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Fast nondestructive detection technology in food quality and safety evaluation is a
powerful support tool that fosters informatization and intelligence in the food industry,
characterized by its rapid processing, convenient operation, and seamless online inspection.
Over the past two decades, these technologies have found numerous successful applica-
tions in the field of food and agricultural product detection and processing. Owing to
improvements in the development of photoelectric sensors and the ongoing progress in
artificial intelligence and software algorithms, fast nondestructive detection technologies
provide significantly enhanced accuracy, reliability, and stability, revolutionizing their role
in food quality and safety detection and processing. Their seamless integration with the
Internet of Things (IoT) and intelligent manufacturing is promoting a new wave of inno-
vation in the food industry. The application of new sensing technology and equipment in
the fast, nondestructive detection of food has always been at the forefront of scientific and
technological research. The schematic diagram of the advance in research progress is shown
in Figure 1. This Special Issue is dedicated to highlighting the latest research progress and
jointly discussing the future directions of research and development in the field.

Raman spectroscopy is a fast and sensitive tool that has established itself as a valuable
technique that has demonstrated successful applications in ensuring food safety and quality.
Yin et al. [1] employed bimetallic core–shell nanoparticles and a specific redox reaction
of carbimazole and chromium iron for the surface-enhanced Raman spectroscopy (SERS)
detection of hexavalent chromium in tea. The developed techniques demonstrated excellent
sensitivity, emphasizing the significant potential of rapid, non-destructive, and sensitive
SERS detection in the field of food safety and quality analysis. Qiu et al. [2] developed an
SERS-based method for the detection of polycyclic aromatic hydrocarbon (PAH) residues
on the surface of fruits and vegetables. A flexible substrate (β-CD@AuNP/PTFE) was
employed for enhancing the signals along with lightweight deep learning networks for
data analysis. In addition, Zhang et al. [3] utilized a microfluidic chip for the capture of crop
airborne disease spores for further detection using Raman spectroscopy. The use of support
vector machine (SVM) and back-propagation artificial neural network (BPANN) ensured
high accuracy in detection. Thus, the integration of deep learning in Raman spectroscopic
data facilitates automated feature extraction, accommodates complex data relationships,
and achieves high accuracy levels, thereby enabling its effective application in the field
of food safety. Interestingly, Sun et al. [4] focused on theoretically calculating Raman
spectra for five commonly used plasticizers, known as phthalic acid esters (PAEs). The
density functional theory (DFT) calculations showed in the research have the potential to
contribute to the development of Raman spectroscopic methods for the rapid detection of
PAEs in the future, a crucial step in assessing their potential health risks. These innovative
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applications demonstrate the effectiveness of Raman spectroscopy in detecting contam-
inants and analyzing the quality of food products. Theoretical advancements in Raman
spectral calculation help to gain insights into molecular structure, composition, and their
interaction, which eventually has the potential to improve the accuracy and sensitivity of
Raman-based analysis.

 

Figure 1. Schematic diagram of the advance research progress of fast nondestructive detection
technology and equipment for food quality and safety.

Further, Sun et al. [5] employed visible/near-infrared (Vis/NIR) spectroscopy to de-
tect the soluble solid content in fresh jujubes along with a least square support vector
machine to develop a model. The proposed method yielded highly accurate prediction
results, effectively tackling the demand for quality analysis of jujubes in the open fields. In
addition, Jiang et al. [6] developed a calibration method for NIR spectroscopy to enhance
the accuracy of the model for detecting the soluble solid content in apples of different sizes.
The results hold high significance in advancing the development of dependable models for
predicting the SSC in diverse fruits. While establishing a Vis/NIR spectroscopy detecting
method for the stone cell content of Korla fragrant pears, Wang et al. [7] showed that the
standardized normal variate (SNV) pre-processed successive projective algorithm–support
vector regression (SPA-SVR) model effectively meets the requirements for intelligent evalu-
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ation, achieving high correlation coefficients for both calibration and validation sets. The
effectiveness of Vis/NIR spectroscopy in food quality analysis was further proved by
Wang et al. [8], where Vis/NIR spectroscopy was successfully employed to predict the
anthocyanin content in purple Chinese cabbage with high accuracy. On the other hand,
Migues et al. [9] developed a method for predicting the acceptability of Mandarin fruit
based on the sugar and citric acid levels extracted from the NMR spectroscopic data. The
study proved that the chemometric-based models facilitate data-driven decisions to op-
timize food quality, ensuring that the product meets consumer demands and regulatory
standards. In addition, He et al. [10] evaluated the impact of 60Co irradiation on turmeric
essential oil composition using gas chromatography–ion mobility spectrometry (GC–IMS).
The findings demonstrated that, even though compound composition remained constant,
the peak intensities were altered, supporting a 5 kGy/min irradiation dose for preserving
essential oil quality. The studies have effectively demonstrated that the integration of
spectroscopic techniques along with advanced data analysis is a promising choice that
cements the advancement in food safety and quality analysis. These approaches offer rapid
and accurate predictions of key quality attributes in various food products.

The ability of machine learning to extract valuable information from high-dimensional
spectral data was utilized to enhance the effectiveness and efficiency of hyperspectral
imaging in analyzing the safety and quality of food products. Xu et al. [11] explored the
relationship between water distribution and quality indicators in shrimp during hot air
drying using hyperspectral imaging. The study revealed a positive association between
shrimp moisture content and bound water, immobilized water, and free water. Conversely,
attributes including hardness, stickiness, and chewiness showed negative correlations with
bound water and free water. Likewise, Cao et al. [12] developed a rapid approach for
assessing the texture profile analysis of common carp fillets, leveraging hyperspectral imag-
ing and machine learning algorithms. The proposed method accelerated the assessment
process and maintained the integrity of the product, making it a valuable alternative to
traditional texture analysis methods. Additionally, Wang et al. [13] and Xu et al. [14] both
employed hyperspectral imaging to assess the quality of the safety of maize seeds. However,
Wang et al. [13] developed a method to detect mold growth in maize kernels by applying
categorical analysis and data fusion to hyperspectral data. In contrast, Xu et al. [14] devel-
oped a method to identify defective maize seeds by employing deep learning, particularly
convolutional neural networks to hyperspectral images. Further, Zhang et al. [15] combined
internal and external leaf features obtained from both near-infrared hyperspectral imaging
and THz time-domain spectroscopy to assess the different grades of tomato leaf mildew
infestation. The fusion of these sources of information allows for a high degree of accu-
racy in detection, preventing misdiagnosis associated with traditional disease detection
methods. Hyperspectral imaging has brought about a transformative shift in food quality
and safety assessment, providing an in-depth analysis of food products. The wide range of
applications of hyperspectral imaging from understanding water distribution and assessing
texture to detecting mold growth and defects emphasizes its versatility and reliability.

IoT plays a significant role in food safety and quality assurance by providing real-time
monitoring, data accuracy, complete traceability, and early warning systems throughout
the food supply chain. Yin et al. [16] developed a spoilage monitoring and early warning
system based on the volatile component production during apple spoilage. The combi-
nation of a sensor prototype and multi-factor fusion early warning model provided the
real-time evaluation of food spoilage. Thus, the development of novel sensors that have the
capability to collect data from the environment is an integral part of the IoT to ensure minia-
turization and energy efficiency. In this regard, a chemiresistive ethylene sensor, employing
rGO/WSe2/Pd heterojunctions, has been developed for room-temperature (RT) ethylene
detection. This sensor offers a practical solution to monitor ethylene concentration, im-
proving fruit and vegetable quality control during transportation and reducing losses [17].
Similarly, Zhang et al. [18] developed a bi-layer containing an anthocyanin-loaded liposome
that has the capability to indicate the freshness of shrimp products through visual color
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changes by monitoring the pH of the surrounding medium. These studies have great
significance as they focus on sensor development, which is a key aspect of smart and
intelligent agriculture.

Artificial intelligence and machine learning can provide a conceptual tool to transform
food safety and quality data management, facilitating the early detection and prevention
of food safety issues. The synergy between deep learning and image processing was
harnessed by Liang et al. [19] to develop a real-time grading system for defective apples
using an RGB camera machine vision system and a combination of semantic segmentation
and a pruned YOLO V4 network. This approach ensured a high detection accuracy (92.42%)
without compromising computational efficiency. In addition, Zhou et al. [20] found that
the light penetration depth in apple tissues was around 2.2 mm when spatial frequency
domain imaging (SFDI) was used to detect early stage bruises in apple tissue. These works
proved the effectiveness of deep learning architecture in detecting early stage defects in
thin-skinned fruits. Moreover, Chen et al. [21] focused on creating a methodology for
assessing the degree of milling (DOM) in rice with digital image processing technology
and deep learning. The research introduced an enhanced model that combines multi-
scale information through the integration of the Inception-v3 structure and the residual
network (ResNet) model, using the Bayesian optimization algorithm which achieved
superior results. The method achieved an average detection accuracy of 96.9%. Similarly,
Yu et al. [22] developed a model using YOLOv5 to identify small impurities in walnut
kernels that showed a detection accuracy of 88.9%. The model achieved a faster detection
time for single images using an improved YOLOv5 model. By replacing conventional Conv
with Ghostconv, the detection time was reduced from 65.25 ms to 45.38 ms, ensuring the
real-time detection of walnut impurities while maintaining detection performance.

Ensuring the safety and quality of food products is of paramount importance in the
food supply chain. From production to distribution, rigorous food safety and quality
inspections have to be conducted at every stage involving the monitoring and control of
food processing methods, preventing contamination and maintaining the highest standard.
Ongoing research and development efforts focus on creating non-destructive technologies
and cutting-edge equipment to attain this goal. These innovations understandably play
a crucial role in ensuring the safety and quality of food products without compromising
the integrity and promoting public safety and confidence in the food supply chain. The
application of artificial intelligence, big data, and the IoT has led to a transformative era
for the food industry. This implementation has ushered in an improvement in quality and
an increase in efficiency across the entirety of the food production and distribution chain.
Predictive analytics powered by artificial intelligence help to optimize production and
minimize postharvest loss, while IoT-associated sensors provide real-time data on various
environmental factors, ensuring food safety and quality. Big data analytics provides insight
into consumer preferences and market trends, leading to more informed decision making.
These digital transformations promote the transformation of and upgrade the food industry,
making it more sustainable, innovative, and responsive to the evolving needs of consumers.

In summary, this Special Issue explores a wide range of innovative research at the
intersection of technology development, artificial intelligence, and IoT. From sensor de-
velopment and emerging techniques to machine learning and chemometric analysis, the
studies included in this Special Issue showcase the incredible progress in safety and quality
analysis in the food industry. Moving forward, these advances hold great importance
in revolutionizing, early detection, quality assessment, and safety evaluation, ultimately
benefiting both consumers and the food industry.

Author Contributions: Conceptualization, Z.G.; resources, Z.G.; writing—original draft preparation,
H.J.; writing—review and editing, Z.G.; supervision, Z.G.; project administration, Z.G.; funding
acquisition, Z.G. All authors have read and agreed to the published version of the manuscript.
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Abstract: The detection of polycyclic aromatic hydrocarbons (PAHs) on fruit and vegetable surfaces
is important for protecting human health and ensuring food safety. In this study, a method for the in
situ detection and identification of PAH residues on fruit and vegetable surfaces was developed using
surface-enhanced Raman spectroscopy (SERS) based on a flexible substrate and lightweight deep
learning network. The flexible SERS substrate was fabricated by assembling β-cyclodextrin-modified
gold nanoparticles (β-CD@AuNPs) on polytetrafluoroethylene (PTFE) film coated with perfluorinated
liquid (β-CD@AuNP/PTFE). The concentrations of benzo(a)pyrene (BaP), naphthalene (Nap), and
pyrene (Pyr) residues on fruit and vegetable surfaces could be detected at 0.25, 0.5, and 0.25 μg/cm2,
respectively, and all the relative standard deviations (RSD) were less than 10%, indicating that
the β-CD@AuNP/PTFE exhibited high sensitivity and stability. The lightweight network was
then used to construct a classification model for identifying various PAH residues. ShuffleNet
obtained the best results with accuracies of 100%, 96.61%, and 97.63% for the training, validation,
and prediction datasets, respectively. The proposed method realised the in situ detection and
identification of various PAH residues on fruit and vegetables with simplicity, celerity, and sensitivity,
demonstrating great potential for the rapid, nondestructive analysis of surface contaminant residues
in the food-safety field.

Keywords: surface-enhanced Raman spectroscopy; flexible substrate; polycyclic aromatic hydrocarbons;
in situ detection; deep learning

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that are non-
degradable, highly toxic, mutagenic, and carcinogenic [1,2]. Human exposure to PAHs can
occur via the inhalation of polluted air, food intake, and skin contact, of which food intake
accounts for more than 90% of cases [3–6]. In particular, fruit and vegetable surfaces tend
to attract large deposits of PAHs owing to their long-term exposure to the atmosphere [7,8].
Therefore, it is of great scientific and practical significance to detect PAH residues on fruit
and vegetable surfaces because of their strong carcinogenicity and teratogenicity.

In recent years, spectroscopic methods—such as colorimetry, fluorescence spectroscopy,
near-infrared spectroscopy, and surface-enhanced Raman spectroscopy (SERS)—have been
widely used in PAH analysis because of their efficiency, sensitivity, and automation [9–12].
Although PAHs exhibit macromolecular fluorescence, conventional fluorescence spectra
are easily limited by the broadening of emission bands and it can be difficult to distinguish
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similar molecules because of their low specificity. SERS is a vibrational spectroscopy tech-
nique that provides information on the structural characteristics of molecules, enhances
Raman scattering, and has been widely used in fast-trace analysis [13–15]. The key to
SERS applications is the fabrication of nanostructures with local surface plasmon resonance
as SERS-active substrates, and the interaction between the substrates and targets [16].
However, the adsorption of most PAH molecules onto the surface of metal nanoparticles
(NPs) is low and resonance Raman scattering does not occur, hindering the effective SERS
detection of PAHs. To solve this problem, many researchers have attempted to prepare func-
tionalised plasma nanostructures by modifying the surfactants, antigens, antibodies, and
supramolecules on the NP surfaces to promote target binding to SERS substrates [17,18].
However, these strategies are subject to interference from functionalised molecules during
SERS detection.

Our previous studies [19] showed that β-cyclodextrins (β-CDs) modified on the sur-
face of gold NPs (AuNPs) can effectively trap PAHs to form host–guest compounds because
of their hydrophobic inner cavities (which exhibit a cyclooligosaccharide structure); β-CDs
also exhibit weak Raman scattering properties that can reduce interference. Moreover, the
surfaces of most fruit and vegetables are irregular and uneven. To improve the application
of SERS technology for the detection of irregular sample surfaces, many researchers have
attempted to construct flexible SERS-active substrates by assembling metal NPs on flexible
materials—such as polymethylmethacrylate (PMMA), tape, and poly(ethylene terephtha-
late) (PET), which can be easily wrapped or formed to collect analytes from irregular
sample surfaces [20–22]. Although these methods could achieve in situ detection, their
sensitivity and stability required further optimisation because of the viscosity of some of
the flexible materials that destroyed nanoarray structures during the stripping process. The
superhydrophobic film could effectively narrow the gap between NPs under the action of
hydrophobicity to generate a large number of hot spots, which could enhance the SERS
signal, and was an effective method for introducing molecules into hot spot regions [23,24].
However, most reported superhydrophobic SERS substrates required various nanofabri-
cation techniques—such as electron beam lithography, optical lithography, and reactive
ion etching—thus increasing the cost of actual SERS applications [25,26]. Inexpensive
polytetrafluoroethylene (PTFE) films, with the advantage of having a low surface tension,
could be combined with lubricants to prepare flexible and hydrophobic platforms that
contributed to the generation of hot spots and eliminated the effects of coffee rings and
viscosity [27]. Consequently, PTFE films exhibited strong practical application potential for
the in situ, sensitive, and stable SERS detection of PAH residues on the irregular surfaces of
fruits and vegetables.

To achieve rapid, intelligent, and automated analysis, SERS spectra can be combined
with deep learning (DL) methods to build a determination model [28,29]. In particular,
lightweight DL networks—such as SqueezeNet, Xception, MobileNet, and ShuffleNet
developed based on the representative convolutional neural network (CNN)—have been
widely used because of small parameters, low computational overhead, and high pre-
cision, showing a higher specificity and sensitivity compared to typical chemometric
analysis [30–33]. For example, Weng et al. [34] used SqueezeNet to develop regression
models for the analysis of chlormequat chloride and acephate; excellent performance was
obtained with coefficients of determination (R2) of 0.9836 and 0.9826 and root-mean-square
errors (RMSEs) of 0.49 and 4.08, respectively. Wang et al. [35] proposed a novel regression
model, a lightweight one-dimensional CNN, for predicting the nicotine content in tobacco
leaves with R2 and RMSE values of 0.95 and 0.14, respectively. These results demonstrated
that lightweight networks were suitable for the rapid, accurate analysis of SERS spectra.
Consequently, SqueezeNet, MobileNet, and ShuffleNet were used to build classification
models for the analysis of various PAH residues on fruit and vegetable surfaces.

In summary, this study aims to develop a method for the in situ detection and identifica-
tion of various PAH residues on fruit and vegetable surfaces using flexibleβ-CD@AuNP/PTFE
substrates and lightweight DL networks (Figure 1). The β-CD@AuNP/PTFE was prepared
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by assembling β-CD@AuNPs on a flexible PTFE film coated with perfluorinated liquid
and the PAHs were detected based on the flexible substrate. SqueezeNet, MobileNet,
and ShuffleNet were used to construct an intelligent analysis model combined with SERS
spectra to classify various PAH residues on the fruit and vegetable surfaces.

Figure 1. Schematic diagram of the flexible β-CD@AuNP/PTFE combined with lightweight networks
to detect PAH residues on fruit and vegetable surfaces.

2. Materials and Methods

2.1. Materials

HAuCl4·3H2O (99%), β-CD (97%), BaP (96%), Pyr (98%), and Nap (99%) were pur-
chased from Sigma-Aldrich. Na2HPO4, NaCl, acetone, methanol, and cyclohexane were
obtained from Sinopharm Chemical Reagent Co., Ltd.(Shanghai, China), PTFE (pore
size 0.1 μm, thickness 70 μm) film was bought from Whatman and polydimethylsilox-
ane (PDMS) was acquired from Anhui Zhongke Material Co., Ltd.(Hefei, China). Adhesive
tape, apples, tomatoes, peaches, and cucumbers were purchased from local supermarkets.
Ultrapure water (18.25 MΩ) was used in all experiments.

2.2. Preparation of Flexible SERS Substrate

Synthesis of β-CD@AuNPs: β-CD@AuNP sol was prepared using β-CD as a reducing
agent and stabiliser, according to Zhao et al. [36]. In brief, 5 mL of 0.1 M phosphate
buffer (PB), 1 mL of 0.01 M chlorauric acid solvent, 10 mL of 0.01 M β-CD solution were
successively added to 35 mL ultrapure water and stirred vigorously until fully mixed. The
mixture was heated to a set boiling temperature and maintained at this temperature for
60 min. The scanning electron microscopy (SEM) images (Figure S1 in the Supporting
Information) of the prepared β-CD@AuNPs showed that the particle size was uniform at
approximately 20–25 nm.
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Preparation of β-CD@AuNP/PTFE: The detailed steps for assembling β-CD@AuNPs
on a hydrophobic smooth PTFE film were as follows. First, the PTFE film was glued to
a 5 × 2 cm glass slide with double-sided adhesive. The slide was then adsorbed on the
machine and 0.45 mL of a perfluorinated liquid was dispersed by spin coating at a low
speed of 600 rpm for 30 s and a high speed of 1500 rpm for 1 min. The coated film was
heated for 30 min to obtain a spare film. Finally, the concentrated 10 uL β-CD@AuNP
colloidal solution was poured onto a hydrophobic PTFE film. During the drying process,
the contact line shrank because of the low surface friction of the PTFE film. Eventually, the
initial droplet was concentrated in the cell domain with a diameter of 0.5–1 mm (Figure S2
in the Supporting Information).

Preparation of β-CD@AuNP/tape: A two-dimensional NP array of β-CD@AuNPs
was obtained using a simple liquid–liquid interface self-assembly method [19] and was
subsequently transferred onto silicon wafers. A piece of adhesive tape (clipped using
scissors) was then used to cover the nanoarray of β-CD@AuNPs, being pressed firmly
for 3–5 s. The tape was gently peeled off from the surface of the silicon wafer and
β-CD@AuNP/tape was formed by transferring the β-CD@AuNP array onto the tape.

Preparation of β-CD@AuNP/PDMS: Similarly, flexible β-CD@AuNP/PDMS was
prepared by transferring monolayer NP arrays of β-CD@AuNPs using PDMS films instead
of silicon wafers and air-drying at 25–30 ◦C.

2.3. Preparation of SERS Sample

A solution of 100 μg/mL was obtained by dissolving 10 μg BaP, Pyr, and Nap solid
powders in a 0.1 L ethanol solution. Standard solutions of BaP, Pyr, and Nap at different
concentrations (10, 8, 5, 2.5, 1, 0.5, 0.1, and 0.05 μg/mL) were prepared by diluting the
100 μg/mL solution with ethanol. Twenty samples were prepared at each concentration. A
standard solution was then used to evaluate the effect of flexible β-CD@AuNP/PTFE on
SERS detection. To simulate the actual environment, the spiked samples were prepared by
spraying 10 μL of BaP, Pyr, and Nap standard solutions with different concentrations on a
fixed area (1 × 1 cm2) of the fruit and vegetable surfaces, after which they were air-dried at
25–30 ◦C. With 20 samples at each concentration, 5 spectra were collected for each.

The PAH samples comprised four classes—that is, BaP + Pyr, BaP + Nap, Pyr + Nap,
and BaP + Pyr + Nap—with 20 samples in each class, covering a concentration range
of 10 μg/mL to 0.05 μg/mL. Similarly, the 10 μL sample solution was sprayed onto a
fixed area of the fruit and vegetable surfaces before being air-dried, followed by 10 μL
ethanol being sprayed onto the fixed area to dissolve and extract various PAHs. Finally, the
prepared SERS substrate was pasted onto the fruit and vegetable surfaces, gently pressed
and lifted, the process being repeated two to three times to realise peel surface sampling.
After sampling, the substrate was placed on a slide for SERS detection. Five spectra were
collected for each sample.

2.4. Spectral Measurement

The morphology and structure of the substrates were characterised using scanning
electron microscope (SEM, Zeiss, LSM 710, Oberkochen, Germany) and transmission elec-
tron microscopy (TEM, JEOL, JEM-2100F, Tokyo, Japan). The SERS signal of the sample was
measured using a portable Raman spectrometer (BWTEK, i-Raman785 Plus, Newark, DE,
USA) with a 785 nm He-Ne laser and an excitation light source of 150 mW. The integration
time was 10 s, the laser power was 10%, and the spectral range was 300–1800 cm−1.

2.5. Spectral Analysis Methods

SqueezeNet, MobileNet, and ShuffleNet were used to construct a classification model
for the rapid, intelligent identification of various PAHs. SqueezeNet is a lightweight net-
work based on a model-compression strategy [37]. The structure of the SqueezeNet used in
this study is shown in Figure S3 in the Supporting Information. The first convolution layer
and pooling layer are first used for the initial feature extraction; then, a 1 × 1 convolution
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layer (squeeze layer) is added, followed by a 1 × 1 convolution and a 3 × 1 convolution ex-
tended width (expand layer). The features of the two convolution layers are connected and
sent to the flatten, dropout, and dense layers. Notably, the pooling operation of SqueezeNet
is delayed, which ensures that a larger feature map is convolved, retaining more feature
information, thereby effectively improving network performance. The parameter settings
for SqueezeNet are listed in Table S1.

The core idea of MobileNet is to use depthwise separable convolution (DSC) instead
of general convolution [38]. The MobileNet structure designed in this study is illustrated in
Figure S4 in the Supporting Information. The DSC is implemented using DepthwiseConv
and the common 1 × 1 convolution module, both of which are followed by batch nor-
malisation and a rectified linear unit (ReLU) for batch normalisation and nonlinearisation.
MobileNet comprises two DSC modules with an additional maximum pooling layer for
dimensionality reduction, followed by a flatten layer and two dense layers. The parameter
settings for MobileNet are listed in Table S1.

The ShuffleNet network includes group convolution and channel shuffling [39], the
structure of which is shown in Figure S5 in the Supporting Information. Initial feature
extraction is performed using a common convolution layer and a maximum pooling layer,
followed by group convolution and channel shuffle using two shuffle layers. In the shuffle
layer, the input is first convolved using a 1 × 1 group convolution, after which the channel
shuffle module is used to shuffle the feature graphs of each group. The input is then
convolved using a 3 × 1 DepthwiseConv and 1 × 1 group. Finally, the obtained input is
added to the initial input to realise group convolution with channel shuffle. After extracting
features through the two shuffle layers, the entire network can be completed through the
flatten, dropout, and two dense layers. The parameter settings for ShuffleNet are listed
in Table S1.

2.6. Model Evaluation

There were 400 spectra for the four classes of mixed samples; 30% of the spectra
were randomly selected as the prediction dataset, the remaining 70% being divided into
training and validation datasets in a 3:1 ratio, which were then used to adjust the network
hyperparameters. The accuracy of the training, validation, and prediction datasets (ACCT,
ACCV, and ACCP), as well as the Precision, Recall, and F1-score of the prediction datasets,
were used to evaluate the model performance. Precision is the percentage of true positives
in all predicted positives; Recall is the percentage of predicted true positives in all positives;
F1-score is the weighted harmonic average of Precision and Recall. The ACC, Precision, Recall,
and F1-score may be conveniently calculated using the following expressions:

ACC =
TP + TN

TN + FP + FN + TP
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 − scores =
Precision × Recall
Precision + Recall

(4)

where TP (resp. TN) stands for true positive (resp. negative) and FP (resp. FN) for false
positive (resp. negative).

3. Results and Discussion

3.1. Influence of Different Flexible Substrates on SERS Activity

Owing to the interference of several inherent flexible-film characteristics—such as
transparency, fluorescent background, viscosity, and impurities—the morphology of the
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nanoarray structure transferred to its surface was affected, greatly affecting the SERS activity.
To select an ideal flexible substrate and realise the in situ detection of trace PAH residues
on irregular surfaces in a real-world environment, the influence of three flexible substrates
on SERS activity was explored (Figure 2). Figure 2a, c, and e shows the SERS spectra of
β-CD@AuNP/PDMS, β-CD@AuNP/tape, and β-CD@AuNP/PTFE, respectively, while
the SERS spectra of 10 μg/mL BaP detected by them are shown in Figure 2b, d, and f. As is
evident from the figure, β-CD@AuNP/PTFE obtained the best SERS activity (Figure 2f),
the characteristic peak of BaP at 524, 607, 1231, and 1376 cm−1 being greatly improved.
The vibration modes corresponding to each characteristic peak are listed in Table S2 in
the Supporting Information. The SERS activity of the β-CD@AuNP/tape is the weakest
(Figure 2d), owing to the viscosity and surface roughness of the tape, which easily destroys
the two-dimensional nanoarray structure of the β-CD@AuNPs. The PDMS surface is not
affected by the viscosity, but the PDMS hydrophobicity is lower than that of the PTFE,
so the SERS activity of β-CD@AuNP/PDMS (Figure 2b) is also weaker. The surface
hydrophobicity of the PTFE film coated with the perfluorinated liquid limits the diffusion
of NPs, which is conducive to reducing the gap between the particles and generating
a large number of hot spots. This result can be demonstrated using the SEM image of
β-CD@AuNP/PTFE in Figure S6 of the Supporting Information, the gap between the
aggregated β-CD@AuNPs being less than 10 nm, which generates abundant hot spots,
resulting in a large SERS enhancement with Enhancement Factor of 106~107 (Figure S7 in
Supporting Information). Therefore, β-CD@AuNP/PTFE was used as the flexible SERS
substrate in subsequent experiments.

 
Figure 2. SERS spectra of 10 μg/mL BaP detected based on different flexible substrates: (a) β-
CD@AuNP/PDMS, (b) 10 μg/mL BaP detected by β-CD@AuNP/PDMS; (c) β-CD@AuNP/tape,
(d) 10 μg/mL BaP detected by β-CD@AuNP/tape; (e) β-CD@AuNP/PTFE, (f) 10 μg/mL BaP detected
by β-CD@AuNP/PTFE.

3.2. SERS Detection of PAHs Based on Flexible β-CD@AuNP/PTFE

Nap, Pyr, and BaP were selected as targets because they are the most representative
and widely distributed of the two-, four-, and five-aromatic PAHs, respectively; their
structures are shown in Figure 3. SERS detection of BaP, Nap, and Pyr was conducted
based on flexible β-CD@AuNP/PTFE, and its sensitivity, reproducibility, and stability were
explored. The SERS spectra of BaP, Nap, and Pyr at different concentrations are shown
in Figure 3A–C, respectively. The intensities of the characteristic peaks (highlighted in
purple) decrease with decreasing concentration. The vibration modes corresponding to
the characteristic peaks are listed in Table S2. When the concentration is as low as 0.05,
0.5, and 0.1 μg/mL, BaP at 607 cm−1, Nap at 1372 cm−1, and Pyr at 587 cm−1 still have
weak Raman signals, indicating that the flexible β-CD@AuNP/PTFE substrate has strong
sensitivity and good universality.
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Figure 3. Detection of PAHs by β-CD@AuNP/PTFE; SERS spectra of (A) BaP, (B) Nap, and (C) Pyr
standard samples, insets showing their molecular structures; (D) RSD values of characteristic peak
intensities of 10 μg/mL BaP, Pyr, and Nap at 607, 587, and 1372 cm−1, respectively.

The stability of β-CD@AuNP/PTFE was further evaluated by calculating the relative
standard deviation (RSD) of the characteristic peak intensities of the 10 SERS spectra for
10 μg/mL PAHs, as shown in Figure 3D. The RSDs of BaP at 607 cm−1, Nap at 1372 cm−1,
and Pyr at 587 cm−1 are 7.9%, 9.8%, and 7.2%, respectively. All RSD values are less than
10%, indicating that the SERS detection of PAHs based on the flexible β-CD@AuNP/PTFE
constructed in this study exhibits good stability.

3.3. In Situ Detection of PAHs on Fruit and Vegetable Surfaces

The SERS spectra of the spiked samples prepared by spraying BaP, Pyr, and Nap
onto the surfaces of apples, tomatoes, and peaches are shown in Figure 4. When BaP
concentrations on the surfaces of apples (Figure 4(A1)), tomatoes (Figure 4(B1)) and peaches
(Figure 4(C1)) are as low as 0.1, 0.25, and 0.25 μg/cm2, respectively, there is still a weak
SERS signal at 607 cm−1, especially at 0.25 μg/cm2, which can be attributed to the C-C and
C-H bending vibration modes. The characteristic peaks at 587 cm−1 and 1233 cm−1 can still
be observed at Pyr concentrations as low as 0.25, 0.5, and 0.25 μg/cm2 on the surfaces of
apples (Figure 4(A2)), tomatoes (Figure 4(B2)), and peaches (Figure 4(C2)), corresponding to
C-C stretching and C-H bending vibration modes. The difference in spectral signal intensity
between the different peels may be related to the roughness and chemical composition of
the peels. When the concentration of Nap on the surface of the apple (Figure 4(A3)), tomato
(Figure 4(B3)), and peach (Figure 4(C3)) is as low as 0.5, 1, and 0.5 μg/cm2, respectively, the
characteristic peak at 1372 cm−1 has a weak signal, while the signal at 505 cm−1 is almost
invisible, which is related to the stretching and bending vibrations of the C-C bond.
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Figure 4. Detection of different concentrations of PAHs on fruit and vegetable surfaces by using a
flexible β-CD@AuNP/PTFE substrate. (A1–A3), (B1–B3), and (C1–C3) are the SERS spectra of BaP,
Pyr, and Nap with different concentrations on the surface of apple, tomato, and peach, respectively.

Although sensitive SERS detection of Nap on the fruit and vegetable surfaces is
realised, the sensitivity is still weaker than that of BaP and Pyr because the C-H bond
bending vibration mode of BaP and Pyr has higher polarisability and exhibits stronger
peak intensity compared with the C-C bending vibration mode of Nap. The above results
indicate that using β-CD@AuNP/PTFE as a flexible SERS substrate can realise the sensitive
and in situ detection of PAH residues on the surface of fruits and vegetables, which is of
great significance for food safety assessment.

3.4. Identification of Various PAHs on Fruit and Vegetable Surfaces

Because there is more than one PAH residue on the surface of fruits and vegetables
in the real environment, the main purpose of this work is to realise the identification of
various PAHs, without considering a single class. And the competitive adsorption of SERS
can also lead to different contributions of PAHs to the SERS signal at the same concentration
and can even cover the signals of other PAHs, resulting in low efficiency and accuracy in
identifying various PAHs through the manual analysis of spectra. Consequently, in this
study, a lightweight network combined with the SERS spectra of various PAHs was used to
construct a classification model for intelligent, accurate identification.

The SERS spectra of various PAHs were obtained using the flexible β-CD@AuNP/PTFE
substrate, as shown in Figure 5. Figure 5A shows the SERS spectra of Pyr, Nap, and BaP.
It is evident that the characteristic peak of Nap at 505 cm−1 is different from those of
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Pyr and BaP, and the characteristic peaks of Pyr at 587 and 1399 cm−1 are unique with-
out overlapping. Similarly, the characteristic peak of BaP at 607 cm−1 is unique. These
three targets have unique characteristic peaks that provide a basis for the identification of
subsequent detection.

 

Figure 5. SERS spectra of BaP, Nap, and Pyr at a concentration of 10 μg/mL (A); SERS spectra of various
PAHs (B), from top to bottom: (a) BaP + Nap, (b) Pyr + Nap, (c) BaP + Pyr, (d) BaP + Nap + Pyr.

Figure 5B shows the SERS spectra obtained after mixing Pyr, Nap, and BaP. From
spectra d of BaP + Pyr + Nap, it is evident that the number of characteristic peaks is more
than those of BaP + Nap, Pyr + Nap, and BaP + Pyr (Figure 5B a, b, c). Therefore, the
identification performance for BaP + Pyr + Nap may be higher than that for the other types
of spectra in subsequent identifications. Additionally, the spectra of a, b, and c in Figure 5B
all contain the characteristic peaks of the two PAHs; moreover, there are many overlapping
characteristic peaks that make quick and intuitive manual identification difficult to achieve.
Consequently, the combination of the SERS spectra of PAHs with lightweight networks is
an effective and robust method for constructing recognition models.

The identification results of the SERS spectra of various PAH residues on fruit and veg-
etable surfaces using the model constructed with three lightweight networks (SqueezeNet,
MobileNet, and ShuffleNet) are shown in Table 1. The results obtained from SqueezeNet,
with ACCT, ACCV, and ACCP values of 99.57%, 93.22%, and 94.48%, respectively, were un-
satisfactory. Based on the Precision, Recall, and F1-score of the prediction dataset, SqueezeNet
is the best at identifying the mixed spectra of BaP + Pyr + Nap, primarily because of the
distinct features of the mixed spectra. But the identification of the BaP + Pyr and Pyr +
Nap spectra by this network is poor, indicating that the extracted features are not suffi-
ciently rich, which is consistent with the confusion matrix predicted by the SqueezeNet
model (Figure 6A). MobileNet performs better than SqueezeNet, with ACCT, ACCV, and
ACCP values of 100%, 94.92%, and 96.06%. The Precision, Recall, and F1-score of BaP + Pyr
are 100%, 93.94%, and 96.88%, respectively, which are considerably higher than those of
SqueezeNet, indicating that MobileNet can effectively capture BaP + Pyr features. De-
tailed prediction results were obtained from the confusion matrix of the MobileNet model
(Figure 6B). Unfortunately, the ability of the network to recognise BaP + Pyr + Nap is low.
ShuffleNet achieves the best identification results, with ACCT = 100%, ACCV = 96.61%,
and ACCP = 97.63%. These conclusions are also evident from the confusion matrix of the
ShuffleNet model shown in Figure 6C, with the identification results of BaP + Pyr + Nap
and BaP + Nap by the ShuffleNet model all being correct, and only three Pyr + Nap samples
being misclassified as BaP + Pyr. The reason for this result can be found in spectra b and c
in Figure 5B, the main characteristic peaks of the spectra of Pyr + Nap and BaP + Pyr being
provided by Pyr, and the other weak characteristic peaks from BaP and Nap showing little
difference. In general, the results indicate that a lightweight network combined with SERS
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provides a fast, accurate, and intelligent method for identifying various PAH residues on
fruit and vegetable surfaces.

Table 1. Identification results of SERS combined with a lightweight network for various PAH residues
on fruit and vegetable surfaces.

Methods Classes Accuracy (%)
Prediction Dataset

Precision (%) Recall (%) F1-Score (%)

Squeezenet

BaP + Pyr ACCT = 99.57
ACCV = 93.22
ACCP = 94.48

96.97 84.21 90.14
BaP + Nap 93.75 96.77 95.24
Pyr + Nap 86.21 100 92.59

BaP + Pyr +Nap 100 100 100

Mobilenet_V1

BaP + Pyr ACCT = 100
ACCV = 94.92
ACCP = 96.06

100 93.94 96.88
BaP + Nap 96.88 100 98.42
Pyr + Nap 86.21 100 92.59

BaP+Pyr+Nap 100 86.84 92.96

Shufflenet_V1

BaP + Pyr ACCT = 100
ACCV = 96.61
ACCP = 97.63

100 91.67 95.65
BaP + Nap 100 100 100
Pyr + Nap 89.66 100 94.55

BaP + Pyr + Nap 100 100 100
Abbreviations: ACC, accuracy of correct classification; ACCT, ACC of the training dataset; ACCV, ACC of the
validation dataset; ACCP, ACC of the prediction dataset.

 

Figure 6. Confusion matrix of (A) SqueezeNet, (B) MobileNet_V1, and (C) ShuffleNet_V1.

3.5. Discussion

In recent years, many studies on in situ detection of targets by using flexible SERS
substrates have been widely reported. Alyami et al. [20] fabricated novel AgNP/PDMS
composites by self-assembly of organic AgNP solutions on flexible PDMS surfaces; CV
and thiram concentrations as low as 1 × 10−7 M and 1 × 10−5 M were measured on con-
taminated fish skin and orange peel, respectively. Chen et al. [40] detected three-pesticide
residues on tomato peel based on the SERS and flexible tape. Although these methods
achieved in situ detection, the sensitivity was low due to the coffee ring effect caused by the
weak hydrophobicity of the PDMS and tape surface. Moreover, with the adhesive tape it
was easy to destroy the structure of the nanoarray during the “paste and peel off”, resulting
in low stability and reproducibility. In this study, we designed the flexible SERS substrate
by assembling β-CD@AuNPs on PTFE film coated with perfluorinated liquid, effectively
reducing the coffee ring effect and generating a large number of hot spots. The sensitivity
and stability of SERS in situ detection were competitive with the strongest results reported
by the above work, and the detection process is faster and more convenient, within 1 min.

In addition, DL methods, such as CNNs, recurrent neural networks (RNNs), and gen-
erative adversarial networks (GANs), with their strong self-learning ability and excellent
fitting ability, were gradually used in spectral analysis to obtain fast and intelligent quanti-
tative or qualitative analysis [28,41]. In particular, CNNs are widely used in the modelling
of spectral data by virtue of their advantages with less preprocessing and easy expansion of
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network architecture. Erzina et al. [42] proposed the advanced route for express and precise
recognition of normal and cancer cells by using SERS combined with a CNN, with 100%
prediction accuracy. Yu et al. [43] obtained the accurate identification of six representative
Vibrio species by combining label-free SERS technology with a CNN, achieving a high
accuracy rate of 99.7%. However, these higher accuracy rates were obtained on the basis
of building deeper and more complex networks, resulting in an increase in the number of
parameters and memory footprint. In this study, the lightweight network developed based
on a CNN was used for the first time to construct identification models of various PAHs
and the accuracy rate was as high as 97.6%, indicating that this method could improve the
computing speed and reduce the memory consumption while ensuring the model accuracy.

4. Conclusions

In this study, a flexible SERS substrate of β-CD@AuNP/PTFE combined with a
lightweight network was designed to achieve the in situ detection and identification of
various PAH residues on fruit and vegetable surfaces. AuNPs were modified with β-CD
to enhance adsorption of PAHs. The flexible β-CD@AuNP/PTFE substrate was prepared
by assembling β-CD@AuNPs on a PTFE film coated with a perfluorinated solution, con-
tributing to the generation of a large number of hot spots and realising convenient in situ
detection. The concentrations of BaP, Pyr, and Nap residues on fruit and vegetable surfaces
can still be detected at 0.25, 0.5, and 0.25 μg/cm2, and all the RSD values were less than 10%.
Subsequently, SqueezeNet, MobileNet, and ShuffleNet networks were used to establish
recognition models for various PAH residues on fruit and vegetable surfaces. ShuffleNet ob-
tained the best recognition results with ACCT = 100%, ACCV = 96.61%, and ACCP = 97.63%.
These results demonstrated that the proposed method could achieve simple, sensitive,
stable, and intelligent in situ detection and identification of various PAH residues on fruit
and vegetable surfaces. This method offers great potential for the practical application
of rapid, non-destructive analysis of surface contaminant residues in the food industry.
However, owing to the large variety and low content of residual PAHs, it is necessary to
optimise the SERS substrate to achieve highly sensitive PAH detection in complex matrices.
Meanwhile, the SERS spectra of additional types of PAHs should be collected to further
improve the recognition performance of the model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12163096/s1. Figure S1: SEM image (A) and Size (B) of
the prepared β-CD@AuNPs; Figure S2: The preparation process of β-CD@AuNPs/PTFE; Figure S3:
Structure of SqueezeNet; Figure S4: Structure of MobileNet; Figure S5: Structure of ShuffleNet;
Figure S6: SEM image of (a) PTFE and (b) β-CD@AuNPs/PTFE; Figure S7: The field distribution
of four AuNPs with A particle size of 24 nm with different gaps of (A) 8 nm, (B) 6 nm, (C) 5 nm,
(D) 4 nm and (E) 3 nm; (F) Gap distribution of β-CD@AuNPs/PTFE; Table S1: Parameter setting of
different models; Table S2: Raman shifts of BaP, Nap and Pyr and the corresponding vibration modes.
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Abstract: Hyperspectral imaging (HSI) has been applied to assess the texture profile analysis (TPA)
of processed meat. However, whether the texture profiles of live fish muscle could be assessed
using HSI has not been determined. In this study, we evaluated the texture profile of four muscle
regions of live common carp by scanning the corresponding skin regions using HSI. We collected
skin hyperspectral information from four regions of 387 scaled and live common carp. Eight texture
indicators of the muscle corresponding to each skin region were measured. With the skin HSI of live
common carp, six machine learning (ML) models were used to predict the muscle texture indicators.
Backpropagation artificial neural network (BP-ANN), partial least-square regression (PLSR), and
least-square support vector machine (LS-SVM) were identified as the optimal models for predicting
the texture parameters of the dorsal (coefficients of determination for prediction (rP) ranged from
0.9191 to 0.9847, and the root-mean-square error for prediction ranged from 0.1070 to 0.3165), pectoral
(rP ranged from 0.9033 to 0.9574, and RMSEP ranged from 0.2285 to 0.3930), abdominal (rP ranged
from 0.9070 to 0.9776, and RMSEP ranged from 0.1649 to 0.3601), and gluteal (rP ranged from 0.8726 to
0.9768, and RMSEP ranged from 0.1804 to 0.3938) regions. The optimal ML models and skin HSI data
were employed to generate visual prediction maps of TPA values in common carp muscles. These
results demonstrated that skin HSI and the optimal models can be used to rapidly and accurately
determine the texture qualities of different muscle regions in common carp.

Keywords: common carp; hyperspectral imaging; texture; machine learning; visualization

1. Introduction

The textural traits of fish, including gumminess, springiness, cohesiveness, resilience,
hardness, brittleness, adhesiveness, and chewiness, are the most important traits in the
aquaculture industry, and they affect the production process and the commercial value of
fish [1–3]. Developing the fillet textual assessment method is beneficial for measuring the
textual traits of fish-processed products [4]. Traditional fish textual assessment methods
include measurements using a texture analyzer [5,6]. However, these methods are labo-
rious and might destroy the integrity of the products. Therefore, there is an immediate
requirement to construct an efficient and non-destructive method to detect the muscle
texture of processed fish.
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Recently, hyperspectral imaging (HSI) has become an alternative analytical approach
that provides the benefits of rapid and non-destructive detection [4,7–11]. HSI combines im-
age and spectral techniques to obtain both “spatial” and “spectral” information containing
the sample [9–12]. Another feature of HSI is the ability to generate visual distribution maps
of measured indicators to allow for the prediction and quantification of the composition of
the sample and to determine their position on the sample surface [6,13]. Moreover, artificial
intelligence and machine learning (ML) models can be used for prediction and modeling in
the food industry [14]. With spectral images, HSI has been widely applied to evaluate the
traits of meat products, including color, surface defects, damage, texture, water-holding
capacity, flavor, freshness, and ripeness [4,15–21]. Ma et al. used HSI based on 400–1000 nm
wavelengths to predict the different textural parameters of grass carp fillets during vacuum
freeze-drying [4]. They predicted the Warner–Bratzler shear force, hardness, gumminess,
and chewiness of fillets with prediction coefficients ranging from 0.79 to 0.87. ElMasry et al.
predicted beef tenderness using hyperspectral imaging with a model based on partial least
squares (PLS), showing a detection coefficient of 0.83 and a cross-validation narrative of
0.75 [17]. Zhou et al. predicted six texture parameters of silver carp muscle using HSI and
ML methods, with coefficients ranging from 0.83 to 0.95 [8]. In addition, He et al. found
that the SPA-LS-SVM prediction model and HSI had a prediction coefficient of 0.905 for
the tenderness of salmon fillets [22]. These studies demonstrate that HSI and ML methods
provide reliable solutions to measure processed fish textures.

In fish breeding, high-quality textures can provide fillets that are suitable for down-
stream processing and satisfy the consumer’s taste. The traditional textual method requires
the cut of fish muscle and is lethiferous [5,6]. Compared with the traditional textual method,
HSI and ML methods have a non-destructive advantage, as they allow for the detection of
the texture of live fish muscle. In the current literature, the majority of researchers have
investigated the quality of fillets rather than intact fish using HSI, meaning that the spectra
were usually obtained from the meat mass [16,23,24]. However, the application of HSI and
ML methods to measure the live fish muscle has been less studied.

Common carp (Cyprinus carpio), an allotetraploid fish [25], is one of the most important
freshwater-farmed fish in the world. Therefore, the aim of this study was to develop a non-
invasive method in which skin HSI and ML are combined to detect the textual parameters
of live fish muscle. We first acquired the skin HSI data of 387 scaled and live common
carp with a hyperspectral imaging system at 400–1000 nm. Then, we measured the texture
profiles of four corresponding muscle regions of each fish. The specific objectives of this
study were to (1) utilize preprocessing methods to achieve spectral preprocessing and
characteristic wavelength selection; (2) determine the optimal wavelengths that are most
useful for the prediction of texture profile analysis (TPA) within the muscle of common
carp; (3) determine the optimal relationship between the skin HSI data and muscle texture
parameters using six ML methods and incorporate the skin hyperspectral index; and
(4) apply the optimal model for the visualization of the distribution of muscle texture
parameters.

2. Materials and Methods

2.1. Ethics Statement and Sampling

We performed this study following the recommendations of the Animal Care and
Use Committee of the Chinese Academy of Fishery Sciences. In 2022, 387 live common
carp (one-year-old, ~607.09 g average weight) were collected from the Chinese Academy of
Fishery Sciences experimental fish farm (Fangshan, Beijing, China). These samples were
previously cultivated at one pond and fed the same commercial diet (Tongwei, China). The
sources of protein and lipids in commercial diet are fish meal, soybean meal, cottonseed
meal, rapeseed meal, and soybean oil. The proximate compositions of the commercial diet
(% dry matter) consist of 30% protein, 5% lipid, 12.5% moisture, and 15% ash. For each
common carp, we selected four regions, including the dorsal, pectoral, abdominal, and
gluteal regions.
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2.2. Acquiring the Skin Hyperspectral Images of Four Regions of Live Common Carp

For each region of one live common carp, the scales on one side were removed.
We scanned the skin of four regions of one scaled common carp with a hyperspectral
imager (FigSpec Hyperspectral Camera FS-13, FigSpec Technology (Zhejiang) Co., Ltd.,
Hang Zhou, China). The detected wavelengths ranged from 400 to 1000 nm with the
following parameters: a resolution of 2.5 nm, an exposure period of 150 ms, and the lens
type of C-Mount. The imaging speed was 128 Hz in the full-wavelength range, and the
scanning speed was 30 row/s. Before acquiring the hyperspectral images of each sample,
the distance and intensity of the illumination source were adjusted to ensure the clearness
of the acquired images.

2.3. Processing the Skin HSI

HSI enables the collection of signals from samples, as well as the environment, instru-
ments, and other non-sample factors. To eliminate the signals from the non-sample factors,
all HSI data were input into the reflectance calibration procedure. Briefly, the raw data were
calibrated with black and white correction. The white balanced image (W) was obtained by
collecting the reflectance value from the Teflon white surface, while the dark image (D) was
acquired by turning off the illumination source and collecting the hyperspectral data when
the lens was completely covered with its cap. The calibration image (I) was calculated
using the following equation:

I =
I0 − D
W − D

× 100

where I represents the corrected reflectance hyperspectral image in a unit of relative
reflectance (%); I0 represents the raw hyperspectral image; D stands for the dark image (0%
reflectance); and W is the white reference image (100% reflectance) [26].

Then, we used the Savitzky–Golay (SG) smoothing method to preprocess the images
and eliminate the putative effects from the sampling environment and instruments [27].
We selected a region of interest (ROI) to represent each skin region with the ROI function
of Environment in the Visualizing Images software (ENVI v5.3, Exelis Visual Information
Solutions, Inc., Boulder, CO, USA) [5]. The size of an ROI was 200 pixels × 200 pixels. For
each wavelength, the average spectrum of an ROI was calculated by averaging the spectra
of all pixels. The reflectance values of all pixels were averaged at each wavelength variable
to obtain an average value representative of each sample.

2.4. Selecting the Optimal Wavelength

One HSI dataset contained the spectral information of samples from 400 nm to 1000 nm,
simultaneously. However, certain wavelengths had redundant data, resulting in the time-
consuming processing of HSI data [28]. Therefore, it is necessary to eliminate wavelengths
containing redundant and irrelevant information to optimize the texture profiles for data
analysis samples using the wavelength/variant selection of hyperspectral data [23]. Re-
garding wavelength selection for HSI analysis, the regression coefficient (RC) is commonly
utilized [29,30]. We utilized the RC to determine the optimal wavelength that contributed
the most to the prediction of TPA values in common carp muscle. In the calculation of RC,
the optimal wavelength is chosen by computing the β-coefficient from the full-wavelength
PLSR model. The wavelength with the highest absolute value of the β-coefficient is consid-
ered to be the optimal wavelength [30]. The program for RC was operated in MATLAB
2021a software (The MathWorks Inc., Natick, MA, USA).

2.5. Measuring the Texture Indicators of Common Carp Muscle

We extracted the muscle corresponding to each of the four skin regions. The muscle
size was 20 mm × 20 mm × 15 mm. Eight texture indicators of the muscle, including
gumminess, springiness, cohesiveness, resilience, hardness, brittleness, adhesiveness, and
chewiness, were measured using a texture analyzer (TA.XTC-18, Baosheng, Shanghai,
China) and a TA/36 cylindrical probe. The measurement speed was 2 mm/s, and the
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trigger force was 5 N. The compressive deformation of one sample was set to 60%. These
eight texture indicators were derived from the TPA curves of each sample, and the TPA
parameters listed above were calculated using Bourne’s technique [31].

For each texture indicator, to examine whether there were significant differences
among four muscle regions, we measured the distances with PCA analysis using Tassel
5.0 [32]. The Spearman correlation coefficient of the contents of any two indicators in
four samples was calculated using the R ‘cor. test’ function in the R software (version 4.0.2).

2.6. Estimating the Muscle Texture Indicators with the Skin HSI Data

With the processed skin HSI data in each region, we used six machine learning (ML)
methods to estimate the texture indicators of the muscle in the corresponding region.
The methods included partial least-square regression (PLSR), the interval partial least-
square method (iPLS), the synergy interval partial least-square method (SiPLS), backward
interval partial least squares (BiPLS), least-square support vector machines (LS-SVM), and
backpropagation artificial neural network (BP-ANN).

PLSR projects the predictor variables and observable variables into a new feature
space to build a linear regression model [33]. PLSR decomposes the independent variable
X and the dependent variable Y into several X-scores (T) and constructs the PLSR model.
Herein, the observed variables were the cross-validation performed to minimize the error
between the predicted and the observed response values.

In the iPLS algorithm, the full spectral region is divided into smaller equidistant
subintervals, and a PLS regression model is generated based on each subinterval. The best
intervals and principal component scores are selected based on the principle of the lowest
root-mean-square error for the calibration (RMSEC) value [34].

The SiPLS algorithm is a modified iPLS where the full spectral region is divided
equally into subintervals. The combination with the lowest RMSEC value is selected [34].

The BiPLS algorithm divides the whole spectral region into N subintervals of equal
width and performs PLS regression, each interval is omitted in turn, and the worst RMSEC
value is obtained in the modeling; the subintervals continue to be removed until the lowest
RMSEC value is obtained [34].

LS-SVM uses the radial basis kernel function (RBF), a non-linear function that reduces
the complexity of the training process [35]. The regularization parameter gamma (γ) and
the kernel parameter (σ2), which can reduce the complexity, represent the width of the RBF
kernel. To achieve high prediction accuracy, we performed the simulations of these two
parameters, the values of which ranged from 0 to 1000 [6].

In BP-ANN models, an error-reversal propagation algorithm is used to train multilayer
feedforward neural networks [36]. A BP-ANN, with an input layer, a hidden layer, and
an output layer was established. Moreover, the transfer function, learning function, and
training function were employed. The maximum training step was set to 1000, the learning
goal was e−5, and the learning rate and momentum factor were 0.01.

2.7. Evaluating the Accuracies of Six ML Models

The predictive accuracy of each ML model was assessed with multiple parameters,
including coefficients of determination for calibration (rC) and prediction (rP), RMSEC, and
the root-mean-square error for calibration and prediction (RMSEP) [37]. The rC and rP

values were calculated as follows:

rC =

√√√√∑nc
i=1

(
ŷi − yi

)2

∑nc
i=1(ŷi − yc)

2

rP =

√√√√√ ∑
np
i=1(ŷi−yi)

2

∑
np
i=1

(
ŷi−yp

)2
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where ŷi and yi represent the predicted and measured TPA values, respectively; nc and np
represent the number of samples in the calibration and prediction sets, respectively.

The RMSEC and RMSEP were calculated as follows:

RMSEC =

√√√√ 1

N − 1 − R
×

N

∑
i=1

(
yref

i − yi

)2

where N is the number of samples, R is the number of factors of the model, yref
i is the

reference value of the sample, and i and yi are the predicted values of the sample.

RMSEP =

√√√√ 1

N
×

N

∑
i=1

(
yref

i − yi

)2

Herein, for each texture indicator, yref
i was the observed value in the common carp

muscle, while yi was the predicted value with one ML method and the reflectance values
of corresponding skin HSI. The lower RMSEC and RMSEP values indicated a smaller
difference between the predicted texture indicator and the observed indicator. A good ML
model was expected to have high rC and rP but low RMSEC and RMSEP values [38].

2.8. Visualizing the Images of TPA Values

TPA values were distributed varyingly in different muscle regions of the fillets [39],
which resulted from the irregular distribution of lipids and protein in different muscle
regions. To examine the differences among the TPA values in different muscle regions of
one fish, distribution maps of TPA values were constructed to improve insight into the
muscle texture of common carp. The optimal calibration model constructed by applying
the spectra of the optimal wavelengths following RC selection was employed to generate
new distribution maps of TPA values. Linear color scales are presented in the figure by
visualizing the distribution maps, and the different colors in the color scales represent
the predicted TPA parameter values in the fillets, thus facilitating the identification and
capture of the variations in muscle TPA values by observing different color distributions.
All the calculation and visualization procedures were implemented in programs operating
in ENVI 5.3 (Exelis Visual Information Solutions, Inc., Boulder, CO, USA) and MATLAB
2021a software (The MathWorks Inc., Natick, MA, USA) [5].

3. Results

3.1. Spectral Features of the Skin of Scaled Common Carp

The spectral features of the four skin regions of common carp were distinct (Figure 1).
For all regions, the spectrum at 430 nm had the lowest reflectance values. The distributions
of the reflectance values in the gluteal, pectoral, and ventral skins were different from
that of the dorsal skin. In general, for the former three skin regions, the reflectance values
gradually increased at 430–600 nm. The values reached the plateau phase at 600–780 nm
and fell at 780–970 nm. Finally, the values increased after 970 nm. However, the reflectance
values in the dorsal skin gradually increased from 430 nm to 1000 nm. The reflectance
value of the gluteal skin at each wavelength was higher than those of the other skins. The
reflectance values of the pectoral and ventral skin ranked second and third. The values of
the dorsal skin were the lowest. The distinct distributions and the levels of the reflectance
values among the four skins might indicate the different features of the four skin regions or
the affiliated tissues.
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Figure 1. The spectral features of four skin regions of the common carp. The X-axis represents the
different wavelengths, the Y-axis represents the reflectance values, and the curves of different colors
represent the reflectance of four skin regions.

3.2. Texture Diversities of Common Carp Muscles

We obtained eight textural parameters of four muscle regions of 387 common carp
(Supplementary Table S1). In the dorsal region, the first two principal components (PCs)
explained 73.62% and 12.73% of all variances, respectively (Supplementary Figure S1).
Intriguingly, the examined samples were grouped into two different clusters, suggesting
different textural profiles among samples. Similar phenomena of two clusters were ob-
served in the PCA analysis using the indicators of the pectoral, abdominal, and gluteal
regions, respectively (Supplementary Figures S2–S4). The hardness of the gluteal region
(median = 2010.53) was significantly higher than that of the other three regions (Figure 2
and Supplementary Table S2). The pectoral hardness was the lowest. Intriguingly, except
for the cohesiveness (Supplementary Figure S5) and adhesiveness indicators (Supplemen-
tary Figure S6), the other five indicators in the gluteal region were also significantly higher
than those of the other three regions (Supplementary Figures S7–S11). However, the adhe-
siveness parameter in this region was the lowest. These data revealed the different texture
features of the four muscle regions.

The numbers of texture indicator pairs with a significant correlation were 17, 14, 9, and 7 in
the abdominal, pectoral, dorsal, and gluteal regions, respectively (Supplementary Tables S3–S6).
Only resilience had a significantly positive correlation with the springiness (coefficients
ranging between 0.728 and 0.990) and cohesiveness (coefficients ranging between 0.148 and
0.473) in all four regions, respectively. The cohesiveness was also significantly positively
correlated with chewiness (coefficients ranging between 0.12 and 0.951) in all four regions.
Six texture indicator pairs had significant correlations among the three regions, including
four positively correlated pairs and two negatively correlated pairs. These data suggested
that the most significant correlation was not consistent in the four regions.
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Figure 2. The hardness distributions in the four muscle regions of common carp.

3.3. Accurate Prediction of Muscle Texture Profiles Based on the Full Spectral Range

Since the texture profiles of the four muscle regions were different, we tried to deter-
mine whether it is possible to predict the muscle texture profiles. We used all reflectance
values of the skin HSI data to predict the corresponding muscle texture indicators with dif-
ferent ML methods. For one texture indicator of one region, we only retained the prediction
with the highest rP for the downstream analysis (Supplementary Table S7). Predicting the
chewiness of the four muscle regions had the highest rP (from 0.9555 to 0.9836). The overall
prediction accuracies of the gumminess (rP from 0.9234 to 0.9863) and cohesiveness (rP from
0.8952 to 0.9224) of the four muscle regions ranked second and third, respectively. The
overall prediction accuracies of the hardness and adhesiveness indicators were also higher
than 0.88 for all four regions. Among all the best predictions, the prediction accuracy of
dorsal springiness was the lowest, with only 0.5612.

The BP-ANN, LS-SVM, and PLSR models were the best three methods to predict the
muscle TPA parameters (Tables 1–4). The BP-ANN method had the best calibration results
mainly for gumminess, chewiness, cohesiveness, hardness, and adhesiveness, including
dorsal gumminess (0.9863), pectoral gumminess (0.9620), dorsal chewiness (0.9673), pec-
toral chewiness (0.9555), abdominal chewiness (0.9690), gluteal chewiness (0.9836), dorsal
cohesiveness (0.9224), pectoral cohesiveness (0.9306), abdominal hardness (0.9401), and
gluteal adhesiveness (0.9303). LS-SVM had the highest prediction accuracy for adhesive-
ness, including dorsal adhesiveness (0.9206) and abdominal adhesiveness (0.9206). PLSR
had the optimal prediction effect mainly for gumminess, cohesiveness, and hardness, in-
cluding abdominal chewiness (0.9318), gluteal chewiness (0.9836), abdominal gumminess
(0.9318), gluteal gumminess (0.9234), and pectoral hardness (0.9033).
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Table 1. Predicting the dorsal muscle texture profiles using the skin HSI with the reflectance values
in the full-wavelength range.

Texture Best ML Method rC RMSEC rP RMSEP

Gumminess BP-ANN 0.9826 0.1439 0.9863 0.0685
Chewiness BP-ANN 0.9852 0.1325 0.9673 0.1065

Cohesiveness BP-ANN 0.9694 0.0842 0.9224 0.0735
Adhesiveness LS-SVM 0.9556 0.1873 0.9206 0.1771

Brittleness PLSR 0.9025 0.2577 0.8915 0.1978
Hardness PLSR 0.9339 0.2573 0.8284 0.2031

Springiness PLSR 0.8096 0.3924 0.7185 0.4938
Resilience LS-SVM 0.8865 0.2792 0.5612 0.5218

Note: rC: coefficients of determination for calibration. rP: coefficients of determination for prediction. RMSEC: root-
mean-square error for calibration. RMSEP: root-mean-square error for prediction. PLSR: partial least-square
regression. LS-SVM: least-square support vector machines. BP-ANN: backpropagation artificial neural network.

Table 2. Predicting the pectoral muscle texture profiles using the skin HSI with the reflectance values
in the full-wavelength range.

Texture Best ML Method rC RMSEC rP RMSEP

Gumminess BP-ANN 0.9812 0.1551 0.9620 0.1792
Chewiness BP-ANN 0.9810 0.1578 0.9555 0.1709

Cohesiveness BP-ANN 0.9648 0.0909 0.9306 0.1121
Hardness PLSR 0.9457 0.2452 0.9033 0.2914

Adhesiveness PLSR 0.9144 0.2684 0.8895 0.2227
Brittleness PLSR 0.8958 0.2681 0.8933 0.2044
Resilience PLSR 0.7934 0.3935 0.6329 0.5168

Springiness BP-ANN 0.8461 0.3796 0.8140 0.4229

Table 3. Predicting the abdominal muscle texture profiles using the skin HSI with the reflectance
values in the full-wavelength range.

Texture Best ML Method rC RMSEC rP RMSEP

Chewiness BP-ANN 0.9786 0.1710 0.9690 0.1356
Gumminess PLSR 0.9712 0.2005 0.9318 0.1895

Hardness BP-ANN 0.9682 0.1789 0.9401 0.2337
Adhesiveness LS-SVM 0.9556 0.1873 0.9206 0.1771
Cohesiveness PLSR 0.9499 0.1107 0.9213 0.1168

Resilience PLSR 0.7890 0.4321 0.5798 0.5079
Springiness PLSR 0.8441 0.3462 0.8294 0.3972
Brittleness PLSR 0.9061 0.2413 0.8856 0.1891

Table 4. Predicting the gluteal muscle texture profiles using the skin HSI with the reflectance values
in the full-wavelength range.

Texture Best ML Method rC RMSEC rP RMSEP

Chewiness BP-ANN 0.9910 0.1015 0.9836 0.1078
Gumminess PLSR 0.9593 0.2153 0.9234 0.2366

Adhesiveness BP-ANN 0.9338 0.223 0.9303 0.1907
Cohesiveness PLSR 0.9269 0.1232 0.8952 0.0931

Hardness PLSR 0.9069 0.2714 0.8990 0.2926
Brittleness LS-SVM 0.8782 0.2667 0.8421 0.2171
Resilience PLSR 0.7835 0.0118 0.6971 0.0124

Springiness PLSR 0.7513 0.0738 0.6842 0.0865

3.4. Accurate Prediction of the Muscle Texture Profiles Based on the Optimum Wavelengths

Equivalent calibration results were obtained based on the optimal wavelengths com-
pared with full wavelengths. This is because the optimal wavelengths carry the most
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important information relevant to the determination. Some peaks and valleys (positive
and negative relationships with the TPA parameters) were selected at certain wavelengths,
and the selection of optimal wavelengths was successfully conducted for the eight texture
parameters using the RC method. We selected 60 to 114 optimal wavelengths of the dorsal,
pectoral, abdominal, and gluteal skin regions to predict the muscle textures, respectively
(Figure 3).

For one texture indicator of one region, we only retained the prediction with the
highest rP for the downstream analysis (Supplementary Table S8). In general, the pre-
diction accuracies based on the optimal wavelengths were equal to those based on the
full-wavelength range (Tables 5–8). Using the values in the range of the full wavelength,
nine predictions had accuracies lower than 0.85. The accuracies of these regions were still
lower than 0.85 using the optimal wavelengths. The remaining regions had accuracies over
0.85 using either the values of the full wavelength or the ones of the optimal wavelength.
Moreover, the absolute prediction differences between the full wavelength values and the
optimal wavelength values ranged from 5.93% to 15.20%, showing that the wavelength
selection could make the reduced models more stable and robust.

Table 5. Predicting the dorsal muscle texture profiles using the reflectance values in the optimal
wavelength range.

Texture ML Method No. of WLs rC RMSEC rP RMSEP

Gumminess BP-ANN 88 0.9912 0.1361 0.9847 0.1070
Chewiness BP-ANN 84 0.9755 0.2450 0.9469 0.2164

Cohesiveness PLSR 88 0.9714 0.2535 0.9367 0.2836
Hardness PLSR 86 0.9586 0.2972 0.9298 0.3165

Adhesiveness BP-ANN 84 0.9432 0.3653 0.9191 0.3004
Brittleness PLSR 97 0.9112 0.4423 0.8804 0.3848

Springiness BP-ANN 110 0.8380 0.5171 0.7194 0.7554
Resilience BP-ANN 80 0.8346 0.5676 0.6493 0.7074

Note: No. of WLs: number of wavelengths.

Table 6. Predicting the pectoral muscle texture profiles using the reflectance values in the optimal
wavelength range.

Texture ML Method No. of WLs rC RMSEC rP RMSEP

Gumminess BP-ANN 67 0.9883 0.1605 0.9574 0.2439
Chewiness BP-ANN 60 0.9862 0.1771 0.9552 0.2285

Adhesiveness LS-SVM 75 0.9424 0.3643 0.9370 0.2499
Cohesiveness PLSR 88 0.9556 0.3081 0.9056 0.3765

Hardness BP-ANN 69 0.9379 0.3561 0.9033 0.3930
Brittleness PLSR 75 0.8835 0.5213 0.8846 0.3753

Springiness LS-SVM 77 0.8866 0.4490 0.7376 0.6971
Resilience LS-SVM 81 0.7095 0.6983 0.5964 0.7960

Table 7. Predicting the abdominal muscle texture profiles using the reflectance values in the optimal
wavelength range.

Texture ML Method No. of WLs rC RMSEC rP RMSEP

Chewiness BP-ANN 77 0.9858 0.1779 0.9776 0.1649
Gumminess PLSR 81 0.9740 0.2418 0.9517 0.2360

Hardness PLSR 92 0.9592 0.2860 0.9392 0.3158
Cohesiveness PLSR 75 0.9631 0.2859 0.9070 0.3601
Adhesiveness LS-SVM 88 0.9564 0.3245 0.8623 0.3358

Brittleness BP-ANN 98 0.9309 0.4130 0.8617 0.3860
Springiness PLSR 96 0.8954 0.4320 0.8322 0.5928
Resilience LS-SVM 84 0.9367 0.3525 0.5609 0.7414
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Figure 3. Selection of optimal wavelengths in the dorsal muscle. Regression coefficients method
for (a) gumminess, (b) springiness, (c) cohesiveness, (d) resilience, (e) hardness, (f) brittleness,
(g) adhesiveness, and (h) chewiness.
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Table 8. Predicting the gluteal muscle texture profiles using the reflectance values in the optimal
wavelength range.

Texture ML Method No. of WLs rC RMSEC rP RMSEP

Chewiness BP-ANN 74 0.9768 0.2174 0.9768 0.1804
Gumminess BP-ANN 70 0.9614 0.2804 0.9339 0.2856

Adhesiveness BP-ANN 85 0.9421 0.3614 0.9304 0.2861
Cohesiveness LS-SVM 79 0.9826 0.1891 0.8726 0.3938

Hardness PLSR 80 0.9092 0.4186 0.8486 0.4933
Brittleness PLSR 74 0.8883 0.4723 0.7613 0.4921

Springiness PLSR 114 0.7668 0.6437 0.6396 0.7508
Resilience PLSR 89 0.7066 0.7431 0.6316 0.7230

Compared with the prediction of TPA values based on the full-wavelength range, the
rP values of four TPA parameters (cohesiveness, hardness, springiness, and resilience) in
the dorsal region were enhanced using the optimal wavelength, with the increase ranging
from 0.0009 to 0.1014. The remaining four values slightly decreased. In the pectoral
muscle, the rP values of five TPA parameters, including adhesiveness, were increased
by 0.0475. In the abdominal muscle region, three indicators (gumminess, springiness,
and resilience) had improved rP values. However, in the gluteal muscle region, only the
accuracies of the gumminess raised by 0.0105. These results indicate that for, the former
three regions, the prediction using the optimal wavelengths would be better than using the
full-range wavelengths.

The BP-ANN, LS-SVM, and PLSR models were also the best three methods to predict
the muscle TPA parameters. The BP-ANN method had the best calibration tool mainly for
chewiness, gumminess, hardness, and adhesiveness, including dorsal chewiness (0.9469),
pectoral chewiness (0.9552), abdominal chewiness (0.9776), gluteal chewiness (0.9768),
dorsal gumminess (0.9847), pectoral gumminess (0.9574), pectoral hardness (0.9033), dorsal
adhesiveness (0.9191), and gluteal adhesiveness (0.9304). LS-SVM had the highest pre-
diction accuracy for gumminess and adhesiveness, including gluteal gumminess (0.9339)
and pectoral adhesiveness (0.9370). PLSR had the optimal prediction effect mainly for
gumminess, cohesiveness, and hardness, including abdominal gumminess (0.9517), dorsal
cohesiveness (0.9367), pectoral cohesiveness (0.9056), abdominal cohesiveness (0.9070),
dorsal hardness (0.9298), and abdominal hardness (0.9392).

3.5. Visualizing the Texture Parameters

The muscle texture parameters could be accurately predicted with the skin HSI spectra
and the corresponding models. Therefore, the skin HSI spectra based on the optimal
wavelengths and the above models were used to predict the predicted muscle parameters,
which were further converted to the corresponding pixels in the tested samples, and the
prediction maps were then generated. Figure 4 displays the visual prediction images of
eight texture parameters in the dorsal region. The color variations presented in the test
samples are automatically condensed in a linear color bar. The colors correspond to the
different texture levels of the samples. The low values are highlighted in blue, and the high
values are shown in orange.

In one distribution map, the spots with the same color were discretely distributed.
Spots with high values were rare. Even in the same region, the prediction map of each
parameter was in general different from the others. These maps reflected the minute texture
difference in one region.
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Figure 4. Visualizing the texture parameters of the dorsal muscle of scaled common carp: (a) gummi-
ness, (b) springiness, (c) cohesiveness, (d) resilience, (e) hardness, (f) brittleness, (g) adhesiveness,
and (h) chewiness. The numbers on the Y-axis represent the value of the texture measured, and the
color from blue to orange represents the values from low to high.

4. Discussion

Previous works that focused on muscle texture prediction mainly utilized muscle
HSI [4,5,8]. One highlight of our work was using the corresponding skin HSI of different
muscle regions to estimate the texture features. Although we used the reflectance values
of the skin, we found that the skin wavelength distributions were in agreement with the
muscle wavelength distributions in a previous study [6]. Moreover, the high prediction
accuracies of muscle texture profiles with skin HSI (prediction coefficients >0.9 for the
majority of texture parameters) demonstrated that this strategy can be used in practice
to detect muscle texture qualities. The prediction results were even higher than those
already reported, so this method is feasible [5,8]. Another highlight of our work was
performing multiple ML methods to predict muscle texture profiles, which is different from
the methods used in previous studies [4]. Our results showed that BP-ANN, LS-SVM, and
PLSR were the best three methods to predict the muscle TPA parameters. Each of these
three methods was suitable for specific texture indicators in different muscle regions.

The distinct distributions and the levels of the reflectance values among the four skin
regions, together with the different texture features of the four muscle regions, indicated the
different features of these regions and the corresponding affiliated tissues. The differences
were probably due to the differences in the primary chemical composition of the epidermis
of the different muscle regions of common carp [40]. When the electromagnetic radiation
emitted by light interacts with the internal structures of the sample, the various components
of the sample exhibit distinct absorption properties at multiple particular wavelengths [17].
In the absorption, information in the 400–1000 nm spectral regions, overtones, and combi-
nations of fundamental vibrations of functional bonds such as C-H, N-H, O-H, and S-H
occur [24]. An interesting spectral trough was detected at around 430 nm, and comparable
patterns were observed in the evaluation of total volatile basic nitrogen (TVB-N) and TPA
in grass carp, although there have been few studies of this specific wavelength in common
carp [4,6]. There was a noticeable and large absorption peak at around 500 nm, which
might be associated with the residues of organic dietary items such as soybean meal [41].
Another local absorption at around 780 nm was mostly attributable to a third overtone
O-H stretching [42]. The presence of water in fish caused absorption peaks at 980 nm (O-H
stretching second overtone) [43].
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The prediction coefficients for gumminess, chewiness, cohesiveness, and adhesiveness
for different muscle regions ranged from 0.9206 to 0.9863. Wu et al. reported prediction
coefficients for textural metrics of salmon fillets using full-wavelength spectroscopy ranging
from 0.555 to 0.665 [5]. Chen et al. demonstrated a prediction coefficient of 0.80 for
chewiness and RMSEP of 0.942 in beef [44]. Overall, the predictive ability was better than
that of previous studies. A possible reason for this is the fact that different structures
exhibit different characteristics of light scattering, projection, and reflection [45]. Tissues
with denser muscle fibers and softer connective tissue result in better prediction [46].
These studies indicate the complexity of the elements that impact the prediction of meat
quality characteristics.

Although the texture parameters were satisfactorily evaluated using full wavelengths,
the volume of data and the amount of computation are enormous. Choosing the optimal
wavelength can reduce the data dimensions and increase the computational speed of
the model. Ma et al. applied the optimal wavelength to build a Warner–Bratzler shear
force prediction model in which there was only a slight reduction from 0.8955 to 0.8913,
while the number of variables both reduced significantly from 381 to 10 [4]. Our results
indicate that the prediction accuracies using the optimal wavelength were not significantly
different from those using the full wavelength, and similar results have been observed
in previous studies [22,40]. Moreover, 81% of the wavelengths were excluded from the
full-spectrum scope (114 compared to 600), indicating that RC was a valuable method of
wavelength selection for identifying TPA values in the muscle of common carp. Decreasing
the wavelength numbers while ensuring accuracy also reduced the runtime. Moreover,
the prediction of TPA parameters such as gumminess, cohesiveness, and chewiness using
the optimal wavelength obtained similar results, with rP values ranging from 0.91 to 0.98.
Using hyperspectral information from the skin and combining it with ML algorithms to
predict the TPA of muscles had high accuracy. The prediction results were even higher than
those already reported, so this method is feasible [5,8].

Although we obtained more optimized prediction results, the accuracy of the pre-
dictions depends on the quality and fitness of the calibration model. The prediction
coefficients for springiness and resilience were lower in the present study (ranging from
0.5609 to 0.7613), and similar results were observed in a study of TPA of salmon fillets based
on visible and near-infrared spectroscopy [5]. The reason for this unsatisfactory prediction
may be due to the fact that springiness and resilience are subject to differences in muscle
structure and connective tissue as well as differences in the water and myofibrillar protein
content in muscle [47]. Therefore, there are still areas for improvement in HSI techniques,
but the accuracy and efficiency of the method will continue to improve with advances in
machine learning and spectroscopy.

The implementation of the visualization process is the ultimate but essential step
in the HSI technique for texture prediction and will contribute to understanding the
changes in TPA values in carp muscles that cannot be detected by the naked eye [4,5,13].
In one muscle region, different colored spots could be easily identified from the TPA
distribution map, indicating that common carp muscles have a mixed composition and
heterogeneous texture distribution [6,13]. The main reason for the color differences might
be due to the distinct distribution of collagen and fat in the muscle [39,44]. The spatial
distribution of textural features in common carp muscles can be conveniently observed by
reference value distribution maps generated from the HSI of the samples [4]. Traditional
methods can only detect a few specific points of the sample and are destructive and
time-consuming. Hyperspectral imaging, on the other hand, with its superior spatial
information, provides more detailed information for rapid, non-invasive measurement of
TPA in common carp muscle.

The traditional method for measuring the muscle texture indicators requires a texture
analyzer. The method is destructive and requires much time for muscle preparation
and measurement. Our method, integrating skin hyperspectral imaging, the optimal ML
method, and a visual prediction map, might provide a promising alternative tool to measure
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the muscle texture quality. First, this method does not require muscle preparation and is
thus rapid and non-destructive. Second, the distribution maps of muscle TPA values are
very useful for the meat industry to assess the sensory quality of common carp muscle by
simply observing the color of the distribution map. Third, aside from the meat industry,
the rapid, non-destructive, and visible features of our method are also helpful for screening
common carp for food requirements.

5. Conclusions

The possibility of using HSI techniques (400–1000 nm) as a tool for determining the
muscle texture profile in scaled common carp was evaluated. The optimal wavelength
selected based on the RC data downscaling method with ML methods (BP-ANN, PLSR,
and LS-SVM) performed most efficiently in predicting the TPA of different muscle regions
in common carp. The results showed excellent performance in predicting gumminess,
cohesiveness, adhesiveness, and chewiness. The rP ranged from 0.8726 to 0.9847. Moreover,
the visualization map of the distribution of TPA values was generated based on the optimal
models, which provided further insight into the texture parameters in the common carp
muscles. This study illustrated the tremendous potential of hyperspectral imaging technol-
ogy as a robust and effective tool for the rapid and non-destructive measurement of TPA in
different scaled common carp muscle regions. Despite the superior results of this study
in predicting muscle texture parameters in common carp, it is still necessary to validate
the developed models by applying numerous samples to ensure their reliability. In future
studies, using hyperspectral imaging to acquire hyperspectral image data of other species
of fish could be attempted for the rapid and non-destructive detection of meat quality.
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Abstract: Phthalic acid esters (PAEs) are the most commonly used plasticizers, and long-term or high
levels of exposure to PAEs have a huge potential risk to human health. In this study, the theories of
Hartree–Fock (HF) and density functional theory (DFT) with different hybrid methods and basis sets
were used to calculate the theoretical Raman spectra of five PAEs, and the comparison of calculated
spectra between different theories, hybrid methods, and basis sets was conducted to determine the
suitable theory with hybrid method and basis set for PAEs. Also, the Raman vibrations were assigned
to the Raman peaks of PAEs according to the theoretical and experimental Raman spectra. The results
indicate that DFT is more suitable for the theoretical study of PAEs than HF. In DFT, the hybrid
method of B3LYP is more applicable to the theoretical study of PAEs than B3PW91, and the basis set
of 6-311G(d, p) obtains the most consistent theoretical Raman spectra with the experimental spectra
for PAEs. This study finds the optimal combination of the theoretical method and basis set for PAEs,
and it will contribute to the establishment of the Raman fingerprint and the development of rapid
detection for PAEs in the future.

Keywords: PAEs; Raman; DFT; HF; theoretical study

1. Introduction

Plasticizers are polymer additives that are commonly used in packaging materials to
increase plasticity [1]. Phthalic acid esters (PAEs) are the most commonly used plasticizers,
which can enter the body with people’s breath, diet, and even skin contact. When PAEs
accumulate to a certain extent in the body for a long time, they can be harmful to human
health, and will cause feminization of men, increase the risk of breast cancer in women,
and leads to deformity and cancer [2]. In recent years, the frequent occurrence of excessive
PAEs in food has attracted widespread concern and great importance from the government
and society. In 2011, Taiwan’s Food and Drug Administration found high concentrations of
Di(2-ethyl)hexyl phthalate in a batch of probiotic ingredients [3]. Since then, PAEs have
become known to the public. In 2012, the Plasticizer incident of Chinese Baijiu caused a
sensation [4]. The incidents of artificially added PAEs in milk tea in 2017 and excessive
PAEs in Ladue Blue Joe walnut oil in 2019 are even more controversial [5]. Therefore, it is
very necessary to effectively monitor PAEs in food to protect people’s health.

In recent years, Raman spectroscopy has been widely used in the field of food
safety [6–8] and gradually applied to the detection of PAEs due to its characteristics of no
sample pretreatment, fast detection speed, and response to molecular fingerprint informa-
tion. Wu et al. [9] prepared homogeneous AuNPs films for the detection of Di (2-ethyl)hexyl
phthalate in sorghum wine. Zhou et al. [10] formed Ag@Fe3O4@PEI nanoparticles, then
modified them with cyclodextrin (β-CD). Finally, 1.3 mg/kg of BBP in white wine was able
to detect using this substrate. Cao et al. [11] prepared Au-Ag-S nanostructured substrates
using a one-pot method and used them for the detection of Di(2-ethyl)hexyl phthalate in
juice. Wang et al. [12] and Wu et al. [13] used 2D silver plate and AuNPs as enhanced
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substrates to detect PAEs in edible oils. However, few of these studies incorporate struc-
tural theory, whereas identifying PAEs requires the incorporation of structural theory.
Structure theory includes the semi-empirical method, density functional theory (DFT), and
ab Initio [14,15]. It can help to understand the experimental results [16–18]. Ji et al. [19]
assigned the Raman vibrations to the eight Raman peaks of the Dimethyl phthalate by
DFT 6-31+G(d) calculations. Liu et al. [20] simulated the theoretical Raman spectra of
di(2-ethyl)hexyl phthalate, dibutyl phthalate, and diethyl phthalate using DFT 3-21G; then,
the theoretical Raman spectra with the corresponding experimental Raman spectra were
compared and analyzed. Qiu et al. [21] calculated the Raman spectra of dimethyl phthalate,
dibutyl phthalate, Di-n-octyl phthalate and their derivatives in the gaseous environment
using DFT B3LYP 6-31g(d), which contributed to the studies of PAEs. Xu et al. [22] used
DFT 6-31G(d) to calculate the theoretical spectra of di(2-ethyl)hexyl phthalate, dibutyl
phthalate, and butyl benzyl phthalate. The theoretical Raman spectra were consistent
with the experimental spectra, and the Raman vibrations were assigned to Raman peaks.
Zuo et al. [23] used molecular dynamics simulations and DFT to reveal inter-molecular
interactions of phthalic acid esters.

There is no comparison of theoretical Raman spectra of PAEs calculated by different
theoretical methods and basis sets in the existing studies. The explanation of basis sets can
be found in the second paragraph of Section 2.3. The theoretical Raman spectra calculated
by some theoretical methods will have many spurious peaks, which are not found in the
experimental Raman spectra; this will interfere with the analysis of the experimental data
and cause errors. In addition, existing studies have only assigned the Raman vibrations to
individual Raman peaks, but not to all major Raman peaks. In this research, the theoretical
Raman spectra of five typical PAEs were simulated by different theoretical methods and
basis sets, and were compared with the experimental Raman spectra in order to obtain the
most applicable theoretical method and basis set for PAEs, which can effectively reduce the
influence of spurious peaks on the analysis of PAEs detection in Food or other products.
Also, all Raman peaks of the five PAEs were assigned according to the theoretical and
experimental Raman spectra.

2. Materials and Methods

2.1. Materials and Equipment

Dimethyl phthalate (DMP), diethyl phthalate (DEP), and dibutyl phthalate (DBP)
reagents were purchased from Sinopharm Chemical Reagent Co. (Shanghai, China) Di(2-
ethyl)hexyl phthalate (DEHP) and diisononyl phthalate (DINP) reagents were purchased
from Aladdin Reagent Co. (Shanghai, China) DMP, DEP, DBP, DEHP, and DINP are all
analytical pure reagents with a purity greater than 99.5%. Table 1 shows the details of the
five typical PAEs.

Table 1. Details of five typical PAEs.

Name Abbreviations
Chemical
Formula

Molecular
Weight

Density
(g/cm3)

Harm

Dimethyl phthalate DMP C10H10O4 194.19 1.18 Suppression of the central
nervous system

Diethyl phthalate DEP C12H14O4 222.24 1.12 Headaches, dizziness, and
vomiting

Dibutyl phthalate DBP C16H22O4 278.34 1.05 Teratogenic effect on embryos
Di(2-ethyl)hexyl

phthalate DEHP C24H38O4 390.56 0.99 Carcinogenic to animals

Diisononyl phthalate DINP C26H42O4 418.61 0.97 Some effects on reproduction,
development, and cancer

PAEs: phthalic acid esters.
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A handheld portable Raman spectrometer (Bruker, Germany) equipped with dual
wavelength lasers of 785 nm and 852 nm was used in this study. The spectral range, spot
diameter, and spectral resolution of the spectrometer are 3200~300 cm−1, 1~2 mm, and
10~12 cm−1, respectively.

2.2. Spectral Acquisition

In order to reduce the influence of other impurities on the experimental Raman spectra
of five PAEs, the analytical pure PAE samples were used for collecting Raman spectra. For
DMP spectral acquisition, 3 mL of analytical pure DMP sample was put in the Raman vial
first, then the Raman vial was placed into the liquid measurement accessory of the Raman
instrument. After that, the DMP sample is irradiated with laser wavelengths of 785 nm
and 852 nm in sequence, and the generated Raman spectrum signal passes through a lens,
dichroic mirror, and long pass filter, and is then detected by the Raman spectrometer to
obtain DMP Raman spectra at two laser wavelengths. Due to the fact that the positions
of the fluorescence peaks do not change with the incident laser wavelength, while the
positions of the Raman peaks will change with the incident laser wavelength, matching the
Raman spectra of DMP at two incident laser wavelengths through software of OPUS8.7.31
can effectively eliminate fluorescence interference. Finally, the Raman spectrum of DMP
that had eliminated fluorescence signal was obtained. The Raman spectra of DEP, DBP,
DEHP, and DINP were acquired in the same way. The integration time and number of
scans were both set to 6 s and 3, respectively, for five PAEs. Figure 1 shows the schematic
diagram of Raman spectrum acquisition.

Figure 1. Schematic diagram of Raman spectrum acquisition. PAEs: phthalic acid esters.

2.3. Theoretical Calculation

The Hartree–Fock method (HF) is one of the ab initio methods, which is based on the
Schrodinger equation [24]. DFT is a method for studying the electronic structure of multi-
electron systems, which has a wide range of applications in the study of the properties
of molecules and condensed matter. It is one of the most commonly used methods in the
field of computational materials science and computational chemistry in condensed matter
physics [25–27]. There are many hybrid methods in DFT. The hybrid methods of B3LYP
(Becke-3 exchange with Lee–Yang–Parr gradient-corrected correlation functional) and
B3PW91 (B3 exchange + PW91 correlation) are the most used in the calculation of organic
matter [28]. Both B3LYP and B3PW91 are exchange-correlated general functions with
similar calculated results [29], but the specific results are related to the studied substances.

The basis set is the second component of the theoretical calculation, and using a basis
set means selecting a region of space where each electron is located [30]. For example,
6-311G+(2d, p): the first 6 refers to the six Gaussian functions describing the inner layer
electrons; the latter 311 means that each valence orbit is represented by three basis functions,
which are fitted by 3, 1, and 1 original functions, respectively; G means Gaussian basis set;
d means one additional polarization function for each heavy atom (non-hydrogen atom);
p means one additional polarization function for the hydrogen atom adds a polarization
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function; + means to add a dispersion function to the heavy atom; if the hydrogen atom
also wants to add a dispersion function, then + is replaced by ++ [31]. The larger the
basis set, the fewer the constraints imposed on the electrons and the more accurate the
approximation of the true molecular wave function. The choice of the basis set depends
on different accuracy requirements, theoretical approaches, and research object systems,
etc. [32–34].

In this study, structural models of five PAEs(DMP, DEP, DBP, DEHP, and DINP) were
constructed. Then, the two theories of DFT and HF with 6-31G(d) were used to calculate
the theoretical Raman spectra of five PAEs, and the spectra of five PAEs calculated by DFT
and HF were compared in order to obtain the suitable theory for PAEs. In DFT theory, the
hybrid methods of B3LYP and B3WP91 were chosen, and the spectra calculated by B3LYP
and B3WP91 of DFT were compared to determine which specific method would be more
suitable. After that, different basis sets, (3-21G, 6-31G(d), 6-311G(d, p), and 6-311G+(d,
p), were used to simulate theoretical spectra of five PAEs, and the results were compared
to choose the most applicable basis set for PAEs. Finally, the most applicable theoretical
Raman spectra combined with experimental Raman spectra were analyzed to assign the
Raman vibrations to the Raman peaks. All the theoretical calculations are prepared using
the Gaussian09 (version 9.5), software.

3. Results

3.1. Molecular Structure of PAEs

The structural models of the five PAEs (DMP, DEP, DBP, DEHP, and DINP) and their
molecular formulae are shown in Figure 2a–e. It can be found that the structure of DMP
consists of a benzene ring, two carboxyl groups, and two methyl groups, and the structure
of DMP is the simplest among these PAEs. The study of DMP has important reference
values for other PAEs [35]. Also, the other four PAEs are relatively typical structures, which
are important for the study of PAEs [36].

Figure 2. Optimized molecular structure diagram of PAEs and its molecular formula. (a): DMP;
(b): DEP; (c): DBP; (d): DEHP; (e): DINP. DMP: dimethyl phthalate; DEP: diethyl phthalate; DBP:
dibutyl phthalate; DEHP: di(2-ethyl)hexyl phthalate; DINP: diisononyl phthalate.

3.2. Experimental Raman Spectra of PAEs

Figure 3 shows the experimental Raman spectra of five PAEs. From Figure 3, it can be
seen that the Raman peaks in the range of 2800~3200 cm−1 are very heterogeneous, and
the peaks in this interval overlap with those of many solvents such as ethanol. Therefore,
the range of 300~2000 cm−1 is chosen for this study. From Figure 3, it can be seen that
the common Raman peaks of the five PAEs are 400, 650, 1040, 1120, 1160 1284, 1450, 1580,
1600, and 1726 cm−1. The unique Raman peaks of DMP are 818 and 964 cm−1; the unique
Raman peaks of DEP are 352, 784, and 848 cm−1; the unique Raman peaks of DBP are 810,
842, 940, and 962 cm−1; the unique Raman peaks of DEHP are 834, 858, 894, and 956 cm−1;
and the unique Raman peaks of DINP are 822, 900, and 960 cm−1. The partial experimental
Raman peaks of PAEs in this study are consistent with the peaks of 650, 1040, 1580, 1600,
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and 1726 cm−1 for DEHP and DBP in the literature [22]. They are basically consistent
with the peaks of 1038, 1120, 1578, 1599, and 1723 cm−1 for DEHP, DEP, and DBP in the
literature [20], and the peaks of 403, 653, 1043, 1127, 1167, 1585, 1605, and 1731 cm−1 for
eight PAEs in the literature [37].

Figure 3. Experimental Raman spectra of phthalic acid esters. DINP: diisononyl phthalate; DEHP: di(2-
ethyl)hexyl phthalate; DBP: dibutyl phthalate; DEP: diethyl phthalate; DMP: dimethyl phthalate.

3.3. Comparison of HF and DFT Methods

Different methods have different calculation accuracy for different substances, and the
accuracy of the Raman shifts calculated by HF and DFT needs to be verified by comparison
with experimental data. From the literature [20–22], it is clear that theoretical studies
have been carried out on PAEs, but only one or two methods are selected for study, and
no comparative studies have been conducted. The Raman spectra calculated by some
theoretical methods will have many spurious peaks that are not present in the experimental
spectra, which will cause interference and errors in the analysis of experimental data; so, it
needs to find the suitable theoretical method for PAEs.

Figure 4 shows the theoretical Raman spectra of the five PAEs (DMP, DEP, DBP,
DEHP, and DINP) calculated by HF and DFT with the 6-31G(d) basis set. Because many
theoretical spectra have some offset errors from experimental spectra, it is necessary to
use the scale factors from the database of frequency scale factors for electronic model
chemistries [38] to correct the theoretical spectra in order to eliminate the offset error to
the greatest extent [39,40]. From the scale factors database, it can be seen that the scale
factors of HF 6-31G(d), DFT B3LYP 6-31G(d), and DFT B3PW91 6-31G(d) are 0.885, 0.952,
and 0.947, respectively. In this study, the theoretical spectra are the spectra after correction.
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Figure 4. Theoretical Raman spectra of five phthalic acid esters based on HF and DFT: (a) DMP;
(b) DEP; (c) DBP; (d) DEHP; (e) DINP. HF: Hartree–Fock method; DFT: density functional theory;
DMP: dimethyl phthalate; DEP: diethyl phthalate; DBP: dibutyl phthalate; DEHP: di(2-ethyl)hexyl
phthalate; DINP: diisononyl phthalate.

As shown in Figure 4, the theoretical Raman spectra calculated by HF and DFT
show good agreement as a whole with the experimental Raman spectra, but there are
large differences in individual Raman peaks. Comparing the theoretical Raman spectra
calculated by HF with the experimental Raman spectra, it is found that the peaks of the five
PAEs have common differences. The wide peaks of 1284 and 1450 cm−1 all become sharp,
and the strong peaks of 1726 cm−1 become much weaker. The theoretical Raman peaks
all have a red shift in the band of 300~800 cm−1, while all have a blue shift in the band
of 1500~2000 cm−1. In addition to the above common differences, the theoretical Raman
spectra of the five PAEs also individually have a lot of spurious Raman peaks. Among
them, the theoretical Raman spectra of DMP, DEP, and DBP have more spurious peaks. In
terms of DMP, the peak of 818 cm−1 is divided into peaks of 790 and 806 cm−1, the peak
of 1120 cm−1 is divided into peaks of 1130 and 1146 cm−1, and there is a spurious peak
of 1080 cm−1. In terms of DEP, the peak of 1120 cm−1 is divided into peaks of 1086, 1102,
and 1126 cm−1, and there is a spurious peak of 992 cm−1. In terms of DBP, the peaks of 940
and 962 cm−1 are shifted to 970 and 990 cm−1, and the peak of 1120 cm−1 is divided into
peaks of 1086 and 1110 cm−1. Therefore, it can be seen that the theoretical Raman spectra
calculated by HF 6-31G(d) have so many errors. This may be because HF ignores most of
the electronic correlations [41], which makes the theoretical spectra of PAEs inaccurate.

There are also some errors in the theoretical Raman spectra calculated by DFT. How-
ever, the theoretical Raman spectra calculated by B3LYP and B3PW91 of DFT both have
fewer spurious peaks than the theoretical Raman spectra calculated by HF. Therefore, DFT
is more applicable to theoretical studies of PAEs. Then, the theoretical Raman spectra
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calculated by B3LYP and B3PW91 are further compared. It is found that the theoretical
Raman spectra calculated by the B3PW91 have slightly more spurious peaks. In terms
of DMP, there are two spurious peaks of 320 and 330 cm−1. In terms of DEHP, there is a
spurious peak of 800 cm−1. Peak of 1726 cm−1 in five PAEs are all divided into two Raman
peaks. In addition, the theoretical calculation time of the two methods is not significantly
different. So, it can be concluded that the DFT B3LYP method is more applicable to the
theoretical study of PAEs.

3.4. Different Basis Sets with DFT B3LYP

The above results show that the DFT B3LYP method is more suitable for the study of
PAEs. Different basis sets of DFT B3LYP have different calculation accuracy, and further
theoretical studies are needed to select the suitable basis set.

Figure 5 shows the theoretical Raman spectra of five PAEs (DMP, DEP, DBP, DEHP,
and DINP) calculated by DFT B3LYP, with 3-21G, 6-31G(d), 6-311G(d, p), and 6-311G+(d,
p) basis sets. From the scale factors database, it can be seen that the scale factors of DFT
B3LYP 6-311G(d, p) is 0.9708. The scale factors of DFT B3LYP 6-31G(d) is as above, and the
scale factors of 3-21G and 6-311G+(d, p) are not found in the scale factors database.

Figure 5. Theoretical Raman spectra of five phthalic acid esters calculated by DFT B3LYP with
different basis sets: (a) DMP; (b) DEP; (c) DBP; (d) DEHP; (e) DINP. DFT: density functional theory;
DMP: dimethyl phthalate; DEP: diethyl phthalate; DBP: dibutyl phthalate; DEHP: di(2-ethyl)hexyl
phthalate; DINP: diisononyl phthalate.

As shown in Figure 5, compared with the other three basis sets, the theoretical Raman
spectra of the 3-21G basis set have significantly more spurious peaks. Comparing the
theoretical Raman spectra calculated by the 3-21G basis set with the experimental Raman
spectra, it is found that the peaks of the five PAEs have common differences. The peaks
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of 650 cm−1 are all shifted to 680 cm−1; the peaks of 1120 cm−1 are all divided into peaks
of 1138 and 1156 cm−1; the peaks of 1160 cm−1 are all shifted to 1190 cm−1; and the wide
peaks of 1450 cm−1 are all divided into peaks of 1548 and 1570 cm−1. In addition to the
above common differences, the theoretical Raman spectra of the five PAEs also individually
have many spurious Raman peaks. This may be because the 3-21G basis set has only three
original functions fitting per nuclear orbital basis function [42], which makes the theoretical
spectra of PAEs inaccurate. Therefore, the 3-21G basis set is not applicable to the theoretical
study of PAEs.

The theoretical Raman spectra calculated by the 6-31G(d) basis set have slightly more
spurious peaks than the theoretical Raman spectra calculated by the 6-311G(d, p) and
6-311G+(d, p) basis sets. Comparing the theoretical Raman spectra calculated by 6-31G(d)
with the experimental Raman spectra, it is found that the peaks of the five PAEs have
common differences. The wide peaks of 1450 cm−1 all turn into a sharp peak and the
intensity increases too much. The peaks of 1726 cm−1 are all divided into peaks of 1706 and
1720 cm−1. In addition to the above common differences, the theoretical Raman spectra of
the five PAEs also have some spurious peaks. It may be because the 6-31G(d) basis set is
represented by two basis functions per valence orbit, which is one function less than the
other two basis groups; so, the accuracy of the 6-31G(d) basis set is a bit worse for PAEs.

The difference between the theoretical spectra calculated by 6-311G(d, p) and 6-
311G+(d, p) basis sets is extremely small, and theoretical spectra are both in good agreement
with the experimental spectra. However, the scale factors of the 6-311G+(d, p) basis set
is not found in the scale factors database. Therefore, compared with the Raman peaks
of the experimental spectra, the Raman peaks of the theoretical spectra calculated by the
6-311G+(d, p) basis set are all blue shifted as a whole. In addition, because the 6-311G+(d,
p) basis set has more plus dispersion functions on heavy atoms than 6-311G(d, p), the cal-
culation of 6-311G+(d, p) takes nearly three times longer time than 6-311G(d, p). Therefore
6-311G(d, p) is more appropriate for the theoretical study of PAEs.

In summary, the DFT B3LYP 6-311G(d, p) is most suitable for the theoretical study
of PAEs. However, the theoretical spectra calculated by DFT B3LYP 6-311G(d, p) still
have some differences with experimental Raman spectra in some details. Therefore, the
theoretical Raman spectra obtained by DFT B3LYP 6-311G(d, p) were further analyzed.
Table 2 shows the common Raman peaks in the theoretical and experimental Raman
spectra of the five PAEs. There are some differentiated peaks in theoretical Raman spectra.
Compared with the results calculated using the DFT B3LYP 6-311G (d, p) method in the
literature, the results of DEHP in this study are basically consistent with the results of
DEHP in the literature [37]. In the literature, the experimental and theoretical Raman peaks
of DEHP are 399, 653, 1043, 1127, 1167, 1585, 1605, 1731, and 385, 645, 1043, 1134, 1163, 1583,
1608, 1742, 1751 cm−1, respectively.

Table 2. Common Raman peaks in theoretical and experimental Raman spectra of the five PAEs.

Experimental
(cm−1)

DFT B3LYP 6-311G(d, p) (cm−1)

DMP DEP DBP DEHP DINP

400 392 390 356 384 400
650 642 646 646 646 664
1040 1034 1038 1032 1034 1064
1120 1118 1102 1106 1104 1102
1160 1140, 1152 1152 1152 1154 1145
1284 1264 1244, 1268 1242, 1272 1248, 1294 1284, 1320
1450 1440, 1456 1448 1448 1448 1538
1580 1564 1568 1568 1574 1620
1600 1592 1590 1592 1590 1636
1726 1740 1730 1732 1726, 1750 1786, 1800

PAEs: phthalic acid esters; DMP: dimethyl phthalate; DEP: diethyl phthalate; DBP: dibutyl phthalate; DEHP: di(2-
ethyl)hexyl phthalate; DINP: diisononyl phthalate.
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In addition to the peaks in the Table 2, there are still a few other peaks in the Raman
spectra of PAEs. Compared with the experimental spectrum, the theoretical spectrum of
DMP has two more peaks of 782 and 948 cm−1, which are extremely weak and negligible.
The theoretical spectrum of DEP has four more Raman peaks of 342, 834, 870, and 990 cm−1

than the experimental spectrum. The peak of 342 cm−1 can be regarded as the differentiated
peak from the peak of 360 cm−1, peaks of 834 and 870 cm−1 can be regarded as the
differentiated peaks from the peak of 850 cm−1, and peak of 990 cm−1 can be ignored
because its peak strength is small. The theoretical spectrum of DEHP has two more Raman
peaks of 924 and 982 cm−1 than the experimental spectrum, and peaks of 924 and 982 cm−1

can be regarded as the differentiated peaks from the peak of 958 cm−1. The theoretical
spectrum of DINP has one more Raman peak of 858 cm−1 than the experimental spectrum,
which can be regarded as the differentiated peak from the peak of 822 cm−1. The peaks of
the theoretical spectrum of DINP are blue-shifted by nearly 40 cm−1, while the theoretical
Raman peaks of the other four PAEs are all shifted approximately 0~20 cm−1 relative to the
experimental Raman peaks.

From the above results, it can be seen that the theoretical Raman spectra of PAEs
still have some differences from the experimental Raman spectra. These differences may
be caused by the following reasons. First, the Raman instrument has accuracy problems.
Second, the DFT may take the electronic correlation too much into account, leading to cal-
culation errors [20]. Third, theoretical studies generally calculate the structure of individual
molecules, while the substances detected experimentally are multimolecular [23]. There are
interactions between molecules, and this leads to errors between theory and experiment.

3.5. Vibration Mode Assignment of Raman Peaks

The above results show that the theoretical Raman spectra of five PAEs (DMP, DEP,
DBP, DEHP, and DINP) calculated by DFT B3LYP 6-311G(d, p) are the best in agreement
with the experimental Raman spectra, and have the least spurious peaks. Combining the
experimental and theoretical spectra, the Raman peaks of the five PAEs were assigned.
Table 3 shows the common Raman peaks and vibrational mode assignments of the five
PAEs. Table 4 shows the unique Raman peaks and vibrational mode assignments of the
five PAEs. The five PAEs can be identified by their unique Raman peaks.

Table 3. Common Raman peaks and vibrational mode assignments of the five PAEs.

PAEs Type
Theoretical

(cm−1)
Experimental

(cm−1)
Assignments Strength

DMP, DEP, DBP, DEHP
and DINP

390 400 γ(C-C of the benzene ring) m
634 650 β(Benzene) s
1020 1040 β(C-H of the benzene ring) vs

1104 1120
β(C-C-O) m

β(C-H of the benzene ring)
1152 1160 β(C-H of the benzene ring) s

1264 1284
υ(C-C-O) m
γ(C-H) w

β(C-H of the benzene ring) s
1438 1450 γ(C-H) m
1546 1580 β(Benzene) m
1570 1600 β(Benzene) s

1696 1726
υ(C=O) s
γ(C-H) w

DMP: dimethyl phthalate; DEP: diethyl phthalate; DBP: dibutyl phthalate; DEHP: di(2-ethyl)hexyl phthalate;
DINP: diisononyl phthalate;υ: telescopic vibration; β: in-plane bending vibration; γ: out-of-plane bending
vibration; δ: deformation vibration; vs: very strong; s: strong; m: medium; w: weak.
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Table 4. Unique Raman peaks and vibrational mode assignments of the five PAEs.

PAEs Type
Theoretical

(cm−1)
Experimental

(cm−1)
Assignments Strength

DMP
802 818

δ(O=C-O) w
γ(C-H of the -CH3) m

960 964
υ(O-CH3) m

γ(C-H of the benzene ring) m

DEP

360 352 υ(C-H of -C2H5) m
764 784 γ(C-H of -C2H5) s

850 848
β(O=C-O) w

γ(C-H of -C2H5) m

DBP

822 810
β(O=C-O) w

γ(C-H of -C4H9) m
882 842 γ(C-H of -C4H9) m
936 940

υ(O-CH3) s
958 962

DEHP

812 834 β(O=C-O) w

824 858
β(O=C-O) m

γ(C-H of -C2H3(C2H5)C4H9) m
874 894 γ(C-H of -C2H3(C2H5)C4H9) m
958 956 υ(C-O-C) m

DINP
822 822 β(O=C-O) m
940 900 γ(C-H of -C7H13(CH3)2) m
978 960 υ(C-O-C) m

DMP: dimethyl phthalate; DEP: diethyl phthalate; DBP: dibutyl phthalate; DEHP: di(2-ethyl)hexyl phthalate;
DINP: diisononyl phthalate;υ: telescopic vibration; β: in-plane bending vibration; γ: out-of-plane bending
vibration; δ: deformation vibration; vs: very strong; s: strong; m: medium; w: weak.

4. Conclusions

In this study, the theoretical Raman spectra of five PAEs (DMP, DEP, DBP, DEHP, and
DINP) were calculated using different theoretical methods and basis sets, and the best
theoretical method was determined by comparing with the experimental spectra. Also,
the common and unique Raman peaks the of five PAEs were identified, and the vibration
modes were assigned to these peaks. The results indicate that DFT is more suitable for
the theoretical study of PAEs than HF. In the DFT, the B3LYP method is more accurate
than the B3PW91 method to calculated the theoretical spectra of PAEs, and 6-311G (d, p) is
most suitable for the theoretical study of PAEs among these four basis sets. So, DFT B3LYP
6-311G(d, p) is the most applicable method for the theoretical calculation of the Raman
spectra of PAEs, which can reduce the influence of spurious peaks and help to identify the
Raman characteristic peaks of PAEs. This will be beneficial for the detection of trace PAEs
and the discrimination of PAEs in food products or human blood in the future. Also, the
results of this study will help us to establish a Raman fingerprint for PAEs. In the future,
further studies must be considered to detect the trace PAEs in food products or human
blood by Raman spectroscopy combined with DFT calculation.
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Abstract: In the process of storage and cold chain logistics, apples are prone to physical bumps or
microbial infection, which easily leads to spoilage in the micro-environment, resulting in widespread
infection and serious post-harvest economic losses. Thus, development of methods for monitoring
apple spoilage and providing early warning of spoilage has become the focus for post-harvest loss
reduction. Thus, in this study, a spoilage monitoring and early warning system was developed
by measuring volatile component production during apple spoilage combined with chemometric
analysis. An apple spoilage monitoring prototype was designed to include a gas monitoring array
capable of measuring volatile organic compounds, such as CO2, O2 and C2H4, integrated with
the temperature and humidity sensor. The sensor information from a simulated apple warehouse
was obtained by the prototype, and a multi-factor fusion early warning model of apple spoilage
was established based on various modeling methods. Simulated annealing–partial least squares
(SA-PLS) was the optimal model with the correlation coefficient of prediction set (Rp) and root mean
square error of prediction (RMSEP) of 0.936 and 0.828, respectively. The real-time evaluation of the
spoilage was successfully obtained by loading an optimal monitoring and warning model into the
microcontroller. An apple remote monitoring and early warning platform was built to visualize the
apple warehouse’s sensors data and spoilage level. The results demonstrated that the prototype
based on characteristic gas sensor array could effectively monitor and warn apple spoilage.

Keywords: gas sensor; spoilage monitoring; early warning; logistics control; simulated annealing; apple

1. Introduction

Apple has the characteristics of high nutritional value and storage resistance, but due
to its high sugar and moisture, coupled with complex external environmental factors, it
is susceptible to fungal spoilage [1,2]. Apple spoilage is the result of changes in tissue
composition under the action of physical, chemical, microbial and other environmental
factors. Physical aspects include mechanical damage, frostbite, etc.; chemical aspects
include water imbalance and quality deterioration caused by environmental changes;
microbiological aspects include fruit rot, penicillium and rot heart disease, etc. Among
them, the spoilage caused by fungi is the most serious. With the increase in storage
time, spoilage fungi on the surface of apples enter the fruit through stomata or calyx
and other parts to generate mycelium, which eventually leads to the spoilage of apples.
In addition, spoilage fungi may also produce mycotoxins that pose the risk of disease,
which can seriously endanger the health of consumers [3]. By sampling and isolating the
epiphytic microbiota of fresh apples, it was found that the proportion of fungi (79.0%) was
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much higher than that of bacteria (13.8%) [4], and the dominant spoilage fungi included
Aspergillus niger (A. niger), Penicillium expansum, (P. expansum), Penicillium chrysogenum
(Penicillium chrysogenum, P. chrysogenum) and Alternaria alternata (A. alternata), etc. [5–8].
Therefore, monitoring and providing early warning of apple spoilage have important
practical significance, and can ensure the food safety of consumers and provide technical
support for the healthy development of the apple industry.

At present, the traditional research on the detection of fruit and vegetable spoilage
mainly includes polymerase chain reaction (PCR) [9] and gas chromatography-mass spec-
trometry (GC-MS) [10]. Although these detection methods are accurate, the operation is
complicated and requires professional operators, which cannot meet the needs of rapid
real-time detection of apple spoilage [11]. Therefore, it is of practical significance to explore
a fast and effective apple spoilage monitoring technique.

Electronic nose technology is a powerful tool that simulates the olfactory system of
animals [12]. The electronic nose converts chemical signals into electrical signals through
the gas sensor array and combines chemometrics to process the data matrix to realize
the qualitative and quantitative analysis of the detected samples. It integrates sensors,
computers, mathematics and other disciplines, and has been widely used in food fields,
such as medicine and the environment [13]. The aroma of fruit is an important indicator for
evaluating fruit quality, and is mainly composed of various volatile components. The type
and concentration of volatile components can be affected by a variety of factors, such as
actual type, maturity and storage time. Electronic noses are widely used in the field of fruit
and vegetable testing. By acquiring the gas data of the testing samples, non-destructive
rapid testing of the quality of fruits and vegetables can be achieved.

With the development of sensor technology and chemometrics, the accuracy of gas
detection has gradually improved, and electronic nose technology has been gradually
applied in the field of fruit and vegetable spoilage detection [14]. When the internal
quality of fruits and vegetables changes or spoilage occurs, the volatile gases of fruits and
vegetables change accordingly. By analyzing the type and content of volatile gases in fruits
and vegetables, the degree of spoilage of fruits and vegetables and the detection of spoilage
microorganisms can be performed.

Nouri et al. [15] took pomegranate as the research object and used the electronic
nose system to identify pomegranates infected with Alternaria, with an accuracy rate
of 100%, and reviewed the application of gas sensors in the detection of pomegranates
infected with Alternaria. Liu et al. [16] proposed a non-destructive testing method based
on hyperspectral imaging and electronic nose, which could rapidly detect the microbial
content and variety of attributes during the rotting process of strawberries. This research
used PCA to extract feature information and established a quantitative prediction model
for strawberry microbial content and quality traits, indicating that the changes in the
appearance and internal components of fungal-infected strawberries during storage were
highly correlated with microbial content. Previous studies have shown that the combination
of hyperspectral imaging and electronic nose can help improve the evaluation of strawberry
quality and safety.

The spoilage of apples is caused by physiological disorders or aging of apple tis-
sues, and infection by decay-causing microorganisms. The respiration of apples and the
catabolism of microorganisms will change the composition and proportion of gases in the
storage micro-environment. By clarifying the evolution law of gas composition in an apple
spoilage environment, real-time monitoring of indicative gas in the storage environment is
an effective way to provide early warning of apple spoilage. Electronic noses are currently
widely used in the field of gas monitoring; however, the information collected by traditional
desktop electronic noses cannot be linked to the spoilage status of apples, and most of the
research objects are single apple samples, and thus the data cannot be applied to a moni-
toring and early warning model for the whole environment of fruit warehouse. Therefore,
this study designed and developed a prototype of apple spoilage storage monitoring and
attempted to analyze the change law of gas in the process of batch apple spoilage and the
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spoilage influence mechanism of multi-factor coupling. An apple spoilage early warning
model with various influencing factors was established, and at the same time, a remote
monitoring and early warning platform was built to realize remote monitoring of spoilage
early warning information.

2. Materials and Methods

2.1. Design of Monitoring Prototype

The monitoring prototype was designed to detect volatile profiles, temperature and
humidity during apple storage. The prototype consisted of hardware, software and me-
chanical components. The hardware system measured the gas components and included a
microcontroller, gas sensor array and display screen. The software system was developed to
control the microcontroller and to interface with the computer. The mechanical components
involved a gas delivery system that transported the gas components from the storage
environment to the sensors array. The design characteristics of the monitoring prototype
are further explained in the following sections.

2.1.1. Selection and Optimization of Sensors

The complexity of gas composition in the apple storage environment was fully con-
sidered in the selection of sensors. The current storage method in the warehouse mainly
adopts a combination of controlled atmosphere and refrigeration, and the storage gas
concentration changes in real time. The high sensitivity of the gas sensor helps in the
early detection of apple spoilage. Meanwhile, the field layout prototype needs to be small
and high-precision with low power consumption and high accuracy to meet the needs of
spoilage monitoring. After extensive research and experiments, the main gases in the apple
quality and spoilage process were determined, and C2H4, CO2, volatile organic compounds
(VOC) and O2 were optimized to be the characteristic gases of the apple warehouse [17–20].
An infrared gas sensor was selected for the CO2 sensor, and the remaining sensors were elec-
trochemical gas sensors. This ensured that the prototype had low power consumption and
high precision, which is convenient for long-term monitoring in warehouses [21]. Table 1
shows the detection range, resolution, sampling accuracy and repeatability parameters of
each sensor.

Table 1. Detection range, resolution, sampling precision and repeatability of each sensor.

Sensor Detection Range Resolution Precision Repeatability

C2H4 0–100 ppm 0.1 ppm ±2% FS ±1% FS
O2 0–30% VOL 0.1% VOL ±2% FS ±1% FS

VOC 0–50 ppm 0.001 ppm ±2% FS ±1% FS
CO2 0–5000 ppm 1 ppm ±2% FS ±1% FS

Temperature −20–80 ◦C 0.1 ◦C ±0.3 ◦C ±1% FS
Humidity 0–100% rh 0.1 rh ±0.3% rh ±1% FS

% FS: the percentage of accuracy and full scale.

2.1.2. Air Chamber and Air Path Design

The design requirements of the prototype need to ensure the portability of the equip-
ment. To improve the speed and efficiency of the gas contact sensor surface, the design of
the gas chamber is considered, with factors such as the size, structure, and material of the
gas chamber [22]. By designing the shell with air holes, the gas sensor array was wrapped,
and each gas sensor scatter arranged at the bottom. In order to ensure the circulation of the
gas flow path, the external gas was sucked into the prototype by the fan and evenly passed
through the surface of the sensor array to better obtain the gas information of the storage
micro-environment.
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2.1.3. Hardware System Integration

The hardware system included a microcontroller, gas sensor array, TF card module,
micro vacuum pump, power supply and display screen [23]. Figure 1 shows the schematic
representation of various components in the prototype. The microcontroller was mainly
used to control the collection of gas sensor data and control other hardware devices, such
as fans. The gas sensor array was used to obtain the data of the gas in the apple warehouse.
The TF card module was used to store the gas data. The display screen revealed the
real-time sensing data of each gas sensor.

Figure 1. Schematic diagram of the structure of the apple spoilage monitoring prototype.1. Shell.
2. Display. 3. Fan. 4. Temperature/humidity sensor. 5. Gas sensor array. 6. Motherboard. 7. Battery.

The miniature air pump drove the flow of gas in the air chamber, and the one-way
valve controlled the closure of the air path. The power module supplied power to the
prototype, and the voltage was stabilized to 5V through the voltage regulator circuit to
supply power to each sensor.

2.1.4. Software Structure Design

The software was developed under the Windows 10 operating system. The Windows
operating system has been affirmed and welcomed by consumers and developers and has
now been released to Windows 11. The Windows system provides many development
interfaces and standards, and the maintenance difficulty is lower than other systems. The
Windows 10 Professional operating system used in this study was based on the NT core,
with good hardware support and higher development efficiency.

The microcontroller program was written in Keil uVision5 IDE using C language.
Keil provides many library functions and development and debugging tools through the
integrated environment, which is convenient for developers to call, and is currently the
most popular microcontroller development tool.

Qt is a cross-platform C++ graphical user interface application development frame-
work that enables rapid development of GUI programs and non-GUI programs. Through
the visual graphical interface editor, the user can quickly and easily drag and drop controls,
including buttons, radio boxes, check boxes, group boxes, tree views, table views and texts.
Qt has the advantages of being cross-platform, object-oriented, easy to use and fast to run,
and it is easy to transplant and can be quickly converted according to the operating system.
It is widely used in the development of embedded products and device interfaces.

The dedicated prototype mainly included sensor signal acquisition, data display and
data storage functions. To visualize the monitoring process, the prototype developed a
special human–computer interaction interface, and the display of each sensor’s data was
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mainly realized by the serial port screen. In order to visually display the data of each sensor,
a dedicated display interface was designed.

2.1.5. Prototype System Integration

According to the software and hardware design scheme of the above-mentioned
special-purpose prototype, the hardware and software systems were integrated, and the
prototype assembly was finally completed. After debugging and optimization of the
prototype, the repeatability and stability of the prototype were verified by acquiring apple
sample information from the warehouse, and the batch test was carried out after reaching
the expectation.

2.2. Apple Sample Preparation
2.2.1. Activated Culture and Inoculation of Spoilage Fungi

Aspergillus niger (CICC2089), the dominant spoilage fungi of apple, was purchased
from China Industrial Microbial Species Preservation and Administration Center (CICC).
Activation and culture procedures were performed in strict accordance with CICC instruc-
tions and guidelines.

The bacterial cells were recovered from lyophilization prior to inoculation. The top
of the lyophilized tube with Aspergillus niger was placed on the alcohol lamp and heated
evenly for 30 s. Then, 2–3 drops of sterile water were dropped onto the heated part. The
tube wall was broken due to uneven heat, and the tear was knocked out with sterilized
tweezers. The lyophilized powder was placed into a 1.5 mL centrifuge tube using an
inoculum ring, and 200 μL of sterile water was added to dissolve it. The lyophilized
powder solution was evenly coated on potato dextrose agar medium plates and placed
in a constant temperature and humidity incubator at 28 ◦C. After seven days of culture,
the spores of the third generation of fungi were scraped with a one-time inoculation ring
and placed in sterile water, which was configured into fungal suspension. The fungal
suspension was counted through a blood count plate and diluted with sterile water to a
concentration of 106 cfu/mL.

Before inoculation, the apple skin was washed with distilled water, then wiped with
75% alcohol, and finally placed on a sterile workbench under ultraviolet light for half an
hour. Apple samples were punctured with sterile syringe needles (diameter 3 mm, depth
5 mm) along the apple equator, with 3 puncture holes, each 120◦ apart. Then, 5 μL of
fungal suspension was injected into each of the three holes and incubated in a constant
temperature and humidity incubator (25 ◦C, 60% humidity) [5].

2.2.2. Micro-Environment Information Sensing

To simulate the conditions of apple storage in warehouses, nine simulated warehouses
were set up in the laboratory [24]. Each simulated warehouse contained 30 fresh apple
samples, and the gas sensing data and temperature and humidity data of the apple samples
were collected for two days by the acquisition terminal prototype. Then, 10 apple samples
were selected from each simulated warehouse to be inoculated with Aspergillus niger,
and the inoculated apple samples were put back into the simulated warehouse. Data
acquisitions were performed every 24 h for a total of 6 days. The data format detection
system was stored in a two-dimensional table format. The collection time of a single sensor
was 500 s, and the collection frequency was 1 s. The data of each simulated warehouse
sample were collected as a 500 × 6 two-dimensional array based on 6 sensors. Then, the data
were transformed from a 500 × 6 two-dimensional matrix into a 3000 × 1 one-dimensional
array through flattening processing for subsequent model establishment.

2.3. Variable Selection Method
2.3.1. Genetic Algorithm

Genetic algorithm (GA) is an algorithm based on biological evolution rules, which
automatically obtains and guides the optimized search space by simulating random search
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and optimization solving methods [25], which can quickly screen characteristic variables
and eliminate the interference of irrelevant information [26,27], has the characteristics of
simple operation and strong versatility, achieves the global optimum in a short time and
can reduce the risk of falling into the local optimum search.

2.3.2. Simulated Annealing Algorithm

Simulated annealing (SA) is a probabilistic optimization algorithm for simulating the
solid annealing process in metalwork [28]. SA has strict convergence characteristics follow-
ing a Metropolis criterion, which effectively reduces the probability of falling into a local
minimum. SA can quickly find the global optimal solution, and the final optimization result
has nothing to do with the initial value [29]. It is a powerful tool for solving optimization
and combination problems. SA has the characteristics of simplicity, flexibility and efficiency,
which can effectively improve the generalization ability of the model.

2.3.3. Ant Colony Optimization Algorithm

Ant colony optimization (ACO) algorithm was inspired by the bionic intelligence
of ant colony foraging behavior [28,30]. Ants use shared pheromones to quickly spread
information in ant colonies, which helps to strengthen cooperation between ant colonies,
improve global exploration capabilities and obtain better solution results [31]. The essence
of ACO is based on its ability to optimize the creation of paths, and it has strong generality
and robustness and is widely used in data optimization and fuzzy modeling.

2.3.4. Competitive Adaptive Reweighed Sampling

Competitive adaptive reweighed sampling (CARS) is a variable selection method
suitable for high-dimensional data extraction [32]. In the sampling stage, CARS regards
each variable as an independent individual, retains variables with larger weights, removes
variables with smaller weights, and treats variables with significant weights as a new sub-
set, which can effectively remove irrelevant variables and reduce collinear variables [33,34].
By selecting the optimized subset of variables, the algorithm can overcome the combina-
torial explosion problem in variable selection to a certain extent, improve the prediction
ability of the model, and reduce the prediction variance. CARS introduces an exponen-
tial decay function [35], which controls the retention rate of variables and improves the
computational efficiency.

2.4. Apple Remote Monitoring and Early Warning Platform

The apple remote monitoring and early warning platform mainly included three parts:
data upload module, remote monitoring module and spoilage early warning module, as
shown in Figure 2. The platform development language was JAVA, which was devel-
oped through the SSM frameworks, including the SpringBoot, SpringMVC and MyBatis 3
frameworks [36,37]. The visualization of individual sensor data and spoilage levels was
implemented by the Echarts visualization library [38].

The data upload module was mainly responsible for the upload of sensor and model
data, which made it convenient for the subsequent monitoring module and spoilage early
warning module to call data. The remote-monitoring module mainly displayed the trend
and change of sensor data over time through a line graph and realized the visualization of
each sensor’s data. The schematic diagram of apple spoilage monitoring and early warning
process is shown in Figure 3. The spoilage early warning module was mainly responsible
for calling the data of sensors and spoilage models and realizing the visual display of
spoilage levels through the dashboard.
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Figure 2. Flow chart of each module of apple remote monitoring and early warning platform.

Figure 3. Schematic illustration of apple spoilage early warning model and remote monitoring and
early warning.

3. Results

3.1. Analysis of Apple Volatile Gas

The volatile gas production during fungal spoilage of apples was recorded using the
sensor and represented as sensor response value. The sensor response value indicated the
response value of each sensor to the presence of certain gaseous chemicals over time.

The average response data of the VOC, CO2, O2 and C2H4 gas sensors of simulated
warehouse apple samples are shown in Figure 4. The response value of the VOC sensor
was 7 > 8 > 4 > 6 > 5 > 1 > 3 > 2, and the VOC content on the seventh and eighth days was
much higher than that on the first and second days (Figure 4a). The results showed that
the content of VOC gradually increased during the degradation of apples from fresh to
severe spoilage. The microbial spoilage of apples led to changes in VOC emissions, which
are classified as alcohols, terpenes, ketones, alkenes, benzenoids and sulfides [39].
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Figure 4. Response of each sensor for different days of spoilage. (a) VOC, (b) CO2, (c) O2 and
(d) C2H4.

The responses of the CO2 sensor indicated that the content on the eighth day was
much higher than that on the first day: 1 < 4 < 3 < 2 < 7 < 5 < 6 < 8 in sequence (Figure 4b).
The results showed that during the spoilage of apples, the CO2 release decreased gradually.
The responses of the O2 sensor were 8 > 5 > 6 > 7 > 3 > 4 > 2 > 1 in sequence, and the
content on the eighth day was much higher than that on the first day (Figure 4c). The
results showed that the consumption of O2 gradually decreased during apple spoilage
process due to the natural senescence process that causes cell and tissue to breakdown.

The responses of the C2H4 sensor were 7 > 6 > 8 > 5 > 4 > 3 > 2 > 1 in sequence, with
the highest content on the seventh day and the lowest content on the first day (Figure 4d).
During the decaying process of apples from fresh to severe spoilage, the production of
C2H4 increased gradually, except that the content decreased slightly on the eighth day of
treatment [24].

Based on the results obtained [24,40], it was found that with the intensification of the
degree of spoilage, the release of VOC and C2H4 gradually increased, while the release of
CO2 and the consumption of O2 were generally reduced. This was because the metabolic
capacity of apples decreases as they spoil, leading to a lower consumption of O2 and a
lower release of CO2. With the increase in spoilage time, the apple samples consume O2
and release CO2, VOC and C2H4, but as the degree of spoilage progresses, the metabolic
capacity of apples is reduced, leading to the low consumption of O2 and the release of CO2.
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3.2. Apple Spoilage Early Warning Model
3.2.1. ACO-PLS Prediction Model of Apple Spoilage

The optimized parameters of the algorithm were set as follows: the initial population
size was 50, the maximum number of cycles was 10, the maximum number of iterations
was 50, the variable selection probability threshold P was 0.3 and the significance factor Q
was 0.01. The characteristic variables of the sensor data were screened by the ACO method,
and the screening results are shown in Figure 5a. Forty-eight characteristic variables were
screened, and the ACO-PLS model results are shown in Figure 6a.

  

  
Figure 5. Variable selection results of apple spoilage days. (a) ACO-PLS, (b) CARS-PLS, (c) GA-PLS
and (d) SA-PLS.

  

Figure 6. Cont.
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Figure 6. Prediction model of apple decay days. (a) ACO-PLS, (b) CARS-PLS, (c) GA-PLS and
(d) SA-PLS. Blue triangle represents calibration set and red circle represents prediction set.

3.2.2. CARS-PLS Prediction Model of Apple Spoilage

The main parameters of CARS in this study were set as follows: the maximum number
of principal components was 15, the number of interactive validation groups was 5 and the
number of Monte Carlo sampling runs was 2000. Figure 5b shows the best calculation result
of the CARS model of apple spoilage time. It can be seen from the figure that the RMSECV
value was large at the beginning of the screening, the regression coefficient of each variable
was small, and the number of variables was larger. With the increase in sampling times, the
number of variables gradually decreased and the gap between the regression coefficients of
each variable widened; 22 variables were screened out. The results of CARS-PLS are shown
in Figure 6b.

3.2.3. GA-PLS Prediction Model of Apple Spoilage

The main parameters of GA were set as follows: the number of initial chromosomes
was 30, the deletion group was 5, the mutation rate was 0.01, the crossover probability was
0.5 and the maximum number of iterations was set to 100. The cumulative frequency of
the variables screened by the GA algorithm is shown in Figure 5c, and 32 variables were
screened out. The PLS quantitative prediction model corresponding to the apple spoilage
area was established through the screened characteristic variables. The specific scatter
diagram of the model is shown in Figure 6c.

3.2.4. SA-PLS Prediction Model of Apple Spoilage

The main parameters of SA in this study were set as follows: the initial temperature
was 10, the end temperature was 1, the Markov chain length was 10, the temperature
cooling coefficient was 0.95, the window starting width was 10 and the window ending
width was 20 and increasing. The step size was 1, the number of wavenumber points
exchanged each time the Markov chain was 2 and the maximum number of principal
components for modeling was 12. Figure 5d shows the results of variable screening of
sensor data through SA, and 20 characteristic variables were screened out. The results of
the established SA-PLS model are shown in Figure 6d.

3.3. Comparison and Analysis of Various Models

The variable selection method was selected to filter the characteristic variables of the
sensor data, and the PLS prediction model of the number of days of apple spoilage was
established. The specific results of the apple spoilage time prediction model established by
the variable selection method are shown in Table 2. The scatter plot of the apple spoilage
time prediction model is shown in Figure 6, in which the Rc and Rp of ACO-PLS are 0.971
and 0.926, respectively, the Rc and Rp of SA-PLS are 0.942 and 0.936, respectively, and
ACO-PLS has the highest Rc, but Rp is low. In order to ensure the prediction accuracy of
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the apple spoilage model, the variables were numbered from 1 to 3000, and SA-PLS was
used to establish an early warning model of apple spoilage. The characteristic variables
were identified to be 1889, 1894, 1974, 2001, 2159, 2163, 2274, 2561, 2758 and 2965. A similar
observation was made by Guo et al. [41], where they observed that the competitive adaptive
reweighted sampling (CARS) algorithm combined with PLS effectively filtered irrelevant
information and improved the accuracy of the model in predicting apple spoilage area from
the electronic nose data. Table 3 showed the characteristic variables and original variable
ranges screened by SA.

Table 2. Prediction model results of days before apple spoilage using C2H4, CO2, VOC and O2

sensor data.

Model
Calibration Set Prediction Set

Rc RMSEC Rp RMSEP

GA-PLS 0.772 1.481 0.669 1.769
SA-PLS 0.942 0.763 0.936 0.828

ACO-PLS 0.971 0.538 0.926 0.872
CARS-PLS 0.866 1.163 0.859 1.218

Table 3. Characteristic variables and original variable ranges of each sensor in the apple spoilage
early warning model.

Sensor Characteristic Variables Original Variable Ranges

Temperature 228, 309 0–500
Humidity 622, 726 500–1000

CO2 1064, 1126, 1188 1000–1500
C2H4 1526, 1538, 1861, 1889, 1894, 1974 1500–2000

O2 2001, 2159, 2163, 2274 2000–2500
VOC 2561, 2758, 2965 2500–3000

According to the results of the SA-PLS spoilage early warning model, the dependent
variables, independent variables, and coefficients of the model were derived. The model
results are shown in Table 4. The apple spoilage early warning model is as follows:
Y = 0.3264 X1 + 0.3708 X2 + 0.0248 X3 + 0.0363 X4 − 0.0008 X5 − 0.0005 X6 − 0.0014 X7 +
0.4734 X8 + 0.3338 X9 +0.0248 X10 − 0.0136 X11 − 0.0118 X12 − 0.0132 X13 + 0.3407 X14 −
1.9581 X15 + 0.3719 X16 + 0.5173 X17 − 1.9010 X18 + 0.0013 X19 − 0.0009 X20 + 38.9899.
Among these values, X1–X20 are the dependent variables, that is, the value of the sensor
corresponding to the screening feature variable. When the value of Y is in the range of 1–8,
the Y value from 1–2 indicates the freshness of the product, whereas a value between 3 and
4 indicates spoilage. Similarly, a value of 5–6 indicates that the spoilage grade is medium
spoilage, and a value of 7–8 indicates that the spoilage grade is severe spoilage.

Table 4. Independent variables, dependent variables and coefficients of apple spoilage early warning
model.

Number
Independent

Variables
Dependent
Variables

Number
Independent

Variables
Dependent
Variables

1 0.3264 228 11 −0.0136 1889
2 0.3708 309 12 −0.0118 1894
3 0.0248 622 13 −0.0132 1974
4 0.0363 726 14 0.3407 2001
5 −0.0008 1064 15 −1.9581 2159
6 −0.0005 1126 16 0.3719 2163
7 −0.0014 1188 17 0.5173 2274
8 0.4734 1526 18 −1.9010 2561
9 0.3338 1538 19 0.0013 2758
10 0.0248 1861 20 −0.0009 2965

Coefficient 38.9899
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4. Discussion

Apples are prone to spoilage due to physical damage and microbial infections, which
can lead to widespread infection and post-harvest losses. The current study has developed
a sensor prototype for apple spoilage monitoring and an early warning system for apples.
The gas composition information collected by the sensor prototype from the simulated
warehouse was used to develop a multi-factor fusion early warning model to predict apple
spoilage during storage. Among the different models employed for the purpose, the ACO-
PLS model showed the highest correlation coefficient in calibration as well as prediction set.
However, it is worth mentioning that the SA-PLS model was suitable for identifying the
characteristic variables. A similar outcome was obtained by Ren et al. [38] when a multilayer
perceptron neural network (MLPN) model was employed on volatile components released
by damaged apples upon mechanical injury. The model was able to classify the degree
of damage with 100% accuracy based on the volatile components released from apples.
However, the selection of a model for the prediction of the quality of fruits greatly varies
depending on the specific situation and intention. Similarly, monitoring gas emitted by
fruits and vegetables in combination with multivariate chemometric analysis has been
proven to be effective in detecting spoilage inside refrigerators [42]. The use of artificial
neural networks as a machine learning model is prevalent in developing a predictive
model from electronic nose data [43]. However, compared to neural network models, PLS
models are more interpretable, robust to noise and faster to train, making them suitable
for real-world applications. With the involvement of too many predictor variables, the
PLS model becomes unstable, and the prediction can be inaccurate. Thus, the selection of
optimum parameters for modeling is an important task in the process of model building.
In this study among the different variable selection methods (ACO, CARS, GA and SA)
employed for the reduction of computational complexity, the SA method showed better
results. Similarly, Zhao et al. [44] employed SSA to select optimal parameters for the BPNN
network model developed for the prediction of fungal infection in apples using electronic
nose data.

The developed prototype has a gas monitoring array to collect data on VOC, CO2, O2,
C2H4, temperature and humidity. These data are then employed to build a multifactor
fusion early warning model. Other works have reported that a mathematical model for
shelf-life analysis could not be established based only on one specific parameter. The devel-
opment of the model has shown very high efficiency in establishing shelf-life predictions in
several industries, including dairy [45].

The developed model based on the gas sensor prototype has the potential to be
employed in the early detection of fruit spoilage, which prevents postharvest losses and
reduces economic loss significantly. There were similar attempts to predict the spoilage of
bananas based on the 3D fluorescence data of the storage room gas. The spoilage benchmark
for the stored banana was estimated as early as the 4th day, which demonstrates the
reliability of the early warning systems [46]. However, it is worth mentioning that the early
detection system was established based on the fusion of information from no less than five
representative physical and chemical indicators from bananas. Moreover, Putnik et al. [47]
have developed a mathematical model to compare the influence of modified atmosphere
packaging in the prevention of apple browning, and the model was published online as a
computer simulation that predicts shelf life given the basic quality parameters of apples,
thus proving the practical applicability of model development in predicting apple spoilage.
The models can be employed to answer questions about the economic benefits of using
different treatments in industrial apple production and storage. This is indirectly helpful in
extending the shelf-life of apples and providing economic benefits to producers, while also
ensuring that consumers receive high-quality food.

Overall, this work presents a novel approach for monitoring and providing early
warning of spoilage of apples in storage based on a gas sensor prototype. The developed
system can help reduce post-harvest losses by preventing the spread of infection in the
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storage environment. Moreover, the developed method can assist in streamlining the
process of monitoring and inspecting apples for fungal spoilage.

5. Conclusions

In view of the current problems and difficulties of spoilage monitoring in apple
warehouses, we analyzed the overall framework of a sensor prototype for the detection of
various gases produced during apple spoilage. The prototype was developed by integrating
software and hardware development of acquisition terminals to continuously obtain sensor
data from simulated warehouses and analyze the process of spoilage in batches of apples.
The change in various gaseous composition and their influence on spoilage was identified
to be a result of multi-factor coupling. The early warning model for apple spoilage was
developed by considering multiple factors, including temperature, humidity and gas
composition, and a variable selection method was employed to optimize the characteristic
variable, which predicted the degree of spoilage. The developed remote monitoring
platform had three major modules, including data upload module, remote monitoring
module and spoilage early warning module. These modules enabled the upload of sensor
data, visualization of the trends in the data over time and visual display of spoilage levels.
Thus, the study proved that analyzing the change in gas composition in an apple spoilage
micro-environment and real-time monitoring and warning of indicator gas is an effective
way to reduce postharvest losses of fruits.
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Abstract: 60Co irradiation is an efficient and rapid sterilization method. The aim of this work
is to determine the changes in essential-oil composition under different irradiation intensities of
60Co and to select an appropriate irradiation dose with GC–IMS. Dosages of 0, 5, and 10 kGy of
60Co were used to analyze turmeric (Curcumae Longae Rhizoma) volatile oil after 60Co irradiation
(named JH-1, JH-2, and JH-3). The odor fingerprints of volatile organic compounds in different
turmeric volatile oil samples were constructed by headspace solid-phase microextraction and gas
chromatography–ion mobility spectrometry (GC–IMS) after irradiation. The differences in odor finger-
prints of volatile organic compounds (VOCs) were compared by principal component analysis (PCA).
The results showed that 97 volatile components were detected in the volatile oil of Curcuma longa, and
64 components were identified by database retrieval. With the change in irradiation intensity, the
volatile compounds in the three turmeric volatile oil samples were similar, but the peak intensity was
significantly different, which was attributed to the change in compound composition and content
caused by different irradiation doses. In addition, the principal component analysis showed that
JH-2 and JH-3 were relatively correlated, while JH-1 and JH-3 were far from each other. In general,
different doses of 60Co irradiation can affect the content of volatile substances in turmeric volatile
oil. With the increase in irradiation dose, the peak area decreased, and so the irradiation dose of
5 kGy/min was better. It is shown that irradiation technology has good application prospects in the
sterilization of foods with volatile components. However, we must pay attention to the changes in
radiation dose and chemical composition.

Keywords: Curcumae Longae Rhizoma; volatile oil; 60Co; GC–IMS

1. Introduction

Curcumae Longae Rhizoma, a rootstock plant called turmeric belonging to Fam.
Zingiberaceae in China, is extensively cultivated in South China, such as in the Sichuan,
Guangxi, Guangdong, Yunnan, and Zhejiang provinces. Turmeric has been widely used
in traditional Chinese medicine to promote Qi circulation, dissolve blood sludge, induce
menstruation, and relieve pain. It can be used to relieve pain in the chest and hypochondriac
regions, as well as treat amenorrhea, mass formation in the abdomen, rheumatic pain of
the shoulders and arms, traumatic swelling, and pain (Committee for the Pharmacopoeia
of P.R. China, 2020). Modern research shows that the abundant volatile oil and curcumin in
turmeric (up to about 4%) have anti-tumour, anti-inflammatory, and antioxidant effects [1].
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The quality of traditional Chinese medicine will have an impact on its efficacy. With
the development of modern medicine, the quality standards of traditional Chinese medicine
are also constantly improving. However, the source of traditional Chinese medicine is
complex, and it is easy to be contaminated by bacteria in the process of production and
storage. Traditional dry-heat sterilization, damp-heat sterilization and ethylene oxide gas
sterilization technologies easily destroy the effective components of drugs, affecting the
efficacy or residual organic solvents. The sterilization operation should remove microorgan-
isms and ensure the quality and efficacy of drugs [2]. 60Co-γ irradiation ray sterilization
method, widely used in the sterilization of Chinese medicinal materials, is a new disin-
fection and sterilization process in the 20th century, which is based on the high-energy
rays produced by X-ray, γ ray, and other ionizing radiation to inhibit the continuation of
pests and diseases and to effectively kill insects. Sterilization at room temperature and high
efficiency, with simple operation and other characteristics, dosages of 5, and 10 kGy are
most widely used [3,4]. However, the influence of the irradiation dose on the component
of traditional Chinese medicine remains unknown. Therefore, it is of great significance
to explore the sterilization dose of irradiation sterilization of different traditional Chinese
medicine varieties using 60Co, which can be of great reference value to the quality problems
of traditional Chinese medicine and its preparation products.

The traditional detection method of volatile compounds in turmeric uses gas chroma-
tography-mass spectrometry (GC–MS) [5], but it takes a long time and has low sensitivity,
and GC-MS needs complicated pre-treatments and is constrained in distinguishing isomeric
molecules [6]. In recent years, a novel and powerful device, gas chromatography (GC)
coupled with ion mobility spectrometry (IMS), has been chosen to accurately test flavor
compounds, especially the volatile oil components in various foods. Gas chromatography–
ion mobility spectrometry (GC–IMS) which has the advantages of simple operation, strong
separation ability, short detection cycle, and retaining the original flavor of samples to the
greatest extent [7], has been successfully applied to food [8], biological and aquatic odor
analyses [9], quality detection [10], and other fields. However, there is no report on the
study of volatile organic compounds in turmeric volatile oil by GC–IMS technology.

In this study, the volatile oil of turmeric was extracted by steam distillation and
irradiated, with 60Co rays of different intensities (Dosages of 0, 5, and 10 kGy). A total of
64 components were detected using GC–IMS technology to compare the changes before and
after irradiation. Finally, the composition changes of volatile oil under different irradiation
intensities were given to provide a certain reference for the production and sterilization of
turmeric and its preparations. This study provides a sound basis for the use of 60Co-γ ray
irradiation sterilization technology during the preparation of medicinal herbs. GC–IMS,
which has the advantages of simple operation, strong separation ability, short detection
cycle, and retaining the original flavor of samples to the greatest extent, can be successfully
applied to foods.

2. Materials and Methods

2.1. Materials

Turmeric was collected from Baise, Guangxi Province, China, and identified by Prof.
Zhaoming Xie at the Hunan Academy of Traditional Chinese Medicine. A voucher spec-
imen (HNATCM2022-006) was deposited in the herbarium of the Hunan Academy of
Traditional Chinese Medicine.

2.2. Isolation of the Essential Oils

The essential oil was extracted through steam distillation by referring to the Chinese
Pharmacopoeia 2020 edition (part 4) volatile oil determination method (General Principle
2204) for determination. We added 500 g of dried turmeric with an appropriate amount
of water and a few glass beads into a 1000 mL round-bottom flask, treating the solution
by slowly heating it to a boil, followed by keeping it slightly boiling for 6 h. The upper oil
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phase (the crude essential oil of turmeric) was gathered and sealed and stored away from
light at 4 ◦C for further use.

2.3. Extraction Yield

After extraction, the extraction rate of volatile oil is calculated according to the follow-
ing formula:

Extraction yield (%) = m1/m0 × 100 (1)

where m1 is the total mass of the extracted oil, and m0 is the initial mass of the turmeric
used in each extraction.

2.4. 60Co-γ Irradiation

The resulting curcumin EOs was dehydrated with anhydrous Na2SO4 and then di-
vided into three equal parts for 60Co irradiation. The dose rates were 0, 5, and 10 kGy/min.
The 60Co γ radiation source was located at Hunan Radiological Technology Application
Research Center (Changsha, China).

2.5. Analysis by GC–IMS

In the experiment, the volatiles were concentrated and separated by headspace solid-
phase microextraction, with reference to Wang [11] and other methods and appropriate
adjustments. Precisely-measured 50 μL of turmeric volatile oil sample was transferred into
a 20 mL headspace bottle with Teflon spacer seal. The headspace bottle was heated at 80 ◦C
and incubated for 10 min at 500 RPM. Then 100 μL of the sample was injected in non-shunt
mode, and the temperature of the injection needle was kept at 85 ◦C.

The components of volatile compounds were identified by chromatography–ion mobil-
ity spectroscopy (GC–IMS; FlavourSpec®, G.A.S., Berlin, Germany). Gas chromatography
(GC) was performed under the following conditions: carrier gas, nitrogen (99.99%); column,
mxt-5 (15.0 m length × 0.53 mm ID × 1 μm thickness); running time, 50 min; flow rate,
initial 2.0 mL/min, holding for 2 min, linearly increasing to 100 mL/min within 18 min, and
holding for 20 min. Ion mobility spectroscopy (IMS) was carried out under the following
conditions: drift gas, nitrogen (99.99%); flow rate, 150 mL/min; IMS detector temperature,
45 ◦C.

Three parallel samples are set for each irradiation intensity for volatile oil, and the
difference in the spectrum of volatile organic compounds in the sample can be given after
analysis. The NIST database and IMS database built into the software can conduct a
qualitative analysis of substances.

2.6. Statistical Analysis

The analysis software Vocal matched with the instrument is used to view the qualita-
tive and quantitative analysis spectrum and data. The NIST database and IMS database
built into the application software can be used for qualitative analysis of substances.
The porter plug-in directly compares the spectrum differences between samples (three-
dimensional spectrum, two-dimensional top view, and difference spectrum). We compared
the fingerprint of the gallery plot plug-in to intuitively and quantitatively compare the
differences in volatile organic compounds between different samples. A dynamic PCA
plug-in was used for dynamic principal component analysis, cluster analysis of samples,
and rapid determination of unknown and unknown samples.

3. Results

3.1. Flavor Differences in Turmeric Volatile Oil under Different Irradiation Intensities Detected
by GC–IMS

Three-dimensional topographic plots of turmeric irradiated by three different doses
are shown in Figure 1A. We assessed the volatile organic compounds (VOC) in different
samples from three perspectives: retention time, drift time, and peak intensity. The number
of VOCs and the signal intensity of the peaks differed slightly among the three samples.
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With the increase in irradiation intensity, only the signal intensity of the peaks changes
slightly, and almost no new compounds form.

A two-dimensional topographic spectrum (planform of the 3D plot) was also obtained
for its difficulty to observe the differences between three-dimensional groups (Figure 1B).
In this plot, the red vertical line at 1.0 on the left is the reaction ion peak (RIP), and the
background image is blue. Each point on both sides of the reaction ion peak represents a
VOC, the color depth represents the volatile-compound content, the white area represents
the low compound content, and the red area represents the high compound content. Using
the difference comparison mode, we select the spectrum (JH-1) of one sample as the
reference, and we deduct the spectrum of other samples from the reference to obtain
Figure 1C. If the volatile organic compounds of the two samples are consistent, then the
background after deduction is white, while red signifies that the concentration of the
substance is higher than the reference, and blue implies that the concentration of the
substance is lower than the reference. It can be seen from Figure 1B,C that signals are
concentrated in areas A, B, and C. The color of some compounds in areas A and C is
deepened, and the color of compounds in area B is lighter, which suggests that with the
increase in irradiation dose, the compound content in regions A and C increases and in the
regioqualitative analysis of volatile organic compounds.

Figure 1D shows the binary spectra of all volatile substances of turmeric volatile oil
under three irradiation intensities. The volatile compounds in the volatile oil of turmeric
were analyzed by GC. The NIST database and IMS database built into the IMS library were
according to the retention index, retention time, and ion migration time. We identified
64 volatile components shown in Table 1 from the three sample varieties in Figure 1D. The
substance numbers in Figure 1D are consistent with those in Table 1.

(A) (B)

(C) (D)

Figure 1. Cont.
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(E)

(F)

(G)

Figure 1. Volatile compounds analysis by GC-IMS. (A) 3D-topographic; (B) topographic plots;
(C) topographic subtraction plots; (D) post-irradiation topographic plots; (E) volatile compounds
fingerprint comparisons. Each row represents all the signals selected in a sample. Each column repre-
sents the signal of the same volatile compound. (F) Principal component analysis; (G) Fingerprint
similarity analysis.

According to Tables 1 and 2, there are 64 monomers and dimers of volatile sub-
stances identified in turmeric volatile oil, including 17 alcohols and phenols, 11 aldehydes,
11 ketones, 9 terpenes, 8 esters, 4 carboxylic acids and their derivatives, 3 furans, and
1 thiophene. The chemical formula of the identified monomer and dimer is the same as the
CAS number, but the form is different. The results are shown in Tables 1 and 2.
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Table 1. Volatile substances contained in turmeric volatile oil.

No Compounds
Molecular
Formula

RI Rt/s
Dt/ms

(RIPrel)

1 Methyl decanoate C11H22O2 1508.0 1079.39 1.54878
2 Decanoic acid C10H20O2 1360.2 867.201 1.57124
3 Eugenol C10H12O2 1341.6 840.393 1.29711
4 alpha-Terpineol C10H18O 1206.8 646.87 1.22248
5 Diethyl succinate C8H14O4 1234.7 686.937 1.29422
6 Citronellol C10H20O 1197.5 633.591 1.34963
7 Linalool C10H18O 1106.9 503.438 1.2229
8 2-Nonanone C9H18O 1091.9 481.9 1.88944
9 1,8-Cineole C10H18O 1027.6 389.61 1.73145
10 beta-Ocimene C10H16 1054.5 428.22 1.21822
11 Benzeneacetaldehyde C8H8O 1045.1 414.765 1.2491
12 Limonene C10H16 1025.6 386.685 1.20792
13 alpha-Terpinene C10H16 1015.0 371.475 1.22263
14 6-Methyl-5-hepten-2-one C8H14O 990.5 339.885 1.17704
15 beta-Pinene C10H16 976.0 327.6 1.21969
16 beta-Pinene C10H16 976.0 327.6 1.64175
17 Camphene C10H16 944.9 301.275 1.21822
18 alpha-Pinene C10H16 931.8 290.16 1.22116
19 alpha-Pinene C10H16 931.1 289.575 1.67557
20 2-Ethylhexanol C8H18O 1018.3 376.21 1.79856
21 2-Octanone C8H16O 999.2 348.832 1.7651
22 Benzaldehyde C7H6O 959.8 313.914 1.15225
23 Benzaldehyde C7H6O 959.4 313.517 1.47206
24 Ethyl pentanoate C7H14O2 901.2 264.315 1.71158
25 2-Heptanone C7H14O 891.6 256.379 1.62862
26 2-Furanmethanol C5H6O2 873.3 246.856 1.1188
27 2-Acetylfuran C6H6O2 911.1 272.648 1.45333
28 2,5-Dimethylthiophene C6H8S 856.5 238.127 1.07866
29 Furfural C5H4O2 828.3 223.446 1.08401
30 Furfural C5H4O2 826.7 222.652 1.3329
31 2-Methylbutanoic acid C5H10O2 827.5 223.049 1.46938
32 2-Hexanol C6H14O 793.1 205.193 1.56974
33 2-Hexanone C6H12O 791.9 204.546 1.50912
34 2,3-Butanediol C4H10O2 778.3 198.14 1.3627
35 1-Pentanol C5H12O 760.5 190.908 1.25055
36 Acetal C6H14O2 748.9 186.155 0.96913
37 (E)-2-Pentenal C5H8O 747.3 185.535 1.36062
38 3-Hydroxy-2-butanone C4H8O2 733.1 179.749 1.33778
39 2,5-Dimethylfuran C6H8O 739.9 182.503 1.0218
40 Methyl butanoate C5H10O2 716.5 172.993 1.15331
41 Ethyl propanoate C5H10O2 695.4 164.398 1.44128
42 2-Pentanone C5H10O 686.6 161.106 1.37552
43 2-Ethylfuran C6H8O 674.9 157.998 1.3211
44 3-Methylbutanal C5H10O 650.6 151.597 1.4118
45 1-Butanol C4H10O 656.2 153.06 1.37552
46 3-Methylbutanal C5H10O 645.1 150.134 1.20319
47 2-Butanone C4H8O 591.7 136.053 1.24854
48 2-Methyl propanal C4H8O 555.1 126.36 1.28596
49 2-Propanol C3H8O 565.4 129.104 1.22814
50 2,3-Butanedione C4H6O2 582.1 133.493 1.18732
51 Acetic acid C2H4O2 565.4 129.104 1.16918
52 2-Propanone C3H6O 539.2 112.462 1.11816
53 Ethanol C2H6O 1508 105.513 1.12723
54 Methyl acetate C3H6O2 1360.2 125.263 1.20319
55 Pentanal C5H10O 1341.6 163.667 1.18165
56 Ethyl 2-phenylacetate C10H12O2 1206.8 692.941 1.78609
57 Acetophenone C8H8O 1234.7 471.206 1.19245
58 Linalool C10H18O 1197.5 503.498 1.76126
59 alpha-Phellandrene C10H16 1106.9 356.925 1.68764
60 Tricyclene C10H16 1091.9 283.788 1.67365
61 (E)-2-Hexenol C6H12O 1027.6 234.035 1.15052
62 1-Hexanol C6H14O 1054.5 232.537 1.63849
63 Ethyl butanoate C6H12O2 1045.1 216.141 1.57005
64 2-Methyl-1-butanol C5H12O 1025.6 178.89 1.48673
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Table 2. Area of turmeric volatile oil.

No Compounds
Molecular
Formula

[+] JH-1 [+] JH-2 [+] JH-3

1 Methyl decanoate C11H22O2 853.04 807.50 706.77
2 Decanoic acid C10H20O2 343.61 425.17 323.73
3 Eugenol C10H12O2 3892.53 4916.40 5396.33
4 alpha-Terpineol C10H18O 19,657.51 18,387.17 17,492.96
5 Diethyl succinate C8H14O4 4842.63 5279.30 5497.18
6 Citronellol C10H20O 806.72 785.28 774.24
7 Linalool C10H18O 8368.12 8339.72 8003.81
8 2-Nonanone C9H18O 1129.50 845.90 803.89
9 1,8-Cineole C10H18O 17,383.17 17,589.74 17,990.91
10 beta-Ocimene C10H16 730.79 652.68 599.08
11 Benzeneacetaldehyde C8H8O 461.94 443.61 419.23
12 Limonene C10H16 1525.97 1546.91 1559.40
13 alpha-Terpinene C10H16 3982.81 3847.04 3737.19
14 6-Methyl-5-hepten-2-one C8H14O 764.36 841.66 779.81
15 beta-Pinene C10H16 1892.73 1854.60 1873.25
16 beta-Pinene C10H16 6168.36 6338.65 6214.42
17 Camphene C10H16 5470.41 5424.69 5375.12
18 alpha-Pinene C10H16 1211.24 1190.02 1129.20
19 alpha-Pinene C10H16 6032.87 6101.62 6333.75
20 2-Ethylhexanol C8H18O 196.51 191.32 202.42
21 2-Octanone C8H16O 734.45 737.80 727.27
22 Benzaldehyde C7H6O 248.36 256.24 260.37
23 Benzaldehyde C7H6O 302.21 255.45 291.10
24 Ethyl pentanoate C7H14O2 16,363.09 16,853.35 16,297.10
25 2-Heptanone C7H14O 6768.49 6831.28 6604.10
26 2-Furanmethanol C5H6O2 693.97 694.50 633.27
27 2-Acetylfuran C6H6O2 43.49 19.02 56.13
28 2,5-Dimethylthiophene C6H8S 355.34 398.57 404.40
29 Furfural C5H4O2 151.02 163.77 172.80
30 Furfural C5H4O2 148.19 162.08 192.78
31 2-Methylbutanoic acid C5H10O2 97.08 98.83 103.59
32 2-Hexanol C6H14O 1552.99 1696.63 1741.51
33 2-Hexanone C6H12O 702.91 717.69 727.46
34 2,3-Butanediol C4H10O2 2616.14 2590.83 2552.24
35 1-Pentanol C5H12O 98.02 97.41 107.12
36 Acetal C6H14O2 43.00 48.17 45.78
37 (E)-2-Pentenal C5H8O 430.50 467.99 387.28
38 3-Hydroxy-2-butanone C4H8O2 794.53 799.28 854.01
39 2,5-Dimethylfuran C6H8O 125.36 141.91 111.45
40 Methyl butanoate C5H10O2 89.02 93.33 91.42
41 Ethyl propanoate C5H10O2 2091.53 2078.08 2150.97
42 2-Pentanone C5H10O 508.33 528.88 573.27
43 2-Ethylfuran C6H8O 1519.15 1480.31 1638.41
44 3-Methylbutanal C5H10O 149.00 147.46 136.26
45 1-Butanol C4H10O 2718.89 2744.27 2798.98
46 3-Methylbutanal C5H10O 786.67 816.78 863.78
47 2-Butanone C4H8O 1163.04 1258.54 1331.09
48 2-Methyl propanal C4H8O 116.66 127.12 118.02
49 2-Propanol C3H8O 538.81 443.21 534.13
50 2,3-Butanedione C4H6O2 715.88 646.28 653.28
51 Acetic acid C2H4O2 899.26 900.87 978.94
52 2-Propanone C3H6O 11,632.68 12,363.82 12,586.06
53 Ethanol C2H6O 2364.98 2789.25 2848.56
54 Methyl acetate C3H6O2 355.35 368.09 363.62
55 Pentanal C5H10O 59.13 56.64 56.97
56 Ethyl 2-phenylacetate C10H12O2 3291.02 3610.35 3732.50
57 Acetophenone C8H8O 6600.73 6488.00 6267.98
58 Linalool C10H18O 6085.73 6678.48 7028.94
59 alpha-Phellandrene C10H16 1909.42 1986.81 1925.54
60 Tricyclene C10H16 4633.64 4665.30 4772.88
61 (E)-2-Hexenol C6H12O 623.21 621.26 613.55
62 1-Hexanol C6H14O 330.60 337.76 336.93
63 Ethyl butanoate C6H12O2 267.79 278.89 273.73
64 2-Methyl-1-butanol C5H12O 318.35 309.08 301.05
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3.2. Odor Fingerprint of Volatile Substances

The fingerprint of VOCs corresponding to each sample with different irradiation
intensities is displayed in Figure 1E. The same row represents the signal peaks of volatile
compounds in the same turmeric volatile oil sample, and the same column represents the
signal peaks of the same volatile compound in different turmeric volatile oil samples. The
color from light to dark indicates the content of volatile compounds from low to high. The
fingerprints of volatile organic compounds collected from three kinds of samples were
divided into three regions with different colors. The volatile organic compounds in turmeric
volatile oil varied substantially with different irradiation intensities.

The substances in the green box in Figure 1E, such as citronellol, alpha terpineol,
decanoic acid, methyl decanoate, and linalool-m, have the highest content in JH-1 sample
and gradually decrease with the increase in irradiation dose. The content of substances in
the yellow area is the highest in JH-2 samples, such as 2,5-dimethylfuran, acetate, and (E)-2-
pentanal. The content of substances in the red area is the highest in the JH-3 sample and the
lowest in the JH-1 sample, such as 2,5-dimethylfuran, acetal, and (E)-2-glutaraldehyde. The
JH-2 content of Yellow Zone 2 is the lowest among the three samples, such as 2-acetylfuran,
benzaldehyde-d, benzaldehyde-m, furfural-d, furfural-m, and 2-methylbutanoic acid.

3.3. Similarity Analysis

Figure 1F is the PCA diagram of three volatile oil samples at different irradiation
intensities, which can visually show the differences between different products. The
volatile organic compounds in JH-1 and JH-2 are similar, and the distance between them is
very close. The gap between JH-1 and JH-3 is the largest, and the distance between them is
the farthest.

Figure 1G shows the fingerprint similarity analysis of three volatile oil samples with
different irradiation intensities. It can also be seen from the figure that the volatile organic
compounds of JH-2 and JH-3 are very similar, the distance between them is very close,
and the results of the principal component analysis are consistent with those of fingerprint
analysis. There are substantial differences in volatile organic compounds between volatile
oil samples (JH-1, JH-3) with large differences in irradiation intensity.

4. Discussion

The main active components and volatile components of turmeric volatile oil ex-
posed to different doses of 60Co-γ irradiation were determined and analyzed. By using
headspace sampling and GC–IMS technology, the compounds can be qualitatively ana-
lyzed according to the GC retention time and ion migration time of volatile substances.
A total of 64 volatile compounds were identified by GC–IMS analysis and built-in NIST
database retrieval. The results showed that the contents of various volatile substances
were different under different irradiation intensities. The volatile oil in turmeric is re-
sponsible for the aroma of turmeric, while curcumin (curcumin and its analogues) is
responsible for its bright yellow color [12,13]. Some literature studies on turmeric but-
ter have identified sesquiterpenoids and monoterpenoids as the main components [14],
including gingerone, curcumene, curcumin, sabinene, borneol, caryophyllene, and other
compounds [15]. The results of this study show that ethyl-2-phenylacetate, 2-ethylfuran,
2-butanone, 1-pentanol, 2-methylbutanoic acid, 3-hydroxy-2-butanone, linalool-d, eugenol,
ethyl propanoate, ethyl pentanoate, and diethyl succeed are the lowest in JH-1 and the
highest in JH-3. 2,5-Dimethylfuran, acetal, (E)-2-pentanal, and three unmatched com-
pounds have the highest content in JH-2, followed by JH-1, and JH-3. The contents of 2-
methyl-1-butanol, 2-methylpropanal, 2,3-butanedione, 2-nonanone, 2,5-dimethylthiophene,
2-furanmethanol, beta-ocimene, linalool-m, citronellol, alpha-terpineol, decanoic acid, and
methyl decanoate decreased gradually from JH-1 to JH-3. The content of 2-acetylfuran
is higher in JH-3, followed by JH-1; and almost none is present in JH-2. The content of
2-propanol in JH-1 was the highest, JH-3 was the second, and JH-2 was the lowest. The
rest of the ingredients did not change significantly. According to the literature, turmerin,
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turmerone, elemene, furanodiene, curdione, bisacurone, cyclocurcumin, calebin A, and
germacrone and other compounds in turmeric volatile oil have anti-inflammatory and
anti-cancer activities [16–18], anti-hyperlipidemic property [19–21], as well as used in the
prevention of asthma [22], treatment of respiratory diseases, and anti-oxidation in vitro
effect [23,24]. Most of these main components did not change much because of the influence
of irradiation, and so 60Co-γ ray irradiation did not have a great impact on the effectiveness
of turmeric volatile oil.

Dosages of 0, 5, and 10 kGy of 60Co were used to analyze turmeric (Curcumae Longae
Rhizoma) volatile oil after 60Co Irradiation (named JH-1, JH-2 and JH-3). With the increase
in irradiation dose, the peak area decreased. It is of great significance to explore the steril-
ization dose of irradiation sterilization of different traditional Chinese medicine varieties
using 60Co. Dosages of 5 and 10 kGy are the most widely used. There is a maximum level
and limit for radiation which should be discussed in the future. It could be better to do it
for 0, 2.5, 5, 7.5, and 10.

In this study, the author found that gas chromatography–mass spectrometry can ef-
fectively identify volatile odor compounds such as alcohols, ketones, aldehydes, esters,
and terpenes. Food [25,26], agriculture [27–29], and traditional Chinese medicine field
are widely used [30]. Gas-phase ion mobility spectrometry widely used in food [25,26],
agriculture [27–29], and traditional Chinese medicine fields can quickly and accurately
conduct a qualitative analysis of turmeric volatile oil under different irradiation doses and
elucidate the differences in the odor of volatile organic compounds between samples [30].
However, there are still some limitations. The author has not conducted a further quantita-
tive analysis of each compound. The next step will be to do a more explicit quantitative
analysis of the specific components of the volatile oil.

5. Conclusions

In this study, the volatile components of turmeric volatile oil samples with three
different irradiation intensities were analyzed by GC–IMS. A total of 97 volatile substances
were detected, and a total of 64 components were determined by database retrieval, such
as dimers of some substances. The volatile organic compounds in three turmeric volatile
oil samples, mainly including terpenes, esters, aldehydes, alcohols, and ketones, were
found. The results showed that the chemical components of the three turmeric volatile oil
samples were similar, but the contents were quite different, suggesting that the irradiation
intensities might have an impact on the volatile organic compounds of turmeric volatile
oil. JH-1 and JH-3 have great differences in irradiation strength, and the difference in
the principal component analysis is also large, indicating that the difference in chemical
composition is the largest. This study provides a scientific basis for the dose control of
irradiation sterilization of turmeric and its volatile oil. With the increase in irradiation
dose, the peak area decreased, and so the irradiation dose of 5 kGy/min was better for
60Co irradiation of turmeric (Curcumae Longae Rhizoma). This study provides a sound
basis for the use of 60Co-γ ray irradiation sterilization technology during the preparation
of medicinal herbs.

It is shown that irradiation technology has good application prospects in the steriliza-
tion of foods with volatile components, However, attention must be paid to the changes in
radiation dose and chemical composition. GC–IMS which has the advantages of simple
operation, strong separation ability, short detection cycle, and retaining the original flavor
of samples to the greatest extent, can be successfully applied to foods.
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Abstract: Tea plants absorb chromium-contaminated soil and water and accumulate in tea leaves.
Hexavalent chromium (Cr6+) is a very toxic heavy metal; excessive intake of tea containing Cr6+

can cause serious harm to human health. A reliable and sensitive surface-enhanced Raman spec-
troscopy (SERS) method was developed using Au@Ag nanoparticles as an enhanced substrate for the
determination of Cr6+ in tea. The Au@AgNPs coated with carbimazole showed a highly selective
reaction to Cr6+ in tea samples through a redox reaction between Cr6+ and carbimazole. The Cr6+ in
the contaminated tea sample reacted with methimazole—the hydrolysate of carbimazole—to form
disulfide, which led to the decrease in the Raman intensity of the peak at 595 cm−1. The logarithm
of the concentration of Cr6+ has a linear relationship with the Raman intensity at the characteristic
peak and showed a limit of detection of 0.945 mg/kg for the tea sample. The carbimazole functional-
ized Au@AgNPs showed high selectivity in analyzing Cr6+ in tea samples, even in the presence of
other metal ions. The SERS detection technique established in this study also showed comparable
results with the standard ICP-MS method, indicating the applicability of the established technique in
practical applications.

Keywords: SERS detection; chromium contamination; tea sample; carbimazole hydrolysate;
Au@Ag nanoparticles

1. Introduction

Chromium has been widely employed in various industries and has become a
major threat to the environment and human health [1,2]. The heavy metal chromium
enters the metabolic and digestive system of the human body through contaminated
foods and causes various health effects based on the valence state. Chromium exists sta-
bly in the environment as two different oxidation states, the trivalent chromium (Cr3+)
cation and the hexavalent chromium (Cr6+) anion; however, their chemical properties
are markedly different, and Cr6+ is far more dangerous than Cr3+ [3]. The presence of
an appropriate amount of Cr3+ in the human body is non-toxic and beneficial to human
metabolism and health. Cr3+ is a necessary trace element for glucose, fat, and protein
metabolism in mammals [4]. However, the presence of Cr6+ in food increases the risk
of cancer and mutation in the human body [4]. Cr6+ mainly exists in the industrial dis-
charge of dyes and tanneries. If the tea plants were grown in chromium-contaminated
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soil or irrigated with chromium-contaminated water, the tea plants continued to absorb
and enrich chromium pollutants, eventually leading to the accumulation of chromium
pollutants in the tea. The safety assessment of agricultural products as a key important
food source of heavy metals is of great significance to ensuring food safety.

Tea (Camellia sinensis) is the most popular flavored and functional beverage world-
wide. Tea is particularly rich in polyphenols, amino acids, caffeine, and other effective
components, with lowering blood lipids and blood sugars, anti-inflammatory, antibac-
terial, antioxidant and other health effects, which are thought to contribute to the
health benefits [5]. In the international trade of tea, the primary problem is safety, in
which respect the residue of risk substances, especially heavy metal pollutants, has
aroused great concern. The maximum residual limit for chromium in tea is 5 mg/kg
according to a standard issued by the Ministry of Agriculture of China [4]. Thus, a
rapid, efficient, and accurate quantitative detection method is essential to prevent
chromium-contaminated from entering the tea planting and production process from
different sources. Nowadays, the determination methods of Cr6+ mainly include atomic
absorption spectroscopy [6], liquid chromatography [7], immunoassay [8], fluorescence
spectroscopy [9], and inductively coupled plasma mass spectrometry (ICP-MS) [10].
However, these techniques usually require sophisticated equipment, skilled personnel,
and long and tedious sample preparation [11]. Therefore, a simple, sensitive, and
reliable method for the determination of Cr6+ would be very useful to ensure the safety
and quality of food products [12].

Surface-enhanced Raman spectroscopy (SERS) is a reliable, sensitive, and non-
destructive method popular for the detection of trace amounts of contaminants from com-
plex matrices. In the past decade, SERS detection has been extensively applied in several
fields including environmental monitoring, food safety, and pharmaceutical analysis [13].
The increasing use of SERS substrates has prompted researchers to use green reducing
agents to prepare nanoparticles [14,15]. Carbimazole (Ethyl 3-methyl-2-thioimidazoline-1-
carboxylate) is the main functional component of an oral drug for the treatment of thyroid
diseases. After entering the human body, it can be hydrolyzed into methimazole in the
acidic environment of the stomach [16]. By simulating the human stomach environment,
acidic conditions can be generated in an aqueous solution. Tannins, the green natural,
tannins have a strong reducing ability and can be employed for the synthesis of gold-silver
core–shell nanoparticles (Au@AgNPs) at room temperature. In the reaction solution, car-
boprazole was adsorbed on the surface of Au@AgNPs, and its Raman signal was greatly
enhanced due to the “hot spot” between the nanoparticles [17].

In this study, a convenient and sensitive SERS method for the detection of Cr6+

in tea was developed by carbimazole redox reaction. The main objectives of this
study are: (1) to synthesize a SERS substrate of bimetallic core–shell nanoparticles
(Au@AgNPs) to acquire a higher and stable Raman signal; (2) to obtain the highest
Raman enhancement factor by optimizing the tannin with different volumes and
concentrations of HAuCl4 and AgNO3; (3) to elucidate the mechanism of the decrease
in Raman characteristic peak intensity caused by the redox reaction between Cr6+ and
methimazole, the hydrolysate of carbimazole; and (4) to establish the linear quanti-
tative equation of Raman intensity and the concentration of Cr6+ and to analyze the
specific selectivity of carbimazole to Cr6+. The schematic diagram of SERS detection
of Cr6+ is illustrated in Figure 1.
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Figure 1. Schematic illustration of the mechanism of SERS detection of hexavalent chromium.

2. Materials and Methods

2.1. Materials

Tannin (92%), 4-mercaptobenzoic acid (4-MBA, 97%), chloroauric acid tetrahydrate
(HAuCl4·4H2O, 99%), silver nitrate (AgNO3, 99.8%), carbimazole (C7H10N2O2S, 98%),
sodium chloride (NaCl, 99%), potassium carbonate (K2CO3, 99%), and nitric acid (HNO3,
68%) were obtained from National Pharmaceutical Group Chemical Reagents Company
(Beijing, China). Standard solution of mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb),
copper (Cu), cadmium (Cd), iron (Fe), arsenic (As), sodium (Na), and chromium (Cr), were
procured from Siyuan Chemical Glass Co., Ltd. (Zhenjiang, China), and all their purities
were greater than 97%. Ultrapure water was used for all the experiments. All reagents used
in the study were analytical grade unless stated otherwise.

2.2. Instruments

Au@AgNPs were characterized using Ultraviolet–Visible (UV–Vis) absorption spec-
troscopy (Agilent Technologies Inc., Palo Alto, CA, USA), Tecnai 12 transmission electron
microscope (TEM) (Philips, Amsterdam, Holland,) and Fourier–transform infrared (FTIR)
spectroscopy (Beijing Rayleigh Analytical Instrument Co., Ltd., Beijing, China). Microwave
digestion instrument (MARS 6) (CEM, Charlotte, NC, USA) was used for the digestion of
food samples. The confocal micro-Raman imaging spectrometer (XploRA PLUS, HORIBA,
MPL, France) was employed to collect Raman spectra from the samples. The employed
excitation wavelength and objective lens were 785 nm and 50× (Spot size: 1.28 μm), respec-
tively. The ICP-MS (Thermo Fisher Scientific, X Series 2, Waltham, MA, USA) analysis was
performed to detect Cr6+ in the spiked tea digestions.
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2.3. Synthesis of SERS Substrate Au@AgNPs

Synthesis of AuNPs: Gold nanoparticles were prepared by utilizing tannins as a
reducing agent [18]. Briefly, 1 mL of 10 mM tannin was added to a 50 mL beaker containing
18.5 mL of ultrapure water under stirring conditions (500 rpm), followed by the addition of
500 μL of 1% HAuCl4·4H2O. The total volume of the reaction mixture was about 20 mL, and
the reaction was allowed to continue for 20 min. The pH of the solution was measured at 6
due to the acidic nature of the tannin. Another batch of nanoparticles was also prepared
by adding HAuCl4·4H2O (1%) after adjusting the pH of the solution to 7 with K2CO3
solution (0.2 M).

Synthesis of Au@AgNPs: The prepared AuNPs were coated adding a silver layer by
reducing AgNO3 using tannins as a reducing agent [19]. In a 25 mL round-bottom flask,
9.5 mL of prepared AuNPs colloidal solution was stirred at 500 rpm. Then, 250 μL of
10 mM tannin solution and 250 μL of 10 mM AgNO3 solution were sequentially added
to the solution with constant stirring for 30 min at room temperature. The formation of
the core–shell structure was indicated by the change in colour of the solution from wine
red to orange.

Synthesis optimization: It was found that the volume of HAuCl4 and AgNO3 during
the preparation of Au@AgNPs greatly affects the size and concentration of nanoparticles
formed in the solution, which will, in turn, affect the enhancement capabilities of the
prepared substrate. In order to obtain high enhancement abilities, the volume of the two
reactants (HAuCl4 and AgNO3) was optimized. The synthesis of AuNPs involved varying
the volume of HAuCl4 from 100 to 600 μL with an increment of 100 μL. The enhancement of
the AuNPs was evaluated using 4-MBA (10−3 M) as a Raman signal probe. Meanwhile, the
synthesis of Au@AgNPs involved varying the volume of AgNO3 from 100 to 600 μL with
an increment of 100 μL. The UV–Visible spectra of the synthesized Au@AgNPs substrates
were collected to better understand the difference in surface plasmon resonance. Further,
the enhancement of the Au@AgNPs was evaluated using 4-MBA (10−5 M) as a Raman
signal probe.

2.4. Tea Sample Preparation

The black tea sample was purchased from the supermarket in Zhenjiang, Jiangsu. After
grinding it into powder, the tea powder (0.2 g) was weighed and added to the microwave
digestion tank. Concentrated HNO3 (65%, 8 mL) and the Cr6+ standard solution was
added to the tea sample before digestion (1 h). The digestion tanks were put in an acid
extractor (130 ◦C, 60 min), cooled, and then digested in a microwave digester following
the standard operating procedure with some modifications. Finally, a light green clarified
solution was obtained without any solid residue [20]. The digested samples were degassed
by sonication (100 ◦C, 10 min), and the inner cap was rinsed with a little water. Then the
resulting digestion solution was filtered into 50 mL volumetric flasks with syringe filter
(diameter 33 mm, pore size 0.22 μm) and filled up to the mark with ultrapure water to
obtain the final solution to be assayed. A total of 8 samples spiked with various amounts of
Cr6+, including 100, 80, 60, 40, 20, 10, 5 μg L−1, and blank, were used for the analysis. The
prepared samples were also used for ICP-MS and SERS analysis.

2.5. Detection of Cr6+ in Tea Samples

The concentration of Cr6+ in tea samples was analyzed using Au@AgNPs in the
presence of carbimazole solution. First, 40 μL of Au@AgNPs solution and 5 μL carbimazole
solution (10 mM in chloroform) were mixed together for 10 min. Then, digested tea samples
were added and mixed thoroughly. Finally, 5 μL NaCl (10 mM) was introduced to the
solution to aggregate the nanoparticles in the solution which increases the local hotspot and
improves the Raman signal intensity [21]. A piece of tin foil tape measuring approximately
5 cm in length (with a thickness of 0.09 mm and width of 20 mm) was carefully affixed flat
onto a glass slide. The reaction solution with a total volume of 50 μL was allowed to sit
undisturbed for 10 min. Then, 1 μL of the solution was gently placed onto the surface of the
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tin foil tape, shaping the droplet into a round shape as much as possible. It was left to air
dry, and the SERS spectra were subsequently collected from within the dried droplet [22].
All spectra were collected using a confocal micro-Raman imaging spectrometer equipped
with a 785 nm excitation laser (100% power). The total acquisition time was set at 5 s. Five
spectra were randomly collected from the droplets of each sample, and the average values
of the spectra of each concentration were taken as the final spectral data. The characteristic
peaks for the Cr6+ were identified by comparing the obtained spectra with that of the
Raman spectra of carbimazole powder. The standard curve for the quantitative analysis
was obtained using digested tea samples containing different concentrations of Cr6+ and
digested tea solution without Cr6+ was used as blank. The spectral intensity and intensity
ratio of specific peak positions were taken into consideration to establish the calibration
curve. Subsequently, the quantitative ability and accuracy were analyzed based on the
calibration curve.

2.6. Specific Selectivity and Spike Recovery for Cr6+ Detection in Tea

According to the previous literature [23,24], common metal ion pollutants in tea in-
clude Hg2+, Mn2+, Ni2+, Pb2+, Cu2+, Cd2+, Fe3+, As3+, and Na+. To validate the selectivity
of carbimazole in detecting Cr6+, the change of Raman intensity at the characteristic peak
(595 cm−1) was compared when these metal ions were added to the system at an equal
concentration (100 μg/L). Additionally, the experiment was repeated 3 times for the spiked
tea sample (5 μg/L), and the spectra of 15 different points were obtained on each prepared
detection solution to analyze the repeatability of the method. The relative standard devia-
tion (RSD) of the spectral intensity at the characteristic peak was calculated to analyze the
repeatability of the detection method. the reproducibility of the method

The quantitative data obtained from the SERS analysis were compared against the
standard ICP-MS method [25]. Tea samples with different concentrations of Cr6+ (2.5, 5, 10,
20 mg/kg) were used for ICP-MS analysis with triplicates, and the recovery rate and RSD
values were calculated for each sample. Thus, the practical applicability of the developed
method for the detection of Cr6+ was confirmed.

3. Results

3.1. Synthesis of Au@AgNPs and Optimization

Tannins are naturally occurring polyphenols that can act as an ideal reductant in
the synthesis of nanoparticles. Tannins were responsible for the reduction of HAuCl4,
resulting in the formation of stable Au NPs which then serve as a seed to induce Ag NPs
synthesis. The change in colour of the colloidal nanoparticle from wine red to orange
indicated the formation of the core–shell structure. The surface plasmon resonance of the
prepared nanoparticles with different amounts of precursors exhibited a change in surface
plasmon resonance, as shown in Figure 2a. As the volume of HAuCl4 increased, the colour
of the nanoparticle solution gradually changed, and when the volume of HAuCl4 reached
600 μL, the synthesized nanoparticle solution appeared turbid and exhibited aggregation
and precipitation after 3 days of storage [26]. The UV–Vis spectra of AuNPs were shown
in Figure 2a, and the peak at 520 cm−1 increased gradually and a slight red shift occurred
as the volume of HAuCl4 increased. This observation suggested that the particle size of
Au NPs increased [27]. The enhancement effect of AuNPs on the Raman reporter molecule
4-MBA (10−3 M) was also used to optimize the amount of HAuCl4. As shown in Figure 2c,
the Raman intensity at 1074 cm−1 was the greatest when the amount of HAuCl4 was 500 μL.
It was attributed to AuNPs with larger particle size can produce strong localized surface
plasmon resonance. However, as the amount of HAuCl4 continued to increase (600 μL), the
Raman intensity decreased. This is because the larger particle size leads to the instability
of the Au NPs. Considering the stability of storage and Raman enhancement effect, the
optimal volume of HAuCl4 was selected as 500 μL.

To increase the Raman intensity, the growth of the Ag shell on the Au NPs was carried
out. The amount of AgNO3 was optimized because it affected the thickness of the Ag shell
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and thus affected the Raman intensity. As shown in Figure 2b, as the amount of AgNO3
increased, the Ag absorption peak around 400 nm gradually intensified, while the Au
absorption peak near 520 nm weakened rapidly or even vanished entirely. The Raman
intensity of 4-MBA (10−6 M) at 1584 cm−1 was also used to determine the optimal amount
of AgNO3. As shown in Figure 2d, the Raman intensity reached its maximum when the
volume of AgNO3 was 500 μL. However, the Raman intensity weakened slightly when the
amount of AgNO3 increased to 600 μL, which was due to the 4-MBA signal transmission
being hindered by a thicker Ag shell. Therefore, the optimal amount of AgNO3 was 500 μL.

Figure 2. (a) UV spectra of AuNPs synthesized by tannin with different volumes of HAuCl4; (b) UV
spectra of Au@AgNPs reduced by tannin with different volumes of AgNO3; (c) SERS enhancement
of AuNPs synthesized using different volumes of HAuCl4; (d) SERS enhancement of Au@AgNPs
synthesized using different volumes of AgNO3.

3.2. Characterization of Au@AgNPs

The morphology and distribution of nanoparticles were observed and measured
by TEM. The size and morphology of the prepared nanoparticles changed based on the
pH of the solution as shown in Figure 3a,b. The nanoparticles synthesized under pH 7
were aggregated and non-uniform compared to AuNPs synthesized under pH 6. The
colloidal solution contained triangular nanoparticles, polygonal nanoparticles, nanorods,
and irregular particles; however, the round nanoparticles account for the majority. Figure 3c
shows the TEM image of Au@AgNPs synthesized under pH 6, which indicated that the
formed particle had a particle size of around 10–30 nm. Since the shape and size of the
nanoparticles formed under pH 6 conditions showed more uniformity, pH 6 was selected
for further synthesis and applications.
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Figure 3. TEM image of AuNPs synthesized under pH 7 (a) and pH 6 (b); (c) TEM image of
Au@AgNPs synthesized under pH 6; (d) FT-IR spectra of AuNPs and Au@AgNPs; (e) SERS enhance-
ment of Au@AgNPs synthesized under pH 6 and pH 7 conditions.

For the FTIR characterization, spectra were collected from a 10 μL of drop cast nanopar-
ticle solution, and the spectra displayed a characteristic peak at 1400 cm−1 for AuNPs
(Figure 3d). Further, the silver coating caused a decrease in the peak intensity at 1400 cm−1

and a slight shift. The enhancement effects of Au@AgNPs synthesized under pH 6 and pH
7 conditions were also compared, and the obtained spectra are shown in Figure 3e. The
calculated enhancement factors for Au@Ag nanoparticles synthesized under pH 6 and pH
7 conditions were 3.56 × 105 and 2.39 × 105, respectively. The Au@Ag further prepared by
AuNPs synthesized at pH 6 had a better enhancement effect, which was closely related to
the better uniform dispersion of AuNPs under this condition.

3.3. Quantitative Detection of Cr6+ in Tea Samples

The detection and quantitative analysis of Cr6+ in tea samples were obtained based on
the redox reaction between carbimazole and Cr6+. The hydrolytic product (methimazole) of
carbimazole was adsorbed on the surface of Au@Ag via Ag-S and Ag-N bonds, and its Ra-
man signal was greatly enhanced. At the same time, the aggregation of these functionalized
substrates caused by NaCl also resulted in significant SERS enhancement [16]. In order to
identify the characteristic peaks of Cr6+, the spectra of high concentration of Cr6+ solution
(100 μg/L) were compared with the blank tea sample (Cr6+ = 0 μg/L) (Figure 4a). Carbima-
zole was hydrolyzed to methimazole under acidic media that causes carbimazole to have a
similar Raman spectrum to methimazole. The strongest characteristic peak was shown at
595 cm−1 due to the enhancement of Au@AgNPs on methimazole. The presence of Cr6+

causes a redox reaction between Cr6+ and methimazole, forming a disulfide compound and
resulting in a decrease in Raman intensity at 595 cm−1. Therefore, the quantitative analysis
of Cr6+ can be realized by using the change of Raman intensity at 595 cm−1. The main
peaks of the methimazole contribution are listed in Table 1. As can be seen from Figure 4a,
the characteristic peak at 595 cm−1 was attributed to the vibration of the C–N–S bend.

83



Foods 2023, 12, 2673

Figure 4. (a) SERS spectra of Cr6+ (0 μg/L) and Cr6+ (100 μg/L); (b) SERS spectra of Cr6+ in tea at
different concentrations ranging from 0 to 100 μg/L; (c) the SERS intensity at 595 cm−1 at various
concentration of Cr6+; (d) calibration curve between the SERS intensity at 595 cm−1 and logarithm of
the concentration of Cr6+.

Table 1. Raman band assignments for peak obtained during Cr6+ detection.

Raman Shift (cm−1) Band Assignment

412.63 Ring rotation, C–N–S bend
539.54 S=S stretching
595.85 C–N–S bend
708.48 Ring rotation, CH(NH) bend
872.67 Ring rotation, CH(NH) bend, C–N–S bend
1014.35 C–N stretching, CH(NH) bend
1370.14 C–N stretching, bend and rotation
1469.72 C–S stretching, CN stretching, NH bend
1593.76 C–C stretching, CH(NH) bend

The SERS spectra of different concentrations of Cr6+ ranging from 0 to 100 μg/L
were obtained and are shown in Figure 4b. The Raman intensity at 595 cm−1 significantly
decreased with increasing Cr6+ concentration in the tea samples (Figure 4c) as the methi-
mazole was reduced to disulfide. The calibration curve of Cr6+ was obtained using the
relationship between the Raman intensity at 595 cm−1 and the logarithm of the concentra-
tion of Cr6+ (Figure 4d). The calibration curve showed a good linear relationship in the
range of 5~100 μg/L (R2 = 0.99863). The linear quantitative relationship was described by
the equation y = −32,207.76X + 67,161.47. Furthermore, the limit of detection (LOD) was
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defined as the concentration of Cr6+, resulting in a 3% decrease in Raman intensity related
to the blank tea sample (0 μg/L) [28]. According to the established equation, the LOD was
calculated to be 3.78 μg/L, indicating that the immunosensor had a good sensitivity. Due
to the dilution factor of 250 times in the pretreatment of tea samples, the detection range
of Cr6+ in tea sample was 1.25~25 mg/kg, with a LOD of 0.945 mg/kg, which was much
lower than the recommended tolerable level (5 mg/kg) of Cr6+ in tea.

3.4. Specific Selectivity and Recovery for Cr6+ Detection in Spiked Tea

For evaluating the specificity of the SERS method for Cr6+ analysis, some metal ions
commonly found in tea, including Hg2+, Mn2+, Ni2+, Pb2+, Cu2+, Cd2+, Fe3+, As3+, Na+,
and Cr6, were selected as interferences [10]. The Raman intensity of the peak at 595 cm−1

was shown in Figure 5a, and the results showed that only the Cr6+ (100 μg/L) have a
specific redox reaction with the hydrolysate of the carbimazole, resulting in the decrease in
the Raman intensity at the 595 cm−1 peak. Therefore, the presence of other ions does not
interfere with the quantitative detection of Cr6+.

Figure 5. (a) Specificity of SERS detection for Cr6+ in tea when the concentration of all the ions was
100 μg/L; (b) relative standard deviation (RSD) of three repeated experiments and 15 random points
in the detection solution at 595 cm−1.

The experiment was repeated three times at the same concentration (Cr6+ = 5 μg/L) to
verify the reproducibility. For each detection solution, 15 random points were chosen to
obtain the Raman intensity at peak 595 cm−1. As shown in Figure 5b, in each experiment,
the RSD value of 15 points were all less than 5%, indicating that the detection solution had
good uniformity. Similarly, the RSD value of the three repeated experiments was less than
5%, indicating that the detection method had a good reproducibility.

Further the quantitative results obtained from SERS detection were validated against
standard ICP-MS, and the results are shown in Table 2. The recovery rates for the SERS
method ranged from 91.62% to 104.84% (RSD ≤ 3.07%), while the recovery rates of the
ICP-MS method ranged from 97.65% to 103.86% (RSD ≤ 1.53%). Comparative analysis
indicates that the SERS method demonstrates higher accuracy and good reproducibility in
detecting Cr6+ content in tea leaves.

Table 2. Comparison between the SERS method (this study) and ICP-MS quantitative detection of Cr6+.

Spiked Value
(mg/kg)

SERS ICP-MS

Obtained Value
(mg/kg)

Recovery
Percentage

(%)

RSD
(%, n = 3)

Obtained Value
(mg/kg)

Recovery
Percentage

(%)

RSD
(%, n = 3)

2.5 2.621 104.84 2.06 2.528 101.12 1.07
5 4.686 93.72 1.39 4.8825 97.65 0.96
10 9.162 91.62 2.12 10.386 103.86 0.89
20 20.526 102.63 3.07 19.638 98.19 1.53
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4. Discussion

The present study demonstrated the development of a sensitive and reliable method
for the quantitative detection of Cr6+ in tea samples. The method relied on the redox
reaction between Cr6+ and carbimazole, leading to a decrease in the intensity of the Raman
peak at 595 cm−1. This study provided valuable insights into the potential application of
SERS technology as a rapid and label-free detection technique for Cr6+ in tea. The results
indicated that the Raman intensity of the characteristic peak at 595 cm−1 was inversely
correlated with the concentration of Cr6+. Moreover, the relationship between the Raman
intensity at 595 cm−1 and the logarithm of the concentration of Cr6+ was linear. The LOD
(3.78 μg/L) of Cr6+ calculated using this approach indicated the sensitivity of the developed
method. Compared with the previous study [29] using photoelectrochemical to detect Cr6+

(LOD = 0.01 μM) in the environment, the proposed method exhibited similar sensitivity
and simpler detection operation.

Another key aspect investigated in this study was the selectivity of carbimazole
towards Cr6+ in the presence of other metal ions. A specific selection of Cr6+ by carbimazole
was demonstrated, highlighting the potential applicability of the developed method for
real tea samples, which may contain various metal ions as contaminants. To validate the
accuracy and reliability of the developed SERS method, a comparison was carried out with
the standard method (ICP-MS). The reproducibility, accuracy, and recovery rate of the SERS
technique were thoroughly analyzed. The results showed that the SERS method exhibited
comparable performance to the ICP-MS method in terms of accuracy and recovery rate,
indicating its suitability for practical applications.

The findings of this study exhibited the potential of SERS technology for the sensitive
and label-free detection of Cr6+ in tea samples. The advantages of SERS, such as its high
sensitivity, non-destructivity, and minimal sample preparation requirements, make it an
attractive alternative to traditional analytical techniques. The established SERS method
offers a convenient and sensitive approach for the determination of Cr6+, which is of
great importance considering the potential health hazards associated with its presence in
tea. The results obtained in this study contribute to the growing interest in the applica-
tion of SERS technology for the detection of contaminants in food, and it paves the way
for further research.

5. Conclusions

In this study, a highly sensitive nano-SERS substrate was developed for the detection
of Cr6+ in tea samples. The Au@AgNPs with uniform particle size distribution and good
enhancement effect was synthesized using tannin. The combination of the specific redox
reaction of carbimazole and Cr6+ and NaCl-induced aggregation of nanoparticles enhanced
the EF value of Au@AgNPs to 3.56 × 105. Compared with AuNPs, the EF of Au@AgNPs
was two orders of magnitude higher, thus improving the sensitivity of Cr6+ detection.
Quantitative analysis showed a linear relationship between the Raman intensity of the
characteristic peak at 595 cm−1 and the logarithm of the Cr6+ concentration. The LOD of
this proposed SERS method was 3.78 μg/L, and the detection range was established to
be 5~100 μg/L. Due to the 250-fold dilution during tea sample processing, the detection
range of Cr6+ in tea sample was 1.25~25 mg/kg, with a LOD of 0.945 mg/kg. Additionally,
the proposed method showed high specificity, even in the presence of other metal ions,
and good reproducibility in detecting Cr6+ in the tea sample. In particular, it showed good
accuracy (recovery rates ranged from 91.62% to 104.84%) and precision (RSD ≤ 3.07%) in the
recovery experiment, and the obtained results were validated against ICP-MS. Conclusively,
this method has great potential for rapid and label-free detection of Cr6+ in tea.
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Abstract: Purple Chinese cabbage (PCC) has become a new breeding trend due to its attractive
color and high nutritional quality since it contains abundant anthocyanidins. With the aim of rapid
evaluation of PCC anthocyanidins contents and screening of breeding materials, a fast quantitative
detection method for anthocyanidins in PCC was established using Near Infrared Spectroscopy (NIR).
The PCC samples were scanned by NIR, and the spectral data combined with the chemometric results
of anthocyanidins contents obtained by high-performance liquid chromatography were processed to
establish the prediction models. The content of cyanidin varied from 93.5 mg/kg to 12,802.4 mg/kg
in PCC, while the other anthocyanidins were much lower. The developed NIR prediction models
on the basis of partial least square regression with the preprocessing of no-scattering mode and the
first-order derivative showed the best prediction performance: for cyanidin, the external correlation
coefficient (RSQ) and standard error of cross-validation (SECV) of the calibration set were 0.965 and
693.004, respectively; for total anthocyanidins, the RSQ and SECV of the calibration set were 0.966
and 685.994, respectively. The established models were effective, and this NIR method, with the
advantages of timesaving and convenience, could be applied in purple vegetable breeding practice.

Keywords: near infrared spectroscopy; vegetables; anthocyanidins; fast determination

1. Introduction

Chinese cabbage (Brassica rapa L. ssp. pekinensis) is the most widely cultivated and
consumed vegetable in East Asia with the characteristics of high yield, good cold resistance,
long supply period, and rich nutrition. The inner leaf color of Chinese cabbage is mainly
white and yellow. Purple leaf Chinese cabbage (PCC) is mainly generated by the cross
of common green Chinese cabbage with red leaf mustard (Brassica juncea Coss.), purple
flowering Chinese cabbage, or red bok choy (Brassica rapa L. ssp. chinensis) [1,2]. It has
become increasingly popular due to its beautiful color, special flavor, and high level of
anthocyanidins [2]. Anthocyanidins, a class of flavonoid substances, exist in different
colors in fruits, flowers, and vegetables, such as purple, blue, and red. They contain a
C6-C3-C6 carbon skeleton and -OH or -OCH3 groups and specific sugar or acylated sugar
residues located at C3, C5, and C7 positions [3,4]. Based on the type and location of
the substituents, anthocyanidins are generally classified into six major groups: cyanidin,
delphinidin, petunidin, malvidin, peonidin and pelargonidin, and the main anthocyanidin
in PCC is cyanidin accumulated in the vacuoles [2,3,5]. Anthocyanidins have a wide
range of anti-inflammatory, cardioprotective, chemotherapy, and hepatoprotective effect for
human disease prevention [6]. Studies have proved that anthocyanidins have a good role
in the chemoprevention and treatment of breast cancer [7]. Blueberry anthocyanidins can
effectively improve the solubility of lipids [8], and extracted anthocyanidins from apples
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have an inhibitory effect on gastric cancer cells [9]. Due to their human health benefits,
anthocyanidins have received more and more attention from public in recent years [9,10].
Creating colorful leaf vegetables, such as PCC, which contain abundant anthocyanidins, is
of significant commercial interest and the new trend of breeding.

Visible/near-infrared spectroscopy (NIR) is a widely used technique in the agriculture
and food industry with the advantages of fast, non-destructive, environmentally friendly,
and accurate analysis. NIR is a molecular vibrational spectrum with wavelengths ranging
from 400–750 (visible) and 750–2500 nm (near-infrared), in which the absorption signals of
the reflected chemical components are assigned mainly to overtone and octave vibrations
of hydrogen-containing groups, including C-H, N-H, O-H, and S-H [11,12]. Theoretically,
no two compounds produce the same visible/near-infrared spectra since their unique
composition of atoms [12]. It has been widely used in the field of bioactive compound
detection in vegetables and fruits, and its applicability has been proven. Prodromidis et al.
have successfully used FT-IR and UV-Vis spectroscopy to measure the onion anthocyani-
dins during heating [13]. Johnson et al. used attenuated total reflection Fourier transform
infrared spectroscopy to predict the total anthocyanidin content in ethanolic extracts of
plum with an R2 of 0.93 [14]. Additionally, using NIR spectroscopy in the prediction of
anthocyanidins content and antioxidant activity in grape juice is feasible [15]. Tian et al. es-
tablished a prediction model for the detection of water content and anthocyanidins content
in purple potatoes by visible near-infrared hyperspectroscopy [16]. With the development
of algorithms, chemometrics, and artificial intelligence, the application of NIR spectroscopy
will be extended for fast screening and quantitative analysis of anthocyanidins.

Purple leaf Chinese cabbage has become a popular breeding interest; meanwhile fast
and accurate determination of the anthocyanidins contents is an important task for improv-
ing its nutritional quality. The commonly used determination methods for anthocyanidins
are based on ultrasonic or microwave-assisted liquid extractions and high-performance
liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrometry
(LC-MS/MS) detection [17,18]. However, the extraction is complicated and time-consuming
while the reagents used may be harmful to the environment and human health [19], and
the equipment are more expensive and require experts for analysis. By comparing with
chemical analysis techniques, spectroscopic techniques are relatively simple and do not
require further expansion of sample preparation [20]. NIR spectroscopy could be a power-
ful tool to fulfill this task. To date, no studies have focused on the quantitative prediction
of anthocyanidins in PCC by NIR spectroscopy. It is an urgent need to build a suitable
NIR method for simple and fast prediction of anthocyanidins to help the breeders and
producers since the prediction models established by different food matrices cannot be
simply applied to PCC. Therefore, this study aims to develop an accurate quantitative
prediction method for anthocyanidin content in PCC using NIR spectroscopy, which laid a
foundation for the fast and convenient detection of the nutritional quality of agri-food and
the rapid screening of purple vegetable breeding materials.

2. Materials and Methods

2.1. Sample Preparation

The purple leaf Chinese cabbage samples from different breeding backgrounds with
distinct color phenotypes were collected from Beijing Vegetable Research Center
(Beijing, China, 116◦30′ E, 39◦94′ N). Specifically, the purple color trait was from the variety
of 15NG28, as previously described [21], and the green parents were different Chinese
cabbages with distinct shapes of leaves, holding patterns, and maturity traits. Totally
106 PCC samples were harvested and transferred to the laboratory within half an hour on
19 November 2021. Then, the vegetable leaves of each sample were cut into 2.0 cm length
pieces, uniformly mixed, and freeze-dried (BIOCOOL vacuum freeze dryer, Boyikang Co.,
Ltd., Beijing, China). The dry samples were ground into a fine powder, passed through an
80-mesh sieve, then stored at −40 ◦C for further anthocyanidins content determination and
NIR spectral profiles acquisition.
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2.2. HPLC Analysis of Anthocyanidins

Extraction and HPLC analysis of anthocyanidins in PCC were carried out according to
the Agricultural Industry Standard of the People’s Republic of China (NY/T 2640-2014, De-
termination of anthocyanidins in plant origin products-High performance liquid chromatog-
raphy). Basically, accurately weighed 0.200 g powdered samples were placed in a 15 mL
plastic tube, and 5.00 mL of extracting solution consisting of ethanol:water:hydrochloric
acid = 2:1:1 (volume) was added to extract anthocyanidins. The extraction mixture was
sonicated for 30 min at room temperature, then hydrolyzed under boiled water for one
hour. Then, the cooled extraction mixture was centrifuged using a HITACHI high-speed
refrigerated centrifuge (Katsuta, Japan) at 8000 rpm for 10 min. The supernatant was
accurately fixed to 5.00 mL volume and filtered through a 0.45 μm polyvinylidene fluoride
syringe filter before HPLC analysis.

The quantification of anthocyanidins was carried out on a reversed-phase HPLC
system (LC-20AD, Shimadzu, Tokyo, Japan) coupled with a photodiode array (PDA)
detector (SPD-M20A, Shimadzu, Tokyo, Japan). The column used was a Waters C18
(3.9 × 150 mm, 5 μm) kept at 35 ◦C. The gradient elution was carried out with a binary
solvent system consisting of ultrapure water (A) and acetonitrile (B), both containing
1% formic acid, at a constant flow rate of 0.8 mL/min. The injection volume was 20 μL.
Anthocyanidin compounds were detected at the wavelength of 530 nm. Individual an-
thocyanidins were quantified via comparison of the peak areas with those of the known
standards. The anthocyanidins standards (delphinidin, cyanidin, petunidin, pelargonidin,
peonidin, and malvidin) were purchased from Sigma-Aldrich (Darmstadt, Germany).

2.3. NIR Spectral Acquisition

The NIR spectrometer used in this study was a FOSS NIR Systems model 5000 (Foss
NIRSystems Inc., Silver Spring, MD, USA). The NIR spectrometer was preheated for 30 min
before the sample scanning, and the samples were only scanned when the spectra and noise
tests were passed. The dried PCC powders were evenly spread in the sample round cups,
respectively and compacted with the lid to ensure the sample powder was covered evenly.
The spectra were scanned in the wavelength range of 400–1100 nm and 1100–2498 nm
under diffuse reflection mode. Each sample was scanned three times. The scanned spectral
curves were collected, and the data were processed using the Foss WinISI III calibration
software throughout the whole process.

2.4. Data Processing

The PCC samples were divided into two sets by systematic sampling method; 86 of them
were used as calibration sets to establish the prediction models, and 20 samples not involved
in the calibration were used as validation sets for external validation of the effectiveness
of the developed models. The chemical determination results of anthocyanidin content
obtained by HPLC of the calibration set samples were imported into the chemometric software
accompanying the instrument and processed for NIR spectroscopy to obtain a cal. file. The
spectral data were preprocessed using a partial least squares regression (PLSR) method at
three different wavelength bands. These three bands included 400–1100 nm, 1100–2498 nm
(full band); 400–800 nm (visible band); 800–1100 nm, 1100–2498 nm (near infrared band).
The pre-processing scattering model of the spectral data included no scattering processing
(None), standard normal variables transformation + de-trending processing (SNV+Detrend),
standard normal variation processing (SNV Only), de-trending processing (Detrend Only),
standard multivariate scattering correction (Standard MSC), weighted multivariate scattering
correction (Weighted MSC), and two different derivative treatments, namely, no derivative
and first-order derivative were employed. The final prediction models built under different
preprocessing methods were compared, and the model with the internal cross-validation
correlation coefficient (1-VR) close to 1 and lower standard error of cross-validation (SECV)
was selected as the best one. These two sets of data can basically reflect the prediction
performance of the calibration model for unknown samples. Subsequently, samples of the
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validation set were analyzed to test the predictive ability of the proposed model. The criterion
was that the higher the external correlation coefficient (RSQ) value and the lower the standard
deviation of prediction (SEP), the more accurate the model.

3. Results

3.1. Anthocyanidins Contents in PCC Samples

Anthocyanidins contents of the PCC samples were analyzed by the HPLC method (the
results are shown in Table S1), and the content distribution of the anthocyanidins fractions
is shown in Table 1. Four kinds of anthocyanidins were detected, with cyanidin the most
abundant one in PCC, which was a coincidence with the previous report [2]. Cyanindin
had the largest range of content variation from 93.5 to 12,802.4 mg/kg, and the average
content was 5741.2 mg/kg. In most samples, cyanidin accounted for more than 95% of the
total anthocyanidins. The content distribution range of cyanidin in the selected samples
was wide, which can well represent PCC samples with different contents of anthocyanidins;
it meant that it was a suitable sample set for establishing of NIR model.

Table 1. Distribution of anthocyanidins contents in purple leaf Chinese cabbage (mg/kg).

Compound Content Range Average Content Percentage of Total %

delphinidin nd1~193.7 159.4 2.66
cyanindin 93.5~12,802.4 5741.2 95.71

pelargonidin nd1~66.0 52.3 0.87
peonidin nd1~63.0 45.4 0.76

nd1: not detected.

Delphinidin was detected in most PCC samples, with a content up to 193.7 mg/kg, and
the average content was 159.4 mg/kg. Compared to cyaniding, pelargonidin and peonidin
were much lower in PCC, whose average contents were 52.3 mg/kg and 45.5 mg/kg,
respectively, accounted for less than 1% content to the total anthocyanidins in PCC.

3.2. Visible/NIR Spectral Analysis of PCC Samples

Using the software WinISS III, the chemically determined values were input to the
corresponding spectral positions, and the spectral data were analyzed in combination with
chemical analysis data. The raw spectra of the PCC samples obtained after visible/NIR
spectroscopy scan (Figure 1A), in which the horizontal coordinate was the wavelength,
and the vertical coordinate was the absorbance expressed as log 1/R, showed that several
samples of PCC had a clear trend of decreasing absorption peaks in the wavelength range of
400 to 800 nm, which indicated that different samples had specific absorption characteristics
in the visible wavelength band. The large variation in their spectrograms also indirectly
indicated the different contents of each sample composition.

The raw NIR spectra contained comprehensive information on all chemical structures
and a lot of irrelevant information and noise, so mathematical data pretreatment methods
were applied to remove noise, compensate for baseline shifting, reduce the influence of
non-target variation, and assist in smoothing the spectrum. The derivative transformation
could partially compensate for baseline offset between samples and reduce instrument drift
effects [22]. Figure 1B shows the spectral curve of the original spectrum after SNV+Detrend
and first-order derivative pretreatment. The pretreated spectrum had more obvious un-
dulations, the peaks became more and sharper, and the absorption peaks appeared in the
originally smooth part. Figure 1C shows the spectral profile of the original spectrum after
the SNV only and first-order derivative pretreatment, and the fitting phenomenon could be
observed. On the processed spectrograms, we observed more clearly several characteristic
peaks of the spectrum, with the peak at 672 nm associated with chlorophyll [23]. The peak
at about 760 nm corresponds to the third overtone of the O-H vibration [24].
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Figure 1. Visible/Near infrared spectra of purple leaf Chinese cabbages. (A): original spectra;
(B): spectrum after SNV+Detrend and first derivative processing; (C) spectrum after SNV only and
first derivative processing.

3.3. Establishment of Quantitative Models for Anthocyanidins Content in PPC
3.3.1. Model for Cyanidin Content Prediction

The spectral curves obtained from the scanned samples and the chemical analysis data
were processed using PLSR to establish calibration models, and the calibration equation
results are shown in Table 2. All spectral pre-treatment models performed well, with RSQ
all above 0.91. Successful calibrations usually had a correlation coefficient of determination
above 0.9. The 1-VR value of cyanidin in the full spectral band from 400 to 1100 nm and 1100
to 2498 nm after no scattering processing and first-order derivative pretreatment was 0.942
at the maximum, the SECV value was 693.004 at the smaller value, and the RSQ was 0.965.
Figure 2A shows the cross-validation result of the prediction model established, the linear
regression relationships between the NIR predicted values, and the chemically determined
results (reference value). The slope of the line was 0.976, which is closed to 1; the samples
were irregularly distributed on both sides of the line with the overall trend of discrete. The
model fits well and can achieve the purpose of good quantitative prediction. So, the model
after no scattering processing (None) and first-order derivative pretreatment was chosen to
be used in the rapid screening of high-quality PCC breeding materials. The highest 1-VR of
delphinidin prediction models was 0.172, and the SECV was 12.030, obtained by SNV only
(first-order derivative) in the 400–800 nm band. The values of correlation coefficients were
small and could not accurately predict the content of delphinidin fraction in PCC. After
no scattering processing and first-order derivative preprocessing in 400–800 nm visible
light of pelargonidin, the 1-VR value was 0.467 at maximum, and SECV value was 3.887 at
minimum, so its detection model was poorly predictive and could not accurately predict
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the content of pelargonidin. After the Detrend only and first-order derivative pretreatment
under 400–800 nm visible light, the 1-VR value was 0.652 at maximum, and the SECV value
was 3.557 for peonidin, so its detection model prediction was weakly correlated and could
not accurately predict the content of peonidin fraction in PCC, which need further study.
Considering that the contents of delphinidin, pelargonidin, and peonidin were relatively
low, which accounted for less than 5% of the total anthocyanidins, it is negligible of their
contribution to the quality of PCC.

Table 2. Calibration equations of cyanidin content in purple leaf Chinese cabbage using different
pretreatment models.

Wave Band Spectral Pre-Treatment Model RSQ 1 SEC 2 1-VR 3 SECV 4

400~1100 nm
1100~2498 nm

None (no derivative) 0.922 808.339 0.908 887.788
SNV+Detrend (no derivative) 0.928 772.348 0.894 948.462

SNV only (no derivative) 0.913 852.994 0.866 1063.419
Detrend only (no derivative) 0.942 685.539 0.923 801.505

Standard MSC (no derivative) 0.923 784.604 0.896 924.328
Weighted MSC (no derivative) 0.937 748.514 0.908 909.465
None (first-order derivative) 0.965 531.591 0.942 693.004

SNV+Detrend (first-order
derivative) 0.959 576.934 0.931 754.230

SNV only (first-order derivative) 0.956 602.184 0.924 799.911
Detrend only (first-order

derivative) 0.955 592.659 0.941 684.969

Standard MSC (first-order
derivative) 0.955 603.501 0.924 796.853

Weighted MSC (first-order
derivative) 0.952 622.972 0.917 825.123

1 RSQ: external correlation coefficient; 2 SEC: standard error of calibration set; 3 1-VR: internal cross-validation
correlation coefficient; 4 SECV: standard error of cross-validation.

Figure 2. The cross-validation and external validation results of cyanidin and total anthocyanidin
prediction models. (A): cross-validation of cyanidin prediction model; (B): cross-validation of total
anthocyanidins prediction model; (C): external validation of cyanidin prediction model; (D): external
validation of total anthocyanidins prediction model.

94



Foods 2023, 12, 1922

3.3.2. Model for Total Anthocyanidins Content Prediction

The performances of total anthocyanidin content prediction models were parallel with
the models for cyanidin content prediction because cyaniding was the vast majority of
anthocyanidin in PCC. As shown in Table 3, the 1-VR value of the total anthocyanidins in
the visible/NIR spectral bands from 400 to 1100 nm and 1100 to 2498 nm after no scattering
processing and first-order derivative preprocessing was 0.944, the minimum SECV value
was 685.994, and the external correlation coefficient RSQ was 0.968, which meant that the
cross-test effect was very satisfying. Combined with the cross-validation result shown in
Figure 2B, the line slope was 0.990, and the samples scattered with no big deviation. The
content of total anthocyanidins in PCC can be accurately predicted using the model after
pretreatment of no scattering processing and first-order derivative.

Table 3. Calibration equations of total anthocyanidins content in purple leaf Chinese cabbage using
different pretreatment models.

Wave Band Spectral Pre-Treatment Model RSQ 1 SEC 2 1-VR 3 SECV 4

400~1100 nm
1100~2498 nm

None (no derivative) 0.925 801.928 0.911 881.019
SNV+Detrend (no derivative) 0.929 773.686 0.896 950.028

SNV only (no derivative) 0.915 854.883 0.869 1062.558
Detrend only (no derivative) 0.939 710.771 0.916 846.407

Standard MSC (no derivative) 0.924 787.616 0.898 926.614
Weighted MSC (no derivative) 0.938 749.215 0.910 910.829
None (first-order derivative) 0.966 532.072 0.944 685.994

SNV+Detrend (first-order
derivative) 0.959 576.751 0.932 751.574

SNV only (first-order derivative) 0.956 602.713 0.925 802.668
Detrend only (first-order

derivative) 0.956 592.196 0.941 691.249

Standard MSC (first-order
derivative) 0.956 595.245 0.930 761.400

Weighted MSC (first-order
derivative) 0.953 620.968 0.920 819.108

1 RSQ: external correlation coefficient; 2 SEC: standard error of calibration set; 3 1-VR: internal cross-validation
correlation coefficient; 4 SECV: standard error of cross-validation.

3.3.3. External Validation of the Calibration Models

Using the mathematical model developed by WinISI III software, the samples not
involved in the calibration were analyzed for external validation of the effectiveness of
the developed model. The effectiveness of the validation was indicated by RSQ, SEP, and
Bias. After validation, the RSQ were 0.947 and 0.951, respectively, for cyanindin and total
anthocyanidins models at 400 to 1100 nm and 1100 to 2498 nm visible/NIR spectra, after
no scattering processing and first-order derivative pretreatment (Figure 2C,D). The test
deviation biases were small, which were −234.079 and −222.0, respectively. The slopes of
the external validation prediction plots (the linear regression between the NIR predicted
values and the chemically determined results) were 0.917 for cyanidin and 0.913 for total
anthocyanidins. The validation samples were irregularly distributed on both sides of the
line, and there was no big deviation, which meant that the models worked well; they could
output accurate results for efficient and rapid screening of high anthocyanidins content
materials. In addition, the validation results of delphinidin, pelargonidin, and peonidin
prediction models showed very poor performance, as we could expect.

4. Discussion

As an osmoregulatory substance, anthocyanins are one of the most important pigments
in plant leaves. It has an irreplaceable role in improving the cold, drought, and disease
resistance of plants, and, therefore, monitoring the content of anthocyanidins in plants can
help to understand the physiological state of plants [3]. Meanwhile, the benefits for human
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health of anthocyanidins have drawn a great deal of people’s attention. At present, the
detection of anthocyanidins contents in plants and plant products mainly uses HPLC or
HPLC-MS method; the application of rapid and non-destructive detection using NIR is
still in its initial stage, but high throughput, convenient operation, and no use of organic
solvents will make NIR a powerful support tool in horticulture practice and agri-food
industry. Huang et al. [25] proposed a NIR spectroscopic detection method based on an
ant colony algorithm (ACO) combined with interval partial least squares (iPLS) in order
to detect anthocyanidins content in flower tea quickly and accurately, indicating that NIR
spectroscopy has promising applications in measuring total anthocyanidins in plants. NIR
spectroscopy can be used to determine the anthocyanidin content of berries in completely
satisfied results without breaking the composition of the berries [26]. In this study, we
successfully developed suitable prediction models for cyanidin and total anthocyanin
content in PCC, and they could be applied in the breeding practice of PCC to realize rapid
and efficient screening of high-quality breeding materials.

NIR spectroscopy belongs to an indirect analysis technology; the accuracy of the
prediction result relies on the quality of the calibration models. So, the establishment of a
high-quality model, with accurate chemical analysis and spectrum scanning data, strong
anti-interference capability, and broad enough representation, is vitally important. A large
number and representative sample sets are essential factors for model building. Addition-
ally, an appropriate algorithm to divide sample subsets is also critical [27]. In order to
expand the application scope of our established models, further improvement using a larger
number of PCC samples with different breeding backgrounds and distinct phenotypes is
required. In terms of algorithms for NIR model establishment, there are several regression
methods frequently used for the prediction/quantification of chemical content, including
multiple linear regression (MLR), principal component analysis (PCA) for the exploration
of the data, and partial least squares regression (PLSR) analysis to obtain a quantitative
prediction of the parameters of interest [12,28]. Among them, PLSR is the most widely used
multivariate statistical data analysis method for quantitative analysis of the NIR spectrum,
with strong anti-interference ability. In this study, we used a PLSR method to process the
spectral data, and the quantitative prediction results were satisfied.

Compared to chemical analysis methods, the sensitivity of NIR spectroscopy is rel-
atively low and cannot be used for trace analysis, but its modeling is suitable for the
detection of components with high content and a wide range of variation. In a previous
report, a satisfied NIR prediction model was established to detect anthocyanidin content
in flower teas with a content range of 0.17 to 1.60 mg/g [25]. In this study, the model
prediction performance of cyanidin content and total anthocyanidin content with a wide
range of variation was relatively good, which could be used for rapid screening of breeding
materials and prediction of anthocyanidin content in PCC breeding practice. Meanwhile,
the prediction model performance of delphinidin, pelargonidin, and petunidin with less
abundant contents in PCC was very poor. Considering the contents of these three antho-
cyanidins were relatively low, their contribution to the phenotype and nutritional quality
of PCC could be neglected. However, in other plant materials which contain a much higher
proportion of these anthocyanidins, much more samples with a wide range of contents
need to be included, and further optimization of their model-building methods is needed.

There are still some parts of NIR spectroscopy detection technology that need to be
improved, but with the development of algorithm, spectroscopy, and artificial intelligence,
the predictive ability, accuracy, and operability of this technology will continue to be
improved on the original basis. With its obvious time-saving, high throughput, and non-
destructive advantages, NIR spectroscopy will certainly have a broader development
prospect in the agricultural, food industry, and market inspection.

5. Conclusions

Cyanidin was the most abundant anthocyanidin in purple leaf Chinese cabbage, with
an average content of 5741.20 mg/kg, accounting for 95.7% of the total anthocyanidins. The
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prediction models established using visible/NIR spectroscopy on the basis of PLSR after
no scattering processing and first-order derivative pretreatment method were suitable and
effective for accurate and fast quantification of cyanidin and total anthocyanidin contents
in PCC. The result laid a foundation for the application of NIR, with its obvious timesaving,
convenience, and organic solvents free advantages, in the fast prediction of anthocyanidins
in vegetables and rapid screening of purple vegetable breeding materials.
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Abstract: Spatial-frequency domain imaging (SFDI) has been developed as an emerging modality
for detecting early-stage bruises of fruits, such as apples, due to its unique advantage of a depth-
resolved imaging feature. This paper presents theoretical and experimental analyses to determine
the light penetration depth in apple tissues under spatially modulated illumination. Simulation
and practical experiments were then carried out to explore the maximum light penetration depths
in ‘Golden Delicious’ apples. Then, apple experiments for early-stage bruise detection using the
estimated reduced scattering coefficient mapping were conducted to validate the results of light
penetration depths. The results showed that the simulations produced comparable or a little larger
light penetration depth in apple tissues (~2.2 mm) than the practical experiment (~1.8 mm or ~2.3 mm).
Apple peel further decreased the light penetration depth due to the high absorption properties of
pigment contents. Apple bruises located beneath the surface peel with the depth of about 0–1.2 mm
could be effectively detected by the SFDI technique. This study, to our knowledge, made the first
effort to investigate the light penetration depth in apple tissues by SFDI, which would provide
useful information for enhanced detection of early-stage apple bruising by selecting the appropriate
spatial frequency.

Keywords: light penetration depth; apple; spatial-frequency domain imaging; depth-resolved;
bruise; scattering

1. Introduction

Optical sensing techniques, such as near-infrared spectroscopy and hyperspectral
imaging, have been extensively researched and increasingly utilized for detecting multiple
defects of agro-food products [1–3]. The past decade has witnessed the development of
spatial-frequency domain imaging (SFDI) for detecting various surface and subsurface
defects of fruits [4–7]. As one of the typical defect types, surface bruises in apples often
occur during harvest, transportation, storage, and sorting processes. Slight early-stage
bruises are invisible to our naked eyes and are challenging to be recognized by traditional
imaging techniques under uniform or diffuse illumination, which are more sensitive to the
obvious surface properties. Thanks to frequency-dependent light attenuation within tissues,
as depicted in Figure 1, SFDI enables acquiring depth-resolved information regarding tissue
constituents and structure. Based on this remarkable feature, SFDI is proven to be capable
of detecting the early-stage bruises of apples beneath the peels [6]. As opposed to the
traditional uniform light imaging techniques, such as machine vision and hyperspectral
imaging, spatially modulated light in a sinusoidal waveform is used in SFDI to acquire
pattern images from samples. Through image demodulation and inverse estimation pro-
cessing, SFDI produces 2-D optical property mappings in a pixel-by-pixel fashion, i.e.,
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absorption coefficient (μa) mapping and reduced scattering coefficient (μ′
s) mapping. The

differences of optical properties between non-bruised apple tissues and bruised ones can
be directly used for early-stage bruise detection. It is well known that there are quite a
lot of optical property measuring methods, e.g., time-resolved, spatially resolved, and
integrating sphere, which have been employed for measuring optical properties of diverse
agro-food products [8–11]. However, they are generally limited to point measurement
and cannot attain depth-resolved information, resulting in great challenges in the non-
destructive detection of early-stage bruises of apples [12,13]. In the technique of SFDI
under the spatially modulated illumination, high-frequency light is more sensitive to the
shallower tissue, while the low-frequency component has a much larger light penetration
depth (~mm) [14,15], which provides a theoretical basis for detecting early-stage bruises
of apples.

Figure 1. Schematic of light attenuation within a semi-infinite turbid medium under spatially
modulated illumination.

Knowledge of light penetration depth sampled by SFDI is of high significance for
clinical and preclinical applications in the field of biomedicine [16–18]. For instance, the
thickness of burned skin dictates the treatment protocol, highlighting the importance of
understanding the detection depth in skin tissue [19]. SFDI has also been explored in deep-
tissue applications, where it is essential to understand the penetration of collected photons
in order to evaluate the maximum depth of measurable tumor contrast [20]. However,
measuring light penetration depths in the field of biomedicine is not without limitations.
The experiments generally require patients to remain completely still during a potentially
long acquisition time in order to acquire full area scans. The exploration of the light
penetration depth often requires prior knowledge about tissue optical properties that
may not be valid in damaged tissue. Similar to that in the field of agricultural and food
engineering, knowledge of light penetration depth is critical for enhancing the detection
performance of early-stage bruises in apples by SFDI. Despite great progress being made
for the bruise detection of apples, there still is a lack of exploration of quantifying light
penetration depth in apple tissue. As mentioned above, SFDI has a remarkable advantage
in subsurface (early-stage) bruise detection of apples, but the light penetration depth is
reported to be limited in mm, implying that some internal bruises located in the region
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of deep tissue cannot be detected. It is thus desirable and also necessary to quantify light
penetration depths under varying-frequency spatially modulated illumination, so as to
better explore the potential of SFDI for early-stage bruise detection of apples in different
depths, as well as to assess the severity of apple bruising. Up to now, the maximum
detection depth in apple tissue using SFDI has been uncertain and there are few research
studies focusing on studying light penetration depth. Lu and Lu [21] reported that the
maximum light penetration depth was confirmed to be no more than three sheets of blank
printing paper (or less than 400 μm). Their study investigated the light penetration depth
from the aspect of demodulated images, which is different from our research in optical
property estimation through inverse computation. Apple is taken as the experimental
material in this study, which has different properties from the blank printing paper. The
estimated optical property mappings could provide quantitative information in bruise
detection (specific values of optical properties for non-bruised and bruised tissues), and
thus further exploration of the light penetration depth could be implemented through these
quantitative information.

Therefore, in this study, a set of well-designed experiments from theoretical simulation
to practical implementation was performed to quantify the light penetration depth (espe-
cially for the maximum value) in apple tissue under spatially modulated illumination. The
objectives were to (1) explore the light penetrating capacity of demodulated direct compo-
nent (DC) and amplitude component (AC) images to prove our SFDI system performance;
(2) conduct the simulation and practical experiments to investigate the light penetration
depths in ‘Golden Cream Delicious’ apples with and without peels; and (3) validate the
conclusion of the maximum light penetration depth in apple tissues by evaluating the
performance of bruise detection.

2. Theoretical Formulation for SFDI

2.1. Image Formation and Image Processing

In SFDI, image formation involves two steps [22]: (1) the incident light interacts with
the sample through absorption and multiple scattering, and (2) the light reemitted from
the sample travels through a series of optical devices (e.g., lens, camera) of the imaging
system, and eventually forms a digital image. As a general rule, SFDI is regarded as a linear,
space-invariant technique which applies transfer function theory to an optical imaging
system [23]. There are several factors negatively affecting the resolution and contrast of
resulting images during image formation and processing, such as convolution operation
and environmental noise. A mathematical method is used to analyze the image acquired
by SFDI, which is generally composed of two parts. The first part is DC, i.e., IDC with
the Fourier spectra centered at the origin; the other part is AC termed as IAC, which is
composed of an oscillatory or harmonic component, with the Fourier spectra shifted by
positive or negative frequency ( fx or − fx) [24].

The process of optical property estimation from the remitted image in the SFDI can be
roughly divided into two steps: acquisition of diffuse reflectance image through demodula-
tion and estimation of optical property mapping through inverse computation. Due to the
characteristics of high accuracy and easy implementation, phase shifting techniques are
widely used for demodulation from sinusoidal fringe patterns. Three-phase demodulation
(TPD) is a commonly used and effective method that uses three images with the phase
offsets of −2π/3, 0, and 2π/3. Under the illumination of three phase-shifted sinusoidal
patterns, the corresponding intensity images, i.e., I1(x, y), I2(x, y), and I3(x, y), can be
expressed as follows [25]:

I1(x, y) = IDC + IAC cos(2π fxx − 2π/3) (1)

I2(x, y) = IDC + IAC cos(2π fxx) (2)
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I3(x, y) = IDC + IAC cos(2π fxx + 2π/3) (3)

where (x, y) represents the spatial coordinates, fx is the spatial frequency along the x-axis
direction, and IDC and IAC are the direct and amplitude components, respectively. For the
purpose of simplicity, we will drop off the coordinate notation. From Equations (1)–(3), the
DC and AC images can be obtained by the following equations [15]:

IDC =
1
3
(I1 + I2 + I3) (4)

IAC =

√
2

3

√
(I1 − I2)

2 + (I1 − I3)
2 + (I2 − I3)

2 (5)

2.2. Image Contrast

Light penetration features are of primary concern for the demodulated images, which
are also critical for fruit bruise detection. To our knowledge, it is challenging to assess
the light penetration capability, because it is largely dependent on tissue physicochemical
properties and illumination conditions. For the bruised apples illuminated under spa-
tially modulated illumination with varying frequencies, light penetration capability could
essentially determine the thickness of the tissue that light passes through. In this study,
we introduce image contrast and the ratio of peak to valley’s intensity (PVR) to evaluate
the light penetration capability, which will be introduced in Section 3.2. Examination of
the composition of photons backscattered from a turbid medium will provide qualitative
insights into the relationship between light penetration depth and image contrast. The
ballistic photons experience one or more backward and forward scattering events before ex-
iting from the tissue. Due to the shortest traveling path, they suffer from minimal scattering
and thus can deliver image information with superior resolution and contrast. However,
the information generated by ballistic photons is more about the superficial layer of the
medium in one mean free path (MFP) [26], around 100 μm for fruit tissue such as apple
(assuming the value of μ′

s is equal to or larger than 1.00 mm−1). The weakly scattered
photons provide information on deeper, subsurface tissues, and they are still capable of
forming well-resolved images due to limited scattering events. In summary, the tradeoff
should be carefully considered between the light penetration depth and image contrast,
while selecting spatial frequency in SFDI [26,27].

The IDC, which contains a larger contribution of diffusive photons, probes a deeper
region of sample tissues than IAC, while IAC contains more ballistic and weakly scattered
photons, resulting in better image contrast [15]. High-frequency illumination is more
likely to enhance image contrast. Presented in the following sections are well-designed
experiments to quantitatively determine the relationship between image contrast and the
depth-resolved imaging feature of SFDI.

2.3. Light Penetration

In diffuse optics, the light penetration depth δ in biological tissues can be attained
from the response to an infinitely narrow photon beam normally incident on a semi-infinite
medium. For the case where that photon’s propagation depth z is larger than the light
penetration depth, internal fluence distribution predicted from diffusion theory should
be [28]:

∅(z) = ∅0 k exp(−z/δ) (6)

where k is a scalar that depends on the amount of backscattered reflectance, ∅0 is the
incident irradiance, and ∅(z) represents a function of photon fluence. The light penetration
depth is defined as [29]:

δ =
1√

3μa(μa + μs(1 − g))
=

1
μe f f

(7)
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where μa is the absorption coefficient, μs is the scattering coefficient, g is anisotropy factor,
and μe f f is the effective attenuation coefficient.

According to this, the light penetration depth is estimated to be 1.50–6.00 mm for apple
tissues with typical μa and μs coefficients of 0.01–0.05 mm−1 and 9.00–28.00 mm−1, respec-
tively. However, the estimated depth does not always stand for the actually detectable
depth for a general imaging system under spatially extended wide-field or broad-beam illu-
mination. The fluence rate and reflectance properties of spatially modulated photon density
plane waves in the SFDI are described in the study of Cuccia, Bevilacqua, Durkin, Ayers,
and Tromberg [22], in which the effective penetration depth δ′e f f is concisely defined as:

μ′
e f f =

(
μ2

e f f + k2
x + k2

y

)1/2
=

1
δ′e f f

(8)

where μ′
e f f is a scalar attenuation coefficient, kx and ky are variable coefficients related to

spatial frequencies fx and fy (kx = 2π fx, ky = 2π fy), and δ′e f f is the effective penetration
depth, which is inversely proportional to spatial frequency. The above mathematical
formula just provides a simple conceptual framework to understand the transmission of
modulated scalar photons in a turbid medium. In practice, the detected signal is mostly
due to the photons backscattered close to the illumination source, which corresponds to
a far more superficial depth of tissue interrogation than that derived from diffuse light
attenuation [30]. This is equivalent to calculating the relative probability that a photon
will visit a certain location in tissue before its detection. In the reflectance measurement
geometry with spatially modulated illumination, the reemitted light intensity decays by
many orders of magnitude within millimeters. Therefore, in using the formula to calculate
the light penetration depth, there directly exists some unreasonable aspects. In this study,
well-designed experiments were conducted, coupled with two evaluation parameters
(image contrast and PVR), to explore the light penetration depth in apple tissues using SFDI.

3. Materials and Methods

3.1. SFDI System

An in-house assembled SFDI system, as illustrated in Figure 2, mainly consisted of
a 150 W DC-regulated halogen fiber optic light source (Fiber-Lite DC950, Dolan-Jenner,
Boxborough, MA, USA), a light-guide fiber (MSG4-2200S, MORITEX Corporation, Saitama,
Japan), an 8-bit camera (MER-131-210U3M NIR, Daheng imaging vision Corporation,
Shanghai, China) coupled with a C-mount zoom lens (HN-0816-5M-C2/3X, Daheng imag-
ing vision Corporation, Shanghai, China) for vertically shining over a field of view (FOV,
11.5 × 11.5 cm2), a filter wheel (BOCIC Co., Ltd., Beijing, China) comprising six bandpass
filters (550, 600, 630, 675, 710 and 730 nm), a microcontroller unit (MCU) (STM32F103ZET6,
Opendv, Guangzhou, China), a three-axis manual displacement platform (THZ210, Runjia
Pneumatic, Shenzhen, China) for holding samples, and an optical projector (DLi6500 1080p
Optics Bundles, TI, Austin, TX, USA) for generating sinusoidal patterns. The projector was
slightly angled at 12 degrees relative to the vertical axis to mitigate the image distortion,
based on our tests and preliminary experiments, which was also confirmed by Lu et al.
(2017) for constructing a multiple structured-illumination reflectance imaging system [31].
The MCU could take control of the projector for synchronous pattern projection and image
acquisition with the camera. A pair of cross linear polarizers was mounted in front of
the lens of the projector and camera to suppress specular reflectance from samples. The
aforementioned components were mounted on an optical platform (SPL-R-0910, SPL-Tech,
Hangzhou, China) and enclosed in a dark chamber for reducing the influence of external
stray light.
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Figure 2. (A) Physical and (B) schematic maps of spatial-frequency domain imaging system.

3.2. Experiments
3.2.1. Experiment 1: Penetrating Capacity of DC and AC Images

The first experiment was to verify the light-penetrating capacity of DC and AC images
and thus prove our SFDI system performance. The experiment was conducted using a
nylon slab with high scattering characteristics, which was drilled with five cylindrical holes
running parallel with the surface. As shown in Figure 3, the five holes with the diameter
of 4 mm or 8 mm were set up at the depths of 1 mm, 11 mm, 6 mm, 4 mm, and 2 mm,
from left to right. Number the five holes in sequence as 1, 2, 3, 4 and 5. All the holes were
filled with 100-times diluted India ink as absorbers for absorption property comparison
with the bull material and then sealed with adhesive black tape. A sequence of sinusoidal
patterns, covering 18 frequencies [0.01:0.01:0.15, 0.20, 0.25, 0.30] mm−1, was generated in
Matlab R2020a (The Mathworks, Inc., Natick, MA, USA) for sample illumination. Three
phase-shifted pattern images were acquired at each spatial frequency with the phase offsets
of −2π/3, 0, and 2π/3, respectively. A standard whiteboard with the calibrated reflectance
rate of 99% was imaged first under planar illumination to correct the non-uniformity of the
source illumination [32]. Image demodulation was then used to generate the DC and AC
images, according to Equations (4) and (5).

3.2.2. Experiment 2: Investigating Light Penetration Depth

The second experiment was to quantify the light penetration depth in apple tissue
under sinusoidal illumination. ‘Golden Cream Delicious’ apples, which were free of visual
blemishes or defects and grown in Shandong, China, were purchased from a fruit market.
Both simulation and practical experiments were carried out. In the first, the simulation
methodology proposed by Hayakawa et al. [33] was adopted to roughly determine the
optical sampling depth in apple tissues. In this method, Monte Carlo (MC), which has been
widely applied to simulate light propagation in single- and multiple-layered biological
tissues, was employed for the simulation experiment [8,29,34]. Optical property parameters
(μa, μ′

s) of apple tissues at the six wavelengths were measured by our integrating sphere
system [35], which were taken as the inputs in the simulation.
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Figure 3. Schematic of relative positions and sizes of holes in the nylon sample filled with absorbing
ink solution.

For the practical experiment for validating the results of the simulations, there were
two types of samples, apple slices and a USAF-1951 target. A slicer was used to produce
apple slices with different thicknesses with peel [0.9, 1.0–1.1, 1.3, 1.5–1.6, 1.6–1.7, 1.8, 2.1–2.2,
2.4–2.5, 2.6, 3.0, 3.4, 3.8, 4.0] mm and without peel [0.8, 1.0, 1.2–1.3, 1.5, 1.6, 1.8, 2.0, 2.3,
2.5–2.6, 2.7–2.8, 3.0, 3.2, 3.6, 4.0] mm. These varying-thickness apple slices were used
to cover the USAF-1951 target, which was made of fiber material with high scattering
properties, and their combination was imaged by the SFDI system, illuminated with a
sequence of frequencies of 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30 mm−1. It is apparent that the
light has completely penetrated though the apple slice when the black horizontal bars of
the USAF-1951 are recognized, as shown in the region of interest (ROI) in Figure 4. Two
parameters in the ROI, i.e., image contrast and PVR, as mentioned above, were calculated
to resolve the image details. Image contrast was evaluated based on the Michelson contrast
metric (CM) [36]:

CM = (Imax − Imin)/(Imax + Imin) (9)

where Imax and Imin denote the maximum and minimum intensities of the image in ROI,
respectively. Another evaluating parameter, PVR, defined as the ratio of peak and valley’s
intensity [37], was also determined from the captured images:

PVR = Ipeak/Ivalley (10)

where Ipeak and Ivalley denote the intensities of the peak and valley in the ROI, respectively.
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Figure 4. Example images of the USAF-1951 target covered with apple slices with peel (left) and
without peel (right) for calculating image contrast (up) and PVR (down) in selected region of
interest (ROI).

3.2.3. Experiment 3: Detecting Early Bruises in Apples

The third experiment was to test and verify the results of light penetration depths in
apple tissues achieved from experiment 2. Impact tests were conducted to induce bruises in
the apples with a wooden ball attached to one end. The wooden ball (6 cm in diameter and
105 g in weight) fell freely from the rest position at a certain height to impact the apple at its
equatorial area. The peel on the surface of bruised tissue was cut off to eliminate its effect
on detection performance. The used frequencies were the same as experiment 2. As shown
in Figure 5, apple slices with and without peels in different thicknesses were used to cover
the bruised tissues. Image demodulation and inverse parameter estimation were carried
out to obtain the optical property (μa and μ′

s) mappings of the apples covered with slices.
It is supposed that if the bruised tissue could be recognized in mappings, the light can
penetrate through the apple slice, and the light penetration depth under this illumination
should be equal to or larger than the thickness of the apple slice.
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Figure 5. The diagram of peeled bruised apples covering with varying-thickness slices with (left)
and without peels (right).

4. Results and Discussion

4.1. Penetrating Capacity of DC and AC Images

Figure 6 shows the demodulated DC and AC images of the nylon sample. The filled
India ink made the hidden holes relatively dark because of its strong light-absorbing
capacity. In the DC image (equivalent to uniform illumination), the first hole was easily
recognized but with invisibility on the top of the liquid column caused by an unwanted
air bubble. The second hole was almost invisible because it was too deep (11 mm) from
the tissue surface. For the three hidden holes on the right, the black liquid column became
visually fuzzier along with larger distance from the surface. The AC image at the frequency
of 0.01 mm−1 showed similar details to the DC image. As the frequency increased from
0.02 to 0.12 mm−1, the color of the leftmost column became more and more light, and
the other columns revealed a reduction in the image invisibility. It was noticed that as
the frequency increased, the surface texture of the nylon sample was revealed to a certain
degree, with the images becoming less smooth. These observations implied that higher-
frequency illumination brought about less light interrogation with deep tissues, resulting
in a shallower light penetration depth. A similar finding was also reported in the previous
study [15]. When the frequency reached 0.12 mm−1, all the holes became blurry due to
insufficient light interrogation. Given all of that, the DC (0 mm−1) image had more light
interrogation with deep tissues, while the AC images showed varying light penetration
depths and image resolutions with different frequencies. It is suggested that the low-
frequency component could penetrate deeper into the tissues than the high-frequency part,
which is called the depth-resolved characteristic of SFDI in this study.

4.2. Investigating Light Penetration Depth

Table 1 showed the measured values of optical property parameters (μa, μ′
s) of apple

slices without peel using the integrating sphere technique. By inputting the optical property
values manually into the developed program, the light penetration depth for the apple
tissue could be simulated by consulting a scaled lookup table derived from MC simulations
to the radiative transport equation in the spatial-frequency domain. Figure 7 displays the
simulated results for the apple tissue at six wavelengths (550, 600, 630, 675, 710, and 730 nm),
in which the median sampling depth with a [25–75]% fraction of the total measured diffuse
reflectance was recognized as the critical metric for light penetration depth [33]. It was
observed in the simulation results that light penetration depths increased slowly with the
wavelengths, which is similar to the findings reported by Zhao et al. [17]. At 550 nm, the
median sampling depth with [25–75]% was slightly smaller than that of the other five
wavelengths, which was approximately in the range of 0.6–2.2 mm. It demonstrated that
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the 25–75% measured reflectance had the opportunity to interact with the tissue in the
depth of 0.6–2.2 mm. Similarly, Lammertyn et al. [38] reported that the maximum light
penetration depth in Jonagold apples at 692 nm was about 2 mm, which agrees well with
the finding in this study. In the report of Binzoni et al. [39], the light propagation behavior
is that the photons reaching the detectors do not go very deep and thus the information
contained in the spectral images comes from a depth that does not exceed 2–3 mm. The
above experimental results were all consistent with our simulation results. However, the
light penetration depth (less than 400 μm) reported by Lu and Lu [21] was much smaller
than the 2.2 mm. One potential reason is the evaluation level. Lu and Lu investigated the
detection depth through demodulated images, while we studied the penetration depth
from the aspect of optical property estimation. Furthermore, the custom-defined acceptable
resolution and contrast would also affect the detection depth. Hence, it was concluded that
the light penetration depths in apple tissues were close to each other at the six wavelengths,
with values of no more than 2.2 mm.

Figure 6. Demodulated DC (direct component) and AC (amplitude component) images of the nylon
sample at a sequence of spatial frequencies of 0, 0.01, 0.02, 0.04, 0.08, and 0.12 mm−1, from (top left)
to (bottom right).
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Table 1. Optical property parameters (μa, μ′
s) of ‘Golden Cream Delicious’ apple tissues measured

by integrating sphere system at six different wavelengths.

Wavelength (nm) μa (mm−1) μ′
s (mm−1)

550 0.0302 1.286
600 0.0232 1.273
630 0.0218 1.259
675 0.0224 1.251
710 0.0222 1.256
730 0.0223 1.256

Figure 7. Simulated median optical detection depth for the apple tissue at six wavelengths, which
is estimated using a scaled lookup table derived from MC simulations to the radiative transport
equation in the spatial-frequency domain [33]. The median detection depth is the depth that encloses
the photon trajectories responsible for 50% of the detected light, and accordingly, the vertical-capped
lines in the figure correspond to detection depths responsible for 25% (lower) and 75% (upper) of the
detected light.
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Figure 8A shows the contrast variation with frequencies for the DC and AC images
of the USAF-1951 target covered with apple slices at 630 nm. For both the slices with
and without peel, DC images gave almost a constant value of image contrast since they
were independent of spatial frequency, while AC images showed much higher contrast
values, which rose steadily with the spatial frequency. These findings indicated that AC
images, which are unique to SFDI, enhanced image contrast compared to DC images,
demonstrating that SFDI is superior to conventional uniform light imaging techniques in
image contrast. Figure 8B shows the histogram results of image contrast for the DC images
of the USAF-1951 target covered with apple slices at the wavelengths of 600, 630, 675, and
710 nm. It was noticed that the contrast values decreased with the thickness of apple tissue,
as well as the wavelength. A special case occurs from 675 nm to 710 nm, in which there is a
small rise of the contrast for some thicknesses. This is because the reflected signal intensity
was generally poor in 630–690 nm due to strong absorption of chlorophyll. When removing
the influence of the peel (right panel in Figure 8B), there was a steady decreasing trend
for the image contrast with the wavelength, because the pigment had little effect on apple
flesh tissue.

Figure 8. (A) Contrast variation with spatial frequencies for the direct component (DC) and amplitude
component (AC) images of USAF-1951 target covered with apple slices with (left) and without peel
(right); (B) histogram of contrast values for the DC images of USAF-1951 target covered with apple
slice with (left) and without peel (right) in different thicknesses.

Figure 9 shows statistical results of contrast and PVR at 630 nm for the DC images of
the USAF-1951 target covered with different-thickness apple slices. It was observed that the
contrast values in the left chart decreased with the thickness of the apple slice. There was an
approximate linear relation as the slice thickness ranged from 0.9 mm to 2.5 mm. A similar
result was found when analyzing the image contrast in the right chart, with a narrow
thickness range of 1.0–2.5 mm. It was noticed that the distribution of image contrast in the
left chart (with peel) was more disperse and irregular than that in the right chart. This could
be attributed to the influence of pores on the surface tissue of apple peel. On the other hand,
PVR showed a gradual decreasing trend with the slice thicknesses. The black horizontal
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bars of the USAF-1951 target were hardly recognized while PVR was reduced to a certain
value. In order to determine the light penetration depth in apple tissue, the threshold value
of PVR in the slice thickness range of 0.9–2.5 mm, in which a linear relationship between
the contrast and slice thickness was observed, was tested by large-scale experiments and
finally set as 1.2. From this aspect, the light penetration depths in apple tissues with and
without peels were determined as 0–1.8 mm and 0–2.3 mm, respectively. These results were
quite similar to those obtained in the simulation experiments (0–2.2 mm). The differences
between the simulation and practical experiments could be caused by many factors. For
example, the apple optical properties, which were taken as the inputs in the simulations, are
prone to measurement errors of the integrating sphere system, and thus lead to deviations
for the simulation results. In addition, it is challenging to consider all the experiment details
completely, such as the minute space between the covered apple slice and USAF-1951 target,
and they may cause potential effects on our data analysis and final results.

Figure 9. Contrast (left axis) and PVR (right axis) variation at 630 nm for direct component (DC)
images of USAF-1951 target covered with different-thickness apple slices ((left) with peel; (right)
without peel).

4.3. Validation in Detecting Early-Stage Bruise of Apple

Experiments on early-stage bruise detection of apples were conducted to validate the
results of light penetration depth in apple tissues. The apple was peeled first to make
the bruised tissue visible, and then it was covered with different-thickness apple slices
with or without peels. Spatial-frequency domain images were acquired, followed with
image demodulation and inverse estimation for generating optical property mappings.
It was supposed that the bruised apple tissue could be detected if the light penetration
depth was equal to or larger than the thickness of the covered apple slice. Figure 10 shows
the demodulated images of the bruised apple covered with a 0.8 mm thick apple slice
without peel. The AC images at certain spatial frequencies enhanced the bruised feature
compared with the DC image. Strong contrast and surface texture variation were observed
with the increased frequency. These findings indicated the enhanced capability of SFDI
for detecting early-stage bruises of the apples, in comparison with the imaging techniques
under uniform or diffuse illumination. It was believed that inverse parameter estimation
for optical property mappings would provide more useful information for qualitative
and quantitative analyses of bruise detection [32]. Therefore, the absorption and reduced
scattering coefficient mappings were produced in our next step. The previous studies
reported that bruising changed the optical properties of apples, particularly the reduced
scattering coefficient, resulting in the difference between bruised and non-bruised tissues.
The bruising detection based on the reduced scattering coefficient mapping was further
analyzed to validate the results of light penetration depth in apples.
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Figure 10. Demodulated images of the bruised apple covered with an 0.8 mm thick slice without peel
at a sequence of spatial frequencies of 0, 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30 mm−1, from top left
to bottom right.

Figure 11 shows the reduced scattering coefficient mappings of the bruised apple
covered with pre-prepared apple slices, with the bruised tissue marked in red circles. It
was noticed that the bruised apple tissue without being covered by any slice, as shown
in Figure 11A, was clearly observed from the reduced scattering coefficient mapping.
Figure 11B shows that the bruised apple tissue covered with the 1.2 mm thick slice with
peel could still be easily recognized, revealing that the spatially modulated light could
completely penetrate through the apple slices with peel with the thickness of 0–1.2 mm. The
1.5 mm thick slice cover without peel (Figure 11D) provided more difficulty for apple bruise
detection than the 0.8 mm thick slice (Figure 11C), but both of them could still be penetrated
by the light. Through data analysis of all the mapping results with different-thickness slices,
it was concluded that the apple slice without peel could be completely penetrated with the
thickness range of 0–1.5 mm.

According to the report of Binzoni et al. [39], the number of photons that visit a given
tissue voxel situated at a depth larger than 2 mm represents less than the 1% of the total
number of photons reaching the corresponding detection pixel. They made the conclusion
that the light penetration depth was no more than 2 mm, which confirmed our findings.
In addition, Lu and Lu [21] reported that the maximum light penetration depth was no
more than three sheets of white paper (or less than 400 μm). In our study, the apple slice,
instead of white paper, was used as the cover for experiments, which was more scientific
and reasonable for investigating the light penetration depth in apples. It should be pointed
out that the results of light penetration depth obtained in this study are based on the
apple sample, SFDI system configuration, and data processing method. Zhao et al. [16]
reported that shortwave-infrared illumination could penetrate thicker biological tissue than
visible light, because there is decreased optical scattering in the shortwave-infrared region
compared to visible wavelengths. Hence, the hardware of the SFDI system, including the
camera, the light source, and wavelength range, as well as the image processing algorithm,
could be improved to increase light penetration depth in the future.
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Figure 11. The reduced scattering coefficient mappings of the bruised apple covered without any
slice (A), with a 1.2 mm thick slice with peel (B), and with a 0.8 mm thick (C) and 1.5 mm thick (D)
slices without peel.

5. Conclusions

This paper presents theoretical and experimental analyses of light penetration depth
in apple tissues using SFDI technology. The MC simulation coupled with the developed
program indicated that the light penetration depth in apples was no more than 2.2 mm.
The practical experiment on the USAF-1951 target covered with different-thickness apple
slices demonstrated that the maximum light penetration depths were 1.8 mm with peel
and 2.3 mm without peel, which were quite similar to the simulation results (0–2.2 mm).
An example experiment on early-stage bruise detection was carried out to validate the light
penetration depths in apples. The results showed that the bruised apple tissues covered
with the slices with the thicknesses of 0–1.5 mm or 0–1.2 mm could be detected, depending
on the presence of the apple peel or not. The maximum depth of an apple bruise should
be about 1.2 mm beneath the surface peel, otherwise the SFDI technique cannot achieve
accurate detection. In summary, SFDI can serve as a subsurface imaging technique for
detecting early-stage bruises of thin-skinned fruits (<1.2 mm), such as apples. Improvement
of system hardware and the data processing algorithm may provide potential for increasing
the light penetration depth. Further work can be directed to explore the full potential of
SFDI in bruise detection of other thin-skinned fruits and vegetables, such as pears, peaches,
cucumbers, and potatoes.
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Abstract: High-stability bi-layer films were prepared by incorporating anthocyanin-loaded lipo-
somes into carrageenan and agar (A-CBAL) for non-destructive shrimp freshness monitoring. The
encapsulation efficiency of the anthocyanin-loaded liposomes increased from 36.06% to 46.99% with
an increasing ratio of lecithin. The water vapor transmission (WVP) of the A-CBAL films, with a
value of 2.32 × 10−7 g · m−1 · h−1 · pa−1, was lower than that of the film with free anthocyanins
(A-CBA). The exudation rate of the A-CBA film reached 100% at pH 7 and pH 9 after 50 min, while the
A-CBAL films slowed down to a value lower than 45%. The encapsulation of anthocyanins slightly
decreased the ammonia sensitivity. Finally, the bi-layer films with liposomes successfully monitored
shrimp freshness with visible color changes to the naked eye. These results indicated that films with
anthocyanin-loaded liposomes have potential applications in high-humidity environments.

Keywords: liposomes; high stability; freshness; bi-layer indicator

1. Introduction

The spoilage of meat products, which is extremely harmful and destructive, signif-
icantly increases the risk to human health [1]. Therefore, it is necessary to detect meat
freshness. In the past, total volatile basic nitrogen (TVB-N) was widely regarded as a
useful method for meat freshness monitoring using the Kjeldahl method [2]. However, it
is destructive to samples and time-consuming. In recent years, more studies have been
interested in intelligent packaging systems for ‘’on-package” tracing in real-time. Intelligent
food packaging is an effective tool for monitoring food conditions for consumers through
intuitive changes. Meat corruption produces volatile amines, which results in an alkaline
packaging environment. Therefore, pH indicator films, as a kind of intelligent sensor, have
garnered wide attention because they can reflect freshness information through visual
color changes. As a natural extract, anthocyanin presents visible color changes at different
pH values and has been used in intelligent pH indicator films in recent years [3]. For
instance, Zhang et al. successfully developed a novel film based on a mulberry anthocyanin
extract for fish freshness monitoring [4]. However, most reported indicator films are based
only on individual anthocyanins in the film-forming matrices, which makes them easily
degraded in harsh environments (such as light and temperature). In addition, water-soluble
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free anthocyanins easily leak out from the film matrix in a high-humidity environment,
thereby affecting the indicator stability. This instability creates a barrier that limits the use
of intelligent film in practical food packaging. Therefore, it is essential to use an effective
method to improve the stability of anthocyanin indicators.

Nano/microencapsulation technology in particular has been verified as a useful
method to enhance the stability of anthocyanins. In terms of encapsulation technology,
liposomes are popularly prepared with phospholipids, oils, and different solvents [5]. The
central aqueous cavity of liposomes can be used to improve the stability of hydrophilic
active ingredients and increase bioavailability [6]. Liposomes are attractive because they
can encapsulate anthocyanins without changing their structure. The prepared anthocyanin
elderberry extract-loaded liposome has the highest encapsulation efficiency of 69% and
storage stability [7]. The retention rate of anthocyanins in milk was effectively improved
with liposomes prepared by Chi et al. [8]. Up to now, few researchers have reported the
use of liposomes to encapsulate free anthocyanins in intelligent packaging films.

Compared with single-layer biopolymer films, bi-layer films have shown excellent
mechanical properties and stability [9,10]. One layer serves as an indicator layer containing
anthocyanins and the other as a protective layer. Agar, one of the most widely promising
agents, is applied in food packaging films due to its good gelling properties and excellent
film-forming materials [11]. Carrageenan, a natural biopolymer, is widely studied as a
packaging film matrix due to its high gelling capacity [12]. Because of the stronger hydrogen
bond interactions between their highly polar hydroxyl groups, agar and carrageenan are
used together to improve their mechanical properties.

Therefore, in this study, a liposome was formed by encapsulating a butterfly bean
flower anthocyanin extract (BA) in soybean lecithin, which was then added to carrageenan
to develop as an indicator layer. In addition, agar was used as the protective layer of a
bi-layer indicator to monitor shrimp freshness. The particle size, zeta potential, morphology,
and encapsulation efficiency of the liposome were initially analyzed. The bi-layer indicator
film was determined with Fourier transform infrared spectroscopy (FTIR), scanning electron
microscopy (SEM), and its mechanical properties. Moreover, the temperature stability and
the response sensitivity to pH solutions and ammonia of the bi-layer films were investigated
before evaluating their application for shrimp freshness monitoring.

2. Materials and Methods

2.1. Materials

The dried butterfly bean flower calyxes and fresh shrimp were obtained from the
Zhenjiang Darunfa supermarket. Agar, ammonia, ethanol, potassium chloride, and hy-
drochloric acid were purchased from Sinopharm Chemical Reagent Co., Ltd. Citric acid,
sodium acetate, and sodium dihydrogen citrate were bought from Jiangsu Thorpe Group
Co., Ltd. (Zhenjiang, China) Carrageenan, glycerol, and disodium hydrogen phosphate
were obtained from Jiangsu Chentong Chemical Co., Ltd. (Zhenjiang, China). Soybean
lecithin, cholesterol, TritonX-100, and Tween80 were acquired from Zhenjiang Huadong
Chemical Glass Co., Ltd. (Zhenjiang, China).

2.2. Preparation and Characterization of Anthocyanin-Loaded Liposomes
2.2.1. Extraction of Butterfly Bean Flower Anthocyanin

The butterfly bean flower anthocyanin (BA) was obtained according to a previous
study [13]. The dried butterfly bean flower calyxes were crushed into a powder. Then,
approximately 100 g of the powder was macerated with 1 L of 75% ethanol for 3 h at
60 ◦C. The solvent extraction solution was obtained using a centrifuge at 3000 r/min for
6 min. After that, the anthocyanin concentrated solution was obtained to remove the
ethanol solvent using a rotary evaporator (RE-200A, SHANGHAI YARONG biochemistry
instrument factory, China) at 50 ◦C for 2 h. Finally, the concentrated solution was dried in a
vacuum freeze-dryer to obtain a BA powder.
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2.2.2. Preparation of BA-Loaded Liposomes

The BA-loaded liposomes (BALs) were prepared using the ethanol injection high-
pressure homogenization method with some modifications [14]. Lecithin (0.2%, 0.5%, and
1%), cholesterol (0.2%), and Tween 80 (0.24%) were dissolved in an ethanol solution. The
BA solution (0.2%) was prepared in an acetate buffer solution (pH 3.5, 0.05 mol/L). To
obtain crude milky liposomes, the BA solution was quickly injected into lecithin mixtures of
different concentrations and stirred vigorously for 30 min. Next, the crude liposomes were
homogenized using a high-pressure homogenizer (AH-BASIC, Antos Nano Technology
Co., Ltd., Suzhou, China) at 20,000 psi for 5 cycles. Then, the cooling solution was passed
through a 0.25 μm extruder, and the solvent was removed via rotary evaporation (SY-4000,
Shanghai Yarong Co., Ltd., Shanghai, China) to obtain concentrated BALs with different
concentrations of lecithin at 0.2%, 0.5%, and 1% (BAL1, BAL2, and BAL3).

2.2.3. Characterization of the Liposomes

The average particle size, zeta potential, and polydispersity index (PDI) of the lipo-
somes were evaluated with the dynamic light scattering technique using a Zeta-sizer Nano
ZS (Malvern, Worcestershire, UK). The microstructure of the liposomes was observed using
an optical microscope (4XC-W, Jinanchenda, Jinan, China).

The encapsulation efficiency (EE) was measured according to the literature with some
modifications [15]. Solutions of various concentrations (0.5, 1.0, 1., 2.0, and 2.5 μL/mL)
of the anthocyanin were dissolved in a buffer solution (pH 6.86), and the absorbance was
measured at 620 nm. The standard curve of the anthocyanin was analyzed as the equation
Y = 0.221x + 0.010 (R2 = 0.9981). Then, a certain amount of BALs was immersed in a buffer
solution and centrifuged at 8000 rpm for 20 min. Free anthocyanins were isolated from the
supernatant, and their absorbance was measured at 620 nm. Then, the concentration of free
anthocyanins was calculated with the standard curve. Finally, the EE of the anthocyanin
was obtained as follows:

EE(%) =
Total anthocyananins − Free anthocyanins

Total anthocyanins
(1)

2.2.4. The Color of BAL in Different pH Solutions

The absorbance of the BA and BAL solutions at different pH values was measured
in the range of 450 nm to 700 nm using a UV-visible spectrophotometer (TU10CS, Beijing
General Analytical Instrument, Beijing, China).

2.3. Preparation of the Bi-Layer Indicator Films

The bi-layer films were prepared with two individual solvent casting methods. Firstly,
2 g of agar was stirred in 100 mL of distilled water for 2 h at 100 ◦C. Then, an agar hydrogel
was formed as the outer layer by cooling the plastic Petri dish at room temperature.
Secondly, 2 g of carrageenan was stirred in 100 mL of water with 2% glycerin for 1 h
at 85 ◦C. After cooling at 65 ◦C, free anthocyanins and different groups of BALs (BAL1,
BAL2, and BAL3, each containing 20 mg of the anthocyanin) were added to the above
carrageenan solution. The solutions were thoroughly stirred at 65 ◦C for 30 min. Finally,
the carrageenan solutions containing free anthocyanins and liposomes were dispersed onto
the agar protective layer and dried in an oven for 24 h at 35 ◦C, and the bi-layer films were
obtained and termed as the A-CBA, A-CBAL1, A-CBAL2, and A-CBAL3 films, respectively.

2.4. Structural Properties of the Bi-Layer Films
2.4.1. Microstructure

The cross-sections of the bi-layer films were performed with a JSM-3400 (JEOL Ltd.,
Tokyo, Japan) at an accelerating voltage of 10 keV. Prior to observation, the samples were
divided into small pieces and vertically adhered to an aluminum stub with a thin layer
of gold.
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2.4.2. FTIR Analysis

The FTIR spectra of the films and film-forming materials were measured using a
Nicolet 50 spectrometer in the attenuated total reflection mode at 4000–525 cm−1 with a
resolution of 4 cm−1 (Thermo Scientific, Waltham, MA, USA).

2.5. Determination of Physical Properties of Bi-Layer Films
2.5.1. Mechanical Properties

The thickness of the films was determined using a Mitutoyo digital micrometer (Tester
Sangyo Co., Ltd., Saitama, Japan). The mechanical properties were defined using a TA-
XT Plus texture analyzer (Stable Micro Systems, Godalming, UK). The films were cut
into 20 × 60 mm pieces with an initial distance of 40 mm and a proper tensile speed of
0.6 mm/s [16].

2.5.2. Water Vapor Transmission (WVP) Results

WVP was determined using the standard gravimetric method of ASTM E96-05. The
films were covered on top of a 50 mL centrifuge tube with 20 mL of water and stored in
a desiccator. WVP was analyzed according to the centrifuge tube weight every 12 h for
5 days and calculated with the following formula:

WVP =
Δm × d

S × ΔP × t
(2)

where d is the average thickness (mm); S is the effective permeation area of the film (m2);
Δm is the mass of water permeation (g); t is the interval time(s); and ΔP is the pressure
difference between the 2 sides of the film (3179 Pa).

2.5.3. Color Appearance and Opacity

The colors of the bi-layer films were measured using a portable scanner (G4050, HP,
USA) and then expressed as L*, a*, and b* values. The opacity of the films was recorded
with a UV-vis spectrophotometer at 200 to 800 nm. The opacity formula was as follows [11]:

Opacity =
Abs600

d
(3)

where Abs600 is the absorbance at 600 nm, and d is the average thickness (mm).

2.6. Color Stability of Bi-Layer Films

In order to measure the stability, the films were kept at 4 ◦C or 25 ◦C at 2-day inter-
vals within 14 days using a portable scanner. The calculation of color changes (ΔE) was
as follows:

ΔE =

√
(L − L0)

2 + (a − a0)
2 + (b − b0)

2 (4)

where L, a, and b are the color values of the films at storage time; L0, a0, and b0 are the initial
color values.

2.7. Color Response and the Leaching Rate under Different pH Buffers of Films

The film samples were immersed in plastic Petri dishes containing 15 mL of buffer
solutions (2–10). During the different time intervals, the exudation rate was determined by
calculating the concentration of the anthocyanin leaching solution, and the color response
was captured using a camera at the beginning time.

2.8. Color Response to Ammonia of Bi-Layer Films

Each of the bi-layer films was placed into the middle-upper layer of a sealed, home-
made acrylic box (500 mL). An aqueous ammonia solution was injected into the bottom
of each box with 0.1 mL of different concentrations at 0–200 μM, and the color changes
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were determined using a CM2300 spectrophotometer [17]. The digital values were also
expressed as color changes (ΔE).

2.9. Application in Shrimp Freshness Detection of Bi-Layer Films

According to the determinations of the film results, the A-CBA and A-CBAL2 films
were used as shrimp freshness indicators. An amount of 50 g of fresh shrimp was placed
inside a sealed packing box (700 mL), whose inner surface was attached to a film at 4 ◦C for
96 h. The color of each film was obtained using a CM2300 spectrophotometer every 12 h.
The total volatile basic nitrogen (TVB-N) value was determined according to the method of
Zhang et al. [17].

2.10. Data Analysis

All tests were repeated three times with mean ± standard deviation results. Duncan’s
test was used to analyze the data in SPSS software (Version 21, IBM SPSS Inc, New York,
NY, USA), and the differences were considered significant if p < 0.05.

3. Results and Discussion

3.1. Characterization of the BAL Liposomes

The results of different liposomes with average particle sizes, Zeta potentials, PDI
values, microstructures, and EE values are shown in Table 1. With the addition of lecithin,
the average particle sizes of the liposomes obviously increased from 131.39 nm to 311.42 nm,
which was attributed to the amount of hydrogen and van der Waals force between the
anthocyanins and lecithin [18]. Zeta potential is an important parameter to characterize the
stability of liposomes. The higher value of Zeta potential, the greater repulsion strength
required to settle and coagulate liposomes [19]. The Zeta potentials of BAL1 and BAL2
were −48.23 mV and −40.16 mV, respectively, indicating the stable dispersion of liposome
particles in the solution. PDI is an index that reflects the particle size distribution [20]. The
smaller the PDI, the better the regularity of dispersion of the particles. A PDI < 0.4 indicates
a homogenous particle size distribution in the system [21]. With the addition of lecithin,
the PDI increased from 23.96% to 29.51%, indicating the heterogeneous size distribution.
This was consistent with the Zeta potential results. These structure formations can also
be observed in the microstructures of the multi-compartmental but obvious core–shell
structures. Thus, the EE increased from 36.06% to 46.99% with the increasing ratio of
lecithin. The above results indicated that the ratio of lecithin was one of the key factors in
the characterization of anthocyanin-loaded liposomes.

Table 1. The sizes, Zeta potentials, PDI values, EE values, and microscope pictures of the liposomes.

Average Particle Size/nm Zeta Potential/mV PDI/% Microscope EE/%

BAL1 131.39 ± 5.12 a −49.01 ± 1.52 c 23.96 ± 2.03 a 36.06 ± 1.87 a

BAL2 153.49 ± 10.53 b −43.16 ± 0.88 b 27.57 ± 3.53 bc 44.28 ± 4.25 b

BAL3 311.42 ± 15.68 c −19.96 ± 2.31 a 29.51 ± 4.25 c 46.99 ± 6.17 bc

Note: the superscripted characters a, b, c represent significant differences (p < 0.05).

3.2. The pH Response of Anthocyanin-Loaded Liposomes

As shown in Figure 1A, both anthocyanins and liposomes showed obvious color
changes in different pH values. The color of BA changed from pink to purple, then blue,
and finally blue-green. The color of BAL1 changed from pink to purple-green, then cyan,
and finally green. The different color changes of anthocyanin were caused by structural
transformations, which were found in a previous study [13]. In fact, the different color
changes between BA and BAL were attributed to the cavity structure of liposomes, which
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decreases the structural transformation rate in anthocyanins [22]. As shown in Figure 1B,
2 characteristic absorption peaks can be observed around 574 nm and 620 nm for BA
and BAL. At pH 2, the absorption peak of BA was at 552 nm and gradually red-shifted
to 574 nm at pH 3–8. With the pH increasing to 9–10, the absorption peak disappeared
due to the destroyed structure of the anthocyanin molecular center ring under strong
alkaline conditions [23]. The response mechanism of BAL to pH was consistent with that
of the anthocyanin solution. However, the peak at 574 nm disappeared at pH 8 for the
BAL1 spectrum while occurring at pH 7 for the BAL2 and BAL3 spectrums, respectively.
This is mainly because of the encapsulation difference. The ratio of A620 to A574 reflected
the shift changes of the absorption peaks in Figure 1C. This was clearly observed in the
variation of the maximum values of the BA and BAL spectra. The above results showed
that the coloration degree of the solution obviously decreased after being encapsulated by
liposomes, while the color sensor function of the anthocyanins was not hindered.

 

 

 

 

 

Figure 1. Color (A) and ultraviolet-visible spectra (B), and the ratio of A620 and A574 (C) of BA and
BAL at different pH values.

3.3. The Structural Analysis of the Bi-Layer Films
3.3.1. SEM Analysis of Indicator Films

The film compatibility can be observed in the cross-section of a bi-layer film. As can
be seen in Figure 2, all the films presented an obvious two-layer structure, which was
attributed to the hydrogel thermal irreversibility processes between agar and carrageenan.
Meanwhile, hydrogen bonding, cross-linked agar, and carrageenan prevented the bi-layer
films from separating. The agar outer layers appeared relatively uniform except for the
parts that were contaminated by the inner anthocyanin layers. In Figure 2A, the A-CBA film
with free anthocyanins displays a homogeneous and compact structure. Compared with the
free anthocyanins, the liposomes with hydrophobic structures of the A-CBAL film caused
a reduction in the cross-linking between the film-forming solution and water molecules.
Therefore, the liposomes in the film-forming matrix presented a lower homogeneous
dispersion. However, there were no obvious differences between the A-CBAL films,
indicating that the anthocyanin encapsulation of liposomes hardly presented a negative
effect on the film morphologies. Importantly, the above results indicated that bi-layer films
were satisfactorily prepared.
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Figure 2. Cross-section SEM images of A-CBA (A), A-CBAL1 (B), A-CBAL2 (C), and A-CBAL3 films
(D), and FTIR spectra (E) of colorimetric films.

3.3.2. FTIR Analysis of Indicator Films

The absorption peaks of the FIIR spectra of the film-forming materials and the bi-layer
films are shown in Figure 2E. The band at 3356 cm−1 corresponds to the OH stretching
vibration of the hydroxyl structure. It occurred in all the spectra but with lower peak
intensity changes [24]. The peaks at 2289 and 2901 cm−1 were due to the C-H and -CH2
stretching vibrations of alkane groups [25]. The absorption band that appears at 1637 cm−1

of the anthocyanins was ascribed to the C=C stretching from the aromatic ring frame of
the butterfly bean flower anthocyanin, which is related to the flavonoid fingerprint spectra
and was also found in all the bi-layer films [26]. The absorption peaks of carrageenan at
1242 and 943 cm−1 were associated with the C=O of the glycoside bond and the S=O of the
sulfate ester group, respectively [27]. The other major band at 1049 cm−1 was attributed
to the C-O-C stretching vibration of the conjugated carbonyl group [28]. In the case of the
A-CBAL films, all the peaks presented similar positions with minor intensity changes to the
control film (A-CBA). The results indicated that there was no chemical interaction between
the liposomes and anthocyanins.

3.4. Physical Performance Analysis
3.4.1. Appearance and Opacity Analysis Results

The intuitive packaging color appearance can easily affect the application efficacy
of an indicator film. As presented in Table 2, there were no obvious differences in the L*
values of A-CBAL films with different lecithin ratios but they exhibited slightly higher
values than the A-CBA film, indicating that liposome films have higher brightness. The
decreased negative a* and b* values reflect the lower greenness and blueness strengths of
the films with liposomes, which could be attributed to the yellowish color of the liposomes.
Therefore, the blue of anthocyanin was covered after being encapsulated by liposomes,
increasing the opacity.

3.4.2. Thickness and WVP Analysis Results

As illustrated in Figure 3A, the thicknesses of all the indicator films were not signifi-
cantly different. The considerable index evaluates whether the packaging quality is WVP,
which can represent the ability to block external water vapor of a film. As summarized in
Figure 3B, the WVP values of all the A-CBAL films were significantly lower than that of the
A-CBA film. It may be that lecithin had hydrophobic tails, which reduced the hydrophilicity
of the indicator film. Therefore, the liposome films reflected higher water vapor resistance.
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However, the films with different lecithin ratios had little difference between them, and the
maximum values did not exceed 2.32 × 10−7 g · m−1 · h−1 · pa−1.

Table 2. The colors and opacity values of the films.

Film L* a* b* Opacity Appearance

A-CBA 84.82 ± 0.42 a −10.52 ± 1.89 c −7.37 ± 1.01 d 15.08 ± 0.86 a

 
A-CBAL1 92.65 ± 1.31 b −1.54 ± 0.35 a −1.08 ± 0.11 a 32.39 ± 1.18 c

 
A-CBAL2 89.61 ± 1.05 b −2.45 ± 0.56 b −1.59 ± 0.40 ab 27.72 ± 2.45 b

 
A-CBAL3 90.17 ± 0.56 b −2.25 ± 0.31 b −3.11 ± 0.79 c 26.02 ± 1.82 b

 
Note: the superscripted characters of a, b, c, d represent significant differences (p < 0.05).

WVP

TS EB

Figure 3. Thicknesses (A), WVP values (B), and mechanical properties with TS (C) and EB values (D)
of the bi-layer films. Characters represent a significant difference (p < 0.05).

3.4.3. Mechanical Properties

Excellent TS and EB values can improve the protection performance of food packaging
materials during food transportation periods. Each of the A-CBAL films had a significantly
higher TS value and a lower EB value than the A-CBA film. This was probably attributed
to the stronger intramolecular chemical bonding force and intermolecular force (van der
Waals force and hydrogen bond) between liposomes and the film-forming materials than
free anthocyanins [29]. The A-CBAL2 film simulated the maximum TS value with a value of
12.42 MPa, and that of the A-CBAL3 film gradually decreased to 5.81 MPa due to liposome
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instability. However, there were no significant differences in the EB values of the three
A-CBAL films, that is, the change in the lecithin ratio did not destroy the crystal structure
of the film-forming matrix.

3.5. Exudation Rate and Color Response of Indicator Films to pH Solution

The issue of anthocyanin leaking out from films causes the failure of the indicator
function. The pH behavior of the films differed noticeably, as seen in Figure 4. The
exudation rates of bi-layer film with free anthocyanins (A-CBA) exuded rapidly, reaching
80% at pH 2 after 70 min. In addition, the exudation rate of the A-CBA film reached 100%
at pH 7 and pH 9 after 50 min, due to the higher degradation of anthocyanins under the
alkaline environment [30]. Thus, the films with anthocyanin-loaded liposomes (A-CBAL)
slowed down the exudation rate by no more than 45%. However, there was no correlation
between the anthocyanin exudation rate and the ratio of lecithin in liposomes. In conclusion,
the liposomes enhanced anthocyanin encapsulation, which can improve the stability of an
indicator film in a high-humidity environment.

Figure 4. The exudation rates of bi-layer films at pH 3 (A), pH 5 (B), pH 7 (C), and pH 9 (D), and the
color of the films at pH 2-10 (E).
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Figure 4E shows the color responses of the indicator films at different pH values.
With pH increases, the color of the A-CBAL films changed from pink to purple and then
gradually tended toward yellowish green. It can be verified that the color changes of
the indicator films were consistent with anthocyanin-loaded liposome solutions, but with
different degrees of coloration. However, compared with the A-CBA film, the response
chrominance of the A-CBAL films decreased, which corresponded to the color appearance
results in the encapsulation of liposomes. The encapsulation hindered the coloration of
the butterfly bean flower anthocyanin. With the addition of lecithin, the coloration of the
indicator films decreased, but they still presented visible color changes. As a result, in
high-humidity food packaging, our bi-layer film with anthocyanin-load liposomes can be
used as a pH indicator.

3.6. Color Stability of the Bi-Layer Films

The storage stability of the indicator films was determined under 4 ◦C and 25 ◦C,
respectively. Generally, when the ΔE value of an indicator is no more than five, it will
be difficult to notice with the naked eye [31]. As can be seen from Figure 5A, each of the
bi-layer films presented higher stability with a lower ΔE value at 4 ◦C within 14 days. Thus,
the film with free anthocyanins was not stable on the 4th day at 25 ◦C with an ΔE value of
5.35. The values of the A-CBAL1 and A-CBAL2 films were greater than 5 on the 10th day.
At 25 ◦C, the films were more easily able to form a ring-opened chalcone structure with
color changes [32]. The ΔE value of the A-CBAL3 film was 4.48 on the 14th day. This was
because more radio lecithin with high encapsulation could protect free anthocyanins from
external intrusion.

ΔE

μ

ΔE

Figure 5. Color changes of the films stored at 4 ◦C (A) and 20 ◦C (B) for 20 d.

3.7. Response Analysis of Indicator Films to Ammonia

The indicator films exposed to ammonia with different ΔE values can be seen in
Figure 5B. The colors changed from baby blue to light green and then to yellow green with
the increase in ammonia concentration. Moreover, the ΔE values were consistent with the
visible colors of the films. All of the indicator films had the same variation trend but with
some differences. Compared with A-CBAL films, the film with free anthocyanins presented
the highest color changes, with an ΔE value of 18.29. The encapsulation of anthocyanins
decreased their ammonia reactive ability. Even so, the A-CBAL2 film also presented visible
color changes with ΔE values above 14.28. However, there were slight differences between
the films with different liposomes. As a result, a film containing anthocyanin-loaded
liposomes also has the potential to serve as a food freshness indicator.
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The Lab values (A–E), b values (F), ΔE (G), and color changes of the films (H) with the
concentration of ammonia.

3.8. Application on Monitoring Shrimp Freshness of Bi-Layer Indicator Film

In this study, the A-CBA and A-CBAL2 films were used to monitor shrimp freshness
at 4 ◦C. As shown in Figure 6, the ΔE of the indicator films and the TVB-N of the shrimp
exhibited a similar increasing trend during the storage time. The TVB-N increased to
11.20 mg/100 g and the corresponding ΔE2 was 3.56 for the A-CBAL2 film, with little color
change in the first 24 h. Then, the films changed from blue to dark green-yellow with an
ΔE2 value of 6.58, and the ΔE1 value of the A-CBA film was 7.63 after 48 h. The TVB-N was
27.08 mg/100 g at 48 h. The freshness of shrimp was still approved because the legislation
limiting level of TVB-N is 30 mg/100 g in Seawater shrimp (GB2733-2015). After 60 h, the
TVB-N increased to 36.93 mg/100 g, which was spoiled, and the ΔE increased dramatically
due to the shrimp’s deeper putrefaction. The ΔE1 value was 8.96 for the A-CBA film with a
deepened yellow color, and the ΔE2 value was 7.83 with a light yellowish color. The color
of the film with liposomes was lower than that of the film with free anthocyanin, which
may be attributed to the encapsulation of the anthocyanin by liposomes, which reduced the
color response sensitivity of the anthocyanin. Meanwhile, the correlation analysis between
the ΔE of the bi-layer film and the TVB-N followed a linear model. For the A-CBA film,
the coefficient was 0.8956, and for the A-CBAL2 film, it was 0.9158 (Figure 6B). Therefore,
the film with anthocyanin-loaded liposomes can also be used as a good indicator for the
detection of the putrefaction period of shrimp.

Figure 6. The TVB-N of shrimp and ΔE of the films (A). ΔE1 is A-CBA and ΔE2 is A-CBAL2 at the
storage time. Correlation relation between TVB-N and ΔE (B). The illustration is the color change of
films during storage.

4. Conclusions

In this study, free anthocyanins and anthocyanin-loaded liposomes were added to
carrageenan as the sensor layer of the bi-layer films, respectively, and agar was the outer
protective layer. Different ratios of lecithin were used to design the butterfly bean flower
anthocyanin extraction into liposomes, and their characterization was investigated. Then
the structure, mechanical physical properties (such as TS, EB, and WVP), stability, pH, and
ammonia sensitivity of the bi-layer films were individually analyzed with different ratios
of lecithin in liposomes. The SEM and FT-IR results indicated that the bi-layer films were
satisfactorily prepared via hydrogen bonding interactions. The films with anthocyanin-
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loaded liposomes had significantly higher TS values and lower EB values than that with free
anthocyanins. Importantly, the films with liposomes had a positive effect on the stability
of the indicator films in high-humidity environments but slightly decreased the pH and
ammonia sensitivity. Finally, the application on the shrimp verified that the bi-layer film
can be used as an indicator of meat freshness. However, the encapsulation of anthocyanins
by liposomes delayed the sensitivity of the film. Therefore, future exploration could focus
on a higher sensitivity method based on liposomes.
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Abstract: Leaf mildew is a common disease of tomato leaves. Its detection is an important means to
reduce yield loss from the disease and improve tomato quality. In this study, a new method was de-
veloped for the multi-source detection of tomato leaf mildew by THz hyperspectral imaging through
combining internal and external leaf features. First, multi-source information obtained from tomato
leaves of different disease grades was extracted by near-infrared hyperspectral imaging and THz
time-domain spectroscopy, while the influence of low-frequency noise was removed by the Savitzky
Golay (SG) smoothing algorithm. A genetic algorithm (GA) was used to optimize the selection of the
characteristic near-infrared hyperspectral band. Principal component analysis (PCA) was employed
to optimize the THz characteristic absorption spectra and power spectrum dimensions. Recognition
models were developed for different grades of tomato leaf mildew infestation by incorporating
near-infrared hyperspectral imaging, THz absorbance, and power spectra using the backpropagation
neural network (BPNN), and the models had recognition rates of 95%, 96.67%, and 95%, respectively.
Based on the near-infrared hyperspectral features, THz time-domain spectrum features, and classifi-
cation model, the probability density of the posterior distribution of tomato leaf health parameter
variables was recalculated by a Bayesian network model. Finally, a fusion diagnosis and health
evaluation model of tomato leaf mildew with hyperspectral fusion THz was established, and the
recognition rate of tomato leaf mildew samples reached 97.12%, which improved the recognition
accuracy by 0.45% when compared with the single detection method, thereby achieving the accurate
detection of facility diseases.

Keywords: tomato; leaf mildew; terahertz time-domain spectroscopy; near infrared hyperspectral
technology; multi-source information fusion

1. Introduction

Crop diseases greatly impact the yield and quality of agricultural products, as they
can easily cause stem and leaf death, thereby leading to plant decay [1]. In this way, such
diseases affect human food security and food safety. Therefore, research on technologies
for crop disease diagnosis is of great significance for the early warning and control of
these diseases. The traditional diagnosis method used for crop diseases mainly relies
on manual diagnosis, which is based on the experience of the examiner. Although this
method is simple and convenient, it consumes a great deal of manpower and allows for a
high degree of subjectivity, which can lead to misdiagnosis. Currently, the most objective
and accurate disease detection methods available are based on laboratory biochemical
tests (e.g., the polymerase chain reaction (PCR), nucleic acid hybridization, and DNA
microarray techniques) [2–4]. Although laboratory-based biochemical detection methods
feature the advantage of high identification accuracy, their involved sampling and de-
tection steps require professional operation, are associated with high costs, are lengthy
to conduct, and are difficult to conduct on a large-scale [5,6]. In recent years, the rapid
development of machine vision and spectral imaging technologies has enabled the quick
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detection of crop diseases. Such technologies include visible/near-infrared imaging, multi-
spectral/hyperspectral imaging, and chlorophyll fluorescence imaging, which have all been
applied to crop disease detection [7,8]. Although this represents progress, most existing
studies only discriminate the grade of crop disease by the reflective properties and apparent
outer characteristics of the diseased leaves. Because the internal damage of diseased leaves
cannot be detected, it remains difficult to achieve the combined analysis of internal and
external damage caused by fungal diseases.

In recent years, hyperspectral technology has attracted increasing research inter-
est in the context of disease detection, owing to its merits of featuring high-resolution
and integrated mapping. Spectral imaging technology can obtain the spectral image
data cubes of the tested sample, thereby accurately obtaining the image information and
spectral reflection intensity distribution characteristics of each test sample in each wave-
band. Fazari et al. [9] established a three-dimensional CNN model using hyperspectral
imaging to classify olive anthrax, which performed with a prediction accuracy of 95.73%.
Zhang et al. [10] used visible light imaging on downy mildew in combination with machine
learning methods to quickly and accurately estimate the severity of cucumber downy
mildew in a greenhouse. Image features that had a high correlation with the actual value
of greenhouse cucumber downy mildew severity were then used to construct a shallow
machine-learning estimation model. The results showed that there was a good linear
relationship between the severity of greenhouse cucumber downy mildew estimated by
the model and the actual value. Qin et al. [11] proposed a feature band extraction method
combining an improved competitive adaptive reweighting algorithm (CARS) and a succes-
sive projections algorithm (SPA) with disease information to establish an early detection
model of cucumber downy mildew. With this model, the difficult problem of conducting
the early detection of cucumber downy mildew was solved.

Terahertz (THz) radiation refers to long wavelength electromagnetic waves with a
frequency range of 0.1–10 THz (corresponding to wavelengths of 30 μm–3 mm). THz waves
penetrate deeply into the medium and their high correlation helps to determine the exact
refractive index and absorption coefficient of a given sample. THz spectroscopy can be
utilized to analyze macromolecules and components inside of crops due to the transmission
properties of the radiation, which gives it unique advantages in the application of biological
information detection. Some researchers have carried out a preliminary attempt at the THz-
based detection of crops and agricultural products [12,13]. Di Girolamo et al. [14] imaged 50
chestnuts that were partially infected with Pygmy fungus in the low THz frequency range
by means of a homemade 0–0.1 THz small portable imaging system. By assuming different
moisture densities and different physical structures of healthy and unhealthy chestnuts, the
relationship between the physical parameters (mass or volume) of chestnuts and the light
attenuation of healthy and infected chestnuts was tentatively resolved. The results showed
that the index of light attenuation combined with the measurement of chestnut weight
or volume could successfully identify whether a given chestnut was healthy or diseased.
Li et al. [15] employed a recognition model based on a THz spectroscopy technique to
analyze data for apple ring rot and cucumber powdery mildew. The researchers established
recognition models for common crop diseases based on K-nearest neighbor, SVM, and BP
neural network algorithms, respectively, with a correlation coefficient Rp of 0.9649. Their
findings demonstrated that hyperspectral and THz technology could be used to detect crop
diseases. However, it remains difficult to obtain the internal and external indicators of crop
diseases from either external characterization or by using only a single method, and the
prediction accuracy also needs to be further improved.

Tomato leaf mold, also known as black mold and black hair, is a tomato disease caused
by Fulvia fulva (Cooke) Cif. Tomato leaf mildew mainly affects the leaves of infected plants,
and in severe cases, also affects the stems, flowers, and fruits. In the early stages of the
disease, yellow-green spots with obscure edges appear on the front of affected leaves, while
a grayish-white mildew layer appears on the back of the leaves. When the humidity is high,
the leaf surface lesions can also grow a mildew layer. After the conidia of tomato leaf mold

132



Foods 2023, 12, 535

invade the tomato leaves, they cause changes in the sugars, lipids, proteins, and nucleic
acids inside of the leaves. Existing crop disease detection models employ only a single
detection method, and such existing methods are unable to fully reflect the condition of the
diseased crops. Therefore, this study acquired the near-infrared hyperspectral data, THz
power spectrum, and absorbance time-domain spectral data of tomato leaf mildew samples
from different infection grades, and carried out a study on a detection model combining
both internal and external features of tomato leaf mildew. Through the spectral analysis of
tomato leaves under different characteristic frequency bands, a high-precision prediction
model of tomato leaf mildew was established.

2. Materials and Methods

2.1. Experimental Method

The experiment took tomato leaf mildew samples as the research object and collected
test samples with different percentages of diseased spot areas. Using a hyperspectral
imaging system and THz time-domain spectral measurement system, the near-infrared
spectrum, power spectrum, and absorbance time-domain spectral information of samples
with different grades of disease were collected. Algorithm optimization was used to remove
interference, remove redundancy, and perform feature extraction. Finally, based on the
extracted spectral feature data of different grades of disease, single-dimensional and multi-
dimensional fusion tomato leaf mildew recognition models were established, respectively.
The specific process is shown in Figure 1.

Figure 1. Flow chart of the experiment.
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2.2. Cultivation of Samples

Experimental samples of the tomato variety “Cooperative 906” were cultivated in the
Venlo greenhouse of Jiangsu University. A 32 × 56 cm rectangular black plastic plate was
used for raising the seedlings. Peat, perlite, and vermiculite were mixed to comprise the
cultivation substrate, and the seeds were sown in the seedling tray. After budding, the
seeds were transplanted into a flowerpot with a diameter of 23.8 cm and a height of 35 cm,
and then cultivated by soilless potting using perlite as the substrate nutrient solution.

To eliminate interference, a standard concentration of Yamazaki nutrient solution
was used to provide the same nutrients for the samples. High temperature and humidity
conditions characterized the greenhouse to allow for the development of tomato leaf
mildew. After 15 days of infection with tomato leaf mold, the mold was collected from
lesioned areas. After collection, the mold was immediately placed into fresh-keeping sealed
bags and placed in a portable refrigerated incubator in order to prevent evaporation and
minimize the impact of external conditions. Finally, 240 effective samples were obtained,
including those obtained from 40 healthy leaves and those obtained from 200 infected
leaves. All tomato leaf samples were divided into four disease grades according to GB/T
17980.26-2000. Pictures of these four tomato leaf mildew grades are shown in Figure 2.

 

(a) (b) (c) (d) 

Figure 2. Tomato leaf mildew grades. (a) Level 0, (b) level 1, (c) level 3, (d) level 5.

Statistics of the effective sample sizes are shown in Table 1. We randomly arranged the
samples of the four different tomato leaf mildew grades and randomly divided the training
set and prediction set in a proportion of 2:1.

Table 1. Statistics of effective sample sizes.

Disease Level Number Training Set Prediction Set

Level 0 (healthy samples) 42 28 14
Level 1 (disease spot area < 5%) 76 51 25

Level 3 (6% < disease spot area < 10%) 65 43 22
Level 5 (11% < disease spot area < 25%) 57 38 19

Total samples 240 160 80

2.3. Equipment Used for Experiments

The HIS-VSNIR scanning hyperspectral measurement system (Shanghai Wuling Opto-
electronic Technology Co., Ltd.) was used in the experiment. The system is composed of a
near-infrared camera (NIR, 871.6–1766.3 nm), ImpectorN17E spectrometer, OLES30 lens,
DC adjustable light source, glass fiber symmetrical line light source, stage, self-propelled
displacement stage, stepping motor controller, computer, and display. The structure of this
hyperspectral imaging system is illustrated in Figure 3.
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Figure 3. Structure of hyperspectral imaging system. (1) Light box, (2) near-infrared camera, (3) lens,
(4) light conduction device, (5) sample, (6) load bearing platform, (7) industrial control machine,
(8) displacement control box, (9) light source.

Conducting pre-sampling tests on tomato leaves is required prior to NIR hyperspectral
data acquisition. In order to ensure good clarity and no distortion of the imaging data, the
initial exposure scanning time of the hyperspectral imaging system was set to 15 ms, the
scanning speed was set to 1.32 mm/s, and the maximum peak reflection imaging intensity
of the leaf pre-sampled image data was set to 3000. The dark current generated in the
measured sample was required to be calibrated in a black-and-white field in advance, and
the reflection intensity range was set to 0–4096. In the sample test, the sample was placed
on a full black background separately, and the whole image acquisition and test process
was completed in a dark room. The original hyperspectral imaging of the sample was
corrected in black and white. The correction formula is as follows:

R =
Rr − Rd
Rw − Rd

(1)

where R is the corrected sample image; Rr is the original image of the sample; Rd is the
dark field fixed image; and Rw is the standard whiteboard calibration image.

In this experiment, the TS7400 THz time-domain spectral measurement system (Ad-
vantest Corporation of Japan) was used to collect the THz information of samples, which
was specially customized for the detection of agricultural biological information. A struc-
ture introduction diagram of the THz time-domain spectrum measurement system is shown
in Figure 4.

The measurement range of the TS7400 THz time-domain spectral measurement system
was 0.1–4.0 THz and the frequency sampling interval selected for testing was 0.0038 THz,
which can be used to detect 225 cm2 samples. This meets the detection requirements of
tomato leaves. In order to improve the accuracy of the acquired data and reduce the effect
of moisture on the THz time-domain spectrum, before scanning the tomato samples, the
tomato leaves were first freeze-dried using a vacuum freeze-dryer set to −65◦C and then
left for 36 h to reduce their moisture content to less than 3%. Additionally, the THz time-
domain spectral scanning cabinet was filled with nitrogen to keep the maximum relative
humidity below 5%.
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Figure 4. Composition of the measuring system. (1) THz transmitter, (2) optical fiber, (3) opera-
tion/analysis computer, (4) ethernet, (5) low-temperature thermostat transmission module, (6) analy-
sis unit, (7) measuring unit, (8) sample stage, (9) THz detector, (10) movable support.

In order to obtain the best response information for tomato leaf mildew samples, this
study used the power spectrum and absorbance information for sample analysis. ‘Power
spectrum’ is an abbreviation for the power spectrum density function, which is defined as
the signal power within the unit frequency band. It represents the variation of the signal
power with frequency, i.e., the distribution of the signal power in the frequency domain.
Absorbance is used to express the degree of light absorption by substances. Samples of
different grades of tomato leaf mildew have different absorbances.

2.4. Data Processing
2.4.1. Data Smoothing

The SG smoothing algorithm is commonly used in data pre-processing, which features
the advantages of being simple, convenient, fast, and efficient [16]. The principle of the
algorithm is to first take a window with an odd number of points in width, use the least
squares method to fit through the translation of the window, and then replace the original
value with the fitting value of the point in the window to achieve the effect of smoothing
the data. In this study, the SG smoothing algorithm was used to preprocess the data, and
the window width was 7 points/time. This algorithm can be used to effectively reduce
interference signals and improve both modeling efficiency and accuracy. After the above
preprocessing, the before-and-after data comparison of the spectral data of tomato leaf
mildew samples was obtained, as shown in Figure 5.
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(a) (b) 

 

(c) (d) 

(e) (f) 

Figure 5. Data of tomato leaf mildew samples before and after SG smoothing preprocessing. (a) Near-
infrared primary spectrum, (b) near-infrared spectra after SG smoothing, (c) THz absorbance spec-
trum, (d) THz absorbance spectrum after SG smoothing, (e) THz power spectrum, (f) THz power
spectrum after SG smoothing.
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2.4.2. Characteristic Band screening

Because the collected spectral data contains many redundant and collinear information
characteristics, this interferes with the extraction of effective spectral information, conse-
quently leading to the effective spectral information extraction model being too complex
and hence difficult to calculate. In this paper, a genetic algorithm (GA) and principal com-
ponent analysis (PCA) were used to select the characteristic wavelength in order to reduce
the influence of information redundancy and collinearity, simplify the model, and reduce
the amount of calculation. The use of a GA algorithm represents an intelligent optimization
method that simulates the evolutionary process that occurs by the natural selection of or-
ganisms [17]. When running the GA to screen the near-infrared hyperspectral characteristic
bands in the current study, the crossover probability was set to 0.5, the population size
was set to 30, and the mutation probability was 0.01. The characteristic wavelength was
determined as the wavelength with the highest frequency of 100 GA iterations.

PCA is a multivariate statistical method used for analyzing correlations among multi-
ple variables. The method converts a group of variables that may correlate with a group of
linearly unrelated variables through orthogonal transformation [18]. The new variables
obtained through PCA can reduce the number of variables while preserving the original
feature information as much as possible. Therefore, PCA is a suitable method for the
dimension reduction and feature extraction of THz time-domain spectral data.

2.4.3. Establishment of the Model

The backpropagation neural network (BPNN) is a powerful learning system that can
realize highly nonlinear mapping between the input and output [19]. The number of
units in the input layer of the BPNN model is the number of principal component feature
variables, while its output layer is the disease spot area percentage; that is, the grade of
tomato leaf mildew in this study. The non-linear Sigmoid type function was selected as the
action function of the model, the learning rate was set to 0.6, the number of iterations was
set to 300, the target deviation was set to 10–5, and other settings were kept as the default
settings of the MATLAB self-contained toolbox. The activation function of the hidden layer
was tansig and the activation function of the output layer was purelin.

Bayesian reasoning is a commonly used method of statistical reasoning. The main
way to obtain information and evidence is by the updating of probability assumptions by
the Bayesian theorem [20]. The steps for the classification and recognition of tomato leaf
mildew samples by Bayesian reasoning are as follows.

(1) Calculate the prior probability; that is, the proportion of each level in the tomato
leaf mildew sample. The prior probability formula is as shown below:

P(Y = ck) =
∑N

i=1(yi = ck)

N
, k = 1, 2, · · · , K (2)

(2) Calculate the conditional probability; that is, the conditional probability of each
attribute in the training data set:

P
(

X(j) = ajl

∣∣∣Y = Ck

)
=

∑N
i=1 I

(
X(j)

i =ajl ,yi=ck

)
∑N

i=1 I(yi=ck)

j = 1, 2, · · · , n, l = 1, 2, · · · , sj′k = 1, 2, · · · , K
(3)

(3) For a given example xi =
(

x(1), x(2), · · · , x(n)
)T

, a posteriori probability is calculated.
(4) Calculate the maximum a posteriori probability and determine the class of instance

x according to the value of the maximum a posteriori probability:

y = argmax
ck

P(Y = ck)
n

∏
j=1

P
(

X(j) = x(j) | Y = ck

)
(4)

There are three types of node variables in the Bayesian network model: hyperspectral
characteristic band nodes representing the health status of tomato leaves
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fa = { fa1, fa2, · · · , faN}, THz characteristic band nodes representing the health status
of tomato leaves fb = { fb1, fb2, · · · , fbN}, and parameter nodes representing the health
status of tomato leaves Y = {Y1, Y2, · · · , YM}. The functional relationship between hyper-
spectral, TH, and parameter characteristic band nodes representing the health status of
tomato leaves is as shown below:

Y = F(u, fa, fb) (5)

After introducing the new node λ, the health status analysis of tomato leaves based on
the Bayesian network model is obtained, as shown in Figure 6. Bayesian networks can be
introduced by virtue of the prior distribution of health parameters. In the Bayesian network
model, λ is the percentage of the diseased spot area; that is, the threshold value, which is
set to 0.5.

Figure 6. Improved Bayesian network model for the health state analysis of tomato leaves.

3. Results and Discussion

3.1. Screening of Near-Infrared Hyperspectral Characteristic Bands

Figure 7 shows the selected frequency of each variable of the tomato leaf mildew
samples. The variables that were selected more than 35 times became the final selected
variables, and GA greatly reduced the number of variables from hundreds to only several.
The GA operation screened eight near-infrared hyper-spectral characteristic wavebands
of tomato leaf mildew samples, which corresponded to 1016 nm, 1019.9 nm, 1157.1 nm,
1160.5 nm, 1163.9 nm, 1338.7 nm, 1553.3 nm, and 1556.7 nm, respectively.

3.2. Terahertz Time-Domain Spectral Data Processing Results
3.2.1. Terahertz Time-Domain Spectral Analysis

The average values of the sample power spectrum and absorbance spectrum can be
obtained by THz time-domain spectroscopy. Figure 5e shows the average value curve of the
power spectrum of the four tomato leaf mildew grades at 0.1–2.0 THz, with clear absorption
peaks observed at approximately 0.43 THz and 1.27 THz, as well as a faint absorption peak
at approximately 0.53 THz. Figure 5c shows the mean absorbance curves for the four tomato
leaf mildew classes at 0.1–2.0 THz, with a clear absorption peak observed at approximately
0.79 THz. For level 3 mold leaves, a relatively clear absorption peak was observed at
approximately 1.89 THz. However, the other three grades of leaf mildew in leaves did not
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have this absorption peak, indicating that this absorption may be an error caused by the
equipment itself, and hence should not be directly judged as the peak of the absorbance
sample. The identification of each sample should be achieved by mathematical modeling.

 

(a) (b) 

Figure 7. Running process of the genetic algorithm. (a) Selected times of each wavelength point dur-
ing genetic iteration, (b) schematic diagram of characteristic bands screened by the genetic algorithm.

Figure 8 shows the THz frequency domain image at 0.4 THz derived from the data
distribution. It can be seen that the difference between the diseased and healthy areas
of the leaves is reflected by the color information corresponding to the strength of the
frequency domain values, which indicates that the processed THz feature image can reflect
the changes in crops from a visual perspective.

Figure 8. Terahertz images of tomato leaves with different disease grades.

3.2.2. Screening of the Terahertz Time-Domain Spectrum Characteristic Frequency Band

PCA enables the original spectral bands to obtain principal components through linear
combination, and also determines the characteristic wavelength according to the absolute
value of the loadings of the principal components. The loading refers to the correlation
coefficient between the principal component and the original wavelength variable, which is
used to reflect the closeness degree between the principal component and each wavelength
variable [21]. Loading curves of the first three principal components of tomato leaf mildew
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samples are shown below in Figure 9. The absolute value of loadings at the peak and
trough of each principal component curve was large and the corresponding wavelength
was the characteristic wavelength. Therefore, after smoothing the power spectrum, five
characteristic wavelengths were obtained: 0.413 THz, 0.752 THz, 1.394 THz, 1.457 THz,
and 1.622 THz, respectively. Using the same method, the smoothed absorbance spectrum
obtained six characteristic wavelengths: 0.249 THz, 0.567 THz, 0.813 THz, 1.243 THz,
1.771 THz, and 1.892 THz, respectively.

(a) (b) 

Figure 9. Load curves of the first three principal components of tomato leaf mildew samples.
(a) absorbance dimension, (b) power dimension.

To further compare the visualized images in different frequency domains, THz fre-
quency domain imaging was performed for five characteristic spectra, as shown in Figure 10.
The images of the samples were relatively distinct at the 0.413 THz, 0.752 THz, and
1.394 THz frequencies. At the frequency of 0.413 THz, the image of the sample was the
clearest and the recognition effect was the best. However, at the 1.457 THz and 1.622 THz
frequencies, the sample images became blurred.

Figure 10. Terahertz time-domain spectral characteristic image.

The PCA method was used to establish the identification model of different tomato
leaf mildew grades on the power spectrum dimension and the absorbance dimension of
the THz time-domain spectrum. Table 2 shows the PCA results of the spectral data in both
dimensions combined with the preprocessing of the SG smoothing algorithm. As shown in
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Table 2, the cumulative variance contribution of the first two principal components (PC1
and PC2) to the level variable of tomato leaf mildew was above 85% [22]. Hence, PC1 and
PC2 were selected for the analysis.

Table 2. Prediction accuracy under each model.

Principal Component/Cumulative Contribution Rate (%) PC1 PC2 PC3

absorbance 72.345 92.368 94.522
power spectrum 69.657 89.672 93.914

According to Figure 11, it can be seen that the confidence ellipse of the absorbance
data of different grades of tomato leaf mildew exhibited an intertwined state with a
discrimination rate of 19.8%. This is because the recognition rate of level 1 grade tomato
leaves was 84.9%, while the recognition rates of tomato leaves classed as grades 0, 3,
and 5 were lower. The confidence ellipse of the power spectrum data of different grades
of tomato leaf mildew also exhibited an intertwined state, with a discrimination rate of
24.7%. The above results show that the recognition rate of tomato leaf mildew using the SG
smoothing preprocessing algorithm combined with the PCA model was low, and that the
PCA method could not fully mine the spectral information of tomato leaves with different
disease grades. Hence, it is necessary that other algorithms are used to build models to
improve the prediction accuracy.

(a) (b) 

Figure 11. Scatter diagram of tomato leaf mildew sample distribution. (a) absorbance scatter,
(b) power scatter.

3.3. Single-Model Analysis

After using the GA and PCA algorithms to reduce the dimension of the data and
screen the characteristic variables, a prediction model of tomato leaf mildew disease was
developed based on the screened feature variables by the BPNN method. Before the model
was established, it was necessary to carry out PCA and extract the sub-vectors of the
principal components to form the input of pattern recognition. During the training process
of the model, the number of principal component variables affects both the accuracy and
stability of the model. Too few principal component factors will lead to excessive loss of
information and reduce the accuracy of the model. However, if the number of principal
component factors is too great, an excessive amount of redundant information will be
introduced, which both influences the robustness of the model and lengthens the data
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processing time [22]. Therefore, it is important to select the appropriate number of principal
component factors for the establishment of the model.

Figure 12 shows the recognition results of the BPNN model training and prediction
under different numbers of principal component factors. It can be seen that, initially, with
the increasing number of principal component factors, the recognition rates in the training
and prediction sets generally exhibited an increasing trend, while after the number of
principal component factors reached 7, the recognition rates of the models stabilized, and
then even exhibited a moderately decreasing trend.

Figure 12. Recognition results of training and prediction under different principal component factors.

Figure 13a shows the BPNN performance graph, which shows that the minimum MSE
was 0.6792. Figure 13b shows the BPNN training status graph, which shows that the actual
training times were 189. Figure 13c–e shows the BPNN regression analysis graph. When the
test set classification index falls within the threshold of the training set classification index,
the recognition result is correct. The converse indicates that the classification recognition is
incorrect. The precision of the proposed model under the near-infrared hyperspectrum was
determined to be R = 0.9367, while under the THz absorbance dimension it was R = 0.9573,
and under the THz power spectrum dimension it was R = 0.9431. Based on the actual
classification diagram and prediction classification diagram of all the test sets, it was found
that the BPNN model was able to identify almost all tomato leaves with leaf mildew.

To evaluate the detection accuracy of the model, this study comprehensively evaluated
the recognition results with the recognition accuracy variable P, which is an indicator
used to measure the detection signal-to-noise ratio; that is, the percentage of the ‘correct’
detection results among all detection results. The calculation formula is shown below [23]:

P =
TP

TP + FP
(6)
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where TP represents the correctly identified tomato leaf mildew samples, and FP represents
the incorrectly identified tomato leaf mildew samples.

In this study, tomato leaf mildew was divided into four grades, so the prediction
accuracy of each level was taken as the evaluation index used for statistics. The results are
shown in Table 3.

 

(a) 

(b) 

Figure 13. Cont.
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(c) 

(d) 

Figure 13. Cont.
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(e) 
Figure 13. (a) Performance diagram of the backpropagation neural network, (b) training status of the
backpropagation neural network, (c) regression analysis of the backpropagation neural network using
the near-infrared hyperspectrum, (d) regression analysis of the backpropagation neural network
using the THz absorbance, (e) regression analysis of the backpropagation neural network using the
THz power spectrum.

Table 3. Prediction accuracy of each model.

Dimensions Model Number of Characteristic Variables
Prediction Accuracy (%)

Level 0 Level 1 Level 3 Level 5 Total

Near-infrared
hyperspectrum GA-BPNN 8 100 96 90.90 94.74 95

THz power spectrum PCA-BPNN 5 100 96 95.45 94.74 96.67
THz absorbance PCA-BPNN 6 100 92 95.45 94.74 95

The results show that in the model established by the characteristic variables, the
overall detection accuracy of the samples was more than 90%, featuring high accuracy.
The highest and lowest detection accuracy rates for the Level 1 samples were 96% and
92%, respectively. The average accuracy rate was 94.67%. Compared to Level 3, the
recognition effect in Level 1 was better. Compared to Level 5, the recognition rate was
slightly lower. Each model had the highest detection accuracy rate for the Level 0 samples.
Hence, the PCA-BPNN model of the power spectrum dimension is the optimal model for
comprehensive evaluation. Its prediction accuracy for grades 0, 1, 2, 3, and 4 was 100%,
96%, 95.45%, and 94.74%, respectively, with an overall prediction accuracy of 96.67%.

3.4. Fusion Model Analysis

Figure 14 shows the Gibbs sampling dynamics of the health parameters under the
condition of tomato leaves infected with leaf mildew. Figure 14a represents the frequency
of tomato leaves infected with leaf mildew, while Figure 14b,c each represent a health
parameter map of a hyperspectral THz characteristic band.
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Figure 14. Gibbs sampling diagram. (a) represents the frequency of tomato leaves infected with leaf
mildew, while (b,c) each represent a health parameter map of a hyperspectral THz characteristic band.

In Figure 15, a probability density diagram was used to characterize the leaf health pa-
rameters of tomato leaf mold. Type I information fusion refers to THz spectral absorbance
feature band fusion, while type II information fusion refers to THz spectral power spectrum
feature band fusion, and type III information fusion refers to hyperspectral feature band
fusion. These three types of information are fused to re-evaluate the health parameter indi-
cators and calculate the recognition rate. After fusing the three types of prior information,
it can be seen from the figure that the estimation results were significantly improved after
fusing type I information. The posterior distribution of tomato pests and diseased leaves
illustrates this point more clearly. The health parameters of tomato leaf mildew posterior
samples were also all distributed around 1.75, indicating that the modified Bayesian net-
work model is effective in identifying tomato leaf mildew samples. After the fusion of
the prior information, the variables and the actual values increased in agreement, and the
final obtained health parameters and posterior distribution of tomato leaves in the state of
infection with pests and disease were very close to the actual values.

As shown in Table 4, the overall recognition rate of the improved Bayesian inference
for tomato leaf mildew was finally obtained as 97.12%. Therefore, the hyperspectral fusion
THz-based technique is feasible for application in tomato leaf mildew recognition.

Table 4. Prediction accuracy of each model.

Number of Characteristic Variables
Prediction Accuracy (%)

Level 0 Level 1 Level 2 Level 3 Total

19 99.36 95.57 96.20 97.35 97.12
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(a) 

(b) 

Figure 15. Schematic diagram of the probability density of health parameters. (a) Posterior distribu-
tion of changes in health parameters, (b) posterior distribution of changes in health parameters after
information fusion.

4. Conclusions

In this study, a new method was proposed for the multi-source detection of tomato leaf
mildew by THz hyperspectral imaging through the fusion of internal and external features.
First, multi-source information obtained from diseased tomato leaves of different grades
was extracted by near-infrared hyperspectral imaging and THz time-domain spectroscopy,
while the influence of low-frequency noise was removed by the Savitzky Golay (SG)
smoothing algorithm. A genetic algorithm (GA) was used to optimize the characteristic
near-infrared hyperspectral band. Principal component analysis (PCA) was employed
to optimize the THz characteristic absorption spectra and power spectrum dimensions.
Based on the near-infrared hyperspectral features, THz time-domain spectrum features,
and classification model, the probability density of the posterior distribution of tomato
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leaf health parameter variables was recalculated by the use of the Bayesian network.
Finally, a fusion diagnosis and health evaluation model of tomato leaf mildew using
hyperspectral THz was established, and the recognition rate of tomato leaf mildew samples
reached 97.12%. This study has therefore successfully developed a method to realize the
detection of tomato leaf mildew which can provide a scientific basis for the subsequent
monitoring of the disease and provide theoretical support for the development of disease
detection instruments.
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Abstract: Impurity detection is an important link in the chain of food processing. Taking walnut
kernels as an example, it is difficult to accurately detect impurities mixed in walnut kernels before
the packaging process. In order to accurately identify the small impurities mixed in walnut kernels,
this paper established an improved impurities detection model based on the original YOLOv5
network model. Initially, a small target detection layer was added in the neck part, to improve
the detection ability for small impurities, such as broken shells. Secondly, the Tansformer-Encoder
(Trans-E) module is proposed to replace some convolution blocks in the original network, which can
better capture the global information of the image. Then, the Convolutional Block Attention Module
(CBAM) was added to improve the sensitivity of the model to channel features, which make it easy
to find the prediction region in dense objects. Finally, the GhostNet module is introduced to make
the model lighter and improve the model detection rate. During the test stage, sample photos were
randomly chosen to test the model’s efficacy using the training and test set, derived from the walnut
database that was previously created. The mean average precision can measure the multi-category
recognition accuracy of the model. The test results demonstrate that the mean average precision
(mAP) of the improved YOLOv5 model reaches 88.9%, which is 6.7% higher than the average accuracy
of the original YOLOv5 network, and is also higher than other detection networks. Moreover, the
improved YOLOv5 model is significantly better than the original YOLOv5 network in identifying
small impurities, and the detection rate is only reduced by 3.9%, which meets the demand of real-time
detection of food impurities and provides a technical reference for the detection of small impurities
in food.

Keywords: YOLOv5; walnut kernels; impurities detection; small object detection

1. Introduction

Food safety has always been a social health issue of great concern to people. Impurity
pollution accounts for a large proportion of food pollution and is difficult to avoid [1].
Impurity pollution refers to the presence of other substances or foreign substances in
food other than the food itself [2], which will cause physical and psychological harm
to consumers. Taking walnut kernels as an example, impurities of walnut kernels can
be divided into exogenous impurities (stones, metal parts, and plastic fragments) and
endogenous impurities (walnut shells; spoiled walnut kernels) [3], which will seriously
affect consumers satisfaction. Therefore, impurity detection is one of the important links
to ensure the high quality of nut food [4]. In recent years, many researchers have tried
to use imaging detection technology to detect impurities in food, including X imaging
technology, terahertz detection technology, spectral detection analysis technology, machine
vision detection technology, etc.

In the field of machine vision detection, object detection methods based on deep
learning are developing rapidly. According to the nature of the algorithm stages, the
current mainstream algorithms can be divided into two categories: one of them is the two-
stage algorithm R-CNN series, and the representative algorithms include R-CNN, SPP-Net,
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and Faster R-CNN [5]. The series of algorithms first generate regions and then classify
samples through convolutional neural networks. Xie et al. used the Fsater-RCNN + VGG16
neural network model to detect bone impurities in salmon meat [6]. Wang et al. used
the Faster RCNN ResNet101 for detecting the potato surface defects and verified the high
recognition accuracy of the model [7]. The point of the R-CNN series of algorithms is that
the detection accuracy is high, but the detection speed is defective. The other type is a single-
stage algorithm, and the representative algorithm is the YOLO series. The YOLO (You Only
Look Once) algorithm directly inputs the entire image into the model network and returns
the classification category and location of the bounding box at the output, so it can extract
all features in the image and predict all objects [8,9]. Based on the results of various studies,
the YOLOv5 algorithm in the YOLO series has better comprehensive detection ability than
other YOLO models due to its accuracy and detection accuracy [10–12]. Many researchers
have applied the YOLOv5 model or the improved YOLOv5 model to the food safety field
for object detection [13]. Jubayer et al. used the YOLOv5 model to detect molds on food
surfaces and successfully identified the types of molds on food surfaces [14]. On the basis
of the original YOLOv5 network model, Chen et al. added a new involution bottleneck
module, which reduced the parameters and calculation amount, and introduced the SE
module to improve the sensitivity of the model to channel features, establishing a plant pest
identification model [15]. Qi et al. borrowed the human visual attention mechanism and
added the squeeze-and-excitation module to the YOLOv5 model to achieve a key feature
extraction [16]; the trained network model was evaluated on the tomato virus disease test
set, and the accuracy rate reached 91.07%. Han et al. adopted the YOLOv5 model based on
the flood filling method to achieve cherry quality detection [17].

This paper takes walnut impurities as the detection target. There is a high requirement
for the real-time detection rate of impurities for the fast running speed of the walnut
processing line [18]. The YOLOv5 model can maintain a higher detection accuracy, while
maintaining a higher detection rate [19], so this paper chooses YOLOv5 as the detection
model. However, the original YOLOv5 model is challenging to extract image features
of impurities in walnut kernels under complex backgrounds. It is hard to detect small
impurities such as broken shells, resulting in a low impurity recognition rate. In order to
solve the above problems, we take the pursuit of a balance between detection performance
and detection rate as the goal and improve the original YOLOv5 network, so that it can
more accurately detect the impurities in the image without losing the detection rate. Firstly,
a small target detection layer is added to the neck part to improve the model’s ability to
detect small impurities. Secondly, the Tans-E module is proposed to replace some of the
convolution blocks in the original network. Thirdly, the CBAM module is added to improve
the sensitivity of the model to channel features, which is convenient for finding prediction
regions in dense objects. Finally, the GhostNet module is introduced to make the model
lighter and improve the model detection rate.

2. Materials and Methods

2.1. Samples Used in the Experiments

There is uncertainty in walnut processing; thus, we selected random sampling without
repetition. From March 2022 to April 2022, we randomly collected about 20 kg of walnut
kernels with impurities before the manual sorting process from the walnut processing line
of the Nut Fried Goods Base in Longgang Town, Lin’an District. All samples were collected
three times. The walnut kernels were mixed with broken walnut shells, unqualified walnut
kernels and other impurities. The mixture was divided into 40 groups of samples evenly,
according to quality.

2.2. Images Acquisition System and Dataset Creation
2.2.1. Images Acquisition System

The image acquisition system has two functions: simulating the walnut processing
line and take sample pictures. The system consists of a conveyor belt, aluminum profile, the
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computer, a camera (D435i from Intel, Santa Clara, CA, USA), a black inspection chamber,
and an LED light belt [3]. The conveyor belt is divided into two stages: high speed
and low speed. The density of the walnut kernel is changeable by controlling the speed
difference of the conveyor belt. The camera is used to capture images with resolutions
of 1920 × 1080 pixels. The color model is RGB. The camera is located 400 mm above the
second conveyor belt [20]. The black inspection chamber, which was made by diffuse
reflection plates, is set to cover the camera. Four equal power light belts (10 W each) are set
in the black inspection chamber to provide light, as shown in Figure 1.

Figure 1. The hardware of the image acquisition system in the lab.

Before the images acquisition system began, one group of the walnut kernels mixed
with impurities was manually placed on the first-step conveyor belt, and the driving motor
was started. After entering the second stage of the conveyor belt, the sample is paved.
The walnut image was captured by the camera and stored in the computer. The image
acquisition frequency was 2/s. About 130 images of walnut mixed with different impurities
can be obtained by each group of the sample.

2.2.2. Dataset Production

In order to improve the effectiveness of training and increase the diversity of samples,
the collected image data were screened before training, and the images with low definition
were removed. Finally, 1320 walnut kernel images were obtained and stored in JPG format.
After processing by Matlab, the image resolution was set to 512 pixels × 512 pixels. In
this paper, the dataset is enhanced by changing the adaptive contrast, rotation, translation,
cropping and other methods, and the dataset is expanded to 5732 images [21]. The dataset
contains four categories of labels: walnut shell, small impurities (diameter less than 5 mm),
foreign impurities and metamorphic walnut kernels, as shown in Figure 2. The gray
value range of the walnut kernel is the basis for identifying the deterioration degree of
walnut kernels. All the images of walnut kernels are gray processed, and the gray value
range of the metamorphic walnut kernel is from 20 to 35 after testing and statistics. The
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image labeling software is Labelimg, which is used to label the real bounding box and
categories [22]. Then, according to the ratio of 3:1:1, all the enhanced images are divided
into the training set, validation set and test set. There are 3439 images in the training set,
1146 images in the validation set and 1146 images in the test set.

Figure 2. Walnut kernel impurity type labeling.

2.2.3. Experimental Equipment

The training of this model is conducted based on the Windows 10 operating system and
the Pytorch framework. The CPU model of the test equipment is Intel®Core™ i7\11800H
CPU@3.70 GHz, the GPU model is GeForce RTX 3080 10 G, and the software environment is
CUDA 11.3, CUDNN 7.6 and Python3.8. The original YOLOv5 and the im-proved YOLOv5
are trained separately. The specific parameters are presented in Table 1.

Table 1. Test environment setting and parameters.

Parameter Configuration

Operating system Windows 10
Deep Learning Framework Pytorch2.6

Programming language Python3.8
GPU accelerated environment CUDA 11.3

GPU GeForce RTX 3080 10 G
CPU Intel®Core™ i7\11800H CPU@3.70 GHz

2.3. Walnut Kernel Impurity Detection Based on YOLOv5

Currently, the target detection algorithms applied in food detection have high recogni-
tion accuracy, but the detection models often have too many parameters and large volumes,
and are too complex and challenging to meet the needs of real-time detection [23]. Since
the actual application site of walnut impurity detection is located in the food assembly line,
the detection model should not only meet the requirements of recognition accuracy but
also meet the real-time requirements of detection. YOLOv5 has a higher detection accuracy
and a lighter model volume, so it has a faster response speed. Therefore, this paper adopts
the YOLOv5 model for the detection of walnut impurities; its frame is shown in Figure 3.
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Figure 3. The impurity detection model of walnut kernel based on YOLOv5.

2.4. Walnut Kernel Impurity Detection Based on YOLOv5
2.4.1. Small Object Recognition Layer

There are small impurities, such as broken shells in the walnut images, and the
detecting model used must be able to detect small objects. In the process of using the
original YOLOv5 model, impurities such as the small broken shells of walnut kernels are
small. The feature map in the YOLOv5 network structure is too small, while the multiple
of the downsampling is large; thus, it is difficult for the deeper feature map to learn the
features of small targets’ information, which lead to omissions of small impurities. To solve
this problem, this paper tries to add a small object detection layer to the original YOLOv5
head, which will continue to process the feature map for expansion. After the 17th layer of
the head part, it performs upsampling and other processing on the feature map so that the
feature map continues to expand. At the 20th layer, the acquired feature map with a size of
160 × 160 is concated with the feature map of the second layer in the backbone to obtain a
larger feature map for small target detection.

As shown in Figure 4, the function of upsampling is to enlarge the feature map so
that the displayed image has a higher resolution, which is more conducive to detecting
and recognising small targets. The upsampling process in this paper is implemented
by the method of transposed convolution. Unlike the ordinary convolution, transposed
convolution is adding a unit-step null pixel between each two pixels of the input image, so
that the obtained Feature Map size becomes larger.

2.4.2. Trans-E Block

The Transformer was first used in the field of natural language machine translation,
and its most significant feature is the self-Attention mechanism. The main working modules
in the Transformer structure are the encoder and decoder. During machine translation,
the encoder part models the input sequence. It extracts the output value of the last time
step at the structural output as a representation of the input sequence. The decoder then
takes the input sequence representation as its input value and generates the translation
with maximum probability. This paper simulates the encoder function in the Transformer
structure, and proposes a Transformer-Encoder (Trans-E) block and tries to apply it to the
image impurity detection. The structure of the Trans-E block is shown in the Figure 5.
The Trans-E block consists of two sub-layers, the multi-head attention layer and the fully-
connected layer. Among them, the multi-head attention layer is to perform multiple linear
mappings of different sub-region representation spaces through multiple heads under the
consideration of parallel computing; thus, it can obtain more comprehensive information
under different sub-spaces at different locations. The main function of theconnected layer
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is to map the feature space calculated by the previous layer to the sample label space. A
residual structure connects the two sub-layers. This article replaces the bottleneck blocks
and some Cnov blocks of CSPDarknet53 in the original YOLOv5 with Trans-E blocks.
Compared with CSP bottleneck blocks, Trans-E blocks have more advantages in capturing
global information.

 

Figure 4. Schematic diagram of upsampling.

Figure 5. The architecture of Tran-E block.

2.4.3. CBAM Attention Mechanism

Since there is much useless information in the walnut kernel image, such as the
walnut kernel itself, in order to suppress other useless image information, we increase the
effective image feature weight, reduce the invalid weight, and make the training network
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model produce the best results. This paper introduces the based YOLOv5 Convolutional
Block Attention Module (CBAM). The working principle of this module is as follows:
take the global max pooling and global average pooling operations based on width and
height, respectively for the input feature map F (H × W × C), and the output result is
two 1 × 1 × C feature maps. Then, the obtained feature maps are sent to the neural network
(MLP), respectively. The number of layers in the neural network is two layers. The number
of neurons in the first layer is C/r (r is the reduction rate), the activation function is Relu,
and the second layer is the number of neurons. The number of neurons in the layer is
C. Then, an element-wise-based sum operation is performed on the output features, and
the final channel attention feature, namely Mc, is generated after the sigmoid activation
operation. Finally, the element-wise multiplication operation is performed on Mc and the
input feature map F to generate the input features required by the Spatial attention module.
The specific calculation is as follows:

MC(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

= σ
(

W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
)

(2)

The output of the channel attention module is taken as an input into the spatial
attention module, which is also subjected to maximum pooling and average pooling. Then
the two are stacked through the Concat operation, which only compresses the channel
dimension but not the spatial dimension to focus on the target’s location information. The
mechanism is shown in Figure 6.

Figure 6. CBAM attention mechanism.

In this paper, the CBAM module is added after the C3 module and the Trans-E module
in the neck part so that the image features of walnut shells and foreign objects are weighted
and combined, which increases the network at the cost of a small amount of computation,
so that the network pays more attention to the key information of foreign objects such as
walnut shells, which helps to train a better network.

2.4.4. Ghostconv Makes Models Lightweight

Since the main part of the original YOLOv5 adopts the C3 structure for feature extrac-
tion, after adding the small target detection layer, the Trans-E block and the CBAM module
based on the original network, the overall network has a large number of parameters. When
the detection rate is low, it will be difficult to meet the real-time detection requirements.
The actual scene of the walnut kernel impurity detection is a moving conveyor belt, so the
detection model must have a relatively lightweight model and low detection delay. This
paper applies the GhostConv block in GhostNet and replaces some ordinary convolution
block in the current network model to make the detection model more lightweight.

Different from traditional convolution blocks, GhostConv performs feature map ex-
traction on images in two steps [24]. The first step is still using the normal convolution
calculation, and the feature map channel obtained at this time is less. The second step
uses cheap operation (depthwise conv) to perform feature extraction again to obtain more
feature maps, and then concat the feature maps obtained twice to form a new output.

As can be observed from Figure 7, the cheap operation will perform cheap computations
on each channel to enhance feature acquisition and increase the number of channels. This
mode requires significantly less computation than traditional convolution computations.
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Figure 7. (a)The ordinary convolution. (b)The Ghost convolution.

In order to solve the problem that the original YOLOv5 network cannot detect small
impurities well and the detecting accuracy of individual near-color foreign objects is low,
this paper combines the small object detection layer, Trans-E block, CBAM module and
GhostConv to construct the entire improved YOLOv5 network model framework, as shown
in Figure 8.

 

Figure 8. Walnut kernel impurity detection model based on improved YOLOv5 network.

2.5. Experiment Process

First, the manual labeling method is used to mark each walnut image to obtain the
training label image, and then the walnut image set is divided into training set, validation
set and test set according to the ratio of 3:1:1. The training set is input into the improved
YOLOv5 network for training. During the training process, the stochastic gradient descent
algorithm is used to optimize the network model, and the optimal network weights are
obtained when the training is completed. Subsequently, the images in the validation set of
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weight values are used to test the performance of the network model and compare with the
test results of the original YOLOv5 model and other prediction models. The feasibility of
the walnut kernel impurity detection model based on the improved YOLOv5 was verified.
The test process is shown in Figure 9.

Figure 9. Flowchart of the overall workflow methodology for the proposed detection model.

2.6. Model Evaluation Index

The model loss of YOLOv5 consists of bounding box loss, object loss and classification
loss, which can be used to test the target prediction performance of the model. Precision
(Pre) and recall (Rec) can intuitively reflect the accuracy of target prediction, which are
calculated by the ratio of the number of TP, FP, TN, and FN [25], where TP represents the
number of correctly detected positive samples, and FP represents the error Number of
negative samples detected, FN indicates the number of positive samples not detected. The
F1 score is the weighted average of precision and recall. The AP value of each class is the
area composed of the label P-R map of that class. The mean average precision (mAP) is
the average of the AP values of various labels; thus, it can represent the global detection
performance of the model.

loss = lbbox + lobject + lclassi f ication (3)

Pre =
TP

(TP + FP)
(4)

Rec =
TP

(TP + FN)
(5)

F1 =
2 × Pre × Rec

Pre + Rec
(6)

AP =
∫ 1

0
Pre(Rec)dRec (7)

mAP =
1

|QR| ∑
q=QR

AP(q) (8)
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3. Results and Discussion

3.1. Model Training Results

According to the data set type, the loss function of the prediction model can be divided
into training loss and validation loss, and the curve is shown in the Figure 10a. It can
be observed from the figure that in the process of model training, when the number of
iterations is between 0 and 150, the training loss and validation loss decrease rapidly, and
when the number of iterations reaches more than 250, the loss value of the prediction model
begins to stabilize gradually. In this paper, the training model with 300 iterations is selected
as the final walnut kernel impurity detection model. In addition, it can be observed from
the mAP curves of the training set and the validation set in the Figure 10b that the trained
prediction model does not appear to be overfitting.

Figure 10. Training results of the improved YOLOv5 model. (a) Training and validation loss.
(b) mAP_0.5 of training and validation sets. mAP_0.5: mean average precision when the threshold of
IoU is 0.5.

3.2. Model Test Results and Analysis

In order to verify the performance of the detection model, the number of impurities for
each category in the random 300 images in the validation set was counted and calculated,
and then compared with the test results of the model. Among the 300 images in the
validation set, the number of walnut shell impurities is 2059, the number of metamorphic
walnut kernels is 786, the number of small impurities is 2621, and the number of other
impurities is 432. The precision rate, recall rate, F1 score and mAP were used to evaluate the
prediction accuracy of the model for various impurities. The predicted results are shown in
Table 2.

Table 2. Recognition results of targets using improved YOLOv5 model.

Class Num Pre (%) Rec (%) mAP (%) F1 (%)

Shell 2059 92.21 96.32 94.20 94.56
Small_impurities 2624 83.56 87.84 85.12 86.21

metamorphic_walnut 786 89.24 93.37 90.98 91.26
Other impurities 432 90.25 94.93 92.21 92.87

Total 5901 89.69 93.42 91.25 91.77

The confusion matrix can intuitively reflect the prediction results of classification
problems, showing the prediction probability for each category. From the confusion matrix
in the Figure 11, it can be observed that among the four types of impurities, the detection
accuracy of the walnut shell is the highest, which can reach 92.21%, and the detection
accuracy of small impurities is the lowest. Since impurities are located at the boundary of
the image, the annotation information is accurate, resulting in a small part of the spoiled
walnut kernels being predicted as other impurities.
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Figure 11. Confusion matrix of four kinds of impurities.

3.3. Performance Comparison of Different Models

In order to better verify the performance of the improved walnut kernel impurity
detection model, 300 images in the above validation set were used as the test objects,
and the original YOLOv5, YOLOv4, Faster R-CNN, and SSD300 models were used to
test and compare the test results [26]. Similarly, the accuracy, F1 score and mAP are used
as indicators to evaluate the performance of the model. Considering that in actual nut
processing, the detection rate of the model is high to meet the needs of real-time detection,
so it is also necessary to use the model size and the average GPU detection speed as the
evaluation indicators of the model. The test results of each model are shown in Table 3.

Table 3. Comparison of precision, recall, F1-score, mean Average Precision, detection speed and
ModelSizes between proposed model and other advanced models.

Model P (%) R (%)
F1-Score

(%)
mAP (%)

Dect.
Time (ms)

ModelSizes
(M)

Faster-RCNN 87.36 89.25 88.39 81.62 121.86 110.770
SSD300 67.75 75.38 65.43 69.36 89.07 82.781

YOLOv4 82.56 90.14 85.56 85.62 400 245.5
YOLOv5 85.32 88.97 86.43 83.25 43.64 41.489
Proposed
YOLOv5 90.25 91.56 90.81 88.9 45.38 43.562

As can be observed from the data in the Figure 12, the detection accuracy of the
improved YOLOv5 model is 5.77% higher than that of the original YOLOv5, and both are
higher than other detection models, mAP has increased by 6.79%, and F1 has increased by
5.06%. The result is also better than the fire inspection small target detection model based
on YOLO algorithm, whose mAP is 80.23% and F1 is 73% [27]. The experiment proves that
the introduction of the small target detection layer, the replacement of the Trans-E block,
and the introduction of the CBAM module on the basis of the original YOLOv5 model can
help improve the accuracy and performance of walnut kernel impurity detection.
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Figure 12. Comparison of the performance from different network models.

Model detection speed is also one of the important performance indicators for real-
time detection of food impurities. While improving the accuracy of impurity detection,
the YOLOv5 model parameters have increased, and the model size has also increased by
1.74 M. At the same time, the detection time of a single image is increased to 65.25 ms,
which is 21.51 ms longer than the original YOLOv5 single image detection time. In order to
reduce the detection time of a single image and improve the efficiency of real-time detection
of impurities, this paper replaces the conventional Conv of the main part and the detection
head part with Ghostconv to make the model more lightweight. After replacing Conv with
Ghostconv, the single image impurity detection time is reduced from 65.25 ms to 45.38 ms,
which is only 4.99% longer than the original YOLOv5 detection time. Compared with the
improved SE-YOLOv5, the detection response time is reduced by 10.4%. [17] This model
also leads to other commonly used detection models such as YOLOv4 in the detection rate
performance. Therefore, the improved YOLOv5-based walnut kernel impurity modeling
model is a suitable detection model.

3.4. Comparison of Recognition Result

Figure 13 compares the results of the original YOLOv5 and the improved YOLOv5 for
detecting impurities in walnut kernels. The brown boxes in the figure represent walnut
shells, the green boxes represent mildewed walnut kernels, and the red boxes represent
small impurities. It can be observed from the figure that the missed detection rate of small
impurities in the improved YOLOv5 model is greatly reduced, and the corresponding
target confidence is improved. Under the background of high-density walnut kernels and
extremely small impurities, the original YOLOv5 has a weak ability to extract features,
resulting in the inability to accurately predict the impurity target. The detection perfor-
mance of the improved YOLOv5 model is significantly better than the former, with a large
number of detected small targets and high accuracy, and better performance in detecting
small impurity targets.
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Figure 13. Comparison of the recognition effects of the YOLOv5 models. (a–c) recognition effects of
the original YOLOv5; (d–f) proposed YOLOv5 network.

4. Conclusions and Future Research

The detection of walnut impurities is of great significance to the safety of nut food.
In this paper, an impurity detection model of walnut kernels based on the improved
YOLOv5 network is established: a small target recognition layer is added to the original
prediction head of the model to obtain more small impurities feature information. Then,
some convolution blocks in the network are replaced by Trans-E blocks, which can capture
more comprehensive information in different subspaces at different locations. The CBAM
attention module is added to the neck part of the network model for feature fusion, which
improves the network performance at a small cost. Finally, Ghostconv is introduced to
replace the original Conv, which reduces the computational burden of the model and
improves the detection speed. The improved model detection mAP can reach 88.9% and F1
can reach 90.81%, which is better than the original YOLOv5 network and other networks.
Moreover, the improved network model has not only a high detection rate, but also a
significant improvement in the identification rate of small target impurities. The model
improvement studied in this paper is to maintain a balance between detection performance
and detection speed, so as to meet the demand of the real-time detection of walnut im-
purities. Near infrared spectroscopy is an important tool in the field of food impurity
detection [28]. However, it requires demanding hardware. The detection technology based
on YOLOv5 has a higher detection rate, lighter detection equipment and a wider range of
application objects when compared to the near infrared spectroscopy. It also has certain
advantages in detection accuracy. The research content is also applicable to other nut
food impurity detection fields, and provides technical reference for the detection of snack
food impurities.

However, the improved YOLOv5 model has limitations, such as a fraction of missing
and wrong detection cases for small foreign bodies. Therefore, the detection accuracy of
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the model still needs to be improved. Improving the resolution of the camera is conducive
to improving the detection accuracy. Then, due to the influence of external light source, the
illumination of the image is biased. Fan Youchen et al. improved the YOLOv5 combined
with dark channel enhancement to solve the problem of insufficient illumination. [29] This
method can be applied to solve the illumination problem of the image. In addition, making
the detection model lighter is one of the key points of future research. Chu et al. proposed a
real-time apple flower detection method based on YOLOv4 and using the channel pruning
method. [30] Isa Iza Sazanita et al. used the adaptive moment estimation optimizer and the
function reducing-learning-rate-on-plateau to optimize the model’s training scheme [31].
In the future, we can try to replace the backbone network with other lightweight networks
to reduce the number of model parameters.
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Abstract: Traditional machine learning-based methods for the detection of rice degree of milling
(DOM) that are not comprehensive in feature extraction and have low recognition rates fail to meet
the demand for fast, non-destructive, and accurate detection. This paper presents a digital image
processing technology combined with deep learning to implement the classification of DOM of rice.
An improved multi-scale information fusion model of the InceptionResNet–Bayesian optimization
algorithm (IRBOA) was constructed based on the Inception-v3 structure and residual network
(ResNet) model. It enables to automatically extract more comprehensive features of rice and determine
the DOM of rice. Additionally, the important hyperparameters in the model were tuned by the BOA to
optimize the recognition rate of rice DOM. The results show the hyperparameters optimized using the
BOA are those that would not be chosen in manual tuning. The classification precision of the IRBOA
model reached 99.22%, 94.92%, and 96.55% for well-milled, reasonably well-milled, and substandard
rice, respectively, with an average accuracy of no less than 96.90%. This model improved 7.41% over
the traditional machine learning model and at least 1.35% over the fashionable CNN model with
strong generalization performance. This method effectively completes rapid, non-destructive, and
accurate intelligent detection of rice DOM, which can supply a reliable and accurate technical mean
for rice processing enterprises to guide the rice processing process.

Keywords: degree of milling; multi-scale information fusion; residual network model; Bayesian
optimization algorithm

1. Introduction

Paddy is a major grain in the world. As the worldwide population grows, the re-
quirement for rice is expected to rise by 30% in 2050 [1]. Therefore, the processing and
production of rice have a vital role. At present, there are prominent problems in the rice
market, such as the one-sided pursuit of appearance quality (fine, white, and nice taste),
backward control means of the DOM, and nutrient loss caused by over-processing, which
threaten food security [2]. Thus, an efficient and rapid method of estimating the DOM of
rice can instruct enterprises to adjust the parameters in the rice milling process in real-time.
Additionally, enterprises can perform such approaches to moderately process rice and
achieve efficient rice loss reduction through technological innovation. It has essential
significance for guiding paddy processing, rice storage, distribution, and trade.

According to the regulations of the Chinese National Standard of “Milled rice (GB/T
1354-2018) [3]”, rice DOM refers to the degree of germ remaining and the residual bran
layer on the surface and back grooves of a rice grain after processing, which is divided into
three levels: well-milled, reasonably well-milled, and substandard. Well-milled, reasonably
well-milled, and substandard rice represent rice with skin retention less than 2%, between
2% and 7%, and more than 7%, respectively. The skin retention of rice is defined as the
sum of the residual skin and rice embryo projection area as a percentage of the projection
area of the sample. In rice processing enterprises, detecting the DOM of rice is still at the
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stage of human eye inspection or staining method to auxiliary implementation. These
approaches have the disadvantages of strong professionalism, being time-consuming and
labor-intensive, poor repeatability, etc. Foreign researchers found that rice DOM is closely
related to its chemical composition content [4]. They extracted the lipid content of the
milled rice surface by chemical extraction to quantify the DOM of rice [5]. However, this
method cannot meet the requirements of modern rice DOM for rapid, non-destructive,
efficient, and objective detection.

Machine vision technology provides the advantages of high efficiency, fast speed, and
accurate detection, which is currently a research hot spot in the field of crop detection [6–8].
Xu et al. [9] and Wood et al. [10] detected the DOM of rice by digital image processing
technology combined with the staining method, but the staining process was cumbersome
and destructive. Zhang et al. [11] obtained the rice DOM by the bran degree of RGB images
of rice. Wan and Long [12] and Wan et al. [13] proposed detection methods based on
gray-gradient co-occurrence matrix and color features incorporated with machine learning,
respectively, and the corresponding discrimination accuracy reached 94% and 92.17%. Fang
et al. [14] used grayscale values of rice to measure DOM. Zareiforoush et al. [15] adopted
the fuzzy logic reasoning method to realize the recognition of five rice milling grades, and
the overall confidence reached 89.80%. Hortinela et al. [16] used the support vector machine
to classify milled rice with an adaptive enhancement algorithm, and the average accuracy
was 86.67%. Although the above methods achieved positive detection results, they all need
to design and extract features manually, and there is the problem that incomplete feature
extraction leads to low accuracy.

In recent years, CNN has achieved remarkable achievements in face recognition [17],
handwritten digit recognition [18], pedestrian detection [19], and other fields, bringing new
opportunities for the development of rice DOM detection technology. In terms of DOM
detection of rice, Qi et al. [20] combined the hypercolumn technology, max-relevance and
min-redundancy feature selection algorithm, extreme learning machine technique, and
improved VGG16 to identify rice DOM with an overall accuracy of 97.32%. For the quality
inspection of rice, Patel and Joshi [21] used the transfer learning-based VGG16 model for
fine rice, broken rice, and variety determination. A four-layer CNN model to realize head
and broken rice classification was adopted by Hong Son and Thai-Nghe [22]. Li and Li [23]
improved Inception-v3 by introducing fine-grained classification to learn local features
of rice and to identify the integrity of the rice germ. Li et al. [24] refined the Inception-v3
model to detect the integrity of the germ with the addition of mutual channel loss and
mlpconv. Li et al. [25] identified rice germ integrity based on the EfficientNet-B3 model
with the introduction of the double attention network (DAN).

To summarize, existing research on rice is mostly quality examination, while the
determination of rice DOM has essential guidance for maintaining food nutrition and
reducing food waste. The current research is unable to acquire the feature details of rice
well, and there is still a lack of deep learning-based methods that can effectively and
correctly identify the DOM of rice. Therefore, the main contributions of this study are
as follows:

(1). Simple image preprocessing and single-grain rice segmentation methods are used to
segment single-grain rice images from multiple-grain rice images. Then, they are fed
into the improved IRBOA model for rice DOM classification.

(2). The Inception-v3 structure with ResNet34 are combined to fuse rice features at differ-
ent scales and enrich the feature representation, thereby enabling the detection of rice
DOM and enhancing the recognition accuracy of the model.

(3). We used BOA to search for the hyperparameters that lead to the optimal model
performance in order to avoid the problem of manual setting of hyperparameters that
fail to obtain the peak accuracy. The method can increase the discrimination rate of
the model via upgrading the efficiency of manual search.
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2. Materials and Methods

2.1. Experimental Materials and Image Acquisition

Standard samples of early indica rice DOM (SAC LS/T 15121-2020), including well-
milled, reasonably well-milled and substandard, were selected from the Anhui grain and
oil products quality supervision and testing station in Hefei, Anhui Province, China. A total
of 50 g of each class of rice was used for sample preparation. Each five grams of rice was
packed in a sealed bag as a group, and each type of rice was packed in 10 groups. Finally,
there were 30 groups of three types of rice, marked with the corresponding serial numbers,
and stored in a refrigerator at 0–5 ◦C to prevent the influence of sample deterioration on
the inspection results.

According to the requirements of rice image acquisition, a Phantom h9 flatbed scanner
was used to acquire RGB images of rice in multiple mixed poses with the background of
a black frosted Acrylic plate. The contrast ratio, brightness, resolution, and image size of
the flatbed scanner were set to 65, 30, 600 dpi, and 5000 pixels × 7000 pixels, respectively.
Image acquisition was carried out in units of five grams, and each group of rice was placed
on the draft table of the scanner with the help of a separating sieve to avoid the adhesion
of rice grains. Then, image scanning was performed. Next, the operation of random
placement and scanning was executed again to fully utilize the sample and obtain two
different images. Finally, the scanned rice was put into the corresponding sealed bag, and
the other group of rice was repositioned on the scanner. The above steps were performed
on 30 groups of samples of well-milled, reasonably well-milled, and substandard in turn.
Finally, a total of 60 valid images were obtained, some of which are shown in Figure 1.

   
(a) (b) (c) 

Figure 1. Images of the original multi-grain rice. (a) Well-milled. (b) Reasonably well-milled.
(c) Substandard.

2.2. Image Preprocessing

The image quality of the original images of multi-grain rice is affected by noise due to
the limitation of the shooting conditions. So, a series of preprocessing operations were taken
for the images to selectively highlight effective features and eliminate irrelevant information
in order to improve the image quality and increase the classification and recognition
accuracy. Meanwhile, in this research, we performed image smoothing, binarization, and
segmentation of single-grain rice on the original rice images before inputting the single-
grain rice images into the CNN model.

2.2.1. Image Smoothing and Binarization

We first converted each color image to grayscale using an image grayscale transform.
Image smoothing was achieved by median filtering that can eliminate image noise while
preserving image edge information before implementing image segmentation [26]. We
used a fixed threshold to complete the image binarization operation, which avoided the
situation of separating rice endosperm and bran by other methods. Finally, we performed a
morphological opening and closing operation on the binarized image to smooth the image
and fill the holes inside the target rice.
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2.2.2. Segmentation of Single-Grain Rice Images

The Canny algorithm of contour detection was used to detect the edge of each grain
of rice. The minimum circumscribed rectangle of each rice was drawn, and its four vertex
coordinates and rotation angle were gained. Next, the original rice image was rotated by
the derived rotation angle. Finally, image segmentation of single-grain rice in a vertical
state was realized by extending the coordinates of the rotated rectangle vertex to the
surroundings by 5 pixels as the boundary. Figure 2 shows the sample data of three kinds of
DOM rice after single-grain segmentation.

      
(a) (b) (c) (d) (e) (f) 

Figure 2. Single-grain rice images of three kinds of DOM. (a,b) Well-milled. (c,d) Reasonably
well-milled. (e,f) Substandard.

2.3. Data Augmentation

A dataset was established based on the segmented single-grain rice images, and
5800 valid images each of well-milled, reasonably well-milled, and substandard rice was
obtained, for a total of 17,400 images. Each category of rice dataset was divided into
a training set, validation set, and test set with a ratio of 6:2:2 for each category. That
means obtaining 3480 images per class of rice for the training set and 1160 images for
the validation and test sets, respectively. The training set is used for training the model,
while the validation set is employed to optimize the model structure and hyperparameters,
and the test set is only designed to test the performance of the model to enhance its
generalization ability.

It is essential to enhance the training set data to reduce the incidence of overfitting
when the data are limited. Firstly, each rice was cropped to an image of the same size
(224 pixels × 224 pixels) by the center cropping for input into the CNN model. Secondly,
30% of the training data were randomly selected for horizontal and vertical flipping,
respectively. Then, a random rotation was executed for each image with rotation angles
ranging from 35◦ to 135◦. Finally, the mean and standard deviation of the three color
channels of all training set images were calculated and fed into the normalization function
to realize the normalization of each image. The training set was expanded according to the
above steps to derive sufficient data to train models.

2.4. Proposed Approach

CNN is one of the most popular deep learning models and is widely used in image
classification tasks at present. It is not only able to extract features of target objects in images
automatically and comprehensively but also possesses the characteristic of weight sharing,
which reduces the training parameters of the network and makes the model simpler [27].
We constructed an IRBOA model which can fuse multi-scale information based on the
integration of the Inception-v3 structure and ResNet model to classify rice from three kinds
of DOM. The model used was as described below.
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2.4.1. Inception Structure

Inception structure is a significant breakthrough in the development history of CNN
models. Its purpose is to execute multiple convolution operations or pooling operations on
the input image in parallel and concatenate all the outputs to attain more comprehensive
image features. This structure was first introduced by GoogLeNet and called Inception-
v1 [28]. Subsequently, it was improved to the Inception-v2 structure by applying batch
normalization (BN) [29] and convolutional decomposition. Then, it evolved into the
Inception-v3 network by adding asymmetric convolution, auxiliary classifiers, etc. The
architecture not only accelerates the computation but also improves the generalization ability
of the model while eliminating the use of dropout in the batch normalization network [30].
Currently, the Inception structure has been developed to the Inception-v4 [31].

2.4.2. ResNet Model

ResNet, which emerged in 2015, marks a milestone in deep learning [32]. It adjusts
the structure of the traditional CNN models, in which the most critical residual structure
adds an identity mapping to the basic network unit [33]. The residual structures are shown
in Figure 3. The original fitting target of the residual structure is H(x), and it becomes
extremely difficult to learn H(x) with the gradual deepening of the network level. Thus,
transforming the fitting target into the fitted residual function F(x) (F(x) = H(x) − x)
through the residual structure and turning the output into a superposition of the fit, and
the input will make the learning of the network relatively easy. The residual learning is
adopted for each stacked layer in ResNet, and the residual learning formula is defined as:

y = F(x, {wi}) + x (1)

where x and y are the input and output vectors of the residual structure of this layer, and
F(x, {wi}) represents the residual mapping to be learned. For the example in Figure 3 that
has two layers, F = w2ReLU(w1x) in which ReLU denotes ReLU activation function. In
addition, the dimensions of F(x, {wi}) and x should be consistent. wS, a square matrix, can
be conducted through identity mapping to match the dimensions when the input or output
dimension information needs to be changed, as shown in Figure 3b.

y = F(x, wi) + wsx (2)

x

xF(x)

H(x) = F(x) + x

 

F(x)

x

H(x) = F(x) + x

x

 
(a) (b) 

Figure 3. Residual structure. (a) Residual-A structure. (b) Residual-B structure.

2.4.3. Custom Model

The Inception-v3 structure offers the characteristics of fusing multi-scale features and
accelerating network computation, while the residual structure in ResNet prevents gradient
explosion, gradient disappearance, and network degradation when the number of network
layers is deepened. Consequently, in this study, we integrated the Inception-v3 structure
and residual module and established a multi-scale information fusion CNN model based
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on ResNet34 architecture, named InceptionResNet–BOA model, or IRBOA model for short.
The model was adopted to enrich the rice feature information and promote the recognition
effect. The structure of the IRBOA model is shown in Figure 4. The input of the model
is a 224 × 224 × 3 color image, and the model architecture consists of an Inception-A
structure as shown in Figure 5a, a maximum pooling layer, five Residual-A structures,
two Residual-B structures, an Inception-B structure as shown in Figure 5b, and an average
pooling layer. The input of the fully connected layer is the number of flattened characteristic
maps of the average pooled layer. While the count of neurons of this layer is the amount of
rice DOM types to classify rice DOM.

 

Figure 4. The architecture of the IRBOA model.

  
(a) (b) 

Figure 5. Inception-v3 structure. (a) Inception-A structure. (b) Inception-B structure.

Table 1 displays the parameter settings for each layer of the IRBOA model. The
Inception-A structure is a parallel combination of a series of 1 × 1 convolution layers, 3 × 3
convolution layers, and a 5 × 5 convolution layer replaced by two 3 × 3 convolution layers,
with the number of convolution kernels from branch1 to branch4 being 8, 12, 24, 8, 12, 24, 24,
respectively. The Residual-A structure contains two convolutional layers with 3 × 3 kernels
and an identity mapping, and the number of convolutional kernels in Residual-A1 to A4
are 64, 128, 256, and 256, respectively. Residual-B structure matches the number of channels
in the two pathways by 1 × 1 convolution at identity mappings based on the Residual-A
structure, with 128 and 256 convolution kernels for Residual-B1 to B2. The Inception-B
structure is combined by 1 × 1 convolution layers, asymmetric 1 × 7 convolution layers,
and 7 × 1 convolution layers. The number of convolution kernels from branch1 to branch4
are 64, 128, 64, 64, 128, 192, 192, 192, 192, and 128, respectively.
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Table 1. Parameters of the IRBOA model structure.

Name of Layer Parameters (Kernel_Size, Kernel_Num, Padding, Stride)

Image input 224 × 224 × 3

Inception-A

branch1 1 × 1 Conv, 8, 0, 1

branch2
1 × 1 Conv, 12, 0, 1
3 × 3 Conv, 24, 1, 1

branch3
3 × 3 Maxpool, –, 1, 1

1 × 1 Conv, 8, 1, 1

branch4
1 × 1 Conv, 12, 0, 1
3 × 3 Conv, 24, 1, 1
3 × 3 Conv, 24, 1, 1

Filter concatenation 224 × 224 × 64
MaxPool 3 × 3 MaxPool, –, 1, 2

Residual-A1 –, 64, 1, 1
Residual-A2 –, 64, 1, 1
Residual-B1 –, 128, 1, 2
Residual-A3 –, 128, 1, 1
Residual-B2 –, 256, 1, 2
Residual-A4 –, 256, 1, 1
Residual-A5 –, 256, 1, 1

Inception-B

branch1 1 × 1 Conv, 64, 0, 1

branch2
3 × 3 MaxPool, –, 1, 1
1 × 1 Conv, 128, 0, 1

branch3
1 × 1 Conv, 64, 0, 1

1 × 7 Conv, 64, [0, 3], 1
7 × 1 Conv, 128, [3, 0], 1

branch4

1 × 1 Conv, 192, 0, 1
1 × 7 Conv, 192, [0, 3], 1
7 × 1 Conv, 192, [3, 0], 1
1 × 7 Conv, 192, [0, 3], 1
7 × 1 Conv, 128, [3, 0], 1

Filter concatenation 28 × 28 × 512
Avg_pool 1 × 1 × 512

Fc 3
“–” represents that there is no corresponding parameter.

2.5. Optimization Methods of the Model
2.5.1. BOA

Determining how to select appropriate hyperparameters has become a key issue in
image classification tasks in the circumstance that the performance of the model largely
depends on the selection of hyperparameters. The method of manual optimization is
difficult and time-consuming to find the optimal parameters. Recently, the widely used
methods of automatic parameter tuning of machines include the grid search algorithm
(GSA), the random search algorithm (RSA), and the BOA. The essence of the GSA is the
enumeration method, which is costly in terms of time spent when the objective function is
more complex [34]. Although the RSA no longer tests all values within a parameter range,
randomly selected sample points in the search range may ignore optimal values [35]. The
BOA is one of the most popular methods for tuning hyperparameters in deep learning
models [36]. Its main idea is that, given an objective function to be optimized, the posterior
distribution of the objective function is updated by continuously adding sample points
until the posterior distribution approximately corresponds to the true distribution or the
function is executed for a predetermined number of iterations. It is a technique for adjusting
hyperparameters based on the priori information, which is faster, more effective, and more
efficient than the previous two algorithms. The major problem scenarios of the BOA are
as follows:

X* = argx∈S maxf (x) (3)

195



Foods 2022, 11, 3720

Here, S is the candidate set of x and f (x) is the objective function. The target of the
BOA is to pick an x from S such that the value of f (x) is maximized or minimized.

The BOA was used to optimize the hyperparameters of the back propagation neural
network (BPNN), AlexNet, VGG16, ResNet34, and IRBOA models. The activation function
adopted for each model was ReLU with each batch_size set to 64, and the training epoch for
the BPNN and CNN models were 5000 and 100, respectively. The cross-entropy function
was employed for the loss function and the accuracy of the validation set was selected
for the objective function of the BOA. The optimized variables are those proposed in
2.5.2, 2.5.3, and 2.5.4, including the number of neurons in the hidden layer of the BPNN
(hidden), optimizer, learning_rate, the update interval in the learning rate decay algorithm
(step_size), the multiplication factor for updating the learning rate (gamma), and L2 regular
term parameters (weight_decay). Table 2 shows the search space of each hyperparameter.

Table 2. Hyperparameters search space based on BOA.

Model Hyperparameter Search Space

BPNN

hidden {10, 12, 14, 16, 18, 20, 22, 24}
optimizer {SGD, Adam}

learning_rate [0.1, 0.00001]
step_size {600, 800, 1000, 1200, 1400}
gamma [0.1, 0.00001]

AlexNet, VGG16, ResNet34,
IRBOA

optimizer {SGD, Adam}
learning_rate [0.1, 0.00001]

step_size {10, 15, 20, 25, 30}
gamma [0.1, 0.00001]

weight_decay [0.1, 0.00001]

2.5.2. Optimizer

The optimizer is designed to minimize the loss in the training process through gra-
dient descent, thereby enhancing the accuracy of the model. The stochastic gradient
descent (SGD) algorithm and the adaptive momentum estimation (Adam) algorithm are
two superior optimizers for image classification tasks in deep learning. Each of them has
its advantages and disadvantages, hence the optimizer was selected to make the model
optimal by employing the BOA in Section 2.5.1.

2.5.3. Learning Rate

Learning rate is a very crucial hyperparameter in CNN classification models and
impacts the recognition accuracy of the model. It is difficult and extremely important
to choose the appropriate learning rate. In this paper, the model was trained by the
equal-interval learning rate decay method, where the values of step_size and gamma were
determined by BOA. The equation for the equal-interval learning rate decay is as follows.

new_lr = initial_lr × gamma
epoch

step_size (4)

where new_lr is the learning rate after decay, initial_lr is the learning rate before decay,
gamma is the decay rate less than 1, epoch is the number of training rounds, and step_size
is the decay step.

2.5.4. Regularization

Regularization is performed by adding penalty terms for the loss function to reduce
model complexity and instability to avoid overfitting the model. L2 regularization not only
prevents overfitting but also makes the process of optimizing the solution stable and fast
through weight decay. Therefore, the L2 regularization method was adopted to solve the
problem of model overfitting, and the regular term parameter was calculated by BOA.
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2.6. Performance Evaluation Indicators for the Model

Confusion matrix, accuracy, precision, recall, and F1-score are usually used to evaluate
the performance of models for single-label image classification issues [37]. The confusion
matrix is mainly used to compare the objective results with the predicted results when
evaluating the recognition accuracy of the images. Accuracy refers to the probability of
predicting correct samples among all samples. Precision indicates the proportion of samples
with positive predictions that are correctly predicted. Recall denotes the proportion of
correctly predicted outcomes in the actual sample of true examples. In the actual situation,
precision and recall are mutually “restricted”. Therefore, we need the F1-score, a weighted
average of precision and recall, to comprehensively evaluation the performance of models.
The higher the F1-score, the better the performance of the model. The calculation formula
of each indicator is as follows.

Precision (P) =
TP

TP + FP
(5)

Recall (R) =
TP

TP + FN
(6)

Accuracy (Acc) =
TP + TN

TP + TN + FP + FN
(7)

F1-score =
2 × P × R

P + R
(8)

Here, TP is the number of samples where the actual case is true, and the predicted
outcome is positive. TN is the number of samples where the actual case is true and the
predicted outcome is negative, and the same for FP and FN. They can be calculated by a
confusion matrix.

2.7. Experimental Environment

All models used in this study were trained and tested based on the Windows 10
operating system and the following specifications: Intel ® Core™ i7-11800H CPU @ 2.30
GHz, 16 GB RAM, NVIDIA GeForce RTX 3060 GPU under CUDA v11.1 and cuDNN v8.0.5,
PyTorch v1.9.0 (Facebook, America).

3. Results and Discussion

Rice image datasets with different DOMs were trained on BPNN, AlexNet, VGG16,
ResNet34, and IRBOA models. In addition, we compared the five models to find the
optimal rice DOM inspection model. The training epochs for the BPNN and CNN models
were 5000 and 100, respectively. Figure 6 shows the loss and accuracy curves of the four
CNN models on the training set. The horizontal axis in the graph is the number of training
epochs, and the vertical axes are the loss value (Loss) and accuracy (Acc) of the model,
respectively. With the continuous increase of training epochs, the classification error of the
training set shows a downward trend, and the accuracy shows an opposite trend. When the
training epochs of the IRBOA model reach 69, the training loss is close to a stable value. The
stable value of the average loss is 0.087, which is lower than the other three CNN models,
and the accuracy is significantly higher than other models. In conclusion, the IRBOA model
designed in this paper is reasonable and provides satisfactory training results.
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(a) (b) 

Figure 6. Comparison of the learning curves of the four CNN models. (a) Loss curve. (b) Accuracy
curve.

The hyperparameter optimization result of the IRBOA model is shown in Figure 7.
The horizontal axis (Trial) in Figure 7 represents the number of iterations of the BOA, when
it is 98, the objective function value is 0.9690 and the best result is obtained. However,
the value of the objective function is still changing as the number of iterations increases.
The effect indicates that the BOA is still trying to explore other optimal positions while
approaching the optimal value. Table 3 lists hyperparameters obtained by the BOA for
the five models, from which we can see that the hyperparameters are those that would
normally not be set manually. The algorithm saves time and achieves results that cannot be
captured by manual search. The models were trained and tested based on the optimized
hyperparameters and the recognition rates were calculated for each model based on the test
set. According to the comparative analysis in Table 3, we found that the detection accuracy
of the IRBOA model for recognizing rice images was higher than that of the other four
models, at 96.90%.

Figure 7. The Bayesian optimization process for the IRBOA model.

Accuracy is not sufficient to describe the practical application performance of the
model in the case of significant differences and imbalances in the data samples. Confusion
matrices were plotted for several models based on the test set (Figure 8) to accurately assess
the classification performance of the above five classification models for rice DOM. The
actual categories (horizontal axis) are compared with the predicted category (vertical axis)
in Figure 8 to depict the individual classification performance of each category. ‘A’ in the
diagram for well-milled, ‘B’ for reasonably well-milled, and ‘C’ for substandard. These
results demonstrated that the classification effect of the CNN models was better than that
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of BPNN, with the IRBOA model offering the best classification efficiency. The recognition
precision of this model was 99.22%, 94.92%, and 96.55% for well-milled, reasonably well-
milled and substandard rice, respectively, with an average correct detection rate of 96.90%.
The accuracy of the IRBOA model is 7.41% higher than that of traditional machine learning
and no less than 1.35% higher than that of the classic CNN models.

Table 3. Hyperparameter results for the five models of Bayesian optimization.

Model
Parameter (Hidden, Optimizer,

Learning_Rate, Weight_Decay, Step_Size,
Gamma)

Accuracy (%)

BPNN 12, Adam, 0.054, –, 1000, 0.00034 89.49
AlexNet –, SGD, 0.035, 0.0001, 10, 0.0005 92.30
VGG16 –, SGD, 0.016, 0.00027, 20, 0.053 92.93

ResNet34 –, Adam, 0.00011, 0.00012, 25, 0.0001 95.55
IRBOA –, Adam, 0.00019, 0.0002, 15, 0.085 96.90

“–” represents that there is no corresponding parameter.

   
(a) (b) (c) 

  
(d) (e) 

Figure 8. Confusion matrix of five models. (a) BPNN. (b) AlexNet. (c) VGG16. (d) ResNet34. (e) IRBOA.

According to the prediction value in the confusion matrix, four different statistical
indicators were attained, namely, TP, TF, FP, and FN. Moreover, the four evaluation
indicators of accuracy, precision, recall, and F1-score, as well as the training time and single
image test time of each model were calculated to compare the performance of several
classification models (Table 4). The precision, recall, and F1-score of the IRBOA model
were all 96.90% from Table 4. The corresponding values of BPNN, AlexNet, VGG16, and
ResNet34 were all lower than the model proposed. Their F1-scores were 89.43%, 92.32%,
92.94%, and 95.59%. The experiments indicated that the recognition performance of the
IRBOA model is better than that of the remaining four models, with higher accuracy and
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generalization performance. Meanwhile, we found that the BPNN took a longer time when
testing the network on a single piece of data although its training time of it was much
faster than the CNN model. The reason for this consequence is the BPNN takes a large
amount of time in extracting the color and texture feature parameters and in reducing the
dimension of the feature parameters using principal component analysis. The IRBOA model
for recognizing rice DOM is characterized by its long training time, but high detection
accuracy and less than 20 milliseconds for a single image among the four CNN models.
The effect of the model proposed can meet the actual needs in terms of temporal and model
recognition performance.

Table 4. Detection performance indicators for the five models.

Model
Accuracy

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
Training
Time (h)

Single Image
Detection
Time (s)

BPNN 89.49 89.44 89.43 89.43 0.10 20.69
AlexNet 92.30 92.35 92.30 92.32 0.56 2.87
VGG16 92.93 93.00 92.93 92.94 3.52 6.61

ResNet34 95.55 95.64 95.54 95.59 1.78 3.74
IRBOA 96.90 96.90 96.89 96.90 4.22 12.93

4. Conclusions

The nutritional value of rice decreases with the fineness of the rice DOM, while the
processing process causes unnecessary food waste and affects national food security.

The purpose of this study was to solve the problems of the high labor intensity
of traditional manual detection of rice DOM with manual feature extraction and a low
recognition rate of existing classification methods based on machine learning. This paper
presents an IRBOA model capable of extracting multi-scale rice features to identify classified
rice DOM to further guide the processing process of rice enterprises.

The classical CNN model was improved by fusing the Inception-v3 structure and the
residual structure. IRBOA, a multi-scale information fusion model, was constructed and
its identification accuracy was enhanced relative to other classical networks. In addition,
we used the BOA to seek the hyperparameters that led to the optimal performance of the
model and increased the correct classification rate of the model. The IRBOA model, which
performed hyperparameter optimization by BOA, achieved a recognition rate of 96.90%
for rice DOM, while the testing time for a single image was less than 20 ms. The accuracy
of IRBOA improved by 7.41 and no less than 1.35 percentage points relative to traditional
machine learning methods and classic CNN models, respectively. The model enhances the
feature representation and has better classification performance and generalization ability.

This study has demonstrated the feasibility of the inspection method proposed, which
can provide a certain guidance to the processing work of rice enterprises and provide
a reliable and accurate technical means for the classification of rice DOM level. More
importantly, real-time rice DOM level evaluation can be achieved in the actual production
process. Subsequently, the model can be combined with specific sorting apparatus to sort
rice that has reached a certain DOM level in the rice milling section. It avoids the rice being
over-milled in the next milling stage, so as to reach the goal of moderate processing and
grain saving.

However, there are still some shortcomings in the research of this paper, and we will
improve our current work in the following two aspects in the future work: (1) The model is
prone to error attributed to the acquisition of single-sided images due to the different bran
degrees on two sides of different DOMs rice. In the future, we will adopt the method of
double-sided image acquisition [38] to improve the recognition rate of the model. (2) The
chalky region of rice will have an impact on the discrimination of DOM level. In future
research, we will search for effective image processing means to reduce the influence of the
chalky areas of rice. (3) The accuracy of the model proposed only reaches 96.90%, which not
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only takes a long training time but also requires a large number of training samples. In the
future, we can try to use the lightweight model [39,40] with small samples to save training
time, or use the transfer learning model [41,42] to improve the recognition accuracy while
reducing training time and samples.

Author Contributions: Conceptualization, W.C. and W.L.; methodology, W.L.; software, W.L.; valida-
tion, W.L. and Y.W.; formal analysis, W.C.; investigation, W.L.; resources, W.C.; data curation, W.L.
and Y.W.; writing—original draft preparation, W.L.; writing—review and editing, W.C. and W.L.;
visualization, W.L.; supervision, W.C.; project administration, W.C.; funding acquisition, W.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study does not involve humans or animals.

Informed Consent Statement: This study does not involve humans.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Zhang, G.; Sun, B.; Zhao, H.; Wang, X.; Zheng, C.; Xiong, K.; Ouyang, Z.; Lu, F.; Yuan, Y. Estimation of Greenhouse Gas Mitigation
Potential through Optimized Application of Synthetic N, P and K Fertilizer to Major Cereal Crops: A Case Study from China. J.
Clean. Prod. 2019, 237, 117650. [CrossRef]

2. Fan, Q.; Liu, M.Y.; Qi, H.Q. Research on Loss in Rice Processing and Governance Measures. Sci. Technol. Cereal. Oils Foods 2015,
23, 117–120. [CrossRef]

3. State Administration for Market Regulation; Standardization Administration of the People’s Republic of China. Milled Rice: GB/T
1354-2018; State Administration for Market Regulation: Beijing, China; Standardization Administration of the People’s Republic
of China: Beijing, China, 2018.

4. Yoon, S.-H.; Kim, S.-K. Physicochemical Properties of Rice Differing in Milling Degrees. Food Sci. Biotechnol. 2004, 13, 57–62.
5. Matsler, A.L.; Siebenmorgen, T.J. Evaluation of Operating Conditions for Surface Lipid Extraction from Rice Using a Soxtec

System. Cereal Chem. J. 2005, 82, 282–286. [CrossRef]
6. Nagoda, N.; Ranathunga, L. Rice Sample Segmentation and Classification Using Image Processing and Support Vector Machine.

In Proceedings of the 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), Rupnagar, India,
1–2 December 2018; pp. 179–184.

7. Wu, A.; Zhu, J.; Yang, Y.; Liu, X.; Wang, X.; Wang, L.; Zhang, H.; Chen, J. Classification of Corn Kernels Grades Using Image
Analysis and Support Vector Machine. Adv. Mech. Eng. 2018, 10, 168781401881764. [CrossRef]

8. Hu, Y.; Du, Y.; San, L.; Tian, J. Research on Rice Grain Shape Detection Method Based on Machine Vision. In Proceedings of the
2019 5th International Conference on Control, Automation and Robotics (ICCAR), Beijing, China, 19–22 April 2019; pp. 300–304.

9. Xu, L.; Qian, M.; Fang, R.; Luo, Y. Image Process Technique to Cognize the External Qualities and Milling Degree of Rice. Trans.
Chinese Soc. Agric. Eng. 1996, 12, 172–175.

10. Wood, D.F.; Siebenmorgen, T.J.; Williams, T.G.; Orts, W.J.; Glenn, G.M. Use of Microscopy to Assess Bran Removal Patterns in
Milled Rice. J. Agric. Food Chem. 2012, 60, 6960–6965. [CrossRef]

11. Zhang, H.; Meng, Y.; Zhou, Z.; Yang, H. Analyzing Rice Milling Degree Based on Digital Image Technology. J. Chinese Cereal. Oils
Assoc. 2006, 21, 135–137.

12. Wan, P.; Long, C. An Inspection Method of Rice Milling Degree Based on Machine Vision and Gray-Gradient Co-Occurrence Matrix.
In Computer and Computing Technologies in Agriculture IV, Proceedings of the International Conference on Computer and Computing
Technologies in Agriculture, Nanchang, China, 22–25 October 2010; Springer: Berlin/Heidelberg, Germany, 2011; pp. 195–202.

13. Wan, P.; Tan, H.; Yang, W.; Pan, H. A Judging Method of Rice Milling Degree Based on the Color Characteristic and BP Neural
Network. J. Chinese Cereal. Oils Assoc. 2015, 30, 103–107.

14. Fang, C.; Hu, X.; Sun, C.; Duan, B.; Xie, L.; Zhou, P. Simultaneous Determination of Multi Rice Quality Parameters Using Image
Analysis Method. Food Anal. Methods 2015, 8, 70–78. [CrossRef]

15. Zareiforoush, H.; Minaei, S.; Alizadeh, M.R.; Banakar, A. A Hybrid Intelligent Approach Based on Computer Vision and Fuzzy
Logic for Quality Measurement of Milled Rice. Measurement 2015, 66, 26–34. [CrossRef]

16. Hortinela, C.C.; Balbin, J.R.; Fausto, J.C.; Catli, A.D.; Cui, K.J.R.; Tan, J.A.F.; Zunega, E.O.S. Milled Rice Grain Grading Using
Raspberry Pi with Image Processing and Support Vector Machines with Adaptive Boosting. In Proceedings of the 2020 IEEE 12th
International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment,
and Management (HNICEM), Manila, Philippines, 3–7 December 2020; pp. 1–6.

201



Foods 2022, 11, 3720

17. Singh, R.; Om, H. Newborn Face Recognition Using Deep Convolutional Neural Network. Multimed. Tools Appl. 2017, 76,
19005–19015. [CrossRef]

18. Ali, S.; Li, J.; Pei, Y.; Aslam, M.S.; Shaukat, Z.; Azeem, M. An Effective and Improved CNN-ELM Classifier for Handwritten Digits
Recognition and Classification. Symmetry 2020, 12, 1742. [CrossRef]

19. Song, H.; Wang, W.; Wang, J.; Wang, R. Collaborative Deep Networks for Pedestrian Detection. In Proceedings of the 2017 IEEE
Third International Conference on Multimedia Big Data (BigMM), Laguna Hills, CA, USA, 19–21 April 2017; pp. 146–153.

20. Qi, C.; Zuo, Y.; Chen, Z.; Chen, K. Rice Processing Accuracy Classification Method Based on Improved VGG16 Convolution
Neural Network VGG16. Nongye Jixie Xuebao Trans. Chin. Soc. Agric. Mach. 2021, 52, 301–307. [CrossRef]

21. Patel, V.A.; Joshi, M.V. Convolutional Neural Network with Transfer Learning for Rice Type Classification. In Proceedings of the
Tenth International Conference on Machine Vision (ICMV 2017), Vienna, Austria, 13–15 November 2017; Zhou, J., Radeva, P.,
Nikolaev, D., Verikas, A., Eds.; SPIE: Bellingham, DC, USA, 2018; Volume 10696, p. 21. [CrossRef]

22. Hong Son, N.; Thai-Nghe, N. Deep Learning for Rice Quality Classification. In Proceedings of the 2019 International Conference
on Advanced Computing and Applications (ACOMP), Nha Trang, Vietnam, 26–28 November 2019; pp. 92–96.

23. Li, B.; Li, S. Recognition Algorithm of Rice Germ Integrity Base on Improved Inception V3. In Proceedings of the 2019 International
Conference on Intelligent Computing, Automation and Systems (ICICAS), Chongqing, China, 6–8 December 2019; pp. 497–501.

24. Li, S.; Li, B.; Li, J.; Liu, B. Brown Rice Germ Integrity Identification Based on Deep Learning Network. J. Food Qual. 2022, 2022,
6709787. [CrossRef]

25. Li, B.; Liu, B.; Li, S.; Liu, H. An Improved EfficientNet for Rice Germ Integrity Classification and Recognition. Agriculture 2022, 12,
863. [CrossRef]

26. Yildirim, M. Analog Circuit Implementation Based on Median Filter for Salt and Pepper Noise Reduction in Image. Analog Integr.
Circuits Signal Process. 2021, 107, 195–202. [CrossRef]

27. Wang, Y.; Li, Z.; Hao, H.; Yang, H.; Zheng, Y. Research on Visual Perception Technology of Autonomous Driving Based on
Improved Convolutional Neural Network. In Proceedings of the 2020 4th International Workshop on Advanced Algorithms and
Control Engineering, IWAACE 2020, Shenzhen, China, 21–23 February 2020; Institute of Physics Publishing: Shenzhen, China,
2020; Volume 1550.

28. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9.

29. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lile, France, 6–11 July 2015; International
Machine Learning Society (IMLS): Lile, France, 2015; Volume 1, pp. 448–456.

30. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 26
June–1 July 2016; IEEE Computer Society: Las Vegas, NV, USA, 2016; Volume 2016, pp. 2818–2826.

31. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on
Learning. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, AAAI 2017, San Francisco, CA, USA, 4–10
February 2017; AAAI Press: San Francisco, CA, USA, 2017; pp. 4278–4284.

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

33. Wang, T.; Sun, M.; Hu, K. Dilated Deep Residual Network for Image Denoising. In Proceedings of the 2017 IEEE 29th International
Conference on Tools with Artificial Intelligence (ICTAI), Boston, MA, USA, 6–8 November 2017; pp. 1272–1279.

34. Fadil, I.; Helmiawan, M.A.; Sofiyan, Y. Optimization Parameters Support Vector Regression Using Grid Search Method. In
Proceedings of the 9th International Conference on Cyber and IT Service Management, CITSM 2021, Bengkulu, Indonesia, 22–23
September 2021; Institute of Electrical and Electronics Engineers Inc.: Bengkulu, Indonesia, 2021.

35. Buslim, N.; Rahmatullah, I.L.; Setyawan, B.A.; Alamsyah, A. Comparing Bitcoin’s Prediction Model Using GRU, RNN, and LSTM
by Hyperparameter Optimization Grid Search and Random Search. In Proceedings of the 2021 9th International Conference on
Cyber and IT Service Management (CITSM), Bengkulu, Indonesia, 22–23 September 2021; pp. 1–6.

36. Candelieri, A. A Gentle Introduction to Bayesian Optimization. In Proceedings of the 2021 Winter Simulation Conference, WSC
2021, Phoenix, AZ, USA, 12–15 December 2021; Institute of Electrical and Electronics Engineers Inc.: Phoenix, AZ, USA, 2021;
pp. 1–16.

37. Heydarian, M.; Doyle, T.E.; Samavi, R. MLCM: Multi-Label Confusion Matrix. IEEE Access 2022, 10, 19083–19095. [CrossRef]
38. Xiang, Y.; Lin, J.; Li, Y.; Hu, Z.; Xiong, Y. Mango Double-Sided Maturity Online Detection and Classification System. Nongye

Gongcheng Xuebao Trans. Chin. Soc. Agric. Eng. 2019, 35, 259–266. [CrossRef]
39. Bao, W.; Yang, X.; Liang, D.; Hu, G.; Yang, X. Lightweight Convolutional Neural Network Model for Field Wheat Ear Disease

Identification. Comput. Electron. Agric. 2021, 189, 106367. [CrossRef]
40. Liang, K.; Wang, Y.; Sun, L.; Xin, D.; Chang, Z. A Lightweight-Improved CNN Based on VGG16 for Identification and Classification

of Rice Diseases and Pests. In Proceedings of the International Conference on Image, Vision and Intelligent Systems (ICIVIS 2021),
Jinan, China, 15–17 August 2022; pp. 195–207.

202



Foods 2022, 11, 3720

41. Jiang, Z.; Dong, Z.; Jiang, W.; Yang, Y. Recognition of Rice Leaf Diseases and Wheat Leaf Diseases Based on Multi-Task Deep
Transfer Learning. Comput. Electron. Agric. 2021, 186, 106184. [CrossRef]

42. Jenipher, V.N.; Radhika, S. An Automated System for Detecting Rice Crop Disease Using CNN Inception V3 Transfer Learning
Algorithm. In Proceedings of the 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS),
Coimbatore, India, 23–25 February 2022; pp. 88–94.

203





Citation: Zhang, X.; Bian, F.; Wang,

Y.; Hu, L.; Yang, N.; Mao, H. A

Method for Capture and Detection of

Crop Airborne Disease Spores Based

on Microfluidic Chips and Micro

Raman Spectroscopy. Foods 2022, 11,

3462. https://doi.org/10.3390/

foods11213462

Academic Editor: Lili He

Received: 7 October 2022

Accepted: 27 October 2022

Published: 1 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

A Method for Capture and Detection of Crop Airborne Disease
Spores Based on Microfluidic Chips and Micro Raman Spectroscopy

Xiaodong Zhang 1,2, Fei Bian 1,2, Yafei Wang 1,2, Lian Hu 3, Ning Yang 4,* and Hanping Mao 1,2

1 School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
2 Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education,

Jiangsu University, Zhenjiang 212013, China
3 Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education,

South China Agricultural University, Guangzhou 510640, China
4 School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
* Correspondence: yangn@ujs.edu.cn; Tel.: +86-187-9608-7751

Abstract: Airborne crop diseases cause great losses to agricultural production and can affect people’s
physical health. Timely monitoring of the situation of airborne disease spores and effective prevention
and control measures are particularly important. In this study, a two-stage separation and enrichment
microfluidic chip with arcuate pretreatment channel was designed for the separation and enrichment
of crop disease spores, which was combined with micro Raman for Raman fingerprinting of disease
conidia and quasi identification. The chip was mainly composed of arc preprocessing and two separated
enriched structures, and the designed chip was numerically simulated using COMSOL multiphysics5.5,
with the best enrichment effect at W2/W1 = 1.6 and W4/W3 = 1.1. The spectra were preprocessed with
standard normal variables (SNVs) to improve the signal-to-noise ratio, which was baseline corrected
using an iterative polynomial fitting method to further improve spectral features. Raman spectra were
dimensionally reduced using principal component analysis (PCA) and stability competitive adaptive
weighting (SCARS), support vector machine (SVM) and back-propagation artificial neural network
(BPANN) were employed to identify fungal spore species, and the best discrimination effect was achieved
using the SCARS-SVM model with 94.31% discrimination accuracy. Thus, the microfluidic-chip- and
micro-Raman-based methods for spore capture and identification of crop diseases have the potential to
be precise, convenient, and low-cost methods for fungal spore detection.

Keywords: micro Raman; microfluidic chip; fungal spores; crop disease; numerical simulation

1. Introduction

Crop diseases cause huge losses to agricultural production and directly affect the
economic development and national food security of many countries in the world [1].
Among them, fungal diseases can cause huge losses to the growth and yield of crops.
In addition, fruits will still be damaged by fungi after being picked [2]. Fungal diseases
mostly exist in the form of spores before infecting crops and fruits. In addition to causing
damage to crops and fruits, fungal spores can also enter the lungs through the human
respiratory tract and spread to other organs of the human body, causing various fungal
diseases [3,4].Therefore, it is necessary to capture and identify megaspores quickly and
accurately.

The identification and counting of spores under the traditional microscope mainly
depend on naked eye observation. Due to the large number of spores captured, this method
is labor-intensive, time-consuming, and inefficient. The accuracy of observation depends
on the professional experience of operators, sometimes leading to large errors. Image
processing methods are used to automatically detect and count spores, including image
segmentation using K-means clustering algorithm, recognition based on shape factor and
area, and spore contour segmentation based on concavity and contour segment merging.
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The automatic detection of disease spores has good effectiveness and accuracy, but spore
recognition based on image processing technology cannot contain too many features [5,6].
Using deep neural network FSNet to detect fungal spores can automatically identify and
count fungal spores in microscopic images, but image and deep learning methods are still
not accurate enough to identify spores with similar shape and size [7]. PCR is the gold
standard method for microbial detection. It is often used for microbial identification with
high accuracy. However, this method requires professionals to crack the spores under
strict experimental conditions. Only through tedious processing can fungal spores be
detected [8,9]. The existing microscopic image method can realize rapid detection and
recognition through morphology, but it cannot accurately identify spores with similar
shape and size. The PCR method has high accuracy, but the detection conditions are
harsh, destructive sampling is required, and the timeliness is poor, and the cost is high.
Therefore, it is urgent to develop a rapid and accurate spore detection and identification
technology. Raman spectroscopy is a light scattering technology with low cost and high
speed. It can reflect various vibration frequencies and related vibration levels of biological
components and can be used to identify the molecular composition and structure of
biological samples [10,11]. Micro Raman spectroscopy has been applied to the identification
and analysis of bacteria, which can be classified and identified [12,13]. However, the content
of spores in the air is low, and there are a lot of impurities, so it is difficult to detect them
directly using Raman spectroscopy. Therefore, a separation and enrichment method is
needed to achieve spore detection and improve detection accuracy.

In recent years, microfluidic technology has provided powerful tools for detection
applications due to its portability, miniaturization, automation, multi-channel sample de-
tection, and cost saving. Compared with traditional methods, the greatest advantage of
microfluidic control is to create a controllable microenvironment, which can accurately
drive and control the microfluidic flow in the microchannel, thus improving the detection
sensitivity [14,15]. Among them, the impactor designed according to the principle of aero-
dynamics is widely used in the separation of atmospheric particles with good results [16],
and it is feasible to collect fungal spores using a microfluidic chip with a virtual impactor
structure. This method has high collection efficiency and low cost [17,18]. In addition,
microfluidic chip composite diffraction is used to detect and identify spores. For spores
with large differences in size and shape, the identification accuracy is high. Compared with
microscopic observation, its detection field of vision is much expanded, and the detection
efficiency and speed are greatly improved [19,20]. However, the recognition accuracy of
spores with similar shape and size is not high due to morphological detection. Therefore,
it is necessary to design a separation and enrichment microfluidic chip with compound
Raman spectroscopy to capture and collect spores and identify them accurately.

In this study, a two-stage separation and enrichment microfluidic chip with a semi
arc pretreatment structure is proposed, which can be combined with micro Raman. Using
numerical analysis and experiment, the best design parameters are obtained, and the
feasibility of microfluidic chip is discussed. At the same time, micro Raman was used to
detect the collected spores to obtain the Raman spectrum of fungal spores. The Raman
spectrum was preprocessed and modeled for analysis. The fungal spores were identified,
and their fingerprints were established to provide evidence for the subsequent prevention
and treatment of fungal diseases.

2. Materials and Methods

2.1. Sample Preparation

In this study, Ustilaginoidea virens (U. virens), Rice blast (R. blast), Aspergillus niger
(A. niger), and Aspergillus carbonarius (A. carbonarius) were taken as the research objects,
among which the size of R. blast spores, A. niger spores, and A. carbonarius spores was
3–5 μm. The shape is similar to oval or round, and the spores of rice false smut are pear-
shaped, with a size of 6–8 μm. The spores of R. blast and U. virens were provided by China
Rice Research Institute in Hangzhou, China, and the spores of A. niger and A. carbonarius
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were purchased from Beijing Biological Preservation Center. Four fungi were cultured on
PDA medium at 28 ◦C for 7 days, and mature spores with high activity and consistent
activity were obtained. During the experiment, fresh conidia on PDA were scraped off and
diluted with sterile distilled water in a sterile environment.

2.2. Composite Micro Raman Detection Method for Microfluidic Chips

The microfluidic chip composite micro Raman detection method proposed in this study
has the characteristics of rapidity, accuracy, and simple operation. As shown in Figure 1,
this method mainly consists of three parts: spore capture, separation and enrichment, micro
Raman collection, and Raman data processing and modeling. In this study, nanospheres
(3–8 μm) were mixed with four spore suspensions; the four kinds of spores were U. virens,
R. blast, A. niger, and A. carbonarius. The spore concentration in the real environment is
very low, and there will be disease spores in the air unless the disease is about to occur.
Therefore, in order to simulate the real experimental environment, the spores were mixed
into an aerosol generator and an aerosol was generated, and the aerosol was released into
the air. In order to simulate the real use environment, the spore concentration in the air
was consistent with the concentration before the outbreak of a disease, 200 spore /m3 [21].
An air pump was used to pump air into the microfluidic chip at the exit of the chip for
about 3 min per acquisition. After the aerosol entered the microfluidic chip, the enrichment
of 3–4 μm and 6–8 μm spores and impurities was completed through the two enrichment
areas of the chip. The particles larger than 8 μm remained in the pretreatment channel due
to their large inertia. The target particles entered the corresponding two enrichment areas,
while the particles smaller than 3 μm flowed out of the chip through the outlet.

Figure 1. Detection of crop disease spores by microfluidic chip combined with micro Raman spec-
troscopy: (A) spore capture, separation, and enrichment; (B) micro Raman collection; (C) Raman data
processing and modeling.

In this study, a total of 50 sets of Raman spectra of 4 species of spores were collected,
and the collected 200 sets of Raman spectra were randomly divided into training set and
test set at a ratio of 3:1. The samples were collected with a frequency shift of 200–2000 cm−1
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using an XploRA PLUS Raman microscope (HORIBA, France), and the collected samples
had 1053 features. The spectral acquisition parameters were set as follows: the excitation
power was set to 365 mW, the 50 times objective lens was selected, spot size was 5 μm.
Before the Raman spectrum was collected, the Raman spectrometer needed to be calibrated
with wave number to eliminate the significant difference between the instrument response
and the measured Raman spectrum value on the wave number axis and the true value.
Wavenumber calibration requires measurement of the reference Raman spectrum from a
standard material with well-defined Raman bands. In this study, the Raman spectrum
peak of silicon wafer was selected to calibrate the spectrometer. When the first-order
Raman spectrum peak of silicon wafer was located at the 520.7 cm−1 frequency shift, the
instrument was calibrated. In the laser illumination channel, the narrowband single-mode
continuous light with the wavelength of 785 nm was selected as the excitation light of
Raman scattering. This is because the 785 nm excitation light can effectively reduce the
background spontaneous fluorescence noise and improve the signal-to-noise ratio of the
collected Raman signal.

In this study, spectral data were randomly divided into training set (140) and test
set (60). Spore identification model was established according to the test set. Before data
analysis, the collected Raman spectra were preprocessed by SG smoothing and SNV, and
the iterative polynomial fitting method was used for baseline correction to eliminate the
interference of baseline drift and spectrum noise of Raman spectra.

The principle of polynomial replacement fitting is to continuously compare and adjust
the original spectral data during polynomial replacement fitting, and directly compare
the adjusted spectral data with the points on the fitting curve. The advantage of baseline
correction with this method is to gradually adjust the coefficients of the polynomial so as to
gradually approach the actual baseline shape, and the calculated baseline function form is
closer to the actual baseline [22]. Standard normalized variate (SNV) algorithm refers to a
deviation method to standardize variable values. Through the numerical standardization
and transformation of the original variables, the transformation results will eventually fall
within the range of [0, 1]. The premise of SNV algorithm is that all wavelength variables
present normal distribution, and then they are standardized. The main way to remove
noise is to remove light scattering [23].

Principal component analysis (PCA) is an algorithm for dimension reduction of data
features. Spectral data were transformed from high to low dimensions by linear variation.
Low-order principal components were retained and high-dimensional and invalid informa-
tion was removed, reducing the data dimension. Using the most relevant low-dimensional
data for classification identification can effectively reduce the difficulty and complexity of
data analysis [24,25]. Usually, PCA needs to retain the principal components to make the
variance contribution rate reach more than 85%. In this study, all PCAs with cumulative
contribution rate greater than 95% were selected. The stability compatible reweighted
sampling (SCARS) algorithm measures the magnitude of the stability of a variable, and
the larger the stability value, the more likely the variable is to be selected, and the more
consistent the bands selected at each iteration. This enables guaranteeing stable and rapid
variable selection. The principles of the SCARS algorithm are to take each wavelength as
one individual, use the adaptive reweighted sampling and exponentially revealing function
to remove regression coefficients, take band points with small weights from the partial least
squares model, pick out band points with large stable values, and retain the subset with
the lowest RMSECV for interaction validation to find the optimal combination of variables
with high efficiency [26].

SVM is a supervised machine learning method based on finite sample statistical learn-
ing theory. According to the structural risk minimization (SRM) principle, small samples
and nonlinearity can be solved by constructing an optimal classification hyperplane in
high-dimensional space. BPANN is a powerful learning algorithm that enables highly
nonlinear mapping between inputs and outputs by training sample data, constantly modi-
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fying network weights and thresholds to minimize the error function in the direction of a
negative gradient, ultimately approaching the expected output [27].

2.3. Chip Design and Simulation

To realize the purification and enrichment of fungal disease spores, a two-stage sepa-
ration and enrichment microfluidic chip with arcuate pretreatment channel was designed.
When a particle enters the inertial impactor with accompanying air, its trajectory is related
to the size of the particle. Some small mass particles can cross stream lines and be separated.
However, other small mass particles can flow away with the deflection of airflow. This
behavior of particles in the curved channel can be characterized by Stokes number [17,28].

stk =
ρpd2

pCcQ
9μW

(1)

where dp is the particle size (m), ρp is the particle density (1000 kg m−3), μ is the air
viscosity (1.81 × 10−5 N · s · m−2), Q is the air velocity at the inlet of the microfluidic device
(m · s−1), and W is the nozzle width (m). Cc is the Cunningham sliding correction coefficient
based on particle size, which can be obtained by Equation (2) [16]:

CC = 1 +
2Aλ

d
+

2Qλ

d
e−

bd
2λ (2)

where A = 1.234, Q = 0.413, b = 0.904, and λ is the average free path of an air molecule with
a value of 6.95 × 10−8 m. Thus, according to Equation (3) it can be reduced to

CC ≈
{

1 + 2.52 λ
d , d > 2λ

1 + 3.29 λ
d , d < 2λ

(3)

Furthermore, stk50 represents a Stokes number corresponding to a particle collection
efficiency of 50%, which can be rearranged by Equation (1):

d50 =

√
9μWstk50

ρpCcV
(4)

The d50 is defined as the cut-off size of the particles producing 50% collection efficiency
at each impact stage, and for this study, U. virens, R. blast, A. niger, and A. carbonarius
collected at d50 were set as 3–5 μm and 4–6 μm to obtain the up-to-size W for the two
separated enrichment stages of the chip.

The microfluidic chip consists of an arc-shaped preprocessing channel and a two-stage
separation and enrichment structure, and the particles enter the chip inlet jointly with
air, then enter the preprocessing channel; the particles bonded together will be scattered
and then enter the first enrichment area, and the remaining particles enter the second
enrichment area due to the constant velocity at the inlet, while the particles that have a
wide width channel enter the narrow width channel, so the airflow velocity is elevated,
using velocity variation to manipulate particle enrichment versus rounding, which greatly
increases collection efficiency. The structure of the microfluidic chip is schematically shown
in Figure 2.

The preprocessing channel includes particle inlet, channel 1, and arc channel. The
first separation structure includes channel 1, collection area 1, and channel 2. The second
separation structure includes channel 3, enrichment zone 2, channel 4, and particle outlet.
R1 is the radius of the pretreatment channel, and D1 and D2 are the diameters of the
collection area, which are 5000 μm and 3700 μm, respectively. The length of channel 0 is
7000 μm, and the width is set to W0 = 1300 μm. Channel 1 has a length of 3500 μm and a
width of 800 μm. Channel 2 has a length of 5650 μm and a width of 1100 μm. The length of
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channel 3 was set to 4400 μm, and the width was set to 400 μm. The length of channel 4
was set to 3600 μm, and the width was set to 600 μm.

Figure 2. A 2D diagram of the microfluidic chip.

2.4. Numerical Simulation

The numerical analysis software COMSOL multiphysics5.5 was used for simulation
analysis in this study. The laminar flow module and particle trajectory tracking module in
the software were used to simulate the separation process. The particle trajectory tracking
module couples the effect of multiple force fields on the particle trajectory, calculating the
trajectory of particles in the channel.

First, a 2D sketch of the microfluidic chip was drawn by AutoCAD2021 and then
imported into COMSOL multiphysics5.5. The model needed to be meshed before the
analysis, and the meshing was finer to achieve a better simulation. According to the
actual situation of the subject, the Reynolds number did not exceed 1000, so the fluid
was set as laminar flow. The Reynolds numbers in collection area 1 and 2 were 173 and
346, respectively. The particle density was 1.05 g cm−3 and the aerodynamic diameter
was 0.5~8 μm. The inlet flow rate was 12.5 mL min−1, and the wall was set to be slip-
proof. During the simulation, the collisions between the particles and the walls of the
microfluidic device were inelastic, and the particles stuck to the walls to calculate the
particle collection rate. Particle tracking uses Newton’s law of motion to solve differential
equations. The research object of this topic is the movement of spores in the air. The spores
were mainly driven by drag force in the microfluidic chip. The particle tracking module
was used to simulate the particle trajectory. The drag force satisfies Stokes’ law, and the
temperature and absolute pressure are standard states. Then, the simulation boundary
was, the corresponding entrance and exit were set, and 100 particles were released at
the entrance each time to ensure the reliability of particle collection efficiency. Since the
simulation of this study needs to study the laminar flow and particle motion state in the
microfluidic chip, transient and steady-state solvers were configured. The steady-state
solver was used to study laminar flow, and the transient solver was used to study the
particle. In the case of motion, the steady-state calculation amount is small, and one can
choose to solve it directly. The solver can choose PARDISO to meet the requirements, and
then choose the multi-threaded nested analysis pre-sorting algorithm, and the configuration
of the steady-state solver is completed. The transient solver is more complicated to solve,
and it needs to be solved iteratively. The GMRES solver was selected to solve the trajectory
of the particle.

2.5. Chip Making

The microfluidic chip was fabricated using a conventional soft-lithography process.
First, the photosensitive film was used to make a mask according to the structure drawn by
AutoCAD2021, and the photosensitive film was covered on the copper plate to make the
thickness reach 100 μm as the layer height of the channel. Then, ultraviolet lithography was
used to expose the photosensitive film and a developing solution was used to develop it,
so that only the punch of the microfluidic chip was left on the copper plate. Then, the outer
mold was used to fix the channel chip range, and then the polydimethylsiloxane (PDMS)
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was poured into the mold. It was then put into a 70◦ oven to cure for 4 h, and finally the
mold was taken out of the cured chip, and a plasma bonder was used to bond the chip and
the glass slide to form a microfluidic chip. The physical map is shown in Figure 3.

 

Figure 3. Chip physical map.

3. Results and Discussion

3.1. Numerical Simulation of Microfluidic Chip

According to the set simulation conditions, it is necessary to simulate the parameters
of the microfluidic chip to obtain a reasonable structure of the chip to obtain a good
enrichment effect. First, the sub-bureau set the conditions to obtain the pressure map of the
microfluidic chip in Figure 4A and the gas velocity map of Figure 4B in the microfluidic chip.
In this study, the simulation of the channel width changed to obtain the best enrichment
effect. The enrichment effect evaluation index is to release 100 particles, and the number
of particles obtained in the corresponding enrichment area determines the enrichment
efficiency. The number of particles can be counted in a specific area by selecting specific
particles from the derived values in the simulation results of COMSOL multiphysics5.5,
and the enrichment rate can be expressed as the percentage of the number of enriched
particles to the total number of released particles.

Figure 4. Microfluidic chip simulation diagram: (A) microfluidic chip pressure map; (B) microfluidic
chip velocity map.

According to the simulation condition setting, and after simulation with the width
adjustment of the microfluidic chip, the enrichment rate of the microfluidic chip under
different ratios of the channel width was obtained. Figure 5A,B show the effect of the
W2/W1 ratio on the separation and enrichment effect of particles, taking 6 μm and 8 μm
particles as examples. It can be seen from Figure 4A,B that when W1 = 700 μm, the
enrichment effect of 6 μm and 8 μm particles is better, and when W2/W1 = 1.6, the
enrichment effect of the first enrichment zone is the best, the enrichment rate of 6 μm is 93%,
and the enrichment rate of 8 μm is 93%. The enrichment rate was 94%, and the channel
widths were fixed at W1 = 700 μm and W2 = 1120 μm. It can be seen from Figure 5C,D
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that when W3 = 400 μm, the enrichment effect of 3 μm and 5 μm particles is better, while
W4/W3 is 1.1, the enrichment efficiency of 3 μm particles is 93%, and the enrichment rate
of 5 μm particles is 94%; at this time the fixed channel widths were W3 = 400 μm and
W4 = 440 μm.

  

 

Figure 5. Statistical graph of particle enrichment imitation rate: (A) 6 μm collection efficiency;
(B) 8 μm collection efficiency; (C) 3 μm collection efficiency; (D) 5 μm collection efficiency.

According to the above simulation and analysis, the optimal enrichment parameters
of 6 μm, 8 μm, 3 μm, and 5 μm were obtained, and the best enrichment effect was obtained
by simulation according to the optimal parameters, as shown in Figure 6.
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Figure 6. Statistical graph of particle enrichment imitation rate: (A) 6 μm collection effect; (B) 8 μm
collection effect; (C) 3 μm collection effect; (D) 5 μm collection effect.

3.2. Raman Analysis

A total of 200 spectra of four fungi were collected in this study. Since the original
spectral data have more spectral noise and high fluorescence background interference,
effective spectral preprocessing is very important. Preprocessing the spectrum by selecting
a reasonable spectral preprocessing method can effectively reduce spectral noise, retain
useful information, simplify the modeling process, and improve the stability of the model.
During the Raman spectrum acquisition process, the detector has a small probability of
receiving various interference rays such as cosmic rays in the environment, forming sharp
peaks in the spectrum, which affects the stability of the spectrum. Therefore, spectra
with cosmic spikes need to be identified and eliminated before data analysis. This paper
adopted SG smoothing and SNV to remove the influence of noise on the model. Among
them, SG smoothing can eliminate the noise interference and uneven fluorescence intensity
of the original Raman spectrum. As shown in Figure 7A, and SNV can construct an ideal
spectrum by taking the average value of the spectrum, thereby eliminating the effect of
particle scattering, as shown in Figure 7B. Baseline calibration is achieved by an iterative
polynomial fitting method for baseline drift phenomena in the spectrum. The preprocessing
steps are: (1) removing the cosmic spike Raman curve; (2) SG smoothing; (3) SNV correction;
(4) baseline calibration.
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Figure 7. Raman analysis: (A) SG-smoothed spectrum after removing cosmic spikes; (B) spectra
processed by SNV; (C) average Raman spectra of four diseased spores.

It can be seen that the SNV greatly reduces the influence of baseline drift and noise on
the spectra, while preserving the important spectral information of the fungus. Figure 7C
shows the processed average spectra collected from four fungi to provide Raman finger-
prints important for the identification of fungal cells. Since Raman scattering depends on
the change in molecular polarizability during atomic vibrations, non-polar groups such as
S–S, C–C, S–H, and N–N vibrations have strong corresponding signals in Raman, reflecting
that various structural information of organic compounds has been obtained [29]. Dis-
eased spores contain cell walls and abundant mRNA. The main components of cell walls
are polysaccharides and a small number of proteins and lipids. Different spores contain
different types of polysaccharides [30–32].

According to the existing research and experimental data, all characteristic spectral
bands and spectral assignments of the four fungi are shown in Table 1. In all Raman
spectra, the peaks at 493–497 cm−1 and 1416 cm−1 are characteristic peaks for galactoman-
nan and chitin, which are important components of fungal cell walls [29,32]. The peak at
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686–687 cm−1 is attributed to Guanine, Thymine [29,33]. The peaks at 765cm−1–772 cm−1

were assigned to (O-P-O) stretching RNA, respectively [33]. The peak at 984 cm−1–989 cm−1

is attributed to C=C deformation, C–N stretching [12,29]. The peaks at 1065 cm−1 and
1117 cm−1 are galactomannan [29]. The peak at 1148 cm−1 was attributed to C–O ring
aromatic [12]. The peaks at 1200 cm−1 and 1202 cm−1 are Amide III (random) and
Thymine [32,33]. The peak at 1328 cm−1 is attributed to C–O Amide III (protein), C–H
deformation [12]. The peak at 1570 cm−1–1577 cm−1 is Adenine, Guanine (ring stretch-
ing) [12,32]. The Raman signals of diseased spores have common components, and there
are also differences with their own characteristics. Therefore, the Raman fingerprints of the
four fungi measured in this study provide a basis for species identification.

Table 1. Peak assignment of the average spectrogram of the four spores.

Raman Shift
(cm−1)

U. virens R. blast A. niger A. carbonarius Tentative Assignments Reference

493–497 496 493 497 497 Galactomannan,
chitin [29]

686–687 686 686 687 687 Guanine, Thymine (ring breathing) [29,33]
765–798 765 772 769 769 (O-P-O) stretching RNA [33]
930–990 984 984 982 989 C=C deformation, C–N stretching [12,29]

1065–1117 - - 1117 1065 galactomannan [29]
1150–1185 1148 1148 - - C–O ring aromatic amino acid in protein [12]
1200–1274 1202 - 1202 1200 Amide III (random), Thymine [32,33]
1315–1325 1328 1328 - - Amide III (protein), C–H deformation [12]

1416 1416 1401 1416 1416 Chitin [32]
1570–1595 1575 1577 1575 1575 Adenine, Guanine (ring stretching) [12,32]

Combining Figure 7 and Table 2, it can be concluded that the Raman spectra of the
four disease spores have some significant common characteristic peaks, which indicates
that they contain many of the same components, and there are also some distinctive
characteristic peaks unique to spores, indicating their unique composition. However, there
were also some insignificant shared characteristic peaks and unique characteristic peaks,
which also indicated some shared and unique compositions of diseased spores. Then,
classification modeling of spores by only significant characteristic peaks led to inaccurate
classification of spores, and it was necessary to find all characteristic peaks by training the
algorithm on all bands of the Raman spectrum.

Table 2. Accuracy statistics of spore classification model.

Serial
Number

Algorithm
Calibration Set
Accuracy (%)

Prediction Set
Accuracy (%)

1 SVM 85.65 86.32
2 BPANN 88.46 87.61
3 PCA-SVM 90.25 91.24
4 PCA-BPANN 88.34 87.55
5 SCARS-SVM 93.41 93.43
6 SCARS-BPANN 94.94 94.31

3.3. Fungal Spore Recognition Model

The large number of Raman spectral features and the existence of a large number of
redundant features greatly slow down the speed of modeling and analysis, so dimensional-
ity reduction was required before modeling and analysis. After dimensionality reduction,
the Raman spectrum was modeled and analyzed by SVM and BPANN, and a classification
model was established.

The SCARS algorithm uses the stability of the variable as a measure. The greater the
stability value, the greater the possibility of the variable being selected, and the frequency
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bands selected for each iteration can be consistent. It can ensure the stability and speed of
variable selection. The optimal potential frequency band variable is selected by the Monte
Carlo cross-validation method, and an RMSECV value can be obtained in each cycle. Due to
the large number of sampling times, in order to obtain a better combination of characteristic
frequency bands, it is necessary to compare through repeated trials. The subset combination
corresponding to the minimum RMSECV is obtained. When the number of cyclic samplings
is set to 25, the running result tends to be stable. The running result of the algorithm is
shown in Figure 8. The algorithm filtered out 69 bands, as shown in Figure 8.

Figure 8. Example of running result of SCARS algorithm.

PCA selects different PCA variables in full and shortened spectral intervals. The
top 15 PCAs are the most significant for the raw spectral data, with a cumulative contribu-
tion rate of over 95%. Figure 9 shows the top three PCA taxonomic groups of fungi and
observed preliminary taxonomic results for four diseased spores.

After the disease spore Raman spectrum was dimensionally reduced, the data were
input into the classification model for classification. The data after dimensionality reduction
by PCA is a matrix of 200 × 15, and the data after dimensionality reduction by SCARS is
a matrix of 200 × 65. In this study, two excellent classification algorithms were selected
to classify the dimensionality-reduced data. When the SVM was running, the radial basis
function (RBF) kernel function was selected, and then the optimal parameters of the penalty
function c of the model and the kernel parameter g of the kernel function were obtained
through grid search. The optimal parameters are 0.00094, and the accuracy rates of the
test set and prediction set are 94.38% and 86.63%. When using BPANN, the hidden layer
transfer function was set to Tansig, the output layer transfer function to purelin, the network
training function to trainbfg, the number of training iterations to be 1000, and the target
error to be 0.0001 [29]. The discriminative accuracies of the training set and prediction set
are 88.46% and 87.61%, respectively. Then, the Raman data reduced by PCA and SCARS
were used to classify the classification model. Since the random division of the test set and
the prediction set and other factors will affect the classification effect of the pull model, the
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model was run five times and its average accuracy was used. The results are shown in
Table 2. The calibration set and prediction set of SCARS-BPANN classification have the
highest accuracy, 94.94% and 94.31%, respectively.

Figure 9. Top 3 PCA distribution results.

3.4. Enrichment Experiment

In order to verify the enrichment effect of the microfluidic chip determined by the
simulation, a quantitative number of nano-microspheres was sucked into the chip inlet,
and then the enrichment efficiency of the particles in the chip was observed through a
microscope. About 50 nano-microspheres of one particle size were mixed into the aerosol
generator each time, all of them were entered from the chip inlet and out, and then the en-
riched particles were counted by a microscope and the enrichment rate was calculated. The
particle size was tested five times, and the statistical boxplot of the enrichment experiment
as shown in Figure 10 was obtained. The average enrichment efficiencies of 3 μm, 5 μm,
6 μm, and 8 μm were 87.5%, 82.625%, 82.5%, and 84.87%, respectively. It can be seen from
Figure 10 that the enrichment rate obtained in the enrichment experiment is slightly lower
than that obtained by simulation, but the enrichment efficiency is stable.
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Figure 10. Enrichment Experiment Statistics Box Plot.

3.5. Discussion

Airborne fungal diseases mostly float in the air in the form of spores and spread with
the wind before their widespread outbreaks [4,8]. At the time of disease occurrence, the con-
centration of disease spores in the air is higher than 100 spores /m3; if timely detection and
prevention and control measures are not taken, the disease spores will drift to other areas
with the wind and continue to infect other areas. Y. Zhang et al. proposed a deep-learning-
based fungal spore detector FSNet for recognition and automatic counting of Aspergillus
glaucus, Penicillium solitum, and Aspergillus candidus, and the experiments demonstrated
that FSNet achieved an average precision of 0.9, 0.944, and 0.904 on Aspergillus glaucus, Peni-
cillium solitum, and Aspergillus candidus, respectively, demonstrating the ability to automate
detection of spores in the laboratory [7]. However, the automatic detection of spores based
on images cannot accurately identify spores with similar appearance. Aswathi S. et al. were
able to differentiate between dead and live C. sporogenes spores on media (SBA and TSA)
plates using hyperspectral imaging [34]. The use of hyperspectral images and spectral
information can accurately identify spores, but the effective reflectance of the hyperspectral
spectrum for spores is limited to the spectral band range, and the spores cannot be captured
and detected. The method for detecting and identifying disease spores of microfluidic chip
combined with Raman microscopy developed in this study can capture spores in the air
and then accurately identify the spores by identifying their Raman fingerprints, and this
method does not require cumbersome biochemical experiments with low cost.

4. Conclusions

In this study, a two-stage separation and enrichment microfluidic chip with an arc-
shaped pretreatment channel was developed and designed to separate and enrich crop
disease spores, and then combined with confocal Raman microscopy to conduct Raman
fingerprinting of disease conidia. The map was accurately identified. Support vector
machine (SVM) and back-propagation artificial neural network (BPANN) were used to
identify fungal spore species, and the identification accuracy was 86.32% and 87.61%;
the SCARS-SVM model had the best discriminant effect, with a discriminant accuracy of
94.31%. Therefore, the capture and identification method of crop disease spores based on
microfluidic chip and micro Raman may become an accurate, convenient, and inexpensive
method for detection and identification of fungal spores.
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Abstract: At present, the apple grading system usually conveys apples by a belt or rollers. This
usually leads to low hardness or expensive fruits being bruised, resulting in economic losses. In
order to realize real-time detection and classification of high-quality apples, separate fruit trays were
designed to convey apples and used to prevent apples from being bruised during image acquisition.
A semantic segmentation method based on the BiSeNet V2 deep learning network was proposed to
segment the defective parts of defective apples. BiSeNet V2 for apple defect detection obtained a
slightly better result in MPA with a value of 99.66%, which was 0.14 and 0.19 percentage points higher
than DAnet and Unet, respectively. A model pruning method was used to optimize the structure
of the YOLO V4 network. The detection accuracy of defect regions in apple images was further
improved by the pruned YOLO V4 network. Then, a surface mapping method between the defect
area in apple images and the actual defect area was proposed to accurately calculate the defect area.
Finally, apples on separate fruit trays were sorted according to the number and area of defects in the
apple images. The experimental results showed that the average accuracy of apple classification was
92.42%, and the F1 score was 94.31. In commercial separate fruit tray grading and sorting machines,
it has great application potential.

Keywords: defective apples; apple grading; deep learning; object detection; semantic segmentation

1. Introduction

Recently, consumers’ awareness of fresh fruit quality is increasing. They often prefer
to buy apples with regular shapes, smooth surfaces and no obvious scars and damages.
Therefore, it is particularly important to detect and grade apples before they are sent to the
market, which will greatly improve the income of fruit farmers. Apples can be classified
into different grades based on basic characteristics such as size, shape, color and whether
they are defective. However, it is still a challenging task to accurately detect the apple
defect area on the automatic sorting line. Especially for expensive fruits, if the number
and area of defects are not considered and all defective apples are treated as substandard
fruits, it will cause potential economic losses to fruit farmers. Therefore, the detection and
grading of apple surface defects is an urgent problem to be solved for expensive apple
grading and sorting.

Mizushima et al. [1] applied a linear support vector machine (SVM) and Otsu method
to classify apples. First, the optimal classification hyperplane was calculated, and then the
color image was gray scaled with SVM. The optimal threshold near the fruit boundary
was obtained by the Otsu method. Finally, apples were eventually divided into three
commercial grades. Jawale et al. [2] proposed the K-means clustering method to segment
the image. Then, an artificial neural network (ANN) combined with color and texture
features was used to separate the defective apples. Mohammadi et al. [3] used a simple
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threshold to extract gray-scale images. Then, the shape features such as roundness of
the segmented apples were obtained and used to detect defects. Nosseir [4] proposed an
algorithm to identify rotten fruit by extracting RGB value. The recognition accuracy of
the method was 96.00%. Wenzhuo Zhang et al. [5] proposed an apple suspicious defect
detection method based on a multivariable image analysis strategy. The FCM-NPGA
algorithm was used to segment the suspicious apple defect image. The overall detection
accuracy was 98%. Chi Zhang et al. [6] used NIR-coded structured light and fast lightness
correction to automatically detect defective apples. Defective regions or stem/calyx regions
can be correctly distinguished. The identification rate of defective apples with this method
was 90.2%. Integrating the four characteristics of apple size, color, shape and surface
defects, the apples were divided into three levels by support vector machine (SVM). The
detection accuracy of surface defects based on a single index was 95.85%, while the average
classification accuracy of apple surface defects based on multiple features was 95.49%.

The feature extraction method is the key to the accuracy of fruit detection for traditional
machine vision technology. However, some methods require complex acquisition systems,
and some may not be used in online applications [7]. Recently, multispectral imaging (MSI)
and hyperspectral imaging (HSI) systems have been applied to nondestructive detection of
fruits such as apples, oranges, etc. [3,8]. However, due to the time consumption of image
acquisition and the high price of the HSI camera, the practical application of HSI was
limited [9,10]. Huang et al. [11] used principal component analysis (PCA) to detect apple
defects in hyperspectral images. However, the classification accuracy in the online test was
74.6%. In addition, the research based on a laboratory MSI system could only deal with
defect detection under static conditions, which was difficult to apply to online detection.

Due to the fast detection speed and low cost of the RGB color camera, traditional
machine vision using an RGB color camera had obvious advantages in online fruit grading
and sorting based on color, size, shape and defect compared with other nondestructive
testing technologies [12]. In recent years, deep learning has been widely used in agriculture,
industry, medicine and other fields. It automatically learned image features from the
input image and the key features with fewer human factors were extracted for subsequent
tasks [13]. Machine vision based on an RGB color camera combined with various deep
learning models greatly improved the online grading accuracy of apples.

For postharvest quality grading of ordinary apples, it is sufficient to divide apples
into normal and defective apples without locating the defects of each apple [10]. Therefore,
Yujian Xin et al. [14] compared the detection results of SVM, Fast RCNN, YOLOv2 and
YOLOv3 models on apple images. The YOLOv3 model had the best effect on apple defect
detection. The average detection time of an apple image was 1.12 s, and the F1 score
was 92.35%. Paolo et al. [15] regarded apple defects as object detection problems. After
comparing a single shot detector (SSD) with YOLOv3, the YOLOv3 model was trained
using a dataset containing healthy and defective apples to detect which apples were
healthy. The overall mAP was less than 74%. Guangrui Hu et al. [16] used the TensorFlow
deep learning framework and SSD deep learning algorithm to identify apple surface
defects. Yanfei Li et al. [17] proposed a fast classification model of apple quality based on a
convolutional neural network (CNN) and compared it with the Google InceptionV3 model
and HOG/GLCM + SVM. It was concluded that the accuracy of apple quality classification
was 95.33%. Fan et al. [18] compressed the depth and width of the YOLO V4 network
through channel pruning and layer pruning, which reduced the inference time and model
size of the network by 10.82 ms and 241.24 MB, respectively, and increased the mAP to
93.74%. This method was suitable for the defect identification of different varieties of
apples. Zhipeng Wang et al. [7] proposed an object-detection algorithm based on YOLOv5.
The real-time detection of apple stem/calyx could be realized, and the detection accuracy
was 93.89%.

However, current research on apple surface defect detection has either been on the
condition of a static environment or based on online detection using a roller conveyor.
Although sorting machines with a roller conveyor have fast sorting speed, it is easy to cause
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mechanical damage to the apple and reduces the quality of the apple when the apples are
rotated with the roller. The widely used roller conveyor sorting equipment requires that
the fruit to be sorted has high hardness. Although image processing techniques are applied
to sorting fruits, sorting fruits according to the number and area of surface defects is still
a difficult problem. For fragile fruits with low hardness, it is easy to cause damage and
economic losses when sorting with chain transmission equipment. Fruits with higher prices
are also likely to cause potential economic losses in the process of sorting with a roller
conveyor. Therefore, a fruit sorting machine based on separate fruit trays was designed
which could protect the apples from damage. The separate fruit tray has been especially
suitable for online grading of high-quality apples. With the improvement of classification
requirements, it was not only necessary to determine whether the apple’s surface had
defects but also to identify the number and area of apple surface defects. For expensive
high-end fruits, if both slight defects and severe defects were considered as equal defective
fruits and discarded, this would cause economic losses to farmers, so it is necessary to grade
fruits according to the number and size of defects. Due to the curvature of the fruit’s shape,
the area of defect in the image would be compacted compared with actual defect area.
Therefore, it was necessary to further accurately grade the defective apples in high-quality
apples according to the number and area of defects, so as to reduce the economic losses of
fruit farmers.

In this paper, a defect grading method based on deep learning is proposed to identify
the number and area of defects in an apple image. The specific objectives were: (1) using
the BiSeNet V2 network to build a defect detection and segmentation model, (2) using
the YOLO V4 network to correct the results of BiSeNet V2 detection, (3) building the
corresponding relationship between the number of pixels in the defect area of an apple
image and the actual defect area, and (4) grading the defective apple according to the defect
area and quantity.

2. Materials and Methods

2.1. Samples

The samples were composed of 180 defective Fuji apples and 50 healthy Fuji apples.
Apples with different degrees of defects and healthy apples were picked in November 2021
from a commercial orchard in Beijing. Before capturing apple images, mud points on the
apples’ surface were washed to avoid mistaking them as defects.

2.2. Computer Vision System

The computer vision system was composed of industrial control computer, RGB
camera (acA1920-40 gc, Basler, German), lens (M0814-MP2 8 mm, Computar, Japan),
hemispherical lighting hood and the outermost light chamber (Figure 1). There was a
circular opening at the top of the hemispherical lighting hood and a circle of light-emitting
diode (LED) lights at the bottom of the hemispherical lighting hood. All components
(except industrial control computer) were fixed in the light chamber.

The quality of apple images was directly related to the detection accuracy of apple
defects. It was significant to capture an image without any light spots. Direct illumination
would bring about obvious bright spots on the apple. At the same time, the central
regions of the apple images were bright, and the surrounding regions were dark, which
increased the difficulty of accurate detection. Image quality, related to the performance of
the illumination system, would affect the detection results of apple defects. It was quite
important to adopt a suitable illumination system. Therefore, a hemispherical lighting
hood with LED light source (wavelength range between 500 nm and 630 nm) was applied
to realize the irradiation effect of diffuse reflection in this study.
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Figure 1. Image acquisition system.

The RGB camera (1920 × 1200 pixels) was installed directly above the hemispherical
hood. The apple on the separate fruit tray continuously transmitted under the camera.
Apple images could be captured through the circular opening at the top of the hemispherical
lighting hood by the camera. In total, 112 LED lamp beads were built at the bottom of the
hemispherical lighting hood to form a circular light source. The power of a single LED
lamp bead is 3 W, and the color temperature is 6500 k. The LED lights were controlled
by the hardware trigger in the control unit. The output voltage of LED power supply
is continuously adjustable from 13 V to 24 V, and the light intensity can be adjusted by
manually rotating the button of LED power control unit. When an apple passed, the
LED lights were on and off for the rest of the time. White diffuse reflective coating was
painted on the inner surface of the lighting hood and the reflectivity was 99%, which
could obtain uniform illumination. Therefore, the apple images in this study do not need
corrected brightness.

The following frameworks were used to obtain the segmentation model and detection
model, respectively, in this study: PaddleSeg-based framework (Baidu, China) of version
2.1 for BiSeNet V2 and Darknet-based framework (open-source framework) for YOLO V4,
together with Python version 3.7. All experiments were performed on a 64 bits Intel Core
i7-6700 CPU with 3.4 GHz and 32 GB RAM memory. One graphics processing unit (GPU),
GeForce GTX 2080 with 8 GB of memory under CUDA version 10.1, was employed in this
study. The operating system was Windows version 10. C++ language was used to realize
online deployment.

2.3. Image Dataset

The apple images used in this research were captured by the machine vision system, as
shown in Figure 1. Before capturing the apple images, the apples were put on the separate
fruit tray, and the separate fruit tray moved with the conveyor belt. When the apples
passed through the lighting chamber, the camera on the top of the lighting chamber would
automatically capture the apple image directly under the control of hardware trigger signal.
Then, grading software read the apple image from the camera buffer and saved the image.
Three thousand apple images were finally obtained as the dataset of this research. The
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size of all apple images was 400 pixels × 336 pixels. Before training, the resize function of
openCV was used to resize the input images into 512 × 512 pixels.

An open-source annotation tool-LabelMe-was used to semantically label the captured
apple defect images and establish a standard semantic label dataset. Meanwhile, Labe-
lImg was used to mark the stem, calyx and defect regions in the apple images. In total,
2400 images were selected as the training set of the network and the remaining 600 as the
validation set.

2.4. Apple Surface Defect Detection Based on BiSeNet V2

In order to obtain an optimal lightweight network model to reduce the network
parameters, many researchers were looking for a balance among the amount of computation,
parameters and accuracy, hoping to use as few computations and parameters as possible
to obtain high accuracy of the detection model [19]. In the field of semantic segmentation,
reducing the image size or reducing the complexity of the model could decrease the
computation cost caused by semantic segmentation.

Reducing the image size could directly reduce the amount of computation, but the
image would lose many details, which would affect the image accuracy. In addition,
reducing the complexity of the model would weaken the feature extraction ability of the
model, which would affect the segmentation accuracy. Therefore, it was quite challenging to
apply lightweight model in semantic segmentation task while taking into account accuracy
and real-time performance.

The BiSeNet network could basically balance the relationship between real-time per-
formance and accuracy [20]. So, it was used in this research, and the architecture of it is
shown in Figure 2.

 

Figure 2. The architecture of BiSeNet V2 network.

The BiSeNetV2 network is divided into three main components: the two-pathway
backbone (green dashed box) with a detail branch (the purple cubes), a semantics branch
(the pink cubes), the booster component (blue dashed box) and the aggregation layer (red
dashed box). C1, C2 and C3 indicate the channels of the detail branch, respectively. The
context embedding block as the output of the semantics branch is in the last stage. Down
and up represent the down-sampling and the up-sampling operation, respectively. The
sigmoid function and the elementwise product were represented by ϕ and ⊗, respectively.

Shallow layers and wide channel dimensions are the characteristics of the detail
branch, which have a small receptive field of spatial detail used to generate high-resolution
feature representation and capture low-level detail. The semantic branch with deep layers
and narrow channel dimensions has a large receptive field for the categorical semantics
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to capture high-level semantics. The gaps between the semantic and resolution were
compensated by the aggregation layer. The initialization parameters of BiSeNet V2 network
are shown in Table 1.

Table 1. The initialization parameters of BiSeNet V2 network.

Input Size of Images/Pixel Batch Size Initial Learning Rate Iterations

512 × 512 4 1.1 × 10−3 1000

Because defects were considered as the region of interest in apple images and in order
to ensure the real-time detection, apple images were only segmented into defect region
and background region. The segmentation result based on BiSeNetV2 used binary image
IB to present. The gray value of defect region was set as BV, where BV was not equal to 0.
The gray value of background region was set as 0. In practical application, there might be
multiple defect regions in apple images. So, RB (RB∈{Rb1, Rb2,... Rbn}) was used to store
the position values of different defect regions, where n was the total number of defects
obtained using BiSeNetV2 model in apple image.

The overall goal of this study was to quickly and accurately realize the online grading
of defective apples. Therefore, it was necessary to further calculate the area and the number
of defects of defective apples. Finally, the grade of apple could be determined according to
the comparison between the defect information and the grading standard.

2.5. The Correction of Apple Defect Detection Based on Pruned YOLO V4 Network

Although as a lightweight semantic segmentation model BiSeNet V2 could realize
real-time semantic segmentation, it might incorrectly segment the apple stem/calyx region
as defect region. Therefore, the object detection model was further used to accurately
determine the location of the defect region.

The result of object-detection algorithm required not only identifying the object cat-
egory in the pictures but also marking the position parameters of the objects. Among
them, RCNN, Fast RCNN, SPP-Net [21] and Faster RCNN [22] could be divided into two
main parts: region proposal and extraction regions. Therefore, YOLO model had less
computation and was faster than two parts methods, as YOLO model replaced numerous
regions through grid division and anchor method. YOLO V4 [23] model was implemented
based on Darknet framework, which could easily and flexibly use C++ language to deploy
the trained network model in practical application. Therefore, a defect detection model
based on the YOLO V4 was proposed to identify the defect region in RGB apple images.

The YOLO V4 object-detection algorithm was an improved version of YOLO V3 [24].
Compared with the YOLO V3 object-detection algorithm, YOLO V4 improved the speed
and accuracy of real-time detection of the algorithm [25].

CSP (Cross Stage Partial) module could improve the learning ability of the network.
CBL module was composed of the Convolution, batch normalization and Leaky_ReLU and
CBM module was composed of the Convolution, batch normalization and Mish [26]. These
two modules were used to extract input image features. SPP (Spatial pyramid pooling)
module used the max-pooling of different scales to pool the input feature layers and then
stacked them, which could greatly increase the receptive field.

Recently, YOLO V4 has been used for defect detection of a variety of objects. With the
proposal of YOLOv5 and YOLOX, many researchers focus on the newly proposed network,
but from the perspective of practical application, YOLO V4 is easier to deploy and realize
the online detection of apple defects. The architecture of YOLO V4 network is shown in the
Figure 3.
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Figure 3. The architecture of YOLO V4 network.

In order to realize the real-time detection of apple surface defects, it was necessary to
deploy the YOLO V4 model into the apple automatic grading system. After experiment
comparison, it was found that a large number of network parameters, network layers and
complex structure of YOLO V4 lead to excessive calculation. It could not meet the real-time
requirements of apple surface defect detection. Considering the memory occupation of the
YOLO V4 and ensuring the real-time and stability in the detection process, a lightweight
model, pruned YOLO V4, was obtained by compressing the YOLO V4 network based on
RGB images of apples. Model pruning method could achieve the best balance between
model detection speed and detection accuracy. It was also a method to automatically obtain
the simplest network structure of the original model. The pruned YOLO V4 model could
be deployed on the Windows 10 operating system and hardware and realized the real-time
detection of apple surface defects.

In order to obtain pruned YOLO V4, firstly, the sparsity training was introduced
into the YOLO V4 network. The scale factors were sorted after sparsity training, and the
maximum scale factor meeting the requirements of pruning rate was set as the threshold.
Then, it deleted the channels that were less than the threshold. High contribution channels
were retained, and low contribution channels were deleted according to the scale factor.
So, the channel pruning was completed. However, the object detection model still could
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not meet the requirements of real-time detection after the channel pruning of the model,
which compressed the network width. So, the depth of the network model was further
compressed using the layer-pruning method. The mean value of the scale factor of each
layer was sorted. The layer with the lower mean value was selected for pruning, which
completed the layer pruning. After completing the channel pruning and layer pruning of
the YOLO V4 model, the accuracy of the model may decline. Fine-tune operation was used
to improve the detection accuracy of the pruned model. Finally, a pruned YOLO V4 model
for defect detection was obtained. The result of pruning is shown in Figure 4.

Figure 4. The channel changes of each layer of YOLO V4 model before and after pruning.

Pruned YOLO V4 network could accurately locate the location of apple defects and
identify the apple stem/calyx. For the defection of regions identified by the pruned YOLO
V4 network, the corresponding location information of each defect region was compared
with the binary image IB generated by BiSeNet V2 network. For the position where the
gray value Bv was in the defect area determined by pruned YOLO V4 network, it was
determined as the defect area. Finally, the defect region in apple image was segmented
accurately by combining BiSeNet V2 network and pruned YOLO V4 network.

2.6. Defect Area Correction

If the extent of surface defects of expensive fruits is not graded, all fruits containing
defects could be sorted as substandard fruits, which would cause serious economic losses
to fruit farmers. So, some grading standards of fruits classify fruits according to extent of
defects. For example, the number and area of apple surface defects under different grades
were restricted in the local standard for apple grading in Beijing, China. Therefore, the
number and area of the defects in defective apples needed to be accurately calculated.

The surface of the apple has a certain curvature because of the similarity between an
apple and a sphere. When the apple was placed on the separate fruit tray and the industrial
camera captured image of the apple, the defects in different areas of the outer surface of
the apple would be scaled to varying degrees. Therefore, the actual area of defect might be
different from the region of defect in apple images. Thus, projection method was presented
to provide a solution for building the relationship between actual area of defect and defect
region in apple images.

In order to eliminate the influence of surface curvature on the defect area in the apple
image, it was necessary to correct the number of pixels in the defect area of the apple
image. Firstly, apple models of different sizes were obtained by 3D printing, referring to
the characteristics of apple surface changes in orchards. There were 12 apple models with
horizontal diameter from 68 mm to 90 mm, as shown in Figure 5. In order to establish the
corresponding relationship between the number of real pixels and defective pixels in the
apple image, a series of black square labels with a side length of 3 mm was printed and
pasted on the surface of apple models of different sizes to simulate the change of defect
area at different positions.
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Figure 5. The apple models with labels.

Then, each apple model was put under the camera and the images of the apple models
were captured statically. The actual pixel value of the squares and their pixel value in the
image were different because of the change of curvature and the different distance from
each square to the center of the apple. Therefore, it was necessary to establish the function
relationship between the three variables, namely the number Z of real pixels, the distance d
from the defect region to the center of the apple and the r representing the radius of the
apple. The function relationship could be represented as Z = F(d, r). In order to obtain the
expression of the function, the number of pixels in the defect area of apple model image at
different positions was recorded manually for apple models with different sizes. Then, the
dataset (dw, rw, zw) corresponding to the three variables was generated.

So, given a dataset (dw, rw, zw), w = 1, 2, 3,..., n. The bivariate polynomial function
F(d, r) based on the dataset could be expressed as:

F(d, r) =
p,q
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gijdi−1rj−1 =
p

∑
i=1

q

∑
j=1

gijdi−1rj−1 (1)

Let

d =

⎡
⎢⎢⎢⎢⎢⎣

1
d
d2

...
dp

⎤
⎥⎥⎥⎥⎥⎦, r =

⎡
⎢⎢⎢⎢⎢⎣

1
r
r2

...
rp

⎤
⎥⎥⎥⎥⎥⎦, G =

⎡
⎢⎣

g11 · · · g1q
...

. . .
...

gp1 · · · gpq

⎤
⎥⎦ (2)

Then, the function could be expressed as

F(d, r)= dTGr (3)

The goal of fitting was to obtain the parameter matrix G. To obtain the parameter
matrix G, a multivariate function with respect to the parameter gij was constructed:
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The point (g11,..., gpq) was the minimum point of the multivariate function L (g11,...,
gpq), and zw was the number of actual pixels, so the point (g11,..., gpq) must satisfy the
equation:
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So, the following equation could be obtained:
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So, Equation (8) can be rewritten in matrix form:
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Equation (9) could be rewritten as the form Ug = V, where U is matrix with pq × pq,
and V is a column vector with length pq. The column vector g could be calculated. Then, g
was transformed into the parameter matrix G. So, the function F(d, r) could be determined
using matrix G.

The object distance between the apple and the camera lens would change due to
the different size of the apple, and it would affect the conversion between the real pixels
and real area corresponding to the real pixels. In order to determine the corresponding
relationship between the number of defective pixels and the actual defect areas under
different apple sizes, every model apple with a certain size was used to determine the
calibration coefficient c(r) between the number of pixels and the real areas S, where r was
the radius of apple. For c(r)∈C, C was composed of 20 calibration coefficients. The final
area projection equation was:

S = c(r) ∑
i∈SI

F(d i , r) (10)

where i represents the pixel located in the defect region SI in the apple image.
According to Equation (1) to Equation (9), the actual number of pixels corresponding

to the defect in the image could be determined. Then, the actual area of the defect could be
obtained according to Equation (10). So, the grade of defective apple could be determined
according to the apple grading standard.

2.7. Evaluation Metrics of the Model Performance

Several indicators [27] were used to evaluate the performance of the proposed model,
such as accuracy (A), pixel accuracy (PA), mean intersection over union (MIoU), mean pixel
accuracy (MPA), recall (R), precision (P) and F1 value, where TP, FP, TN and FN represented
true positive, false positive, true negative and false negative, respectively.

A =
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(11)
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P =
TP

TP + FP
(16)
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2P·R
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Assume that there were k + 1 classes (0... k) in the dataset and 0 usually represented the
background. pij indicated that it was originally class i and was predicted to be class j, and
pji indicated that it was originally class j but was predicted to be class i. Pixel accuracy (PA)
refers to the proportion of pixels predicted correctly in the total pixels. Mean pixel accuracy
(MPA) was an improvement on PA. It calculated PA for each class and then averaged PA
for all classes.

3. Results and Discussion

In order to quickly and accurately realize the online classification of defective apples,
the number and the area of defects needed to be calculated after apple defects were
detected. Therefore, three semantic segmentation methods including DAnet [28], Unet [29]
and BiSeNet V2 were compared. The detection results of the semantic segmentation for
comparison are shown in Figure 6. In Figure 6, the green mark was used to label the
pixels of the defect area detected by the semantic segmentation methods. Using the DAnet
and Unet networks, the stem/calyx region was more likely to be wrongly segmented as a
defective region, while the BiSeNet V2 network had a higher segmentation accuracy than
other networks.

The performance comparison of different semantic segmentation models is shown in
Table 2. It was observed in the results presented in Table 2 that the mean pixel accuracy
(MPA) of the three semantic segmentation methods for apple defect detection were up
to 99%. BiSeNet V2 for apple defect detection obtained a slightly better result in MPA
with a value of 99.66%, which was 0.14 and 0.19 percentage points higher than DAnet and
Unet, respectively. In addition, the mean intersection over union (MIoU) of the semantic
segmentation method based on BiSeNet V2 for apple defect detection was 80.46%, which
was 6.38 and 6.53 percentage points higher than DAnet and Unet, respectively. The results
showed that BiSeNet V2 had a better ability to identify apple surface defects that DAnet
and Unet failed to identify. DAnet, Unet and BiSeNet V2 took 37.40 ms, 22.64 ms and
9.00 ms, respectively, for a single image. Inference time is an important factor in evaluating
online detection models. BiSeNet V2 took the shortest time, which was 75.94% and 60.25%,
shorter than DAnet and Unet, respectively. Meanwhile, BiSeNet V2 had a smaller model
size than other models. After comparing the pixel accuracy, inference time, parameter
quantity and model size of the models, BiSeNet V2 could give consideration to higher
segmentation accuracy and real-time performance. Therefore, the BiSeNet V2 model could
meet the actual requirement of apple defect online detection.
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Figure 6. The segmentation results of the Unet, DAnet and BiSeNet V2 networks.

Table 2. The comparison of different semantic segmentation models.

Models MIoU/% MPA/%
Inference
Time/ms

Parameters/MB
Model

Size/MB

DAnet 74.08 99.52 37.40 45.31 181.30

Unet 73.93 99.47 22.64 12.78 51.15

BiSeNet V2 80.46 99.66 9.00 2.22 9.67

3.1. Analysis of Improvement Using Pruned YOLO V4

In the above discussion, the BiSeNet V2 network exhibits better accuracy and faster
detection speed, but in practical applications, there is still mis-segmentation as shown in
Figure 7. The pixels in stem/calyx regions were mistakenly identified as defects, respec-
tively, using BiSeNet V2. In Figure 7, the green mark in the first row shows the defective
parts. The pruned YOLO V4 network with higher accuracy could be used to solve this
problem. The pruned YOLO V4 model was used to process the apple images after semantic
segmentation. The detection results are shown in the second row of Figure 7. A green
bounding box was used to label defect regions. A purple bounding box and yellow bound-
ing box were used to label calyx and stem regions, respectively. The apple stem/calyx
region and defect region in the images of the second row of Figure 7 were identified ac-
curately. Finally, comparing the result of semantic segmentation with the result of object
detection, the defect area confirmed by the two results at the same time was determined as
the true defect area as shown in the last row of Figure 7. Finally, by combining BiSeNet
V2 and the pruned YOLO V4 network, the defect region in apple images was obtained
accurately. Therefore, the combination of BiSeNet V2 and YOLO V4 could improve the
segmentation results of defect regions in apple images.
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Figure 7. Comparison between segmentation results and detection results.((a,b) are images taken
with stem upward. (c,d) are images taken with calyx upward.)

3.2. Results Analysis of Defect Area Calculation

According to the method of defect area correction, the calculation of apple defect
area was tested. Apples with defects of different sizes in different regions were tested,
respectively. Each defect was tested ten times. Then, the average value of each defect
was calculated.

When the defect was located in region A, as shown in Figure 8, the defect area
calculated according to the method of defect area correction was compared with the actual
defect area. Three apples with defects of different sizes in region A were selected, and the
defect areas on each apple were different. The actual number of pixels was calculated in the
defect region according to Equation (1). Then, the area of the defect region was computed
according to Equation (10). Finally, the result was compared with the actual defect area.
The measurement process was repeated ten times for each apple. Then, the average value
of each area was calculated. Similarly, the calculated results of three apples with defects of
different sizes in region B and region C are shown in Figure 9. It could be concluded that
whether the defect was located in region A, region B or region C, the difference between
the calculated defect area and the actual defect area were less than 2.23 mm2. When the
defect was located in region C, the mean square error between the calculated area and the
actual area was between 3.03 and 3.22, which was higher than that of defects in region A
and region B. It could be concluded from Table 3 that when the defect area was large, the
error of the defect area obtained was also large. This was mainly because when the samples
used for training the semantic segmentation model were marked manually, it was difficult
to accurately mark the edge of the apple defect region. Therefore, there might be a certain
transition area between the defect edge region and the normal peel region, which led to
the error in the calculated result of the defect area. Meanwhile, the sensor of the industrial
camera used in the machine vision system was a CMOS chip, which led to differences in
the images captured every time, even in the same conditions. This further leads to the error
of defect area calculation.
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Figure 8. Schematic diagram of defect location. ( A,B,C represent different areas of the apple. (a) is a
diagram of the top view of the apple and (b) is a diagram of the front view of the apple).

Figure 9. Boxplot of the error rate between calculated and actual defect area at different regions of fruit.
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Table 3. Calculation results of defect area.

Defect
Position

The Pixels of
the Defect

Calculated Defect
Area/mm2

Actual Defect
Area/mm2

Root Mean
Square Error

389.47 39.79 38.48 2.38

A 243.55 24.58 22.90 2.76

186.92 19.08 18.10 1.85

370.41 37.75 36.32 1.36

B 218.63 21.86 19.63 2.13

157.68 15.77 16.62 2.92

323.90 32.39 33.18 3.16

C 221.58 22.16 20.43 3.22

135.27 13.53 12.56 3.03

3.3. Results of the Defective Apple Grading

In order to verify the detection effect of the proposed method of defective apple grad-
ing, 68 first-class apples, 64 second-class apples and 62 third-class apples were purchased
in a supermarket and selected for testing referring to the grading standard of apples in
Beijing. The experimental results are shown in Table 4 and Figure 10.

Table 4. The average of detection results of three grades.

Defect Level Precision/% Recall/% Accuracy/% F1/%

First class 95.59% 95.59% - -

Second class 92.06% 90.63% - -

Third class 95.24% 96.77% - -

Total 94.30% 94.33% 92.42% 94.31%

Figure 10. The confusion matrix of defective apple grading.
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As shown in Table 4, the precision and recall in the three grades of apples were above
90.63%, and the overall precision and recall were 94.30% and 94.33%, respectively. The
detection accuracy of apples was 92.42%, and the F1 value was 94.31%. Among the three
grades, the apple grade identification with the highest precision was the first-class apples
(95.59%), and the ones with lowest precision were second-class apples (92.06%). Due to
the error that would occur when the area values of defect were close to the junction of
two adjacent grades, first class and third class might be misclassified into second class,
and second-class could also be misclassified into first class and third class. Meanwhile, if
the defect was located at the edge of apple, it was sometimes incorrectly detected as the
background by the object-detection algorithm and semantic segmentation model, which
would also lead to the reduction of classification accuracy.

4. Conclusions

In this paper, a grading method of defective apples was proposed and applied to
the separate fruit tray sorting machine. The BiSeNet V2 network and pruned YOLO V4
network were combined to extract the defect regions in apple images. The BiSeNet V2
network was utilized to determine the latent location of defect regions. The pruned YOLO
V4 network was used to remove the non-defective region. A projection algorithm was
proposed to build the corresponding relationship between the defect area in the image and
the actual defect area on the apple’s surface. After the two deep learning models were
deployed using C++ language, the average accuracy and the F1 score of defective apple
grading in the online test were 92.42% and 94.31%, respectively.

The overall results denoted that the proposed method has potential to be implemented
in commercial fruit-grading machines. Meanwhile, the proposed method has the potential
for being extended to other fruit. Because separate fruit tray grading equipment in the
market can only capture the upper surface of the fruit, we are developing a flexible air
suction device to assist the camera with capturing the full surface image of the fruit. Future
work will focus on improving the segmentation accuracy of defects and the projection
accuracy of the defect area for improving the accuracy of grading defective apples.
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Abstract: Hot air drying is the most common processing method to extend shrimp’s shelf life. Real-
time monitoring of moisture content, color, and texture during the drying process is important to
ensure product quality. In this study, hyperspectral imaging technology was employed to acquire
images of 104 shrimp samples at different drying levels. The water distribution and migration were
monitored by low field magnetic resonance and the correlation between water distribution and other
quality indicators were determined by Pearson correlation analysis. Then, spectra were extracted and
competitive adaptive reweighting sampling was used to optimize characteristic variables. The grey-
scale co-occurrence matrix and color moments were used to extract the textural and color information
from the images. Subsequently, partial least squares regression and least squares support vector
machine (LSSVM) models were established based on full-band spectra, characteristic spectra, image
information, and fused information. For moisture, the LSSVM model based on full-band spectra
performed the best, with residual predictive deviation (RPD) of 2.814. For L*, a*, b*, hardness, and
elasticity, the optimal models were established by LSSVM based on fused information, with RPD
of 3.292, 2.753, 3.211, 2.807, and 2.842. The study provided an in situ and real-time alternative to
monitor quality changes of dried shrimps.

Keywords: shrimp; hot air drying; quality change; hyperspectral images; low field magnetic resonance

1. Introduction

Shrimp (Penaeus vannamei) harvesting is one of the most economically significant fish-
ing activities in China attracting attention from consumers due to the high protein content
and rich nutritional composition of shrimp [1,2]. According to the China Fisheries Statistical
Yearbook, the Penaeus vannamei aquaculture production in China was 1.1977 millions of tons
in 2020. However, the shrimp harvest suffers from rapid deterioration due to biochemical
reactions and microbial activity after death [3–5], which directly affect its shelf life. Hot
air drying, a common and practical method of drying seafood, can prolong the shelf life
of the shrimp harvest [6–8]. As a foodstuff, dried shrimp has the advantages of a unique
flavor, rich nutrition, easy storage, and high consumer demand [9,10]. However, drying
is a complex process involving water evaporation, protein degradation and denaturation,
and the formation of flavor compounds [11,12]. Ineffective drying can adversely impact
the color, texture, and nutrition attributes of the dried shrimp product [13]. Therefore, it is
imperative to monitor and control critical quality parameters during the drying process to
ensure consistency among batches, as well as uniformity of the end-product.

Current analytical methods employed to measure these quality characteristics in
factories, such as oven drying and texture profile analysis (TPA), are time-consuming,
destructive, cumbersome, and restricted to off-line usage [14–16]. Therefore, it is necessary
to develop an effective, rapid, nondestructive, and real-time detection method for dried
shrimp quality control. With the development of optical and spectroscopic technologies,
hyperspectral imaging (HSI) has been successfully applied to evaluate food safety and
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quality, monitor food preparation processes, and identify adulteration [17,18]. HSI si-
multaneously captures both spectral and spatial information of a sample by integrating
spectroscopic and computer vision or imaging techniques into one system [19–21]. Another
unique characteristic is that HSI generates a visual distribution map of reference values
to enable the prediction and quantification of internal sample constituents, as well as the
simultaneous determination of their location on the sample surface [22,23].

Based on these advantages, HSI has been applied to monitor quality changes in meat,
fruit, vegetable, and cereal foods during drying. For example, Sun et al. used HSI to monitor
the moisture contents of scallops during drying, and reported a model prediction accuracy
of greater than 0.9 [24]. Moreover, Netto et al. used HSI to evaluate the water uniformity of
the melon drying process under different pretreatments by visualizing the moisture content
in the samples [25]. However, most existing studies only employ spectral information
for quality indicator evaluation, ignoring image information, such as color and texture
in their modeling. To improve prediction accuracy, the importance of combining spectral
and spatial HIS information has been emphasized by several researchers. This technique
has been used to discriminate between different breeds of chicken [26], predict the storage
time and moisture content of cooked beef [19], and assess the fat and moisture contents
of salmon [27]. The results indicate that a combination of spectral and spatial HSI data is
more comprehensive and intuitional than conventional analyses. Furthermore, considering
that the shrimp drying process involves color and texture changes, it is crucial to include
image information in the spectral model for quality control. To the best of our knowledge,
there are no previous data fusion studies on the visualization of moisture and other quality
indicators in dried shrimp. Additionally, previous studies only predicted moisture and
other quality indicator contents, neglecting the link between moisture distribution and
other quality characteristics, which may clarify the mechanisms governing shrimp quality
changes during the drying process.

Therefore, the purpose of the current study is to explore the correlation between
shrimp water distribution state and other quality indices and combine spatial and spectral
information of the hypercube to measure shrimp quality changes during the drying process.
The specific objectives are: (1) to quantify changes in shrimp during hot air drying through
moisture content measurement, color properties (L*, a*, b*) analysis, and texture profile
analysis (hardness, adhesiveness, elasticity, stickiness, and chewiness); (2) to monitor
the dynamic water sate and water migration by low field magnetic resonance (LF-NMR)
and determine the correlation between water distribution and other quality indicators by
Pearson correlation analysis; (3) to acquire hyperspectral reflectance images of shrimps at
different drying stages, as well as spectral data and color and textural features from the
region of interest (ROI); (4) to establish partial least squares regression (PLSR) and least
squares support vector machine (LSSVM) models based on spectral, image, and fusion
information; and (5) to visualize shrimp quality at the pixel level using the optimal models.

2. Materials and Methods

2.1. Sample Preparation and Drying Experiments

Live shrimp (Penaeus vannamei), each weighing approximately 15 ± 3 g, were pur-
chased from a local market in Baoding, China. The live shrimp were transported to the
laboratory within 30 min and stored in ice water, until their death. The shrimp were boiled
in salt water with a mass fraction of 3% for 2 min and removed to dry the surface moisture.
Then, they were used for constant drying experiments at 55 ◦C using an electrical blast
drying oven. When the moisture content had been reduced by approximately 35%, the
taste of the dried shrimp was optimal. The total dry processing time was 12 h, and shrimp
sample were collected after boiling and drying for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 h.
A total of 16 samples were collected at each sampling point, half were used for color,
moisture determination, and hyperspectral measurement, and the other half were used
for texture analysis, LF-NMR analysis, magnetic resonance imaging (MRI) measurement,
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and hyperspectral measurement. Thus, 104 samples (8 samples × 13 drying levels) were
involved for each quality indicator prediction.

2.2. Quality Indicators Determination
2.2.1. Moisture Content Measurement

The direct drying method found in the National Standards of China (GB 5009.3-2016) was
used to calculate the moisture content of the shrimp samples. The specific steps employed
were as follows. First, the glass flat weighing bottles were placed in a 105 ◦C oven to dry
to a constant weight. Second, 3.0 g of shrimp samples for each drying period were placed
into weighing bottles and the total mass of the bottles and shrimp samples were accurately
weighed, noted as m1. Third, the bottles were placed in an oven at 105 ◦C for drying and
removed after 1 h, then weighed after cooling in the desiccator for half an hour. These
steps were repeated until the total mass was not changing and the final mass was weighed
accurately and noted as m2. The moisture content of the shrimp samples at each time point
during the drying process was calculated as follows:

X =
m1−m2

m1−m3
×100% (1)

where X (unit: g/100 g) indicates the moisture content of the shrimp samples at each time
point during the drying process; m1 and m2 (unit: g) indicate the mass of the weight bottles
and samples before and after drying, respectively; and m3 (unit: g) indicates the mass of
the weight bottles.

2.2.2. Color Analysis

The color of the shrimp samples was evaluated using a CR-400 color difference meter
(Konica Minolta Co., Ltd., Tokyo, Japan) after equilibration to room temperature. The
second abdominal segment of the shrimp was used for color measurement. The color
differences were analyzed using lightness (L*), green to red (a*), and blue to yellow (b*). All
experiments were conducted eight times.

2.2.3. Texture Profile Analysis (TPA)

The shrimp with the head and shell removed were subjected to texture analysis.
Texture variables, including hardness, elasticity, stickiness, adhesiveness, and chewiness,
were obtained using Texture Expert software (TMS-Pro, Food Technology Corporation,
Sterling, VA, USA) The measurement parameters were set to TPA mode; the probe type
was P/5, compression ratio was 45%, detection rate was 30 mm/min, shape variable was
60%, minimum force was 0.5 N, and return distance was 2.5 cm. Each shrimp sample was
measured eight times at each point during the drying processes.

2.3. LF-NMR Transverse Relaxation Measurements

The relaxation measurements were performed on a Meson NMI20-040H-I LF-NMR
analyzer (NMI20-040H-I, NIUMAG Electronic Technology Co., Ltd., Shanghai, China) with
a magnetic field strength of 0.5 T and corresponding resonance frequency for protons of
20 MHz. The shrimp samples were placed in a cylindrical glass tube, and a 30-mm diameter
radio frequency coil was used to collect Carr–Purcell–Meiboom–Gill sequence (CPMG)
decay signals, with a π-value (the time between pulses 90 and 180) of 200 μs; the lengths of
these two pulses were 9.52 μs and 18.48 μs, respectively. The repetition time between two
scans was 1500 ms. Distributed multiexponential fitting analysis was performed on the T2
relaxation data using MultiExp Inv Analysis software (NIUMAG Electronic Technology
Co., Ltd., Shanghai, China). The T2 relaxation spectra were obtained from this analysis;
the lateral and vertical axes represent the relaxation time and signal intensity, respectively
(corresponding to the proportion of water molecules exhibited at that relaxation time).
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2.4. MRI Analysis

MRI was also performed using a Meson NMI20-040H-I LF-NMR analyzer ((NMI20-
040H-I, NIUMAG Electronic Technology Co., Ltd., Shanghai, China)) equipped with a
60-mm radio frequency coil. A spin echo (SE) sequence was applied to obtain T2 weighted
images of the shrimp. The following scanning parameters were used: field of view
(FOV) = 100 mm × 100 mm, slice width = 1.1 mm, slice gap = 1.1 mm, average = 8, read
size = 256, phase size = 192, T2 weighted image echo time (TE) = 20 ms, and repetition time
(TR) = 500 ms.

2.5. Hyperspectral Image Acquisition and ROI Selection

Images of shrimp were acquired using a pushbroom HSI system in the reflectance
mode. The system consisted of 4 components: a charge-coupled device (CCD) camera
(FX 10, Specim Ltd., Helsinki, Finland) with a resolution of 1024 pixels in the spatial
dimension and 224 bands in the spectral dimension, hyperspectral imaging workstation
with a spectral range of 400–1000 nm, 2 halogen lamps, and computer with hyperspectral
image analysis software. The spectral resolution was 5.5 nm, and the imaging speed of full
band acquisition was 330 Frames Per Second (FPS). Before the experiment, the instrument
was preheated for 30 min to ensure its stability. The samples were placed on a mobile
platform for image acquisition. To prevent image oversaturation, it was necessary to set the
speed of the moving platform, camera exposure time, and acquisition distance in advance;
after repeated testing, these three parameters were set to 7.5 mm/s, 50 ms, and 30 cm,
respectively. Simultaneously, black and white correction of the acquired hyperspectral
image was conducted to reduce the influence of the dark current of the CCD camera and
uneven brightness of the light source. The correction formula is given by:

R =
Ro − Rd
Rw − Rd

(2)

where Ro represents the original spectral image, Rw represents the whiteboard image, and
Rd represents the darkfield image.

ROI spectral extraction of the hyperspectral image was performed using ENVI 5.2 soft-
ware (Exelis Visual Information Solutions Co., Boulder, CO, USA). All pixels, except those
corresponding to the shrimp head and tail, were selected to contain as much information
as possible about the sample. As the collected spectral images were clear in all bands, the
entire spectral range with 224 bands was retained for analysis.

2.6. Spectral Pre-Processing and Optimal Wavelengths Selection

Spectral preprocessing involves the use of appropriate mathematical analyses to correct
random noise in the spectra and light scattering generated by the instruments, which is
helpful for highlighting valuable spectral information [28]. In current work, Savitzky–Golay
smoothing and standard normal variable transformation (SNV) method were employed
to remove the interference information from the spectra. Meanwhile, among the collected
spectral information, the spectral data of certain bands could be explained or replaced by
those of other bands. This situation caused a large amount of redundant information in the
spectrum. Owing to the existence of redundant information, the prediction accuracy of the
established model decreased; as the computational burden increased, the computational
speed decreased. To overcome these problems, it was important to select a small set of
optimal wavelengths that reflected the changes in quality to establish the model. The
competitive adaptive reweighting sampling (CARS) method was used to select the optimal
wavelengths in this study.

2.7. Image Color and Texture Information Extraction

Compared with traditional spectroscopic methods, HSI has the advantage of providing
abundant image information related not only to size and shape, but also color and textural
features. Color moments represent a simple and effective means of representing the color
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features, with the first, second, and third order moments commonly used to express the
color distribution of images. Because of its advantages of low feature vector dimensionality
and no color space quantization, color moments are effective for characterizing color
distributions in images [29]. In this study, we extracted the RGB (red, green, and blue)
images synthesized from the hyperspectral images at 647 nm, 550 nm and 460 nm using
ENVI 5.2 (Exelis Visual Information Solutions Co., Boulder, CO, USA), and the first-order
moment and second-order moment information were calculated. Then, the RGB tricolor was
transformed into HSV (hue, saturation, and value) mode, which is based on the intuitive
properties of color, to extract three additional feature variables. Finally, nine color features
were obtained to reflect the image difference of samples with different drying levels.

The gray-level co-occurrence matrix (GLCM) method was used to extract the texture
information about the shrimp images. Four special mutually independent features of
contrast, correlation, energy, and homogeneity were used to describe the co-occurrence
matrix data in four orientations of 0◦, 45◦, 90◦, and 135◦, and the distance of each pixel pair
was set to 1. The contrast value expresses local variations in the gray levels of the GLCM,
the correlation measures the image linearity among pixels, the homogeneity measures
the density of the distribution of elements in the GLCM to its diagonal, and the energy
measures the textural uniformity of the image [30]. All textural values based on the
different directions were then averaged into one value representing the textural features
of the sample for subsequent analysis. Before constructing the texture matrix, principal
component analysis (PCA) was performed to select the optimal characteristic images [31].
The implementation procedures for PC images were performed using the ENVI 5.2 software
(Exelis Visual Information Solutions Co., Boulder, Colorado, USA), and the color and texture
feature extraction were performed in Matlab 2012a (MathWorks Co., Natick, MA, USA).

2.8. Quantitative Analysis Models

In this study, PLSR and LSSVM techniques were compared to establish the quantitative
relationships between spectroscopic data and image information and the measured mois-
ture content, L*, a*, b*, hardness, and elasticity during the drying process. The 104 samples
were divided 3:1 into calibration and prediction sets for L and LSSVM modeling. PLSR is
an effective multivariate regression method that enables regression modeling of multiple
independent variables; it is particularly effective when the variables are highly linearly cor-
related [32]. The LSSVM technique can be applied to both linear and nonlinear regression
models. For nonlinear regression problems, the LSSVM approach first performs nonlinear
mapping from the input space onto a high-dimensional feature space using a nonlinear
kernel function. This method then performs linear regression in the same feature space,
which can be used to solve linear regression problems [33]. The predicted results were
compared with the actual values, and the model performance was evaluated in terms of
the correlation coefficient (R), root-mean-squared error of calibration set (RMSEC) and root-
mean-squared error of prediction set (RMSEP), and residual predictive deviation (RPD).
The afore-mentioned data analyses were implemented using Matlab2012a (MathWorks Co.,
Natick, MA, USA).

2.9. Visualization of Shrimp Quality Indicators

The advantage of HSI is its ability to transfer multivariate spectral data in a pixel-wise
manner by inputting the spectra in each pixel into an established calibration model. In this
study, we selected the final optimal models of moisture content, L*, a*, b*, hardness, and
elasticity for visualization by pseudo-color data processing. All visualization steps were
executed in Matlab2012a (MathWorks Co., Natick, MA, USA). The key steps of the analysis
procedure are summarized in Figure 1.
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Figure 1. Flowchart of data analyses.

2.10. Statistical Analysis

The physicochemical data were statistically analyzed using the Statistical Package
for the Social Sciences (SPSS) version 18.0 software package (SPSS Inc., Chicago, IL, USA).
Data are expressed as mean ± standard deviation (SD), and significance was defined as
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p < 0.05. The correlation between the LF-NMR results and the physicochemical parameters
was determined by Pearson correlation analysis.

3. Results and Discussion

3.1. Quality Indicators Analysis
3.1.1. Moisture Content Analysis

The changes in the moisture content and drying rate of shrimp during the hot air
drying process are shown in Figure 2. The moisture content of the fresh shrimp was 75.87%.
The drying endpoint is 12 h at which point the moisture content decreases to 35.02%. It can
be seen from Figure 2 that within 2 h of drying, the moisture content decreases at a slower
rate; the drying rate at this point is 3.74% w.b h−1; during 2–8 h, the moisture content
decreases at a faster rate and the drying rate reaches a maximum of 5.72% w.b h−1 at 4 h;
and after 8 h, the drying rate decreases slowly. The reason for this phenomenon could
be that, in the early drying stage, due to the high moisture content of shrimp, the oven
space was saturated, and the moisture on the surface of the shrimp could not evaporate in
time [34]. This situation increased the humidity in the oven. With further hot air drying,
the protein denatured because of the heat, which reduced the interaction between matter
and water. The release of water and increase in the drying rate could also have been due to
fiber shrinkage, leading to decreased intracellular spaces and thus facilitating evaporation.
Similar results were obtained by Sun et al., who found that the moisture content of scallops
decreased by approximately 50% during drying at 55 ◦C for 5 h and that the decrease in
moisture content was mainly associated with free water migration [24]. When the moisture
on the surface of the shrimp evaporated, the free water in the body evaporated to a certain
extent, and the remaining bound water could not easily flow and evaporate, resulting in a
slow decline in the moisture content and drying rate. Shi et al. found that the decrease in
the moisture content of beef jerky with increased drying time and temperature was related
to the degree of moisture migration [35]. The current results corroborate these findings.

 

Figure 2. Averaged measured moisture contents of all samples at different drying levels.

3.1.2. TPA

Texture analysis of the shrimp was performed during the drying process, and the
results are shown in Table 1. The TPA parameters include hardness, adhesiveness, elasticity,
stickiness, and chewiness. As shown in Table 1, the hardness of the shrimp samples
significantly increased with increasing drying time (p < 0.05) due to the change of drying
rate and the shrinkage of shrimp muscle fibers during the drying process. Latorre et al.
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explained that the dissociation of actin and myosin, disintegration of muscle fibers, and
myofibril dissociation lead to the formation of small fragments and increase the hardness of
the disordered structure of the muscle fiber [36]. The shrimp showed the least adhesiveness
after drying for 12 h, which highlighted their improved fragility. The elasticity of shrimp
firstly increased and then decreased during drying and reached its highest value at 7 h
of drying. The changes in elasticity were related to the contraction of the muscle fiber.
As muscle fiber contracts, the muscle proteins form a dense reticular structure, which
is prone to irreversible deformation when the muscle tissue is extruded, and the spatial
structure of muscle proteins is small, resulting in reduced elasticity [37]. In addition,
the stickiness and chewiness of shrimp samples increase with increasing drying time.
Chewiness and stickiness are parameters used in comprehensive analysis. Chewiness
represents the energy required to chew solid samples, whereas stickiness represents the
energy required to separate food from its contact material. As hardness and elasticity
showed significant changes during drying, they were chosen as representative indicators
of TPA for further modeling.

Table 1. Effects of hot air drying on the texture of shrimp.

Drying Time (h) Hardness (N) Adhesiveness (N) Elasticity (mm) Stickiness (mJ) Chewiness (mJ)

Fresh 127.96 ± 15.44 f 1.90 ± 0.31 a 0.83 ± 0.13 f 2.84 ± 0.58 h 2.38 ± 0.74 h

Boiled 144.26 ± 16.24 f 1.48 ± 0.17 c 1.96 ± 0.23 c,d,e 12.23 ± 1.99 g 24.37 ± 6.85 g

1 159.64 ± 28.24 e,f 1.45 ± 0.18 c 1.90 ± 0.22 d,e 14.61 ± 3.32 f,g 28.44 ± 9.41 f,g

2 168.89 ± 34.57 e,f 1.36 ± 0.14 c 1.99 ± 0.21 c,d,e 17.06 ± 3.96 e,f,g 34.63 ± 11.19 f,g

3 162.99 ± 20.22 e,f 1.14 ± 0.11 d 1.87 ± 0.16 d,e 14.55 ± 1.24 f,g 27.21 ± 4.07 f,g

4 197.26 ± 45.33 d,e 1.48 ± 0.19 c 1.74 ± 0.18 e 19.40 ± 4.70 d,e,f 34.44 ± 11.17 f,g

5 231.38 ± 41.98 c,d 1.37 ± 0.11 c 1.89 ± 0.18 d,e 20.74 ± 4.40 c,d,e,f 39.41 ± 10.75 e,f,g

6 245.64 ± 52.16 c 1.67 ± 0.32 b 1.91 ± 0.31 d,e 21.20 ± 6.82 c,d,e,f 41.67 ± 18.05 d,e,f,g

7 233.56 ± 56.55 c,d 0.25 ± 0.06 f,g 2.09 ± 0.20 c,d 22.15 ± 5.17 c,d,e 46.59 ± 12.44 c,d,e,f

8 265.54 ± 39.32 b,c 1.00 ± 0.12 d 2.05 ± 0.40 c,d 26.55 ± 5.60 c 55.78 ± 21.14 c,d,e

9 267.03 ± 58.75 b,c 0.33 ± 0.06 e,f,g 1.36 ± 0.23 a,b 26.61 ± 6.87 c 63.47 ± 19.29 c

10 252.94 ± 44.79 b,c 0.41 ± 0.10 e,f 1.23 ± 0.34 b,c 25.95 ± 8.07 c,d 60.13 ± 25.82 c,d

11 296.95 ± 63.08 b 0.47 ± 0.08 e 1.51 ± 0.26 a 37.14 ± 10.70 b 92.36 ± 24.28 b

12 344.78 ± 44.22 a 0.20 ± 0.02 g 1.56 ± 0.35 a 45.01 ± 9.78 a 116.50 ± 34.33 a

Note: All data are presented as mean ± standard error. Mean values with different letters within each line are
significantly different (p < 0.05) with respect to processing.

3.1.3. Color Analysis

The market value of shrimp depends on the visual appearance of their body color,
which is attributed to the presence of astaxanthin [38]. This carotenoid pigment is responsi-
ble for orange red tissue pigmentation in shrimp meat. Table 2 shows the color differences
of the shrimp. The L* value of shrimp increases from 40.71 when fresh to 63.85 after boiling
(p < 0.05), which may be due to the increase in heat during boiling, resulting in protein
accumulation and an increase in opacity. However, the L* value of the shrimp decreases
with more drying (p < 0.05). The blackening of dried shrimp is attributed to the Maillard
reaction during drying [39]. Moreover, a* and b* exhibit similar trends throughout drying.
The a* and b* values of dried shrimp are significantly higher than those of fresh shrimp
(p < 0.05). The formation of redness upon the exposure of shrimp meat to heat is a result of
the release of astaxanthin owing to the breakdown of carotene protein during denaturation.
There are slight decreases in a* and b* values in the late drying period, which may be due to
a slower drying rate and longer drying time, resulting in the slight damage of astaxanthin
from the extension of hot air-drying. Regarding ΔE values, the results for ΔE > 12 show
that the color of shrimp during drying is notably different from that of fresh shrimp.
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Table 2. Effects of hot air drying on the color of shrimp.

Drying Time
(h)

L* a* b* ΔE

Fresh 40.71 ± 1.22 f 1.22 ± 0.55 f 3.08 ± 1.39 h -
Boiled 63.85 ± 1.22 a 23.38 ± 2.30 a 29.03 ± 2.46 a 41.304 ± 2.34 a

1 63.89 ± 1.13 a 21.33 ± 1.79 b 25.85 ± 1.96 b 38.261 ± 1.97 b

2 63.68 ± 1.17 a 20.02 ± 1.39 b,c 24.19 ± 2.08 b,c,d 36.460 ± 2.12 b,c

3 63.23 ± 2.17 a,b 19.35 ± 1.87 c 25.16 ± 1.84 b,c 36.493 ± 1.40 b,c

4 63.12 ± 1.61 a,b,c 20.24 ± 1.57 b,c 24.09 ± 1.65 b,c,d 36.158 ± 2.26 c

5 61.79 ± 0.88 b,c 17.56 ± 1.61 d 24.15 ± 1.68 b,c,d 34.043 ± 1.41 d

6 62.04 ± 1.52 b,c 15.86 ± 2.74 d,e 21.94 ± 1.37 e,f,g 32.144 ± 1.49 e,f

7 61.62 ± 2.24 c,d 16.60 ± 2.40 d,e 23.35 ± 1.79 c,d,e 33.025 ± 2.62 d,e

8 60.23 ± 1.28 d,e 15.99 ± 1.95 d,e 22.25 ± 1.77 d,e,f 31.152 ± 2.09 e,f,g

9 59.59 ± 1.58 e 16.93 ± 1.28 d,e 21.78 ± 1.79 e,f,g 30.938 ± 1.52 f,g

10 59.63 ± 1.68 e 15.56 ± 1.06 d,e 20.36 ± 1.75 f,g 29.433 ± 1.60 g

11 59.93 ± 0.56 e 15.44 ± 1.73 e 19.83 ± 2.56 g 29.289 ± 1.80 g

12 59.58 ± 0.79 a 16.08 ± 1.31 d,e 20.25 ± 2.42 f,g 29.617 ± 1.28 g

Note: All data are presented as mean ± standard error. Mean values with different letters within each line are
significantly different (p < 0.05) with respect to processing. “-”represents the blank.

3.2. LF-NMR Analysis

LF-NMR spectroscopy measures the absorption of radio frequency resonance in pres-
ence of an external magnetic field [30]; thus, the spin–spin relaxation time (T2) is closely
related to the water state and dynamics in foods. Protons of all substances are surrounded
by a small magnetic field; thus, each proton creates a tiny magnetic field that is affected
by the magnetic field of other protons [40]. Therefore, as the T2 of a sample is small or
large when the distance between protons is relatively small or large, respectively, T2 value
analysis is a fast and effective method that allows to identify changes in moisture content
and status, and reflects (to some extent) the micro-molecular structure of a sample [41,42].
Since water can alter the interaction between the different components of foods, drying
can significantly modify the microstructure of foods. Herein, the T2 signal amplitude of
shrimp at different drying stages was measured to characterize the change of water state
(Figure 3a). To better investigate the water state in the different samples, the relaxation
times T21, T22, and T23 of shrimp were defined as bound water that was tightly attached to
macromolecules when T21 was 0.01–10 ms, immobilized water entrapped within the extra-
myofibrillar lattice when T22 was 10–100 ms, and free water when T23 was 100–10,000 ms,
respectively. Noteworthily, the levels of bound water, immobilized water, and free water
quickly decreased, as denoted by the shift of the main peaks and signal amplitudes to
the left direction with increased drying time. These results indicate that the remaining
water molecules within the shrimp samples form strong adsorption connections with the
dry matter. The strongest T2 signal amplitudes were observed in fresh and boiled shrimp,
mainly due to their free and immobilized water, whereas the signals of free water gradually
disappeared and those of bound and immobilized water decreased as drying proceeded
(Figure 3a). Moreover, the relaxation times of T21 and T22 decreased from 3.05 to 1.52 and
28.48 to 14.17, respectively, and T23 became 0 ms after 9 h of drying (Figure 3b), which indi-
cates that the free water is the main moisture lost during drying. Therefore, the LF-NMR
results revealed that the mobility of the bound, immobilized, and free water molecules
is reduced due to shrimp muscle contraction and the marked evaporation of free water
during the drying process.

3.3. MRI Analysis

The hydrogen proton MRI has been used as a noninvasive method to evaluate the
distribution of moisture content within food products [43]. The T2 weighted images taken
at the transverse geometric center of each sample during the drying process revealed the
distribution of the water within high-mobility protons (Figure 4). With increasing drying
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time, a continuous decrease is observed in the size of the brighter regions, suggesting the
loss of a longer relaxation signal of water during drying. In addition, a decrease in the signal
intensity from the external surface to the inner region is evident. Similar phenomenon was
also observed by Ling et al. who found that the red region gradually changed to blue, and
the color and size of the blue region remarkably decreased from the exterior to the interior
part with increasing drying time of shrimp [39]. These results confirmed that the water
relaxation signal gradually weakens and the water content continuously decreases during
the drying process, in agreement with the above-described changes observed in moisture
content in shrimp during drying.

Figure 3. (a) Distribution of T2 relaxation spectra and (b) change of T2 relaxation times obtained by
multi-exponential fitting of the continuously distributed Carr–Purcell-Meiboom-Gill relaxation curve
of different shrimp samples during drying.

Figure 4. T2 weighted MRI images of shrimp dried by hot air drying at different levels.

3.4. Correlation between LF-NMR and Physicochemical Properties

As a rapid, noninvasive method, LF-NMR relaxation is often applied to investigate
water mobility in materials and foods [44]. However, the correlation between water
distribution state and the physicochemical parameters of shrimp during the drying process
needs deeper exploration. Therefore, the relationship between T2 relaxation times (T21, T22,
and T23) and shrimp physicochemical properties was determined by Pearson correlation
analysis (Figure 5). The results indicated good correlations between LF-NMR data and
shrimp moisture content, hardness, adhesiveness, stickiness, and chewiness. Specifically,
moisture content was significantly positively correlated with T21 (R = 0.943), T22 (R = 0.914),
and T23 (R = 0.903), which may be explained by the substantial effect of moisture on the
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proteins and myofibril in shrimps. This was similar to the findings of Cheng et al., who
also reported a positive correlation between the decrease in moisture content and the
change in relaxation times [42]. Regarding shrimp texture, its hardness, stickiness, and
chewiness were negatively correlated with T21 (R = −0.877, R = −0.889, R = −0.852) and
T23 (R = −0.846, R = −0.875, R = −0.844), whereas adhesiveness was positively correlated
with T21 (R = 0.832) and T23 (R = 0.872). These results agree with those of Wang et al., who
reported that T22 was highly correlated (p < 0.01) with hardness, elasticity, and chewiness,
thereby consequently leading to moisture changes that will affect muscle fiber contraction
and alter the texture of shrimp meat [44]. However, the color indicators exhibited a weaker
correlation with the LF-NMR, which may be due to the fact that the color change is mainly
caused by fat and pigmentation, and is weakly related with water splitting. In summary,
the strong correlations between LF-NMR data and shrimp moisture content and texture
properties indicate the potential of LF-NMR as a fast and nondestructive alternative method
of detecting quality changes during shrimp drying.

Figure 5. Correlation analysis between LF-NMR relaxation parameters and moisture content, color,
texture of shrimp during drying.

3.5. Analysis of Modeling Results Based on Spectral Information
3.5.1. Spectral Characteristics of Drying Processes

Figure 6 shows the average spectra of the ROIs in the shrimp samples. The spectral
reflectance curves of the shrimp samples with different drying levels are smooth and
exhibit the same trends across the entire wavelength region. As shown in Figure 6a, a
prominent absorption peak is centered at approximately 480 nm, which is probably due
to the presence of astaxanthin in the shrimp [45]. Astaxanthins present in the dermis of
the carapace are bound to proteins, and when shrimp are heated at high temperatures,
astaxanthin detaches from the proteins, causing red astaxanthin to become present. Another
intense absorption peak occurred at approximately 960 nm, which was attributed to water
absorption corresponding to the second overtone of O–H stretching [24]. Because water
is the main component of shrimp, it absorbs the radiation of light waves and dominates
the spectral characteristics between 950 and 1000 nm. Figure 6b shows the representative
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reflectance spectra of boiled and processed shrimp at different drying times (3, 6, 9, and
12 h). Over the wavelength region of 400–920 nm, the reflectance of boiled shrimp was
greater than that in the dried samples, and the reflectance of dried shrimp decreased as the
drying time increased. This phenomenon is related to moisture changes during shrimp-
drying, especially to the mechanism of vapor diffusion [46]. Changes in muscle tissue and
pigmentation during drying also contribute to this phenomenon.

Figure 6. (a) Mean reflectance spectra of the ROIs in shrimp samples with different drying levels and
(b) reflectance spectra at different drying times (boiled, 3, 6, 9, and 12 h).

3.5.2. Prediction Models Using Whole Spectra

After spectral pretreatment, PLSR and LSSVM calibration models were established
using the mean spectra from 400–1000 nm (224 bands) to predict quality changes in shrimp
during drying. The main statistical parameters used to evaluate model performance are
shown in Table 3. The two models exhibited reasonable and similar performance. For
shrimp moisture content, both PLSR and LSSVM models yielded satisfactory results with
Rp > 0.92 and RPD > 2.5. Both models performed well for the prediction set, with RPD
values of 2.623 and 2.814, respectively, indicating that the LSSVM model is superior. For
shrimp color (L*, a*, and b*), the Rp values of L*, a*, and b* obtained with the LSSVM model
were 0.898, 0.919, and 0.906, respectively, showing excellent accuracy. Compared with
the LSSVM results, the Rp values of L*, a*, and b* obtained with the PLSR model were
0.853, 0.887, and 0.891, indicating a decrease of 0.045, 0.032, and 0.015, respectively. The
performances of the PLSR and LSSVM models were much better than those obtained in a
previous study by Wu et al. in which low Rp values of 0.864, 0.736, and 0.798 were achieved
respectively for L*, a*, and b* prediction in salmon [47]. Significant correlations between
the color parameters (L*, a*, and b*) and reflectance spectra could imply that the color
changes indicate the shrimp chemical composition that indirectly influences the reflectance
spectra. Compared to the PLSR model, the RMSEP for hardness and elasticity decreased
from 32.663 N to 20.486 N and from 0.181 mm to 0.151 mm, respectively, in the LSSVM
model, whereas RPD increased from 2.162 to 2.226 and from 2.118 to 2.208, respectively.
These findings prove that the LSSVM model is more effective in terms of hardness and
elasticity prediction, and demonstrate the potential of using HSI to estimate shrimp quality
during the drying process.

3.5.3. Prediction Models Using Characteristic Wavelengths

As multivariable (high-dimensional) data are extracted from hyperspectral images;
they contain many inter-band correlations, resulting in long data processing times and low
accuracy and robustness of the models [48,49]. After the SNV spectral pretreatment, the
CARS algorithm was employed to identify the optimal wavelengths that carry the most
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information, which is useful for determining the moisture content, L*, a*, b*, hardness, and
elasticity. The number of Monte Carlo sampling runs was set to 1000, and the number of
selected wavelengths was determined by 10-fold cross-validation. As a result, 42, 25, 39, 20,
29, and 18 optimal wavelengths were selected from the 400–1000 nm range, which occupied
<19% of the entire wavelength range (224).

Table 3. Prediction models for moisture content, L*, a*, b*, hardness, and elasticity values using
224 wavelengths.

Parameters Pre-Processing Model
Calibration Set Prediction Set

RPD
Rc RMSEC Rp RMSEP

Moisture
content

SNV PLSR 0.929 4.369 0.925 4.512 2.623
SNV LSSVM 0.959 3.378 0.938 4.312 2.814

L*
SNV PLSR 0.891 0.975 0.853 1.257 1.944
SNV LSSVM 0.906 1.002 0.898 1.031 1.958

a*
SNV PLSR 0.905 1.010 0.887 1.249 2.016
SNV LSSVM 0.937 0.998 0.919 1.181 2.246

b*
SNV PLSR 0.937 1.045 0.891 1.325 1.894
SNV LSSVM 0.940 0.875 0.906 0.945 2.065

Hardness
SNV PLSR 0.957 16.545 0.941 32.663 2.162
SNV LSSVM 0.968 12.758 0.915 20.486 2.226

Elasticity SNV PLSR 0.937 0.116 0.928 0.181 2.118
SNV LSSVM 0.958 0.073 0.910 0.151 2.208

Based on the identified optimal wavelengths, simplified PLSR (CARS-PLSR) and
LSSVM (CARS-LSSVM) models were established for the prediction of quality parameters
of shrimp during the drying processes, and the results are presented in Figure 7. Compared
with the PLSR and LSSVM models based on full spectra, the CARS-PLSR and CARS-
LSSVM models achieved a better prediction result for all quality indicators (L*, a*, b*,
hardness, and elasticity) except moisture content, which could be attributed to the selection
of effective wavebands during optimal wavelength selection in the CARS method. For
shrimp moisture content, the RPD based on the characteristic wavelengths model was
slightly lower than that determined using the full spectra because the process of filtering
the characteristic wavelengths misses some important information. For shrimp color and
texture, the prediction results of the characteristic wavelengths models were significantly
improved, and the LSSVM models results were better than the PLSR model results. The
RPD of the LSSVM model reached 2.541, 2.550, and 2.795 for L*, hardness, and elasticity,
respectively. Overall, it is reasonable to select the optimal wavelengths by employing
the CARS method, which removed approximately 80% of the wavebands, significantly
decreasing the data processing time and increasing the working efficiency. The newly
developed model based on optimal wavelengths exhibits a powerful ability to predict the
quality parameters of shrimp during drying.

3.6. Analysis of Modeling Results Based on Image Information
3.6.1. Color Feature Information Extraction

The hyperspectral images at 647 nm, 550 nm, and 460 nm were used to synthesize
RGB images as the target images for color feature extraction. The first- and second-order
moment statistics for the R, G, and B components were calculated and listed in Table 4.
Owing to the large amount of data, the color moment information of the eight samples was
averaged. The first-order moment represents the average strength of the color component,
whereas the second-order moment represents the color variance (i.e., non-uniformity) [29].
As shown in Table 4, the first-order moments show an overall increasing trend, and the
second-order moments exhibit a decreasing trend; it indicates that the average intensity
of the image color increases, and the color distribution becomes more uniform. These
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characteristics may be due to the oxidation of astaxanthin in shrimp with increasing drying
time, resulting in a darker color. Because the RGB color space does not match human
color perception, this space was converted into a visual-perception-oriented HSV space to
calculate the histogram and quantify information. The mean grayscale values of the H, S,
and V components are listed in Table 4. As the drying time increases, the overall S and V
values increase, whereas the difference in H is small, indicating that shrimp images with
different degrees of drying show less variation in hue.

Figure 7. Comparison of CARS-PLSR and CARS-LSSVM in terms of (a) moisture content, (b) L*, (c) a*,
(d) b*, (e) hardness, and (f) elasticity based on quantitative analysis models in shrimp during drying.

Table 4. Extracted image feature information of color.

Drying Times (h)
First Order Moments Second Order Moments

H S V
R G B R G B

Boiled 62.284 56.703 62.217 38.837 35.045 27.693 0.487 0.595 0.307
1 61.977 55.456 60.337 37.209 34.035 27.374 0.482 0.605 0.301
2 60.761 57.174 64.857 36.829 33.947 26.746 0.496 0.605 0.311
3 61.490 55.945 62.807 38.330 34.523 27.186 0.495 0.615 0.309
4 60.892 55.974 62.138 37.353 33.333 25.926 0.488 0.615 0.308
5 61.110 56.265 62.507 35.692 32.388 25.120 0.490 0.607 0.309
6 63.739 58.015 62.952 34.702 31.067 23.947 0.479 0.613 0.318
7 65.538 59.785 62.133 35.201 30.905 24.029 0.459 0.609 0.322
8 60.655 55.422 60.712 36.566 31.897 24.553 0.481 0.623 0.308
9 64.497 57.990 61.884 36.441 31.830 24.614 0.479 0.600 0.317
10 63.540 58.484 63.141 38.164 32.466 24.667 0.476 0.622 0.322
11 63.438 57.540 62.576 36.181 31.338 23.793 0.483 0.621 0.321
12 68.387 61.024 64.176 36.032 31.173 23.693 0.471 0.609 0.334

3.6.2. Texture Feature Information Extraction

As important as visual characteristics, texture features can also reflect differences in the
chemical composition and structure of foods [50]. In this study, PCA was conducted for each
individual image to evaluate the spatial variability of the samples; the top three principal
component images (PC1, PC2, and PC3) with a cumulative contribution of 99.58% were
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selected for GLCM to obtain the contrast, correlation, energy, and homogeneity. The PCA
process and average trends of the four textural features of the eight samples with different
drying times are shown in Figure 8. It was clear that the contrast of the samples differed
with increasing drying time, as denoted by the large differences in the gray value of the
images, firstly exhibiting an increasing trend followed by a decrease in contrast (Figure 8a),
which may be related to changes in the muscle texture during the shrimp-drying process.
The correlation varies less (Figure 8b), fluctuating from 0.7 to 0.9, indicating that the texture
uniformity of shrimp images with different drying levels is similar. As the drying time
increases, the energy firstly decreases and then increases (Figure 8c). Homogeneity shows
an opposite trend, reaching a minimum value at the seventh hour of drying (Figure 8d).

Figure 8. PCA process and texture features of shrimp samples, (a–d) stand for the change of contrast,
correlation, energy, and homogeneity, respectively.

3.6.3. Image Information Modeling Results

To verify whether the color and texture features of the hyperspectral images can be
used to predict the quality indicators of shrimp during drying, nine color variables and four
texture variables were selected and used to construct PLSR and LSSVM prediction models.
The color variables were used to predict L*, a*, and b*, the texture variables were used to
predict hardness and elasticity, and 13 integration variables were used to predict moisture
content. The PLSR and LSSVM model results based on image information are presented in
Table 5. The LSSVM model yielded better predictions than the PLSR model. Specifically,
the LSSVM model results for color were good, with RPD values of 1.642, 1.510, and 1.544
for L*, a*, and b*, indicating that images can be used to predict shrimp color. However, the
hardness and elasticity predictions were relatively poor, which may be because the amount
of extracted textural information was not sufficient to accurately reflect shrimp hardness
and elasticity. Overall, the models based on hyperspectral image information were inferior
to those based on spectral data, which highlights the inadequacy of using only external
image features to predict the quality indicators of shrimp during drying.

3.7. Analysis of Modeling Results Based on Fusion Mapping Feature Information

To further verify whether the integration of the image and spectral data from shrimp
samples could optimize the prediction model and improve the accuracy for moisture
content, color (L*, a* and b*), and texture (hardness and elasticity), the variables from
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the optimal spectra and HSI color and texture information were integrated by feature-
level fusion using the normalization technique. Thus, fusion data comprising the optimal
wavelength of each indicator and 13 color and texture features were used to establish new
PLSR and LSSVM models. The prediction results of full bands, characteristic bands, and
fusion information are given and compared in Figure 9. Regarding shrimp moisture content
(Figure 9a), the fusion models achieved limited improvement. The LSSVM model using
full-band spectral information exhibited the best performance for dried shrimp (Rc = 0.959;
Rp = 0.938; RPD = 2.814). For L*, a*, and b* (Figure 9b–d), the fusion-based PLSR and
LSSVM models exhibited substantial improvement. The LSSVM model was superior to
the PLSR model, with RPD values for L*, a*, and b* of 3.292, 2.753, and 3.211, indicating
an increase in the prediction performance of 0.866, 0.172, and 0.859 than the PLSR model,
respectively. For hardness and elasticity (Figure 9e,f), the fusion-based LSSVM model also
showed excellent results compared to the fusion-based PLSR model, with the RPD values
increasing from 2.612 to 2.807 and from 2.717 to 2.842, respectively. Thus, combining the
internal components and external attributes of shrimp can more fully explain the color and
texture changes of shrimp during drying, leading to better prediction results.

Table 5. Results of PLSR and LSSVM models based on image information.

Parameters
PLSR LSSVM

Rp RMSEP RPD Rp RMSEP RPD

Moisture
content 0.695 9.569 1.065 0.730 8.564 1.197

L* 0.690 2.323 1.243 0.798 1.845 1.642
a* 0.701 2.570 1.317 0.762 1.901 1.510
b* 0.655 2.609 1.287 0.794 2.010 1.544

Hardness 0.591 46.198 1.088 0.685 40.103 1.395
Elasticity 0.581 0.332 1.192 0.698 0.207 1.404

 

Figure 9. Comparison results of (a) moisture content, (b) L*, (c) a*, (d) b*, (e) hardness, and
(f) elasticity models.
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3.8. Visualization of Quality Indicators

A unique advantage of HSI technology compared with traditional spectroscopy or
computer imaging technology is visualization of the prediction index of tested samples.
Figure 10 visualizes the moisture content, L*, a*, b*, hardness, and elasticity of shrimp
generated by the optimal model selected from the modeling results. In the maps, the
distribution of shrimp moisture content is expressed by a linear color bar ranging from
blue (low value) to red (high value). The boiled shrimp have a high moisture content of
73.02%. The moisture content of the samples then gradually decreases with drying time to
a final value of 35.02%. As for shrimp color, L*, a*, and b* values tend to decrease during
the drying process. Although this difference cannot be observed by visual inspection, the
spatial distribution of color features within the shrimp was detected in the final distribution
map generated by analyzing the hyperspectral image of the sample. Furthermore, the
visualization maps show a clear increase in the hardness of shrimp, whereas the distribution
of elasticity is more complex. Thus, the distribution maps of shrimp moisture content,
color, and texture provide an intuitive analysis of changes in the quality reference values
for dried shrimp, which are unlikely to be observed by the naked eye or an RGB image.

 

Figure 10. Moisture content, color (L*, a*, and b*) and texture (hardness, and elasticity) visualization
map of shrimp at different drying times (boiled, 3, 6, 9 and 12 h).
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In more detail, the moisture content distribution is non-uniform and asymmetric.
This may be attributed to complex changes in protein decomposition, lipid oxidation, etc.
Furthermore, drying temperature and time may accelerate the degradation of ruptured
tissue and cells in meat, leading to further uneven water loss [51]. Following shrimp
drying, the L* value decreases with the oxidization of myoglobin and hemoglobin into
metmyoglobin and methemoglobin [52]. In addition, the color of shrimp becomes orange,
with yellow or orange-red colors resulting from the oxidization reaction and the presence
of astaxanthin. The hardness and elasticity of shrimp exhibits a non-uniform distribution
that is related to the distribution of fat, pigments, and collagen [53]. In summary, HSI
combined with data fusion can achieve the nondestructive detection and visualization
of shrimp color and texture during drying. Specifically, the distribution maps of quality
indicators generated using HSI clarify the location and movement of water, color, and
textures through the shrimp samples during the hot air drying process. Such maps help
consumers intuitively understand the dynamic changes in shrimp quality and the shelf life
of dried shrimp production. Thus, we present a valid alternative to traditional methods of
monitoring shrimp drying that has substantial potential for further development and can
be applied to detect freshness or other indexes during aquatic production.

4. Conclusions

In this study, we described the changes in shrimp quality, evaluated the correlation
between shrimp water distribution state and other quality indices, and combined spectral
and image information of the hypercube to monitor shrimp quality changes during the
drying process. Throughout the process, the moisture content showed a downward trend,
the hardness and elasticity reached 344.78 N and 1.56 mm, respectively, and the color
turned bright yellow at the end of drying. Significant correlations between the moisture
content, TPA parameters (hardness, adhesiveness, elasticity, stickiness, and chewiness),
and LF-NMR parameters (T21, T22, and T23) were observed. The HSI system in the spectral
range of 400–1000 nm was used to monitor the quality changes (moisture content, L*, a*, b*,
hardness, and elasticity) of shrimps during drying. The results demonstrate the following:
first, the ability of the HSI method to evaluate the quality changes of shrimps during drying;
second, the optional wavelengths selected by the CARS method carried the most effective
information, which reduced the spectral dimension and accelerated the calibration process;
and finally, the spectral information model predicts better than the image color and texture
information model, and the LSSVM built by combining image information with spectral
information in characteristic bands has powerful and accurate prediction capabilities. Thus,
HSI can be utilized to visualize the quality changes in shrimps in a pixel-wise manner both
quantitatively and automatically, reducing the overall production cost, saving time, and
avoiding subjectivity and discrepancies.
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Abstract: To solve the failure problem of the visible/near infrared (VIS/NIR) spectroscopy model,
soluble solids content (SSC) detection for fresh jujubes cultivated in different modes was carried out
based on the method of variable optimization and model update. Iteratively retained informative
variables (IRIV) and successive projections algorithm (SPA) algorithms were used to extract character-
istic wavelengths, and least square support vector machine (LS-SVM) was used to establish detection
models. Compared with IRIV, IRIV-SPA achieved better performance. Combined with the offset
properties of the wavelength, repeated wavelengths were removed, and wavelength recombination
was carried out to create a new combination of variables. Using these fused wavelengths, the model
was recalibrated based on the Euclidean distance between samples. The LS-SVM detection model
of SSC was established using the update method of wavelength fusion-Euclidean distance. Good
prediction results were achieved using the proposed model. The determination coefficient (R2),
root mean square error (RMSE), and residual predictive deviation (RPD) of the test set on SSC of
fresh jujubes cultivated in the open field were 0.82, 1.49%, and 2.18, respectively. The R2, RMSE,
and RPD of the test set on SSC of fresh jujubes cultivated in the rain shelter were 0.81, 1.44%, and
2.17, respectively. This study realized the SSC detection of fresh jujubes with different cultivation
and provided a method for the establishment of a robust VIS/NIR detection model for fruit quality,
effectively addressing the industry need for identifying jujubes grown in the open field.

Keywords: cultivation; visible/near infrared spectrum; fresh jujube; model update; variable fusion

1. Introduction

Containing various types of ingredients (such as sugars, vitamin C, and minerals),
“Huping” jujube has high nutritional and medicinal values. The content of soluble solids
(SSC) is an important evaluation index for the internal quality of fruit and vegetables,
which is closely related to improving the added value of products and meeting consumer
needs [1,2]. In traditional detection of SSC, destructive or invasive methods (e.g., refrac-
tometers) were used, which damaged the integrity of the sample and were cumbersome,
time-consuming, and laborious to perform. This destructive approach is unfavorable for
large-scale collection, implementation assessment, and industrial applications. Therefore,
it is important to achieve rapid, non-destructive detection of SSCs to support the quality
assessment and grading of agricultural products.

Visible/near infrared spectroscopy (VIS/NIR) [3,4] uses absorption characteristics
of the frequency doubling and combined frequency absorption of hydrogen-containing
groups (such as C-H, N-H, and O-H) to obtain characteristic information of samples, which
realizes the detection of key chemical components and physical properties. Compared with
traditional detection methods, VIS/NIR technology requires little or no sample preparation
and has the characteristics of rapidity, non-destructiveness, real-time application, and
low cost. It has been widely applied in the quality detection of agricultural products,
such as fruits [5], vegetables [6], cereals [7], and pulses [8]. VIS/NIR spectroscopy is
multivariate and contains multiple overlapping peaks related to compounds such as water,
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sugars, and proteins. The prediction accuracy of the VIS/NIR model was affected by some
conditions such as samples (for example, maturity, variety, season, year, and batch) [9–11],
instruments [12,13], and environment (for example, temperature) [14,15]. Developed
models based on VIS/NIR spectral data were generally applicable to the quality detection
of samples in a single condition. There is some variability in measured values under the
new conditions. Modeling based on the data from the first condition does not involve this
variability, and these models are usually not robust for the actual variability. For samples
of different conditions, models built with a single condition perform poorly, and the bias
and error are generally high.

The damage [16], pest [17], crack [18], SSC [19], and hardness [20] have been carried
out in the quality detection of fresh jujubes using VIS/NIR spectroscopy. Those quality
detections were implemented in the open-field cultivation mode, and the predicted sam-
ples had similar characteristics to those modeling samples. In addition to the open-field
cultivation mode, there is also a rain-shelter cultivation mode that adopts the method of
building a rainproof shed in the actual “Huping” jujube cultivation [21]. The rain-shelter
method can avoid direct contact between rainwater and jujube fruit; reduce the impact of
cracking, diseases, and insect pests on jujubes; and have good ventilation performance. Due
to the differences in temperature, humidity, and solar radiation between rain-shelter and
open-field cultivation, various internal component contents of different cultivated fruit are
different, such as pear [22,23], cherry [24], and grape [25]. Inside the samples, the chemical
composition is related to its optical absorption properties, and the physical structure is
related to its scattering properties. Changes in the texture and internal component contents
lead to different optical responses, which would affect the performance of the model built
in spectral detection [26,27]. In the above studies of quality detection, spectral detection
models were mainly developed for samples cultivated in open fields. However, the analysis
of this model prediction performance for fresh jujubes from different cultivation modes is
rarely reported.

Several studies have been reported to address the poor performance of models con-
structed from a single condition. Mishra et al. [28] updated the NIR detection models
of the moisture content and SSC for pears, which significantly improved the prediction
results for samples of different batches. Sun et al. [29] pointed out that temperature had
an influence on the spectral detection model of mango dry matter content and established
a robust prediction model using the method of temperature correction. For mango dry
matter content based on multi-season, multi-variety, and multi-growing regions, Ander-
son et al. [30] established a robust prediction model. In order to reduce the influence of
instruments, seasons, and temperature changes on the fruit NIR detection model in the
study of Mishra et al. [31], calibration models that preserved performance under new con-
ditions were established. The above studies showed that reference measurements from new
conditions were generally required in order to compensate for external influences. Model
updating was an important method of resolving poor performance when the VIS/NIR
model was applied to new conditions. New samples were required in the model update,
and the method for determining the number of new samples needed to be investigated. In
addition, a reasonable selection of variables could reduce the influence of interfering infor-
mation and improve model performance due to the high dimensionality and overlapping
peaks of VIS/NIR data. There are few studies incorporate wavelength offset properties
into the selection of variables.

Therefore, the objective of this study was to develop a robust model for the SSC
detection of fresh jujubes from different cultivation modes based on VIS/NIR spectroscopy.
To achieve this aim in this study, the IRIV-SPA was used to select characteristic wavelengths,
and a new combination of variables was established in combination with wavelength
position offset properties. A model update using wavelength fusion-Euclidean distance was
proposed to re-calibrate the SSC model. The proposed method achieves the SSC prediction
of fresh jujubes from different cultivation modes and improves the generalizability and
stability of the model.
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2. Materials and Methods

2.1. Sample Collection

The two methods are applied to the planting of “Huping” jujube. The rain shelter was
built in the immature period of jujube fruit. The top is covered with plastic film, and the
surrounding is ventilated. The full-maturity “Huping” jujubes cultivated in the open field
and the rain shelter were collected from an orchard in Taigu, China, respectively. On the
same day of collection, samples were transported to the laboratory, cleaned, and placed
for four hours to return to room temperature. In this study, a total of 300 intact samples
(150 rain-shelter samples and 150 open-field samples) were selected. For each cultivation,
the KS algorithm [32] was used to divide the data set into a calibration set (114 samples)
and a prediction set (36 samples) with a ratio of 3:1.

2.2. Spectrum Acquisition and SSC Determination

Spectrum data were collected using an ASD Fieldspec3 spectrometer (analytical spec-
tral device, Longmont, CO, USA) with spectral resolutions of 3 nm@350~1000 nm and
10 nm@1000~2500 nm and a spectral range of 350~2500 nm. The spectral curves of fresh
jujubes cultivated in the open field and the rain shelter are shown in Figure 1. Although
there were some differences in reflectance values of fresh jujubes between the two cultiva-
tion modes, the curve-change trends of the two cultivation methods were relatively similar.
There were obvious absorption peaks related to the stretching vibration of O-H bond at the
vicinity of 970 nm and 1400 nm. The signal-to-noise ratio was low, and the noise was loud
at 350~450 nm and 2400~2500 nm. Therefore, the spectral information of 450~2400 nm was
selected for subsequent analysis.

   
(a) (b) (c) 

Figure 1. Mean spectrum of fresh jujubes. (a) Spectral curves of open-field cultivation, (b) spectral
curves of rain-shelter cultivation, and (c) average spectrum.

The SSC of each sample was measured using a hand-held refractometer. The statistical
values are shown in Table 1. The SSCs of fresh jujubes cultivated in the open field and rain
shelter were 21.2–35.5% and 21.8–37.4%, respectively.

Table 1. Statistics of soluble solids content (%).

Cultivation Data Set Maximum Minimum Mean Standard Deviations

Open field
Total samples 35.5 21.2 26.59 2.78
Calibration set 35.5 21.2 26.55 2.86
Prediction set 32.5 22 26.69 2.57

Rain shelter
Total samples 37.4 21.8 28.81 3.10
Calibration set 37.4 21.8 28.75 3.18
Prediction set 34.2 24.3 28.97 2.84
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2.3. Data Analysis

In this study, the baseline and Savitzky Golay (SG) were used for the preprocessing,
respectively. Spectral preprocessing was performed using Unscrambler X10.1 software. The
IRIV and SPA were used to extract characteristic wavelengths, and the LS-SVM was adopted
to build the model. LS-SVM [33,34] follows the principle of structural risk minimization
and transforms the convex quadratic programming problem of traditional support vector
machines into the problem of solving a system of linear equations, which reduces the
computational complexity. Variable extraction of IRIV and SPA and modeling of LS-SVM
were carried out using MATLAB R2020a. The determination coefficient (Rc2) and the root
mean square error (RMSEC) of the calibration set, the determination coefficient (Rp2) and
the root mean square error (RMSEP) of the prediction set, and the residual predictive
deviation (RPD) were used to evaluate the model performance.

2.4. Data Processing Method
2.4.1. Wavelength Extraction Method

The SPA [35,36] eliminates the influence of collinearity among various variables,
reduces the overlap of effective information, and accelerates the modeling speed.

The IRIV method [37] utilizes random combinations of variables and interactions
between variables to select variables based on binary matrix rearrangement filters. Based
on the model cluster analysis method, the difference of mean values (DMEAN) and the
P value were calculated to determine the class of each variable. The classification rules of
variables are shown in Table 2.

Table 2. Variable classification rules of iteratively retains informative variables (IRIV) [37].

Variable Class Classification Rules

Interfering variable DMEANi > 0, Pi < 0.05
Uninformative variable DMEANi > 0, Pi > 0.05

Strongly informative variable DMEANi < 0, Pi < 0.05
Weakly informative variable DMEANi < 0, Pi > 0.05

2.4.2. Model Update Method

To improve the applicability of the model, a sample addition algorithm was proposed
to update the model. Combined with wavelength position offset properties, wavelength
fusion was performed. The KS algorithm calculates the Euclidean distance and adds the two
samples with the largest distance to the calibration set. Then, the distance minimum (Dm)
value between each remaining sample and the selected calibration set sample is calculated.
The sample with the largest Dm is added to the calibration set until the calibration set
reaches the specified number of samples. Therefore, samples with large spectral differences
between different cultivation modes can be extracted for use as a calibration set using the
KS algorithm. In this study, based on the Euclidean distance between samples, the KS
algorithm was used to select new samples in turn, and the RMSECV of the established
PLSR model was calculated.

3. Results and Discussion

3.1. Establishment of SSC Detection Model for Fresh Jujubes in Open-Field Cultivation
3.1.1. SSC Detection Models Using Full Wavelengths

Open-field cultivation is the main mode in the planting of jujube. The spectral infor-
mation of the open-field cultivation samples was pre-processed using baseline and SG.
Based on the spectrum with no-pretreatment and pretreatment, LS-SVM models of the
SSC were established, and fresh jujubes from two cultivation modes were predicted. The
prediction results are shown in Table 3.
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Table 3. Prediction results of SSC using different pre-processing methods.

Pretreatment Prediction Set Rc2 RMSEC (%) Rp2 RMSEP (%) RPD

No-pretreatment Open field
0.84 1.15

0.80 1.14 2.25
Rain shelter 0.59 2.54 1.12

Baseline
Open field

0.83 1.24
0.67 1.48 1.74

Rain shelter 0.47 2.77 1.03

SG
Open field

0.84 1.15
0.80 1.14 2.25

Rain shelter 0.58 2.54 1.12

In Table 3, when built models with the samples cultivated in the open field were used
to predict the samples of the same cultivation methods, results of no-pretreatment and SG
pretreatment were similar (Rp2 = 0.80, RMSEP = 1.14%, RPD = 2.25) and better than the
results of baseline. The prediction ability of the three methods for rain-shelter samples was
not ideal (Rp2 = 0.47~0.59, RMSEP = 2.54~2.77%, RPD = 1.03~1.12), which indicated that the
sharing ability of the model needs to be improved. On the whole, compared with the results
of baseline and SG, the prediction ability of the constructed model with no-pretreatment
was better. Therefore, spectral data without preprocessing were used for analysis in the
following study.

3.1.2. Establishment of an SSC Model Using the IRIV-SPA

Based on the spectral data of fresh jujubes in the open field, the IRIV algorithm with an
inverse elimination was used to select variables. The number of cross-validation, maximum
principal component, and iteration were set as 10, 20, and 8, respectively. In this IRIV
iterative process, the change curve of the retained variable number is shown in Figure 2.
As the iteration number increased, the number of retained variables decreased, and the
downward trend gradually flattened. Overall, 87 wavelength variables were retained at
the 8th iteration. The DMEAN and P –values of retained variables are shown in Figure 3.

 
Figure 2. Number of retained variables.

 
Figure 3. DMEAN and P–values of the nonparametric Mann–Whitney U test on variable.
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Combining Figure 3 and the rules in Table 2, the variable type was divided. The
selected variables and types are shown in Figure 4. In total, 4 strong informative variables
and 83 weak informative variables were selected from 1951 variables, respectively. An
inverse elimination was performed, and 71 characteristic wavelengths were preserved.

 
Figure 4. Selection of characteristic wavelength using IRIV based on open-field cultivation.

The number of selected characteristic wavelengths using the IRIV algorithm was
high. For further data dimensionality reduction, SPA was used to perform an extraction
of characteristic wavelengths for the second time based on 71 extracted characteristic
wavelengths using IRIV. When the RMSE was 1.0257%, 10 characteristic wavelengths
were extracted. According to the degree of importance, the extracted wavelengths using
IRIV-SPA were 957, 1008, 2339, 920, 2248, 2394, 1137, 1976, 647, and 602 nm in turn.

Based on extracted characteristic wavelengths using IRIV and IRIV-SPA, LS-SVM was
used to establish SSC detection models. The SSC of fresh jujubes from two cultivation
modes was predicted. The SSC-predicted results are shown in Table 4.

Table 4. Prediction results of SSC using IRIV and IRIV-SPA.

Variable
Selection Methods

Number
of Wavelengths

Prediction Set Rc2 RMSEC (%) Rp2 RMSEP (%) RPD

IRIV 71
Open field

0.93 0.76
0.85 1.02 2.52

Rain shelter 0.71 2.50 1.14

IRIV-SPA 10
Open field

0.82 1.23
0.79 1.20 2.14

Rain shelter 0.65 3.33 0.85

Compared with the built model using full wavelengths (in Table 3), the IRIV-LS-SVM
model improved the prediction ability. For the SSC of open-field samples, the Rp2 (from
0.80 to 0.85) and the RPD (from 2.25 to 2.52) were increased, and the RMSEP decreased
from 1.14% to 1.02%. For the SSC of rain-shelter samples, the Rp2 (from 0.59 to 0.71) and
the RPD (from 1.12 to 1.14) were increased, and the RMSEP decreased from 2.54% to 2.50%.
For the prediction results of open-field samples, the IRIV-SPA-LS-SVM model and the full-
wavelength LS-SVM model were basically the same. For the prediction results of samples
cultivated in the rain shelter, the IRIV-SPA-LS-SVM model was slightly worse than the
full-wavelength LS-SVM model. Based on the IRIV-LS-SVM and IRIV-SPA-LS-SVM models
of fresh jujubes cultivated in the open field, the SSC of samples in the same cultivation was
well-predicted, but the SSC of samples in the rain-shelter cultivation was poorly predicted.
Therefore, the cultivation mode has a certain influence on the SSC detection model, and
the model needs to be further optimized to improve the predictive ability. Compared with
IRIV, the number of extracted characteristic wavelengths using IRIV-SPA was significantly
reduced (from 71 to 10) on the premise of ensuring the model performance. The IRIV-SPA
algorithm achieved a better comprehensive ability and was used to select the characteristic
wavelength in the following research.
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3.2. Update of SSC Detection Model
3.2.1. Variable Optimization

Based on the spectral information of samples cultivated in the rain shelter, the selection
of SSC characteristic wavelengths using IRIV is shown in Figure 5. Thirteen strongly
informative variables and ninety-three weakly informative variables were selected. After
reverse elimination of variables, the final number of optimal characteristic wavelengths
was 73.

 
Figure 5. Selection of characteristic wavelength using IRIV based on rain-shelter cultivation.

Based on the extracted characteristic wavelengths using IRIV, SPA was used to extract
the characteristic wavelengths for the second time. Ten characteristic wavelengths were
extracted when the RMSE was 1.0257%. According to the importance, the extracted charac-
teristic wavelengths using IRIV-SPA were 1257, 962, 905, 1137, 2337, 2300, 1541, 2378, 2386,
1947, 1907, 1480, 1058, 2128, 811, and 693 nm in turn.

For fresh jujubes from two cultivation modes, the selected characteristic wavelengths
using IRIV-SPA are shown in Figure 6. There was a certain difference between the ex-
tracted characteristic wavelengths using the two cultivation modes. For the characteristic
wavelengths extracted from a single cultivation mode, it was difficult to cover up the
characteristic information of another cultivation mode.

 
Figure 6. Fusion of characteristic wavelength.

Therefore, a new variable combination that integrated the extracted characteristic
wavelengths of open-field and rain-shelter cultivation was proposed. In Figure 6, there
were also the same and similar wavelengths between the characteristic wavelengths of
those two cultivation modes. The selected variables of the two cultivation modes were
added, redundant repeat variables were removed from the added characteristic variables,
and the remaining variables were used as the fused characteristic wavelengths. Due to
differences in the physicochemical properties of the sample, the external environment, and
other factors, there would be a certain positional shift between wavelengths [38–40]. In this
study, the wavelength corresponding to the position shift in the range of (−30 nm, 30 nm)
was used as a repeated variable. Only one variable remained among the repeated variables,
and redundant variables were removed. The extracted SSC characteristic wavelengths after
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fusion (in Figure 6) were 602, 647, 693, 811, 920, 957, 1008, 1058, 1137, 1257, 1480, 1541, 1907,
1976, 2128, 2248, 2300, 2339, and 2394 nm.

3.2.2. Model Update

Because of the difference between the spectral curves of the two modes, the Euclidean
distance between full wavelength spectrum of samples from the rain shelter. The KS
algorithm was used to sequentially select samples from the calibration set of fresh jujubes
cultivated in the rain shelter, sequentially. The new selected samples were added to the
calibration set of fresh jujubes cultivated in the open field to form an updated calibration set,
sequentially. PLSR was adopted to establish SSC detection models based on the updated
calibration set, and the minimum value of RMSECV was used as the rule for selecting
samples. The changing curve of RMSECV for SSC is shown in Figure 7. The minimum value
of RMSECV was 1.33%. Correspondingly, 33 samples were selected from the calibration set
of fresh jujubes cultivated in the rain shelter.

 

Figure 7. RMSECV distribution in different numbers of samples.

Thirty-three selected samples from rain shelter cultivation were combined with the
calibration set from open-field cultivation (114 samples) to form an updated calibration
set (147 samples). Based on the fused characteristic wavelengths, the original calibration
set and the updated calibration set were used to establish LS-SVM detection models,
respectively. The predicted results are shown in Table 5.

Table 5. Prediction results of SSC after model update.

Model Update Prediction Set Rc2 RMSEC (%) Rp2 RMSEP (%) RPD

No update Open field
0.82 1.23

0.79 1.20 2.14
Rain shelter 0.65 3.33 0.85

Wavelength fusion Open field
0.85 1.10

0.80 1.17 2.20
Rain shelter 0.69 2.96 0.96

Wavelength fusion-Euclidean distance Open field
0.88 1.02

0.79 1.17 2.20
Rain shelter 0.81 1.35 2.10

For the prediction ability (in Table 5) of fresh jujubes from two cultivation modes, the
established model based on wavelength fusion was better than the model established before
updating. This indicated that the updated characteristic wavelengths after wavelength
fusion did not interfere with the performance of the established model on the open-field
cultivation. For the SSC prediction results of fresh jujubes cultivated in the open field, the
two update methods were good and similar. For the SSC prediction results of fresh jujubes
cultivated in the rain shelter, the updated model based on wavelength fusion-Euclidean
distance (Rp2 = 0.81, RMSEP = 1.35%, RPD = 2.10) was significantly better than the updated
model based on wavelength fusion (Rp2 = 0.69, RMSEP = 2.96%, RPD = 0.96). Compared
with the prediction performance before the model update, the ability of the updated LS-
SVM model with the wavelength fusion-Euclidean distance was significantly improved. For
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fresh jujubes cultivated in open field, the Rp2 (0.79) was the same, the RPD increased from
2.14 to 2.20, and the RMSEP decreased from 1.20% to 1.17%. For fresh jujubes cultivated in
the rain shelter, the Rp2 (from 0.65 to 0.81) and the RPD (from 0.85 to 2.10) were significantly
increased, and the RMSEP (from 3.33% to 1.35%) decreased significantly. Therefore, the
LS-SVM model based on the updated method of wavelength fusion-Euclidean distance
achieved the best SSC prediction for fresh jujubes in both cultivation modes.

To validate the performance of the model based on the updated method of fusion
wavelength-Euclidean distance, 50 samples from open-field cultivation and 50 samples
from rain-shelter cultivation were collected for testing. To better show the detection results,
the SSC-predicted and true values of samples from two cultivation modes are shown
in Figure 8.

  
(a) (b) 

Figure 8. Detection results of SSC after model update using wavelength fusion-Euclidean distance.
(a) Prediction set results; (b) test set results.

It was shown that the LS-SVM model using the update method of wavelength fusion-
Euclidean distance achieved good prediction and test results for the SSC of fresh jujubes
from both cultivation modes in Figure 8. The R2, RMSE, and RPD of the test set were 0.82,
1.49%, and 2.18 for the SSC of “Huping” jujubes from open-field cultivation, respectively.
The R2, RMSE, and RPD of the test set were 0.81, 1.44%, and 2.17 for the SSC of “Huping”
jujubes from rain-shelter cultivation, respectively.

In the field of fruit quality detection, a common problem was the failure of VIS/NIR
spectral models. The established model has good prediction results under a single con-
dition, but the model fails under new conditions with some variability. In the actual
production of “Huping” jujube, there are two cultivation modes (open-field cultivation
and rain-shelter cultivation). The established SSC detection model based on samples
cultivated in open-field cultivation failed to predict samples cultivated in rain-shelter culti-
vation. In the SSC detection, there was some difference between the extracted characteristic
wavelengths from the open-field samples and those from the rain-shelter samples. The
dimensionality of the visible/NIR spectra was high and a direct replication of the VIS/NIR
spectrum resulted in redundant information, which would affect model performance. In
this study, the IRIV-SPA was used to preferentially select feature wavelengths that removed
the effects of interfering information and uninformative variables. It was ensured that valid
information was extracted, while the dimensionality was reduced. At the same time, vari-
able recombination combined with wavelength position shift theory was used for variable
selection. The preferred fusion wavelengths covered the variable information under the
new conditions, which increased the coverage of feature information and did not interfere
with the modeling ability of the original variables because of the new variables. When
new samples were introduced based on Euclidean distances, the variability under the new
conditions was increased. These variables were involved in the modeling when the model
was recalibrated, which improved the accuracy and robustness of the model. Therefore,
the wavelength fusion-Euclidean distance update method achieved good SSC prediction
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results for fresh jujube from two cultivation modes synchronously. The proposed method
is an effective model updating method, which provides methods for the establishment of a
robust VIS/NIR detection model and ideas for the online detection of agricultural product
quality based on VIS/NIR spectroscopy.

4. Conclusions

In this study, the SSC detection of fresh jujubes cultivated in different modes (open-
field cultivation and rain-shelter cultivation) was carried out based on VIS/NIR spec-
troscopy using variable selection and model updating. Based on the full-wavelength and
the extracted characteristic wavelengths using IRIV and IRIV-SPA, the established LS-SVM
models all achieved good predictions for the SSC of fresh jujubes cultivated in the open field,
but the prediction results for samples cultivated in the rain shelter were all unsatisfactory.
Compared with the IRIV algorithm, the IRIV-SPA algorithm achieved better performance.
The extracted characteristic wavelengths of the two cultivation modes using IRIV-SPA were
fused together. Combining the wavelength shift characteristics of the VIS/NIR spectrum,
the repeated wavelengths were eliminated to form a new variable combination. Variable
selection using wavelength fusion improved the SSC prediction results, but the degree of
improvement in the SSC prediction of samples from rain-shelter cultivation needed to be
increased. The method of adding samples under new conditions was applied for the model
update. The updated LS-SVM model using the wavelength fusion-Euclidean distance
achieved the best prediction results for SSC of fresh jujubes cultivated in the open field
(Rp2 = 0.79, RMSEP = 1.17%, RPD = 2.20) and the rain shelter (Rp2 = 0.81, RMSEP = 1.35%,
RPD = 2.10). The test results showed that the R2, RMSE, and RPD for the SSC of “Huping”
jujubes from open-field cultivation were 0.82, 1.49%, and 2.18, respectively. The R2, RMSE,
and RPD for the SSC of “Huping” jujubes from rain-shelter cultivation were 0.81, 1.44%,
and 2.17, respectively. The method proposed in this study realizes the SSC detection of
different cultivated fresh jujubes, provides a method for the establishment of a robust
VIS/NIR detection model, and provides a basis for the online detection of fruit quality. In
the future, a production line for the quality detection of fresh jujubes will be developed
and optimized based on VIS/NIR spectroscopy.
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Abstract: Stone cells are a distinctive characteristic of pears and their formation negatively affects the
quality of the fruit. To evaluate the stone cell content (SCC) of Korla fragrant pears, we developed
a Vis/NIR spectroscopy system that allowed for the adjustment of the illuminating angle. The
successive projective algorithm (SPA) and the Monte Carlo uninformative variable elimination
(MCUVE) based on the sampling algorithm were used to select characteristic wavelengths. The
particle swarm optimization (PSO) algorithm was used to optimize the combination of penalty factor
C and kernel function parameter g. Support vector regression (SVR) was used to construct the
evaluation model of the SCC. The SCC of the calibration set ranged from 0.240% to 0.657% and that
of the validation set ranged from 0.315% to 0.652%. The SPA and MCUVE were used to optimize
57 and 83 characteristic wavelengths, respectively. The combinations of C and g were (6.2561, 0.2643)
and (2.5133, 0.1128), respectively, when different characteristic wavelengths were used as inputs of
SVR, indicating that the first combination had good generalization ability. The correlation coefficients
of the SPA-SVR model after pre-processing the standardized normal variate (SNV) for both sets
were 0.966 and 0.951, respectively. These results show that the SNV-SPA-SVR model satisfied the
requirements of intelligent evaluation of SCC in Korla fragrant pears.

Keywords: successive projective algorithm; uninformative variable elimination; support vector
regression; Korla fragrant pear; stone cell content; intelligent evaluation

1. Introduction

Korla fragrant pears are popular with consumers worldwide due to their beautiful
skin color, sweet and crisp flesh, and rich fragrance. Consumers pay close attention to
appearance quality and edible quality when they purchase Korla fragrant pears. A special
characteristic of pears is that various stress factors induce the formation of stone cells,
composed of large amounts of lignin and cellulose, which negatively affects the edibility
and quality of the fruits [1]. There is a large number of soluble cells in some Korla fragrant
pears of inferior quality, such as ‘green top fruit’ and rough skin fruit [2,3]. The taste is
more delicate if there is lower stone cell content (SCC) in fresh Korla fragrant pears. Up to
now, research on stone cells has mostly been concerned with their content [4] and structural
characterization [5–7] in different germplasms of pears. Moreover, traditional methods of
evaluation of the quality of edible fruit are destructive and require long processing times.

Visible and near-infrared (Vis/NIR) spectroscopy is fast, safe, and contactless technol-
ogy that has been used to evaluate some qualities of fruits, including soluble solids content
(SSC) [8–12], firmness [13–16], titratable acidity [17], dry matter [18], and polyphenols to
amino ratio [19]. Intelligent evaluating research about SCC has not been conducted. In
addition, samples are needed to change detecting places manually, and the illuminating
angles cannot be changed automatically when the Vis/NIR spectroscopy systems are used.

While Vis/NIR spectrometry usually yields thousands of response signals per detec-
tion point, not all wavelengths are associated with corresponding chemical bonds as a
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quality parameter of one kind of agro-product. Furthermore, the spectra at certain wave-
lengths do not make significant contributions to the evaluation models. Therefore, it is
essential to extract characteristic wavelengths to establish intelligent models that are robust,
require less computing time, and are highly predictive. Successive projective algorithm
(SPA) [20,21] and uninformative variable elimination (UVE) [22,23] are two filter-type [24]
algorithms that have been widely used to extract characteristic wavelengths. The SPA and
UVE were evaluated using the results of correlation coefficient (R), root mean square error
(RMSE), multiple linear regression (MLR), and partial least square regression (PLSR) as
bases to estimate the combinations of the wavelengths. MLR [25,26] and PLSR [27,28] have
different principles of establishing evaluating models. It is unreasonable to use different
evaluating models to estimate the combinations of characteristic wavelengths.

A support vector machine (SVM) is a generalized linear classifier that categorizes
data into two classes based on supervised learning. It has several advantages, including
stability, sparsity, and simplicity. Previous applications of this algorithm mainly included
qualitative analyses [29–32]. Recently, support vector regression (SVR) has been applied in
quantitative evaluations as part of the development of SVM theories [33–35].

Taking all these factors into account, this study was conducted with three aims: (1) to
set up an intelligent spectra acquisition system for Korla fragrant pears in which the optical
subsystem has an adjustable irradiation angle and samples can be rotated at a specific angle;
(2) to choose characteristic wavelengths to simplify the detection of SCC in Korla fragrant
pears by SPA and UVE; and (3) to establish an SVR evaluating model after optimizing
penalty factor C and kernel function parameter gamma (g).

2. Materials and Methods

2.1. Korla Fragrant Pears and Pretreatment

Korla fragrant pears were collected from a plantation (Alar, Xinjiang, China) from
15 to 20 September 2021. A total of 120 fruit samples were selected with uniform spindle
shape (diameter 61–85 mm) and weight (110–130 g), and without visual damage on the
surface.

Samples were soaked in a mixture of water and a special fruit cleaning agent (Almawin,
Germany), with chemical compositions of plant sugar surfactant, citric acid, organic lemon
extract, glycerin, and lactic acid, for about 30 s, and then rinsed twice with distilled
water. The cleaned pears were air-dried at room temperature (20 ◦C) and then stored in
a preservation box at 4 ◦C. Prior to Vis/NIR spectra acquisition, samples were placed at
room temperature for 30 min. Each Korla fragrant pear was coded by a labeled paper
(24 × 12 mm) which was attached to the end of the calyx.

2.2. Vis/NIR Spectroscopy System and Diffuse Reflectance Spectra Acquisition

The Vis/NIR spectroscopy system is shown in Figure 1. The system is composed
of a spectra acquisition unit, a light source, a sample rotating unit, and a computer. The
spectroscopy system is placed in the dark room.

A shortwave spectrometer (USB2000+, Ocean Optics Inc., Dunedin, FL, USA) and an
optical fiber component (QP400-2-VIS-BX, Ocean Optics Inc., Dunedin, FL, USA) make up
the spectra acquisition unit. The range of wavelengths is between 468 nm and 1155 nm,
and the bits of A/D conversion is 12. The spectrometer sends spectra to the computer by
serial communication. There is 1 receiving optical fiber in the center of the optical fiber
component, and the numerical aperture is 0.22 ± 0.02 mm.

The light source unit contains 2 Halogen tungsten lamp beads (20 W, Philips). Each
lamp bead is fixed in a cup-shaped container which has two connecting through-holes
along the center axis and two positioning blind holes perpendicular to the central axis.
Each group has two mounting plates, as shown in the partial enlargement in Figure 1, with
one connecting through-hole and five positioning through-holes. The distances between
each of the five positioning holes and the connecting through-hole are the same, and the
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angle between the two adjacent connecting holes is 15◦. The angle of the light beams can
be adjusted via the cup-shaped container and the mounting plate group.

 
Figure 1. Vis/NIR spectra acquisition system for Korla fragrant pears. A: spectrometer; B: optical
fiber; C: halogen lamp; D: sample; E: rotating stage; F: optical fiber bracket; G: lamp mounting plate;
H: system mounting rack.

The sample rotating unit consists of two rubber rollers that rotate in the same direction.
The distance between the centers of the rollers is 5 mm larger than the diameter of each
roller. The maximum rotation of the Korla fragrant pear samples is 120◦ ± 0.5◦.

The distance between the circular lamp rack and the sample stage is 80 mm, and the
angle of each lamp bead in the vertical direction is 37.5◦. In this set-up, a circle of incident
light, with a diameter of 70 mm, irradiates the upper part of the Korla fragrant pears.

Prior to the acquisition of spectral data, a Korla fragrant pear weighing 120 g ± 1 g was
placed on the sample rotating unit, after which the parameters of the spectrometer were
adjusted. The optical fiber probe was placed in the upper center of the Korla fragrant pear
at a vertical distance of 10 mm, where the detecting radius of the sample was about 2.2 mm.
The integration time, scanning times, and smoothing were set to 20 ms, 5, and 2, respectively,
when the maximum reflection intensity of a standard diffuse reflection whiteboard (DR300-
WS-PTFE, Ocean Optics Inc., Dunedin, FL, USA) was about 55,705 counts (about 85% of
the maximum value). A white reference and black reference were obtained by turning the
halogen lamp on and off, respectively, when the standard diffuse reflection whiteboard
was placed 10 mm away from the fiber probe.

Each sample was placed on the sample rotating stage so that the surface near the
maximum diameter along the minor axis was under the optical fiber probe. The first group
of spectral data for the first point was obtained at the vertically downward position of the
number-marked side, and the other two groups were obtained at a rotation of 120◦ and
240◦, respectively, along the long axis. The mean spectral values of the three points were
taken as spectral data for each sample.

2.3. Measurement of SCC

The SCC of Korla fragrant pears was measured using a modified gravimetric method [36].
After removing the peel and core, three pieces of pulp (11× 11× 8.3 mm) were cut around
the spectral data collecting points and weighed with a precision electronic balance (FA3004,
Shanghai Liangping Instrument Co., Ltd., Shanghai, China). The total weight of the three
pieces was recorded.
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The three pieces of pulp were sealed together with a self-sealing bag and cooled
for 24 h at −18 ◦C. Next, the pulp was thawed and homogenized in 50 mL of distilled
water using a small-sized tissue smasher (FL1902, Ningbo Kajafa Electrical Technology
Co., Ltd., Ningbo, China) at 22,000 r/min for 1 min. The homogenate was poured into
a 1000 mL beaker (beaker A). The inner wall of the plastic container of the smasher was
rinsed 2–3 times with distilled water, and the cleaning solution was added to beaker A.
Next, 600 mL of distilled water was added to the mixture in beaker A, stirred with a glass
rod for 1 min, and allowed to stand for about 30 s. The upper suspension in breaker A
was poured out into beaker B. This process was repeated 2–3 times until there was no
suspended substance. The same operation was conducted for the mixture in beaker B.

The precipitated stone cells in beaker A and beaker B were filtered through filter paper.
Next, the filter paper was dried at 60–65 ◦C in a drying oven until the weight remained
unchanged. Then, the dried stone cells were collected and weighed. The SCC of sample i
was calculated as:

Xi =
mitotal − mifilter

mi
× 100% (1)

where i is the serial number for samples; Xi refers to the SCC; mitotal refers to the total
weight of filter paper and stone cells; mifilter refers to the weight of filter paper; and mi
refers to the weight of the selected pulp.

2.4. Spectral Preprocessing and Sample Set Division

The original spectra inevitably shifted and displayed background noise due to the
influences of the data acquisition environment, sample size, instrument, and other factors.
The stability of spectral data and the signal-to-noise ratio could effectively be improved
through the reasonable use of preprocessing methods. A multiple scattering correction
(MSC) was used to eliminate baseline drift [37]. The standardized normal variate (SNV) was
used for the centering and calibration of the spectral data in each wavelength [38]. Several
Savitzky–Golay (S-G) filters [39], with frame sizes of 3–9 and fitting orders of 1–7, were used
to improve the smoothing effect. The optimal combination of frame size and fitting order
was chosen according to R and RMSE values. Each spectral preprocessing method and
the combinations of S-G and MSC, or S-G and SNV, were used. The preprocessed spectra
were used to construct different PLSR models of SCC. The best method or combination was
selected according to corresponding R and RMSE values.

The sample-set partitioning method based on the joint x-y distance algorithm (SPXY)
divided the samples into a calibration set (Cs) and a validation set (Vs) where spectral data
and SCC were taken as the input data. The proportion of Cs:Vs was 3:1 in this study.

2.5. Algorithms of Selecting Characteristic Wavelengths
2.5.1. SPA

The SPA is a forward variable selection method that uses simple operations to mini-
mize the collinearity of variables in vector space [40]. Three phases are required to select
characteristic wavelengths which have the least collinearities.

First, K chains with N_max variables are created by using QR decomposition of
spectral matrix SpecNcal × K. The number of N_max should be between the minimum value
defined by the data processor and the smaller of Ncal and K. Here, Ncal and K represent
the number of samples in Cs and wavelengths, respectively.

Second, K × N_maxsets of characteristic wavelengths were selected according to the
root mean square error of Vs (RMSEV). Each regression coefficient vector B of the PLSR
model was calculated according to Equation (2). The RMSEV of the corresponding PLSR
model was calculated according to Equation (3). The set of characteristic wavelengths with
the minimum RMSEV was selected.

Specc × B = Refc (2)

276



Foods 2022, 11, 2391

RMSEV(j) =

√
1

Nval
∑Nval

i=1 (Ref v(i) − ˆRefv(i))
2

(3)

where Specc refers to the set of preprocessed spectral data, which has Nrows (0 < N < N_max)
and S columns (0 < S < K); Refc refers to the measured values of SCC corresponding to the
selected N samples in Cs; Refv(i) refers to the measured value of SCC of sample i in Vs;

ˆRefv(i) refers to the predicted SCC value calculated by selected spectral data and B.
Third, uninformative wavelengths were further eliminated according to the F-test.

A correlation index was defined for each selected wavelength at the end of phase 2. The
index was the absolute value of the arithmetic product of the regression coefficient and the
standard deviation. The originally selected characteristic wavelengths were rearranged in
descending order according to the correlation indexes. Another set of PLSR models was es-
tablished with the spectral data of the first j wavelengths and SCC. Corresponding RMSEVs
were calculated. The critical value, tRMSEV, was calculated by the inverse function of the
sum distribution function for the F distribution, as shown by Equation (4), for which the
significance value α was 0.25 and the degrees of freedom were the same. The wavelengths
whose RMSEVs were less than tRMSEV were chosen as the final characteristic ones.

tRMSEV =
RMSEV(j)

min(RMSEV(j))
(4)

2.5.2. UVE Combined with Monte Carlo Sampling (MCUVE) and PLSR

The informative wavelengths were selected by UVE based on the regression coeffi-
cients of PLSR models. The Monte Carlo sampling method was used to randomly select
N kinds of sample groups. The PLSR regression coefficient vector β(j,:) was obtained
from the spectra and corresponding SCC vector of the jth group. The stability value C(k)
at the kth wavelength was calculated by Equation (5). Wavelengths were sorted accord-
ing to the values of vector C from the largest to the smallest. Evaluating models were
established by adding new spectra of one wavelength, which had a smaller stability value.
The wavelengths were selected as characteristic wavelengths with the minimum value
of RMSEV.

C(k) =
mean(β (k, :))

std(β(k, :))
(5)

where mean(β(k,:)) and std(β(k,:)) refer to the mean coefficient and standard deviation at
the kth wavelength, respectively.

2.6. Modeling Algorithm

The radial basis function (RBF) is a good generalization of the kernel function of
SVR. The particle swarm optimization algorithm (PSO) was used to determine the optimal
combination of C and g [41] in order to obtain a model with good performance. The model
was evaluated by RMSEV and R.

3. Results

3.1. Statistics of SCC Measured Values

There were 90 samples in the Cs and 30 samples in the Vs. The SCC values of both sets
are shown in Table 1. The SCC ranged from 0.240% to 0.657% in the Cs and from 0.315%
to 0.652% in the Vs. The combinations of mean value and standard deviation (SD) were
(0.486%, 0.100%) and (0.481%, 0.083%), respectively. The range of SCC in Cs covered that in
Vs, which ensured the feasibility of the evaluating model. An ANOVA test was taken to
check SCC values in Cs and Vs through SPSS software (Version 23, International Business
Machines Corporation, Armonk, NY, USA). The p value was 0.008, indicating that there
was a significant difference between Cs and Vs.
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Table 1. Statistics of SCC in Cs and Vs.

Sample Set Numbers Min (%) Max (%) Mean (%) SD (%) p

Cs 90 0.240 0.657 0.486 0.100
0.008Vs 30 0.315 0.652 0.481 0.083

Max: the maximum value of the dataset; Min: the minimum value of the dataset; Cs: calibration sets;
Vs: validation sets.

3.2. Spectral Characteristics and Different Preprocessing Methods

Spectra in the range of 498–1020 nm were considered effective, owing to the large
amount of noise at both ends of the original spectrum. The effective original spectral curves
of Korla fragrant pears are shown in Figure 2a. There were two reflective valleys near
680 nm and 980 nm and two reflective peaks near 550 nm and 750 nm. The spectra near
750 nm and 980 nm were related to carbohydrate content [42], and O-H [43] in the flesh of
fruits. SCC had a negative correlation with carbohydrate content; therefore, the spectra at
these wavelengths were indirectly related to stone cells. Spectra near 550 nm and 680 nm
were related to anthocyanins and chlorophyll in the sample epidermis, respectively [44].
Korla fragrant pears with high levels of stone cells usually have green skin; therefore, SCC
also had some relationship with spectra near 550 nm and 680 nm.

  
(a) (b) 

Figure 2. Reflective spectral curves. (a) Raw spectrum; (b) spectrum after SNV pretreating.

Using preprocessing algorithms could improve the evaluation accuracy compared
with not using them. The principal component numbers of PLSR models were all 10 after
different preprocessing algorithms. The optimal combination of frame size and fitting order
was (7, 5) where R of the calibration set and validation set grew the largest, according to
Table 2. The evaluation results of PLSR models based on different spectral preprocessing
algorithms are shown in Table 3. Evaluation models based on MSC and SNV had higher
Rs and lower RMSEs, while those based on S-G(7, 5) had lower Rs and higher RMSEs, in
Cs and Vs. The robustness of the PLSR model based on SNV was better than that of MSC
according to the different values of Rs between Cs and Vs. The addition of S-G(7, 5) did
not improve the ability of evaluation because the combination of two-point smoothing
and S-G(7, 5) eliminated some effective spectral information. The model established on the
basis of the SNV preprocessing algorithm achieved the best results, with R and RMSE of
0.9189 and 0.0277% in the Cs, and 0.8935 and 0.0315% in the Vs. Spectral curves based on
SNV are shown in Figure 2b.
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Table 2. Correlation coefficients of Cs and Vs with different S-G parameters.

Frame Size 
Fitting Order 

None 3 5 7 9 

none 
0.8613     
0.8214     

1 
 0.8276 0.7867 0.7403 0.7012 
 0.8007 0.7616 0.7150 0.6710 

2 
  0.8306 0.7928 0.7789 
  0.8035 0.7710 0.7458 

3 
  0.8414 0.8227 0.8023 
  0.8137 0.8006 0.7853 

4 
   0.8527 0.8419 
   0.8195 0.8059 

5 
   0.8926 0.8647 
   0.8210 0.8100 

6 
    0.8589 
    0.8128 

7 
    0.8527 
    0.8026 

Correlation coefficients on the top and the bottom of different combinations of frame size and fitting order refer to
correlation coefficients of validation set and calibration set, respectively.

Table 3. Evaluation of PLSR based on different spectral preprocessing algorithms.

Parameter
Preprocessing
Algorithm

Factor
Number

RC RMSEC (%) RV RMSEV (%)

Stone cell
content (%)

None 9 0.8613 0.0360 0.8214 0.0412
MSC 10 0.9191 0.0277 0.8879 0.0325
SNV 10 0.9189 0.0277 0.8935 0.0315

S-G(7, 5) 10 0.8926 0.0319 0.8210 0.0409
S-G(7, 5)&

MSC 10 0.9001 0.0308 0.8614 0.0361

S-G(7, 5)&
SNV 10 0.8999 0.0308 0.8641 0.0356

RC: the correlation coefficient of the calibration set; RMSEC: root mean square error of the calibration set;
RV: the correlation coefficient of the validation set; RMSEV: root mean square error of the validation set; S-G(7,5):
Savitzky–Golay filter with a frame size of 7 and fitting order of 5.

3.3. Characteristic Wavelengths

Fewer than 100 wavelengths were required to simplify the SCC evaluating models.
The changing processes of RMSEV with different wavelength candidate subsets, which
were chosen by SPA or MCUVE, are shown in Figure 3a,b, respectively. Using the combi-
nation of (SPA, PLSR) or (MCUVE, PLSR), characteristic wavelengths were selected (57
and 83, respectively). The minimum RMSEVs of SPA and MCUVE were 0.0692% and
0.0685%, respectively.

279



Foods 2022, 11, 2391

  
(a) (b) 

Figure 3. Changing processes of RMSEV with different wavelengths. (a) SPA; (b) MCUVE.

As shown in Figure 4a, 46 characteristic wavelengths distributed densely between
846.8 and 940.6 nm were obtained for the first selection method, while 10 characteristic
wavelengths were scattered between 498 and 750 nm and 1 characteristic wavelength
was located at 997.1 nm. Characteristic wavelengths selected by the second method were
distributed mainly in the ranges of 757.7–796.7 nm, 828.3–847.5 nm, 866.8–910.3 nm, and
952.9–1006.9 nm, as shown in Figure 4b. The two methods both selected characteristic
wavelengths in the range of 828.3–910.3 nm, which were correlated with the third overtone
stretch of O-H and C-H functional groups.

  
(a) (b) 

Figure 4. Distribution of characteristic wavelengths. (a) SPA; (b) MCUVE.

3.4. SCC Evaluation Based on PSO-SVR

When the selected 57 wavelengths or 83 wavelengths were used as inputs, the optimal
values of C were 2.5133 and 6.2561, respectively, as shown in Figure 5a,b. This indicated
that the error tolerability produced by the first wavelength group was stricter than that
produced by the second group and might result in evaluation model overfitting. The
optimal values of g were 0.1128 and 0.2643 for the first and second group, respectively,
indicating that the support vector number of the first wavelength group was less than
that of the second. The optimal combination of C and g was obtained in the 36th iteration
for MCUVE where the fitness was 0.01394%, and for SPA in the 100th iteration where the
fitness was 0.01404%.

  
(a) (b) 

Figure 5. Optimization of SVR parameters. (a) SPA; (b) MCUVE.

The evaluation of SCC based on SPA-POS-SVR is shown in Figure 6a. The corre-
lation coefficients of the Cs and Vs were 0.949 and 0.928, respectively, and the RMSEs
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of both sets were 0.0253% and 0.0297%, respectively. The evaluation ability in the SCC
range of 0.2000–0.4000% and 0.6000–0.7000% was better than that in the SCC range of
0.4000–0.7000%, with samples of Cs and Vs evenly distributed in the interval with smaller
deviations. This showed that the robustness of SPA-PSO-SVR was poor and that the
adaptability of the global evaluation was low.

  
(a) (b) 

Figure 6. Scatter plot of the calibration set (×) and verification set (o) of stone cell content. (a) SPA;
(b) MCUVE.

The evaluation results of SCC based on MCUVE-POS-SVR are shown in Figure 6b.
The correlation coefficients of the Cs and Vs were 0.966 and 0.951, respectively, and the
RMSEs of both sets were 0.0209% and 0.0239%, respectively. The evaluation ability in the
SCC range of 0.2000–0.7000% was better. Moreover, several scattering points of the Cs and
Vs had relatively large deviations in the SCC ranges of 0.3000–0.4000% and 0.6000–0.7000%.
Overall, the evaluation accuracy and robustness of MCUVE-PSO-SVR were better than
those of SPA-PSO-SVR. The MCUVE-PSO-SVR model of SCC can be applied in online
systems or portable equipment for evaluating the qualities of Korla fragrant pear.

The parameters of our spectroscopy system were set according to Korla fragrant pear.
The SCC evaluating model and parameters of spectroscopy system would not be suitable
for other kinds of pear, such as ‘Yali’ pear, ‘Dangsha’ pear, and so on. The minimum
SCC of all samples was 0.240% in Cs and 0.315% in Vs according to Table 1. The largest
evaluating errors were 8.711% and 10.845% in Cs and Vs. The evaluating precision met the
requirements of application. Therefore, the minimum limit of SCC that could be detected
was 0.240% by the MCUVE-PSO-SVR model.

4. Discussion

It has been shown previously that spectroscopy technology can be applied in quan-
tificational evaluations of the quality parameters of agricultural products. This was a new
exploration to intelligently evaluate SCC for Korla fragrant pears by Vis/NIR reflection
spectroscopy. An intelligent evaluating system was introduced. Its illuminating angle
could be adjusted and Korla fragrant pears could be rotated along the long axis with a
set angle.

Several processes were undertaken in order to obtain an accurate and stable evaluating
model of SCC. The SNV algorithm had the best evaluation effect among the spectral pretreat-
ment methods, according to evaluating accuracy and robustness. A total of 83 characteristic
wavelengths were selected by using Vis/NIR spectra combined with MCUVE algorithm.
Finally, the MCUVE-PSO-SVR model was established. The correlation coefficients of the Cs
and Vs were 0.966 and 0.951, and the root mean square errors of both sets were 0.0209% and
0.0239%. The results demonstrate that the model could achieve the quantitative detection
of SCC in Korla fragrant pear.

The nondestructive and rapid evaluation system combined with the MCUVE-PSO-SVR
model for the SCC of Korla fragrant pears could meet the requirements of detection time and
evaluation precision. It could be rendered more suitable for industry work requirements
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through the adjustment of key parameters and the development of supporting equipment.
Its transformation and applications in industry are more meaningful, and present an
attractive target for future research.
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Abstract: Recent advances in nuclear magnetic resonance (NMR) have led to the development
of low-field benchtop NMR systems with improved sensitivity and resolution suitable for use in
research and quality-control laboratories. Compared to their high-resolution counterparts, their
lower purchase and running costs make them a good alternative for routine use. In this article, we
show the adaptation of a method for predicting the consumer acceptability of mandarins, originally
reported using a high-field 400 MHz NMR spectrometer, to benchtop 60 MHz NMR systems. Our
findings reveal that both instruments yield comparable results regarding sugar and citric acid levels,
leading to the development of virtually identical predictive linear models. However, the lower cost
of benchtop NMR systems would allow cultivators to implement this chemometric-based method as
an additional tool for the selection of new cultivars.

Keywords: acceptability; benchtop NMR; mandarins; NMR

1. Introduction

Since the early days of nuclear magnetic resonance (NMR), considerable efforts have
been invested to increase sensitivity and spectral resolution through the use of magnets
with stronger fields. These endeavors have gone hand in hand with the development of
novel superconducting materials and cryogenic technologies [1]. However, these systems
are generally expensive and have high running and maintenance costs, driving many NMR
spectrometer manufacturers to develop smaller and more accessible systems based on
cryogen-free permanent magnets. These low-field instruments have magnetic fields below
2.3 T (i.e., 1H resonance frequencies under 100 MHz), fit on a regular laboratory benchtop,
and are even suitable for use in field experiments [2,3]. The basis of these instruments is
the use of rare-earth ring-shaped magnets that produce relatively strong and homogeneous
fields [3]. Their lower sensitivity can sometimes be offset by concentrating the samples
or using a variety of methodologies for the enhancement of Boltzmann polarization [4].
Similarly, issues with chemical shift resolution can be addressed through the application of
different signal acquisition and processing techniques, including solvent suppression and
gradient-based pulse sequences [3,5].

Although low-field benchtop NMR spectrometers may not be suitable for natural
product research due to their lower sensitivity and resolution, they have been used suc-
cessfully in the quality control of phytopharmaceuticals and in food analysis, to mention
a few examples [6]. In academia, the use of benchtop NMR is increasing progressively.
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The low operating costs and ease of use of these instruments allow students not only
to control their research products, but to follow chemical reactions in real time or even
perform quantitative analyses [6–9]. Indeed, the quantitation of natural products using
benchtop NMR has been employed in the quality control of drugs [10] and for the detection
of adulterations in pharmaceutical products [11,12]. The use of low-field NMR in routine
quality control of foods has also been demonstrated [6]. Examples of such applications
include the determination of alcohol content in beverages [13] and the study of food au-
thenticity and food fraud by targeted and untargeted analysis, where wine, coffee, oils, or
even meat are examples [14–18]. For certain products, subdisciplines have been developed
to study metabolomic profiles. For example, the term “MEATabolomics” refers to the
application of metabolomic analysis to correlate the composition of meat with its sensory
attributes [19,20].

In food analysis, untargeted approaches are preferred when trying to discover flavor-
related compounds, which are followed with targeted analyses to measure the content of
specific compounds or study metabolic pathways of interest [21,22]. Citrus metabolomics
has been emerging in the last few years to control industrial processes or to evaluate
flavor traits that influence consumer preferences [23–25]. However, little research has been
conducted to adapt high-field NMR techniques to low-field systems. As stated by Castaing-
Cordier and coworkers [26], benchtop instruments can be used in many applications due to
recent advances in terms of sensitivity and resolution. Recently, we proved the usefulness
of high-field NMR to predict consumer preferences in mandarins. Although interesting
from an academic point of view, the high cost of the 400 MHz spectrometer employed in the
study hampers its application by the local citrus industry [25]. The aim of the present work
is to show an updated protocol for the analysis of mandarin consumer preferences using
benchtop NMR systems that could be accessible to citrus fruit cultivators. As shown herein,
our results indicate that chemometric-based consumer acceptability models of identical
quality can be obtained regardless of magnetic field.

2. Materials and Methods

The samples used in the comparisons were a selection of aqueous mandarin extracts
obtained during the development of the original method at 400 MHz [25]. Five extract
replicates for each mandarin variety were lyophilized and stored under nitrogen in sealed
containers until analysis. They were then dissolved in 600 μL of deuterium oxide (Magni-
Solv™, 99.9% D, Merck, Darmstadt, Germany), transferred to 5 mm NMR tubes (Norell®

Standard SeriesTM Sigma-Aldrich, Darmstadt, Germany) and analyzed immediately.
A Bruker Avance III 400 spectrometer (Bruker, Ettlingen, Germany) was used to

perform the high-field NMR experiments, while a Magritek Spinsolve 60 benchtop NMR
spectrometer (Magritek GmbH, Aachen, Germany) was used to obtain the data at the
low field. The 400 MHz spectra were obtained at a 1H frequency of 400.13 MHz using a
z-gradient BBFO-Plus probe (298 K). Spectra were recorded using a spectral width of 8 KHz,
a data size of 32 K, and using a 30◦ excitation pulse. A total 64 scans with a relaxation delay
of 1 s between scans were averaged, leading to an analysis time of 4.1 min per sample. The
60 MHz data were obtained at room temperature using a 1H frequency of 62.32 MHz, a
spectral width of 5 KHz, a data size of 32 K, and using a 90◦ excitation pulse. A total of
256 scans with a relaxation delay of 1 s between scans were averaged in this case, resulting
in a total analysis time of 64.0 min per sample.

All spectra were processed using MNova (version 11.0, MestreLab Research, S.L.,
Santiago de Compostela, Spain) following an identical protocol, which included zero filling
to 64 K and apodization with a 0.3 Hz exponential window function prior to Fourier
transformation, manual phase and baseline correction, and referencing to the signal of
the anomeric proton of α-glucose at 5.22 ppm. The spectra were then aligned using the
derivative method and the average spectrum as a reference [27].

Once all spectra were aligned, the integral of the signal belonging to the sucrose
glucosyl anomeric proton at 5.40 ppm was given an arbitrary value of 1.00. Then, the areas
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of the signals corresponding to the anomeric protons of α-glucose at 5.22 ppm, β-glucose at
4.63 ppm, and the multiplet arising from the H-3 and H-4 protons of the β-furanose form
of fructose at 4.09 ppm, together with the four citric acid methylene protons centered at
approximately 2.8 ppm, were scaled to that of the sucrose signal. The integration ranges for
the sugar signals mentioned above were, respectively, 5.54 to 5.32, 5.29 to 5.16, 4.63 to 4.53,
and 4.10 to 4.07 ppm in both instruments. Due to slight differences in the temperature of
the experiments, the citrate signals were integrated from 3.02 to 2.73 ppm in the high-field
spectrometer, and between 2.81 and 2.54 ppm on the benchtop instrument.

The relative area values were corrected using the sweetness scale of Schiffman and
coworkers [28,29], being 1.0 for sucrose, 1.3 for fructose and 0.6 for α- and β-glucose. The
ratio sweetening power/citric acid was calculated as follows, where n represents each of
the sugars considered:

∑n(Sugar sweetness × Sugar content)n

Citric acid content
(1)

The correlation between the mandarin acceptability and the sweetening power/citric
acid ratio was determined using the same mandarin varieties for both spectrometer systems,
the R2 of the regressions was determined and the root mean square error (RMSE) of each
model was calculated.

3. Results and Discussion

Figure 1 shows spectra obtained at 400 and 60 MHz for the same aqueous extract,
respectively. Given its higher resolution, the spectrum obtained at 400 MHz allows for the
identification of most protons from the species of interest. On the other hand, several of
these signals appear overlapped at 60 MHz, making the initial assignment of resonances a
harder task that requires technical know-how.

However, the signals corresponding to the sugar anomeric protons and citric acid
methylene protons of interest are in relatively uncluttered regions of the spectrum, and
therefore their identification and quantitation is achievable. Indeed, if the selection of
the integration ranges is rigorous and consistent with those employed at the high field,
the integration of the signals corresponding to anomeric protons of sucrose, glucose, and
fructose, as well as the citric acid methylene protons, allows us to apply the methodology
developed previously [25] to predict the acceptability of the mandarin samples (Table 1).

Table 1. Results of the sensory evaluation (acceptability), sweetening power/citric acid ratio,
predicted acceptability using the model and RMSE of the prediction of each model (60 and
400 MHz data).

Variety Acceptability

60 MHz 400 MHz

Sweetening
Power/Citric

Acid *

Predicted
Acceptability

RMSE
Sweetening
Power/Citric

Acid *

Predicted
Acceptability

RMSE

B475B 7.4 10.85 6.88

0.29

9.31 6.76

0.35
F7P3 6.9 11.53 7.21 10.12 7.27

B475A 5.5 8.45 5.72 7.70 5.75

B79 4.8 6.75 4.89 6.34 4.90

M16 3.6 3.88 3.50 4.16 3.53

* The reported values correspond to the average of 5 replicates. The RSD was less than 20% for all the varieties analyzed.
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Figure 1. Comparison of 1H spectra of the aqueous extract of mandarin variety B475B obtained with
400 and 60 MHz spectrometers ((a) and (b), respectively). Resonances employed in the estimations
are annotated in the 400 MHz spectrum. The grayed-out region in both spectra corresponds to the
residual HDO peak.

The sweetness/citric acid ratio of the samples determined at the two frequencies
considered had high correlation (R2 > 0.99, Figure 2), showing the equivalence of both
systems and their fitness for the intended purpose of the method.

It is then possible to study the correlation between the acceptability of the mandarin
samples determined by consumers and the sweetening power/citric acid ratio obtained
using the 60 and 400 MHz systems (Figure 3). Using this set of data, a linear regression
model with an R2 of 0.94 and an RMSE of 0.35 was obtained using data recorded at 400 MHz.
The corresponding regression parameters of the linear model derived using sugar and citric
acid concentrations determined with the 60 MHz instrument were 0.96 and 0.29, indicating
that acceptability prediction models of similar quality were obtained regardless of the
instrument employed in their development.

In addition, the correlation between the predicted acceptability using both models
was very high (R2 > 0.99), further proving the equivalence of the models derived from the
two instrumental systems (Figure 4).

It is worth pointing out that although models derived from data at 400 and 60 MHz
are of the same predictive quality, special attention is needed when identifying and inte-
grating data in the low-field instrument. As stated earlier and shown in Figure 1, there
is considerable signal overlap in the 3.00 to 4.30 ppm region and expertise is required to
assign peaks and process these spectra accurately.
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Figure 2. Correlation between the measurement of the sweetness/citric acid ratio of the samples
obtained at 400 and 60 MHz.

 
Figure 3. Correlation between consumer acceptability and sweetening power/citric acid determined
using 60 and 400 MHz data (blue triangles and orange circles, respectively).

Conversely, and due to the lower resolution of low-field instruments, the variations
in the chemical shifts of sugar signals with pH have less impact on spectra recorded at
60 MHz [30]. This makes spectral referencing and alignment simpler in these instruments.
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Figure 4. Correlation of the predicted acceptability using the models obtained with both instruments.

4. Conclusions

As demonstrated above, low-field NMR systems can be employed in the develop-
ment of consumer acceptability prediction models that have identical quality to those
derived from high-field NMR data. The lower purchase and running costs of benchtop
spectrometers makes these chemometric-based tools more accessible for routine inclusion
in fruit breeding programs, such as the Uruguayan Programa Nacional de Investigación en
Producción Citrícola. Furthermore, the continuing advances in benchtop NMR instruments,
which include the implementation pure shift pulse sequences, solvent suppression tech-
niques, and multidimensional and multinuclear methods, will facilitate their application to
other fields of food analysis and metabolomics.
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Abstract: The transmission spectrum of apples is affected by the fruit’s size, which leads to poor
prediction performance of the soluble solids content (SSC) models built for their different apple sizes.
In this paper, three sets of near infrared (NIR) spectra of apples with various apple diameters were
collected by applying NIR spectroscopy detection equipment to compare the spectra differences
among various apple diameter groups. The NIR spectra of apples were corrected by studying the
extinction rates within different apples. The corrected spectra were used to develop a partial least
squares prediction model for their soluble solids content. Compared with the prediction model of the
soluble solids content of apples without size correction, the Rp of PLSR improved from 0.769 to 0.869
and RMSEP declined from 0.990 to 0.721 in the small fruit diameter group; the Rp of PLSR improved
from 0.787 to 0.932 and RMSEP declined from 0.878 to 0.531 in the large fruit diameter group. The
proposed apple spectra correction method is effective and can be used to reduce the influence of
sample diameter on NIR spectra.

Keywords: apple; NIR; size correction; extinction coefficient; fruit diameter difference

1. Introduction

Apples are known for their texture, flavor, visual effect, and nutritional value [1,2].
NIR spectroscopy has become the representative and main development direction of
modern non-destructive testing with its unique advantages of simplicity, efficiency, and
non-destructiveness, and is an effective way to solve the classification of agricultural
products [3–6]. The application of NIR spectroscopy in fruit and vegetable quality in-
spection has been reported, mainly focusing on citrus, apple, pear, tomato, and other
species [7–10].

Many scholars have studied the application of NIR spectroscopy in the internal quality
of fruits. In terms of algorithms, Travers et al. [11] developed partial least squares (PLS)
models based on spectra in the wavelength ranges of 680–1000 nm and 1100–2350 nm,
respectively, after extracting the characteristic wavelengths using the competitive adaptive
re-weighted sampling algorithm (CARS) for predicting the dry matter (DM) and SSC of
pears. The feature wavelengths selected by CARS successfully highlighted the differences
between the prediction models based on the two different spectral ranges. In near infrared
spectroscopy research, the relationship between near-infrared reflectance and transmit-
tance spectra of kiwifruit and soluble solids was investigated by Schaare et al. [12]. The
analysis showed that modeling using transmittance spectra was better than reflectance,
with a test set correlation coefficient of 0.961 and a test set root mean square error of 0.8%.
Tian et al. [13] used NIR spectra to predict nuclear mold in apples of different fruit sizes,
correcting the NIR spectra of apples with different degrees of disease. The accuracy of apple
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disease degree prediction established by the corrected spectra was up to 90%. In terms of
actual testing, Arana et al. [14] examined the soluble solids of white grapes and the method
chosen was NIR spectroscopy, which achieved a good prediction of the soluble solids of
white grapes. Jha et al. [15] examined the internal quality of seven Indian mangoes by NIR
spectroscopy between 1200 nm and 2200 nm for both soluble solids and acidity and estab-
lished PLS with Rp of only 0.715 and 0.703. Liu et al. [16] developed a generalized UVE-PLS
model for apple brix by collecting diffuse transmission spectra of red Fuji apples from three
different locations, namely Qixia, Luochuan, and Huining, highlighting the potential of
spectroscopic techniques for fruit quality detection in different origins. Antonucci et al. [17]
conducted a study on the internal quality of oranges by spectroscopic techniques and
achieved good results in predicting their acidity and soluble solids by regression analysis
using the PLS model, with correlation coefficients of 0.843 and 0.812 for soluble solids and
acidity of oranges, respectively. Ni et al. [18] performed the NIR spectral model transfer of
different instruments by filtering the wavelength information of different NIR instruments.
Two datasets of maize and scutellaria samples measured by different NIR instruments were
used to test the performance of the method, where the overall prediction performance of
the SWCSS-PLS model for the secondary measurement samples was much better than that
of the full-wavelength PLS model. Meng Qinglong et al. [19] collected the reflection spectra
of fresh “Fuji” apples from 400 to 1000 nm, and used different pretreatment and different
characteristic wavelength screening methods to establish various models to predict the SSC
content of apples. It can be better used for the detection of apple SSC. The above studies
did not consider the sample size. Ideally, the samples for NIR modeling should include
all of the variables affecting the NIR spectra, but this is very difficult for the detection of
complex variables in the internal quality of apples. If more variability samples are included
in the model, the prediction accuracy of the model decreases and further confirmation is
needed to meet the requirements. In this paper, it was found that the light intensity of the
transmittance spectra of the internal pulp of apples showed a log-linear relationship with
their fruit diameter. Therefore, a size-correction method for apples is proposed, based on
which the NIR spectra of all apples with different fruit diameters are transformed into a
single spectrum that is used to eliminate the effect of size on the performance of the apple
SSC prediction model. Compared with the apple soluble solids content prediction model
without size correction, the proposed apple size correction method effectively solves the
problem of poor prediction accuracy of apple SSC model due to apple size.

2. Materials and Methods

2.1. Test Materials

Apples were harvested from a red Fuji apple orchard with 480 apples divided into
three fruit size groups (65–75 mm, 75–85 mm, and 85–95 mm), with a total of 160 values
under every fruit size set. Spectra information and SSC were collected at the markers.

2.2. Spectral Acquisition

The spectra of apples were collected by near-infrared online inspection equipment [20],
and the structure of the equipment is shown in Figure 1. The spectrometer was a high-
precision spectrometer (QE65Pro, Ocean, Manhattan, NY, USA). The light source system
uses 100 W Osram halogen lamps evenly distributed along both sides of the main drive
chain, with five lamps on each side. To achieve a stable value of light source attenuation,
a white Teflon sphere was used as a reference to calibrate the NIR spectroscopy online
detection device after 30 min of warm-up each time the power was turned on. The current
value of the regulated power supply was adjusted and the range of energy spectrum
change of the transmission spectrum was observed until the standard deviation of the
adjacent energy spectrum intensity was within 1% and the the NIR spectra are reproducible,
and the apple sample spectrum acquisition was started. The parameters of the spectrum
acquisition were set as follows: duration time of 100 ms, motion speed of 5 m/s, and
spectral wavelength range of 370–1150 nm.
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Figure 1. Near-infrared spectra acquisition device.

2.3. SSC Measurement of Samples

After collecting NIR spectra of apple samples, 1-cm-thick slices were cut along the
equator of the apples and subsequently divided into 4 equal portions according to the
label. The SSC of the extracted apple juice was determined with a saccharimeter (PR-101a,
ATAGO, Nagasaki, Japan). The measurements were repeated three times to take the average
value as the final SSC value.

2.4. Data Processing

The 160 sample spectra under each fruit diameter group were divided into a calibration
set (120) and a prediction set (40) using the Kennard-Stone (K-S) algorithm. Since the NIR
spectral data matrix of each fruit diameter group is 160 × 1044, to reduce the errors caused
by non-experimental factors, this study used Unscrambler (Version 9.7, CAMO, City of Oslo,
Norway) software to process the spectra using different pretreatment methods (Multiple
scattering correction, MSC; standard normal variable transformation, SNV; Savitzky-Golay
smoothing, S-G smothing). The partial least squares (PLS) method was then used to
establish the apple SSC detection model.

Partial least squares regression (PLSR) is widely used in NIR spectral analysis to
decompose the spectral array X and the concentration array Y simultaneously to strengthen
the corresponding computational relationship and ensure the best model is obtained. The
PLS regression model is shown in Equation (1):

Y = bX + e (1)

where b denotes the vector of regression coefficients and e denotes the model residuals.
The performance of the model is judged by the correlation coefficient Rp and the

root mean square error value (RMSEP). Equations of Rp can be found in Equation (2) and
RMSEP can be found in Equation (3).

Rp =

√√√√√√√1 −

n
∑

i=1
(yi − ŷi)

n
∑

i=1
(yi − y)

(2)

RMSEP =

√
1

n − 1

n

∑
i=1

(yi − ŷi)
2 (3)

where n is the number of experimental samples, yi is the actual value of the i-th sample in
the prediction set measured by the standard method, ŷi is the predicted value of the i-th
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sample in the prediction set measured by NIR spectroscopy and mathematical model, and
yi is the mean value of the SSC of all apples in the prediction set.

3. Results and Analysis

3.1. Sample Chemical Index Statistics Results

The 160 apple spectra under the calibration set (120) and the prediction set (40) by the
K-S algorithm were sorted and the sorted apple SSC values are presented in Table 1. The
SSC range of the modeling set under each fruit size group was larger than the SSC range of
the prediction set, which allows for improved forecasting of apple SSC.

Table 1. SSC values for apples of different fruit sizes.

Fruit Size Range Data Type Number of Samples Max/Brix Min/Brix Mean/Brix Deviation

65–75 mm
Calibration Set 120 17.2 9.8 13.8 1.62
Prediction set 40 16.7 10.9 13.8 1.24

75–85 mm
Calibration Set 120 17.2 8.3 13.2 1.60
Prediction set 40 16.5 8.7 12.73 1.78

85–95 mm
Calibration Set 120 15.3 10.9 13.3 1.73
Prediction set 40 15.3 11.3 13.3 1.92

3.2. Near-Infrared Spectra of Three Groups of Fruit Size Apples

The mean spectra of apples under each fruit size group are shown in Figure 2. With
the increase of the fruit diameter, the corresponding spectra energy of apples is smaller.
The strongest spectra energy was collected from 65–75 mm apples, and the weakest spectra
energy was collected from 85–95 mm apples. The effective wavelength range was set
from 350 to 850 nm due to the weak signal and little effective information at both ends of
the spectra. The spectral trends of apples with different fruit sizes were the same, with
differences in absorption intensity. The spectral curves showed prominent absorption
peaks near 645, 710, and 810 nm, and troughs near 675, 758, and 830 nm, respectively. The
absorption peak at 645 nm was mainly influenced by the color of the epidermis [21], the
absorption of chlorophyll near 675 nm might be the absorption of the chlorophyll [22], and
the trough near 758 nm was related to the O-H triplet stretching vibration [23], and the
weaker trough near 830 nm was related to the N-H triplet stretching vibration [24].

Figure 2. Raw spectra of three sets of fruit diameter samples.

As can be seen in Figure 2, the intensity of the NIR spectra is decreasing as the
fruit diameter increases. This is due to the fact that there is an attenuation of the NIR
light intensity due to the flesh of the fruit when the light is transmitted inside the apple.
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The degree of attenuation of the NIR light intensity increases with the increase of the
light range. The degree of attenuation of NIR light intensity inside the apple shows a
logarithmic relationship with the apple fruit diameter [25], which can be fitted as a function
of Equation (4).

I = I0exp(−u e d) (4)

where I0 is the light intensity emitted by the NIR source, I is the received NIR spectral
intensity, d is the light transmission length, and ue is the attenuation degree factor of
NIR spectra.

In the spectral acquisition device shown in Figure 1, d is the fruit diameter of the apple.
As d increases, the NIR light intensity becomes more attenuated during the propagation
inside the apple, and the intensity of the obtained apple NIR spectra becomes smaller. It
can be seen that the difference in apple fruit diameter will affect the light intensity of its
NIR spectra.

3.3. PLSR Results of SSC for Mixed Apple Size

To verify that apple size differences affect their NIR spectra and lead to poor prediction
performance of the developed apple SSC prediction model. The calibration and prediction
sets of fruit diameter groups 65–75 mm, 75–85 mm, and 85–95 mm were used as the
calibration and prediction sets of the mixed fruit diameter apple prediction model to
establish the PLSR of SSC for different apple sizes, and the model effects are shown in
Table 2.

Table 2. PLSR findings for SSC of mixed apple size groups.

Number of Calibration Set Number of Prediction Set Rc RMSEC Rp RMSEP

360 120 0.733 1.011 0.722 1.086

As can be seen from Table 2, the SSC model built with mixed apple fruit diameter has
a poor prediction performance with an Rp of 0.722 and an RMSEP of 1.086. When there is
a large difference in apple fruit diameter in the model, it will cause the problem of poor
prediction performance of the established model, so size correction of apple fruit diameter
is needed to improve the prediction performance of its SSC model.

3.4. PLSR Results of SSC for Each Fruit Size Set

The number of LVs in the PLSR model was set from 1 to 20 to prevent the overfitting
or underfitting of the model. Table 3 shows the PLSR results established for individual fruit
size sets after several pretreatment methods.

From Table 3, it can be seen that the PLSR prediction performance of the SSC estab-
lished by SNV pretreatment of apple NIR spectra for the three sets of fruit sizes is the best,
and the correlation coefficients Rp of the models are 0.863, 0.947, and 0.917, respectively,
and the root mean square error values RMSEP of the prediction sets are 0.771, 0.622, and
0.752, respectively. The scatter plot of PLSR prediction is shown in Figure 3. It can be
seen that the pretreatment method SNV can eliminate the effect of sample particle size
on NIR spectra [26], thus solving the influence of spectral dispersion due to the unequal
sample dimensions.

3.5. Individual Fruit Size Groups Predicted Other Fruit Size Groups

It can be seen from Table 3, the PLSR prediction performance of SSC established when
the apple size was 75–85 mm was better. To investigate whether the prediction performance
of the model could be achieved when more variance samples were included in the model,
the PLSR results for the remaining two fruit size groups using the medium apple size group
to predict the SSC are shown in Table 4.
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Table 3. PLSR findings for SSC of various apple size groups after spectra pretreatment.

Fruit Size Range Pretreatment LVs Rc RMSEC Rp RMSEP

65–75 mm

Original 11 0.931 0.592 0.853 0.786
MSC 8 0.902 0.700 0.857 0.785
SNV 12 0.972 0.376 0.863 0.771

S-G smoothing 12 0.907 0.683 0.854 0.794

75–85 mm

Original 10 0.951 0.534 0.941 0.654
MSC 9 0.964 0.462 0.941 0.654
SNV 11 0.976 0.373 0.947 0.622

S-G smoothing 11 0.950 0.540 0.937 0.677

85–95 mm

Original 10 0.916 0.389 0.898 0.827
MSC 9 0.908 0.371 0.814 0.817
SNV 10 0.936 0.295 0.917 0.752

S-G smoothing 11 0.909 0.369 0.854 0.852

MSC: multivariate scattering correction; SNV: standard normal variables transformation; S-G smoothing: Savitzky-
Golay smoothing; Lvs, latent variable individual.

Figure 3. Scatter plot of PLSR prediction of apple SSC for three apple diameter sets. (a) apple size
65–75 mm, (b) apple size 75–85 mm, and (c) apple size 85–95 mm.

Table 4. The fruit size group alone predicted the SSC results of other fruit size groups.

Calibration Set Prediction Set Rc RMSEC Rp RMSEP

75–85 mm
65–75 mm 0.951 0.534 0.769 0.990
85–95 mm 0.958 0.412 0.787 0.878

As can be seen from Table 4, the PLSR prediction performance of soluble solids content
built from the modeling and prediction sets was poor when the difference in apple fruit
size was significant between them. Compared with Table 3, the correlation coefficient Rp
decreased from 0.863 to 0.769 and the root means square error value RMSEP increased
from 0.771 to 0.990 for the PLSR of the small fruit size group. The correlation coefficient
Rp decreased from 0.917 to 0.787 and the root means square error value RMSEP increased
from 0.752 to 878 for the PLSR of the large fruit size group. The scatter plot of its PLSR is
shown in Figure 4. Apple size differences significantly impacted the accuracy of the SSC
model. With the same variety of apples, there will be differences in volume size, and the
size differences will affect the detection performance when performing NIR spectroscopy,
so it is necessary to correct the NIR spectra of apples of different sizes to improve the
detection performance of NIR detection equipment.
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Figure 4. Scatter plot of PLSR with different fruit diameter of modeling set and prediction set.
(a) 75–85 mm apple size group predicted 65–75 mm apple size group, (b) 75–85 mm apple size group
predicted 85–95 mm apple size group.

3.6. Correction of Near Infrared Spectroscopy for Apples of Various Diameters

From Formula (4), apple size affects the prediction model of soluble solids content,
and the light intensity of the apple and its fruit diameter are logarithmic functions. The
deformation of Formula (4) can be obtained as Formula (5).

ln(I) = ln(I0)− ued (5)

If the light intensity of the apple at its two internal depths d1 and d2 are I1 and I2,
respectively, Formula (5) can be deformed as:

− ue =
ln(I1)− ln(I2)

d1 − d2
(6)

From Formula (5), we can find the extinction coefficient of apples or the collection
method in Figure 1, the light range d is the fruit diameter at the equator of apples, and I is
the light intensity of the transmission spectra of apples collected by the fiber optic probe.
From Table 3, it can be seen that the PLSR performance of SSC with medium apple size
is better, so the average spectra of the medium fruit size group are taken as IR and the
average fruit size of the medium fruit size group is taken as d1, and the average extinction
coefficients of all samples can be obtained as shown in the following Formula (7).

− ue =

n
∑

i=1

(
ln(IR)−ln(Ii)

dR−di

)
n

(7)

where IR is the reference spectra, Ii is the spectra of the apple sample i-th, dR is the refer-
ence fruit diameter, di is the average fruit size of the apple sample i, n is the number of
samples, and the extinction coefficient applicable to all apple samples can be obtained from
Formula (7). The inverse operation of Formula (7) leads to Formula (8).

I∗i = exp(−ue(dR − di) + ln(Ii)) (8)

where Ii
* is the size-corrected spectra of apple sample i according to its fruit diameter.

The size-corrected spectra of all samples can be obtained according to Formula (8), and
their average size-corrected spectra of different apple fruit diameter groups are shown in
Figure 5.
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Figure 5. Apple spectra after size correction.

Compared with the uncorrected apple spectra, the size-corrected apple spectra have
a cross-over phenomenon in the spectra of each fruit diameter group, and the spacing
between the vertical aspects of each fruit diameter group in the spectra is reduced compared
with Figure 2. This spacing exists as a result of the differences in apple fruit diameter. Our
proposed size correction approach was used to correct the near-infrared spectra for apples
of various dimensions.

The corrected NIR spectra of apples were used to build the PLSR of SSC with different
fruit sizes. The large and small fruit size groups were predicted using the medium fruit
size group, and the predicted results are shown in Table 5.

Table 5. PLSR results were established after the spectra correction.

Calibration Set Prediction Set Rc RMSEC Rp RMSEP

75–85 mm
65–75 mm 0.951 0.570 0.869 0.721
85–95 mm 0.969 0.459 0.932 0.531

As can be seen from Tables 4 and 5, the model prediction performance of the corrected
NIR spectra compared to the PLSR built for the original apple spectra was significantly
improved. Among them, the correlation coefficient Rp of the PLSR established for the small
fruit size group improved from 0.769 to 0.869, and RMSEP decreased from 0.990 to 0.721.
the correlation coefficient Rp of the PLSR established for the large fruit size group improved
from 0.787 to 0.932. the RMSEP decreased from 0.878 to 0.531. the PLSR of the two fruit
size groups scatters plots are shown in Figure 6. The results show that after the spectral
correction of Formula (7), the spectra of apples of different sizes can be converted into a
standard spectrum to correct the NIR spectra of apples of different sizes, which is used to
improve the performance of its prediction model. Similarly, this spectral correction method
can be applied to other fruits such as pear, citrus, and watermelon.

Figure 6. The PLSR scatter plot was created by the corrected spectra. (a) 75–85 mm fruit size
group predicted 65–75 mm fruit size group, (b) 75–85 mm fruit size group predicted 85–95 mm fruit
size group.
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4. Conclusions

This paper presents a method that can correct the near-infrared spectra of apples
with various dimensions to enhance the performance of SSC prediction models. The
transmission spectra of apples of different sizes were converted to the same standard
to obtain the extinction coefficients of transmitted light. The transmission spectra were
corrected according to the average extinction coefficients of apples, and the corrected
spectra were employed to model the soluble solids content of apples. Compared with
the model of the soluble solids content of apples without size correction, the correlation
coefficient Rp of PLSR for the small fruit diameter group increased from 0.769 to 0.869 and
RMSEP decreased from 0.990 to 0.721. The correlation coefficient Rp of PLSR for the large
fruit size group increased from 0.787 to 0.932 and RMSEP decreased from 0.878 to 0.531.
The apple size correction method proposed in this paper is reliable. By improving the
model algorithm in the application of NIR online inspection device, the standard spectra
are set to size correct the apple spectra of different fruit diameters and reduce the influence
of apple fruit size variation on its SSC model.
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Abstract: The monitoring of ethylene is of great importance to fruit and vegetable quality, yet routine
techniques rely on manual and complex operation. Herein, a chemiresistive ethylene sensor based on
reduced graphene oxide (rGO)/tungsten diselenide (WSe2)/Pd heterojunctions was designed for
room-temperature (RT) ethylene detection. The sensor exhibited high sensitivity and quick p-type
response/recovery (33/13 s) to 10–100 ppm ethylene at RT, and full reversibility and excellent selec-
tivity to ethylene were also achieved. Such excellent ethylene sensing behaviors could be attributed
to the synergistic effects of ethylene adsorption abilities derived from the negative adsorption energy
and the promoted electron transfer across the WSe2/Pd and rGO/WSe2 interfaces through band
energy alignment. Furthermore, its application feasibility to banana ripeness detection was verified
by comparison with routine technique through simulation experiments. This work provides a feasible
methodology toward designing and fabricating RT ethylene sensors, and may greatly push forward
the development of modernized intelligent agriculture.

Keywords: fruit quality monitoring; room-temperature ethylene sensor; density functional theory;
adsorption energy; band energy alignment

1. Introduction

Ethylene is an important plant hormone that regulates the physiological and biochemi-
cal changes in climacteric fruits and vegetables to control their maturity, freshness, softness,
and deterioration [1,2]. The released ethylene can potentially express the flavor quality of
fruits coupled with sugar content [3,4]. The accumulated ethylene molecules inside a fresh
fruit package could also stimulate physiological activity and consequently, accelerate fruit
deterioration, which limits their storage life and leads to product losses [5]. Moreover, the
wounding and spoilage of fruits also induces the biosynthesis of ethylene [6]. According to
a report from the Food and Agriculture Organization (FAO), 1.3 billion tons of food loss per
year was reported, which represented 33% of total food production, among which fruits
and vegetables held the highest loss rate (45%) [7]. Fruit abnormalities in early stages can
be discovered promptly through ethylene monitoring and thus most of these losses could
be avoided. Moreover, for the timely export of fresh climacteric fruits, the production as
well as respiration of ethylene should also be of concern during long-supply chains [8].
Therefore, the continuous and accurate detection/monitoring of ethylene released from
fruits is vital for managing and controlling the harvesting, storage, package, transporta-
tion, and selling process of climacteric fruits, which is much more prominent especially in
today’s intelligent agriculture era.
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So far, various techniques including chromatography [9], spectroscopy [10,11], electro-
chemical sensor [12], chemical sensor [13], and fluorescence probe [14] have been reported
for ethylene detection, among which chemical sensor stands out, owing to its real-time
response, high sensitivity, manpower operation, and low cost. Recently, many attempts
have been made to develop high-performance chemiresistive ethylene sensors, in which the
gas concentration is translated into a resistive electrical signal for detection. Bulk or nanos-
tructured metal oxide semiconductors (MOSs, WO3 [15], SnO2 [16], and ZnO [17]) have
been reported to show high sensitivity to ethylene. However, in metal oxide-based ethylene
sensors, high temperature (typically 170–500 ◦C) or light irradiation is usually required to
activate the reaction between adsorbed oxygen and ethylene, which results in high system
complexity and high power consumption and thus greatly hinders its practical applications.
Therefore, how to achieve high sensitivity to ethylene without additional activation energy
is of great urgency and importance for practical agricultural applications due to its merits
in reducing power consumption and system complexity. For MOSs, doping with noble
metals such as Au, Pt, Pd [18–20], and transition metal halides (CuCl2, NiCl2 [21]) has
been demonstrated to greatly lower the operating temperature. However, how to achieve
excellent ethylene sensing performances at room temperature is still challenging.

The construction of a sensing material system for room-temperature ethylene detection
should be considered from the following two aspects. Firstly, the gas sensing response
arises from the physical adsorption of ethylene molecules onto the sensing films, and
thus the adsorption capabilities of the sensing films should be optimized to achieve high
sensitivity toward ethylene. It has been theoretically proven that the negative adsorption
energy of the target analyte-sensing film system is beneficial for the adsorption of target
analyte molecules, which also has been proven experimentally [22,23]. Secondly, when
the target analyte molecules were adsorbed onto the sensing film, the electron transfer
takes place between the target analyte and sensing film [24,25]. How to translate this
electron transfer process into electrical resistance change greatly depends on the energy
level alignment of the sensing material system, where suitable energy alignment promotes
the electron transfer and thus results in a larger sensing response.

Following this regard, the ternary reduced graphene oxide (rGO)/tungsten diselenide
(WSe2)/Pd heterojunctions were designed and fabricated toward room-temperature ethy-
lene detection. The negative adsorption energy of the ternary heterojunctions provides
enough active sites for ethylene molecules adsorption, and the electron transfer across the
rGO/WSe2 and WSe2/Pd interfaces through band energy alignment greatly promotes the
sensing response. Compared to the solely one or two components-based heterojunctions,
the ternary heterojunction-based ethylene sensor exhibits higher sensitivity and quicker
p-type response to the ppm level of ethylene at room temperature, and the sensitivity to
10 ppm of ethylene was 0.001%, with the response and recovery time being 33 and 13 s.
Moreover, the sensor exhibits full reversibility and excellent selectivity at room temperature.
Furthermore, the application feasibility of the sensor to fruit quality monitoring was veri-
fied by comparison with routine techniques through banana ripeness detection simulation
experiments. This work provides a feasible methodology for designing and fabricating a
sensing material system toward room-temperature ethylene detection, pushing forward
the development of modernized intelligent agriculture.

2. Materials and Methods

2.1. Preparation

GO aqueous solution (0.5 mg/mL, Hangzhou Gaoxi Tech Co., Ltd., Hangzhou, China),
WSe2 nanosheets dispersion (0.5 mg/mL, Nanjing MKNANO Tec Co., Ltd., Nanjing, China),
and Pd nanoparticles (NPs, 99.9% metals basis, ≤1 μm, Shanghai Aladdin Biochemical
Tech Co., Ltd., Shanghai, China) were prepared. Polyelectrolytes poly (diallyldimethy-
lammonium chloride) (PDDA, 200,000–350,000, 20 wt. % aqueous solution, polycation),
and poly (sodium-pstyrenesulfonate) (PSS, 70,000, polyanion) were purchased from Sigma-
Aldrich. PDDA and PSS were diluted and dissolved in deionized (DI) water to 1 wt. % and
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2 wt. %, respectively. Pd NPs were then dispersed in PSS solution with a concentration of
0.5 mg/mL. All reagents were directly used without further purification.

2.2. Sensor Fabrication

Ethylene sensitive films were deposited on SiO2/Si substrates pre-patterned with
Ti/Au (20 nm/50 nm) interdigital electrodes (IDEs) by the layer-by-layer self-assembling
method. The cleaned substrate was vertically immersed in PDDA solution for 15 min and
dried with nitrogen, followed by immersing in DI water for removal of excessive PDDA
molecules. Therefore, positive charges were fixed on the surface of substrates. Since the
GO, WSe2, and PSS-Pd solutions were negatively charged, the positive charged substrate
was then vertically immersed in negatively charged solution for 15 min for self-assembling
of nanostructures on IDEs due to the electrostatic adsorption effects. Finally, the sensing
films were annealed at 200 ◦C for 1 h to reduce GO.

2.3. Instruments and Measurements

The surface morphology and microstructure of sensing materials and films were
observed by scanning emission microscopy (SEM, Zeiss Gemini, Oberkochen, Germany)
and transmission electron microscope (TEM, FEI G2F20, Hillsboro, OR, USA). The chemical
compositions and surface states of the samples were examined by X-ray photoelectron
spectroscopy (XPS, Thermo Sacalab 250Xi, Waltham, MA, USA). The Raman spectra were
recorded with He-Ne laser excitation at 532 nm using a Raman spectrometer (Renishaw
inVia, Wotton-under-Edge, UK).

The ethylene-sensing properties of the sensors were measured at room temperature by
a homemade dynamic test system (Figure S1) [26]. The ethylene standard gas (10–100 ppm
in dry air), main interference gas (CO2, 30,000 ppm in dry air), and carrier gas dry air were
supplied by Chengdu Xuyuan Chemical Co., Ltd., Chengdu, China. The concentration of
tested ethylene and CO2 was controlled by the mass flow control (MFC300, Wuxi Aitoly
Electronics Co., Ltd., Wuxi, China) with the dry air as carrier gas. The fabricated ethylene
sensors were put into the test chamber and their resistances were recorded by a real-
time multimeter resistance acquisition system (Keithley 2700, Cleveland, OH, USA). The
sensing response of the sensor was defined as (Rg − R0)/R0, where Rg and R0 represent
the steady-state resistance value of the sensor in the tested gas atmosphere and dry air,
respectively. The response/recovery time was defined as the time required for 90% change
of the resistance during the adsorption/desorption process.

2.4. Theoretical Calculation

DFT (Density Functional Theory) calculations were carried out using the Vienna Ab-
initio Simulation Package (VASP) with the frozen-core all-electron projector-augment-wave
method. The Perdew—Burke—Ernzerhof (PBE) of Generalized Gradient Approximation
(GGA) was adopted to describe the exchange, correlation potential, and structure optimiza-
tion. Van der Waals interactions were considered by the DFT-D2 method of Grimme. The
plane wave basis set cut-off energy was set to 500 eV, and the Monkhorst-Pack k-point
sampling was set to 2 × 2 × 1. The geometry optimizations were performed until the forces
on each ion was reduced below 0.01 eV/Å.

The adsorption energy (Eads) was calculated as:

Eads = Eadsorbent+gas - (Eadsorbent + Egas) (1)

where Eadsorbent was the energy of the sensitive materials, Egas represented the energy of
the adsorbed ethylene molecule, and Eadsorbent+gas was the total energy of the adsorbed
system. Energetically, the negative adsorption energy values are desirable for the adsorp-
tion process.
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2.5. Banana Ripeness Detection Experiments

The performance verification of the as-fabricated ethylene sensor was conducted by
applications in banana ripeness detection. Yellowish green bananas were obtained from
the local market and stored at room temperature (20 ◦C). During storage, the color of
the samples changed with the increase of storage time, and the four typical color stages
that are yellowish green, all yellow, yellow with brown speckles, and brown were chosen
for detection of released ethylene. The bananas at the target sampling stage were put
into a sealed quartz glass container. The containers were sealed for a period of time for
collection of ethylene, and then the sensor was placed into the container as well to record its
in-time resistance values for the detection of released ethylene. After sensing for 100 s, the
sensor was taken out from the container, and placed in ambient air to recover to the initial
resistance state. The above steps were repeated four times to obtain the sensing response to
bananas at different ripeness stages. At the same time, the gas in the container was also
extracted by a gas syringe (25 μL, VICI Precision Sampling, Inc., Baton Rouge, LA, USA)
for gas analysis by gas chromatography-mass spectrometry (Agilent GC-MS 7890B-5977A,
Santa Clara, CA, USA). The parameters of GC-MS were set as: 250 ◦C inlet temperature,
40 ◦C column temperature for 3 min, 40 ◦C /min speed to 100 ◦C, 1 mL/min flow rate,
splitless, 230 ◦C ion source, and 150 ◦C MS quadrupole temperature. Identification of
ethylene was confirmed by comparing the collected mass spectra with the spectra in the
National Institute for Standards and Technology (NIST 14) data bank. The relative content
of the ethylene was determined using the area normalization method. Three sampling
analysis was one replicate and the average results were used.

3. Results

3.1. Theoretical Design of the Ethylene Sensitive Material System

A model of graphene consisting of 55 atoms was constructed. The length of the
C-C bond in basal plane was 1.42540 Å, which was close to the C-C bond length of the
graphite planar structure [27]. The geometric structure of the 16 monolayer WSe2 was also
discussed [28,29] and the length of the W-Se bond varied from 2.51006 to 2.51244 Å. The
4 Pd atoms with each volume of 62.01 Å3 were adopted. Lattice constants of graphene
and WSe2 were calculated as 12.34 and 13.26, respectively. After compounding, the lattice
constant of graphene/WSe2 was 12.64, indicating graphene was stretched while WSe2
was compressed. The length between ethylene and graphene, WSe2, and Pd, were 2.86 Å,
2.88 Å, and 2.98 Å, respectively, forming no chemical bonds and declaring van der Waals
adsorption, as shown in Figure 1. While in ternary structure, there was a chemical bond
(1.74 Å) linked between Pd and WSe2, and the distance between ethylene and WSe2 was
shortened to 2.2 Å, indicating that the adsorption had been changed.

Energies of the above structures and the ethylene adsorbed on the structures were
obtained (Table 1). After assemble with WSe2, the energy of graphene almost doubled.
While after metal Pd modification, the energy of the graphene became slightly more
powerful. Adsorption energies were calculated and are shown in Table 2. The adsorption of
graphene to ethylene was only −0.14; a negative value indicated the adsorption occurred
energetically and a weak value declared the van der Waals adsorption. Compounded Pd or
WSe2 helped to enhance the adsorption capacity of graphene to ethylene. It was noticed
that capacity drastically increased to 5.5 times through ternary compounding.
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Figure 1. Optimized geometric models of (a) graphene and (b) graphene/WSe2, and adsorp-
tion structures of ethylene molecules on (c) graphene, (d) graphene/Pd, (e) graphene/WSe2, and
(f) graphene/WSe2/Pd.

Table 1. The calculated single point energies of the adsorbed systems.

Structure Energy (eV)

Ethylene −31.75
Graphene −458.56

Graphene/WSe2 −817.16
Graphene/Pd −471.35

Graphene/WSe2/Pd −805.71
Ethylene adsorbed on graphene surface −490.45

Ethylene adsorbed on graphene/Pd surface −503.27
Ethylene adsorbed on graphene/WSe2 surface −849.10

Ethylene adsorbed on graphene/WSe2/Pd surface −838.24

Table 2. Adsorption energies of the ethylene adsorption system.

Adsorbed System Adsorption Energy (eV)

Ethylene-graphene −0.14
Ethylene-graphene/Pd −0.17

Ethylene-graphene/WSe2 −0.19
Ethylene-graphene/WSe2/Pd −0.78

3.2. Fabrication and Characterization of Ethylene Sensitive Films

Four sensitive material systems were fabricated including rGO, rGO/WSe2, rGO/Pd,
and rGO/WSe2/Pd to achieve the most promising candidates for room-temperature ethy-
lene sensing. Firstly, the self-assembled films were characterized by XPS to investigate
their chemical composition and surface states. Figure 2a,b shows the C 1s spectra of GO
and rGO films, respectively. For GO films, C-C, C-O, and C=O are the three main types of
carbon bonds, corresponding to the characteristic peaks at 284.8 eV, 287.0 eV, and 288.4 eV.
After annealing, the peak of the C-O bond decreases greatly and the C-C bond becomes
the main peak, indicating that most of the oxygen-containing functional groups in GO
are removed and thus GO is reduced. After deposition of WSe2 nanosheets, the chemical
composition of the rGO/WSe2 sensitive films was examined by XPS as well, shown in
Figure 2c. Two obvious peaks appeared at 34.2 and 32.1 eV and were attributed to W4f7/2
and W4f5/2 of W4+, respectively, while the peaks at 54.2 eV and 55 eV correspond to the
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Se3d3/2 and Se3d5/2 of Se2-. Then, the Raman spectrum was also recorded to exhibit the
structural properties of the rGO/WSe2 sensitive films, as displayed in Figure 2d. The
characteristic peak of WSe2 at 251 cm−1 is clearly observed, which could be attributed to
the overlapped peaks of the interlayer mode A1g (253 cm−1) and in-plane vibration mode
E1

2g (250 cm−1). The peaks at 1349 cm−1 and 1590 cm−1 correspond to the D and G band
of rGO, respectively, and its intensity ratio is almost 1.0, indicating the reduction of GO
into rGO with some defects. Moreover, the broad 2D band at 2470–3000 cm−1 shows that
the fabricated rGO film is composed of some layers of the rGO sheets.

Figure 2. XPS C 1s spectrum of (a) GO and (b) rGO. (c) XPS spectra of W 4f and Se 3d of WSe2.
(d) Raman spectrum of rGO/WSe2 sensitive films.

The surface morphology of rGO and its heterojunction films were observed through
SEM. The pure rGO films show uniform morphology with a few wrinkles (Figure 3a). After
deposition of lamellar WSe2 nanosheets, the rGO/WSe2 composite films remain uniform
with excellent interlayer coupling between rGO and WSe2 nanosheets (Figure 3b,c). As
shown in Figure S2, the EDS element mapping images of W, Se, C, and O confirm that
these four elements are homogeneously present in the whole film region, which further
proves formation of rGO/WSe2 heterojunction. Pd NPs are evenly distributed on rGO and
rGO/WSe2 films (Figure 3c,d), which was beneficial for the sensing enhancement effects of
Pd NPs. The corresponding high-resolution TEM (HRTEM) images exhibit a specific lattice
spacing of the (102) facet for WSe2, (100) facet for WSe2, and (111) facet for Pd, which is
measured to be 0.260 nm, 0.282 nm, and 0.225 nm, respectively, as shown in Figure 3d,e.
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Figure 3. SEM images of the self-assembled (a) rGO, (b) rGO/WSe2, (c) rGO/Pd, and (d) rGO/WSe2/Pd,
high-resolution TEM images of (e) rGO/WSe2 and (f) rGO/WSe2/Pd.

3.3. Ethylene-Sensing Characteristics

Figure 4a shows the real-time sensing response versus time curves of four sensitive
films (rGO, rGO/WSe2, rGO/Pd, and rGO/WSe2/Pd) when exposed to 10–100 ppm
ethylene at room temperature. When exposed to ethylene, all resistance values decline
rapidly and then approximately reach the saturation states after almost the same periods of
time. After ethylene was purged by dry air, the resistance values gradually recovered to
their initial states, which indicates the p-type semiconducting behaviors of all fabricated
sensing films. The sensing response of all sensors increases with the increase of ethylene
concentration ranging from 10 to 100 ppm, and it could be clearly seen that both of the
rGO/WSe2 heterostructures and Pd NPs could greatly promote the ethylene sensing
characteristics. Among them, pure rGO film shows the lowest sensing response, and the
response to 100 ppm ethylene is nearly twice and four times larger after assembling with
Pd and WSe2, respectively, and particularly, ten times for rGO/WSe2/Pd heterojunctions,
compared with pure rGO based sensors. These results are consistent with the theoretical
analysis results shown above, which further demonstrates the enhancement effects of
rGO/WSe2 heterostructures and Pd NPs for ethylene sensing.

The repeatability of all kinds of sensitive films to 50 and 100 ppm ethylene was mea-
sured and shown in Figure 4b. It could be clearly seen that except for the case of rGO
films in 50 ppm ethylene, almost similar response curves including response value, re-
sponse/recovery time, and also stable baselines are obtained in five successive cycles,
indicating the excellent repeatability properties of sensitive films. Moreover, to further
prove its practical application in the agricultural environment, the selectivity properties
of rGO/WSe2/Pd composite films were investigated. The typical interfering gas when
used for fruit ripeness detection is CO2, which is produced by the respiration of fruits. The
sensing response of the composite sensor to 50 ppm ethylene is significantly larger than
that of 3000 ppm CO2 (Figure 4c), verifying the excellent selectivity of the rGO/WSe2/Pd
sensitive films in fruit ripeness detection application scenarios. In addition, the response
and recovery time (90% change in sensor resistance) were extracted and shown in Fig-
ure 4d,e. Among four kinds of sensitive films, the rGO/WSe2/Pd sensitive film exhibits
the shortest response time (33 s) and recovery time (13 s) to 10 ppm ethylene. It could be
attributed to the 2D structures of the rGO and WSe2 nanosheets, Se vacancies existing in
the surface of WSe2 films, and also high activity of Pd NPs.
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Figure 4. (a) Real-time sensing response of rGO-based self-assembled sensitive film to 10–100 ppm
ethylene at room temperature, (b) repeatability, and (c) selectivity properties of self-assembled
rGO/WSe2/Pd sensitive film when exposed to ethylene. (d) Response time and (e) recovery time of
the ethylene sensor based on rGO/WSe2/Pd sensitive films.

3.4. Banana Ripeness Detection Applications

The fruit ripeness detection experiments were then designed and conducted in the
laboratory to verify the application feasibility of our as-fabricated ethylene sensors by
comparison with traditional GC-MS technology. In our experiments, the bananas, a typical
climacteric fruit, were adopted, and it had been demonstrated that ethylene was released
during the ripeness process of bananas. The level of banana ripeness can be commonly
divided into four stages: unripe, slightly ripe, ripe, and overripe [30], accompanying the
gradual change of banana color and released ethylene concentration. The unripe bananas
exhibit solid light green color with some light greenish-yellow, and show no significant
aroma. Mostly yellow with very faint green at tips and along edges is defined as slightly
ripe, which usually exhibits some faint banana aroma. After that, bananas step into the ripe
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stage, and the color become solid yellow with no green, but sporadic small brown spots.
At this stage, the released aroma is the strongest. Afterwards, the bananas enter into the
overripe stage with the color of dark brown and even black, during which the released
aroma gradually drops into a relatively low level. According to the characteristics of the
above four ripeness stages, the color changes of the obtained banana samples could be
clearly observed (Figure 5a), and the bananas at different ripeness stages were placed into
different contained. The containers were sealed for collection of ethylene, and after about
20 min, the sensors were placed into the containers for ethylene sensing toward banana
ripeness detection. The sensing response to bananas at different ripeness stages is shown
in Figure 5b, from which it could be clearly seen that the ethylene concentration increases
gradually until the bananas reached the ripe stage. The sensing response is calculated
to be 16.8%, 25.4%, 33.8%, and 30.2%, corresponding to the unripe, slightly ripe, ripe,
and overripe bananas, respectively. The normalized peak area of the released ethylene
measured by GC-MS exhibits the same changing trend with the banana ripeness stage i.e.,
the ethylene concentration increases until the bananas are ripe, and further declines when
they become overripe, as shown in Figure 5c.

Figure 5. (a) Photos of banana samples at different storage stages: yellowish green (1st stage, unripe),
all yellow (2nd stage, slightly ripe), all yellow with brown speckles (3rd stage, ripe), and dark
brown (4th stage, overripe). (b) The real-time resistance versus time curves of the rGO/WSe2/Pd
heterojunction-based chemiresistive sensor when placed into the sealed container with bananas at
different ripeness stages. (c) The normalized peak area of released ethylene from banana samples at
different ripeness stages by GC-MS technology.
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4. Discussion

According to the calculated adsorption energies, all the negative values manifested
the advantage of room temperature operation of the fabricated ternary sensitive materials
system with energy-level alignment, which may be caused by the formed chemical bond,
further changing the energy band structure. The calculated adsorption energies were
consistent with the sensing response of each adsorbed system to ethylene. Previous studies
show that rGO is p-type materials. When ethylene molecules interact with p-type rGO
sensitive films, electrons will transfer from rGO to ethylene, owing to higher Fermi levels
of rGO than ethylene, resulting in a decrease of electron density of the rGO films and
thus a negative sensing response to ethylene gas. When composited with Pd NPs, the
sensing response to ethylene gas becomes more negative in rGO/Pd composites, which is
inconsistent with the positive sensing response arising from the catalytic effects of Pd NPs
toward ethylene molecules and thus excludes the role of catalytic properties on sensing
response enhancements. This ethylene sensing enhancement could be attributed to the
local doping effects of Pd NPs on rGO when the device is exposed to ethylene [31]. The
large work function difference between high work function Pd NPs and rGO results in
the local hole-doping of the rGO at the Pd NPs/rGO interfaces and thus lowers the Fermi
energy levels of the rGO/Pd composites. Combined with the higher adsorption energy,
both contributed to more electrons transferred from rGO/Pd to ethylene, and leads to an
enhanced negative sensing response to ethylene.

In the case of rGO/WSe2 bilayer heterojunctions, the device resistance is dominated
by conductive rGO films due to the bilayer device structure deposited on IDEs and much
higher electrical conductivity of rGO than WSe2. When rGO and WSe2 are brought into
contact, it is expected that electrons would pass from rGO to WSe2 until the equilibrium
of the Fermi level is achieved. As a result, a Schottky-type junction is formed across the
rGO/WSe2 interface with a downward band bending and a hole depletion region in WSe2
near the surface [32,33]. When the rGO/WSe2 heterojunction is exposed to ethylene, the
electron transfer from WSe2 to the adsorbed ethylene molecules would lead to an increase
of hole concentration in WSe2. The increased hole concentration in WSe2 causes a larger
Fermi level difference between rGO and WSe2, leading to more holes transferred from WSe2
to rGO, and thus significantly increased sensitivity to ethylene. Furthermore, when Pd
NPs are introduced to the rGO/WSe2 bilayer film, the Schottky junction effects are further
enhanced by the hole doping effects in WSe2 induced by Pd NPs [34]. Combined with more
negative adsorption energy of the rGO/WSe2/Pd composites, more holes will transfer
from WSe2 to rGO, resulting in a further increased sensitivity to ethylene. Moreover, the
unique structures of 2D materials and the self-assembled sensitive films could increase the
adsorption sites for gas molecules, accelerate the charge transfer between rGO and WSe2
nanosheets, and promote the synergistic effects between them.

For climacteric fruit such as the banana, when it changes from ripe to overripe, the
released ethylene concentration decreases. This indicates a direct relationship between
released ethylene concentration and the banana ripeness stage, which still needs further
quantitative research. Moreover, the released aroma of climacteric fruits has a positive
correlation with the released inner ethylene during the storage process [3]. Therefore,
intelligent ethylene sensor techniques cannot only reflect the ripeness information of
climacteric fruits, but also can be potentially adopted to evaluate their flavor quality. The
consistent results from our fabricated ethylene sensor and GC-MS confirm the reliability
and feasibility of our proposed ethylene sensor methodology toward banana ripeness
detection. Furthermore, the proposed ethylene sensor exhibits distinct advantages of low
costs, fast and accurate detection, simple operation, and in situ monitoring. The ethylene
sensors can also further be developed into electronic noses and integrated into picking
robots, grading equipment, packaged boxes, and shelves, which could push forward the
development of intelligent agriculture.
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5. Conclusions

In conclusion, a room-temperature ethylene sensor based on a ternary rGO/WSe2/Pd
heterojunction and its banana ripeness detection applications were demonstrated. The
ethylene sensor shows excellent figures of merit including high sensitivity, rapid re-
sponse/recovery, full repeatability, and high selectivity, making it promising for practical
banana ripeness detection applications. Such excellent room-temperature ethylene sensing
behaviors could be attributed to the following two aspects: (1) The negative adsorption
energy of the ternary heterojunctions provides enough active sites for ethylene molecules
adsorption, and (2) The electron transfer across the rGO/WSe2 and WSe2/Pd interfaces
is greatly promoted through band energy alignment. Furthermore, its reliability and
feasibility toward fruit quality monitoring applications were confirmed and validated
through banana ripeness detection simulation experiments by comparison with traditional
GC-MS technology. This work provides a feasible methodology for construction of a room-
temperature ethylene sensing material system, and also may innovatively push forward the
applications of sensor technology in the intelligent agriculture field to acquire the ripeness
and quality information of climacteric fruit quickly and in-time.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11131879/s1, Figure S1: Schematic diagram of the gas
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Abstract: Maize is susceptible to mold infection during growth and storage due to its large embryo
and high moisture content. Therefore, it is essential to distinguish the moldy sample from healthy
groups to prevent the spread of mold and avoid huger economic losses. Catalase is a metabolite in the
growth of microorganisms; hence, all maize samples were accurately divided into four moldy grades
(health, mild, moderate, and severe levels) by determining their catalase activity. The visible and
shortwave near-infrared (Vis-SWNIR) and longwave near-infrared (LWNIR) hyperspectral images
were investigated to jointly identify the moldy levels of maize. Spectra and texture information of
each maize sample were extracted and used to build the classification models of maize with different
moldy levels in pixel-level fusion and feature-level fusion. The result showed that the feature-level
fusion of spectral and texture within Vis-SWNIR and LWNIR regions achieved the best results, overall
prediction accuracy reached 95.00% for each moldy level, all healthy maize was correctly classified,
and none of the moldy samples were misclassified as healthy level. This study illustrated that two
hyperspectral image systems, with complementary spectral ranges, combined with feature selection
and data fusion strategies, could be used synergistically to improve the classification accuracy of
maize with different moldy levels.

Keywords: maize; moldy level; catalase activity; hyperspectral image; data fusion; feature selection

1. Introduction

Maize is an important food crop, feed crop, and cash crop [1]. Compared with wheat
and rice, maize has larger embryos, and its moisture content at harvest reaches about
30%, higher than the 25% and 22.5% of wheat and rice, respectively, which makes it more
susceptible to mold infection during growth and storage [2]. Among them, Aspergillus flavus
is the strain that most easily and commonly infects maize; aflatoxin (AFB1), produced by
Aspergillus flavus, is extremely carcinogenic and toxic, and is the most toxic mold secondary
metabolite in contaminated food [3,4]. Humans and animals eating food contaminated with
AFB1 is a serious threat to life and health safety. Therefore, the early real-time detection of
moldy maize has very important research significance.

Traditional detection methods for moldy maize include sensory evaluation and physi-
cal and chemical component detection [5]. Sensory evaluation is simple, time-saving, and
low cost, but the evaluation results are easily disrupted by the external environment and
the subjective emotions of the inspectors. Additionally, the toxic substances will also pose a
threat to the health of the inspectors. The physical and chemical component determination
is generally detected by high-performance liquid chromatography (HPLC), polymerase
chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA) [6–8]. Although
these methods can achieve more accurate measurement and qualitative analysis, they
require expensive testing equipment and professional technicians, and the testing process
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is complex and time-consuming [9]. Hence, using traditional methods, it is difficult to
achieve simple, rapid, and non-destructive detection, which cannot meet the actual needs
for identification of kernel maize.

In recent years, non-destructive detection technologies, such as electronic nose, ma-
chine vision, near-infrared, and hyperspectral imaging, have been successfully applied
to the classification of moldy maize [10,11]. Electronic nose technology [12] is mainly
used specific sensors to identify the level of mold based on the change of volatile organic
compounds (VOCs) information. Leggieri et al. [13] used electronic nose technology to
determine the concentration of AFB1 and fumonisins (FBs) in maize; the prediction model
of AFB1 and FBs built by the artificial neural networks were 78% and 77%, respectively.
However, the concentration of gas is easy to change in the flow state, which affected the
discrimination accuracy. Machine vision detection mainly adopts machine learning algo-
rithms to extract features from kernel images and then establish the classification model
based on extracted features [14]. Shi Ying [15] extracted R-channel eigenvalues of RGB
images (red, green and blue three-channel color image) and classified maize kernel samples
with different levels of mold using the Back Propagation (BP) neural network. Visible-near
infrared (Vis-NIR) spectroscopy technology connects the spectral information with the
internal content of substances and uses the spectral curve to analyze the changes of internal
components of seeds in the process of mold growth [16]. Therefore, the machine vision and
Vis-NIR spectroscopy can express the external and internal changes of the target samples
respectively. However, both internal quality and external characteristics of maize will
change during the moldy process; neither machine vision nor Vis-NIR spectroscopy can
obtain internal and external quality information at the same time. Hyperspectral imaging
technology combines spectral analysis technology with image processing technology, which
can simultaneously obtain the spectral data with internal component information and the
image data with appearance feature information, realizing the rapid, pollution-free and
non-destructive detection [17–19].

In terms of using hyperspectral imaging technology to identify moldy maize, Tao
et al. [20] used random frog (RF) combined with partial least-squares discriminant analysis
(PLS-DA) to qualitatively analyze the healthy maize and polluted maize inoculated with
aflatoxigenic fungus at different culture days based on long wave near-infrared (LWNIR)
hyperspectral images; the classification accuracy of the calibration set and verification set
was 82.3% and 94.9%, respectively. Williams et al. [21] evaluated the fungal development
in maize kernels using LWNIR; principal component analysis (PCA) was firstly used to
remove the interference of noise, such as background, bad pixels, and shadows, from the
hyperspectral images. Three distinct clusters related to the degree of infection were found
in the scoring plots of PC4 and PC5. Dai et al. [22] established a classification model of
moldy maize with different culture days (0 days, 2 days, 4 days, 6 days, and 8 days) based
on 9 characteristic wavelengths selected from visible and short wave near-infrared (Vis-
SWNIR) hyperspectral imaging using fisher discriminant analysis (FDA); the classification
accuracy of the calibration set and validation set were 100% and 98.67%, respectively,
illustrating that the characteristic wavelengths could represent the main information about
moldy levels of maize samples. Del Fiore et al. [23] used Vis-SWNIR hyperspectral imaging
combined with multivariate statistical analysis to identify maize kernels infected with
fungi under different growths. The results showed that hyperspectral imaging was able
to quickly distinguish between healthy and infected maize, i.e., 48 h after inoculation
with mycorrhizal fungi. Previous studies have shown that both the spectral ranges of
Vis-SWNIR and LWNIR can be used to distinguish the moldy level of maize; however, it
has not been found that fusing the spectral information of different hyperspectral systems
can construct a classification model of maize with different moldy levels. Yu et al. [24]
studied the influence of Vis-SWNIR and LWNIR hyperspectral imaging systems on the
prediction ability of total volatile basic nitrogen (TVB-N) content in tilapia fillets during
refrigeration; the results showed that the fused spectral data of both sensors achieved a
better prediction result than that of individual sensor. Meanwhile, the study of fusing

316



Foods 2022, 11, 1727

spectral data with texture data to discriminate the moldy level of maize is less extensive.
Ma et al. [25] developed the classification model of fresh and frozen meats based on the
spectral and texture information extracted from Vis-SWNIR hyperspectral images; the
research showed that the classification model built by the feature fusion of spectra and
texture was better than that of spectra and texture alone. Therefore, fusing the information
of spectra and texture obtained from different hyperspectral image systems would be a new
idea for constructing an accurate classification model of maize with different moldy levels.

Mold growth is uncontrollable. Hence, moldy levels may not be uniform among
different samples at the same culture time and a small number of samples were not
consistent with the designed moldy levels. Catalase (CAT) is a metabolite in the growth of
Aspergillus flavus and other microorganisms [26]. Zhang et al. [27] found that the correlation
coefficient between the number of mold colonies and the activity value of CAT reached
more than 0.9 in various grains such as wheat, rice, and maize. In addition, CAT is the
precursor product of AFB1 produced by Aspergillus flavus. Zhang et al. [28] analyzed the
correlation between CAT activity value and AFB1 content of moldy maize and found that
both of them had the same change curves. The above research showed that CAT activity
value could reflect the moldy levels of maize. However, at present, it is not found that
the model for discrimination of maize with different moldy levels was established based
on the feature fusion of hyperspectral imaging information and CAT activity value of
moldy maize.

In this study, we proposed a new method to better divide the maize with different
moldy levels by monitoring the CAT activity value of maize samples infected with As-
pergillus flavus under different culture days. The objective of this study is to examine the
potential of using multi-levels data fusion of hyperspectral images to identify the maize
with different moldy levels. The specific objectives of this study were to: (1) analyze
the difference of spectra and texture of Vis-SWNIR and LWNIR hyperspectral images of
maize samples with different moldy levels; (2) examine the ability of different pretreatment
methods and classifier for identification of maize samples with different moldy levels;
(3) compare the classification ability of the models based on the pixel-level fusion of spectra
and different texture parameters; (4) evaluate the effects of features selected by differ-
ent variable selection methods on the classification models of feature-level fusion; and
(5) establish the best classification model of maize with different moldy levels by integrating
the spectrum and texture data with Vis-SWNIR and LWNIR regions.

2. Materials and Methods

2.1. Maize Sample Preparation

“Zhengdan 958” is widely planted in China due to its advantages of high and stable
yield; hence, “Zhengdan 958” was selected as the experimental maize sample of this study.
To reduce the influence of the bacteria carried by the maize itself, maize kernels with the
same size and appearance were selected manually. All maize kernels were surface sterilized
by soaking in 2% sodium hypochlorite solution for 5 min and then rinsed three times with
distilled water. The conidia suspension of Aspergillus flavus (BNCC142801 purchased from
BeNa Biotechnology Research Center, Xinyang, Henan province, China) was diluted to
10−3 in sterile water and inoculated into maize kernels. Simulation of the maize mold
process by inoculation with molds has been widely used in laboratory studies. Tao et al. [20]
used two Aspergillus flavus, AF13 (aflatoxin-producing Aspergillus flavus) and AF36 (non-
aflatoxin-producing Aspergillus flavus), for artificial laboratory inoculation to study the
changes in maize. In this study, all inoculated maize kernels were divided into 240 groups
and placed in petri dishes with the embryo side facing upward. Each group contained
about 30 kernels, weighing 10 ± 0.5 g. All samples were cultured in a constant temperature
and humidity incubator with a temperature of 30 ◦C and relative humidity of 80%.
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2.2. Hyperspectral Image Acquisition System

The Vis-SWNIR and LWNIR hyperspectral reflectance imaging system (Figure 1)
built in the Intelligent Detection Laboratory of China Agricultural Intelligent Equipment
Technology Center, was used to acquire the hyperspectral images of moldy maize samples
in the wavelength range 327–1098 (nm) and 930–2548 (nm). The Vis-SWNIR hyperspectral
imaging system consists of an imaging spectrometer (ImSpector V10EQE, Spectra Imaging
Ltd, Oulu, Finland), an electron multi-plying charge-coupled device (EMCCD) camera
(Andor Luca EMCCD DL-604 M, Andor Technology plc., Belfast, UK) with a resolution
of 502 × 500 and a camera lens (OLE23-f/2.4, Spectral Imaging Ltd., Oulu, Finland), and
a spectraCube data acquisition software (Isuzu Optics Corp., Xinzhu, Taiwan, China)
controls the operation of mobile platform and acquisition of hyperspectral images. The
LWNIR hyperspectral imaging system consists of an imaging spectrometer (ImSpector
N25E, Spectral Imaging Ltd., Oulu, Finland), a charge-coupled device (CCD) camera (Xeva-
2.5-320, Xenics Ltd., Leuven, Belgium) with a resolution of 320 × 256 and a camera lens
(HSIA-OLE22, Spectral Imaging Ltd., Oulu, Finland), spectral acquisition software (Isuzu
Optics Corp., Xinzhu, Taiwan, China). The two hyperspectral acquisition systems shared
two 300 w halogen lampsadjusted at an angle of about 45 to provide a stable light source,
a motorized displacement stage (EZHR17EN, AllMotion, Inc., Union City, CA, USA) for
sample placement, and a computer (Dell, Intel (R) Core (TM) i5-2400 CPU @ 3.10 GHz)
with two types of hyperspectral acquisition software.

Figure 1. Hyperspectral image acquisition system.

The moldy levels of maize varied with the culture time. In this study, to artificially
cultivate the maize samples with different moldy grades, sixty samples were taken out
from a constant temperature and humidity incubator on day 0, day 2, day 4, and day 6 as
the moldy samples at healthy, mild, moderate, and severe levels, respectively. In order to
collect the high-quality images without saturation and distortion, hyperspectral images of
samples were acquired by line scanning method, and the distance between the lens to the
moving platform, the exposure time and the mobile platform speed were set to 430 mm,
3 ms, 2.6 mm/s for Vis-SWNIR hyperspectral systems and 310 mm, 5 ms, 40 mm/s for
LWNIR hyperspectral systems, respectively.
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2.3. Determination of CAT Activity

CAT activity value could reflect the activity strength of mold. Therefore, CAT activity
value of the maize samples at four moldy levels was determined using the potassium
permanganate titration method [29] after hyperspectral image collection. The specific steps
of CAT activity determination were as follows:

Step 1: Weigh the sample and place it in a conical flask;
Step 2: Add 40 mL distilled water and 5 mL 0.3% hydrogen peroxide, and set another

control group (40 mL distilled water and 5 mL 0.3% hydrogen peroxide in an empty conical
bottle), and shake them in a shaker for 20 min;

Step 3: Add 5 mL 3 mol/L sulfuric acid, shake for 5 min, take it out, filter with filter
paper, take out 10 mL filtrate, titrate with 0.005 mol/L potassium permanganate solution
until light pink, and do not change color for 30 s.

The value of CAT activity (Equation (1)) is expressed as the volume (mL) of 0.005 mol/L
potassium permanganate consumed in unit weight (g) and time (h). Where V1 and V2 were
the titrated potassium permanganate volume (mL) of the control group and sample group,
M was the mass (g) of the sample, and T was the unit time (h).

Value(
mL

g × h
) =

(V1 − V2)

M × T
(1)

2.4. Hyperspectral Image Processing and Information Extraction

The original hyperspectral image needs to be corrected to eliminate the influence of
light source and camera dark current changes [30]. The standard white reference image was
acquired using a white Teflon plate (99% reflectivity) under the same sampling environment
as the sample. Turn off the light source and cover the lens to obtain a black reference image
(0% reflectivity). The corrected image is calculated using the black and white reference
image by Equation (2):

IC =
IO − IB
IW − IB

(2)

where IO was the original hyperspectral image, IW and IB represented the white reference
and black reference images, respectively, and IC was the corrected hyperspectral image.
In this study, the hyperspectral image correction and subsequent data processing were
performed in MATLAB 2019B (The MathWorks, Inc., Natick, MA, USA).

To extract the information of region of interest (ROI), the mask method was used
to segment the target and background of the corrected hyperspectral images. The gray
images at 849 and 1098 nm were used to construct a binary mask by setting appropriate
thresholds, because the spectral intensity difference between the gray image background
and maize was largest at 849 and 1098 nm wavelength images for Vis-SWNIR and LWNIR
hyperspectral images, respectively. Then, the corresponding hyperspectral image was
multiplied by the filtered mask to remove the background information. The original and
denoised RGB images of maize with different mold levels were shown in Figure 2. After
acquiring the ROI region, the average spectrum was extracted from all pixels of ROI region
for each wavelength of the hyperspectral image. Due to the noise and useless information
in the beginning and end bands, a total of 389 spectral variables within 399–1001 nm and
112 spectral variables within 1005–1701 nm were obtained from the hyperspectral images
of Vis-SWNIR and LWNIR regions, respectively.
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Figure 2. Original and denoised RGB images (red, green and blue three-channel color image) of
maize with different mold levels.

The extraction of texture features was realized by the gray-level co-occurrence matrix
(GLCM). The GLCM described the probability of occurrence of two pixels with different
distances and directions in a gray image [31]. The data of four texture parameters (contrast,
correlation, energy, and homogeneity) in each ROI band was extracted from the GLCM,
by Equation (3)–(6). In this study, the pixel distance was set as 1, and only the GLCM in
the four directions of 0◦, 45◦, 90◦, and 135◦ was considered. The average value in the four
directions was used to describe each texture parameter characteristic. After removing the
noise bands, four texture parameters feature matrices with sizes of 240 × 389 (240: number
of samples; 389: number of variables) and 240 × 112 were obtained in the Vis-SWNIR and
LWNIR bands, respectively.

contrast = (
N

∑
i=1

N

∑
i=1

(i − j)2P(i, j)) (3)

correction =

N
∑

i=1

N
∑

i=1
(ij)P(i, j)− μiμj

σiσj
(4)

energy =
N

∑
i=1

N

∑
i=1

P(i, j)2 (5)

homogeneity =
N

∑
i=1

N

∑
i=1

P(i, j)

1 + (i − j)2 (6)

where (i, j) was the pixel coordinate, P(i, j) was the joint probability with two neigh-
boring pixels, and N (set N = 8 in this research) was the number of gray-levels. μi, μj,
σi, and σj represented the mean and standard deviation of the row and columns in the
GLCM, respectively.

2.5. Spectral Data Preprocessing

The hyperspectral data were easily interfered by random noise, stray light, background,
and equipment in the hyperspectral images acquisition. To eliminate the influence of
environmental factors and improve the correlation between spectral data and chemical
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composition, it was necessary to preprocess the raw spectrum [32]. Hence, moving smooth,
multiple scattering correction (msc), detrend, and mean centralization (center) were used
in this study. Studies have indicated that the smooth was used to remove noise interference
in the spectrum and improve the signal-to-noise ratio. Its basic idea is to smooth the raw
data through the “averaging” or “fitting” of several points in a finite size spectral window.
The spectral window size must be an odd number, and the wider the window, the lower
the spectral resolution. Msc used the method of least squares to fit the linear relationship
between each spectrum and the average spectrum. This means that msc could eliminate
scattering bias. Detrend is an approach to eliminate the baseline drift in the spectrum
and the influence of different sampling batches on the spectrum. Firstly, a trend line was
derived from spectral values and wavelengths through least squares fitting, and then the
trend line was subtracted from the original spectrum. The center was effective in enhancing
the differences between data, its basic idea is to remove the column, row, or overall average
from each column, row, or both separately [33–35]. In this study, smooth was firstly used
to reduce the noise and interference existed in original spectra, and then msc, detrend,
and center were employed secondly to process the spectra on the basis of smooth. The
best spectral preprocessing method was determined by comparing the effects of different
pretreatment methods on classification accuracy, then the spectral data processed by the
best method were fused with texture information for further analysis.

2.6. Data Fusion

Data fusion was a process of combining information from different independent
information sources, which could express the described objects or processes in more detail
and complete than using a single information source alone. Generally, data fusion was
divided into pixel-level fusion, feature-level fusion, and decision-level fusion according
to the fusion level from low to high [36]. In the study, the spectral data and texture data
obtained from hyperspectral images within Vis-SWNIR and LWNIR regions were fused
at pixel-level and feature-level respectively for developing a high accuracy and robust
classification model of moldy maize.

Pixel-level fusion was simply merging the data information of different sources [37],
so the fused features contained more variables, which was conducive to further data
processing. However, it could also input the irrelevant and redundant variables into the
model. In this study, pixel-level fusion models were built by fusing the spectra matrices with
texture parameters, for Vis-SWNIR and LWNIR regions. For the new matrix formed after
data fusion, one row represented the characteristic information of the same sample, and
one column represented the eigenvalues at a specific wavelength. The optimal combination
of spectrum and texture parameters was obtained by evaluating the classification accuracy
of the developed models.

Feature-level fusion was to extract features from a single data block using the variable
selection method and then integrate the processed feature matrix [38,39]. Compared with
pixel-level fusion, feature-level fusion could adjust the number of features from different
data, especially when there were large differences between single data blocks. In this study,
both spectral matrix and texture matrix obtained from Vis-SWNIR and LWNIR ranges
had 389 and 112 variables, respectively, these data were often multicollinearity and re-
dundant, especially between adjacent bands. Therefore, feature wavelength selection was
commonly adopted to select the key wavelengths from full-band data, which could reduce
redundant and noisy information, as well as simplify the model. The optimal combina-
tion of spectral data and texture parameters in pixel-level fusion was used as the data
source of feature-level fusion. Three kinds of variable selection methods including variable
combination population analysis (VCPA) [40], iteratively retains informative variables
(IRIV) [41], and hybrid method mVCPA-IRIV [42] were used to select the features that carry
the information of moldy maize from the spectral and texture parameters data, and then
combined them into a new data matrix to build the feature-level model. The number of
columns in the new data matrix was the number of features obtained from the two data.
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2.7. Discriminant Model and Evaluation

In order to obtain an accurate and reliable classifier, the original spectral data were used
to establish a classification model with SVM, Random Forest (RF), and K-nearest neighbors
(KNN). The performance of different classifiers was compared, and the optimal classifier
method was selected to be used in the subsequent data processing classification algorithm.

The basic idea of SVM was to divide the segmentation hyperplane with the maximum
classification interval according to the training samples in the feature space. When facing
the nonlinear problem, the kernel function was introduced and transformed into a linear
problem in high-dimensional space through nonlinear transformation. SVM was often used
for problems with a small sample set or linear indivisibility [43]. The radial basis function
(RBF) kernel function had more advantages in dealing with the nonlinear relationship
between feature information and categories [44], hence RBF was selected as the kernel
function of SVM in this study. The optimal loss parameter and kernel parameter was
searched by the cross-verification grid optimization method.

RF was an ensemble learning method based on the Bagging algorithm, which could be
used to solve classification and regression problems. RF had the advantages of processing
high-dimension data, strong adaptability to data sets, and fast training speed [45]. In this
study, when the RF classifier was trained, the number of decision trees was set to 50 to store
the observation results of each tree.

KNN was a commonly used classification algorithm. Its core idea was to select k
nearest neighbor samples in the feature space. In these K samples, if most samples belong
to a certain category, the test samples also belong to this category [46]. In this study, when
the KNN algorithm was used for training, parameters were automatically optimized to
obtain the optimal nearest neighbor number and distance measurement parameters.

The rationality of data set division affects the prediction performance of the classifica-
tion model. To avoid the influence of artificially selected calibration prediction sets on the
results, in this study, all 240 samples were sequentially divided into 4 moldy levels based on
the determined CAT activity value, so there were 60 samples in healthy, mild, moderate and
severe levels, respectively. Then, the 60 samples of each category were randomly divided
into calibration and prediction sets with a proportion of 3:1. Hence, 180 samples were
selected as the calibration set to build the calibration model, and the 60 remaining samples
were selected as the prediction set for evaluating the performance of the established model.

The performance of the model was evaluated from four aspects: classification accu-
racy of the calibration set and prediction set, and overfitting. Generally, a good model
should have higher classification accuracy and lower differences between calibration and
prediction sets. The main key steps of this study were shown in Figure 3.
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Figure 3. The experimental scheme of the data fusion model for identification of maize with different
moldy levels.

3. Results and Analysis

3.1. CAT Activity Analysis of Maize with Different Moldy Levels

Table 1 shows the range, mean, and standard deviation of CAT activity values under
different moldy levels. The maize kernels used in this experiment were sterilized, and
the CAT activity value of the sample was 0 under the healthy level. The results showed
that CAT activity values increased with the aggravation of maize moldy levels, and CAT
activity values increased rapidly in the early stages of mold and slowly in the late stages,
which was related to the growth pattern of the mold. The CAT activity values of different
moldy levels had obvious gradient differences, indicating that CAT activity values could
be used to determine the level of moldy maize.

Table 1. Catalase (CAT) activity value of maize with different moldy levels.

Moldy Level Mean mL/(h × g) Standard Deviation mL/(h × g)

Healthy level 0 0
Mild level 1.57 0.13

Moderate level 1.91 0.09
Severe level 2.24 0.12

3.2. Spectral and Texture Characterization

The curves of original spectra and texture data extracted from the hyperspectral
images of Vis-SWNIR and LWNIR regions were shown in Figure 4. The solid lines and
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the shaded part of Figure 4a,b are the average spectra and the standard deviation of maize
with different moldy levels, respectively. Figure 4c–j shows the texture data of contrast,
correlation, energy, and homogeneity extracted from the ROI of all samples. It was clear
that both spectra data and texture data of maize with different moldy levels had similar
trends, but their reflectance intensity were significantly different, which may be related to
the decomposition of chemical substances in the process of maize mold.

  

  

  

  

Figure 4. Cont.
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Figure 4. Spectra and texture curves of maize with different moldy levels in the Vis-SWNIR region
(left) and LWNIR region (right): (a) original spectra in Vis-SWNIR region; (b) original spectra in
LWNIR region; (c) contrast parameter in Vis-SWNIR region; (d) contrast parameter in LWNIR region;
(e) correction parameter in Vis-SWNIR region; (f) correction parameter in LWNIR region; (g) energy
parameter in Vis-SWNIR region; (h) energy parameter in LWNIR region; (i) homogeneity parameter
in Vis-SWNIR region; (j) homogeneity parameter in LWNIR region.

By analyzing the spectral curve characteristics, it can be easily found that the more
serious maize mold, the lower the spectral reflection intensity in both wavelength regions,
indicating that the light absorption capacity of mold tissue was stronger than that of
maize tissue. The spectral curve is monotonous in the Vis-SWNIR region, the average
spectral curve gradually increased in the region of 399–820 nm and then decreases slowly.
However, the spectral curve was complicated and varied in the LWNIR region. Two obvious
reflectance peaks were captured around 1100 nm and 1300 nm, respectively. The former may
be related to C-H in lipids [47], and the latter can be designated as a combination between
the first overtone of N-H stretching with the fundamental N-H in-plane bending and C-N
stretching with N-H in-plane bending vibrations [48]. In addition, there were two obvious
absorption peaks at 1192 nm and 1445 nm. The peak at 1192 nm may be associated with the
second overtone of C-H stretching in carbohydrates [49] and at 1445 nm may be related to
the O-H bond in water and the first overtone of C-H in protein [50]. There were significant
differences in the reflectance spectra and texture intensity between different moldy levels.
These differences may provide the possibility of classifying the maize with different moldy
levels. However, the spectra of maize samples with different moldy levels crossed in some
wavelength intervals (1400–1701 nm), and there was no significant correlation between the
reflectance spectra and the moldy levels. Hence, the spectra and textures should be fused
to research the classification ability of their latent information.

3.3. Comparison and Optimization of Different Classifiers and Preprocessing Methods

In non-destructive detection technology based on visible and near-infrared hyperspec-
tral images, many spectral preprocessing methods and classifiers can be used to construct
the classification model. In order to improve the development efficiency of the classification
models, the classifier and spectral preprocessing method were firstly determined in this
study based on the original spectral data. Three classification algorithms, including SVM,
RF, and KNN, were used to build the classification model based on the original spectra
extracted from different hyperspectral systems. Table 2 shows the CAT activity value of
the calibration and prediction datasets. It should be pointed out that the samples in the
calibration and prediction sets were kept unchanged and no single sample was used in
calibration set and prediction set at the same time. The results of different classification
algorithms were shown in Figure 5. Compared the overall classification accuracy yielded
by different classifiers, SVM was the most robust classifier with the accuracy of calibration
and prediction sets of 93.89% and 86.67%, and 86.67% and 85% for Vis-SWNIR and LWNIR
regions, respectively. Hence, SVM was used as the only classifier to build the classification
models in the subsequent data processing. In terms of the classification accuracy built by
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the SVM models, the LWNIR region was poorer than the Vis-SWNIR region, which may
be due to the weak correlation between the spectral intensity and the level of mold in the
1400–1701 wavelength range, as can be seen by the spectral characteristic curve.

Table 2. Division of maize with different moldy levels in the calibration and prediction sets.

Moldy Level

Calibration Set Prediction Set

Num Mean
Standard
Deviation

Num Mean
Standard
Deviation

Healthy level 35 0 0 15 0 0
Mild level 35 1.58 0.17 15 1.58 0.14

Moderate level 35 1.94 0.18 15 1.96 0.20
Severe level 35 2.20 0.14 15 2.13 0.24

 
Figure 5. The classification results of different classifiers based on the original spectra of Vis-SWNIR
and LWNIR hyperspectral systems.

In terms of spectral preprocessing methods, to reduce the noise and interference in
the original spectral information, the 9-point smooth method was firstly used to eliminate
the noise existed in the original spectra. Then msc, detrend, and center methods were
carried out on the basis of smoothed spectra to further optimize the spectral data, and
the influence of different preprocessing methods on classification accuracy was compared.
The average spectra preprocessed by different method were shown in Figure 6a–f. It
can be seen that these preprocessing methods effectively eliminate signal offset and light
scattering. The classification results of different preprocessing methods were shown in
Table 3. For the case of the Vis-SWNIR region, the best preprocessing method was smooth-
detrend with the classification accuracy of 86.67% and 88.33% for the calibration set and
prediction set, respectively, because the accuracy gap between the calibration set and
prediction set was the smallest. For the case of the LWNIR region, the model developed
by smooth-detrend spectra achieved better prediction performance with the classification
accuracy of 90.56% and 88.33% for the calibration set and prediction set, respectively. All

326



Foods 2022, 11, 1727

classification models developed by the spectra preprocessed by smooth-detrend were
superior to the model developed by original spectra, proving that spectral processing could
greatly improve the reliability of classification models. The detrend could eliminate the
influence of different sampling batches on the spectrum and improve the robustness and
accuracy of the classification model. Sanchez et al. [35] improved the prediction ability
of strawberry quality parameters by using detrend spectral pretreatment method. Paz
et al. [51] found that detrend pretreatment had better prediction effect on sugar content and
hardness in plums. Furthermore, the method of spectral pretreatment depends largely on
the analyte being modeled and must be based on the judgment of the analyst [52]. In this
study, smooth-detrend was selected as the most optimal spectral preprocessing method,
and the spectra pretreated by smooth-detrend preprocessing were used for subsequent
analysis instead of the original spectra in both Vis-SWNIR and LWNIR regions.

Figure 6. The preprocessed spectra by smooth-msc (a,d), smooth-detrend (b,e), and smooth-center (c,f)
methods for the Vis-SWNIR and LWNIR regions, respectively.

Table 3. The classification performance of the SVM models established by different preprocess-
ing methods.

Classifier Sensor
Spectral

Preprocessing Method

Calibration Set
Accuracy

(%)

Prediction Set
Accuracy

(%)

SVM

Vis-SWNIR
smooth-msc 84.44 88.33

smooth-detrend 86.67 88.33
smooth-center 85.56 90.00

LWNIR
smooth-msc 90.56 86.67

smooth-detrend 90.56 88.33
smooth-center 91.11 85.00
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3.4. Pixel-Level Fusion Based on Full Wavelengths Spectra and Texture Data

Spectra and texture data carried the component content and component distribution
information of the target sample, respectively. In order to develop a higher accuracy
classification model, four texture parameters, including contrast, correction, energy, and
homogeneity, were extracted and used to create a new fusion matrix by fusing with the
spectral data at the pixel-level level. Then the most optimal combination of spectra and
texture was determined by establishing classification models based on the fused data.

The classification results of the pixel-level fusion of spectral and texture information
were shown in Table 4. Compared with the results obtained by individual spectral data,
the classification ability of fusion data varied with the participation of different texture
features. The texture feature of energy and contrast had a positive effect on improving
the classification models, with the accuracy of prediction sets of 90% and 90% for Vis-
SWNIR and LWNIR regions, respectively. In general, the contrast parameter reflects the
clarity of the image according to the depth of the texture groove, and the energy parameter
reflects the randomness of the image texture. The amount of mold increased with the
increase of cultured time, and the mold mainly concentrated in the embryo region of
the maize, which may be the reason why both texture features were more conducive
to the classification of maize with different moldy levels. It should be pointed out that,
other combinations of spectra and texture features had not yielded the desired results,
suggesting that the prediction ability of pixel-level fusion was not the accumulation of data
quantity. Although the pixel-level fusion of spectra and textures directly merged the data
of different sources, this method could input valuable information to the model, but it can
also add a large number of uncorrelated and noisy variables, resulting in the fused data
could not significantly improve the predictive power of the model. Similar results were
obtained using NIR and ATR-FTIR data blocks to detection of adulteration in honey [39],
models based on a data matrix generated by pixel-level data fusion show no significant
improvement in accuracy.

Table 4. The classification results of the pixel-level fusion of spectral and texture information.

Sensor
Data Source Calibration Set

Accuracy
(%)

Prediction Set
Accuracy

(%)Spectra Texture

Vis-SWNIR smooth-detrend

contrast 85.56 86.67
correction 85.56 86.67

energy 92.22 90.00
homogeneity 85.56 86.67

LWNIR smooth-detrend

contrast 92.22 90.00
correction 92.22 88.33

energy 97.78 85.00
homogeneity 92.22 88.33

3.5. Classification Model Built by Feature-Level Fusion of Spectra and Texture Data

The classification of maize with different moldy levels based on hyperspectral imaging
technology involved the rapid collection of a substantial number of hyperspectral images,
which were composed of two spatial dimensions and one spectral dimension data. Then,
the spectral or texture information was extracted from these hyperspectral images and
used to predict the categories of each maize sample. A large number of spectral or texture
variables in the full wavelength range often contained noise from the environment and
instrumental sources, leading to complexity and poor predicting ability of a calibration
model. In addition, when used for online or at-line purposes, the complex calibration
models developed with the whole spectrum will not be applicable. To resolve these issues,
the features of spectra and textures were extracted alone using variable selection algorithms
including VCPA, IRIV, and mVCPA-IRIV; then, the classification model of feature-level was
established based on the extracted features for Vis-SWNIR and LWNIR regions, respectively.
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In order to analyze the features selected from spectral and texture data, characteristic
wavelengths selected by the same variable selection method were concatenated together
and their distribution maps were shown in Figure 7. Comparing the number of selected
characteristic bands, the VCPA selected fewer variables than IRIV and mVCPA-IRIV for
spectral and texture data in both Vis-SWNIR and LWNIR regions. The number of selected
characteristic bands was greater in texture data than that of spectral data for all three
variable selection methods, illustrating that the texture had more information about the
moldy maize than that of spectral data. Comparing the distribution of characteristic bands
selected by three variable selection methods, it could be found that many common regions
were determined in both spectral and texture data. The shared regions were concentrated
at 629–649, 728–743, 764–772, 855–860, and 1055–1248 nm for the spectral data (Figure 6a,c),
while the shared regions were observed to be concentrated at 410–490, 584–592, 679–693,
866–876, 953–963, 1029–1060, 1167–1192, 1235–1267, and 1688–1701 nm for the texture data
(Figure 6b,d). According to previous studies, Stasiewicz et al. [53] classified different levels
of Aspergillus flavus in maize at 850 nm near 857 nm. Moreover, 768 nm and 853 nm
were used to differentiate the fungal contaminated maize from healthy samples in Chu’s
study [54]. Furthermore, 1029–1267 nm belonged to the second overtone of N-H stretching
of proteins, as well as C-H stretching in lipids [47,48]; 1688–1701 nm was attributed to
the second overtone of S-H, these were associated with protein, fat and starch [55]. Mold
growth broke down the fat, protein, and starch of the maize kernels, which would change
the reflection spectra and textures features of maize kernels, and resulting in the selection of
the above characteristic bands. Except for those shared regions, there were some differences
in the selected characteristic bands, which may be caused by the different principles of
variable selection methods.

The classification results of the feature-level fusion of spectral and texture information
were shown in Table 5. It could be found that the feature-level fusion models achieved
better accuracy and reliability in Vis-SWNIR range than that of LWNIR region. In particular,
the feature-level fusion models of VCPA, IRIV, and mVCPA-IRIV increased by 3.33%, 5.00%,
and 1.67%, respectively, compared to the model based on pixel-level fusion for Vis-LWNIR
region (Table 4). In detail, the prediction accuracy of the model based on the features
selected by VCPA, IRIV, and mVCPA-IRIV was 93.33%, 95%, and 91.67% for Vis-SWNIR,
and 90%, 83.33%, and 91.97% for LWNIR region. Although the IRIV method achieved
the best prediction results in Vis-SWNIR region, the prediction ability was very poor in
LWNIR region. In addition, the IRIV was time-consuming in variable selection and the
number of selected variables used for modeling was much larger than that of the VCPA
approach. However, the VCPA method achieved the classification accuracy of 93.33% and
90% for Vis-SWNIR and LWNIR regions, which was more robust than IRIV and mVCPA-
IRIV. It is worth noting that, as a hybrid variable selection method, mVCPA-IRIV did not
yield the best prediction results either in the Vis-LWNIR or in the LWNIR region. This
result was consistent with the results of employing two-step hybrid methods to determine
TVB-N contents in tilapia fillet for single Vis-NIR and NIR data blocks [24]. This may be
because feature selection was based on a single data block with a relatively small number
of variables, which was not suitable for the hybrid variable selection methods.
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Figure 7. The distribution of key wavelengths selected by different variable selection algorithms
from spectra and texture data of Vis-SWNIR and LWNIR regions, respectively. (a) Spectrum in
Vis-SWNIR region, (b) energy parameters in Vis-SWNIR region, (c) spectrum in LWNIR region, and
(d) contrast parameters in LWNIR region. Note: red points, black points, and green points represent
the variables retained by VCPA, IRIV, and mVCPA-IRIV in the spectrum or texture parameters,
respectively. Orange points represent the bands jointly selected by all three algorithms.

Table 5. The classification results of the feature-level fusion of spectral and texture information.

Integration
Method

Sensor Data Source
Variable
Selection

Algorithm

Characteristic
Number

Calibration
Set Accuracy

(%)

Prediction
Set Accuracy

(%)Spectra Texture

Feature-level
fusion

Vis-SWNIR
smooth-detrend

energy

VCPA 9 12 94.44 93.33
IRIV 21 28 97.78 95.00

mVCPA-IRIV 28 39 93.89 91.67

LWNIR smooth-detrend
contrast

VCPA 12 12 96.67 90.00
IRIV 13 35 100.00 83.33

mVCPA-IRIV 17 41 99.44 91.97

In conclusion, feature-level fusion model on the basis of variable selection had a
large potential for distinguishing the maize with different moldy levels than the model
of pixel-level fusion with full-band in both Vis-SWNIR and LWNIR regions. Remarkably,
in the study by Anting et al. [37], the feature-level-PCA strategy using sample image and
the spectra to evaluate the fermentation degree of black tea had a similar result with our
proposed strategy.
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3.6. Determination of the Optimal Feature-Level Fusion Model

Currently, the above results were based on two separate hyperspectral systems; mean-
while, typical hyperspectral imaging systems rarely extended the wavelength range of
399–1701 nm. Generally, more detailed and comprehensive feature information can be
acquired from a wider spectral range, which makes sense given that integrating spectral
and corresponding texture parameter data from Vis-SWNIR and LWNIR systems. The
feature-level fusion model built by characteristic variables selected by VCPA obtained the
most reliable classification result, hence, these variables (9 spectral features and 12 energy
features for the Vis-SWNIR region, and 12 spectral features and 12 energy features for the
LWNIR region) were integrated to build the classification model. The overall prediction
accuracy was 96.11% and 95% for calibration and prediction sets, respectively, which was
greater than the pixel-level fusion model and feature-fusion model of independent sensor.
Although the number of variables used for modeling increased, it was far lower than the
number of variables for full wavelength data. Similar results were also obtained in the
internal bruising detection of blueberry by combining two hyperspectral systems with
feature fusion strategies [56]. Figure 8 shows that the overall predicted results for the maize
with different moldy levels. Except for the moderate level, all the moldy maize groups
reached a high accuracy of more than 95%. In particular, all healthy maize was correctly
classified. Some moderate levels samples were misclassified as mild or severe levels, re-
sulting in a classification ability of only 90% for moderate levels, which agreed with the
result of Yao et al. [57]. The moldy maize at moderate levels was difficult to accurately
identify, which may be caused by the reduced variation between different moldy levels.
This phenomenon also could be found through the determination of the CAT activity;
with the aggravation of moldy level, the increase of CAT activity value among different
categories decreased. However, it was worth emphasizing that none of the moldy samples
were misclassified as healthy level, illustrating that the classification model had a certain
practicality and objectivity.

Figure 8. Confusion matrix of overall prediction results for all samples.

By comparing previous studies, some non-destructive testing techniques to identify
grain mold have been studied extensively. These single technologies, such electronic
nose [13], machine vision [15], Vis-SWNIR hyperspectral systems [22,23], and LWNIR
hyperspectral systems [20,21] have been used to monitor the health condition of maize
during storage. Remarkably, these studies obtained satisfactory results. Due to the growth
and multiplication of mold, both the internal quality and external characteristics of maize
change during the moldy process. Hence, the strategy of using single technologies to
evaluate the quality of maize was limited. In our study, the spectral and different texture
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parameter data were extracted based on the collected Vis-SWNIR and LWNIR hyperspectral
images. The data fusion strategy significantly improved the richness of information, which
was helpful for building a robust classification model. Therefore, it can be concluded that
feature-level fusion model based on spectral and texture information of two hyperspectral
systems could be used to improve the classification accuracy of maize with different
moldy levels.

4. Conclusions

As an important grain crop, maize is susceptible to mold infection during growth and
storage due to its large embryo area and high moisture content. Therefore, it is essential
to distinguish the moldy sample from healthy groups to prevent the spread of mold
and avoid huger economic losses. Hyperspectral imaging technology combines spectral
analysis technology with image processing technology, which can simultaneously obtain
the spectral data with internal component information and the image data with appearance
feature information, realizing the rapid, pollution-free, and non-destructive detection. In
this study, the hyperspectral images of maize with different moldy levels were collected
within Vis-SWNIR and LWNIR regions, and the spectra and texture information were
extracted and used to establish the classification model with the methods of pixel-level and
feature-level fusions. The results showed that data fusion strategies at both levels achieved
better classification results than spectra alone. For pixel-level data fusion of spectral and
texture information, the energy and contrast achieved positive effect on improving the
classification model, with prediction accuracy of 90% and 90% for Vis-SWNIR and LWNIR
regions, respectively. The improvement in model detection accuracy is not very apparent,
as some irrelevant variables are introduced along with useful information. For feature-
level data fusion of spectral and texture information, the variables selected by VCPA
significantly increase the classification accuracy, with prediction accuracy of 93.33% and
90% for Vis-SWNIR and LWNIR regions, respectively. Feature-level fusion models based on
the key variable combination of two hyperspectral systems were best for the classification
of maize with different moldy levels, with an overall prediction accuracy of 95.00% for each
moldy level.

This paper mainly focused on the identify of moldy maize; it should be noted that the
data fusion strategies presented in this study are generally suitable to the quality detection
of other grain crops such as wheat, rice, and peanut. Although this study had shown
that the great feasibility of using hyperspectral imaging technology and multi-source
data fusion method to discriminate the maize with different moldy levels, there must be
some differences between naturally and artificially moldy maize samples, and we will
use the data fusion strategies to classify moldy maize under natural growth in our future
work. Additionally, AFB1 is a metabolite of mold with high toxicity; therefore, the growth
monitoring of mold plays an important role in the early warning of AFB1 pollution in
maize. CAT is a precursor product synthesized by AFB1, its dynamic activity reflects
the level of mold activity, and it has a significant relationship with the content of AFB1.
Therefore, we will develop a model for warning the AFB1 contamination based on the
relationship between CAT of mold and AFB1 under different moldy conditions, which
provides theoretical basis and technical guarantee for safe storage of maize.
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