levels, as shown by
the 30◦-60◦-90◦ constellations, we get more well-distributed sampling across the Earth at
the cost of smaller coverage peaks.

Figure 5. 24 h Temporal Coverage measurements at different latitudes for 3-Plane constellations at
800 km, 16 parallel measurements per sampling, and operating with an RCG Threshold of 15. Raising
the inclination of individual planes or the entire constellation can alter which latitudes are visited
most often.
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3.2. Effect of Orbit Planes on Constellation Coverage

The second critical design feature of a constellation is how its satellites are distributed
between orbit planes. In this series of design options, an orbit plane is defined as a group
of satellites orbiting with the same ascending node longitude. With that definition in mind,
we find that when a singular plane satellite constellation is divided into a constellation
with multiple planes, its ZTC increases. However, when only looking at certain latitude
zones on the globe, this trend may not be uniform.

To better understand how the temporal coverage depends on the distribution of
planes, two experiments were conducted where the total number of satellites and satellite
inclination were held constant. These experiments first simulate the performance of a
single plane of 24 evenly distributed satellites all orbiting at the same inclination. Then,
the simulation is repeated for a second constellation in which the plane is split into two
planes of twelve evenly distributed satellites separated by 180◦ longitude. Finally, a third
constellation is considered in which the satellites are further split into three planes of eight
evenly distributed satellites separated by 120◦ longitude. These results are presented in
Figure 6, where the orbit inclination is set to 30◦.

Figure 6. 24 h Temporal Coverage measurements at different latitudes for 24-satellite constellations
at 800 km, 30◦ inclination, 16 parallel measurements per sampling, and operating with an RCG
Threshold of 15. Increasing the number of constellation planes while keeping the total number of
satellites constant will increase the constellation’s Zonal and Global Temporal Coverage.

In this scenario, the ZTC in the zone near the orbit peaks grows when the original
constellation is divided into more planes. There is also a ZTC increase at latitudes lower
than the peaks when the constellation is redistributed from one plane to three planes.
However, when observing the two-plane constellation, the ZTC measurements at latitudes
near the equator can remain near stagnant.

Using this understanding of orbit planes and inclinations, designers can better tune
their constellation orientations so that both spatial and temporal coverage metrics are
optimized. For this experiment, we consider a constant number of satellites all at the same
inclination and in the same plane. In this case, a 24-satellite constellation at 30◦ inclination
is selected. The performance of this constellation is seen in the blue curve of Figure 7. Note
that coverage is lacking near 60◦. To improve it, we divide the plane into a constellation
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of two 12-satellite planes, one of which orbits at 30◦ and the other at 60◦, resulting in the
red curves in Figure 7. As these curves demonstrate, adding this second plane at a higher
inclination has the desired effect of increasing coverage above 30◦. Furthermore, if coverage
at even higher latitudes was desired, the constellation could be divided into a third plane
with an inclination of 90◦. This third plane will also eliminate the coverage drop near the
equator present in constellations with two planes.

Figure 7. 24 h Temporal Coverage measurements at different latitudes for 24-satellite constellations
at 800 km, 16 parallel measurements per sampling, and operating with an RCG Threshold of 15. As
the initial 30◦ inclination plane of 24 satellites is divided in smaller planes with raised inclinations
allows the constellation’s Zonal and Global Temporal Coverage to be shaped and increased.

3.3. Effect of Measurement RCG on Constellation Coverage

A third critical design feature of a constellation is the antenna gain of its measurements.
The impact of antenna gain on science measurement quality is characterized by the Range
Corrected Gain (RCG). A higher RCG represents higher signal-to-noise ratio data and
higher quality estimates of geophysical quantities derived from them, such as ocean surface
wind speed [17]. Two ways are considered to control the RCG values, changing the design
of the receiving antenna assumed on each of the satellites and raising the RCG threshold
required for data usage.

The antenna used by a GNSS-R sensor is typically designed to accommodate a partic-
ular orbit altitude. A higher altitude will increase the propagation distance and decrease
the received signal strength. This decrease can be mitigated by increasing the antenna gain.
Alternatively, a decrease in altitude will restrict the field of view of an antenna pattern
projected onto the Earth surface. This restriction can be mitigated by widening the antenna
pattern. Fortuitously, a wider antenna pattern tends to have a lower antenna gain, so these
two considerations can be accommodated jointly by the same adjustment in antenna design
as a function of orbit altitude. Two orbit altitudes and corresponding antenna designs
are considered here. The first assumes a similar configuration as is used by the CYGNSS
constellation—namely a 500 km altitude and a 2 × 3 element phased array antenna. Al-
though CYGNSS operates at an altitude of 525 km, the results at 500 km provides nearly
identical performance. The second option is an 800 km orbit and a 3 × 5 element phased
array antenna. The advantage of the higher orbit altitude is wider field of view of the
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antenna, which allows for more available specular point reflections to be sampled. This
is demonstrated in the curves of Figure 8. When we compare the RCG values of samples
collected from the CYGNSS configuration and the 3 × 5 antenna at 800 km altitude, we
can see that the CYGNSS antenna will retrieve significantly fewer parallel measurements
for the same RCG threshold as the 3 × 5 patch antenna, demonstrating the advantage of a
higher altitude orbit.

Figure 8. Parallel Measurement Comparison between antenna patterns at their corresponding
altitudes over 24 h using a 3-Plane constellation with each plane at 30◦, 60◦, and 90◦ inclination, 20
Parallel Measurements Maximum per sampling, and an RCG Threshold of 15.

It is important to consider where the minimum RCG threshold is set. A threshold
of 15 has been found to be sufficient for providing high-quality science data to most
applications. The implications of this threshold on the number of usable samples are
illustrated in Figure 9. The figure considers the fraction of all samples retained given
different lower-bound RCG thresholds. The reference baseline is usage of all samples (i.e.,
no threshold). The results show that all three constellations will have 50% of collected data
fall below threshold when it is set to RCG > 15.
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Figure 9. RCG Thresholding Comparison for 3-Plane constellations at 800 km, 16 parallel measure-
ments per sampling, and with 8 satellites per plane. For all listed constellations, the fraction of
measurements below threshold converges around RCG Value of 15.

4. Examples

4.1. Application of Design Methodology

By qualifying these three design spaces, they can now be applied towards optimizing
a constellation design. One potential optimization task could be to maximize ZTC at all
latitudes while maintaining ZSC as close to 100% at those same latitudes.

For this scenario, it can be assumed that 24 satellites are available for use similarly
to the examples discussed previously in this report. By doing so, this constellation will
have more than enough satellites to guarantee a near 100% ZSC over the course of a
24 h test while allowing for greater manipulability of its ZTC. With 24 satellites provided, a
constellation designer would then need to decide how to spatially organize these elements.
As described above in Section 3.2, the most practical pattern organization would be to
divide the 24 satellites into 3 evenly distributed planes of 8 satellites. The result of doing so
while holding other variables constant is further illustrated in Figure 6.

Once the satellites are placed into orbit planes, it is up to the constellation designer
to set each plane’s orbit inclination. To maintain near 100% GSC while having an evenly
distributed ZTC, it would make sense to start with a configuration with planes inclined
at 30◦, 60◦, and 90◦. Since there is a plane inclined at 90◦, not only is a GSC near 100%
as described in Section 3.1, but also a ZTC distribution as illustrated in Figure 5 will be
achieved. However, when observing this ZTC distribution over latitude, it can be noted
that both the ZTC drops significantly near 60◦ and the ZTC at other latitudes below 80◦ are
significantly below the maximum coverage value of 4. This behavior can be observed by
analyzing the coverage metrics across larger zones, defined as equatorial, mid-latitude, and
polar. More specifically, the equatorial zone is bounded by the latitudes 30◦S and 30◦N, the
mid-latitude zone is defined by the two sets of boundaries, 30–60◦ north and south, and the
polar zone is defined by the two sets of boundaries, 60–90◦ north and south. As illustrated
in Table 1, the mid-latitude and polar ZTC measurements for the 30◦-60◦-90◦ constellation
are significantly lower than the equatorial ZTC. When considering this information along
with the ZTC plot in Figure 5, the mid-latitude and polar ZTC drops can be attributed to
the smaller quantity of satellites in polar orbits and the placement of the mid-latitude plane
at 60◦ inclination. In order to overcome the lack of uniformity and raise the overall ZTC, it
is necessary to adjust each plane’s inclination. An alternative approach is to design fitness
functions that score constellations based on these coupled global performance metrics [19].

31



Remote Sens. 2023, 15, 333

Table 1. Constellation Optimization through the Proposed Iterative Method. The constellations
all feature 3 evenly distributed orbit planes of 8 evenly spaced satellites per plane at an altitude
of 800 km. The coverage metrics described above were evaluated with the 3 × 5 element phased
array antenna and a RCG minimum threshold of 15. By making these discrete adjustments in the
inclinations of individual planes, we can keep the GSC near 100% while incrementally improving the
GTC.

Constellation
(deg-deg-

deg)

Global
Spatial

Coverage
(%)

Global
Temporal
Coverage

ZSC
(eq)

ZSC
(mid)

ZSC
(Polar)

ZTC
(eq)

ZTC
(mid)

ZTC
(Polar)

30-30-30 62.987 2.254 99.994 35.505 0 3.788 0.983 0
90-90-90 99.337 3.151 99.214 99.796 98.540 2.888 3.273 3.795
30-60-90 99.688 3.069 99.949 99.756 98.238 3.283 2.716 2.881
35-60-90 99.677 3.053 99.943 99.840 98.238 3.278 2.809 2.881
40-60-90 99.679 3.079 99.912 99.887 98.238 3.252 2.917 2.881
45-60-90 99.676 3.102 99.886 99.916 98.238 3.214 3.032 2.881
45-65-90 99.726 3.174 99.900 99.975 98.400 3.261 3.100 3.174
45-70-90 99.721 3.180 99.886 99.962 98.448 3.237 3.104 3.175
45-75-90 99.814 3.181 99.870 99.951 99.227 3.207 3.096 3.313
50-75-90 99.800 3.199 99.829 99.969 99.227 3.171 3.194 3.319
50-75-80 99.912 3.252 99.846 99.971 99.994 3.186 3.259 3.478

There are two possible approaches for correcting the ZTC drop near 60◦. First, a
designer can either raise the inclination of first plane, which was initially placed at 30◦, or
lower the inclination of the third plane, which was initially placed at 90◦. By adjusting
these inclinations, additional coverage can be shifted towards the latitude where ZTC is
lacking. However, shifting too much may cause new significant drops to form. Second, a
designer can raise or lower the inclination of the second plane, which was initially placed
at 60◦. Although this approach may not eliminate the ZTC drop, it will reposition it to a
latitude where it may become more simple to perform the first method.

Starting from the baseline of a 3-Plane 30◦-60◦-90◦ constellation, the progression of
this logic and the corresponding changes in GSC, ZSC, GTC, and ZTC are illustrated by the
results provided in Table 1. After a few iterations, we find a significant improvement from
the original baseline in the 3-Plane 50◦-75◦-80◦ constellation. In each step of the process,
GSC always remains close to a complete 100%, but most progressions showed growth in
the GTC of each prototype constellation. By incrementally raising the first plane inclination,
we can slowly increase the GTC. However, once we reach a point where the first two
inclinations are starting to get closer, we find that raising the second plane would create a
more significant increase in this metric. This is evident by the GTC change between the
45◦-60◦-90◦ and the 45◦-65◦-90◦ constellations. Additionally, the increase in the inclination
of the first plane from 45◦ to 50◦ allows for one more small rise in GTC without moving the
first plane too close to the second plane while allowing for significant equator coverage.
Finally, we can take advantage of the 10◦ reach from the set inclination to lower the third
plane down from 90◦ to 80◦ while both improving ZTC at inclinations lower than 80◦ and
maintaining the ZTC between 80◦ and 90◦.

When comparing this 50◦-75◦-80◦ constellation to others with no separation in plane
inclinations, such as the 30◦-30◦-30◦ or 90◦-90◦-90◦, the differences in GTC and ZTC are
prominent. Since the 30◦-30◦-30◦ constellation’s max inclination is equatorial, its mid-
latitude ZTC, polar ZTC, and GTC are all much smaller than other constellations considered,
making it less than ideal for a globally effective design. On the other hand, the 90◦-90◦-90◦
constellation has a relatively large GTC, but its equatorial ZTC is much smaller than other
designs considered. Although the 50◦-75◦-80◦ constellation does not have the largest
ZTC of these three constellations in any of the regions, its zonal and global metrics are
still relatively good. Considering the goal of this design study is to maximize ZTC at all
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latitudes, the 50◦-75◦-80◦ constellation is a good design candidate, for its zonal metrics are
large at all latitudes and are further characterized by a large GTC.

4.2. Sampling of a Landfalling Hurricane

To illustrate the scientific implications of the sampling properties of an optimized
constellation of GNSS-R satellites, a specific example is considered. Hurricane Ida made
landfall along the U.S. Louisiana coast on 29 August 2021 at 1655 UTC. The measurements
that would have been made on that day by two different GNSS-R constellations have been
simulated and overlaid with GOES imagery of the storm. One constellation consists of
8 satellites arranged in a common orbit plane at an inclination of 30◦, similar to the CYGNSS
configuration. The other constellation consists of 8 satellites in each of 3 orbit planes with
RAANs of 0◦, 120◦ and 240◦ and a common 30◦ inclination. The global coverage with this
configuration was shown in Figure 2. All spacecraft in both constellations are assumed to be
capable of 16 simultaneous specular reflection measurements. Results of the simulation are
shown in Figure 10. In the figure, four 6-hourly intervals of time are considered, consistent
with the initialization time increment between operational numerical hurricane forecasts.
All samples made during each 6 h interval are shown, together with the GOES image of
the storm taken at the center of the four time intervals, namely at 0600, 1200, 1800 and
2400 UTC on 29 August.

In Figure 10, the right column corresponds to measurements made by the 24 spacecraft
distributed over 3 orbit planes. In each 6 h interval, the storm is well sampled both in its
inner core region and across the surrounding wind field in all four principle quadrants.
Inner core measurements support the determination of maximum sustained winds and
hurricane intensity, while coverage of the wider wind field supports the determination of
storm size and duration during landfall. The left-hand column in Figure 10 corresponds
to measurements made by the 8 spacecraft constellation. The storm is quite well sampled
throughout the inner core and surrounding wind field during only one of the four 6 h
intervals (1500–2100 UTC). In two of the other intervals, samples are made over only two
of the four principle quadrants of the storm, with little of the inner core sampled in either
case. The fourth 6 h interval has no samples whatsoever of the storm.

Figure 10. Cont.
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Figure 10. Simulated measurements by two GNSS-R constellations of Hurricane Ida during landfall
on 29 August 2021. The left column corresponds to an 8-satellite constellation and the right to one
with 24 satellites, all at 30◦ inclination. Rows correspond to 6 h time intervals centered on 0600, 1200,
1800 and 2400 UTC. GNSS-R tracks are overlaid on GOES-16 Band 8 (6.17 μm) images at the center
times. Landfall occurred at 1655 UTC.

5. Conclusions

Large constellations of smallsats in low Earth orbit can provide spatial and temporal
coverages with greater sampling density relative to constellations with fewer large satellites.
This increase in coverage is primarily characterized by three factors and quantified by
zonal and global measurements. The selection of satellite inclinations allows designers
to choose which latitude zones are receiving more coverage while also optimizing global
visibility. Meanwhile, dividing a constellation into multiple orbit planes allows designers to
further improve global and zonal temporal coverage figures. Additionally, the quality and
quantity of the permissible sensed data can be controlled by selecting an appropriate RCG
threshold in accordance with constellation’s onboard GNSS-R instruments. Ultimately,
these parameters allow for designers to iteratively evaluate constellation prototypes and
maximize spatial and temporal coverage both globally and in regions of interest.

When designing a constellation, each mission will have its own set of objectives where
it wants to maximize its coverage. However, the most generic definition of a successful
constellation design would be maximizing global coverage metrics while keeping zonal
coverage metrics evenly distributed. Through an iterative process of adjusting the satellite
inclinations of 3-plane constellations, it has been found that a constellation with planes of 8
satellites orbiting at inclinations of 50◦, 75◦ and 80◦ meet these design goals. Although it
may be possible to adjust the definition of success to meet specific mission requirements,
this constellation has been found to provide quite good overall coverage both globally and
zonally.
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Abstract: This paper focuses on sea surface wind speed estimation using L1B level v3.1 data of
reflected GNSS signals from the Cyclone GNSS (CYGNSS) mission and European Centre for Medium-
range Weather Forecast Reanalysis (ECMWF) wind speed data. Seven machine learning methods
are applied for wind speed retrieval, i.e., Regression trees (Binary Tree (BT), Ensembles of Trees (ET),
XGBoost (XGB), LightGBM (LGBM)), ANN (Artificial neural network), Stepwise Linear Regression
(SLR), and Gaussian Support Vector Machine (GSVM), and a comparison of their performance is
made. The wind speed is divided into two different ranges to study the suitability of the different
algorithms. A total of 10 observation variables are considered as input parameters to study the
importance of individual variables or combinations thereof. The results show that the LGBM model
performs the best with an RMSE of 1.419 and a correlation coefficient of 0.849 in the low wind speed
interval (0–15 m/s), while the ET model performs the best with an RMSE of 1.100 and a correlation
coefficient of 0.767 in the high wind speed interval (15–30 m/s). The effects of the variables used
in wind speed retrieval models are investigated using the XGBoost importance metric, showing
that a number of variables play a very significant role in wind speed retrieval. It is expected that
these results will provide a useful reference for the development of advanced wind speed retrieval
algorithms in the future.

Keywords: wind speed; Cyclone Global Navigation Satellite System (CYGNSS); regression model;
machine learning

1. Introduction

With the continuous development of global navigation satellite systems (GNSSs),
spaceborne GNSS reflectometry (GNSS-R) technology has become a hot research direction
in the field of remote sensing. In 1993, Martín-Neira proposed the concept of the Passive Re-
flectometry and Interferometry System (PARIS) and the use of GNSS-R for ocean altimetry [1].
Since then, GNSS-R has been utilized for a range of ocean and land applications, including
sea surface altimetry [2], sea surface wind speed measurements [3], sea ice detection [4],
and soil moisture measurements [5]. Over the past few decades, a number of ground-based
GNSS-R experiments have been conducted. Many airborne experiments have also been
conducted to investigate this new remote sensing technology. Notwithstanding some
technological challenges, satellite-based GNSS-R technology has the advantages of low cost
and great coverage in some applications [6]. Currently, there are more than 14 satellites in
operation carrying a GNSS-R payload.

UK-DMC (United Kingdom—Disaster Monitoring Constellation), the first satellite
carrying a GNSS-R receiver, was launched on 27 September 2003; data from this system
have been used to sense ocean roughness. UK TDS-1 (TechDemoSat-1), the second GNSS-R
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satellite, was launched on the 8 July 2014. On the 15 December 2016, NASA launched eight
microsatellites to form the cyclone GNSS (CYGNSS) constellation with the initial objective
of monitoring hurricane intensity [7,8]. Both TDS-1 and CYGNSS have generated a large
amount of data which can be downloaded for scientific research [9]. On the 5 June 2019, the
BuFeng-1 A/B twin satellites, developed by CASTC (China Aviation Smart Technology Co.,
Shenzhen, China), were launched from the Yellow Sea. One focus of the satellite mission is
on the sensing of sea surface wind velocities, and especially typhoons, using GNSS-R [10].

Sea surface wind speed is an important and commonly used ocean geophysical pa-
rameter [11]. The stability of the wind field plays an important role in ocean circulation
and global climate [12,13]. Traditional sea surface wind field monitoring methods gener-
ally use buoys or coastal meteorological stations, but these methods can only cover small
areas with low spatial resolution and expensive equipment [14]. Microwave scatter meters
and synthetic aperture radars can also monitor the global sea surface wind field [15,16].
Compared with these traditional wind measurement methods, spaceborne GNSS-R has
several advantages, such as rich signal sources and all-weather, all-day, low cost, and large
coverage [17,18].

GNSS-R technology is basically mature in retrieving sea surface wind speeds. Za-
vorotny and Voronovich proposed the scattering model theory in 2000 [19], which can
simulate different waveforms of GNSS reflection signals, thus inverting sea surface wind
speeds by delayed waveform matching methods [20]. Since then, observations extracted
from DDMs (Delay Doppler Maps) have been widely used. DDM is the basic observation
data of airborne and spaceborne GNSS-R receivers [21]. Some DDM observations, such
as DDM average (DDMA), are directly related to sea surface roughness [21]. Other DDM
observations can be used as variables for retrieving sea surface parameters. The normal-
ized bistatic radar cross-section (NBRCS), leading edge slope (LES) and signal-to-noise
ratio (SNR) have good correlations with the mean square slope (MSS) of the sea surface.
Generally, the MSS is mainly affected by the sea surface wind speed [22].

In recent years, many spaceborne GNSS-R wind speed retrieval models have been
developed. Jing et al. demonstrated the effectiveness of NBRCS by proposing some
geophysical model functions (GMFs) related thereto [10]. Bu et al. proposed double- and
triple-parameter GMFs with higher retrieval accuracy [14]. Machine learning methods have
also been used to improve the performance of spaceborne GNSS-R wind speed retrieval.
Liu Y. et al. proposed a machine learning algorithm based on a multi-hidden layer neural
network. The accuracy of their models was significantly higher than that of GMFs [23].
Many subsequent studies have adopted similar algorithms and obtained results with RMSE
of about 1.5–2.0 [24–26]. However, most of the above studies observed that it is difficult
to use their algorithms to accurately retrieve high sea surface wind speeds [27,28]. A few
studies have tried to enhance the ability of GNSS-R to retrieve high wind speeds. For
instance, Zhang et al. developed machine learning-based models to retrieve wind speeds
(20–30 m/s) with an RMSE of 2.64 and a correlation coefficient of 0.25 [29].

With high wind speed intervals, the Spaceborne GNSS-R data present different dis-
tributions and physical characteristics compared to when low wind speed intervals are
applied, which leads to the inconsistent performance of different machine learning mod-
els. Therefore, this study analyzes the performance of various machine learning models
in different wind speed intervals using the following methods: Regression trees (Binary
Tree (BT), Ensembles of Trees (ET), XGBoost (XGB), LightGBM (LGBM) ), ANN (Artificial
neural network), Stepwise Linear Regression (SLR), and Gaussian Support Vector Machine
(GSVM). In this research, the selection of the input parameters for machine learning meth-
ods was significant. In this article, a range of variables are considered and evaluated, which
are directly or indirectly relevant to sea surface wind speed. The main contributions of the
article are as follows:

(1) Seven machine learning methods are used to retrieve sea surface wind speed, and
their performance is evaluated under two different wind speed ranges.
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(2) A ranking of the effects of 10 variables on wind speed retrieval is obtained by compar-
ing the performance of different combinations of the variables. This provides a useful
guide for variable selection when considering both complexity and accuracy.

(3) A filtering algorithm is proposed to process DDM data, achieving both low complexity
and good performance.

(4) The effects of the number of neurons and activation functions on the performance of
ANN wind speed retrieval are analyzed.

The rest of the paper is organized as follows. Section 2 introduces the GNSS-R variables
and then describes the basic principles of the machine learning methods used in this study.
Section 3 provides details of the applied data preprocessing strategies, the data filtering
algorithm, and the construction of the machine learning-based model; the experimental
results are also presented. Section 4 discusses the effects of the variables on wind speed
retrieval. Section 5 presents the conclusions.

2. Methods

2.1. The CYGNSS Variables
2.1.1. Variables Calculated with DDM

The DDM glistening zone (the area from which scattered signals are observed) depends
on the sea state, and the DDM volume has a significant correlation with wind speed [30,31].
Five variables (LES, DDMA, Noise Floor, SNR and NBRCS), extracted from DDM, can
better reflect the sea state than the simple DDM volume [10,31]. Meanwhile, these variables
are calibrated in the CYGNSS Level 1B product, which is commonly used for the retrieval of
wind speed [32]. The LES of the integrated delay waveform, such as that generated with the
delay waveforms of five different Doppler shifts, is strongly correlated with wind speed [33].
DDMA is the average of scattered power computed from the center 5 Doppler × 3 delay bin
box [34], which is also significantly affected by wind speed. Noise Floor is the average
power of DDM pixels which only contain noise. The signal-to-noise ratio (SNR) is defined
as 10log(Smax/Noise Floor), where Smax is the maximum value in DDM, which has a
strong correlation with sea surface roughness [35]. NBRCS is one of the two observables
that were used to produce the global tropical cyclone product of CYGNSS [26], which is
effective for wind speed retrieval [32].

2.1.2. Other Variables

In addition to the five variables derived from DDM data, five other variables were con-
sidered, representing the signal status, so that they can be used to enhance the performance
of the models [8]. Instrument gain is the black body noise count divided by the sum of the
black body power and the instrument noise power, which is an important parameter to
calculate the DDM values. Scattering Area is the area of the central part of the DDM; gener-
ally, the larger this area, the rougher the reflective surface. Sp_inc_angle and sp_az_body
are the incidence angle and azimuth angle of a given specular point, respectively. By taking
sp_inc_angle and sp_az_body into account, the models can better reflect the situation of
the received reflected signal [26]. Additionally, GNSS-R wind retrievals are affected by the
ocean state [33]. Ocean swells are waves which travel from a long distance. The significant
wave height of a swell (SWH_swell) will affect the reflection of the GNSS signals, which is
a form of interference which can be used as a variable [27]. Table 1 lists all the variables
used in this study.
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Table 1. List of input variables used in wind speed retrieval.

Input Variables Long Name Unit

NBRCS Normalized bistatic radar cross-section no unit
LES Leading edge slope no unit
SNR DDM signal-to-noise ratio dB

DDMA DDM average no unit
Noise Floor DDM noise floor no unit

sp_inc_angle Specular point incidence angle degree
sp_az_body Specular point azimuth angle degree

Instrument Gain Instrument gain no unit
Scatter Area Scattering area of NBRCS and LES square meter
SWH_swell Significant wave height of ocean swell meter

2.2. Regression Trees

Four out of the aforementioned seven machine learning algorithms comprise regres-
sion trees, which are briefly described in this subsection.

2.2.1. Binary Tree

A binary tree (BT) is easy to interpret, fast for fitting and prediction, and low on
memory usage. It consists of nodes and directed edges. There are two types of nodes:
internal and leaf. In this paper, the internal nodes represent the variables of CYGNSS data
and the leaf nodes represent the wind speed value. Each step in a prediction involves
checking the value of one predictor variable. Figure 1 shows a simple sample BT composed
of 100 CYGNSS-ERA5 matchups. In the experiments described in Section 3, the BT models
are much more complex than this example, and the retrieval accuracy is much improved,
because the amount of data used to build BT models is much larger.

 

Figure 1. An example of a BT model structure.

When BT is used for regression tasks, variables of the sample are tested from the root
node, and the sample is assigned to its child node according to the test results. In this way,
the samples are tested and allocated recursively until they reach the leaf node, and each
leaf node corresponds to a wind speed value. The criteria of splitting nodes are defined
to balance predictive power and parsimony [36]. It is necessary to specify the minimum
number of training samples used to calculate the response of each leaf node. When growing
a regression tree, its simplicity and predictive power need to be considered at the same
time. A very leafy tree tends to overfit, and its validation accuracy is often far lower than
its training (or resubstitution) accuracy. In contrast, a coarse tree with fewer large leaves
does not attain high training accuracy. However, a coarse tree can be more robust in that its
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training accuracy can be near that of a representative test set. In this paper, the minimum
leaf size is set at 4.

2.2.2. Ensembles of Trees

Ensembles of Trees (ET) is one of the most popular techniques for building regression
models [37,38]. Ensemble models combine results from many weak learners into one
high-quality ensemble model. This approach has been applied frequently in fields such as
remote sensing and statistics [39,40]. The function used to predict values is as follows:

ŷi =
K

∑
j=1

f j(xi), f j ∈ F (1)

where ŷi is the predicted value of the i-th sample, K is the number of trees, xi is the i-th
sample vector, f j denote the structure of the j-th independent tree and F is the ensemble
space of trees.

In this paper, a bagging tree is applied to build the ET. It draws its training set from
the original sample set. In each round, n training samples are drawn from the original
sample set using Bootstraping (some samples may be drawn multiple times in the training
set, while some samples may not be drawn at all) [41]. A total of k rounds of extraction are
performed to obtain k training sets, which means that k models will be built. The k training
sets are independent of each other [42]. In this paper, k = 30 and the minimum leaf size is
8. Therefore, if several similar datasets are created by resampling with replacement and
regression trees are grown without pruning, the variance component of the output error is
reduced [41].

2.2.3. XGBoost

XGBoost (XGB) is a scalable, end-to-end tree boosting system which has been widely
used in classification, regression and other machine learning tasks [43]. Based on
Equation (1), XGBoost improves the running speed of model by using the regularized
learning objective, which consists of two parts: the training loss term and regularization
term, as given by:

Obj =
N

∑
i

l(ŷi, yi) + ∑ Ω( fk) (2)

where l(ŷi, yi) is the loss function which represents the deviation of ŷi (predicted value)
from yi (true value); Ω( fk) represents the complexity of the model as a regularization term,
which helps to control the complexity of the model and avoid overfitting; and N is the
number of samples. In order to minimize the regularized learning objective as much as
possible, Equation (2) will be minimized for multiple rounds. In each round, ft is added to
Equation (2). The regularized learning objective of t-th round can be written as follows:

Obj(t) =
N

∑
i=1

l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ Ω( fk) (3)

The regularized learning objective can be approximated using the Taylor formula expansion:

Obj(t) ∼=
N

∑
i=1

(
l
(

yi, ŷ(t−1)
i

)
+ gi ft(xi) +

1
2

hi f 2
t (xi)

)
+ Ω( fk) (4)
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where gi = ∂ŷ(t−1) l
(

yi, ŷ(t−1)
i

)
is the first gradient statistics on the loss function,

hi = ∂2
ŷ(t−1) l

(
yi, ŷ(t−1)

i

)
is the second gradient statistics on the loss function. The reg-

ularized learning objective of the t-th round is as follows:

Obj(t) =
T

∑
j=1

(
Gjwj +

1
2
(Hj + λ)w2

j

)
+ γT (5)

where Gj = ∑i∈Ij
gi and Hj = ∑i∈Ij

hi are the accumulation of gi and hi, and Ij denote the
instance of j-th leaf. T is the number of leaves in the tree. The optimal weight wj of the j-th
leaf node can be determined as:

wj = − Gj

Hj + λ
(6)

and the corresponding optimal value of the objective function Obj(t) is given by:

Obj(t) = −1
2

T

∑
j=1

G2
j

Hj + λ
+ γT (7)

The parameter settings of XGBoost are shown in Table 2.

Table 2. Parameter settings of XGBoost.

Parameter Meaning Value

n_estimators Number of gradient boosted trees; equivalent to
the number of boosting rounds. 100

importance_type The type of variable importance gain

2.2.4. LightGBM

LightGBM (LGBM) is an efficient gradient boosting decision tree, which serves to
enhance the efficiency of the model when the variable dimension of the data sample is high
and the data scale is large [44]. Compared with Xgboost, LightGBM is faster to compute
and consumes less memory. LightGBM uses an Exclusive Feature Bundling (EFB) strategy
to bundle mutually exclusive variables in order to reduce the number of variables and
achieve the purpose of dimensionality reduction. Finding the optimal binding variable
has been proven to be an NP-hard problem, as the enumeration method cannot be applied.
In actual operation, EFB uses the greedy algorithm to approximate the optimal solution,
i.e., which reduces the number of variables without affecting the accuracy of split nodes.
Table 3 shows the parameter settings of LightGBM.

Table 3. Parameter settings of LightGBM.

Parameter Meaning Value

n_estimators Number of boosted trees to fit 100
num_leaves Maximum tree leaves for base learners 31

learning_rate Boosting learning rate 0.1

2.3. Artificial Neural Network

Artificial neural networks (ANNs) are relatively new computational tools that have
been used extensively to solve many complex real-world problems [45]. In order to avoid
the effects of dimension and order of magnitude, before using an ANN to process data, the
CYGNSS variables need to be normalized:

X′
i =

Xi − Xmin
Xmax − Xmin

(8)
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where Xmin and Xmax are the minimum and maximum values of the CYGNSS variables and{
X′

i
}

are the normalized CYGNSS variables. The Full Connection Network (FCN) is often
used in regression problems. Regarding GNSS-R wind speed retrieval, many researchers
have demonstrated a significant improvement compared with traditional methods [23,25].
Figure 2 shows the ANN structure adopted in this paper, including input layers, hidden
layers and the result of wind speed retrieval. Input layers are the 10 CYGNSS variables used
in this paper. Three hidden layers are adopted; their neurons are N, 2N and N respectively.
Figure 2 shows the structure of ANN when N = 5.

Figure 2. ANN structure adopted in this paper when N = 5. Small circles represent neurons in
the model.

The number of neurons in an ANN affects the retrieval results, so the size of N
is an important parameter when setting up a network. Herein, we analyze the impact
of different activation functions on the performance of FCN, which makes connections
between neurons. Generally, the accuracy of linear models is low, so activation functions
improve the performance of ANN models by adding nonlinear factors. Determining the
optimal activation function in an artificial neural network is an important task, because
it is directly linked with the network performance. However, unfortunately, it is hard to
determine this function analytically; rather, the optimal function is generally determined
by trial and error or by tuning [46]. Three activation functions are analyzed in this paper,
i.e., ReLu, Tanh and Sigmoid:

fReLu = max(0, v) =
{

0 (v < 0)
v (v ≥ 0)

(9)

fTanh =
ev − e−v

ev + e−v (10)

fSigmoid = σ(v) =
1

1 + e−v (11)

where v is the input value of the previous neuron. The advantages of ReLU include the fast
convergence speed of the network being trained, low computational complexity, and the
absence of saturation and vanishing of gradient problems when v > 0. The ReLU activation
and combinations of multiple instances are non-linear. The Tanh function provides stronger
non-linearity but is plagued from with saturating and vanishing gradient problems. The
advantage of Tanh and Sigmoid is their stability.
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2.4. Stepwise Linear Regression

Stepwise linear regression (SLR) is able to establish the optimal multi-variable linear
regression equation. First, linear regression model SLR0 is constructed with all variables{

v1, v2, . . . , vp
}

:

f 0
SLR = β0 +

p

∑
i=1

βivi (12)

where
{

β0, β1, β2, . . . , βp
}

are constant parameters. The model is then used to estimate an
unknown parameter such as wind speed for n times, where n is the number of observation
datasets. The root mean square error (RMSE) of m estimations of model SLR0 is calculated
and denoted as RMSE0. Next, the first variable, v1, is removed, and estimation is performed
m times again. Finally, the RMSE may be calculated and denoted as RMSE1. If RMSE1 is
smaller than RMSE0, v1 may be removed; otherwise, it should be retained. This process
is repeated until all variables are tested. Then, the variable with the smallest RMSE is
selected. Therefore, this method is efficient for seeking localized variables [47]. SLR has
good predictive ability and lower computational complexity than other methods [48].

2.5. Gaussian Support Vector Machine

Support Vector Machines (SVMs) are based on statistical learning theory, which con-
tains polynomial classifiers, neural networks and radial basis function (RBF) networks in
special cases. The SVM is thus not only theoretically well-founded but also superior in
practical applications [49]. It is also commonly used to construct regression models. The
function used to estimate the unknown parameter vector (such as the wind speed estimate
vector) is given by:

fSVM =
m

∑
i=1

m

∑
j=1

(
l′i − li

)(
l′j − lj

)
xT

i xj + b (13)

where m is the number of samples and l′i and li are the Lagrange multipliers. In this paper, x
is observation metric, which is composed of 10 variable rows and m sample columns; xi and
xj are the i-th column and j-th column, respectively; and b is the threshold. By introducing
the kernel functions replacing xT

i xj with K
(
xi, xj

)
, where K

(
xi, xj

)
is a transformation that

maps xi to a high-dimensional space, the performance of the model can be improved. The
choice of kernel function and parameters directly affects the performance of SVM [50]. The
following are the commonly used positive semidefinite kernel functions, which are named
as Linear function, Polynomial function and Gaussian function:

K
(

xi, xj
)
= xT

i xj (14)

K
(
xi, xj

)
=
(

1 + xT
i xj

)p
(15)

K
(
xi, xj

)
= e−‖xi−xj‖2

(16)

After testing these kernel functions, it was found that the Gaussian function had the
best effect in this study. Thus, Gaussian SVM (GSVM) is considered in this paper. In this
study, the Box Constraint is 0.9762, the Epsilon is 0.09762 and the Kernel Scale is set at 3.7.

3. Experiments and Results

3.1. Data Processing Flow

This study makes use of the CYGNSS Level 1B (L1B) product, which contains Delay
Doppler Maps (DDM), together with other engineering and science measurement param-
eters. CYGNSS data are in the range of 40◦S to 40◦N and work with a spatial resolution
of ~25 km. The sampling rate of the data used in this study is 2 Hz. Different from most
previous studies on wind speed estimation, this study adopts the latest CYGNSS v3.1
data instead of CYGNSS v2.1 data. Several data fields have been empirically corrected in
the v2.1 L1 calibration algorithm. Therefore, they need to be carefully examined before
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modeling. Additionally, time-dependent variations have been observed in v2.1 data due
to the variability of the transmitter and receiver. All these problems have been addressed
in v3.1 data. The data are encapsulated by NASA in the netCDF file format and can be
downloaded from https://podaac.jpl.nasa.gov/dataset/CYGNSS_L1_V3.1 (accessed on
26 March 2022) [29,30].

ECMWF reanalysis data (i.e. ERA-5) were used as the ground-truth data. ECMWF
obtains hourly ERA-5 reanalysis datasets by assimilating meteorological data from different
sources. The current sea surface wind speed product of ECMWF can be used as the ground-
truth data in CYGNSS sea surface wind speed retrieval [25]. In this study, we use two
ERA-5 parameters: the 10 m (above sea surface) u-component of neutral wind speed WSu10
and the 10 m v-component of wind speed WSv10, i.e., the eastward component and the
northward component of the 10 m wind speed. The horizontal wind speed of 10 m above
sea surface WS10 can be readily obtained as the root square of the sum of the squares of
these two parameters. However, CYGNSS data are sampled at an interval of half second
and therefore need to be matched temporally with ERA-5 data. The spatial resolution of
ERA-5 is 0.5◦ × 0.5◦, which is rather different from that of CYGNSS, so spatial matching is
also required.

In order to analyze the performance of the machine learning methods in different wind
speed intervals, two datasets are constructed according to the wind speed distribution.
They are a low wind speed dataset with wind speeds within 0–15 m/s and a high wind
speed dataset with wind speeds within 15–30 m/s. To ensure the data is representative and
generalizable, and to improve the generalization ability of the models, this study mainly
uses randomly selected data from 2019 to 2021. Figure 3 shows the spatial distribution of
all data used in this paper. Red points represent low wind speed data and green points
represent high wind speed data. Most high wind speed data generally appear in high
latitudes, while low wind speed data appear in all latitudes. It should be noted that the sea
surface roughness near the coast may be affected by land [6], which leads to performance
degradation of GNSS-R technology in terms of retrieving sea surface wind speeds and
other parameters [26].

 
Figure 3. The spatial distribution of all data used in this paper.

The process of wind speed retrieval can be briefly summarized as containing four steps:

(1) Selecting the datasets used in this study and dividing them into a training set and a
testing set in a proportion of about 3:1;

(2) Filtering the data;
(3) Training the processed data with the machine learning methods described in Section 2.

It should be noted that five folders cross validation is adopted when training the
model. By dividing the dataset into several folders and estimating the accuracy of
each fold, the cross validation prevents over fitting.

(4) Evaluating the performance of different models by using test data.

Figure 4 shows a flow chart of the proposed model construction and evaluation
methods. Figure 5 shows the histogram of wind speed distribution. High wind speed data
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are more difficult to obtain than low wind speed data, and a great deal of the former are
concentrated in the range of 15–20 m/s. Next, in order to evaluate the performance of the
models and the effect of variables, three metrics are chosen, i.e., the root mean square error
(RMSE), the correlation coefficient (R) and mean difference (MD), defined as:

RMSE =

√
1
n

n

∑
i=1

(Xi − Yi)
2 (17)

R =
∑n

i=1
(
Xi − X

)(
Yi − Y

)
√

∑n
i=1
(
Xi − X

)2
∑n

i=1
(
Yi − Y

)2
(18)

MD =
1
n

n

∑
i=1

(Yi − Xi) (19)

where n is the number of total data samples, {Xi} are the wind speed estimates, {Yi} are the
wind speed data of ERA5, X is the mean of {Xi} and Y is the mean of {Yi}.

 
Figure 4. Model construction process and evaluation methods.

Figure 5. Wind speed distribution histogram. The red dotted line divides the dataset into the low
wind speed dataset and the high wind speed dataset.
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3.2. Data Filtering

In this study, after discarding all abnormal values of observations (marked with
NaN and negative numbers) and using quality control (QC) flags, a filtering algorithm
based on DDM images is proposed. CYGNSS DDM is composed of 11 Doppler rows and
17 delay columns. When the signal condition is poor, the DDMs obtained by GYGNSS will
not have an obvious horseshoe shape [14]. Such DDMs are unable to represent the MSS of
the reflected surface effectively, and therefore, cannot be used for sea surface wind speed
retrieval. In order to analyze the shapes of DDMs more easily, all DDMs are normalized
according to:

nDDM(τ, f ) =
DDM(τ, f )
DDMmax

(20)

where nDDM(τ, f ) represents the measured power of the reflected signal when the time
delay and frequency shift are τ and f in the normalized DDM. DDMmax represents the
maximum power in the original DDM. CYGNSS compresses the DDM from a 128 × 20 matrix
to a 17 × 11 matrix [6]. The red solid box in Figure 6a indicates the selected area of the
noise floor part where the signal is absent. All the data whose noise floor maximum powers
exceed the threshold value of 0.4 are excluded. This step screens out most of the DDMs
influenced by noise without involving much computation. Some remaining DDMs may
still be influenced by noise, so it is necessary to verify whether a basic horseshoe-shaped
emerges. In order to reduce computation, this paper proposes a parameter called EdgeA,
i.e., the difference between the mean value of the Edge Box and the mean of the noise floor.
The orange and red boxes in Figure 6a indicate the trailing edge part and the floor noise
part of the DDMs, respectively. The mean value of the noise floor is derived from Equation
(21) [30], and EdgeA is derived from Equation (22).

Noise f loor =
1

N1

2

∑
i=1

11

∑
j=1

nDDM
(
τi, f j

)
(21)

EdgeA =
1

N2

2

∑
i=τmax

11

∑
j=1

nDDM
(
τi, f j

)− Noise f loor (22)

where N1 and N2 are the number of all power values in the noise box and edge box. τmax is
the column number when the power of nDDM is maximum. In this study, EdgeA must be
greater than 0.1 to ensure that all DDMs have a basic horseshoe shape.

 
(a) (b) 

Figure 6. (a) DDM with a distinct horseshoe shape, (b) DDM without a distinct horseshoe shape.

3.3. The Results of Regression Trees

This section analyzes the effects of the four regression trees modeling methods (i.e., BT,
ET, XGB and LGBM) that were described in Section 2.3. Figure 7 shows the scatter plots of
the true and estimated wind speeds. In the figure, the color (from cool to warm) indicates
the density of the points. Table 4 shows the retrieval performance of each regression tree
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model. The bold font represents the best results. It may be seen that many high wind speed
data are concentrated in the range of 15–20 m/s, causing elevated inversion accuracy in this
range. In order to avoid the influence of data distribution on the analysis of the result, the
performance of high wind speed models was analyzed in three data intervals: (1) overall
(15–30 m/s), (2) 15–20 m/s and (3) 20–30 m/s.

Figure 7. Results of wind speed retrievals based on regression trees methods. The subgraphs in the
first row represent the retrieval results in low wind speed, while those in the second row represent
the retrieval results in high wind speed. The black line shows the 1:1 performance line.

Table 4. The retrieval performance of each regression tree models.

Methods
0–15 (m/s) 15–30 (m/s) 15–20 (m/s) 20–30 (m/s)

RMSE R MD RMSE R MD RMSE R MD RMSE R MD

BT 1.970 0.724 0.089 1.440 0.627 0.150 1.320 0.300 0.070 2.577 0.567 1.255
ET 1.496 0.831 0.097 1.100 0.767 0.145 0.971 0.497 0.047 2.204 0.625 1.487

XGB 1.483 0.835 0.085 1.145 0.744 0.165 1.005 0.470 0.214 2.336 0.611 1.559
LGBM 1.419 0.849 0.066 1.148 0.746 0.162 0.971 0.489 0.210 2.542 0.614 1.961

As shown in Figure 7, all four regression tree-based modeling methods have the ability
to retrieve wind speeds in different intervals. As the simplest regression tree modeling
method, BT demonstrated the worst retrieval results, i.e., the greatest dispersion, as shown
in Figure 7. Further analysis showed that the performance of the other three methods was
superior to that of BT. LGBM had the best performance in the low wind speed interval;
the RMSE and R of LGBM were improved by 27.97% and 17.27% compared with BT. In
the high wind speed interval, the performance of ET was the best. For instance, the RMSE
and R of ET were improved by 23.61% and 22.33% compared with BT. It should be noted
that the RMSEs of high wind speed models are basically smaller than those of low wind
speed models, which does not mean that the former have better performance in general.
In fact, this situation is mainly affected by the wind speed distribution of the dataset
used in this paper. The performance of all regression trees modeling methods was better
in low wind speed interval, which is consistent with the conclusions of many previous
studies [26–29]. From the calculated MD, a slight underestimation of true wind speed in
both figures was observed. Besides, more obvious underestimations at high winds were
shown by both models. This result is similar to that of [28]. Most of the research results
demonstrate that GNSS-R data are more suitable for retrieving low wind speeds, while
significant performance degradation occurs when retrieving high wind speeds [27–29].
This might be due to the reduced sensitivity of an ocean scattering cross-section to the high
wind speed and the increased random error in the DDM signal [14].
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3.4. The Results of ANNs

As shown in Figure 2, we adopted the three-layer neural network structure; the
number distribution of three-layer neurons was N-2N-N. In this section, the influence of
the value of N and activation function is analyzed. N is set at 5, 10, 20, 30, 40, 50 and
60, respectively. Tables 5–7 show the RMSEs, Rs and MDs of the wind speed retrieval
using ANN models with different activation functions and N values, respectively. As in
Section 3.3, the bold font represents the best result, and the performance of the high wind
speed models was analyzed in three data intervals. Figure 8 shows RMSEs and Rs of the
wind speed retrieval models in a more intuitive form, i.e., in the form of line chart.

Table 5. RMSEs of the ANN models.

N
0–15 (m/s) 15–30 (m/s) 15–20 (m/s) 20–30 (m/s)

Relu Tanh Sigmoid Relu Tanh Sigmoid Relu Tanh Sigmoid Relu Tanh Sigmoid

5 1.466 1.474 1.473 1.291 1.245 1.283 1.016 0.960 0.956 3.226 3.402 3.204
10 1.501 1.473 1.460 1.390 1.232 1.286 1.022 0.980 0.970 3.755 3.342 3.072
20 1.541 1.472 1.512 1.289 1.320 1.248 1.055 1.004 0.988 3.028 3.019 3.503
30 1.556 1.524 1.503 1.914 1.211 1.223 1.794 0.996 1.007 3.129 2.902 2.766
40 1.616 1.522 1.544 3.876 1.239 1.248 3.861 0.999 1.013 4.074 3.039 2.917
50 1.611 1.554 1.523 2.468 1.219 1.209 2.380 0.999 0.977 3.455 2.800 2.963
60 1.663 1.563 1.577 2.022 1.224 1.243 1.863 0.982 0.992 3.542 3.086 2.926

Table 6. Rs of the ANN models.

N
0–15 (m/s) 15–30 (m/s) 15–20 (m/s) 20–30 (m/s)

Relu Tanh Sigmoid Relu Tanh Sigmoid Relu Tanh Sigmoid Relu Tanh Sigmoid

5 0.838 0.836 0.836 0.659 0.695 0.671 0.434 0.498 0.501 0.518 0.540 0.543
10 0.829 0.836 0.839 0.635 0.699 0.665 0.452 0.473 0.487 0.413 0.491 0.547
20 0.821 0.837 0.827 0.662 0.667 0.685 0.440 0.471 0.482 0.550 0.547 0.418
30 0.818 0.825 0.829 0.453 0.708 0.703 0.228 0.468 0.464 0.484 0.524 0.578
40 0.803 0.826 0.820 0.264 0.693 0.687 0.112 0.470 0.457 0.372 0.527 0.543
50 0.804 0.817 0.825 0.385 0.703 0.708 0.187 0.475 0.495 0.426 0.562 0.512
60 0.794 0.816 0.811 0.455 0.702 0.690 0.219 0.483 0.481 0.442 0.563 0.536

Table 7. MDs of the ANN models.

N
0–15 (m/s) 15–30 (m/s) 15–20 (m/s) 20–30 (m/s)

Relu Tanh Sigmoid Relu Tanh Sigmoid Relu Tanh Sigmoid Relu Tanh Sigmoid

5 0.047 0.038 0.036 0.192 0.183 0.208 0.022 0.005 0.017 2.533 2.633 2.833
10 0.050 0.028 0.027 0.117 0.183 0.192 0.016 0.021 0.009 1.509 2.423 2.703
20 0.062 0.040 0.053 0.160 0.137 0.152 0.009 0.045 0.007 2.233 1.400 2.148
30 0.071 0.028 0.050 0.172 0.100 0.182 0.036 0.011 0.061 2.043 1.321 1.849
40 0.084 0.080 0.087 0.165 0.191 0.175 0.040 0.046 0.037 1.877 2.198 2.075
50 0.077 0.064 0.083 0.122 0.165 0.144 0.012 0.017 0.021 1.630 2.194 1.843
60 0.056 0.064 0.095 0.113 0.136 0.184 0.004 0.022 0.029 1.619 1.688 2.315
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Figure 8. RMSEs and Rs of the wind speed retrieval models using ANN models with different
activation functions and different numbers of neurons.

In the low wind speed interval, it is obvious that the choice of activation function
hardly affected the ANN models, as shown in Figure 8. However, the increase of the
number of neurons significantly reduced the accuracy of the models, although the accuracy
variation was not very significant. In the high wind speed interval, the increase in the
number of neurons had little effect on Sigmoid and Tanh, but it had an obvious effect on
ReLu. As shown in Table 6, for a low wind speed interval, when the activation function
was Sigmoid and N was 10, the performance of ANN was the best. For a high wind speed
interval, when the activation function was Tanh and N was 30, the performance of ANN
was the best. Overall, although the underestimation of ANNs at high winds was smaller
than that of regression trees, the retrieval performance of ANNs was slightly worse than
that of the regression tree modeling methods. In order to facilitate a comparison with
other methods, scatter plots of low wind speeds retrieved by the Sigmoid function and
of high wind speeds retrieved by the Tanh function are presented as examples, as shown
in Figure 9.

3.5. The Results of SLR and SVM

This section analyzes the effects of two other classical machine learning methods (i.e.,
SLR and SVM), as described in Sections 2.4 and 2.5. Figure 10 shows scatter plots of the true
and estimated wind speeds. Table 8 shows the retrieval performance of each regression
trees model. Similarly, the bold font represents the best result, and the performance of high
wind speed models was analyzed in three data intervals. It is obvious that the retrieval
results of SVM had less dispersion than those of SLR, which means that the performance
of SVM was better. However, the retrieval performance of the models described in the
previous two sections was better than that of the models presented in this section.
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(a) 

 
(b) 

Figure 9. (a) ANN scatter plot with the activation function Sigmoid in the low wind speed interval.
(b) ANN scatter plot with the activation function Tanh in the high wind speed interval.

Figure 10. Results of wind speed retrievals based on SLR and SVM.
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Table 8. Retrieval performance of SLR and SVM.

Methods
0–15 (m/s) 15–30 (m/s) 15–20 (m/s) 20–30 (m/s)

RMSE R MD RMSE R MD RMSE R MD RMSE R MD

SLR 1.929 0.697 0.055 1.541 0.475 0.364 1.213 0.280 0.199 3.844 0.393 3.456
SVM 1.577 0.810 −0.021 1.290 0.684 0.304 1.007 0.488 0.075 3.254 0.556 2.623

3.6. Summary

The preceding subsections presented and analyzed the retrieval performance of several
machine learning methods in different wind speed intervals. This subsection summarizes
and analyzes their performance gaps. Figure 11 shows the Rs and RMSEs of the models
using machine learning methods. It is obvious from Figure 11 that the RMSE of LGBM is
smaller than those of other models in a low wind speed interval, while the RMSE of ET is
smaller than those of other models in a high wind speed interval. The R values are usually
larger when the RMSE values are smaller. The performance of LGBM, ET, ANN and XGB
are significantly better than that of SVM, BT and SLR, which means that they are more
suitable for wind speed retrieval.

Figure 11. Rs and RMSEs of machine learning models.

4. Discussion

By analyzing the performance of all seven models, it can be concluded that LGBM
performed best in the low wind speed interval, while ET performed best in the high wind
speed interval. However, the above experimental results do not prove that all the variables
in Table 1 can be used to optimize the performance of the model. On the contrary, some
variables may reduce the accuracy of the model. Therefore, it is very important to analyze
the effects of different variables. It should be noted that in the high wind speed interval,
the data of spaceborne GNSS-R also present different data distributions and characteristics
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from those in the low wind speed interval, and the roles of the variables were not always
consistent. Here, we use the characteristics of XGBoost as the basis for evaluating the
effect of each variable. XGBoost uses the average gain (AG) of data splits across all trees
to measure the effects of variables [51]. After model training, by analyzing the XGBoost
model structure, the AG related to each variable is defined as:

AGvi =
∑ Gainvi

Svi

(23)

where vi is a variable used in the XGBoost model, Svi is the number of times that vi
is used to split the data across all trees and Gainvi is the gain value of each tree after
splitting with vi. Table 9 shows the AG of each variable in the low and high wind speed
intervals, respectively.

Table 9. Rankings of the effects of variables.

0–15 (m/s) 15–30 (m/s)

Rank AG Variables Rank AG Variables

1 9452.12 NBRCS 1 364.99 SWH_swell
2 2649.02 LES 2 100.85 NoiseFloor
3 1887.14 SNR 3 90.88 NBRCS
4 1602.55 SWH_swell 4 88.56 ScatterArea
5 443.67 InstGain 5 84.76 InstGain
6 360.00 NoiseFloor 6 76.91 AzBody
7 337.60 DDMA15 7 73.86 DDMA15
8 320.35 ScatterArea 8 71.09 IncAngle
9 284.02 AzBody 9 64.71 SNR
10 253.56 IncAngle 10 44.97 LES

Although AG helps to verify the effectiveness of feature selection, it cannot be used
as a direct basis thereof. As such, the rationale of Table 9 needs to be demonstrated
through experimental results. In order to analyze the influences of different variables more
intuitively, this study constructed 60 models based on ET, XGB and LGBM with different
variables. Line charts were used to help in analyzing the influence of these variables.
The x-axis in Figure 12 indicates the number of variables, which is consistent with the
ranking of the effects of variables in Table 9. For example, in the low wind speed interval,
if the number of variables was set at 4, NBRCS, LES, SNR and SWH_swell were used in
the modeling; in the high wind speed interval, if the number of variables was set at 3,
SWH_swell, NoiseFloor and NBRCS were used in the modeling.

In Figure 12, the relationship between variables and models can be analyzed clearly.
It is obvious that Figure 12 and Table 9 are highly consistent. In the low wind speed
interval, the AG of NBRCS is much larger than that of other variables, which means that
NBRCS is the most important variable in the low wind speed models. In the two subgraphs
of the first column of Figure 12, it is obvious that LES, SNR and SWH_swell improved
the performance of the model greatly, as also confirmed in Table 9. In Table 9, the AGs
of LES, SNR and SWH_swell are significantly greater than those of the other variables.
These variables effectively reduced the RMSE of the model and increased the correlation
coefficient between the wind speed estimates and the true values of wind speed. In the
high wind speed interval, the models were mostly affected by SWH_swell; this may have
been due to the degradation of the performance of spaceborne GNSS-R technology in
a high wind speed. This result also indicates that, especially in the high wind speed
interval, spaceborne GNSS-R technology needs to fuse more reliable auxiliary information
to achieve better retrieval results. The contributions of other variables to the model are
basically similar. Different from the results of the low wind speed interval, the effects of
NoiseFloor and ScatterArea were significantly greater, while the effects of SNR and LES
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were lower. In the high wind speed interval, the quality of DDM became lower, decreasing
the correlation coefficients between sea surface MSS and the variables SNR and LES.

Figure 12. RMSEs and Rs of the wind speed retrieval models using different numbers of variables.

In general, from the above analysis, it is obvious that the results of the models with
all variables are the best in both high and low wind speed intervals. In most cases, the
accuracy of the model is directly proportional to the number of variables. Additionally, for
different modeling methods, the influence of the number of variables was different; for
different wind speed intervals, the rankings of the effects of variables were different. The
above conclusions may be helpful for the future research of spaceborne GNSS-R sea surface
wind speed retrieval.

5. Conclusions

By using machine learning methods, this study investigated wind speed retrieval in
different wind speed intervals. Through extensive processing of experimental data, it was
observed that different machine learning methods have different properties in different
wind speed intervals. In particular, a range of multi-variable models was developed and
evaluated. The results showed that the LGBM model performs best with an RMSE of
1.419 m/s and a correlation coefficient of 0.849 in the low wind speed interval (0–15 m/s),
while the ET model performs best with an RMSE of 1.100 and a correlation coefficient of
0.767 in the high wind speed interval (15–30 m/s). In addition, through experiments, some
characteristics of ANN models were found in wind speed retrieval. In the low wind speed
interval, the choice of activation function hardly affects the ANN models, while the increase
of the number of neurons significantly reduces the accuracy of the model. In the high wind
speed interval, the increase in the number of neurons has little effect on Sigmoid and Tanh,
but it has an obvious effect on ReLu.

The effects of the variables used in the wind speed retrieval models described in
this paper were analyzed. Through processing experimental data, it was observed that
the models with all variables (i.e. NBRCS, LES, SNR, DDMA, Noise Floor, sp_inc_angle,
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sp_az_body, Instrument Gain, Scatter Area, and SWH_swell) achieved the highest accuracy.
In the low wind speed interval, NBRCS, LES, SNR and SWH_swell were the most important
variables. In the high wind speed interval, the models were mostly affected by SWH_swell,
and the ranking of the effects of variables was very different from that in the low wind
speed interval.

Future studies will focus on further performance enhancements of the models devel-
oped in this paper. For instance, the accuracy of the model would decrease in the presence
of large wind speed and high SWH_swell. It would thus be useful to develop techniques to
handle the retrieval of high wind speeds with minimal performance degradation.
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(ûi − ui)
2
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Abstract: High temporal and spatial resolutions are the key advantages of the global navigation
satellites system-reflectometry (GNSS-R) technique, while low precision and instabilities constrain its
development. Compared with conventional Ku/C band nadir-looking radar altimetry, the precision
of GNSS-R code-level altimetry is restricted by the smaller bandwidth and the lower transmitted
power of the signals. Fortunately, modernized GNSS broadcast new open-available ranging codes
with wider bandwidth. The Chinese BDS-3 system was built on 31 July 2020; its inclined geostationary
orbit and medium circular orbit satellites provide B1C and B2a public navigation service signals
in the two frequency bands of B1 and B2. In order to investigate their performance on GNSS-R
code-level altimetry, a coastal experiment was conducted on 5 November 2020 at a trestle of Weihai in
the Shandong province of China. The raw intermediate frequency data with a 62 MHz sampling rate
were collected and post-processed to solve the sea surface height every second continuously for over
eight hours. The precisions were evaluated using the measurements from a 26 GHz radar altimeter
mounted on the same trestle near our GNSS-R setup. The results show that a centimeter-level
accuracy of GNSS-R altimetry—based on B1C code after the application of the moving average—can
be achieved, while for B2a code, the accuracy is about 10 to 20 cm.

Keywords: ocean altimetry; global Navigation satellite systems reflectometer (GNSS-R); BDS;
B1C; B2a

1. Introduction

Satellite radar altimetry and tide gauges have been used to monitor large-scale global
sea surface heights (SSH) in the past several decades; these have contributed much to Earth
sciences [1,2]. However, their spatial and temporal resolutions cannot meet the require-
ments for probing mesoscale features in the ocean height. To solve this problem, global
navigation satellites system-reflectometry (GNSS-R) was proposed as a multi-static radar
means with the prospect of providing additional high-density SSH measurements [3]. Es-
sentially, the performance of this technique relies on the accuracy of the relative path delay
between the direct and reflected signals. As GNSS signals are not dedicated for altimetry,
the precision of GNSS-R code-level altimetry is restricted by their smaller bandwidth and
lower transmitted power [4].

Many experiments have been performed on different platforms to test the precision
and accuracy of GNSS-R code-level altimetry. The results of a bridge-based experiment
showed that global positioning system (GPS) C/A code and P-code provided the water
surface reflector height with accuracies of 3 and 0.3 m, respectively [5]. The experiment was
enhanced; its results indicated a significant improvement in GNSS-R altimetric performance
with 7.5 cm uncertainty [6]. The feasibility of code-level altimetry based on BDS B1I signals
using coastal GNSS-R setups was also verified [7]. The first airborne GNSS-R ocean
altimetry experiment was performed in 2002, with results showing that the root-mean-
square residual height was at the meter level for GPS C/A code and decimeter level for
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P-code [8,9]. Another airborne experiment was conducted to investigate the performance
of code-delay altimetry using clean-replica and interferometric approaches based on GPS
L1 signals [10]. GNSS-R airborne GPS L5 signals were also used for altimetry analysis;
precision within meter and sub-meter levels was achieved [11]. Apart from the cases for
the lower-altitude of the receivers, an accuracy of two to three meters can be achieved
for space-borne GNSS-R code-level ocean altimetry, based on GPS C/A and BDS code,
using the data from TDS-1 and CYGNSS missions [12–14]. In addition, by analyzing the
signals reflected from the lake surface, the accuracy can be reached at the sub-meter level
on board [15].

In 2020, China finished constructing its BDS-3, which can transmit B1C and B2a civil
code signals with wider bandwidths at center frequencies of 1575.42 and 1176.45 MHz,
respectively [16]. Hence, it can be expected that the precision of GNSS-R code-level
altimetry can be improved by using the new BDS civil codes. In order to demonstrate
the potential of BDS B1C and B2a signals for GNSS-R altimetry, we performed a static
coastal experiment on a trestle bridge. The raw intermediate frequency (IF) data produced
by GNSS-R setups and other precise auxiliary measurements obtained by geodetic GNSS
setups, radar altimeter, and electronic total station were collected. These data were post-
processed to solve the SSH every second continuously for over eight hours.

The remainder of this paper is organized as follows. In Section 2, we briefly review
the characteristics of the two new BDS-3 civil signals and the basic principle of our work.
In Section 3, details of our coastal GNSS-R altimetry experiment and the setups that were
used are described. In Section 4, we analyze the solutions and evaluate their accuracy by
comparing them with the measurements of the radar altimeter. Finally, the main results are
summarized and the problems that remain unsolved in this work are discussed.

2. Materials and Methods

BDS-3 B1C and B2a signals for fundamental positioning, navigation, and timing
service are broadcast from 24 medium circular orbit (MEO) satellites and three inclined
geostationary orbit (IGSO) satellites. Their pseudo random noise code (PRN) numbers
range from 19 to 46, in which 38, 39, and 40 are the PRNs of IGSO. The two kinds of new
civil ranging codes have the same length of 10230, while the chip rates of B1C and B2a
are 1.023 Mbps and 10.23 Mbps, respectively [17,18]. These are separately modulated on
carrier signals with center frequencies of 1575.42 MHz and 1176.45 MHz, and different
ranging codes are modulated on the data component and pilot component. The power
ratio of the data component to the pilot component is 1:1 for B2a while the ratio is 1:3 for
B1C. In addition, both the components of B2a adopt BPSK(10) modulation while those for
B1C adopt more advanced BOC and QMBOC modulation.

The expression of the modulated B2a signal can be described as:

S(i)
B2a(t) =

√
2PB2a

[
D(i)

B2a_d(t)C
(i)
B2a_d(t) cos(2π f t)− C(i)

B2a_p(t) sin(2π f t)
]

(1)

where S(i)
B2a stands for the signals from satellite i, D(i)

B2a_d is the modulation data, C(i)
B2a_d

stands for the ranging code on the data component, C(i)
B2a_p is the ranging code on the pilot

component, PB2a is the B2a signal power, and f is the carrier frequency. In Equation (1), the
pilot channel is data-less, and so can be used for estimating the ranging information better
without the problem of sign transitions [17].

The expression of the modulated B1C signal can be described as:

S(i)
B1C(t) =

√
2PB1C

[
1
2

D(i)
B1C(t)C

(i)
B1C_d(t) cos(2π f t)−

√
3

2
C(i)

B1C_p(t) sin(2π f t)

]
(2)

where S(i)
B1C stands for the signals from satellite i; D(i)

B1C is the modulation data; C(i)
B1C_d

stands for the ranging code on the data component; PB1C is the B1C signal power; and
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C(i)
B1C_p is the ranging code on the pilot component, which employs QMBOC(6,1,4/33)

modulation [18]. In Equation (2), we can see that not only is the pilot channel free of data
information, but that the modulation is also more complicated. These improvements will
enhance the ranging ability of the B1C code.

Raw IF data of direct and reflected signals were processed to obtain the code-level
path delay measurements using a software-defined receiver (SDR) modified from an open
source code using MATLAB [19]. Figure 1 shows a brief flow chart of this GNSS-R SDR.
Firstly, both the direct and reflected signals are cross-correlated separately with the pilot
and data local replicas. The coherent span for both B1C and B2a codes is 10 milliseconds;
each signal produces two waveforms because of its pilot and data components. In order to
increase the signal-to-noise ratio, the two values added incoherently by power ratios are the
direct signal waveform and reflected signal waveform. Then, the code-level path delays are
computed from the positions of waveform peaks by applying cubic spline interpolations.
Furthermore, in order to increase the stability and precision, we computed 21 path delays
in one second at intervals of 50 milliseconds and selected their median value for further
processing. Finally, the reflector heights from the sea surface are calculated in accordance
with the geometry of ground-based GNSS-R altimetry.

 

Figure 1. Basic concept of deriving code-level path delay from waveforms of direct and reflected
signals using the data component (red) and the pilot component (purple).

3. Experiments

Our GNSS-R IF data collection system is mainly composed of two dual-circularly
polarized crossed dipole antennas and one raw data recorder with four radio frequency
signal input ports. Two of them are for the direct and reflected signals from the B1
band while the other two are for the B2 band. The bandwidths of the recorder are 20.46
MHz; its central frequencies are at 1529 MHz and 1130 MHz for the two kinds of signals,
respectively. The IF data are quantified with 2 bits and recorded at a sampling rate of 62
MHz continuously in most cases. The data are then transferred to a laptop through a USB
3.0 cable.

Apart from GNSS-R setups, a geodetic GNSS receiver, chock-ring antenna, and an
electronic total station were used to obtain the geodetic height of the GNSS-R antennas. An
independent 26 GHz radar altimeter was installed on the trestle, which can provide vertical
distance from the sea surface to its phase center with 3 mm accuracy every second. We
measured the precise height differences among the phase centers of the chock-ring GNSS
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antenna, GNSS-R antenna, and radar altimeter using the electronic total station. Figure 2
shows the relevant photos.

Figure 2. Photos of the geodetic GNSS chock-ring antenna (a), electronic total station (b), and the
monostatic radar altimeter (c).

We performed the experiment on a shore trestle bridge located at Weihai in Shan-
dong province with latitude and longitude coordinates (37◦32′2.62” N, 122◦2′44.11” E) on
November 5, 2020. An upward GNSS-R antenna was used for receiving direct signals with
right-handed circular polarization while the down-looking one was for reflected signals
with left-handed circular polarization. As the operating band of the antennas ranged from
1.16 to 1.62 GHz, it can cover B1C and B2a signals. Before entering the recorder, both of
the direct and reflected signals are spilt into two channels by two two-way power dividers.
One is for B1C and another is for B2a. The configuration of antennas and the satellite image
of the trestle bridge are shown in Figure 3 and the tilt angles of the antennas are both 30◦
to horizontal. Their phase centers are in a single plumb line. The height of the antennas
above the sea surface ranged from about three to five meters during our experiment. In
addition, as the beam width angle of the antennas is 60◦, the available satellite elevation
ranges from 30◦ to 90◦ for this experiment. The two antennas faced south to receive more
reflected signals, and so the available satellite azimuth ranged from 150◦ to 210◦.

Figure 3. The configuration of antennas for our GNSS-R altimetry experiment (a), the photograph of the antennas’
arrangement (b) and top view of the trestle bridge (c) during the experiment.

4. Results

The signals from five different satellites, including four MEOs and an IGSO, were used
for computing reflector heights at different periods. The SSHs were separately derived,
based on B2a and B1C signals from 13:30 to 22:00 on 5 November (local time). In general,
continuous GNSS-R altimetry solutions were achieved for more than eight hours. As the
reflector heights could be derived by using the code-level path delay measurements of one
satellite, we selected signals from only one satellite over a certain period of time. The sea
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surface was smooth in general during the experiment, so the path delay measurements
were derived from the peak point positions of the direct and reflected waveforms. As
the coherence time for both B1C and B2a codes was 10 milliseconds, each time slot of 10
milliseconds produced an estimate of the path delay. Considering that our SDR runs very
slow, we computed a delay measurement every 50 milliseconds to save time. So, there
are 21 delays in one second, and their median value was chosen for altimetry retrievals.
Figures 4 and 5 show SSHs derived from B1C and B2a code-level delay measurements,
respectively. We find that the solutions of both B1C and B2a can reflect the trend of the sea
surface change, compared with the measurements of the radar altimeter. However, the
noise level of B2a is larger than that of B1C. It should be noted that the gaps around 14:10
in Figures 4 and 5 were caused by an accidental interruption in the power supply at the
beginning of our experiment.

Figure 4. SSHs derived from B1C code-level delay and radar altimeter measurements for more than
eight hours.

Figure 5. SSHs derived from B2a code-level delay and radar altimeter measurements for more than
eight hours.

In order to evaluate the precision of GNSS-R altimetry based on the two kinds of new
BDS civil codes, we differentiated between the solutions and radar altimeter measurements.
Figures 6 and 7, respectively, show their height difference sequence with the satellite
elevation angles for B1C and B2a signals. The root mean square (RMS) values of the two
sequences are 0.394 m and 0.668 m for B1C and B2a, which are better than the solutions
derived from GPS C/A and BDS B1I code [20]. It is worth noting that the divergence is
a minimum of between 60◦ and 70◦ in both the cases. This is because the signals with
elevation angles around 60◦ have small incidence angles for both upward- and downward-
looking antennas, thanks to their 30◦ tilted angles. The gain of antennas is maximal in these
directions, indicating that higher gain of antenna will help improve the precision of the
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solutions. On the other hand, both the direct and reflected signals with higher elevations
have higher power, so that the divergence is a minimum of around 65◦ instead of 60◦.

Figure 6. Differences between measured SSHs using monostatic radar and B1C signals at
different elevations.

Figure 7. Differences between measured SSHs using monostatic radar and B2a signals at
different elevations.

The above analysis shows that the precision of GNSS-R code-delay altimetry achieved
from B1C is better than that from B2a. In this study, the coherent time is 10 milliseconds
for both signals. The code rate of B2a signals is 10 times that of B1C, but the complicated
code construction of B1C produces its wider bandwidth compared to B2a. In addition,
the results of a positioning experiment using BDS-3 signals showed that B2a signals have
relatively poor quality, although they have stronger power than the other open available
ranging code [21]. Affected by the above factors, GNSS-R code-delay altimetry based on
B2a signals from our experiment has worse precision than that based on B1C signals.

Since our altimetry solutions are derived from the differential measurement of the
direct and reflected code ranges, we investigated the cross-correlated waveforms of the
two new BDS-3 civil signals for further exploration. Figures 8 and 9, respectively, show the
waveforms of B1C and B2a codes for direct and reflected signals. During the experiment,
the sea surface had no appreciable roughness and the reflector heights ranged from three
to five meters, so that the path delays can be calculated from the peak positions of the
waveforms [6]. From Figures 8 and 9, the direct and reflected B2a waveforms are about half
of the B1C ones. This may be caused by its poor signal quality and narrower bandwidth.
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Figure 8. Cross-correlated waveforms of B1C code for direct (blue) and reflected (red) signals.

Figure 9. Cross-correlated waveforms of B2a code for direct (blue) and reflected (red) signals.

Centimeter-level SSH measurements are widely required for many geoscience ap-
plications. Obviously, the original solutions derived from B1C and B2a cannot directly
satisfy this requirement. However, as BDS-3 has completed its full operations, an adequate
number of satellites could be observed for GNSS-R altimetry during our experiment. Their
SSH measurements could be obtained continuously and so the change of actual SSH was a
steady dynamic process. In this paper, moving averages with windows of one minute and
five minutes were applied to smoothing solutions derived from B1C and B2a signals. In
Figures 10 and 11, the red points stand for the SSH obtained from radar altimeter; the blue
ones stand for those after applying a one-minute moving average; green ones stand for
those after applying a five-minute moving average. The results indicated that the precision
improved a lot in both cases.

91



Remote Sens. 2021, 13, 1378

Figure 10. SSHs derived from B1C code-level delay measurements with moving average and radar
altimeter for more than eight hours.

Figure 11. SSHs derived from B2a code-level delay measurements with moving average and radar
altimeter for more than eight hours.

In order to evaluate the performance of the filters, we differentiated between the
solutions and measurements of the radar altimeter. Figures 12 and 13 show the residuals.
The RMSs of B1C-based SSH are 0.090 m and 0.053 m for one-minute and five-minute
moving averages while those for B2a case are 0.199 m and 0.111 m. The final results show
that centimeter-level SSH can be achieved using the B1C signal, while the precision for the
B2a case can only reach the decimeter level.

Figure 12. Differences between measured SSHs using monostatic radar and smoothed solutions from
B1C signals.
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Figure 13. Differences between measured SSHs using monostatic radar and smoothed solutions from
B2a signals.

5. Discussion

GNSS-R is a promising and low-cost technique for ocean altimetry on different plat-
forms. New GNSS signals, designed with better performance, bring opportunities for
improving the accuracy and precision. We tested the performance of GNSS-R code-level
altimetry based on new BDS-3 civil codes by conducting a coastal experiment for the
first time. The solutions derived from B1C and B2a signals are achieved at one second
intervals for a period of about eight hours. The final results show that the centimeter-level
precision of GNSS-R altimetry based on B1C codes can be achieved; it is similar to that of
the tide gauge.

Our results demonstrated that the precision of solutions from the two new civilcode-
sare higher than those from conventional GPS C/A and BDS B1I. Furthermore, the solutions
from B1C are better than those from B2a. The poor performance of the single-frequency
band B2a was attributed to its poor signal quality and narrower bandwidth. In addition,
we also found that the precision of the solutions can be affected by signal power.

One of a main feature of BDS-3 is its hybrid constellation, in which the GEO satellites
can provide stable geometries for GNSS-R observations. However, in this paper, no solution
was retrieved from the signals of the BDS-3 GEO satellite. They provide fundamental PNT
service on the legacy B1I and B3I signals, while new B1C and B2a signals are used for
providing SABS service. Unfortunately, their SABS services are still in testing. As the
GNSS-R code-level altimetry performance of BDS-3 B1C and B2a signals is studied, we
could not test BDS-3 GEO signals during this experiment.

In this work, the performance of GNSS-R altimetry based on the B1C and B2a signals
was only tested on a very low platform when the sea surface was in a good condition.
We plan to conduct experiments on higher platforms, such as using an unmanned aerial
vehicle and/or plane to investigate their characteristics. We should find a proper and safe
place to conduct experiments for different sea states.

The monostatic radar altimeter can accurately measure the vertical distance from its
phase center to the sea surface, which enabled us to obtain the precise reflector height. In
this work, we solved a bias for each satellite using the precise reflector height values. This is
because the biases are caused not only by the sea surface roughness and the electromagnetic
characters, but are also affected by the signal bandwidth and instrumental reasons [22–24].
So, further explorations for the biases require much more data over a long time. However,
as our SDR runs very slowly and the IF data are too large to be stored, we cannot process
and analyse long-time data in this work.
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Abstract: Microwave remote sensing is widely applied in flood monitoring due to its independence
from severe weather conditions, which usually restrict the usage of optical sensors. However, it is
challenging to track the variation process of flood events in a timely manner by traditional active and
passive microwave techniques, since they cannot simultaneously provide measurements with high
spatial and temporal resolution. The emerging Global Navigation Satellite System Reflectometry
(GNSS-R) technique with high spatio-temporal resolution offers a new solution to the dynamic
monitoring of flood inundation. Considering the high sensitivity of GNSS-R signals to flooding,
this paper proposes a dual-branch neural network (DBNN) with a convolution neural network
(CNN) and a back propagation (BP) neural network for flood monitoring. The CNN module is
used to automatically extract the abstract features from delay-Doppler maps (DDMs), while the
BP module is fed with GNSS-R typical features, such as surface reflectivity and power ratio, as
well as vegetation information from Soil Moisture Active Passive satellite (SMAP) data. In the
experiments, the superiority of the DBNN method is firstly demonstrated by comparing it with the
surface reflectivity and power ratio methods. Then, the spatio-temporal variation process of the 2020
South Asian flood events is analyzed by the proposed method based on Cyclone Global Navigation
Satellite System (CYGNSS) data. The understanding of flood change processes could help enhance
the capacity for resisting flood disasters.

Keywords: GNSS-R; CYGNSS; SMAP; flood monitoring

1. Introduction

The arrival of South Asia’s annual southwest monsoons usually brings continuous
heavy rainfall, leading to significant flood events and other natural disasters in parts
of India, Nepal, and Bangladesh. The particularly noticeable flood inundation event in
2020 was South Asia’s most significant flood disaster over the past decade, causing huge
property losses to local people [1–3]. Due to the highly dynamic nature of floods, rapid and
effective flood monitoring is important for early disaster prevention, midterm relief, and
post-disaster reconstruction [4].

The existing remote sensing means for flood monitoring mainly include optical and mi-
crowave remote sensing. However, optical remote sensing means cannot be used on rainy
and cloudy days due to the sensors’ inherent characteristics, although they are capable of
obtaining Earth surface observations with a satisfactory spatial resolution [4–7]. Conversely,
passive microwave sensors, such as radiometers, have the ability to penetrate clouds and
heavy fog owing to their long wavelength, which is requisite for flood monitoring as floods
often occur during the rainy season. Nevertheless, the low spatial resolution of even dozens
of kilometers limits the successful applications of passive microwave sensors for flood mon-
itoring. On the other hand, active microwave remote sensing normally has a higher spatial
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resolution than passive microwave remote sensing. However, it also has a relatively lower
temporal resolution and is still unable to conduct dynamic flood monitoring in a timely
manner [8]. The recently developed Global Navigation Satellite System Reflectometry
(GNSS-R) is a novel remote sensing technology for physical parameter inversion by means
of GNSS signals reflected from the Earth’s surface [9–11]. The Cyclone Global Navigation
Satellite System (CYGNSS), launched by NASA, provides openly accessed GNSS-R data,
which has been successfully employed in the inversion of sea surface wind speed [12–14],
soil moisture estimation [15–17], flood dynamics monitoring [7,18,19], and other features.
The CYGNSS constellation constitutes eight small satellites, on which the receivers are
mounted to capture the direct and reflected signals from the navigation satellites. The
average revisit period of CYGNSS is only 7 hours, and the spatial resolution is about
3.5 km × 0.5 km on the land surface. Compared with other microwave remote sensing
technologies, CYGNSS simultaneously provides observations with higher spatio-temporal
resolution, which can be more suitable for dynamic flood monitoring [18,20,21].

Research on GNSS-R flood monitoring first began in 2018. Chew produced a flood
inundation map using surface reflectivity (SR) on specular points [18]. Based on CYGNSS
data, Wei Wan and Wentao Yang also conducted flood monitoring by surface reflectivity
in 2019 and 2021, respectively [7,19]. Furthermore, Unnithan produced large-scale, high-
resolution flood inundation maps in 2020 by combining the feature of signal-to-noise ratio
in delay-Doppler maps (DDMs) with the topographic information [22]. Through further
research, Chew proposed a theoretical model for flood monitoring based on changes in
surface reflectivity in different land cover types in 2020. The research results showed
that surface reflectivity was mainly dependent on surface roughness. When flood events
occurred, the surface reflectivity in densely vegetated areas greatly varied, while that of
the relatively smooth surfaces changed little, both before and after the flood [20]. Later,
Al-Khaldi proposed the power ratio (PR) method in 2021 to detect water bodies using the
coherent properties of DDMs from CYGNSS, and found that over 90% of the land surface
reflections presented incoherent scattering, while about 80% of the coherent reflections
were related to water bodies [23].

Reviewing the current GNSS-R flood monitoring methods, it is found that most of
them are only based on a specific GNSS-R physical feature, such as SR, PR, or signal-to-noise
ratio. However, one single GNSS-R feature cannot simultaneously represent the dielectric
constant and roughness of the reflective surface. For example, SR is calculated from the
power of the specular point [7], so it mainly represents the dielectric property of the specular
point rather than the roughness property of the reflective surface, which is essential for the
flood inversion [24]. Furthermore, the impact of vegetation on GNSS (direct and reflected)
signals has not yet been considered in the available literature [24,25]. As the primary
observation data of GNSS-R, DDMs contain much useful detailed information, such as SR
and PR. Some scholars have utilized DDMs-based features for flood monitoring, such as PR
and signal-to-noise ratio. However, the valuable information in DDMs has not yet been fully
excavated. In recent years, deep learning (DL) has been widely employed to automatically
learn feature representations from data and establish the intrinsic relationship between
inputs and outputs [26]. Among a variety of DL algorithms, convolution neural network
(CNN) has surpassed most other DL algorithms in two-dimensional image processing
due to its local connectivity, weight sharing, and down-sampling strategies, which can
reduce the complexity of neural networks and successfully learn feature representations
of images [26]. Moreover, the back propagation (BP) neural networks have powerful
nonlinear mapping ability, which is especially suitable for solving the complicated internal
mapping problem between one-dimensional input vectors and outputs [27]. Therefore,
by combining a CNN and a BP neural network in parallel, a dual-branch neural network
(DBNN) is constructed for better flood monitoring. In the model, the CNN takes two-
dimensional DDMs as input and automatically extracts the deep abstract features in DDMs.
The BP neural network is fed with the existing typical GNSS-R features and the vegetation
information provided by the Soil Moisture Active Passive satellite (SMAP) [28].
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The rest of this paper is organized as follows. Section 2 provides the descriptions of
CYGNSS data, SMAP data, and the study area. Section 3 introduces the proposed method
in detail. The experimental results and discussion are given in Section 4. Finally, Section 5
concludes the study.

2. Data and Study Area

2.1. CYGNSS Data

The GNSS-R data in this study were produced from the CYGNSS constellation, a
bi-static radar system (shown in Figure 1). This constellation is capable of collecting the
near-global (between 38◦N and 38◦S latitudes) daily reflected L-1 coarse acquisition GPS
signals in the form of DDMs [29–32]. CYGNSS data have been widely employed in GNSS-R
scientific research and other practical applications [30]. The mean and median revisit periods
of the CYGNSS were 7 h and 3 h, respectively. The spatial resolution is related to surface
roughness, which is around 3.5 km × 0.5 km on the land surface and about 25 km × 25 km
on the rough sea surface [23]. Compared with conventional microwave remote sensing, the
CYGNSS has higher spatial and temporal resolution in observing the Earth’s surface, which
is conducive to in-depth scientific research by GNSS-R techniques [21,24,33].

The data employed in this study is the 3.0 version CYGNSS product at L1 level,
which primarily contains DDMs and a range of metadata describing the geometry and
instrument parameters in acquisition. CYGNSS data can be acquired in NetCDF format
from https://podaac.jpl.nasa.gov (accessed on 10 September 2021). The primary variables
utilized are summarized in Table 1; including DDMs, the transmitter/receiver distance to
the specular point, transmitter and receiver, antenna gain, etc.

Figure 1. Schematic of the GNSS-R technique. GNSS satellites transmit signals to the Earth’s surface.
The signal is reflected by the Earth’s surface and captured by GNSS-R receivers onboard low Earth-
orbiting satellites. The specific locations of the specular points depend on the geometric positions of
the transmitting and receiving satellites.

Table 1. Main parameters of CYGNSS satellite data.

Parameters Units Comment

raw_counts watt DDM bin raw counts
gps_tx_power_db_w dBi GPS Space Vehicle transmit power

rx_to_sp_range m Receiver to specular point range
tx_to_sp_range m Transmitter to specular point range

gps_ant_gain_db_i dBi GPS Space Vehicle transmit antenna gain
sp_rx_gain dBi Specular point receiver antenna gain

sp_lat degree Specular point latitude
sp_lon degree Specular point longitude

sp_inc_angle degree Specular point incident Angle
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2.2. SMAP Data

The SMAP mission, launched by NASA in January 2015, has been designed to collect
L-band signals which are sensitive to land surface soil moisture (~5 cm of depth). The
SMAP satellite is equipped with active radar and passive radiometer sensors. However,
the radar failed to work in orbit after two months. Hence, the satellite currently relies only
on the L-band radiometer to retrieve land surface information, such as soil moisture and
vegetation information, by measuring brightness temperature. Since the signals received by
SMAP satellite and GNSS signals are both L-band with similar frequencies and sensitivity to
the land surface, SMAP data can be employed for comparison analysis with CYGNSS data.
The SMAP satellite observes land area between 85◦S and 85◦N, with a revisit frequency of
2–3 days [28].

The data product utilized in this study is the SMAP Enhanced L3 Radiometer Global
Daily 9 km EASE-Grid Soil Moisture, available at https://nsidc.org/data/SPL3SMP_E/
versions/4 (accessed on 16 October 2021) [34–36]. The enhanced SMAP product is an
interpolated and gridded result of SMAP Radiometer measurements, which are posted to
the 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). The primary data
are summarized in Table 2. It is worth noting that two datasets from SMAP, soil moisture
and vegetation opacity, were employed in this study. Soil moisture is used to verify the
accuracy of the inversion results, while vegetation opacity information is fed as auxiliary
input data to the model for flood inversion.

Table 2. Main parameters of SMAP mission data.

Parameters Units Comment

latitude degrees_north Latitude of the center of the Earth based
grid cell.

longitude degrees_east Longitude of the center of the Earth based
grid cell.

soil_moisture cm3/cm3 Representative soil moisture measurement
for the Earth based grid cell.

surface_temperature Kelvins Temperature at land surface based on GMAO
GEOS-5 data

vegetation_opacity unitless The measured opacity of the vegetation used
in retrievals in the grid cell.

roughness_coefficient unitless
A unitless value that is indicative of bare soil
roughness used in retrievals within the 9 km

grid cell.

2.3. Study Area

South Asia is an ideal area for flood inversion research using GNSS-R technology,
due to its frequent large-scale flooding inundation. As shown in Figure 2, the subgraph
(a) displays the coverage area of one CYGNSS satellite in a day, and the subgraph (b)
represents the intercepted area of South Asia ranging from 4◦N–28◦N and 66◦E–96◦E. The
northern part of the region is the Himalayan mountains, with an average elevation of
more than 6000 meters; the central part is the Great Plain, with dense river networks and
numerous irrigation canals; and the southern part is the Deccan Plateau. The total land area
of the study area is approximately 3.24 million square kilometers. In addition, the region is
situated in a tropical monsoon climate, with the hot season usually from March to May, the
rainy season usually from June to October, and the cool season usually from November
to the following February. During the rainy season, the southwest monsoons carry large
amounts of water vapor as they pass over the warm ocean, leading to extremely abundant
rainfall in South Asia. In 2020, the rainy season in South Asia lasted from June to September,
causing the region to experience the most severe flooding of the past decade. Therefore,
CYGNSS data ranging from May to October 2020 are selected to conduct the flood inversion,
as well as the spatio-temporal dynamic analysis by the proposed DBNN model.
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Figure 2. (a) The coverage area of one CYGNSS satellite in a day. (b) The study area in South Asia.

3. Method

In this study, a DBNN model for flood monitoring is proposed, which is mainly
composed of two parallel subnetworks: the CNN and BP neural network. In this model,
two-dimensional DDMs are input into the CNN, which automatically extracts the abstract
features from images, while the BP neural network is fed with seven typical GNSS-R
features, including surface reflectivity [18], power ratio [23], and the leading edge of
slope [37], etc., as well as vegetation information from SMAP data [28]. The output results
of the model are the probability values that DDMs belong to the submerged region. The
proposed method consists of three steps, as follows: (1) data pre-processing and features
extraction; (2) construction and training of DBNN model; and (3) prediction of DBNN
model. The process of this method is shown in Figure 3.

 

Figure 3. Flow chart of the inversion method.
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3.1. Data Pre-Processing and Features Extraction

In order to obtain good inversion results, only CYGNSS data meeting the following
conditions are employed in this study:

(1) If the SNR of DDM is too small, there are fewer signals and more noise in the DDM.
Therefore, the DDMs are filtered out with SNR less than 1.5 dB.

(2) The left-handed circular polarization signals received by CYGNSS decrease with
the increase of the incident angle. When the incident angle is larger than 65◦, the
proportion of the left-handed circular polarization signals rapidly decreases; thus,
DDMs with the incident angle larger than 65◦ are filtered out in this study [7,38].

(3) In this study, only DDMs with transmitter and receiver antenna gain greater than 0
are selected according to the references [25,38].

(4) The positions of the peak points move toward the edge of DDMs with altitude, and
the DTU10 digital elevation model used by CYGNSS does not sufficiently consider
the effect of land topography, which results in significant errors in the estimation of
positions of specular points with elevations greater than 600 m [23]. Thus, in this
study, only DDMs with peak points occurring in delay bins inside of 7–10 pixels are
retained [38].

The power values of some pixels in DDMs, which cannot be mapped to the real Earth’s
surface, are mainly generated by thermal noise (as shown in the white area in Figure 4).
Fortunately, the thermal noise pixels in DDMs can be eliminated by using the method
provided by Al-Khaldi [23] after screening CYGNSS data. The DDMs before and after
removing the thermal noise pixels are displayed in Figure 5.

The dielectric constant and roughness of the land surface obviously vary when floods
occur, so they can be regarded as very useful physical parameters for judging whether
floods have occurred or not. Therefore, seven features related to the above two parameters
are extracted from DDMs in this study as the inputs of the BP neural network, which
include surface reflectivity [18], power ratio [32], leading edge of slope [37], trailing edge
of slope [25], peak point power, DDM average [39], and signal-to-noise ratio [12] (as shown
in Table 3).

the specular point

Figure 4. Mapping relationship between the spatial coordinate system and delay-Doppler coordinate
system. The subfigure on the left depicts the spatial coordinate system. The ellipse and the curve
represent a delay isoline and a Doppler shift isoline, respectively. The subfigure on the right represents
the delay-Doppler coordinate system, where the blue and yellow delay Doppler pixels in DDMs
correspond to one and two spatial points in the left subfigure, respectively, while white pixels
represent the thermal noise pixels without corresponding spatial point. SP: the specular point.
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Figure 5. (a) DDM before removing the thermal noise pixels; (b) DDM after removing the thermal
noise pixels.

Table 3. Features extracted from DDMs.

Number Features Symbol Features Name

1 DDMA DDM average
2 TES Tail edge of slope
3 LES Leading edge of slope
4 SR Surface reflectivity
5 PR Power ratio
6 SNR Signal to noise ratio
7 Peak DDM peak value

3.2. Construction and Training of DBNN Model
3.2.1. Construction of DBNN Model

The DBNN model consists of two parallel sub-networks, the CNN module and the
BP neural network module, which are followed by a concatenate layer, a full connection
layer, and an output layer, as illustrated in Figure 6b. In this model, the CNN module
consists of two convolutional layers, made up of 16 and 32 the 3 × 3 convolution kernels,
respectively, and two pooling layers. Each convolution kernel can be regarded as a feature
extractor, which convolves with the input DDMs to generate feature maps. Taking the
operation of the kth convolution kernel in the first convolution layer as an example, the
input DDM is processed by the convolution kernel to generate the feature map h(1)k , which
can be expressed as follows:

h(1)k = f
((

W(1)
k ∗ X

)
+ b(1)k

)
(1)

where X is the input DDM, W(1)
k and b(1)k are the weight and bias of the kth convolution

kernel respectively, ∗ represents the convolution operation, and f denotes the activation
function; this study adopts the widely used ReLU function with the following equation:

f (z) = max(0, z) (2)

The max pooling layers with size 2 × 2 and stride 2 are applied in the CNN module to
downsample the feature maps from the convolution layers, so as to reduce the redundant
information and retain critical features.

In the DBNN model, the BP module consists of two fully connected layers equipped
with 16 and 32 neurons, respectively. Each neuron in the module conducts the weighted
summation operation on the inputs, which is subsequently processed by the ReLU acti-
vation function to create an output feature. As an example, consider the operation of the
ith neuron in the first fully connected layer, its output feature y(1)i can be expressed by the
following equation:
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y(1)i = f
(
∑
(

xj × w(1)
ij

)
+ b(1)i

)
(3)

where xj is the jth input feature of the neuron, w(1)
ij and b(1)i are the weight and bias of this

neuron, respectively. f (·) denotes the ReLU activation function.
The features output from the CNN module and the BP module are then transferred into

the concatenation layer. After being further nonlinearly processed by the full connection
layer with 64 neurons, these concatenated features are finally delivered to the output layer.
The output layer contains two neurons with the softmax activation function [40–42] and
outputs probabilities pi of the input DDM corresponding to the submerged region and the
unsubmerged region, respectively. The probabilities pi can be expressed as follows:

pi =
exp(vi)

∑k
j=1 exp

(
vj
) where i = 1, 2 (4)

where k is the number of neurons in the output layer, set to 2; and v1, v2 are the input
values of the softmax function. It should be noted that the softmax function in the neural
networks outputs a set of probability values belonging to each classification category, and
the summation of all probability values equals 1, where the category corresponding to the
largest probability value is the attribution category of the sample. As a binary classification
model, the proposed DBNN model only outputs two probability values. Therefore, if there
is a probability value greater than 0.5, the corresponding category will be identified as the
classification category. Since there are only two probability values output from the DBNN
model and their summation is 1, the probability value belonging to the flooded region can
be selected as the prediction result of the model. Therefore, samples with probability values
greater than 0.5 are regarded as submerged.

 

Figure 6. (a) Flooding monitoring process of DBNN method; (b) DBNN model structure. FC: full
connection layer.
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3.2.2. Training of DBNN Model

The dataset in this study is obtained by spatio-temporal matching of CYGNSS data and
SMAP data ranging from May to September 2020, where CYGNSS data provide DDMs and
seven features, as shown in Table 3, and SMAP data offer vegetation information and the
target label derived from the classification results of inundated versus non-inundated areas
classified by SMAP soil moisture [43]. In this study, 50,000 samples were randomly selected
from the dataset as the sample set of the DBNN model, and the sample set was divided
into training, validation, and testing subsets at a rate of 80%, 15%, and 5%, respectively [15].
These subsets are designed to provide sufficient data to train the network, evaluate its
performance, and tune the hyper-parameters. In addition, all the remaining samples in the
dataset are predicted by the DBNN model for the inversion of flood monitoring.

The information forward propagation and the error back-propagation algorithms
are adopted for the training of the DBNN model. During the forward propagation, the
parameters of the neural network are constant, while in the backward propagation, the
parameters are automatically updated to minimize the loss function using the Adam
optimizer. The loss function of the model is given in Equation (6):

L =
1
M

M

∑
m=1

K

∑
k=1

yk
m × log(hθ(xm, k)) (5)

where M is the number of training samples in each round; K is the number of classes, set
to 2 in this study; yk

m is the target label, which is derived from the classification results of
inundated versus non-inundated areas classified by SMAP soil moisture [43], for training
example m for class k; x is the input for training example m; hθ is the neural network model
with weights θ. In each round of training, the weights θ of the DBNN model are updated
according to the following formula:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g = ∇θ L
m = β1m + (1 − β1)g
s = β2s + (1 − β2)g2

m̂ = m
1−βt

1
ŝ = s

1−βt
2

θ = θ − ηm̂/
√

ŝ + ε

(6)

where ∇θ and g denote the gradient operation and the gradient value of the loss function L
on the parameter θ; η is the learning step, defaulted to 0.001; m and s denote the first- and
second-order moment variables (initialized to be 0), respectively; β1 and β2 represent the
exponential decay coefficients of m and s; ε is a small constant, set to 10−6; t is the number
of iterations, which is set to 300 in this experiment.

Specifically, the training process of the proposed DBNN model can be described as
follows:

(1) Initialize the parameters of the neural network, and input the training data into the
neural network.

(2) Proceed forward propagation and compute the loss function using Formula (6).
(3) Update the parameters in the neural network by means of the back propagation and

Adam optimizer.
(4) Complete the training when the variation of the loss function values is less than

0.001 among ten consecutive epochs, or the training times reach the preset number of
iterations.
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3.3. Prediction of DBNN Model

The trained DBNN model can be applied as a classifier for flood monitoring. The flow
of flood monitoring is presented in Figure 6a: (1) CYGNSS data are input into the DBNN
model to obtain the probability values that the CYGNSS data belong to the submerged
area. Specifically, probability values greater than 0.5 are regarded as the submerged areas,
while those less than 0.5 are considered as the non-submerged areas. (2) Afterwards, the
geolocation of each DDM is realized by using the longitude and latitude of its specular
point, and the scatter maps of the predicted results are drawn by combining the prediction
results with the location of DDMs. (3) Finally, the scatter maps of the prediction results are
gridded into 9 km × 9 km images.

4. Results and Discussion

Flood monitoring is conducive to understanding the dynamic process of flood occur-
rence and development, which further helps with disaster prevention, relief, and post-
disaster reconstruction. In this study, the experimental district was drawn from South Asia,
since it had experienced severe flood incidents in the past decade, and especially in 2020.
The effectiveness of the DBNN method was first validated by comparing it with the con-
ventional SR and PR methods, and then the spatio-temporal dynamic process of the flood
inundation during the 2020 rainy season was investigated using the proposed method.

4.1. Effectiveness Validation

In this study, the proposed DBNN model is compared with conventional SR and PR
methods, which are frequently employed for flood monitoring. The SR can be calculated
following the equations in the literature [20]. Most studies on flood monitoring by SR
methods use simple threshold judgments [18,19], where the average value of the surface
reflectivity of permanent water bodies throughout the study area is used as the classification
threshold [18–20]. In this study, 15 dB is used as the threshold of the SR method to delineate
the flood inundation areas. In addition, the PR is computable according to the literature [23]
and uses the constant value of 2 as the threshold to distinguish between flood or land. In
this study, the CYGNSS data ranging from 1 to 15 October 2020 are used as an example
to investigate the inundation extent of the study area. In Figure 7, the inversion and
classification results are presented for the flood monitoring in the study area, where the
inversion results refer to the continuous values output by the methods, such as the surface
reflectivity output of the SR method, and the classification results refer to the extent of
flooding and land divided by the thresholds in various methods. In this study, the reference
for judging the flood inundation range is obtained by the SMAP soil moisture threshold
method due to the lack of measured data of the surface flood extent. Areas with soil
moisture greater than 0.4 cm3/cm3 are classified as the inundated areas, and areas less than
0.4 cm3/cm3 are regarded as non-inundated areas [43]. Figure 7a shows the continuous
spatial distribution of soil moisture, and Figure 7b shows flood inundation extent extracted
by the soil moisture threshold method.

In this study, type I error, type II error, and overall accuracy are used to evaluate the
classification results, which can be calculated as follows:

E1 = a
a+b+c

E2 = b
a+b+c

C = c
a+b+c

(7)

where E1 and E2 denote the type I error and type II error, respectively. C represents the
overall accuracy, a indicates the number of samples that misclassify water bodies as land,
b is the number of samples that misclassify land as water bodies, and c is the number of
correctly classified samples.
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cm3/cm3

Figure 7. The inversion and classification results for the flood monitoring in the study area. (a) Soil
moisture values provided by SMAP mission and (b) flood inundation extent classified by threshold
method, respectively. The inversion results of (c) DBNN method, (e) PR method, and (g) SR method.
The classification result of (d) DBNN method, (f) PR method, and (h) SR method.

According to flood inundation extent delineated by the SMAP soil moisture threshold
method, the overall accuracy, type I error, and type II error of the classification result
of SR, PR, and DBNN methods are shown in Figure 8 and Table 4, where the DBNN
method has the highest inversion accuracy of 85.4%, and the SR and PR methods have
inversion accuracies of 80.17% and 81.34%, respectively. In addition, the DBNN method is
additionally superior to SR and PR methods in terms of both type I error and type II error,
which can be mainly attributed to the following aspects. Firstly, the DBNN model can fully
exploit the underlying abstract features from DDMs, while combining the representative
features as inputs of the model, which greatly enhances the utilization of GNSS-R data.
Secondly, the DBNN model considers the influence of the vegetation factor on GNSS direct
signals and reflected signals. However, it is worth noting that the DBNN model is fed with
vegetation information from SMAP, whereas the previous SR and PR methods operate
based on the CYGNSS data only.

Table 4. Classification error and accuracy of PR and DBNN.

Type I Error (%) Type II Error (%) Accuracy (%)

SR 10.76 9.07 80.17
PR 9.25 9.41 81.34

DBNN 7.29 7.17 85.54
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Figure 8. (a) The difference image between SR classification result and SMAP classification result.
(b) The difference image between PR classification result and SMAP classification result. (c) The
difference image between DBNN classification result and SMAP classification result.

4.2. Spatio-Temporal Analysis of Flood Inundation

In order to provide support for disaster-resistant activities in the study area, it is crucial
to understand the development process of flood events. Therefore, the particularly severe
flood incident occurring from May to September 2020 is selected as a flood monitoring case,
and the experimental results retrieved by the DBNN model on CYGNSS data are shown in
Figures 9 and 10. Before the onset of the 2020 rainy season in the study area, the regions
occupied by water bodies are mainly distributed in coastal areas such as Bangladesh,
covering about 6.6% of the total land area. From 20 May 2020, the areas inundated by
floods gradually expanded to Nepal and the northeast of India with the arrival of frequent
rains. The flooded areas accounted for about 17.9% of the total area on 20 June 2020, and
reached 28.7% by 20 July 2020. On 20 August 2020, the areas flooded reached their largest,
covering around 34.8% of the total area. After 20 August 2020, the flooded areas gradually
reduced because of the decrease in rainfalls. Observing the process of flood changes, we
could find the increased area, which refers to the difference between the maximum flood
area detected during the rainy season and the area of water bodies before the rainy season,
accounting for 28.2% of the total study area, mainly in Nepal and the northeastern states of
India. In particular, the proportion of the increased flood area in some states is calculated
and summarized in Table 5, where Bihar State experienced the most severe flooding event
with an increased area accounting for 89.92% of the total area, while Magway State had the
smallest increased area, only covering about 5.50%.

Table 5. The proportion of the increased flood area to the state area.

State Proportion (%) State Proportion (%)

West Bengal 39.83 Bihar 89.92
Assam 16.35 Narayani Zone 37.33

Rakhine State 18.65 Lumbini Zone 41.79
Chattogram 15.88 Uttar Pradesh 76.12
Karnali Zone 25.92 Odisha 51.70

Seti Zone 66.67 Ayeyarwady 45.12
Janakpur Zone 31.84 Yangon 67.20

Sagarmatha Zone 28.44 Bago 39.74
Bhojpur 24.65 Jharkhand 65.25

Mechi Zone 17.12 Madhya Pradesh 17.42
Sagaing 12.26 Chhattisgarh 53.82
Rangpur 19.57 Magway 5.50
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Figure 9. The spatial distribution of the study area flood inundation retrieved by DBNN model on
CYGNSS. The period spans from May to September 2020.

Figure 10. The temporal variation process of the flooded area, spanning from May to September 2020.
“CYGNSS-DBNN” indicates flood inundation area retrieved by DBNN method based on CYGNSS
data, while “SMAP-Threshold” denotes flood inundation area classified by threshold method based
on SMAP data.
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Through further observation of Figures 9 and 10, it can be found that the flooded areas
are mostly located in Bangladesh, Nepal, and northeast of India, which is mainly caused by
three factors; i.e., the large quantities of water vapor carried by the southwest monsoons, as
well as the influence of topography and water systems. In terms of topography, the region
is located at the southern foothills of the Himalayas and on the windward slope of the
southwest monsoons. When the southwest monsoon is blocked by the northern mountains,
it is forced to lift up and form topographic rain, leading to high rainfall in the study area. In
terms of the water system, rainwater from the northern foothills is usually collected in the
northeast of the study area, due to the low topography and dense river networks, making
the region more vulnerable to the threat of flooding.

4.3. Discussion

Compared to SMAP data, the regions with more errors in the inversion results of
CYGNSS data are mainly located in high altitude and inland permanent water regions, such
as the Western Ghats and the Malwa plateau. The reason for such errors is that CYGNSS
uses the DTU10 digital elevation model to calibrate the locations of specular points [23],
which does not sufficiently consider the effect of land topography, resulting in high errors
in the estimated positions of specular points with altitudes greater than 600 m on land. In
addition, the difference in spatial resolution between CYGNSS data and SMAP data can
also increase errors in the inversion results. For example, a small area of water may be
identified by CYGNSS data, but not by SMAP data with a lower spatial resolution, which
will increase the errors in inversion results.

Although the DBNN method could achieve a relatively higher inversion accuracy in
flood monitoring, its accuracy would decrease in some special areas, such as flat areas. The
DBNN method may misclassify the flat areas as water bodies because both of them have less
surface roughness, thus producing similar coherent DDMs. In future research, inversion
accuracy in flat areas is expected to be improved by extracting new physical features. In
addition, considering that the DBNN method needs to learn an abundance of parameters
and takes a large amount of computation to construct the optimal neural network model
compared with the traditional methods, more lightweight models for flood monitoring
should be anticipated to highly improve their operational efficiency in the future.

5. Conclusions

This study proposes a DBNN model for GNSS-R flood monitoring, which is mainly
composed of a CNN module and a BP neural network module. The former is adopted to
extract the underlying abstract features from DDMs, while the latter takes typical GNSS-R
physical features and vegetation information as input. This kind of dual-branch neural
network scheme can adequately combine GNSS-R physical features with the abstract
features mined by CNN, which helps the DBNN model better utilize GNSS-R data for flood
inversion and dynamic monitoring of inundation. Taking the study area in South Asia
as an example, the effectiveness of the DBNN method was verified by comparison with
the SR and PR methods. Then, the 2020 flood inundation in the study area was retrieved
by the DBNN method, and it was found that DBNN had significant flood monitoring
capabilities and could track the evolution process of floods over time. This study indicates
that although CYGNSS is designed to observe ocean surface wind speed during hurricanes,
it also possesses a promising future in flood monitoring applications.
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Abstract: The aim of this study was to develop a robust methodology for evaluating the spatiotem-
poral dynamics of the inundation status in tropical wetlands with the currently available Global
Navigation Satellite System-Reflectometry (GNSS-R) data by proposing a new quality control tech-
nique called the “precision index”. The methodology was applied over the Mekong Delta, one of
the most important rice-production systems comprising aquaculture areas and natural wetlands
(e.g., mangrove forests, peatlands). Cyclone Global Navigation Satellite System (CyGNSS) constel-
lation data (August 2018–December 2021) were used to evaluate the spatiotemporal dynamics of
the reflectivity Γ over the delta. First, the reflectivity Γ, shape and size of each specular footprint
and the precision index were calibrated at each specular point and reprojected to a 0.0045◦ resolu-
tion (approximately equivalent to 500 m) grid at a daily temporal resolution (Lv. 2 product); then,
the results were obtained considering bias-causing factors (e.g., the velocity/effective scattering
area/incidence angle). The Lv. 2 product was temporally integrated every 15 days with a Kalman
smoother (+/− 14 days temporal localization with Gaussian kernel: 1σ = 5 days). By applying the
smoother, the regional-annual dynamics over the delta could be clearly visualized. The behaviors of
the GNSS-R reflectivity and the Advanced Land Observing Satellite-2 Phased-Array type L-band
Synthetic Aperture Radar-2 quadruple polarimetric scatter signals were compared and found to be
nonlinearly correlated due to the influence of the incidence angle and the effective scattering area.

Keywords: CyGNSS; GNSS-R; inundation; wetland; Mekong Delta

1. Introduction

Global Navigation Satellite System Reflectometry (GNSS-R) data have the potential
to regionalize methane (CH4) emissions from land surface images by detecting their in-
undation status. Methane is an important greenhouse gas (GHG); its global warming
potential over a 100-year horizon is 28 times higher than that of carbon dioxide (CO2) [1].
In 2011, the CH4 concentration was 1803 ppb, 150% higher than the preindustrial level,
and a predominantly biogenic post-2006 increase has also been reported [2]. Concurrently,
atmospheric methane’s δ13CCH4 value has trended towards lighter (13C-depleted) values,
implying a significant shift in the balance between the sources and sinks of CH4 [3] and
a greater contribution of biogenic CH4 emission sources rather than fuel combustion to
this rapid CH4 concentration increase [2]. Several hypotheses have been postulated for
the cause of this isotopic shift, and these hypotheses can be summarized as one or a com-
bination of the following: (i) a change in the oxidative capacity of the atmosphere [4]; (ii)
changes in the relative strengths of anthropogenic sources, such as land-use changes on
tropical wetlands to agriculture or waste and fossil fuel emissions with an overall net effect
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of increasing emissions (e.g., [5]); and (iii) an increase in natural sources such as wetlands,
potentially as a feedback effect from regional climatic change (e.g., [3]). Large gaps still
exist between top-down and bottom-up CH4 total global emissions calculations, with much
of the uncertainty associated with the emissions of wetlands and other natural emissions
categories [6,7], particularly in tropical wetlands [7–9].

Because CH4 is emitted from inundated soil, which is spatiotemporally heterogeneous
and has a flux pattern characterized by non-Gaussian/nonlinear behaviors [7], the appro-
priate evaluation of the CH4 flux requires the monitoring of the inundation status with
spatiotemporally high-resolution techniques [10]. GNSS-R data became a popular input
source in microwave remote sensing techniques following the deployment of the Cyclone
Global Navigation Satellite System (CyGNSS), an eight-microsatellite constellation data
system [11]. Every single CyGNSS microsatellite has two left-hand circular polarization
(LHCP) down-looking antennas pointing to the Earth’s surface with an inclination angle of
approximately 28 degrees on either side of the satellite ground track [12].

The data can be used to globally detect the land surface inundation status almost daily
with high-spatial-resolution L-band microwave signals (with estimated spatial resolutions
of approximately 500–7000 m [13]) compared to common passive L-band microwave ra-
diometers. A few studies have reported that the use of CyGNSS-based inundation maps for
land surface methane emission simulations improved the representation of the CH4 emis-
sion status compared to the results obtained using common wetland maps (e.g., simulating
a greater amount of CH4 emissions by detecting inundation under clouds/vegetation with
GNSS-R data [14]).

There are several studies on the detection of inundation over wetlands with GNSS-R
data e.g., [15–19]. However, the results in most studies remain spatiotemporally sparse.
In most cases, the spatiotemporal interpolation is conducted with monthly observation
datasets, or spatially interpolated with optical observation sensors e.g., [15,19]. Due to the
limitations of L-band fine-spatial-resolution microwave remote sensing data like GNSS-R,
there are only a few studies conducting the cross-validation of GNSS-R and L-band SARs
observations [15]. Furthermore, from the perspective of the application of this study, most
of the time, this sort of fine-spatial-resolution, satellite-derived wetland/inundation obser-
vation is downsampled or spatially thinned (a.k.a., superobservations) before being used
in advanced simulation modeling approaches accompanied with high computation costs
(e.g., coarse-spatial-resolution ensemble simulations or the use of superobservations to
deal with observation error covariance in data assimilation tasks) by degrading the spatial
resolution or thinning the observations (e.g., [14,20]). Due to the local heterogeneity of the
inundation status and the non-Gaussian/nonlinear characteristics of the spatiotemporal
CH4 emission distribution at the local scale [7–9], the deterioration of the spatial resolution
of data can introduce large discrepancies to the emission values obtained between the
top-down approach and bottom-up approach [6–9,20]. Therefore, the regionalization of
CH4 emissions based on high-spatial-resolution L-band microwave data as a bottom-up
approach still remains important [7–9,17]. Since most studies have used GNSS-R data
for regional-scale simulations at a relatively coarse spatial resolution compared to remote
sensing observations (e.g., 0.01◦-resolution CyGNSS-based watermasks are downsampled
to a 0.5◦ resolution to match the WetCHARTs simulation grid [14]), few studies have paid
attention to the differences among each specular point’s footprint size (i.e., the glistening
area). To rasterize each piece of specular point-scale vector data without downsampling
for use in local-scale simulations, one must consider the difference among each specular
point’s footprint size to use these signals in fine-spatial-resolution, local-scale simulations
(e.g., 10–50 m resolution irrigation models [10]). This information would also be essential
for determining the spatial localization scale to ensure efficient data assimilation by deter-
mining the spatial localization scale at each specular point and adequately addressing the
spatial observation error covariance.

More fundamentally, the amount of data of a certain quality provided by the GNSS-R
microsatellite constellation is still limited, and the observations are prone to being con-
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ducted sparsely in space; in addition, the incidence angle varies widely among specular
points, which is known to cause biases in the microwave reflectivity observations (unlike
other spatially continuous microwave remote sensing observations, such as those obtained
from passive microwave radiometers or synthetic aperture radars). The local incidence
angles of the Phased-Array L-band Synthetic Aperture Radar-2 (PALSAR-2) ScanSAR
instruments vary from 25 to 50 degrees, while CyGNSS incidence angles vary from 0 to
70 degrees [13,17]). To prepare inundation maps based on GNSS-R data for future appli-
cations or to be assimilated into simulation models, the spatiotemporal interpolation step
needs to be processed before the data can be used in applications. Therefore, an adaptive
quality control method that considers the size of each specular point and depends on each
specular point vector and incidence angle but does not require ad hoc parameter tuning
or region-specific empirical parameterization with external data, such as the normalized
differential vegetation index (NDVI) or digital elevation model (DEM) data, is essential for
this robust interpolation preprocessing step. To realize this globally consistent rasterization
at a fine spatial resolution, the authors have developed a precision index calibration scheme
implemented while processing the raw specular vector data to rasterize data while con-
sidering the differences in incidence angles and specular points’ sizes/shapes/velocities.
To compensate for the spatially sparse distribution of GNSS-R specular data, the temporal
Kalman smoother is applied by using the precision index as the reciprocal observation error
number in each 15-day cycle over the Mekong Delta as a demonstration; this case study
area consists of double-/triple-rice-cropping systems, aquacultural ponds, mangroves
and peatlands. Cross-validation with the PALSAR-2 quadruple polarimetric data (3–6 m
resolution) product is also conducted, and the results are validated with ground inundation
observation datasets [7–9,17]. The goal of this study is to demonstrate the usefulness of this
quality control method by applying it to fine-spatiotemporal-resolution analyses over the
Mekong Delta [i.e., (I) comparing it with a common change detection algorithm with the
daily temporal resolution, (II) applying it with a 500 m rasterization with a 15-day temporal
resolution, (III) and surveying the consistency with 3–6 m spatial-resolution L-band SAR
backscatter intensities].

2. Materials and Methods

This study consists of (1) the introduction of the “precision index” for use in the
quality control assessment of GNSS-R data; (2) a daily rasterization demonstration over
the Mekong Delta based on the precision index obtained from the Lv. 2 product; (3)
a demonstration of the temporal Kalman smoother over the Mekong Delta using the
precision index as the reciprocal number of observation errors (Lv. 3 product); and (4)
cross-validation with PALSAR-2 quadruple polarimetric data that have been preprocessed
with a polarimetric decomposition method and ground observation data. A flowchart
presenting the methodology of this study is illustrated in Figure 1.

2.1. Sites along with the Collection of Field Data

We prepared ground observation datasets obtained at six sites (A–E) located in six
different districts: Site A, in Thot Not, Can Tho (10◦10′N, 105◦33′E); Site B, in Chau Thanh
(10◦16′N, 105◦08′E); Site C, in Cho Moi (10◦25′N, 105◦27′E); Site D, in Thoai Son (10◦16′N,
105◦08′E); and Site E, in Tri Ton, An Giang (10◦23′N, 105◦06′E) [7,8,10,21–27] Figure S1. The
soils at sites A–C are classified as silty clay fluvisol (a type of alluvial soil; [17]), while the
soils at sites D and E are classified as sulfuric humaquepts (a type of alluvial soil [17]).

In Can Tho and An Giang, 50 farmers’ rice paddies (30 in site A, five each in sites B–E)
were chosen as regions of interest (ROIs). At the center of each ROI, field water level data
were collected for the supervised classification of the satellite remote sensing data with a
water level gauge (daily, 10:00 AM–12:00 PM at site A) or with a HOBO CO-U20L-04 water
level data logger (Onset Computer Corporation, United States; collected every 4 h at sites
B–E). At the same time, we collected information about the history of field operations (e.g.,
fertilization and land preparation/sowing/harvesting dates) at each ROI throughout the
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observation period. The numbers of ROIs in the inundated/non-inundated rice paddies
are described in the cited literature [10].

 

Figure 1. Flowchart of the methodology of this study outlining the data, processing and analysis steps.

2.2. CyGNSS GNSS-R Datasets and Their Preprocessing Methods

All CyGNSS [10] Lv.1 Version 3.0 data observed from the first observation (Au-
gust 2018) until December 2021 were downloaded from https://podaac.jpl.nasa.gov/
dataset/CYGNSS_L1_V3.0 (accessed on 15 January 2022). The reflectivity (Γ) data were
calibrated [28] using Equation (1):

Γ(θ) =
(4π)2(PDDM − N)(Rr + Rt)

2

λ2GrGtPt
(1)

where PDDM is the maximum value of the analog power in the delay/Doppler maps (DDM),
N is the noise floor related to the DDM, Rr is the receiver–specular point (SP) distance, Rt is
the transmitter–SP distance, λ is the wavelength, θ is the incidence angle, Gr is the receiver
antenna gain in the direction of the SP and GtPt is the transmitter equivalent isotropically
radiated power (EIRP). The noise floor is computed as the mean value of the DDM subset,
where the signal is absent (located above the characteristic horseshoe shape of the DDMs).
The effect of the scattering area with the highest analog power in the DDM maps was used
as the size of the specular point. Since the CyGNSS GPS signal integration time is fixed at
1 s, the footprint shape was inversely computed using the integration time, the velocity of
the SP and the effective scattering area.

Our precision index model’s design was inspired by the spatial localization technique
of common data assimilation methods such as the local ensemble transform Kalman filter
or local particle filters [10]. The precision index (PI) was calibrated using the following
equation in the grid covered by the SP footprint, as shown in Equation (2):

PI =
cos(θ)× GS

sqrt(ESA)× exp(3.0 × (DistSP/SemiDSP)2)
∝ ObsEr (2)

where θ is the incidence angle, GS is the grid spacing, ESA is the effective scattering area,
DistSP is the distance from the center of the specular point, SemiDSP is the semidiameter of
the ellipsoidal-shaped specular point, and ObsEr is the observation error (Figure 2).

116



Remote Sens. 2022, 14, 5903

 
Figure 2. Illustration of the precision index. The light blue tiles are rasterization grid cells. The yellow
circular area is the effective scattering area. The red tile in the yellow/green circle effective scattering
area is the corresponding grid. The green, blue and red arrows are equivalent to the GS, DistSP and
SemiDSP terms in Equation (2).

Each specular point in the CyGNSS data format contains analog power in a 17 × 11 array
of DDM bins [17 rows for Delay with a 0.25-chip resolution, 11 columns for Doppler with a
500-Hz resolution]. We also analyzed the analog power in the DDM by regarding the power
as a probability density of a 3-dimensional histogram (representing skewness and kurtosis)
as described in Equation (3) and Figure 3 by targeting 5 × 5 arrays surrounding the element
containing the maximum analog power over the DDM at each specular point. If the kurtosis
value was greater than 0.01, the precision index (P) zeroed out before its use to omit the noise
derived from the specular effects over highly rough land surfaces.
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2]
⎞
⎠
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(3)

where SKW is skewness, KTS is kurtosis, P00 is the maximum analog power value (W) on
the DDM arrays of each specular point [“00” indicates the index of the element containing
the maximum analog power among all arrays in the DDM; i.e., P00 in Equation (3) is
equivalent to PDDM in Equation (1)], i and j are array indexes over the DDM surrounding
the maximum analog power element (i is the Delay row index and j is the Doppler column
index), TP indicates the sum of the power analog values of all arrays in the DDM, and DPL
and DLY indicate the doppler–delay index of the target element (i.e., Pij or P00) over the
DDM array.
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Figure 3. Illustration of DDM 3D statistics (skewness and kurtosis). The calibration is conducted by
assuming that the analog power is equivalent to the probability density of the DDM 3D histogram
(Delay, Doppler and Analogue power).

After calibrating the reflectivity (Γ) and PI on a latitude/longitude map (with a 500 m
resolution and a daily temporal resolution) (Lv. 2, Figure 4), the data were applied to a
temporal Kalman smoother on each 15-day cycle (temporal localization scale: 14 days.
1σ = 5 days) to obtain the Lv. 3 product (Figure 5) for the subsequent spatiotemporal
analysis. The Lv. 2 data were also applied for the temporal analysis (with a slight modifi-
cation to the change detection algorithm described in [29]) just after being applied in the
Γ(θ)-normalization task with Equation (4) and in a 30-day moving average filter; then, the
results were compared with the ALOS-2/PALSAR-2 products reported in [10]. To generate
the Lv. 3 products, this study simply used a linear Kalman filter (i.e., the time-evolution
of the model was assumed to be negligible). Γ-reflectivity was treated as both the states
and measurements.

Γnormalized = Γ−Γmin
Γmax−Γmin

referring to a paper [29]

Γ(θ)normalized =
Γ(θ)− Γ(θ)min

Γ(θ)max − Γ(θ)min
(4)

where Γ(θ)max/min is the temporal maximum/minimum value of the corresponding inci-
dence angle bin. Due to the data quantity limitations of specular points obtained during
the 2018–2022 period, we calibrated the incidence angle bins prepared for every 5◦ interval
(i.e., 0–5◦, 5–10◦, 10–15◦, 15–20◦, 20–25◦, 25–30◦, 30–35◦, 35–40◦, 40–45◦, 45–50◦, 50–55◦,
55–60◦, 60–65◦ and 65–70◦ bins) in each grid.
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Figure 4. A sample of the Lv. 2 daily product (a) Γ(θ)normalized; (b) incidence angle; (c) precision index
clipped at the Mekong Delta ((d) Optical image) on 4 January 2021.

Figure 5. A sample of the Lv. 3 15−day−cycle Kalman smoother product based on the precision
index [Γ(dB) without or with applying the precision index (a,b), zeroed out based on the kurtosis
threshold and DDM 3D statistics such as skewness (c) and kurtosis (d)] clipped at Mekong Delta on 1
August 2018.
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After calibrating the reflectivity (Γ) and PI on a latitude/longitude map (with a 500 m
resolution and a daily temporal resolution) (Lv. 2, Figure 4), the data were applied to a
temporal Kalman smoother on each 15-day cycle (temporal localization scale: 14 days.
1σ = 5 days) to obtain the Lv. 3 product (Figure 5) for the subsequent spatiotemporal
analysis. The Lv. 2 data were also applied for the temporal analysis (with a slight modifi-
cation to the change detection algorithm described in [29]) just after being applied in the
Γ(θ)-normalization task with Equation (4) and in a 30-day moving average filter; then, the
results were compared with the ALOS-2/PALSAR-2 products reported in [10].

2.3. PALSAR-2 Datasets, Corresponding Preprocessing Methods and Cross-Validation Scheme
with CyGNSS Data

PALSAR-2′s quadruple observation datasets (Lv. 1.1; 40–50 km observation widths,
70 km observation length; 307 scenes; August 2018–December 2021, Table S1) containing
observations of the Mekong Delta were prepared after the radiometric and polarimetric
calibration factors of the PALSAR-2 standard product were updated (on 24 March 2017 [30]).
The high-spatial-resolution (4.3 m azimuthal resolution and 5.1 m range resolution at a 37◦
incidence angle) quadruple data were decomposed to characterize the microwave scattering
pattern in inundated paddy soils and non-inundated paddy soils at different rice growth
stages. The phase and polarimetry data in PALSAR-2′s quadruple observation datasets
were converted into a coherency matrix; a refined Lee filter (7 × 7 window) was applied
to ease speckle noise; and the data were then decomposed with Singh 7 components [31].
The digital number of the HH/HV/VH/VV microwave data was used in the backscatter
reflectivity calibration expressed in Equation (5):

σ0 = 10·Log10 < I2 + Q2 > − 105.0 (5)

where σ0 is the backscattering coefficient, I is the value of the imaginary component and Q
is the value of the quadrature component of the digital numbers. The value of −105 is the
calibration factor noted in the literature [30]. An inundation detection classification task
(i.e., to determine whether the field water level was higher than the soil surface or not) was
conducted with a support vector obtained in the previous supervised classification study [9]
during ground observation collection (a total of 624 ROIs considering different rice growth
stages), as mentioned above in Section 2.1. The backward geocoding of the abovementioned
products was conducted by the Newton–Raphson method with ellipsoidal height data
(DEM: Shuttle Radar Topography Mission 3 (SRTM3) version 4 and the EGM2008 geoid
model) and the ALOS-2 orbital data (3D-spline-interpolated on every azimuth line).

The cross-validation was conducted with the PALSAR-2 preprocessed quadruple data
and the CyGNSS specular points Lv. 2 data product following the calibration described in
Section 2.2; these data were observed over the same locations as the PALSAR-2 geocoded
images within ±3 days of the PALSAR-2 observation date. First, the PALSAR-2 data
were spatially downsampled to a 500 m resolution, and then the precision index of each
corresponding specular point was calibrated over the geocoded PALSAR-2 images. Finally,
each weighted mean of PALSAR-2 signals (e.g., the 7-component scattering intensities,
σ0, and the spatial inundation rate) was further weighted based on the precision index
derived value over the PALSAR-2 image, and the results were compared with the CyGNSS
reflectivity Γ data.

These SAR data processes were necessary for the robust validation to compensate for
the footprint size difference of the inundation status that was observed between the ground
point observations and the GNSS-R data that were detected from space.

3. Results

3.1. Spatiotemporal Dynamics Evaluation over the Mekong Delta by CyGNSS
GNSS-R Measurements

The annual/seasonal dynamics of Γ (i.e., high values in the rainy season from June
to October, and low values in the dry season from February to May) could clearly be
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visualized in the CyGNSS GNSS-R product, as shown in Figure 6. By improving the change
detection algorithm by considering the difference in the local incidence angle among each
grid cell (i.e., from Γ-normalization to Γ(θ)-normalization), two peaks with high Γ values
could be detected annually.

 

Figure 6. Temporal dynamics of the Lv. 2 daily product with a 30-day moving average ((a): Γnormalized

and (b): Γ(θ)normalized) and the Lv. 3 15-day-cycle Kalman smoother product [(c): Γnormalized (500 m
resolution with the precision index), (d): Γ (3000 km resolution without the precision index) and e: Γ
(500 m resolution without the precision index)]. Each line/plot denotes spatially averaged values
over the delta.

121



Remote Sens. 2022, 14, 5903

For the Lv. 2 product, a moving average was required to see the seasonal dynamics.
However, this seasonal pattern was clearly illustrated in the Lv. 3 product even if the
change detection algorithm was not applied (Figure 6e). Particularly for high incidence
angles (>55◦), the non-normalized Γ series shows a wide distribution among relatively
high dB values (−20>) during the rainy season. This indicated that our proposed precision
index worked adequately as a Kalman smoother weight-mean processing tool and enabled
robust spatiotemporal comparisons. Compared with the result that was obtained from
the 3000 m grid spacing rasterization result without the precision index (Figure 6d), the
500 m grid spacing rasterization that was enabled by using the precision index displayed
the seasonal contrast more clearly (Figure 6e).

The Γ normalization step applied to each incidence angle [i.e., Γ(θ)normalized] signifi-
cantly improved the sensitivity of the results to the temporal dynamics of the incidence
angle by increasing the dynamic range [0.2–0.4 for Γ and 0.1–0.7 for Γ(θ)]. Γ(θ) values with
lower incidence angles tended to show a greater dynamic range than values with higher
incidence angles (Figure 6b).

The Lv. 3 product’s spatial distribution snapshot maps showed relatively strong
Γ values in the northwest triple-rice-cropping region (a.k.a., Dong Thap and An Giang
provinces, Figure 7). Irrespective of seasonal differences, the northeastern non-rice-cropping
upland zone showed low Γ reflectivity (Figure 7). These results were consistent with the L-
band SAR data-based rice paddy distribution map and rice floodability map (Figure 8 [21]).
The southwestern coastal wetland zone (comprising mangrove forests, fishponds and
peatlands) showed continuously high Γ values throughout the year. High Γ (dB) noise
occasionally remained in the specular data in the fine-spatial-resolution (i.e., low effective
scattering area) Lv. 3 product (Figure 5). However, the noise was accompanied by high
DDM 3D skewness/kurtosis values because the noise was derived from the locally high
land surface roughness.

3.2. Cross-Validation with PALSAR-2 Quadruple Observation Products

The relationship between CyGNSS reflectivity Γ values and PALSAR-2 backscatter σ0
values was differentiated depending on the specular point incidence angles and effective
scattering area (Tables S2 and S3). Positive relationships between the Γ values and σ0 values
were found with 0–10◦ incidence angles (Figures S2–S6a,b; Table S2). For specular points
obtained at 10–70◦, the correlations became negative, with a few exceptions observed for a
fine specular point group (i.e., for incidence angles of 30–35◦, the square root value of the
effective scattering area is smaller than 6 km, Table S2, Figure 9). The spatial inundation
rates and Γ values showed mostly positive correlations among the groups with incidence
angles of 10–50◦. In contrast, negative correlations tended to be dominant for low-end
incidence angle groups of 0–10◦ and high-end incidence angle groups of 50–70◦ (Table S2,
Figure S2). In such high-/low-end incidence angle groups, the double bounce factor tended
to show the most significant co-relationship with the Γ values among the 7-component
scatterings (odd/double/volume scatterings listed in Table S1 and shown in Figures S3–S5.
The remaining component analysis results are not shown in this paper since the correlations
were weaker than those of the odd/double/volume scatterings. In contrast, for the middle-
incidence-angle groups (10–50◦), the volume diffusion results tended to show the most
significant correlations with the Γ values (Table S2, Figures S3–S5). Among the PALSAR-2
HH/HV/VV backscatters, HV tended to show the most significant correlations with the Γ
values (Table S2, Figure S6).
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Figure 7. Samples of nonnormalized Γ values in 2020 (a–d) and 2021 (e–h). The left-hand side scenes
are snapshots obtained in dry seasons (a,c,e,g). The right-hand side scenes are snapshots obtained in
rainy seasons (b,d,f,h).
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Figure 8. PALSAR-2 data-based rice map ((a); white pixels indicate rice paddies), PALSAR-2 data-
based rice floodability map (b) and inundation detection snapshot obtained by PALSAR-2 above one
of the study sites [Thot not, Can Tho city, Vietnam, on 6 May 2016 (69 days after sowing)] with the
corresponding aerial photo (c); CF: Continuously inundated paddy; AWD: Alternate wetting and
drying paddy; the temporal water level dynamics of these blocks are presented in the referenced
literature [21,26,27]).

The CyGNSS reflectivity Γ and PALSAR-2 backscatter data series showed a highly
nonlinear relationship, and this was one of the causes of the low Pearson correlation
coefficients (Table S2). Particularly for the relationship between the Γ values and the
PALSAR-2-based spatial inundation percentages, three domains with unique characteristics
were found (Figure S2g,m). First, for the specular points whose Γ values are approximately
smaller than −20 dB, relatively high inundation percentages were found (Figure S2g,m;
domain shown by the green arrow). In such a domain, the Γ values tended to show a
linearly positive correlation with the inundation percentages. Second, for specular points
with Γ values between approximately −20 dB and 0 dB, specular points with 0% spatial
inundation percentages were detected (Figure S2g,m; domain shown by the red arrow). In
this domain, the Γ values tended to correspond to upwardly convex negative nonlinear
correlations. Finally, for the specular points with Γ values greater than approximately 0 dB
(Figure S2g,m; domain shown by the blue arrow), relatively high inundation percentages
were detected. In this domain, the Γ values tended to show upwardly convex positive
nonlinear correlations.
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Figure 9. Two-dimensional scatterplots between the CyGNSS reflectivity Γ (dB) and PALSAR-2
based spatial inundation percentage (a) and PALSAR-2 back scatters σ0 (dB) values ((b) HV, (c) odd
scattering, (d) volume diffusion, (e) double bounce) at specular points with 30–35◦ incidence angles.
The statistical analysis results representing these relationships are described in Table S2.

Since the relationship between the CyGNSS reflectivity Γ and PALSAR-2 backscatter-
ing σ0 values was also highly nonlinear (Figures S3–S6), a quadratic polynomial fitting
analysis was carried out to survey the direction of convexity (downwardly convex, linear,
or upwardly convex; Table S3). Although the relationship was mostly downwardly convex
for the groups with incidence angles of 0–60◦, an upwardly convex nonlinear relationship
became dominant for groups with incidence angles of 5–15◦ and 60–70◦ (Table S3, Figures
S3–S6). In contrast, for the middle-incidence-angle groups (15–60◦), downwardly convex
nonlinear relationships represented the majority.
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4. Discussion

4.1. Performance of the Precision Index in the Rasterization Process without Sacrificing
Spatial Resolution

The specular point vector data derived from the Lv. 1 product were rasterized to form
the Lv. 2 product, as shown in Figure 4. All the specular points depicted from southwest
to northeast had relatively fine spatial resolutions due to the low effective-scattering-area
values. In contrast, all the specular points depicted from northwest to southeast had rela-
tively coarse spatial resolutions due to the relatively large effective scattering areas. It is
known that the effective scattering area and footprint size/shape are mainly controlled
by the Delay and Doppler effects [32]. This indicates that the relationship between the
velocity (particularly in the advancing direction) of the GNSS receiver and the transmitter
is the main factor controlling the spatial resolution of each specular point rather than the
difference in the incidence angle or land surface roughness over lowlands such as the
Mekong Delta (which has an elevation approximately 2 m above the sea surface) [21]. In
this context, further GNSS-R receivers are expected to flexibly choose/adjust their trans-
mitters to continuously receive only fine-spatial-resolution GNSS signals. The future use
of geostationary GNSS transmitters or quasi-zenith-satellite-system-boarded transmitters
(QZSSs) is also expected to be selected occasionally in specific regions.

The precision index developed in this study was designed to be maximized at the
centers of the specular points, as the maximum analog power was detected at the center
of the DDM (i.e., the neutral Delay/Doppler position), as shown in Figure 3. Since high-
delay specular points are occasionally found in the Mekong Delta, hollow-ring-shaped
Gaussian kernels might be appropriate for such unique specular points [32]. To further
improve the index, such spatial localization regarding the dst.centerSP/semidiameter.SP ratio
in the denominator of Equation (2) should be implemented for the further development of
specular points with relatively high-delay chips. Considering the unique specular points for
which the maximum analog power is located in the non-neutral Doppler bin, performing
spatial localization while considering the specular advancing direction and Doppler effect
would also be desirable, although such specular points were rarely found over the delta in
this study.

The temporally Kalman-smoothed product (Lv. 3) clearly visualized the spatial pattern
throughout the year, even without spatial interpolation/filtering/smoothing. This indi-
cated that spatial inundation mapping can be accomplished even without performing a bias
correction, depending on ad hoc parameter tuning to deal with incidence angle differences
or even without depending on external NDVI data to deal with vegetation interactions.
Although noise associated with relatively high Γ values is occasionally detected with small
effective scattering specular points (Figure 5a), such specular noise was seemingly found to
be accompanied by high DDM 3D skewness/kurtosis values (Figure 5c,d) and could thus
be denoised naturally, as shown in Figure 5b.

4.2. Spatiotemporal Dynamics or Inundation Detection by CyGNSS

The Γ(θ) normalization results obtained for the Lv. 2 product indicated two peaks
annually. The first peak was generally detected in the latter half of the dry season from
April to June (Figure 6b), and the second peak was detected in the latter half of the rainy
season from August to October. These findings indicate that the inundation status over
the entire Mekong Delta is primarily controlled by double-/triple-rice-cropping irrigation
activities. Approximately 57.4% of the rice-cropping area in 2012 was estimated to be triple-
cropped [33]. Interestingly, the northwestern region where the most intensive triple rice
cropping is conducted (i.e., the An Giang and Dong Thap Districts) showed significantly
greater reflectivity Γ values in the rainy season than in the dry season. Interestingly, the
southwestern coastal wetlands consisted of mangroves and peatlands surrounded by
acid-sulfate soils [21]. The spatially high reflectivity values found in such coastal regions,
even in the dry season, might have been the result of aquacultural activities, including
prawn-rice cropping rotations [34]. Because the delta receives greater attention for being
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exposed to salinity intrusions exacerbated by rising sea levels [35], increased upstream
dam construction [36] and groundwater depletion [37], further long-term observations over
the delta are necessary for future assessments of the freshwater inundation status and the
salinity intrusion succession status.

One of the novel features of our work that is presented in this paper is that our
methodology realized the generation of spatiotemporally continuous data sets with a finer
resolution (500 m spatial resolution, 15-day temporal resolution) than commonly used
methods (that mostly have 3 km and 30-day resolutions, e.g., [13]), even though we did not
use any spatiotemporal interpolation methods. Simple gridding without considering the
size/shape of specular points cannot spatially rasterize the continuous CyGNSS GNSS-R
data even with a lower resolution due to the data quantity limitation [13].

4.3. Comparison with Quadruple Polarimetric L-Band SAR Backscattering Signals

Statistically significant Pearson correlations were confirmed through the precision-
index-based comparison between the CyGNSS reflectivity Γ and the PALSAR-2 backscat-
tering intensity σ0 or the spatial inundation percentage. We defined the inundation status
based on PALSAR-2’s 3–6 m resolution quadruple polarimetric data and ground truth
observations [10]. To compensate for the spatial footprint size difference between the
GNSS-R data and the inundation status observations with a finer spatiotemporal resolution
in this study, we employed the product based on SAR data. There was still a discrepancy
between the CyGNSS observations and the SAR-based inundation status product due to
the heterogeneity surrounding the rice paddies over the Mekong Delta (e.g., buildings,
forests, dykes), which was contaminated in the GNSS-R specular observations. The rela-
tionship was highly nonlinear, and its convexity was highly dependent on incidence angle
differences. However, correlations were still found between these different microwave
remote sensing methodologies even with the different observation resolutions over the
heterogenous ground objects in this study.

As with other error-causing factors, notably, there are various factors causing geomet-
ric errors. For example, to propose a methodology that was independent from external
data in this study, the ellipsoidal height that was derived from DEM and geoidal height
information was not used for the rasterization process of the specular points. Most im-
portantly, the grid-based rasterization of specular points was conducted by assuming that
the velocity at each specular point was constant throughout each integration time (i.e.,
the acceleration of each specular point was assumed to be 0). It is still expected that the
cross-validation performance could be better improved by rasterizing each specular point
without the velocity-constant assumption. Regarding the geometric error correction, we
also conducted a tuning experiment of the Gaussian function parameter of the precision
index model [i.e., a value of 3.0 was used in this study, as described in Equation (2)] with-
out downsampling. However, the tuning of the model parameter did not significantly
differentiate the validation performance with the PALSAR-2 product (data not shown).
Hence, rasterization with the consideration of acceleration was more important for tuning
this model parameter. Without the acceleration information, the model tuning did not
reliably improve the validation performance. For the current data interpretation, we also
have to note the temporal differences between the observation times/dates of the CyGNSS
and PALSAR-2 products. Due to the quantitative limitation of available specular points
in this study, a low effective scattering area specular point group occasionally showed the
opposite correlation with the PALSAR-2 backscatters (i.e., 30–35◦ incidence angles, 0–6 km
square root values of the effective scattering area, Table S2). One of the causes of this result
is the limited availability of quantitative specular points from CyGNSS over the Mekong
Delta and the limited observable swath data of the quadruple PALSAR-2 observations
(only 40–50 km widths were used to avoid incidence-angle-difference-derived biases in
the polarimetric decomposition analysis). These data quantity limitations might have only
partially caused the local optimization of the nonlinear function. Further observations are
expected to enable the global optimization of the nonlinear function when estimating the
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spatial inundation percentage or backscatter intensity from CyGNSS specular reflectivity
data. The most importantly, we need to reshape this gaussian function along with the
specular points velocity vector (i.e., shifting the gaussian center considering the doppler
frequency, and reshape the skewness regarding its delay time in DDM information [32]).

Unlike the specular points with incidence angles wider than 10◦, a positive relationship
was found between the CyGNSS reflectivity Γ and PALSAR-2 backscattering intensity σ0

series for specular points with incidence angles narrower than 10◦. Since the difference be-
tween the microwave-energy-advancing vector directions of the backscatters and specular
reflection values decreased as the incidence angle decreased, these positive relationships
could have been found for specular points with such low incidence angles. This indicates
that the reflectivity is highly dependent on the dielectric properties, particularly for low-
incidence-angle specular points. Because such specular points tend to have low effective
scattering areas (i.e., fine spatial resolutions), the incidence angle bias correction on such
low-incidence-angle specular points is necessary to enable high-quality information on
land surface properties to be derived. For most specular points with incidence angles
ranging from 15 to 60◦, the CyGNSS reflectivity Γ and PALSAR-2 backscatter intensity σ0

tended to show downwardly convex relationships (Table S3). This indicated that wetlands
on relatively dry ground with a relatively low dielectric constant do not activate multi-time
scattering (e.g., the double/triple bounce effect). Hence, the negative correlations between
Γ values and σ0 values tended to appear to be simply controlled by the specular reflection
or single scattering effect. However, wetlands on wet ground, which have high dielectric
constants at a certain level, also enhance multi-time scattering to emit relatively strong
power levels not only oriented forwards but also backward. The specular points with
incidence angles wider than 60◦ tended to show upwardly convex negative relationships
between the CyGNSS reflectivity Γ and PALSAR-2 backscattering intensity σ0 series. These
findings indicated that if the incidence angle was wider than a certain level, the ground-
volume interactions between inundated soil and wetland vegetation would be more prone
to occur than if the specular points had lower incidence angles.

The three domains classified in the 2D scatter plots between the CyGNSS reflectivity
Γ values and PALSAR-2-based spatial inundation percentages indicated a microwave
scattering status difference among each domain (Figure S2g,m). The specular points in
the first domain with Γ values lower than approximately −20 dB (Figure S2g,m; domain
shown with the green arrow) tended to reflect relatively high odd/double bounce values.
This finding indicated that the ground-volume interaction between inundated soil and
the land-covering vegetation in wetlands plays a dominant role in the scattering process
in this domain. Because positive correlations tended to appear between the CyGNSS
reflectivity Γ and spatial inundation percentage series in this domain, this domain would
be more sensitive to inundation than to soil moisture. In the second domain, where the Γ
values were between approximately −20 dB and 0 dB, specular points with a 0% spatial
inundation percentage were detected (Figure S2g,m; domain shown with the red arrow). In
this domain, the Γ values mostly showed negative correlations with the spatial inundation
rate and backscattering intensities. This indicates that the multi-time scattering effect
would not have played a major role in this domain. Instead, the single scattering effect
would have played a major role in such dry ground areas with relatively low dielectric
constants. The negative correlations also indicate the possibility that the soil moisture and
the vegetation water content may have greater roles than the spatial inundation percentage
in such non-inundated wetland ROIs. In the third domain, where the specular points
had Γ values greater than approximately 0 dB (Figure S2g,m; domain shown with the
blue arrow), the Γ values tended to become significantly high, although the PALSAR-
2 backscatter intensity values (including the odd scattering and double bounce values)
tended to be low. These results indicate that the contribution of multi-time scattering was
negligible and that the surface roughness in this domain would also be low. The presence
of a water body without vegetation would have enabled such strong specular reflection
conditions under weak backscattering effects. Consistently, Arai et al. [7,8,10] also reported
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three similar domains from HH/HV backscatter 2D distribution plots. Thus, this might
be a common characteristic of L-band active microwave scattering signals collected over
tropical wetlands.

For further development, the application of a precision index to a finer-spatial-
resolution GNSS-R product (e.g., the CyGNSS interferometric coherence ratio product [38])
would be desirable to improve the spatial resolution of the resulting reflectivity Γ prod-
uct. Since the differentiation of multi-time scattering processes using the phase infor-
mation of scattered microwaves is mandatory to improve the inundation detection per-
formance, the Stokes vector-based pseudo-3-component decomposition approach [39]
or multi-polarimetric reflectivity/phase information (e.g., HydroGNSS) also need to be
addressed for use with the GNSS-R data. To prepare for a robust comparison between
SAR data and such polarimetric GNSS-R data, further improvement must be made to the
precision index model.

In this study, effective scattering area was employed as the footprint size for the following
two reasons. The L-band SAR polarimetric decomposition study of the rice paddies revealed
that the SAR backscattering intensity is mainly controlled by ground vegetation and is sensitive
to both canopy structure and ground inundation status and coherence was mostly low,
impeding the possibility of using polinsar approach [10,21,23]. From this study, we also
detected that most of the rice paddies whose L-band SAR backscattering intensity is relatively
high showed low GNSS-R reflectivity (Figure 9). This indicated that the GNSS-R signal over
the lowland wetlands/rice paddy is sensitive to ground-vegetation interaction and that the
reflective property is incoherent rather than coherent. In subsequent studies study, the First
Fresnel zone [40] should be considered as the footprint size, particularly for non-vegetated
wetlands or paddies with immature rice paddies whose number of days since sowing is
shorter than three weeks.

Regarding the nonlinear relationships between the CyGNSS reflectivity Γ and PALSAR-
2 backscattering intensity σ0 and between the CyGNSS reflectivity Γ and the inundation
percentages as affected by incidence angle differences, a model parameterization scheme
with an improved precision index model is desirable if both SAR data and GNSS-R data
are to be used cooperatively to overcome their observation scale differences.

5. Conclusions

For the operational use of GNSS-R data for sustainable tropical wetland management,
a simple quality control method was proposed in this study. Even without ad hoc parameter
tuning, the proposed simple model comprising the “precision index” and DDM 3D statistics
showed a fine performance in visualizing the spatiotemporal dynamics of wetlands at a
fine spatiotemporal resolution (500 m spatial resolution, 15-day temporal resolution). Even
without using a common change detection algorithm, the precision-index-model-based
approach showed temporal dynamics similar to those obtained using a change detection
algorithm. By considering the incidence angle difference, we also succeeded in improving
the sensitivity and dynamic range of the change detection results. As a result, we now are
able to detect two annual inundation peaks over the Mekong Delta, indicating that the multi-
cropping rice system dominating this region plays a major role in controlling the inundation
status of the delta. The DDM 3D statistics approach was applied to successfully denoise
the locally abnormal specular points by adaptively detecting specular points collected
over rough land surfaces. The comparison with L-band microwave SAR data based on
the precision index showed a reasonable mutual correlation and provided knowledge
of how the microwave scattering pattern is affected by the incidence angle over tropical
wetlands. Further study is required with a shorter-integration-time coherence product or
a polarimetric decomposition product (e.g., stokes vector) containing GNSS-R data with
1st-/2nd-order specular point velocity (e.g., acceleration) derivatives to enable more precise
comparisons with L-band SAR data.
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Abstract: The retrieval of soil moisture (SM) using the Global Navigation Satellite System-Reflectometry
(GNSS-R) technique has become a prominent topic in recent years. Although prior research has reached
a spatial resolution of up to 9 km through the Cyclone Global Navigation Satellite System (CYGNSS),
it is insufficient to meet the requirements of higher spatial resolutions for hydrological or agricultural
applications. In this paper, we present an SM downscaling method that fuses CYGNSS and SMAP
SM. This method aims to construct a dataset of CYGNSS observables, auxiliary variables, and SMAP
SM (36 km) products. It then establishes their nonlinear relationship at the same scale and finally
builds a downscale retrieval model of SM using the eXtreme Gradient Boosting (XGBoost) algorithm.
Focusing on the southern United States, the results indicate that the SM downscaling method exhibits
robust performance during both the training and testing processes, enabling the generation of a
CYGNSS SM product with a 1 day/3 km resolution. Compared to existing methods, the spatial
resolution is increased threefold. Furthermore, in situ sites are utilized to validate the downscaled
SM, and spatial correlation analysis is conducted using MODIS EVI and MODIS ET products. The
CYGNSS SM obtained by the downscaling model exhibits favorable correlations. The high temporal
and spatial resolution characteristics of GNSS-R are fully leveraged through the downscaled method
proposed. Furthermore, this work provides a new perspective for enhancing the spatial resolution of
SM retrieval using the GNSS-R technique.

Keywords: GNSS-R; CYGNSS; SMAP; downscaled; soil moisture

1. Introduction

Soil moisture (SM) plays a pivotal role in many natural phenomena and processes.
For instance, it directly affects crop growth and can be a significant factor in natural
disasters such as land degradation, floods, and landslides [1]. These issues have profound
impacts, including on food security and the stability of ecological environments, making
accurate and real-time monitoring of SM particularly important. However, traditional
SM detection methods have notable limitations. These methods primarily rely on direct
measurements from ground detectors or meteorological stations, which means they require
substantial human and material resources and are time-consuming [2]. Moreover, due to
the limitations of these methods, they cannot achieve large-scale, efficient, and low-cost
SM retrieval. For vast areas and complex terrains, their detection performance is severely
limited. Fortunately, the advent of remote sensing technology provides a new avenue
to address this issue. Remote sensing technology can use satellites or drones to monitor
the ground from the air, avoiding the difficulties of ground detection and thus achieving
large-scale SM retrieval [3,4]. In fact, the European Space Agency (ESA) and the National
Aeronautics and Space Administration (NASA) have launched the Soil Moisture and Ocean
Salinity (SMOS) satellite [5] and the Soil Moisture Active Passive (SMAP) mission [6] for
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SM retrieval. Both missions can achieve global SM retrieval with a spatial resolution of
about 40 km, and they can revisit the globe every 2–3 days. However, while remote sensing
technology and related satellite missions such as SMOS and SMAP provide global SM
retrieval capabilities, the resolution of these products is relatively low, making them more
suitable for large-scale applications. For medium- and small-scale applications that require
more detailed observations, such as irrigation management in farmland or flood warnings
in specific areas, these methods may not meet the needs.

The technique of Global Navigation Satellite System-Reflectometry (GNSS-R) rep-
resents a novel type in the field of remote sensing. Its internal L-band signal source is
adequate and exhibits high penetration capabilities for vegetation, soil, snow, etc. It is
capable of all-weather, all-day observation and has excellent potential for SM retrieval [7–9].
GNSS-R receivers are generally installed on the ground or on aircraft. Although they have
an excellent detection accuracy, the monitoring range limits its ability to achieve a wide
range of SM retrieval [10]. CYGNSS was successfully launched in 2016, with a revisit cycle
of 2.8 (median) and 7.2 (average) hours [11], providing ample data for SM retrieval by
GNSS-R technique. Thus, using the GNSS-R technique to retrieve SM has become a hot re-
search topic in recent years. Chew et al. [12] showed that there is a strong linear relationship
between the surface reflectance of CYGNSS and SMAP SM, and a global SM product with
a resolution of 36 km was produced through linear method. Ruf [13] proposed that SMAP
SM can be supplemented by using the relative signal-to-noise ratio (rSNR) of CYGNSS
to SM retrieval. Al-Khaldi et al. [14] considered that vegetation and surface roughness
would affect SM. They proposed a method for CYGNSS SM retrieval through time series.
A global SM product of 0.2◦ × 0.2◦ was finally generated. Considering that the terrain,
vegetation, and surface roughness have an impact on the GNSS signal, the relationship
between the signal and SM is relatively complex and nonlinear. Machine learning has been
frequently used in the study of CYGNSS SM retrieval because of its great advantages in
handling nonlinear situations. Eroglu et al. [15] combined CYGNSS observables with in
situ sites observations, Vegetation Water Content (VWC), Normalized Vegetation Index
(NDVI), and topography features. Finally, a daily SM product with a resolution of 9 km
was generated using the Artificial Neural Network (ANN). Senyurek et al. [16] obtained
the daily SM of the United States with a resolution of 36 km using CYGNSS and in situ
site observations based on machine learning algorithms. The results showed that the
prediction effect of Random Forest (RF) was the best, with an RMSE of 0.052. Jia et al. [17]
pre-classified land cover types and used the eXtreme Gradient Boosting (XGBoost) method
for SM retrieval. Compared with the accuracy of SM retrieval without pre-classification,
there was an improvement, with an RMSE of 0.052.

However, the SM products obtained from the aforementioned microwave remote
sensing data have a coarse resolution, which limits their utility in medium- and small-scale
hydrological and agricultural applications. Zhan et al. [18] first introduced an empirical
polynomial for downscaling, marking an initial exploration of effective strategies to address
this issue. Subsequently, Chauhan et al. [19] improved upon Zhan’s method, enhancing
its performance. In this empirical polynomial downscaling method, high-resolution SM
is expressed as a polynomial function of surface temperature, plant index, and surface
reflectance derived from brightness temperature data. This innovative method provides a
fresh perspective for tackling the downscaling of SM. Piles et al. [20] further optimized this
downscaling polynomial fitting method. Their improvement replaced surface reflectance
in the polynomial equation with coarse-resolution brightness temperature data, making
the method more flexible and efficient in handling practical problems. Moreover, this
polynomial fitting downscaling method has been widely applied in the downscaling of
various SM products, such as SMOS and AMSR-E, and also in various high-resolution
remote sensing image products, such as MODIS and MSG-SEVIRI. This has been confirmed
by many scholars [21–26]. Their research further validates the practicality and broad
application value of this method. In order to retrieve daily SM at a 9 km resolution,
Das et al. [27] downscaled the coarse-resolution (approximately 40 km) SMAP L-band
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brightness temperature data using the high-resolution (1–3 km) L-band Synthetic Aperture
Radar (SAR) backscatter observations. Based on artificial intelligence techniques including
Support Vector Machines, Artificial Neural Networks, and Associated Vector Machines,
Srivastava et al. [28] fused MODIS surface temperature with SMOS SM and enhanced the
spatial resolution of SMOS SM by using downscaling methods. The factor used to represent
the high-resolution state of SM plays a crucial role in determining the accuracy of the
downscaled SM. The downscaled SM has higher accuracy compared to the original coarse-
resolution SMOS and AMSR-E SM, with the R rising from 0.27 to 0.96 [29]. Compared
to the observed data, the accuracy of the downscaled SM has improved relative to the
products of SMOS and AMSR-E [30]. This means that downscaling methods could be
attempted to provide high-resolution SM for products such as SMAP, SMOS, AMSR-E,
and NASA-USDA.

The aforementioned research demonstrates both the significant advantages of using
GNSS-R technique for SM retrieval and the notable effects of using downscaling methods
to enhance the spatial resolution of SM products. However, no studies have yet used the
downscaling method to improve the spatial resolution of GNSS-R technique. At present,
the spatial resolution achieved by SM retrieval based on spaceborne GNSS-R is limited
(up to 9 km). Spatial downscaling of microwave SM is a crucial strategy. It addresses the
pressing need for higher spatial resolution SM data, which is essential for local hydrological
or agricultural applications. Therefore, this paper proposes a method for constructing a
SM downscaling model. This method aims to fuse the CYGNSS observables and auxiliary
variables with SMAP SM (36 km) products, forming a nonlinear relationship at the same
scale. Finally, a downscaling model will be built based on the XGBoost algorithm to retrieve
SM with a spatial resolution of 3 km. In the end, the SM retrieval using GNSS-R technique
is successfully spatially downscaled, improving the spatial resolution of SM retrieval.

2. Materials and Methods

2.1. Study Area

The study area is located in the southern United States, characterized by diverse
terrains and rich ecosystems. The region experiences a subtropical humid climate, with an
average annual precipitation of approximately 834.45 mm, contributing to the area’s rich
biodiversity and thriving ecosystems. Geographically, the study area exhibits significant
variations in altitude, ranging from −88 m to 4277 m, with an average altitude of 1778 m.
The terrain generally features higher elevations in the west and lower in the east. This
variation in terrain provides excellent conditions for studying the relationship between SM
and environmental factors such as terrain and climate. Ecologically, the primary land cover
types in the study area are grasslands and tropical savannas, collectively accounting for
55% of the total area. Additionally, a considerable portion of the western region is covered
by open shrublands, making up 13% of the total area. The elevation and land cover types
of the study area are shown in Figure 1.

135



Remote Sens. 2023, 15, 4576

 

Figure 1. DEM and land cover type map of the study area.

2.2. Cyclone Global Navigation Satellite System

As a component of NASA’s Earth System Science Pathfinder project, the Cyclone
Global Navigation Satellite System (CYGNSS) was launched on 15 December 2016. The
observatories are composed of eight microsatellites. They offer almost uninterrupted
coverage of the Earth due to their orbit inclination of approximately 35◦ to the equator. This
positioning results in an average revisit time of 7 h and a median revisit time of 3 h. This
inclination allows CYGNSS to cover an observational range from 38◦N to 38◦S. Therefore,
we selected the southern part of the United States as the study area (CYGNSS observables
cannot cover the entire US).

The objective of this study is to retrieve SM within a specific region. To achieve this,
we utilized the CYGNSS Level-1 (L1) version 2.1 product, with data sourced from the
Physical Oceanography Distributed Active Archive Center (PO.DAAC, https://podaac.
jpl.nasa.gov/, accessed on 1 April 2023). The primary goal of CYGNSS is to enhance
understanding and prediction of tropical cyclone intensity by leveraging signals from the
Global Navigation Satellite System (GNSS). The core component of this system is the Delay
Doppler Mapping Instrument (DDMI), whose main task is to generate Delay Doppler
Maps (DDMs) [31]. DDMs represent the received surface power of each observed specular
reflection point through a series of time delays and Doppler frequencies, measured on a
bin-by-bin basis. In other words, they provide a two-dimensional representation of the
reflection characteristics of GNSS signals. These characteristics are influenced by factors
such as SM and vegetation cover, and can therefore be used to infer SM. It is important
to note that the DDMI initially measures in uncalibrated “counts”, which have a linear
relationship with the total signal power it processes. The total signal power includes
thermal radiation from the Earth and the DDMI itself, as well as GPS signals scattered from
the land surface. However, during the Level-1A calibration process, each bin in the DDM
converts these raw counts into watts, allowing for a more intuitive understanding and
analysis of the data. The CYGNSS observables used in this paper cover the period from
1 January to 31 December 2019.
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The surface reflectivity can be estimated through a variety of methods with various
coherence and incoherence assumptions using the observables in the L1 data [15,32,33].
In water accumulation areas such as lakes, rivers, and wetlands, low surface roughness
leads to dominant coherent scattering in forward scattering. Even with higher SM, coherent
forward scattering remains strong due to water. However, GPS signals interacting with
vegetation introduce some incoherent components. Higher SM regions show a stronger
signal intensity due to a relatively higher SNR compared to lower SM areas. Thus, in this
paper, we adopted the approach proposed by Rodriguez-Alvarez et al. [32] to calculate
reflectivity, under the assumption that the observed GNSS-R signal is predominantly made
up of coherent reflections. This involves using the BRCS (denoted as ‘brcs’ in CYGNSS L1)
and the range terms to calculate the reflectivity (ΓRL(θi)) as:

ΓRL(θi) = (
4π

λ
)2 Pcoh

RL
(
rst + rsr)2

PtGtGr
(1)

where Pcoh
RL represents the dual base radar coherent receive power. The subscripts R and

L stand for the right circularly polarized GNSS transmit antenna and the left circularly
polarized GNSS-R antenna, respectively. The GNSS signal wavelength is denoted by λ. rst
and rsr refer to the distances from the specular reflection point to the GNSS transmitter and
the GNSS-R receiver, respectively. Pt signifies the peak power of the transmitting GNSS
signal. Gt and Gr are the gains of the transmitting and receiving antennas, respectively.
Lastly, ΓRL(θi) is the surface reflectance at an incidence angle of θi.

Leading Edge Slope (LES) and Trailing Edge Slope (TES) are indicators associated
with coherent or incoherent scattering conditions. An increase in the incoherent reflection
component within the reflected signal typically results in a corresponding increase in
the absolute values of both LES and TES. Following the methodologies presented by
Carreno-Luengo et al. [34] and Rodriguez-Alvarez et al. [32], LES and TES can be calculated
as follows:

LES =
Γm − Γm−3

3Δ
(2)

TES =
Γm+3 − Γm

3Δ
(3)

where Γm represents the peak reflectivity at the reflection point, Γm−3 is the reflectivity at
the third point before the reflection point, Γm+3 is the reflectivity at the third point after the
reflection point, and Δ stands for the delay resolution of the Doppler delay map, which is
0.2552 chips.

DDM_SNR is one of the most basic variables in CYGNSS observables. When the
value of SM increases in the same area, the difference between the corresponding values
of DDM_SNR also increases. Therefore, DDM_SNR is added to the model as a factor
affecting the SM retrieval. For SM retrieval in the machine learning framework, the
derived reflectivity, together with LES, TES, and DDM_SNR, are used as the input layer
characteristics of CYGNSS observables.

2.3. Soil Moisture Active Passive Data

The reference products utilized in this study primarily originate from the SMAP
satellite, launched by NASA in 2015. The primary mission of this satellite is to monitor
global surface SM and freeze-thaw states, aiming to gain a deeper understanding and
knowledge of the Earth’s surface water cycle, climate change, ecosystem dynamics, and
the impact of human activities. The SMAP satellite employs an L-band radiometer for
its observations, a device capable of penetrating clouds and most vegetation to directly
measure microwave radiation from the ground, thereby inferring SM and freeze-thaw
states. The SMAP satellite revisits each location every 2–3 days, offering a very short global
coverage cycle. Notably, the SMAP satellite carries out two types of observations: ascending
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(6:00 a.m.) and descending (6:00 p.m.) [35]. This design allows for comparisons and analyses
at different times for the same location, providing more comprehensive information.

The data used in this study is obtained from the National Snow and Ice Data Center
(NSIDC, https://nsidc.org/, accessed on 15 April 2023). We selected the SMAP Level-3
(L3) Radiometer Global Daily 36 km EASE-Grid Soil Moisture (Version 8, SPL3SMP) as the
reference product. This product offers daily estimates of global land surface conditions. The
data derived from SMAP’s L-band are resampled to a global, cylindrical, 36-km Equal-Area
Scalable Earth Grid. The data period is from 1 January to 31 August 2019, providing ample
samples for our study.

The original format of the SMAP product is HDF5. In this study, we use the HEG
tool (HDFEOS To GeoTIFF Conversion Tool) to convert it into an easily processed Geotiff
data format.

2.4. International Soil Moisture Network

In this paper, the in situ SM observations from the ISMN sites [36] are used to validate
the CYGNSS SM data predicted by the downscaling model. Globally, the ISMN has set up
more than 50 SM monitoring networks that are either operational or experimental. These
networks provide a unified in situ SM database on a global scale, with a standardized data
format and pre-processing quality flags [37]. The majority of sites that offer time and space
co-located with CYGNSS observables are located in North America. Consequently, we
selected 78 available sites within the spatial coverage of CYGNSS for our study (Figure 2).
These sites primarily belong to the Soil Climate Analysis Network (SCAN), the U.S. Climate
Reference Network (USCRN), and the Snow Telemetry Network (SNOTEL). The hourly SM
data from the ISMN was processed by filtering it with the provided quality mark (marked
with a “G” for “good”) and subsequently converting it into daily averages. The surface
SM data utilized was at a depth of 5 cm, aligning with the penetration depth of L-band
microwave signals. For a comprehensive overview of ISMN, readers can refer to [36,38].
The ISMN dataset can be accessed publicly (http://ismn.geo.tuwien.ac.at, accessed on
20 April 2023).

 
Figure 2. Geographic distribution of International Soil Moisture Network (ISMN) sites in the
study area.

2.5. Auxiliary Data

According to existing research, SM is influenced by additional variables in addition
to rainfall, including elevation, land cover type, annual accumulated days, Normalized
Difference Vegetation Index (NDVI), and latitude and longitude information of satellite sam-
pling points [31,39]. These factors are typically used as auxiliary variables in downscaling
methods [40–43].

Topography, as a significant non-living factor, greatly influences the variability of
soil hydrothermal resources. The differences in elevation directly impact the spatial re-
distribution of solar radiation and rainfall. Therefore, in our downscaling model, we
incorporated altitude as the topographic variable. The source of altitude data is the Shuttle
Radar Topography Mission (SRTM) [44]. The influence on SM varies with different types
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of land cover, as they have different effects on the storage and release of moisture. The
land cover type data used in this paper is based on the International Geosphere Biosphere
Programme (IGBP) [45] land cover map derived from the MODIS. NDVI is widely used to
assess vegetation growth, drought conditions, and ecological environments. Since NDVI
exhibits a high sensitivity to factors such as vegetative cover and SM content, it is also
used for retrieving SM and vegetation covering [46]. The NDVI product is calculated
from the daily 250 m product provided by MODIS (MOD09GQ). The precipitation plays a
significant role in vegetation growth and has a strong impact on SM. Precipitation affects
SM as it comes into contact with the soil, and there is a positive correlation between SM
and precipitation. Therefore, we include precipitation as an input variable in the model.
The daily average precipitation in the study area is obtained through the Climate Hazards
Group InfraRed Precipitation with Station data (CHIRPS) project. Table 1 summarizes the
fundamental characteristics of the auxiliary variables used in this paper.

Table 1. Overview of data utilized for the downscaling process in this paper.

Datasets Variables
Temporal

Resolution (Day)

Spatial

Resolution
Time

MOD09GQ NDVI 1 250 m 1 January–31 December 2019

MCD12Q1 Land cover - 500 m 2019

SRTM DEM - 30 m 2019

CHIRPS Precipitation 1 0.5◦ 1 January–31 December 2019

- Lon, Lat 1 - 1 January–31 December 2019

- Doy 1 - 1 January–31 December 2019

3. Soil Moisture Downscaling Framework

3.1. Random Forest (RF)

Ho et al. [47] first proposed the concept of Random Forest (RF) in 1998; then,
Breiman et al. [48] systematically developed it in 2001. RF is a collective model constructed
on the foundation of decision trees. It is implemented through the Bagging concept of
ensemble learning, aiming to solve the problem of overfitting that is common in single
decision tree algorithms. The decision tree is a fundamental component. Due to its
significant advantages in handling high-dimensional feature data and large datasets, RF
is widely used in multivariate regression problems. Compared with ordinary decision
trees, RF makes some improvements in the process of building decision trees. During the
generation of a regular decision tree, the optimal feature among all sample features on the
node is used. However, the RF algorithm randomly selects a certain number of attribute
features when generating a decision tree, and then picks the optimal feature from these
randomly selected features to construct the decision tree. The decision trees built using RF
have different structures. They will not lead to overfitting due to the addition of more trees,
but instead produce a limited value of generalization error. This approach not only reduces
fitting errors but also avoids repetitive learning, which helps to enhance the predictive
performance of the final model and improve its generalization ability.

The process of the random forest algorithm is: (1) Performing n random sam-
plings on the training dataset, each time taking m samples, to obtain a subset of data
Sn = {(x1, y1), (x2, y2), (x3, y3), · · · , (xm, ym)} containing m samples. (2) Using these sub-
datasets to train n weak prediction models fn(x) separately. (3) When training decision tree
model nodes, a subset of feature samples is selected from all samples. Then, the optimal
feature for splitting the decision tree is chosen from this randomly selected subset of feature
samples. (4) The results of the various weak prediction models are consolidated according
to the specific problem at hand. For regression functions, the final output is the arithmetic
average of all the weak prediction models.
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3.2. eXtreme Gradient Boosting (XGBoost)

The eXtreme Gradient Boosting (XGBoost) method, proposed by Chen et al. [49], is
also an ensemble learning method based on gradient boosting machines. Similar to RF,
XGBoost is a learner based on Classification and Regression Trees (CART). It implements
ensemble learning of multiple CART trees by optimizing the traditional Gradient Boosting
Decision Tree (GBDT). It can be used to solve various machine learning problems, including
classification and regression. While each tree in the RF algorithm is trained in parallel,
the decision trees in XGBoost are not mutually independent. The construction process
of the XGBoost model is as follows: First, an initial tree is built using the training set
for model training, which results in residuals between the model’s predicted and actual
values. Then, during each iteration, a tree is added to fit the residuals from the model’s
previous prediction until the model’s learning process is terminated. Ultimately, this forms
an iterative residual tree collection, an ensemble of numerous tree models. The predicted
value can be calculated as follows:

ŷi =
K

∑
k=1

fk(xi) (4)

where ŷi represents the final model prediction value, K represents all the built CART trees,
xi represents the features of the i sample, and fk(xi) represents the prediction value of the
k tree. The objective function calculation formula for XGBoost is shown in Equation (5):

Obj =
m

∑
i=1

l(ŷi, yi) +
K

∑
k=1

Ω( fk) (5)

where m represents the total amount of sample data imported into the k tree. The first term
is the loss function, which measures the error between the true value yi and the predicted
value ŷi. The second term is the regularization term, used to control the model’s complexity
and prevent overfitting. The complexity of each tree is defined as:

Ω( f ) = γT +
1
2

λ||w||2 (6)

where γ represents the difficulty of node splitting, T represents the number of leaf nodes,
λ is the L2 regularization coefficient to prevent overfitting, and w is the modulus of the leaf
node vector.

3.3. Light Gradient Boosting Machine (LGBM)

Developed by Microsoft Research in 2017, Light Gradient Boosting Machine (LGBM)
stands as one of the most effective and advanced machine learning algorithms [50]. LGBM
has evolved from the boosting regression algorithms. It employs a histogram-based algo-
rithm, storing continuous features into discrete bins. The use of a histogram-based method
accelerates the training speed and reduces memory usage. Additionally, LGBM utilizes the
leaf-wise tree growth algorithm. The growth process involves choosing the leaf with the
highest delta loss. This contrasts with many boosting algorithms (such as XGBoost) that
use a level-wise approach. Although a level-based approach ensures a consistent number
of leaves at each level, the leaf-wise strategy leads to a different number of leaves at each
respective level. This approach helps LGBM achieve lower loss. The main process of the
LGBM algorithm is shown in Equation (7):

Fn(x) = α0 f0(x) + α1 f1(x) + · · ·+ αn fn(x) (7)

where the classifier begins with n decision trees, and the weight assigned to the training
samples is 1

n . The weak classifier f (x) and its weight α are determined. The process
continues, with the classifier adjusting the weights until it arrives at the final classifier,
denoted as Fn(x). In summary, the main goal of the LGBM algorithm is to improve training
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efficiency and accuracy through feature parallelization and a histogram-based decision
tree algorithm. It also uses gradient boosting methods to continuously optimize the model,
thereby achieving better classification and regression results.

3.4. Genetic Algorithm, Back Propagation (GA-BP)

The Back Propagation (BP) neural network, a classic model in ANN (Artificial Neural
Networks), was first proposed by Hecht-Nielsen et al. [51]. This network comprises
an input layer, hidden layers, and an output layer, with neurons connecting each layer.
The output of a neuron depends on its input values, activation function, and threshold.
The BP neural network consists of two steps: forward propagation of information and
backward propagation of errors. Although the BP neural network has excellent self-
learning, adaptability, and self-organization capabilities and can effectively handle non-
linear problems, it has some limitations: Firstly, in order to reduce error and improve
accuracy, an appropriate number of neurons in the hidden layer need to be selected.
However, there is a lack of a clear method for this selection. Secondly, the BP neural
network randomly generates initial weights and thresholds. This results in adaptive and
global approximation processes that are time-consuming, thereby slowing the network’s
convergence rate. Lastly, the use of gradient descent by the BP neural network can often
lead to it becoming trapped in local minima.

The Genetic Algorithm (GA) is a global optimization probabilistic search method based
on the principles of biological inheritance and evolution [52]. The GA mainly includes
three operations: (1) Selection operation: The probability of an individual entering the next
generation population is determined based on the fitness value. The higher the fitness,
the greater the chance of inheritance. (2) Crossover operation: This is a key part of the
algorithm. Two individuals are selected from the population, and a portion of their genes
are exchanged to produce more optimal individuals in the new generation. (3) Mutation
operation: An individual is randomly selected from the population, and a mutation is
performed at a certain locus of its chromosome to produce a more optimal individual.
Combining crossover and mutation operations can achieve optimal search performance.
The GA has the characteristics of global search and parallel computation, but it lacks
learning ability. The application of GA can optimize the BP neural network. This combines
the GA’s global search traits with the BP’s learning and non-linear mapping abilities. As a
result, the network’s output accuracy improves.

3.5. Performance Metrics and Evaluation

The performance of models and the retrieval accuracy of downscaled SM are evaluated
in this paper using three indicators: Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and correlation coefficient (R). MAE is calculated as the average of the absolute
differences between each observation and the mean. This method circumvents the issue of
error cancellation, thereby providing a more accurate representation of the actual prediction
error magnitude. RMSE is commonly used as a standard to measure the prediction results
of machine learning models. The R can be used to measure the degree of correlation
between two variables. The calculation formulas for the three indicators are as follows:

MAE =
1
n

n

∑
i=1

|Xi − Yi| (8)

RMSE =∈
√

1
n

n

∑
i=1

(Xi − Yi)2 (9)

R(X, Y) =
Cov(X, Y)√
Var[X]Var[Y]

(10)

where n represents the amount of data used for modeling, X is the reference value of SM,
and Y is the retrieved value of SM. These three values are crucial for us to evaluate the
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prediction accuracy of the model. Among them, X is the known true value, and Y is the
value predicted by our models. To more accurately evaluate the performance of the model,
we introduce several key statistical indicators. Among them, Cov(X, Y) represents the
covariance of X and Y, which describes the degree of joint variation of X and Y. At the same
time, Var[X] is the variance of X, and Var[Y] is the variance of Y. These two indicators
describe the range of variation of X and Y, respectively. These three indicators jointly
evaluate the performance and prediction accuracy of the model. Covariance describes the
correlation between the model’s predicted values and the true values, while variance shows
the dispersion of the data. The changes in these data directly affect the predictive ability of
the model.

3.6. Downscaling Process

This study employed four ML techniques, including RF, XGBoost, LGBM, and GA-BP,
to downscale CYNGSS SM retrieval to 3 km, respectively. Each of the proposed downscaling
methods operates on a common principle: they create a statistical link between CYGNSS,
geospatial variables (such as elevation and land cover type), land-surface variables (such as
NDVI and precipitation), and SMAP SM at a coarse resolution of 36 km. In addition, SMAP
SM was used as the reference value of SM, predicted by the downscaling model. Finally,
the output covariates of the input variables were linked by using the following equation:

SM = f (ρ1, ρ2, ρ3, . . . , ρn) + ε (11)

where SM represents the downscaled SM data, which is determined by the regression
function of the machine learning models (RF, XGBoost, LGBM, and GA-BP), ε is the model
retrieval error, ρ1, ρ2, ρ3, . . . , ρn represent the input covariates (i.e., SNR, SR, LES, TES, NDVI,
DEM, land cover type, and precipitation). The total number of predictors is represented
by n. The steps of the downscaling method mentioned above can be briefly summarized
as follows:

1. Aggregation: The training procedure is carried out on the 36-km grid of SMAP SM.
To maintain consistency with the spatial resolution of SMAP SM, the high-resolution
CYGNSS observables and auxiliary variables (i.e., predictive factors) are aggregated to
a 36 km scale using a simple arithmetic averaging method. It is worth noting that the
theoretical resolution of the CYGNSS dataset used in this study is 7 × 0.5 km, while
the SMAP product resolution is 36 km. This means that multiple CYGNSS observation
points inevitably exist within the same SMAP grid. To address this, we average the
CYGNSS sample points within the SMAP grid during the spatial matching process.
Figure 3 presents the daily count of CYGNSS sampling points within the study area,
as well as the counts after matching with SMAP. Specifically, from January to August,
the counts correspond to the match with SMAP’s 36-km grid; from September to
December, the counts result from matching with the resampled 3-km grid of SMAP.

2. Model building: The aggregated data is divided into 70% for training and 30% for
testing. SMAP SM is used as the response variable, and CYGNSS observables and
auxiliary variables are used as input variables to train the four models: RF, XGBoost,
LGBM, and GA-BP.

3. Resampling: The CYGNSS observables and auxiliary variables are resampled to a
high resolution of 3 km using the nearest neighbor method. Subsequently, a spatial
connection is established between them.

4. Model application: The resampled 3-km high-resolution CYGNSS observables and
auxiliary variables were input to the downscaling models to obtain the downscaled
CYNGSS SM with a spatial resolution of 3 km.

5. Model evaluation: Once the most optimal downscaling models were determined
based on the lowest RMSE as a benchmark, these models were then evaluated for
accuracy using the testing set. Then, the 3-km downscaled SM obtained was validated
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using in situ data. Spatial analysis of the downscaled CYGNSS SM is conducted using
MODIS EVI and MODIS EV products.

 

Figure 3. Daily sampling counts of CYGNSS and their corresponding matched counts with SMAP.

The experimental process is based on the assumption that the spatial scale relationship
among SMAP SM, CYGNSS observables, and auxiliary variables maintains consistency. In
other words, the relationship models established at a coarse resolution are still applicable
at a high resolution [39,53,54]. The above experimental process is shown in Figure 4.

 

Figure 4. Flow chart of downscaling procedure.

4. Results

4.1. Models Evaluation

Following the methodologies outlined in Section 3, this paper constructs four CYGNSS
SM downscaling models and adjusts the hyperparameters for the RF, XGBoost, LGBM, and
GA-BP models. Hyperparameters are parameters given in advance in neural networks or
machine learning to control the learning process of the model. The appropriate selection of
hyperparameters is crucial for the predictive performance of the model and can also prevent
the occurrence of overfitting or underfitting. The common hyperparametric methods are
Grid search, Random search, and Bayesian optimization. This paper uses the Grid Search
method for hyperparameter adjustment. Although Grid Search requires a longer runtime
compared to the other two hyperparameter selection methods, it is a more exhaustive
search method that ensures the best hyperparameter combination is found within the given
parameter range. The final hyperparameter adjustment results are shown in Table 2.

143



Remote Sens. 2023, 15, 4576

Table 2. Results of hyperparameter adjustment for the four models.

Model Hyperparameters

GA-BP popu = 50, learning_rate = 0.001, epochs = 100, n_hidden layer = 10

RF n_estimators = 100, max_depth = 6, max_leaf_nodes = None,
min_samples_leaf = 1, min_samples_split = 2

XGBoost booster = tree, max_depth = 8, min_child_weight = 1, leaing_rate = 0.25,
n_estimators = 100, subsample = 0.9, colsaple_bytree = 0.6, gamma = 0

LGBM
learning_rate = 0.09, n_estimators = 100,
min_samples_gain = 0.1, max_depth = 6,

num_leaves = 50, subsample = 0.8, colsample bytree = 0.8

Through this process, we found the best combination of hyperparameters for each
model to ensure that the CYGNSS SM downscaling models have high predictive perfor-
mance. In the subsequent analysis, we will use these optimal hyperparameter combinations
to train the model and evaluate its performance. To preliminarily assess the performance
of the four models, this paper uses the method of ten-fold cross-validation for comparative
analysis. The dataset uses SMAP SM (36 km) as the reference value, and four CYGNSS
parameters, including SR, SNR, LES, and TES, as well as the auxiliary variables described in
Section 2. This paper selects the coarse resolution data (36 km) from January to August 2019
to construct the downscaling model, yielding a total of 303,354 samples. For the prediction
dataset, we use high-resolution data (3 km) from September to December, which provides
a total of 4,123,129 samples. The ten-fold cross-validation accuracy of the four models and
the running time of the models are shown in Table 3 and Figure 5.

Table 3. Summary of the overall accuracy of the ten-fold cross-validation of the four models.

Name
Time

t/s

Model Training Model Testing
RMSE MAE R RMSE MAE R

cm3/cm3 cm3/cm3 - cm3/cm3 cm3/cm3 -

GA-BP 46.16 0.071 0.055 0.834 0.072 0.055 0.831

RF 5712.91 0.011 0.007 0.996 0.031 0.021 0.969

XGBoost 25.90 0.037 0.027 0.958 0.038 0.028 0.955

LGBM 6.85 0.045 0.033 0.937 0.045 0.034 0.935

 

Figure 5. Summary of the accuracy of the ten-fold cross-validation of the four models. (a) RMSE;
(b) MAE; (c) R.

Table 3 and Figure 5 present the accuracy of the ten-fold cross-validation of the four
models and their execution times. In terms of execution time, the RF model took the longest,
reaching 5712.91 s. This could be due to the fact that the RF model needs to generate a large
number of decision trees during the training process and carry out complex voting and
averaging operations, thus taking a longer time. The execution time of the GA-BP model
was 46.16 s, significantly shorter than the RF model. However, the predictive performance
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of the GA-BP model was not satisfactory, with an RMSE of 0.072, an MAE of 0.055, and
an R of 0.831. These metrics indicate that the GA-BP model has relatively low accuracy
and stability in predicting SM. The XGBoost model had a shorter execution time of 25.9 s.
Its predictive performance was relatively good, with an RMSE of 0.038, an MAE of 0.028,
and an R of 0.955. These metrics indicate that the XGBoost model has high accuracy and
stability in predicting SM. The LGBM model had the shortest execution time, only 6.85 s,
although its predictive performance was not as good as the RF and XGBoost models,
with an RMSE of 0.045, an MAE of 0.034, and an R of 0.935. Nevertheless, these metrics
still indicate that the LGBM model has acceptable predictive performance. Therefore,
considering both execution time and predictive performance, the LGBM model performs
best in terms of time efficiency, but its predictive performance is slightly worse than the
RF and XGBoost models. Although the RF model takes the longest time, it has the best
predictive performance. The XGBoost model performs well in both execution time and
predictive performance. Although the GA-BP model has a shorter execution time, it has
the worst predictive performance.

Figure 6 presents the performance of the downscaling models XGBoost, RF, LGBM,
and GA-BP, which were constructed based on CYGNSS and auxiliary variables. The
CYGNSS SM predictions at a coarser resolution (36 km) were compared with the SMAP
SM predictions at the same resolution using the scatter plots for each model. It can be seen
that the XGBoost and RF models perform well, exhibiting strong consistency between the
CYGNSS SM and SMAP SM in both the training and testing set. The R for the training
set is 0.95 and 0.99, respectively, while, for the testing set, they are both 0.95. However,
the GA-BP model shows less satisfactory retrieval results, with an R of 0.84 for both the
training and testing set. When comparing the RMSE of the models mentioned, XGBoost
and RF models clearly outperform, with an RMSE of 0.038 and 0.012 for the training set,
and 0.039 and 0.033 for the testing set. In contrast, the GA-BP and LGBM models show a
higher RMSE, with 0.069 and 0.045 for the training set, and 0.070 for both in the testing set.
The RF model exhibits the lowest MAE, with 0.008 for the training set and 0.022 for the
testing set. However, the GA-BP and LGBM models show a higher MAE, with 0.054 and
0.033 for the training set, and 0.054 and 0.055 for the testing set, respectively.

The results indicate that the downscaling models built on RF and XGBoost outperform
the models constructed using LGBM and GA-BP. Overall, the RF and XGBoost downscaling
models demonstrate superior correlation and less error compared to the other models. This
may be due to the robustness and unpredictable nature of the RF and XGBoost algorithms.
When dealing with numerous variables at once, these techniques are intended to avoid
overfitting. However, compared to the RF model, the XGBoost model achieves high
accuracy with less time. Therefore, we mainly focus on downscaled SM from XGBoost
model in the following sections.

Figure 7 presents the importance scores for various variables in retrieving outcomes
with the XGBoost model. Among all input variables, the greatest impact on both the
36 km and 3 km resolution is seen with land cover and DEM. In particular, NDVI has a
more substantial influence at the 36 km resolution, while its effect diminishes at the 3 km
resolution. Conversely, influence of DDM_SNR is relatively low at the 36 km scale, but
shows an increase at the 3 km resolution.
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Figure 6. The retrieval accuracy of the four models in the training and testing datasets.
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Figure 7. Variables’ importance scores at (a) 36 km and (b) 3 km of XGBoost model.

4.2. Assessing the Accuracy of Downscaled Soil Moisture Using In Situ Observations

In the study area, we utilized the spatial coverage of CYGNSS and selected 78 sites from
the ISMN with ground-based observation data as our research subjects from 1 September
to 31 December 2019. These sites mainly come from SCAN, USCRN, and SNOTEL. Given
the utilization of SMAP SM as a reference for the downscaling model in this study, it is
essential to ensure the credibility of the assessment between downscaled SM and in situ SM
observations. To achieve this, we initiated accuracy statistics for SMAP SM and in situ SM
observations. Furthermore, to conduct a comprehensive time series analysis, we randomly
selected four in situ sites for comparative evaluation with SMAP SM.

Table 4 delineates the comparison between in situ SM observations and corresponding
SMAP SM. Analysis reveals that, out of all the in situ sites, 48 exhibit an MAE below 0.6,
while 58 showcase an RMSE below 0.7. Additionally, 50 sites demonstrate an R exceeding
0.7. The respective average values for MAE, RMSE, and R stand at 0.051, 0.062, and 0.813.
Overall, the majority of in situ sites exhibit commendable accuracy, thereby validating the
reliability of the downscaling model constructed with SMAP SM as a reference. Figure 8
further illustrates the time series comparison of in situ SM observations and SMAP SM
for randomly selected four in situ sites, with the time frame matching the dates of the
downscaling model’s prediction set. Of note is the 2–3-day revisit period of the SMAP
satellite, which inhibits the guarantee of simultaneous coverage for each in situ site within
the study area. Despite this limitation, the temporal variation of in situ SM observations (the
blue line) closely aligns with that of SMAP SM (the red line). This alignment underscores
SMAP SM’s capability to capture the temporal dynamics of in situ SM, thereby validating
the rationale for utilizing in situ SM observations in the downscaled SM assessment. To
provide a quantitative assessment of the downscaled SM from the XGBoost model, Table 5
includes the accuracy statistical data for the downscaled SM and in situ SM observations.

According to the data analysis results in Table 5, for the total of 78 sites we studied,
62% of the sites, or about 49 sites, have an R greater than 0.600. This value is quite high,
indicating that the downscaling model for these sites have good predictive performance.
Similarly, we have 54% of sites, about 43, with an RMSE less than 0.070, which also indicates
that these sites have a small retrieval error. Further, 53% of sites, or about 42 sites, have
an MAE less than 0.060, indicating that our model has a high accuracy of retrieval for
these sites. Overall, the average R, RMSE, and MAE of all sites are 0.712, 0.065, and 0.058,
respectively, demonstrating the excellent performance of our model overall. However,
we also found that the type of land cover may affect the accuracy of site validation. To
gain a deeper understanding of this issue, we conducted further analysis. After analysis,
we concluded that the downscaled SM for most sites using the XGBoost model is reliable
compared to the in situ SM observations. However, the validation accuracy of a few sites
is relatively poor. To better understand the accuracy of the downscaling model, we also
considered the type of land cover at the site location, as shown in Figure 9. This means that
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the type of land cover at the site location may affect the accuracy of the model. Through
further research and model adjustment, we hope to better predict and understand this
impact to optimize our model accuracy.

Table 4. Accuracy statistics for SMAP SM and in situ SM observations.

Evaluation Index Ranges Number of In Situ Site Average Value

MAE

<0.04 38

0.051
0.04–0.06 10
0.06–0.08 20

>0.08 10

RMSE

<0.06 48

0.062
0.06–0.07 10
0.07–0.08 11

>0.08 9

R

<0.60 22

0.813
0.60–0.70 6
0.70–0.80 10

>0.80 40

 

Figure 8. Time series of the SMAP SM and the in situ SM observations at the four sites.

Table 5. Accuracy statistics for downscaled SM and in situ SM observations.

Evaluation Index Ranges Number of In Situ Site Average Value

MAE

<0.04 24

0.058
0.04–0.06 18
0.06–0.08 19

>0.08 17

RMSE

<0.06 37

0.065
0.06–0.07 5
0.07–0.08 11

>0.08 25

R

<0.60 29

0.712
0.60–0.70 9
0.70–0.80 7

>0.80 33

148



Remote Sens. 2023, 15, 4576

 
Figure 9. Precision statistics of in situ observations of different land cover types.

As seen in Figure 9, in the 78 in situ sites, 22 are located in grassland areas. Among
these grassland sites, 14 have an R value less than 0.600, 13 have an RMSE less than 0.060,
and 14 have an MAE less than 0.06. For the 21 sites situated in farmland areas, 18 have
an R value less than 0.600, 10 have an RMSE less than 0.060, and 11 have an MAE less
than 0.060. Of the 12 savanna sites, 7 have an R value less than 0.600, 3 have an RMSE less
than 0.060, and 4 have an MAE less than 0.060. In the woody savannas, there are 13 sites,
with 8 having an R value less than 0.600, 6 with an RMSE less than 0.060, and 4 with an
MAE less than 0.060. Lastly, in the open shrublands, there are 4 sites. Two of these have
an R value less than 0.600, all 4 have an RMSE less than 0.060, and 3 have an MAE less
than 0.060. For the land cover types of deciduous broadleaf forests, mixed forests, closed
shrublands, and cropland/natural vegetation mosaics, the number of sites are 3, 1, 1, and 1,
respectively. Correspondingly, the sites with an R greater than 0.600 are 2, 0, 1, and 0. Sites
with an RMSE less than 0.060 are found to be 0, 1, 1, and 1, while those with an MAE less
than 0.060 are also 0, 1, 1, and 1.

This study primarily investigates the accuracy of downscaled SM models obtained
through the application of the XGBoost model across nine different land cover types. The
results indicate that sites located in grasslands and farmlands exhibit higher accuracy. This
may be attributed to the fact that SM retrieval based on GNSS-R technology tends to be
more accurate in flat areas than in areas with significant surface undulations or tree cover.
Additionally, grasslands and farmlands are common land use types; hence, we have more
sites for observation and validation. Conversely, the other seven land cover types have
fewer sites, leading to a lack of sufficient validation data, which could be a significant factor
affecting accuracy. Furthermore, we believe that other potential factors might influence the
accuracy of SM retrieval. For instance, the varying soil properties and complexities across
different regions could impact model performance. Highly heterogeneous soils or areas
with significant rock content could lead to inaccurate predictions. Changes in precipitation
and meteorological conditions might also affect the accuracy of the model. Prolonged
droughts or consistent rainfall could potentially lead to decreased model performance
during specific periods. The quality of GNSS-R technology data, the calibration process,
and observational errors could impact model accuracy to some extent. Additionally, if
there are changes in land use or land cover types in the study area during the observation
period, this could affect the training and validation data, consequently influencing the
model’s accuracy. However, despite lower accuracy in some areas, it is evident from our
results (Figure 9 and Table 5) that the downscaled SM model constructed in this study
generally achieves satisfactory results. This suggests that our method exhibits adaptability
and robustness, providing high accuracy in most scenarios.

4.3. Graphical Assessment of Spatial Distribution of Downscaled Soil Moisture

After the downscaled SM was validated using in situ sites, we proceeded to conduct a
spatial analysis to evaluate the effectiveness of the downscaling approaches. The down-
scaled SM from the XGBoost model was visually compared with high-resolution MODIS
EVI and MODIS ET products. The Enhanced Vegetation Index (EVI) is an indicator used
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to assess and monitor the health and growth status of vegetation [55]. When SM is low,
vegetation may be constrained by water availability, leading to slowed or stressed plant
growth. This may manifest as lower EVI values. Conversely, when SM is high, plants may
have ample water supply, promoting growth and resulting in higher greenness and ele-
vated EVI. Evapotranspiration (ET) refers to the sum of evaporation from the land surface
and transpiration from plants [56]. When SM is high, there is ample water supply in the
soil, and plant roots can absorb sufficient water for transpiration, thereby promoting the ET
process. Higher SM typically results in higher ET. Conversely, when SM is low, the water
supply in the soil decreases and plants face water limitations, leading to reduced plant
transpiration. Lower SM typically results in lower ET. Therefore, examining the variations
in EVI and ET within the study area can indirectly reflect changes in SM.

The following sections compare the relationships among the downscaled SM, EVI,
and ET for four periods: 9–14, 10–16, 11–17, and 12–19. We processed the downscaled SM
from the XGBoost model using simple Kriging interpolation, and then conducted a spatial
analysis with MODIS EVI and MODIS ET products.

As seen in Figure 10, the EVI values in the central and eastern of the study area are
relatively high, while those in the northwest and southwest are lower. This is related to the
vegetation cover in the study area and is consistent with the geographical characteristics of
the study area described in Section 2.1. Compared with the downscaled SM and EVI at the
same time, we can observe that areas in the study region with higher SM also have higher
EVI values, such as the sides of the Central Valley in the middle and the Appalachian
Mountains in the east. Conversely, areas with lower SM also have lower EVI values, such
as in the western regions of Oklahoma and Salt Lake City. It can be proved that there is a
correlation between SM and EVI. As seen in Figure 10(a-1), on September 14, the SM values
in the Homochitto National Forest, the Sabine National Forest in the south-central study
area, and the southeastern region are relatively high. Comparing this with Figure 10(a-3) at
the same time, we can see that the ET values in these areas are also high. The same pattern
can be observed when comparing Figure 10(b-1) with Figure 10(b-3), Figure 10(c-1) with
Figure 10(c-3), and Figure 10(d-1) with Figure 10(d-3). SM, as one of the main sources of
water for ET, may lead to higher ET in areas with higher SM. However, it is worth noting
that there are some discrepancies in the spatial distribution of downscaled SM, EVI, and
ET in some areas in the south-central study area (areas within the red box in Figure 10).
Because the downscaling model is established at a 36 km grid scale, some extreme values
are smoothed during the spatial aggregation process. As a result, the training samples
selected in the model construction process are all smooth data, with fewer extreme values.
This is not unique to our study, as all existing downscaling methods necessitate calibration
with coarse-resolution data initially, making the aggregation of high-resolution predictors
inevitable [26]. The result is that the downscaled SM has some mistakes.

Overall, the spatial distribution and temporal variation of the downscaled SM product
generated in this paper are relatively consistent with EVI and ET, both of which have a cer-
tain correlation with SM. Therefore, this indirectly verifies the accuracy of the downscaled
SM for the retrieval of SM in the study area.
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Figure 10. Distributions of the downscaled CYGNSS SM, MODIS EVI, and MODIS ET on
14 September 2019, 16 October 2019, 17 November 2019, and 19 December 2019.

5. Discussion

A key advantage of this study is the downscaling of CYGNSS based on the XGBoost
model using L-band passive microwave SM (i.e., SMAP SM) and auxiliary variables.
Instead, most previous studies downscale satellite SM products (AMSR-E, SMOS, and
SMAP, etc.) based on optical data [39,53,54,57]. Another advantage is that it improves upon
previous research that used CYGNSS to retrieve SM with a maximum spatial resolution of
9 km. Through the method of downscaling, this study has increased the spatial resolution
of SM retrieval using CYNGSS to 3 km. Furthermore, the downscaled SM can more
finely represent the spatial distribution changes in SM, offering substantial potential for
applications such as irrigation planning in agriculture.

The noteworthy limitations of this study may present opportunities for improving
the spatial downscaling of satellite SM outputs with coarse resolution. First, CYGNSS
observables are collected at pseudo-random positions, with irregular spatial and temporal
resolution. This is different from conventional remote sensing technologies, which have
repeatable swaths and consistent local collection times. As a result, mapping CYGNSS
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observables regularly in space presents a challenge in terms of assigning appropriate spa-
tial grid sizes. The spatial resolution of CYGNSS observations can vary greatly, ranging
from the first Fresnel zone with coherent reflections (0.5 km) to the scintillation zone with
incoherent reflections (i.e., dozens of km). Traditional methods of mapping using regular
spatial grids and integral time-step cannot fully account for this complexity in the spa-
tiotemporal resolution of CYGNSS signals [58]. However, a transformation procedure is
needed in order to match CYGNSS observables with other remote sensing and model-
ing data. This conversion process can introduce inaccuracies into the reflectivity, which
could have implications, not just for this study, but for all similar research endeavors as
well [12,17,59,60].

Second, during the model building process, the input CYGNSS observables and
auxiliary variable are aggregated from high resolution to 36-km coarse resolution using a
simple arithmetic averaging method. Furthermore, the SMAP SM encapsulates an average
representation of SM, which is spread across a spatial resolution of 36 km. The average SM
represents the SM of the whole region, and most of the information is ignored due to the
coarse resolution. Hence, the training samples chosen during the model building process
are smooth data with minimal extreme values. Models built from these samples invariably
influence the downscaled SM. The scale discrepancy between the input data for model
training and the SMAP products somewhat constrains the selection of suitable data during
the regression model construction process. If a large amount of training data is necessary,
choosing a research area that is large enough to assure the collection of enough training
samples becomes crucial. During the application of the downscaling model, due to the
increased heterogeneity and richer data representation at a 3 km resolution, there might
be extreme values that were not encountered during model training. This corresponded
with the results of Wakigari et al. [54]. Therefore, in practical applications, the downscaled
SM has some inevitable errors. These errors are not randomly generated, but are closely
related to the variance of SM in our training samples. In other words, the greater the
degree of variation or dispersion of SM in the training samples, the greater the retrieval
error may be. This is because a large variance means that the SM values in the dataset
have greater changes, which may lead to more errors in the model’s predictions. At the
same time, the results of the downscaling process are significantly affected by the number
and representativeness of the training samples. A sufficient number of training samples
can provide more comprehensive information, helping the model to better learn and
understand the characteristics of the data. The degree of representativeness of the samples
directly affects the generalization ability of the model. If the samples can fully represent
the characteristics of the entire data, then the model’s retrieval results on unknown data
will be more accurate.

Third, we used in situ SM observations, which are direct measurements from specific
locations. However, these data may introduce some uncertainties when validating our
downscaled SM model, mainly due to scale discrepancies. In our model, the downscaled
SM represents an average SM value over a 3 km × 3 km area, which is a broader spatial
average than in situ measurements. However, due to geographical conditions and human
activities, there may be significant variations in SM within this area. For instance, if a
location is under irrigation, it could lead to the recorded SM value at this point being much
higher than the area’s average. This scale discrepancy could pose some issues during the
validation phase. For example, if a site is located in an irrigation area, its SM measurement
might be significantly higher than the average SM of the area, leading to a large deviation
between the SM measurement and the model retrieval at this site during model validation.
This deviation is not a problem with the model, but is caused by spatial scale differences.

Fourth, the input optical data NDVI is inevitably affected by clouds during the model
construction and model application. This also leads to the downscaled SM exhibiting
optical properties. Factors such as cloud cover can impact the downscaled SM, leading to
the occurrence of null values [39]. The presence of clouds may influence the availability
of downscaled SM at the corresponding location. Furthermore, the 3 km resolution may
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present challenges, potentially leading to the presence of missing values in the downscaled
SM due to its inability to cover all processed pixels. To address this issue, we adopted
an approach similar to that described by Wei Shangguan et al. [53] to fill these gaps.
Specifically, we performed Kriging interpolation on the 3-km downscaled CYGNSS SM.
However, it is important to acknowledge that the utilization of interpolation unavoidably
introduces certain errors. Thus, some inconsistencies will present themselves during the
validation stage.

Fifth, we utilized only four auxiliary variables, namely rainfall, land cover type, DEM,
and NDVI. It is crucial to adequately consider the spatial scale of CYGNSS observation data,
SM reference data, and auxiliary variables for the accuracy of SM retrieval. Factors such as
soil type (sand, loam, clay, etc.) affect soil water absorption and the capacity to minimize
water loss, as well as surface temperature variations and water evaporation caused by
wind speed. As discussed by Volkan Senyurek [16], soil texture features are considered
to have the greatest impact on retrieval SM among auxiliary inputs. In summary, while
the method proposed in this paper has achieved a commendable accuracy in SM retrieval,
there is room for improvement by considering a wider range of auxiliary factors. This has
the potential to further enhance the accuracy of SM retrieval using GNSS-R.

Sixth, in assessing the spatial distribution of downscaled SM, this paper has not yet
considered the influence of a variety of factors on plant growth and ET. These factors
include light conditions, temperature, soil texture, and carbon dioxide concentration, all
of which may have an impact on the accuracy of MODIS EVI and MODIS ET products,
as changes in these factors may result in changes in vegetation activity and ET. There are
limitations in using these products to assess the spatial distribution of downscaled SM.
Considering that these factors may add to the complexity of the assessment, future research
could attempt to integrate these factors to obtain more accurate downscaled SM estimates.

Seventh, in the process of evaluating the spatial distribution of downscaled SM, we
employed the Kriging interpolation method. However, the Kriging interpolation method
might not be optimal, as it measures SM with limited physical significance and could result
in spatial heterogeneity. Therefore, in future research, it is essential to compare different
interpolation methods and investigate their impact on downscaled SM. Selecting the most
suitable interpolation method will facilitate the assessment of the spatial distribution of
downscaled SM.

Finally, there are some limitations concerning the geographical scope of our study
area and the duration of the data utilized. When validating the downscaled SM using
in situ sites, we observed that, aside from grasslands and farmlands, the availability of
in situ sites for other land cover types was limited. This paucity of data can hinder a
comprehensive validation. By expanding the study area, the number of in situ sites for
other land cover types would increase, thereby augmenting the validation dataset and
enhancing the accuracy and reliability of our model performance assessment. In this study,
the SM downscaling model was constructed using data from January to August 2019, while
data from September to December was used for SM retrieval. This may introduce seasonal
biases into the constructed downscaling model, leading to certain inaccuracies. Extending
the data period for a year or even longer could mitigate such seasonal effects, thus boosting
the reliability of the downscaling approach.

6. Conclusions

In this paper, we propose a downscaling method for CYGNSS SM based on the
XGBoost algorithm, using high-resolution CYGNSS observables and auxiliary variables as
input data to improve the spatial resolution of GNSS-R technique retrieval of SM to 3 km.
The method selects common downscaled variables such as DEM, land cover, NDVI, and
rainfall. We enhance and improve the polynomial-based downscaling regression model
by incorporating parameters of SR, SNR, LES, and TES from CYGNSS. Experiments were
conducted using data covering the southern United States, and the results were validated
by 78 in situ sites. The results show that the downscaled SM achieves R, RMSE, and MAE
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of 0.712, 0.068, and 0.058, respectively, compared with the in situ SM observations. Spatial
analysis using MODIS EVI and MODIS ET products shows that the spatial distribution and
temporal variation of the downscaled CYGNSS SM products are more consistent with the
EVI and ET products. The feasibility of the method is proved. Additionally, we discuss a
number of problems that came up throughout the downscaling and validation process.

Overall, the findings of this study offer valuable insights for enhancing SM downscal-
ing methods. This is crucial for advancing high-resolution SM retrieval. In future research,
it will be key to develop gap-filling methods to address missing remote sensing data and
refine the downscaling model. Additionally, researchers could consider using satellite
SM products from various sources (e.g., SMAP, SMOS, AMSR-E, NASA-USDA, etc.) as
reference values for downscaling models. This could aid in determining the most efficient
downscaled SM products that are best suited to the particular conditions of the selected
study area. Additionally, future research could consider a gradual downscaling approach
(for instance, downsizing from 36 km to 9 km, followed by a reduction from 9 km to 3 km),
as opposed to an immediate downscaling from 36 km to 3 km.
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Abstract: With the development of spaceborne global navigation satellite system-reflectometry
(GNSS-R), it can be used for terrestrial applications as a promising remote sensing tool, such as soil
moisture (SM) retrieval. The reflected L-band GNSS signal from the land surface can simultaneously
generate coherent and incoherent scattering, depending on surface roughness. However, the con-
tribution of the incoherent component was directly ignored in previous GNSS-R land soil moisture
content retrieval due to the hypothesis of its relatively small proportion. In this paper, a detection
method is proposed to distinguish the coherence of land GNSS-R delay-Doppler map (DDM) from
the cyclone global navigation satellite system (CYGNSS) mission in terms of DDM power-spreading
features, which are characterized by different classification estimators. The results show that the
trailing edge slope of normalized integrated time-delay waveform presents a better performance
to recognize coherent and incoherent dominated observations, indicating that 89.6% of CYGNSS
land observations are dominated by the coherent component. Furthermore, the impact of the land
GNSS-Reflected DDM coherence on soil moisture retrieval is evaluated from 19-month CYGNSS data.
The experiment results show that the influence of incoherent component and incoherent observations
is marginal for CYGNSS soil moisture retrieval, and the RMSE of GNSS-R derived soil moisture
reaches 0.04 cm3/cm3.

Keywords: GNSS reflectometry (GNSS-R); cyclone global navigation satellite system mission (CYGNSS);
coherent scattering; soil moisture

1. Introduction

Soil moisture (SM) is an essential parameter for the hydrology and energy cycle. Rapid
acquiring and accurate monitoring of terrestrial SM is not only required in the hydrological
research but also a significant benefit to water management and agricultural production.
Since the L-band microwave has a strong sensitivity to the change of surface SM and can
more easily penetrate the atmosphere and vegetation canopy, it has been widely used as
the main soil moisture remote sensing frequency band in the satellite-based radiometer and
radar missions [1]. Such as the European Space Agency’s (ESA) Soil Moisture and Ocean
Salinity (SMOS) mission and the National Aeronautics and Space Administration’s (NASA)
Soil Moisture Active Passive (SMAP) mission, both can provide global SM measurement
with the spatial resolution on the order of 40 km and coverage every 2–3 days using carried
L-band radiometer. Spaceborne global navigation satellite system-reflectometry (GNSS-
R) is an innovative and sustainable low-cost technique with high spatial and temporal
resolution [2], which operates as a passive bistatic forward scattering radar. The observe
system directly receives the pre-existing signals transmitted by the GNSS satellites reflected
off the Earth’s surface [3], and the received scattering signals are typically expressed in a
delay-Doppler map (DDM) for Earth’s surface geophysical parameters retrieval [4], which
provide a new paradigm in the land remote sensing to cover the space-time gap of the
traditional high-cost dedicated monostatic active or passive satellite missions.
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In the past decade, spaceborne GNSS-R has undergone rapid development with suc-
cessfully deployed satellite missions, such as the UK Technology Demonstration Satellite-1
(TDS-1, launched in July 2014), NASA’s cyclone global navigation satellite system (CYGNSS,
launched in December 2016), China’s Bufeng-1 A/B mission (launched in June 2019) [5].
Although all missions were originally designed for ocean surface wind speed retrieval,
they also provided a large number of land observations for terrestrial remote sensing
applications, such as soil moisture retrieval, forest biomass estimation, and wetland ex-
tent detection [6]. However, there are many differences between GNSS-R land and ocean
applications [7]. Before using GNSS-R for geophysical parameters retrieval, the key issue
is to determine the scattering mechanisms of observed DDM. Over the sea surface, the
surface height standard deviation is at least a significant fraction of the signal wavelength
under windy conditions and increases with the wind speed [8,9], so the L-band GNSS
signal echoes from the ocean are purely incoherent, which can be well explained by the
Z-V model [10]. Compared to the ocean surface, the L-band signal scattering from the land
surface is more complicated, and the GNSS signal returns are affected by many factors,
such as soil moisture, vegetation, surface roughness, inland water, topographic relief, and
soil texture. The DDM generated after noncoherent integration loses phase information,
and the land surface small-scale roughness is variant in space and time, which is extremely
difficult to be determined. As a result, it is hard to distinguish the coherence of land
reflected DDM, which affects its subsequent land applications.

In previous GNSS-R land applications, it has been generally assumed that the coherent
component dominates the land scattering field, and the incoherent component is negligible.
The coherence defined here refers to reflected signals from the first Fresnel zone arriving
at the GNSS-R receiver with similar phase shifts [9]. Many studies have proved that
coherent DDM derived reflectivity is sensitive to the change of soil moisture and forest
biomass [11–15]. However, due to the sensitivity of coherent and incoherent observation
on the land geophysical parameters is different, it is important to distinguish the coherence
of observations for quantified parameter retrieval. Theoretical simulations have revealed
that the roughness of the land surface was close to 5 cm, where only incoherent scattering
will occur [9]. Meanwhile, the effect of topography is independent of surface roughness,
and the topographic relief can mitigate the reflectivity [16]. Different DDM observables
have been used for GNSS-R sea ice detection based on the difference of coherent reflected
signal from the sea ice surface and diffuse scattering from the sea surface [17,18]. However,
it is relatively difficult to verify the coherence of current ground CYGNSS data. The
coherence of a single complex DDM look can be robustly distinguished based on the
differences of coherent and noncoherent integration from the “raw IF” signal [19] because
the correlated power of a perfectly coherent signal will increase over the given period
from longer integration lengths, while the incoherent will not. Unfortunately, the CYGNSS
mission only recorded very few I/F signals limited by its storage capability. Nevertheless,
with the help of these I/F signals from the land surface, different estimators have been
characterized in the studies for DDM coherence detection [7,20], and the results show that
the purely coherent reflection only occurs over the inland water surface in spaceborne
GNSS-R observation. The problem is that the differences in estimator performance can lead
to different results, and the I/F signal dataset used is too small, lacking sufficient persuasive
power. Based on the different assumptions, several SM inversion methods have also been
developed, such as spatial averaging, combine linear regression method, machine-learning
method, and the global inversion accuracy of SM can reach about 0.05 cm3/cm3 [21–30].

In this paper, a statistical method is developed to detect the coherence of CYGNSS
level-1 DDM from the land. We assume that the delay-Doppler-spreading features of
incoherent DDM from the ocean and land scattering are similar, which all present a
typical “horseshoe” shape, only the magnitude of the absolute scattering power differs.
The defined estimators are used to determine the flag of coherence in terms of known
incoherent DDM from the windy ocean surface, and the inversion accuracy of GNSS-R
derived soil moisture with high confidence coherent DDM is evaluated and validated.

158



Remote Sens. 2021, 13, 570

The paper is organized as follows, Section 2 introduces the scattering theory over the sea
surface and smooth soil surface and the definition of the coherent classification estimators
based on the difference of typical coherent and incoherent dominated DDM. Section 3
shows the classification performance of different estimators, the distribution characteristics
of coherent and incoherent observation over the land surface, and presents soil moisture
retrieval results. Section 4 discusses the impact of coherent and incoherent DDM on SM
remote sensing applications. Finally, conclusions are summarized in Section 5.

2. Methods and Datasets

If the land surface is relatively flat and smooth, the roughness of the scattering re-
gion is lower than the scale of the wavelength of the incoming GNSS signal; then the
scattering mechanism is different from the diffuse scattering general occurring over the
ocean surface. The land-coherent scattering only comes from the first Fresnel zone around
the specular point instead of the whole glistening zone. The image theory and Friis
transmission equation are used to explain this coherent forward scattering process, and
the geophysical characteristics of the reflection surface are indicated by reflectivity [31].
As the surface roughness increases, the contribution of the incoherent component dra-
matically increases [32]; when the surface roughness approaches the signal wavelength
scale, the conditions on the sea surface will recur. Next, we first introduce the scattering
model, then present our coherence detection estimators, dataset, and GNSS-R soil moisture
retrieval algorithm.

2.1. Bistatic Forward Scattering

The DDM is the function of signal time-delay and Doppler frequency shift from
the surface specular point, which implies the mapping relationship of scattering power
between space and delay-Doppler domain. When the L-band signal impinges on the rough
sea surface, incoherent scattering occurs in most cases and scattering power can be well
signified by the Z-V model [6]:

P(τ̂, f̂D) =
T2

I PTλ2
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GTσ0GR
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RR2
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where P(τ̂, f̂D) is the complex, diffuse scattering power, PT is the right-hand circular
polarized (RHCP) transmitted power of the GNSS satellite, GT is the transmitter antenna
gain, GR is the GNSS-R receiver antenna gain, RR is the distance from the receiver to the
scatter point over the ocean surface, RT is the distance from the transmitter to the scatter
point, λ is the wavelength of the GNSS carrier, TI is the coherent integration time, σ0 is
normalized bistatic radar cross-section, Λ(τ̂ − τ) is the correlation function of the GNSS
navigation code, τ̂ and τ are the local replica code in the receiver and received signal time
delays, respectively, sinc( f̂D − fD) is the attenuation due to Doppler misalignment, f̂D and
fD are the local replica code in the receiver and received signal Doppler frequency shift,
respectively. The product of the correlation function and the sinc function is called the
Woodward ambiguity function (WAF) of the GNSS PRN navigation code. A indicate the

159



Remote Sens. 2021, 13, 570

glistening zone, dA is the differential area within the glistening zone. The σ0 can be further
expressed as:

σ0 =
π|�LR(θ)|2→q

4

q4
z

P

(
−

→
q ⊥
qz

)
(5)

where �LR is the Fresnel reflection coefficient of scattered left-hand circular polarized
(LHCP) signal over the sea surface,

→
q is the scattering unit vector,

→
q ⊥ and qz are horizontal

and vertical components, respectively, and P is the probability density function of the sea
surface slope. The coherent integration time commonly sets 1ms on the delay Doppler
mapping instrument to generate a single DDM look. Due to the diffuse scattering signals
over sea surface being relatively weak, to improve the signal-to-noise ratio (SNR) of DDM
and reduce the effect of speckle and thermal noise within a coherent integration of a DDM
look, there is an extra noncoherent integrated step that takes 1 s, during which the received
signal will lose the phase information. Normalized bistatic radar cross-section (NBRCS)
has been used as the land surface remote sensing fundamental observable in the backward
scatterometer for a very long time, which is also reasonable to be employed in GNSS-R
with specific calibration.

Theoretically, real land scattering power consists of coherent and incoherent compo-
nents. After noncoherent integration, the DDM can be expressed as:〈∣∣∣P(τ̂, f̂D)

∣∣∣2〉 =

〈∣∣∣Pcoh(τ̂, f̂D)
∣∣∣2〉+

〈∣∣∣Pincoh(τ̂, f̂D)
∣∣∣2〉 (6)

where
〈∣∣∣Pcoh(τ̂, f̂D)

∣∣∣2〉 and
〈∣∣∣Pincoh(τ̂, f̂D)

∣∣∣2〉 are coherent and incoherent contributions,

respectively. Previous studies focus on land SM retrieval directly assumed that the inco-
herent item is negligible on Earth’s land surface; the received scattering power mainly
concentrates from the adjacent region around specular point. According to the image
theory and Friis transmission equation, the coherent scattering power coming from the
first Fresnel zone can be expressed:

Pcoh =
PTGTλ2GR

(4π)2(RR + RT)
2 Γ(θ)γ2 exp(−(2kσ cos(θ))2) (7)

where Γ is reflectivity, it is the function of the Fresnel reflection coefficient � (Γ(θ) =

|�LR(θ)|2). γ is the transmissivity which indicates the vegetation layer attenuation, it is the
function of vegetation opacity depth (VOD) τ( γ= exp(−τ sec θ)). The exponential term
represents signal attenuation caused by surface roughness. k is the wavenumber, and σ
represents the standard deviation of surface height. The size of the first Fresnel zone is
related to the height of the receiver platform and signal incidence angle. For the CYGNSS
mission, the diameter of the first Fresnel zone is about 0.5 km. Considering this small area
compared to the spatial resolution of CYGNSS DDM pixels, it is reasonable to directly pick
the peak power value in the DDM to calculate reflectivity. According to Equation (7), the
surface reflectivity can be derived as follows:

Γ(θ) =
(4π)2Ppeak(RR + RT)

2

λ2PTGTGR
(8)

where Ppeak is the coherent power with surface roughness and vegetation attenuation
correction. Since the velocity of CYGNSS satellites along the track is 7 km/s, the spatial
resolution corresponding to the peak power measurement is about 0.5 km × 7 km. After
June 2019, the sampling frequency of the CYGNSS mission has increased to 0.5 Hz, which
allows the spatial resolution along the direction of satellite movement to reach 3.5 km.

When the roughness of the land surface is comparable to the scale of GNSS carrier
wavelength, incoherent scattering will occur over the land surface. Since there is no
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reliable high spatial-temporal surface roughness information, it is difficult to determine
the coherence of a DDM. The aforementioned assumption indeed ignores two issues for
GNSS-R SM inversion. On one hand, if we directly consider that the main contribution
of scattering power comes from the coherent component, which implies the influence of
the incoherent components in DDM is ignored. On the other hand, when the GNSS-R
observation footprint passes through the land surface with large roughness, the purely
incoherent signal will be received, the influence of incoherent observations on the SM
inversion is ignored as well. There is a big difference between the sensitivity of coherent
and incoherent DDM observables to the SM level [9], so it is important to evaluate the
influence of the previous assumption. Due to the different scattering mechanisms that
happen behind the coherent and incoherent observations, the shape and magnitude of the
measured scattering power in the DDM are different. The coherent DDM resembles the
WAF itself without delay-doppler spreading [33]. Figure 1a shows a typical land reflected
DDM over the winter wheat field. As a comparison, Figure 1b presents the DDM observed
over the ocean surface with the 6.6 m/s wind speed near the specular point. The received
diffuse scattering signals come from the entire glistening zone with the WAF spreading in
the direction of delay and Doppler axis; DDM exhibits the typical “horseshoe” shape.

Figure 1. Typical scattering-power delay-Doppler map (DDM) and delay waveforms over the land
surface (a,c) and ocean surface (b,d).

The time-delay waveform (DW) is the 1D representation of DDM; it is also a funda-
mental observable in the GNSS-R study, which usually includes two types: central Doppler
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time-delay waveform (CDW) and integrated time-delay waveform (IDW). The CDW is
the zero Doppler delay scattering power in the DDM. The IDW is obtained by summing
the columns along the Doppler axis of DDM. In our classification method, we also define
the deviation of time-delay waveforms (DDW) calculated by IDW subtracting CDW at
each time delay bin. It can be noticed from the land reflected DW in Figure 1c that the
trailing edge scattering power quickly decreases to the noise floor level after the peak point,
and the deviation between CDW and DDW is small. Whereas the scattering power of
the trailing edge of DW derived from the sea surface scattered DDM decreases slowly,
especially for IDW and DDW, which is shown in Figure 1d, and the peak and trailing
edge power of DDW are much larger than CDW. As the land topography changes and
the surface roughness increases, which can lead to the intensity of the incoherent field
strengthened rapidly, the coherent field weakens according to the conservation of energy.
Then, the magnitude and distribution characteristics of DDM gradually approach the sea
surface observations. Based on these features, we proposed a method to classify CYGNSS
coherent and incoherent observations.

2.2. Definition of Classification Estimator

Since the DDM observed from the ocean surface dominated by incoherent scattering
and from the relatively flat land surface dominated by coherent scattering are significantly
different [17,25], the coherence classification method proposed here is based on the shape
and distribution characteristics of power-spreading in the DDM. Here and after, we directly
call coherent component dominated DDM as coherent DDM, and incoherent component
dominated as incoherent DDM. The whole classification idea is inspired by GNSS-R sea ice
detection [17,18], and both are essentially determining the similarity to the coherent model.
For the coherent DDM, it resembles the Woodward ambiguity function (WAF) without
delay-doppler spreading [33], while incoherent DDM exhibits the typical “horseshoe”
shape. The calculation of the defined classification estimators is introduced in the following
part in detail. To characterizes the difference in the coherence of DDM, combining the
known typical range of estimator values calculated from ocean scattered incoherent DDM,
the threshold of coherence can be determined in the CYGNSS land observation. It should
be noted that the reference position of defined DDM estimators from the land surface
refers to the delay and doppler bin of the DDM peak power. If the DDM observable can be
calculated from the DW, the selected window is set to spanning 5 time-delay bins from the
peak. For the DDMA calculation, the selected delay/Doppler window is a 5 × 3 matrix
with the center located on the peak location. The given window size mainly depends on
two reasons. On one hand, the position of peak power is not fixed in each CYGNSS DDM,
so when the entire DDM is directly used to calculate the estimator, the range of statistical
delay and Doppler is different. On the other hand, it is based on the shape of WAF, which
is shown in Figure 2. The main coherent reflection power concentrate on this zone. The
final objective is to compute the probability density function (PDF) of DDM observables
in the land and ocean observations to determine the separation threshold of coherent and
incoherent dominated observations.

Figure 2. The delay spreading function (a), Doppler-spreading function (b), and Woodward ambiguity function (c).
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1. TES: It is the trailing edge slope of the normalized DW and determined using the
least-squares fitting within the time-delay window to a linear expression:
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2 (9)

where n = 5 is the number of time-delay bins for the linear fitting. τi is the time-
delay of each bin. PN

i is the normalized scattering power in raw count within the
corresponding time-delay bin.

2. TEV: It is the average volume of the normalized DW trailing edge:

PN
TEV =

1
n

n

∑
i=1

PN
i (10)

3. TEV_POW: It is the average absolute scattering power of the DW trailing edge:

PTEV_POW =
1
n

n

∑
i=1

Pi (11)

where Pi is the scattering power of the corresponding time-delay bin.
4. DDMA: It is the average of the normalized scattering power DDM near its peak:

σN
DDMA =

1
nm

n

∑
i=1

m

∑
j=1

PN
i,j (12)

where n and m indicate the selected size of delay and Doppler window.
5. DDMA_POW: It is the average of the absolute scattering power DDM near the peak:

σDDMA_POW =
1

mn

n

∑
i=1

m

∑
j=1

Pi,j (13)

6. MF: It is known as the WAF-matched filter (MF) approach, which directly calculates
the correlation coefficient of normalized DDM and unitary energy WAF:

RMF =

∣∣∣∣
〈〈∣∣∣P(τ̂, f̂D)

∣∣∣2〉, χ(τ̂, f̂D)

〉∣∣∣∣
2

〈〈∣∣∣P(τ̂, f̂D)
∣∣∣2〉,

〈∣∣∣P(τ̂, f̂D)
∣∣∣2〉〉〈χ(τ̂, f̂D), χ(τ̂, f̂D)

〉 (14)

2.3. Dataset for Soil Moisture Retrieval

CYGNSS is part of the NASA Earth system science pathfinder program; it is deployed
as the first dedicated spaceborne GNSS-R constellation launched in December 2016. The
space segment consists of eight microsatellites orbiting on a non-synchronous near-circular
orbit with an inclination of approximately 35◦ (all spacecraft distributed on the same orbital
plane). Each spacecraft is capable of tracking 4 reflections simultaneously, resulting in
32 DDMs per second over the Earth’s surface. The standard CYGNSS DDM consists of
17 delay bins with the resolution of a quarter of the GPS C/A chip by 11 Doppler bins
with an interval of 500 Hz. Each DDM was processed using 1 ms coherent integration
followed by 1000 looks of noncoherent averaging. After July 2019, the noncoherent time
was reduced to 0.5 s. The primary objective of CYGNSS is to monitor the wind speed
during the evolution of tropical cyclones. The footprint of its measurement covers the
critical latitude band between ±38◦ [34]. At the same time, it also provides substantial
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land observations within this scope. The work conducting in this paper uses the CYGNSS
level-1 DDMs in power analog from published version 2.1 data product ranging from
January 2018 to August 2019. General data quality control (QC) in the land application is
also utilized, the DDM SNR lower than 2 dB, receiver antenna gain at the specular point
direction lower than 0 dB, and specular incidence angle over 65◦ are screened. To get
the purely incoherent DDMs from the ocean surface [9], the corresponding DDMs with
ERA5 wind speed greater than 5 m/s are employed. Land and sea surface observations are
directly distinguished by the quality flag provided in the CYGNSS level-1 data.

The SMAP dataset used as the land surface reference SM is version 6 level-3 radiometer
global daily 36 km equal-area scalable earth grid version 2.0 (EASE-Grid 2.0) soil moisture
product within the same period time of the CYGNSS dataset [35], except the data product
missing from 20 June to 22 July 2019. The SMAP SM data provides daily descending (a.m.)
and ascending passes (p.m.) measurement, including the auxiliary parameters VOD (in the
SMAP product indicates vegetation opacity parameter) and surface roughness coefficient
(in the SMAP product indicates vegetation_roughness_coefficient), which are used to
correct the attenuation of CYGNSS scattering power from the impact of surface roughness
and vegetation canopy. In the soil moisture retrieval process, only the recommended data
are used without the open water, urban area.

2.4. Soil Moisture Retrieval Algorithm

In previous spaceborne GNSS-R soil moisture retrieval studies, the primary method-
ology is to establish the relationship between GNSS-R derived land surface reflectivity
and reference truth SM values, which assumes that coherent component dominates GNSS-
R land scattering field. In the theory of surface electromagnetic scattering, the surface
reflectivity is the function of the incidence angle of the incoming signal and the Fresnel
reflection coefficient; the latter one is mainly affected by the near-surface SM [1]. Figure 3
simulates the relationship between reflectivity and SM at different incidence angles with
the solid line, where the semi-empirical Dobson model is used to mapping the relationship
between soil moisture and complex permittivity [36]. The surface reflectivity increases
monotonously with soil becoming wetter, and the response of reflectivity to the change
of SM from 0.0 cm3/cm3 to 0.7 cm3/cm3 can reach 10 dB. The effect of the incidence
angle on the mapping relationship between SM and reflectivity is negligible when the
incidence angle is less than 60◦. In our CYGNSS SM inversion experiements, the DDM
peak value of coherent scattered power is picked in the CYGNSS level-1 data as the left
term of Equation (7). Since the small scale roughness and upwelling vegetation cover can
attenuate the scattering signal, the roughness and vegetation correction in Equation (7)
directly use the roughness coefficient and VOD parameter provided in SMAP product
for individual observation. Although the influence of the signal incidence angle is small,
the method proposed in [25] is still used in this work. The effect of the incidence angle
correction is represented by the dashed lines in Figure 3 as well.

Figure 3. The relationship between reflectivity and soil moisture under different incidence angles of
GPS signal and the performance of incidence angle correction.
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Due to the pseudorandom distribution of CYGNSS measurement, the influence of
observation noise, and the spatial difference of surface roughness and vegetation cover at
the specular point, currently, it is difficult to directly establish a reliable SM retrieval model
at the GNSS-R specular point modeling all these factors, the optimal approach is to improve
the SNR of reflectivity using the space–time-averaging method to form the gridded retrieval
model [18]. Since the SM reference data used in this work is from the SMAP level-3 version
6 product, the individual CYGNSS reflectivity calculated with Equation (8) within one day
will be projected into a global cylindrical 36 km × 36 km EASE-Grid 2.0 grid to align with
the reference SM values, the average reflectivity is picked as the grid value. Here, we set a
data quality control criterion; if the count of projected reflectivity at the grid is less than
three, the corresponding grid observation will be considered invalid on that day. Next,
the time matching is used to combine the gridded reflectivity and SMAP SM to establish
the training dataset and mask the pixels in the SMAP SM data flagged with inland water
and urban areas. Finally, the retrieval model is fitted at each grid. Usually, the variation
range of local surface soil moisture is limited in a year; the linear model can achieve high
modeling accuracy. Therefore, the training samples are used to fit the linear model between
mean reflectivity and reference SM values pixel-by-pixel:

SMCYGNSS
i,j = ai,jΓi,j + bi,j (15)

where the a and b are the pending parameters of the model. i and j are the grid location
in the 36 km × 36 km EASE-Grid 2.0 grid. Γ is the grid mean reflectivity after space-time
average processing.

3. Results and Analysis

3.1. Performance Evaluation of DDM Observables

In this work, we assume that coherent and incoherent scattering simultaneously occurs
on the land surface in the CYGNSS land observations, and only two scattering cases appear:
coherent reflection mainly contributed to DDM or incoherent scattering mainly contributed
to DDM. We classify the two cases based on the statistical characteristics of the predefined
estimators. Since we have known that ocean surface observation belongs to the latter, the
characteristic information of incoherent DDM can be obtained. To evaluate the performance
of different classification estimators defined in Section 2.2, the CYGNSS collected land and
ocean DDMs in January 2018 are used to calculate the PDF and accumulation distribution
function (CDF) of each DDM observable separately. Figure 4 gives the PDF and CDF of TES,
TEV, TEV_POW calculated from CDW (top row), IDW (middle row), and DDW (bottom
row). It can be found that the performance of the three types of DW-derived classification
estimators is different. The PDF of TES between land and ocean observations is separated
more and sharper, which means that the classification results of TES are generally better
than the other two. TES values from ocean surface scattered signals are generally larger
than land observation; its PDF appears on the right side of the figure. The reason is the
L-band GNSS signals impinge on the ocean surface always occurring diffuse scattering, the
time-delay, and Doppler-spreading cause DW to appear a significant “smearing” feature;
in other words, the scattered power of the trailing edge will slowly decrease. In addition,
the PDF of land reflected DDM-derived TES is more dispersed than ocean observations.
In the first column of Figure 4, the closer TES to the left side of the x-axis, the greater the
contribution of the coherent component to the DDM since the DW is much closer to the
WAF correlation function. As the roughness of the land surface increases, the contribution
of the incoherent component rapidly increases and begins to impact the scattering power of
the DW trailing edge, so the TES value gradually approaches the ocean observations, two
PDFs finally intersect. The performance of TEV_POW is the worst; the distribution of PDF
from the land and ocean observations is overlapped. It can be explained by the fact that
the peak value of coherent DM is larger than incoherent DM, while the scattering power
of incoherent DW declines slowly after the peak value, the final result is the average of
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absolute scattering power within 5 time-delay bins between land and ocean DDM derived
TEV_POW are close. The performance of TEV is in the middle.

 

Figure 4. Statistic performance of trailing edge slope (TES), the average volume of the normalized
time-delay waveform (DW) trailing edge (TEV), average absolute scattering power of the DW trailing
edge (TEV_POW) derived from central Doppler time-delay waveform (CDW; a–c), integrated time-
delay waveform (IDW; d–f), and deviation of time-delay waveform (DDW, g–i) over land and ocean
surface, dataset collected from the cyclone global navigation satellite system (CYGNSS) level-1B in
January 2018.

Figure 5 shows the PDF of estimator DDMA, DDMA_POW, and MF derived from
the ocean and land DDMs. The performance of DDMA_POW is very close to TEV_POW;
the distribution of two PDF almost overlaps, which can be explained by the same reason
as TEV_POW. Therefore, we can conclude that it is difficult to determine the coherence
of the DDM based on the feature of its absolute power in the given window. In the
rest of the paper, we will exclude the absolute power estimators. Here, MF shows the
best performance; DDM from land generally has a higher correlation with the WAF in
comparison with the ocean, which is in line with the previous assumption.
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Figure 5. Average of the normalized scattering power DDM near its peak (DDMA) (a), an average of the absolute scattering
power DDM near the peak (DDMA_POW) (b), and WAF-matched filter (MF) (c) statistic performance over land and ocean
area, dataset collected from the CYGNSS level-1B in January 2018.

The performance of different estimators is variant depending on the land surface
scattering mechanisms; the classification threshold is determined by the intersection of
two PDFs, which is represented by the magenta dotted line in the vertical direction in
Figures 4 and 5. The horizontal magenta dotted lines indicate the accumulative probability
density of the corresponding estimator computed from the CYGNSS land and ocean surface
data, which not only presents the probability of detection (PD) of coherent DDM but also
indicates the proportion of the coherent and incoherent data. Table 1 summarizes the
classification threshold, PD, the probability of false alarm (PFA), and the probability of
error (PE) of each estimator. It can be found that the PD between different observables is
small except DDW-derived TEV, and the average PD of all estimators is 89.6%. Among
eight estimators, the PD of TES calculated from normalized IDW (NIDW) is the largest, and
the PE is the smallest. Comparing all the subgraphs in Figure 4, it can also be found that
the PDF of NIDW-derived TES is more separated between land and ocean data. Moreover,
it is more concentrated and sharper than normalized CDW, and normalized DDW derived
TES. Hence, it is considered the best estimator to detect the coherent and incoherent DDM
collected over the land surface in this study. In the rest of the paper, we just use NIDW-
derived TES as the classification estimator to recognize the high confidence coherent DDM
in the CYGNSS land data for SM retrieval.

Table 1. The classification threshold and the probability of different DDM observables.

Observables aN,CDW
TES PN,CDW

TEV aN,IDW
TES PN,IDW

TEV aN,DDW
TES PN,DDW

TEV σN
DDMA RMF

Threshold −0.6191 0.6878 −0.1798 0.8726 −0.0394 0.8144 0.7053 0.6171
PD 0.9146 0.8789 0.9379 0.9132 0.9192 0.7307 0.9368 0.9362
PFA 0.0284 0.0360 0.0289 0.0376 0.0312 0.0808 0.0310 0.0381
PE 0.0569 0.0786 0.0455 0.0622 0.0560 0.1751 0.0471 0.0510

3.2. Coherent and Incoherent DDM Observations

The coherent and incoherent observation is determined by the threshold of the classi-
fication estimator of NIDW-derived TES. Figure 6 shows the average SM values from 9 km
EASE-Grid 2.0 SMAP level-3 product, average CYGNSS gridded coherent and incoherent
land surface reflectivity with the same projection grid in January 2018. Land coherent
DDM can be detected in the entire footprint of the CYGNSS mission, whereas incoherent
observations are more likely to occur in high altitude mountainous and hilly terrain.
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Figure 6. The global distribution of monthly average Soil Moisture Active Passive (SAMP) soil
moisture (SM) (a), coherent reflectivity (b), and incoherent observations (c) in January 2018.

According to the classification results, the range of coherent reflectivity is from −44 dB
to −3 dB; the strongest coherent reflection indeed comes from the inland open water
surface, while the area of the tropical rainforest and the arid mountainous area has the
lowest reflectivity. It is worthy to note that the GNSS-R reflectivity over tropical dense forest
areas is lower than the barren/desert area, which is consistent with previous studies [37].
Nevertheless, compared to the distribution of SMAP SM in Figure 6a, it can be found that
the SM values in corresponding areas are high. Meanwhile, incoherent scattering rarely
occurs in dense vegetation-covered areas, as Figure 6c shown. However, part of the reason
is the applying of QC, which excludes some noisy DDM with lower DDN SNR. However,
even we ignore the influence of QC, the count of involved incoherent observations for
spatial averaging is still less than four in most of the grids, which is much smaller than
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the total number of coherent measurements in the same grid. In terms of the International
Geosphere-Biosphere Program (IGBP) land cover type parameters provided in the SMAP
products, the statistical results also show that the proportion of coherent and incoherent
GNSS-R observations over different land cover types is almost the same before and after
QC. It confirms that even the dense upwelling vegetation cannot change the scattering
mechanism of the land surface, but dense forest canopies will generate a strong attenuation
effect on the GNSS-R coherent scattering signals, which may be attributed to vegetation
volume scattering. Moreover, many coherent and incoherent overlapped areas can be
found in Figure 6b,c; we speculate that the main reason is the spatial distribution of the
surface roughness is different within the projected grid, so the coherent and incoherent
observations can be collected simultaneously in a grid.

3.3. GNSS-R Soil Moisture Retrieval

To analyze the influence of incoherent observations on the GNSS-R land surface SM
inversion in the previous SM retrieval method, we compared two retrieval configurations:
using 19 months CYGNSS land observations and screened coherent data for retrieval model
evaluation with k-fold cross-validation approach, where k = 5. Since the global SM value
in most areas of the land is generally small in a year, the PDF of the monthly SMAP SM
data in 2018 is presented in Figure 7a, and the maximum probability density of SM is
0.06 cm3/cm3. To further evaluate the performance of the established SM model over the
high-humidity areas, the accuracy of the inversion model is evaluated when the referenced
SM value is greater than 0.1 cm3/cm3.

Figure 7. Monthly SMAP soil moisture probability density function (a) and density scatterplot of
GNSS-R derived soil moisture and surface SM reference values in a split of k-fold cross-validation (b).

Using the SM inversion method introduced in Section 2.4, Table 2 summarizes the
performance of the two models established from two training datasets. When all CYGNSS
land observations are used for modeling, the cross-validation model bias, mean absolute
error (MAE) and root-mean-square error (RMSE) are −0.0003 cm3/cm3, 0.0274 cm3/cm3,
and 0.0416 cm3/cm3, respectively. The inversion results with the distinguished coherent
observation training dataset constructed retrieval model show that the bias, MAE, and
RMSE are −0.0003 cm3/cm3, 0.0269 cm3/cm3, and 0.0408 cm3/cm3, respectively. The
model performance between the two strategies is very close. When the SM reference values
are greater than 0.1 cm3/cm3, the model accuracy of the two methods is 0.0569 cm3/cm3

and 0.0564 cm3/cm3, respectively, and the inversion results did not show a big difference.
Figure 7b shows the density scatterplot between SMAP reference SM and GNSS-R-derived
SM generated from a split of k-fold cross-validation with the coherent observation estab-
lished model. The red line represents the linear fitting line; the predicted SM shows an
overall fairly good agreement with the SMAP SM, all CYGNSS land data retrieved SM show
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an identical situation. Figure 8 presents the coherent inversion accuracy at each grid pixel
with k-fold cross-validation. The analysis shows that CYGNSS incoherent observations
will not cause any noticeable SM spatial inversion accuracy differences compared to the
coherent results, so it is not given here.

Table 2. Soil moisture retrieval model evaluating with k-fold cross-validation (unit: cm3/cm3).

Dataset Total Bias
Total
MAE

Total
RMSE

SM > 0.1,
Bias

SM > 0.1,
MAE

SM > 0.1,
RMSE

All land observations −0.0003 0.0274 0.0416 −0.0124 0.0426 0.0569
Coherent observations −0.0003 0.0269 0.0408 −0.0123 0.0421 0.0564

Figure 8. Root-mean-square error (RMSE) of CYGNSS retrieved land surface SM at each grid.

4. Discussion

GNSS-R coherent and incoherent observations have different sensitivities to the land
SM values [9]. According to the classification results with the defined estimator in this
study, 6.2% of the measurements in the CYGNSS land observations have a high possibility
controlled by the incoherent scattering field. In addition, the PDFs of reflectivity calcu-
lated from the land surface coherent and incoherent observations do show distribution
differences, as shown in Figure 9. It should be noted that if the DDM scattering power
is dominated by incoherent components, NBRCS is commonly picked as the fundamen-
tal quantity, which is calculated according to [21]. Since most of the previous studies
ignored incoherent scattering, namely the counterpart reflectivity is directly calculated by
Equation (8), it is reasonable to use this equation to calculate incoherent reflectivity and
analyze their influence on CYGNSS SM retrieval in this paper. The experiments show that
extra incoherent observations have no obvious effect on the final CYGNSS SM retrieval
with space-time averaging combined with the linear regression method. To further val-
idate this conclusion, the threshold of NIDW-derived TES is set to −0.5 to improve the
confidence of discriminated coherent DDM, where the probability of false alarm is only
0.01. It also can be considered that the contribution of the incoherent component is very
small in screened coherent observations. At this point, the coherent DDM accounts for
75.8% of CYGNSS land measurements. The bias, MAE, and RMSE of final inversed soil
moisture are −0.0003 cm3/cm3, 0.0265 cm3/cm3, and 0.0403 cm3/cm3, respectively. The
RMSE is reduced by 3.1% compared to the constructed model with assuming all coherent
land observations. When the reference SM value is greater than 0.1 cm3/cm3, the inversion
bias is −0.0145 cm3/cm3, MAE values is 0.0416 cm3/cm3, and RMSE is 0.0558 cm3/cm3.
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Figure 9. The probability density function of coherent and incoherent reflectivity derived from
CYGNSS land observations in January 2018.

The inversion accuracy of the aforementioned GNSS-R space-time averaging SM
retrieval methods with two different training datasets is similar because the magnitude and
number of incoherent reflectivity are smaller when compared to coherent reflectivity, and
the spatial average processing will further mitigate its influence. However, there is no doubt
that coherence classification methods play a key role in future GNSS-R land detection. The
inversion model can be directly established at the individual specular point with improved
high-quality and high spatial resolution observations, which provides in the following
dedicated spaceborne GNSS-R land remote sensing missions, and also contributes to
other land applications, such as inland water system detection, biomass detection, and
wetland extent determination. Another noteworthy issue is that the established GNSS-R
SM inversion model tends to underestimate the surface soil moisture when the land SM
over 0.3 cm3/cm3, while most of the previous studies also show the same problem. Since
most training samples are concentrated in the lower SM range, the regression model is
more affected by this part of the data. Therefore, there should be a better weighting strategy
to solve this problem in future work.

5. Conclusions

This paper presents a classification methodology to distinguish coherent and inco-
herent DDMs in the CYGNSS land observations. Since the GNSS scattering signals from
the windy ocean surface are almost incoherent, while the coherent land DDMs are closer
to WAF, six different classification estimators are established based on scattering power-
spreading shape and magnitude features over the ocean, and land CYGNSS collected
DDMs, which are used to screen the land high confidence coherent component dominated
DDMs. The results show that the estimators based on the absolute magnitude features
of DDM are difficult to distinguish its coherency, while the estimator indicating shape
features performs better. The average proportion of GNSS-R land observations dominated
by coherent components is 89.6%. NIDW-derived TES performs best among all defined
DDM observables, and its PDFs from the ocean and land DDMs are more separated and
sharper, whose detection probability for coherent observations can reach 93.8% with the
lowest detection probability of error. The distribution of high-confidence coherent and
incoherent surface observation indicates that observations over the dense forest cannot
change the surface scattering properties but will greatly weaken the coherent scattering
power. Using 19 months of CYGNSS observation data and SMAP SM product for land SM
retrieval model validation, the RMSE of model performance with k-fold cross-validation
can reach 0.04 cm3/cm3. Incoherent observations have not seriously impaired the accuracy
of CYGNSS soil moisture inversion.
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Abstract: Spaceborne GNSS-R technology is a new remote sensing method for soil moisture monitor-
ing. Focusing on the significant influence of water on the surface reflectivity of CYGNSS, this paper
improved the removal method of water influence according to the spatial resolution of CYGNSS
data. Due to the disturbance effect of the incident angle, microwave frequency and soil type on
the Fresnel reflection coefficient in surface reflectivity, a normalization method of Fresnel reflection
coefficient was proposed after analyzing the data characteristics of variables in the Fresnel reflection
coefficient. Finally, combined with the soil moisture retrieval method of linear equation, the accuracy
was compared and verified by using measured data, SMAP products and official CYGNSS prod-
ucts. The results indicate that the normalization method of the Fresnel reflection coefficient could
effectively reduce the influence of relevant parameters on the Fresnel reflection coefficient, but the
normalization effect became worse at large incident angles (greater than 65◦). Compared with the
official CYGNSS product, the retrieval accuracy of optimized soil moisture was improved by 10%.
The method proposed in this paper will play an important reference role in the study of soil moisture
retrieval using spaceborne GNSS-R data.

Keywords: soil moisture; CYGNSS; normalization method; water removal

1. Introduction

Soil moisture is of great value in understanding plant physiological activities, hy-
drometeorological processes, global energy exchange and agricultural production [1–3].
The distribution information of accurate soil moisture is not only of great significance
for scientific research, but can also serve a number of practical applications. Spaceborne
GNSS Reflectometry (GNSS-R) is an emerging remote sensing technology for reflecting
soil moisture over a large area due to its advantages of a wide signal source, large data
volume, short revisit time, low cost and low power consumption, etc. Its frequency band
and high spatial-temporal resolution can effectively compensate for the shortcomings of
optical remote sensing, which is easily obscured by clouds, and the low spatial resolution
of microwave remote sensing products [4–10].

Since the UK TechDemoSat-1 (TDS-1) and Cyclone Global Navigation Satellite System
(CYGNSS) satellites provide spaceborne GNSS-R data for free, the retrieval of soil moisture
for spaceborne GNSS-R has gradually become a research hotspot. In order to effectively
characterize the relationship between the surface reflectivity of CYGNSS and soil moisture,
and thus obtain high accuracy retrieval results for soil moisture, a large number of modeling
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algorithms have been applied, such as linear models [11–14], machine learning [15–17] and
deep learning [18], etc.

The reflection signal carrying water body information will weaken the sensitivity
of the surface reflectivity of CYGNSS to soil moisture, and thus reduce the accuracy of
soil moisture retrieval. Related studies have shown that a 25 m wide body of water can
significantly affect the surface reflectivity of CYGNSS [11]. Therefore, Chew et al. [19],
Wan et al. [20] and Zhu et al. [21] performed the removal of the water body effect on
CYGNSS observations by means of external data sources such as the Global Surface Water
Explorer (GSWE) and the water data of SMAP. The Fresnel reflection coefficient is one
of the major component variables of CYGNSS surface reflectivity, and is directly related
to the angle of incidence and the soil dielectric constant. The influence of the correlation
parameters in the Fresnel reflection coefficient on CYGNSS surface reflectivity can be
effectively weakened, which can improve the accuracy of soil moisture retrieval [22]. Al-
Khaldi et al. [23] proposed the normalization method of the incident angle to correct the
surface reflectivity of CYGNSS, and the results proved that the method could attenuate the
effect of the incident angle in the Fresnel reflection coefficient. In addition, this method
was also applied to the soil moisture product algorithm of CYGNSS developed by Chew
et al. [11,23].

As the sampling frequency of CYGNSS increases, its spatial resolution changes and
thus the original method for removing the influence of water bodies will mistakenly pick
data carrying valid information. The Fresnel reflection coefficient is composed of the in-
cident angle and the soil dielectric constant, which is directly related to the microwave
frequency, soil temperature, soil type composition and soil moisture [24]. Current research
has focused on attenuating the effects of incident angle and soil moisture on the Fresnel re-
flection coefficient, further resulting in a lack of complete analysis of the relevant influences
in the Fresnel reflection coefficient and the establishment of a unified model to attenuate
the effects of these parameters. Therefore, this paper first improved the removal method
of observations affected by water bodies based on the analysis of CYGNSS data. Then,
the variable response of the Fresnel reflection coefficient was analyzed in detail and the
normalization method was proposed. Finally, the accuracy of soil moisture retrieval using
CYGNSS was improved by combining the method of soil moisture retrieval with a linear
model. After the introduction, Section 2 describes an overview of the study area and the
adopted dataset. Section 3 presents proposed methods and the retrieval method of soil
moisture. The results of the proposed method and soil moisture retrieval are displayed and
appraised in Section 5. The discussion for results of the study is given in Section 5. Finally,
the main conclusions for this study are given in Section 6.

2. Study Area and Data Source

2.1. Study Area and Ground Measurements

The study area was located in the southern United States, covering 26 states with
a geographical range of 75◦~122◦W and 30◦~38◦N (Figure 1). The region covers a vast
area, with subtropical, temperate continental and tropical climates in the southeast, central
and southwest. The southeast is warm and humid, the middle is cold in winter and hot
in summer and the southwest has a large annual temperature difference of up to 25 ◦C.
The topography of the entire region is high in the west and low in the east, and there is
a clear topographic divide (100◦W) in the middle of the region. The western part of this
topographic divide is dominated by plateaus and mountains, while the eastern part is
plains (Figure 1a). Based on the LC_Type1 (Scheme of global vegetation classification for
IGBP) band of the MCD12Q1 product of MODIS, a map of vegetation cover types in the
study area was obtained, as shown in Figure 1b.
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Figure 1. Location and measured points of the study area. (a) Topographic map, (b) soil type map.

The measured soil moisture data used in the study area were freely available to
the public in terms of volumetric water content (m3/m3) and were derived from the
International Soil Moisture Observation Network (ISMN; http://ismn.geo.tuwien.ac.at/
networks, accessed on 6 November 2021). In this study, four monitoring networks, ARM,
SCAN, SNOTEL and USCRN in ISMN, with a total of 160 measured monitoring points,
were used from July 2019 to December 2021, with a soil moisture depth of 5 cm. Among
these measurement stations of soil moisture, meaningless stations with values less than
0 cm3/cm3 or greater than 1 cm3/cm3 were excluded.

2.2. CYGNSS Data

CYGNSS is a constellation of eight satellites, each of which has four channels; i.e.,
thirty-two observations per second can be received. Due to the increase in CYGNSS sam-
pling frequency after July 2019 (i.e., with 500 ms non-coherent accumulation), the resolution
of CYGNSS is 3.5 × 0.5 km at this time. The CYGNSS data used in this study are the L1-level
data of version 3.0 from July 2019 to December 2021, which can be downloaded from the
official CYGNSS website (https://cygnss.engin.umich.edu/data-products/ (accessed on
6 November 2021)). To improve the quality of CYGNSS data, standard quality control
and empirical quality control were performed [19]. The higher launch power of the GPS
Block IIF satellite introduces uncertainty at peak power [25]. Removing these data will
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reduce the overall data volume by 30%. Therefore, this part of the data was chosen to be
retained in this study. The power received by CYGNSS consists of both incoherent and
coherent scattering components [26]. Most studies have been based on the assumption
that the incoherent component is ignored and only the coherent scattering component
is retained [11,12,14,20]. Therefore, based on the land scattering model of GNSS-R, the
surface reflectivity Γ(θ) of CYGNSS can be readily derived, following the assumption that
the coherent component dominates:

Γ(θ) =
Pr(Rt + Rr)

2(4π)2

PtGtGrλ2 (1)

where Pr and Pt are, respectively, the reflected power received by the receiver and the
transmitted power. λ is the carrier signal wavelength. Rr and Rt are, respectively, the
distances from the receiver and transmitter to the specular reflection point. Gt and Gr are
the transmitting antenna gain and receiving antenna gain, respectively.

2.3. SMAP Data

Soil Moisture Active and Passive (SMAP) is an Earth observation mission carrying an
L-band radiometer and radar, which provides soil moisture and freeze–thaw data with a
time-resolution of 2–3 days from NASA (https://nsidc.org/data/smap/smap-data.html
(accessed on 6 November 2021)). In this study, soil moisture data (L3_SM_P) of SMAP
L3 were used, which were obtained by retrieval using the Single Channel Algorithm
(SCA) with a spatial resolution of 36 km. The time period was selected from July 2019 to
December 2021. SMAP was divided into two types of data: daily 6:00 a.m. (descending
orbit) and 18:00 p.m. (ascending orbit). It has been shown that the surface temperature
homogenization at 6:00 a.m. is better than that at 18:00 p.m., and the retrieval accuracy is
higher than that at 18:00 [27]. In this study, both descending orbit and ascending orbit data
were incorporated and averaged to obtain soil moisture data of SMAP.

2.4. Water Body Data

The water body data of GSWE came from a 30 m dataset produced based on optical
images from Landsat satellites [28], with global coverage. GSWE released several sub-
datasets, including Occurrence, Change, Seasonality, Recurrence, etc. Each sub-dataset
consisted of a 10◦ × 10◦ grid with a total range of 60◦S~80◦N and 180◦W~180◦E. The
“Seasonality” product was selected for this study, and the individual pixel values were
classified on a scale of 1 to 12, indicating how many months of the year were inundated
with water. In this case, all values greater than 1 were labeled as water bodies to facilitate
the exclusion of observations influenced by water bodies. Since this study was in the
southern region of the United States, a total of 12 Seasonality data were selected for the
range of 30◦N to 50◦N and 130◦W to 70◦W. A Seasonality product from these data was
shown in Figure 2. Due to the special and static nature for the time-resolution of Landsat
data, the produced GSWE dataset could not be synchronized with the observation time of
CYGNSS. However, this dataset could remove the observations affected by water bodies to
some extent.
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Figure 2. The diagram of “Seasonality” product data of GSWE (0 represents no data).

3. Methodology

In this study, the procedure for the retrieval of soil moisture using CYGNSS based on
proposed methods was illustrated in Figure 3. The first step involved the quality control
and processing of data used, such as CYGNSS, SMAP and GSWE. The surface reflectivity
derived from CYGNSS was corrected using an improved method of water removal and the
normalization method of the Fresnel reflection coefficient. A linear regression equation of
soil moisture was established by combining the resampled soil moisture product of SMAP
with the corrected surface reflectivity. Finally, the results of soil moisture were obtained by
averaging the retrieved soil moisture, and the accuracy was comparatively verified based
on the measured data, SMAP products and CYGNSS products.

3.1. Removal of Water

The current solution for observations influenced by water bodies is to exclude ob-
servations that carry information about water bodies [19,20]. A square grid of 7 × 7 km
to exclude observations influenced by water bodies was designed by Chew et al. [19],
based on the “Seasonality” product from GSWE data. According to the research of Chew
et al. [19], an improved method for removing observations affected by water bodies in a
3 × 3 km square grid was proposed by analyzing the characteristics of CYGNSS data. The
process was as follows:

Step 1: Based on the latitude and longitude of the specular reflection point from
CYGNSS, its corresponding location in the “Seasonality” product was searched.

Step 2: A square grid of 3 × 3 km was created, with this corresponding location as
the center.

Step 3: When there was a value marked as 1 (i.e., there is a water body) in this 3 × 3 km
square grid, then the point was eliminated, i.e., the specular reflection point was eliminated.

Step 4: The above process was repeated to complete the removal of specular reflection
points affected by water bodies.

The removal diagram of the observations affected by the water was shown in Figure 4:
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Figure 3. Flowchart of this study.

Figure 4. Schematic diagram of the removal method for observations affected by water bodies.
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3.2. The Normalization of the Fresnel Reflection Coefficient

According to the Kirchhoff approximation, the surface reflectivity Γ(θ) of CYGNSS
can be further expressed as [29–31]:

Γ(θ) = |Rlr(θ)|2γ exp(−(2kσ cos θ)2) (2)

γ is the vegetation attenuation term; exp(−(2kσ cos θ)2) is the attenuation term of surface
roughness; and Rlr(θ) is the Fresnel reflection coefficient, which is a function of the incident
angle θ and the soil dielectric constant ε [32]. ε is calculated by the Dobson model [24],
which is adapted to the frequency range of 0.3–1.3 Ghz and 1.4–18 Ghz and consists of
microwave frequency, soil temperature, soil type composition and soil moisture:

εα
soil =

[
1 +

pb
ps
(εα

s − 1) + mβ
v εα

f w − mv

] 1
α

(3)

β = 1.2748 − 0.00519Psand − 0.00152Pclay (4)

where Pb and Ps are the bulk density of soil and the density of the solid medium in soil,
respectively. α is generally 0.65, and εfw and εs are the permittivity of free water and solid
soil, respectively. mv is soil moisture. Psand and Pclay represent the sand and clay contents of
soil (%), respectively.

According to Formulas (3) and (4), the response of these relevant variables to the
Fresnel reflection coefficient was shown in Figure 5. Soil type parameters refer to the table
of physical parameters published by the Dobson model [24] (Table 1).

Table 1. Physical parameters of typical soil types.

Sandy Loam Fertile Land Silty Loam Silt Soil

Psand (%) 51.52 41.96 30.63 5.02
Pclay (%) 13.42 8.53 13.48 47.38
Psilt (%) 35.06 49.51 55.89 47.6

Ps 2.66 2.7 2.59 2.56
Pb (g/cm3) 1.6006 1.5781 1.575 1.4758

From Figure 5a–d, it can be seen that the Fresnel reflection coefficients obtained
from different soil moisture values varied greatly under the condition of constant soil
temperature and the same soil type. For a constant soil temperature and the same soil
moisture, the Fresnel reflection coefficient corresponding to different soil types was also
different. The above results indicate that differences in the soil type and soil moisture
can lead to changes in the Fresnel reflection coefficient. Figure 5e–h show the response
of the Fresnel reflection coefficient for a constant value of soil moisture and different soil
temperatures. It can be observed that the changes in Fresnel reflection coefficients obtained
from soil temperature differences were small relative to those caused by changes in soil
moisture. Of course, differences in the Fresnel reflection coefficient between soil types are
always present. Moreover, in Figure 5, the Fresnel reflection coefficient becomes smaller
and smaller, with an increasing incident angle regardless of the differences in soil moisture,
temperature and soil type, indicating that the incident angle plays a very important role.

In this study, a normalization method of the Fresnel reflection coefficient was proposed
to reduce the influence of relevant parameters on the Fresnel reflection coefficient, and
thus reduced the surface reflectivity error of CYGNSS caused by the Fresnel reflection
coefficient and improved the accuracy of soil moisture retrieval. The process of establishing
this method consisted of four steps in total.
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Figure 5. Response of the Fresnel reflection coefficient under different conditions: sm is soil moisture,
and st is soil temperature ((a–d) are response maps with soil temperature as a constant value, (e–h) are
response maps with soil moisture as a constant value).

Step 1: A database of Fresnel reflection coefficients with incident angle as the inde-
pendent variable was created by freely combining values in the range of soil moisture, soil
temperature, soil type and incident angle. Soil moisture, soil temperature and incident
angle were limited to [1, 100], [1, 60] and [1, 90], respectively. The increments for these three
parameters were set as 1%, 1 ◦C and 1◦, respectively. Soil types referred to the physical
parameters of the Dobson model (Table 1). Microwave frequency was set to 1.57542 GHz.

182



Remote Sens. 2023, 15, 3000

Through the combination of the above variables, a total of 2,160,000 Fresnel reflection
coefficient values in the range of incident angles from 1 to 90◦ were formed.

Step 2: Based on the combination of variables in Step 1, a database of a total of
the values of 2,160,000 Fresnel reflection coefficients with an incident angle of 0◦ was
additionally composed.

Step 3: Based on the database created in Step 1 and Step 2, the correction variable was
obtained using the following equation:

Rlr(θ)cor = Rlr(θ)/Rlr(0) (5)

where Rlr(θ)cor is the corrected Fresnel reflection coefficient, Rlr(θ) is the Fresnel reflection
coefficient obtained from Step 1 and Rlr(0) is the Fresnel reflection coefficient for an incident
angle of 0◦ in Step 2.

Step 4: With incident angle as the independent variable and corrected Fresnel reflection
coefficient values of 2,160,000 as the dependent variable, the functional relationship between
corrected Fresnel reflection coefficient and incident angle (1–90◦) was established. A
functional expression for the angle of incidence was as follows:

f (θ) = a· exp(b·θ) + c (6)

where a, b and c are all empirical parameters, which can be obtained by solving the
parameters using the least square method.

3.3. The Retrieval Algorithm of Soil Moisture

In this study, the soil moisture retrieval algorithm of the linear regression equation
proposed by Chew et al. [11] was based on the assumption that the surface reflectivity
obtained from CYGNSS data is linearly correlated with the soil moisture of SMAP, and
this linear correlation presents spatial variation and does not vary with time. The spatial
resolution of CYGNSS is much smaller than the SMAP product, and the surface reflectivity
varies depending on land cover and topography. Therefore, to effectively attenuate the
effects of vegetation cover and topography, surface reflectivity corrected by the proposed
method and soil moisture products of SMAP were sampled on a 3 × 3 km grid using the
nearest neighbor sampling method [33–35], and thus soil moisture was retrieved. Among
them, the nearest neighbor sampling method did not change the original pixel values of
the SMAP products during resampling. The SMAP products of the 36 × 36 km grid were
sampled into the 3 × 3 km grid, i.e., all 3 × 3 km grids within a 36 × 36 km grid have the
same values. The expression was as follows:

SMCYGNSS,t = β·(Γt − Γcal
)
+ SMSMAP,cal (7)

SMCYGNSS,t is the soil moisture retrieved with CYGNSS, Γt is the corrected surface
reflectivity of CYGNSS and Γcal and SMSMAP,cal are the mean values of corrected surface
reflectivity from CYGNSS and soil moisture products of SMAP during the modeling time,
respectively. β is the slope, representing the slope of the SMAP products and corrected
surface reflectivity after removing SMSMAP,cal and Γcal at the modeling time. If there were
less than three sampling points of CYGNSS in a 3 × 3 km grid, the β of the grid was not
calculated. The value of β will be used to estimate the soil moisture during the validation
period. Soil moisture retrieval was performed for the 3 × 3 km grid according to the above
process, and then the soil moisture result of 3 × 3 km were aggregated and averaged to the
36 × 36 km grid. The mean values for soil moisture of all 3 × 3 km within the 36 × 36 km
grid were used as the retrieval values of soil moisture of the final 36 × 36 km grid.
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4. Results

4.1. The Correction Results of the Fresnel Reflection Coefficient

Figure 6 shows the responses of four soil types at the same soil temperature and
different soil moisture after the normalization method of Fresnel reflection coefficient. It
can be seen that the effect of differences in the soil moisture and soil type on the Fresnel
reflectance coefficient was significantly weakened compared to the previous one, indicating
that the surface reflectivity of CYGNSS corrected by the proposed method can significantly
attenuate the effect of factors related to the Fresnel term. However, when the incident angle
was larger (greater than 65◦), the normalization effect became less effective. Excessive
incident angles can significantly affect the quality of CYGNSS data [11,23], and this method
used should keep the incident angle less than 65◦.

Figure 6. The response of normalized Fresnel reflection coefficient for the same soil temperature,
different soil moisture and different soil types (sm is soil moisture, and the different lines represent
different soil moisture contents).

4.2. Estimation of Soil Moisture

Based on the study area and data, data from July 2019 to December 2020 (modeling
time) were used for modeling, and data from 2021 (validation time) were used to retrieve
the soil moisture (Figure 7). Accuracy was evaluated in terms of unbiased root-mean-square
error (ubRMSE) and Pearson correlation coefficient (R) based on soil moisture data from
measured sites. Figure 7 provides the retrieval maps of soil moisture for any time in the
four seasons: spring, summer, fall and winter. It can be seen that the western region showed
a significantly lower soil moisture phenomenon in four seasons in 2021, while the eastern
part was relatively much wetter. Based on the occurrence of the phenomenon of annual
drought in the western United States in 2021 (US Drought Monitor, USDM), the retrieval
results of soil moisture in this study were more consistent with the actual situation.
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Figure 7. Soil moisture maps retrieved using the method of this study for different periods and repre-
sent (a) 4 January 2021, (b) 2 March 2021, (c) 4 August 2021 and (d) 26 November 2021, respectively.

The sites where the retrieved soil moisture was in good agreement with the measured
data are shown in Figure 8. It can be seen that the retrieval results of soil moisture at
these four stations were dense, and all of them could capture the changes in measured soil
moisture and reflect the changes in low and high values of soil moisture.

4.3. Validation of Soil Moisture

The data from the measured sites were based on the results of point measurements,
and the soil moisture results were obtained in this study for a 36 × 36 km grid. It is
reasonable to use the average value of measured soil moisture in a large area grid as
the true value, but there is a lack of such a design for a soil moisture station. Therefore,
related studies have used the values of a single measured site to verify the accuracy of
soil moisture retrieval [11,14,20]. The accuracy validation of soil moisture results using the
retrieval method of this study was executed based on the data measured in the study area.
Tables 2 and 3 provide statistics on the accuracy comparison between the SMAP and the
soil moisture retrieval results using the method of this study, based on the data of each
measured site within the experimental area.
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Figure 8. Examples of soil moisture retrieved by this study that agree well with the measured data at
the measured sites (CYGNSS are the retrieval results of this study, and in situ represents measured
soil moisture data; SM is soil moisture).

Table 2. Accuracy comparison of SMAP product and this study based on measured site data.

Number of Sites
ubRMSE (cm3/cm3)

Median Standard Deviation Mean

CYGNSS SMAP CYGNSS SMAP CYGNSS SMAP
ALL(160) 0.057 0.051 0.026 0.024 0.061 0.056
ARM(15) 0.633 0.050 0.011 0.008 0.058 0.049
SCAN(75) 0.050 0.046 0.022 0.020 0.055 0.050

SNOTEL(32) 0.078 0.073 0.032 0.027 0.081 0.070
USCRN(38) 0.048 0.046 0.025 0.021 0.056 0.050

Table 3. Correlation comparison of soil moisture for SMAP and this study based on measured
site data.

Number of Sites
R

Median Standard Deviation Mean

CYGNSS SMAP CYGNSS SMAP CYGNSS SMAP
ALL(160) 0.450 0.624 0.310 0.286 0.40 0.550
ARM(15) 0.710 0.828 0.110 0.063 0.677 0.824
SCAN(75) 0.457 0.624 0.278 0.288 0.380 0.558

SNOTEL(32) 0.241 0.366 0.291 0.264 0.180 0.300
USCRN(38) 0.510 0.670 0.226 0.191 0.440 0.638

The average ubRMSE for the retrieval results of soil moisture in this study was
0.061 cm3/cm3 at 160 measured stations, with an average correlation of 0.4. However,
SMAP products presented a better retrieval performance for the soil moisture
(ubRMSE = 0.056 cm3/cm3, R = 0.55). In ubRMSE, the median and mean values of soil
moisture retrieved by the method used in this study in the four monitoring networks were
worse than those of SMAP, with relatively large standard deviations. The same was true in
the correlation. Areas with low or no variation in soil moisture during the validation time
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resulted in a lower correlation, possibly because the effect of random noise was amplified.
The soil moisture values retrieved by CYGNSS may have had more noise than those of
SMAP due to the lack of complete coverage of the soil moisture time series in part of
the grid.

In order to show the effectiveness of the method in this study, the accuracy indexes for
the CYGNSS product (i.e., UCAR/CU) and the results of this study at the common mea-
sured sites were systematically counted [19] (Tables 4 and 5). Since the UCAR/CU product
was only updated until August 2020, a comparison of the accuracy metric results from this
study and the accuracy metric results from the paper by Chew et al. [19] was performed.

Table 4. Accuracy comparison for the results of this study and the UCAR/CU product.

Number of Sites
ubRMSE (cm3/cm3)

Median Standard Deviation Mean

CYGNSS UCAR/CU CYGNSS UCAR/CU CYGNSS UCAR/CU
ALL(88) 0.051 0.057 0.023 0.024 0.051 0.06

SCAN(49) 0.051 0.053 0.022 0.021 0.055 0.057
SNOTEL(8) 0.070 0.091 0.015 0.017 0.076 0.097
USCRN(31) 0.044 0.054 0.023 0.024 0.051 0.057

Table 5. Correlation comparison for the results of this study and the UCAR/CU product.

Number of Sites
R

Median Standard Deviation Mean

CYGNSS UCAR/CU CYGNSS UCAR/CU CYGNSS UCAR/CU
ALL(88) 0.467 0.510 0.250 0.236 0.410 0.470

SCAN(49) 0.488 0.600 0.246 0.200 0.427 0.500
SNOTEL(8) 0.126 0.095 0.242 0.191 0.131 0.186
USCRN(31) 0.500 0.470 0.224 0.233 0.440 0.457

Compared with the UCAR/CU product, the accuracy of the soil moisture results
obtained by this study was significantly improved, with the average ubRMSE of SCAN,
SNOTEL and USCRN improved by 3.5%, 19% and 10%, respectively. The average ubRMSE
at 88 measured sites was improved by 10%. The standard deviation and median had
smaller values relative to those of UCAR/CU, indicating that the accuracy of this study
remained more stable. In terms of correlation, the results of this study were the same as
those of UCAR/CU. Furthermore, the median of the results of two measured networks
(SNOTEL and USCRN) was relatively high, and the overall standard deviation was larger.

5. Discussion

From Figure 7, there were more blank points in the retrieval map of soil moisture in
this study, which may be due to the lack of values in the 3 × 3 km grid, resulting in blank
values when 3 × 3 km was aggregated to 36 × 36 km. Therefore, the number of surface
reflectivity points of CYGNSS contained in each grid at the 3 km spatial resolution in the
modeling time was counted (Figure 9). The number of grids with surface reflectivity points
fewer than 20, between 20 and 40, between 40 and 80, and greater than 80 accounted for
40%, 19.7%, 29.3% and 11% of the total number of grids, respectively. As shown in Figure 9,
a large number of null values appeared in the central and eastern parts of the study area;
the western part presented more grids with fewer surface reflectivity points; grids with
fewer than 20 grid points accounted for 40% of the total number of grids in the study area
during the modeling time. The absence of values for surface reflectivity points of CYGNSS
made the retrieved soil moisture results show the phenomenon of a blank value, probably
because some of the surface reflectivity points of CYGNSS were removed by the method
of a water body, especially in the central and eastern regions, as well as in the seaward
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regions, where a large number of water bodies exist. However, after analyzing the results
without using the removal method of water bodies, it was found that this method was not
the main reason for the appearance of few reflection points and null places, but rather the
non-coherent accumulation times of CYGNSS receivers and the irregular distribution of
specular reflection points resulted in the sparse spatial distribution of surface reflectivity
points of CYGNSS at 3 km spatial resolution and the low distribution of observation points.

 

Figure 9. The map of CYGNSS points in the 3 km grid during the modeling time.

The slope was calculated based on the SMAP product and the corresponding surface
reflectivity of CYGNSS after removing the average value. A temporal resolution of 2~3 days
for SMAP and the property of random distribution of CYGNSS would reduce the number
of mutually matched values. Meanwhile, if there were fewer than three matching values
in the modeling time, the corresponding slope was not calculated. However, the number
of grids with fewer than three in this part was 1% of the total number of grids. Therefore,
the slope of the linear equation is another reason for the existence of blank values in the
retrieval results of soil moisture (Figure 10).

 
Figure 10. Slope map at the 3 km grid during the modeling time.

The soil moisture results obtained in this study varied across the measured soil mois-
ture networks (Tables 2 and 3), and these were projected onto maps for further analysis, as
shown in Figures 11 and 12. The ubRMSE for most of the measured sites were below the
mean value of 0.061 cm3/cm3, accounting for about 60% of the total; the rest were main-
tained between 0.061 cm3/cm3 and 0.100 cm3/cm3; the measured sites with an accuracy
greater than 0.1 cm3/cm3 accounted for 7% of the total. The distribution of sites of soil
moisture retrieval larger than 0.1 cm3/cm3 showed that these sites were basically in the
forest. The lush vegetation has a significant effect on the reflectance signal, as shown by the
lower value of surface reflectivity of CYGNSS, which subsequently reduced the sensitivity
to soil moisture. Counting the sites with ubRMSE below 0.061 cm3/cm3, most of them
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were in low vegetation areas such as grasslands and wetlands, indicating that the retrieval
method in this study still maintains a certain sensitivity to soil moisture in areas with low
vegetation cover. In the measured soil moisture network, especially the SNOTEL network,
all the results of soil moisture retrieval had poor accuracy performance in this network. The
analysis revealed that the sites of the SNOTEL network are mainly located in high altitude
and heavily vegetated areas. Due to vegetation and high altitude, the accuracy of the area
where the measured network is located was poor. Compared with the correlation between
SMAP and the measured data, the correlation between this study and the measured data
was mainly distributed between 0.4 and 0.8, indicating that the correlation was weak. The
effect of factors such as vegetation and high altitude resulted in little variation in the soil
moisture, which may account for the low correlation.

 

Figure 11. The ubRMSE map for the retrieved soil moisture in this study.

 

Figure 12. The correlation comparison between the SMAP product and retrieved soil moisture.
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6. Conclusions

With the advantages of wide signal sources, many sampling points and high spatial-
resolution for spaceborne GNSS-R, the removal of the influence of water bodies and the
correction of the Fresnel reflection coefficient could effectively improve the accuracy of soil
moisture retrieved by CYGNSS. According to the problem of water impact, in this paper an
improved method to remove the influence of water bodies was proposed. A normalization
method for the Fresnel reflection coefficient was proposed to correct the surface reflectivity
of CYGNSS data by analyzing the change in the Fresnel reflection coefficient under different
influencing factors. Finally, based on the linear algorithm, the results of the retrieved soil
moisture were obtained, and the accuracy was compared and verified by the product data
and the measurement data.

The improved method of water removal proposed in this paper can effectively remove
observations affected by water bodies. The normalization method of the Fresnel reflection
coefficient could effectively attenuate the effect of influencing factors on the Fresnel reflec-
tion coefficient, but at larger incident angles (greater than 65◦) the normalization effect
became worse. Compared with the results of the official CYGNSS product, the average
ubRMSE of soil moisture retrieved by the method in this paper was improved by 10%,
and the correlation was similar overall. Based on all measured data, the average ubRMSE
for retrieval results of soil moisture in this paper was 0.061 cm3/cm3, with an average
correlation of 0.4.

The direct removal of observations affected by water bodies is currently the most
common approach, which leads to a reduction in the number of sampling points. Retaining
observations and studying more efficient removal models are future research topics. The
normalization method of the Fresnel reflection coefficient only considers typical soil types.
Due to the complexity of soil composition in the natural environment, a unified correction
model will be developed in the future by collecting more data.
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Abstract: Coherent observations in GNSS reflectometry are prominent in regions with smooth re-
flecting surfaces and at grazing elevation angles. However, within these lower elevation ranges,
GNSS signals traverse a more extensive atmospheric path, and increased ionospheric effects (e.g., de-
lay biases) are expected. These biases can be mitigated by employing dual-frequency receivers or
models tailored for single-frequency receivers. In preparation for the single-frequency GNSS-R ESA
“PRETTY” mission, this study aims to characterize ionospheric effects under variable parameter
conditions: elevation angles in the grazing range (5◦ to 30◦), latitude-dependent regions (north, tropic,
south) and diurnal changes (day and nighttime). The investigation employs simulations using orbit
data from Spire Global Inc.’s Lemur-2 CubeSat constellation at the solar minimum (F10.7 index at 75)
on March, 2021. Changes towards higher solar activity are accounted for with an additional scenario
(F10.7 index at 180) on March, 2023. The electron density associated with each reflection event is
determined using the Neustrelitz Electron Density Model (NEDM2020) and the NeQuick 2 model.
The results from periods of low solar activity reveal fluctuations of up to approximately 300 TECUs
in slant total electron content, 19 m in relative ionospheric delay for the GPS L1 frequency, 2 Hz
in Doppler shifts, and variations in the peak electron density height ranging from 215 to 330 km.
Sea surface height uncertainty associated with ionospheric model-based corrections in group delay
altimetric inversion can reach a standard deviation at the meter level.

Keywords: GNSS reflectometry; grazing angles; ionospheric delay; ionospheric Doppler shift;
NEDM2020 model; NeQuick model; PRETTY mission

1. Introduction

The ionosphere, situated between 60 and 2000 km above the Earth’s surface, plays
a vital role in electromagnetic wave propagation, influenced by solar-radiation-induced
ionization [1]. The speed at which the transmitted electromagnetic signals from the GNSS
(global navigation satellite system) satellites propagate through the ionosphere depends
on the electron density along the line of sight between the satellite and the receiver. Upon
traversing the ionosphere, GNSS signals may encounter two distinct forms of perturbations:
Firstly, the introduction of an error in the estimated range due to the signal’s delay that is
proportional to the integrated electron density (slant total electron content—sTEC), and
secondly, the occurrence of signal characteristic fluctuations resulting from irregularities in
the ionosphere’s electron density distribution [2].

The use of GNSS signals, renowned for their global availability and signal propa-
gation characteristics, has been widely investigated and exploited as a powerful tool for
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ionospheric studies across diverse spatial and temporal scales. Ground-based atmospheric-
sounding techniques employing continuously operating reference station (CORS) networks
and GNSS receivers, which operate on low Earth orbit (LEO) satellites for the analysis of
refracted radio signals via GNSS radio occultation (GNSS-RO), provide key observations
for improving global weather forecasts [3]. To further broaden the observations, GNSS
reflectometry (GNSS-R) has emerged as a complementary technique that leverages signals
reflected off the Earth’s surface. This approach not only facilitates the retrieval of reflecting
surface properties but also serves as an atmospheric-sounding tool.

In order to understand ionospheric ranging delays within space-borne GNSS-R, sim-
ulations are conducted as detailed in [4]. The simulation is based on the Cyclone GNSS
(CYGNSS) [5] mission and encompasses different elevation angles, latitudes, and solar
activities. The results reveal an inverse relationship between the satellite elevation angle
and ionospheric delay, with a larger ionospheric influence at low latitudes. In [6], the
impact of scintillation effects on reflectometry has been explored using data from UK
TechDemoSat-1 [7]. These effects lead to a degradation of the signal-to-noise ratio that
can be utilized for altimetry and scatterometry performance assessments. More recently,
studies have been carried out to retrieve the total electron content (TEC) from coherent
reflectometry observations. In the work presented in [8], a methodology was introduced
for sTEC estimation along the paths of incident and reflected signal rays. This estimation
is based on coherent dual-frequency GNSS-R measurements obtained from Spire Global
low Earth orbit (LEO) CubeSats. The outcomes have demonstrated a favorable alignment
between reflectometry sTEC estimations and the global ionospheric TEC maps (GIM).
Furthermore, an algorithm outlined in [9] combines sTEC observation from space-borne
reflectometry using CubeSats and data collected from ground-based GNSS stations to
generate vertical TEC (vTEC) maps in the Arctic region. Simulations conducted within this
study under diverse conditions, involving variations in temporal resolution, solar activity
levels, and the number of reflection events, have demonstrated enhanced accuracy in vTEC
estimations when coherent GNSS-R observations are incorporated.

In the domain of GNSS-R, it has been empirically established that coherent observa-
tions are more frequently observed in the presence of smooth reflecting surfaces, such as
sea ice, regions with low sea states, or inland waters, and at low grazing angles [10–12].
Nonetheless, within this range of elevation angles, it is important to note that the trajecto-
ries of the LEO GNSS-R rays entail a longer path through the ionosphere. This extended
path results in a more pronounced ionospheric impact on the signals themselves. The
representation (not to scale) of the LEO GNSS-R configuration along the grazing angle rays’
paths and its interaction with the ionosphere are illustrated in Figure 1.

 
(a) (b) 

Figure 1. (a) LEO GNSS-R representation at 30◦ elevation angle at specular point. (b) LEO GNSS-R
representation at 5◦ elevation angle. sTECx denotes the slant total electron content. Subscripts dr,
in, and re correspond to the direct ray (transmitter Tx to receiver Rx), incident ray (transmitter to
specular point SP), and reflected ray (specular point to receiver), respectively. Hmx represents the
peak electron density height for the incident and reflected ray paths.
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As described in [13], dual-frequency receivers possess the capability to mitigate these
first-order ionospheric effects through the utilization of a linear combination (ionosphere-
free) of either code or carrier measurements. Conversely, single-frequency receivers must
rely on applying a model to correct for ionospheric refraction, which can introduce delays
of several tens of meters. For the Galileo GNSS constellation, the European GNSS Open
Service has adopted the Neustrelitz Total Electron Content Model NTCM [14] (NTCM-G)
or NeQuick 2 [15] (NeQuick-G) models to provide real-time ionospheric corrections for
single-frequency receivers [16].

This study is in preparation for the European Space Agency’s GNSS-R CubeSat mission
“PRETTY” (passive reflectometry and dosimetry) [17]. The mission’s primary goal is to
retrieve sea surface height using grazing angle observations. Since PRETTY operates
at a single frequency (L5), it requires model-based ionospheric corrections. This study
provides a comprehensive characterization of ionospheric effects, at the grazing angle range
(5◦–30◦), considering satellite geometry, latitude-dependent regions, temporal variations,
and solar activity. It analyzes variability in the ionospheric group delay, Doppler shift, and
peak electron density height. Additionally, the uncertainty in model-based ionospheric
corrections for GNSS-R group delay altimetry is assessed.

The analysis is based on utilizing the sTEC obtained from three-dimensional, time-
dependent models. To assess model uncertainty, the sTEC values computed using the
Neustrelitz Electron Density Model (NEDM2020) [18] are used as a reference and compared
with the sTEC retrievals from NeQuick 2. Simulations are conducted to replicate conditions
similar to those of the PRETTY mission, utilizing orbit data from the GNSS-R Spire Global
Lemur-2 constellation. To provide a comprehensive analysis, the results are categorized
into three elevation angle ranges: very-low (5◦–10◦), low (10◦–20◦), and mid-low (20◦–30◦).
These categories are further grouped by latitude into three distinct regions: north, tropics,
and south. Additionally, this study considers variations in local time and solar activity.
Low solar activity (LSA) is represented by F10.7 = 75 in March 2021 and high solar activity
(HSA) by F10.7 = 180 in March 2023.

The structure of this paper is outlined as follows: Section 2 presents the GNSS-R
data descriptions, reflection events, and ray point settings for the simulations. Section 3
illustrates the methodologies utilized for the determination of parameters such as sTEC,
relative ionospheric delay, Doppler shift, and ionospheric piercing points. Subsequently,
Section 4 presents the results and analysis of the parameters explained in Section 3. Finally,
in Section 5, a discussion of the findings is presented along with the conclusions in Section 6.

2. GNSS-R Data and Reflection Events

2.1. LEO Data

The LEO data used in this study consist of a total of 1188 reflection events on
1 March 2021, sourced from Spire Global Inc. Currently, the Spire Lemur-2 constella-
tion comprises more than 80 GNSS radio occultation CubeSats, out of which about 30
have been adapted to acquire GNSS reflectometry measurements at grazing angles [19].
The Lemur-2 satellites follow a Sun-synchronous orbit, with altitudes ranging from 400 to
600 km and varying orbit inclinations. This orbital configuration enables them to conduct
GNSS-R measurements, encompassing all latitudes of the Earth.

The Spire grazing angle GNSS-R products are collected with a focus on specific regions,
including the polar areas, the Gulf of Mexico, and southeast Asia. These regions are selected
due to their favorable characteristics, such as sea ice surfaces and calm ocean surfaces,
which enable the best performance of coherent reflectometry measurements [10]. Figure 2
displays the track positions of the specular points distributed across both polar regions,
as well as in the mid-latitude and tropical regions at different local times. Given the
geographical distribution of the events, the dataset has been categorized into three distinct
regions: north, covering latitudes between 40◦N and 90◦N; tropics, spanning latitudes
between 40◦N and 40◦S; and south, covering latitudes between 40◦S and 90◦S.
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Figure 2. Specular point tracks provided by the Spire Lemur-2 CubeSats on 1 March 2021, color-coded
according to coordinated universal time (UTC) in hours.

Each Lemur-2 satellite event lasts an average of 4 min, resulting in a total of about 80 h
of recorded data. The recording durations vary, with a minimum of 1 min and a maximum
of 6 min. Table 1 shows the number of events per region (north, tropics, and south) along
with their corresponding durations in minutes.

Table 1. Total number of events per region and durations.

Region Number of Events Total Minutes

North 474 1704
Tropics 168 760
South 546 2335

Total 1188 4798

A total of 21 CubeSats from the Spire constellation are evaluated. The metadata include
the space vehicle number (SVN) of the Lemur-2 satellite, as well as information about the
GNSS satellite and constellation from which the CubeSat receives the reflected signals. For
the simulation in this study, the GNSS constellation employed is GPS (global positioning
system). Upon analyzing the Spire data, it is found that each Lemur-2 satellite receives the
reflected signal from 4 to 19 GPS satellites during different time windows, depending on
the positions of the transmitters and the receiver. The Spire SVN and GPS pseudo-random
noise code (PRN) are presented in Table 2.

Table 2. Space Vehicle Numbers of Lemur-2 CubeSats and GPS Satellite PRNs on 01/03/2021.

Spire SVN GPS PRN

79, 84, 99, 100, 101, 102, 103, 104, 106,
113, 115, 116, 117, 119, 120, 121, 122, 124,
125, 128, 129

1, 3, 5, 6, 7, 8, 9, 10, 12, 15, 17, 24, 25, 26,
27, 29, 30, 31, 32

Total 21 19

2.2. Specular Point Positions and Ray Points

The specular point positions and the ray tracing of the direct, incident, and reflected
signals are calculated based on the methodology presented in [11,20]. A geometrical model
is employed to characterize specular reflections and determine the specular point position,
considering the Earth’s surface curvature. For this model, the transmitter (Tx) and receiver
(Rx) positions are needed in an Earth-centered Earth-fixed (ECEF) frame. The Rx position
is extracted from the Spire data files. To obtain this position, the Lemur-2 satellites are
equipped with a zenith dual-frequency (L1 and L2) antenna, which facilitates precise orbit
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determination (POD). The Tx position is derived from the broadcasted GPS ephemeris.
The Earth’s curvature is modeled with an osculating spherical surface with respect to the
WGS-84 ellipsoid at a reference specular point. An iterative solution is employed to find the
best-fitting sphere that satisfies the condition of equal incident and reflected angles (specular
reflection) [20]. The specular point positions are calculated at 10 s intervals on the receiver
trajectory. A ray-tracing module is set to compute ray points every 10 km along the three
ray paths: Tx to SP (incident), SP to Rx (reflected), and Tx to Rx (direct). The positions of the
ray points (latitude, longitude, and ellipsoidal height) are subsequently utilized to obtain
the electron density from the ionospheric electron density models. Figure 3 illustrates an
example of the electron density retrieval from the NEDM2020 model depicting the change
along the specular point tracks every 10 s (blue stars), and the ray points change every
10 km (red dots) along the incident (in), reflected (re), and direct (dr) ray paths.

Figure 3. Representation of the specular point change along track (blue stars) for the SVN 79 and
PRN 30 every 10 s (~45 km) and the ray points every 10 km along the direct, incident, and reflected
ray paths (red dots).

Following the ray tracing, a total of 28,790 reflection events are obtained. The total
number of reflection events by region is depicted in Figure 4a. Additionally, Figure 4b
illustrates the distribution of reflection events concerning the elevation angle by region.
Notably, the south pole region exhibits a higher number of events; however, all regions
show similar behavior, with a higher concentration of events in the elevation range between
5◦ and 20◦.

  
(a) (b) 

Figure 4. (a) Total number of reflection events on 1 March 2021 by region. (b) The number of reflection
events across grazing angles, ranging from 5◦ to 30◦.
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3. Methodology

3.1. Electron Density Models

The electron density in this study is obtained from two three-dimensional and time-
dependent electron density models: the Neustrelitz Electron Density Model (NEDM2020) [18]
and the NeQuick 2 model [15]. For both models, the input values depending on solar activity
are the solar radio flux index F10.7, month, geographic latitude and longitude, height, and
universal time (UT). The output obtained is the electron concentration at the specified location
and time.

The NeQuick 2 model was developed at the Aeronomy and Radiopropagation Lab-
oratory of The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste,
Italy, and at the Institute for Geophysics, Astrophysics, and Meteorology (IGAM) of the
University of Graz, Austria. This model comprises vertical profiles consisting of multiple
Epstein layers, and it derives essential electron peak density and height parameters through
spatial and temporal interpolation from a comprehensive set of global maps. Consequently,
NeQuick 2 incurs significant computational demands in terms of time and processing
power [14].

On the other hand, the NEDM2020 model was developed at the German Aerospace
Center in the Institute for Solar–Terrestrial Physics (DLR-SO), Neustrelitz, Germany. In-
cluding the NTCM model, this model relies on about 100 model coefficients and a set
of empirically fixed parameters. Remarkably, the electron density values can be directly
computed for any specified location and time without the requirement for the specialized
temporal or spatial interpolation of parameters, making it faster than the NeQuick 2 model
in terms of computational efficiency [21].

A model comparison of electron density profiles is presented in Figure 5 featuring
one example at very low (first row) and mid-low (second row) elevation angle events. The
first column displays the electron density per ray mapped along the specular point change
using the NEDM2020 model. The subsequent columns (second, third, and fourth) illustrate
the electron density profile comparison between the NEDM2020 and NeQuick 2 models for
the incident, reflected, and direct rays, respectively.

 

 

Figure 5. Electron density variations along the change and model profile comparison for the incident,
reflected, and direct rays at very low and mid-low elevation angles (F10.7 = 75).
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3.2. Ionospheric Group Delay Computation

The GNSS electromagnetic signal propagation speed in the ionosphere depends on
electron density (Ne), which is influenced by daytime ionization and nighttime recom-
bination processes. According to [13], when considering the signal code measurements,
the difference between the measured range (using a signal of frequency f in Hz) and the
Euclidean distance between the satellite and receiver is expressed as follows:

Δiono
gr = +

40.3
f 2

∫
Nedl (1)

Δiono
gr is the term used for the group ionospheric refraction, and the integral is known

as the slant total electron content (sTEC), representing the numerical integration of the
electron density along the ray path. f corresponds to the GNSS signal frequency, and in this
study, the GPS L1 frequency is 1575.42 MHz. The sTEC is computed for each ray, including
the incident (sTECin), reflected (sTECre), and direct (sTECdr) rays, respectively. The sTEC
is expressed in total electron content units (TECUs) where one TECU corresponds to 1016

electrons per square meter
(
el/m2). Finally, the group ionospheric delay in meters (for

each ray) is obtained from:

Iin,re,dr = +
40.3 ∗ 1016

f 2 sTECin,re,dr (2)

As presented in [22], the relative delay between the direct and reflected signals is
denoted as Δp = pr − pd, where pr is the cumulative path of the incident and reflected
rays, while pd corresponds to the direct path. The relative delay can be influenced by
various contributing factors, such as the standard sources of delay within the GNSS signals.
Therefore, the extended version of Δp can be written as:

Δp = Δpgeo + Δptrop + Δpiono + Δprgh + Δpinstr + n (3)

where Δpgeo represents the relative geometrical delay, and Δptrop and Δpiono correspond
to the relative tropospheric and ionospheric delays, respectively. Δprgh is a bias induced
by the surface roughness. The instrumental error is denoted by Δpinstr , and n represents
unmodeled errors.

GNSS-R Group Delay Altimetry and Ionospheric Delay Uncertainty

Based on the analysis conducted in [23], the ionospheric delay constitutes a signifi-
cant component within the error budget associated with GNSS-R ocean surface altimetry
retrievals. At elevation angles above 60◦, the uncorrected ionospheric delay can reach
~15 m during daytime and ~7 at nighttime. The ionospheric group delay bias propagates
to an altimetric bias based on the relation between the height offset Δh and the signal path
Δp. Consequently, when considering only the ionospheric altimetric error, where E is the
elevation angle, it can be expressed as:

Δhiono =
Δpiono

2 ∗ sinE
(4)

Assuming a relative uncertainty of 30% for the ionospheric delay bias, as established
in [20], we introduce normally distributed random errors with a respective standard
deviation

(
δiono = N

(
0, 0.32) ).

3.3. Doppler Shift Computation

The Doppler shift of a GNSS signal is predominantly influenced by the relative velocity
between the transmitter satellite and the receiver, along with a common offset that is
proportional to the error in the receiver clock’s frequency. However, as demonstrated
in [24,25], various ionospheric effects, such as changes in the redistribution and density
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of electrons in the ionosphere, lead to frequency variations in the electromagnetic waves
emitted by a stable transmitter. These variations are manifested as the Doppler shift and
can be quantified as the time derivative of the phase path of the signal. When considering
only the ionospheric delay term in the carrier phase observation model [26], the residual
phase path expressed in units of cycles can be given by:

φ =
Δpiono

λ
(5)

where λ is the wavelength of the GPS L1 frequency (0.1905 m). As the Doppler shift ( f d)
of a given signal corresponds to the rate of change of its carrier phase over time, it can be
computed using the following equation:

fd =
dφ

dt
(6)

3.4. Peak Electron Density Height

Diurnal variations significantly impact the ionosphere, where daytime and nighttime
conditions manifest contrasting characteristics. The properties of the ionosphere, such as
height, ionized particle concentration, and the presence of distinct layers, change dynam-
ically over time. Regions characterized by high electron densities are designated as the
D, E, and F layers. In diurnal cycles, the F layer undergoes separation into two distinct
layers termed the F1 and F2 during daytime, while the D layer experiences complete
dissipation throughout the nocturnal period [27]. This shifts the height at which the high
electron concentration is found. In order to analyze changes in the ionospheric altitude, the
height corresponding to the maximum peak of the electron density profile (Hm) is used
as the reference point. Hm is obtained for both the incident and reflected rays using the
NEDM2020 model.

The LEO GNSS-R space-borne configuration, which enables the simultaneous collec-
tion of data from multiple reflections, presents several advantages for ionospheric studies.
Firstly, thanks to the fast trajectory change of the LEO satellite, the GNSS-R signal rapidly
scans along the ionospheric layers, providing a snapshot view of ionospheric structures [8].
Secondly, the ability to obtain peak electron density points at different locations within a
short time interval allows for the mapping of ionospheric structures at varying distances.
Assuming the Earth’s radius is 6371 km, with a maximum electron density ionospheric
shell at a 300 km height, the distance between the incident and reflected Hm points varies
depending on the elevation angle as observed in Figure 6.

 

Figure 6. Distances between peak electron density height points depending on the elevation angle
change at 300 km height.

4. Results

4.1. Slant Total Electron Content Analysis

The computed sTEC, obtained from the NEDM2020 and NeQuick 2 models, serves
as the foundational parameter for the subsequent derivations of the relative ionospheric
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group delay and Doppler shift. The assessment of the sTEC is presented across different
grazing elevation ranges: 5◦–10◦ (very low), 10◦–20◦ (low), and 20◦–30◦(mid-low), along
with the distinct regions of north, tropics, and south. The outcomes of the NEDM2020 and
NeQuick 2 sTEC computations during LSA are depicted in Figures 7 and 8, respectively.
While discrepancies of up to ~60 TECUs between the two models are noticeable in the
tropics region at very low angles for the direct ray, both models consistently demonstrate
similar behavior across all analyzed scenarios.

Figure 7. sTEC obtained from NEDM2022 model. Color-coded according to the direct (dr), incident
(in), and reflected (re) rays.

Figure 8. sTEC obtained from NeQuick 2 model. Color-coded according to the direct (dr), incident
(in), and reflected (re) rays.

The highest sTEC is prominently observed at elevation angles ranging from 5◦ to
10◦ within the tropics region, and to a lesser extent in polar regions, but with lower
magnitudes, specifically for the direct ray. This behavior occurs because, at such elevation
angles, the direct ray traverses a longer path through the ionosphere than the incident and
reflected rays. This effect diminishes as the elevation angle increases. At low elevations,
the magnitudes of the sTEC are relatively similar for each ray, while at mid-low elevations,
the contribution of the incident and reflected rays becomes more prominent in comparison
to the direct ray.
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Across all scenarios, local time, representing solar radiation, plays a pivotal role in
sTEC retrievals. Figures 7 and 8 illustrate how the sTEC values exhibit a progressive
increase as the noon-time period approaches, with the highest peaks occurring between
12:00 and 13:00 h. Following sunset, the electron density and consequently the sTEC values
gradually decrease accordingly.

Table 3 provides a comparative analysis of both models, presenting the mean and
standard deviation values for each ray in the distinct regions. To facilitate interpretation in
terms of local time, the events have been categorized into two distinct periods: daytime
(DT), spanning from 06:00 to 18:00, and nighttime (NT), encompassing the interval from
18:00 to 06:00. Notably, the range of sTEC magnitude for the direct ray is broader for the
NeQuick model computations in the tropics region. However, the NEDM2020 computations
consistently yield a higher mean sTEC in most cases except for the direct ray at very low
elevations in the tropics during daytime. Particularly higher differences in mean values
between the two models are evident in the south region (~6 TECUs), while comparatively
smaller differences are observed in the tropics region (~2 TECUs).

Table 3. sTEC mean and standard deviation value comparison between NEDM2020 and NeQuick
2 models for F10.7 = 75.

sTEC NEDM (TECU) sTEC NeQuick 2 (TECU)
Ele.: 5◦–10◦ Ele.: 10◦–20◦ Ele.: 20◦–30◦ Ele.: 5◦–10◦ Ele.: 10◦–20◦ Ele.: 20◦–30◦

dr in re dr in re dr in re dr in re dr in re dr in re

North

DT
mean 28 26 23 8 20 18 3 14 13 21 19 17 6 15 13 3 11 9
std 13 8 11 3 8 7 1 6 5 12 8 9 3 7 6 1 5 4

NT
mean 21 16 13 7 13 11 3 9 8 14 8 7 4 7 5 2 6 4
std 10 4 3 3 4 2 1 3 1 7 3 2 2 2 2 1 2 1

Tropics

DT
mean 121 72 63 33 62 52 16 48 39 126 63 60 31 57 49 14 43 37
std 55 16 11 17 16 12 6 14 10 67 20 19 16 22 17 6 19 14

NT
mean 43 29 20 17 27 18 10 22 15 40 26 16 14 27 17 8 21 16
std 25 9 7 7 7 6 3 6 4 35 16 12 10 16 11 6 12 10

South

DT
mean 43 34 32 13 28 25 6 22 18 31 26 25 10 22 20 5 17 14
std 16 8 6 5 7 5 1 5 4 14 7 5 3 6 4 1 4 3

NT
mean 29 20 16 10 17 14 5 13 11 15 10 7 5 8 6 2 7 5
std 10 4 3 4 3 2 1 2 2 8 4 3 2 3 2 1 2 2

4.2. Relative Ionospheric Group Delay Analysis

The relative ionospheric group delay
(
Δpiono

)
denotes the additional delay caused

by the ionosphere along the aggregated path of the incident and reflected signals, in
comparison to the direct signal. The mitigation of ionospheric delay holds significant
importance in reflectometry LEO single-frequency missions, particularly within altimetry
applications. The analysis of the relative ionospheric delay follows a similar approach to
the sTEC analysis, encompassing the established regions, elevation angle ranges, local time
variations, and the change in solar flux index. Figure 9 illustrates the potential ionospheric
delays that arise from utilizing the sTEC derived from the NEDM2020 and NeQuick 2
models in conjunction with the GPS L1 frequency and F10.7 = 75.

Consistent with the sTEC analysis outcomes, it is observed that Δpiono exhibits greater
magnitudes within the tropics region, with the highest values occurring at very low eleva-
tion angles for both models. The occurrence of negative values in the relative ionospheric
delay is attributed to the dominance of the direct signal contribution in the computation
of Δpiono .
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Figure 9. Relative ionospheric delay in the distinct regions and grazing angle elevation ranges along
with local time variations.

While the outcomes from both models exhibit very similar behavior in terms of relative
ionospheric delay, including their dependence on region, elevation angle, and local time,
there are noticeable relative differences across the established groups. Taking as a reference
the NEDM2020 model, the mean relative difference is computed as follows:

%RD =
mean

(∣∣∣Δp
NeQuick 2
iono − Δp

NEDM2020
iono

∣∣∣)
mean

(∣∣∣Δp
NEDM2020
iono

∣∣∣) ∗ 100 (7)

Table 4 presents the mean relative differences between low- and high-solar-activity
conditions. During LSA, the most significant relative differences occur at very low elevation
angles in both the north and south regions during nighttime, showing a notable 64%
variation between the two models. This difference decreases as the elevation angle increases.
Conversely, during daytime, the differences in the polar regions remain relatively consistent
across all scenarios, while variations are more pronounced in the tropics region. During
HSA, during nighttime in the north region, the differences can reach up to 98% at very low
elevation angles, while in the south region, the differences remain relatively similar when
comparing low and high solar activity. In the tropics, an increase in the F10.7 index leads
to a higher relative difference between the models during nighttime. However, during
daytime, this difference decreases compared to the low-solar-activity condition (F10.7 = 75).

Table 4. Mean relative difference in the relative ionospheric delay between NEDM2020 and NeQuick
2 during high and low solar activity.

LSA (F10.7 = 75) HSA (F10.7 = 180)

Ele.:
5◦–10◦

Ele.:
10◦–20◦

Ele.:
20◦–30◦

Ele.:
5◦–10◦

Ele.:
10◦–20◦

Ele.:
20◦–30◦

North
DT 30% 28% 26% 59% 17% 15%
NT 64% 49% 46% 98% 38% 28%

Tropics
DT 48% 17% 17% 27% 16% 14%
NT 58% 35% 38% 88% 76% 48%

South
DT 19% 21% 23% 41% 21% 24%
NT 64% 53% 51% 66% 56% 51%
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The sTEC outcomes obtained from the NEDM2020 model, utilized as the reference
model in this study, form the basis for the following analysis. Figure 10 illustrates the
ionospheric delay distribution during low solar activity, categorized by elevation angles,
regions, and local time distinguishing between daytime and nighttime. At low and mid-low
elevation angles, the contribution of each ray to the delay remains relatively similar in
magnitude, resulting in positive values for the relative ionospheric delay. Overall, during
daytime events, the Δpiono is on average 120% greater compared to nighttime events.

 

Figure 10. Distribution of relative ionospheric delay depending on elevation, daytime (DT), and
nighttime (NT) using NEDM2020 sTEC retrievals with F10.7 = 75.

During HSA periods (F10.7 = 180), the relative ionospheric delay range can increase
by up to 200% with respect to low-solar-activity periods, as seen in Figure 11. In low-
and mid-low-elevation scenarios, the distribution of Δpiono behaves similarly to LSA but
with higher magnitude values. Notably, in the tropics region at very low elevations, the
distribution is more widespread, with relative delays primarily consisting of negative
values. This highlights the higher influence of the direct ray on Δpiono compared to low-
solar-activity periods.

 
Figure 11. Distribution of relative ionospheric delay depending on elevation, daytime (DT), and
nighttime (NT) using NEDM2020 sTEC retrievals with F10.7 = 180.
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Group Delay Altimetry and Ionospheric Delay Uncertainty Analysis

As a single-frequency GNSS-R mission, PRETTY relies on ionospheric correction
models to ensure precise sea surface height measurements, introducing a level of model
uncertainty in the correction process. Figure 12 presents the altimetric uncertainty at grazing
elevation angles. Figures 10 and 11 depict the distribution of the relative ionospheric
delay, showing a noticeable diurnal cycle effect where daytime observations exhibit higher
relative ionospheric delays compared to nighttime observations. This diurnal variation
is also reflected in the sea surface height uncertainties. Furthermore, it is evident that
ionospheric uncertainties have a significantly greater impact on sea height retrievals in the
Tropics region, where the general level of ionization is higher. In this geographical area, we
observe a higher altimetric uncertainty dispersion, particularly in the mid-low elevation
angle regime (during daytime, 0.22 m mean and 4.08 m std), where the combined delay of
the incident and reflected rays surpasses that of the direct ray. Consequently, this leads to
higher relative delays and, by extension, a more pronounced impact on GNSS-R altimetric
retrievals within this specific elevation range and region.

 
Figure 12. Altimetric uncertainty due to uncertainty in ionospheric delay model depending on
elevation, daytime (DT), and nighttime (NT) using NEDM2020 during LSA.

4.3. Doppler Shift Analysis

The analysis extends to the Doppler shift observed at the GPS L1 frequency across
varying ranges of elevation angles, while considering effects during both day and night
periods. Figure 13 illustrates the distribution of the Doppler shift during low solar activity.
The electron density variations in grazing angle reflectometry can induce a maximum
Doppler shift of ±2 Hz in the GPS L1 signal during daytime. The attenuation in the
Doppler shift demonstrates a strong correlation with diurnal cycles, resulting in a reduction
during nighttime periods. This phenomenon can be attributed to the decrease in the rate of
electron density changes, which in turn leads to a corresponding decrease in the magnitude
of the Doppler shift.

The Doppler shift histograms reveal a symmetrical distribution centered around ap-
proximately 0 Hz with a distinct separation in very-low-elevation cases. The distribution
is also influenced by the transmitter motion relative to the specular point elevation angle.
In Figure 14, it becomes evident that at very low elevation angles, a rising transmitter
(ascendant elevation) induces a positive Doppler shift, while a setting transmitter (descen-
dant elevation) results in a negative Doppler shift. However, at higher elevation angles
(20◦ to 30◦), the relationship may vary or even reverse.
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Figure 13. Distribution of Doppler shift depending on elevation, daytime (DT), and nighttime (NT)
using NEDM2020 sTEC retrievals with F10.7 = 75.

Figure 14. Distribution of Doppler shift depending on elevation and rising or setting event using
NEDM2020 sTEC retrievals with F10.7 = 75.

The distribution of the Doppler shift for F10.7 = 180 exhibits an increase in dispersion,
approximately doubling in all scenarios. In the elevation range of 5◦–10◦ within the tropics
region, the range of fd is more extensive during daytime, reaching maximum values of up
to ±4 Hz. The rising and setting event analyses present similar behavior, with negative
magnitudes primarily observed during rising events and positive magnitudes during
setting events.

4.4. Peak Electron Density Height Analysis

The NEDM2020 model is employed to determine the height at which the maximum
electron density peak Hm is observed along the paths of both the incident and reflected
rays. This altitude is significant as it represents the point of maximum ionization within
the ionosphere that the signals traverse.

From a geometrical standpoint within the grazing GNSS-R configuration, variations in
elevation angles directly correspond to changes in the segment of the signal ray that travels
along the ionosphere. Furthermore, throughout the diurnal cycle, electron densities within
the E and F layers exhibit greater magnitudes during daylight hours compared to nighttime,
with the F layer generally obtaining higher electron concentrations. These fluctuations are
examined to comprehend the intricate ionospheric interactions that the signals undergo
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during their propagation. This phenomenon results in variations in the height of the
maximum electron density peak, as depicted in Figure 15 for both day and nighttime.

 
Figure 15. Peak electron density height variations depending on elevation ranges, regions, and day
and nighttime using NEDM2020 sTEC retrievals with F10.7 = 75.

The overall average of the Hm during the LSA period is 270 km. Nevertheless,
noticeable variations are evident with respect to daytime and nighttime. In general, during
nighttime, the Hm is on average 10% higher than during daytime. The tropics region
stands out as one of the most dynamically changing areas within the ionosphere. In this
zone, the distribution of Hm during daytime exhibits a spread ranging from 236 to 326 km,
lacking a distinct peak value. However, during nighttime, Hm reaches its maximum value
at approximately 305 km. This highlights the substantial variations in electron density
within this region, particularly during daytime. During HSA, the Hm exhibits a consistent
increase of 21% across all scenarios.

5. Discussion

The analysis provides valuable insights into how ionospheric parameters such as slant
total electron content, relative ionospheric delay, Doppler shift, and peak electron density
height vary in response to different conditions. These findings are crucial for optimizing
the accuracy of space-borne GNSS-R applications, particularly in altimetry, aiding in the
development of robust models, and enhancing the interpretation of data acquired through
grazing GNSS-R configurations.

Under low-solar-activity conditions (F10.7 = 75), the resulting sTEC values from
NEDM2020 and NeQuick 2 reveal that both models exhibit similar behavior across different
scenarios. However, it is important to note that while an extensive evaluation of the
models is not carried out in this study, differences in the sTEC computations and the
relative total delay are observed. Significant differences of ~60 TECUs and up to 64% in
relative ionospheric delay are observed in polar regions at very low elevation angles during
daytime when comparing NEDM2020 and NeQuick 2. Under high-solar-activity conditions
(F10.7 = 180), the relative differences can reach values up to 98%.

Grazing elevation angles, local time, regions, and solar activity emerge as the crucial
factors determining ionospheric effects in GNSS-R. The observed elevation angle signifi-
cantly influences the path traversed by GNSS signals through the ionosphere, while electron
density variations rising from ionospheric diurnal cycles and geographical location con-
tribute to fluctuations in the sTEC computation. The sTEC values exhibit a noticeable
increase as the elevation angle decreases (very low to mid-low angles) in all regions during
both daytime and nighttime.
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Daytime events consistently result in higher sTEC values, larger relative ionospheric
delay values, and higher Doppler shift magnitudes compared to nighttime events across
all regions and elevation angles. The tropics region consistently displays the highest sTEC
values across all elevation angle ranges, indicating the presence of higher electron densities.
To provide a comprehensive synthesis of the study’s findings based on the electron density
retrievals from the NEDM2020 model, Tables 5 and 6 provide a summary of the results by
presenting the median and standard deviation for each parameter outlined in the Section 4
for F10.7 = 75 and F10.7 = 180, respectively. The parameters provided by the summary
tables are the relative ionospheric delay

(
Δpiono

)
in meters, absolute value of Doppler shift

(| f d|) in Hertz, and peak electron density height (Hm ) in kilometers.

Table 5. Overview of ionospheric parameters from the NEDM2020 sTEC computations during low
solar activity (F10.7 = 75).

Very Low: 5◦–10◦ Low: 10◦–20◦ Mid-Low: 20◦–30◦

Δpiono |fd| Hm Δpiono |fd| Hm Δpiono |fd| Hm
(m) (Hz) (km) (m) (Hz) (km) (m) (Hz) (km)

North

DT
median 3.10 0.133 251.7 4.35 0.022 252.3 3.33 0.026 252.2
std 1.96 0.142 11.7 1.81 0.019 10.5 1.44 0.021 8.5

NT
median 1.38 0.097 274.0 2.61 0.009 271.9 2.27 0.011 268.3
std 1.19 0.067 12.9 0.60 0.014 11.6 0.47 0.006 9.7

Tropics

DT
median 3.96 0.729 287.9 13.50 0.048 287.4 12.12 0.067 285.3
std 7.57 0.415 21.4 2.61 0.070 22.4 2.87 0.028 23.8

NT
median 1.63 0.219 302.6 4.95 0.016 305.4 4.74 0.014 305.4
std 2.82 0.195 13.1 1.18 0.033 9.1 1.05 0.013 7.3

South

DT
median 3.98 0.220 252.2 6.49 0.030 252.2 5.63 0.014 253.1
std 2.26 0.138 5.2 1.15 0.021 5.2 1.02 0.022 4.9

NT
median 1.41 0.145 289.0 3.36 0.012 288.8 3.17 0.015 289.1
std 1.27 0.073 11.2 0.48 0.021 9.8 0.40 0.007 9.2

In general, as the F10.7 index increases, notable observations emerge: (1) There is a
compensation effect, attributed to the direct signal contribution, leading to a decrease in
the median level of relative ionospheric delay as elevation decreases, particularly at very
low elevations. (2) The absolute Doppler shift exhibits a substantial increase in median
values, scaling up to one order of magnitude, as elevation angles decrease to their lowest.
(3) Notably, in tropical regions characterized by higher density peak heights, there is a more
pronounced compensation by direct signal contribution in Δpiono at the lowest elevations,
resulting in negative median delay values.

For a LEO GNSS-R mission employing the GPS L1 frequency, findings show that
relative ionospheric delays can reach ~19 m during periods of LSA and ~70 m during
HSA, equivalent to about 120 and 430 TECUs. The forthcoming ESA PRETTY mission
will pioneer grazing altimetry at the L5 frequency, which, with its longer wavelength
(~0.2548 m), is more sensitive to ionospheric group delays. Using 120 and 430 TECUs
as benchmarks, relative ionospheric corrections of approximately 35 and 125 m can be
expected for group delay altimetry during low and high solar activity.
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Table 6. Overview of ionospheric parameters from the NEDM2020 sTEC computations during high
solar activity (F10.7 = 180).

Very Low: 5◦–10◦ Low: 10◦–20◦ Mid-Low: 20◦–30◦

Δpiono |fd| Hm Δpiono |fd| Hm Δpiono |fd| Hm
(m) (Hz) (km) (m) (Hz) (km) (m) (Hz) (km)

North

DT
median 2.77 0.516 306.8 9.18 0.075 307.6 8.09 0.049 307.5
std 6.00 0.496 13.9 4.24 0.085 12.7 3.79 0.043 10.4

NT
median 0.03 0.330 333.8 5.11 0.051 331.7 5.31 0.015 327.2
std 3.90 0.148 15.9 1.64 0.066 14.4 1.16 0.011 12.0

Tropics

DT
median −21.45 2.329 349.5 25.56 0.246 348.4 28.45 0.139 345.2
std 24.43 0.698 26.7 9.30 0.377 27.3 5.96 0.068 28.9

NT
median −5.21 0.817 368.1 8.82 0.144 371.9 11.55 0.022 371.9
std 9.88 0.352 15.7 3.74 0.173 10.9 2.40 0.024 8.8

South

DT
median 1.46 0.812 307.2 13.57 0.084 306.9 13.97 0.037 307.9
std 7.58 0.333 6.5 3.39 0.109 6.4 2.62 0.043 6.0

NT
median −1.98 0.472 351.7 6.26 0.081 351.2 7.17 0.015 351.8
std 3.99 0.146 14.1 1.84 0.092 12.3 0.92 0.015 11.4

6. Conclusions

In this paper, we have analyzed ionospheric effects in GNSS-R at grazing angles. This
study encompasses the characterization of slant total electron content, relative ionospheric
delay, the influence of ionospheric correction model uncertainties on GNSS-R group delay
altimetry retrievals, the Doppler effect, and peak electron density height changes. Vari-
ous factors have been considered such as satellite geometry, latitude-dependent regions,
temporal variations, and solar activity.

When analyzing the results during LSA (low solar activity) and HSA (high solar activ-
ity), it becomes evident that as the elevation decreases into the grazing regime below 20◦,
the median relative ionospheric delay decreases due to the compensation from the direct
signal contribution. However, it is important to note that the standard deviation of the
delay, especially in terms of the Doppler shift, undergoes a substantial increase. This
behavior poses a significant challenge for the model-based correction of ionospheric delay
in GNSS reflectometry altimetry at grazing elevation angles.

While model uncertainties do affect group delay sea height estimates it is important to
highlight that these effects are not uniform across all GNSS-R observations. Coherent phase
observations, for instance, offer a remarkable level of precision, down to the centimeter
scale. Along reflection tracks characterized by consistent ionospheric bias, relative altimetry
at a centimeter precision level can be achieved. This means that even in the presence of
ionospheric delay bias, LEO space-borne GNSS-R systems, as reported in [26], can still
provide precise results in the altimetric inversion.

Total electron content, a crucial ionospheric parameter, exhibits complex variations
spanning diurnal, monthly, seasonal, and 11-year solar cycles. Extended temporal coverage
is essential for deciphering these patterns, especially in dynamic regions allowing anal-
ysis of seasonal trends. This study highlights the importance of spatially extended data,
particularly in tropical areas with substantial ionospheric variability. Such data is key to
comprehending ionospheric parameter evolution across different time scales and regions,
influenced by factors like solar activity and geomagnetic storms.

GNSS-R (global navigation satellite system reflectometry) stands as a valuable and
complementary remote sensing tool in ionospheric studies, effectively addressing areas
not covered by alternative methods. This capacity offers significant contributions to the
modeling, prediction, and comprehension of ionospheric effects.
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