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Preface

Monitoring progress towards the Sustainable Development Goals (SDGs) and sustainability

in general is essential, not only at the global and national scales, but also at the subnational and

landscape levels. Geographic information science (GIScience) and remote sensing (RS) have made

significant advances in this area. Such advances include the increasing availability of geospatial data

and the development of more sophisticated approaches or techniques for spatiotemporal analysis,

which can play a crucial role in this regard. This Special Issue aims to contribute to the growing

body of knowledge in this area, highlighting the crucial roles of GIScience and RS in advancing

sustainability assessment and research.

The Guest Editor expresses gratitude to the authors for their valuable contributions, as well as to

the editors and reviewers for their expertise, time, and effort. The MDPI team is also acknowledged

for their kind assistance and support.

Ronald C. Estoque

Editor
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Editorial

Assessing Sustainability over Space and Time: The Emerging
Roles of GIScience and Remote Sensing

Ronald C. Estoque

Center for Biodiversity and Climate Change, Forestry and Forest Products Research Institute, 1 Matsunosato,
Tsukuba 305-8687, Japan; estoquerc21@affrc.go.jp

Sustainability is a critical global challenge that requires comprehensive assessments
of environmental, social, and economic indicators. The formulation of the 17 Sustainable
Development Goals (SDGs) represents a significant leap forward in humanity’s pursuit of
sustainability. The SDGs now serve as a platform for global development, guiding current
actions and shaping visions for a sustainable future. Tracking the spatiotemporal dynamics
of progress towards the SDGs and sustainability in general is essential, not only at global
and national scales, but also at subnational and landscape levels. Geographic Informa-
tion Science (GIScience) and Remote Sensing (RS) have made significant advancements,
including the increase in availability of geospatial data, which can play a crucial role in this
regard.

GIScience focuses on spatial data, information systems, and technologies for managing,
analyzing, and visualizing spatial information. GIScience can help identify patterns and
trends, assess sustainability-related indicators, evaluate the effectiveness of policies and
management strategies, and support decision-making processes. RS, on the other hand,
involves the acquisition and interpretation of data about the Earth’s surface and atmosphere
from RS platforms such as satellites, airplanes, or drones. RS provides a wide range of
spatial data, such as land cover, vegetation indices, and atmospheric parameters, which
can be used to monitor and assess sustainability-related indicators.

This Special Issue aims to bring together novel contributions on the assessment of
sustainability and sustainability-related indicators over space and time using geospatial
data, tools, and techniques (GIScience and RS). It consists of eleven peer-reviewed papers,
including two review articles and nine research articles.

The first review article focuses on the concept of sustainability and the state of SDG
monitoring using RS [1]. It traces the conceptual origins of sustainability and discusses the
role of RS in SDG monitoring, as well as the current status, challenges, and opportunities.
The review reveals that the pursuit of a sustainable future likely began in the 17th century
when declining forest resources in Europe led to proposals for the re-establishment and
conservation of forests, embodying the great idea that the current generation bears respon-
sibility for future generations. As of April 2020, preliminary statistical data were available
for 21 (70%) of the 30 RS-based SDG indicators, according to the Global SDG Indicators
Database, with 10 (33%) also included in the 2019 SDG Index and Dashboards. However, at
the time of the review, these statistics may not have necessarily reflected the actual status
and availability of raw and processed geospatial data for RS-based indicators, which is an
important issue to consider. Nevertheless, the review also identifies various initiatives that
have been initiated to address data-related issues, which are crucial for SDG monitoring.

The second review article explores the role of RS in international peace and security [2].
Specifically, it examines the key research concepts and implementation of RS for applica-
tions related to international peace and security. The article presents a meta-analysis of how
advanced sensor capabilities can support various aspects of peace and security, including
relief operations, monitoring armed conflicts, tracking acts of genocide, international peace
missions, human rights, and disease control and prevention. The review concludes that

Remote Sens. 2023, 15, 2764. https://doi.org/10.3390/rs15112764 https://www.mdpi.com/journal/remotesensing
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RS, as a surveillance tool, has immense potential in safeguarding the environment, peace,
and security, provided it is used actively and transparently. However, there are future
challenges that may hinder the application of RS in peace and security, such as discrepan-
cies in image classifications due to varying types of sensors, as well as issues related to
cost, resolution, and ground-truth validation in conflict areas. Nevertheless, with emerging
technologies and sufficient secondary resources available, the article argues that RS will
continue to be an important tool in aiding peacekeeping processes in conflict-affected areas.

The nine research articles can be grouped into two: (1) index and framework develop-
ment, and (2) social–ecological research applications. The remotely sensed urban surface
ecological index (RSUSEI) is proposed as an index to assess urban surface ecological status,
which is influenced by surface biophysical, biochemical, and biological properties [3]. The
RSUSEI is developed using five RS-derived variables, namely the normalized difference
vegetation index, normalized difference soil index, wetness index, land surface temperature,
and impervious surface cover, based on principal component analysis. The RSUSEI was
successfully applied in six cities across the United States, and the study concludes that it
has significant potential for modeling and comparing urban surface ecological status in
cities with diverse geographical, climatic, environmental, and biophysical conditions.

Another proposed index, called the improved comprehensive remote sensing eco-
logical index (IRSEI), is designed for evaluating urban ecological quality [4]. The IRSEI
incorporates four RS-derived ecological elements, including humidity, greenness, heat,
and dryness, and is constructed using a combination of entropy weight and principal
component analysis. The index has been applied in Wuhan, China, and the study concludes
that IRSEI, along with the urban ecological quality approach in general, can be a valuable
tool for ecological management and protection, as well as for assessing progress towards
urban sustainable development.

A new framework, based on GIScience and spatial justice (fair allocation), has been
proposed with a focus on the sustainable development of life service resources [5]. This
framework addresses two key questions: (1) why spatial justice should be considered
when studying life service resources, and (2) how spatial justice should be applied and
interpreted for life service resources. The framework has been applied in Beijing, China,
using multi-source data such as population density and building outlines, and GIScience
methods such as nearest neighbour and kernel density analysis. Based on the findings,
the study recommends that future planning should aim to narrow the development gap
through the optimal spatial allocation of life service resources to improve spatial justice.

Among the research application articles is a study that focuses on the impacts of
urbanization on the Muthurajawela Marsh and Negombo Lagoon in Sri Lanka, which
is an important wetland ecosystem providing a wide range of ecosystem services [6].
Using multi-temporal RS and other spatial data, the study found that the spatial and
socioeconomic elements of rapid urbanization in the area have been the main drivers of
the wetland’s environmental transformation over the past 20 years (1997–2017). This is
evident from the substantial expansion of settlements (+68%) and significant decrease in
marshland and mangrove cover (−41% and −21%, respectively). The study concludes that
there is an urgent need for forward-looking landscape and urban planning to ensure the
sustainability of this valuable wetland ecosystem.

Another contribution focuses on multi-temporal mapping of population distribution
using RS data and deep learning techniques [7]. The study argues that understanding
the spatiotemporal distribution of population is crucial in various fields, such as resource
management, disaster response, public health, and urban planning, all of which are relevant
to the sustainability goal. However, the study observes that there is a lack of continuous,
multi-temporal gridded population data over a long historical period, and attributes this
to the absence of appropriate auxiliary datasets and effective methodological frameworks.
The study aims to address this knowledge gap by proposing a methodological framework
that integrates deep learning architecture and Landsat data, which has been applied in

2



Remote Sens. 2023, 15, 2764

China. The study concludes that this proposed framework can be particularly useful in
low-income and data-poor regions.

Understanding the relationship between eco-environmental quality and urbanization
has been a focal point of another contribution [8]. The study argues that comprehending
the interactive coupling mechanism between eco-environmental quality and urbanization
is of great significance in achieving urban sustainability. The study focuses on China as a
case study and utilizes multi-source RS data and the coupling coordination degree model to
facilitate the analysis. The findings of the study reveal that rapid urbanization has resulted
in a significant decline in eco-environmental quality in certain areas of the country. The
authors emphasize the need to prioritize the protection of the ecological environment while
pursuing social and economic development in the future.

A contribution focusing on the neighborhood level in Guilin, China, assessed the
spatiotemporal changes of three SDG indicators (11.2.1, 11.3.1, and 11.7.1) using high-
resolution RS images and a big data approach [9]. The study found that the proportion of
the population with convenient access to public transport gradually improved from 42% in
2013 to 52% in 2020. However, the increase in built-up land was relatively fast, resulting in
a decrease in the areal proportion of public open space from 56% in 2013 to 24% in 2020.
The authors highlight the role of big data and Earth observation technology in monitoring
urban sustainable development. This study provides an example of a neighborhood-level
assessment of SDG indicators, which is crucial for local urban governance and planning
practices.

Also focusing on SDG 11, a case study in Manila, Philippines, assessed the urban
heat island phenomenon using RS data [10]. Consistent with findings from other studies
around the world, the study revealed that residential areas, asphalted and concrete roads
and walkways, and certain commercial establishments and buildings exhibited higher
surface temperatures compared to areas with vegetation and near bodies of water. The
study proposed strategies to mitigate the impacts of urban heat islands, including the use of
cool materials for pavements and roofs; the conversion of regular walls to green walls; and
increased planting in plant boxes, road isles, and indoors. The authors also recommended
the establishment of additional meteorological stations in urban heat island hotspots to
help improve the current understanding of outdoor thermal characteristics in the city.

Finally, in Mexico, a case study assessed the drivers that influence the dynamics of a
tropical dry forest in Ayuquila River watershed using multi-temporal RS and other spatial
data [11]. The study estimated a tropical dry forest loss rate of 1.6% per year between 2019
and 2022. The study also identified an inverse relationship between forest loss and slope
and distance to roads. This is related to the fact that flat areas are preferred for agricultural
and livestock activities due to easy access and lower costs. Careful consideration of these
factors is essential when addressing tropical dry forest loss in the region. The loss of
tropical dry forests not only contributes to carbon loss, but also leads to biodiversity loss,
soil erosion, and increased vulnerability of local communities that rely on these forests for
sustenance and shelter.

In summary, GIScience and RS and their integration have emerged as valuable tools
for assessing sustainability and sustainability-related indicators over space and time. This
Special Issue contributes to the growing body of knowledge in this area, underscoring the
crucial roles of GIScience and RS in advancing sustainability assessment and research.

Funding: This work was supported by the Japan Society for the Promotion of Science (JSPS) through
its Grants-in-Aid for Scientific Research (KAKENHI) Program: Grant-in-Aid for Scientific Research
(C), Number 22K01038 (Principal Investigator: Ronald C. Estoque). The views expressed in this paper
are of the author and do not necessarily reflect the position of his institution and of the funder.

Acknowledgments: The author (Special Issue Guest Editor) wishes to thank the authors for their
valuable contributions to this Special Issue. Likewise, to the Editors and Reviewers for their expertise,
time, and effort.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: The formulation of the 17 sustainable development goals (SDGs) was a major leap forward
in humankind’s quest for a sustainable future, which likely began in the 17th century, when declining
forest resources in Europe led to proposals for the re-establishment and conservation of forests,
a strategy that embodies the great idea that the current generation bears responsibility for future
generations. Global progress toward SDG fulfillment is monitored by 231 unique social-ecological
indicators spread across 169 targets, and remote sensing (RS) provides Earth observation data, directly
or indirectly, for 30 (18%) of these indicators. Unfortunately, the UN Global Sustainable Development
Report 2019—The Future is Now: Science for Achieving Sustainable Development concluded that,
despite initial efforts, the world is not yet on track for achieving most of the SDG targets. Meanwhile,
through the EO4SDG initiative by the Group on Earth Observations, the full potential of RS for SDG
monitoring is now being explored at a global scale. As of April 2020, preliminary statistical data were
available for 21 (70%) of the 30 RS-based SDG indicators, according to the Global SDG Indicators
Database. Ten (33%) of the RS-based SDG indicators have also been included in the SDG Index and
Dashboards found in the Sustainable Development Report 2019—Transformations to Achieve the
Sustainable Development Goals. These statistics, however, do not necessarily reflect the actual status
and availability of raw and processed geospatial data for the RS-based indicators, which remains an
important issue. Nevertheless, various initiatives have been started to address the need for open
access data. RS data can also help in the development of other potentially relevant complementary
indicators or sub-indicators. By doing so, they can help meet one of the current challenges of SDG
monitoring, which is how best to operationalize the SDG indicators.

Keywords: sustainable development; Earth observation; SDG indicators; EO4SDG; SDG global
indicator framework; global SDG indicators database; social-ecological indicators

1. Introduction

In the report “Our Common Future” (also known as the Brundtland Report), the World Commission
on Environment and Development has defined sustainable development as “development that meets
the needs of the present without compromising the ability of future generations to meet their own
needs” [1]. This principle is at the core of the 17 sustainable development goals (SDGs) adopted
in 2015 by the United Nations (UN) General Assembly [2]. These SDGs collectively help to guide
actions for global development and shape visions for the future. At the global level, the UN Statistical
Commission serves as the oversight body for SDG efforts. The commission oversees the UN Statistics
Division, which is responsible for the maintenance of the Global SDG Indicators Database.

In 2015, the UN Statistical Commission created the Inter-agency and Expert Group on SDGs
(IAEG-SDGs), which was tasked with the development and implementation of a global indicator
framework for monitoring global progress toward fulfillment of the 17 SDGs. In 2017, the UN General
Assembly adopted the global indicator framework developed by the IAEG-SDGs. In the adopted

Remote Sens. 2020, 12, 1770; doi:10.3390/rs12111770 www.mdpi.com/journal/remotesensing
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framework, various social-ecological indicators are identified and assigned to the SDG targets [3,4].
Here, the term “social” includes both the social and economic dimensions of sustainability, whereas the
term “ecological” refers to its environmental dimension. Together, these are often referred to as the three
pillars of sustainability: people (social), profit (economic), and planet (environmental), respectively [5–7].
In this review, the social-ecological indicators are regarded as a set of outcomes for assessing and
monitoring the sustainability of social-ecological systems (also called human–environment systems,
coupled human–environment systems, and coupled human and natural systems [8,9]), analyzed in the
context of the social-ecological system framework proposed by Elinor Ostrom [10–12].

Among various descriptions of indicators [13–15], one that is often cited states that “desirable
indicators are those that summarize or otherwise simplify relevant information, makes [sic] visible or
perceptible phenomena of interest, and quantify, measure, and communicate relevant information” [13]
(p. 108). Indicators, like goals [16], should also be SMART: specific, measurable, achievable, relevant,
and time-bound [17]. The major functions of indicators are to (i) assess conditions and trends,
(ii) compare across places and situations, (iii) assess conditions and trends in relation to goals and
targets, (iv) provide early warning information, and (v) anticipate future conditions and trends [13].
The SDG global indicator framework, though developed primarily for monitoring global progress
toward achievement of the SDGs [2,4], supports all these indicator functions. More generally,
sustainable development indicators are “scientific constructs whose principal objective is to inform
public policy-making” [18] (p. 45).

The achievement of SDGs relies on the performance of countries with respect to the SDG targets
and indicators. Thus, the development of methodologies for monitoring progress toward SDG
achievement has become “a new vital science" [19]. Custodian agencies are responsible for the
development of the necessary methodologies and the collection and compilation of data related to
SDG indicators. The international organizations and agencies designated as custodian agencies by the
IAEG-SDGs include the World Health Organization (WHO), the Food and Agriculture Organization
(FAO), the United Nations Development Programme (UNDP), and the World Bank [20]. Available
data for all SDG indicators are compiled in the Global SDG Indicators Database (https://unstats.un.
org/sdgs/indicators/database), and the UN Statistics Division also issues annual SDG progress reports
(https://unstats.un.org/sdgs/).

The global indicator framework includes a total of 231 unique indicators spread across 169 SDG
targets [3,21]. Twelve indicators are associated with two or three targets [3,21]. SDG 17 (Partnerships
for the Goals) has the highest number of targets, with 19, followed by SDG 3 (Good Health and
Well-Being) with 13 (Figure 1). By contrast, SDGs 7 (Affordable and Clean Energy) and 13 (Climate
Action) have the lowest number of targets, with five each. SDG 3 has the largest number of indicators
(28), followed by SDGs 16 (Peace, Justice and Strong Institutions) and 17 (24 each), and SDGs 7 and 13
have the smallest number of indicators (6 and 8, respectively).

The SDG indicators are classified into three tiers according to the level of methodological
development and the global availability of data as follows [20]: a Tier I indicator “is conceptually clear,
has an internationally established methodology and standards are available, and data are regularly
produced by countries for at least 50 per cent of countries and of the population in every region where
the indicator is relevant.” A Tier II indicator “is conceptually clear, has an internationally established
methodology and standards are available, but data are not regularly produced by countries.” For a
Tier III indicator, “no internationally established methodology or standards are yet available for the
indicator, but methodology/standards are being (or will be) developed or tested.” Indicators for which
data availability is under review are labeled as “pending data availability review” [20].

6
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Figure 1. Distribution of targets and indicators across the 17 SDGs. These data were sourced from the
March 2020 version of the global indicator framework for the SDGs [3] and the April 2020 version of the
tier classification for global SDG indicators [20]. The global indicator framework was adopted by the
UN General Assembly in July 2017 and is contained in the resolution designated A/RES/71/313 [4,21].
As of this writing, the latest version of the list of SDG indicators bears the following notations in the
upper right corner of the downloadable PDF document: A/RES/71/313, E/CN.3/2018/2, E/CN.3/2019/2,
and E/CN.3/2020/2 [3]. These notations mean that the current official list of indicators [3] includes the
global indicator framework as contained in A/RES/71/313, the refinements agreed by the UN Statistical
Commission at its 49th session in March 2018 (E/CN.3/2018/2, Annex II) and 50th session in March
2019 (E/CN.3/2019/2, Annex II), and the changes from the 2020 Comprehensive Review (E/CN.3/2020/2,
Annex II) and annual refinements (E/CN.3/2020/2, Annex III) from the 51st session in March 2020 [21].

Explicit in the 2030 Agenda (Transforming Our World: The 2030 Agenda for Sustainable
Development) is a declaration (no. 76) to support developing countries by ensuring access to
high-quality, timely, reliable, and disaggregated data, including geospatial and Earth observation
data [2]. Recognizing that the “integration of statistical data and geospatial information will be key for
the production of a number of indicators,” the IAEG-SDGs created the Working Group on Geospatial
Information (WGGI) in 2016 [22] (p. 1) under the UN’s Committee of Experts on Global Geospatial
Information Management (UN-GGIM). The primary objective of the WGGI is “to ensure from a
statistical and geospatial perspective that one of the key principles of the 2030 Agenda, to leave no one
behind, is reflected in the global indicator framework” [22] (p. 2).

The Group on Earth Observations (GEO), created in 2005, is a global partnership of governments
and organizations that “envisions a future where decisions and actions for the benefit of humankind are
informed by coordinated, comprehensive and sustained Earth observations” (www.earthobservations.
org). In 2016, recognizing the potential of Earth observation data for SDG monitoring, the GEO launched
an initiative called "Earth Observations in Service of the 2030 Agenda for Sustainable Development"
(EO4SDG) (http://eo4sdg.org/) [23–25]. The purpose of this initiative is to “organize and realize the
potential of Earth observations and geospatial information to advance the 2030 Agenda and enable
societal benefits through achievement of the Sustainable Development Goals” [25] (p. 4). The EO4SDG
initiative set forth three goals in its Strategic Implementation Plan 2020–2024: “(i) demonstrate how
Earth observations, geospatial information, and socio-economic and other data contribute in novel
and practical ways to support sustainable development efforts and the SDGs, (ii) increase skills and
capabilities in uses of Earth observations for SDG activities and their broader benefits, and (iii) broaden
interest, awareness, and understanding of Earth observations support to the SDGs and contributions
to social, environmental, and economic benefits” [25] (p. 4).

A couple of years into the implementation of the 2030 Agenda, the GEO has seen an increasing
demand for EO data for monitoring progress toward achievement of the SDGs [25]. The GEO has
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identified 71 (42%) targets and 30 (13%) indicators for the SDGs that can be supported, directly or
indirectly, by EO data [25] (see Section 4). The EO4SDG initiative supports the WGGI task stream
called "Application of Earth Observations for the SDG Indicators" [25].

The purpose of this review is to describe the conceptualization of sustainability leading to the
formulation of the SDGs and then to discuss the current status, challenges, and opportunities in SDG
monitoring using remote sensing (RS).

2. Review Approach

This review is intended to be an overview, that is, a survey of the literature and a description of
its characteristics [26]. The search and appraisal of reference materials for this review did not follow
a set of pre-defined rules as would be done for a systematic review. Potentially relevant reference
materials were searched online and appraised according to whether they included information on the
conceptualization of sustainability and SDG monitoring with RS. This review thus aims to provide
a broad introductory understanding of (a) the conceptualization of sustainability leading to the
formulation of the SDGs, (b) the role of RS in SDG monitoring, and (c) the current status, challenges,
and opportunities of SDG monitoring with RS.

3. From the Conceptualization of Sustainability to the Formulation of the SDGs

This section provides an overview of the historical origin and development of the sustainability
concept and the progression that eventually led to the formulation of the SDGs. In the past three
decades, a number of works have addressed this topic. Kidd [27], who focused on the development
of the sustainability concept in the 19th and 20th centuries, suggested that the concept has its
origins in six ideas (termed "roots"): the ecological/carrying capacity root, the resource/environment
root, the biosphere root, the critique of technology root, the no growth-slow growth root, and the
ecodevelopment root. According to Grober [28], the sustainability concept probably originated in
the 17th and 18th centuries when declining forests in Europe led to the idea that sustained yield
(or sustainable use) of forest resources could be achieved through conservation and reforestation.
Warde [29], however, thought that the "invention of sustainability" might have occurred earlier, between
c. 1500 and 1870.

A timeline of the conceptual development of sustainability (Figure 2) shows that before 1970,
the literature on sustainability was dominated by books and essays, whereas after 1970, peer-reviewed
articles and global policy initiatives and reports became more dominant. Indeed, environmental
issues and initiatives reached the global stage when the UN General Assembly convened in the
1972 Stockholm Conference. Before this conference, environmental governance was apparently not
considered to be an international priority. The Stockholm Conference led to the Declaration on the
Human Environment (Stockholm Declaration) and resulted in the creation of the UN Environment
Programme (UNEP), which is today “the global champion for the environment with programmes
focusing on sustainable development, climate, biodiversity and more” (www.unenvironment.org).

Historically, the sustainability concept has its roots in the works of English author John Evelyn
(Sylva, 1664) and the French statesman Jean Baptist Colbert (Ordonnance, 1669), who called for the
re-establishment and conservation of forests [28,30] (Figure 2). Although the focus of these works
was on Europe, both books included the idea that the current generation has responsibility for future
generations [28]. Moreover, they were important sources and models for German nobleman Hanns
Carl von Carlowitz [28]. In 1713, von Carlowitz published Sylvicultura Oeconomica, in which he
introduced the term “sustainable” in its modern sense for the first time: in German, “nachhaltende
Nutzung,” referring to the “sustainable use” [31] or “sustained use” [28] of forest resources. During
the 18th century, nachhaltend was modified to nachhaltig, and the use of the related noun nachhaltigkeit,
with reference to “sustained yield” forestry, became widespread [28]. Today, nachhaltigkeit is generally
translated as “sustainability.”
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Figure 2. Timeline showing how the sustainability concept has been advanced by scholarly works and
global policy initiatives.

Over the past three centuries, many influential books have contributed to the development of the
sustainability concept as we understand it today (Figure 2). These include An Essay on the Principle of
Population (1798) by Thomas Robert Malthus, Man and Nature (1864) by George Perkins Marsh, Man
and the Earth (1905) by Nathaniel Shaler, Road to Survival (1948) by William Vogt, Our Plundered Planet
(1948) and The Limits of the Earth (1953) by Fairfield Osborn, Man’s Role in Changing the Face of the
Earth (1956) by William L. Thomas, Jr., The Silent Spring (1962) by Rachel Carson, The Population Bomb
(1968) by Paul R. Ehrlich and Anne H. Ehrlich, Limits to Growth (1972) by the Club of Rome, and A
Blueprint for Survival (1972) by Edward Goldsmith and Robert Allen. Reviews of the sustainability
concept and its origin, including the conceptualization of sustainable development, commonly cite
these books [27,30,31]. However, the term "sustainable development," as presented in the Brundtland
Report (1987) [1], was first used in World Conservation Strategy, published in 1980 by the International
Union for Conservation of Nature (IUCN) [32]. Other works contributing to the conceptualization of
sustainable development include Building a Sustainable Society (1981) by Lester R. Brown and Gaia: An
Atlas of Planet Management (1984) by Norman Meyers and colleagues [31].

Among articles in peer-reviewed journals that have helped shape and advance the sustainability
concept, “The tragedy of the commons” (1968) [33] was one of the earliest and most influential.
The “tragedy of the commons” is that, in the absence of proper regulation, self-interest can lead to the
over-exploitation and destruction of non-renewable common resources, such as the atmosphere, the
ocean, and biodiversity, threatening their sustainability. “Tropical rain forest: A nonrenewable resource”
(1972) [34] emphasized the importance of tropical rainforests as a non-renewable resource. “How much
are nature’s services worth?” [35] introduced the concept of nature’s services, which, together with some
other works [36,37], led to the “ecosystem services” concept [38]. Interestingly, the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) recently proposed, without
referring to these earlier works, “nature’s contribution to people” as an umbrella term that also includes
ecosystem services [39,40]. The ecosystem services concept gained popularity with the publication of
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the book Nature’s Services: Societal Dependence on Natural Ecosystems (1997) [41], the article “The value
of the world’s ecosystem services and natural capital”, which appeared in Nature in 1997 [42], and the
Millennium Ecosystem Assessment report in 2005 (www.millenniumassessment.org/).

Several important ideas have helped advance the sustainability concept. In 1987, Barbier [5]
introduced the three system goals of sustainability (biological and resource, economic, and social),
which might be the origin of the idea that there are three pillars, dimensions, components, or aspects
of sustainability [30,43]. Along with Barbier’s work [5], the notion of the triple bottom line [6,7]
also contributed to the idea that there are three pillars of sustainability. Ecological economics,
a transdisciplinary field of study [44,45], has helped advance the concept of natural capital, a term first
used by Ernst F. Schumacher in his book Small is Beautiful (1973). The ecological footprint concept [46]
eventually led to the establishment of the global footprint network, which aims to advance the science
of sustainability. The term "sustainability science" [47] was introduced in Our Common Journey: A
Transition Toward Sustainability (1999) by the US National Research Council (NRC) [48]. The field of
sustainability science has since been advanced by the development of the social-ecological system
framework [10] which couples human and environmental systems. In this context, the planetary
boundaries concept [49] aims to define a safe operating space for humanity, and landscape sustainability
science [50] focuses on the dynamic relationship between ecosystem services and human well-being.

The development of the idea of the human-environment system, together with global initiatives
such as the Earth Summit and the Millennium Development Goals (MDGs) (see Figure 2), have
helped advance the field of sustainability science and influenced the formulation of the current SDGs.
In particular, the three pillars of sustainability are explicitly embedded in the formulation of the
SDGs [30,51]. However, the sustainability (or sustainable development) concept is frequently criticized
as vague and ambiguous [52–56]. These critiques ask, the sustainability of what and for whom?
This reviewer argues that, in the context of the SDGs, sustainability means the sustainability of Earth’s
resources—its life-support system—for the benefit, or at least for the survival, of the current and future
generations of humankind.

In their comprehensive review on the conceptual evolution of sustainability, Purvis et al. [30]
suggest that the concepts of the three pillars of sustainability (social, economic, and environmental)
do not have theoretically rigorous support, and they conclude that “the absence of such a
theoretically solid conception frustrates approaches towards a theoretically rigorous operationalisation
of ‘sustainability’” [30] (p. 681). This reviewer recognizes this issue. Nevertheless, the viewpoint of this
reviewer is that the idea of sustainability is of great importance to humanity, because, like the concepts
of freedom, justice, and democracy, which are also dialectically vague, it expresses a fundamental
principle that can guide our actions and shape our visions for the future [50,57].

4. The Role of Remote Sensing for SDG Monitoring

The development of a “human capability to observe regions of the electromagnetic spectrum
outside the range of wavelengths discernable by the human eye” was fundamental to the evolution
of remote sensing technology [58] (p. 685). The term "remote sensing" was coined in the 1950s
by Evelyn Pruitt, a geographer and oceanographer formerly with the Office of Naval Research
(https://earthobservatory.nasa.gov/features/RemoteSensing). According to Gerald K. Moore [59]
(p. 478), remote sensing is “the use of reflected and emitted energy to measure the physical properties of
distant objects and their surroundings”. The Encyclopedia of Remote Sensing defines remote sensing
as “the technique of obtaining information about objects through the analysis of data collected by
special instruments that are not in physical contact with the objects of investigation” [58] (p. 684).
Nicholas M. Short, in his Remote Sensing Tutorial (An Online Handbook), has defined remote sensing
as “the acquisition and measurement of data/information on some property(ies) of a phenomenon,
object, or material by a recording device not in physical, intimate contact with the feature(s) under
surveillance; techniques involve amassing knowledge pertinent to environments by measuring force
fields, electromagnetic radiation, or acoustic energy employing cameras, radiometers and scanners,

10



Remote Sens. 2020, 12, 1770

lasers, radio frequency receivers, radar systems, sonar, thermal devices, seismographs, magnetometers,
gravimeters, scintillometers, and other instruments.”

Remote sensing (RS) is multi-functional because it is (1) a source of basic data, (2) a science, and (3)
a tool. RS is a source of basic data because the measurements of physical properties of distant objects
and their surroundings with the use of reflected and emitted energy are themselves data, regardless of
where they are recorded [59]. RS is a science because it utilizes a scientific process: measurements,
data processing, interpretation of the results, and scientific inference [59]. Finally, RS is a tool because
results obtained from this scientific process can be used for various purposes, from the making of
inventories of resources to the solving of ecological problems [59].

Monitoring of the SDG indicators is vital, and Earth observation technologies such as RS have an
important role to play in indicator monitoring. RS data are particularly useful because they can be
used for both temporal and spatial monitoring. As early as two decades ago, before the formulation
of the SDGs [2,51] and launch of the EO4SDG initiative [23–25], and also before the development of
concepts such as “seeing sustainability from space” [60] and “remote sensing for sustainability” [61],
Rao [62] foresaw the potential of RS technology for sustainability-related research and for helping to
achieve sustainable development. Through the EO4SDG initiative, the potential of RS technology is
now being explored at a global scale. RS-derived data have been shown to be useful across many
fields, such as in the field of land cover monitoring and ecosystem assessment [63–71], hydrological
studies [72,73], meteorological/climatological and climate change studies [74,75], thermal and urban
remote sensing [76–85], air quality monitoring [86,87], health geographics [88–91], and disaster risk
management [92,93].

The importance of EO technologies such as RS has become more apparent with the formulation of
the SDG framework, compared with their importance to its predecessor, the Millennium Development
Goals (MDG) framework (www.un.org/millenniumgoals/). Although the MDG framework helped
narrow the data gap with regard to the social dimension of sustainability, the inclusion of various
environmental indicators under the SDG targets has increased the need for accurate, timely, and
reliable environmental data. RS is an important environmental monitoring tool that can help fill gaps
in environmental data [24,25,94].

Some essential characteristics of RS data have important advantages for SDG monitoring: spatial
resolutions ranging from coarse to very high; temporal resolutions ranging from ca. bimonthly to
daily; various spectral resolutions; spatial scales from local to global; long-period time series (starting
from 1972 for Landsat); consistency (in terms of data capture or measurement); and complementarity
(ability to be validated) [95] (Tables A1 and A2). These features mean that RS data are useful for the
development of policy-relevant environmental SDG indicators [94,95] that can be monitored over
space and time.

The 30 social-ecological indicators that can be directly or indirectly supported by EO data [25] are
related to 13 SDGs (Figures 3 and A1). Among these 13 SDGs, SDGs 6 (Clean Water and Sanitation),
11 (Sustainable Cities and Communities), 14 (Life Below Water), and 15 (Life on Land) offer "the greatest
opportunities for the application of EO data” [25] (p. 8). Information on the current status of these
RS-based indicators is given in Section 5 and Figure 3.

In general, the monitoring of progress toward achieving the SDGs by way of the SDG global
indicator framework increases the demand for various statistical data from countries all over the world.
This increased demand for these data necessitates an increase in investments of money, manpower, and
time in building the capacity of national statistical offices–investments that might be better made in
research and substantive development projects with clear impacts on meeting SDG targets [96]. In this
regard, the EO4SDG initiative is especially important for developing regions that have low capacity for
database development. Moreover, the potential use of EO data for more indicators, in addition to the
30 indicated currently identified as EO-supported, presents valuable opportunities in research and
development (details are discussed in Section 5).
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Figure 3. Current status of the RS-based SDG indicators. This list of indicators is based on GEO [25].
Data availability is based on the Global SDG Indicators Database as of April 2020 (https://unstats.un.
org/sdgs/indicators/database/). The 2019 SDG Index and Dashboards are available in the Sustainable
Development Report 2019 [97]. The tier classification of the indicators are those as of April 2020 [20].

5. Current Status, Challenges, and Opportunities

5.1. Status of the 2030 Agenda

Just under 10 years remain to achieve the 2030 Agenda. The UN Global Sustainable Development
Report 2019 (UN-GSDR 2019) [98] has concluded that (i) despite initial efforts, the world is not on
track for achieving most of the 169 targets that comprise the SDGs, (ii) recent trends along several
dimensions with cross-cutting impacts across the entire 2030 Agenda (rising inequalities, climate
change, biodiversity loss, and increasing amounts of waste from human activity) are not even moving
in the right direction, (iii) under current trends, the world’s social and natural biophysical systems
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cannot support the aspirations for universal human well-being embedded in the SDGs, and (iv) no
country is yet convincingly able to meet a set of basic human needs at a globally sustainable level of
resource use.

To achieve the desired transformations at the necessary scale and speed, the UN-GSDR 2019
identifies six entry points: human well-being and capabilities, sustainable and just outcomes, food
systems and nutrition patterns, energy decarbonization with universal access, urban and peri-urban
development, and global environmental commons [98]. It also identifies four levers that “can
be coherently deployed through each entry point to bring about the necessary transformations”:
governance, economy and finance, individual and collective action, and science and technology [98] (p.
xxi).

The report also highlights the importance of sustainability science [47] to “help tackle the
trade-offs and contested issues involved in implementing the 2030 Agenda.” Accordingly, “new
initiatives are needed that bring together science communities, policymakers, funders, representatives
of lay, practical and indigenous knowledge and other stakeholders to scale up sustainability science and
transform scientific institutions towards engaged knowledge production for sustainable development.”
To achieve this, the UN “should launch a globally coordinated knowledge platform to synthesize
existing international and country-by-country expertise on transformation pathways from scientific
and nonscientific sources, including lay, practical and indigenous knowledge,” and, at the same
time, “educational institutions at every level, especially universities, should incorporate high-quality
theoretical and practically oriented courses of study on sustainable development” [98] (p. 120).

One feedback on the UN-GSDR 2019 relates to the effort paid to the improvement of the SDG
global indicator framework, because although there are frequent opportunities for input, clarity and
transparency on the dynamics of decision-making is less frequent [96]. The fear is that more is being
invested in the development of the SDG global indicator framework, including its databases, than is
being invested in actual projects that can deliver desirable outcomes and bring about progress, and, as
a result, “many of the targets will not only not be met, but unless things change radically, will never be
met” [96] (p. 5).

The standpoint of this reviewer is that, although both the refinement of the SDG global indicator
framework and the development of relevant databases are necessary to enable the monitoring of
progress toward the SDGs, these activities should not overshadow the need to implement projects
needed to help achieve the SDGs and which can be expected to have actual and positive impacts on
people’s lives, society, and the environment.

5.2. Status of the RS-Based Indicators and Their Inclusion in the SDG Index 2019

As of April 2020, 21 (70%) of the 30 RS-based SDG indicators have at least some preliminary
statistical data, according to the Global SDG Indicators Database (Figure 3; Table 1). Among those
indicators with statistical data, 16 are classified as Tier 1 and five as Tier II indicators. Among the nine
indicators still without statistical data, seven are Tier II indicators and the tier classification of the other
two is pending. None of the 30 RS-based indicators is currently classified as a Tier III indicator [20].

The SDG indicators are also being monitored indirectly by the UN Sustainable Development
Solutions Network (SDSN), in partnership with the Bertelsmann Stiftung (BS), which produces annual
reports that assess each country’s performance on the 17 SDGs [97]. The mission of the SDSN, which
was set up in 2012 at the direction of the UN Secretary-General, is to “mobilize global scientific and
technological expertise to promote practical solutions for sustainable development, including the
implementation of the SDGs and the Paris Climate Agreement” (www.unsdsn.org). The SDG Index
and Dashboards (SDR-ID 2019) includes 10 (33%) of the RS-based indicators (Figure 3) [97]; six of these
exactly match official SDG indicators, and the other four are proxy indicators that are related to or
closely aligned with official indicators.
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Table 1. Status of remote sensing (RS)-based sustainable development goals (SDG) indicators. Only
those indicators with data as of April 2020, according to the Global SDG Indicators Database (https:
//unstats.un.org/sdgs/indicators/database/), are included. The complete list of RS-based SDG indicators
is given in Figure 3. The custodian and tier classification information is current as of April 2020 [20].
The number of countries/territories/regions is for the described variable only.

RS-based SDG Indicator Custodian Tier

Available Data

No. and Name of Data Variables Year
No. of

Countries/Territories/
Regions

3.9.1 Mortality rate
attributed to household

and ambient air pollution
WHO I

6
The 6th variable is the crude death
rate attributed to household and

ambient air pollution

2016 219

5.a.1 (a) Proportion of total
agricultural population

with ownership or secure
rights over agricultural

land, by sex; and (b) share
of women among owners

or rights-bearers of
agricultural land, by type

of tenure

FAO II

2
The 1st variable is proportion of
people with ownership or secure
rights over agricultural land, by

sex

2009–2019
(varies

by
country/
territory)

10
(total for all data

years)

6.3.1 Proportion of
wastewater safely treated

WHO,
UN-Habitat,
UNSD

II
1

Proportion of safely treated
domestic wastewater flows

2018 79

6.3.2 Proportion of bodies
of water with good

ambient water quality
UNEP II

4
The 1st variable is proportion of

bodies of water with good
ambient water quality

2017 52

6.4.2 Level of water stress:
freshwater withdrawal as
a proportion of available

freshwater resources

FAO I

1
Level of water stress: freshwater

withdrawal as a proportion of
available freshwater resources

2000,
2005,
2010,
2015

269
(2015)

6.5.1 Degree of integrated
water resources

management
implementation (0–100)

UNEP I

2
The 1st variable is degree of
integrated water resources

management implementation

2018 182

6.6.1 Change in the extent
of water-related

ecosystems over time

UNEP,
Ramsar I

16
The 4th variable is nationally
derived proportion of water

bodies with good quality

2017 28

7.1.1 Proportion of
population with access to

electricity

World
Bank I

1
Proportion of population with

access to electricity, by urban/rural

2000–2017
(annual)

236
(2017)

9.4.1 CO2 emission per
unit of value added

UNIDO,
IEA I

3
The 3rd variable is CO2 emissions
per unit of manufacturing value

added

2000–2017
(annual)

182
(2017)

11.1.1 Proportion of urban
population living in slums,

informal settlements or
inadequate housing

UN-Habitat I
1

Proportion of urban population
living in slums

2000,
2005,
2010,
2014,
2016

126
(2016)

11.6.2 Annual mean levels
of fine particulate matter
(e.g. PM2.5 and PM10) in

cities (population
weighted)

WHO I

1
Annual mean levels of fine

particulate matter in cities, urban
population

2016 215

13.1.1 Number of deaths,
missing persons and

directly affected persons
attributed to disasters per

100,000 population

UNDRR II

10
The 2nd variable is number of

deaths and missing persons
attributed to disasters per 100,000

population

2005–2018
(annual)

43
(2018)

14.3.1 Average marine
acidity (pH) measured at

agreed suite of
representative

sampling stations

IOC-UNESCO II

1
Average marine acidity (pH)
measured at agreed suite of

representative sampling stations

2010–2019
(annual)

3
(2019)
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Table 1. Cont.

RS-based SDG Indicator Custodian Tier

Available Data

No. and Name of Data Variables Year
No. of

Countries/Territories/
Regions

14.4.1 Proportion of fish
stocks within
biologically

sustainable levels

FAO I

1
Proportion of fish stocks within

biologically sustainable levels (not
overexploited)

2000–2017
(varied
interval)

1
(global)

14.5.1 Coverage of
protected areas in relation

to marine areas

UNEP-WCMC,
UNEP,
IUCN

I

3
The 2nd variable is coverage of

protected areas in relation to
marine areas (Exclusive Economic

Zones)

2018 192

15.1.1 Forest area as a
proportion of total

land area
FAO I

3
The 2nd variable is forest area as a

proportion of total land area

2000,
2005,
2010,
2015

292
(2015)

15.2.1 Progress towards
sustainable forest

management
FAO I

5
The 4th variable is proportion of

forest area with a long-term
management plan

2000,
2005,
2010

292
(2010)

15.3.1 Proportion of land
that is degraded over total

land area
UNCCD I

1
Proportion of land that is

degraded over total land area
2015 294

15.4.1 Coverage by
protected areas of
important sites for

mountain biodiversity

UNEP-WCMC,
UNEP,
IUCN

I

1
Average proportion of Mountain
Key Biodiversity Areas covered

by protected areas

2000–2019
(annual)

197
(2019)

15.4.2 Mountain Green
Cover Index FAO I

3
The 1st variable is Mountain

Green Cover Index
2017 276

17.6.1 Fixed Internet
broadband subscriptions

per 100 inhabitants,
by speed

ITU I

2
The 1st variable is fixed Internet
broadband subscriptions per 100

inhabitants, by speed

2000–2018
(annual)

179
(2018)

Twelve RS-based indicators that have statistical data according to the Global SDG Indicators
Database are not included in the SDR-ID 2019. These include nine Tier I indicators. Recent updates
to the Global SDG Indicators Database may partly explain this inconsistency between these two
monitoring platforms. However, one indicator (i.e., 11.2.1) that, according to the Global SDG Indicators
Database, had no data as of April 2020 is included in the SDR-ID 2019 [97]. Overall, the information
in these two monitoring platforms considered in combination (Figure 3; Table 1) is indicative of the
current status of EO contributions to SDG progress monitoring at the global level. Clearly, there is
more that needs to be done.

The set of criteria used to select indicators for inclusion in the SDR-ID 2019 might also account
for some of the inconsistency between the two monitoring platforms. These criteria were (i) global
relevance and applicability to a broad range of country settings, (ii) statistical adequacy, (iii) timeliness,
(iv) data quality, and (v) coverage [97]. Given these criteria, it is surprising that indicator 15.1.1
(forest area as a proportion of total land area) was not included in the SDR-ID 2019 (Figure 3) [97],
because forest cover data are available in Forest Resources Assessment (FRA) reports (www.fao.org/
forest-resources-assessment) published by the FAO–the custodian for indicator 15.1.1 (Table 1) [20].
Unfortunately, the SDR-ID 2019 does not provide any explanation.

Here, some important issues regarding SDG indicator 15.1.1 are highlighted. It is important
to note that the forest cover data available in the FRA reports are based on statistics consolidated
from country reports, which are not backed up by publicly available geospatial data. For the
upcoming 2020 FRA report, FAO is “conducting a participatory global remote sensing survey (FRA
2020 RSS) with the scope of improving estimates of forest area change at global and regional
scales.” Accordingly, “the FRA secretariat, in collaboration with the Joint Research Center of the
European Commission (JRC) and the FAO working group on remote sensing, has developed a
worldwide methodology for the FRA 2020 RSS, which is also scalable to national assessments” (http:
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//www.fao.org/forest-resources-assessment/remote-sensing/fra-2020-remote-sensing-survey/en/). A
switch to a collaborative remote sensing survey approach with the use of a harmonized method for
forest cover mapping is necessary so that forest cover change statistics reported in the future will be
comparable across countries, landscapes, and forest monitoring studies that employ RS technologies.
More importantly, so that such statistics will be backed up by publicly available geospatial data. At
present, forest cover change statistics from the FRA reports are neither comparable nor backed up by
publicly available geospatial data.

One major challenge to the implementation of the new approach is the harmonization of the
definition of forest. The FAO defines a forest in terms of both tree cover and land use; a forest may
include bare areas where trees are expected to regenerate, but areas with tree cover in agricultural
or urban land use classes are excluded [65,99]. In contrast, RS-based data (e.g., Global Forest Watch)
define forest only in terms of tree cover [63,99]. Harmonization of the definition of forest would
help clarify important but conflicting records. For instance, a recent global land change study found
that global tree cover increased by 2.24 million km2 from 1982 to 2016 as a result of a net gain in
the extratropics [66], but this finding contradicts FRA reports of a global decline in forest area [99].
This reported increase in global tree cover is supported, however, by another study that reported a net
increase of 5.4 million km2 of new leaf area from 2000 to 2017, two-thirds of which was attributed to
the greening of croplands and forests [67].

Of these two forest definitions, land use plus tree cover and tree cover alone, the latter has
greater potential to harmonize methods for global forest cover monitoring with the application of
RS technologies. The use of remotely sensed tree cover as the basis for mapping forest cover and
monitoring changes is also timely because, as reported by the GEO in a 2017 press release, full satellite
coverage of the world’s forests has now been achieved, so that all countries have the data necessary for
annual forest cover monitoring (https://www.earthobservations.org/article.php?id=250). Nevertheless,
if the FAO continues to use the land use plus tree cover concept of forest, the view of this reviewer is
that the FAO should ensure the use of a harmonized method for identifying and classifying land use
from RS data, not only tree cover. It should also make sure that gross forest cover losses and gains are
also reported and backed up by publicly available geospatial data (both raw and processed).

Among databases relevant to the 2030 Agenda for Sustainable Development, the Global SDG
Indicators Database (https://unstats.un.org/sdgs/indicators/database/) is of primary importance. In
terms of geospatial data, the data for the EO4SDG initiative are stored in the Global Earth Observation
System of Systems (GEOSS) portal (www.geoportal.org). The UN’s Open SDG Data Hub also stores
available geospatially referenced data for each SDG (http://unstats-undesa.opendata.arcgis.com). Other
sources of geospatial data include NASA’s Open Data Portal (https://data.nasa.gov) and the Center for
International Earth Science Information Network (CIESIN) (www.ciesin.org). Other initiatives that
make SDG-relevant data available include the Global Partnership for Sustainable Development Data
(www.data4sdgs.org) and the Open Data Watch (https://opendatawatch.com).

5.3. Challenges, Opportunities, and Insights

The production of data for the other RS-based indicators and the subsequent inclusion of more
RS-based indicators in the annual updates of the SDR-ID 2019 are among the current challenges to the
realization of the EO4SDG initiative. Other challenges relate to the identification and development of
relevant sub-indicators or complementary indicators, because some SDG indicators are not specific
enough to be properly addressed at present. For example, indicator 15.3.1, the "proportion of land that
is degraded over total land area" has been identified as one of the indicators that can be supported
by EO data (Figure 3; Table 1). However, land degradation itself is a broad concept, as indicated by
target 15.3: "by 2030, combat desertification, restore degraded land and soil, including land affected by
desertification, drought, and floods, and strive to achieve a land degradation-neutral world” [2,3].

To address this issue, three sub-indicators for indicator 15.3.1 have been identified: land cover
and land cover change, land productivity, and above- and belowground carbon stocks [24,100]. With
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respect to land productivity as a sub-indicator of 15.3.1, a recent study [100] (p. 1) argues that “current
use of vegetation indices alone to remotely sense degradation of ecosystem services does not provide
an adequate productivity indicator”; thus a more robust methodology is needed. Another study has
developed an integrated approach to the operationalization of the three proposed sub-indicators for
indicator 15.3.1 [95]. In this approach, all three sub-indicators are taken into account by a modeling
process that results in an overall indicator of land degradation [95].

RS data can also be used to examine and identify priority areas for sustainable management to
realize targets under SDG 6 (Clean Water and Sanitation) [101]. Furthermore, RS data can also be
used to provide evidence for some of the currently identified non-RS-based indicators. For instance,
RS data can be used to derive relevant landscape-based indicators (e.g., landscape fragmentation
and connectivity metrics) as complementary indicators for assessing the effectiveness of financial
investments in the conservation and sustainable use of biodiversity and ecosystems (target 15.a),
as well as in sustainable forest management, including conservation and reforestation (target 15.b). RS
data can also help operationalize social and economic SDG targets. For instance, RS data can be used to
advance the study and monitoring of household poverty [102], which is relevant to targets 1.1 and 1.4.
An idea for assessing slavery from space, which is relevant to target 8.7, has also been proposed [103].

According to the Global SDG Indicators Database, some indicators have available data in >200
countries or territories, but others have available data in fewer than 50 (Table 1). Moreover, for some
indicators, data are available at multiple spatial scales (regions, countries, and territories), whereas
for others, data are available only for countries. To ensure consistency, geographical units for data
production, collection, and reporting for global monitoring need to be harmonized across all SDG
indicators. Likewise, the baseline year for all SDG indicators may also need to be defined and
harmonized. Simply harmonizing the baseline year would help not only the groups that are in charge
of data production and collection but also researchers interested in SDG monitoring at the global level.

It is clear that the SDG global indicator framework in general and the RS-based indicators in
particular need to be improved. Other current challenges, as well as future research directions, related
to SDGs, targets, and indicators include addressing the potential pitfalls (ethical, legal, and reputational)
in the compilation and use of big data [104] and the analysis of synergies and trade-offs [101,105–108].
Other important issues include the development of other frameworks for assessing the suitability of
EO-derived data for SDG indicators [60] and of another aggregation method for the SDG Index [108],
as well as the regionalization (sub-national) of SDG progress monitoring [109]. In particular, for
the possible improvement of the SDG Index as presented in the SDR-ID 2019 [97] and in its earlier
versions (www.sdgindex.org), an aggregation method based on a multidimensional synthesis of
indicators and that takes into account the trade-offs and synergies between goals and targets and
across the three pillars of sustainable development (social, economic, and environmental) has been
proposed [108]. Regionalized or localized SDG progress monitoring is also particularly important
because it allows individual countries to assess their own progress in space and time toward sustainable
development [109].

RS-based indicator status as presented here (Figure 3; Table 1) is based solely on the Global SDG
Indicators Database. This database only consolidates available statistics at the country or territory and
regional levels; it does not include information on the actual availability of the geospatial data (both
raw and processed) from which the statistical data were supposedly derived. This is important to note
because some of the RS-based indicators identified as already having at least preliminary statistical
data (Table 1) may not yet have geospatial data. For example, data for indicator 15.1.1 (forest area as a
proportion of total land area) recorded in the database are based on FRA reports, but, as mentioned
earlier, these recorded statistical data are not backed up by geospatial data. Some information on the
availability of geospatial data are available from the UN Open SDG Data Hub, but it would be better if
the GEOSS portal provided information related to the EO4SDG initiative. As of this writing, however,
no specific page is dedicated to the currently identified RS-based SDG indicators and for tracking
the actual status and availability of raw and processed geospatial data for each of these indicators.
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Perhaps future updates of the EO4SDG initiative and the GEOSS portal could address this issue, in
collaboration with the concerned designated SDG indicator custodians.

A limitation of this review is that it is only an overview of the conceptualization of sustainability
leading to the formulation of the SDGs and of the current status, challenges, and opportunities in
SDG monitoring with RS. Some important issues need to be covered at greater depth, such as (i) the
applications of RS, including data availability, across ecosystems but with particular focus on the
SDGs, (ii) how the number of SDG indicators might be different from one ecosystem to another,
(iii) challenges and opportunities of RS data in terms spectral and spatial resolutions as applied
across ecosystems, (iv) how the SDG indicators were decided (e.g., how much is based on concerns in
terms of the economic, social, and environmental pillars of sustainability and how much is based on
logistics, e.g., data availability), and (v) the specific issues about the SDG global indicator framework,
e.g., inappropriateness of some of the (initial) indicators.

6. Conclusions

Although the concept of sustainability, the idea that the current generation has responsibility
for future generations, originated at least as far back as the 17th century, according to the UN-GSDR
2019, the world is not on track for achieving most of the targets that comprise the SDGs by the target
date of 2030. Meanwhile, through the EO4SDG initiative of the GEO, the full potential of RS for SDG
monitoring is now being explored at a global scale. As of April 2020, 21 (70%) of the RS-based SDG
indicators already have at least some preliminary statistical data according to the Global SDG Indicators
Database, and 10 (33%) of the RS-based SDG indicators are included in the SDR-ID 2019. These
statistics, however, do not necessarily reflect the actual status and availability of raw and processed
geospatial data for the RS-based indicators, which remains an important issue. Nevertheless, various
initiatives have also been started to address the need for open access data. RS data can also help
in the development of potentially relevant complementary indicators or sub-indicators, which will
help address one of the current challenges in SDG monitoring, which is how to operationalize the
SDG indicators.
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Appendix A

 

Figure A1. Contributions of RS to SDG monitoring. The diagrams of passive and active remote sensors
are from [110]. Passive sensors (e.g., multispectral and hyperspectral sensors) rely on an external source
of energy (the sun) and record the radiation reflected by Earth’s surface to produce an image, whereas
active sensors (e.g., LiDAR and Radar) emit energy in the microwave part of the electromagnetic
spectrum and measure the amount of energy reflected back at them [110]. The column graph shows the
number of indicators for each of the 17 SDGs to which Earth Observation data can contribute, directly
or indirectly [25].
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Table A1. Widely used multispectral satellite RS data.

Satellite
Sensor and

Number of Bands
Spatial Resolution Revisit Interval Reference

Landsat 4/5 TM MS 6; T 1 MS &T: 30 m 16 days [111]
Landsat 7 ET+/

8 OLI/TIRS
MS 6/8;

T 1/2; Pan 1
MS & T: 30 m

Pan: 15 m 16 days [111]

SPOT 1/2/3
(2 HRVs) MS 3; Pan 1 MS: 20 m

Pan: 10 m 1 to 3 days [112]

SPOT 4
(2 HRVIRs) MS 4; Pan 1 MS: 20 m

Pan: 10 m 2 to 3 days [112]

SPOT 5
(2 HRGs) MS 4; Pan 2

VNIR: 10 m; SWIR:
20 m

Pan: 5 m (2.5 m)
2 to 3 days [112]

SPOT 6/7
(2 NAOMI) MS 4; Pan 1 MS: 8 m

Pan: 2 m Daily [113]

NOAA AVHRR MS & T 4–5 1.1 km Daily (Vis),
2×/day (IR) [114]

OrbView 2
(SeaWiFS) MS 8 1 km Daily [113]

IKONOS 2 MS 4; Pan 1 MS: 3.20 m
Pan: 0.82 m 1 to 3 days [113]

Terra ASTER MS up to 10; T 5
VNIR: 15 m; SWIR:

30 m,
T: 90 m

All bands: at least
1×/16 days, VNIR:

5 days
[115]

MODIS Terra/Aqua MS & T 36
Bands 1–2: 250 m,
Bands 3–7: 500 m,
Bands 8–36: 1 km

1 to 2 days [116]

Envisat MERIS MS 15
Ocean: 1040 m ×

1200 m; Land: 260
m × 300 m

3 days [117]

QuickBird MS 4; Pan 1 MS: 2.40 m
Pan: 0.60 m 1.5 to 2.8 days [117]

GeoEye MS 4; Pan 1 MS: 1.64 m
Pan: 0.41 m ≤ 3 days [113]

RapidEye MS 5 MS: ~6.5 m 1 to 5.5 days [117]

WorldView 2 MS 8; Pan 1 MS: 1.80 m,
Pan: 0.46 m 1.1 days [113]

Sentinel 2A/2B MS 13 MS: 10 m, 20 m, 60
m

A or B: 10 days
A & B: 5 days [118]

Abbreviations: MS, multispectral band; T, thermal band; Pan, panchromatic band; SWIR, short-wave infrared;
VNIR, visible and near infrared; Vis, visible; IR, infrared.

Table A2. Widely used radar satellite RS data.

Satellite Sensor Spatial Resolution Revisit Interval Reference

ERS 1/2 C-band SAR 30 m to 50 km 35 days [113]
JERS 1 L-band SAR 18 m 44 days [113]

RADARSAT 1/2 C-band SAR 10–100 m/
3–100 m 24 days [117]

Envisat ASAR C-band SAR 28–980 m 35 days [117]
ALOS PALSAR L-band SAR 7–100 m 46 days [119]

TerraSAR-X X-band SAR 1–16 m 11 days [117]
TanDEM-X X-band SAR 12 m 11 days [117]

ALOS-2 L-band SAR 3–100 m 14 days [119]

Sentinel 1/2 SAR C-band SAR 5–100 m 1/2: 6 days; 1 or 2:
12 days [118]
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Abstract: Remote sensing technology has seen a massive rise in popularity over the last two decades,
becoming an integral part of our lives. Space-based satellite technologies facilitated access to the
inaccessible terrains, helped humanitarian teams, support complex emergencies, and contributed to
monitoring and verifying conflict zones. The scoping phase of this review investigated the utility
of the role of remote sensing application to complement international peace and security activities
owing to their ability to provide objective near real-time insights at the ground level. The first part
of this review looks into the major research concepts and implementation of remote sensing-based
techniques for international peace and security applications and presented a meta-analysis on how
advanced sensor capabilities can support various aspects of peace and security. With key examples,
we demonstrated how this technology assemblage enacts multiple versions of peace and security:
for refugee relief operations, in armed conflicts monitoring, tracking acts of genocide, providing
evidence in courts of law, and assessing contravention in human rights. The second part of this review
anticipates future challenges that can hinder the applicative capabilities of remote sensing in peace
and security. Varying types of sensors pose discrepancies in image classifications and issues like cost,
resolution, and difficulty of ground-truth in conflict areas. With emerging technologies and sufficient
secondary resources available, remote sensing plays a vital operational tool in conflict-affected areas
by supporting an extensive diversity in public policy actions for peacekeeping processes.

Keywords: conflict resources monitoring; disease control and prevention; human rights; genocide
tracking; human rights violation; geopolitics
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1. Introduction

Assuring the individual and collective well-being are the quintessential goals of any
society. Different civilizations and societies develop certain principles and ethos that are
binding as rules and regulations to their citizens. In return, the state (through its administra-
tive machinery) strives to ensure its residents safety and welfare as a social contract [1]. The
technology-oriented industrial revolution propelled the advent of the nation-state system
and democratic thought. The Government’s mandate and tools to deliver its functions
continue evolving with time, demography, and technological innovations. The knowledge
frontiers explore more scientific methods with considerable precision and accuracy to
testify and ensure compliance with rules [2]. In the initial years, the power to master
the earth’s natural resources was the fundamental principle for economic expansion [3].
However, this uncontrolled growth became the reason for conflict (strategic control over
oil and key mineral resources) among participating powers [4].

The rise of a scientific-industrial-military complex before and during the Cold War era
had a lasting effect on the peace and tranquility of certain resource-rich and strategic regions.
Although the techno-economic prowess aided development, the armed conflicts affected
individual and community rights. For centuries, military commanders have sought out
positions with a high elevation, such as mountains and ridges, to gain visual information
about their enemies’ locations and movements [5]. The First World War is widely regarded
as the turning point in history that led to the wide popularity of many advanced techniques
and weaponry systems. In particular, remote sensing gained prominence due to the
application of high-altitude airplanes for aerial reconnaissance [6]. The aerial photographs
were specifically used to locate enemy trenches and hidden positions, troop movements,
supply routes, and depots, as well as to verify the effectiveness of artillery attacks against
the enemy [7,8].

The development of the man-made satellite was considered one of the largest technologi-
cal breakthroughs in the military field [9]. The Cold War and Post-Cold War phase saw a vast
expansion in such satellite deployments for international peace and security [10]. The United
States Air Force’s CORONA satellite program operated during the Cold War and collected
over 800,000 aerial images of the Union of Soviet Social Republics (USSR), the People’s Re-
public of China (PRC), and other countries and regions. As the platforms for remote sensing
applications advanced by leaps and bounds, the sensors themselves also improved drastically.
Initially, the CORONA satellite was only able to capture images from orbit with a spatial
resolution up to roughly 12 m [11]. However, the spatial resolution of satellite images has
shown drastic improvement to below one meter in recent years [12]. Multi spatio-temporal
satellite data with local to global data acquisition can be applied in international peace and
security in conflict zones. Several applications are shown in Figure 1.

In particular for military and conflict management, the application of remote sensing
was initially limited to the technologically advanced nations, like the United States of
America (USA) and the former USSR, as well as other countries with significant defense
budgets. Satellite data have been used by the forces to identify terrains, rivers, ridges,
populated areas, strategic installations, communication networks, etc. [13,14]. With time
and technical advancements, remote sensing has also made significant contributions for
less developed countries, such as Vietnam, Indonesia, Thailand, India, Cambodia, etc.
The type of information accessible from remote sensing for peace and security depends
on the sensor’s specific properties and platform. Recently, with the availability of high
spatio-temporal data, remote sensing technology was actively used in the detection of
genocide in Darfur and human and drug trafficking in Afghanistan [15,16]. In addition
to the applications in military purposes, aerial and satellite remote sensing have been
significantly utilized for international peace through their role in preventing resource con-
flicts [17], disease control and prevention [18], human rights protection [19], and tracking
genocide [20].
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Figure 1. Applications of remote sensing for international peace and security.

Earth observation satellites and communication technologies offer precise and accurate
means for remote monitoring of conflict zones. Some of the worst forms of human rights
violations have been deeply rooted in either war zones (in resource-rich regions) or regions
lacking basic resources like water and food [21]. It can be difficult to monitor these
dangerous zones using ground information. However, remote sensing techniques can
help to monitor such remote and dangerous zones without physical contact. Remote
sensing has also been used for verifying international laws, treaties, and resolutions, e.g.,
for monitoring oil pollution sources [22], exploring renewable energy resources [23]. The
technological development and rise in using sensors have led to the surge in remote
sensing companies, aiding in the usage of data for the larger social and environmental
safety. Geospatial techniques can provide useful information for the implementation of
The United Nations Sustainable Development Goals (SDGs#16, i.e., to promote peaceful
and inclusive societies for sustainable development, and provide access to justice for all
and build effective, accountable and inclusive institutions at all levels) [24,25].

Several approaches of remote sensing for military and civilian applications have
been investigated [26]. These studies displayed remote sensing’s utility for international
peace and security both from a macro-perspective and micro-perspective, respectively.
At the macro-level, the application of Geographical Information System (GIS) techniques
in identifying the role of historical precedents in territorial disputes has shown valid
results. For instance, in the European context, the application of GIS helped in finding
the relationship between historical boundaries and conflicts [27]. For instance, studying
the micro-level effect on issues like migration led to violent situations in the Goma City
(the Democratic Republic of Congo) [28] and city-level consequences of Arab Spring in
Jordan [29,30]. Furthermore, along with GIS techniques, other scientific tools like big
data have been utilized to understand the intensity of such conflicts [31]. Remote sensing
can also assist in understanding the issues emanating due to state classifications like
ethnic fractionalization [32]. This, in return, can aid in the consolidation of socio-cultural
theoretical frameworks of other humanities disciplines.

This paper builds on the previously mentioned potential importance of space-borne
technologies in peace and security missions by highlighting the role of image data in near
real-time and archived sources. Based on the available literature, we classified various
studies and performed its meta-analysis for understanding the trends, potential, and
impediments in applying remote sensing to the issues of peace and security. The selective
analysis was conducted for the academic papers, research reports, and handbooks from a
wide variety of sources, tracing the development of remote sensing applications in peace,
security, and allied areas. We explored conflict resolution and monitoring as a theme by
looking at disturbed and volatile regions and investigating instances related to a refugee
relief operation, armed conflicts, genocide, human rights, peace-building, and issues crucial
for preventing and controlling human disease. In each of these cases, we highlighted how
remote sensing was utilized on the ground.
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2. Methodology

This scoping review is intended to cover an overlaying body of literature on earth ob-
servation technology in supporting emerging issues like sustainable development, human
development, international peace, and security [33–35]. It presents a brief description of
each application of remote sensing to these developmental and security issues at a global
perspective [33–35]. Potentially relevant reference materials were obtained from research
databases and appraised according to whether they included information on the previously
mentioned themes. Thus, this review provides a broad introductory understanding struc-
tured across three nodes. First is the concept of peace and security. Second, the relevance of
remote sensing to the issues of peace and security is introduced. Third, the contemporary
status, challenges, and opportunities for peace and security through remote sensing are
discussed. Figure 2 illustrates the flow of literature review for this study.

Applications of Remote Sensing in 
International Peace and Security

Discussion  and 
conclusion

Conceptual issues:
Peace and security

Identify types of 
review section

Keywords
Selected study 

area and review 
papers

Figure 2. Flowchart of literature review.

2.1. Conceptual Issues

A conceptual analysis of the remote sensing approaches for peace and security has
been carried out in Reference [36]. The conceptual issues can be mainly classified into two
strands viz. definitions and cross-disciplinary interpretations.

‘Peace’ can be defined as a state or a period in which there is no war, or a war has
ended [37,38]. However, there are many types of social settings where society does not
experience peace despite the absence of war or conflict [39]. For instance, Thomas et al. [40]
have argued that poverty is one of society’s major threats. Countries with a high level
of poverty, prohibition, intimidation, repression, terror, and other deterrents cannot be
categorized as peaceful countries. Based on these observations, analysts working in peace
and conflict management have varying definitions for peace from different perspectives.
‘Security’ is a state of ensuring protection from the direct/indirect notions and actions
threatening an individual or, collectively, a group [37,38]. The international and regional
organizations like the United Nations (UN), European Union, and other multi-lateral
groups strive for attaining the standards of safety and security of individuals, countries,
and regions.

Contextualizing the disciplinary connections becomes germane to broaden the un-
derstanding of the applications of remote sensing technology for peace and security.
Branch [35] has identified the issues of measurement validity and selection bias with
approaches in GIS technologies to the domains of peace and security in the studies of
international relations. The measurement validity issues arise when the institutional struc-
tures are built over novel propositions with behavioral and pragmatic approaches that
are not sufficiently absorbed by technical operational parameters (raster, vector, and other
files) of the GIS interfaces [35]. During the analysis stage, the selection bias leads the
discrepancies and prejudices between spatial and non-spatial information to creep into the
study/system [35].

The successful application of remote sensing for peace and security depends on
different kinds of datasets and how it is coded and analyzed within the framework of
measurement validity and selection bias [35]. For instance, the large datasets about ethnic
conflicts have the potential to overshadow the reasons contributing to their origins. The
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quantitative study of ethnic conflicts with a focus on micro-level studies has elucidated the
essence of individuality during a conflict [41].

2.2. Selection of Related-Articles and Keywords

This study has approached the literature review extensively, exploring the application
of remote sensing in international peace and security. Due consideration was given to
the geographic distribution of the origin of articles, the discipline of the journal in which
the article is published, online as well as offline, and the publishing type as open access
or not, etc., using the Latent Dirichlet allocation (LDA) scheme. With an understanding
that the topic should equally relate to science as well as the humanities disciplines, we
leveraged our search to all the related disciplines. Among many literature database search
engines, we primarily used the most popular ones viz.—ScienceDirect and Google Scholar,
to explore scholarly articles from journals, conference proceedings, book chapters, etc.
We searched articles with keywords such as “remote sensing” + “peace and security”,
bringing in 3240 results, and “remote sensing” + “natural resources monitoring” bringing
in 854 results. Apart from that, we decided to use many online journals and research
databases viz. ScienceOpen, Directory of Open Access Journals, Education Resources
Information Center (ERIC), CIA World Factbook, Web of Science, Social Science Research
Network (SSRN), ResearchGate, and Public Library of Science (PLoS) for exploring the
scholarly articles.

While choosing an article for the study, we pondered with great attention that the
document is relevant to remote sensing applications for international peace and security
in domains such as conflict resources monitoring, disease control and prevention, human
rights, and track of genocide, etc., as illustrated in Figure 1. After reviewing articles, we
noted salient points of each of the articles and finalized a subset of articles most relevant to
this review paper. A large number of papers were collected from a database of published
articles. Several case studies were referred from the regions witnessing international
conflict and bringing peace and security in the context of social dimensions. The literature
identified that several troubled regions in Asia, Latin America, and Africa were studied
through the use of satellite imagery. Two group discussions were conducted for three
months among all authors of this paper. The first meeting resulted in deciding the types of
keywords to be used while searching for relevant literature and the second discussion was
focused on selecting the relevant examples.

The keywords identified were “role of remote sensing in international peace and
security,” “international peace and security with remote sensing,” “geopolitics and remote
sensing,” “international conflicts resolution with remote sensing,” and “remote sensing-
based conflict resolution” were also chosen as search terms to gather more articles related
to this study. To know the trend, the search was carried out using the same keyword for
different periods. For example, a keyword phrase of “remote sensing for international peace
and security” produced a total of 47, 79, 126, 169, 227, and 252 search results for the period
1997–2000, 2001–2004, 2005–2008, 2009–2012, 2013–2016, and 2017–2020, respectively, while
keeping the other search filters the same. Figure 3 shows the trend in searched papers.
The rising numbers of published studies indicates the growing role of remote-sensing
approaches toward international peace and security.

We also split the search results obtained in each of the four categories of remote
sensing applications in peace and security, as mentioned in Figure 1. The total number of
articles found on Google Scholar were 17,900, 13,700, 11,377, and 2510 for the categories of
remote sensing applications in epidemics control and prevention, human rights, conflict
resources monitoring, and genocide, respectively. However, category-overlapping was
encountered among the searched papers since papers were often connected to more than
one category.

31



Remote Sens. 2021, 13, 439

 

0

50

100

150

200

250

300

1997–2000 2001–2004 2005–2008 2009–2012 2013–2016 2017–2020

N
um

be
r o

f a
rt

ic
le

s

Period

Figure 3. An increasing trend of the role of remote sensing in international peace and security.

A special focus was made for policy-oriented studies vis-à-vis key objectives of this
study. To obtain a wide range of related articles, we added papers relating to conflict
management with remote sensing, geopolitics and remote sensing, and other related
reports. The unrelated papers were omitted after detailed reading. The final selected
set of articles were examined carefully and the main findings were compiled with their
shortcomings. Many papers did not meet our criteria for inclusion in the study. These
papers were generally similar to other papers, or lacked statistically significant analysis,
had shaky research methodology, deficient references, and lack of supporting evidence
while drawing a conclusion, etc. Such papers were removed from our study’s database.

3. Results

3.1. Remote Sensing for Refugee Relief Operations

Mapping displaced zones and refugee camps are vital to relief operations. The satellite
data to map and monitor inaccessible conflict-riddled areas for relief work activities has
been used by the United Nations High Commissioner for Refugees (UNHCR). It allows
for tracking the affected communities and physical as well as environmental impact on
the infrastructure at the refugee camps. For instance, the Sudan conflict left more than
2.5 million people displaced internally and approximately 600,000 refugees outside the
country. Similarly, 5.5 million displaced Syrians were registered by UNHCR in Lebanon,
Turkey, Jordan, Egypt, and Iraq. Furthermore, about 33,000 Syrian refugees were related in
North Africa. According to UNHCR, to provide data on refugees-related numbers, food,
and logistics, precise land use and individual refugee tents and buildings in the camp have
been mapped.

Dalen et al. [42] and Bjorgo et al. [43] have employed European Remote Sensing
satellite (ERS) and commercial very high spatial resolution (VHSR) satellite data from
the Russian KVR-1000 sensor to demonstrate the pre-operational use of satellite remote
sensing techniques. It helped in appropriately planning the strategies at the refugee
camps. High-resolution is used for automatic mapping of refugee tents and camps by
applying object-based image analysis [44]. Figure 4 shows the mapped tents of Al Zaatari
refugee camps in Mafraq Governorate, Jordan using satellite images. As of 3 January
2013, a total of 11,966 shelters were detected within the 314 ha of the camp (Figure 4a).
By 4 May 2013, a total of 28,243 shelters were detected within the 530.95 ha of the camp
(Figure 4b), indicating that the number of shelters increased by about 16,000. Previously,
United Nations Institute for Training and Research (UNITAR)/UNITAR’s Operational
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Satellite Applications Programme (UNOSAT) found that the number of shelters is about
5138 on 15 November 2012. Thus, the shelters in the camp increased by 450% within less
than five months. Besides, the total area of the camp grew from 216 hectares to 531 hectares
in the same period, which is a 146% increase. This information, together with the data
on the number of people living in each tent, is especially critical for assessing the food
and medical aid. The number of refugees in each shelter can be inferred by the size of the
structures and total population by multiplying the number of shelters in each camp [45].

 

Figure 4. Satellite-detected shelters at the Al Zaatari refugee camp, Jordan (a) 3 January 2013 (WorldView-2 image), and (b)
4 May 2013 (WorldView-1 image) (Source: UNITAR/UNOSAT).

Nevertheless, there are difficulties in practice on object detection from medium-coarse
resolution data. According to Quinn et al. [46], the following challenges are typical in
refugee shelter mapping: (i) higher range of variation among refugees locations, (ii) small
and clustered close-together shelters, and (iii) a higher log of accuracy is required owing
to the critical decision support demanded. Automated machine learning models, such
as Mask-Region Based Convolutional Neural Network (RCNN), can detect refugee set-
tlements from high-resolution satellite images with an average Area Under the Curve
(AUC) of 0.78 [46]. Apart from the relief operations, the satellites also aid site selection by
providing baseline information of the terrain for refugee camps and also by identifying
favorable areas with access to drinking water and firewood.

Images acquired from high-resolution satellite data can help in monitoring environ-
mental degradation due to the movement of displaced persons from the conflict area. For
instance, PlanetScope data shows an increase in the built-up area near the Kutupalong
refugee camp in Cox’s Bazar, Bangladesh. Figure 5a,b show the PlanetScope images ac-
quired on 25 November 2016 and 15 November 2020, respectively. The development of
the 32 Km2 of Rohingya refugee camps destroyed also harmed biodiversity. These images
acquired before and after the incident provide clear evidence of forest disturbance due
to the development of the refugee campsite (Figure 5a,b). Satellite data can be useful to
provide information about environmental degradation due to international conflicts [47].
Knowing the size of refugee camps can help international agencies to plan and manage
relief operations by providing logistic support, financial aids, and medical supports for
these camps.
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Figure 5. PlanetScope data of Kutupalong refugee campsite: (a,b) show the destruction of forest area
due to the establishment of Rohingya refugee camps as observed from images taken on 25 November
2016 and 15 November 2020, respectively. [Source: prepared by authors].

3.2. Remote Sensing in Armed Conflicts

This technology has also been applied to quantify the causes of armed conflict and
how such conflict can impact the environment. An example of this was shown in Brown
et al. [16], where authors examined whether remote sensing could be used to confirm that
the conflict in Darfur was a conflict across the resources among communities. Their study
illustrated that remote sensing could be useful in testing claims, which are difficult to vali-
date with more traditional information. These studies can be further extended with more
granularity in studying the role of individuals and communities in the ignition of ethnic
conflicts through local and regional databases [34]. Brown et al. [16] also examined how
this technology can assist in reducing the devastating impacts on the environment during
and after an armed conflict. War can cause extensive water and air pollution as well as the
degradation of land and biodiversity. Such long-term environmental impacts might again
contribute to future conflict if not addressed. Therefore, understanding environmental
impacts exacerbated by conflict is fundamental in both conflict prevention and reconstruc-
tion. However, the impacts of the armed disputes and violence across the environmental
domain, tending to be multifarious and, hence, extremely difficult to assess, especially
during wartime. Nevertheless, remote sensing has augmented environmental impact
assessment in conflict scenarios. This has greatly enhanced post-conflict reconstruction and
rehabilitation [48].

The use of night-time light data to study armed conflicts has increased considerably
over the last decade. It helps in identifying and analyzing the impact of different conflicts.
For instance, the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging
Radiometer Suite sensor (NPP-VIIRS) has been used to evaluate the crisis in Sana, Yemen
by utilizing the time series night-time light images (Figure 6). Jiang et al. [49] observed that
between February 2015 and June 2015, the total night-time light of Yemen has decreased
by 71.60% because of the severe conflict across the country. Levin et al. [31] utilized
Visible Infrared Imaging Radiometer Suite (VIIRS) and Flickr photos to monitor the crisis
development and refugee flow in Arabian countries. Change in economic and human
capital can be observed using time-series VIIRS and Flickr photos. Their study concludes
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that the big data with remote sensing has the potential to provide unstructured but timely
data on a conflicting situation in case of lacking a conducive approach for changes in
environmental and geopolitical variations. Figure 7 shows a false-color composite (FCC)
of VIIRS night-time brightness data acquired in October 2012 (in the red band), October
2015 (in the green band), and October 2018 (in the blue band) in Arabian countries. The
areas with a decrease in night-time light after 2012 appear to have a red color. Most of
the decrease of the night-time light is noticed in the Syrian region, which is related to
the intensification of conflicts in the region. The areas with higher intensity of brightness
during night-time on the observation dates emerge in a white color. The white color region
shows the sites were not affected by the conflicts. VIIRS time-series data can be useful to
provide essential information about economic changes in the region.

Figure 6. The Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite sensor (NPP-VIIRS)
night-time light images of Sana, Yemen, during the years 2014 and 2019.

 

Figure 7. False-color composite (FCC) of Visible Infrared Imaging Radiometer Suite (VIIRS) night-
time data acquired in October 2012 (red band), October 2015 (green band), and October 2018
(blue band) in Arabian countries.

Remote sensing has also been utilized in assessing forest cover change aggravated by
conflict. Forests are crucial in conflict situations because they are used as safe havens by
both combatants and civilians. Poaching and deforestation in unprotected forests tend to
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increase during the conflict and, thus, threaten terrestrial biodiversity [50]. High spatial
resolution satellite data can help determine forest cover change, a change in biodiversity,
and species distribution. For instance, Georsevrski et al. [48] used multi-temporal Landsat
imagery to determine forest cover change as a result of the Darfur crisis and Uganda
clash. The study developed a disturbance index to monitor changes in South Sudan-based
Imatong Central Forest Reserve (ICFR) located around Dongotana hills, and Uganda-based
Agoro-Agu Forest Reserve (AFR) during the conflict (the 1980s–2001) and post-conflict
(2003–2010). The study discovered there was more forest cover loss during the conflict
period and that unprotected forests (Dongotana hills) experienced a huge loss compared to
reserved forests [48].

Severe conflicts often result in attacks with bombs and firearms. Fires detected with
the help of images from the satellite. It can be potentially utilized as an early warning
signal, indicating humanitarian crisis like human-rights violations [46]. Armed conflicts
disrupt human settlement and economic activities, as many people flee their homes to
seek refuge. The refugees and internally displaced persons (IDPs) reduce environmental
pressure in places of origin and increase pressure in places of destination. Remote sensing
is a valuable tool in assessing these environmental pressures instigated by an influx of
IDPs and refugees. In Sudan, Landsat data were used to locate burned structures among
habitations around the ethnic violence periods [51–53]. In the Rift Valley province of
Kenya, the United Nations Institute for Training and Research (UNITAR) used Moderate
Resolution Imaging Spectroradiometer (MODIS) images to identify the areas showing signs
of violence occurrences following Kenyan National Elections [54].

Remote sensing has also been used to detect macro-level transformations like land
cover changes due to human displacement as well as to setup an association among the
land tenure and land use land cover (LULC) classification [55]. If remote sensing techniques
are cautiously applied within the limits of measurement validity and selection biases, then
it is also possible to estimate the cultural loss, agricultural losses, land degradation and
rehabilitation, disruption of water resources, and change in vegetation [33,35,56]. Using
multiple satellite images and other explanatory variables, Levin et al. [57] indicated that
more than 5% of 1073 World Heritage Sites (WHS) were in danger because of severe internal
conflicts in which 25 are caused by armed conflicts.

Previously, in the context of monitoring of damage to the cultural heritage sites,
manual satellite image interpretation techniques were used to assess the changes in the
affected sites/area. These manual interpretation techniques were laborious and time-
consuming. However, the automatic classification of satellite imagery and the change
detection methods are promising to monitor the changes recently [58]. In other studies,
high-resolution multi-temporal satellite imagery was used to understand the impact on
environment at the Sudanese Zam Zam IDP camp, which was established as a result of the
Darfur crisis [59]. Figure 8 shows the satellite images of burned sites damaged in the 2011
Sudan conflicts. Figure 8e clearly shows the damaged and non-damaged structures in the
Tajalei region of Sudan.

Figure 9 shows another case study in the conflict zones of Syria, where an archaeo-
logical site was damaged during the Syrian civil war. Figure 9a,b show the encroachment
around the Abbasid Palace and its peripheral area using satellite data before (8 April 2011)
and after (1 July 2016) the conflict, respectively. The former Abbasid Palace compound,
Syria, which was one of the archaeological sites, is now covered by a modern building
visible in satellite data [60]. The temporal satellite data shows the change in the built-up
area due to the Islamic State of Iraq and Syria (ISIS) activities. On the city scale, the high-
resolution satellite data have been used for mapping ambient light during the night in
urban environments for security [61].
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Figure 8. Satellite images of conflict zones in Sudan showing evidence of arson attacks: (a,c) pre-
conflict images of 12 February 2011 showing intact buildings (b,d) are post-conflict images on
3 March 2011 showing burned structures in the Maker Awat region. (e) show the damaged and
non-damaged structures of Tajalei region mapped from Worldview 2 imagery on 6 March 2011.
[Source: UNITAR/UNOSAT].

 

Figure 9. Satellite images of conflict zones in Syria: (a,b) the Abbasid Palace area encroachment
as observed from images taken in April 2011 and July 2016, respectively [Images are reproduced
from Casana and Laugier et al. studies [62] Image sources: GoogleEarth images date of access: 28
November 2020].

In the domain of conflict in resource-rich regions, the oil production of ISIS has been
estimated using remote sensing techniques for geopolitics and energy security [62]. The
politics of carbon sequestration to awareness about the potentials of negative emissions
have been discussed in Reference [63]. A security assessment model for geo-energy that
quantifies geo-strategic oil energy security by China for oil pipeline construction in Russian
pacific (from 1995 to 2010) has been rebuilt [64]. With inspiration from previous work on
methodologies in political geography, a linkage between politics and language has also
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been examined in Reference [65]. The converging applications of emerging technologies
like artificial intelligence and remote sensing through autonomous drones for international
peace and security have been discussed in Reference [66].

The contemporary geopolitics in terms of the digital representations of space such
as Google Maps, OpenStreetMap, geopolitical properties, and geopolitical subjectivity
have been discussed in Reference [39]. The geopolitical remote sensing has been discussed
with an emphasis on aerial data collection rather than ground-based data collection [67].
On a large scale, country-specific applications, the imagery captured using commercial
satellites have been used for the security of Canada [68] and use of the field spectroscopy
for security in Cyprus [69]. The geopolitical approaches to outer space activities and the
effect of launching several satellites into space have been discussed in Reference [70].

A survey on the scope of remote sensing technology in assessing the influence of
conflict has been carried out by Witmer [71]. A case study on the Arab Spring was carried
out to quantify the conflict level using remote sensing techniques [31]. A survey on the
scope of remote sensing approach in assessing the influence of conflict has been carried out
by Witmer [71]. Another use of remote sensing technology in the region for monitoring of
conflict and damage to the heritage sites using satellite data. Previously, manual satellite
image interpretation techniques were used to assess damage or changes in the area. These
manual interpretation techniques were laborious and time-consuming. However, the recent
automatic classification of satellite imagery and change detection methods are promising
to monitor the changes [58].

According to Galtung et al. [39], there are many types of social settings that are not
considered as war or conflict. Remote sensing techniques have played an instrumental
role in supporting complex emergency cases from time to time. Zhang et al. [72] used a
high-frequency mixed-mode surface wave radar to detect ships for international peace
and security purposes. Unmanned Aerial vehicles (UAVs) equipped with a camera and a
ground-based sensor has been used for landmine surveying during humanitarian demi-
ning [73]. The recommendations based on an extensive review of global peace, security,
and development have been made in Ibrahim et al. studies [74].

Another potential utilization of satellite remote sensing in border armed conflicts is
tracking compliance with peacekeeping processes. Due to the recent incidents of violence
across the international border of South Sudan and Sudan, the UN security council enacted
a significant resolution (Resolution-2046). This resolution requires the governments of these
two countries to meet several conditions to ensure peaceful settlements of international
disputes, including an outright withdrawal of the respective armed forces from their sides
of the border or consequences of sanctions under U.N. Charter’s Article 41. However,
the satellite-based tracking of border areas shows that both nations did not comply with
the UN resolution even after the deadline, thus, allowing for the implementation of strict
sanctions against both countries [75].

Furthermore, high-resolution satellite images showing aircraft, tanks, trucks, and
troops in strategic locations indicate compelling evidence of soon-to-occur attacks. If moni-
tored in near-real-time, such activities can be recognized as an early warning system for
preparations and alert civilians about the danger of the attack. A classic example is from
Sudan, where satellite-based tracking of artillery troops in a striking distance of Kurmuk
area averted a potential disaster by issuing a human security warning that enables civilian
people to flee away before the massive bombs strike [76].

On a similar note, in the peace talks between China and India after the conflict in
Galwan valley (in 2020), the tensions cease to end after multiple negotiations from both
sides about an agreement to withdraw troops from border areas. The data from satellite
and aerial images confirmed the disengagement of troops from the border zones, which
helped prevent a war-like situation amid COVID-19 peaks [77].
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3.3. Remote Sensing in Tracking the Acts of Genocide

Genocide is the intentional mass murder or destruction of a people group and is among
the most severe acts of human rights violation. Genocides have occurred in several regions,
but, in most cases, these mass murders are conducted secretly and are only discovered
afterward [78]. Remote sensing appears promising vis-à-vis international security from
genocidal issues. An analysis of two case studies by the Genocide Studies Program
at Yale University demonstrates the usefulness of remote sensing in tracking genocidal
acts, corroborating eyewitness testimony, and supplementing reports by independent
organizations. In addition, when the world is facing challenges in countries and regions
like Syria, Myanmar, and the Democratic Republic of Congo (DRC), it can help to assess
the severity of acts of genocide and population displacement arising from the armed
conflicts [78].

Schimmer Russell [79] reported how a single Landsat image (taken four days after
the announcement of results of the East Timorese independence referendum in 1999) was
used to identify the concentrations of ground fires to assess the extent of destruction by
pro-Indonesian militant forces. Schimmer’s work found correlations between eyewitness
reports and the location and pattern of fires identified from satellite images. The data also
located other areas around the image-based boundaries, which were most likely subjected
to related demolition but with missing reports. Using satellite imagery, the researchers
showed that the fires were mainly concentrated around the capital city of Dili. A United
Nations Security Council delegation that visited East Timor after the referendum, and, other
eyewitnesses, reported that much of Dili had been burned and ransacked [79]. Expanding
the analysis to the rest of East Timor, the researchers were able to positively identify
locations of fires across the country and subsequently corroborate this with eyewitness
and other independent reports. This study demonstrated how remote sensing data can be
used alongside eyewitness accounts to ascertain the extent of destruction in these types
of situations. It should, however, be noted that there was some fortune in the timing of
the capture of the image. As the author notes—“It is rare that an image both temporally
and spatially coincides with a place and moment in time under research” [79]. In another
study, trends in vegetation cover change were directly related to variations among land-
use caused by the genocidal activities in Darfur. The researchers used rainfall data and
vegetation indices (NDVI) obtained from MODIS Terra and Satellite Pour l’Observation de
la Terre (SPOT) satellites [80]. In this particular case, the remote sensing data were applied
to illustrate the temporal changes in vegetation cover (2000–2003).

The availability of satellite-clusters with short revisit periods are providing rapid
alert of human right violations associated with genocide. In the Rakhine state, the crisis is
between Rakhine Buddhists and ethnic Muslims and several villages belonging to the latter
have undergone arson while those belonging to the former are usually standing intact.
Satellite analysis was associated with the information on the habitations in Myanmar,
which indicates that approximately 392 towns and villages from a total number of 993 were
affected (Figure 10). A UNITAR study reported the use of WorldView-3 data to identify
destroyed villages in the Northern Myanmar’s Rakhine state.

Marx et al. [81,82] developed a methodology for detecting burned villages in the
Rakhine state of Myanmar. Burned or damaged villages can be identified by sudden
drops in near-infrared reflectance between two observation dates. Village huts with dried
plantation roofs have a low NIR reflectance when damaged or destroyed. The researchers
utilized the short repeat cycle of Planet’s Dove satellites to compare and detect changes in
the near-infrared band over rural household structures belonging to adjacent Buddhist and
Muslim communities. This enabled them to identify the potential destruction of villages
and inform agencies like Human Rights Watch. The information can then also be used
for corroborating eyewitness accounts for the destruction by refugees. Madden et al. [83]
combined qualitative data collected from personal narratives with the data obtained using
the Geographical Information System (GIS) technologies to study mass atrocities in the
northern part of Uganda. This study shows the role of GIS for cartographic functions and
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geo-visualization. The previous case studies demonstrate the usefulness of remote sensing
data to track cases of population displacement and genocide, supplementing independent
eyewitnesses and other reports.

 
Figure 10. Areas of satellite-detected destroyed or otherwise damaged settlements in Northern Rakhine State in Myanmar.
Inset figures showing destroyed villages (Source: UNITAR/UNOSAT).

3.4. Remote Sensing in International Peace Missions

Remote sensing technologies can contribute to various components of the fulfillment
of the peace process. GIS can help to provide spatial information about homicides, conflict-
related deaths, violence, etc., which can help the implementation of SDGs# 16 i.e., to
promote peaceful and inclusive societies for sustainable development, and provide access
to justice for all and build effective, accountable and inclusive institutions at all levels [24].
Satellite data can provide valuable evidence in remote or conflict zones where field visits
are difficult [71]. Remote sensing data can be an effective tool for resolving running
disputes at international borders. By addressing the discerning factors causing the conflict
in monitoring the border situation remotely can be done through the deployment of remote
sensing techniques. It can be used as the identifiable indicators, with little warning signs
before a major crisis erupts [71]. Verifying the agreements put forth in conflict zones
is an important aspect of handling international disputes of this kind [22]. Satellites
have always been identified with national technical means of verification with increased
cooperative missions at an international level that are associated with it. For instance,
satellite images have been widely used as the source of verification in decommissioning of
facilities, disengagements, storage, and destruction that are vital in the peace process—from
negotiating to overseeing implementation to post-conflict peacebuilding processes.

3.5. Applications in Peace and Conflict Areas

Remote sensing can also aid in peace and conflict policy formulation with the iden-
tification of exploited natural resources [23]. For example, in the context of the DRC, the
extraction of natural minerals, such as concentrated columbite-tantalite and cassiterite,
has been discussed [52]. Both these minerals are used to build components of electronic
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products and have been in demand because of their application-specific competitive pric-
ing in the international market. This work has looked into the possibility of detecting
resource-based conflict before they inflate into a violent confrontation.

Gorsevski et al. [48] estimated 2000-armed conflicts that occurred about the same time
when the market value of these minerals was at its peak. To monitor the extraction of
concentrated columbite-tantalite and cassiterite, a workflow based on object detection and
GIS analysis was adopted. Site-activity indicators such as roads, settlements, or rivers
were used to narrow down relevant areas for analysis [84]. The object-based multiscale
image analysis approach was also able to locate mining areas in North and South Kivu.
However, the researchers did not discount the possibility of overlooking small scale mining
areas. Through this process, the researchers argued that remote sensing could aid in
the development of early warning systems for resource-based conflict by monitoring the
extraction of conflict resources that can result in the prevention of conflict escalation and
adoption of peace and security policies that comprehensively address the roots of resource-
based conflict. The study demonstrated that remote sensing could be highly useful in
monitoring resource extraction activities in conflict-affected areas.

Another case where remote sensing was applied for monitoring resource-related
conflicts was in the Afghan drug industry. The researchers used remote sensing and
population survey data to develop a virtual, rural Afghan population, where poppy is
cultivated [15]. The virtual population developed by the researchers was used to model
illicit economic activities in the country torn by complex conflicts. A multi-agent model
helped to identify the spatial distribution of pertinent agents/actors involved in the Afghan
drug industry. This information benefits the monitoring of the trade by relevant peace
and security actors. This example shows how qualitative data collected from the narrative
description from natives was combined with remote sensing data to build a virtual rural
map and, hence, was successfully utilized to accomplish conflict resolution in Afghanistan.

Besides these applications, radar satellites with Synthetic Aperture Radar (SAR) tech-
nology and VIIRS nighttime images can identify shipping vessels and the possible nature
of their activity. Detection from SAR is based on the principle that the backscatter from
the 3-dimensional planar surfaces of a ship along with the overall size can be used to
distinguish them into oil-tankers, shipping boats, patrol vessels, and armed naval ships.
Large ships or clusters of small-boats also emit light, which makes their detection possible
in the day/night band of VIIRS. Recently Elvidge et al. [85] have shown detection of low
light emission from small fishing boats (smaller than 19 m in length) by using a combi-
nation of nighttime light imagery. By cross-matching these detections with tracking data
from Automatic Identification System (AIS) and Vessel Monitoring Systems (VMS), the
“dark fishing” vessels can be identified, which have intentionally shut down their tracking
devices for a considerable time. This system is used by the Global Fishing Watch to identify
illegal fishing in international waters or foreign maritime zones.

The use of chemicals and explosive weapons can have devastating impacts on land,
water, and air. It is hard to monitor these effects with the naked eye. Nevertheless, remote
sensing helps detect both the short-term and long-term impacts of these weapons. It
can help to determine the effects of a crisis on aquatic life and water quality. Besides,
it is very pertinent in assessing the geomorphologic impact of the usage of explosive
weapons. Remote sensing can also identify changes in soil texture and content as well as
changes in the landscape. It can also be used to identify landmines during the post-conflict
phase to minimize further damage. Moreover, remote sensing can be used in monitoring
air pollution during armed conflict, which has been trivialized for a long time. After the
devastating Gulf war in Kuwait, remote sensing was utilized to monitor sand encroachment
and land deformation due to the usage of explosive weapons [86].

A case study of forestry conflict in Sumatra, which is a large island in Indonesia, has
been presented in Yasmi et al. [87]. The authors discussed how remote sensing techniques
have been helpful in conflict crisis resolution between the communities and the associated
organizations. The challenges in conflict management have also been presented exhaus-
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tively. The management of cross-border conflicts using remote sensing data collected with
Google Earth layers is a good example highlighting the importance of remote sensing
toward international peace and security [88].

3.6. Remote Sensing and Human Rights

From 2006 onward, the American Association for the Advancement of Science (AAAS)
Geospatial Technologies and Human Rights Project has globally aligned with human
rights organizations. The remote sensing data has been used for human rights in two
distinct ways, namely documentation and analysis, and as scientific evidence in the court
of law [89]. In courts, scientific proof has been used to supplement other, more conventional
evidence. In the context of the former Yugoslavia’s case, the satellite imagery was used
to validate the witness accounts of civilian killings by the International Criminal Tribunal
(ICT). The Amnesty International [89] has suggested using remote sensing as evidence in
courts for bringing the perpetrators to the book [89]. Still, there is a lack of consensus on
the admissibility of such evidence in different courts [90]. In addition, this has made it
difficult to make generalized conclusions about the consistent use of remote sensing in the
field of jurisprudence.

Various remote sensing techniques viz. radiometric, SAR, aerial photography, Light
Detection and Ranging (LiDAR), and thermal imaging, etc. play a vital role in various
aspects of human rights, such as equality, freedom, education, dignity, prosperity, justice,
and speech. Figure 11 depicts the interconnection of remote sensing techniques with the
various aspects of human rights. Although remote sensing platforms provide useful data, it
can be interpreted differently by different users and algorithms. During a dispute between
Nigeria and Cameroon before the International Court of Justice (ICJ), the remote sensing
evidence presented before the court had conflicting interpretations [90]. To establish the
legitimacy of using satellite data in legal proceedings, it is important to create universal
standards for the interpretation and validation of data across different courts worldwide.
To date, it has been used on an ad hoc basis by the European Court of Human Rights for the
conflict between Russia and Georgia over South Ossetia, the African Commission, and the
African Court of Human and People’s Rights in the case of forced evictions in Zimbabwe,
and the International Criminal Court in the case of human rights violations in Darfur [91].

 

Figure 11. Remote sensing and human rights [15].

Different tools are being used to document and understand human rights viola-
tions. For instance, the imagery processed from Afghanistan in 2006–2007 supported the
findings of Physicians for Human Rights on the suspicions of mass graves in Northern
Afghanistan [92]. On the other hand, the review of different images in Myanmar compared
to the reports on attacks against civilians in Karen State by the government in 2006–2007
and 2009 provided proof of destruction and the construction of new military occupation
camps [93]. In collaboration with the Amnesty International and the US Holocaust Memo-
rial Museum, AAAS has also looked into evidence of attacks against civilians in Chad and
Darfur, Sudan. In 2008, AAAS and Amnesty International in Georgia assessed the damage
of the region of Tskhinvali in conflict with Russia. In 2005, the Zimbabwe Lawyers for
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Human Rights used remote sensing techniques in assessing the damage caused by the
demolition of houses by the government [89].

In the human rights field, remote sensing has opened a new window of opportunity to
reach into areas of the world that are not easily accessible either for geographical or political
reasons. In these circumstances, remote sensing data serves to supplement and validate
reports of human rights abuse and violations coming from the ground. For instance,
satellite images confirmed the increased number of prison camps in North Korea over
the years [94]. It has also been ingeniously used to create a web resource serving as an
open-source of information for human rights violations in places like Pakistan and to
identify the location of individuals at risk [95]. These events and attributes suggest that
non-governmental actors have been active in using remote sensing techniques to identify
and report on human rights violations. There are often three common components of
humanitarian remote sensing projects: (1) they usually involve a combination of different
actors, including the provider of images, (2) they consist of imagery analysis experts
partnering with an advocacy organization, and, (3) typically, the funder is directly involved
with the project [96].

Looking at the collaboration networks among various actors and agencies, the Satellite
Sentinel Project (SSP) is an important example [97]. The project is funded by the American
actor George Clooney’s organization Not On Our Watch [98]. The goal of the project is to
prevent the return of all-out civil war between South Sudan and Sudan. In the SSP program,
a non-governmental organization is working with a private donor with aid through remote
sensing for assessing, deterring, and documenting human rights violations [97]. For SSP
to accomplish this goal, they have partnered with the imagery provider DigitalGlobe
and their imagery analysis experts. DigitalGlobe’s high-resolution commercial satellites,
known as QuickBird, WorldView-1, and WorldView-2, pass over Sudan and South Sudan
in order to understand the impact on civilians. After collecting the satellite images, analysts
at DigitalGlobe work with the rights-based group called the Enough Project to analyze
imagery and ground sourcing information. If experts detect human rights abuses, then the
project releases a report to the press and policymakers to generate a rapid response when it
comes to human rights abuses and human security concerns [96].

An example of the SSP using remote sensing to document atrocities is the Mass
Atrocity Alert report called Cover-Up: New Evidence of Three Mass Graves in South Kordofan.
With the analysis of the imagery and eyewitnesses who admitted to seeing the government
of Sudan’s militia groups dumping white body bags in the area, SSP analysts were able
to conclude that the suspected areas were the locations of mass graves. After concluding
that these areas were, in fact, efforts by the government of Sudan to cover up large-scale
burial operations, SSP immediately sent out Mass Atrocity Alerts in hopes of alerting the
press and policymakers of the human rights abuses happening in the area [97]. According
to Wang et al. [96], the Satellite Sentinel Project [97] is one of the few non-governmental
organizations that can afford the high cost of near-real-time imagery from high-resolution
commercial satellites. It is not surprising that most human rights organizations and
advocacy groups are unable to use remote sensing techniques to uncover and report on
mass atrocities in locations where international crimes like genocide and other gross human
rights violations are taking place [96].

3.7. Remote Sensing for Disease Control and Prevention

With accelerating global warming and climate change combined with human-animal
conflict, there is a rise in communicable and non-communicable diseases. Infectious
diseases such as HIV/AIDS, Ebola, SARS, Zika, and COVID-19 posed a challenge to the
global peace order [99]. The spread of a disease, whether it is within a developed or
a developing country, can have severe security repercussions. A widespread outbreak
can shut down a country, causing both fear and an economic downturn. Consequently,
improvements in methods by which the government can identify and stem the outbreak
of disease early on are necessary. Remote sensing has been suggested as such a method,
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using different characteristics of diseases to identify either the outbreak or possibilities of
risk. It can be used for monitoring, surveying, or conducting a risk analysis of vector-borne
diseases [100]. Disease mapping once believed to be a final frontier for remote sensing [101]
has come a long way with better spatio-temporal availability of remote sensing platforms
and socially sensed datasets [102,103].

Remote sensing has been used during studies done on malaria [102], Lyme dis-
ease [100], Rift Valley fever, and the COVID-19 pandemic [101,104–109], among oth-
ers [101,104,107–109]. However, it should be noted that these studies have only been
done post facto, as a way to verify whether different remote sensing indicators matched
the actual occurrence on the ground. Subsequently, this means that these methods have
never been tested ex-ante, either as an outbreak was occurring or to prevent an outbreak
from happening. An example of such a study concerned the spread of Lyme disease in the
Northeastern United States [110]. Remote sensing was used in several ways to examine
the “map relative tick abundance on residential properties by using Landsat TM-derived
indices of vegetation greenness and wetness” [110]. Essentially, this study aims to identify
risk factors for Lyme disease exposure in different populated areas. The study extracted
information about contiguous forest patches using Landsat TM data. Contiguous forest
patches are a favorite location of white-tailed deer, and its illegal transfer from the region.
Furthermore, it was examined whether these were areas for human host exposure. Using
these factors, as well as examining the suitable “tasseled cap greened and wetness,” which
measures the greenness and wetness of an area, residential areas harboring abundant tick
populations were identified. The researchers could then determine the areas that were
most at risk of exposure to the ticks and, therefore, Lyme disease [110].

Another example is the case of cholera in Bangladesh. Using remote sensing, the
researchers looked for sediment loads within the Bay of Bengal, which contain nutrients
that could support the plankton that could contain Vibrio cholerae [110]. The researchers
also examined the height, temperature of the sea surface, and the amount of chlorophyll
within the water to determine the possibility of there being Vibrio cholerae in the Bay (Ibid.).
Since this study was done after the event, the different factors showed a positive correlation
in the appearance of cholera in the water. By completing this research, it is hoped that
remote sensing could be used to examine the existence of cholera within the water before an
outbreak happens or within its beginning stages. Both the above studies mentioned above
were done after a disease outbreak. Currently, the Japanese Aerospace Exploration Agency
(JAXA) operates the Public-health Monitor and Analysis Platform (JMAP) for surveillance
and prediction of malaria and cholera in African countries [111]. However, the reliability of
remote sensing-based predictions is still unclear for this type of investigation. Furthermore,
the hope is that this type of analysis can be expanded to include other water-borne and
soil-borne diseases through model analysis to identify warning signs of a disease outbreak.

4. Discussion

Remote sensing applications have come a long way, ever since the testing of the Transit
(1960), which is the United States Navy’s first military navigation satellite. The defense
applications have expanded leaps and bounds from intelligence gathering, positioning,
and navigation to communications. This technique has become essential in many aspects
of international peace and security [112,113]. The costs of using satellite and other imagery
data are very high, and, therefore, such techniques are not accessible to all actors playing a
role in peacemaking and peacebuilding processes.

Applications of remote sensing techniques have been improved with the advancement
of sensor technology and processing algorithms over time. Table 1 shows the major
case studies related to remote sensing applications in peace and security in the last two
decades. Landsat data has played a vital role and is popular among most of the major case
studies presented in Table 1 because of free access since 2008 [71]. There were fewer case
studies before 2010 and most of these studies used conventional visual image interpretation
techniques using common satellite data. The number of published papers increased after
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2010 and used advanced image processing algorithms with advanced sensors. Machine
learning algorithms have recently become popular to process satellite data with better
resolutions. The use of advanced sensor data with advanced spatio-temporal strengths can
provide more accurate information about incidents. This information can help to develop
an early warning system to prevent conflicts. However, there is still a need to establish a
standard methodology and code of ethics [96] to use these scientific data as a source for
international cooperation and international courts of law.

For the operations of law enforcement agencies, the satellite data can be used as a
piece of credible evidence in a court of law. However, since there is a paucity of legal
criteria for interpretation and admissibility of remote sensing imaging, the legality of
its use as uncontested evidence requires refinements in country-specific bye-laws. As
indicated, the issues of measurement validity and selection biases require assessment
through a multidisciplinary lens. Where the local and standard definitions, classifications,
and constructs regarding socio-cultural and historical aspects need to be a combiner. This
will strengthen the capacity of legal institutions to respond to human rights violations and
bring perpetrators to justice. Furthermore, the field of remote sensing technology must
look beyond the courts and tribunals by educating members from other disciplines like
sociologists, demographers, and members from law enforcement and judicial agencies,
such as judges, prosecutors, and paralegal professions. The value of satellite imaging for
human rights and its use as evidence in legal proceedings need to be strengthened across
the multidisciplinary dimensions.

Much of the research on remote sensing and its applications in counter-terrorism
initiatives are based on data that was mainly derived by the experts in the field. Several
computer algorithms are available, which determine what objects are present in satellite
imagery. Effective data interpretation is very important in such cases where information is
dynamic and dependent on many variables. Still, information gathered through remote
sensing can increase transparency in the cases of counter-terrorism. However, many
measures should be taken to understand and contextualize data as well as ensure its
protection because of the sensitivity of the remote sensing-based information. The existing
literature indicates a paucity of papers in which a deeper contextual analysis based on the
socio-economic and historical data is conducted.

The use of visual images post facto as evidence of genocide, population displacement,
environmental damage, the supplementation of the results with eyewitness and indepen-
dent reports, and the versatility of the use of data are all examples of how important remote
sensing has become in the domain of global peace and security. Though it is not novel
for use as military means, it has only recently been incorporated into other areas, such as
quantifying conflict zones. More research is needed regarding how to use remote sensing
imagery as an early warning tool for conflict prevention. The credibility of remote sensing
information and its application in court or by policymakers is still a grey region. In the
field of peace and security, the need for strong communication between scientific appli-
cations and policymakers is crucial. The Eyes on Pakistan project is one of the successful
examples of how remote sensing data documenting human rights violations have been
used and publicized through an open-source platform accessible to public and government
officials [95,114].

Table 1. Major case studies associated with applications of remote sensing data in peace and security.

No. Authors Publication Year Study Area
Remote Sensing

Sensors
Methodologies

1 Koch and El-Baz, [86] 1998 Kuwait Landsat, SPOT Visual image
interpretation

2 Bjorgo [43] 2000 Thailand Russian KVR-1000
sensor

Visual image
interpretation
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Table 1. Cont.

No. Authors Publication Year Study Area
Remote Sensing

Sensors
Methodologies

3 Giada et al. [45] 2003 Tanzania IKONOS Supervised, unsupervised
image classification

4 Schimmer R. [79] 2006 East Timor Landsat Visual image
interpretation

5 Schimmer R. [80] 2008 Darfur, Sudan
MODIS,

SPOT-vegetation,
Climate data

Temporal change in
vegetation phenology

6 Prins [53] 2008 Darfur, Sudan Landsat ETM+ Normalized burn ratio
(NBR)

7 Anderson et al. [54] 2008 Rift Valley
province, Kenya MODIS Active fire detection

8 Madden et al. [83] 2009 Uganda Landsat, Google
Earth Visual interpretation

9 Schoepfer et al. [84] 2010
The Democratic
Republic of the

Congo

Rapideye,
Geoeye-1

Object-based image
classification

10 Gorsevski et al. [48] 2012 South Sudan and
Uganda border

Landsat, MODIS,
Aerial

photographs

Image classification, TCA,
disturbance index (DI),

NDVI

11 Hagenlocher et al. [59] 2012 Northern Darfur,
Sudan QuickBird LULC, Object-based

image analysis (OBIA)

12 Marx and Loboda [52] 2013 Darfur, Sudan Landsat Reflectance, TCA

13 Jiang et al. [49] 2017 Yemen NPP-VIIRS
Theil-Sen Median

Trend Method,
Nighttime Light Indexes

14 Casana et al. [60] 2017
Southern Turkey,

Syria, and
Northern Iraq

High-resolution
satellite

(DigitalGlobe)
Image interpretation

15 Pech et al. [28] 2017

Goma city, the
Democratic

Republic of the
Congo

Landsat,
Worldview-2,

topographic maps

Image processing and
visual interpretation

16 Sawalhah et al. [39] 2018 Jordan Landsat 8 Maximum likelihood
classification

17 Levin et al. [31] 2018 Arab countries VIIRS, Flickr
photos

Temporal trends in
monthly time-series

18 Quinn et al. [46] 2018 NA NA Machine learning

19 Hassan et al. [47] 2018 Bangladesh Sentinel-2A and
Sentinel-2B

Random forest
classification

20 Marx et al. [82] 2019 Rakhine, Myanmar PlanetScope Pixel-based value
extraction

21 Levin et al. [57] 2019 World heritage
sites

VIIRS, MODIS,
Global Terrorism

Database
Statistical analysis

22 Prem et al. [50] 2020 Colombia Landsat Empirical model

23 Shantnawi et al. [30] 2020 North Jordan Landsat Supervised classification
and change analysis
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Remote sensing techniques have been instrumental in supporting international treaties,
monitoring crises, and predicting natural catastrophes. Various United Nations, govern-
mental, and non-governmental organizations have shown a substantial interest in remote
sensing technologies for international peace and security. The main purpose of these orga-
nizations is to provide scientific information toward international peace and security. The
cooperation between various space agencies can provide useful information to decision-
makers, helping to establish global peace and security. For an example, the “International
Charter Space and Major Disasters” platform provides satellite-based information for relief
during humanitarian disasters. Satellite data are made available for rapid response to
reduce disaster losses and damages. Advanced near real-time geospatial data can provide
useful information to control the conflicts if combined with mobile data [115]. Big data
initiatives can be helpful in conflict prevention and uncovering the relationship between
conflict dynamics and development goals [116].

This review indicated that there has been significant progress in several technologies
(like electronics, sensors, data analysis, and machine learning) being subsumed together
with remote sensing applications for better understanding and realization of the project
objective. However, the role of disciplines from social sciences and humanities along with
remote sensing is still an underexplored territory. The absence of humanities somewhere
also limits in understanding the key issues behind major conflicts and violence within a
society. The future applications of remote sensing can be made more comprehensive by
enriching the foundations with qualitative information from the ground level like issues
with race, ethnicity, social structures, economic conditions, historical and anthropological
foundations, and so on.

5. Future Perspectives

5.1. Technology Development Perspective

Advances in remote sensing technology rely on the development of improved sensors,
imaging devices, and communication networks, among others. Some future perspectives
in these areas are listed below.

5.1.1. Use of New Sensors

The remote sensing applications for international peace and security rely on the avail-
ability of accurate, reliable, fast, and high-resolution data from sensors. Advancements
in sensor technology include the development of miniaturized sensors that reliably and
accurately capture data with high spatial and temporal resolution. The terrestrial LiDAR
sensors, which have been widely used in 3D city modeling, transport infrastructure map-
ping, vegetation mapping, and utility surveying, etc. will be effective tools for monitoring
international peace and security. Such sensors are capable of collecting a 3D point cloud,
which can be processed by state-of-the-art registration methods to reconstruct 3D surfaces.
The 3D models are developed from 3D surfaces using computer graphics techniques. The
3D models help trace the location and extent of territories, avoid international border con-
flicts, and, hence, contribute toward peace and security [117]. The micro-electromechanical
system (MEMS) technology [72], 3D sensors, and sensor fusion [118] are some of the notable
areas, which are augmenting the remote sensing technology toward its role in international
peace and security.

5.1.2. UAV-Based Survey

Unmanned Aerial vehicles (UAVs) have become more sophisticated during the last
few decades [119]. The use of UAVs in the world’s major military services for international
security has been growing enormously. UAVs are being used to survey the battlefield
remotely with a bundle of sensors mounted onto the aerial vehicle, giving adequate
image resolution. An ensemble of tiny UAVs working with each other in collaboration is
another technological advancement that can be used for remote sensing-based surveys for
international peace and security applications. UAVs can be used to improve border control
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by monitoring large areas of border quickly and more efficiently than conventional means
of border patrolling [120,121].

5.1.3. Internet of Things (IoT) Based Survey

The emergence of distributed computing has revolutionized the world across various
domains. The use of the Internet of Things (IoT) in remote sensing applications for inter-
national peace and security is gaining popularity, enabled by the facility of cost-effective
and reliable network services. The mitigation strategies, challenges, and risks of using
IoT-based remote sensing for international peace and security have been disheveled [122].

5.1.4. Visual Inertial System

The role of the machine vision in inertial navigation systems for robotic vehicles dates
back to the 1960s where cameras mounted on robotic vehicles were used for industrial
inspection. The conventional cameras were replaced by 3D cameras, which were capable
of capturing depth information along with intensity variation in the scene. The depth
information is beneficial for the localization of objects in a scene and also overcomes
the limitations of variation, in contrast to ambient light and parallax. However, in such
systems, inertial drift is an issue as it makes the registration of consecutive scans erroneous.
Leica Geosystems came up with a solution to overcome the problem of inertial drift with
Visual Inertial System (VIS) technology. The technology uses five cameras along with an
inertial measurement unit (IMU) to introduce a delta pose between two consecutive scans
in real-time. It helps in the fusion of huge amounts of visual information very accurately,
which can be used by various remote sensing applications for international peace and
security [123].

5.1.5. Simultaneous Localization and Mapping

Simultaneous Localization and Mapping, commonly known as SLAM, is a computa-
tional technique that builds a map of an unknown environment along with tracking the
position or movement of the camera in the environment. SLAM uses various kinds of
sensors such as grayscale cameras, RGB cameras, radar, LiDAR, time-of-flight cameras, and
monocular as l as stereo cameras to capture the scene. The feature points are extracted from
the captured images using feature extraction and description algorithms, which are used to
estimate the movement of features from one frame to another, and, hence, the movement of
the camera. Using SLAM technology, the movement of objects can be accurately articulated
in an environment, which finds enormous applications in monitoring international peace
and security [124].

5.2. Conflict Management Perspective

By combining local socio-economic and historical information with remote sensing
techniques can improve measurement validity and selection bias. This can potentially
result in making it a major tool for conflict prevention, peacekeeping, peacemaking, and
peace enforcement. It can provide the policymakers with better foresight or the future
perspectives in some and/or the areas listed below.

5.2.1. Conflict Prevention

In the future, remote sensing should more actively be used to identify and monitor
resources that might be the source of conflicts. Letouzé et al. [116] discussed the role
of big data including geospatial information in conflict prevention. However, specific
international cooperation and policy are required to avoid breaching national boundaries
during such applications.

More research is needed on how to effectively use remote sensing techniques to
prevent conflicts from happening. This may be an analysis of the regions known for
recurring conflicts and identification of regions most likely to be hampered by future
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challenges of climate change. Furthermore, geographical indicators of possible sites with
militant activity should be established [125].

5.2.2. Peacekeeping

A cluster of remote sensing satellites launched by the USA and Russia keeps the planet
on a constant mode of surveillance. The sovereign nations often question this as espionage.
However, the utility of remote sensing satellites for international peacekeeping efforts is
commendable. To the extent of which international security norms and regulations permit,
remote sensing research in areas with known militant activity should be enhanced through
the improvement of data available for such regions and the creation of databases of similar
research. In the future, remote sensing should also aid strategic positioning and monitoring
of peace support operations (PSO) and disarmament, demobilization, and reintegration
(DDR) [126].

5.2.3. Peacemaking and Peace Enforcement

The role of remote sensing in peacemaking and peace enforcement in many parts of
the world has been pivotal for decades. Further case studies and examples of systematic
exchange and sharing of conflict-related remote sensing data among both developing
and the developed world can be helpful in the resolution of ongoing conflicts. Moreover,
remote sensing can support and strengthen civil-military cooperation. With an increase in
the number of satellites orbiting the earth, a huge amount of earth data has a significant
potential for its use in peacemaking and peace enforcement. The synergistic approach of
civilian science and remote sensing can help consolidate the environmental safety standards
among the troubled regions [115].

5.2.4. Peacebuilding

Remote sensing will useful in post-conflict community rehabilitation like zoning,
resource accessibility, and community planning. With the advancement in image processing
algorithms, satellite imagery can be used in a better way than it was used a few decades
ago for peacebuilding. Besides that, community project mapping by remote sensing should
be considered to avoid project fatigue and duplication. In conflict zones, security aspects
along with the political and social aspects influences the data collection. Here, remote
sensing technology can be an enabler for exploring and assessing the risks to the ecosystem
during uncertain and violent situations [115].

6. Conclusions

This review presents the applications of remote sensing technologies in supporting
international peace and security missions and provided a detailed overview of each appli-
cation with various case study examples from literature. In particular, we focused on earth
observation for monitoring armed conflicts, human rights, tracking genocides, impact on
environmental aspects and disease control preventions, and identified different interactions
among these 4-level processes. This study noticed that the current research on peace and
security issues is in the initial phase. Due to this reason, it is affected with incommensu-
rate data for correspondence limiting granular information essential for characterization.
Nevertheless, some recent studies have demonstrated the usefulness of high-resolution
satellites in the area of refugee rehabilitation, quantifying conflict zones, and border secu-
rity controls. With Kurmuk, Sudan as a case example, we also showed that the synergistic
use of multi-source data from satellites, secondary sources, and ground-data could help in
developing early warning systems to minimize civilian casualties in war zones. With the
increased availability of higher spatial resolution images in the future, there is significant
potential in space-borne technologies for early-warning of attacks, particularly for knowing
the potential affected sites of targets.

On the other hand, near-real-time data provides useful information to rapid-response
in relief activities and crisis management. Additionally, recent improvements in sensor
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capabilities make it an essential and relevant tool for documenting and preventing armed
conflicts. The salient understanding from this study is that there is an ample requirement
for disseminating information for ensuring prompt and efficient humanitarian responses
at a global level. In particular, this is evident from Yemen civil conflicts. The Syrian crisis
has the Sudan-South Sudan border issues and Rohingya crisis, etc. However, the initia-
tives on such works remain elusive with a lack of co-ordinate ion and setting between
the geospatial community and relief organizations. It is hoped that initiatives such as
the UNITAR/UNOSAT by United Nation, ’Not on Our Watch’ funded the Satellite Sen-
tinel Project (SSP), as a partnership among the Enough Project and DigitalGlobe, and the
continuing upward trend in scientific work at the regional level (e.g., Witmer, [71]) will
help to minimize the impact of crisis and disasters. Considerable capacity building for
data processing, knowledge dissemination, and resource sharing is, therefore, required.
Automated object-based analysis, data fusion algorithms, and tools to process Big Data
in remote sensing are the way forward in terms of building a peaceful and secure world.
This study concludes that remote sensing as a surveillance tool has immense potential
to guard our planet’s environment, peace, and security, provided it is used actively and
transparently. The trajectory, intensity, and orientational control of those applications
will depend on how the major stakeholders from academia, governance, and civil society
converge to advance the foundational principles for conflict prevention, detection, and
related human rights issues.
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Abstract: Urban Surface Ecological Status (USES) reflects the structure and function of an urban
ecosystem. USES is influenced by the surface biophysical, biochemical, and biological properties.
The assessment and modeling of USES is crucial for sustainability assessment in support of achieving
sustainable development goals such as sustainable cities and communities. The objective of this
study is to present a new analytical framework for assessing the USES. This analytical framework
is centered on a new index, Remotely Sensed Urban Surface Ecological index (RSUSEI). In this
study, RSUSEI is used to assess the USES of six selected cities in the U.S.A. To this end, Landsat
8 images, water vapor products, and the National Land Cover Database (NLCD) land cover and
imperviousness datasets are downloaded for use. Firstly, Land Surface Temperature (LST), Wetness,
Normalized Difference Vegetation Index (NDVI), and Normalized Difference Soil Index (NDSI) are
derived by remote sensing methods. Then, RSUSEI is developed by the combination of NDVI,
NDSI, Wetness, LST, and Impervious Surface Cover (ISC) with Principal Components Analysis
(PCA). Next, the spatial variations of USES across the cities are evaluated and compared. Finally,
the association degree of each parameter in the USES modeling is investigated. Results show that
the spatial variability of LST, ISC, NDVI, NDSI, and Wetness is heterogeneous within and between
cities. The mean (standard deviation) value of RSUSEI for Minneapolis, Dallas, Phoenix, Los Angeles,
Chicago and Seattle yielded 0.58 (0.16), 0.54 (0.17), 0.47 (0.19), 0.63 (0.21), 0.50 (0.17), and 0.44 (0.19),
respectively. For all the cities, PC1 included more than 93% of the surface information, which is
contributed by greenness, moisture, dryness, heat, and imperviousness. The highest and lowest mean
values of RSUSEI are found in “Developed, High intensity” (0.76) and “Developed, Open Space”
(0.35) lands, respectively. The mean correlation coefficient between RSUSEI and LST, ISC, NDVI,
NDSI, and Wetness, is 0.47, 0.97, −0.31, 0.17, and −0.27, respectively. The statistical significance of
these correlations is confirmed at 95% confidence level. These results suggest that the association
degree of ISC in USES modeling is the highest, despite the differences in land cover and biophysical
characteristics in the cities. RSUSEI could be very useful in modeling and comparing USES across
cities with different geographical, climatic, environmental, and biophysical conditions and can also
be used for assessing urban sustainability over space and time.

Keywords: Urban Surface Ecological Status (USES); Remotely Sensed Surface Ecological Index
(RSUSEI); sustainability; impervious surfaces; US cities; National Land Cover Database (NLCD)
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1. Introduction

Surface Ecological Status (SES) reflects the structure and function of an ecosystem. SES is
influenced by surface biophysical, biochemical, and biological properties [1,2]. SES has wide applicability
e.g., in ecological and environmental assessments, including ecosystem management and life quality
evaluations [2,3]. SES and its spatial variations are influenced by natural and anthropogenic factors [4,5]
e.g., in urban areas. Increased human activity is one of the most important anthropogenic factors
affecting the Urban Surface Ecological Status (USES) and its changes [5–7]. Given the high concentration
of human activity in urban environments, assessing and modeling USES is crucial for urban
environmental management and planning, informing decision-makers and the public about ecosystem
services, and sustainability assessment in support of achieving sustainable development goals such as
sustainable cities and communities [8].

In previous studies, spectral indices derived from satellite imagery have been widely used
to model SES [1,5–7,9–11]. These indices include Normalized Difference Vegetation Index (NDVI),
Leaf Area Index (LAI), Normalized Difference Built-up Index (NDBI), Normalized Difference Soil Index
(NDSI), Normalized Difference Water Index (NDWI), and Land Surface Temperature (LST) [4–6,10–13].
The advantages of remote sensing (RS) data, which can provide observations over a large area and a
long period of time, have been extended to SES modeling on a local, regional, and global scale [14–17].
However, the complexity in the relationship between SES and biophysical and environmental factors
makes it difficult to quantify SES based on a single spectral index [4–6]. Aggregated remote sensing
indices have shown more advantages than a single index in modeling SES [4,18]. An integrated Remote
Sensing-based Ecological Index (RSEI) was developed for the rapid assessment of SES, using satellite
data [6]. The advantages of RSEI can be summarized as (a) scalable, (b) visualizable, (c) comparable
at different scales, and (d) customizable to minimize error or variation caused by other properties
in the weight definitions [4–6]. Despite these valuable benefits, the RSEI was developed solely by
using spectral indices related to land surface components and surface climate. The use of index-based
built-up areas in Hu and Xu (2018) [6] and subsequent studies showed that the index cannot address
the issue of bare land and sparsely vegetated areas, due to spectral confusion with the built-up areas.

Impervious Surface Cover (ISC) is one of the most important factors in distinguishing the
characteristics of different types of land use and land cover in urban environments and is responsible
for changing the characteristics of surface greenness, moisture, dryness, and heat [19]. ISC has a
clear physical meaning in land surface composition, suitable for comparative urban analysis [20–22].
Hence, the inclusion of ISC can potentially increase the accuracy of modeling the USES. Based on the
Vegetation-Impervious surface-Soil (V-I-S) model [23], the percentage of each of the three fractions of
impervious, vegetation, and soil covers in a pixel indicates the difference in the surface characteristics
of different urban land cover/uses. This model assumes that land cover in urban environments is a
linear combination of three components.

The objective of this study is to present a new analytical framework for assessing the Remotely
Sensed Urban Surface Ecological index (RSUSEI) by integration of surface greenness, moisture, dryness,
heat, and imperviousness using Principal Components Analysis (PCA). Based on the V-I-S model,
this study intends to assess USES and compare six cities of the U.S.A including Minneapolis, Dallas,
Phoenix, Los Angeles, Chicago, and Seattle which have distinct geographical, geological, climatic,
environmental, and surface biophysical conditions.

2. Study Area

The new analytical framework for assessing the SES is tested in urban environments comprising the
cities of Minneapolis, Dallas, Phoenix, Los Angeles, Chicago, and Seattle (Figure 1). To select these cities,
various criteria such as (1) geographical conditions, (2) climatic conditions, (3) surface characteristics,
(4) density of population, and (5) physical size of the cities were considered. These cities possess different
geographical, climatic, environmental, and biophysical conditions. Based on the Köppen climate
classification, the selected cities have various climate types: humid continental (Dfa—Minneapolis,
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Chicago), tropical and subtropical desert (Bwh—Phoenix), dry-summer subtropical (Csa—Los Angeles;
Csb—Seattle), or humid subtropical (Cfa—Dallas). Thus, the spatial variability of the surface cover
and biophysical characteristics of these cities are different and heterogeneous.

 

Figure 1. Geographical location of selected cities including Minneapolis, Dallas, Phoenix, Los Angeles,
Chicago, and Seattle in the U.S.A and land cover maps of each selected cities.

For the selected cities in the U.S.A, the area and percentage of each land cover are different (Figure 1
and Table 1). The highest area of land cover in Minneapolis, Dallas, Phoenix, Los Angeles, Chicago,
and Seattle cities is related to “Developed, Open Space”, “Developed, Low Intensity”, “Developed,
Low Intensity”, “Developed, Medium Intensity”, “Developed, Low Intensity”, and “Developed,
Low Intensity”, respectively. Among the cities, the highest percentage of “Developed, Open Space”,
“Developed, Low Intensity”, “Developed, Medium Intensity”, and “Developed, High Intensity”
lands is found in Minneapolis (36.0%), Chicago (45.5%), Los Angeles (44.6%), and Los Angeles
(16.3%), respectively.
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Table 1. Area (km2) and percentage (%) of land cover classes of selected cities in the U.S.A.

Land Cover Class
Minneapolis Dallas Phoenix Los Angeles Chicago Seattle

Area % Area % Area % Area % Area % Area %

Developed, Open Space 962.6 36.0 1329.3 27.0 646.5 23.5 616.9 15.2 1042.3 19.1 936.6 31.2
Developed, Low Intensity 859.0 32.1 1682.1 34.1 966.8 35.2 965.9 23.9 2430.7 45.5 1182.1 39.3

Developed, Medium Intensity 599.1 22.4 1305.2 26.5 913.5 33.2 1804.7 44.6 1338.1 24.5 647.5 21.6
Developed, High Intensity 250.9 9.5 606.2 12.4 221.1 8.1 653.1 16.3 650.8 11.9 238.2 7.9

Total area 2671.6 100 4922.8 100 2747.9 100 4040.6 100 5461.9 100 3004.4 100

3. Data and Methods

3.1. Data

A leaf-on season of Landsat 8 image for each city was downloaded for use from the U.S.A
Geological Survey (USGS) website (http://www.usgs.gov), including Minneapolis (date: 8 September,
2016), Dallas (8 September, 2016), Phoenix (14 September, 2016), Los Angeles (26 September, 2016),
Chicago (12 September, 2016), and Seattle (13 September, 2016). Due to the spatial, temporal, spectral,
and radiometric resolution, Landsat images are suitable for modeling and monitoring environmental
and ecological conditions [24–26]. These images are georeferenced with the number of rows and
paths available. The spatial resolution of Landsat 8 reflective and thermal bands are 30 and 100 m,
respectively. Resampled thermal infrared bands based on the Cubic method with a spatial resolution
of 30 m are also available on the USGS website. Due to the climatic and seasonal effects on USES,
leaf-on clear-sky images were selected for this study. Furthermore, the Moderate Resolution Imaging
Spectroradiometer (MODIS) water vapor product (MOD07) with a spatial resolution of 5000 m was
used to calculate Land Surface Temperature (LST) from the Landsat images. This product contains
the following features: (1) total-ozone burden, (2) atmospheric stability, (3) temperature and moisture
profiles, (4) and atmospheric water vapor. In addition, datasets from the National Land Cover Database
(NLCD), including land cover and imperviousness for 2016 were used. The imperviousness data
were utilized to represent surface biophysical characteristics, while the land cover data to evaluate the
impact of land cover on USES. The NLCD land cover and imperviousness datasets with 30 m spatial
resolutions for the U.S.A prepared for different years using Landsat time-series images [27,28] are
available from USGS at the https://www.mrlc.gov/data website.

3.2. Methods

Firstly, Landsat imagery was preprocessed. In the second step, the Single Channel (SC) algorithm,
the Tasseled cap transformation, spectral indices, and the NLCD imperviousness data product were
used to derive surface biophysical characteristics, which include NDVI, Wetness, NDSI, LST, and ISC
for the selected cities. Next, USES of the selected cities were modeled by the combination of surface
biophysical characteristics data using PCA. Then, the spatial variations of USES across different selected
cities were evaluated and compared to each other. Finally, the association degree of each surface
biophysical characteristic on USES was investigated based on statistical analysis (Figure 2).
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Figure 2. The flowchart of the analytical framework. SC: Single Channel, TCT: Tasseled Cap Transformation,
NLCD: National Land Cover Database, LST: Land Surface Temperature, NDVI: Normalized Difference
Vegetation Index, NDSI: Normalized Difference Soil Index, ISC: Impervious surface cover, PCA: Principle
Components Analysis, USES: Urban Surface Ecological Status.

3.2.1. Landsat Image Preprocessing and Surface Characteristics Modeling

The Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model was
applied for the atmospheric correction of Landsat images. This model uses parameters such as satellite
overpass time, sensor altitude, geographic location, atmospheric model of the region, and the solar
elevation and zenith angels [29,30].

The spectral indices used in this study included NDVI (greenness), Wetness (moisture),
NDSI (dryness), and LST (heat), which are shown in Table 2.

Table 2. Spectral indices in this study and their calculation details.

Index Equation Reference

NDVI NIR−Red
NIR+Red [31]

Wetness Tasseled cap transformation (TCT) component 3 [32,33]
NDSI SWIR1−NIR

SWIR1+NIR [34]
LST Single Channel (SC) algorithm [35]

Land cover and imperviousness maps of the selected cities were obtained from NLCD in 2016.
Land cover maps of the urban areas based on this dataset included classes of “Developed, Open Space”,
“Developed, Low Intensity”, “Developed, Medium Intensity”, and “Developed, High Intensity”.
The percentage urban impervious surface was resolved in 1% increments from 0 to 100 for areas
identified as urban, in the land cover layer of the database.

3.2.2. Remotely Sensed Urban Surface Ecological Index (RSUSEI)

In this study, RSUSEI was developed to assess the USES. Urban surfaces were assumed to consist
of three fractions of impervious, vegetation, and soil covers. Based on the V-I-S model, the percentage
of each of these surface covers in a pixel indicated the difference in the surface characteristics of
different urban land cover/uses (Figure 3). This model assumes that land cover in urban environments
is a linear combination of three components [23]. Therefore, to model accurately the USES and to assess
the SES of different land covers in urban environments, it is important to consider the biophysical
characteristics related to the fractions of impervious, vegetation, and soil cover.
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Figure 3. The Vegetation-Impervious surface-Soil model for remote sensing of urban environments [23].

Surface greenness, dryness, moisture, heat, and imperviousness are the biophysical characteristics
that were utilized to describe these component surfaces and are integrated for analysis of USES. It can
be represented as Equation (1):

USES = f(Greenness, Dryness, Moisture, Heat, Imperviousness) (1)

However, these environmental and surface biophysical parameters may be correlated with each
other in a region. The use of PCA can be very useful to solve the collinearity between the predictive
variables in the model of USES. To reduce the effect of climatic and meteorological conditions on the
results of the RSUSEI, standardized values of LST (heat), NDVI (greenness), NDSI (dryness), Wetness
(moisture), and ISC (imperviousness) indices (between 0 and 1) were computed [36]. Then, the PCA
method was employed to combine the five indices for assessing the USES. Finally, the PC1 was selected
to represent USES in the urban environments. RSUSEI can then be modeled conceptually based on
Equation (2).

RSUSEI = PC1(NDVI, Wetness, LST, NDSI, ISC) (2)

RSUSEI values were normalized between 0 and 1. The maximum value was related to the worst
(highest LST, ISC, and NDSI, but lowest NDVI and Wetness) and the minimum value to the best USES
(lowest LST, ISC, and NDSI, but highest NDVI and Wetness). To analyze and evaluate the spatial
variations of USES, the normalized values of RSUSEI were grouped into five classes: Excellent (0–0.2),
Very Good (0.2–0.4), Good (0.4–0.6), Fair (0.6–0.8), and Poor (0.8–1) [4–6]. The mean and Standard
Deviation (SD) values of RSUSEI were calculated and the area of USES classes were mapped for each
city. Additionally, the Eigenvalues of the five main components of PCA for each city were calculated.

3.2.3. Association Degree of Individual Surface Characteristics to USES

To calculate and assess the association degree of each surface characteristic to USES, the mean
value of RSUSEI was calculated by the NLCD land cover class for the six selected cities. The correlation
coefficient (r) between RSUSEI and each biophysical variable, i.e., LST, NDVI, NDSI, and Wetness,
is calculated for each city. In addition, the mean RSUSEI value for different ISC percentage ranges
(1 to 100) was calculated and then the r between the mean RSUSEI values and the percentage of ISC
was calculated for each city.
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4. Results

4.1. Spatial Distribution of Surface Characteristics

Figure 4 shows maps of surface biophysical characteristics including Normalized LST (nLST),
Normalized NDVI (nNDVI), Normalized NDSI (nNDSI), and Normalized Wetness (nWetness) in the
selected cities. The spatial pattern was heterogeneous. A large proportion of the central parts of
all these selected cities included developed lands (ISC > 50%). The suburbs of Minneapolis, Dallas,
Chicago, and Seattle included land covers with a high percentage of vegetation cover, while in Phoenix
and Los Angeles there were bare lands with dry surfaces. In all cities, the values of nLST and nNDSI
in the central parts of the cities were higher than the other parts, while nNDVI values were lower.
In addition, the spatial distribution of ISC values in these cities was heterogeneous. Areas with
developed and nature lands had the highest and lowest values of ISC, respectively.

 

Figure 4. nLST, nNDVI, nNDSI, and nWetness maps of selected cities in the U.S.A.
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The mean and SD values of nLST, nNDVI, nNDSI, nWetness, and nISC in the selected cities were
different. The difference in the mean values of these spectral indices indicated the difference in the
surface biophysical characteristics of these cities. High SD values of these spectral indices indicated a
higher degree of spatial variability of the surface biophysical characteristics. The correlation coefficient
(r) between the mean values of nLST and nNDVI, nNDSI, nWetness, and nISC for these cities were
−0.92, 0.95, −0.22, and 0.88, respectively, which indicated a strong correlation between different surface
biophysical characteristics, except Wetness. The statistical significance of these correlations were
confirmed at 95% confidence level. Cities with high mean values of nLST and nNDSI tended to have
low mean values of nNDVI and vice versa (Table 3). By reducing surface vegetation, the amount of
evapotranspiration from the surface decreased, leading to an increase in surface heat and dryness.
In addition, a higher value of ISC caused an increase in the value of LST (heat) and NDSI (dryness)
and a decrease in the value of NDVI (greenness) and Wetness (moisture).

Table 3. Mean (Standard deviation) values of nLST, nNDVI, nNDSI, nWetness, and nISC in the selected
cities in the U.S.A.

Cities nLST nNDVI nNDSI nWetness nISC

Minneapolis 0.39 (0.16) 0.66 (0.19) 0.41 (0.16) 0.75 (0.11) 0.36 (0.27)
Dallas 0.54 (0.14) 0.56 (0.19) 0.49 (0.15) 0.55 (0.11) 0.41 (0.28)

Phoenix 0.65 (0.13) 0.25 (0.16) 0.64 (0.09) 0.79 (0.04) 0.53 (0.11)
Los Angeles 0.63 (0.12) 0.29 (0.17) 0.59 (0.13) 0.69 (0.12) 0.52 (0.26)

Chicago 0.42 (0.16) 0.56 (0.23) 0.42 (0.14) 0.65 (0.08) 0.43 (0.25)
Seattle 0.46 (0.14) 0.58 (0.22) 0.50 (0.17) 0.58 (0.12) 0.37 (0.25)

The spatial distribution of surface biophysical characteristic differences can be caused by the
differences in the spatial variability of land covers [19,37–40]. Table 4 shows that surface biophysical
characteristics including nLST, nNDVI, nNDSI, nWetness, and nISC were different for each land cover.
Anthropogenic activities reduce natural surface covers and affect surface characteristics including
surface reflection, change in the material’s thermal capacity, conductivity, diffusion, albedo, and
evapotranspiration [19,37,41–43]. For the selected cities, the highest (lowest) mean values of nLST,
nNDSI, and nISC and the lowest (highest) values of nNDVI and nWetness were related to Developed,
High Intensity (Developed, Open Space). Therefore, due to the spatial variability of land covers,
the spatial variability of surface biophysical characteristics in the selected cities were different.

Table 4. Mean value of nLST, nNDVI, nNDSI, nWetness and nISC by land cover.

Land Cover Class nLST nNDVI nNDBI nWetness nISC

Developed, Open
Space 0.42 0.62 0.42 0.68 0.06

Developed, Low
Intensity 0.49 0.52 0.45 0.64 0.34

Developed, Medium
Intensity 0.57 0.40 0.52 0.61 0.62

Developed, High
Intensity 0.64 0.22 0.62 0.56 0.89

4.2. Spatial Distribution of USES

The spatial distribution of USES of the selected cities was heterogeneous (Figure 5). A visual survey
of the RSUSEI maps shows that Chicago and Los Angeles had higher RSUSEI values than Minneapolis,
Dallas, Phoenix, and Seattle. Areas with high values of RSUSEI (red color) had a lower quality of USES,
which had high heat (LST), imperviousness (ISC) dryness (NDSI), greenness (NDVI), and moisture
(Wetness) values, and vice versa. Figure 6 shows the mean value of RSUSEI for Minneapolis, Dallas,
Phoenix, Los Angeles, Chicago, and Seattle to be 0.58, 0.54, 0.47, 0.63, 0.50, and 0.44, respectively.

64



Remote Sens. 2020, 12, 2029

The difference in the mean value of RSUSEI between the cities indicated a significant difference in their
USES. The best and worst USES were Seattle and Los Angeles, respectively. The SD values of RSUSEI
for Minneapolis (0.16), Dallas (0.17), Phoenix (0.19), Los Angeles (0.21), Chicago (0.17), and Seattle
(0.19) cities were high. These values indicated the high spatial variability of the USES within each
selected city. Overall, the SD values of the different cities were very similar. The highest and lowest
spatial variations of USES were observed in Minneapolis and Seattle, respectively.

Figure 5. Remotely Sensed Urban Surface Ecological index (RSUSEI), classified RSUSEI and NLCD
land cover maps of the selected cities in the U.S.A.
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Figure 6. Frequency of RSUSEI values of the selected US cities.

The spatial distribution of the RSUSEI classes further revealed the spatial variability of USES
across the selected cities (Figure 7). Overall, the majority of the land in the selected cities possessed
the USES class from Very Good to Fair. The highest percentage of USES class for Minneapolis, Dallas,
Phoenix, Chicago, and Seattle cities was Good and for Los Angeles city was Fair. The Poor class of
USES had better spatial coverage of 5% to 14%, compared to that of the Excellent class from 1% to
6%. In addition, the highest percentage of Excellent, Very Good, Good, Fair, and Poor classes of USES
was observed in Los Angeles, Seattle, Chicago, Minneapolis, and Los Angeles, respectively (Figure 7).
The spatial heterogeneity of surface biophysical characteristics and anthropogenic activities caused
differences in USES among the cities and within each city.

Figure 7. Area of USES classes of selected cities in the U.S.A. (%).

It is worth noting that the Eigenvalues of the PC1 in RSUSEI modeling for the Minneapolis, Dallas,
Phoenix, Los Angeles, Chicago, and Seattle cities were 0.33, 0.34, 0.40, 0.39, 0.29, and 0.37, respectively.
For all selected cities, PC1 included more than 93% of the main surface information including greenness,
moisture, dryness, heat, and imperviousness. Therefore, using PC1 in RSUSEI can well represent the
spatial heterogeneity is the USES.
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4.3. Association Degree of Surface Biophysical Parameters on the USES Modeling

The mean value of RSUSEI varied across different land covers in the selected cities (Table 5).
The mean values of RSUSEI in “Developed, Open Space”, “Developed, Low Intensity”, “Developed,
Medium Intensity”, and “Developed, High Intensity” lands were 0.35, 0.49, 0.63, and 0.76, respectively
(Table 6). In general, “Developed, high intensity” and “Developed, Open Space” lands detected the
highest and lowest RSUSEI values in these cities, respectively. This result suggests the effectiveness of
RSUSEI to separate USES by land cover.

Table 5. The mean RSUSEI of land cover classes of selected cities in the U.S.A.

Land Cover Class Minneapolis Dallas Phoenix Los Angeles Chicago Seattle Mean

Developed, Open Space 0.40 0.35 0.37 0.38 0.34 0.32 0.35
Developed, Low Intensity 0.58 0.51 0.47 0.45 0.45 0.48 0.49

Developed, Medium Intensity 0.63 0.65 0.64 0.59 0.64 0.64 0.63
Developed, High Intensity 0.65 0.76 0.80 0.85 0.76 0.76 0.76

Table 6. Correlation coefficient between RSUSEI and nLST, nNDVI, nNDSI, and nWetness.

City nLST nNDVI nNDSI nWetness ISC

Minneapolis 0.41 −0.24 0.3 −0.34 0.90
Dallas 0.4 −0.21 0.06 −0.24 0.99

Phoenix 0.32 −0.27 0.31 −0.56 0.99
Los Angeles 0.59 −0.52 0.01 −0.4 0.99

Chicago 0.53 −0.28 0.21 −0.045 0.98
Seattle 0.57 −0.39 0.14 −0.09 0.98
Mean 0.47 −0.31 0.17 −0.27 0.97

Areas with high surface heat (LST), imperviousness (ISC), dryness (NDSI), low surface vegetation
density (NDVI), and moisture (Wetness) exhibited poor USES. The locations of these areas corresponded
to “Developed, High Intensity” lands (Figure 5). By contrast, “Developed, Open Space” lands possessed
the best USES (Table 4), which discovered low values of LST and NDSI and high values of NDVI and
Wetness. Mixed pixels in warm and dry cities tended to include built-up lands and lands with low
vegetation cover and low moisture content. Due to the high values of RSUSEI for lands with low
vegetation density and low moisture content, these cities discovered poor USES. On the other hand,
mixed pixels in humid cities were associated with high vegetation density and surface moisture. Since
there were low values of RSUSEI for lands with high vegetation density and high surface moisture,
these cities experienced poor USES. These findings suggest that RSUSEI holds an excellent ability to
differentiate between USES of different land covers (Figure 4 and Table 5).

The association degree of nLST, nNDVI, nNDSI, and nWetness in RSUSEI in the selected cities
varied. The mean r between nLST, nNDVI, nNDSI, and nWetness and RSUSEI was 0.47, −0.31, 0.17,
and −0.27, respectively (Table 6). The statistical significance of these correlations were confirmed at
95% confidence level. In modeling the USES, the association degree of nLST was found to be higher
than nNDVI, nNDSI, and nWetness. For the RSUSEI modeling in Los Angeles, Chicago, and Seattle
cities, the association degree of nNDVI appeared higher than nNDSI and nWetness. In contrast, in
Minneapolis and Dallas, the association degree of nWetness was higher than nNDVI and nNDSI.

The correlation coefficient between the mean value of RSUSEI and the mean value of NLCD
imperviousness percentage was 0.93 for all cities, but it varied within cities. Minneapolis, Dallas,
Phoenix, Los Angeles, Chicago, and Seattle yielded an r value of 0.90, 0.99, 0.99, 0.99, 0.98, and
0.98, respectively (Table 6). The statistical significance of these correlations are confirmed at 95%
confidence level. These values indicated a positive strong correlation between ISC and RSUSEI.
The spatial variation patterns of RSUSEI and NLCD imperviousness were similar to each other
(Figure 5). The RSUSEI value increased with increasing the percentage of impervious surface. In the
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USES modeling, the association degree of ISC was highest among all the surface parameters used in
this study.

5. Discussion

The SES in urban environments is a function of the surface biophysical, biochemical, and biological
properties. Recent studies have used the data of surface greenness, moisture, dryness, and heat
for SES modeling [4,6,7]. However, many processes in the urban environments are subject to the
impact of surface imperviousness [23,44–46]. ISC has a clear physical meaning in land surface
composition, suitable for distinguishing the characteristics of different types of land use and land
cover in the urban environments, and is associated with changes in the characteristics of surface
greenness, moisture, dryness, and heat [19,20,22,45]. This study shows that the association degree of
imperviousness is higher than surface heat, greenness, dryness, and moisture. Therefore, considering
surface imperviousness information in USES modeling is very necessary. Other studies have also
shown that surface imperviousness affected the SES [4,47,48]. For many cities around the world,
surface imperviousness data are available with functional spatial resolution for urban modeling. In this
study, five components including surface greenness, moisture, dryness, heat, and imperviousness are
considered for RSUSEI development. Results showed that RSUSEI is highly capable in the modeling
of the USES spatial heterogeneity in cities with different geographical, climatic, environmental, and
biophysical conditions. This index has a high capacity to differentiate between USES of different
land covers. Assessment and modeling of USES are crucial in sustainability assessment in support
of achieving sustainable development goals such as sustainable cities and communities [8]. Hence,
RSUSEI can be used for assessing urban sustainability over space and time.

6. Conclusions

In this study, an analytical framework is proposed for assessing the SES in urban environments
and tested in six selected cities in the U.S.A, i.e., Minneapolis, Dallas, Phoenix, Los Angeles, Chicago,
and Seattle. This analytical framework is centered on a new index, Remotely Sensed Urban Surface
Ecological index (RSUSEI), which integrated satellite derived information on the greenness, moisture,
dryness, heat, and imperviousness in a city. The results showed that the spatial distribution of USES
varied with the cities and land cover types. In general, land covers with low vegetation density
and moisture, and high heat, imperviousness, and dryness exhibit high RSUSEI values and poor
USES, and vice versa. The USES in arid regions, such as Los Angeles, are found to be worse than the
USES in humid regions, such as Seattle. The association degree of ISC is higher than nLST, nNDVI,
nNDSI, and nWetness in the RSUSEI modeling. An increase in surface imperviousness reduces surface
vegetation density and moisture while increasing surface dryness and heat degree, thereby worsening
USES. Our results show that RSUSEI has a high capability in revealing the differences in USES within
and between cities with different geographical, climatic, environmental, and surface conditions. Due
to the functional spatial resolution and continuity of Landsat imagery, the results of this study can
be very useful in USES modeling in urban environments with different biophysical, geographical,
and climatic conditions. In addition, the availability of NLCD data products in the U.S.A is highly
beneficial for USES assessment, monitoring, and modeling. RSUSEI can be used for assessing urban
sustainability over space and time. It is suggested that in future studies, the efficiency of disaggregation
models in improving the spatial resolution of USES maps should be considered. It is also useful to
compare the performance of different spectral indices in surface imperviousness modeling to assess
USES. In addition, RSUSEI can be used as a time series to monitor and model the long-term changes in
a region and to quantify the impact of anthropogenic activities on USES.
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Abstract: Rapid urbanization significantly affects the productivity of the terrestrial ecosystem and
the foundation of regional ecosystem services, thereby detrimentally influencing the ecological
environment and urban ecological security. The United Nations’ Sustainable Development Goals
(SDGs) also require accurate and timely assessments of where people live in order to develop,
implement and monitor sustainable development policies. Sustainable development also emphasizes
the process of protecting the ecological environment for future generations while maintaining the
current needs of mankind. We propose a comprehensive evaluation method for urban ecological
quality (UEQ) using Landsat TM/ETM+/OLI/TIRS images to extract remote sensing information
representing four ecological elements, namely humidity, greenness, heat and dryness. An improved
comprehensive remote sensing ecological index (IRSEI) evaluation model is constructed by combining
the entropy weight method and principal component analysis. This modeling is applied to the city of
Wuhan, China, from 1995 to 2020. Spatial autocorrelation analysis was conducted on the geographic
clusters of the IRSEI. The results show that (1) from 1995 to 2015, the mean IRSEI of Wuhan city
decreased from 0.60 to 0.47, indicating that environmental deterioration overwhelmed improvements;
(2) the global Moran’s I for IRSEI ranged from 0.535 to 0.592 from 1995 to 2020, indicating significant
heterogeneity in its spatial distribution, highlighting that high and low clusters gradually developed
at the edge of the city and at the city center, respectively; (3) the high clusters are mainly distributed
in the Huangpi and Jiangxia districts, and the low clusters at the city center, which exhibits a dense
population and intense human activity. This paper uses remote sensing index methods to evaluate
UEQ as a scientific theoretical basis for the improvement of UEQ, the control of UEQ and the
formulation of urban sustainable development strategies in the future. Our results show that the
UEQ method is a low-cost, feasible and simple technique that can be used for territorial spatial
control and spatiotemporal urban sustainable development.

Keywords: remote sensing ecological index; ecological protection; principal component analysis;
entropy value method; spatial autocorrelation; sustainable development; Wuhan city

1. Introduction

Urban ecological quality (UEQ) evaluation is an important field of urban ecology
research and the basis of urban planning and ecological management. With the continuous
expansion of urbanization, China’s cities have achieved medium-high quality development.
However, social problems, such as resource exhaustion, an imbalance of economic structure
and environmental pollution, do appear frequently. It is urgent to improve the capacity
to implement urban sustainable development. In 2015, United Nations (UN) member
states unanimously committed to achieving the Sustainable Development Goals (SDGs) by
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2030 [1]. Although the urbanization process has improved people’s living standards, pro-
moted the sustainable development of productive forces and provided economic benefits,
it has also broken the balance between human society and the natural environment, and
has brought great challenges to UEQ [2,3]. According to the 2018 Revision of World Urban-
ization Prospects [4,5], the urban population will account for 68% of the global population
by 2050, which is an increase of 13% from 2018, and China’s urban population will increase
by 255 million people. Cities cover less than 2% of the Earth’s surface, but consume 78%
of the energy generated and produce 60% of greenhouse gas emissions [5]. Additionally,
urban land consumption outpaces population growth by approximately 50% [6].

Such changes affect human survival and the sustainable development of the social
economy [7–10]. Using UEQ measures to determine the status of the ecological environment
could promote the sustainable development of regional economies [8,11–14]. Therefore,
the quantitative description and assessment of the spatiotemporal dynamics of urban
ecological environments are emerging as leading research topics [11,15].

Numerous studies have been conducted on such an assessment from different perspec-
tives, and several evaluation methods have been suggested. The pressure–state–response
model and fuzzy evaluation methods are commonly used in ecological quality assessment.
In recent years, geographic information system (GIS) and remote sensing (RS) technologies
have provided efficient monitoring and analysis methods for ecological quality research
and sustainable development. Progress in satellite-based Earth observation systems facili-
tates assessing the state of an ecosystem from local to global scales. The scale and scope of
this research are expanding constantly. Index systems have been constructed using GIS
to conduct strategic environmental assessment for regional and land-use planning [16,17].
In China, research on the ecological environment is based on the Technical Specifications
for Ecological Environmental Assessment, promulgated by the National Environmental
Protection Agency in 2006 [18]. According to these specifications, the ecological envi-
ronment index (EI) should encompass biological richness, air pollution, water network
density, vegetation cover, land degradation and related factors. The EI is the main tool
used to evaluate the quality of the ecological environment [19]. However, as climatic and
geological conditions differ across regions, the weight of each index must be adjusted
accordingly. Currently, researchers mostly use manual processing, as weight allocation is
not strictly required and evaluation criteria vary, making it extremely difficult to accurately
compare urban ecological conditions. Therefore, a scientific and logical ecological quality
assessment method is required.

The acceleration of urbanization has led to a series of ecological and environmental
effects, such as reduced surface water transpiration and water quality. It is generally
difficult to monitor these natural processes with on-site instruments. However, remote
sensing technologies can provide quantitative physical data with high spatial and temporal
resolutions to facilitate the quantitative monitoring and analysis of environmental effects.
Among all of the environmental effects of urbanization, the thermal environment has
received more attention. The urban thermal environment is an important representative
indicator of the urban environment. It is influenced by the physical properties of the urban
surface and human social and economic activities, and is a comprehensive summary and
embodiment of urban ecosystems. Vegetation is another important component of urban
ecosystems. Urban vegetation can selectively absorb and reflect solar radiation energy,
adjust the latent and sensible heat exchange, regulate urban air, reduce pollution and other
processes that affect the city’s natural environment and is another highly comprehensive
index of urban ecological evaluation. The spatial distribution and richness of vegetation in
cities have always been considered to have important effects on the evolution of the urban
ecological environment.

The remote sensing ecological index (RSEI) combines humidity, greenness, heat and
dryness indices obtained from RS, and facilitates the monitoring and evaluation of the
UEQ. The RSEI, which was first proposed by Hu and Xu [18], could aid in visualizing
spatial and temporal analyses and predictions of change in the regional environment,
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thereby compensating for the deficiencies of the EI. This paper uses existing research from
a new perspective to more accurately study urban socio-economic activity intensity and
its relationship with the regional ecological environment. Using the RSEI will help in
studying the interactions between human activities and natural ecology, and the resulting
knowledge of theory, concepts and methods is expected to benefit local governments [20].
In recent years, the RSEI has been applied in ecological quality monitoring in 35 cities of
China [19,21,22], Eurasia [23] and America [21,23]. The RSEI and the results of principal
component analysis (PCA) have been combined to develop an ecological index [19,24].
However, using the PCA results in insufficient information utilization, as the adaptive
nature of PCA algorithms inevitably limits the full use of the available information. For
example, the RSEI obtained in two studies using only the first component for normalization
ranged from 60% to 90%, which cannot guarantee adequate contribution rates.

Accordingly, the aim of the current study is to improve the RSEI calculation method
by proposing an improved-comprehensive remote sensing ecological index (IRSEI) con-
structed by employing PCA and equal weights (EW). Our study overcomes the short-
comings of previous studies, which only considered the application of PCA in ecological
quality assessment, and the resolved knowledge gaps are reflected in the comprehensive
consideration of EW and the PCA method to determine the UEQ. The contribution rates
of the eigenvalues of PCA and EW are taken as the weights. This method enables the full
use of the available data and ensures that the value of the calculated IRSEI is ecologically
optimal. In addition, more indicators could be integrated and the IRSEI reduces noise
interference and makes optimal use of practical image information. These factors facilitate
the reliable and quantitative monitoring of the regional ecological environment.

A comparison and evaluation of the differences in quality in large cities can improve
the cognitive ability of the internal mechanism of the reciprocal feed-back relationship
between the construction of megacities and regional ecological balance, and can provide a
scientific reference for controlling the scale of urban sustainable development and ecological
planning and regulation. Wuhan is one of the fastest growing cities in central China, but
few studies have been conducted on quantitative UEQ monitoring based on remote sensing
data. Therefore, we used a series of parameters obtained from remote sensing imagery
to construct the IRSEI for the evaluation of the UEQ of Wuhan city from 1995 to 2020. In
addition to the UEQ, we determined the temporal and spatial changes in the city. We
present a discussion of the ecological changes caused by economic and social developments
and natural conditions. Finally, we provide theoretical guidance and a scientific basis for
ecological construction in Wuhan city.

The objectives of this study are to:

(1) Use GIS and RS technology to construct the IRSEI efficiently by integrating multiple
sensors, including the Landsat Thematic Mapper (TM), Operational Land Imager
(OLI) and Thermal Infrared Sensor (TIRS);

(2) Monitor spatial and temporal changes in UEQ in Wuhan from 1995 to 2020;
(3) Explore the spatial differentiation characteristics of the IRSEI in Wuhan.

2. Materials and Methods

2.1. Study Area and Data Preprocessing

We select the rapidly urbanizing city of Wuhan as study area for ecological monitoring
and assessment. Wuhan is the capital city of Hubei Province. Its geographical location
is 29◦58′–31◦22′N and 113◦41′–115◦05′E (Figure 1). From the perspective of Wuhan’s
geographical location and the location of its basin, the development of Wuhan has had
great impact on the environment of the whole Yangtze River basin, and even the whole
country. Therefore, ecological assessment and policy-based restoration and protection in
Wuhan are vital for the ecological restoration of the Yangtze River basin. The city has
jurisdiction over six central urban areas and seven distant urban areas. The land area
comprises 8494.41 km2. The permanent population was 10.91 million in 2018. The Yangtze
and Han rivers meet there, forming a geographical pattern referred to as “two rivers and
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three towns”. Wuhan has a subtropical humid monsoon climate, with abundant rainfall
and sufficient heat throughout the year. The average annual temperature is 15.8 to 17.5 ◦C.
The area is rich in ecological resources, with nearly 40% green coverage and more than
10 m2 of green space per capita. These ecological resources are crucial for Wuhan to build
an ecological civilization city and, therefore, are critical factors in the protection of the
ecological environment.

 
Figure 1. Location of Wuhan city.

In order to consider the quality of the remote sensing data, such as cloud cover and
vegetation condition, we use data from Landsat 5 TM in 1995, Landsat 5 ETM in 2005 and
Landsat 8 OLI in 2015 and 2020 as the main remote sensing data. RS data are particularly
useful because they can be used for temporal and spatial monitoring [25]. Details on the
satellite images used in this study are provided in Table 1. The source dates of the images
are relatively close; therefore, differences caused by different seasons and vegetation growth
states can be ignored. Owing to topographic differences in images at different times and
the influence of illumination and atmospheric factors on surface reflectance, the selected
images required preprocessing with radiometric calibration and atmospheric and geometric
correction prior to the calculation of the IRSEI. The corrections were performed using the
Environment for Visualizing Images (ENVI) software. The Fast Line-of-sight Atmospheric
Analysis of Hypercubes (FLAASH) model was used for atmospheric correction to eliminate
the radiation error caused by atmospheric absorption and scattering. The accuracy of
radiation calibration was more than 95%, and that of atmospheric correction exceeded 85%.
Further, the error in geometric correction was controlled to less than 1 pixel. The quadratic
polynomial and the nearest neighbor methods were used to correct the geometry of the
images and the preprocessed images of the study area were clipped using the vector data
of the administrative districts of Wuhan. Other data sources included the administrative
zoning map of Wuhan, digital elevation model data of Wuhan from the geospatial data
cloud (http://www.gscloud.cn/sources/accessdata/310?pid=302 (accessed on 15 May
2021)) and the cloud platform of geographical national condition monitoring of China
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(http://www.dsac.cn/DataProduct/Search?&cateID=2010&areaID=18 (accessed on 15 May
2021)). Nighttime light data were obtained from the national geophysical data center
(https://www.ngdc.noaa.gov/eog/dmsp/downloadV4com-posites.html (accessed on 15
May 2021)).

Table 1. Data used and their source.

Data Used Data Acquisition Data Spatial Resolution Source

LANDSAT TM 24 October 1995 30 × 30 http://earthexplorer.
usgs.gov/ (accessed

on 15 May 2021).

LANDSAT ETM 11 September 2005 30 × 30

LANDSAT OLI
28 September 2015 30 × 30

29 October 2020 30 × 30

2.2. Methodology
2.2.1. Modeling Framework

We combine principal component analysis (PCA) and the entropy value method to de-
sign synthetic indicators that facilitate quick and quantitative assessment of UEQ, based on
humidity, greenness, dryness and the heat index. Using this method enables prioritizing the
natural factors of the ecological evaluation system. The overall framework of IRSEI model-
ing, as shown in Figure 2, includes four main steps. First, we obtain Landsat Enhanced
Thematic Mapper Plus (ETM+)/OLI/TIRS images and perform preprocessing, including
atmospheric correction, radiometric calibration and image mosaic (see Section 2.1). Second,
we derive four remote sensing indicators: humidity, greenness, dryness and heat. Third,
we calculate the PCA components, obtain PC1 and use the entropy method to calculate
the results that are used for the construction of the IRSEI. Finally, the characteristics of the
spatial and temporal changes in the ecological quality of Wuhan over the past 25 years are
determined, and the spatial heterogeneity of the city is analyzed.

 

Figure 2. Overall methodological framework.
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2.2.2. Calculation of Component Indices

• Humidity index (Iwet)

The Kauth–Thomas transform (also called the tasseled hat transform) is a linear
transformation method based on multispectral imaging [26,27]. This method is widely
used in ecological monitoring for data compression and removal of redundancy. The
moisture component obtained by this transform reflects moisture information in the soil
and vegetation. A low humidity value indicates severe land degradation, low vegetation
cover and a poor ecological environment. A high humidity value indicates sufficient soil
moisture, rich surface vegetation cover and a good ecological environment.

In this study, Iwet was chosen as the humidity index [28], which is expressed as land
surface moisture and is generated from Landsat TM, ETM+ and OLI image reflectance
using Equations (1)–(3) [10,23,29]:

IwetTM = 0.0315ρ1 + 0.2021ρ2 + 0.3102ρ3 + 0.1594ρ4 − 0.6806ρ5 − 0.6109ρ7 (1)

IwetETM+ = 0.2626ρ1 + 0.2141ρ2 + 0.0926ρ3 + 0.0656ρ4 − 0.7629ρ5 − 0.5388ρ7 (2)

IwetOLI = 0.1511ρ1 + 0.1973ρ2 + 0.3283ρ3 + 0.3407ρ4 − 0.7117ρ5 − 0.4559ρ7 (3)

where ρ1, ρ2, ρ3, ρ4, ρ5 and ρ7 represent reflectance in bands 1, 2, 3, 4, 5 and 7 of Landsat
TM/ETM+ images and reflectance in bands 2, 3, 4, 5, 6 and 7 of Landsat OLI data, respectively.

• Greenness index (Indvi)

The normalized difference vegetation index (NDVI) is often used to monitor vegeta-
tion growth [30] and directly reflects the quality of the regional ecological environment.
This index is used in the classification of regional land cover, environmental change and
vegetation. The NDVI greenness index is computed as follows [31]:

Indvi = (ρ4 − ρ3)/(ρ4 + ρ3) (4)

where ρ4 represents the reflectance of the near-infrared band and ρ3 represents the re-
flectance of the red band.

• Heat index (Iheat)

Land surface temperature (LST) refers to heat, which is related closely to vegetation
growth, crop yield, surface water circulation, urbanization, other natural phenomena and
processes and human activities [32]. LST can be used as a heat index to reflect the surface
ecological environment. Several algorithms use thermal infrared technology to retrieve
LST, including the atmospheric correction, single-window and single-channel algorithms.
Comparison between LST retrieval results obtained using the atmospheric correction
method and the actual measurement of LST indicates that the error is within 1 ◦C, thereby
meeting research accuracy requirements. LST is generated using Equations (5)–(9) [33,34]:

L = gain × DN + bias (5)

Tb = K2/ln(K1/L + 1) (6)

LST = Tb/{1 + [(λTb)/ρ]lnε} − 273.15 (7)

where DN is the pixel gray value, gain and bias are thermal infrared band excursions and L
is the radiation brightness value.

Equation (7) is a simplified form of the inverse function of Planck’s formula, with
K1 and K2 being the calibration parameters. All of the parameter values are available
from the metadata file (MTL) of the satellite data. ε is the specific infrared emissivity and
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is calculated with the method proposed by Min [35]. λ is the central wavelength of the
thermal infrared band and ρ = s 1.438 10−2 mK.⎧⎪⎪⎨

⎪⎪⎩
∈water = 0.995 (NDVI ≤ 0)

∈building = 0.9589 + 0.086 × Fveg − 0.0671 × F2
veg (0 < NDVI < 0.7)

∈natural = 0.9625 + 0.0614 × Fveg − 0.0461 × F2
veg (NDVI ≥ 0.7)

(8)

Vegetation coverage (Fveg) refers to the ratio (%) of the vertical projection area of
vegetation on the ground to the total statistical area. Pveg is based on Landsat NDVI and
adopts the dichotomy model of mixed pixels [36]. The calculation formula is as follows [37]:

Pveg =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(9)

where NDVI is the normalized vegetation index, NDVIsoil is the normalized vegetation
index value of bare land and NDVIveg is the normalized vegetation index value of complete
vegetation coverage. NDVIsoil and NDVIveg were selected as NDVImax and NDVImin with
a confidence level of more than 95%.

• Dryness index (Idry)

The dryness index refers to the quantification of soil desiccation, which is a condition
detrimental to the ecological environment. As most urban construction land is located in
our study area, the dryness index can be represented by combining the bare soil index (SI)
and the built-up index (IBI) into a normalized building–bare-soil index (NDBSI) [29]. We
proposed extracting the bare soil and building area by setting an appropriate threshold
and, subsequently, calculating the NDBSI as a weighted average and employing the area
ratio as the weight.

NDBSI = (SI + IBI)/2 (10)

SI = [(ρ5 + ρ3)− (ρ4 + ρ1)]/[(ρ5 + ρ3) + (ρ4 + ρ1)] (11)

IBI =

[
2ρ5

ρ5+ρ4 −
(

ρ4
ρ4+ρ3 + ρ2

ρ2+ρ5

)]
[

2ρ5
ρ5+ρ4 +

(
ρ4

ρ4+ρ3 + ρ2
ρ2+ρ5

)] (12)

where ρ1, ρ2, ρ3, ρ4 and ρ5 have been defined earlier in the context of the humidity index.

2.2.3. Water Mask and Standardization

The humidity index reflects the moisture of the vegetation and soil. The area covered
by water in the study area occupies a large proportion of the Iwet, which reduces the
advantage of vegetation and soil in Iwet. Therefore, the calculated Iwet is not a true reflection
of the vegetation and soil moisture, and it is necessary to mask the water bodies present in
the study area. We use a modified normalized difference water index (MNDWI) to mask
these water bodies. The formula is:

MNDWI = (ρGreen − ρMIR)/(ρGreen + ρMIR) (13)

where ρGreen represents the reflectance of the near-infrared band and ρMIR represents the
reflectance of the red band.

2.2.4. Construction of the Improved Remote Sensing Ecological Index (IRSEI)
Evaluation Model

First, we obtain the primary remote sensing ecological index based on PCA. The four
indices are standardized to the range [0–1] and PCA is used to combine these indices. PCA1
is obtained from the four RSEIs to build a preliminary assessment model. Generally, the
first PCA collects most of the information on the four indicators, and PC1 can be used to
represent the characteristics of the regional ecological environment. Therefore, we use only
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one PC in further analyses. To facilitate index measurement and comparison, the initial
RSEI is standardized, as follows:

RSEIPCA = 1 − f
(

Iwet , Indvi , Iheat , Idry

)
(14)

f = ∑4
i=1(ei × PC1) (15)

where Indvi represents the green component; Iwet represents the humidity component; Iheat
represents heat; Idry represents dryness; and PC1 is the first principal component. The
obtained RSEI value is within the [0–1] range. ei is the characteristic value contribution
rate of the index corresponding to PC1. The closer RSEI is to 1, the better the UEQ of the
region. The first principal component analysis index values are listed in Table 2. A detailed
description of the calculation steps is available in the relevant literature [11,22,24,29].

Table 2. Principal component analysis index and eigenvalue.

Year PC1 Eigenvalue Contribution/% Accumulation/%

1995 NDVI 0.0441 88.6768 88.6768
WET 0.0048 9.5508 98.2276

NDBSI 0.0002 0.4187 98.6463
LST 0.0006 1.3537 100

2005 NDVI 0.0464 81.3557 81.3557
WET 0.0071 12.5046 93.8603

NDBSI 0.0003 0.5021 94.3624
LST 0.0032 5.6376 100

2015 NDVI 0.0476 96.3065 96.3065
WET 0.0012 2.3826 98.6891

NDBSI 0.0001 0.131 98.8201
LST 0.0006 1.1799 100

2020 NDVI 0.04 97.4195 97.4195
WET 0.0007 1.7021 99.1216

NDBSI 0.0001 0.035 99.1566
LST 0.0003 0.8434 100

Second, we introduce the entropy value method, which determines the weight of each
index according to the information provided by the observed values of each index [38,39].
The evaluation index system includes N indices (NDVI, WET, NDBSI and LST). This
is a problem that consists of m samples (cell) and uses N indicators for comprehensive
evaluation. The initial data matrix A of the evaluation system is formed and Xij is the value
in i cell of the j remote sensing ecological indicator. The detailed procedures of the entropy
method are described as follows [22,38,40]:

A =

⎛
⎜⎝

X11 · · · X1m
...

...
...

Xn1 · · · Xnm

⎞
⎟⎠

n×m

1. Proportion of the value in i cell of the indicator j.

Pij =
Xij

∑n
i=1 Xij

(j = 1, 2, · · ·m) (16)

2. Entropy value of the j th index.

ej = − 1
lnm

× ∑n
i=1 Pijln(Pij) k > 0, ej ≥ 0, 0 ≤ ej ≤ 1
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3. Difference coefficient of the first index.

For the j th index, the more significant the difference is in the index value Xij, the
greater the effect on the scheme evaluation and the smaller the entropy value.

gj = 1 − ej

The larger the gj value, the more critical the indicator.

4. Weight.

Wj =
gj

∑m
j=1 gj

, j = 1, 2 · · ·m (17)

5. Ecological index score based on the entropy method.

RSEIEW = ∑m
j=1 Wj × Pij (i = 1, 2, · · · n) (18)

The PCA effectively removes redundant information between bands and compresses
multiband image information into a few independent bands that are more effective than
the original band. The entropy method can effectively remove deficiencies caused by a lack
of PCA information. The weights for all of the indicators are listed in Table 3.

Table 3. Weights of indicators.

Year Indicators Effect Direction Weight

1995

Humidity index + 0.7463
Greenness index + 0.0144

Heat index - 0.1315
Dryness index - 0.1078

2005

Humidity index + 0.7918
Greenness index + 0.0538

Heat index - 0.1201
Dryness index - 0.0343

2015

Humidity index + 0.734
Greenness index + 0.0048

Heat index - 0.1465
Dryness index - 0.1147

2020

Humidity index + 0.9401
Greenness index + 0.003

Heat index - 0.0004
Dryness index - 0.0565

Finally, the IRSEI integrates humidity, greenness, heat and dryness through PCA and
EW, which is calculated according to Equation (19):

IRSEI = (RSEIPCA + RSEIEW)/2 (19)

In this formula, RSEIPCA is the main component, RSEIEW is the weighted result of
the entropy method and the final IRSEI is calculated as their arithmetic average. The IRSEI
for each year has to be standardized to accurately compare the remote sensing images of
different time frames. The closer IRSEI is to 1, the better the UEQ (and vice versa). The
IRSEI for the four years is classified into five groups employing the ArcGIS software (Esri,
USA). Referring to previous studies [22–24,29,41], these groups are labeled “Excellent,
Good, Moderate, Fair, and Poor” and they facilitate comparisons across the study area
(Table 4).
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Table 4. Grades of ecological indicators.

Grades
I II III IV V

Excellent Good Moderate Fair Poor

IRSEI indicator [0.8–1.0] [0.6–0.8] [0.4–0.6] [0.2–0.4] [0–0.2]

2.2.5. Spatial Autocorrelation Analysis of IRSEI

Global spatial autocorrelation (SA) measures the average correlation, spatial distri-
bution pattern and significance of all of the objects in the entire study area. SA visualizes
spatial aggregations and exceptions to the IRSEI. The Moran’s index is commonly used to
calculate SA [42]. The main calculation indices for spatial autocorrelation are the global
Moran’s index and the local Moran’s index. We analyze both the “global” spatial cluster-
ing and the “local” spatial clustering of the IRSEI. The formula for calculating the global
Moran’s index is:

I =
∑n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)
S2 × ∑n

i=1 ∑n
j=1 Wij

(SA) (20)

where n is the total number of grid cells in the study area (500 m × 500 m); Wij represents
the spatial weight of elements i and j; xi and xj are the attribute values of cell i and cell j,
respectively; x represents the average value of the attributes across all cells; and S2 is the
sample variance.

The value of the global Moran index I varies between −1 and 1, where I > 0 indicates
positive SA, i.e., a high value corresponds to high-value clusters, whereas a low value
corresponds to low-value clusters. The closer I is to 1, the smaller the overall spatial
difference. When I < 0, there is negative SA, i.e., there is significant spatial difference
between a cell and its surrounding cells. The closer I is to −1, the greater the overall spatial
difference. When I = 0, there is no SA.

Due to the fact that the global Moran’s index describes the overall aggregation situa-
tion, it cannot accurately determine where the place of aggregation is located and is unable
to indicate the hot spots and cold spots of the entire region. Accordingly, we use the local
indicator of SA to measure local SA and determine hot and cold spots. The formula for the
local Moran’s Ii for cell i is:

Ii =
(xi − x)

S2 ∑n
j=1 Wij

(
xj − x

)
(21)

When the local Moran index Ii > 0, the spatial difference between the cell and its
surrounding cells is minor. When the local Moran index Ii < 0, the spatial difference
between cell i and its surrounding cells is significant. When the local Moran index Ii = 0,
there is no spatial difference between cell i and its surrounding cells. In this study, we use
the software GeoDA to calculate and obtain the global and local Moran’s indices.

3. Results

3.1. Attributing Factors

A comparison of the spatial distributions of the four ecological factors in the study area
(Figure 3) shows high levels of land surface moisture close to and alongside the Yangtze
River, which extends in the central part of Wuhan from west to east. The NDVI is high
on the northeast side, along the Yangtze and Han rivers, the central part of Wuhan and
in patches in the south and east. Comparing the NDVI, LST and moisture maps shows
that moderate temperature and moisture are the most favorable conditions for vegetation
growth, whereas extreme weather conditions can damage plant vitality. The temperature
and moisture conditions are moderate in the study area and the NDVI is remarkably high.
A high LST is detected in the southern part of Wuhan, with some patches in the north and
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east. A moderate LST is detected in the central part of Wuhan. The NDBSI does not display
much variation, as most of the study area is covered by agricultural land (Figure 3).

 

Figure 3. Spatial distribution of ecological indicators, 1995–2020. (a–d) indicators 1995, (e–h) indica-
tors 2005, (i–l) indicators 2015, (m–p) indicators 2020.

To test the representativeness of the index IRSEI, we calculate the correlation coef-
ficients among IRSEI, WET, NDVI, NDSI and LST in the same period (Table S1, Supple-
mentary Materials), and test the applicability of the model through average correlations.
From 1995 to 2015, the average correlation of IRSEI with the other variables is the highest,
ranging from 0.60 to 0.70. The mean correlation of IRSEI over this period was 0.64, which
indicates that IRSEI integrates most of the information embodied in all four indicators. It is
more representative than any single indicator and can better reflect the ecological situation.
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3.2. Spatial and Temporal Distribution of UEQ in Wuhan

Generally, higher IRSEI values are associated with higher levels of greenness and
moisture, whereas lower IRSEI values are directly proportional to dryness and temperature.
This implies that high IRSEI values represent positive ecological conditions.

As shown in Figure 4, the IRSEI increases from 0.79 to 0.98 from 2010 to 2015, indicating
improved ecological conditions. However, from the second half of 2015 up to 2020, its
value drops to 0.82, indicating deterioration. Comparing the values from 2010 to 2020
indicates overall improved conditions, as the IRSEI increases from 0.79 to 0.82. However,
the maximum values (1.09, 1.03 and 0.96) decline continuously, indicating that high-quality
IRSEI conditions are declining continuously. Further, low-quality IRSEI conditions improve
in the first half of the study period (1995 to 2005); however, in the second half (2005 to 2020),
these conditions decline and reach their previous stage. Our findings also show maximal
variation in the median IRSEI values, i.e., indicating the recovery of favorable conditions
(moderate to high temperature, moderate to low moisture and higher vegetation) for all
factors during the study period.

Figure 4. Changing trend of the IRSEI in each district of Wuhan from 1995 to 2020.

The mean IRSEI value and the area and percentage of each evaluation grade in Wuhan
from 1995 to 2020 are displayed on Figures 4 and 5. Overall, the proportion of areas
with average and good IRSEI ratings is the highest during the study period (>57%). The
proportions of average and above average regions are 82.33%, 87.14%, 74.21% and 57.34%,
indicating that the ecological environment of Wuhan was unstable from 1995 to 2020,
with ecological conditions first improving and subsequently deteriorating. The UEQ of
the Xinzhou, Hanyang, Qiaokou, Huangpi and Caidian districts show the most obvious
decline, with reduction rates of 32.32%, 30.18%, 27.84%, 27.67% and 27.24%, respectively.

From the perspective of a single year (see Table 5), the area share of good ecological
environment in 1995 was the highest, reaching 43.67% of the total area. The area share of
poor ecological environment was the lowest in 1995, comprising an area of only 371 km2, or
less than 5% of the total area. The share of poor ecological environment was approximately
12% of the total area. The area with a good ecological environment rating in 2005 was
larger than that of 1995 and accounted for the highest proportion (45.57%), comprising
an area of 3494 km2. The percentage of area rated excellent was the smallest (6.23%)
after 1995. In 2020, the poor ecological environment generally accounted for the highest
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proportion (38.92%), comprising an area of 2984 km2. The good ecological environment
rating accounted for only 18.32%.

Figure 5. Changing area proportion of the IRSEI in Wuhan from 1995 to 2020.

Table 5. Area and proportion of the IRSEI over 1995 to 2020 in Wuhan city (unit: km2, %).

IRSEI
1995 2005 2015 2020

Area Proportion Area Proportion Area Proportion Area Proportion

0–0.2 371 4.84% 344 4.49% 294 3.84% 1051 13.71%
0.2–0.4 981 12.80% 643 8.38% 1684 21.96% 2221 28.97%
0.4–0.6 2486 32.43% 1725 22.49% 2764 36.05% 2984 38.92%
0.6–0.8 3348 43.67% 3494 45.57% 2926 38.16% 1404 18.32%
0.8–1.0 478 6.23% 1463 19.08% 0 0.00% 8 0.10%

The changing trend during the research period shows that the mean IRSEI values in
1995, 2005, 2015 and 2020 decreased year by year (0.60, 0.67, 0.58 and 0.47, respectively).
The declining values indicate that the ecological environment of Wuhan has deteriorated
continuously, probably owing to the rapid economic development of the city. According
to the Wuhan Municipal Bureau of Statistics, the gross domestic product (GDP) increased
from CNY 3.991 billion in 1978 to CNY 134.10 billion in 2017. The permanent resident
population increased from 8.58 million people in 2004 to 10.33 million people in 2014.
Ecological problems ascribed to human activities, such as vegetation damage and soil
pollution, have become increasingly prominent.

As governments and social organizations have become increasingly aware of envi-
ronmental protection, Wuhan has strengthened its enforcement of ecologically relevant
laws and regulations, effectively halting the trend of environmental deterioration. This
is reflected in the varying ecological evaluation grades. The differences in rating reflect
an increase in area from 643 km2 in 2005 to 1684 km2 in 2015 (area expansion of 14%) to
2221 km2 in 2020 (area expansion of 7%).

The spatial distribution (Table 6 and Figure 6) shows that areas with a good ecological
environment are distributed mainly in the surrounding urban areas of Wuhan. These
areas have a relatively weak economy and the land-use types are mainly cultivated land
and woodland, with rich vegetation and high biodiversity levels. The areas with poor
ecological environments are concentrated in Hongshan, Hanyang, Wuchang and Qingshan.
According to the different functions of each administrative region of Wuhan, Hongshan
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is based mainly on the education industry. Several colleges and universities are located
in the area, and it is densely populated. Qingshan, Hanyang and Wuchang are primarily
industrial areas. Heavy industrial companies, such as Wuhan Iron & Steel Co., Ltd.,
Wushi Chemical Co., Ltd. and Dongfeng Motor Co., Ltd., are located in these areas.
Industrial production and human economic activities have a direct detrimental effect on
the environment of these areas.

Figure 6. Grading map of UEQ from 1995 to 2020 in Wuhan city. (a) IRSEI 1995, (b) IRSEI 2005, (c)
IRSEI 2015 and (d) IRSEI 2020.

Table 6. Area statistics of UEQ evaluation grade from 1995 to 2020 in Wuhan city (unit: km2, %).

IRSEI 1995 2005 2015 2020

Area Proportion Area Proportion Area Proportion Area Proportion

Caidian

0–0.2 33.34 3.41 44.30 4.53 43.34 4.43 159.00 16.25
0.2–0.4 182.83 18.70 73.39 7.50 204.01 20.85 302.66 30.94
0.4–0.6 318.68 32.59 115.98 11.86 301.04 30.77 356.95 36.49
0.6–0.8 394.58 40.36 315.74 32.28 429.84 43.94 159.47 16.30
0.8–1.0 48.29 4.94 428.85 43.84 0.03 0.00 0.26 0.03

Dongxihu

0–0.2 26.76 5.63 26.11 5.49 6.62 1.39 93.09 19.55
0.2–0.4 107.11 22.52 58.36 12.26 161.61 33.96 160.44 33.70
0.4–0.6 194.95 40.98 114.47 24.05 191.74 40.29 172.55 36.25
0.6–0.8 144.37 30.35 176.46 37.08 115.93 24.36 49.77 10.45
0.8–1.0 2.48 0.52 100.51 21.12 0.01 0.00 0.22 0.05
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Table 6. Cont.

IRSEI 1995 2005 2015 2020

Area Proportion Area Proportion Area Proportion Area Proportion

Hannan

0–0.2 12.66 4.91 9.69 3.76 13.55 5.26 42.96 16.68
0.2–0.4 42.45 16.45 15.87 6.16 55.44 21.51 83.13 32.28
0.4–0.6 111.99 43.40 31.36 12.17 88.47 34.33 97.70 37.93
0.6–0.8 81.25 31.49 94.55 36.69 100.24 38.90 33.61 13.05
0.8–1.0 9.70 3.76 106.23 41.22 0.00 0.00 0.17 0.07

Hanyang

0–0.2 9.14 9.17 11.42 11.46 5.12 5.14 31.27 31.40
0.2–0.4 31.18 31.30 27.49 27.59 52.91 53.10 36.47 36.63
0.4–0.6 35.36 35.48 27.14 27.24 28.77 28.87 24.28 24.39
0.6–0.8 23.74 23.83 27.28 27.38 12.84 12.89 7.53 7.57
0.8–1.0 0.22 0.22 6.30 6.32 0.00 0.00 0.01 0.01

Hongshan

0–0.2 42.60 8.93 41.29 8.66 24.48 5.13 104.50 21.91
0.2–0.4 93.16 19.53 81.07 16.99 158.38 33.20 143.26 30.04
0.4–0.6 184.41 38.66 129.99 27.25 159.77 33.49 147.52 30.93
0.6–0.8 151.94 31.85 181.63 38.07 134.42 28.18 81.66 17.12
0.8–1.0 4.88 1.02 43.07 9.03 0.01 0.00 0.02 0.01

Huangpi

0–0.2 77.87 3.67 63.18 2.97 86.94 4.09 216.05 10.17
0.2–0.4 122.09 5.75 105.77 4.98 368.63 17.35 483.26 22.74
0.4–0.6 488.82 23.02 595.10 28.01 865.43 40.74 960.08 45.19
0.6–0.8 1187.44 55.92 1173.85 55.25 803.40 37.82 462.81 21.78
0.8–1.0 247.18 11.64 186.56 8.78 0.07 0.00 2.57 0.12

Jiangan

0–0.2 17.08 23.72 16.66 23.21 2.93 4.08 22.01 30.71
0.2–0.4 23.97 33.28 28.60 39.84 40.42 56.30 27.62 38.53
0.4–0.6 20.21 28.06 18.12 25.23 22.22 30.95 16.14 22.51
0.6–0.8 10.70 14.85 7.76 10.81 6.22 8.66 5.91 8.24
0.8–1.0 0.06 0.09 0.65 0.91 0.00 0.00 0.00 0.00

Jianghan

0–0.2 9.42 34.28 9.08 33.07 1.13 4.10 10.69 38.95
0.2–0.4 11.41 41.50 12.48 45.46 18.63 67.85 11.69 42.58
0.4–0.6 4.84 17.60 4.16 15.16 6.54 23.83 4.17 15.20
0.6–0.8 1.82 6.61 1.61 5.86 1.16 4.22 0.90 3.26
0.8–1.0 0.00 0.01 0.12 0.45 0.00 0.00 0.00 0.00

Jiangxia

0–0.2 77.13 4.60 58.66 3.50 68.87 4.11 173.97 10.37
0.2–0.4 153.61 9.16 92.52 5.52 285.30 17.01 368.37 21.96
0.4–0.6 581.14 34.66 283.28 16.89 429.99 25.64 643.15 38.35
0.6–0.8 757.98 45.21 806.03 48.06 892.77 53.23 487.53 29.07
0.8–1.0 106.69 6.36 436.59 26.03 0.16 0.01 4.21 0.25

Qiaokou

0–0.2 6.98 18.06 8.96 23.25 1.63 4.23 14.54 37.70
0.2–0.4 16.31 42.17 16.03 41.61 24.51 63.61 15.28 39.61
0.4–0.6 8.19 21.19 8.91 23.13 10.09 26.20 7.36 19.08
0.6–0.8 6.93 17.92 3.99 10.36 2.30 5.97 1.39 3.61
0.8–1.0 0.25 0.66 0.64 1.66 0.00 0.00 0.00 0.00

Qingshan

0–0.2 10.40 20.39 8.53 16.66 1.58 3.09 15.73 30.69
0.2–0.4 23.10 45.31 20.76 40.55 25.24 49.30 20.53 40.06
0.4–0.6 12.99 25.47 15.01 29.32 18.78 36.68 11.98 23.37
0.6–0.8 4.38 8.59 6.19 12.09 5.60 10.93 3.02 5.89
0.8–1.0 0.12 0.24 0.71 1.39 0.00 0.00 0.00 0.00

Wuchang

0–0.2 10.64 20.73 11.20 21.70 3.01 5.83 13.72 26.48
0.2–0.4 23.56 45.91 22.57 43.72 24.67 47.78 18.84 36.37
0.4–0.6 10.70 20.85 10.82 20.97 16.45 31.86 12.13 23.41
0.6–0.8 6.25 12.17 5.90 11.44 7.50 14.53 7.11 13.72
0.8–1.0 0.18 0.35 1.12 2.18 0.00 0.00 0.00 0.01

Xinzhou

0–0.2 37.12 2.78 34.87 2.61 35.06 2.62 153.92 11.51
0.2–0.4 150.44 11.26 87.89 6.57 264.28 19.76 549.54 41.09
0.4–0.6 514.20 38.48 370.17 27.68 624.33 46.69 530.22 39.65
0.6–0.8 577.11 43.18 692.87 51.82 413.46 30.92 103.51 7.74
0.8–1.0 57.51 4.30 151.36 11.32 0.03 0.00 0.18 0.01

3.3. Dynamic Monitoring of UEQ in Wuhan

Based on the IRSEI grade classification, the detected changes were divided further
into nine levels and seven classes. The range for the levels of detected changes was −4 to
+4, with a positive value indicating that the UEQ had improved, 0 indicating no change
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and a negative value indicating deterioration. For the classes with no detected changes,
level 0 was classified as unchanged, level −4 as significantly worse and levels −2 and −3
as worse; level −1 as slightly worse; level 1 as slightly better; levels 2 and 3 as better; and
level 4 as significantly better (Table 7).

Table 7. Change in the ecological index grade.

Change Grade Level Change

Significantly worse −4 (Excellent to Poor)

Obviously worse −3 (Excellent to Fair/Good to Poor)
−2 (Excellent to Moderate/Good to Fair/Moderate to Poor)

Slightly worse −1 (Excellent to Good/Good to Moderate/Moderate to Fair/Fair to Poor)
No change 0 (no level change, eg. Excellent to Excellent)

Slightly better 1 (Above, and vice versa)

Obviously better 2 (Above, and vice versa)
3 (Above, and vice versa)

Significantly better 4 (Above, and vice versa)

Table 8 presents the ecological changes in Wuhan from 1995 to 2020. The size of the
area representing both UEQ and ecological deterioration (obviously worse and slightly
worse) is 3636 km2, accounting for the highest proportion (39.44%) over 2015–2020. The size
of the area with the same UEQ (no change) is 2984 km2, accounting for 35.56% of the total
area. Among the areas with deteriorating UEQ, most (69.51%) deteriorated by one grade.
Deterioration in UEQ accounted for 25.60%. Most of the areas showing improved environ-
mental conditions improved by one grade, accounting for 79.41% of the entire improved
area. The areas improving by two grades account for 18%. The areas representing levels 3
or 4 are relatively small, indicating gradual changes. The areas with significant changes
are related to direct economic activities, such as the transformation of cultivated land and
woodland into construction and industrial land. The spatial distribution of UEQ (Figure 7)
shows that the deteriorating areas are located mainly around cities and most water bodies.
The deterioration of the ecological environment around water bodies is related to a leakage
of urban domestic sewage and enterprise wastewater and a rise in aquaculture in recent
years. Moreover, the areas with a deteriorating ecological environment are expanding
along both sides of the Yangtze and Han rivers. Except for the water area, the UEQ in
the central metropolitan area remains mainly unchanged and several areas show signs of
improvement. This result indicates that environmental governance in the main urban area
of Wuhan has played a positive role in recent years.

Table 8. Change in the ecological index grade from 1995 to 2020.

Change Grade
1995–2005 2005–2015 2015–2020

Area Percentage Area Percentage Area Percentage

Significantly worse 3 0.04% 20 0.26% 0 0.00%
Obviously worse 373 4.86% 1299 17.11% 981 12.85%

Slightly worse 1157 15.07% 2644 34.85% 2655 34.76%
No change 2952 38.45% 2634 34.70% 2984 39.08%

Slightly better 2165 28.20% 815 10.74% 816 10.69%
Obviously better 1008 13.13% 177 2.33% 199 2.61%

Significantly better 20 0.26% 0 0.00% 0 0.00%
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Figure 7. Spatial transfer distributions of the ecological levels of the IRSEI in Wuhan from 1995 to 2020.

3.4. Spatial Autocorrelation Analysis

We explore the spatial autocorrelation (SA) of the IRSEI at a grid cell scale of 500 m × 500 m
and our results indicate the existence of SA. The Moran’s I was 0.568 in 1995, and 0.535 in
2020. All four IRSEI maps (1995, 2005, 2015 and 2020) display an extremely low probability
(p-value < 0.01) of completely random spatial distribution. Therefore, the statistical sig-
nificance test shows that SA exists for all of the ecological factors. The IRSEI increased in
places where spatial distribution was favorable to the UEQ. In 1995, high-value clustering
of the IRSEI in Wuhan was distributed mainly in the south and north of the study area,
whereas low-value clustering was concentrated in the middle of the study area. In 2005,
high IRSEI values started gathering gradually in the southern region, and low IRSEI values
became more concentrated in the clustering distribution. By 2015, the high/high clustering
and low/low clustering of the IRSEI in the study area became more dispersed and tended
to spread in every direction. In 2020, low/low clusters had spread from the middle to
the east and west, whereas high/high clusters were concentrated mainly in the south and
north of Wuhan City.

The Moran’s I scatter graph is divided into four quadrants, corresponding to four
different spatial distribution types (Figure 8). The first quadrant represents high/high
clustering, the second quadrant low value and high-value aggregation, the third quadrant
low/low aggregation and the fourth quadrant high-value and low-value aggregation. The
IRSEI of Wuhan is concentrated mainly in the first and third quadrants. This result indicates
that the IRSEI spatial distribution in Wuhan represents positive spatial autocorrelation, and
high IRSEI agglomeration zones are mainly distributed in outer suburban areas, mainly in
the north and southeast Wuhan.
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Figure 8. Spatial correlation and Moran index scatterplot of IRSEI from 1995 to 2020 in Wuhan
city. (a) SA with 1995, (b) SA with 2005, (c) SA with 2015 and (d) SA with 2020. (Note:
SA—Spatial autocorrelation).

4. Discussion

4.1. Literature, Policy and Practice

We have reviewed previous studies and demonstrated that it is feasible to evaluate
the quality of the urban ecological environment through remote sensing. This research
proposes a feasible method. Other remote sensing images could also have been used as data
in this research, such as Tiangong-2 WIS images [11]. In terms of method improvement, we
mainly improved the integration of quantitative factors. A related similar index, RSUSEI,
has primarily increased remote sensing ecological factors by adding the impervious surface
cover (ISC) [15]. ISC is also one of the most important factors that distinguish different
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types of land use/land cover characteristics in urban environments, and has a strong impact
on UEQ. However, in our study we also consider the dryness index (NDBSI), the bare soil
index (SI), the building index (IBI) and the normalized buildings–bare-soil index. However,
there are strong correlations between the impervious surface, bare soil and building indices.
Previous studies have found that the relationship between ISC and LST has the form of
an exponential function, rather than a simple linear function, as commonly believed [43].
This exponential relationship has been confirmed by many subsequent studies [44,45]. Our
IRSEI index takes into account the bare soil, building index and surface temperature. We
suggest that the correlations of remote sensing ecological indicators affecting the regional
ecological environment should be introduced into comprehensive indicators, or different
indicators should be set according to the characteristics of the study region.

There are few high-quality ecological environment patches in Wuhan (IRSEI > 0.8),
with close to zero over the past five years, and most of the patches are in the center of the
ecological environment. Therefore, we propose a policy whereby Wuhan would focus on
protecting forest land and gardens, build high-quality ecological corridors and coordinate
the management of rivers in the future, so as to guide sustainable urban development
and achieve sustainable development goals (such as SDG 11, sustainable cities and com-
munities). Lake and wetland protection and ecological restoration and management will
optimize the pattern of ecological security. Further analyses of the results indicate that there
was a negative correlation between LSI, NDBSI and urban ecological quality. The ecological
environment in areas with a high surface temperature, such as the Wuhan downtown
area and coastal area around the Yangtze River, has tended to deteriorate; however, the
humidity indices in these areas were also relatively high, which is conducive to ecological
protection. Low vegetation index values in the central urban area also affect the quality of
the ecological environment of Wuhan to a certain extent. The IRSEI can macro-evaluate
the quality of the regional ecological environment, which is more convenient and efficient.
In the future, higher precision can be introduced at the block level. Data, such as Google
Street View data, could be used with machine learning algorithms to further identify the
proportion of regional urban green space, trees, etc., and improve the accuracy of ecological
environment assessment. The index has a high ability to distinguish between different
land cover uses. The framework can also be easily extended to a global scale or to map
other gridded socio-economic variables (such as GDP and population) to monitor and
assess progress towards the SDGs [25]. The assessment and modelling of uses is critical to
supporting sustainability assessment in achieving Sustainable Development Goals (SDGs),
such as sustainable cities and communities. Therefore, IRSEI can be used to assess the
spatial and temporal sustainability of cities.

4.2. Analysis of the Factors Affecting the UEQ

The regression least squares method (OLS) can be used to quantitatively describe
the relationship between the ecological index and natural, economic and social factors
in Wuhan. The data include temperature, precipitation, elevation, slope and DMSP as
explanatory variables. The night light variable reflects the human footprint and fundamen-
tally affects the urban ecological environment. Impervious surfaces and roads and a high
population density are not conducive to UEQ. The regression coefficients represent the
contribution of six independent variables to the dependent variable. The regression coeffi-
cients of precipitation and elevation are equal to 0.522 and 0.441, respectively, indicating
that precipitation and elevation positively contribute to the IRSEI.

In contrast, the regression coefficients of night light and slope are negative, indicating
that these variables contribute negatively to the IRSEI. The night light variable has a
regression coefficient of –0.619, indicating a negative effect. The R2 is 0.901 and p < 0.05,
indicating that climate, precipitation, elevation, slope and night light data account for 90%
of the variations of the IRSEI.
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The regression equation between the IRSEI and the independent variables is as follows:

IRSEI = 0.926 + 0.148 × Temperature + 0.522 × Precipitation + 0.441 × Slope − 0.001 × Elevation
− 0.619 × DMSP (R = 0.901).

4.3. Method Framework and Validation Analysis

Weighting is an important process in the development of aggregated ecological indices
that help promote sustainability. Different weighting methods have different characteristics,
and the method employed could reflect the subjectivity of the decision makers. However,
such methods combined with remote sensing index data can facilitate decisions and reduce
the calculations required.

PCA is widely used in the evaluation of the RSEI. In several studies, the three principal
components obtained after dimensionality reduction did not show any obvious effects
(contribution was below 15%). However, including all of the pixels in extensive data
calculations is a time-consuming process. The RSEI employs a covariance-based (unstan-
dardized) PCA to determine the importance of each indicator involved. The weight of each
indicator can be assigned objectively and automatically based on the load (contribution) of
each indicator to PC1. In this study, we used PCA and EW to comprehensively calculate the
IRSEI. After improvement, the combined method was able to reflect the degree of change
in the index, and the calculation was quick and uncomplicated. The spatial distribution
of the UEQ over the study period (1995–2020) is consistent with the information in the
bulletin on the eco-environmental situation in China in that year. The current, more popular
assessment method is based on habitat quality (HQ) [46–50]. In further research, we intend
to include HQ in this quantitative assessment.

4.4. Limitations and Future Prospects

The proposed UEQ evaluation model is feasible and straightforward, providing a new
idea for ecological protection and comprehensively reflecting the changes in UEQ in Wuhan.
From 1995 to 2020, the UEQ of Wuhan declined overall, probably owing to a combination
of natural factors and human activities. However, the ecological level in the eastern and
southeastern mountainous areas has increased because of the influence of forest resource
protection, desertification land management and the warm and humid climate. In contrast,
the regional ecological level has declined, owing to the overexploitation and overgrazing
of lake resources in the northwest and southwest of Wuhan. The constantly rising levels of
urbanization and construction over nearly 20 years have resulted in a downward trend
in the UEQ. Overall, the ecology of Wuhan is in a fragile state. In 2020, the proportion of
areas with poor ecological environment grades remained high, accounting for 42.68% of
the total area.

In future social and economic development, we should follow the laws of nature, pri-
oritize protection and rationally develop and utilize natural resources. The IRSEI effectively
revealed the spatial distribution of and change in the UEQ in Wuhan, based on remote
sensing images. Although four types of ecological factors closely related to the ecological
environment were selected in the calculation process, the ecological environment is a
complex and comprehensive variable. Areas with a deteriorating ecological environment
tend to be spread along the Yangtze and Han rivers and around the central urban area.
Urban expansion has damaged the ecological environment, and urban planning should
integrate more ecological concepts to promote a harmonious coexistence and sustainable
development for humans, nature and society.

Comprehensive quantitative evaluation requires selecting several impact factors that
reflect the actual situation in the study area. We aimed to conduct the UEQ evaluation by
employing a scientific, objective and feasible method. Nevertheless, choosing the UEQ
evaluation index remains exploratory work. Determining the index weight affects the
accuracy of the evaluation results. Accordingly, expanding research to a more scientific
multifunction performance index system and determining the index weights require further
work. Furthermore, the limited availability of data and a lack of longitudinal comparison
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of urban data have affected the scientific nature of our research results. In addition, our
next step will be exploring how the IRSEI changes at different spatial scales. The rapid
development of cities will inevitably lead to a series of ecological and environmental
problems, and the deterioration of the ecological environment may further affect the
surrounding environment, forming a cycle and harming urban sustainability. This study
also demonstrates that IRSEI is characterized by spatial heterogeneity; that is, the poor UEQ
patches will focus on areas where the ecological environment is poor and the urbanization
is also highest.

5. Conclusions

In this study, the IRSEI model was used to evaluate and monitor the ecological
environment in Wuhan from 1995 to 2020. The IRSEI is an ecological environmental
quality assessment method based on remote sensing technology. The method has many
advantages, such as the ease of obtaining parameters, a large time sequence span and a
wide evaluation range. The UEQ method employing remote sensing technology is feasible
and simple, and provides a new tool for territorial spatial control and spatiotemporal urban
sustainable development. Our proposed UEQ assessment framework can also help to
develop potentially relevant additional sub-indicators, which could help to address one
of the current challenges in SDG monitoring, namely how to implement SDG indicators.
We have implemented the proposed workflow in this study based on an open-source
platform and free satellite data, making it an appealing option that is applicable in almost
all countries.

The main conclusions from the results of this study are:

• The mean IRSEI value in Wuhan decreased annually from 2005 to 2015. The UEQ
continued to decline, mainly because of the rapid economic development of Wuhan,
reduction in vegetation coverage caused by human activities, gradual decrease in lake
area and transformation of the land-use structure caused by urban expansion;

• From the perspective of spatial patterns, the UEQ of the central urban areas, such as
Qingshan, Hanyang, Hongshan and Wuchang, was lower than that of the surrounding
metropolitan areas, such as Huangpi, Jiangxia and Caidian. In terms of time series, the
UEQ in the central city of Wuhan has been mainly unchanged or improved, indicating
that the management of the ecological environment in the central city had achieved
specific results;

• The global Moran’s I value range from 0.535 to 0.592 from 1995 to 2020, respectively,
indicating that the IRSEI spatial distribution displays significant spatial heterogeneity.
This finding indicates that high clustering gradually developed to the edge of the
city, whereas low clustering gradually developed to the center of the city. The spatial
correlation and local index cluster diagram of the IRSEI show that the high points are
located mainly in the Huangpi and Jiangxia districts;

• The UEQ evaluation model constructed in this study is feasible and simple and could
be implemented at no or negligible cost, making it applicable to most regional areas.
Our model, therefore, could be considered a new tool for ecological management and
protection, and for assessing progress toward urban sustainable development.
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Abstract: The sustainable development goals (SDGs) reflect the pursuit of achieving spatial justice.
Both SDG 1.4 and SDG 11.1 reflect a concern for urban services. Life service resources, which are
the new concept proposed by the Chinese government, also call for sustainable development path.
However, few studies have focused on the realization of spatial justice in life service resources.
This paper proposes a two-level, four-step analysis framework composed of quantity, structure,
pattern, and coupling coordination to perceive the spatial justice of life service resources. Based on
remote sensing technology and geographic information science, this paper acquires and analyses
multi-source data including population density, building outlines, point of interests, subway lines,
etc. Furthermore, the case study in downtown Beijing found the following: (1) The total life service
resources are extensive and varying in type; (2) regional differences are evident and low-level
equilibrium and high-level priority development coexist; (3) life service resources are concentrated in
contiguous and multi-centre clusters with a greater north–south than east–west difference; (4) the
overall level of life service resources is low, specifically for “high in the centre and low in the periphery”
and “high in the east and low in the west”. Future management should consider narrowing the
development gap and formulating industry development plans to improve spatial justice. Finally, the
comparison between Beijing and London and more cities in the future needs to consider the urban
development stage, population density, and other aspects.

Keywords: sustainable development path; life service resources; spatial justice; SDGs; GIScience;
Beijing

1. Introduction

The 2030 Agenda for Sustainable Development proposes 169 sustainable development
goals (SDGs) and a new model of “people, planet, prosperity, peace, and partnership”
placing humanism at the core of sustainable development [1]. Specifically, SDG 1.4 states,
“By 2030, ensure that all men and women, in particular the poor and the vulnerable, have
equal rights to economic resources, as well as access to basic services”. SDG 11.1 presents,
“By 2030, ensure access for all to adequate, safe and affordable housing and basic services
and upgrade slums”. These SDGs clearly point to a common issue, namely, that of urban
services. In 2018, the World Urbanization Prospects indicated that, by 2050, the global urban
population would increase by another 2.5 billion, and the urbanisation rate would increase
to 68% [2]. This means that the disparity between the demands of the urban population
and the supply of service facilities will continue to increase. This disparity is reflected in
the supply shortage and the upgrading of service facilities’ types. In other words, with the
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development of urbanisation, the needs of residents are not limited to traditional public
services (e.g., national defence, fire protection, medical treatment, transportation, education)
but have grown to the life service resources (LSRs). This is particularly evident in China.
In 2010, the output value of China’s life service industry was about CNY 3491.05 billion,
accounting for 9% of the gross domestic product (GDP) [3]. This shows that the life service
industry has long become a pillar industry in China, and the considerable demand for life
service facilities cannot be ignored.

To ensure that everyone can share the benefits of urbanisation, the Chinese govern-
ment developed the life service industry to establish a basic service system with “extensive
coverage, rich business forms, and a reasonable layout”. In 2015, China’s State Council
stated that “the improvement of the national income level has expanded the new demand
for life service consumption, the continuous breakthrough of information network technol-
ogy has expanded the new channels of life service consumption, and the implementation
of major national strategies such as new urbanisation has expanded the new space for
life service consumption. People’s demand for life services is increasing, the demand for
service quality is beefing up, and the life service consumption contains huge potential great
potential” [4]. In 2016, China’s Ministry of Commerce, in the Thirteenth Five-Year Plan for
the Development of Residents’ Life Service Industry, define the different types of LSRs for
the first time [5]. In 2019, China’s Ministry of Finance and State Administration of Taxation
jointly issued a document that aimed to reduce life service enterprises’ financial burden [6].
In 2021, China’s National Development and Reform Commission presented several opin-
ions on the problems of “insufficient effective supply, insufficient convenience sharing, and
inadequate implementation of policies” for LSRs [7]. These policies demonstrate China’s
increasing attentiveness to the fair allocation of LSRs.

Existing literature shows that LSRs can impact people’s daily lives in three dimensions:
quantity, structure, and pattern. First, in terms of quantity, insufficient LSRs decrease
residents’ satisfaction and social welfare [8,9]. From the viewpoint that everyone should
meet specific living standards [10], it is unfair that some people do not have access to
the resources necessary to achieve this goal [11]. Second, from the structure dimension,
low-quality LSRs (e.g., fast-food restaurants, tobacco, alcohol, and gambling outlets) tend
to be more prevalent in communities with a low socio-economic status [12–14], resulting in
higher obesity, disease, mortality, and crime rates [15,16]. However, gentrified communities
have more influence and resources for keeping low-quality LSRs out of their areas than
socio-economically disadvantaged communities [12], which may exacerbate social spatial
isolation [17]. Third, from the perspective of patterns, the uneven spatial distribution of
LSRs is reflected in a concentration of areas with large passenger flow, strong road cen-
trality, and traffic accessibility [18–20] and has become a common problem faced by many
cities [9,21]. This not only hinders residents from enjoying life services conveniently [22],
intensifying the spatial deprivation of poor communities and marginal groups [17], but it
also inhibits the healthy development of the urban economy [23]. Fortunately, some studies
have found several important factors affecting the spatial distribution of LSRs, such as
urban planning [12], racism [24], consumption level [25], etc.

Although past studies have focused on characteristics of LSRs in different dimen-
sions [25,26], few have integrated these scattered aspects. More importantly, there is a lack
of a “people-oriented” theoretical basis in the existing studies. Therefore, the optimized
configuration of LSRs failed to return to the goal of meeting human needs in time. Spatial
justice (SJ) theory emphasizes the balanced distribution and equal access to public goods
or services [27,28] and advocates that human beings should have equal access to various
social resources in space [29,30]. We note that this theory seems to be no longer limited to
managing basic public service facilities but has gradually extended to some fields initially
configured only by the market mechanism, such as energy utilization [31,32]. The Chinese
government has only recently proposed LSRs, which have the characteristics of high daily
use frequency and low use price. This indicates that LSRs may be generated with the goal
of making profits; however, in the long run, due to its social resource nature, government
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intervention (especially for socialist countries such as China) and the improvement in
people’s demand level (after meeting basic public services, people hope to improve the
quality of life), the realistic situation and realisation path of LSRs’ SJ should also be studied
in depth.

It is worth noting that the research on SJ is showing a quantitative trend. Usually,
scholars link urban facilities, population, income, and other socioeconomic factors for
analysis. There are three representative approaches. The first is to design new indices.
For example, residents living in the suburbs are forced to incur more commuting costs
than those living in the downtown area. This further leads to differences in affordability
for residents, thereby exacerbating spatial injustice. Thus, some scholars have designed
a new index named H+T, which is the ratio of living costs (housing costs, transportation
costs) to income [33]. The second is to identify key factors. Some scholars have used lots of
methods (literature analysis, group discussions, expert interviews, and questionnaires) to
determine the relevant factors that affect the SJ of public open space. Then, they determine
the importance levels of SJ influencing factors by Exploratory Factor Analysis (EFA) and
Fuzzy Synthetic Evaluation (FSE) methods [34]. The third is to construct complex models
to analyse the drivers of SJ. For instance, one study has assessed the differential impact of
various factors on SJ through Random Forest and SHAP Tree Explainer. It shows that Mean
Commute Time can enhance SJ, while Medical Facilities Count and Food Desert Count
will reduce SJ [35]. In another study, it is revealed by using structural equation modelling
(SEM) that the upward mobility of compact regions is significantly higher than that of
sprawling areas [36]. Consistent with the above-mentioned research, this paper aims to
quantify SJ. However, due to the particularity of the research object (LSR is a new concept
recently proposed by the Chinese government, and it is difficult to find the alternative
data), the paper explores the SJ of LSR from the “distribution perspective”; that is, residents
in different regions can share the same or similar LSRs. As an exploratory study, we look
forward to obtaining more data for in-depth analysis in the future.

To sum up, this paper addresses the following three questions: (1) Why should SJ be
considered when studying LSRs? (2) How should SJ be applied and interpreted for LSRs?
Finally, (3) what strategies should the government use to optimise the allocation of LSRs?
This paper will include a discussion of the specific characteristics of LSRs, explain why SJ
should be considered, and describe the current status of SJ for LSRs. Furthermore, an SJ
evaluation framework will be developed for LSRs that fully integrates the advantages of
big data and geographic information systems (GIS) [37–39]. Using data from downtown
Beijing, China, this paper provides a feasible framework for optimising the allocation of
LSRs that can be used as a reference for other regions.

This paper responds to SDG 1.4 and SDG 11.1 proposed by the United Nations and
uses a variety of geographic information science methods to analyse the optimal spatial
allocation of LSRs in the downtown Beijing. The multi-source data (population density,
building outline, points of interest, subway lines, etc.) and geographic information science
methods (nearest neighbour, kernel density, standard deviation ellipse) used in this paper
reflect the important value of GIScience and remote sensing for the sustainable management
of urban services.

2. Theoretical Analysis Framework

2.1. Why Should SJ Be Considered When Studying LSRs?

LSRs refer to various service activities and services provided to meet the daily needs
of residents and are closely related to living consumption. In 2016, China’s Ministry
of Commerce divided LSRs into eight categories: (1) catering, (2) accommodation, (3)
housekeeping, (4) dyeing, (5) bathing, (6) beauty salons, (7) appliance repairs, and (8)
portrait photography [5]. SJ theory was first used to describe the inequity caused by
insufficient public services in the 1960s [40]. Since then, many scholars have improved
this theory. Henri Lefebvre criticises the opinion that “space is container and field” while
advocating that social space is a product of society [41]. David Harvey proposes the

99



Remote Sens. 2022, 14, 2031

concept of “territory redistribution justice”—the fair, just geographical distribution of social
resources [42]. To condemn space deprivation and exclusion, Edward Soja encourages
marginalised groups to fight for urban rights [43]. At present, SJ is generally regarded as
social equity and justice regarding space rights and the interests of citizens in the urban
field. Specifically, urban residents have the right to equal participation in all urban space
production processes and all kinds of social life; all residents enjoy the benefits provided by
urban life (especially high-quality urban centres); various forms of spatial isolation and
restriction should be prevented; spatial marginalisation of vulnerable groups should be
avoided; and the cultural discrimination and repression of space should be eliminated.

From the perspective of demand, LSRs should be configured based on SJ because
the balanced allocation of LSRs is in line with the goal of SJ. LSRs are closely related
to people’s daily lives and are frequently used service facilities. Abraham Maslow’s
Hierarchy of Needs divides human needs into five levels from bottom to top: physiological,
safety/security, love/belonging, esteem, and self-actualization [44]. Examining SJ and LSRs
from the level of physiological needs, if a person is hungry and needs to eat, they will often
turn to what is readily available (e.g., fast food restaurants, dessert shops, pastry shops).
Furthermore, from the level of safety/security, when people are faced with problems, such
as pipeline blockage or electrical damage, they need to obtain services, such as professional
home appliance maintenance services, which may be determined by the proximity to their
location. Therefore, meeting these types of needs are inseparable from the placement of
LSRs. This also aligns with SJ’s goals, such as enabling them to enjoy the benefits brought by
urban life, especially in high-quality urban centres [30]. In addition, SJ should be considered
when establishing LSRs targeting the multilevel needs of residents, as the spatial injustice
of LSRs will affect the total demand and long-term demand for these services. Compared
to services such as the national defence and police and fire control, people use LSRs more
frequently. Regardless of which LSRs are lacking, residents’ happiness and social stability
will decrease. The differential production of LSRs by capital will eventually result in spatial
plunder or spatial injustice of LSRs, such as spatial isolation, right occupation, or the social
reconstruction of vulnerable groups, which leads to the decline of cities [42].

From the supply perspective, SJ theory can inform the sustainable supply of LSRs. The
used price of LSRs is low so that most people can enjoy life services, including catering,
accommodation, beauty salons, etc. This is in line with the SJ principle of “universal
benefit”. However, maintaining this principle is challenging. Based on the current situation
in China, the main suppliers of LSRs are individuals and enterprises, who are most often
interested in making a profit. Obviously, relying solely on the market mechanism is prone
to uneven space supply of LSRs. This supply issue further restricts people’s space rights.
Hence, in addition to the market, we also need SJ theory to inform the reconstruction of
spaces with diversity and diversification as the core [45].

From the perspective of SJ theory, life services can be regarded as a unique spatial
production. In the process of practice, life services produce not only natural spaces (e.g.,
restaurants, hotels, and dry cleaners) but also social spaces generated by activities (e.g.,
guided use and after-sales service). In short, the space shaped by life services is based
on the unity of natural space and social space. The problems exposed in life services,
such as unreasonable service radius and lack of service items, involve natural space and
social space. The SJ theory provides an “internal basis of legitimacy and rationality” and
“effective value norms” for the balanced allocation of LSRs [30].

2.2. How Should SJ Be Applied and Interpreted for LSRs?

The existing SJ analysis framework is mainly measured from three dimensions: (1)
quantity, (2) structure, and (3) pattern. These dimensions allow us to understand the SJ
of service facilities, but some shortcomings still exist. These include a lack of systematic
perspective, which is not conducive to the formation of a complete understanding of service
facilities; insufficient research content where most of the existing studies have focused on
descriptive analyses of service facilities but failed to further correlate with the needs of
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residents; and a limited effective evaluation strategies with most of the existing studies
using ethnography, investigation, and interview to evaluate SJ, which require high time
and cost resources [46].

To bridge the above gaps, this paper proposes a two-level, four-step analysis frame-
work (Figure 1). The framework is used to achieve the distribution justice of LSRs; that is,
residents in different regions can share the same or similar LSRs. The applicability of this
framework will be described in detail below.

Figure 1. Multidimensional perception of SJ for LSRs.

First, the basic level consists of three dimensions: quantity, structure, and pattern.
Quantity refers to the number of LSRs, where the total amount of service facilities in a
region determines the overall level of residents’ enjoyment of services. If the number of
service facilities is insufficient, residents will not be able to make full use of service facilities,
further resulting in a sense of injustice. This quantitative difference is a crucial reason for the
difference in justice between the rich and the poor [47]. Structure refers to the configuration
of different LSRs, where different service facilities have their own characteristics and can
meet the diverse needs of residents. A balanced service facility structure can meet the
diversified needs of residents. If the structure of LSRs is unreasonable, the multilevel needs
of residents cannot be met simultaneously, which will create negative emotions. Hence,
emphasising a balanced combination of different service facilities has become an essential
trend in modern urban management [48]. Pattern refers to the spatial distribution pattern
of LSRs, which affects residents’ access to services. If certain types of service facilities
are concentrated in one area, it is difficult for residents in other areas to conveniently use
such facilities. This violates the just principle that residents in different regions should
enjoy services equally [49]. The above three dimensions combine quantitative statistical
analysis (descriptive statistics, information entropy) and spatial analysis methods (nearest
neighbour, kernel density, standard deviation ellipse).

Second, the expansion level aims to assess the degree of spatial matching between
the LSRs and population distribution. Previous studies generally believe that the lack
of resources or uneven spatial distribution is an injustice phenomenon [40]. This simple
understanding is easy to accept but difficult to verify. The analysis based on “quantity,
structure, and pattern” provides credible evidence to evaluate SJ, but it needs further

101



Remote Sens. 2022, 14, 2031

development. In other words, it cannot be taken for granted that every resident is satisfied
simply because there are a large number of LSRs. Therefore, LSRs should be associated
with population demand and assessed by their coordinating degrees in space. Using this
type of “coupling coordination”, we can identify the matching degree between each LSRs
type and the local population simultaneously. Urban managers can use the above results to
guide the spatial allocation of LSRs.

This new analysis framework integrates the steps of “quantity, structure, and pattern”
and directly connects LSRs with population demand. There is currently no formal method
for evaluating the SJ of LSRs in China; however, the combination of GIS data and spatial
analysis can be called a strict and comprehensive method [50].

3. Data and Methods

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Area Description

Beijing is the centre of China’s political, cultural, and international exchanges and
technological innovation. It has experienced significant population growth within a limited
area in past decades, creating a massive and diverse demand for LSRs. Therefore, exploring
the quantity, structure, pattern, and population matching of Beijing’s LSRs has important
practical significance.

Influenced by the city’s transforming functional structure, foreign investment, and
migrants, Beijing’s social polarisation and new urban poverty have increased [51]. From
2000 to 2010, Beijing’s industrial structure adjustment and spatial evolution further recon-
structed the urban social space [52]. In 2017, the urban sustainable development goals of an
“intensive and efficient production space, moderate living space, and beautiful ecological
space” were proposed. Downtown Beijing was chosen as the current study area for three
reasons. First, the economy is strong. In 2018, the GDP here accounted for more than 70%
of the city’s GDP. Second, the concentrated population is large. In 2018, the permanent
population here accounted for about 55% of the city. Third, there is variability in the
supply and demand of LSRs. The living needs of different groups of people are intertwined.
According to the Beijing City Master Plan (2016–2035), the downtown area includes the
Dongcheng, Xicheng, Chaoyang, Haidian, Fengtai, and Shijingshan districts (Figure 2).

 
Figure 2. An overview of Beijing.
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3.2. Research Methods
3.2.1. Descriptive Statistics

We used descriptive statistics to find the quantity of various LSRs. The LSRs data
obtained are counted, and their proportion is calculated.

3.2.2. Information Entropy

This paper calculates balance and dominance based on previous studies [53]. First,
we use Shannon’s information entropy Equation to define the information entropy of the
LSRs as:

H = −∑N
i PilnPi = −∑N

i=1

(
Ai/ ∑N

i Ai

)
ln
(

Ai/ ∑N
i Ai

)
, (1)

In Equation (1), A is the total number of point of interests (POIs) of LSRs in an area.
LSRs in this area are divided into N types, and the number of POIs of each type is Ai
(i = 1, 2, . . ., N). Pi is the percentage of the number of POIs per service type (equivalent
to the probability of occurrence of this type of service), and the value is normalised. H is
the information entropy of the residents’ life service system, reflecting the balance of the
types of LSRs within the region. A higher entropy value means more abundant types of
LSRs. Notably, when the number of POIs for each type is entirely equal, the occurrence
probability for each type is equivalent to 1/N, and the maximum information entropy is
Hm = lnN.

Second, the ratio between the measured value and the maximum value of information
entropy can be regarded as the equilibrium degree of the life service structure:

J = H/Hm = −∑i PilnPi/lnN, (2)

In Equation (2), J is the equilibrium degree, and the value location is (0, 1). The
remaining parameters are the same as in Equation (1). The closer the J value is to 1, the life
service structure of LSRs moves closer to being balanced.

Finally, the concept of dominance is introduced to assess the concentration level of the
life service structure:

I = 1 − J, (3)

In Equation (3), I is the dominance, and the value location is (0, 1). A value closer to 1
indicates that there is one or more dominant type(s) of life service(s) in the area.

3.2.3. Spatial Analysis Method

First, we investigate the spatial concentration of LSRs. The average nearest neighbour
index is calculated by ArcGIS 10.1. It compares the average observation distance of a
particular type of POI with the expected average distance based on a random distribution
to determine the aggregation or dispersion of features. The Equations are as follows [54].

R = di/de = di/
(

0.5/
√

N/A
)

, (4)

Z = (di − de)/
(

0.26136/
√

n2/A
)

, (5)

In Equations (4) and (5), di and de are the average observation distance and the
expected observation distance, respectively; N is the total number of POIs; A is the area
of the research area; R is the nearest neighbour index; Z-score and p-value can determine
whether the null hypothesis can be rejected in a statistical sense.

Second, to explore whether LSRs gather, kernel density is used to analyse point
density. Plot density and Voronoi diagram density are also commonly used for this purpose;
however, they face problems of uniform density in the unit space and abrupt changes
in density at the joints of the unit. Kernel density analysis comprehensively considers
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the difference in focus intensity of different internal points and the continuity of spatial
phenomena, so it has more advantages [55]. The Equation is as follows:

f (s) = ∑n
i=1

1
h2 k

(
s − ci

h

)
, (6)

In Equation (6), n is the number of points whose distance at the same position s is
not greater than h; h is the distance attenuation threshold; k is the spatial weight function;
and f (s) is the kernel density estimate at position s. The above Equations describes the
interaction between the kernel density value, and the radiation distance from the centre
point—the distance attenuation effect of the centre point outward. Studies have shown that
the spatial weight function has a limited impact on the point mode and, more importantly,
on determining a suitable search radius (distance attenuation threshold) [56].

This paper uses 1500 m as the search radius for two reasons. One is the research
experience of other cities in China. In the case of the central Chongqing city, the search
radius is 1500 m. This case confirmed that 1500 m can not only identify small-scale POI
aggregation areas, but also reflect the macro-scale polycentric pattern, and has a good
smoothing effect [57]. The other is the scope of downtown Beijing. Based on the scope,
ArcGIS software can automatically calculate the default search radius. For downtown
Beijing, the default radius is roughly 1516 m. To facilitate comparison, 1516 m is simplified
to 1510 m in this study.

Finally, we are interested in the expansion trend of LSRs. In 1926, D. Welty Lefever
proposed the standard deviation ellipse analysis method to describe the direction distri-
bution of points with parameters such as centre, azimuth, long axis, and short axis [58].
The centre is the relative position of the space occupied by a factor. The azimuth describes
the main direction of development, and the direction, length, and length ratio of the major
and minor axes, represent the primary and secondary development trends, the degree of
dispersion in these trends, and spatial distribution morphology, respectively [59]. This
paper uses the standard deviation ellipse tool of ArcGIS 10.1 to analyse spatial statistics.

3.2.4. Coupling Coordination Degree Model

The coupling coordination degree model can be used to measure the mutual influence
between two subsystems (here, the matching effect of LSRs and residents’ needs) [60].
Usually, the population density in the area can be used to express residents’ needs [61].
Therefore, we substitute the kernel density value of the LSRs and the resident population
density value into the coupling coordination degree model for calculation (the data are
normalised in GIS in advance). Based on previous studies [60], the calculation Equation of
coupling coordination degree is as follows:

C =

√
f (M)× g(N)/([ f (M) + g(N)]/2)2, (7)

D =
√

C × T, T = α f (M) + βg(N), (8)

where C represents the coupling degree, f (M) is the kernel density value of the LSRs,
and g (N) is the resident population density, where T is the comprehensive coordination
index, and α and β are the contribution weight of the kernel density value of the LSRs
and resident population density, respectively. In this paper, α and β are each 0.5, which is
equally important. D stands for the degree of coupling coordination, and the value range
of D is (0, 1). A higher D value represents a higher coupling degree between LSRs and
residents’ needs. Furthermore, the degree of coupling coordination of LSRs and residents’
needs was divided into five levels (Table 1).
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Table 1. Classification of the degree of coupling coordination between LSRs and residents’ needs.

D Coupling Coordination State

0.8 ≤ D 1 Highly coupled coordination
0.6 ≤ D 0.8 Moderate coupled coordination
0.4 ≤ D 0.6 Low coupled coordination
0.2 ≤ D 0.4 Moderate uncoupled coordination
0 ≤ D 0.2 Severely uncoupled coordination

3.3. Data Sources and Processing

We introduce POI data from the following aspects: (1) Information. The POI data
obtained from Amap include the type, name, administrative district, longitude, and latitude
of LSRs. (2) Source. The POI data come from a big data innovation enterprise under
Shanghai Economic and Information Commission (https://www.metrodata.cn/) (accessed
on 20 April 2022). (3) Time. We investigate downtown Beijing with data from March 2018.
Over time, the number of POIs will change, such as the closure or relocation of some hotels.
Objectively speaking, the research results of this paper can only reflect the LSRs in the
central urban area of Beijing in March 2018. Therefore, this study has certain limitations. In
the future, POI data at more time points will be obtained for tracking analysis. (4) Accuracy.
We take two methods to test the accuracy of the data. The first is to compare the data
provided by the Resource and Environmental Science and Data Center of the Chinese
Academy of Sciences (https://www.resdc.cn/) (accessed on 20 April 2022). The second is
to conduct manual random comparison on Baidu Maps. (5) Data processing. We cleaned
the data, such as removing duplicate content, correcting coordinates, etc. By doing this, 14
categories of point data were initially obtained.

Combined with government documents, the actual situation in Beijing, and data avail-
ability, this paper finally determines 6 types of LSR. Specifically, in 2016, China’s Ministry
of Commerce divided LSRs into 8 categories: catering, accommodation, housekeeping,
dyeing, bathing, beauty salons, appliance repairs, and portrait photography. However, due
to the following reasons, this paper cannot obtain enough POIs to represent housekeeping.
This is because the housekeeping service is characterized by door-to-door service, is less
dependent on physical stores than other services, the industry is still in the early stages of
development, the supply is relatively small, and the profit of the housekeeping industry in
downtown Beijing is limited as it is difficult to afford the high housing and rent prices. This
paper also excludes bathing services because they are often difficult to separate from ac-
commodation or beauty salon services, and the industry is small. Therefore, we categorize
LSRs into 6 groups: catering, accommodation, dyeing (this refers to the business of laundry,
dry cleaning, ironing, dyeing, darning, stain removal, etc.), beauty salons, appliance repairs,
and portrait photography.

In addition, subway stations, subway lines, and building outlines data were obtained
from Amap. The Amap collects data through vehicle, walking, and aerial photogrammetry.
The POI, building outlines, and other data used in this paper are inseparable from the help
of remote sensing technology. The population density raster data comes from Worldpop’s
2018 prediction of China’s population raster data, with a resolution of 100 m × 100 m
(https://www.worldpop.org/) (accessed on 20 April 2022). As the data development team
said, “this data is suitable where the accuracy of the satellite-based mapping of settlements
is uncertain”. This means that it is very suitable for use in the capital of China (most of the
core parts of downtown Beijing belong to the central government office area and military
management area, where it is difficult to obtain remote sensing high-resolution data). The
administrative boundaries come from the Resource and Environment Data Cloud Platform
(http://www.resdc.cn) (accessed on 20 April 2022).
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4. Results

4.1. Quantity Dimension

The number of catering facilities is the largest, accounting for more than half of the
total facilities in the study area (Table 2). The number of beauty salons and accommodation
facilities is second, with 17,239 and 15,677 establishments, respectively. The other three
types of LSRs are relatively small, less than 10%.

Table 2. Characteristics of POI data of LSRs in downtown Beijing.

Category Content Number Proportion (%)

Catering

Chinese restaurant, foreign
restaurant, casual restaurant, cold
drink shop, dessert shop, fast food

restaurant, coffee shop, pastry
shop, tea house, etc.

42,530 51.4362

Accommodation

Residential areas, hotels, tourist
hotels, business residences, and

commercial and residential
buildings, etc.

15,677 18.9599

Dyeing Laundry 2204 2.6655
Beauty salons Beauty salon store 17,239 20.8490

Appliance Repair Appliance repair store 2421 2.9280
Portrait photography Photo print store 2614 3.1614

Total 82,685 100

4.2. Structure Dimension

Figure 3 shows that: (1) For all districts, facilities such as catering, accommodation, and
beauty salons are plentiful, while dyeing establishments, appliance repairs, and portrait
photography shops are lacking. (2) As for the information entropy, the order of its value
from high to low is Shijingshan, Fengtai, Haidian, Xicheng, Chaoyang, and Dongcheng.
The maximum information entropy is 1.37 in Shijingshan. This shows that the quantity
difference of various LSRs is the smallest in Shijingshan, and the structure of LSR tends to
be balanced numerically here. In other words, although Shijingshan has the least number of
LSRs, it is in a low-level equilibrium state. (3) For the equilibrium degree, the ranking result
of its value is consistent with that of information entropy. This is because the equilibrium
degree is calculated by dividing the information entropy by the constant (see Equation (2)).
(4) From the perspective of dominance degree, the ranking result of its value is just opposite
to that of equilibrium. This is because it is calculated by subtracting the equilibrium from 1
(see Equation (3)). For example, compared with other districts, Dongcheng has the smallest
degree of equilibrium (0.69) and the largest degree of dominance (0.31). This indicates that
there is the most obvious dominant LSR here.

4.3. Pattern Dimension

Table 3 shows the results of the average nearest neighbour analysis. The Z scores
and p-values indicate that all kinds of LSRs pass the significance test (p < 0.001) (i.e.,
have significant spatial agglomeration). The R value is in descending order for dyeing,
accommodation, appliance repair, portrait photography, beauty salon, and catering. This
shows that the concentration of dyeing and accommodation services is relatively high,
while the concentration of beauty salons and catering services is relatively low.

The kernel density analysis found that the various LSRs in downtown Beijing are
expressed as a spatial form of “centralised contiguous and multi-centre clusters” (Figure 4).
Specifically, the catering and accommodation service facilities are concentrated in Dongcheng
and Xicheng districts, and the concentration of contiguous areas is significantly larger than
other types of LSRs. Dongcheng and Xicheng districts are the core functional areas of the
capital, with high development intensity and urbanisation levels. Catering and accom-
modation services occupy an essential position and are used relatively often. Therefore,

106



Remote Sens. 2022, 14, 2031

the services mentioned above are significantly concentrated in the functional core areas of
downtown Beijing.

Figure 3. Number of POIs of LSRs and their spatial equilibrium parameters in downtown Beijing.

Table 3. Nearest neighbour analysis of LSRs in downtown Beijing.

Name
Average

Observation
Distance (di)

Expected
Average

Distance (de)

Nearest
Neighbour Index

(R)
Z-Score

Catering 34.625 108.3 0.32 −268.393
Accommodation 116.455 173.598 0.671 −78.846

Dyeing 295.407 440.337 0.671 −29.561
Beauty salons 61.962 167.085 0.371 −158.032

Appliance Repair 249.173 416.087 0.599 −37.761
Portrait

photography 223.872 383.432 0.584 −40.702

Chaoyang, Haidian, Fengtai, and Shijingshan districts are urban function expansion
areas, as identified in the 2012 Beijing Major Function Zone Planning. Although these
districts belong to this zone, the overall development level of Chaoyang and Haidian
districts is significantly higher than that of Fengtai and Shijingshan districts. This objectively
limits the concentration of life service functions turning them into multi-centred groups.
Specifically, dyeing, beauty salons, appliance repair, and portrait photography services
have a higher nuclear density at the junction of Dongcheng, Chaoyang, and Fengtai
districts. We found that life services are primarily concentrated in transportation hubs in or
near large residential and business districts. The large flow of people usually translates
into higher demand for services. For example, Wangjing Station and China World Trade
Centre Station are both located in a typical international business centre area. Many
universities surrounding Wudaokou Station and Zhongguancun Station gather many high-
tech enterprises, which constitute the life services core in Haidian District Circle. Babaoshan
and Gucheng stations are close to Haidian District, so their nuclear density is relatively high.
The Capital University of Economics and Business District, Muxiyuanqiao South Station,
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and Fangzhuang Station are adjacent to schools, railway stations, and large residential
areas, so there is a large population and flow and strong demand for life services.

  
(a) (b) 

  

(c) (d) 

  
(e) (f) 

Figure 4. Kernel density analysis of LSRs in downtown Beijing: (a) Catering; (b) Accommodation;
(c) Dyeing; (d) Beauty salon; (e) Appliance repair; (f) Portrait photography.

The centrality index shows that the difference in coordinates at the centre of the
standard deviation ellipse for various LSRs are slight; the maximum difference in longitude
and latitude are only 0.03◦ and 0.01◦, respectively (Table 4). This difference reflects the
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proximity relationship between the centres of various LSRs in downtown Beijing. The
perimeter and area of the spread ability index jointly describe the coverage of the standard
deviation ellipse. The perimeter and area of each life service are in the same order, from
largest to smallest: dyeing, appliance repair, beauty salon, catering, accommodation, and
portrait photography. The long axis and the short axis indicate the direction and scope of
the distribution of various life services, respectively. From the length difference between
the long and short axis of the ellipse, the maximum difference in beauty salon services is
2.94 km, and the minimum difference in accommodation services is 2.23 km. This means
that the flatness of the beauty salon service ellipse is larger, and the directionality of the
data is more obvious than other services; the directional difference of the accommodation
service ellipse is not statistically significant, indicating that service is more balanced in
all directions. Generally, the difference between the long and short axis of the life service
ellipse is within 3 km. The azimuth is the angle between the true geographic north and
the X-axis of the ellipse. The maximum azimuth of the accommodation service ellipse is
98.93◦, the minimum is 88.76◦ for dyeing services, and the average for all LSRs is 93.04◦.
Combined with the standard deviation ellipse chart, it is found that the elliptical shape
of various LSRs does not show a clear northwest–southeast trend. However, it appears
to be an approximately horizontal–vertical standard form. This is mainly because Beijing
has gradually formed a typical spatial pattern of axial development over a long time (the
power of the City Master Plan).

Table 4. Standard deviational ellipse parameter of LSRs in downtown Beijing.

Category
Centre

Longitude
(◦)

Centre
Latitude (◦)

Perimeter
(km)

Area
(km2)

Length of
Long Axis

(km)

Length of
Short Axis

(km)

Azimuth
(◦)

Catering 116.40E 39.93N 68.06 360.23 12.13 9.46 95.16
Accommodation 116.38E 39.93N 65.83 339.03 11.56 9.33 98.93

Dyeing 1 116.39E 39.92N 70.10 382.61 12.46 9.78 88.76
Beauty salon 116.39E 39.92N 68.50 363.18 12.32 9.38 90.15

Appliance repair 116.39E 39.92N 69.23 371.36 12.43 9.51 93.58
Portrait

photography 116.41E 39.92N 64.60 323.26 11.60 8.87 91.66

1 Note: Except for the dyeing services, the standard deviation ellipse long axis of other LSRs is on the X axis, and
the short axis is on the Y axis.

Figure 5 shows the standardised ellipse of LSRs in the study area. Combining the
overall picture and the detailed map, each life service ellipse is divided into four parts by
the planning development axis. The area difference of each part intuitively shows the north–
south difference and the east–west difference. The centres of all services are in the Xicheng
and Dongcheng districts, all located north of Chang’an Avenue. This shows that the six
types of LSRs are more suited to residents’ needs north of Chang’an Avenue, and the supply
of life services south of Chang’an Avenue, especially in Fengtai District, is insufficient.
The current life services have an overall and more vital “north-south difference”. The
accommodation service centre is located at the northwest corner of Tiananmen Square. In
contrast, the catering and portrait photography centre occupies the northeast, and other
life service centres are on the central axis. This shows that accommodation services are
developing westward, catering and portrait photography are expanding eastward, while
other services have not yet formed a clear development trend. Thus, there are hierarchical
and low-level “east-west differences” in life services.
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(a) 

 
(b) 

Figure 5. Standard deviational ellipse analysis of LSRs in downtown Beijing; (a) Overall picture;
(b) Detailed picture.

4.4. Coupling Coordination Dimension

Figure 6 shows that the current coupling and coordination of the six types of LSRs and
population density has not yet reached the ideal level, and the overall characteristics are
“high in the centre and low in the periphery” and “high in the east and low in the west”.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. Coupling and Coordination Degree of LSRs in downtown Beijing: (a) Catering; (b) Accom-
modation; (c) Dyeing; (d) Beauty salon; (e) Appliance repair; (f) Portrait photography.

Specifically, the medium-coupling coordination areas of catering and accommodation
facilities are similar, mainly concentrated around subway stations such as Wudaokou,
South Luogu Lane, and China World Trade Centre. Wudaokou is close to top universities,
such as Peking University and Tsinghua University. South Luogu Lane is a famous tourism
alley in Beijing. The China World Trade Centre is in the city’s central business district,
which contains many Fortune 500 companies. Students, tourists, and corporate employees
stimulate the demand for catering and accommodation in the region, resulting in a relatively
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highly coupled coordination. The moderate coupled coordination areas of dyeing and
beauty salons are similar, where “the east is higher than the west”. Compared with the other
types, the moderate coupled coordination area of appliance repair and portrait photography
facilities have the smallest area and tend to be more scattered. Most importantly, this study
finds that most peripheral areas show moderate uncoupled coordination and severely
coupled coordination.

5. Discussion

5.1. SJ of LSRs Reflected by Coupling Coordination Degree

Currently, there are two approaches to evaluating SJ. One is the qualitative method.
For example, a case study approach is used to analyse the factors and mechanisms of
SJ in rural Finland [62]. The other is the quantitative method, especially spatial analysis
methods. For instance, using kernel density estimation, standard deviation ellipse, and
social performance evaluation can explore the SJ of community sports and fitness venues
in Shanghai [63]. Quantitative methods enable overlaying the analyses of population
and other socioeconomic data to spatially identify areas of SJ [64]. Therefore, this paper
uses quantitative methods to discuss SJ. These methods include descriptive statistics,
information entropy, nearest neighbour, kernel density, standard deviation ellipse, and
coupling coordination degree.

The results of the coupling coordination degree directly reflect the SJ: (1) For catering,
accommodation, dyeing, and beauty salons, Dongcheng and Xicheng have the highest
degree of SJ. The junction between the above two districts and other regions also has a
high level of SJ. Dongcheng and Xicheng are the office areas of the Central Government
and the Beijing Municipal Government. Hence, these areas are densely populated and
require a wider variety of LSRs. (2) For appliance repair and portrait photography, the
southeast of Haidian and the southwest of Chaoyang have the highest degree of SJ. Haidian
District is the centre of education and technology, with a large concentration of schools and
research institutes. Chaoyang District is an economic centre and an industrial base, with a
well-known embassy area and a commercial and trade area. Therefore, some types of LSRs
with higher technical requirements and more luxury will be concentrated here.

5.2. The LSRs among Beijing and London: Distributive Injustice

It is difficult to compare the LSRs supply globally for two main reasons directly. First,
the Chinese government proposed the concept of LSRs in 2016. It originated from a life
service industry with distinct Chinese characteristics. Therefore, it is difficult to find
comparable programs in other countries. To our knowledge, even in China, there are few
empirical studies on LSRs. The second reason is limited data sources. This paper uses POI
data to measure LSRs, different from the previous field investigations. Hence, differences
in data sources reduce comparability among various studies. In sum, these reasons pose
challenges for effectively comparing the supply of LSRs in Beijing to other regions.

POI data currently have limited attributes (name, type, address, and coordinate
information) but lack details, such as floor height, building area, and the number of
households. Therefore, for accommodation services, it is inaccurate to directly compare
the number of POIs because the number of people that can be accommodated in buildings
of different heights varies. For instance, high-rise apartments accommodate more people
than villas. However, for catering services, it is feasible to use the POI number of catering
service facilities per capita as a benchmark for comparison for two main reasons. The
first is that the catering service facilities are usually independent spatial units, such as a
street containing many dining establishments (e.g., South Luogu Lane) or a luxuriously
decorated hotel (e.g., QUANJUDE Peking Roast Duck). Although some large shopping
malls can accommodate several restaurants on different floors simultaneously (e.g., Vanke
Plaza, Wudaokou Shopping Centre), the name field of POIs can, generally, effectively
distinguish different restaurants in similar locations. The second reason is that eating
is a fixed demand for every citizen. Although there are no direct statistics, dining out
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constitutes a considerable proportion of residents’ daily lives for the capital city. The
certainty of the demand for dining out and the need for restaurant reception capacity
implies that a larger population will need more restaurants. In summary, the number of
catering service facilities can roughly reflect the degree of satisfaction of residents’ dining
out needs.

Inner London is a current representative case with a common benchmark with Beijing.
There are 42,530 catering facilities in downtown Beijing (Table 3). According to the Beijing
City Master Plan (2016–2035), the total area is about 1378 km2, and the population density
in 2016 was 14,000 persons/km2. Studies have shown that as of November 2017, the Food
& Shop in Inner London has 7355 POIs [65]. It also includes shops, a mall, a marketplace,
vending machines, a pharmacy, fast food, a café, and a restaurant. In addition, statistics
from the Greater London Authority (GLA) [66] show that the area of Inner London is
319.29 km2, and the population density in 2017 was 11,070 persons/km2. Comparing per
capita catering service facilities in downtown Beijing to Inner London, the former has about
22.05 restaurants per 10,000 people, and the latter has 20.81 restaurants per 10,000 people.
These two places have similar population densities, and the catering service facilities per
population are close.

Although the population densities of these two places are similar, one limitation of
making this type of comparison is that we do not know the income differences among
people. High-income groups have the means to eat out more, while low-income groups
may choose to cook at home. Therefore, there is an objective difference in the frequency of
catering service facilities due to income. Furthermore, factors such as cultural differences
in eating habits need to be considered. For British people, the habit of afternoon tea
undoubtedly increases the frequency of visits to coffee shops. Even though the number of
POIs for catering facilities per capita in London and Beijing is close, there are still cultural
differences in residents’ total demand and use frequency of different catering facilities. In
addition, there are differences in the stages of urban development between these two cities.
In the late 1990s, the British government began the gentrification of Inner London [67],
while the wave of urban renewal in China focused on rebuilding urban villages [68]. It
was not until 2008 that Beijing began to construct two pilot projects to reconstruct urban
villages and proposed to rebuild 50 key villages in the suburbs of Beijing over the next
few years [69]. Thirty-two key villages have been rebuilt in downtown Beijing [70]. These
differences demonstrate that the LSRs supply is insufficient in areas like downtown Beijing.
However, the coupling and coordination degrees for the current study show that there is a
low level of coupling and coordination between the catering facilities and the population
distribution (Figure 6a). It indicates that there is still room for further improvement of
catering service facilities in Beijing.

5.3. The Future of SJ Theory: Spatial Analysis and Big Data

The spatial analysis method is an effective tool for understanding SJ, which broadens
the application field of SJ theory. For example, in environmental justice, Ripley’s K spatial
analysis method was first used to evaluate the spatial point pattern of air toxins and
environmental justice in West Oakland, California [64]. For energy justice, in addition to
focusing on differences in social groups, it is also necessary to assess the justice impact of
spatial differences on energy poverty risks and prevalence. This will help propose spatial
injustice intervention measures based on geography [31]. In terms of traffic justice, GIS
helped confirm that the diesel particulate matter (DPM) in the main highway corridors
of Massachusetts was significantly higher than that in surrounding areas, and a hot spot
analysis showed that an increase in DPM concentration and asthma occurrence had a
statistically significant clustering. Therefore, decision makers need to consider the use of
pollution reduction technologies in residential areas close to traffic corridors [71].

In addition to integrating spatial analysis, an increasing number of empirical studies
are using big data. Big data provide cities with the potential to obtain valuable insights
from data collected from various channels and support the construction of smart cities [72].
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For example, Panoramio, Foursquare, and Twitter data jointly provide digital footprints of
tourists in Madrid, helping the scenic spot to formulate new public policies to improve the
tourist experience [73]. Baidu heat map data and urban POI data can help identify the urban
population’s spatiotemporal distribution characteristics and mechanism in Xi’an, China [74].
Based on information from 10.16 million traffic monitoring records, the traffic congestion
modes in Beijing have been divided into weekend mode, holiday mode, weekday mode,
and weekday mode B [75]. Combined with spatial analysis and carpooling data, the multi-
centre spatial structure of the Beijing metropolitan area can be defined. Unlike traditional
research, this method accounts for periodicity and survey theme limitations, allowing for
an easier attainment of independent conclusions [76].

This paper demonstrates how the multidimensional perception of SJ for LSRs can be
realised through a combination of big data and spatial analysis. POI data helped us quickly
determine the spatial location of six kinds of LSRs on a micro-scale. Using the spatial
analysis methods of nearest neighbour, kernel density, and standard deviation ellipse, we
were able to identify the distribution characteristics of LSRs. This provides a reliable path
for future research addressing the status of LSRs. Moreover, it responds to the knowledge
gaps of big data applications of SJ for LSRs. Big data and spatial analysis are important
components for the future of SJ theory.

5.4. Spatial Difference of LSRs: Market Mechanism and Government Power

The market mechanism is the main reason for such a pronounced spatial difference
of LSRs in Beijing. First, supply is determined by the needs of surrounding residents.
Densely populated areas tend to have more choices of life service facilities. This is because
consumers usually want public service facilities as close to their residences as possible,
reducing unnecessary travel costs [77]. Second, establishing LSRs has corresponding costs.
The market often allocates public services to those who can pay for them. Due to unequal
income distribution, low-income groups cannot afford related public services [78]. We
find that the current coupling coordination degree between LSRs and population density
in Beijing’s urban centre has not yet reached an ideal level. The overall development
characteristics are high in the centre and east but low in the periphery and to the west.
Due to data limitations, this paper did not include complex regression models that may
have revealed the driving mechanisms of spatial differences. However, the study of
coupling coordination degree based on population density still confirms the power of
market mechanisms at the supply and demand level.

Government power is another reason for the spatial difference in LSRs. First, most
public service investments come from the government. The higher the level of economic
development, the more the government can spend on public services. This is particularly
obvious in areas with a backward economy. For example, in Laos from 2000 to 2011, the
GDP grew at an average annual rate of about 7%, and the proportion of total public service
expenditure in the GDP increased to 11.2% [79]. Laos was able to develop public services
due to its growing economic strength. Second, the government shapes the spatial patterns
of public service facilities. Data from poorer areas in Sweden show that policies, such
as zoning laws, can forcibly allocate community resources to highly impoverished areas,
improving the quality of life for the poor [80]. Our study finds that, for Beijing, government
planning dominates the spatial pattern of LSRs. Policy requirements of the urban spatial
structure further strengthen the contiguous and multi-centre clusters of LSRs, which led to
greater north–south than east–west differences.

5.5. Limitations and Directions for Future Research

Overall, remote sensing technology provides a basic data source for this paper to ex-
plore the sustainable development of LSRs [81]. In addition, various methods of geographic
information science provide tools for us to perceive the spatial justice (sustainability) of
LSRs. However, we were unable to generate a description of residents’ psychological
characteristics or analyse choice willingness from the perspective of psychology due to
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limitations of the data. The advantage of spatial analysis lies in creating a spatial visu-
alisation of life service facilities; however, justice refers to the distribution of justice and
requires more discussion from a philosophical and social sciences standpoint [82]. For
example, in the future, data on differences in residents’ sense of justice could be collected
through questionnaires. Second, POI data have limited attributes, so the driving factors
and underlying mechanisms of LSRs were unable to be examined. Identifying the market
mechanism and government forces behind the supply of LSRs is a crucial direction for
subsequent studies. Again, future research should consider integrating methods, such as
field interviews with big data, to examine these mechanisms.

6. Conclusions and Policy Recommendations

This study finds that: (1) the total LSRs are extensive and varying in type; (2) regional
differences are evident, and low-level equilibrium and high-level priority development
coexist; (3) LSRs are concentrated in contiguous and multi-centre clusters with a greater
north–south than east–west difference; and (4) the overall level of LSRs is low, specifically
for “high in the centre and low in the periphery” and “high in the east and low in the west”.
Our findings inform the following recommendations:

(1) The development gap needs to be reduced between the north and south. Here,
Beijing’s LSRs have gradually formed an axial development pattern, and the north–
south difference in LSRs is more significant than the east–west. Therefore, future
LSR development should pay attention to the north–south difference, increasing
investment in areas south of Chang’an Avenue. Furthermore, the distribution of
LSRs around subway stations and subway lines tells us that improving transportation
facilities is significant for achieving fairness in resource distribution.

(2) The spatial differences for catering services need to be addressed. The number of
catering services facilities in Chaoyang District is almost 10 times that of Shijingshan
District. Given that catering services are a dominant type of LSRs, this paper suggests
that policymakers need to provide more catering services in Shijingshan District.
This does not mean that the government should directly fund the development of
catering services. Still, it can help by providing more policy support for companies
and individuals that provide catering services, such as providing sufficient land
supply, guiding the agglomeration of catering companies, and creating a food street
or plaza with scale effect.

(3) Accommodation services could be combined with reconstructing old urban areas and
the new construction of satellite cities. As a cultural symbol of Beijing, Hutong has
played a crucial residential function to this day. However, due to the poor conditions
of the public infrastructure, this area urgently needs renovation [83]. Some residents
want to move out of the crowded hutongs, while others hope to transform the hutongs
into hotels. Therefore, residents, planners, companies, and the government could
work together to transform the old city and the construction of the satellite city.
This embodies the procedural justice in SJ. Hence, the government should guide the
orderly development of accommodation service facilities by formulating industry
development plans.

(4) As the old Chinese saying goes, “Loving beauty is part of human nature”. To facilitate
residents’ access to beauty salon services, policymakers should consider establishing
at least one beauty salon in each community. Currently, beauty salon services in
Beijing are centralized in the junction area of Dongcheng, Chaoyang, and Fengtai
Districts. As a result, a longer commute is required for residents outside of these areas
to access these services. In addition, building beauty salons can increase the vitality
of the urban area by increasing the diversity of consumption in the neighbourhood,
which is another way to improve the life service resources.

(5) Although the total number of POIs for dyeing, appliance repair, and portrait pho-
tography accounts for less than 10% of LSRs, existing services placement should
be considered when establishing new service locations. Based on the results of the
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spatial pattern, there are fewer dyeing services in the northwest of the studied area.
In contrast, appliance repair and portrait photography services tended to be found in
the eastern region. The results of the coupling and coordination degrees in the current
study reflect the unbalanced spatial distribution of these services in Beijing. Therefore,
corresponding LSRs should be added in the above areas.

Author Contributions: Conceptualization, Z.X. and Z.Z.; methodology, L.N., J.H. and C.L.; writing—
original draft preparation, Z.X. and L.N.; writing—review and editing, J.H., Z.L. and Y.H.; formal
analysis, Z.X. and L.N.; visualization, L.N. and Y.W.; supervision, Z.Z. and X.G.; funding acquisition,
Z.Z. All authors have read and agreed to the published version of the manuscript.

Funding: The paper was supported by the Key Project of National Social Science Fund (21AZD041)
and National Natural Science Foundation of China (42077433).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online:
https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%
20web.pdf (accessed on 20 April 2022).

2. United Nations. World Urbanization Prospects. Available online: https://www.un.org/development/desa/publications/2018
-revision-of-world-urbanization-prospects.html (accessed on 20 April 2022).

3. Yu, H. Pay close attention to and take measures to accelerate the development of life service industry. China Econ. Trade Her. 2012,
29, 27–30.

4. State Council. Guiding Opinions on Accelerating the Development of Life Service Industry and Promoting the Upgrading of
Consumption Structure. Available online: http://www.gov.cn/zhengce/content/2015-11/22/content_10336.htm (accessed on
20 April 2022).

5. Ministry of Commerce. Thirteenth Five-Year Plan for the Development of Residents’ Life Service Industry. Available online:
http://www.mofcom.gov.cn/article/guihua/201701/20170102495671.shtml (accessed on 20 April 2022).

6. Ministry of Finance and State Taxation Administration. Announcement on Clarifying the Policy of Adding and Deducting
Value-Added Tax of Life Service Industry. Available online: http://www.chinatax.gov.cn/chinatax/n810341/n810755/c5137754
/content.html (accessed on 20 April 2022).

7. National Development and Reform Commission. Notice on Several Opinions on Promoting the Life Service Industry to Make Up
for Shortcomings and Improve People’s Quality of Life. Available online: http://www.gov.cn/zhengce/content/2021-11/02
/content_5648192.htm (accessed on 20 April 2022).

8. Weziak-Bialowolska, D. Quality of life in cities—Empirical evidence in comparative European perspective. Cities 2016, 58, 87–96.
[CrossRef]

9. Zhao, Z.; Pang, R.; Wang, S. Measurement of spatial accessibility performance of large retailing facilities in Changchun. Geogr.
Res. 2016, 35, 431–441.

10. De Vita, A. Inequality and poverty in global perspective. In Freedom from Poverty as a Human Right; Oxford University Press: New
York, NY, USA, 2007; pp. 103–132.

11. Christman, B.; Russell, H. Readjusting the political thermostat: Fuel poverty and human rights in the UK. J. Hum. Rights Commonw.
2016, 2, 116–128. [CrossRef]

12. Macintyre, S. Deprivation amplification revisited; or, is it always true that poorer places have poorer access to resources for
healthy diets and physical activity? Int. J. Behav. Nutr. Phys. Act. 2007, 4, 1–7. [CrossRef]

13. Reidpath, D.D.; Burns, C.; Garrard, J.; Mahoney, M.; Townsend, M. An ecological study of the relationship between social and
environmental determinants of obesity. Health Place 2002, 8, 141–145. [CrossRef]

14. Wardle, H.; Keily, R.; Astbury, G.; Reith, G. “Risky Places?”: Mapping gambling machine density and socio-economic deprivation.
J. Gambl. Stud. 2014, 30, 201–212. [CrossRef]

15. Macdonald, L.; Olsen, J.R.; Shortt, N.K.; Ellaway, A. Do “environmental bads” such as alcohol, fast food, tobacco, and gambling
outlets cluster and co-locate in more deprived areas in Glasgow City, Scotland? Health Place 2018, 51, 224–231. [CrossRef]

16. Yen, I.H.; Kaplan, G.A. Neighborhood social environment and risk of death: Multilevel evidence from the Alameda County Study.
Am. J. Epidemiol. 1999, 149, 898–907. [CrossRef]

116



Remote Sens. 2022, 14, 2031

17. Anguelovski, I.; Cole, H.V.S.; O’Neill, E.; Baro, F.; Kotsila, P.; Sekulova, F.; Perez Del Pulgar, C.; Shokry, G.; Garcia-Lamarca, M.;
Arguelles, L.; et al. Gentrification pathways and their health impacts on historically marginalized residents in Europe and North
America: Global qualitative evidence from 14 cities. Health Place 2021, 72, 102698. [CrossRef]

18. Buzzacchi, L.; Leveque, P.; Taramino, R.; Zotteri, G. Using betweenness metrics to investigate the geographical distribution of
retailers. Environ. Plan. B-Urban Anal. City Sci. 2021, 48, 2221–2238. [CrossRef]

19. Lv, Y.; Zheng, X.; Zhou, L. Relationships between street centrality and spatial distribution of functional urban land use: A case
study of Beijing central city. Geogr. Res. 2017, 36, 1353–1363.

20. Wu, M.; Pei, T.; Wang, W.; Guo, S.; Song, C.; Chen, J.; Zhou, C. Roles of locational factors in the rise and fall of restaurants: A case
study of Beijing with POI data. Cities 2021, 113, 103185. [CrossRef]

21. Ning, X.; Liu, Y.; Wang, H.; Hao, M.; Yang, B.; Wang, M. Research on Functional Land Division of the Main Urban Area in Beijing
Based on Crowd Sourcing Geographic Data. Geogr. Geo-Inf. Sci. 2018, 34, 42–49.

22. Jiang, B.; Wang, Y.; Ye, X. Detecting development pattern of urban business facilities using reviews data. Acta Geod. Cartogr. Sin.
2015, 44, 1022–1028.

23. Wang, T.; Wang, Y.; Zhao, X.; Fu, X. Spatial distribution pattern of the customer count and satisfaction of commercial facilities
based on social network review data in Beijing, China. Comput. Environ. Urban Syst. 2018, 71, 88–97. [CrossRef]

24. Lee, J.P.; Ponicki, W.; Mair, C.; Gruenewald, P.; Ghanem, L. What explains the concentration of off-premise alcohol outlets in Black
neighborhoods? SSM-Popul. Health 2020, 12, 669. [CrossRef]

25. Fang, Y.; Mao, J.; Liu, Q.; Huang, J. Exploratory space data analysis of spatial patterns of large-scale retail commercial facilities:
The case of Gulou District, Nanjing, China. Front. Archit. Res. 2021, 10, 17–32. [CrossRef]

26. Wang, F.; Chen, C.; Xiu, C.; Zhang, P. Location analysis of retail stores in Changchun, China: A street centrality perspective. Cities
2014, 41, 54–63. [CrossRef]

27. Pirie, G.H. On spatial justice. Environ. Plan. A 1983, 15, 465–473. [CrossRef]
28. Smith, D.M. Geography and Social Justice; Blackwell: Oxford, UK, 1994.
29. Israel, E.; Frenkel, A. Social justice and spatial inequality: Toward a conceptual framework. Prog. Hum. Geogr. 2018, 42, 647–665.

[CrossRef]
30. Soja, E.W. The city and spatial justice. In Justice et Injustices Spatiales; Presses Universitaires de Paris Nanterre: Nanterre, France,

2016; pp. 56–72.
31. Bouzarovski, S.; Simcock, N. Spatializing energy justice. Energy Policy 2017, 107, 640–648. [CrossRef]
32. Sovacool, B.K.; Heffron, R.J.; McCauley, D.; Goldthau, A. Energy decisions reframed as justice and ethical concerns. Nat. Energy

2016, 1, 1–6. [CrossRef]
33. Guerra, E.; Kirschen, M. Housing Plus Transportation Affordability Indices: Uses, Opportunities, and Challenges. Available

online: https://www.econstor.eu/handle/10419/173922 (accessed on 20 April 2022).
34. Jian, I.Y.; Luo, J.; Chan, E.H.W. Spatial justice in public open space planning: Accessibility and inclusivity. Habitat Int. 2020,

97, 102122. [CrossRef]
35. Deb, D.; Smith, R.M. Application of Random Forest and SHAP Tree Explainer in Exploring Spatial (In)Justice to Aid Urban

Planning. ISPRS Int. J. Geo-Inf. 2021, 10, 629. [CrossRef]
36. Ewing, R.; Hamidi, S.; Grace, J.B.; Wei, Y.D. Does urban sprawl hold down upward mobility? Landsc. Urban Plan. 2016, 148, 80–88.

[CrossRef]
37. Getis, A.; Mur, J.; Zoller, H.; Mur, J.; Fingleton, B.; Smith, T.; Plotnikova, M. Spatial Econometrics and Spatial Statistics. Available

online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.175.681&rep=rep1&type=pdf (accessed on 20 April 2022).
38. Lloyd, C. Spatial Data Analysis: An Introduction for GIS Users; Oxford University Press: New York, NY, USA, 2010.
39. Szewranski, S.; Kazak, J.; Sylla, M.; Swiader, M. Spatial data analysis with the use of ArcGIS and Tableau systems. In The Rise of

Big Spatial Data; Springer: Cham, Switzerland, 2017; pp. 337–349.
40. Fainstein, S.S. The just city. Int. J. Urban Sci. 2014, 18, 1–18. [CrossRef]
41. Lefebvre, H.; Nicholson-Smith, D. The Production of Space; Blackwell: Oxford, UK, 1991; Volume 142.
42. Harvey, D. Social Justice and the City; University of Georgia Press: Athens, GA, USA, 2010; Volume 1.
43. Soja, E.W. Postmodern Geographies: The Reassertion of Space in Critical Social Theory; Verso: London, UK, 1989.
44. Maslow, A.H. A theory of human motivation. Psychol. Rev. 1943, 50, 370–396. [CrossRef]
45. Zheng, R. On Spatial Justice: The Reconstruction of Justice and the Criticism of Spatial Production; Shanghai Academy of Social Sciences

Press: Shanghai, China, 2018.
46. Ernstson, H. The social production of ecosystem services: A framework for studying environmental justice and ecological

complexity in urbanized landscapes. Landsc. Urban Plan. 2013, 109, 7–17. [CrossRef]
47. McConnachie, M.M.; Shackleton, C.M. Public green space inequality in small towns in South Africa. Habitat Int. 2010, 34, 244–248.

[CrossRef]
48. Tsou, K.W.; Hung, Y.T.; Chang, Y.L. An accessibility-based integrated measure of relative spatial equity in urban public facilities.

Cities 2005, 22, 424–435. [CrossRef]
49. Kronenberg, J.; Haase, A.; Laszkiewicz, E.; Antal, A.; Baravikova, A.; Biernacka, M.; Dushkova, D.; Filcak, R.; Haase, D.; Ignatieva,

M.; et al. Environmental justice in the context of urban green space availability, accessibility, and attractiveness in postsocialist
cities. Cities 2020, 106, 102862. [CrossRef]

117



Remote Sens. 2022, 14, 2031

50. Beiler, M.O.; Mohammed, M. Exploring transportation equity: Development and application of a transportation justice framework.
Transp. Res. Part D-Transp. Environ. 2016, 47, 285–298. [CrossRef]

51. Gu, C.; Kesteloot, C. Social polarisation and segregation phenomenon in Beijing. Acta Geogr. Sin. 1997, 52, 385–393.
52. Feng, J.; Zhong, Y. Restructuring of social space in Beijing from 2000 to 2010. Acta Geogr. Sin. 2018, 73, 711–737.
53. Huang, X.; Chen, Z. The retail business structure of the metro site based on the information entropy–a case study of the 15 subway

site in Guangzhou. Econ. Geogr. 2014, 3, 38–44.
54. Ebdon, D. Statistics in Geography; Blackwell Publishing: Hoboken, NJ, USA, 1985.
55. Wenhao, Y.; Tinghua, A. The visualization and analysis of POI features under network space supported by kernel density

estimation. Acta Geod. Cartogr. Sin. 2015, 44, 82.
56. Borruso, G. Network density estimation: A GIS approach for analysing point patterns in a network space. Trans. GIS 2008, 12,

377–402. [CrossRef]
57. Duan, Y.; Liu, Y.; Liu, X.; Wang, H. Identification of polycentric urban structure of central Chongqing using points of interest Big

Data. J. Nat. Resour. 2018, 33, 788–800.
58. Lefever, D.W. Measuring geographic concentration by means of the standard deviational ellipse. Am. J. Sociol. 1926, 32, 88–94.

[CrossRef]
59. Zhao, L.; Zhao, Z. Projecting the spatial variation of economic based on the specific ellipses in China. Sci. Geogr. Sin. 2014, 34,

979–986.
60. Wang, J.; Wang, S.; Li, S.; Feng, K. Coupling analysis of urbanization and energy-environment efficiency: Evidence from

Guangdong province. Appl. Energy 2019, 254, 113650. [CrossRef]
61. Neutens, T.; Delafontaine, M.; Scott, D.M.; De Maeyera, P. A GIS-based method to identify spatiotemporal gaps in public service

delivery. Appl. Geogr. 2012, 32, 253–264. [CrossRef]
62. Nordberg, K. Spatial Justice and local capability in rural areas. J. Rural Stud. 2020, 78, 47–58. [CrossRef]
63. Sun, F.; Zhang, J.; Ma, J.; Wang, C.; Hu, S.; Xu, D. Evolution of the Spatial-Temporal Pattern and Social Performance Evaluation of

Community Sports and Fitness Venues in Shanghai. Int. J. Environ. Res. Public Health 2022, 19, 274. [CrossRef]
64. Fisher, J.B.; Kelly, M.; Romm, J. Scales of environmental justice: Combining GIS and spatial analysis for air toxics in West Oakland,

California. Health Place 2006, 12, 701–714. [CrossRef]
65. Xu, F.; Hu, M.; La, L.; Wang, J.; Huang, C. The influence of neighbourhood environment on Airbnb: A geographically weighed

regression analysis. Tour. Geogr. 2020, 22, 192–209. [CrossRef]
66. Greater London Authority. London Borough Profiles and Atlas. Available online: https://data.london.gov.uk/dataset/london-

borough-profiles (accessed on 20 April 2022).
67. Lees, L.; Ferreri, M. Resisting gentrification on its final frontiers: Learning from the Heygate Estate in London (1974–2013). Cities

2016, 57, 14–24. [CrossRef]
68. Liu, Y.; Wu, F.; Liu, Y.; Li, Z. Changing neighbourhood cohesion under the impact of urban redevelopment: A case study of

Guangzhou, China. Urban Geogr. 2017, 38, 266–290. [CrossRef]
69. Zhao, P. Too complex to be managed? New trends in peri-urbanisation and its planning in Beijing. Cities 2013, 30, 68–76.

[CrossRef]
70. Times, G. Construction of 50 Key Villages in the Urban-Rural Fringe of Beijing. Available online: https://china.huanqiu.com/

article/9CaKrnJvCIx (accessed on 20 April 2022).
71. McEntee, J.C.; Ogneva-Himmelberger, Y. Diesel particulate matter, lung cancer, and asthma incidences along major traffic

corridors in MA, USA: A GIS analysis. Health Place 2008, 14, 817–828. [CrossRef] [PubMed]
72. Hashem, I.A.T.; Chang, V.; Anuar, N.B.; Adewole, K.; Yaqoob, I.; Gani, A.; Ahmed, E.; Chiroma, H. The role of big data in smart

city. Int. J. Inf. Manag. 2016, 36, 748–758. [CrossRef]
73. Henar Salas-Olmedo, M.; Moya-Gomez, B.; Carlos Garcia-Palomares, J.; Gutierrez, J. Tourists’ digital footprint in cities: Comparing

Big Data sources. Tour. Manag. 2018, 66, 13–25. [CrossRef]
74. Li, J.; Li, J.; Yuan, Y.; Li, G. Spatiotemporal distribution characteristics and mechanism analysis of urban population density: A

case of Xi’an, Shaanxi, China. Cities 2019, 86, 62–70. [CrossRef]
75. Zhao, P.; Hu, H. Geographical patterns of traffic congestion in growing megacities: Big data analytics from Beijing. Cities 2019, 92,

164–174. [CrossRef]
76. Liu, X.; Yan, X.; Wang, W.; Titheridge, H.; Wang, R.; Liu, Y. Characterizing the polycentric spatial structure of Beijing Metropolitan

Region using carpooling big data. Cities 2021, 109, 103040. [CrossRef]
77. Cremer, H.; Dekerchove, A.M.; Thisse, J.F. An economic-theory of public facilities in space. Math. Soc. Sci. 1985, 9, 249–262.

[CrossRef]
78. Onokerhoraye, A.G. A conceptual framework for the location of public facilities in the urban areas of developing countries: The

Nigerian case. Socio-Econ. Plan. Sci. 1976, 10, 237–240. [CrossRef]
79. Warr, P.; Menon, J.; Rasphone, S. Public services and the poor in Laos. World Dev. 2015, 66, 371–382. [CrossRef]
80. Kawakami, N.; Winkleby, M.; Skog, L.; Szulkin, R.; Sundquist, K. Differences in neighborhood accessibility to health-related

resources: A nationwide comparison between deprived and affluent neighborhoods in Sweden. Health Place 2011, 17, 132–139.
[CrossRef]

118



Remote Sens. 2022, 14, 2031

81. Estoque, R.C. A Review of the Sustainability Concept and the State of SDG Monitoring Using Remote Sensing. Remote Sens. 2020,
12, 1770. [CrossRef]

82. Pereira, R.H.M.; Schwanen, T.; Banister, D. Distributive justice and equity in transportation. Transp. Rev. 2017, 37, 170–191.
[CrossRef]

83. Zacharias, J.; Sun, Z.; Chuang, L.; Lee, F. The hutong urban development model compared with contemporary suburban
development in Beijing. Habitat Int. 2015, 49, 260–265. [CrossRef]

119





remote sensing 

Article

Impacts of Urbanization on the Muthurajawela Marsh and
Negombo Lagoon, Sri Lanka: Implications for Landscape
Planning towards a Sustainable Urban Wetland Ecosystem

Darshana Athukorala 1,*, Ronald C. Estoque 2, Yuji Murayama 3 and Bunkei Matsushita 3

Citation: Athukorala, D.; Estoque,

R.C.; Murayama, Y.; Matsushita, B.

Impacts of Urbanization on the

Muthurajawela Marsh and Negombo

Lagoon, Sri Lanka: Implications for

Landscape Planning towards a

Sustainable Urban Wetland

Ecosystem. Remote Sens. 2021, 13, 316.

https://doi.org/10.3390/rs13020316

Received: 25 November 2020

Accepted: 12 January 2021

Published: 18 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba,
Ibaraki 305-8572, Japan

2 National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan;
estoque.ronaldcanero@nies.go.jp or rons2k@yahoo.co.uk

3 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba,
Ibaraki 305-8572, Japan; mura@geoenv.tsukuba.ac.jp (Y.M.); matsushita.bunkei.gn@u.tsukuba.ac.jp (B.M.)

* Correspondence: s1830207@s.tsukuba.ac.jp or darshana12594@gmail.com

Abstract: Urban wetland ecosystems (UWEs) play important social and ecological roles but are
often adversely affected by urban landscape transformations. Spatio-temporal analyses to gain
insights into the trajectories of landscape changes in these ecosystems are needed for better landscape
planning towards sustainable UWEs. In this study, we examined the impacts of urbanization on the
Muthurajawela Marsh and Negombo Lagoon (MMNL), an important UWE in Sri Lanka that provides
valuable ecosystem services. We used remote sensing data to detect changes in the land use/cover
(LUC) of the MMNL over a two-decade period (1997–2017) and spatial metrics to characterize changes
in landscape composition and configuration. The results revealed that the spatial and socio-economic
elements of rapid urbanization of the MMNL had been the main driver of transformation of its natural
environment over the past 20 years. This is indicated by a substantial expansion of settlements (+68%)
and a considerable decrease of marshland and mangrove cover (−41% and −21%, respectively). A
statistical analysis revealed a significant relationship between the change in population density and
the loss of wetland due to settlement expansion at the Grama Niladhari division level (n = 99) (where
wetland includes marshland, mangrove, and water) (1997–2007: R2 = 0.435, p = 0.000; 2007–2017:
R2 = 0.343, p = 0.000). The findings also revealed that most of the observed LUC changes occurred in
areas close to roads and growth nodes (viz. Negombo, Ja-Ela, Wattala, and Katana), which resulted
in both landscape fragmentation and infill urban expansion. We conclude that, in order to ensure
the sustainability of the MMNL, there is an urgent need for forward-looking landscape and urban
planning to promote environmentally conscious urban development in the area which is a highly
valuable UWE.

Keywords: wetland; muthurajawela marsh and negombo lagoon; socio-ecological; spatio-temporal
analysis; urban ecology; remote sensing

1. Introduction

Although wetlands account only for 4–6% of the world’s surface area [1], they are
regarded as one of the most productive ecosystems [2,3]. A wetland ecosystem includes
marsh, fen, peatland, shallow water areas, as well as natural and human-made areas
with evidence of intermittent and permanent waterlogged areas between natural wet
aquatic habitats and dry terrestrial ecosystems [4,5]. Wetlands provide valuable social
and ecological benefits, e.g., coastal protection, flood control, carbon sequestration and
biodiversity conservation, among other ecosystem services [6–9]. As such, wetlands play
important roles in the context of the United Nations’ sustainable development goals (SDGs)
and targets [10–12]. Unfortunately, almost 64–71% of the world’s wetlands have been
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transformed, degraded or have disappeared in recent decades as a result of anthropogenic
activities, including industrialization, agriculture, and urbanization [1,13–15].

In 2018, more than 55% of the world’s population lived in urban areas, and this
proportion is projected to reach 68% by 2050 [16]. Such a development would exert
tremendous pressure on the natural environment across urban areas in the world as large
areas transform to impervious surfaces. Studies have shown that rapid, uncontrolled, and
unplanned urbanization has been impacting the quality of urban ecological environments
across the world [17–22], including urban wetland ecosystems (UWEs) [23–27].

Advances in geospatial technology, including geographic information systems (GIS)
and remote sensing, have greatly improved the monitoring of landscape changes over
space and time. Today, information derived from these advancements provides important
input to landscape planning and decision-making in many contexts, biodiversity conserva-
tion [28–31], and sustainable urbanization [32–34]. In fact, Earth observation technologies,
particularly remote sensing, play important roles in the monitoring of various social and
ecological indicators related to the United Nations’ SDGs and targets [35], including those
that are associated with wetlands [11,36,37].

With changes in land use/cover (LUC) due to urbanization, natural landscapes suffer
from irreversible transformation [38]. The monitoring of landscape status over space and
time is hence an essential endeavor. Scholars have shown the usefulness of geospatial
techniques for characterizing landscape patterns, including those of UWEs [27,39,40],
and their changes over time [41–43]. Such information that facilitates impact analysis on
ecosystem services and biodiversity [44–46] can be used to direct landscape and urban
development planning towards sustainable UWEs [45,47,48].

The Muthurajawela Marsh and Negombo Lagoon (MMNL), the biggest coastal salt-
water peat bog in Sri Lanka, is located on the western coastal belt between the Kelani
River and Negombo Lagoon lying inland to Katana, Wattala, Ja-Ela, and Negombo in the
Gampaha District of the Western Province. The Muthurajawela Marsh, together with the
lagoon, creates an integrated coastal wetland ecosystem. The complex development of
this landscape during the Holocene period (Circa 6000–5000 years) progressed after the
final glacial period (Figure 1) [49–51]. The MMNL has been, and is still today, an important
UWE in the country. Its estimated monetary value is around Rs 726.5 million per year,
including benefits from flood prevention, treatment of wastewater, and shallow coastal
fisheries [52].

Figure 1. Geological evolution of the Muthurajawela Marsh and Negombo Lagoon (MMNL), Sri Lanka, from the Holocene
period to the present. (a) The MMNL in the mid-Holocene period, marked with a marine regression, exposing a wider
coastal area; (b) Wetland started to form (c. 7000); (c) Formation of wetland from south to north and clay deposits continued
(c. 6500); (d) Marshland and lagoon started to form as an interdependent ecological system (c. 6500–6300); (e) Formation
of marshland and lagoon continued at the final stage, forming one contiguous wetland (c. 6000); and (f) The present
condition in which the MMNL is an important urban wetland ecosystem (UWE) in the Colombo Metropolitan Region with
high socio-ecological significance. The images were sourced from the MMNL’s master plan and MMNL’s conservation
management plan [49,50].
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The Colombo Metropolitan Region (CMR), the country’s capital and the location of the
MMNL, has grown very rapidly over the recent decades. For example, CMR’s population
grew from 3.9 million in 1981 to 5.8 million in 2012 [53]. Consequently, the area of built-
up lands in the CMR also expanded dramatically from 11,165 ha in 1992 to 35,876 ha in
2014 [54]. There have been several studies on MMNL [55,56], but a study that focuses on
the impacts of urbanization on this highly valuable UWE is still lacking.

Hence, the focus in this study is specifically on detecting changes in the LUC and
examining the landscape composition and configuration of the MMNL over the past
two decades (1997–2017) by using remote sensing data and spatial metrics respectively.
The loss of wetland (water, mangrove, and marshland) due to urbanization (settlement
expansion) was quantified and the influence of population growth to this LUC transition
was investigated. The implications of the findings for landscape and urban planning
towards sustainable UWEs are discussed.

2. Materials and Methods

2.1. The MMNL, Sri Lanka

The MMNL, extending over roughly 134 km2 (Figure 2), consists of the Gampaha
District’s four Divisional Secretariats (DS). This area has been experiencing rapid urban-
ization and economic growth over the past three decades. The landscape of the MMNL
encompasses various land surface features, including the lagoon and marsh and mangrove
areas, as well as some highly and moderately urbanized lands.

The MMNL receives freshwater from the eastward direction via two channels (viz.
lower Aththanagalu Oya and lower Kelani Ganga). The area has a gentle slope, with an
elevation range of 0–30 m. According to the geological timetable, the MMNL belongs to
the Quaternary soil group, which is composed of soil deposits from wind-blown sands,
river deposits, and lacustrine sediments [57]. The area has a tropical monsoon climate as
per the Koppen classification [58]. The wet season is from May to September, and the dry
season is from December to early March. Mean annual rainfall is between 2000 mm and
2500 mm, with mean annual daytime temperatures ranging from 22.5 ◦C to 25.0 ◦C [59].

Demographically, the MMNL contains urban and rural settlements. However, due
to a rising population and rapid urban expansion, many parts of this valuable UWE have
become highly vulnerable to the impacts of urbanization, including the Muthurajawela
Marsh, which contains two protected areas (Figure 2). The lagoon is a shallow-water
coastal water body and a highly productive fish area [52]. It is joined to the Indian Ocean
by a single narrow opening in the north. This, too, will continue to be affected if the rapid
urbanization of the area is not controlled and carefully planned.

In fact, the lagoon had initially been utilized by the fishing industry and the neigh-
boring area had been occupied by settlements and industries [51,60]. However, over the
past 60 years, parts of the lagoon have been reclaimed for various purposes, including
illegitimate settlements that have extended to intertidal sands along the channel segments
of the estuary [51,52]. Unlawful activities, such as illegal settlements, illegal fishing, and
illegal cutting of trees, as well as waste dumping and water pollution, are among the
important current concerns with regard to the management of the MMNL [51,52].

2.2. LUC Mapping

We used three Landsat images for this study, viz. two TM (Thematic Mapper) images
captured in 1997-02-07 and 2007-01-02, and one OLI/TIRS (Operational Land Imager/
Thermal Infrared Sensor) image captured in 2017-01-31. They were sourced from the USGS
(https://earthexplorer.usgs.gov/). The images have a spatial resolution of 30 m. Only
one Landsat scene was needed for the study area. Temporal consistency and cloud cover
were considered in the selection of the images. All the images were acquired during the
cloud-free, dry season.

Before LUC classification, we first created a wetland classification scheme comprising
four classes: settlement, marshland, mangrove, and water (Table 1). These LUC classes
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reflect the physical characteristics of the study area and have been widely used in previous
studies [61–63].

Figure 2. Location of the MMNL. (a) Map of Sri Lanka, (b) Gampaha District, and (c) a 3D map of the MMNL produced
using a 30 m digital elevation model (ASTER). The Google Earth image was acquired on 17 February 2017.

The three Landsat images were classified using a hybrid classification method, i.e.,
a combination of unsupervised and supervised classification techniques [64,65], which
was performed in ArcGIS 10.6. First, we used the ISODATA clustering algorithm, an
unsupervised classification algorithm, to produce 14 clusters for each image. We used
bands 5, 4, and 3 for the TM images and bands 6, 5, and 4 for the OLI/TIRS image. Second,
we performed a supervised classification using the maximum likelihood algorithm and
the result of the first step as input. For the training sites, we digitized 15 training samples
for each class, where the number of pixels per sample ranged from 20 to 782. In total, we
digitized 60 samples per image. We assessed the accuracy of the classified 1997, 2007, and
2017 LUC maps using 400 random points. Google Earth was the source of reference data

124



Remote Sens. 2021, 13, 316

for 2007 and 2017. For 1997, we used topographic maps from the Survey Department of Sri
Lanka [66].

Table 1. Wetland classification scheme used in this study.

LUC Class Land Surface Features

Settlement
Urban, residential, industrial, transportation (roads, train lines),

communications and utilities infrastructure, airports, home gardens,
concrete structures, power plants, and asphalt areas.

Marshland
Seasonally flooded areas with abandoned paddy fields, intermittently

flooded areas with agriculture, marsh plant communities, trees, scrub and
grassland, peat soil, bog soil and back swamp, and other cultivated areas.

Mangrove Seasonally flooded areas with mangroves, intermittently flooded areas
with mangroves and mangrove pneumatophore areas.

Water Lagoon, streams, canals, and ponds.

2.3. Assessment of LUC Changes in the MMNL

We calculated the loss and gain areas and rates for each LUC class using Equations (1)
and (2), respectively [67].

L/G area = Ab − Aa (1)

L/G rate (%) = (Ab − Aa)/Aa×100 (2)

where L/G area refers to the area that each class lost or gained (ha) between two time
points. L/G rate refers to the percentage of loss or gain (%) of each class area. Aa and Ab
are the beginning and the end values of each class, respectively.

2.4. Assessment of Wetland Loss Across Grama Niladhari (GN) Divisions

Due to rapid urbanization, there is a high likelihood of the wetland area and its
surrounding areas being converted to urban land use. Here, we identified the top wetland-
losing GNs susceptible to urbanization (settlement expansion) over the study period.
Currently, there are 99 GN divisions in the study area. To do this, we calculated the density
of wetland loss due to urbanization across the GNs during the first time period (TP1) (1997–
2007) and second time period (TP2) (2007–2017) using Equations (3) and (4), respectively.

WLDTP1(%) =
WLTP1

A
× 100 (3)

WLDTP2(%) =
WLTP2

A
× 100 (4)

where WLDTP1(%) and WLDTP2(%) refer to the density of wetland loss density in a
particular GN due to urbanization (settlement expansion) during the two time periods (first
and second, respectively). WLTP1 and WLTP2 are the areas of wetland loss in a particular
GN due to urbanization during the two time periods (first and second, respectively). A
refers to the area of a particular GN. Wetland includes water, mangrove, and marshland.

2.5. Relationship between Urbanization and Wetland Loss

We examined the relationship between urbanization as proxied by the change in
population density (CPD) (Equations (5) and (6)) and density of wetland loss due to
settlement expansion (WLD) at the GN division level. Since the 1997, 2007, and 2017
population data at the GN division level were not available, we extrapolated such data
based on the average population growth rate (APGR) of Katana Wattala, Ja-Ela, and
Negombo DS divisions for 1981, 2001, and 2012 census years. Each of these DS divisions
consisted of a number of GN divisions. Thus, for those GN divisions that belonged to a
particular DS division, only one APGR was used. Finally, scatter plots were produced
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between CPD (x) and WLD (y) for both periods (TP1 and TP2) to examine the relationship
between urbanization and wetland loss.

CPDTP1(%) =
PD2007 − PD1997

PD1997
× 100 (5)

CPDTP2(%) =
PD2017 − PD2007

PD2007
× 100 (6)

where CPDTP1(%) and CPDTP2(%) refer to the change in population density in a particular
GN during the two time periods (first and second, respectively). PD refers to the population
density of a particular GN.

2.6. Landscape Pattern Analysis

Many scholars have discussed the usefulness of spatial metrics for landscape pattern
analysis [68,69]. Landscape-level metrics provide general information about landscape
patterns in the study area. On the other hand, class-level metrics include more detailed
descriptions of landscape patterns based on class-level information. Using FRAGSTATS
V4.2, landscape-level and class-level metrics were computed to gain insights into the
changes in the landscape pattern of the MMNL (Table 2).

Table 2. Class and landscape-level spatial metrics [70].

Metric Equation Unit Definition

Number of Patches (NP) NP = ni None

Reflects the number of patches
of the similar patch type or LUC
class; a simple measure of the

degree of fragmentation

Patch Density (PD) PD = ni
A (10, 000)(100) No. per 100 ha

Equal to the number of patches
at each LUC class per unit area.
A limited, yet important feature

of the landscaping

Edge Density (ED) ED =
∑m

k=1 eik
A (10, 000) Meters per ha

Measures based on edge length
of a specific LUC class per unit

area

Largest Patch Index (LPI)
LPI =

n
max
j = i

(aij)

A (100)
Percent

Quantifies the percentage of
total landscape area taken up by

the largest patch at the class
level. It is a simple indicator of

dominance

Landscape Shape Index (LSI) LSI = 0.25 ∑m
k=1 e∗ik√
A

None

A measure of the total edge or
edge density within the

landscape divided by the total
landscape.

Cohesion (COHESION) COHESION =

[
1− ∑n

j=1 P∗
ij

∑n
j=1 P∗

ij

√
a∗ij

]
.
[
1− 1√

Z

]−1
. (100)

None
0–100

The physical connectivity of the
corresponding patch type of
LUC class. Rises with more

clustering of the patch type in
its configuration, resulting in a

more physical combination.

Shannon’s Diversity Index (SHDI) SHDI= − m
∑

i−1
(P

◦
i InPi) Information

Reflects the landscape
heterogeneity and compares

various landscapes or the same
landscape at different times as a

relative index.

Shannon’s Evenness Index (SHEI) SHEI =
−∑m

i=1

(
P

◦
i InPi

)
Inm

None

Maximum evenness of the area,
reflecting a clear trend among

the patch types at the landscape
level.

Where: i = any LUC patch; ni = number of patches of LUC category i; A = total area of LUC (m2); eik is sum o f edge total (m) in LUC class
I—counting landscape boundary and segments; j = 1,2, 3, . . . , n sum of the specific patch area; aij = patch area ij in number of the pixel
; pi = proportion of the i—any LUC area of the total landscape; pij = circumference of patch ij regarding the sum of cell surface; Z = total
pixel in the landscape; m = total patch in the entire area, without landscape border. Patch number was determined based on the eight-cell
neighborhood rule.
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3. Results

3.1. Classification Accuracy and LUC Changes

The overall accuracy of the three classified LUC maps was 83.0% in 1997, 84.5% in 2007,
and 84.8% in 2017 (Appendix A Table A1). The primary cause of the classification errors
was spectral confusion because some of the pixels of the LUC classes had similar spectral
reflectance due to soil moisture levels and vegetation types [71,72]. We found that some
mangrove pixels were misclassified as marsh, and some marsh pixels were misclassified as
settlements and mangroves, and so on (Appendix A Table A1). Nevertheless, the accuracy
levels of the classified LUC maps of the MMNL are adequate for this study. Other related
studies have reported overall accuracies ranging from 69% to 82% [73–75].

The LUC change analysis revealed that marshland in the MMNL had been drastically
shrinking due primarily to the expansion of settlements. For example, of the 1767 ha and
2282 ha total loss of the marshland class in TP1 and TP2, respectively, 820.89 ha (43%) and
691.92 ha (42%) were lost from the mangrove class (Figure 3 and Table 3). During TP1, the
settlement class gained a total area of 1464 ha, whereas during TP2, it gained a total area
1880.91 ha.

Figure 3. LUC maps of the MMNL in 1997, 2007, and 2017 derived from Landsat data (see Methods).
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Table 3. LUC transitions in the MMNL (ha).

1997
2007

Total Loss
Marshland Mangrove Water Settlement

(a) 1997–2007
Marshland 3007.89 519.93 2.43 1244.88 4775.13 1767.24
Mangrove 615.42 1081.44 2.79 202.68 1902.33 820.89

Water 65.07 1.44 3118.41 16.83 3201.75 83.34
Settlement 547.29 33.12 1.08 2950.38 3531.87 581.49

Total 4235.67 1635.93 3124.71 4414.77 13,411.08
Gain 1227.78 554.49 6.3 1464.39

2007
2017

Total Loss
Marshland Mangrove Water Settlement

(b) 2007–2017
Marshland 1953.45 538.2 30.51 1713.51 4235.67 2282.22
Mangrove 541.71 944.01 0.9 149.31 1635.93 691.92

Water 10.62 3.15 3092.85 18.09 3124.71 31.86
Settlement 324.09 24.48 4.32 4061.88 4414.77 352.89

Total 2829.87 1509.84 3128.58 5942.79 13,411.08
Gain 876.42 565.83 35.73 1880.91

The mangrove class experienced considerable losses to both the marshland and set-
tlement classes in the two periods. There were some gains in the area of the mangrove
class, but its total loss outweighed its total gain, resulting in net losses during both periods.
Nevertheless, the gain of mangrove from marshland in both periods (520 ha in TP1 and
538 ha in TP2) is a positive sign. This could have been due to the government’s efforts to
conserve the MMN by conducting mangrove reforestation activities in previous years.

Table 4 shows the L/G of the LUC classes in the MMNL in terms of area and rate. The
results revealed that the mangrove class had a net decrease of 266 ha (14%) and 126 ha
(8%) in TP1 and TP2, respectively. The marshland class had a net reduction of 539 ha (11%)
and 1406 ha (33%). By contrast, the settlement class had a net increase of 883 ha (25%) and
1528 ha (35%).

Table 4. Losses and gains of the LUC classes in the MMNL.

L/G Area (ha) L/G Rate (%)

1997–2007

Marshland −539.46 −11.30
Mangrove −266.40 −14.00

Water −77.04 −2.41
Settlement 882.90 25.00

2007–2017

Marshland −1405.80 −33.19
Mangrove −126.09 −7.71

Water 3.87 0.12
Settlement 1528.02 34.61

Figure 4 shows the spatial distribution of wetland loss due to urbanization (settlement
expansion) in both periods, i.e., the loss of marshland, mangrove, and water. The results
revealed that the central part (south of the lagoon) and the east part of the MMNL became
more fragmented due to road construction. During the 2007–2017 period, the area exhibited
a ribbon type of development. Another pattern that emerged is the settlement cluster in
the middle, western part of the MMNL. In general, settlements consumed mostly the
marshland and mangrove areas in the northern, eastern, and southern parts of the MMNL.
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Figure 4. Spatial distribution of wetland loss in the MMNL due to urbanization (settlement expan-
sion). (left) 1997 to 2007; and (right) 2007 to 2017. Wetland includes water, mangrove, and marshland.

3.2. Change in Population Density and Loss of Wetland Due to Urbanization

The maps of the GN-level change in population density (CPD) and density of wetland
loss due to urbanization (settlement expansion) (WLD) are shown in Figure 5. The top five
GNs in terms of WLD during TP1 were Thimbirigasyaya, Nayakakanda South, Kurun-
duhena, Welikadamulla, Telangapatha; those during TP2 were Thalahena, Palliyawatta
South, Maha Pamunugama, Pitipana North, Udammita South. A more exhaustive list of
the top GNs in terms of WLD is given in Appendix A Table A2.

The statistical analysis revealed a positive, significant correlation between CPD and
WLD in both time periods (TP1: R2 = 0.435, p = 0.000; TP2: R2 = 0.343, p = 0.000) (Figure 6),
indicating that as the CPD increased, the WLD also increased. This suggests that urbaniza-
tion was, indeed, an important factor or a driver of wetland loss in the MMNL.

3.3. Changes in Landscape Composition and Configuration

At the class-level, the results revealed that between 1997 and 2017, the marshland
class had become more fragmented, as indicated by the overall increase in its number
of patches (NP), patch density (PD), edge density (ED), and the decline in its largest
patch index (LPI), landscape shape index (LSI), and COHESION due to conversions to
settlement marshland and water classes (Figure 7). On the other hand, the mangrove class
had become less fragmented, as indicated by the overall decrease in its NP, PD, and ED.
While its COHESION decreased during the first period, it increased during the second
period. This suggests that the mangrove class, with the loss of some of its fragmented
patches, had become more contiguous from 2007 to 2017. The decrease in LPI and LSI
during the 1997–2017 period was due to mangrove gains, especially those resulting from
the conversion of marshland, suggesting the development of more regular shapes at the
edges of the mangrove. Conversely, the analysis results showed that LPI and LSI in
marshland had fewer regular shapes at the edges, and the patches were more adjoining
compared to the mangrove class. Therefore, the overall result of the mangrove showed
less fragmentation than the marshland class. The settlement class had also become less
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fragmented, as indicated by the overall decrease in its NP, PD, and ED, and the overall
increase in its COHESION. The expansion of settlements to adjacent areas resulted in an
infilling pattern of urban growth, and eventually in a more contiguous and aggregated
configuration of the settlement class. This observation is also supported by the increasing
pattern of the settlement class’ LPI.

Figure 5. GN-level change in population density (CPD) (a,b) and density of wetland loss due to urbanization (settlement
expansion) (WLD) (c and d) in the MMNL. Wetland includes water, mangrove, and marshland. The numbers on maps (c,d)
refer to the numbers of the GNs in Appendix A Table A2.

Figure 6. Relationship between change in population density (CPD) and density of wetland loss due to settlement expansion
(WLD) in the MMNL during (a) 1997–2007 (TP1) and (b) 2007–2017 (TP1). Each point is a GN division.
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Figure 7. Class-level spatial metrics for the MMNL (1997–2017).

At the landscape level, the results revealed that SHDI and SHEI had gradually declined
from 1997 to 2017 (Table 5). This indicates that the landscape of MMNL had tended to
be less fragmented, clustering, and aggregating. Moreover, the overall decrease in patch
richness at the class-level had resulted in an overall decrease in SHDI and SHEI at the
landscape-level in the study area.

Table 5. Landscape-level spatial metrics for the MMNL (1997–2017).

Year SHDI SHEI

1997 1.3383 0.9654
2007 1.3263 0.9567
2017 1.2832 0.9256

4. Discussion

4.1. Landscape Transformation of the MMNL

The MMNL is an important UWE in Sri Lanka owing to its biodiverse ecosystem that
is home to numerous wildlife, water habitat species, and migratory birds [50], besides the
various ecosystem services it provides [52]. Our findings showed that the landscape of this
highly valuable UWE had been transformed dramatically over the past two decades, losing
considerable expanses of its marshland and mangrove cover due to rapid, unplanned and
uncontrolled urbanization (settlement expansion) (Figures 3 and 4; Table 3).

Urbanization, led by socio-economic and biophysical factors, has altered and is still
altering the MMNL landscape. If this wetland change trend continues, it may adversely
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impact the ecosystem services, biodiversity and aesthetic value of the area. There are
indications of an infilling urban growth pattern in the MMNL (Figure 3) and clear signs of
illegal settlements inside the wetland area. The uncontrolled urban expansion of the CMR
and its effects on landscape changes have caused many socio-economic and ecological
problems, as well as an overall degradation of the natural environment in the study area.

Today, the MMNL has been fragmented into four parts owing to settlements, the
construction of the main road and the Colombo-Katunayake Expressway [76], and the area
experiencing a ribbon type-development during the 2007–2017 period. This expressway
runs along the marshland, and a small piece of the Negombo lagoon can be clearly iden-
tified in our classified maps, especially in 2007 and 2017 (Figures 3 and 4). Using urban
wetland modelling, Zubair et al. (2017) [77] found that two of the main watersheds had
increased, but subsequently decreased in one due to urban expansion. These findings
generally support our results on the effects of human intervention, as indicated in previous
research [78].

Availability and reclamation of natural wetland areas according to environment-
friendly policies and enforcement of regulations are crucial to the protection and conser-
vation of the MMNL. Restoration of wetland vegetation is vital, particularly in the highly
populated areas of the GN divisions. A top-to-bottom approach should be adopted to
ensure judicious use of wetland to ensure its protection and sustainability. Generally,
wetland areas play an essential role in mitigating the urban heat island effect [79]. The
MMNL is situated in the CMR which covers a considerable area. Conserving this highly
valuable wetland will promote the cooling effect for better living conditions for the city
dwellers of the CMR. Therefore, the protection and sustainability of the wetland should be
promoted systematically by policymakers and urban planners.

In this study, we used a hybrid method (unsupervised and supervised) to classify the
LUC of the MMNL from Landsat imagery (see Section 2.2). The method minimized classifi-
cation errors. Overall, this hybrid classification provides comprehensive classifications of
natural plant vegetation and soil moisture levels in urban wetland areas [80]. The overall
accuracy of our three classified LUC maps was 83.0% in 1997, 84.5% in 2007, and 84.8% in
2017. Similar findings were reported by reference [64] in their small wetlands mapping in
Kenya and Tanzania, where using unsupervised and supervised approaches, the overall
classification accuracy was 83%. Lane et al. (2014) [81] reports an overall accuracy of
86.5% in wetland classification using eight-band high-resolution satellite data and a hybrid
mapping approach in the Selenga River Delta in southeastern Siberia, Russia.

In general, settlement expansion can be correlated with rapid population growth in
the MMNL. It is important to note that the MMNL is located in the Gampaha District
of Sri Lanka, the second most populous district in Sri Lanka after the Colombo District.
Rural-urban migration due to the establishment of Export Processing Zones (viz. Biyagama,
Katunayake) in the Gampaha District [82] contributed to the higher population growth
during the 1990s. Job opportunities in these Export Processing Zones provided better living
conditions for migrants. Given the decline in agricultural productivity in the country’s
dry regions, the government encouraged rural-urban migration to reduce poverty [83]. In
particular, post-war policies and development projects in the CMR resulted in the country’s
industrial capital becoming an important driver of rapid urban growth of the CMR after
2009 [84].

Figure 8 projects continuous growth in four DS divisions in the study area from 1981
to 2051. The dramatic increase in the urban population of four DS divisions in the study
area is expected to continue in the future. From 1997 to 2017, the population of the study
area increased by 15.51%. The population density of the Wattala and Ja-Ela DS divisions
was higher than that of Katana and Negombo, indicating high urban pressure radiating
from the capital of Colombo and the core of the Gampaha District (Figures 2, 3 and 5).
However, the Negombo DS division should not be ignored because this DS division has
a significant effect on the wetland’s northern part (Figure 2), which has been impacted
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by rapid population growth leading to residential (including illegal settlements) and
non-residential developments in industrial and commercial sectors.

Figure 8. Projected population trend for Wattala, Ja-Ela, Katana and Negombo DSDs of Gampaha District: The population
data for 1981, 2001 and 2012 were sourced from the Department of Census and Statistics, Sri Lanka [85]. The 1991 population
was projected using growth rates of 5.1%, 2.6%, 2.1%, and 6.9% for Wattala, Ja-Ela, Katana, and Negombo, respectively.
From 2021 to 2051, growth rates were projected using rates of 0.87%, 0.83%, 0.51%, and −0.13% for Wattala, Ja-Ela, Katana,
and Negombo, respectively.

In wetland change analyses, researchers have identified some implications of wetland
landscape pattern changes due to urbanization [86,87]. There is evidence that environmen-
tal degradation is very much related to economic growth, as reflected particularly in per
capita income [88]. A spatial metrics analysis shows that the MMNL settlement areas have
become less fragmented (Figure 7) due to the decrease in the number of settlement patches
along the roads and the dispersion of newly established patches from existing settlement
areas around growth nodes (i.e., Negombo, Ja Ela, and Wattala) (Figure 2) and admin-
istrative centers. Furthermore, current settlement patches have become more extensive,
and the gaps between settlement patches have diminished. While the expansion process
has led to the development of settlement patches, there is a reduction in the distance
between settlement patches due to the impact of dispersion in the MMNL. This rapid urban
development of the MMNL and its subsequent wetland landscape changes have created
many socio-ecological problems (Figure 9).

The MMNL has already been encroached upon by the urban sprawl; further infilling
patterns are anticipated. Several factors can cause further fragmentation of the MMNL’s
landscape and dispersed growth. The MMNL is located in the western coastal plain
of Sri Lanka (Figure 2), and there are no significant physical restrictions, such as high
altitudes and steep slopes, which promote fragmentation of the landscape. In the past
two decades, a significant expansion of road networks (Figure 3) has shortened travel
time from the urban center (capital city of Colombo and the core of the Gampaha District)
to the suburbs (Negombo, Katana, Wattala, and Ja Ela) and Katunayake Bandaranaike
International Airport. While people moving to the suburbs facilitate the fragmentation of
the wetland landscape, the lagoon fishing industry and its settlements, as well as illegal
wetland reclamation, also contribute to wetland degradation and land fragmentation.
Wetland areas along the roads have progressively been turned into settlements (Figure 4).
Moreover, push factors, such as high housing costs and service value and land prices in
urban core areas have facilitated the fragmentation of wetland areas, including marshland
and mangrove areas, over the last two decades in the MMNL. Accordingly, such issues
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concerning future wetland landscape and urban planning activities in and around the
MMNL must be addressed.

Figure 9. Some fieldwork photos of the MMNL: (a) Human encroachment in Negombo Lagoon area, (b) Illegal settlements
of the study area, (c) Dumping of garbage into the lagoon, and (d) Human activities inside the Muthurajawela marshland.
Source: First author (D. A.), 2017.

4.2. Implications for Wetland Sustainability

A variety of environmental and socio-economic problems have arisen as a result of
the rapid urbanization process in the MMNL, such as extensive degradation of wetland
ecosystems and loss of important wetland ecosystem services that affect flood control,
carbon sequestration, wetland productivity, the quantity of fish in the lagoon, urban
poverty, and slum development. Besides the ongoing urbanization process that has led to
the loss of wetland areas, current policies and regulations have not adequately addressed
increasing land fragmentation and scattered settlements in the MMNL. Land fragmentation
is threatening the sustainability of this urban wetland.

This study was performed on 4 DS divisions and 99 GN divisions in the Gampaha Dis-
trict (Figures 2 and 5). Local government authorities should consider stricter enforcement
of protection and conservation measures for wetland areas that have become increasingly
degraded. It would be useful for the Department of Wildlife Conservation, the Ministry of
Environment, the Central Environmental Authority, and the Urban Development Author-
ity to undertake wetland conservation projects, in particular, wetland restoration projects
and community-based approaches with judicious use of wetland. While local NGOs and
communities are also involved in implementing the Muthurajawela Wetland Management
Plan [49,50,89], the aims of their management plan have yet to be achieved. Time is of the
essence. Therefore, it is strongly recommended that city planners and local policymakers
implement new laws and legislation without further delay to protect this wetland.

RS data and GIS techniques are useful for spatial analysis [90]. The above study
could be useful in determining how much of the future landscape changes (e.g., the
spatial extent of urban areas towards natural environment and urban wetland areas) could
be compensated by comprehensive land-use practices and environmental rehabilitation
activities such as reforestation programs in mangrove and also natural areas. The recovery
of the wetland has significant potential to reduce the pressure on the carrying capacity of
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the MMNL by human activity. Once the MMNL has been changed into a settlement, it
would be difficult to reverse the conversion.

Against this backdrop, it is evident that scientifically sound knowledge is needed to
help urban landscape planners and policymakers tackle socio-ecological issues and achieve
the essential SDGs [35] to ensure wise and sustainable use of the MMNL. Indeed, wetlands
provide multiple services and benefits to people and are vital to attaining the SDGs [91]
and Aichi Targets of the Convention on Biological Diversity [92]. The fourth Strategic Plan
(2016–2024) of the Ramsar Convention has identified four major objectives and 19 specific
objectives in this regard. Therefore, the authorities should aim to implement the Ramsar
Convention’s Strategic Plans and attain the Aichi Targets so as to mitigate socio-ecological
problems associated with urbanization and protect wetland landscapes.

4.3. Limitations and Prospects for Future Wetland Study

This study used three satellite images captured in 1997, 2007, and 2017. More satellite
images taken at different time points would provide valuable details, leading to a better
spatial-temporal analysis. We need to point out that this investigation was limited by
the lack of other clear and accessible satellite images temporarily compatible with the
three satellite images employed. Another limitation was the unavailability of actual socio-
economic data of the study area. Simultaneous and direct measurements are required to
understand effective wetland conservation and protection strategies. Direct observations
of urban wetlands can provide valuable knowledge for potential wetland management
over the next few decades. We propose that future studies use much higher-resolution
remote sensing images to investigate wetlands (at least for Sri Lanka). We need contempo-
rary and long-term observations to appreciate the challenges in ensuring urban wetland
sustainability.

5. Conclusions

We examined the impacts of urbanization on the Muthurajawela Marsh and Negombo
Lagoon (MMNL), an important urban wetland ecosystem (UWE) in Sri Lanka owing
to the valuable ecosystem services it provides. We found a substantial expansion of
its settlements (+68%) and a considerable decrease in the extent of its marshland and
mangrove forests (−41% and −21%, respectively). A statistical analysis revealed a positive,
significant relationship between the change in population density and the loss of wetland
due to settlement expansion, indicating that urbanization had indeed played a major
role in the landscape transformation of the MMNL. The findings also revealed that most
of the observed LUC changes occurred in areas close to roads and growth nodes (viz.
Negombo, Ja-Ela, Wattala, and Katana), resulting in landscape fragmentation and infill
urban expansion. The results indicated that the spatial and socio-economic elements of
rapid urbanization of the MMNL had been the main driver of the transformation of its
natural environment over the past 20 years. The study also showed that a hybrid mapping
approach (unsupervised and supervised) can improve urban wetland mapping accuracy
from remote sensing satellite imagery.

Overall, we conclude that, in order to ensure the sustainability of the MMNL, which is
a highly valuable UWE, there is an urgent need for forward-looking landscape and urban
planning that could promote environmentally-conscious urban development in the area.
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Abbreviations

UWEs Urban Wetland Ecosystems
MMNL Muthurajawela Marsh and Negombo Lagoon
SDGs Sustainable Development Goals
GIS Geographic Information Systems
LUC Land Use/Cover
CMR Colombo Metropolitan Region
DS Divisional Secretariat
TM Thematic Mapper
OLI/TIRS Operational Land Imager/Thermal Infrared Sensor
ETM+ Enhanced Thematic Mapper Plus
GN Grama Niladhari
WLD Wetland Loss Density
WL Wetland Loss
CPD Change in Population Density
APGR Average Population Growth Rate
PD Population Density
NP Number of Patches
PD Patch Density
ED Edge Density
LPI Largest Patch Index
LSI Landscape Shape Index
COHESION Cohesion
SHDI Shannon’s Diversity Index
SHEI Shannon’s Evenness Index
TP Time Point
RS Remote Sensing

Appendix A

Table A1. Confusion matrices of the classified LUC maps of the MMNL.

Classified Data
Reference Data

Total User’s Accuracy (%)
Marshland Mangrove Water Settlement

(a) 1997
Marshland 108 17 3 6 134 80.86
Mangrove 15 105 4 5 129 81.40

Water 7 3 42 1 53 79.25
Settlement 3 4 0 77 84 91.67

Total 133 129 49 89 400
Producer’s accuracy (%) 81.20 81.40 85.71 86.52

Overall accuracy (%) = 83.01
(b) 2007

Marshland 112 16 5 4 137 81.75
Mangrove 11 98 4 3 116 84.48

Water 6 1 47 1 55 85.45
Settlement 5 5 1 81 92 88.04

Total 134 120 57 89 400
Producer’s accuracy (%) 83.58 81.67 82.46 91.01

Overall accuracy (%) = 84.50
(c) 2017

Marshland 93 7 7 9 116 80.17
Mangrove 12 108 4 3 127 85.04

Water 5 3 42 1 51 82.35
Settlement 4 5 1 96 106 90.57

Total 114 123 54 109 400
Producer’s accuracy (%) 81.58 87.80 77.78 88.07

Overall accuracy (%) = 84.75
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Table A2. Top 20 GNs in the MMNL in terms of density of wetland loss due to urbanization
(settlement expansion) (WLD) (%) (see Equations (3) and (4)).

Rank GNs 1997–2007 (TP1) GNs 2007–2017 (TP2)

1 Thimbirigasyaya 76.47 Thalahena 70.24
2 Nayakakanda South 72.37 Palliyawatta South 66.13
3 Kurunduhena 64.86 Maha Pamunugama 66.11
4 Welikadamulla 63.69 Pitipana North 65.22
5 Telangapatha 63.21 Udammita South 64.06
6 Siriwardana Pedesa 62.82 Dandugama 61.13
7 Dungalpitiya 62.36 Pitipana South East 56.51
8 Paranambalama 61.74 Delathura West 56.01
9 Palliyawatta South 61.63 Nagoda 55.18
10 Munnakkarai North 59.94 Bandarawatta West 53.51
11 Doowa 59.57 Ambalammulla 52.41
12 Hendala North 59.26 Welikadamulla 52.35
13 Balagala 56.3 Ja-Ela 52.18
14 Elakanda 54.68 Alawathupitiya 52.12
15 Kerawalapitiya 54.47 Wella Weediya South 52.02
16 Welisara 54.20 Kudahakapola South 51.72
17 Galwetiya 53.42 Pitipana Central 51.46
18 Nedurupitiya 51.71 Indivitiya 51.37
19 Weligampitiya North 50.19 Siriwardana Pedesa 51.21
20 Bopitiya 50.01 Kurana West 50.13

References

1. Gardner, R.C.; Barchiesi, S.; Beltrame, C.; Finlayson, C.; Galewski, T.; Harrison, I.; Paganini, M.; Perennou, C.; Pritchard, D.;
Rosenqvist, A.; et al. Ramsar Convention State of the World’s Wetlands and Their Services to People: A Compilation of Recent Analyses;
Ramsar Briefing note 7: Gland, Switzerland, 2015.

2. Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al.
The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [CrossRef]

3. Dronova, I.; Gong, P.; Wang, L. Object-based analysis and change detection of major wetland cover types and their classification
uncertainty during the low water period at Poyang Lake, China. Remote Sens. Environ. 2011, 115, 3220–3236. [CrossRef]

4. Ramsar. RAMSAR Homepage. Available online: https://www.ramsar.org/ (accessed on 10 October 2020).
5. Ramsar Convention. An Introduction to the Convention on Wetlands, 5th ed.; Ramsar Convention Secretariat: Gland, Switzerland,

2016.
6. Penatti, C.N.; Almeida, T.I.R.D.; Ferreira, L.G.; Arantes, E.A.; Coe, M.T. Satellite-based hydrological dynamics of the world’s

largest continuous wetland. Remote Sens. Environ. 2015, 170, 1–13. [CrossRef]
7. Reiss, C.K.; Hernandez, E.; Brown, M.T. Application of the landscape development intensity (LDI) index in wetland mitigation

banking. Ecol. Modell. 2014, 271, 83–89. [CrossRef]
8. Gedan, K.B.; Kirwan, M.L.; Wolanski, E.; Barbier, E.B.; Silliman, B.R. The present and future role of coastal wetland vegetation in

protecting shorelines: Answering recent challenges to the paradigm. Clim. Chang. 2011, 7–29. [CrossRef]
9. Dabrowska-Zielinska, K.; Budzynska, M.; Tomaszewska, M.; Bartold, M.; Gatkowska, M.; Malek, I.; Turlej, K.; Napiorkowska, M.

Monitoring Wetlands Ecosystems Using ALOS PALSAR (L-Band, HV) Supplemented by Optical Data: A Case Study of Biebrza
Wetlands in Northeast Poland. Remote Sens. 2014, 1605. [CrossRef]

10. Ramsar Convention. The Fourth Ramsar Strategic Plan 2016–2024, 5th ed.; Ramsar Convention Secretariat: Gland, Switzerland,
2016.

11. Weise, K.; Höfer, R.; Franke, J.; Guelmami, A.; Simonson, W.; Muro, J.; O’Connor, B.; Strauch, A.; Flink, S.; Eberle, J.; et al. Wetland
extent tools for SDG 6.6.1 reporting from the Satellite-based Wetland Observation Service (SWOS). Remote Sens. Environ. 2020,
247, 111892. [CrossRef]

12. United Nations. Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/sustainable-
development-goals/ (accessed on 10 October 2020).

13. MA (Millennium Ecosystem Assessment). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005.
14. Euliss, N.H.; Mushet, D.M.; Newton, W.E.; Otto, C.R.V.; Nelson, R.D.; Labaugh, J.W.; Scherff, E.J.; Rosenberry, D.O. Placing prairie

pothole wetlands along spatial and temporal continua to improve integration of wetland function in ecological investigations. J.
Hydrol. 2014, 513, 490–503. [CrossRef]

15. Bouahim, S.; Rhazi, L.; Ernoul, L.; Mathevet, R.; Amami, B.; Er-riyahi, S.; Muller, S.D.; Grillas, P. Combining vulnerability analysis
and perceptions of ecosystem services in sensitive landscapes: A case from western Moroccan temporary wetlands. J. Nat.
Conserv. 2015, 27, 1–9. [CrossRef]

16. United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision;
United Nations: New York, NY, USA, 2019.

137



Remote Sens. 2021, 13, 316

17. Estoque, R.C.; Murayama, Y. Quantifying landscape pattern and ecosystem service value changes in four rapidly urbanizing hill
stations of Southeast Asia. Landsc. Ecol. 2016, 31, 1481–1507. [CrossRef]

18. Michishita, R.; Jiang, Z.; Xu, B. Monitoring two decades of urbanization in the Poyang Lake area, China through spectral unmixing.
Remote Sens. Environ. 2012, 117, 3–18. [CrossRef]

19. Zhou, D.; Zhao, S.; Zhang, L.; Liu, S. Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32
major cities. Remote Sens. Environ. 2016, 176, 272–281. [CrossRef]

20. Zhang, F.; Yang, X. Improving land cover classification in an urbanized coastal area by random forests: The role of variable
selection. Remote Sens. Environ. 2020, 251, 112105. [CrossRef]

21. Gold, A.C.; Thompson, S.P.; Magel, C.L.; Piehler, M.F. Urbanization alters coastal plain stream carbon export and dissolved
oxygen dynamics. Sci. Total Environ. 2020, 747, 141132. [CrossRef]

22. Gillies, R.R.; Box, J.B.; Symanzik, J.; Rodemaker, E.J. Effects of urbanization on the aquatic fauna of the Line Creek watershed,
Atlanta-A satellite perspective. Remote Sens. Environ. 2003, 86, 411–422. [CrossRef]

23. Mondal, B.; Dolui, G.; Pramanik, M.; Maity, S.; Biswas, S.S.; Pal, R. Urban expansion and wetland shrinkage estimation using a
GIS-based model in the East Kolkata Wetland, India. Ecol. Indic. 2017, 83, 62–73. [CrossRef]

24. Das, A.; Basu, T. Assessment of peri-urban wetland ecological degradation through importance-performance analysis (IPA): A
study on Chatra Wetland, India. Ecol. Indic. 2020, 114, 106274. [CrossRef]

25. Hou, X.; Feng, L.; Tang, J.; Song, X.P.; Liu, J.; Zhang, Y.; Wang, J.; Xu, Y.; Dai, Y.; Zheng, Y.; et al. Anthropogenic transformation of
Yangtze Plain freshwater lakes: Patterns, drivers and impacts. Remote Sens. Environ. 2020, 248, 111998. [CrossRef]

26. Li, Z.; Jiang, W.; Wang, W.; Chen, Z.; Ling, Z.; Lv, J. Ecological risk assessment of the wetlands in Beijing-Tianjin-Hebei urban
agglomeration. Ecol. Indic. 2020, 117, 106677. [CrossRef]

27. Lin, W.; Cen, J.; Xu, D.; Du, S.; Gao, J. Wetland landscape pattern changes over a period of rapid development (1985–2015) in the
ZhouShan Islands of Zhejiang province, China. Estuar. Coast. Shelf Sci. 2018, 213, 148–159. [CrossRef]

28. Nagendra, H.; Lucas, R.; Honrado, J.P.; Jongman, R.H.G.; Tarantino, C.; Adamo, M.; Mairota, P. Remote sensing for conservation
monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol. Indic. 2013, 33, 45–59.
[CrossRef]

29. Yang, C.; Zhang, C.; Li, Q.; Liu, H.; Gao, W.; Shi, T.; Liu, X.; Wu, G. Rapid urbanization and policy variation greatly drive
ecological quality evolution in Guangdong-Hong Kong-Macau Greater Bay Area of China: A remote sensing perspective. Ecol.
Indic. 2020, 115, 106373. [CrossRef]

30. Wiens, J.; Sutter, R.; Anderson, M.; Blanchard, J.; Barnett, A.; Aguilar-Amuchastegui, N.; Avery, C.; Laine, S. Selecting and
conserving lands for biodiversity: The role of remote sensing. Remote Sens. Environ. 2009, 113, 1370–1381. [CrossRef]

31. Wabnitz, C.C.; Andréfouët, S.; Torres-Pulliza, D.; Müller-Karger, F.E.; Kramer, P.A. Regional-scale seagrass habitat mapping in
the Wider Caribbean region using Landsat sensors: Applications to conservation and ecology. Remote Sens. Environ. 2008, 112,
3455–3467. [CrossRef]

32. Zhang, D.; Xu, J.; Zhang, Y.; Wang, J.; He, S.; Zhou, X. Study on sustainable urbanization literature based on Web of Science,
Scopus, and China national knowledge infrastructure: A scientometric analysis in CiteSpace. J. Clean. Prod. 2020, 264, 121537.
[CrossRef]

33. Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote
sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [CrossRef]

34. Zhu, Z.; Zhou, Y.; Seto, K.C.; Stokes, E.C.; Deng, C.; Pickett, S.T.A.; Taubenböck, H. Understanding an urbanizing planet: Strategic
directions for remote sensing. Remote Sens. Environ. 2019, 228, 164–182. [CrossRef]

35. Estoque, R.C. A review of the sustainability concept and the state of SDG monitoring using remote sensing. Remote Sens. 2020, 12.
[CrossRef]

36. Jaramillo, F.; Desormeaux, A.; Hedlund, J.; Jawitz, J.W.; Clerici, N.; Piemontese, L.; Rodríguez-Rodriguez, J.A.; Anaya, J.A.;
Blanco-Libreros, J.F.; Borja, S.; et al. Priorities and interactions of Sustainable Development Goals (SDGs) with focus on wetlands.
Water 2019, 11. [CrossRef]

37. Fitoka, E.; Tompoulidou, M.; Hatziiordanou, L.; Apostolakis, A.; Höfer, R.; Weise, K.; Ververis, C. Water-related ecosystems’
mapping and assessment based on remote sensing techniques and geospatial analysis: The SWOS national service case of the
Greek Ramsar sites and their catchments. Remote Sens. Environ. 2020, 245, 111795. [CrossRef]

38. Estoque, R.C.; Murayama, Y. Measuring Sustainability Based Upon Various Perspectives: A Case Study of a Hill Station in
Southeast Asia. Ambio 2014, 43, 943–956. [CrossRef] [PubMed]

39. Liu, A.J.; Cameron, G.N. Analysis of landscape patterns in coastal wetlands of Galveston Bay, Texas (USA). Landsc. Ecol. 2001, 16,
581–595. [CrossRef]

40. Festus, O.; Ji, W.; Zubair, O.A. Characterizing the Landscape Structure of Urban Wetlands Using Terrain and Landscape Indices.
Land 2020, 9, 29. [CrossRef]

41. Hassan, M.M. Monitoring land use/land cover change, urban growth dynamics and landscape pattern analysis in five fastest
urbanized cities in Bangladesh. Remote Sens. Appl. Soc. Environ. 2017, 7, 69–83. [CrossRef]

42. Aguilera, F.; Valenzuela, L.M.; Botequilha-Leitão, A. Landscape metrics in the analysis of urban land use patterns: A case study
in a Spanish metropolitan area. Landsc. Urban Plan. 2011, 99, 226–238. [CrossRef]

138



Remote Sens. 2021, 13, 316

43. Japelaghi, M.; Gholamalifard, M.; Shayesteh, K. Spatio-temporal analysis and prediction of landscape patterns and change
processes in the Central Zagros region, Iran. Remote Sens. Appl. Soc. Environ. 2019, 15, 100244. [CrossRef]

44. Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization
impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [CrossRef]

45. Liu, G.; Zhang, L.; Zhang, Q.; Musyimi, Z.; Jiang, Q. Spatio-temporal dynamics of wetland landscape patterns based on remote
sensing in yellow river delta, China. Wetlands 2014, 34, 787–801. [CrossRef]

46. Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. Int. J.
Appl. Earth Obs. Geoinf. 2014, 30, 42–55. [CrossRef]

47. Li, Y.; Zhu, X.; Sun, X.; Wang, F. Landscape effects of environmental impact on bay-area wetlands under rapid urban expansion
and development policy: A case study of Lianyungang, China. Landsc. Urban Plan. 2010, 94, 218–227. [CrossRef]

48. McInnes, R. Urban Development, Biodiversity and Wetland Management; UN HABITAT: Bioscan (UK) Ltd: Oxford, UK, 2010.
49. Greater Colombo Economic Commission, Euroconsult. Master Plan of Muthurajawela and Negombo Lagoon; Gunaratne offset Ltd.:

Colombo, Sri Lanka, 1991.
50. Central Environmental Authority, Euroconsult. Conservation Master Plan, Muthurajawela Marsh and Negombo Lagoon; Gunaratne

offset Ltd.: Colombo, Sri Lanka, 1994.
51. Bambaradeniya, C.N.B.; Ekanayake, S.P.; Kekulandala, L.D.C.B.; Samarawickrama, V.A.P.; Ratnayake, N.D.; Fernando, R.H.S.S. An

Assessment of the Status of Biodiversity in the Muthurajawela Wetland Sanctuary; IUCN: Colombo, Sri Lanka, 2002; ISBN 9558177172.
52. Central Environmental Authority (CEA). National Wetland Directory of Sri Lanka; CEA: Colombo, Sri Lanka, 2006; ISBN 9558177547.
53. The World Bank. Turning Sri Lanka’s Urban Vision into Policy and Action; The World Bank: Washington, DC, USA, 2012; ISBN

9789558908440.
54. Subasinghe, S.; Estoque, R.; Murayama, Y. Spatiotemporal Analysis of Urban Growth Using GIS and Remote Sensing: A Case

Study of the Colombo Metropolitan Area, Sri Lanka. ISPRS Int. J. Geo-Inf. 2016, 5, 197. [CrossRef]
55. Jayathilake, M.B.; Chandrasekara, W.U. Variation of avifaunal diversity in relation to land-use modifications around a tropical

estuary, the Negombo estuary in Sri Lanka. J. Asia-Pac. Biodivers. 2015, 8, 72–82. [CrossRef]
56. Rebelo, L.M.; Finlayson, C.M.; Nagabhatla, N. Remote sensing and GIS for wetland inventory, mapping and change analysis. J.

Environ. Manag. 2009, 90, 2144–2153. [CrossRef] [PubMed]
57. Cooray, P.G. An Introduction to the Geology of Sri Lanka (Ceylon), 2nd ed.; Colombo National Museums Publication: Colombo, Sri

Lanka, 1984.
58. Köppen, W. Klassifikation der Klimate nach Temperatur, Niederschlag und Jahresablauf (Classification of climates according to

temperature, precipitation and seasonal cycle). Petermanns Geogr. Mitt. 1918, 64, 193–203.
59. Department of Meteorology, Sri Lanka. Weather Forecasts. Available online: http://www.meteo.gov.lk/index.php?lang=en

(accessed on 10 October 2020).
60. Greater Colombo Economic Commission, Euroconsult. Environmental Profile of Muthurajawela and Negombo Lagoon; Gunaratne

offset Ltd.: Colombo, Sri Lanka, 1991.
61. Mao, D.; Wang, Z.; Du, B.; Li, L.; Tian, Y.; Jia, M.; Zeng, Y.; Song, K.; Jiang, M.; Wang, Y. National wetland mapping in China: A

new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. Remote
Sens. 2020, 164, 11–25. [CrossRef]

62. Reschke, J.; Hüttich, C. Continuous field mapping of Mediterranean wetlands using sub-pixel spectral signatures and multi-
temporal Landsat data. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 220–229. [CrossRef]

63. Ghosh, S.; Das, A. Urban expansion induced vulnerability assessment of East Kolkata Wetland using Fuzzy MCDM method.
Remote Sens. Appl. Soc. Environ. 2019, 13, 191–203. [CrossRef]

64. Mwita, E.; Menz, G.; Misana, S.; Becker, M.; Kisanga, D.; Boehme, B. Mapping small wetlands of Kenya and Tanzania using
remote sensing techniques. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 173–183. [CrossRef]

65. Shanmugam, P.; Ahn, Y.H.; Sanjeevi, S. A comparison of the classification of wetland characteristics by linear spectral mixture
modelling and traditional hard classifiers on multispectral remotely sensed imagery in southern India. Ecol. Modell. 2006, 194,
379–394. [CrossRef]

66. Survey Department of Sri Lanka. Available online: https://www.survey.gov.lk/ (accessed on 2 May 2020).
67. Liu, X.; Dong, G.; Wang, X.; Xue, Z.; Jiang, M.; Lu, X.; Zhang, Y. Characterizing the spatial pattern of marshlands in the Sanjiang

Plain, Northeast China. Ecol. Eng. 2013, 53, 335–342. [CrossRef]
68. Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustain-

ability planning for the rapidly urbanizing summer capital of the Philippines. Landsc. Urban Plan. 2013, 116, 60–72. [CrossRef]
69. Zhang, Q.; Chen, C.; Wang, J.; Yang, D.; Zhang, Y.; Wang, Z.; Gao, M. The spatial granularity effect, changing landscape patterns,

and suitable landscape metrics in the Three Gorges Reservoir Area, 1995–2015. Ecol. Indic. 2020, 114, 106259. [CrossRef]
70. McGarigal, K. Fragstats; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA,

2015; pp. 1–182. [CrossRef]
71. Lu, D.; Weng, Q. Urban Classification Using Full Spectral Information of Landsat ETM+ Imagery in Marion County. Indiana 2005,

71, 1275–1284. [CrossRef]
72. Liu, Y.; Zha, Y.; Gao, J.; Ni, S. Assessment of grassland degradation near Lake Qinghai, West China, using Landsat TM and in situ

reflectance spectra data. Int. J. Remote Sens. 2004, 25, 4177–4189. [CrossRef]

139



Remote Sens. 2021, 13, 316

73. Sader, S.A.; Ahl, D.; Liou, W.S. Accuracy of landsat-TM and GIS rule-based methods for forest wetland classification in Maine.
Remote Sens. Environ. 1995, 53, 133–144. [CrossRef]

74. Slagter, B.; Tsendbazar, N.-E.; Vollrath, A.; Reiche, J. Mapping wetland characteristics using temporally dense Sentinel-1 and
Sentinel-2 data: A case study in the St. Lucia wetlands, South Africa. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102009. [CrossRef]

75. Singh, P.; Javed, S.; Shashtri, S.; Singh, R.P.; Vishwakarma, C.A.; Mukherjee, S. Influence of changes in watershed landuse pattern
on the wetland of Sultanpur National Park, Haryana using remote sensing techniques and hydrochemical analysis. Remote Sens.
Appl. Soc. Environ. 2017, 7, 84–92. [CrossRef]

76. Expressway Operation Maintenance And Management Division Road Development Authority-Sri Lanka. Available online:
http://www.exway.rda.gov.lk/index.php?page=expressway_network/e03 (accessed on 5 May 2020).

77. Zubair, O.A.; Ji, W.; Weilert, T.E. Modeling the Impact of Urban Landscape Change on Urban Wetlands Using Similarity Weighted
Instance-Based Machine Learning and Markov Model. Sustainability 2017, 9, 2223. [CrossRef]

78. Wei, Z.; Jingang, J.; Yubi, Z.H.U. Change in Urban Wetlands and Their Cold Island Effects in Response to Rapid Urbanization.
Chin. Geogr. Sci. 2015, 25, 462–471. [CrossRef]

79. Athukorala, D.; Murayama, Y. Spatial Variation of Land Use/Cover Composition and Impact on Surface Urban Heat Island in a
Tropical Sub-Saharan City of Accra, Ghana. Sustainability 2020, 12, 7953. [CrossRef]

80. Ozesmi, S.L.; Bauer, M.E. Satellite remote sensing of wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [CrossRef]
81. Lane, C.R.; Liu, H.; Autrey, B.C.; Anenkhonov, O.A.; Chepinoga, V.V.; Wu, Q. Improved Wetland Classification Using Eight-Band

High Resolution Satellite Imagery and a Hybrid Approach. Remote Sens. 2014, 6, 12187. [CrossRef]
82. Abeywardene, J.; de Alwis, R.; Jayasena, A.; Jayaweera, S.; Sanmugam, T. Export Processing Zones in Sri Lanka: Economic Impact and

Social Issues; Center for Women’s Research: Colombo, Sri Lanka, 1994.
83. Kelegama, S.; Corea, G. Economic Policy in Sri Lanka: Issues and Debates; SAGE Publications: New York, NY, USA, 2004; ISBN

9780761932789.
84. Hogg, C.L. Sri Lanka: Prospects for Reform and Reconciliation; Chatham House: London, UK, 2011.
85. Department of Census and Statistics-Sri Lanka. Available online: http://www.statistics.gov.lk/ (accessed on 3 May 2020).
86. Ancog, R.; Ruzol, C. Urbanization adjacent to a wetland of international importance: The case of Olango Island Wildlife Sanctuary,

Metro Cebu, Philippines. Habitat Int. 2015, 49, 325–332. [CrossRef]
87. Thibault, P.A.; Zippererb, W.C. Temporal changes of wetlands within an urbanizing agricultural landscape. Landsc. Urban Plan.

1994, 28, 245–251. [CrossRef]
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Abstract: Fine knowledge of the spatiotemporal distribution of the population is fundamental in a
wide range of fields, including resource management, disaster response, public health, and urban
planning. The United Nations’ Sustainable Development Goals also require the accurate and timely
assessment of where people live to formulate, implement, and monitor sustainable development
policies. However, due to the lack of appropriate auxiliary datasets and effective methodological
frameworks, there are rarely continuous multi-temporal gridded population data over a long his-
torical period to aid in our understanding of the spatiotemporal evolution of the population. In
this study, we developed a framework integrating a ResNet-N deep learning architecture, consid-
ering neighborhood effects with a vast number of Landsat-5 images from Google Earth Engine for
population mapping, to overcome both the data and methodology obstacles associated with rapid
multi-temporal population mapping over a long historical period at a large scale. Using this proposed
framework in China, we mapped fine-scale multi-temporal gridded population data (1 km × 1 km)
of China for the 1985–2010 period with a 5-year interval. The produced multi-temporal population
data were validated with available census data and achieved comparable performance. By analyzing
the multi-temporal population grids, we revealed the spatiotemporal evolution of population distri-
bution from 1985 to 2010 in China with the characteristic of concentration of the population in big
cities and the contraction of small- and medium-sized cities. The framework proposed in this study
demonstrates the feasibility of mapping multi-temporal gridded population distribution at a large
scale over a long period in a timely and low-cost manner, which is particularly useful in low-income
and data-poor areas.

Keywords: population mapping; Landsat; deep learning; multi-temporal; ResNet-N; Google Earth
Engine; China; SDGs

1. Introduction

Understanding the spatiotemporal distribution of the population is fundamental in a
wide range of fields, including resource management [1,2], disaster response [3–6], public
health [7–9], and urban planning [10,11]. The United Nations’ Sustainable Development
Goals (SDGs) also require the accurate and timely assessment of where people live to
formulate, implement, and monitor sustainable development policies [12,13].

Census data released by an official body are authoritative and vital data about pop-
ulation distribution [14]. However, census data are based on administrative units; thus,
they have several inherent limitations and are ill-suited to many spatial studies. Firstly,
there is significant spatial heterogeneity in population distribution, which cannot be re-
flected by census data, which assumes a completely uniform distribution of the population
within census units [15]. Secondly, the size of administrative units varies significantly in
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urban and rural areas, which results in the Modifiable Areal Unit Problem [16]. Thirdly,
administrative boundaries may change over time and are seldom compatible with practical
applications, making census data challenging to integrate with other spatial data sets,
preventing interdisciplinary research and temporal dynamic analysis [17]. In order to
overcome the limitations of census data, fine-grained gridded population data, which are
spatially continuous, are produced to supplement census data [18,19].

Several approaches have been developed to produce fine-scale gridded population
data in the past few decades, such as areal weighting [20], spatial interpolation [21–23], and
dasymetric mapping [24–32]. Among them, dasymetric mapping technology [33], which
uses fine-scale auxiliary variables and specific weighting schemes to re-allocate census
counts to grid cells, is the most widely used and effective one [19]. Commonly adopted
ancillary data include land use/cover data [34–36], nighttime light data [26,37], terrain
data [38], and social sensing data (e.g., points-of-interest [39], mobile phone records [40],
and social media data [41]). Multiple methods, including empirical rules [15], statistical
models (e.g., linear regression [34] and geographically weighted regression [17]), and
machine learning models (e.g., random forest [42], expectation-maximization [43], and
neural network [44]), have been proposed to estimate the distribution weight of grid cells.
Various gridded population data at regional and global scales have been produced and
published using the methods mentioned above, including the Gridded Population of the
World (GPW) [45], Global Human Settlement Population layer (GHS-POP) [46], Global
Rural-Urban Mapping Project (GRUMP) [47], WorldPop [48], and LandScan [49].

The accuracy of gridded population data is determined by the quality of auxiliary
data [19]. Numerous previous studies focused on integrating novel auxiliary variables
related to population distribution to improve the quality of the produced population
grids [15,50,51]. The thematic, spatial, and temporal accuracy of auxiliary data themselves
is also crucial to the quality of the final gridded data [19]. For example, classification
error in land use/land cover data will be propagated to the produced gridded population
data. Furthermore, involving more auxiliary variables contributes more uncertainty to the
final result [34]. In order to produce multi-temporal gridded population data, temporally
explicit and consistent auxiliary data are essential, whose availability and sustainability
are questionable, especially at a large scale, precluding the production of continuous
multi-temporal data over a long historical period [34].

Remote sensing (RS) data (e.g., satellite imagery) that can capture the physical char-
acteristics of the ground at low cost, broad coverages, and high spatiotemporal resolu-
tion are becoming increasingly available with improvements in imaging technology over
time [36,52]. The physical characteristics of the ground and human activities interact
with each other. Human activities can lead to distinct spatial landscapes, which inversely
constrain how people live, produce, and travel, providing the possibility of consistent
and sustainable population estimation with RS imagery as auxiliary data without the
problems mentioned above [53]. However, the raw RS imagery is highly unstructured, and
its association with population count is complex and nonlinear, making it challenging to
construct a mapping from raw RS imagery to population count [54]. An emerging super-
vised deep learning approach, convolutional neural networks (CNN), which are capable of
extracting the hidden hierarchical structures of RS images [55], have shown outstanding
performance in obtaining knowledge from RS images in the domain of geography (e.g.,
land use classification [56], spatial interpolation [57], and poverty mapping [58]). Therefore,
it is possible that CNN can form a mapping from RS imagery to population count.

A few studies have tried to estimate population counts from RS imagery directly.
Doupe proposed the use of a VGG-like network to estimate population density in Tanza-
nian and Kenya from Landsat images and achieved remarkable performance and general-
izability [54]. Robinson regarded the population estimation task as a classification problem
and used a similar VGG-like network to classify RS image patches into 14 population den-
sity levels. They produced gridded population data for the United States in 2010, achieved
high performance, and qualitatively explained the predictions in terms of the input RS
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imagery [59]. Xing proposed a Neighbor-ResNet architecture by embedding the neighbor
knowledge into ResNet in order to estimate the volumes of human activity from Google
imagery in 18 cities in China [53]. The attempts mentioned above verify the feasibility
and superiority of integrating CNN and RS imagery for population mapping. However,
the established models have not been used to map historical population distributions and
understand their spatiotemporal evolution.

China is the world’s most populous developing country. Fine-scale population dis-
tribution data are crucial for China’s sustainable development [13]. Numerous gridded
population data of China, with various spatial resolutions, have been developed [25,39]. A
few studies have also used time-invariant and time-explicit auxiliary variables to produce
multi-temporal gridded population distribution data [17,30,60]. However, due to the lack
of appropriate auxiliary datasets and effective methodological frameworks, there are rarely
continuous multi-temporal gridded population data for China over a long historical period
to aid in our understanding of the spatiotemporal evolution of the population.

In this study, we developed a framework integrating a ResNet-N deep learning
architecture with the consideration of neighborhood effects with a vast number of Landsat-
5 images from Google Earth Engine (GEE) [61] for population mapping to overcome both
the data and methodology obstacles of rapid multi-temporal population mapping over a
long historical period at a large scale. Once the framework was constructed, we developed
multi-temporal gridded population data with a 1 km resolution for China (excluding
Taiwan, Hong Kong, and Macao) for the 1985–2010 period with a 5-year interval and
analyzed its spatiotemporal evolution.

2. Materials and Methods

This study aimed to develop a framework integrating a deep learning model with
Landsat-5 RS images from GEE to estimate population count. Once the framework is
established, large-scale population mapping can be achieved only with easily accessible
and regularly updatable RS imagery. Furthermore, we produce multi-temporal gridded
population data (1 km × 1 km) of China for the 1985–2010 period with a 5-year interval
and analyze the spatiotemporal evolution of the population distribution of China in this
period. The flowchart of this study is illustrated in Figure 1, containing three main parts:
(1) we collected ground-truth population count grid cells and corresponding Landsat-5
RS image patches as reference datasets for training, validating, and testing the developed
deep learning model; (2) a ResNet-N architecture considering neighborhood effects was
developed to establish the end-to-end mapping between population count and RS image
patches; (3) based on the trained model, we estimated the gridded population count of
China with corresponding Landsat-5 image patches from GEE as input from 1985 to 2010.
Furthermore, the produced raw estimations were adjusted by available census data to
acquire the final gridded population data. Finally, we validated the produced datasets and
analyzed the spatiotemporal evolution of China’s population distribution.
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Figure 1. The flowchart of the proposed framework for mapping population distribution of China by integrating the
ResNet-N model and Landsat-5 images from GEE.

2.1. Data Sources and Preprocessing
2.1.1. Ground-Truth Population Grid

In order to establish an end-to-end mapping between Landsat-5 RS image patches
and population count by deep learning architecture, it is necessary to collect ground-truth
population grid cells as training samples. However, the ground-truth population grid does
not exist [19]. In this study, an alternative method (Figure 2) was utilized to collect the
closest ground-truth population grid samples with a resolution of 1 km.
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Figure 2. The flowchart of collecting the closest ground-truth population grid cell samples with a resolution of 1 km.

We obtained China’s 2010 population census data at the town level (level 4 adminis-
trative unit), the finest-scale census data publicly available, from China’s Sixth National
Population Census. Towns are the fundamental administrative units in China, with rel-
atively small jurisdiction areas, 58% of which are less than 100 km2, so that the spatial
heterogeneity of population distribution is tiny within towns. However, it is not adequate
to use the average population density of towns as references due to heterogeneity within
towns [62]. We obtained the WorldPop gridded population data [48] with a resolution
of 1 km for China in 2010 to remedy this problem. The WorldPop data are produced by
coupling a random forest algorithm with various auxiliary data to disaggregate county-
level (level 3 administrative units) census data, recognized as some of the finest gridded
population data to date [5]. In this study, we used WorldPop data in 2010 as a weighting
layer to redistribute the total population count of each town to grid cells to account for the
spatial heterogeneity within towns in part. Numerous towns are small in area. Therefore,
this modified population map represents the closest ground-truth population grid that is
available to use as training data. Finally, we sampled 100,000 grid cells from the ground-
truth population grid weighted by the quality of grid cells to tradeoff the reliability and
representativeness of the samples. The administrative areas of towns act as a data quality
metric of grid cells [19]. Let areak represent the area of the kth town; then, the weight of
selecting a grid cell inside the kth town is given as 1

areak . We discarded the grid cells with
a population count of less than 10. It is unnecessary and intractable to distinguish the
subtle change in population count via RS images in a 1 km2 area [59]. The distribution of
ground-truth population samples is heavily tailed, with kurtosis of 1312.41 and skewness
of 26.31. To balance the dataset and ease the training of the deep learning model, the
population count was logarithmized [53]. The collected samples were randomly divided
into three groups: training (70%), validation (10%), and testing (20%). Figure 3 presents the
spatial distribution of the collected population samples.
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Figure 3. The spatial distribution of the ground-truth population samples.

2.1.2. Landsat-5 RS Imagery

This study used RS images from Landsat-5 collected by the Thematic Mapper (TM)
sensor, covering the 1985–2010 period [52]. The full Landsat-5 L1T-level surface reflectance
archive [63] covering China with a cloud score of less than 60 was preprocessed and
downloaded effortlessly from GEE, a cloud-based platform for processing petabyte-scale
geospatial datasets [61]. The L1T-level products have undergone geometric, radiation, and
atmospheric corrections and are ready for use [64,65]. After masking clouds and shadows
using Landsat quality flag information [66], a composite for a given year was produced
in the form of a median mosaic of all available Landsat scenes. To address the shortage
of cloud-free images, we included the Landsat scenes of the year before and the year
after the target year in the composite. By referring to previous research, six bands were
retrieved, i.e., Band 1 (blue), Band 2 (green), Band 3 (red), Band 4 (near-infrared), Band 5
(shortwave infrared 1), and Band 7 (shortwave infrared 2), all with a spatial resolution of
30 m [65]. Figure 4 presents the cloud-free Landsat composites with standard false-color
band combination from 1985 to 2010. Due to the shortage of cloud-less images, there are
missing data in western areas of China in some target years. As these areas are usually
sparsely populated with slight variation, we used the valid data in the nearest adjacent
year to supplement these areas.

Previous studies have revealed that the detailed characteristics of various landscapes
can be well reflected by these 6 visible and invisible bands [54]. Figure 5 presents the
probability density distribution of population count in the ground-truth samples and
the example RS image patches that correspond to various population counts. Obviously,
different magnitudes of population count correspond to distinct landscape characteristics
in the RS image patches. The interplay between population count and RS images indicates
the potential of estimating population count based only on RS images from Landsat-5 via a
deep learning architecture.
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Figure 4. Cloud-free Landsat-5 composites of China from 1985 to 2010.

Figure 5. Probability density distribution of population count in the ground-truth samples and example RS image patches
that correspond to various population counts.
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2.2. Methods
2.2.1. Building a Mapping from RS Image Patches to Population Counts via ResNet-N
Model

In this study, we view the gridded population estimation task as a regression problem.
The method framework is shown in Figure 6. Given an image patch θi of the grid cell i
and the corresponding logarithmized population count pi, we express our learning task as
building a mapping function:

pi = f (θi) (1)

where f (·) is the mapping function to be learned by deep learning models. Acknowledging
the highly nonlinear and complex relationship between RS images and population count,
a ResNet (specifically, ResNet-50 was adopted) model considering neighborhood effects
(ResNet-N) was utilized to approximate such a complex mapping relationship [53]. The
ResNet model is one of the state-of-the-art CNN architectures and has been widely adopted
to mine geographical knowledge from RS images [55,56]. The fundamental building block
of Resnet-50 is the bottleneck, a convolution layer with an identity shortcut connection,
which solves the problem of gradient vanishing [55]. As shown in Figure 6, ResNet-50
contains 7 layers (groups). Conv1 is a plain convolution layer with 64 convolution kernels
of size 3 × 3, which slide on the RS image to extract hidden features and output 64 feature
maps. Conv2 contains 3 bottleneck blocks, each with 128 convolution kernels of size
3 × 3, which slide on the feature maps generated by Conv1 to extract higher-level features.
Likewise, Conv3 contains 4 bottleneck blocks, each with 512 convolution kernels; Conv4
contains 6 bottleneck blocks, each with 1024 convolution kernels, and Conv5 contains
3 bottleneck blocks, each with 2048 convolution kernels. In the network, deeper layers
excavate more abstract and informative features related to the task from previous feature
maps. Between each convolution layer (or bottleneck block), the feature map is reduced
by half to aggregate information. Finally, the average pooling layer squeezes the feature
map to 1 dimension, which is inputted into the fully connected layer (fc) to regress the
population count. The ReLU activation function and batch normalization are used in all
convolution layers to facilitate the training of networks [67]. Figure A1 illustrates how
the input RS image evolves to the output population count in the network. Because of
the autocorrelation of population distribution, the center grid cell population count may
be affected by landscapes in the neighborhood. Hence, we constructed extended image
patches by extending the center image patch to include its 3 × 3 neighboring patches to
embed neighborhood knowledge [53,68]. Hence, the layer-wise convolutional operations
of the ResNet model can extract interior and neighborhood and integrate latent features for
population estimation when sliding on the extended image patches. In order to regress the
population count directly, the softmax activation function in the final fully connected layer
was removed. We used the log-cosh function for back-propagation training:

Loss( p̂, p) =
s

∑
i=1

log10(cos h( p̂i − pi)) (2)

where Loss( p̂, p) is the log-cosh loss function, pi is the ground-truth population count of
grid cell i, p̂i is the estimated population count of grid cell i, and cos h(·) is the hyper-
bolic cosine function [68]. The log-cosh loss is similar to the L1 loss, commonly used in
regression problems, but is more tolerant of anomalous estimations and achieves better
performance [68]. Hyperparameters were tuned empirically based on 1/10 of the available
samples. A stochastic gradient descent (SGD) optimizer with a momentum of 0.9 and a
learning rate of 10−4 was used for weight updating. The batch size and the maximum
number of epochs were set to 32 and 1000, respectively. The framework was implemented
using the Tensorflow 2.0 library on a Linux server with a 2.50 GHz Intel Xeon E5-2680 CPU,
an NVIDIA GTX 2080Ti GPU, and 128GB RAM.
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Figure 6. An end-to-end ResNet-N model to estimate population count from RS images by embedding the neighbor
knowledge into ResNet.

2.2.2. Mapping Multi-Temporal Population Distributions in China via ResNet-N Model
and Landsat-5 RS Images

This study aims to produce multi-temporal gridded population maps with 1 km spatial
resolution for China via establishing a framework integrating a deep learning model with
Landsat-5 RS images from GEE. Our research area, mainland China, is covered by a grid of
7346 × 4507 consisting of 1 km × 1 km cells. We excluded grid cells with a population count
of <10 in the ground-truth population grid in 2010, which can be regarded as uninhabited
areas, to reduce the computational burden, resulting in 5,508,904 grid cells being retained.
A 1 km × 1 km cell in the population grid approximately covers a 34 × 34 image patch
with a spatial resolution of 30 m on Landsat-5 composites. To consider the contribution of
neighborhood effects on population count, we constructed extended image patches with
a width and height of 102, including the center patch and its 3 × 3 neighboring patches.
The extended image patch was then resized to a fixed size of 129 × 129 for inputting into
the deep learning model. We obtained a centroid for each cell in the population grid
and extracted a 102 × 102 image patch center around the obtained centroid from the
Landsat-5 composites for each target year from 1985 to 2010. A total of 33,053,424 RS
image patches were extracted and normalized to 0–1. Among them, the image patches
that corresponded to the 2010 ground-truth population samples were utilized for training,
evaluating, and testing the deep learning model. Once the model was trained, all RS image
patches were inputted into the model to measure the population count of each position of
each target year.

2.2.3. Modifying Raw Population Estimation via Census Data

Ensuring that the aggregated grid population counts at census units match the known
official total population count is necessary. The dasymetric mapping method is used to
achieve this goal. For a census unit s with a known official total population count ps, the
following equations are used to modify the raw population estimations:

wi =
pr

i
∑i∈S pr

i
(3)

pm
i = pS × wi (4)

where pr
i is the raw population count of cell i estimated by the deep learning model, wi

is the distribution weight of cell i, and pm
i represents the modified population count of

cell i. In 2010, we used county-scale census data from the National Bureau of Statistics of
China to modify the estimation. Due to data limitations, we used the city-scale (level 2
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administrative unit) total population count from WorldPop generated using the dasymetric
method based on county-scale census data to modify estimations for 2005 and 2000 [48].
For 1995 and 1990, we used the city-scale total population count from GPWv3 produced
by the areal weighting method based on official census data at the county scale to modify
the estimations [45]. For 1985, due to the unavailability of census data, a single country-
wide population count from the World Bank Database was used for modification. The
data source and administrative unit level of the census data or total population count are
summarized in Table A1.

2.2.4. Accuracy Assessment

We used six quantitative metrics to assess the performance of the proposed population
mapping framework and the produced multi-temporal gridded population data, including
Pearson’s correlation coefficient (R), the coefficient of determination (R2), mean absolute
error (MAE), percentage mean absolute error (%MAE), root mean squared error (RMSE),
and percentage root mean squared error (%RMSE):

R = ∑n
i=1

(pi,o − po)(pi,s − ps)√
∑n

i=1(pi,o − po)
2
√

∑n
i=1(pi,s − ps)

2
(5)

R2 =
n ∑n

i=1 pi,o pi,s − ∑n
i=1 pi,o ∑n

i=1 pi,s√
n ∑n

i=1 pi,o
2 − (∑n

i=1 pi,o)
2
√

n ∑n
i=1 pi,s

2 − (∑n
i=1 pi,s)

2
(6)

MAE =
1
n ∑n

i=1|pi,o − pi,s| (7)

%MAE =
1
n ∑n

i=1
|pi,o − pi,s|

pi,o
(8)

RMSE =

√
1
n ∑n

i=1(pi,o − pi,s)
2 (9)

%RMSE =

√
1
n ∑n

i=1(pi,o − pi,s)
2

po
(10)

where pi,o is the ground-truth population count of the ith sample, pi,s denotes the esti-
mated population count of the ith sample, n represents the total number of samples, po
is the average of the ground-truth population count, and ps is the average of the esti-
mated population count. The indicator R, ranging from −1 to 1, measures the linear
correlation between actual values and estimated values to evaluate the relative magnitude
fitting performance [62]. The indicator R2, with a value from -infinity to 1, measures how
much variance in actual values is captured by the predicted values, assessing the absolute
magnitude fitting performance [53]. R and R2 evaluate the explainability of estimated
values to actual values. MAE designates the average absolute error between actual values
and estimated values. In order to highlight large errors, absolute errors are squared in
RMSE. Since MAE and RMSE are not as understandable, the percentage errors (%MAE and
%RMSE) assessing the proportion of the error to the actual value are also presented [54].
These 4 error metrics evaluate the absolute and percentage estimation error together. The
mentioned 6 metrics complement each other and provide a comprehensive assessment of
the proposed framework and the produced data [69].

3. Results

3.1. Accuracy Assessment of ResNet-N Model for Population Estimation

In this study, a ResNet-N model with neighbor augmentation was utilized to estab-
lish the end-to-end mapping between Landsat-5 RS image patches and population count.
The model’s performance of directly estimating the population count from RS images
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was evaluated by the collected 20,000 testing samples. Figure 7 shows the scatterplots of
ground-truth population count (p) and estimated population count (p̂) with their proba-
bility density distributions. As shown in Figure 7, the scatterplots of p and p̂ present a
clustered distribution pattern along the 1:1 reference line, validating that the deep learning
architectures can effectively establish the mapping from RS image patches to population
count. The probability density distributions of p and p̂ exhibit similar shapes and also
confirm this conclusion. Compared to the ResNet model without neighbor augmentation,
the ResNet-N model with neighbor augmentation used in this study displays superior
performance in terms of the six evaluation metrics. ResNet-N (R = 0.84, R2 = 0.70) exhibits
higher explainability of landscape characteristics extracted from the RS images on popu-
lation count compared to ResNet (R = 0.70, R2 = 0.56). The R2 indicates that 70% of the
variance population count can be explained by the ResNet-N, compared to 56% by the
ResNet. ResNet-N (%MAE = 13.63%, %RMSE = 15.91%) also has higher absolute accuracy
than ResNet (%MAE = 16.06%,%RMSE = 19.35%). The %RMSE of ResNet -N is lower than
that of ResNet by 21.62% and %MAE by 17.93%. The comparatively low %RMSE and
%MSE of both models reveal the capacity of the deep learning model to capture the hetero-
geneity in population distribution from RS images, and improved estimation performance
can be achieved considering neighbor effects.

Figure 7. Scatterplots and probability density distributions of ground-truth population count and estimated population
count from ResNet-N and ResNet.

For true population count (p) and estimated population count (p̂), an investigation
of the relationship between p and p̂ − p was conducted to explore the systematic bias
of estimating population count from RS images via deep learning technologies. Figure 8
shows the scatterplots of p and p̂ − p from ResNet-N and ResNet. The results reveal
that both models tend to underestimate densely populated samples and overestimate
sparsely populated samples, evidenced by the significant negative correlation coefficient
and the negative slope. The observed bias can be ascribed to the inherent limitations of
multispectral RS images, which cannot identify the social–economic factors that affect
population distribution (i.e., the high utilization efficiency of space in densely populated
areas). However, consideration of neighbor effects leads to reduced biases and better
estimation performance [53].
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Figure 8. Scatterplots of test samples between p and p̂ − p from ResNet-N and ResNet. (p: true population count;
p̂: estimated population count).

Interpretability is a critical aspect of a model [53,59]. A model with good interpretabil-
ity usually has good performance. In this study, the ResNet-N model considers only RS
images as input to estimate population count. Therefore, all estimations can be explained in
terms of the landscape details from RS images. We used gradient-weighted class activation
mapping (Grad-CAM), a visual explanation technology for deep learning models, to figure
out what features our model learns to estimate population count [70]. Grad-CAM can
output a heatmap for an RS image patch. The heat value quantifies the relative contribution
of input pixels in the original patch to the estimated population count [70]. For analysis,
we selected 12 typical grid cells with different magnitudes of population count. Figure 9
presents the RS image patches in the top rows and corresponding heatmaps in the bottom
rows. As shown in Figure 9a, built-up areas are highlighted in heatmaps when they border
natural areas. The explanation for this is that built-up areas are usually more densely pop-
ulated than natural areas. Figure 9b proves the ability of our model to recognize different
buildings by capturing hidden hierarchic features of RS images in the interior of the built-
up area to estimate population count. As densely populated buildings (i.e., residential) and
sparsely populated buildings (i.e., factories) are staggered in the built-up area, distinguish
different buildings contributes to accurate population estimation. The heatmaps offer
insights into how human activities interact with the underpinning physical environment
and prove that our model can learn valuable features for population estimation.
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Figure 9. RS image patches (top row) and corresponding heatmaps (bottom row) produced by Grad-CAM in 12 typical
grid cells. (a) Built-up areas border natural areas; (b) Interiors of built-up areas.

3.2. Validating Multi-Temporal Gridded Population Data via Census Data

A stable end-to-end mapping from RS image patches to population count was estab-
lished by the ResNet-N model. It is promising that population distribution mapping can
be achieved with only the formed mapping and RS images. However, it is necessary to
ensure that the aggregated grid population counts at census units match the known official
total population count. Furthermore, the grid cell estimation will be more accurate when
scaled to match the true population value [59]. We used county-level census data to modify
the raw population count estimated from RS images by the model in 2010. Validation
of the modified population map was conducted using town-level census data. It is a
common practice in dasymetric mapping to use census data of a finer scale to evaluate the
accuracy of the produced gridded population data [39]. Two well-known gridded popula-
tion datasets, WorldPop [48] and GPWv4 [45], were selected as baselines to highlight the
performance of the produced data. We collected towns with a population of >100 to assess
the comparative performance of the produced gridded data. As shown in Table 1, our new
population map produced by coupling RS images and deep learning technologies (referred
to as RSPop) achieved the best performance, with the lowest absolute and relative errors
and the highest explainability and correlation with the true population count. Figure 10
presents scatterplots of the true population count and estimated population count of each
town from RSPop, WorldPop, and GPWv4. Compared to other gridded population data,
the scatterplot of RSPop presents a more concentrated distribution pattern along the 1:1
reference line, with the highest accuracy. In contrast, points are scattered and distributed
away from the 1:1 reference line in GPWv4, which has the lowest accuracy.
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Table 1. Accuracy assessment of RSPop at town scale comparing WorldPop and GPWv4.

RSPop WorldPop GPWv4

R 0.89 0.87 0.82
R2 0.77 0.69 0.61

MAE 7846.62 8138.20 9463.33
%MAE 46.21 51.19 62.48
RMSE 15,686.74 18,277.52 20,448.11

%RMSE 56.03 65.28 73.03

Figure 10. Scatterplots of the true population count and estimated population count from RSPop, WorldPop, and GPWv4 at
town scale.

The gridded population data in 2010 produced by the proposed framework were
validated and achieved the highest performance compared to other datasets. Due to the
consistency of Landsat-5 images and the relative stability of human activity patterns, it
can be expected that accurate gridded population data from 1985 to 2005 can be produced
by the same framework, using corresponding RS images at target years as input. For the
period of 1990–2005, because town-scale census data are challenging to collect, we used the
city-scale total population count to modify the estimated population count and applied
the county-scale total population count to verify the accuracy of the data. Total population
counts at city scale and county scale in 2000 and 2005 were obtained from WorldPop, while
total population counts at city scale and county scale for 1990 and 1995 were obtained
from GPWv3. Both WorldPop and GPWv3 were produced based on county-scale census
data [45,48]. Therefore, it would be impractical to use them for comparative analysis.
Instead, as the accuracy of the gridded population data in 2010 has been verified, the
population estimation in 2010 modified by city-scale census data was used for comparison
at the county scale. As shown in Table 2, overall performance reductions exist for each
target year in 1990–2005 compared to 2010. For example, the R2 is reduced from 0.93 in
2010 to 0.91 in 2005, 0.88 in 2000, 0.73 in 1995, and 0.74 in 1990, with an average reduction of
12.37%. Figure 11 shows scatterplots of the true population count and estimated population
count at the county level, which present clustered patterns along the 1:1 reference line.
These results imply that the model trained in 2010 is generalizable to other years.

Table 2. Accuracy assessment of RSPop at county scale from 1990 to 2010.

1990 1995 2000 2005 2010

R 0.86 0.86 0.94 0.95 0.97
R2 0.74 0.73 0.88 0.91 0.93

MAE 93,260.92 103,362.10 83,413.22 77,668.16 69,052.32
%MAE 30.68 28.48 22.11 19.67 16.64
RMSE 163,431.57 182,624.46 127,106.24 116,733.57 105,319.00

%RMSE 38.45 40.74 27.43 24.47 21.49
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Figure 11. Scatterplots of the true population count and estimated population count at county scale from 1990 to 2010.

For 1985, as the corresponding census data were unavailable, we used a single country-
wide population count from the World Bank Database to modify gridded population data
and have not verified it. Due to the consistency of the proposed population mapping
framework, we argue that data accuracy in 1985 is comparable to that in other years.

3.3. Accuracy Analysis of Gridded Population Data to Scales of Census Data

The availability of census data restrains the production of gridded population data,
and fine-scale census data benefit accurate population mapping [48]. However, census
surveys are time-consuming and labor-intensive, and, in many cases, only coarse-grained
census data can be obtained [71]. Here, we utilized the population distribution in 2010 to
investigate the difference in the accuracy of gridded population data based on census data
of different scales. The true population and the estimated population at the town scale were
compared to evaluate the accuracy of the modified data. Figure 12 shows scatterplots of
the true population count and estimated population count at the town scale from gridded
population data based on county-scale, city-scale, province-scale, and country-scale census
data. The points of true and estimated values present clustered distribution along the 1:1
reference line at all scales, suggesting that the produced gridded population data based
on all census scales can capture the heterogeneity in population distribution. Figure 13
shows the variation in the accuracy of gridded population distribution based on census
data of four different scales in terms of six accuracy metrics. It is shown that with the
increase in the scale of census units, data accuracy decreases. Therefore, when census data
are available, it is necessary to use them to modify the raw estimations and obtain better
accuracy. Comparable to GPWv4 (R2 = 0.61, %RMSE = 73.03), based on county-census
data, the R2 and %RMSE of gridded population data based on a single country-wide
population count is 0.55 and 79.14, with a difference of 9.84% and 8.37%, respectively.
As the difference is relatively low and a single country-wide population count is easily
accessible, it is promising that the constructed framework can generate reliable gridded
population data from RS images without census data efficiently.
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Figure 12. Scatterplots of the true population count and estimated population count at town scale based on county-scale,
city-scale, province-scale, and country-scale census data.

Figure 13. Variation in the accuracy of gridded population data based on county-scale, city-scale, province-scale, and
country-scale census data in terms of 6 accuracy metrics.

3.4. Evolution of China’s Population Distribution from 1985 to 2010

Figure 14 shows the produced gridded population maps of China with the resolution
of 1 km for the years 1985, 1990, 1995, 2000, 2005, and 2010. Although the total population
of China grew from 105,104,000 in 1985 to 133,770,500 in 2010, the pattern of population
distribution has not changed significantly. The famous Hu-Line pattern [72], characterized
by a dense population in the southeast part and a sparse population in the northwest
areas of China, remains. From 1985 to 2010, the population gravity center [73] of China
lay roughly at the point (113.89◦ E, 32.97◦ N), which showed a slight movement to the
southeast, with a moving distance of fewer than 33 km (Figure A2), suggesting that China’s
population and economic center was moving towards the southeast area. In line with
previous studies, China’s population density is classified into eight levels in this study [34].
Among them, grid cells with a population density greater than 1500 persons/km2 are
regarded as high-density regions, cells with a population density between 200 and 1500
are regarded as medium-density regions, and cells with a population density less than 200
are regarded as low-density regions. Table 3 lists the percentage values of the area and
population for different levels, reflecting the evolution of China’s population distribution
from 1985 to 2010.
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Figure 14. Gridded population data (1 km × 1 km) of China from 1985 to 2010.

Table 3. Percentage values of area and population for different density levels.

Density
1985 1990 1995 2000 2005 2010

Area Population Area Population Area Population Area Population Area Population Area Population

Low 83.19 22.49 82.33 20.48 82.76 19.46 83.79 18.26 83.97 17.62 83.91 16.44
Medium 16.40 61.18 17.2 60.54 16.64 56.21 15.42 50.96 15.12 48.22 15.07 47.66

High 0.42 16.33 0.48 18.98 0.61 24.33 0.79 30.78 0.92 34.17 1.02 35.90

From 1985 to 2010, the area proportion of high-density regions increased from 0.42% to
1.02%, increasing by 145%, and the population proportion increased from 16.33% to 35.90%,
increasing by 119.84%. Previous researches have suggested that high-density regions with
a population density of >1500 persons/km2 can be regarded as urbanized regions [34]. The
expansion of regions with high population density can be ascribed to rapid urbanization
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and the emergence of megacities due to China’s reform and opening-up policy. The area
proportion of medium-density regions decreased from 16.40% in 1985 to 15.07% in 2010,
a decrease of 4.46%, and the population proportion decreased from 61.18% to 47.66%,
decreasing by 22.09%. The expansion of megacities can explain the reduction in regions
with medium population density as the concentration of the population in megacities
leads to the contraction of small- and medium-sized urban regions. The area proportion of
low-density regions increased from 83.19% in 1985 to 83.91% in 2010, while the population
proportion decreased from 22.49% to 16.44%. The expansion of low-density regions may
be attributed to immigration measures in some mountainous areas to protect the ecological
environment and alleviate poverty [24]. However, with urbanization, the population
becomes gradually concentrated in urban regions, leading to a reduced population in
low-density regions.

Figure 15 shows the population distributions and landscape variations of three regions
in large urban agglomerations in China from 1985 to 2010: (a) Beijing-Tianjin-Hebei,
(b) the Yangtze River Delta, and (c) the Pearl River Delta. During this period, these areas
experienced rapid urban expansion and consequent population growth, which further led
to the transformation of the urban landscape. The produced continuous multi-temporal
gridded population data with high spatial resolution provide support to track the co-
evolvement of the human population and physical landscape.

Figure 15. Population distributions (bottom row) and landscape variations (top row) of three regions
in large urban agglomerations in China from 1985 to 2010. (a) Beijing-Tianjin-Hebei; (b) The Yangtze
River Delta; (c) The Pearl River Delta.
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4. Conclusions and Discussion

China, as the most populous developing country in the world, has experienced rapid
economic development, population growth, and urbanization in recent decades. Fine-
scale population distribution data and their dynamics are a crucial component in many
fields, including resource management, disaster response, public health, urban planning,
and climate change; they are also fundamental in monitoring and achieving sustainable
development goals (e.g., SDG 11.6.2—annual mean levels of fine particulate matter (e.g.,
PM2.5 and PM10) in cities (population-weighted)) [74]. However, due to the lack of
adequate methodology and appropriate data, there are rarely continuous multi-temporal
gridded population data available for China over a long historical period to aid in our
understanding of the evolution of population distribution.

The continuously improving remote sensing technology provides low-cost, broad-
coverage, and high spatiotemporal resolution ground information, which, in conjunction
with deep learning technology that can mine hidden geographical knowledge, enables
continuous population distribution mapping. We introduced a framework integrating
a ResNet-N deep learning architecture with the consideration of neighborhood effects
with a vast number of Landsat-5 images from GEE for rapid multi-temporal population
mapping over a long historical period in this study. The ResNet-N model was developed
to establish the end-to-end mapping between population count and RS image patches.
Based on the trained model, we estimated the gridded population count (1 km × 1 km) of
China with corresponding Landsat-5 image patches from GEE as input from 1985 to 2010.
The produced raw estimations were adjusted by available census data to acquire the final
gridded population data.

The ResNet-N model with neighbor augmentation achieved R2 0.70 and %RMSE
15.91%, with a better explainability and higher absolute accuracy than ResNet, which
can model the interaction between the physical environment and population and capture
the heterogeneity in population distribution from RS images. An interpretation analysis
revealed that the constructed deep learning model could provide valuable features for
population estimation since it can distinguish the differences between natural and built-up
areas and between densely populated and sparsely populated buildings. The produced
gridded population data in 2010 was validated via town-scale census data and showed
higher accuracy than WorldPop and GPWv4. The produced gridded population data
from 1990 to 2005 were validated via county-scale total population count and achieved
comparable performance to data in 2010, suggesting that the produced gridded population
map can analyze spatiotemporal characteristics of China’s population distribution over a
long period with acceptable accuracy.

The spatiotemporal analysis of multi-temporal gridded population data showed
that China’s population distribution pattern did not change significantly from 1985 to
2010, and the famous Hu-Line pattern remains. With China’s urbanization process and
the emergence of megalopolises, the high-density population regions have dramatically
expanded, with the area expanding by approximately 145% and the population expanding
by approximately 120%. The concentration of the population in big cities has led to the
contraction of cities with medium and small sizes. China’s medium-density regions have
shrunk by around 4.46%, and their population has decreased by approximately 22.09%.
China’s low-density regions have expanded slightly with China’s poverty alleviation and
mountain migration strategy [24], but the population has decreased.

The coupling of deep learning technologies and easily accessible, regularly updated,
and analysis-ready remote sensing data from GEE unquestionably establishes a novel
avenue that promotes multi-temporal population mapping over a long period at a large
scale. However, there are several limitations of this framework. First, although informative
knowledge of the population distribution can be extracted from RS images directly, so-
cioeconomic information cannot be identified. For example, the vacancy rate of buildings
is difficult to capture, making it impossible to distinguish between vacant buildings and
occupied buildings [54]. Especially in China, unreasonable urban expansion has led to
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the appearance of ghost cities characterized by high vacancy rates of buildings, which
cause overestimation of the population [75,76]. Social sensing data and nighttime light
data can depict multiple facets of human society, capturing related socioeconomic in-
formation [69,75]. In the future, integrating multi-source RS data and time-series social
sensing data can further improve the framework [23]. Second, we produced the gridded
population data for each target year independently. However, as population distribution
is continuous in the time dimension, specific time-series analysis techniques are needed
to stabilize temporal variation in population distribution [17]. Third, the deep learning
model ResNet-N was trained based on samples collected from the entirety of China in
2010. Although the generalization performance to other years of the model trained in 2010
has been validated, further efforts are needed in considering generalization errors. As
China has a large territory and exhibits significant internal variations, in the future, we will
investigate whether using regionally parameterized models will improve the performance
of population mapping [59].

The framework proposed in this paper demonstrates the feasibility of mapping multi-
temporal gridded population distribution at a large scale over a long period in a timely
and low-cost manner, which is particularly useful in low-income and data-poor regions.
The framework can also be easily extended to a global scale or to map other gridded socioe-
conomic variables (e.g., GDP) for monitoring and assessing progress toward fulfillment of
the SDGs [12].
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Appendix A

Figure A1. Illustration of how the input RS image evolves to the output population count in the ResNet-N by an example
image patch. The activations of the first three and the last feature map of each network layer were visualized. The principal
component analysis (PCA) dimension-reduction technique [77] was used to compress all feature maps of each layer to 3 RGB
channels for visualization. It is shown that the shallow neural layers (Conv1 and Conv2) excavate concrete features such as
texture, shape, and edge from natural landscapes. Then, the deep layers (Conv3, Conv4, and Conv5) extract informative
abstract features based on the shallow features for population estimation.

Table A1. Source and administrative unit level of census data or total population count for modifying
raw population estimation of each year.

Year Administrative Unit Level Source

1985 Country World Bank Database
1990 City GPWv3
1995 City GPWv3
2000 City WorldPop
2005 City WorldPop
2010 County National Bureau of Statistics of China
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Figure A2. The movement path of population center in China from 1985 to 2010.
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Abstract: The rapid development of urbanization and population growth in China has posed a
major threat to the green sustainable development of the ecological environment. However, the
impact of urbanization on the eco-environmental quality (EEQ) in China remains to be developed.
Understanding their interactive coupling mechanism is of great significance to achieve the urban
sustainable development goals. By using multi-source remote sensing data and the coupling co-
ordination degree model (CCDM), we intended to answer the question “What are the temporal
and spatial characteristics of urbanization and EEQ in China on the pixel scale during 2000–2013,
and what is the coupling mechanism between the urbanization and the EEQ?”. To answer these
questions, we explored the coupling mechanism between urbanization and the EEQ in China with a
combined mathematical and graphics model. The results show that the urbanization and the coupling
coordination degree (CCD) of the whole region continually increased from 2000 to 2013, especially
in the three major urban agglomerations, with a spatial distribution pattern that was “high in the
east and low in the west”. Most importantly, from 2000 to 2013, the CCD type of cities in China
gradually evolved from uncoordinated cities to coordinated cities. Additionally, the decisive factor
affecting the CCD from 2000 to 2013 was the development of urbanization, and the degree at which
urbanization had an impact on CCD was about 8.4 times larger than that of the EEQ. At the same
time, the rapid urbanization that has occurred in some areas has led to a significant decline in the
EEQ, thus indicating that China needs to increase its protection of the ecological environment while
pursuing social and economic development in the future. This study makes up for the deficiencies in
the existing literature and investigates the long-term coupling of the EEQ and urbanization in China,
thereby providing a new research perspective for the sustainable development of China and even the
world in the future.
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1. Introduction

Since the beginning of the current century, China has experienced a period of urbaniza-
tion that is unprecedented in human history. During this period, the speed of urbanization
development in China was approximately three times larger than the world average during
the same period [1,2]. Rapid urbanization has led to serious environmental problems, such
as the depletion of natural resources and the destruction of ecosystem services [3]. Severe
ecological and environmental problems restrict China from having a healthy economy and
societal development and threatens regional sustainable development [4–6]. In terms of
this increasingly severe eco-environmental situation, it is increasingly important to conduct
effective scientific research on monitoring the coupling of China’s eco-environment quality
(EEQ) and urbanization in order to ensure the realization of “China’s 2030 sustainable
development goals” [7].

Currently, research on EEQ assessment has made great progress [8]. In 1979, David
J. Rapport and Tony Friend firstly proposed the “pressure-state-response” (PSR) frame-
work [9], which reflects the relationship among natural, social, and economic factors from
the perspective of environmental protection and economic development, and this frame-
work has been widely used in EEQ assessment studies [8]. Based on the PSR framework,
the European Environment Agency (EEA) [10], the United States Environmental Protection
Agency (USEPA) [11], and the Council for Sustainable Development (CSD) [12] have all
proposed improved models for EEQ assessment in different regions. With the emergence of
the concept of sustainable development, research methods have gradually developed EEQ
assessment models that are based on sustainable development, and these models include
ecological footprint (EF) [13] and the environmental sustainability index (ESI) [14]. Through
summarizing existing studies, we found that previous research had two shortcomings.
First, the environmental assessments mainly focused on the assessment of ecological risks,
ecological effects, and ecological fragility and lacked a comprehensive assessment of the
overall EEQ of the region. Secondly, most of the studies relied heavily on panel statistical
data, which led to uncertainty in the study results due to the diversity of the sources of
panel statistical data. In terms of urbanization assessment, current research methods are
mainly based on panel statistical data that are implemented around different assessment
systems, similar to EEQ assessments [15–18]. Therefore, studies that evaluate urbanization
also have the two abovementioned shortcomings.

The rapid development of remote sensing sensors and the open access of massive
remote sensing data have greatly promoted Earth observation research on the regional
scale [19,20]. In 2020, Estoque (2020) elaborated on the status, challenges, and opportunities
of the remote sensing (RS) monitoring of the Sustainable Development Goals and pointed
out that remote sensing technology is an important environmental monitoring tool that
can help fill the gaps in environmental data [21]. For example, the RSEI model proposed
by Xu [22] in 2013 has been widely applied to assess the EEQ in different regions [23–25].
However, these studies often overlook an important principle, i.e., the definition of EEQ
should be evaluated on the basis of the entire territory of China. For example, the EEQ of the
Qinghai–Tibet Plateau calculated by the RSEI index is not comparable with that of the Loess
Plateau. Secondly, many studies have found that the application of the RSEI index on a large
scale has larger uncertainty, especially in regions with abundant land cover types, which
creates a gap in the current research on remotely sensed EEQ assessments in China [26].
Remote sensing technology has also made great progress in the quantitative assessment
of urbanization. Currently, urbanization monitoring methods using remote sensing are
generally divided into two categories: multispectral remote sensing and nighttime light
remote sensing. For example, Li [27] proposed an urban boundary extraction algorithm
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(GA-UCAT) that was based on the normalized building index (NDBI). Zhang [28] analyzed
the urbanization development of India, China, Japan, and the United States from 1992 to
2000 based on DMSP nighttime light data. However, the advantages of nighttime light data
in characterizing the level of urbanization have been verified [29–31].

The theories on the interaction and coupling of the EEQ and urbanization mainly
include the environmental Kuznets curve (EKC) [32,33], the planetary boundaries the-
ory [34,35], the tele-coupling theory [36,37], the footprint family theory [38,39], and the
urban metabolism theory [40,41]. Related models mainly include the STIRPAT model [42],
the coupling coordination degree model (CCDM) [43], and the multiagent model [44].
Among them, CCDM is the most widely used [45]. Zhao [46] studied the coupling of the
EEQ and urbanization in the Yangtze River Basin from 1980 to 2013 through the EKC and
dynamic CCDM and found that the EEQ and urbanization conformed to the S-shaped
curve of the coupling and coordination relationship. Li [47] used the CCDM to study
the coupling relationship between the EEQ and urbanization in Lianyungang and found
that the coupling coordination degree (CCD) presented an inverted U-shaped curve, and
Wang et al. also reached a similar conclusion [48]. Some scholars used the double expo-
nential model and the CCDM to verify the nonlinear relationship between the EEQ and
urbanization [49].

Under the context that the sustainable development goals (SDGs) are becoming a
global strategic development goal, research on the coupling of the regional EEQ and
urbanization has gradually become a global hot topic [45]. By reviewing previous studies,
their shortcomings were summarized. Firstly, most existing studies were based on statistical
data. The diverse data sources and the low temporal and spatial resolution of statistical
data have led to great uncertainty in the research results. Since the sources of statistical
data in China can be divided into the national and provincial levels, the same indicators
published by different agencies, which contain huge human factors, are very different.
Another uncertainty of statistical data comes from the timeliness. For example, with the
change of the definition of an indicator, the indicator may stop updating in the future or
may be replaced by another indicator, which will cause great uncertainty to the statistical
data. On the other hand, studies based on statistical data may also result in low spatial
resolution characteristics. Therefore, these research results usually cannot show the surface
details on the pixel scale. Secondly, there is currently a lack of studies on the long-term
continuous coupling of the EEQ and urbanization in China. To address these issues, this
study explored the coupling mechanism between the EEQ and urbanization in China from
2000 to 2013 using the CCDM and multisource remote sensing data.

This study counterbalances the shortcomings of existing research and fills gaps in the
research on the coupling mechanism between the EEQ and urbanization. Additionally, this
study provides a new perspective for research on urban sustainable development in China,
which can also be extended to the global research.

2. Study Area and Data

2.1. Study Area

China is located in eastern Asia, with the terrain gradually rising in elevation from
east to west and a rich ecosystem. There are three forest areas in northeastern and southern
China, with the Inner Mongolia Plateau constituting China’s largest grassland resource and
representing the largest ecosystem type in China (Figure 1). Lakes of various sizes, most of
which are distributed on the Qinghai–Tibet Plateau constitute China’s complex wetland
ecosystem. The Qinghai–Tibet Plateau is the largest ice accumulation area in the world
after the North and South poles, and this region is called the “Asian Water Tower” [50].
Therefore, the EEQ of China plays an important role in the stability of China’s ecosystem.
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Figure 1. Land use map (MCD12Q1) of China in 2013 and line chart of the urbanization rates in
China and the world from 2000 to 2013 (bottom left). The light blue shaded area represents the slow
growth stage of the urbanization rate, while the light green area represents the rapid growth stage.

Since the 21st century, China has experienced the largest and fastest urbanization
process in its history [51]. The urbanization rate increased from 36.22% in 2000 to 53.7% in
2013, with an annual average growth rate of 1.344, which is much higher than the world
average of 0.486. As shown in Figure 1, the urbanization process in China from 2000 to
2013 experienced slow and rapid growth. From 2006 to 2010, the average growth rate of
China’s urbanization, with a rate of 0.9, was higher than the global growth rate of 0.498
during the same period, which was much lower than the annual average growth rate over
the 14-year period. From 2010 to 2011, China’s urbanization rate increased rapidly, and the
growth rate reached 3.77. China’s urbanization rate exceeded the world average for the
first time in 2013, which is the end of the time series of this study.

2.2. Data

Multisource remote sensing data were used in this study, including precipitation (PRE),
temperature (TEMP), net primary productivity (NPP), vegetation coverage (FVC), digital
elevation model (DEM), land use and land cover change (LULC), population density (POP),
potential evapotranspiration (PET), and DMSP (Defense Meteorological Satellite Program)
nighttime light data. The data used in this study are detailed in Table 1.
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Table 1. Detailed description of the data.

Data
Name

Format Spatial Resolution Time Resolution Source

2019QZKK0603-zgyjsl [52] NETCDF 1000 m Monthly NTPDC a

2019QZKK0603-zgypjw [52] NETCDF 1000 m Monthly NTPDC a

MOD17A3 HDF 1000 m Monthly NASA b

MOD13A3 HDF 250 m Monthly NASA b

SRTM DEM TIFF 250 m — USGS c

MCD12Q1 HDF 1000 m Seasonal NASA b

Landscan POP TIFF 1000 m Annual ORNL d

MOD16A3 HDF 1000 m Monthly NASA b

LUCC2000 TIFF 1000 m Annual CAS e

DMSP nighttime light TIFF 1000 m Annual NOAA f

Anthropogenic heat flux (AHF) TIFF 1000 m Annual Article [53]
a NTPDC: National Tibetan Plateau Data Center. b NASA: National Aeronautics and Space Administration.
c USGS: United States Geological Survey. d ORNL: Oak Ridge National Laboratory. e CAS: Chinese Academy of
Sciences. f NOAA: National Oceanic and Atmospheric Administration.

3. Methods

The methods that were used in this study are divided into three parts: (1) the pro-
duction of the Multisource Remote Sensing EEQ Index (M-RSEQI) (Section 3.1), (2) the
processing of the quantitative calculation of urbanization (Section 3.2), and (3) the eval-
uation of the coupling processes between the M-RSEQI and urbanization (Section 3.3).
The flowchart for this article is shown in Figure 2 and includes two parts: the flowchart
of study methods (Figure 2a) and an example for 2000 (Figure 2b). The main process
for Figure 2a is as follows: First, the annual mean value of eight indicators representing
the EEQ was calculated and standardized, and then the dimension reduction of the eight
indicators was carried out to calculate the M-RSEQI. Secondly, the DMSP nighttime light
data were corrected and standardized. Finally, the processed DMSP nighttime light data
and M-RSEQI were input into the CCDM to calculate the CCD.

3.1. M-RSEQI

This study followed the principles for the selection of assessment indicators proposed
by the China National Environmental Monitoring Centre [54], namely comprehensive
principles, representative principles, scientific principles, comparability principles, and
operability principles. Eight indicators were selected, as shown in Table 1.

To eliminate the influence of different index dimensions on the results, dimensionless
treatment was needed for all of the indexes. The range standardization method was used
to standardize the eight indicators that were used in this research. The selected indicators
were divided into positive and negative indicators. Positive indicators included PRE,
NPP, NDVI, DEM, and LUCC, which promoted the EEQ, while the negative indicators
had negative effects on the EEQ, and included TEMP, POP, and PET. The standardized
equations are as follows:

Positive indicator :
r+s = (Ij − Imin)/(Imax − Imin)

(1)

Negative indicator :
r−s = (Imax − Ij)/(Imax − Imin)

(2)

where rs
+ is the standardized value of the jth indicator, Ij is the original value of the jth

indicator, and Imin and Imax are the minimum and maximum values of the jth indicator.
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Figure 2. Flowchart of the methods. (a) The flowchart of data processing methods; (b) An example
for one year (2000).

Another key point of EEQ assessment is the assessment model. Currently, the main
assessment methods include objective methods and subjective methods. Common objective
methods include the entropy method (EM) and principal component analysis (PCA), and
common subjective methods include grey relation analysis (GRA) and the analytic hierarchy
process (AHP) [55]. This study used the EM to calculate the weights of the eight indicators
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in order to eliminate the influence of subjective human factors on the study results. The
calculation equations of the EM are as follows:

wij =
r+ij

∑n
i=1 r+ij

or wij =
r−ij

∑n
i=1 r−ij

(3)

ej = −k
n

∑
i=1

wij ln wij, k = (ln n)−1 (4)

f j = 1 − ej (5)

wj =
f j

∑m
j=1 f j

(6)

where wij is the weight corresponding to the jth indicator of the ith city, ej is the entropy
value of the jth indicator, fj is the redundancy coefficient of the jth indicator, and wj is the
weight corresponding to the jth indicator. In this study, i and j have values of 366 and
8, respectively.

3.2. Urbanization Assessment Based on DMSP

Cao’s research [56,57] was referred to for the processing of the DMSP nighttime
light data, including noise removal and correction. The correction process included the
desaturation and continuous correction of different sensors (F15, F16, and F18). Figure 3
shows the change in the total nighttime light value (TNLV) before and after the DMSP
nighttime light data correction of the different sensors. The corrected DMSP nighttime light
data have good continuity.

Figure 3. Total nighttime light value (TNLV) of noncorrected DMSP nighttime light data across China
(left) and that of corrected DMSP nighttime light data (right).

3.3. Coupling Coordination Degree Model (CCDM)

The phenomenon in which two or more systems interact with each other is called
coupling, and the coordination degree is the degree of harmony in the interaction between
systems [58,59]. The CCDM was used to construct the coupling relationship between the
EEQ and urbanization in China from 2000 to 2013. The coupling degree model (CDM) is
expressed as

C= { U × E

[(U + E)/2]2
} 1

2 (7)

where C is the coupling degree; the larger C indicates a more coordinated relationship of
the EEQ and urbanization; U is designated as urbanization; and E is M-RSEQI.

The coupling degree model is a representation of the coordination between the two
subsystems. In fact, the size of the subsystem value does not affect the degree of coordina-
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tion. Therefore, we introduced the CCDM based on the CDM, which avoids these issues.
The formula of the CCDM is as follows:

D =
√

C × T, T = αU + βE (8)

where D is the CCD and ranges from 0 to 1; T is the comprehensive assessment index; and
α and β are undetermined coefficients, where α + β =1. In this study, α and β were both
assumed to be 0.5.

The CCD was divided into three categories and six subcategories according to the
classification criteria in Table 2.

Table 2. Classification standard of the CCD between the EEQ and urbanization based on the classifi-
cation breakpoints.

CCD Progression Stage Comparison Subcategories

0 ≤ D < 0.2 Uncoordinated U < E Urbanization lags behind
U > E Eco-environment lags behind

0.2 ≤ D < 0.4 Primary coordinated U < E Urbanization lags behind
U > E Eco-environment lags behind

0.4 ≤ D ≤ 1 Coordinated U < E Urbanization lags behind
U > E Eco-environment lags behind

3.4. Trend Analysis

This study used the univariate linear regression model to calculate the annual change
trend of the M-RSEQI, urbanization, and the CCD [60–62]. The formula is as follows (the
trend of M-RSEQI):

slope =
n × n

∑
i=1

(i × MRSEQIi)−
n
∑

i=1
i

n
∑

i=1
MRSEQIi

n × n
∑

i=1
i2 − n

∑
i=1

i
(9)

where slope is the slope of the linear regression equation between the M-RSEQI and year in
China from 2000 to 2013, i is the time variable, n is the year and is set as 14 in this study, and
MRSEQIi is the M-RSEQI of the ith year. When A < 0, it indicates that the EEQ is decreasing;
when A > 0, it indicates that the EEQ is increasing. The absolute value represents the rate
of slope change in the M-RSEQI.

4. Results

4.1. M-RSEQI
4.1.1. Rationality of M-RSEQI

The collinear diagnostic indicators in linear regression were used to explore the re-
dundancy of the selected indicators in this study. The variance inflation factor (VIF)
and tolerance (TOL) are reciprocal to each other and are commonly used indicators for
collinearity diagnosis. When VIF < 10 or TOL > 0.1, it indicates that the selected assess-
ment indicators are reasonable [63]. In this study, the pixel values of all eight indicators
were extracted and analyzed for redundancy. The diagnosis results are shown in Table 3.
The diagnosis results show that the eight indicators that were selected in this study are
reasonable, and there is no information redundancy between them.

4.1.2. Spatiotemporal Changes in M-RSEQI

As shown in Figure 4a, the areas with obvious improvements in the EEQ were mainly
located on the Loess Plateau and on the Greater Khingan Rangeg. The provinces with the
most rapid growth trends in the M-RSEQI were Ningxia, Qinghai, and Shaanxi, which
had rates of 1.295 (10−3/a), 1.146 (10−3/a), and 1.105 (10−3/a), respectively (Figure 4b).

174



Remote Sens. 2022, 14, 198

Coincidently, the areas where the EEQ significantly decreased were mainly located in south-
ern China, especially in the southwest region. Yunnan was the province with the fastest
decreasing M-RSEQI trend among all of the provinces, with a trend of −1.311 (10−3/a),
followed by Taiwan and Fujian. The areas where the M-RSEQI remained relatively un-
changed were located in the central and northern parts of Xinjiang, the central and western
parts of Inner Mongolia, and the Hexi Corridor.

Table 3. Collinearity diagnosis results.

Indicator VIF TOL

PRE 8.097 0.123
TEMP 9.411 0.106
NPP 5.758 0.174

NDVI 5.922 0.169
DEM 2.975 0.336
LUCC 4.095 0.244
POP 1.349 0.741
PET 2.634 0.380

Figure 4. The change trend distribution of M-RSEQI (a), DMSP (c), and CCD (e) in China from 2000
to 2013 and the average trend value of M-RSEQI (b), DMSP (d), and CCD (f) for each province.
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4.1.3. M-RSEQI in Different Ecosystems

Figure 5 shows that China’s EEQ showed a fluctuating change but tended to remain
stable in different ecosystems from 2000 to 2013. Among the six ecosystems, the M-RSEQI
of the water area was the highest (Figure 5a), reaching 0.346 and indicating that the eco-
environment of the water area was the best. The overall average value of the built-up
ecosystem was the lowest (0.200), which indicates that the development of urbanization
would inevitably affect the eco-environment. For all of the ecosystems, the M-RSEQI in
2007 was the highest among all of the years. We speculated that the reasons leading to
the growth of China’s M-RSEI in 2007 could be diversified. This could be related to the
environmental protection policies that were formulated by the Chinese government to
welcome the arrival of the Olympic Games. As shown in Figure 4a, the areas where the EEQ
in China has improved are mainly concentrated in the Loess Plateau, and the effectiveness
of China’s environmental governance on the Loess Plateau in recent years is prominent.

Figure 5. Annual changes in the (a) M-RSEQI and (b) CCD in China in different ecosystems from
2000 to 2013.

Figure 6a shows that the change in the M-RSEQI of the water ecosystem was the largest
from 2000 to 2013, ranging from 0.333 to 0.362, which shows that the eco-environment of
water in China greatly improved during this period. The M-RSEQI standard deviation for
water was 0.135, which was the largest among all of the ecosystems (Figure 6, right). The
interior of the water ecosystem is relatively complex and includes lakes, rivers, reservoirs,
ponds, glaciers, and wetlands [64]. The standard deviations of the cropland and built-up
areas were small, with values of 0.035 and 0.040, respectively, indicating that the EEQ was
relatively stable.

4.2. Urbanization
4.2.1. Validity of Corrected DMSP

Corrected DMSP data were fitted with AHF [53] (anthropogenic heat flux) data to ex-
plore the validity of the corrected DMSP nighttime light data in this article (Figure 7). From
the four fitting equations, it can be seen that the light intensity was positively correlated
with AHF, and that R2 was higher than 0.6, indicating a larger light intensity with a larger
number of people, which was consistent with the actual situation. Therefore, the DMSP
nighttime light data that were corrected in this study had high validity.
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Figure 6. The mean (a) and standard deviation (b) of the M-RSEQI in different ecosystems in China
from 2000 to 2013.

Figure 7. Scatter plot of corrected DMSP nighttime light data and AHF data in 2000, 2004, 2008, and
2012. The blue line represents the relationship obtained by fitting DMSP and AHF.

Figure 8 shows the corrected DMSP night light data from 2001 to 2013 in China. As
seen in Figure 8, China’s nighttime light showed a spatial distribution pattern of “high
in the East and low in the west”, and the nighttime light of China’s three major urban
agglomerations (Beijing Tianjin Hebei Urban Agglomeration, Yangtze River Delta Urban
Agglomeration, and Pearl River Delta Urban Agglomeration) were the brightest. The dense
road network in central and eastern China has greatly promoted the urbanization process in
the region. As of 2019, China’s central and eastern region is home to 97.59% of China’s total
population, and it contains 87.27% of China’s GDP [65]. Secondly, from 2001 to 2013, the
nighttime light in China was gradually brightened, which shows that China’s urbanization
has continued to develop over the past 14 years, which is consistent with the conclusions
seen in Figure 7.
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Figure 8. Spatial distribution map of corrected DMSP nighttime light data in China from 2000 to 2013.

4.2.2. Spatiotemporal Changes in Urbanization

As shown in Figure 4c, urbanization development in China from 2000 to 2013 shows
the characteristics of “fast in the east and slow in the west”. Among all of the provinces
(including municipalities directly under the Central Government), Shanghai had the fastest
urbanization development process, with a rate of 1.203 (10−3/a), followed by Jiangsu
(0.819) and Tianjin (0.794) (Figure 4d). During this period, the speed of urbanization in
the Tibet Autonomous Region (0.002) was the slowest, followed by Qinghai (0.008) and
Xinjiang (0.022), which was strongly related to geography. Poor living conditions and rare
population centers hindered the urbanization development of these provinces. In contrast,
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Shanghai and Tianjin, China’s two major ports, are at the forefront of economic reform and
opening up. With the support of national policies and advanced technology, urbanization
has developed rapidly. Jiangsu Province, which is located on the Yangtze River Delta, is
the only province where all of the prefecture-level cities have entered the top 100 in China.

4.3. CCD
4.3.1. Spatiotemporal Changes in CCD

Figure 9 shows the spatial distribution of CCD in China from 2001 to 2013. It can be
seen that similar to DMSP nighttime light, China’s CCD presented a spatial distribution
pattern of “high in the east and low in the west”, and the three major urban agglomerations
had the highest CCD. Secondly, it can be seen from Figure 9 that China’s CCD has gradually
increased from 2001 to 2013, which is consistent with the conclusion in Section 4.2.1.

Figure 9. Spatial distribution map of CCD data in China from 2000 to 2013.
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Figure 4e shows that the trends for the CCD between the EEQ and urbanization
had the characteristic of “fast in the east and slow in the west”. This is similar to the
characteristics that were observed in the urbanization trends. This indicates that the CCD
was greatly affected by urbanization development. Among all of the provinces, Tianjin
had the fastest growth in CCD, with a trend of 3.326 (10−3/a) (Figure 4f). This was closely
related to the industrial structure adjustment policy of Tianjin. As shown in Figure 5, from
2000 to 2013, the M-RSEQI of Tianjin increased significantly, and it was also one of the
provinces with the fastest trend of urbanization development. Among all of provinces,
Taiwan Province showed a downward trend in CCD changes, which was likely caused
by the continuous decline in its urbanization rate. The main reason was that from 2000 to
2013, the urbanization of Taiwan Province was in a stagnation state, while its EEQ showed
a downward trend (Figure 4b).

As shown in Figure 10, the CCD of provincial capital cities, including municipalities
directly under the central government, increased significantly from 2000 to 2013. Although
Figure 10 presents that the CCD of almost all cities has shown an increasing trend, it also
reflects that there are significant spatial differences in their changes. Among them, the
CCD of cities in central and eastern China, represented by Beijing, Shanghai, Guangzhou,
and Hangzhou, have grown rapidly, while the cities of western China, represented by
Lhasa, Urumqi, and Xining, have experienced slower growth, which is consistent with the
conclusion obtained from Figure 4e. Secondly, we also found an interesting phenomenon.
Taiwan Province, as a typical eastern coastal area of China, demonstrates rare CCD growth.
Based on the above conclusion that rapid urbanization has promoted regional CCD growth,
we speculate that the main reason is the slow development of urbanization in Taiwan
Province in recent years, which has also inhibited Taiwan’s CCD growth.

Figure 10. CCD of 28 provincial capital cities and 4 municipalities directly under the central govern-
ment in 2000 and 2013.
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According to the grading standards in Table 2, the CCD of all of the cities in China from
2000 to 2013 were classified. Figure 11 shows that cities with higher CCD in China were
mainly distributed in the North China Plain and in the southeastern coastal areas. From
2000 to 2013, most cities in China were in an uncoordinated state, which was concentrated in
the central and western regions of China. In addition, there were almost no uncoordinated
or primary coordinated cities with EEQ that lagged behind. This indicates that there was a
large imbalance in the spatial distribution of urbanization development, which extended to
most of China’s uncoordinated cities from 2000 to 2013.

Figure 11. China’s CCD classification map from 2000 to 2013.
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Figure 12 shows that the number of uncoordinated cities decreased each year, while
the number of primary coordinated and coordinated cities increased. From 2000 to 2013,
the number of coordinated cities increased from 83 to 125. Simultaneously, the number
of uncoordinated cities decreased from 181 to 110. With the continuous development of
China’s urbanization, the pace of urbanization gradually matched the EEQ, while the
CCD also constantly improved. Since 2000, the number of Subtype VI (uncoordinated:
urbanization lags behind) cities was the largest, whilst the number of Subtype IV (primary
coordinated: urbanization lags behind) b cities became the largest in 2013. This shows
that the level of urbanization in China was lower than the EEQ from 2000 to 2013. In
summary, the coupling law of the EEQ and urbanization in China was “uncoordinated
to primary coordinated. primary coordinated to coordinated, and with the characteristic
of “urbanization lags behind EEQ” evolving into “EEQ lags behind urbanization”. In the
future, the CCD of cities in China will go through the process of “Type III to Type II to Type
I”. When the CCD between the EEQ and urbanization of most cities in China reaches Type
I, the entire CCD development process will be in a stable or circular development stage.

Figure 12. The statistical graph of the number of cities with different CCD subtypes. (I) Coordinated:
EEQ lags behind. (II) Coordinated: urbanization lags behind. (III) Primary coordinated: EEQ lags
behind. (IV) Primary coordinated: urbanization lags behind. (V) Uncoordinated: EEQ lags behind.
(VI) Uncoordinated: urbanization lags behind.

4.3.2. Change Characteristics of the CCD in Different Ecosystems

Figure 5b shows that built-up ecosystems (0.470) had the highest CCD among the
six ecosystems. The CCD value of unused land (0.008) was the lowest. However, the
CCD values of forest, grassland, and water that had higher EEQ levels were not higher,
which indicates that the decisive factor of the CCD came from urbanization. This result
is consistent with the conclusion in Section 4.3.1. In addition, the CCD values of the six
ecosystems maintained a steady increasing trend from 2000 to 2013, which was closely
related to the continuous development of urbanization in China during this period.

5. Discussion

5.1. Coupling Mechanism Analysis

The above analysis of the results shows that at this stage, the development of urban-
ization has a decisive influence on the CCD. To explain this phenomenon, the coupling
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mechanism between China’s urbanization and EEQ was explored using a combination of
mathematics and geometry. The change rates of the tangent plane in the two dimensions of
urbanization and M-RSEQI were used to characterize the degree of influence of urbaniza-
tion and the EEQ in terms of coupling and the coordination degree. The tangent plane is
calculated by

CCD − CCD0 = F′
U(U − U0) + F′

E(E − E0) (10)

where CCD is the coupling coordination degree; F′
U and F′

E are the partial derivatives of
urbanization and RSEI-2, respectively; CCD0, U0, and E0 are the mean values of the CCD,
urbanization, and EEQ in 2013, which are 0.445, 0.026, and 0.216, respectively.

Figure 13a shows the spatial distribution of the CCD trends in China from 2001 to
2013. The blue and red lines represent the average trend values of nighttime light and
CCD in latitude and longitude, respectively. We can see that at the scale of latitude and
longitude, the trends of CCD and nighttime light have a high degree of consistency in terms
of the spatial distribution, which shows that the changes in urbanization have profoundly
affected the changes in CCD. Figure 13b,c show the correlation between the average trend
value of CCD and nighttime light in latitude and longitude, respectively. It can be seen
that there is a significant correlation (p < 0.001) between the two values at the latitude and
longitude scale.

Urban areas are often used to evaluate a region’s level of urbanization [66,67]. There-
fore, we extracted the land use and land cover (LULC) [68] data for urban areas in China
in 2001 and 2013, calculated the urban sprawl index (USI) of all cities in China, divided
all of the cities into five categories according to the classification standard in Figure 13f,
and finally counted the annual CCD values of these five types of cities and the 371 cities in
China. It can be seen from Figure 13f that the CCD value of most cities showed a continuous
upward trend (gray broken line). Most importantly, we found that the city with the highest
USI had the highest CCD growth rate, reaching 0.494 (10−3/a). On the contrary, the city
with the slowest USI had the lowest CCD growth rate, which was 0.183 (10−3/a). This also
confirms the abovementioned speculation that urbanization has promoted the development
of CCD.

Figure 13d,e show that in 2013, the growth rate of the CCD in the urbanization
component was 2.659, while the increase in the M-RSEQI component was only 0.316,
indicating that in 2013, the degree of impact that urbanization had on the CCD was
approximately 8.4 times larger than that of the EEQ. Therefore, this explains that in 2013,
the decisive factor that was affecting the CCD was the development of urbanization.

5.2. Limitations and Prospects

Although this study has made some progress compared to previous studies and has
drawn some meaningful conclusions, this study also has some limitations. First, it should
be noted that although this study and previous studies [69] show that using nighttime light
data as an indicator of urbanization is theoretically reasonable, it cannot be ignored that
nighttime light only has certain advantages in characterizing the intensity of regional night
human activities and cannot provide direct evidence of daytime urbanization intensity.
Because of this situation, people mainly work in urban areas during the day and return
to the suburbs to live and rest at night, which will lead to a certain difference between
the level of urbanization that is assessed by nighttime light data and the actual level of
urbanization. Secondly, since NASA suspended DMSP night light data updates in 2013,
the main limitation of this study is that it is temporarily unable to confirm our theoretical
methods and conclusions using the latest data. In the future, we will work to correct DMSP
and VIIRS nighttime light data to help us carry out longer-term serial studies on this topic.

In addition, there are great differences in the EEQ (ecological footprint) between
urbans areas and the suburbs. The EEQ of urban areas will generally be lower than that
of suburbs because the higher population density in urban areas will produce higher
anthropogenic heat emissions and other pollutants. However, we believe that the level of
“sustainable development” comprises the integration of EEQ and urbanization because the
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goal of “sustainable development” is benign social and economic development, i.e., we
need to pay attention to the protection of the ecological environment while pursuing social
and economic development. Therefore, as shown by the CCDM, the level of “sustainable
development” depends on the coupling coordination level of EEQ and urbanization.

Figure 13. 3D scatter diagram of M-RSEQI, urbanization, and CCD in 2013 and 3D function diagram
of the CCD model. (a) shows the spatial distribution of the CCD trends in China from 2001 to 2013;
(b,c) show the correlation between the average trend value of CCD and nighttime light in latitude
and longitude; (d,e) show that in 2013, the growth rate of the CCD in the urbanization component
was 2.659; (f) the CCD value of most cities showed a continuous upward trend (gray broken line).

6. Conclusions

China’s rapid urbanization has led to serious eco-environmental problems. With
regard to the increasingly severe eco-environmental situation, it is important to understand
the relationship between China’s EEQ and urbanization for the realization of the 2030
agenda (Transforming Our World: The 2030 Agenda for Sustainable Development) [21].
Therefore, based on multisource remote sensing data and EM, we designed a spatiotemporal
universal EEQ assessment system and used the CCDM in physics to construct the coupling
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relationship between the EEQ and urbanization in China from 2000 to 2013. Through this
study, some meaningful conclusions are drawn:

1. The decisive factor affecting the CCD was urbanization development in 2013. The
impact that the degree of urbanization had on the CCD was approximately 8.4 times
higher than that of the EEQ.

2. From 2000 to 2013, the urbanization development of China showed the characteristics
of “fast in the east and slow in the west” over the course of the past 14 years. The CCD
between the EEQ and urbanization in China showed the characteristic of “strong in
the east, weak in the west”.

3. Most of China’s cities were in an uncoordinated state and were concentrated in the
central and western regions of China. The coupling pattern of EEQ and urbaniza-
tion in China evolved from “uncoordinated cities into coordinated cities, with the
characteristic of “urbanization lags behind EEQ” evolving into “EEQ lags behind
urbanization”.
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Abstract: Due to the challenges in data acquisition, especially for developing countries and at
local levels, spatiotemporal evaluation for SDG11 indicators was still lacking. The availability of
big data and earth observation technology can play an important role to facilitate the monitoring
of urban sustainable development. Taking Guilin, a sustainable development agenda innovation
demonstration area in China as a case study, we developed an assessment framework for SDG
indicators 11.2.1, 11.3.1, and 11.7.1 at the neighborhood level using high-resolution (HR) satellite
images, gridded population data, and other geospatial big data (e.g., road network and point of
interest data). The findings showed that the proportion of the population with convenient access to
public transport in the functional urban area gradually improved from 42% in 2013 to 52% in 2020.
The increase in built-up land was much faster than the increase in population. The areal proportion of
public open space decreased from 56% in 2013 to 24% in 2020, and the proportion of the population
within the 400 m service areas of open public space decreased from 73% to 59%. The township-level
results indicated that low-density land sprawling should be strictly managed, and open space and
transportation facilities should be improved in the three fast-growing towns, Lingui, Lingchuan, and
Dingjiang. The evaluation results of this study confirmed the applicability of SDG11 indicators to
neighborhood-level assessment and local urban governance and planning practices. The evaluation
framework of the SDG11 indicators based on HR satellite images and geospatial big data showed
great promise to apply to other cities for targeted planning and assessment.

Keywords: SDG11; geospatial big data; sustainable development goals; earth observation; Guilin

1. Introduction

1.1. The SDG11 Indicators

The 2030 Agenda for Sustainable Development and 17 Sustainable Development Goals
(SDGs) proposed by the United Nations in 2015 enable the international community to
make a scientific understanding and accurate assessment on the sustainable development
of global cities, thereby guiding their practical actions [1]. The SDGs seek to provide
a comprehensive set of goals and indicators to measure progress towards sustainable
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development from 2015 to 2030 [2]. However, the holistic and complex nature of the SDGs
has severely hampered progress towards these goals. With the date of achieving the goals
of the 2030 Agenda approaching, a robust and unified assessment framework and reliable
data are crucial for their accurate measurement and the fulfillment of the pledge—to ensure
that “no one will be left behind” [1].

The sustainability in cities and urban settlements influences all aspects of sustainable
development. The targets and indicators of the 11th Sustainable Development Goal (SDG11)
provide a standardized indicator-based assessment framework to track the progress of
sustainable urban development and inform policy implementation and practice. According
to the Inter-agency and Expert Group on SDG Indicators (IAEG-SDGs), SDG11.2.1, 11.3.1
and 11.7.1 are Tier II indicators. These indicators are conceptually clear and have an
internationally recognized methodology and standard, but data are not regularly reported.
SDG11.2.1 refers to the proportion of the population that has convenient access to public
transport disaggregated by age group, sex, and persons with disabilities. This indicator
aims to monitor the use of and access to the public transportation system, alleviate the
reliance on private means of transportation, and improve the traffic conditions in areas with
a high proportion of transport disadvantaged people. SDG11.3.1 measures how efficiently
cities utilize land and is measured as a ratio of the rate at which cities spatially consume
land against the rate at which their populations grow. SDG11.7.1 refers to the average
share of the built-up area of cities that is open space for public use for all, by sex, age, and
persons with disabilities. It enables cities to collect accurate, timely, disaggregated data and
information on open space by adopting a systemic approach.

1.2. The Role of Geospatial Big Data for SDG11 Indicators Monitoring

Geospatial big data played an important role in the monitoring of SDG11 indicators.
The use of big data such as mobile phone data, transaction data, health records, and
social media can complement traditional official statistical data and help fill data gaps
in monitoring SDG indicators [3,4]. Earth observation data (EO) obtained from satellites
and geospatial data collected by on-site sensors or citizens are recognized as an effective,
timely, and continuous information source to support evidence-based decision-making
for sustainable urban development [5,6]. Remotely-sensed EO data have the advantage of
collecting extensive information on the Earth’s surface at large spatial scales with repeat
acquisition cycles, which can supplement or enhance the traditional data sources in urban
areas [7–9]. The availability of open remote sensing data and high-performance cloud
computing platforms makes it possible to map built-up urban areas or impervious surfaces
over large areas with medium and high spatial resolution in recent decades [10,11]. Based
on open satellite data, several global built-up area layers have been developed, including the
Global Human Settlements Layer (GHSL) from the Joint Research Centre of the European
Commission [12], the Global Urban Footprint (GUF) [13], and the World Settlements
Footprint (WSF) jointly developed by ESA, the German Aerospace Center (DLR), and the
Google Earth Engine team [14]. These products provide information on the global human
settlement with spatial resolutions from 10 m to 30 m via processing millions of images
from Landsat and Sentinel satellites [15,16]. The accessibility of open geospatial data such
as WorldPop population grids and OpenStreetMap road networks facilitates accessibility
measurements in cities around the world.

1.3. Research Questions, Motivation and Objectives

The process of sustainable development goals was mostly reported at the national level.
Assessing the sustainable development goals locally can track the progress in local sustain-
able development and provide relevant strategies to guide sustainability practices [17]. The
availability of big data (e.g., high-frequency satellite Earth observation data) can power the
sustainability practitioners to better monitor and evaluate the progress of sustainable devel-
opment. As an internationally agreed and reported assessment framework, knowledge and
practice gaps still exist on how to link and integrate the indicator measurements into urban
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governance and planning in the local context [18]. In addition, the complexity of SDG
indicator monitoring lies in the trade-offs and synergies between indicators [19–21]. To
address the above research gaps and challenges, the following key research questions were
raised: (1) whether an assessment framework to evaluate multiple SDG indicators conjunc-
tively can be developed using geospatial big data, and (2) whether the evaluation results of
SDG indicators at the neighborhood level can be linked with local urban governance and
planning practices.

With a unique karst landform, Guilin city in China was added to the United Nations
Educational, Scientific and Cultural Organization (UNESCO)’s world heritage list in 2014.
In February 2018, with the theme of “sustainable utilization of landscape resources,” Guilin
was selected as the innovation demonstration zone of the National Sustainable Develop-
ment Agenda in China. Taking Guilin city as a case study, this study aims to (1) develop
a framework to monitor three SDG11 indicators (indicators 11.2.1, 11.3.1, and 11.7.1) at
the neighborhood level using high-resolution satellite data, gridded population data, and
other geospatial big data (e.g., road network and point of interest data), (2) to provide a
holistic perspective of the progress of sustainable urban development in the study area,
and to (3) evaluate the feasibility of integrating SDG11 indicators into urban governance
practices in the local context.

2. Literature Review

2.1. Geospatial Datasets for SDG11 Indicators Monitoring

With the advantages of varying spatial and temporal resolution, large spatial coverage,
and long temporal coverage, Earth observation data provide an optimal data source for
the monitoring of SDG indicators both directly and indirectly [5]. Numerous studies
used satellite images from different sensors to assist in monitoring the progress of SDG11.
In these studies, the freely accessible global Landsat archive containing millions images
was the main source of remote sensing data. Landsat 2/5/7/8 datasets have been used
to analyze land use and landscape changes from local to global scales [22–24]. For the
evaluation of SDG11.3.1 indicators, the combination of Landsat and satellite images with
higher spatial resolution such as Sentinel and SPOT provided more accurate classification
results [25]. The SPOT 2 panchromatic imagery has a spatial resolution of 10 m and
multispectral imagery has a spatial resolution of 20 m. The SPOT 5 satellite imagery has a
spatial resolution of 2.5 m in the panchromatic band and 10 m in multispectral bands. The
fusion of remote sensing images and products was also used to obtain urban land cover
classification results with higher accuracy [22].

UN-Habitat proposed to use free EO satellite data from Landsat and Sentinel-2 satel-
lites to delineate potential public urban open spaces. Urban green areas comprise of many
small-size green spaces, such as gardens, community parks, roadside trees, etc. Although
open and free earth observations (10–30 m) with low and medium resolution can provide
valuable insights for policymakers and urban managers [26], their relatively coarse spatial
resolution tends to cause underestimation of small-sized open spaces [27,28] and leads to
low accuracy of open space detection in complex urban areas [29,30]. Streets less than 10
m wide can hardly be detected from Sentinel-2 satellite imagery at 10 m resolution [31].
High resolution remote sensing images (spatial resolution higher than 10 m) are more
suitable data sources for open space extraction in urban areas [28]. Most studies use remote
sensing images with very high spatial resolution for SDG11.7.1 monitoring, such as Plan-
etScope [27], RapidEye [28], QuickBird-2 [28,32], WorldView-2 [32] images, etc. Although
satellite images from these satellites can capture the details of land surface, they are very
costly and their application over large areas is infeasible, especially in areas with cloudy
landscapes [33].

Monitoring the progress of achieving the sustainable development goals through
the global indicator framework increased the demand for data that are high in quality,
broad in coverage, frequently available, and spatially disaggregated from countries around
the world [34]. In addition to remote sensing data, geospatial data collected voluntarily
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using a wide range of technologies and methods provided supplementary datasets to
insufficient official data and improved the monitoring of sustainable development goals [3].
Fried et al. [35] leveraged open data, including OpenStreetMap road network and World-
Pop population data to derive the values of SDG 11.2.1 indicator and accessibility metrics
and identified transport inequalities of low-income communities.

2.2. Methods for SDG11 Indicators Monitoring

Since the adoption of SDGs in 2015, the SDG11.2.1, SDG11.3.1, and SDG11.7.1 indica-
tors have been used to monitor and assess the progress of sustainable urban development
in numerous studies (Table 1). The popularity of SDG11.2.1 is attributed to its simple
estimation methods and interpretation of results. However, researchers argued that it was
not comprehensive to use a single SDG11.2.1 indicator to evaluate the traffic accessibility
of cities or countries. Other indicators should also be measured in decision-making for
transportation facility improvement. Tiznado-Aitken et al. [36] evaluated the accessibility
of Santiago’s pedestrian environment based on Lorenz curves, Gini coefficient, and Foster-
Greer-Thorbecke (FGT) poverty measures. Brussel et al. [37] found that the SDG indicator
11.2 could not represent the traffic reality well and proposed accessibility indicators that
could provide a more diversified, complete, and realistic picture of the transportation
system’s performance. Fried et al. [35] supplemented the analysis results of SDG11.2.1
through a more detailed location-based accessibility analysis and revealed traffic inequality
in low-income communities.

Early studies used remote sensing images, machine learning classification methods,
and GIS technology to analyze urban growth and sprawl processes [38]. More advanced
techniques, such as deep learning and scenario modeling, were applied for SDG11.3.1
monitoring and prediction [39–41]. Kussul et al. [39] proposed a method for land cover
classification and land productivity assessment using medium and high spatial resolution
satellite data and deep learning methods. Wang et al. [40] used the spatio-temporal interac-
tion method and Pearson’s method to monitor the spatio-temporal changes of SDG 11.3.1.
Lu et al. [41] monitored and predicted changes in urban land use efficiency indicators based
on remote sensing and scenario modeling in a coastal megacity from 2000 to 2030. Remote
sensing and geospatial big data can help understand the spatiotemporal dynamics of urban
green space under the urbanization [42], accessibility [43], and walkability [44]. However,
the detailed mapping of urban open public space and the measurement of SDG11.7.1
indicators still needs localized data and strong urban data collection capacity [45].

Table 1. Literature review of three SDG11 indicators using geospatial data.

SDG Indicator Data Source Spatial Resolution Study Area References

SDG11.2.1

An underlying road
network,

100 m Nairobi, Kenya Fried et al. [35]a general transit feed
specification package,

WorldPop population,

an opportunity dataset.

SDG11.2.1

Public transport stops,

Santiago, Chile
Tiznado-Aitken

et al. [36]road network,

georeferenced information.

SDG11.3.1

Built-up areas, 30 m, 250 m, 1 km

10,000 urban centers
Melchiorri et al.

[23]
resident population, 250 m, 1 km

settlement typologies. 1 km
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Table 1. Cont.

SDG Indicator Data Source Spatial Resolution Study Area References

SDG11.3.1

A GIS raster dataset of
built-up areas, 1 km

Global Estoque et al. [24]
a statistical dataset

of population. 250 m, 1 km

SDG11.3.1

Landsat-5/8 images, 30 m

Beijing–Tianjin–Hebei region,
China

Zhou et al. [22]
built-up area products, 30 m

WorldPop population, 100 m

ancillary datasets. 30 m

SDG11.3.1

LULC, 30 m

Mainland China Wang et al. [46]
census data,

DMSP/OLS, 1 km

administrative boundary
map.

SDG11.3.1

Landsat-5/8 images, 30 m

Tianjin, China Lu et al. [41]
topographic data, 30 m

road network,

demographic data. 100 m

SDG11.3.1

Built-up areas, 1 km

Global Schiavina et al. [47]
resident population,

settlement typologies,

functional urban area.

SDG11.3.1

Landsat 5 TM images, 30 m

South Africa Mudau et al. [25]SPOT 2/5 sensors images,

Panchromatic
10/2.5 m;

multispectral
20/10 m

census data.

SDG11.3.1
Landsat 2/5/7/8 images, 80/30 m

Southern Brazil Moro et al. [21]Sentinel-3B OLCI-WFR
satellite images. 300 m

SDG11.3.1

Built-up area, 100 m the Yangtze River Delta,
the Middle Reaches of the Yangtze
River, and Chengdu–Chongqing,

China

Wang et al. [40]population data, 100 m

boundaries maps.

SDG11.3.1
Resident population, 1 km

Poland and Lithuania Calka et al. [48]CORINE land cover
2000/2018 12.5 m

SDG11.7.1

PlanetScope images, 3.7–4.1 m

The Athens Metropolitan Area Verde et al. [27]Sentinel-1 images,

ground range-detected
products.

SDG11.7.1

Sentinel-2A images, 10 m

Hangzhou, China Deng et al. [49]SPOT-2/3/5 images, XS 20 m/PAN 10
m/XS 10&20 m

reference and
ancillary data.
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2.3. Research Challenges

A review of recent research shows that Earth observation data can effectively support
the government in addressing sustainable development goals and monitoring the imple-
mentation of SDG indicators. The rapid development of Earth observation technologies
and big data platforms will continue to play a role in expanding indicators and targets
that can be effectively measured and monitored globally. However, the success of SDG11
implementation depends largely on the availability of high-quality assessment data [2,3].
Although satellite data has been widely used in SDG indicator evaluation, the spatial reso-
lution of remote sensing images used varies from 2.5 m to 1 km (Table 1). High-resolution
satellite data has become increasingly available. Its potential for urban built-up areas and
open space mapping and monitoring can be further evaluated. Data fusion methods and
more advanced data processing techniques, such as deep learning, should be exploited
to improve the accuracy and reliability of geospatial products and information derived
from remote sensing images. Data sharing and openness should also be promoted to better
support the monitoring of SDG11 indicators.

Analytical frameworks, tools, and analyses that enable interlinkages between targets
and indicators can provide more insights on how various interacting forces led to specific
outcomes, thereby helping establish connections between science and policy [50]. Re-
searchers argued that it is not comprehensive to use a single indicator to evaluate the traffic
accessibility of cities. However, the majority of previous studies using geospatial data
focused on the measurement of one specific indicators. Multiple indicators can be assessed
conjunctively to draw policy and practice implications for sustainable urban development.
Comprehensive assessment framework involving multiple indicators should be developed
and implemented to provide sound policy guide for city governors in future studies.

Despite the fact that the methodologies and approaches of SDG indicator monitoring
with Earth observation data have been developed, the assessment was mainly performed at
a city, regional and national level. Few studies conducted neighborhood level analysis and
incorporated the assessment results with local urban planning and governance practices.
Localized urban practices using open geospatial data and SDG indicators is beneficial
for guiding cities and regions, especially in developing countries, to assess sustainable
development progress and support policy-making processes.

3. Study Area

Guilin City (Figure 1) is located in the northeastern part of Guangxi Zhuang Au-
tonomous Region, China. It is located between 109◦36’ to 111◦29’E and from 24◦15’ to
26◦23’N. The territory is 236 km long from north to south and 189 km wide from east to
west. Guilin has a subtropical monsoon climate with an average annual precipitation of
1887.6 mm and an annual mean temperature of 18.9 ◦C. The core urban area of Guilin city
includes six districts, Xiufeng, Qixing, Xiangshan, Diecai, Yanshan, and Lingui, covering
an area of 2767 km2. Guilin has a typical karst landform and is a world-famous scenic
city. Considering its extraordinary natural beauty and aesthetic values, the World Heritage
Committee added the Guilin Karst to UNESCO’s world heritage list in 2014. Guilin is
also the political, economic, cultural, and technological center in the northeastern part of
Guangxi Province.

With the rapid economic development, anthropogenic activities have become increas-
ingly intensive in Guilin in the last decades. The over-development and exploitation of
natural landscapes have led to considerable pressure on the sensitive and fragile ecological
environment [51]. The contradiction between the growth of natural resource utilization
demand and the actual environmental carrying capacity has become increasingly promi-
nent. The evaluation and monitoring of SDG indicators can provide valuable information
for the construction of the innovation demonstration zone of the National Sustainable
Development Agenda and for protecting the ecological environment in local areas.
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Figure 1. Geographic location of the study area.

4. Materials and Methods

4.1. Datasets

In this study, three SDG11 indicators were measured within the urban functional
boundary of Guilin from 2013–2020. High-resolution remote sensing images of Chinese
Gaofen-1/6 satellites and geospatial big data were mainly used (Table 2). Since the Gaofen-1
satellite was launched in 2013 and the high-resolution satellite images acquired by Gaofen-1
have been available since then, this study selected 2013–2020 as our study period. The
Gaofen-1/6 satellites carry two 2 m panchromatic and 8 m multi-spectral high-resolution
cameras with four bands (PMS). After preprocessing, image fusion was employed to fuse
the multispectral images and panchromatic images, and 2 m resolution multi-band data
was finally obtained for land use classification in the study area. Point of interest (POI) data
including bus stations and train stations in 2015 and 2020 were collected from the AutoNavi
electronic navigation map (https://ditu.amap.com, accessed on 10 April 2021). Due to
the low quality of historical data, the road networks were only obtained for the year 2020.
LandScan global population data, produced by the U.S. Department of Energy’s Oak Ridge
National Laboratory (ORNL) (https://landscan.ornl.gov/, accessed on 1 June 2021), was
used to measure the number of populations. This dataset used spatial data, high-resolution
imagery analysis techniques, and a dasymetric modeling approach to disaggregate census
population numbers within administrative boundaries. LandScan is the finest resolution
global population distribution data available representing an ambient population. The
LandScan data covering the study area were retrieved in 2013, 2015, and 2020 for the SDG
indicator measurement.
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Table 2. Geospatial datasets used in this study.

Data Set Acquisition Time Spatial Resolution Source

Road network 2020 Autonavi electronic
navigation map

Point of interest 2015
2020

Autonavi electronic
navigation map

Gaofen-1/6
satellite images

2013
2015
2020

2/8 m Chinese Academy
of Sciences

Population grid data
2013
2015
2020

1 km LandScan

Urban park 2015
2020

Autonavi electronic
navigation map

4.2. Methods

The workflow for SDG indicator assessment is shown in Figure 2. The road network
data, point of interest data, and LandScan population data were used to perform a dynamic
assessment of public transport accessibility and SDG11.2.1 indicators. Secondly, high-
resolution satellite images were used for land cover classification to analyze changes
in SDG11.3.1 indicators. Finally, high-resolution satellite images were used to extract
green space and measure changes in SDG11.7.1 indicators. The LandScan population grid
data was used to calculate the number of populations with convenient access to urban
open spaces.

Figure 2. Workflow for SDG indicators assessment in this study.

The notations used for the calculation of three SDG11 indicators, SDG11.2.1, SDG11.3.1,
and SDG11.7.1, are summarized in Table 3.
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Table 3. Notations used in this study.

Terms Definition Unit

Pi The total population served by public transport service area i. -

Pij
The number of the population of population zone j (j = 1 . . . n) that fully or

partially intersect with a public transport service area i. -

LCR Land consumption rate. -

Urbt The total area covered by the urban built-up area in the initial year t. km2

Urbt+n The total area covered by the urban built-up area in the final year t+n. km2

LCRPGR The ratio of land consumption rate to population growth rate. -

PGR Population growth rate. -

LCPCt1 The land consumption per capita at time t1. km2

Urbt1 The total built up area within the urban boundaries at time t1. km2

Popt1 The total population within the urban boundaries at time t1. -

Change in LCPC(t1−t2) The percentage change in land consumption per capita between t1 and t2. %

Change in Urban Infill The percentage change rate of urban density. %

Sstreets Total area occupied by streets in all locales. km2

Scity Total area of all locales. km2

SOPS The total area occupied by open public spaces. km2

PLAS The share of city land occupied by streets. %

POPS The share of urban areas that is allocated to open public spaces. %

PPOPS
The average share of built-up area of cities that is open public space and

streets. %

Subscripts

i The service area

j The population zone

t The initial year

n The number of years between the initial year and the final year

t1 The initial year

t2 The final year

Streets Urban streets

City Urban area

OPS Open public spaces

POPS Built-up area of cities that is open public space and streets

Symbols

Σ The summation symbol

% Percentage means the percentage of one number that is the other number,
expressed by “%”

ln The natural logarithm symbol is the logarithm with constant e as the base,
which is recorded as lnN (N > 0)

4.2.1. SDG11.2.1

SDG indicator 11.2.1 measures proportion of population that has convenient access to
public transport. For SDG 11.2.1, public transport is considered “convenient” for people
who live within 500 m walking distance from the nearest low-capacity station and 1 km
from the nearest high-capacity station. According to the definition of low-capacity public
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transportation and high-capacity public transportation, the 500 m service area of the bus
stations and the 1 km service area of the railway stations were created using network
analysis [34]. A network service area was created along the road network at each public
transport stop or around each public transport route per applicable walking distance
thresholds. The use of network distance can reflect the configuration of the road network,
and identify the existence of obstacles that hinder direct access to public transport facilities.
All individual service areas are then merged to create continuous service area polygons.
The service area and the population data are overlaid to calculate the population with
access to each public transport stop. The number of populations served by the public
transport service was calculated by:

Pi = ∑ n
j=1Pij, (1)

where Pij is the population served by the public transport service in buffer i of population
zone j (j = 1 . . . n) that completely or partially intersect with the service area i, and Pi refers
to the total population served by public transport stations in service area i.

The SDG11.2.1 indicator was calculated as percentage of population with convenience
assess to public transport. The higher the percentage of the population with convenient
access to public transportation services, the better the accessibility, and vice versa. This
indicator reflects the service status of the regional road network and transportation stations.
The SDG 11.2.1 indicators in 2013, 2015, and 2020 were calculated to analyze the changes in
public transportation accessibility in the study area.

4.2.2. SDG11.3.1

SDG indicator 11.3.1 measures the ratio of land consumption rate to population
growth rate [40,41,48,52]. Using the remote sensing images of Gaofen-1 in 2013 and 2016
and Gaofen-6 in 2020, a random forest classifier was used to classify the land cover of the
study area into five categories: built-up land, forest, cultivated land, water body, and bare
land. Based on the classification results, changes in the urban functional boundaries and
land use were analyzed for each period. The land consumption rate (LCR) was calculated
using the following equation:

LCR =
ln(Urbt+n

Urbt
)

n
, (2)

where Urbt is the total area covered by the urban built-up area in the initial year (km2);
Urbt+n is the total area covered by the urban built-up area in the final year (km2); n is the
number of years between the two periods.

The global population grid data was used to calculate the population in the study area
in the corresponding year, and the population growth rate (PGR) was calculated using
similar method. Combining the changes in built-up land and population, the ratio of land
consumption rate to population growth rate (LCRPGR) in the functional urban area was
calculated using equation:

LCRPGR =
LCR
PGR

, (3)

To capture the urbanization process more comprehensively, two secondary indicators
were also calculated. The per capita land consumption (LCPC) at t1 was derived according
to Equation (4), and the percentage change rate of per capita land consumption (Change in
LCPC) and the percentage change rate of urban density (Change in Urban Infill) between
t1 and t2 were calculated according to Equations (5) and (6).

LCPCt1 =
Urbt1
Popt1

, (4)

ChangeinLCPC(t1−t2) =
LCPCt2 − LCPCt1

LCPCt1
, (5)
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ChangeinUrbanInfill =
Urbt2 − Urbt1

Urbt1
× 100, (6)

where Urbt1 refers to the total built-up area within the urban boundary at time t1 (km2);
Popt1 refers to the total population within the urban boundaries at time t1; Urbt2 refers to
the total built-up area at time t2 within the same urban boundary (km2).

4.2.3. SDG11.7.1

SDG Indicator 11.7.1 measures the average share of the built-up area of cities that
is open space for public use. The road network data and the boundaries of the urban
functional area were used to calculate the land allocated to streets (Equation (7)). Using an
object-based image analysis method, green space was extracted using the high-resolution
satellite images. The urban parks were extracted using the Autonavi electronic navigation
map (AMAP). Then, the proportion of open public spaces was calculated using Equation (7).
As for the core indicator, the proportion of public open space in the city was expressed as
the proportion of the total open space area of streets and open public spaces in the urban
area [49]. ⎧⎪⎪⎨

⎪⎪⎩
PLAS = Sstreets

Scity
× 100%

POPS = SOPS
Scity

× 100%

PPOPS = Sstreets+SOPS
Scity

× 100%

, (7)

where PLAS represents the share of city land occupied by streets (%), Sstreets represents the
total area occupied by streets in all locales (km2), and Scity represents the sum area of all
locales (km2); POPS represents the share of urban areas that is allocated to open public
spaces (%), SOPS represents the total area occupied by open public spaces (km2); PPOPS
represents the average share of built-up area of cities that is open space for public use for
all (%).

A network analysis was performed to generate an urban open space service area with
a road network distance of 400 m. First, a network dataset was create using road network
data, and then a road network-based service area was created around each public open
space using a 400 m threshold. All people living in the service area are deemed to have
convenient use of open public space. Finally, combined with the grid population data,
the population in the service area of the open space was calculated in each period in the
study area.

5. Results

5.1. Spatiotemporal Variation of Population with Access to Public Transport Stops (SDG 11.2.1)

The public transportation service area of Guilin in 2015 and 2020 was shown in
Figure 3. The service area of public transport stations was increasing and covers most of
the population in the main functional areas of the city, but there were also some densely
populated areas that were not covered by the service area.

Figure 4 shows the changes in population with convenient access to public transport
services from 2013 to 2020. The level of public transport services continued to improve
from 2013 to 2020. The total population with access to public transport stops increased
from 458,861 in 2013 to 489,379 in 2015 and 573,957 in 2020. The accessibility indicator
increased from 42.08% in 2013 to 52.31% in 2020.

The changes in SDG 11.2.1 indicators were further evaluated at the township level
(Figure 5). The indicators of most towns showed a trend of improvement over time. Among
them, the population in Xiangshan, Xiufeng, Qixing, and Lijun has been fully covered
by public transportation services. However, in towns such as Dingjiang, Lingchuan, and
Lingui, less than 40% of the population has access to convenient public transport. The
construction of public transportation facilities in these areas was weak, and investment on
public transportation infrastructures is highly needed in these areas.
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Figure 3. Service area of public transport stops in Guilin in 2015 and 2020.

Figure 4. Number and percentage of the population with access to public transport stops from 2013
to 2020 in Guilin.

 
Figure 5. The proportion of populations with access to public transport stops from 2013 to 2020 in
the townships of Guilin.

5.2. Spatiotemporal Variation of Land Consumption vs. Population Growth (SDG 11.3.1)

The accuracy of the land use classification results in the study area was evaluated
using ground truth samples. The overall classification accuracy and kappa coefficient
of the classification results of each period were higher than 90%. Based on the land use
classification results, the temporal variations in LCR, PGR, and LCRPGR indicators and
the corresponding secondary indicators (i.e., change in LCPC and change in urban infill)
were measured in the study area (Table 4). The results showed that the urban expansion
and population growth rates of Guilin were not well coordinated from 2013 to 2020. The
urban expansion rate was faster than the population growth rate, and the per capita urban
built-up area continued to increase at an accelerating rate. This indicates a sprawling urban
growth pattern in the study area.
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Table 4. SDG11.3.1 indicators from 2013 to 2015 in Guilin.

Time Span LCR PGR
Change in

LCPC
Change in

Urban Infill
LCRPGR

2013–2015 0.0525 0.0179 7.16% 4.77% 2.9343
2015–2020 0.0320 −0.0007 17.78% 23.30% −45.7867

At the township level, the built-up area expanded more than 12 times faster than the
population growth rate in Dingjiang, followed by Dahe, Pingshan, and Chuanshan from
2013 to 2015 (Figure 6). During the period 2013 to 2015, a large number of construction
projects were started. However, those towns hardly attracted many people inflow. The
towns of Diecai, Xiufeng, Lijun, Xiangshan, and Nanmen experienced a population decline.
From 2015 to 2020, the expansion rates of built-up areas in Lingchuan, Lingui, and Dingjiang
were still far greater than the population growth rate, which might be due to new settlement
planning in these towns. The growth rate of built-up area in Lingui new area accelerated
tremendously after 2015.

Figure 6. Ratio of land consumption rate to population growth rate(LCRPGR) from 2013 to 2020 in
townships of Guilin.

From 2013 to 2015, the fastest growing area in per capita land consumption (LCPC)
was in Dahe, up to 24.72% (Figure 7). The LCPC in Dingjiang, Lingchuan, Chuanshan, and
Pingshan continued to grow, and the LCPC of other regions were decreasing. From 2015
to 2020, the LCPC of Jiashan, Lijun, Xiufeng, and Nanmen increased sharply due to the
loss of population, while the per capita land consumption area of most of the remaining
townships showed a downward trend. The changes in LCPC (Figure 7) indicates that
land use efficiency continued to decrease, especially in Lingui, Lingchuan, and Dingjiang,
where disorderly expansion occurred. In the townships where the expansion of built-up
land was much faster than the population growth, the planning and management of land
development should be strengthened to avoid low-density sprawl of urban land.

Figure 7. Changes in per capita land consumption (LCPC) from 2013 to 2020 in townships of Guilin.
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5.3. Spatiotemporal Variation of Open Public Space (SDG 11.7.1)

For SDG11.7.1 indicator, the land of streets in the area was 16.18 km2, which accounts
for 5.13% of total urban area (Figure 8). The area of green space was 160.28 km2, 123.10 km2,
and 59.32 km2 in 2013, 2015 and 2020, respectively, showing a rapidly decreasing trend. The
corresponding areal proportion of urban green space (POPS) accounted for 50.83%, 33.91%,
and 18.81% of the urban area, respectively. The proportion of the overall open public space
has gradually decreased from 55.97% in 2013 to 39.04% in 2015 and 23.95% in 2020.

Figure 8. Area of open public space from 2013 to 2020 in Guilin.

The 400 m service area of parks and green spaces were shown in Figure 9. In 2013,
2015, and 2020, the service areas were 151.34 km2, 96.09 km2, and 81.76 km2, respectively.
The proportions of the population in the service area of open public space in Guilin were
73.2 %, 64.0%, and 59.3% in 2013, 2015, and 2020, respectively (Table 5). With the rapid
decrease of green spaces, the service area has decreased over time. The total number of
residents served by green open spaces also showed a rapid downward trend. Most of the
green areas were converted into urban built-up land. From 2013 to 2020, the area of green
space in the urban functional area dropped sharply, while the number of urban parks has
only increased by 6 km2 with a total area of 1.24 km2. Most of them were distributed in
the new urban areas in the west, however, the number and area cannot meet the needs of
citizens due to rapid increase in population.

Figure 9. Open public spaces and service areas from 2013 to 2020 in Guilin.
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Table 5. Population with access to open public spaces from 2013 to 2020 in Guilin.

2013 2015 2020

Population with access to public
open space 817,366 731,600 664,953

Total population 1,117,265 1,142,848 1,121,568

Proportion (%) 73.16 64.02 59.29

Figure 10 shows the changes in the proportion of the population in the green space
service area of each town in the functional area of Guilin. At the township level, the service
areas were relatively large for Xiufeng, Xiangshan and Qixing. The proportions of served
population in most towns have decreased over time. The fastest decline was observed in
Lingui, which has dropped from 50% to 24%. In 2020, the proportions of served population
in Dingjiang, Lingui, Lingchuan, Dahe, Chaoyang, and Jiashan were lower than 40%. In
addition, the entire area of Xiufeng was fully covered by the service area of open public
space from 2013 to 2020, and all residents have convenient access to urban green space.

 

Figure 10. Proportion of population with access to open public space from 2013 to 2020 in townships
of Guilin.

6. Discussion

The SDG11.2.1 evaluation results show that the public transport convenience of the
regional central towns in Guilin is better than that of the peripheral towns. The research
results of Tiznado-Aitken, Muñoz and Hurtubia [36] are consistent with our study. Building
an integrated transportation network that meets the needs of social and economic develop-
ment is very important for achieving sustainable development. The transportation links
between the bordering towns and the central towns should be strengthened to promote
the in-depth development of regional economics [53]. Meanwhile, intensive use of urban
resources and livable environment should be maintained to build a modern town in Guilin
with a good ecological environment during the road network construction. This study
confirms that the application of high-resolution Earth observation data can improve the
lack of information on SDG11.3.1 at a fine scale [48]. The growth rate of the built-up area
exceeded the growth rate of the population in the same time period, increasing imbalance
between rapid urban expansion and population growth. The uncoordinated population
and land growth have been reported in small and medium-sized cities in China [22,46,54].
One possible reason is that low land acquisition costs and rapid industrial development
have transformed a large number of agricultural land markets into non-agricultural land
markets, which has resulted in the growth of LCR [54]. The proportion of land use types
used for built-up areas in Guilin was increasing, while the land used to provide urban
green spaces was decreasing. The benefits provided by the urban green space cannot
meet the needs of the increasing population. The realization of the SDGs depends on the
balance and cohesion of all the elements related to land [55]. It is necessary to balance the
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growth of urban built-up areas and green spaces to promote sustainable development. In
the undergoing densification of urban areas, adequate and accessible green public spaces
should be planned to solve the scarcity of green space and to sustain the quality of urban
environments and social systems, and human wellbeing [56].

Actions taken at the neighborhood level can lead to positive urban changes and en-
hance the sustainability of communities [57]. The evaluation of SDG indicators 11.2.1,
11.3.1, and 11.7.1 suggested that the three towns of Lingui, Lingchuan, and Dingjiang
should consider increasing their green area andpublic transportation facilities to prevent
the low-density development of built-up land. Investments in urban infrastructure to en-
able a function can often create lock-in situations that last for decades or even centuries [58].
In urban planning, natural landscapes, trunk lines, and urban construction should be inte-
grated, and ecological and livable towns should be built on the basis of existing landscapes.
It is worth mentioning, however, that some scholars have found that the construction of
extensive road networks across the landscape also destroys natural habitats and increases
the pressure on sustainable development policies. For example, human activities have led
to ecological degradation in the Qilian Mountains [59]. Monitoring of SDG 11.7.1 indicator
aims to ensure that important ecological functional areas such as nature reserves, scenic
spots, forest parks, wetlands, and vital water sources within the urban area of Guilin City
are not damaged. It also aims to improve the construction of urban open space. According
to the township-level analysis results of SDG11.3.1, policymakers in Lingui, Lingchuan,
and Dingjiang should plan and consider building new districts based on their population
density, resources, and environmental carrying capacity and should not pursue urban-
ization while ignoring the ecological environment. Due to the lack of conservation and
preservation, deforestation in the past ten years was extensive, and the water storage
capacity was weakened, which also impacted the water quality in Guilin. Since 2011, Guilin
has implemented a series of policies to improve the ecological environment. These policies
are encouraging and might help to formulate sustainable development strategies suitable
for Guilin in the future.

A well-conceptualized and robust SDG monitoring framework can inform the strategic
design of policies and interventions to address the challenges of growing urban areas and
uncertainty in a variety of scenarios. SDG11 monitoring framework explicitly considers
the linkages between policy, urban development, and the SDGs by integrating interdisci-
plinary knowledge. Implementing isolated targets without a comprehensive approach will
undermine the unique dynamics of each city and endanger sustainable development. The
comprehensive evaluation results in our study indicates that the evaluation results of mul-
tiple SDG indicators should be considered comprehensively under the local context to gain
insights from local ecosystem and development conditions and guide sustainable policies
and practices. Since the proposed approach is based on the United Nations’ guidelines and
uses open geospatial data, it can be easily adopted in cities in other countries or regions to
support sustainable urban practices.

One limitation of our study is that the indicator assessment was performed in the years
2013, 2015, and 2020. The study periods highly depend on the availability of open geospatial
data. With geospatial data becoming more readily available, an annual evaluation of the
SDG indicators can be performed in future studies. Moreover, raw spatial and temporal
resolution geospatial data such as gridded population data (1000 m) was used in this study.
This may have caused uncertainties and bias in the evaluation results [60,61]. Geospatial
data with higher spatiotemporal resolution and thematic accuracy should be used to obtain
more reliable assessment results. The sharing of geospatial data should be endorsed, and
multi-source data fusion technology should be developed to improve the resolution and
accuracy of SDG indicator measurements.

7. Conclusions

Following the guidelines of SDG11 indicators, this study evaluated the spatiotemporal
changes in transport accessibility, land consumption, and urban open space in the urban
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functional area of Guilin from 2013 to 2020. The evaluation results showed that the accessi-
bility of public transport gradually improved from 2013 to 2020, and the SDG11.2.1 indica-
tors increased from 42.08% in 2013 to 52.31% in 2020. However, the expansion of built-up
land was faster than the increase in population, and the per capita land consumption contin-
ued to increase. The proportion of public open space area also decreased from 56.0% in 2013
to 24.0% in 2020, and the proportion of population with convenient access to open public
space decreased from 73.2% to 59.3%. At the township level, the SDG11 indicators of Lingui,
Lingchuan, and Dingjiang, which have been rapidly growing in recent years, ranked the
lowest among the evaluated towns. Therefore, the construction of public transport facilities
should be increased, the low-density sprawl of built-up land should be controlled, and the
area of green space should be enlarged in these areas. This study proved the effectiveness of
the United Nations Sustainable Development Goal SDG11 indicators in evaluating changes
in urban transportation, urban public space, and urban land use efficiency that are closely
related to urban sustainability at the neighborhood level. The evaluation framework for
SDG11 indicators based on HR satellite images and open geospatial big data proposed
in this study can be applied to other cities, thereby contributing to the achievement of
the sustainable development goals. Geospatial data with enhanced spatial and temporal
resolution should be produced and applied to improve the accuracy and reliability of SDG
evaluation results in future studies.
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Abstract: Changes in the environment occur in cities due to increased urbanization and population
growth. Sustainable Development Goal (SDG) 11 is intrinsically linked to the environment, one facet
of which is the need for universal access to secure, inclusive, and accessible green and public places.
As urban heat islands (UHI) have the potential to negatively influence cities and their residents,
existing resources and data must be used to identify and quantify these effects. To address this,
we present the use of satellite-derived (2013–2022) and meteorological data (2014–2020) to assess
intra-urban heat islands in Manila City, Philippines. The assessment includes (a) understanding
the temporal variability of air temperature measurements and outdoor thermal comfort based on
meteorological data, (b) comparative and correlative analysis between common Land-Use Land
Cover indicators (Normalized Difference Vegetation Index (NDVI), Normalized Difference Water
Index (NDWI) and Normalized Difference Built-up Index (NDBI)) and Land Surface Temperature
(LST), (c) spatial and temporal analysis of LST using spatial statistics techniques, and (d) generation
of an intra-urban heat island (IUHI) map with a recommended class of action using a suitability
analysis model. Finally, the areas that need intervention are compared to the affected population,
and suggestions to enhance the thermal characteristics of the city and mitigate the effects of UHI
are established.

Keywords: intra-urban heat island; remote sensing; space-time; GIS; SDGs

1. Introduction

More focus has been placed on global urbanization recently as more people around
the globe move to urban areas every year. Today, more than half of the world’s population
resides in urban areas, and forecasts indicate that an increasing share of urban residents will
be responsible for almost all future population increases. The complicated socioeconomic
process of urbanization affects the built environment, relocating the population’s spatial
distribution from rural to urban regions, and converting once rural areas into urban ones.
It has an impact on dominant occupations, lifestyles, cultures, and behaviors in both urban
and rural regions, altering both the demographic and social structure. The key effects of
urbanization include the quantity, size, and density of urban settlements as well as the
population share between urban and rural inhabitants [1,2]. By ensuring that cities and
human settlements are inclusive, safe, and resilient, SDG 11—one of the United Nations’
“17 Sustainable Development Goals”—highlights the importance that cities play in the
world’s political agenda [3]. In the review of Estoque [4], despite initial efforts, the UN
Global Sustainable Development Report 2019 [5] found that the world is not on track to
achieve most SDG objectives including indicators related to SDG 11.
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Due to urban regions developing more quickly with population expansion, environ-
mental changes ensue [6]. Loss of open space and animal habitats, water and air pollution,
transportation, health concerns, and agricultural capacity are a few implications, while
changing thermal properties is another result of urbanization and city growth. In terms of
the increase in the Land Surface Temperature (LST) of the landscape, ongoing urbanization
and the growth of impermeable surfaces are both factors [7,8]. As urban regions expand, the
topography changes. Buildings, roads, and other forms of infrastructure take the place of
open space and plants, for example, and permeable and moist surfaces eventually become
impermeable and dry [9].

As a result of this development, urban heat islands (UHI) occur—a phenomenon in
which urban areas experience warmer temperatures than their rural surroundings [10]. In
particular, densely packed structures with little greenery develop “islands” with greater
temperatures than their surroundings [9,11–13]. UHI may influence the increased risk of
health-related conditions, increase in energy consumption, elevated pollutants, and water
quality [14]. Urban heat islands (UHI) have the potential to have a detrimental impact on
cities and their inhabitants, and as such, available resources and data must be used to detect
and quantify these consequences. SDG 11 works toward making societies more sustainable
and resilient by giving us a unique chance to make sure that the infrastructure we build
today will still be useful in the future. This can be done by investing in parks and green
spaces in cities, which will help reduce the “urban heat island effect” [3].

Aside from this, according to a growing body of research [15–17], “intra-urban” heat
islands (IUHI), or regions within a city that are hotter than others due to an unequal
distribution of heat-absorbing buildings and pavements, as well as cooler zones with trees
and greenery, are becoming more prevalent [18]. Intra-Urban Heat Islands (IUHI) detection
is of major interest to city planners since high temperatures influence energy usage and
human health [16]. In 2015, Martin et al. [19] referred to surface intra-UHI as the detection
of hotspots in a metropolis which is made possible by determining temperature thresholds
by spatial reference. Consequently, the data can then be used to identify regions of interest
in a city and potentially trigger alarms at a finer spatial scale. An example is a study
conducted by Igergård et al. [20] in the Stockholm municipality.

In the literature, remote sensing is a good resource to understand the link between ur-
ban expansion and the characteristics describing the thermal changes in both geographical
and temporal contexts [7,14,21]. Among remote sensing data, satellites are used more to
estimate LST due to the thermal and passive microwave sensors aboard them. Although
satellite data are very useful, Zhou et al. [14] stressed in their systematic review that
retrieved satellite LST and air temperature differences, the effect of clouds, spatial and
temporal resolution trade-off, SUHI quantification methods, varying land use land cover
methods, and SUHI accuracy assessment are among the current challenges faced by UHI
researchers. Worse, the limited availability of datasets for SUHI studies and applications
exacerbates the challenges.

The increasing number of publications on the effect of UHI, particularly after 2016,
reflects the scientific community’s interest in disseminating information about this sub-
ject, which investigates its causes and ramifications from several viewpoints, including
environmental, social, and economic [22]. The Philippines, like the rest of the world, is
experiencing fast urbanization and a population density increase. Furthermore, these
densely populated cities are largely clustered in Metro Manila [23,24]. In this context, sta-
tistically analyzing satellite data geographically and temporally, Landicho and Blanco [25]
confirmed that intra-urban heat islands (IUHI) in Metro Manila are prevalent in 2019 while
Alcantara et al. [26,27] conducted UHI studies in Quezon City. Estoque et al. [28], moreover,
used satellite-derived surface temperature data and socio-ecological factors to analyze the
present health risk in 139 Philippines cities. In addition, cities outside of Metro Manila were
part of the Project GUHeat [24], which conducted urban heat island studies in cities such as
Baguio [29], Cebu [30], Davao [31], Iloilo [32], Mandaue [33], and Zamboanga [34].
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Given prior geographic biases in the literature, greater attention should be placed on
understudied areas or cities, as proposed by Zhou et al. [14] and Almeida et al. [22] in their
reviews. Furthermore, little published research explores how UHI affects the population
because of a lack of fine-scale geographic population data [35]. Consequently, as there is
inadequate research about UHI conducted in the country, area-specific assessment in cities
like Manila would provide further details on how changes in the landscape impact the city’s
heat situation and will serve as a basis for urban planners and policymakers for mitigation
and improvement. This also supports the goals of SDG 11 to aid the futureproofing of
infrastructures for cleaner and greener cities.

The novelty of the present work is the use of space-time pattern mining to assess
the presence of intra-urban heat islands using remote sensing data. Although this type of
methodology is well established for space-time analysis applications, its usage on remote
sensing data such as land surface temperature has not been extensively studied. Moreover,
according to the author’s knowledge, no work was dedicated to including the population
and settlement data in such an assessment method for Manila City or any highly urbanized
cities in the Philippines.

Its main purpose is to use satellite-derived and in situ meteorological remote sensing
data to assess the presence of intra-urban heat islands in Manila City. Moreover, demo-
graphic data such as population and settlement data were used to enhance the assessment.
Data represented in a space-time cube were used to carry out a space-time pattern mining
approach in generating an Intra-Urban Heat Island (IUHI) map for Manila City. Finally,
city-specific strategies to promote outdoor thermal comfort and hotspot interventions were
also suggested. This paper is divided into five sections:

• Section 1 introduces the research, the state-of-the-art review, research gaps, and a
statement of purpose.

• Section 2 presents the data and a detailed discussion of the methods employed.
• Section 3 shows the description of the results and output of the analysis.
• Section 4 discusses the results in detail, interprets the findings concerning previous

studies, and examines the context of the outcomes of the study.
• Section 5 summarizes what was done in the study, the findings, and future work.

2. Materials and Methods

2.1. Study Area

As shown in Figure 1, Manila City is located in the northern Philippines archipelago,
on the island of Luzon, on the eastern side of the old Manila Bay, with the Pasig River
running through it [36,37]. As the Philippines’ capital, Manila is considered to have the
highest population density among the country’s highly urbanized cities, and even among
the world’s densest cities. In 2020, the Philippine Statistics Authority [38] recorded that
1.84 million population reside in its 24.98 square kilometer land area, which translates to
about 74,000 inhabitants per square km. The spatial attributes of the city are shown in
Table 1.

Table 1. Spatial Attributes of Manila City.

Data Attributes Description

Spatial Reference GCS WGS 1984
Spatial Resolution Approximately 30 m

Number of Pixels Covered 48,667
Data Format Geo tiff
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Figure 1. Manila City’s geographical location (left) and administrative boundary (right).

According to the Koppen Climate Classification [39] Manila has a tropical rainforest
climate (Af). There is no dry season in a tropical rainforest environment, and it rains at least
60 mm per month throughout the year (2.36 in). Tropical rainforest climates do not have
distinct seasons; it is hot and humid year-round, with frequent and heavy rains. Manila has
an annual average temperature of 27.8 degrees Celsius, or 82.0 degrees Fahrenheit. With an
average temperature of 85.0 ◦F (29.4 ◦C), April is the hottest month of the year, while the
lowest month is January at 79.0 ◦F (26.1 ◦C) [39].

2.2. Data and Data Sources

This section enumerates the data and their sources including their descriptions, at-
tributes, and the methods employed to obtain and prepare the data.

2.2.1. Manila City Administrative Boundary

An administrative boundary represents subdivisions of areas, territories, or jurisdic-
tions recognized by governments for administrative purposes [40]. The Philippines follows
the Philippine Standard Geographic Code (PSGC) with different geographic levels such as
region, province, city/municipality, and the smallest unit, barangay [41]. For the research,
we need the shapefiles for Manila City at the city, district, and barangay levels. A published
GitHub repository [42] was used since it is complete with all the needed geographic levels
projected using the WGS 1984, latitude/longitude projection. These shapefiles were sourced
from reliable webpages such as the OCHA Services Website [43] and GADM.org [44].

2.2.2. In-Situ Meteorological Data

Meteorological raw data taken daily from 2014 to 2018 were provided by the weather
bureau of the Philippines. The meteorological parameters include rainfall amount, mean
temperature, maximum temperature, minimum temperature, wind speed, wind direction,
and relative humidity. Since just one synoptic station is in Port Area, Manila (14.5878◦N
latitude and 120.9690◦E longitude), only point data are available for Manila City.
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2.2.3. Population Data

Population density is a key metric for assessing domestic living circumstances. Due to
the statistical approach used, traditional census statistics cannot represent the population’s
geographical distribution with a high degree of precision [35]. A high-resolution map
estimate of the population density inside 30-m grid tiles was supplied by Data for Good
Meta, which we used in this research. In this study, the population density demographic
data for the year 2018 was used to give an insight into the distribution of people affected
by the intra-urban heat island in Manila City. Since the downloaded data represent the
whole country, we used ArcGIS Pro software to clip the region of interest based on the
administrative boundary of Manila City. Aside from population density, those pixel grids
with data are considered settlement areas while empty grids denote non-settlements areas
in the city. Each cell’s value represents the population density of that pixel/grid. This
density may be expressed as a grid’s area.

2.2.4. Satellite Data

Satellite-derived remote sensing data in the study were taken from MODIS and Land-
sat 8 satellite data products. Daily land surface temperatures (day and night) were obtained
from MODIS between 2014 to 2018 as complementary data for the meteorological data
mentioned above. Consequently, spatial yearly data raster for land surface temperature
and spectral indices were downloaded from Landsat 8.

• MODIS Land Surface Temperature Product

Land Surface Temperature data were derived from the Collection-6 MODIS Land Sur-
face Temperature product to complement the available meteorological data at hand. Details
of their retrieval were reported in [45]. In this study, data were retrieved to complement
the meteorological data since global daily LST data can be obtained with this. Although
the spatial resolution is low, the temporal resolution of the MODIS dataset is good and was
deemed applicable for the correlation analysis presented in Ref [45].

• Landsat 8 Data Product

The Climate Engine web app (https://app.climateengine.com/climateEngine# (ac-
cessed on 9 February 2020)) [46] was used to download analysis-ready Landsat 8 data which
were preprocessed using the Google Earth Engine [47] platform. The web application al-
lows easy download of Landsat Bands, Spectral Indices, and Land Surface Temperature
aggregated per year of study. In ecological studies, digital numbers and reflectance are the
most used while studies involving thermal bands often use digital numbers and tempera-
tures. For this study, we used top-of-atmosphere (TOA) reflectance products to obtain the
land surface temperature (LST) and surface reflectance (SR) products for spectral indices
such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Water
Index (NDWI), and Normalized Difference Built-up Index (NDBI).

• Land Surface Temperature

According to ESA [48], “Land Surface Temperature (LST) is the radiative skin temper-
ature of the land derived from solar radiation. A simplified definition would be how hot
the “surface” of the Earth would feel to the touch in a particular location. From a satellite’s
point of view, the “surface” is whatever it sees when it looks through the atmosphere to the
ground. It could be snow and ice, the grass on a lawn, the roof of a building, or the leaves
in the canopy of a forest. Land surface temperature is not the same as the air temperature
that is included in the daily weather report.”

Landsat 8 passes the equator at 10:00 am +/− 15 min (mean local time) [49] so the
maps that will be generated are only based on measurements from this specific time of the
day. While IUHI can be measured better in Manila City in the afternoon than in the morning,
the limitation of satellite data to provide this led the researchers to use such Landsat data
for the investigation. Deilami et al. [50] stressed in their review that the popularity of
Landsat images for UHI studies can be attributed to factors such as being freely available
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to researchers, their worldwide coverage with a reasonable spatial resolution of 30 × 30 m,
and the long-term temporal coverage which enables researchers to extract the required
information over a long period to monitor changes. Moreover, in their review article, about
22% of the papers reviewed use Landsat 8 data for UHI investigation with data available
from 2013 to the present [50].

Raster data of land surface temperature data were taken from 2013 to 2022 on a yearly
interval. Because of constraints in maximum cloud cover, LST within the year was obtained
to depict maximum temperatures occurrence for that year. The top-of-atmosphere (TOA)
product was used to illustrate the presence of cold and hotspots in the yearly intra-urban
heat island map generated. Although the actual resolution Landsat 8 LST is 100 m, the
analysis product downloaded from the climate engine is provided at 30 m.

• Normalized Difference Vegetation Index (NDVI)

The NDVI is a dimensionless index that describes the difference between visible and
near-infrared reflectance of vegetation cover and can be used to estimate the density of
green on an area of land. No green leaves produce a value near zero, yet calculations of
NDVI for a particular pixel always yield a figure that falls between a negative one (−1)
and a positive one (+1). A value of zero denotes no vegetation, whereas a value of close to
one (0.8–0.9) represents the greatest potential density of green leaves [51]. The following
formula is used to calculate NDVI:

NDVI =
(NIR − Red)
(NIR + Red)

(1)

For Landsat data, NDVI = (Band 5 − Band 4/(Band 5 + Band 4). This can be di-
rectly downloaded from the climate engine. Table 2 shows the ranges of NDVI and their
corresponding land use land cover (LULC) classification.

Table 2. NDVI ranges for LULC Classification.

NDVI Ranges Land Use Land Cover (LULC) Classification Class

−1.0 to 0.0 Water Body 1
0.0 to +0.2 Urban Built-up 2

+0.2 to +1.0 Vegetation 3

• Normalized Difference Water Index (NDWI)

NDWI is a measure of liquid water molecules in vegetation canopies that interacted
with the incoming solar radiation. It is less sensitive to atmospheric scattering effects than
NDVI [52]. This index uses NIR and SWIR bands where the resulting value ranges from
minus one (−1) to plus one (+1). Positive values of NDWI correspond to high vegetation
water content and high vegetation fraction cover. Negative NDWI values correspond to
low vegetation water content and low vegetation fraction cover. In a period of water stress,
NDWI will decrease. The following formula gives the NDWI value.

NDWI =
(NIR − SWIR1)
(NIR + SWIR1)

(2)

For Landsat data, NDWI = (Band 5 − Band 6)(Band 5 + Band 6). This can be di-
rectly downloaded from the climate engine. Table 3 shows the ranges of NDWI values and
the corresponding water content classification.

Table 3. NDWI ranges for Water Content Classification.

NDWI Ranges Water Content Classification Class

−1.0 to 0.0 Low Water Content 1
0.0 to +0.1 High Water Content 2
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• Normalized Difference Built-up Index (NDBI)

The Normalized Difference Built-up Index (NDBI) uses the NIR and SWIR bands to
emphasize constructed built-up areas. It is a ratio based on mitigating the effects of terrain
illumination differences as well as atmospheric effects [53,54]. A negative value of NDBI
represents water bodies whereas a higher value represents build-up areas. NDBI value for
vegetation is low. The following formula gives the NDBI value.

NDBI =
(SWIR1 − NIR)
(SWIR1 + NIR)

(3)

For Landsat 8 data, NDBI = (Band 6 − Band 5)/(Band 6 + Band 5). This cannot be
directly downloaded from the climate engine, so the individual NIR and SWIR1 bands
were downloaded, then NDBI was calculated using the raster calculator tool in ArcGIS Pro.
Table 4 shows the ranges of NDBI values and the corresponding build-up area classification.

Table 4. NDBI ranges for Build-up Area Classification.

NDBI Ranges Build-Up Area Classification Class

−1.0 to 0.0 Non-Built-up areas 1
0.0 to +0.1 Built-up areas 2

2.3. Methodology

The workflow is divided into the following parts: (a) Meteorological Data and Land
Surface Temperature Evaluation Methods, (b) LULC and LST Comparative and Correlation
Analysis, (c) LST Spatiotemporal Pattern Analysis and Hotspots/Cold spots Identification,
and (d) Intra-Urban Heat Island Map Generation.

The overall workflow of this methodology is shown in Figure 2. Finally, using the
information obtained, data assessment and suggested area-specific mitigation strategies
are provided.

 

Figure 2. Overview of the overall workflow of the study to assess the IUHI map and provide
mitigation strategies.
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2.3.1. Meteorological Data and Land Surface Temperature Evaluation Methods

This section focuses on the use of meteorological data collected at Port Area, Manila
City, and how they are used to understand the temporal variability of air temperature, the
relationship of meteorological parameters to land surface temperature during the day and
night, and outdoor thermal comfort assessment.

a. Air Temperature and LST Trend and Relationship Analysis

This analysis’s methodology and findings were already published by the authors in
ref. [45]. There was no gap-filling technique used for missing information related to the
in-situ measurements nor with the derived MODIS data specific to the meteorological data
point. The in-situ data were directly taken from the weather agency which processed and
prepared the data, while the MODIS data are directly downloaded from the Google earth
engine. All data used were analysis-ready while any data point with a missing parameter
entry was discarded and not used.

b. Outdoor Thermal Comfort Assessment

The RayMan Model was proposed by Matzarakis, a micro-scale model developed
to calculate radiation fluxes in simple and complex environments [55,56]. This research
used this model to assess the thermal comfort in Port Area. The scientific basis for the
computations is thoroughly detailed in the Rayman Pro tool handbook [55].

Thermal indices have been developed to approximate human thermal perception [55].
In particular, Physiological Equivalent Temperature (PET) is “the air temperature at which,
in a typical indoor setting (without wind and solar radiation), the energy budget of the
human body is balanced with the same core and skin temperature as under the complex
outdoor conditions to be assessed” [57,58].

The Thermal Comfort Assessment workflow is as follows:

1. Preparation of input parameters (Air Temperature, Relative Humidity, and Wind
Velocity) in a .csv file as input to the RayMan Model.

2. Calculate the Tmrt and Thermal Index (PET) using the RayMan Pro Software. The
Graphical User Interface which contains the geographic data, personal data, and
clothing & activity information used is shown in Figure 3.

3. Graph the calculated values for comparison.
4. Assess the thermal comfort by getting the equivalent physiological stress associated

with the derived thermal index values as shown in Table 5.

 

Figure 3. RayMan Pro Graphical User Interface. Geographic data, personal data, and clothing and
activity information are shown.
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Table 5. PET Thermal Index, corresponding classes, thermal sensation, and physiological stress.

Thermal Sensation
PET Range for

Taiwan (◦C PET) [59]
PET Range for Western/Middle

Europe (◦C PET) [59]
Physiological

Stress

Very Cold <+14 <+4 Extreme cold stress
– – – Very strong cold stress

Cold +14–+18 +4–+8 Strong cold stress
Cool +18–+22 +8–+13 Moderate cold stress

Slightly Cool +22–+26 +13–+18 Light cold stress

Neutral +26–+30 +18–+23 No thermal stress
(Thermal Comfort Zone)

Slightly Warm +30–+34 +23–+29 Light heat stress
Warm +34–+38 +29–+35 Moderate heat stress
Hot +38–+42 +35–+41 Strong heat stress

– – – Very strong heat stress
Very Warm >+42 >+41 Extreme heat stress

It should be emphasized that the data being used in this analysis are solely temporal
point data from Manila City’s Port Area. It is deemed that these values do not represent
the entire city; therefore, meteorological data-point locations should be explored to offer a
better understanding of the thermal comfort in Manila City.

2.3.2. LULC Indicators and LST Evaluation Methods

This section discusses methods to evaluate satellite-derived data such as spectral
indices (NDVI, NDWI, and NDBI, which are used as LULC indicators) and land surface
temperature in Manila City. These methods include multivariate cluster analysis and
correlation analysis.

a. Multivariate Cluster Analysis

Cluster analysis is a statistical method to use the values of the variables in devising a
scheme for grouping the objects into classes so that similar objects are in the same class [60].
It is a multivariate method for classifying a sample of subjects (or objects) into several
groups based on a set of measured characteristics, with related subjects placed in the
same group.

Given that the group of values for each parameter is not known, we used the satellite-
derived data to group the values in each parameter (NDVI, NDWI, NDBI) together with
land surface temperature (LST) and observed how each of these LULC indicators relate to
LST. Specifically, since the indicator values can be used to classify land use and land cover,
this is an initial step to see how the land use and land cover of different areas in Manila
City relate to their thermal characteristic.

For this, the k-means algorithm as shown in Algorithm 1 was used to identify the
clusters within the dataset. It is an iterative algorithm that divides the unlabeled dataset into
k different clusters in such a way that each dataset belongs to only one group that has similar
properties [61]. The k-means clustering algorithm mainly performs two tasks: (1) determine
the best value for k-center points or centroids by an iterative process and (2) assign each
data point to its closest k-center. Those data points which are near a particular k-center
create a cluster. Hence, each cluster has data points with some commonalities, and it is
away from other clusters. Shown below is the k-means clustering algorithm flow.

Algorithm 1: k-means algorithm

1: Specify the number k of clusters to assign.
2: Randomly initialize k centroids.
3: Repeat
4: expectation: Assign each point to its closest centroid
5: maximization: Compute the new centroid (mean) of each cluster.
6: until the centroid positions do not change.
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In this study, we used the multivariate clustering tool in ArcGIS Pro [62] to find these
natural clusters of features based solely on the feature attribute values. Given the number
of clusters to create, it will look for a solution where all the features within each cluster
are as similar as possible, and all the clusters themselves are as different as possible. This
tool utilizes unsupervised machine learning methods to determine natural clusters in the
data. The classification method is considered unsupervised as they do not require a set of
reclassified features to guide or train the method to find the clusters in the data. Since the
tool is used to run the clustering algorithm, the following workflow was employed:

1. Extract the values from the raster map at different years to create a feature layer. The
spectral indices (NDVI, NDWI, & NDBI) are in values between −1 and 1 while land
surface temperature is in degrees Celsius (◦C). All the raster data are taken from
Landsat 8 as explained in Section 2.2.4.

2. Import the data into the ArcGIS Pro software and use the generated feature layer as
input.

3. Execute the k-means clustering algorithm with the following:
4. Clustering method: k-means
5. Initialization Method: Optimized seed locations
6. Number of clusters: 4
7. Generate the cluster chart and interpret the results according to each of the input

variables.

It should be noted that cluster analysis has no mechanism for differentiating between
relevant and irrelevant variables. Therefore, the choice of variables included in a cluster
analysis must be underpinned by conceptual considerations. This is very important because
the clusters formed can be very dependent on the variables included. To see the relationship
and extent of the values used in clustering, we also employed correlation analysis with
the data.

b. LULC Indicators and LST Correlation Analysis

We use correlation analysis in addition to multivariate clustering analysis to evaluate
the relationship of NDVI, NDWI, and NDBI with LST. The same method as explained
in Section 2.3.1-a was used to analyze the extent and nature of the relationship between
the abovementioned parameters. On the contrary, Pearson product correlation in GeoDa
software was used.

2.3.3. LST Spatiotemporal Pattern Analysis

In this section, we focus on analyzing the spatial and temporal pattern of Land
Surface Temperature in Manila City Philippines. Since data have both spatial and temporal
context, several analytical tools in the Space-Time Pattern Analysis toolset in ArcGIS Pro
software [62] were used. Before doing the analysis, a space-time cube was created based on
the downloaded LST raster over the period (2014 to 2021) as shown in Figure 4.

Figure 4. Creating a space-time cube based on yearly maximum LST from 2013 to 2022.
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A time series analysis or an integrated spatial and temporal pattern analysis may be
used to view and analyze spatial-temporal data using this approach. Using the prepared
space-time cube as input, we perform emerging hotspot analysis and local outlier analysis
to better understand the thermal situation in Manila City.

a. Emerging Hotspot Analysis

The Emerging Hot Spot Analysis tool detects statistically significant hot and cold spot
patterns over time. It is used to examine land surface temperature (LST) data in Manila City
to identify new, intensifying, persistent, or sporadic hot spot trends at various time-step
intervals. The workflow for this is as follows:

1. Taking the space-time NetCDF cube created for LST as input.
2. Conceptualize the spatial relationships of LST values using the k-nearest neighbor

method with k = 8, where the eight closest neighbors to the target feature will be
included in computations for that feature.

3. Calculate the Getis-Ord Gi∗ statistic [63] for each bin (pixel), represented in Table 6.
The Getis-Ord local statistic is given as:

G∗
i =

∑n
j=1 wi,jxj − X ∑n

j=1 wi,j

S

√[
n ∑n

j=1 w2
i,j−

(
∑n

j=1 wi,j

)2
]

n−1

(4)

where xj is the attribute value for feature j, wi,j is the subscript weight between feature
i and j, n is equal to the number of features; also:

X =
∑n

j=1 xj

n
(5)

S =

√
∑n

j=1 x2
j

n
− (

X
)2 (6)

The G∗
i is a z-score so no further calculations are required.

Table 6. G∗
i statistic values for cold spot and hotspot classes at different significance levels.

Statistical Significance Level
G∗

i Statistic Pixel Representation

Cold Spot Hotspot

99% confidence −3 +3
95% confidence −2 +2
90% confidence −1 +1

Statistically not significant 0

The G∗
i statistic returned for each point is a z-score. The more concentrated the

clustering of high values (hot spots) of LST, the bigger the z-score for statistically
significant positive z-scores. The clustering of low values (called a “cold spot”) of LST
is stronger, the smaller the z-score is for statistically significant negative z-scores.

4. Once the space-time hot spot analysis completes, each bin (pixel) in the input NetCDF
cube has an associated z-score, p-value, and hot spot bin classification added to it.

5. Next, these hot and cold spot trends are evaluated using the Mann–Kendall trend test.
As an independent bin time-series test, the Mann–Kendall trend test [64] is done for
every location/point with LST data. For the point value and their time sequence, the
Mann–Kendall statistic is a rank correlation analysis. The first time’s point value is
compared to the second time’s point value. The outcome is +1 if the first is smaller
than the second. The outcome is −1 if the first is greater than the second. The outcome
is 0 if the two numbers are equal. The results are added together for each pair of
periods compared. The predicted sum is 0, indicating that the numbers do not show
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any trend over time. Based on the variance for the values in the point time series,
the number of ties, and the number of periods, the observed sum is compared to
the expected sum (zero) to determine if the difference is statistically significant. A
z-score and a p-value are used to represent the trend for each point time series. A
small p-value indicates that the trend is statistically significant. The sign associated
with the z-score determines if the trend is an increase in point values (positive z-score)
or a decrease in bin values (negative z-score).
With the resultant trend z-score and p-value for each location with data, and with
the hot spot z-score and p-value for each bin, the Emerging Hot Spot Analysis tool
in ArcGIS Pro categorizes each study area location as shown in Table 7 and is then
reclassified as “monitor”, “intervene”, and “preserve”. With the new classification,
those categorized as diminishing, oscillating, and historical for both hot and cold spots
will be reclassified as “monitor”. Those with no pattern detected will be classified as
“monitor” as well. On the other hand, categories such as new, consecutive, intensifying,
and sporadic will have “preserve” as their new class for a cold spot and “intervene”
for a hotspot.

6. An Emerging Hotspot Analysis (EHSA) Map showing areas to preserve, monitor, and
intervene is generated based on the reclassification shown in Table 7.

Table 7. Emerging hot spot analysis trend categories, their definition, and equivalent new class.

Category Definition New Class

No Pattern Detected Does not fall into any of the hot or cold spot patterns defined below Monitor

Hot
Spot

New the most recent time step interval is hot for the first time Intervene

Consecutive a single uninterrupted run of hot time step intervals, with of less than 90%
of all intervals Intervene

Intensifying at least 90% of the time step intervals are hot and become hotter over time Intervene
Persistent at least 90% of the time step intervals are hot, with no trend up or down Intervene
Sporadic some of the time step intervals are hot Intervene
Diminishing at least 90% of the time step intervals are hot and become less hot over time Monitor
Oscillating some of the time step intervals are hot, some are cold Monitor

Historical at least 90% of the time step intervals are hot, but the most recent time step
interval is not Monitor

Cold
Spot

New the most recent time step interval is cold for the first time Preserve

Consecutive a single uninterrupted run of cold time step intervals, withof less than 90%
of all Preserve

Intensifying at least 90% of the time step intervals are cold and become colder over time Preserve
Persistent at least 90% of the time step intervals are cold, with no trend up or down Preserve
Sporadic some of the time step intervals are cold Preserve

Diminishing at least 90% of the time step intervals are cold and become less cold over
time intervals Monitor

Oscillating some of the time step intervals are cold, some are hot Monitor

Historical at least 90% of the time step intervals are cold, but the most recent time
step interval is not Monitor

b. Local Outlier Analysis

The Local Outlier Analysis tool identifies statistically significant clusters of high or low
land surface temperature LST values as well as outliers that have values that are statistically
different from their neighbors in space and time.

The workflow for this is as follows:

1. Use the space-time NetCDF cube created for LST as input.
2. Conceptualize the spatial relationships of LST values using the k-nearest neighbor

method with k = 8, where the eight closest neighbors to the target feature will be
included in computations for that feature.
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3. Calculate the Anselin Local Moran’s I statistic of special association for each bin which
includes a pseudo p-value and a CO_Type code. The Local Moran’s I statistic of spatial
association is given as

Ii =
xi − X

S2
i

n

∑
j=1, j 	=i

wi,j
(
xi − X

)
(7)

where xi is an attribute for feature i, X is the mean corresponding attribute, wi,j is the
spatial weight between features i and j, and:

S2
i =

∑n
j=1, j 	=i

(
xj − X

)2

n − 1
(8)

with n equating to the total number of features. The zIi score for the statistics is
computed as

zIi =
Ii − E[Ii]√

V[Ii]
(9)

V[Ii] = E
[

I2
i

]
− E[Ii]

2 (10)

A positive value for I indicates that a feature has neighboring features with similarly
high or low attribute values; this feature is part of a cluster. A negative value for I
indicates that a feature has neighboring features with dissimilar values; this feature is
an outlier. In either instance, the p-value for the feature must be small enough for the
cluster or outlier to be considered statistically significant.
In Table 8, the cluster/outlier type (CO Type) field distinguishes between a statistically
significant cluster of high values (HH), a cluster of low values (LL), an outlier in which
a high value is surrounded primarily by low values (HL), and an outlier in which a
low value is surrounded primarily by high values (LH). Statistical significance is set at
the 95 percent confidence level. This significance represents an FDR correction, which
adjusts the p-value threshold from 0.05 to a value that better reflects the 95 percent
confidence level taking into consideration multiple testing.

4. A two-dimensional map summarizing each location over time is created with the
following categories shown in Table 9. Then, a new class is created based on these
categories wherein pixels categorized as never significant, multiple types and outliers
will be reclassified as “monitor” while only the high-high cluster and the low-low
cluster will be reclassified as intervene and preserve, respectively.

5. Finally, a Local Outlier Analysis (LOA) Map showing areas to preserve, monitor, and
intervene will be generated.

Table 8. Pixel representation of cluster and outliers based on the Anselin Local Moran’s I statistic.

Cluster/Outlier Type Definition

Never Significant A location that is not statistically significant.

High-High Cluster (HH) Locations that are part of a cluster of high LST_TOA values.

High-Low Outlier (HL) Locations that represent high outliers within a cluster of low
LST_TOA values.

Low-High Outlier (LH) Locations that represent low outliers within a cluster of high
LST_TOA values.

Low-Low Cluster (LL) Locations that are part of a cluster of low LST_TOA values.
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Table 9. Local outlier analysis trend categories, their definition, and equivalent new class.

Category Definition New Class

Never Significant A location where there has never been a
statistically significant CO_TYPE. Monitor

Only High-High Cluster
A location where the only statistically
significant type throughout time has been
High-High Clusters.

Intervene

Only High-Low Outlier
A location where the only statistically
significant type throughout time has been
High-Low Outliers.

Monitor

Only Low-High Outlier
A location where the only statistically
significant type throughout time has been
Low-High Outliers.

Monitor

Only Low-Low Cluster
A location where the only statistically
significant type throughout time has been
Low-Low Clusters.

Preserve

Multiple Types
A location where there have been multiple
types of statistically significant clusters and
outlier types throughout time.

Monitor

2.3.4. Intra-Urban Heat Island Map Generation

This section discusses the method of generating the intra-urban island map for Manila
City, Philippines, using results from EHSA and LOA through a Suitability Analysis Model.

Figure 5 shows the overall process to produce the needed map for further assessment.
The Emerging Hot Spot Analysis identifies trends in the data, such as new, intensifying,
diminishing, and sporadic hot and cold spots, while the Local Outlier Analysis identifies
significant clusters and outliers in the data. Through the suitability analysis, the combina-
tion of both methods ensures that locations of hot and cold spots in the city are precisely
identified by eliminating outlier clusters in the final map produced. The suitability analysis
model was used to combine the resulting raster map from the emerging hotspot analysis
and local outlier analysis.

 

Figure 5. Overview of the Intra-Urban Heat Island (IUHI) Class of Action map generation based on
EHSA and LOA maps using the suitability analysis model.
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To carry out the suitability analysis, the classification classes of emerging hotspot
analysis and local outlier analysis were given numerical equivalents to provide a common
suitability scale.

Specifically, the following workflow was followed:

1. Preparation of criteria data. The resulting maps from the emerging hotspot analysis
and local outlier analysis were prepared with their corresponding classes.

2. Transforming the classes of each criterion to a common suitability scale is shown in
Table 10.

3. Assigning weight relative to each of the criteria and combining them to create a
suitability map. In this application, we treat each criterion as equally important, so
weight is assigned as a percentage: 50% for EHSA Classification and 50% for LOA
Classification.

4. Finally, the pixel values were reclassified according to Table 11, shown to give an
Intra-Urban Heat Island (IUHI) Class of Action Map.

Table 10. Common suitability scale used to transform EHSA and LOA Classification maps.

Emerging Hotspot Analysis
(EHSA) Classification

Local Outlier Analysis
(LOA) Classification

Suitability Scale

Preserve Preserve 1
Monitor Monitor 2

Intervene Intervene 3

Table 11. Suitability values and their equivalent IUHI Class of Action.

Emerging Hotspot
Analysis (EHSA)

Classification

Local Outlier
Analysis (LOA)
Classification

Suitability Model
Suitability Value

IUHI Class of Action

1 1 1.0 Preserve
1 2 1.5 Preserve
2 1 1.5 Preserve
1 3 2.0 Monitor
2 2 2.0 Monitor
3 1 2.0 Monitor
2 3 2.5 Monitor
3 2 2.5 Monitor
3 3 3.0 Intervene

2.3.5. Intra-Urban Heat Island Map Assessment and Mitigation Strategies

The results in Sections 2.3.1–2.3.4 are then used to evaluate the Intra-Urban Heat
Island map with the population data and urban settlement raster from the high-resolution
settlement layer. Moreover, area-specific mitigation strategies will be suggested based on
the visual inspection of the areas that need intervention. Possible strategies may also be
taken from the identified areas to be preserved in the city. Assessment and mitigation
strategies are simplified so that they serve as a basis for urban planners and policymakers
for mitigation and improvement.

3. Results

3.1. Satellite Data Retrieved from Landsat 8

Ten distribution maps from 2013 to 2022 were obtained from Landsat 8 data through
the climate engine web application. These data were further processed in ArcGIS Pro by
providing an equalized histogram stretch and a specific color scheme in its symbology.
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3.2. Meteorological Data and Land Surface Temperature Evaluation
3.2.1. Air Temperature and LST Trend and Relationship Analysis

Figure 6 shows the monthly maximum (Tmax), mean (Tmean), and minimum (Tmin)
air temperature trends from 2014 to 2018. The values were taken from the diurnal data and
were averaged per month to clearly show the monthly trend. This observation was dis-
cussed in [45] showing an upward trend in the values starting from March and continuing
to April and May while values start to drop in October until around January and February.
Such an observation is the same as what was presented by Estoque et al. [28] and Manalo
et al. [65] in their framework showing the climate and seasons in the Philippines based on
combined rainfall and temperature. Between March to May, the Philippines experiences a
hot dry season which explains the high recorded air temperature.

 

Figure 6. Monthly maximum (Tmax), mean (Tmean), and minimum (Tmin) air temperature trends
from 2014 to 2018.

Additionally in our paper [45], we found a significant linear correlation between air
temperature (maximum, mean, and minimum) and land surface temperature (day and
night) as analyzed from available daily data shown in Table 12. On the other hand, the
relative humidity shows a weak correlation with the LST data although it is shown to be
significant for LST_Night.
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Table 12. Corresponding interpretation of the quantitative values from the correlation analysis [45].
(* not significant).

LST_Day LST_Night

Tmax moderate strong
Tmean moderate strong
Tmin moderate strong
RH weak * weak

3.2.2. Outdoor Thermal Comfort Assessment

Using the same meteorological data (Tmean, Relative Humidity, and Wind Speed)
taken in Port Area, Manila City, from 2014 to 2018, the Physiological Equivalent Temper-
ature (PET) thermal index was estimated through the RayMan model. The diurnal data
were computed and then averaged per month and are shown in Figure 7. Additionally, the
corresponding physiological stress levels for each of the values are indicated.

Figure 7. Monthly estimated Physiological Equivalent Temperature (PET) based on the RayMan
model from 2014 to 2018.

As shown, moderate heat stress can be consistently felt in May and at some points in
April and June. From July to December, light heat stress was observed, while the thermal
comfort zone where there is no thermal stress only appeared in January and February.
Understanding the thermal comfort in this area can also give us an idea on what is the
expected outdoor thermal comfort in the other parts of Manila City. These results will be
used as part of the assessment method in the latter part of the study.

3.3. LULC Indicators and Evaluation Methods
3.3.1. Multivariate Cluster Analysis

From the space-time cube generated for spectral indices (NDVI, NDWI, and NDBI)
used as land use and land cover indicators and top-of-atmosphere land surface temperature
(TOA_LST), the k-means clustering algorithm was used to identify the clusters within the
dataset. Four groups were initialized to see a cluster for high LST (1 cluster), mid-LST
(2 clusters), and low LST values (1 cluster). Standardized parameter values were plotted to
clearly show the distribution of clusters, as the measurement units are not the same.
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Figure 8 shows the boxplot of the result of the multivariate cluster analysis. The
clustering results indicate that for the high LST cluster, values with low NDWI, moderate
NDVI, and high NDBI values are clustered together. This is also expected since low NDWI
correlates to low water content and high NDBI corresponds to urbanized regions. In
contrast, mid-range NDVI values correspond to urbanized areas. For the low LST cluster,
values are clustered with high NDWI values, low NDVI values, and low NDBI values. A
high NDWI refers to a high-water content, a negative NDVI to water bodies, and a low
NDBI to undeveloped regions. Consequently, two mid-LST clusters were produced because
of varying parameter combinations. The first set of clusters for mid-LST (orange line) is
seen to be a combination of negative NDBI, high NDVI, and a higher mid-value of NDWI
which translates to lowly built-up, high vegetation with a fair amount of moisture content.
On the other hand, the second set of mid-LST clusters (light blue line) is composed of NDBI,
NDVI, and NDWI values close to zero which can be interpreted as areas with low to no
built-up and low water content.

Figure 8. Boxplot of the multivariate cluster analysis result.

3.3.2. LULC Indicators and LST Correlation Analysis

The same dataset was used to see the correlation of these parameters (NDVI, NDWI,
NDBI) with land surface temperature (TOA_LST). GeoDa software was used to calculate
the Pearson correlation and plot the results.

Figure 9 shows the relationship between LST and LULC indicators with their cor-
responding slope of linear fit and frequency distribution chart while all indicators are
significant at p < 0.01. The results show that there is a direct relationship between LST and
NDBI at a r = 0.361 which means that highly built-up areas have high recorded temperature
values. This observation agrees with the multivariate analysis. An indirect relationship is,
however, observed between LST and NDVI (r = −0.064) and LST and NDWI (r = −0.365).
The low Pearson correlation value between LST and NDVI indicates that both water body
values and vegetation are expected to have low temperatures while mid values correspond
to being built-up. With LST and NDWI, areas with high water/moisture content are more
likely to have lower surface temperatures compared to areas with low water/moisture
content. Based on these results, it can be inferred that the correlation values suggest that
NDWI is a better indicator than NDVI for land surface temperature, which is aligned with
the findings of Alexander et al. [66]. In addition, results also suggest that NDBI is a good
indicator for LST.
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Figure 9. Relationship between LST and spectral indices with their corresponding slope of linear fit
and frequency distribution chart. ** significant at p < 0.01.

3.4. LST Spatiotemporal Pattern Analysis
3.4.1. Emerging Hotspot Analysis

Based on the generated Emerging Hotspot Analysis (ESHA) Map, a reclassified map
was also produced to indicate areas to preserve, monitor, and intervene.

As shown in Figure 10, cold spot and hot spot areas were mapped using the trend
categories and a corresponding new class.

 

Figure 10. Emerging Hotspot Analysis Map and the reclassified map with the corresponding
new class.

3.4.2. Local Outlier Analysis

Based on the generated Local Outlier Analysis (LOA) Map, a reclassified map was
also produced to indicate areas to “preserve”, “monitor”, and “intervene”. In Figure 11,
the trend categories of clusters and outliers are shown on the left while the corresponding
new class is also provided in the map on the right.
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Figure 11. Local Outlier Analysis Map and the reclassified map with the corresponding new class.

3.5. Intra-Urban Island Map

Using the generated maps presented in Sections 3.2.1 and 3.2.2, a suitability analysis
model was used to combine the raster maps. The suitability analysis was carried out by
giving numerical equivalents for the new classification maps for emerging hotspot analysis
and local outlier analysis with a common suitability scale.

Figure 12 (left) shows the resulting suitability map with suitability values per pixel.
Consequently, the equivalent Intra-Urban Heat Island (IUHI) Class of Action was produced
as shown in Figure 12 (right).

 

Figure 12. Suitability Map and the reclassified suitability (IUHI) map with the corresponding
new class.

In Figure 13, the final Intra-Urban Heat Island (IUHI) Map of Manila City (2013–2022)
was created. To keep the map as intuitive as possible, the class of action as well as the
administrative boundaries at the city, district, and barangay levels were provided. This
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allows an easy understanding of the map while still showing the locations where areas
need preservation, monitoring, and intervention.

 

Figure 13. Intra-Urban Heat Island Map of Manila City (2013–2022).

3.6. Intra-Urban Heat Island Map Assessment and Mitigation Strategies
3.6.1. Location Assessment

Using the IUHI Map of Manila City, areas classified as “preserve” and “intervene”
were examined visually using high-resolution maps from Google Earth Pro.

From the IUHI map, areas that need intervention were assessed by visually inspecting
the locations to see the morphology of the areas exhibiting consistent surface temperatures
during the study period. Based on the inspection, most of these areas fall within the
Sampaloc district, which is part of Manila City’s university belt shown in Figure 14E–H
catering to Manila’s academic population. The area’s abundance of hotels and boarding
houses makes it ideal as a dormitory and as a commuting town [36]. Moreover, there are
also a few areas situated in Tondo District (A, B, and C) which is among the biggest urban
poor communities in Manila City. Area D, on the other hand, mainly points toward a
commercial location in Paco District.

Looking at the high-resolution satellite images, the areas shown in Figure 14 represent
commonality in terms of their urban structure. It is noticeable that these areas (A, B, C,
E, F, G, and H) are mostly residential and is characterized by predominantly settlement
and housing locations with narrow streets and sidewalks. Although there are attempts to
introduce urban soft scape via trees and vegetation, these are few and sparsely distributed
within the areas of concern. In general, roads and walkways are mainly built with asphalt
and concrete which might contribute to higher surface temperatures. There is also commer-
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cial space identified, such as (D), which seemed to have establishments and buildings and
parking spaces made of either asphalt or concrete as well.

 

Figure 14. Some areas with the “Intervene” Class of Action. (A–H) are the areas highlighted to show
their morphologies.

The same approach was applied in examining the areas to be preserved shown in
Figure 15. Aside from the stretch of Pasig River amidst Manila City, the Intramuros
district including Rizal Park Complex (part of Ermita district) as shown in (D) shows large
areas with relatively lower surface temperatures. It is the historic core of Manila and is
described as the “walled city” where walls surrounding the area are present until today.
The Intramuros area has evident low surface temperature due to its strategic location.
Aside from being situated near a body of water (Pasig River), the area is surrounded by
greenery (mostly grass and some shrubs and trees) which is part of a golf range. On the
other hand, the Rizal Park complex is one of the largest urban parks in Asia wherein the
area is a combination of vegetation and trees, gardens water features, and shaded areas.

 

Figure 15. Some areas with the “Preserve” Class of Action. (A-H) are the areas highlighted to show
their morphologies.

Predominantly, most of the areas shown in Figure 14 exhibit common morphological
characteristics. For instance, areas shown in A, F, and H are either surrounded or akin
to bodies of water and other water features, while areas shown in C, D, and G contain
substantial vegetation and green areas. In addition, areas like B and E, although residential,
also contain a decent quantity of trees spread within the area.
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In this visual inspection, the two areas have distinguishable features which relate to
the surface temperature in the area. Understanding the morphological characteristics of
the cold spots (preserve) can help in planning the mitigation strategies needed to improve
the thermal condition of the hotspots (intervene).

3.6.2. IUHI Class of Action and LULC Indicators Assessment

Overlaying the 2022 maps with the IUHI Map, the average values per class of action
are shown in Table 13. It can be observed that the average NDVI values do not provide a
clear distinction among the classes of action since the expected cold spots (water bodies
and vegetation) have values at the extremes of the index. On the contrary, NDWI and
NDBI average values convey the results. For instance, for “preserve”, the average NDWI
translates to higher water content while the average NDBI shows non-built-up areas. A
similar remark can be drawn for “intervene” values where the average NDWI means low
water content and the average NDBI falls in the built-up area category.

Table 13. Average values of LULC indicators per IUHI class of action.

Class of Action Average NDVI Average NDWI Average NDBI

Preserve 0.209 0.089 −0.090
Monitor 0.190 −0.027 0.028

Intervene 0.158 −0.079 0.081

Using the same data, we also investigate how the individual index classification is
distributed among the IUHI class of action to validate it with the literature. Table 14
provides the distribution of NDVI-based LULC per class of action. It can be observed that
areas considered as “preserve” have a higher proportion of water bodies and vegetation
while areas considered as “intervene” mostly fall into the urban built-up category.

Table 14. Distribution of LULC per IUHI class of action based on NDVI.

Class of Action Water Body Urban Built-Up Vegetation Total

Preserve 1.76% 6.11% 6.24% 14.10%
Monitor 0.21% 55.24% 27.80% 83.25%

Intervene 0.00% 2.26% 0.39% 2.65%

Total 1.96% 63.61% 34.43% 100.00%

Table 15 shows the distribution of water content category per IUHI class of action
based on NDWI. Based on the proportions, most parts of the areas considered “preserve”
have high water content while those for “intervene” have low water content. This shows
that the water content of the area has an impact on its surface temperature.

Table 15. Distribution of Water Content category per IUHI class of action based on NDWI.

Class of Action High Water Content Low Water Content Total

Preserve 10.07% 4.03% 14.10%
Monitor 26.72% 56.52% 83.25%

Intervene 0.11% 2.54% 2.65%

Total 36.91% 63.09% 100.00%

Table 16 shows the distribution of built-up categories per IUHI class of action based
on NDBI. As shown about two-thirds of the “preserve” area occupy non-built-up locations
while almost all parts of the “intervene” area are built up. This illustrates the effect of
built-up areas such as infrastructures, roads, and buildings that contribute to higher surface
temperatures in the city.
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Table 16. Distribution of Built-up category per IUHI class of action based on NDBI.

Class of Action Built-Up Non-Built-Up Total

Preserve 4.19% 9.91% 14.10%
Monitor 57.19% 26.06% 83.25%

Intervene 2.56% 0.10% 2.65%

Total 63.94% 36.06% 100.00%

Based on the observations above, LULC indicators allow us to assess the IUHI maps
according to different aspects of the indices. By understanding such categories and how
they are related to the IUHI map class of action, the areas can be quantitatively described
and later can be used to incorporate mitigation strategies.

3.6.3. IUHI Class of Action and High-Resolution Settlement Layer Assessment

The high-resolution settlement layer which consists of population per pixel and settle-
ment categories was also used to assess the IUHI map. The demographic data represent
the year 2018 which is the latest available during the conduct of the study.

By superimposing the generated IUHI Class of Action Raster and High-Resolution
Settlement Layer containing population per pixel and settlement class, an attribute table is
generated. From this attribute table, statistics about the population data and settlement
information are taken and summarized in Tables 16 and 17. An example of the attribute
table is shown in Figure 16. The object ID represents the corresponding pixel where values
related to the attributes are provided. In the Population/Settlement column, population
per pixel is shown while those that indicate zero mean a non-settlement pixel.

Table 17. Distribution of affected population per IUHI class of action.

Class of Action
Estimated Affected

Population
Population
Percentage

Preserve 85,601 4.92%
Monitor 1,594,166 91.55%

Intervene 61,531 3.53%

Estimated Total Population (2018) 1,741,298 100.00%

 

Figure 16. Excel Sheet of the superimposed IUHI Class with Population/Settlement Data.

In Table 17, although the percentage of “intervene” areas is small compared to the
other IUHI categories, there are still about 61 thousand of the population affected by higher
surface temperatures. As Manila is a densely populated city, the population despite its
small percentage is still not negligible.
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In Table 18, the distribution of settlement categories (from the high-resolution settle-
ment layer data) with IUHI class of action is presented. We can see that about three-fifths
(1.70%/2.65%) of the “intervention” area falls on settlement areas. This implies that most
of these areas are inhabited by people, which was backed up by the visual inspection in
Section 3.4.1. For the “preserve” class of action, most of the areas are non-settlement areas
which are mostly vegetated locations, parks, and those near the water features.

Table 18. Distribution of settlement category per IUHI class of action.

Class of Action Settlement Non-Settlement Total

Preserve 2.37% 11.73% 14.10%
Monitor 41.88% 41.37% 83.25%

Intervene 1.70% 0.95% 2.65%

Total 45.96% 54.04% 100.00%

3.6.4. IUHI Class of Action and Land Surface Temperature

To compare the variation of temperature between the cold spots (preserve) and
hotspots (intervene), the yearly land surface temperature was calculated for each class
of action.

A summary table of the average LST per year per class of action is shown in Table 19.
As can be seen, the average difference between the warmest and coldest areas in Manila
City is 6.13 ◦C. The difference through the years has a small deviation wherein the lowest
is recorded in 2013 while the highest is in 2017. To better see the trend, a graphical
representation of Table 18 is shown in Figure 17.

Table 19. Average LST (◦C) per year per IUHI class of action.

Preserve Monitor Intervene Difference

2013 28.56 31.87 33.94 5.38
2014 34.32 37.74 39.47 5.15
2015 37.24 41.96 44.07 6.83
2016 38.88 43.19 44.78 5.90
2017 32.46 37.03 39.74 7.28
2018 33.84 37.49 40.23 6.39
2019 36.00 40.81 43.12 7.12
2020 33.90 37.36 39.12 5.22
2021 36.25 40.89 42.76 6.51
2022 32.91 36.79 38.39 5.48

Average LST 34.43 38.51 40.56 6.13

 

Figure 17. Average LST per year per class of action.
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3.6.5. Mitigation Strategies for Areas That Need Intervention

With the assessment done in Sections 3.6.1–3.6.4., the differences in temperatures at
different urban morphologies were tackled. SDG 11, with its aim to make cities and human
settlements inclusive, safe, resilient, and sustainable, can only be realized by not only
understanding the city’s current situation but also providing means to identify vulnerable
areas and implementing solutions to solve existing problems. While the assessment pro-
vides information about the presence of intra-urban heat islands in Manila City, this also
offers insights into which area in the city policymakers can focus on in offering mitigation
strategies. In the analysis, for example, urban settlement and residential areas with narrow
streets and sidewalks, asphalted roads and walkways, and concrete commercial spaces
can contribute to high surface temperatures, while areas surrounded by and near bodies
of water/water features, substantial green spaces/vegetation/trees, and residential areas
with decent quantities of trees are places of lower surface temperature. With this in mind,
the following mitigation strategies are suggested to help ameliorate the effect of urban
heat islands, some of which were adapted from the compendium of strategies by the U.S.
Environmental Protection Agency [9].

As part of the local institutional mechanism to address SDG 11, the government can
include the following in their priority development initiatives, especially in the identified
areas for intervention:

1. Water mist/dry-mist sprayer on pavements and pedestrians. Since the provision of
water features may not be possible, mist sprayers can be installed on pavements and
pedestrians with the likelihood of people staying or passing by. This inhibits the heat
island effect at a low cost and immediately cools the outside air directly [67].

2. Provision of shade structures. Shading can be done in multiple ways, such as with
large, canopied trees (which is unlikely based on the assessment) or overhead features
to reduce heat buildup in an area. Aside from heat buildup mitigation, it can also be
used as protection for people under the heat of the sun.

3. Using cool materials for pavements and roofs. Cool materials are characterized
by high solar reflectance and high infrared emittance which result in affecting the
temperature of the surface [68]. Replacement of asphalted and concrete roads and
pavements with these materials can be done while government-related projects can
use cool materials for their roofs and other infrastructures.

4. Provision of cooling centers. Also known as “heat refuge”, this includes libraries,
community centers, commercial spaces, and other public buildings with cooling
systems available to city residents during extreme heat events [69]. Manila City has
these spaces already, so additional facilities and designation of such areas is the only
requirement.

Additionally, the current densely populated city cannot accommodate extra large-scale
trees and vegetation anymore, so the following alternatives can be employed:

5. Conversion of regular walls to green walls. Green walls are partially or completely
covered with vegetation and seem lush. They are both beautiful and energizing.
Consequently, they absorb warm air, reduce interior and exterior temperatures, and
enhance air quality and visual appeal [70]. They are several areas in the city with
empty walls but with enough space to convert them to green walls.

6. Plants in plant boxes, road isles, and indoors. One indication of urbanization is the
shortage of green spaces [71], so planting in plant boxes, road isles, and indoors
can help in improving the thermal landscape without planting trees. Although this
cannot provide shading as with a tree canopy, the presence of plants can help in air
temperature reduction and evapotranspiration [72]. Manila City still has those spaces
for plant boxes and road isles and can encourage its residents to do indoor planting,
which is common in the Philippines now.

These are just some of the mitigation strategies applicable to Manila City in its current
state. For the attainment of SDG 11 and to address the ill effects of UHI that would result
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in a sustainable and livable city, a holistic approach is necessary for implementing such
strategies. It should be highlighted that the local government unit including its population
plays an important role in this.

4. Discussion

The result of this study shows evaluation methods using multiple sources to under-
stand the presence of Intra-Urban Heat Islands in Manila City, Philippines. The satellite
data retrieved from Landsat 8 provided distribution maps from 2013 to 2022 which include
land surface temperature and LULC indicators such as NDVI, NDWI, and NDBI. More
satellite data from MODIS Terra were also obtained to provide point data for land surface
temperature data for both day and night. In addition, in-situ data were obtained at Port
Area, Manila City, with meteorological data measurements from 2014 to 2018. Finally, raster
data containing population density and urban settlement category for 2018 were acquired
to represent demographics data for Manila City.

The LST and air temperature data show that beginning in March and continuing
through April and May, there is an increasing tendency in the values, whereas values begin
to decline in October and continue through January and February, which is similar to the
observations in [28,65]. This trend is because March to May is the hot dry season in the
Philippines while October to January is rainy and December to February is the cool dry
season. In addition, it was found that there is a significant linear relationship between air
temperature and land surface temperature based on daily data, while relative humidity
shows a weak correlation with the LST data.

In terms of outdoor thermal comfort, a limited analysis was done due to limitations
provided by the point measurements of meteorological data in Port Area Manila, City from
2014 to 2018. Despite these limitations, we used the meteorological parameters to estimate
the Physiological Equivalent Temperature (PET) thermal index using the RayMan microcli-
mate model. With the calculated PET thermal index values, corresponding physiological
stress levels were provided to understand the outdoor thermal comfort. We observed that
mild heat stress may be routinely experienced in May, and at certain times in April and June.
From July through December, moderate heat stress was seen; however, the thermal comfort
zone, where there is no heat stress, did not emerge until January and February. Under-
standing the thermal comfort in this location may also help us predict the outdoor thermal
comfort in other areas of Manila City. It should be noted that the location of Port Area,
Manila City is near Manila Bay, which may indicate that the meteorological parameters
may not be representative of the whole of Manila City. The calculation of thermal index is
calculated based on the meteorological parameters while these meteorological parameters
were correlated with land surface temperature. With this, we have associated thermal
comfort indirectly with the land surface temperature such that while Port Area, Manila
City is not considered as an area for intervention, it still experiences heat stress. Therefore,
other areas which are considered areas for intervention are more likely to experience worse
thermal stress than Port Area, Manila. This observation and the generated IUHI map can be
the basis for selecting additional meteorological stations in areas that may experience worse
heat stress, so it can be monitored and provided by mitigation strategies in the future.

Land Use Land Cover (LULC) indicators such as NDVI, NDWI, and NDBI were
very useful in understanding the morphological characteristics of Manila City, while
their relationship with land surface temperature was also considered. Results of the
multivariate analysis show that clusters can be generated based on combinations of these
LULC indicators relative to land surface temperature. The clustering findings reveal that
values with low NDWI, moderate NDVI, and high NDBI are grouped in the high LST
cluster. Low NDWI corresponds to low water content, and high NDBI corresponds to
urbanized zones; therefore, this is also predicted. Correlation between LULC indicators
and LST shows the link between LST and LULC indicators with their respective slope
of linear fit and frequency distribution chart. The data demonstrate a direct association
between LST and NDBI at r = 0.361, meaning highly built-up regions have high reported

235



Remote Sens. 2022, 14, 5573

temperatures. The multivariate analysis supports this finding. LST and NDVI (r = 0.064)
and NDWI (r = 0.365) have indirect relationships. A Low Pearson correlation between LST
and NDVI implies low temperatures for water bodies and vegetation, whereas mid values
imply built-up areas. High water/moisture locations exhibit lower surface temperatures
using LST and NDWI. Based on these data, it can be argued that NDWI is a better indication
than NDVI for land surface temperature, which agrees with Alexander et al. [66]. NDBI is
a good indication for LST, according to the data.

The creation of a space-time cube for LST made spatiotemporal pattern analysis easier.
Using the space-time mining tools in ArcGIS Pro, Emerging Hotspot Analysis and Local
Outlier Analysis were performed. The resulting reclassified maps of EHSA and LOA
were respectively used as input to the suitability analysis model to generate an easy-to-
understand Intra-Urban Heat Island (IUHI) class of action map between 2013 to 2022.
Such a map contains the class of action (preserve, monitor, and intervene) as well as the
administrative boundaries at the city, district, and barangay levels.

In the location assessment, the focus was given to areas to preserve and intervene.
Understanding the morphology of “preserve” locations helps in the provision of mitigation
strategies for the “intervene” locations. The results show that the highest temperatures
are in areas with a concentration of urban settlement areas, buildings, and establishments
while those with low temperatures are areas with enough vegetation and near bodies of
water. Visual inspection revealed that most “intervene” areas are in the Sampaloc district
and university belt. Such an area has a high concentration of universities and colleges while
within it are settlement areas, establishments, and concrete roadways which are deemed
contributory to the high surface temperature. Knowing this is crucial because aside from
its residents, the population in this area swells due to students and employees coming
from the nearby province during the daytime. Other intervention areas can be found in the
Tondo district, which is home to urban poor communities, while there are also hotspots
in the Paco district, which mainly points toward a commercial location. These regions are
largely residential, with small streets and sidewalks and a concentration of settlements and
dwelling sites. In the regions of concern, initiatives to create an urban soft scape employing
trees and plants are limited and scarce. Roads and sidewalks are often constructed with
asphalt and concrete, which may contribute to greater surface temperatures. There is
also an identifiable commercial area, which seems to have asphalt or concrete companies,
buildings, and parking spaces.

On the other hand, “preserve” areas are mostly located in Intramuros, Rizal Park, and
sites near the Pasig River banks. Most of the regions have similar physical characteristics.
For example, these places are either next to or resembling bodies of water and other water
features, while other areas have extensive vegetation and green landscapes. Additionally,
residential neighborhoods feature a significant number of trees. Noting these characteristics,
mitigation strategies appropriate to the “intervene” areas can be established.

The IUHI class of action was also assessed relative to the corresponding LULC indica-
tor values. While NDVI does not provide a clear distinction among the classes of action,
NDVI and NDWI convey their results. For example, the average NDWI for “preserve” indi-
cates a greater water content, but the average NDBI indicates undeveloped lands. Similar
observations may be made for “intervene” values when the average NDWI indicates a low
water content and the average NDBI falls under the category of “built-up area.” Using the
same data, we also investigate how the individual index classification is distributed among
the IUHI class of action to validate it with the literature. It may be noticed that regions
designated as “preserve” have a greater percentage of water bodies and vegetation, higher
water content, and occupy non-built-up locations while regions designated as “intervene”
are in urban built-up areas with lower water content.

With the high-resolution settlement layer (HRSL), the distribution of the affected
population including the settlement category for 2018 was assessed. Upon superimposing
the HRSL with the IUHI class of action map, about 61 thousand of the population are
affected by higher surface temperatures as indicated in the “intervene” areas. Despite
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the small percentage of “intervene” locations compared to the entire Manila City; it is
evident that such a small percentage is not negligible due to the city’s dense population. In
terms of the settlement category, the “intervene” locations are mostly located in settlement
areas while the “preserve” locations are in non-settlement areas. Such observation is
aligned with what was observed in the visual inspection of locations using high-resolution
satellite images.

Summarizing the LST values per year per class of action reveals an average LST for
“preserve”, “monitor” and “intervene” as 34.43 ◦C, 38.51 ◦C, and 40.56 ◦C, respectively.
The result of this study clearly shows differences in temperature within Manila City. With
these data, the average difference between cold and warm areas is about 6 ◦C, just as in
the discussion in [20]. As the LST statistics are based on the highest LST readings for each
site, it should be understood that the highest LST recorded differentiates 6 ◦C between
specific urban areas. We avoided pixel-based comparison in the overall analysis to evaluate
clusters of warm and cold regions appropriate to a city viewpoint and to make the analysis
more significant.

Finally, applicable mitigation strategies based on the assessment of cold spots and
hotspots in the city were proposed. These strategies support the attainment of SDG 11
in making cities and human settlements inclusive, safe resilient, and sustainable. Such
strategies are (1) water mist/dry-mist sprayer in pavements and pedestrians, (2) provision
of shade structures, (3) using cool materials for pavements and roofs, (4) provision of
cooling center, (5) conversion of regular walls to green walls, and (6) plants in plant boxes,
road isles, and indoors.

5. Conclusions

This study presents the use of satellite-derived data and meteorological data to assess
the presence of an intra-urban heat island in Manila City, Philippines. To address SDG 11
and provide better insights to make cities and human settlements inclusive, safe resilient,
and sustainable in terms of UHI, different assessment methods were used and established.
The assessment includes (a) understanding the temporal variability of air temperature
measurements and outdoor thermal comfort based on meteorological data, (b) comparative
and correlative analysis between common LULC indicators (NDVI, NDBI, and NDWI)
to LST, (c) spatial and temporal analysis of LST using spatial statistics techniques, and
(d) generation of an intra-urban heat island (IUHI) map with a recommended class of action
using a suitability analysis model. Finally, the areas that need intervention are compared
to the affected population, and suggestions to enhance the thermal characteristics of the
city and mitigate the effects of UHI were established. Results show that there exists a clear
difference between cold and warm areas within Manila City. Overall, residential areas,
asphalted and concrete roads and walkways, and some commercial establishments and
buildings exhibit higher surface temperatures compared to areas with vegetation and near
bodies of water. Based on the results, mitigation strategies applicable to Manila City were
proposed to improve the areas which need intervention.

In the future, we plan to realize these strategies by partnering with the local govern-
ment unit to implement these proposed measures. We also advise providing additional
meteorological stations to some of the hotspots, to understand outdoor thermal comfort in
Manila City better. In addition, the methods used in this study can also be used in other
cities as well as municipalities that require assessment due to the presence of intra-urban
heat islands.
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Abstract: Tropical dry forest is one of the most threatened ecosystems, and it is disappearing at an
alarming rate. Shifting cultivation is commonly cited as a driver of tropical dry forest loss, although
it helps to maintain the forest coverage but with less density. We investigated tropical dry forest
dynamics and their contributing factors to find out if there is an equilibrium between these two
processes. We classified multi-temporal Sentinel-2A images with machine learning algorithms and
used a logistic regression model to associate topographic, anthropogenic, and land tenure variables
as plausible factors in the dynamics. We carried out an accuracy assessment of the detected changes
in loss and gain considering the imbalance in area proportion between the change classes and the
persistence classes. We estimated a 1.4% annual loss rate and a 0.7% annual gain rate in tropical dry
forest and found that the topographic variable of slope and the anthropogenic variable of distance to
roads helped explain the occurrence probability of both tropical forest loss and tropical forest gain.
Since the area estimation yielded a wide confidence interval for both tropical forest loss and gain
despite the measures that we took to counterbalance the disproportion in areas, we cannot conclude
that the loss process was more intense than the gain process, but rather that there was an equilibrium
in tropical dry forest dynamics under the influence of shifting cultivation.

Keywords: land use and land cover change; shifting cultivation; tropical forest gain and loss;
topographic factors; distance to roads; logistic regression

1. Introduction

Tropical and subtropical dry forests are one of fourteen biomes identified at the global
scale [1]. In Mexico, tropical dry forests (TDFs) cover extensive areas in the western Pacific
lowland from southern Sonora to northern and central Chiapas [2]. TDFs host a large
variety of fauna and flora, playing an important role in biodiversity conservation and
providing food and shelter for local people [3,4]. Despite having the highest level of
endemism in the American continent [5], TDFs in Mexico are conventionally perceived
as having less commercial value compared with temperate forests, and they are mainly
designated for shifting cultivation and cattle ranching [6,7].

Land use and land cover change (LULCC) contributes to about one-tenth of the annual
carbon emissions [8], in which deforestation shares more than three times that of the other
LULCC categories combined [9]. In Mexico, at the national level, TDF decreased at a rate of
0.4%, about 100,000 ha every year [10]. Regional studies have reported higher deforestation
rates, reaching 1.4% per year [11]. Large dry forest tracts have disappeared in recent years
mainly to support agriculture and cattle ranching. About 70% of pre-Hispanic TDF has
been converted to other land use types, and about 62% of the remaining TDF is in an altered
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and disturbed state [6]. In addition to carbon loss, the loss of TDF leads to the loss of
biodiversity and soil erosion and increases the vulnerability of local people who depend
on TDFs for food and shelter. The disturbance also fundamentally alters environmental
conditions and constrains the forest’s capacity to regenerate [12].

In previous studies, different drivers have been associated with the LULCC of tropical
forests, such as the expansion of agriculture (frequently large-scale and industrialized)
or livestock activities, as well as socio-economic conditions such as poverty. Especially,
topographical and distance-related measures have been reported as determinant factors
to explain which areas will undergo a LULCC process. For example, it was reported that
the probability of an area experiencing a LULCC process is related to a poverty index, the
population size of nearby settlements, topographical variables, and distance to roads [13].
Nonetheless, these can sometimes be a product of complex relationships [13,14].

Shifting cultivation is widely practiced in the global south and plays an important
role in food security in Asian, African, and Latin American countries [15,16]. In Mexico,
shifting cultivation is the main driver of disturbances in TDFs, especially in the southern
part of the country [17]. This agriculture system includes cycles of clearing, cultivation, and
fallow period. During clearing, the standing vegetation is cut down and burned to create
fields and produce ash which provides nutrients for farming. The cleared parcels have an
average size of 2.5 ha and crops are grown for subsistence [18]. Cultivation starts during
the rainy season when maize crops are planted and harvested after six months of growth.
After harvesting until the next plantation, livestock graze on crop residues. The cultivation
cycle repeats for about 2–3 years and then the land is left to rest in a fallow period for
about 3–8 or more years, during which natural vegetation grows as a mixture of shrubs
and trees. Shifting cultivation creates a landscape with a mosaic of patches currently being
cropped and patches in the fallow period with natural vegetation under various stages of
regeneration. The regenerated natural vegetation keeps the area a forest, however, with
less biomass density [19].

This paper aims to understand the contributing factors to the dynamics of TDFs and
whether there is a balance between TDF loss and gain under the influence of shifting cultiva-
tion. We first obtained areas of TDF loss and gain by comparing multiple dates of land use
land cover maps created by classifying Sentinel-2A images with a machine learning algorithm.
Then, using a logistic regression model, we analyzed the plausible factors including topo-
graphic, anthropogenic, and land ownership that are associated with TDF changes. Lastly, we
projected the areas of future TDF loss and gain to shifting cultivation.

2. Materials and Methods

2.1. Study Area

The study area is within the Ayuquila River watershed, in the state of Jalisco, Mexico
(Figure 1). It is one of the first areas in Mexico designated as a Reduction of Emission from
Deforestation and Forest Degradation (REDD+) experimental area because of its importance
in biodiversity and water provision, among other ecosystem services [20]. The watershed has
a wide range in topography, from 260 m to 2500 m above mean sea level (amsl). The monthly
average temperature is about 18–22 degrees Celsius, and the annual average precipitation is
800–1200 mm, which occurs mainly during the rainy season, from June to October [21]. The
dominant forest type is TDF, which is comprised of deciduous and semi-deciduous trees that
lose their leaves during the dry season, typically from November to May. TDF covers about
24% of the watershed, and it has been intensively used for shifting cultivation, cattle grazing,
and fuel wood collection. As in the rest of Mexico, most of the forests (59% to 80%) in the
Ayuquila watershed are under the authority of ejidos, which is a communally managed land
tenure system of rural agrarian settlements [18].
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Figure 1. Location of the study area in the central west of Mexico. The background is a natural color
composite of Landsat 8 imagery. The distribution of the tropical dry forest in the study area is shown
in light green color.

2.2. Data

This study collected and used a variety of datasets (Table 1). Sentinel-2A images were
obtained from Google Earth Engine archive. All Sentinel-2A bottom-of-atmosphere re-
flectance images were atmospherically corrected with Copernicus scihub using the sen2cor
algorithm. In addition, elevation data (Digital Elevation Model: DEM) were obtained from
the official website of the National Institute of Statistics and Geography (INEGI) of Mexico
with a 15 m spatial resolution, and the topographic variables of slope and aspect were
calculated using the DEM to reflect terrain changes. Data on accessibility including distance
to roads and distance to agriculture were calculated using the proximity function with
roads data downloaded from the INEGI and agriculture data (including both irrigated and
temporal agriculture) extracted from the INEGI land use land cover and vegetation maps,
series VII, at the scale of 1:250,000.

Table 1. Datasets used.

Datasets Resolution
Date/Value

Range
Description Source

Sentinel-2A 10 m, 20 m 15 May 2019;
15 March 2022

Orthorectified, radiometrically
calibrated and atmospherically

corrected

https:
//doi.org/10.5270/S2_-znk9xsj
(accessed on 12 November 2022)

Elevation 15 m 292–2132 m above
sea level

Six scenes of Digital Elevation
Model (DEM) (E13B12, E13B13,

E13B14, E13B23, E13B24) to
cover the study area,

downloaded from

https://www.inegi-org.mx/app/
geo2/elevacionesmex/ (accessed

on 2 December 2022)

Slope 15 m 0.6–73.9 (◦) Arctan(rise/run) Calculated using the DEM

Aspect 15 m 0.0–359.76 (◦)

Represents the compass
direction that the slope of the

terrain faces. An aspect of
0 means that the slope is

north-facing, 90 east-facing,
180 south-facing, and

270 west-facing.

Calculated using the DEM
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Table 1. Cont.

Datasets Resolution
Date/Value

Range
Description Source

Distance to roads 10 m 0–4235.6 (m) Euclidean distance was used to
represent distance to roads.

https://www.inegi.org.mx/
temas/viascomunicacion

(accessed on 2 December 2022)

Distance to
agriculture 10 m 0.0–9235.4 (m) Euclidean distance was used to

represent distance to agriculture.

https://www.inegi.org.mx/
temas/usosuelo (accessed on

2 December 2022)

Land ownership 10 m
1: ejido and
communal.

0: other

The land ownership was
categorized into two categories:
both ejido and communal, and
other type which cover 38.6%
and 61.4% of the study area,

respectively.

https://www.gob.mx/ran#709
(accessed on 2 December 2022)

2.3. Classification

Training samples were collected for the eleven land use/land cover classes (Table 2),
using Sentinel-2A images and high spatial resolution images in Google Earth (GE) as
reference. The number of training samples for the 2019 and 2022 imagery is presented
in the last column of Table 2. Figure 2 shows the distribution of the sample classes in
Sentinel-2A bands. We also referred to the INEGI land use land cover and vegetation maps,
series VII (1:250,000), which was produced during the period of 2015–2017 for the spatial
distribution of different types of forests and agriculture. The distribution of TDF and oak
and pine forests shows a general ascending pattern following elevation. We used two
classification algorithms, namely artificial neural network and random forest, to classify
the Sentinel-2A images in 2019 and 2022.

Figure 2. The distribution of the mean reflectance of the samples for the land use/land cover classes
at the ten spectral bands of Sentinel-2 images for the years 2019 (A) and 2022 (B). Classes are sorted
in descending order according to their mean reflectance in the NIR band in 2019. The standard
deviations of the spectral reflectance range from 0.0042 to 0.142.
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Table 2. Definition of land cover/land use classes (in reference to the INEGI series VII class definition).

Classes Change Classes Class Definition

The Number of
Training Samples

in Pixel for
2019/2022

Tropical dry forest Tropical dry forest
Dense and sparse vegetation

in different stages
of succession

25,883/22,876

Temperate forest Temperate forest Coniferous and mountain
cloud forest 10,504/15,296

Oak forest Oak forest
Forest formation distributed
between tropical dry forest

and temperate forest
8580/20,237

Irrigated agriculture
with crops

Agriculture

Crops in different
growing stages 7307/13,581

Irrigated agriculture
without crops (wet)

Wet agricultural fields
temporarily without crops 1116/5590

Irrigated agriculture
without crops (dry)

Dry agricultural fields
temporarily without crops 2075/5047

Greenhouse Agriculture fields covered
by greenhouse 907/3632

Burned Burned agriculture
or forest area 314/1226

Temporal
agriculture and

pasture

Rain-fed annual agriculture
and grassland fields 20,546/11,679

Water
Other

Waterbody 3573/6117

Urban
Urban landscape and

scattered houses
in rural areas

1380/833

2.3.1. Artificial Neural Network

Artificial neural network (ANN) is a machine learning algorithm that uses a network
of nodes to perform supervised classifications [22,23]. Typically, each neuron in an ANN
receives a series of inputs, and then performs a weighted sum of them and outputs a
value of 1 if its sum is over a threshold and a value of 0 if not. Finally, the complete
network can classify a different set of inputs based on the neuron’s weights [24]. Training a
neural network requires that the user specifies the network structure and sets the learning
parameters [22]. In our case, to train the ANN, the sample data were split in the proportion
of 0.7, with 70% of the data assigned as training data and the remaining 30% as test data.
This algorithm applied a 5-fold cross-validation (CV) with 5 repetitions.

A 5-fold CV involves randomly dividing the training data into 5 groups, or folds, of
approximately equal size [25]. The first fold is treated as a validation set, and the method is
fit on the remaining 4 folds. The mean squared error, MSE, is computed with the data in
the held-out fold. The process resulted in 5 estimates of the test error and the 5-fold CV
estimate is computed by averaging these errors (Equation (1)).

CV5 = 1/5
5

∑
i=1

MSEi (1)

2.3.2. Random Forest

Random forest (RF) is a non-parametric machine learning algorithm that generates
robust predictions by creating a set of regression trees from the bootstrap sampling of the
original data and improving prediction accuracy by aggregating the results [26]. RF has
been shown to be resistant to problems of overfitting and noise, and it has been widely
used for the supervised classification of land use and land cover [27,28]. In this study,
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we used RF to classify land use/land cover types of the study area in 2019 and 2022
using Sentinel-2A images. The sample was split with a proportion of 0.2, with 20% of the
samples used as training data and the remaining 80% as test data. The tuning parameters
were tested for the number of variables randomly sampled as candidates at each split
(mtry: 2, 6, 10) and accuracy was used to select the optimal model. The final value used for
the model of the 2022 image classification was mtry = 2 (Figure A1), and for the model of
the 2019 image classification, the value was mtry = 6 (Figure A2). The “rf” method uses a
default ntree of 500, which is a recommended value for remote sensing applications [29].

Consistent with the ANN classification algorithm, the RF algorithm also applied 5-fold
cross-validation with 5 repetitions.

2.4. Change Analysis

We first reclassified the land use/land cover maps in 2019 and 2022 by grouping the
classes of irrigated agriculture, temporal agriculture, greenhouse, and burned area into
the class of agriculture, and by grouping water and urban into the class other (Table 2).
The class burned area was grouped into the agriculture class because burning is part
of the shifting cultivation and temporal agriculture field preparation practice [30]. The
reclassified land use/land cover maps had five classes, namely TDF, temperate forest, oak
forest, agriculture, and other.

We performed the LULCC by overlaying and comparing the reclassified maps in 2019
and 2022. To analyze the dynamics of TDF, we focused on the following classes of changes
and persistence: TDF persistence (35.1% of the study area), TDF loss to agriculture (1.7%),
TDF gain from agriculture (1.1%), and other changes (62.1%). To remove the noise, we
applied a filter of 2 ha since the average size of shifting cultivation was recorded as 2.5 ha
and applied a 4-neighbor rule (QGIS sieve function) since it obtained better results.

2.5. Accuracy Assessment

Since classification errors often propagate to the result of change analysis, especially
with post-classification comparison, it is important to evaluate the accuracy of the map of
change in addition to the classifications. In a map of change detection, the classes of change
usually occupy small proportions in comparison to the classes of persistence, and therefore,
omission errors in the classes of change classes are often exaggerated due to the imbalance
in area proportions and cause big uncertainty in the estimation of accuracy and areas. To
counterbalance this effect, we implemented the method that was detailed in [31]. We created
a buffer area the size of 12 pixels around the classes of change, assuming changes are more
prone to occur in the buffer areas, and assigned 75 points to the class of TDF persistence
and 75 points to the class other persistence. Following stratified random sampling [32],
and assuming the standard error of the change map as 0.01, the user’s accuracy of TDF
persistence 84%, TDF loss 60%, TDF gain 50%, and other 90%, and counting the 150 points
from the buffer areas, the total number of random points needed for a statistically valid
accuracy assessment was 1178 points. The points were distributed as follows: 331 points
in TDF persistence, 300 points in TDF gain, 300 points in TDF loss, and 93 points in other
persistence. The distribution of the verification points is shown in Figure 3.

We exported those points to Google Earth and interpreted them visually to obtain the
ground truth data. During visual interpretation, we considered an area of 100 m2 around
each point, which is equivalent to the pixel size of Sentinel-2A images. We compared
the ground truth data with the map of LULCC and verified the obtained changes and
persistence. We summarized the results of the accuracy assessment in an error matrix.
We incorporated the area proportion of the mapped changes and calculated the overall
accuracy, producer’s accuracy, and user’s accuracy with confidence intervals (CIs) and
estimated the weighted areas of TDF loss and gain with their respective CIs. The accuracy
assessment was carried out using Open Foris tools developed by the FAO (https://github.
com/openforis/accuracy-assessment/ (accessed on 15 December 2022)).
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Figure 3. The map of the land use land cover change (LULCC) and the distribution of the
verification points.

2.6. Examining the Spatial Variables Contributing to TDF Loss and Gain

We used the verified points of TDF change and persistence to analyze the effect
of spatial variables on TDF dynamics (loss to and gain from shifting cultivation). We
considered topographic variables, such as elevation, aspect, and slope, and anthropogenic
variables, such as distance to roads and distance to agriculture and land tenure represented
by ejido and communal lands or other land ownership (Table 1). The spatial variables were
resampled to 10 m spatial resolution to be consistent with the LULCC maps. We fitted two
types of logistic regression models, one for TDF loss and the other for TDF gain. In these
models, the dependent variables were change (1) and persistence (0), and the independent
variables are the spatial variables (Figure 4).

First, we fitted the models including all the spatial variables to detect the significant
terms, and then we fitted additional models using only the significant terms. We used the
Akaike information criterion (AIC) to select the best model (Equation (2)). AIC is calculated
using the number of independent variables (K) and the log-likelihood estimate of the model
(L). Using AIC as a criterion, the best model would explain the biggest amount of variation
in the data using the smallest number of independent variables [33]. We selected the best
model that had the lowest AIC and was at least two units lower than the AICs of other
competing models.

AIC = 2K − 2 ln(L) (2)

Before fitting the models, a Pearson correlation analysis was performed to avoid using
strongly colinear variables in the models. A Pearson correlation coefficient of ≥0.8 was
interpreted as an indicator of strongly collinear variables.

The TDF loss models had 94 verified random points for TDF loss and TDF persistence,
respectively, with the explicative variables extracted to each of these 188 points. The TDF
gain models had 46 verified random points for TDF gain and persistence, respectively, also
with the variables extracted to each of those 92 points. Both TDF loss and TDF gain points
were a subset of the verification dataset for the change analysis.

2.7. Projecting Future TDF Loss and Gain

We predicted the probability of the occurrence of TDF loss and TDF gain using the
best models. We reclassified the probability maps using a threshold of 0.5 and calculated
the map areas with a probability higher than 0.5 as predicted areas of TDF loss or TDF gain.
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(e) (f) 

Figure 4. Explicative spatial variables: (a) elevation, (b) slope, (c) aspect, (d) distance to agriculture,
(e) distance to roads, and (f) land ownership.

2.8. Comparison of Forest Loss and Gain

We compared the TDF loss and TDF gain by computing the statistics of their patch
size and distribution. We assumed that smaller areas of forest loss might be related to
areas under a shifting cultivation scheme (around 2.5 ha), contrary to larger areas of forest
loss, which might be related to large-scale agricultural management. Thus, we expected
a smaller area in TDF gain in comparison to TDF loss. We used a non-parametric Mann–
Whitney test to test the difference between the median values of the areas of the TDF loss
and TDF gain [34].

3. Results

This section presents the results of the classification accuracy assessment, change
detection, influencing factors modeling with the logistic regression model, and future
projection of TDF loss and gain.

3.1. Classification Model Validation

The accuracy of the classification result was evaluated with the test data using an
error matrix (Appendix A Tables 2–4 and A1). The classification of the 2019 image using
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the ANN obtained an overall accuracy of 0.9714 with a 95% CI of (0.9695, 0.9732), and
using the RF, the classification obtained an overall accuracy of 0.9901 with a 95% CI of
(0.9894, 0.9908). The classification of the 2022 image using the ANN obtained an overall
accuracy of 0.9452 with a 95% CI of (0.9423, 0.948), and using the RF, the classification
obtained an overall accuracy of 0.9766 with a 95% CI of (0.9754, 0.9777).

Table 3. Error matrix with sample points. OA: overall accuracy; PA: producer’s accuracy; UA: user’s
accuracy; CI: confidence interval; MA: map area; AP: area proportion; Buffer-TDF-P: buffer in TDF
persistence, Buffer-O: buffer in other.

Ground Data

TDF
persistence TDF loss TDF gain Other Buffer-

TDF-P Buffer-O MA
(ha) AP (%) UA

M
ap

da
ta

TDF
persistence 334 0 1 0 0 0 99,931 32.17 0.997

TDF loss 0 151 0 0 111 38 4814 1.55 0.503
TDF gain 0 1 58 0 113 128 3022 0.97 0.193

Other 12 2 1 78 0 0 176,813 56.92 0.839
Buffer-TDF-P 0 0 0 0 71 4 11,843 3.81 0.947

Buffer-O 0 0 0 0 13 62 14,206 4.57 0.827
Total 346 154 60 78 308 232 310,628
PA 0.965 0.981 0.967 1 0.231 0.267

Weighted
PA 0.814 0.389 0.210 1 0.676 0.823

Estimated MA
(ha) with 95%

CI

122,447 ±
12,126

6235 ±
5248

2784 ±
3774

148,295 ±
13,289

16,593 ±
1402

14,274 ±
1389

OA with 95%
CI

0.882 ±
0.018

Table 4. Result of the logistic regression predicting tropical forest loss to agriculture with all explica-
tive variables. ‘**’ significant at 0.01 level, ‘.’ significant at 0.1 level.

Variables Estimate Std. Error Z Value p-Value

Intercept −0.0333 0.2062 −0.161 0.8717
Distance to roads −0.3395 0.1894 −1.792 0.0731

Distance to agriculture −0.0913 0.2155 −0.424 0.6718
Elevation −0.1282 0.1960 −0.654 0.5130

Slope −0.5004 0.1863 −2.685 0.0072 **
Aspect 0.1910 0.1578 1.210 0.2263
Tenure 0.0056 0.3178 0.018 0.9859

Null deviance: 260.62 on 187 degrees of freedom, Residual deviance: 235.37 on 181 degrees of freedom,
AIC: 249.37.

Based on the accuracy assessment, both ANN and RF achieved high overall accuracy
with comparable results (Tables 2–4 and A1). However, for both dates, the classified land
use/land cover maps obtained using the ANN had less of a salt and pepper effect and there
was less confusion between temperate forest and irrigated agriculture, especially in the
southern part of the maps (Figures A3–A6). For this reason, we chose the results obtained
using the ANN for the change analysis.

3.2. Verification of Detected Changes

The error matrix is presented in Table 3. The overall accuracy of the map of change was
0.882 ± 0.018. The unweighted producer’s accuracy for TDF loss was 0.981 and for TDF gain
was 0.967, while the user’s accuracy for TDF loss was 0.503 and for TDF gain was 0.193.

3.3. Tropical Dry Forest Loss

The model for TDF loss had 188 points, 94 points for loss, and 94 points for persistence.
Pearson correlation showed only a mild correlation (coefficient < 0.5) between the variables
(Table A5), and, therefore, all the variables were included in the logistic regression model.
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We scaled all the numeric variables using the mean and the standard deviation (STD) of the
samples before running the models, i.e., by subtracting the mean and dividing the STD.
The logistic regression model with all variables showed that slope was significant at the
0.05 level, and distance to roads was significant at the 0.1 level (Table 4). We built another
two models, one with the two significant variables (Table 5) and the other one with only
slope since it had a higher coefficient (Table 6). We selected the best model with the lowest
AIC (Table 5).

Table 5. Result of the logistic regression predicting tropical forest loss to agriculture with variables of
slope and distance to roads. ‘*’ Significant at 0.05 level, ‘**’ significant at 0.01 level.

Variables Estimate Std. Error Z Value p-Value

Intercept −0.0280 0.1556 −0.180 0.8575
Slope −0.5613 0.1752 −3.205 0.0014 **

Distance to roads −0.4036 0.1730 −2.333 0.0197 *
Null deviance: 260.62 on 187 degrees of freedom, Residual deviance: 238.12 on 185 degrees of freedom,
AIC: 244.12.

Table 6. Result of the logistic regression predicting tropical forest loss to agriculture with the variable
slope. ‘***’ Significant at 0.001 level.

Variables Estimate Std. Error Z Value p-Value

intercept −0.0154 0.1529 −0.101 0.9198
Slope −0.6454 0.1690 −3.818 0.0001 ***

Null deviance: 260.62 on 187 degrees of freedom, Residual deviance: 243.87 on 186 degrees of freedom,
AIC: 247.87.

3.4. Tropical Dry Forest Gain

The model for TDF gain had 92 points, with 46 points for TDF gain and 46 points
for persistence. The predictive variables were extracted to the location of each of these
points. Two points for gain were deleted since they had NA values in the variable aspect.
The final dataset had 90 points, including 44 points for gain and 46 points for persistence.
The Pearson correlation showed a mild correlation between the variables, with the highest
correlation being 0.66 between distance to agriculture and elevation (Table A6). The
correlation was also found in the TDF loss dataset, with lower coefficient (0.53). We scaled
all the numeric explicative variables similar to the procedure in the TDF loss models.

We tested the logistic regression model with all variables (Table 7). Both the distance to
roads and slope were significant with negative coefficients, showing that the probability of
TDF gain decreased with the increase in distance to roads and slope. We tested two more
models, first with the two significant variables (Table 8) and then with the variable that had
the highest coefficient (Table 9). When using only slope and distance to roads, the AIC of the
model decreased (Table 8). We selected the best model with the lowest AIC for TDF gain.

Table 7. Results of the logistic regression model predicting tropical forest gain from agriculture using
all predictive variables. ‘*’ Significant at 0.05 level, ‘***’ significant at 0.001 level.

Variables Estimate Std. Error Z Value p-Value

Intercept −0.5174 0.4098 −1.263 0.2068
Distance to roads −1.1118 0.4646 −2.393 0.0167 *

Distance to agriculture −0.5781 0.4486 −1.289 0.1975
Elevation 0.0339 0.3880 0.087 0.9304

Slope −1.2231 0.3482 −3.512 0.0004 ***
Aspect 0.3379 0.2732 1.237 0.2162
Tenure 0.3454 0.5667 0.610 0.5422

Null deviance: 124.72 on 89 degrees of freedom, Residual deviance: 81.26 on 83 degrees of freedom, AIC: 95.26.
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Table 8. Results of the logistic regression model predicting tropical dry forest gain using slope and
distance to roads as predictive variables. ‘**’ Significant at 0.01 level, ‘***’ significant at 0.001 level.

Variables Estimate Std. Error Z Value p-Value

intercept −0.3025 0.2910 −1.040 0.2986
Slope −1.3311 0.3430 −3.881 0.0001 ***

Distance to roads −1.1214 0.3918 −2.862 0.0042 **
Null deviance: 124.72 on 89 degrees of freedom Residual deviance: 85.49 on 87 degrees of freedom AIC: 91.49.

Table 9. Results of the logistic regression model predicting tropical dry forest gain using slope as a
predictive variable. ‘***’ Significant at 0.001 level.

Variables Estimate Std. Error Z Value p-Value

Intercept −0.1527 0.2427 −0.629 0.5291
Slope −1.1712 0.3287 −3.563 0.0004 ***

Null deviance: 124.72 on 89 degrees of freedom Residual deviance: 106.11 on 88 degrees of freedom AIC: 110.11.

3.5. Probability of Future Tropical Dry Forest Loss and Gain

The probability of future TDF loss and TDF gain were predicted with the best models
(Figure 5). For both TDF loss and gain, the best models included slope and distance to
roads, although in the model of TDF gain, both variables had higher coefficients (Table 8).

 
(a) (b) 

Figure 5. Probability of TDF loss (a) and TDF gain (b) predicted with the best models. (a) Probability
of TDF loss predicted with slope and distance to roads. (b) Probability of TDF gain predicted with
slope and distance to roads.

The potential areas of TDF loss and gain were predicted by reclassifying the probability
maps with a threshold of 0.5 (Table A7). Overall, 43.1% of the total TDF area was predicted
as TDF loss and 35.4% as TDF gain (Table A7), showing that TDF loss was a dominant
process in the study area. This pattern coincides with the area estimates for loss and gain,
although their CIs overlapped (Table 3).

3.6. Comparison of the Verified Forest Loss and Gain

The statistics for TDF loss showed a median size of 7.2 ha, an average of 14.3 ha, a
minimum of 2.1, and a maximum of 130 ha. In comparison, the statistics for TDF gain
showed a smaller size with a median of 5.3 ha, an average of 9 ha, a minimum of 2.2 ha,
and a maximum of 62.8 ha. Despite being apparently larger in size, TDF loss in patch sizes
is not significantly different from TDF gain, based on the Wilcox test for samples with a
non-parametric distribution, with a p-value = 0.083. The size distribution of the TDF loss
and TDF gain is shown with the boxplot in Figure 6.
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(a) (b) 

Figure 6. Boxplots of the patch size (ha) of (a) TDF loss patches and (b) TDF gain patches.

4. Discussion

4.1. TDF Dynamics

During 2019–2022, in our study area, the average TDF loss and TDF gain were esti-
mated at 6235 ha and 2784 ha, respectively, and the average rate of TDF loss and TDF gain
was estimated at 1.6% and 0.7% per year, respectively. The rate of TDF loss was higher than
the national level TDF loss estimated at 0.4% per year by [10], but it was comparable with
the annual TDF loss rate of 1.4% at the regional level estimated by [12]. As for TDF gain,
we did not find studies at the national or regional level to compare with. Both the areas
and the rate of TDF loss were much higher than TDF gain. Nonetheless, the confidence
intervals of the estimated areas of both classes overlapped; thus, we cannot be sure that
there is a significant difference between both estimates. According to our results, TDF gain
and loss are in equilibrium in the region. However, due to the relatively large confidence
intervals for both area estimates, we recommend taking this conclusion with precaution.

Having smaller patch sizes, areas of TDF gain can be more readily related to TDF
regrowth during the fallow period of shifting cultivation. On the other hand, large patches
of TDF loss (around or more than 80 ha) are more readily related to large-scale plantations,
which might not be under a shifting cultivation scheme. According to our results, the
area of TDF loss and gain were not significantly different. Therefore, although large-scale
plantations are more common in the study site, most of the TDF loss areas seem to be
related to small-scale areas, probably under shifting cultivation or other management that
could further imply a TDF recovery.

Processes such as shifting cultivation do not affect net vegetation distribution; however,
they can result in an overall decrease in vegetation density and cause carbon release into
the atmosphere and affect the carbon budget [20]. For TDF regeneration, assisted natural
regeneration—a practice to convert degraded forests into more productive forests with
improved ecosystem services by managing regeneration rather than relying on pure natural
processes—is recommended [35,36]. Although this study consists of an evaluation of TDF
gain and loss in terms of area, a more detailed analysis should be made to obtain the carbon
balance in the study area.

As for the contributing factors, for TDF loss, both slope and distance to roads were
significant predictive variables, with slope having a higher coefficient. Both variables had
negative coefficients, showing that with the increase in either slope or distance to roads,
the probability of TDF being converted to agriculture decreases. For TDF gain, the same
variables were significant and with negative coefficients, showing that with the increase
in slope and distance to roads, the probability of TDF recovery decreases. Interestingly,
in both models, slope had a higher coefficient and therefore is a more important factor to
determine the probability of both TDF loss and gain. In the case of TDF loss, this pattern
is probably related to the fact that frequently areas with higher slopes and farther away
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from established roads are not preferred to establish agricultural or livestock activities, due
to the costs and difficulties associated with the transportation of products and animals to
those areas. In the case of TDF gain, its dependence on TDF loss (i.e., for an area to gain
TDF, first it must lose it) causes the same relation with those two variables.

4.2. Methodological Challenges and Insights

The wide range in area estimation of TDF loss and TDF gain partly comes from the
fact that these two change classes occupied a small proportion of the area in comparison to
classes of persistence, and therefore, (small) a number of omission errors were exaggerated
due to the imbalance in area proportions. We intended to counteract this imbalance in area
proportion by creating buffer zones of 12 pixels of Sentinel-2A images (120 m) around the
change areas, assuming that omission errors are prone to occur near detected changes [31].
However, we did not succeed in reducing the confidence intervals. One possible reason
could be that the buffer size is not wide enough to cover the points of omission errors. For
future work, we will consider using different buffer sizes to find out how buffer size affects
the reduction in omission errors.

The maps of predicted forest loss and gain created using our models show that forest
loss and gain follow a similar spatial distribution because of their dependence on the same
explicative variables: slope and distance to roads. These maps were created using a limited
number of factors including slope, elevation, and distance to roads; thus, other plausible
factors that might explain forest loss and gain were omitted. For example, factors related
to the presence of large-scale agriculture companies or certain governmental incentives.
Nonetheless, our maps can give a general idea of which areas are prone to being under
shifting cultivation management.

We analyzed TDF dynamics for a rather short time window (2019–2022). Although we
could capture the TDF gain and loss from shifting cultivation, an analysis with a longer time
span, e.g., 10–30 years, could potentially allow us to have a more precise area estimation of
TDF gain and loss (with a smaller confidence interval).

For TDF dynamics, time series analysis of climate data (air temperature, precipitation)
is useful to exempt false changes introduced by climate variations. Table 10 shows the
annual average temperature and annual precipitation for our study area. The precipitation
data were derived from CHIRPS “Climate Hazards Group InfraRed Precipitation with
Station Data” and the temperature data are from MODIS “Land surface temperature”.
The annual temperature was rather stable for the period of 2018–2022, while the annual
precipitation showed some variation, with much higher precipitation in 2022 than in 2019
(Table 10), which could explain why the vegetation in the 2022 image was greener even in a
dry season. Since we used a two-time classification comparison to analyze TDF dynamics,
and we provided independent training samples for the classification at each time point,
the effect of the interannual climate variations on the vegetation cover was well captured
with the image classification. Since we verified the changes using visual interpretation with
reference to very high spatial resolution images from Google Earth, the climate-induced
effects were largely removed from contributing factor analysis of TDF dynamics.

Table 10. Annual average temperature and annual precipitation in the Ayuquila River Watershed
for 2018–2022.

Temperature (°C) Precipitation (mm/Year)

2018 31.5 897.5

2019 31.2 885.4

2020 30.6 1179.5

2021 31.6 868.3

2022 30.5 1150.9
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5. Conclusions

We used multi-temporal Sentinel-2A images and topographic, anthropogenic and
land tenure factors to investigate the dynamics of tropical dry forest in terms of gain and
loss and the associated factors. We estimated a TDF loss rate of 1.6% per year and a TDF
gain rate of 0.7% per year. Although apparently TDF loss rate was higher than TDF gain,
because of the large confidence interval in our area estimate, we cannot conclude that TDF
loss was more intense but rather that the TDF loss was in equilibrium with TDF gain. In
future analysis, we will assess other methods that can help reduce the confidence intervals
in area estimates to obtain a clearer conclusion regarding TDF loss and gain.

As for the contributing factors, both TDF loss and gain were inversely related to slope
and distance to roads; therefore, these two factors explain the probability of a TDF area in
both gain and loss. In the case of TDF loss, this is related to the fact that agricultural or
livestock activities generally prefer flat areas for easy access and cheap cost; for TDF gain,
since it depends on TDF loss, the same relation with slope could explain the distribution of
TDF gain.
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Appendix A

BU: burned; GH: greenhouse; IC: irrigated agriculture with crops; ID: irrigated agri-
culture without crops (dry); IW: irrigated agriculture without crops (wet); O: oak forest;
TF: temperate forest; TA: temporal agriculture and pasture; TDF: tropical dry forest;
U: urban; W: water; UA: User’s accuracy; PA: Producer’s accuracy; OA: Overall accuracy.

Table A1. Error matrix for accuracy assessment of the classification in 2019 using ANN.

BU GH IC ID IW O TF TA TDF U W T UA

BU 366 0 0 0 0 0 0 1 0 0 0 367 0.997

GH 0 1100 0 0 0 0 0 1 0 18 0 1119 0.983

IC 0 0 3959 1 0 5 6 1 0 0 0 3972 0.996

ID 0 6 0 1260 0 0 0 206 0 26 0 1498 0.841

IW 0 0 0 0 1674 0 0 24 79 0 0 1777 0.942

O 0 0 0 0 0 5987 2 58 41 0 0 6088 0.983

TF 0 0 56 0 0 14 4575 0 4 0 0 4649 0.984

TA 0 0 0 174 6 24 0 3263 30 0 0 3497 0.933

TDF 0 0 0 0 11 89 1 0 6729 0 0 6830 0.985

U 0 0 0 73 0 0 0 0 0 183 0 256 0.715

W 0 3 0 0 0 0 0 0 0 0 1783 1786 0.998

Total 366 1109 4015 1508 1691 6119 4584 3554 6883 227 1783 31,839

PA 1 0.992 0.986 0.836 0.99 0.978 0.998 0.918 0.978 0.806 1

OA 0.970
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Table A2. Error matrix for accuracy assessment of the classification in 2019 using random forest.

BU GH IC ID IW O TF TA TDF U W T UA

BU 951 0 0 0 0 0 0 5 0 0 0 956 0.995

G 0 2885 0 0 0 0 0 3 0 15 0 2903 0.994

IC 0 0 10,776 0 0 11 79 0 0 2 0 10,868 0.992

ID 0 0 0 3924 0 5 0 148 0 11 0 4088 0.96

IW 0 0 0 0 4423 0 12 0 27 0 0 4462 0.99

O 0 0 0 0 0 16,091 3 31 123 0 0 16,248 0.99

TF 0 0 47 0 2 12 12,148 0 4 0 0 12,213 0.995

TA 9 0 0 125 0 35 0 9166 3 42 0 9380 0.977

TDF 0 0 0 0 10 73 0 5 18,136 0 0 18,224 0.995

U 0 1 0 18 0 0 0 3 0 615 0 637 0.966

W 0 0 0 0 0 0 0 0 0 0 4914 4914 1

Total 960 2886 10,823 4067 4435 16,227 12,242 9361 18,293 685 4914 84,893

PA 0.991 0.9996 0.996 0.965 0.997 0.992 0.992 0.979 0.991 0.898 1

OA 0.9898

Table A3. Error matrix for accuracy assessment of the classification in 2022 using ANN.

BU GH IC ID IW O TF TA TDF U W T UA

BU 86 0 0 9 4 0 0 0 0 0 0 99 0.869

G 2 199 11 0 0 0 0 2 0 31 0 245 0.812

IC 0 3 2031 0 0 3 68 55 2 0 0 2162 0.939

ID 1 0 0 310 0 0 0 66 0 1 0 378 0.820

IW 2 4 8 0 320 0 0 0 0 0 9 343 0.933

O 0 0 41 0 0 2396 2 49 65 0 0 2553 0.939

TF 0 0 43 0 0 23 3094 0 0 0 0 3160 0.979

TA 0 0 70 307 0 57 0 5894 87 48 0 6463 0.912

TDF 1 0 0 0 12 93 1 61 7609 0 0 7777 0.978

U 0 64 0 1 0 0 0 45 0 343 0 453 0.757

W 0 0 0 0 0 0 1 0 0 0 1023 1024 0.999

Total 92 270 2204 627 336 2572 3166 6172 7763 423 1032 24,657

PA 0.935 0.737 0.922 0.494 0.952 0.932 0.977 0.955 0.980 0.811 0.991

OA 0.945

Table A4. Error matrix for accuracy assessment of the classification in 2022 using random forest.

BU GH IC ID IW O TF TA TDF U W T UA

BU 247 0 0 1 0 0 0 0 0 0 0 248 0.996

G 0 724 0 0 0 0 0 6 0 6 0 736 0.984

IC 0 0 5744 0 2 10 86 9 0 4 0 5855 0.981

ID 1 0 0 1377 0 0 0 28 0 11 0 1417 0.972

IW 0 0 0 0 883 0 0 0 1 0 11 895 0.987

O 0 0 0 0 0 6453 16 79 102 1 0 6651 0.970
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Table A4. Cont.

TF 0 0 117 0 0 21 8284 0 0 0 0 8422 0.984

TA 1 1 26 294 0 123 0 16,192 59 109 0 16,805 0.964

TDF 0 0 0 0 15 297 0 50 20,506 1 0 20,869 0.983

U 2 2 0 0 0 0 0 46 0 934 0 984 0.949

W 0 0 0 0 2 0 0 0 0 0 2863 2865 0.999

Total 251 727 5887 1672 902 6904 8386 16,410 20,668 1066 2874 65,747

PA 0.984 0.996 0.976 0.824 0.979 0.935 0.988 0.987 0.992 0.876 0.996

OA 0.977

Table A5. Pearson correlation between (numeric) explicative variables for TDF loss.

Explicative Variables
Distance to

Roads
Distance to
Agriculture

Elevation Slope Aspect

Distance to roads 1.00
Distance to agriculture 0.44 1.00

Elevation 0.45 0.53 1.00
Slope 0.31 0.46 0.35 1.00

Aspect 0.04 −0.05 −0.1 −0.01 1.00

Table A6. Pearson correlation between (numeric) explicative variables for TDF gain.

Explicative Variables
Distance to

Roads
Distance to
Agriculture

Elevation Slope Aspect

Distance to roads 1.00
Distance to agriculture 0.42 1.00

Elevation 0.48 0.66 1.00
Slope 0.33 0.33 0.29 1.00

Aspect 0.03 0.00 −0.02 −0.06 1.00

Table A7. Reclassified probabilities of TDF loss and gain using a threshold of 0.5.

Reclassified
Probabilities

No. of Pixels Percentage
Reclassified
Probabilities

No. of Pixels Percentage

0.5, 0.788
(TDF loss) 4,798,436 43.08% 0.5, 0.953

(TDF gain) 3,941,964 35.39%

0.017, 0.5 6,340,498 56.92% 0.00002, 0.5 7,196,970 64.61%
Total 11,138,934 1 Total 11,138,934 1

Appendix B

Figure A1. Cross-validation for the classification of Sentinel-2 imagery in 2022 with tested mtry = 2,
6, and 10. Mtry = 2 was selected for its highest accuracy.
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Figure A2. Cross-validation for the classification of Sentinel-2 imagery in 2019 with tested mtry = 2,
6, and 10. Mtry = 6 was selected for its highest accuracy.

Figure A3. Land cover classification using ANN for 2019. Irrigated crops is short for Irrigated
agriculture with crops; Irrigated dry is short for Irrigated agriculture without crops (dry); Irrigated
wet is short for Irrigated agriculture without crops (wet); Temporal agriculture is short for Temporal
agriculture with pasture; Oak is short for Oak forest.

Figure A4. Land cover classification using random forest (RF) for 2019. Irrigated crops is short for
Irrigated agriculture with crops; Irrigated dry is short for Irrigated agriculture without crops (dry);
Irrigated wet is short for Irrigated agriculture without crops (wet); Temporal agriculture is short for
Temporal agriculture with pasture; Oak is short for Oak forest.
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Figure A5. Land cover classification using ANN for 2022. Irrigated crops is short for Irrigated
agriculture with crops; Irrigated dry is short for Irrigated agriculture without crops (dry); Irrigated
wet is short for Irrigated agriculture without crops (wet); Temporal agriculture is short for Temporal
agriculture with pasture; Oak is short for Oak forest.

Figure A6. Land cover classification using random forest (RF) for 2022. Irrigated crops is short for
Irrigated agriculture with crops; Irrigated dry is short for Irrigated agriculture without crops (dry);
Irrigated wet is short for Irrigated agriculture without crops (wet); Temporal agriculture is short for
Temporal agriculture with pasture; Oak is short for Oak forest.
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