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Nano-Biosensors for Detection and Monitoring (Volume 1)

Krishna Kant 1,2

1 Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain; krishna.kant@uvigo.gal
2 Centre for Interdisciplinary Research and Innovation (CIDRI), University of Petroleum and Energy Studies,

Dehradun 248007, India

Nano-biosensing technology is a continuously evolving and expanding field with
applications concerning biological substances and sensing platforms, which include the
detection of chemical, biological, and environmental elements and welfare. However,
sensing biological analytes is of significance in the diagnostic industry. Biosensing analyses
are required in areas like pharmaceutical, food industry, and environmental applications.
The development of capable biosensors is important, and they can rapidly recognize
biological interactions at small scales with maximum precision. Nanomaterials, along
with biosensing technology, enhanced the capabilities of biosensors with respect to their
high surface area-to-volume ratios and functional capabilities. These types of sensors are
usually used as bioreceptors at bio–nano interfaces. Numerous kinds of nanostructures
involving nanoparticles, nanotubes, nanowires, and nanocomposites are effectively used to
enhance the operation and productivity of sensors. Concurrently, the use of nanostructures
and sensing technologies led to the development of biosensors with high specificity and
compatibility. Biosensing technology provides the benefits of nanoscience and offers the
potential to develop monitoring sensors for the early-stage diagnosis of diseases in an
inexpensive manner.

This Special Issue is devoted to and collected advances in a variety of topics: from
recognition to engineering and from integration methods to novel sensors. Articles report-
ing on the newest advances in multiplexed detection report on electrochemical, optical, and
magnetic biosensing platforms, in addition to others. An interesting article by Jeong Hee
Kim et al. (contribution 1) presented a novel approach for the non-perturbative identifica-
tion of kidney tissue using Raman spectroscopy and artificial intelligence. The integration
of sophisticated and sensitive Raman techniques with AI-based approaches is leading to
the development of a model system for accurate detection, and these techniques are used
for point-of-care purposes as well. In their approach, they employ Raman spectroscopy and
machine learning algorithms, which present the capability for the recognition of amyloids
in pathologic lesions. Sara Knežević et.al. (contribution 2) presented a multi-walled carbon
nanotube-based sensing approach for the recognition of uric acid. They developed an
amperometric, non-enzymatic sensor for the sensitive quantification of uric acid. The devel-
oped sensing device presents high reproducibility and a limit of detection up to 64.28 nM.
The sensing device is also tested with real-life samples and shows high sensitivity and
stability, which makes it a potential candidate for further medical research and clinical
application. This Special Issue collected innovative approaches for detection and commer-
cial applications with respect to clinical and environmental samples. The development
approaches and recent advancements have also been discussed for nanobiosensors and
their detection and monitoring approaches. These arrangements are very crucial for clinical
diagnostic applications, and they are required for sample arrangement, sensing, and data
administration. Minimizing technology usage via the minimum mandatory sample size is
appropriate for the analysis of samples as it would not require skilled users.
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in Human Kidney Tissue with Raman Spectroscopy and
Machine Learning
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Abstract: Amyloids are proteins with characteristic beta-sheet secondary structures that display fib-
rillary ultrastructural configurations. They can result in pathologic lesions when deposited in human
organs. Various types of amyloid protein can be routinely identified in human tissue specimens by
special stains, immunolabeling, and electron microscopy, and, for certain forms of amyloidosis, mass
spectrometry is required. In this study, we applied Raman spectroscopy to identify immunoglobulin
light chain and amyloid A amyloidosis in human renal tissue biopsies and compared the results with
a normal kidney biopsy as a control case. Raman spectra of amyloid fibrils within unstained, frozen,
human kidney tissue demonstrated changes in conformation of protein secondary structures. By
using t-distributed stochastic neighbor embedding (t-SNE) and density-based spatial clustering of
applications with noise (DBSCAN), Raman spectroscopic data were accurately classified with respect
to each amyloid type and deposition site. To the best of our knowledge, this is the first time Raman
spectroscopy has been used for amyloid characterization of ex vivo human kidney tissue samples.
Our approach, using Raman spectroscopy with machine learning algorithms, shows the potential for
the identification of amyloid in pathologic lesions.

Keywords: Raman spectroscopy; machine learning; renal amyloidosis; human kidney tissue; amy-
loid subtyping

1. Introduction

Amyloidosis is an uncommon systemic disease caused by irregular protein aggregation
and misfolding that leads to the formation of insoluble amyloid deposits [1–4]. Different
types of amyloid derive from various amyloid precursor proteins and can infiltrate various
organs [1,5]. Although these protein deposits and their sequences vary, amyloid fibrils share
a common structure, namely steric zippers, arranged in a periodic fibrillar lattice of β-sheets;
this structure can be observed across various modalities, including NMR spectroscopy,
cryo-electron microscopy (cryo-EM), and atomic force microscopy (AFM) [6–8].

Recently, Raman spectroscopy has been utilized to study amyloid fibril formation
and structural conformations [9–13]. By vibrationally fingerprinting biological samples at
a molecular level, Raman spectroscopy identifies various molecules, including proteins
and lipids, with high sensitivity and in a nondestructive and label-free manner [14–20]. In
addition, its relatively simple setup and the lack of a requirement for a priori knowledge
of sample composition make Raman spectroscopy a potential tool to study amyloidosis.
Previous studies have shown that Raman spectroscopy is sensitive to differences in struc-
tural conformations of different amyloid types [11,12,21–23]. In particular, amide I and

Biosensors 2023, 13, 466. https://doi.org/10.3390/bios13040466 https://www.mdpi.com/journal/biosensors
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III bands identified β-sheet structures in both amyloid fibrils isolated from patients and
synthesized amyloid peptides [9,10,22,24]. However, although these findings established
the applicability of Raman spectroscopy to study amyloidosis, synthesized amyloid and
isolated amyloid fibrils are overly simplified and disconnected from protocols of clinical
detection and diagnosis.

To address this limitation, several researchers have investigated amyloid deposits in
tissue with Raman spectroscopy. Animal models have been used to identify biomarkers
representative of the amyloid signature within a mixture of biomolecules, coupled with
spectral unmixing analysis [25–27]. In addition, others have applied Raman spectroscopy
to tissue biopsies of patients that reported changes in the protein signature associated with
amyloid [24,28–33]. Although these studies demonstrate Raman spectroscopy’s capability
to distinguish subtle spectral changes due to amyloid deposits in tissue samples, they were
mainly focused on brain tissues to investigate amyloid involvement with disorders such as
Alzheimer’s disease and Parkinson’s disease. However, no previous Raman spectroscopic
investigations of renal amyloid deposits exist, despite the fact that the kidney is one of the
most commonly involved organs in amyloidoses [5,34].

Here, we employ Raman spectroscopy to examine amyloid deposits for the first time,
to the best of our knowledge, in unstained fresh-frozen human kidney tissues. Specifically,
we investigated immunoglobulin light chain (AL) and serum amyloid A (AA), which are
precursor proteins that give rise to AL amyloidosis and AA amyloidosis, respectively [3,35].
These amyloid diseases represent the two major amyloid diseases with kidney involve-
ment [5,36,37]. We investigated the Raman spectra of AL, AA, and non-amyloidogenic
(NA) tissues collected from six patients through analyses of the protein band area and
second derivative. Then, using t-distributed stochastic neighbor embedding (t-SNE) and
density-based spatial clustering of applications with noise (DBSCAN), we characterized
endogenous molecular compositions and structures indicative of amyloid deposits and
demonstrated heterogeneity between different amyloid types. In this study, we describe
in detail our methodological approach, combining Raman spectroscopy with machine
learning techniques to identify and characterize the two major types of amyloidosis in
human renal tissue.

2. Materials and Methods

2.1. Sample Preparation

Remnant, de-identified tissues from kidney biopsies performed for diagnostic pur-
poses (IRB approval: IRB00090103) were used for this study, as illustrated in Figure 1. The
biopsied tissues of AA, AL, and NA amyloidosis from 6 patients were prepared as a frozen
tissue block. Fresh frozen blocks were sectioned by a cryostat, and thin-sliced kidney tissue
sections were placed on quartz and glass microscope slides for Raman measurements and
histological evaluation, respectively. Tissue sections for Raman measurements remained
unstained and were prepared on quartz slides to avoid spectral interference with the bio-
chemical fingerprints of the tissue sample. Consecutive slices from each tissue block were
used to detect and identify amyloid fibrils through histological evaluation (Figure 2).

4
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Figure 1. The overall workflow for amyloid identification and subtyping. (A) Tissue preparation
steps. Biopsied tissues were frozen and sectioned for evaluation. (B) Raman spectroscopic data
acquisition and analysis. Fresh frozen tissue sections were prepared on quartz slides to minimize
spectral interference, and employed for Raman measurements, which were subjected to machine
learning analysis. (C) Histopathologic validation. Consecutive tissue sections used in (B) were
utilized for the gold standard, immunohistochemistry evaluation. (Created with BioRender.com
(accessed on 23 February 2023)).

Figure 2. Renal amyloidosis. (A) Glomerular and arteriolar deposits of amyloid identified as Congo
red-positive material (magnification 400×). (B) Glomerular amyloid Congo red-positive deposits
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showing birefringence under polarized light (magnification 400×). (C) AA amyloidosis: the im-
munohistochemical stain for amyloid A is strongly positive in the glomerulus and in the arterioles
(magnification 400×). (D) AL amyloidosis: by immunofluorescence, a glomerulus containing Congo
red-positive material (not shown) shows a positive stain for the kappa light chain (magnification
400×). (E) The immunofluorescence stain for lambda light chain is negative in the same glomerulus
(magnification 400×). (F) The immunohistochemical stain for amyloid A is negative in the glomeruli
containing deposits of AL amyloid.

2.2. Raman Spectroscopy

A Raman spectroscopy system (Horiba Jobin Yvon-XploRA PLUS) collected Raman
spectra of ex vivo kidney tissue samples (Figure 1b). A 532 nm laser was projected onto
room-temperature kidney sections, and the resulting Raman scattering between 700 and
3500 cm−1 was recorded through a CCD camera. Measurements were taken at various
pathological sites, including glomeruli and other structures within the cortical region.

The collected Raman spectra were processed using MATLAB 2018b (MathWorks,
Inc., Natick, MA, USA) with baseline and background correction [38], spectral smoothing
through a Savitzky-Golay filter [39], and normalization based on water content
(3100–3400 cm−1). For multivariate and machine learning analysis, the biological finger-
print region (800–1800 cm−1) was selected, which contains molecular information including
proteins, lipids, and other tissue constituents.

2.3. Data Analysis

The collected Raman spectroscopic signals were examined to identify spectral features
unique to a particular amyloid type.

Second derivative analysis, which has been used to estimate the contribution of protein
secondary structure [29,40], was applied to identify spectral features arising from amyloid
fibrils within tissues. Second derivative spectra were obtained by the Savitzky-Golay
filter [39], followed by robust locally weighted smoothing.

To further characterize spectral features associated with AL and AA amyloidosis
beyond those apparent upon visual inspection, we employed t-Distributed Stochastic
Neighbor Embedding (t-SNE), a multivariate analysis technique, and density-based spa-
tial clustering of applications with noise (DBSCAN), an unsupervised machine learning
approach. These allowed the unveiling and decomposing of subtle and complex tissue
information with greater sensitivity by addressing spectral interference due to background
and fluorescence. Both approaches considered Raman spectra collected from both glomeru-
lar and non-glomerular regions in AL, AA, and NA tissues. All analyses were performed
and visualized using MATLAB and Orange [41].

Briefly, t-SNE is a dimensionality reduction technique that evaluates complicated
Raman spectra. By extracting both linear and non-linear features from Raman spectra, it
reduces tissue spectra containing information about various biological molecules, from a
higher to a lower dimension [42]. We used a perplexity of 15 and an exaggeration of 2 as
parameters.

DBSCAN is an unsupervised machine learning approach for data clustering. This
machine learning technique is robust to outliers, which makes it a suitable approach for
analyzing a large collection of Raman spectra. Core point neighbors and neighborhood
distance (Euclidian distance) were determined based on an analysis design from a previous
study [43].

3. Results and Discussion

To characterize amyloid deposits, we utilized Raman spectroscopy to collect molecular
fingerprints of ex vivo amyloid-infiltrated human kidney tissue samples from patients
affected by AL or AA amyloidosis. Raman spectra were measured both within glomeruli
with amyloid deposits, which were identified by pathologists, and non-glomerular regions

6
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of tissue sections. Raman spectra of normal tissue samples (NA) were also collected as
control cases for comparison. Adjacent sections of each type underwent histopathologic
evaluation. Figure 1 illustrates the workflow of this study.

3.1. Amide I and Amide III Bands Reveal Protein Secondary Structures Associated with
Amyloidosis

To investigate features of amyloid fibrils, Raman spectra of glomeruli within kid-
ney tissues were obtained (Figure 3). Particularly, we observed peaks within amide I
(1600–1700 cm−1) and amide III (1200–1300 cm−1) bands of protein, which are closely re-
lated to peptide backbone conformations, the main determinant of protein stability [11,21].
At amide I region, we observed a peak at 1658 cm−1 with AA slightly shifted to a higher
(1664 cm−1) frequency while AL slightly shifted to a lower (1653 cm−1) frequency, com-
pared to the control case. In amide III spectral region, marked changes in peaks at 1239
and 1278 cm−1 were observed, as peaks in AA became more distinguished whereas those
in AL appeared more obscure than the NA tissue signal. Such differences are associated
with secondary protein structures, particularly β-sheet and α-helix structures, which con-
stitute amyloid fibrils [10,21,29]. The AL spectrum exhibits peaks at 1306 and 1334 cm−1,
attributed to sidechain vibrations [11]. In addition, we observed subtle peaks in a higher
wavenumber region, associated with changes in lipids. Peaks around 1552 and 1582 cm−1

represent aromatic amino acids, such as tryptophan and phenylalanine [21]. The intensities
in the observed bands, 1582 cm−1 of AL tissue, and 1658 cm−1 of AA tissue, vary due
to the non-uniform distribution of the amyloid deposits, as marked by the heterogeneity
of amyloid-positive samples. In addition, the polymorphism of fibrils may augment the
heterogeneity [5]. To assess the changes in protein structures arising from amyloid fibrils,
Raman band areas of amide I, amide III, and phenylalanine were evaluated (Figure 3b–d).
The amide I band area of AL (Figure 3b) appeared evidently higher than the others, whereas
the amide III band area of AA (Figure 3c) showed a clear distinction from the others. In
addition, an increase in phenylalanine band area is observed in the AL spectra (Figure 3d),
with a statistically significant difference from the band area under the AA or NA tissue
spectra. Such an observation indicated that both AA and AL fibrils consist of protein
secondary structures with varying contributions of C-N stretching, N-H bending, and C=O
stretching vibrations [21].

To further investigate the influence of amyloid fibrils depending on the associated
tissue site, we expanded the examination of the Raman spectra of glomeruli, marked in
Figure 4a, as well as outside of the glomerulus region. Figure 4b shows distinct spectral pro-
files for each amyloid type at both glomerular and non-glomerular sites. The corresponding
second derivative analysis is shown in Figure 4c. We performed second derivative analysis
to objectively identify sharp changes in spectra and locate their vibrational bands, enabling
us to further distinguish characteristic spectral features [9,11,44]. Second derivative analysis
of amide I, II, and III bands revealed spectral components and peak shifts unnoticed in
Raman tissue spectra. Analysis of AA glomerular regions exhibited a split in the 1213 cm−1

band, with prominent peaks around 1265, 1305, and 1584 cm−1, associated with the mixture
of β-sheet and α-helix structures. The contributions of protein secondary structures in AL
fibrils were different from those in AA fibrils, with peaks observed around higher Raman
bands, at 1625, 1641, and 1655 cm−1, mainly attributed to C=O stretching vibration. These
observations are consistent with previous reports that indicate both AA amyloidosis and
AL amyloidosis exhibit protein secondary structures, as the misfolded AA and AL proteins,
respectively, aggregate, form amyloid fibrils, and adopt a β-sheet conformation [45]. Sec-
ond derivative analyses reveal that Raman spectroscopy can molecularly distinguish this
common structural feature (β-sheet) across AA and AL amyloidosis, as shown by their
distinct Raman bands.

7
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Figure 3. Raman spectroscopy of frozen kidney tissue featuring amyloid deposits. (A) Raman spectra
of glomeruli within AA, AL, and NA tissues. Each spectrum represents an averaged and normalized
spectrum with 1 standard deviation shaded. They are normalized on the spectral region assigned to
water (3100–3400 cm−1), assuming an equivalent water content for all samples. Raman band area
analyses of (B) amide I (1600–1700 cm−1), (C) amide III (1200–1300 cm−1), and (D) phenylalanine
(1582 ± 3 cm−1) of AA, AL, and NA glomeruli. Statistical significance: *** p < 0.0001.

Figure 4. Cont.
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Figure 4. (A) Microscopic image of frozen kidney tissue identified with the glomerulus. Scale bar
= 100 μm. (B) Averaged and normalized Raman spectra collected within and without glomeruli
of AA, AL, and NA tissues with 1 standard deviation shaded. (C) Second derivative analysis of
phenylalanine (1000–1500 cm−1), amide III (1200–1350 cm−1), and amide II-I (1550–1700 cm−1). Each
spectrum in (B,C) is color-coded based on the type and deposition site and plotted in order, from top
to bottom: AA-within glomeruli, AA-without glomeruli, AL-within glomeruli, AL-without glomeruli,
and NA.

3.2. Machine Learning-Based Raman Spectral Analysis Can Classify Renal Amyloidosis with
Respect to Deposition Sites and Types

To distinguish subtle intrinsic spectral differences between amyloid types that were
not detected by visual inspection of the tissue spectra, we utilized a multivariate dimen-
sion reduction and data exploration technique, t-SNE. Figure 5 shows the t-SNE distri-
bution results of the processed Raman tissue spectra of the biological fingerprint region,
ranging between 800 and 1800 cm−1. We subjected a collection of Raman spectra to non-
linear dimensionality reduction and projected them onto a lower dimension, specifically,
2-dimensional space (t-SNE components 1 and 2). The t-SNE map reveals that spectra
collected from each amyloid type are clearly separated, as are spectra from glomerular
and non-glomerular regions (even those collected from the same tissue sections). Each
cluster of identified type is relatively tight without overlap between clusters, indicating that
dimensionality reduction of Raman spectra using t-SNE can clearly discriminate between
glomeruli constituting amyloid fibrils and normal glomerulus regions, and between AL
and AA fibrils. We observed intra-group separation, especially in glomerular AA data-
points; however, the distance between the sub-groups is relatively small compared to the
inter-group distances. As inter-group separation is significantly higher than intra-group
separation, strong similarity among Raman spectra of the same types and regionality are
observed from the t-SNE map. We attribute such clear separation between clusters, not
only among different types but also between glomerular and non-glomerular regions, to
the function of the glomerulus in the kidney. The glomerulus, a ball-shaped structure
identified in Figure 4a, is responsible for filtering waste products and excess fluids from
the blood [46]. As amyloidogenic proteins—serum amyloid A (AA) or immunoglobin light
chain (AL)—form insoluble fibrils, they fail to pass through the filter; thus, most of these
fibrils are deposited and accumulated in the glomeruli. Therefore, the amyloid protein
deposits are predominantly found in the glomeruli [34,36]. This concentration of amyloid
deposits in the glomeruli of AA and AL tissues is reflected in the Raman fingerprinting of
the tissue, leading to clear separation in the t-SNE map.
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Figure 5. t-SNE map for the distribution of Raman spectra. Spectra were identified with their amyloid
types (AA, AL, or NA) and location (within or without glomeruli). Each point represents a Raman
spectrum that is positioned based on the similarity probability of the spectra in the dataset. Each
group is well separated from other groups, indicating that the Raman spectra of the same group are
similar and distinct from those of other groups.

Furthermore, DBSCAN results (Figure 6) obtained using the processed Raman tissue
spectra between 800 and 1800 cm−1, show clustering results with distinctive separation
among the types and glomeruli. DBSCAN analysis resulted in a total of 12 clusters, of
which 5 major clusters represent 96.4% of the entire collection (8360 out of 8672 spectra)
with parameters (number of neighbors as 2 within the radius of 1.09). The left panel of
Figure 6 summarizes the arrangement of each cluster with respect to amyloid type and
deposition site. 96.9% of glomerular AA (Cluster 3), 98.4% of non-glomerular AA (Cluster
6), 96% of glomerular AL (Cluster 1), and 97.2% of non-glomerular AL (Cluster 2) are
identified as separate clusters. For the NA tissue, 95.6% of spectra are grouped as an
individual cluster (Cluster 8). The remaining spectra are either unidentified or assigned to
separate minor clusters. It is worth noting that these minor clusters do not have spectra
pertaining to different amyloid types or deposition sites, demonstrating the robustness
of the clustering analysis. The average spectra with one standard deviation shaded for
the five major cluster groups are presented on the right panel of Figure 6. The spectral
profiles demonstrate strong similarities to those of the actual spectra in Figure 4b, indicating
that machine learning-based classification indeed enables us to characterize the types of
amyloid fibrils and their deposition sites within the tissue.
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Figure 6. DBSCAN clustering results and representative Raman spectra of each cluster. (Left) Out of
a total of 12 clusters, 5 dominant clusters were identified. AA glomerular and non-glomerular spectra
are primarily grouped as Clusters 3 and 6, respectively. AL glomerular and non-glomerular spectra
are primarily grouped as Clusters 1 and 2, respectively. NA tissue is primarily grouped as Cluster 8.
The rest of the seven minor clusters are grouped accordingly. Unassigned spectra are marked as gray.
(Right) Average spectra of the 5 dominant clusters with 1 standard deviation shaded.

In a previous study, we successfully utilized Raman spectroscopy to characterize
crystal deposits in kidney biopsies [16], leading us to expand its application to the study
of renal amyloid deposits. Spectroscopic techniques, including Raman spectroscopy, have
demonstrated promise in detecting and identifying molecular changes in various kidney
conditions [47,48]. With the aid of statistical and machine learning algorithms for analysis,
these approaches can produce robust results [19,20,49]. Despite the limited sample size in
this pilot study, Raman spectroscopy combined with appropriate analysis techniques was
able to distinguish between different types of amyloids.

4. Conclusions

In this study, we characterized the Raman spectra of renal amyloid deposits within
human tissues affected by systemic AL and AA amyloidosis. This label-free spectroscopic
approach made it possible to obtain a biochemical fingerprint of unfixed, unstained spec-
imens, providing intrinsic information on the content and structural profiles of ex vivo
amyloid fibrils. Notably, Raman spectroscopy coupled with machine learning approaches
exhibits multiple applications: one as a diagnostic tool that detects the presence of amyloid
deposits and the other as a characterizing tool that can accurately distinguish AL and AA,
two of the most common amyloid types in human kidney tissue. The collected Raman spec-
tra of both glomerular and non-glomerular regions of all three tissue types, combined with
t-SNE analysis, were able to identify subtle differences between samples and distinguish
between AL, AA, and NA profiles, and even glomerular and non-glomerular regionality.
Machine learning analysis equipped with DBSCAN distinguished AL and AA profiles
based on their Raman spectra, suggesting the possibility of Raman spectroscopy as a tool
for characterizing and subtyping amyloid.

Our label-free, machine learning-assisted spectroscopic analysis presents a new avenue
for identifying amyloid within human tissue and promises an objective and reproducible
diagnostic tool for systemic amyloidosis with renal involvement. While this study focused
on fingerprinting features of AL and AA fibrils in frozen kidney sections, our methods
could be extended to other systemic or hereditary amyloidoses in various organs.
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Data mining toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353.
42. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
43. Sander, J.; Ester, M.; Kriegel, H.-P.; Xu, X. Density-based clustering in spatial databases: The algorithm gdbscan and its applications.

Data Min. Knowl. Discov. 1998, 2, 169–194. [CrossRef]
44. Louros, N.N.; Tsiolaki, P.L.; Baltoumas, F.A.; Chryssikos, G.D.; Gionis, V.; Hamodrakas, S.J.; Iconomidou, V.A. Tracking the

amyloidogenic core of IAPP amyloid fibrils: Insights from micro-Raman spectroscopy. J. Struct. Biol. 2017, 199, 140–152.
[CrossRef] [PubMed]

45. Mollee, P.; Renaut, P.; Gottlieb, D.; Goodman, H. How to diagnose amyloidosis. Intern. Med. J. 2014, 44, 7–17. [CrossRef]
[PubMed]

46. Holechek, M.J. Glomerular filtration: An overview. Nephrol. Nurs. J. 2003, 30, 285–290.
47. Varma, V.K.; Kajdacsy-Balla, A.; Akkina, S.K.; Setty, S.; Walsh, M.J. A label-free approach by infrared spectroscopic imaging for

interrogating the biochemistry of diabetic nephropathy progression. Kidney Int. 2016, 89, 1153–1159. [CrossRef]
48. Varma, V.K.; Kajdacsy-Balla, A.; Akkina, S.; Setty, S.; Walsh, M.J. Predicting Fibrosis Progression in Renal Transplant Recipients

Using Laser-Based Infrared Spectroscopic Imaging. Sci. Rep. 2018, 8, 686. [CrossRef]
49. Guo, S.; Popp, J.; Bocklitz, T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning–based

modeling. Nat. Protoc. 2021, 16, 5426–5459. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

13





Citation: Iwanaga, M. Robust

Detection of Cancer Markers in

Humans Serum Using All-Dielectric

Metasurface Biosensors. Biosensors

2023, 13, 377. https://doi.org/

10.3390/bios13030377

Received: 27 February 2023

Revised: 9 March 2023

Accepted: 10 March 2023

Published: 13 March 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Article

Robust Detection of Cancer Markers in Human Serums Using
All-Dielectric Metasurface Biosensors

Masanobu Iwanaga

National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
iwanaga.masanobu@nims.go.jp

Abstract: One of the most significant characteristics, which biosensors are supposed to satisfy, is
robustness against abundant molecules coexisting with target biomolecules. In clinical diagnoses and
biosensing, blood, plasma, and serum are used daily as samples. In this study, we conducted a series
of experiments to examine the robustness of all-dielectric metasurface biosensors, which comprise
pairs of a highly fluorescence-enhancing silicon nanopellet array and a transparent microfluidic chip.
The metasurface biosensors were shown to have high performance in detecting various targets from
nucleic acids to proteins, such as antigens and antibodies. The present results show almost four-order
wide dynamic ranges from 0.16 ng/mL to 1 μg/mL for prostate-specific antigen (PSA) and from
2 pg/mL to 25 ng/mL for carcinoembryonic antigen (CEA). The ranges include clinical criteria for
PSA, 4 ng/mL and CEA, 5 ng/mL. To date, a systematic demonstration of robustness has not been
reported regarding the metasurface biosensors. In detecting cancer markers of PSA and CEA in
human serums, we demonstrate that the metasurface biosensors are robust enough in a wide target
concentrations, including the clinical diagnosis criteria.

Keywords: cancer marker; PSA; CEA; sandwich assay; human serum; metasurface; fluorescence
detection; robustness

1. Introduction

The detections of biomolecules is a crucial part of clinical diagnosis and health mon-
itoring. To detect target biomolecules in the practical situations, we need not only high
sensitivity, but also robustness against other biomolecules present in abundance. It is widely
known that human blood usually comprises 55% blood cells, such as red corpuscles and
platelets, and 45% plasma, which has proteins, such as immunoglobulin G (IgG) and albu-
min, other glycerin, and inorganic salts. Normally, concentrations of globulin and albumin
in blood are 20–35 and 35–45 g/L, respectively [1]. For medical diagnosis, cancer markers,
such as prostate specific antigen (PSA) and carcinoembryonic antigen (CEA), are examined
in a range around 5 ng/mL [2]. Thus, biomarker molecules are much rarer than abundant
biomolecules; for example, IgG concentration, which is normally 8.61–17.47 mg/mL [2], is
106-fold higher than the clinical criteria of PSA and CEA. Therefore, robustness is inevitably
a requirement for practical biosensors.

Human serums are most commonly examined for cancer markers in clinical examina-
tions [3–5]. Accordingly, biosensors applicable to cancer markers were often tested for their
robustness using human serums [6–17]. All-dielectric metasurface biosensors [18–21] and
plasmon–photon hybrid metasurface biosensors [22] were recently reported as efficient
fluorescence (FL) biosensors. Figure 1a,b illustrates two situations where sandwich com-
plexes of antibody (Ab)—antigen—Ab are formed. Complexes in the former are in a buffer
suitable for proteins, whereas complexes in the latter are in a human serum that contains
abundant biomolecules, such as albumin and IgG. For immobilization of the complexes,
one of the Abs is labeled with biotin, and for FL detection, the other Ab is labeled with
FL molecules. The biotin-labeled Abs serve as capture Abs and the FL-labeled Abs work
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as detection Abs in an ordinary immunoassay scheme, e.g., enzyme-linked immunosor-
bent assay (ELISA). Here, we report a series of proof-of-concept experiments using the
all-dielectric metasurface biosensors for the detection of cancer markers that coexist with
other actual proteins, such as albumin, IgG, and different cancer markers, thereby clarifying
the robustness of metasurface biosensors.

(c)(a) (b)

FL-labeled Ab

Antigen

Biotin-label Ab

BSA

IgG

Albumin

Serum

Figure 1. Key concepts of this study. (a) Target antigens in a purified condition. (b) Targets in a human
serum where abundant impeding molecules, exist together with a small number of targets. Antibody
(Ab) labeled with fluorescence (FL) molecule (magenta dot), antigen (purple), Ab labeled with biotin
(black dot), and bovine serum albumin (BSA, light brown) are shown. Additionally, albumin (brown)
and immunoglobulin G (IgG, Y-shaped) are schematically illustrated. (c) Photograph (color) of an all-
dielectric metasurface substrate and top-view scanning-electron-microscopy image (gray scale), providing
a magnified view. The metasurface was a 300-nm periodic array of silicon nanopellets. Six metasurface
areas of small rectangular shapes (2.1× 0.7 mm2 each) in the photo were designed to correspond to six
microfluidic channels. White and black scale bars indicate 10 mm and 500 nm, respectively.

A color photograph of an all-dielectric metasurface substrate is shown in Figure 1c,
where six metasurface areas of small rectangular shapes appear, exhibiting diffraction
colors. A white scale bar indicates 10 mm. An scanning-electron-microscopy (SEM) image,
which magnifies a metasurface area, is shown on a gray scale. The SEM image was taken in
a top-view manner, presenting a periodic array of circular silicon nanopellets of 200 nm
height. The periodic length was 300 nm and the diameter of the silicon nanopellets was
224 ± 4 nm. A black scale bar represents 500 nm.

2. Materials and Methods

2.1. All-Dielectric Metasurface Biosensors

The all-dielectric metasurface substrates were fabricated through the nanolithography
process for silicon-on-insulator (SOI) substrates. The SOI substrates comprised a top layer
of crystalline silicon of 200 nm thickness, a middle layer of buried oxide (or SiO2) of 375 nm
thickness, and a base silicon wafer of 675 μm thickness. Following the nanopatterns written
on an electron-beam resist, only the top layer was normally etched down to the middle
layer, which resulted in silicon nanopellet arrays (Figure 1c). The top-down nanolithog-
raphy process has been previously reported in detail [18,23]. Originally, the all-dielectric
metasurfaces were conceived with being stimulated from the finding of large FL-enhancing
effects in plasmon–photon hybrid metasurfaces [24–26]. We note that the metasurface
substrates are reusable after the washdown of the adhered proteins in experiments. The
washdown was conducted in two steps: (i) the substrates were first washed for 5 min in a
neutral ultrasonic cleaning liquid (7-5337-02, As-One, Osaka, Japan), which was 10-times
diluted in advance using purified water, were rinsed four times in the purified water
under applying ultrasonic waves (5 min each), and were made dry blowing N2 gas; (ii) the
substrates were immersed in so-called piranha solution, which consists of 96% sulfuric acid
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and 30% H2O2 liquid (the volume ratio 3:1), for 15 min, and were rinsed with distillated
water for 20 min. The validity of the piranha solution to remove organic deposits on silicon
nanostructures was previously reported [27]. After the washdown, we did not find any
residue emitting FL on the substrates. This reusability has the potential to reduce running
costs significantly.

To control the flow of liquid reagents including human serums, we combined the
metasurface substrate with a microfluidic (MF) chip and prepared a metasurface biosensor.
The MF chip was made of polydimethylsiloxane (PDMS), which was transparent to visible
light and was designed to have six MF paths in accordance with the six metasurface areas
(Figure 1c). Inlet and outlet holes were introduced at both ends of each MF path to facilitate
connecting from the outside; this can be seen in previous reports [20,21]. The PDMS was
naturally absorbed on the metasurface substrate, enabling us to flow the liquid reagents.

2.2. Biomolecules and Reagents

Target cancer markers were purchased from companies. We used native human PSA
protein (ab78528, Abcam, Cambridge, UK) and CEA (CEA15-N-100, Alpha Diagnostic, San
Antonio, TX, USA) as the targets. In diluting the targets to specific concentrations, a sample
diluent, NS buffer (ab193972, Abcam), was applied, consisting of phosphate-buffer saline
(PBS) and bovine serum albumin. Human serum pool (12181201, Cosmo Bio, Tokyo, Japan),
which was a mixture of 10-person serums free from specific diseases, was used for testing
the robustness of the metasurface biosensors.

The sandwich complex of Ab—antigen—Ab was designed to have labels, such as
biotin-Ab—antigen—Ab-FL. In accordance with this design, a FL label, HiLyte Flour 555
(HL555), was conjugated, in advance, to the Abs using a labeling kit (LK14, Dojindo Lab-
oratories, Kumamoto, Japan). Additionally, biotin was conjugated using a labeling kit
(LK03, Dojindo Laboratories). Abs for the PSA and CEA used in this study were mouse
monoclonal, being reactive to human PSA and CEA, respectively. Anti-PSA Ab (8A9B8,
GenScript, Nanjing, China) and anti-CEA Ab (ab4451, Abcam) were biotin-conjugated, and
anti-PSA Ab (MAB6729, Abnova, Taipei, Taiwan) and anti-CEA Ab (10-2370, Fitzgerald
Industries, Acton, MA, USA) were HL555-conjugated. After the conjugations, the Abs
were collected nominally at 0.5 mg/mL, and then the concentrations of the labeled Abs
were tested by light absorption measurement. The HL555-labeling ratios can be evaluated
from the light absorbance; we found that HL555 molecules:anti-PSA Ab ≈ 4:1 and HL555
molecules:anti-CEA Ab ≈ 7:1. For the collection and dilutions of the labeled Abs, PBS at
pH 7.4 (164-25511, FujiFilm Wako Pure Chemicals, Osaka, Japan) was used. To immobilize
the sandwich complexes on the metasurfaces, Cys-streptavidin (Cys-SA, PRO1005, Click-
Biosystems, Richardson, TX, USA) was employed, which can bind to the outermost surface
of silicon nanopellets and effectively capture the biotin-labeled sandwich complexes.

2.3. MF Protocols and FL Detection

MF protocol for PSA detection was as follows. PBS was first used to fill the MF
paths. Second, the Cys-SA solution, adjusted to 20 μg/mL using the PBS, was flowed
at 10–11 μL/min for 10 min on the metasurface areas. In a previous experiment mea-
suring sensorgram for the Cys-SA [22], the immobilized amount reached the maximum
at approximately 8 min, so that we set the time to flow the Cys-SA to be 10 min. The
Cys-SA was rinsed with the PBS for 7 min; then, a background FL image was captured for
2 s on each channel under illumination by a green LED (M530F2, Thorlab, Newton, NJ,
USA). The FL images were acquired using an uncooled CCD camera (Infinity3S-1URC,
Teledyne-Lumenera, Ottawa, Canada). Subsequently, the biotin-labeled anti-PSA Abs of
2.0 μg/mL were flowed at 10–11 μL/min for 10 min on the metasurface areas, and then
they were rinsed for 7 min with the PBS. The target PSA proteins diluted with the NS buffer
or the human serum were flowed at approximately 8 μL/min for 20 min, and then they
were rinsed for 7 min with the PBS. Due to the low concentrations, the PSA was flowed at
the low flow rate. The HL555-labeled Abs were flowed at 10–11 μL/min for 10 min, and
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then the final rinse was conducted at 19–20 μL/min for 8 min with PBS-Tween20 (PBS-T,
163-24361, FujiFilm Wako Pure Chemicals), pH 7.4. Following the MF-flow protocol just
above, the green LED light illuminated on each channel, and each FL image was acquired
for 2 s exposure time to detect the PSA. A custom-build software was used to control MF
flows, liquid reagent changes, and the FL measurements in sequence. The automated setup
was as compact as 40 × 30 × 60 cm3.

MF protocol for CEA detection differed from that for PSA. The sandwich complexes
were incubated independently of the MF-flow system because we found that the step flows
for the PSA were not suitable for CEA. This difference probably comes from smaller affinity
between the CEA and Abs compared to that between PSA and the Abs. The target CEA
was adjusted to particular concentrations for each experiment, typically, 0.04–25 ng/mL
using the NS buffer or the human serum diluent (serum : NS buffer = 1 : 4 in volume). For
the serum, the target CEA was first spiked in the human serum pool and the concentration
was 200 μg/mL in the human serum. Afterwards, the target was diluted using the human
serum diluent. The anti-CEA Abs were diluted to 10 μg/mL for the serum-diluted CEA
and to 2 μg/mL for the NS-buffer diluted CEA using the PBS. Typically, the 50 μL CEA and
the two 100 μL anti-CEA Abs were mixed and incubated at 299 K for 40 min at 400 rpm in
the dark. After the incubation, the test liquid was flowed at 10–11 μL/min for 23 min on
the metasurfaces that was already covered with the Cys-SA; then, the MF paths were rinsed
with the PBS-T at 19–20 μL/min for 5 min. Subsequently, FL imaging was conducted on
each channel for 3 s exposure time. When the FL images were analyzed, we used a free
software, ImageJ [28].

3. Results

3.1. Detections of Individual Cancer Markers
3.1.1. PSA

Figure 2 shows a series of experimental results regarding PSA detection. In Figure 2a,
FL images at high PSA concentrations from 40 μg/mL to 0 g/mL are presented from left to
right, respectively. The all-dielectric metasurfaces are located near the center of the images;
bright horizontal areas are explicitly seen at 40, 4.0, and 0.4 μg/mL; the metasurfaces at
the other concentrations are placed similarly though it is not seen brightly. FL intensities
were most intense at the center of the excitation LED spots, which take a broad Gaussian
shape and can be seen explicitly at 40 and 4.0 μg/mL. The FL intensities were quantified
with setting and analyzing a circular region around the center in common with the six
MF channels.

The FL intensities in Figure 2a were quantified in the circular regions around the
center of excitation spots and plotted in Figure 2b using orange closed circles with error
bars on a log-log scale. The error bars were evaluated using Gaussian fitting, being
standard deviation σ of the FL-intensity distributions. The detection profile was fitted
using Hill equation [29], which is mathematically equivalent to the so-called four-parameter
logistic equation:

y = y0 + (S − y0)
xn

xn + Kn
D

(1)

where y denotes the FL intensity, y0 is the zero level without any target, S is the saturation
FL intensity that is regarded as a proportional constant in fitting, x is the concentration of
target, n is the degree of cooperative reaction, and KD is the dissociation constant [30,31].
In the MF paths, stable liquid flow rates are maintained; therefore, the immobilization
process on the metasurface is an equilibrium chemical reaction, which is described using
the Hill equation (Equation (1)). From the fitted results, it was determined that S = 36148.3,
n = 1.18, KD = 195.2 ng/mL, and y0 = 110.0 in Figure 2b. When the fitted value of n is
more than 1, it is suggested that the reaction is cooperative [32]. Therefore, the fitted value
n indicates that immobilization of detection Abs with the FL label occurred in a cooperative
manner. The value y0 indicates a zero level in the FL measurement, being approximately
six times smaller than the FL intensity at 4.0 ng/mL, which is currently the clinical criterion
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value for PSA [2]. Figure 2b shows that even 100-fold higher PSA concentrations can be
detected by the metasurface biosensors in a scaled manner. The parameter KD denotes
the dissociation constant and indicates the target concentration at the half height of the
Hill curve.
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Figure 2. PSA detection. (a) FL images at high PSA concentrations from 40 μg/mL to 0 g/mL (from
left to right, respectively). The target PSA was diluted using the sample diluent buffer. (b) and
(c) Detection curves of high-concentration PSA diluted with the sample diluent buffer and human
serums, respectively. These are presented on a log-log scale. Dashed curves represent fitted curves by
the Hill equation (Equation (1)). (d,e) Detection curves of PSA diluted with the sample diluent buffer
and human serums, respectively, presented on a semi-log scale. Dashed curves are fitted curves
using the Hill equation. The target concentrations were in a range from 4.0 ng/mL to 0 g/mL. Insets
magnify a range near 0 g/mL, presented on a linear scale.

The PSA in a human serum was successfully detected, as shown in Figure 2c. The
detection profile is quite similar to that in Figure 2b. This result indicates that PSA detection
using the metasurface biosensor is robust, even in human serums. The fitting parameters
in Figure 2c were S = 29620.3, n = 1.41, KD = 206.9 ng/mL, and y0 = 72.2. As a result, the
binding reaction is evaluated by n, suggesting that the cooperative reaction is similar to
that without human serums. In addition, the interplay of PSA and the Abs is not affected
by human serums.
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Figure 2d,e shows the FL detection results in a PSA concentration range lower than
that in Figure 2b,c, respectively, and is presented on a semi-log scale; insets magnify a range
near 0 ng/mL in a linear scale. Orange closed circles with error bars denote measured data,
and dashed curves are fitted curves using the Hill equation (Equation (1)). The measured
data are well-reproduced using the Hill equation and are scaled. We here define dynamic
range, such as a range where we can discriminate measured signals more than 1σ and read
out concentrations using a reasonable scale (e.g., linear or the Hill curve). The dynamic
range of the PSA detection in the step-flow protocol is found to be 0.16–1000 ng/mL, which
is almost four orders of concentrations. In the semi-log plots, it is difficult to see the changes
in FL intensity at low concentrations below 1 ng/mL; however, the linear plots in the insets
exhibit the scaled responses of the metasurface biosensors, even at the range that is 25-fold
smaller than the clinical criterion. We refer to that of the dynamic range, which is mainly
limited by the performance of the uncooled CCD camera; indeed, a confocal FL microscopy
enabled us to access much lower concentrations when we detected the spike proteins of
SARS-CoV-2 [21].

3.1.2. CEA

Figure 3a illustrates a protocol from incubation to immobilization of the CEA-sandwich
bodies on the metasurface biosensor composed of a periodic array of silicon nanopellets,
though the MF path around the periodic array is not drawn. The binding molecules, Cys-
SA, were immobilized in advance on the silicon nanopellets. After the immobilization of
the Cys-SA and the rinse of unbound molecules, the CEA-sandwich bodies flowed in the
MF paths and effectively bound via the biotin–avidin interplay on the silicon nanopellets.
Unbound CEA-sandwich bodies were rinsed with the PBS-T. Afterwards, the FL imaging
was conducted from the top of metasurface biosensor; the optical configuration of the
biosensor has been described in previous publications [20,21].

A detection curve for CEA in the sample diluent NS buffer is shown in Figure 3b,
presented on a semi-log scale. The measured data are shown with orange closed circles
associated with error bars. A dashed curve represents a fitted curve using the Hill equation
(Equation (1)), which well reproduce the CEA detection data. Thus, the CEA was detected
in a scaled manner. A lower concentration range is shown in Appendix (Figure A1a), and
the CEA concentration at 0.008 ng/mL was detected in the measurement. From the crossing
point of the Hill curve and 3σ level (horizontal bar) in Figure 3b, the limit of detection
(LOD) of CEA in this measurement was found to be 0.002 ng/mL (or 11.1 fM). It is to be
noted that the detection curve is scaled to the LOD; in other words, the dynamic range
covers from 2 pg/mL to 25 ng/mL, exceeding four orders of CEA concentrations. Inset
magnifies a concentration range near 0 g/mL on a linear scale.

Figure 3c shows FL signals emitted from the CEA-sandwich bodies in a human serum.
The horizontal axis is logarithmic. When we conducted the CEA detection using the serum,
the FL-signal level was about five-times lower than that using the NS buffer. It is considered
that abundant proteins prevented the CEA and the Abs from forming the sandwich bodies.
Accordingly, we conducted a more elaborate FL-signal analysis than that for Figure 3b. In
each channel, the FL signal was evaluated in a criterion that intensity more than 3σ from
the background level is counted as net signals. This statistical criterion does not output
error bar; therefore, the FL signals in Figure 3c are shown only with orange closed circles.
A horizontal bar indicates zero-signal level in the measurement. It is to be stressed that the
CEA in human serums was detected even at 0.04 ng/mL in a scaled manner; the dynamic
range is, at least, 0.04–25 ng/mL. An arrow indicates the clinical diagnosis criterion for
CEA, that is, 5 ng/mL [2]. Thus, the metasurface biosensors are capable of detecting CEA
in human serums around the diagnosis value.
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Figure 3. CEA detection. (a) Schematic of incubation and immobilization of the CEA sandwich bodies
on the metasurface of a periodic array of Si nanopellets. (b) Detection of CEA in the sample diluent
buffer. Measured FL intensities are shown using orange closed circles with error bars. Dashed curves
denote fitted curves by the Hill equation (Equation (1)). 3σ level from the zero level is indicated
by a horizontal bar; the crossing point with the Hill curve means the limit of detection, indicating
0.002 ng/mL (arrow). The inset magnifies the detection curve around the zero concentration on a
linear scale. (c) FL signals from CEA in the human serum. Horizontal bar indicates zero-signal level.
Arrow indicates the clinical criterion of 5 ng/mL.

3.2. Coexisting Target Detections

Detection results under conditions that PSA and CEA coexist are shown in Figure 4.
Presentation styles in Figure 4 are similar to those in Figure 2,3. We tested two configura-
tions: (i) the target PSA concentrations were 0.8, 4.0, and 20 ng/mL, as shown in Figure 4a,
while the CEA concentration was kept at a constant of 5 ng/mL, and (ii) the target CEA
concentrations were changed from 0.04 to 25 ng/mL, as shown in Figure 4b, whereas PSA
concentration was fixed at 4 ng/mL. In the case (i), CEA was an impeding biomolecule
for the target; in (ii), the PSA could impede the detection of target CEA. We note that the
clinical criteria for CEA and PSA are 5 and 4 ng/mL, respectively [2].

In both cases, even when the competing cancer markers existed, the target was suc-
cessfully detected, similarly to the individual detections in Figure 2,3. In detail, the FL
intensity in the CEA detection became low (Figure 4b), which suggests that the PSA affects
the CEA detection; in contrast, there is no definite signature that the CEA affects the PSA
detection because the FL intensity was not reduced in Figure 4a, in comparison with that in
Figure 2d. Figure 4a is shown on a linear scale and the three data points around the clinical
criterion value, 4 ng/mL, were fitted using a line, being well-reproduced (R2 = 0.999).
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Figure 4. Detection of target cancer markers in coexisting conditions together with other markers.
(a) PSA detection under a mixture with CEA of 5 ng/mL, presented on a linear scale. FL intensity
coming from the PSA is shown using orange circles with error bars. Dashed line: a fitted line.
Arrow: the medical criterion value of PSA, 4 ng/mL. (b) CEA detection under a mixture with PSA of
4 ng/mL. FL intensity coming from the CEA is shown using orange closed circles with error bars on
a semi-log scale. Dashed curve: a fitted curve by the Hill equation (Equation (1)). A black horizontal
bar represents the zero level, which is y0 in the Hill equation. Arrow: the medical criterion value of
CEA, 5 ng/mL.

4. Discussion

Practically, cancer markers must be measured precisely in relation to the clinical
criterion values. Here, we discuss the detection results for PSA and CEA using human
serums from a practical and critical point of view.

Table 1 lists published information on PSA and CEA detections [6–17] and the present
results. The dynamic range in Table 1 is defined according to a strict criterion, as is stated
in Section 3.1.1. Apart from the claims in the previous reports, the published experimental
data were reviewed whether the detection is dynamical, i.e., one concentration is clearly
discriminated from the others; for example, if a detected signal at a concentration is
overlapped with the other within 1σ, the discrimination is judged to be failure, and the
concentration is excluded from the dynamical range in Table 1.

There are mainly two types in the previous reports: one is excessive claims of the
dynamical ranges and LODs [7–14,17], and the others are focusing on too low target con-
centrations in practical senses [6,15]. We here discuss the former cases from a practical
viewpoint; the latter does not show any experimental data to support the validity around
the clinical criteria. The detections using the electrochemical (EC) methods showed ex-
ponential responses, i.e., and most measured data were linearly changed by a factor of
3–5 times and plotted for logarithmic target concentrations, which indicated that narrow
signal ranges to the wide target concentrations. Due to such deep sublinear responses, it is
generally difficult to discriminate nearest-neighbor concentrations. For example, detection
signals at target concentrations of 1 ng/mL and 10 ng/mL cannot be distinguished. This
property will be an issue in the practical clinical diagnoses, where definite values should be
determined. Thus, it is crucial that signals have a wide dynamic range. It is for this reason
that FL detection is considered to be a practically feasible method of detection [33].

For the PSA detections, [8,10,11,13], the dynamic ranges are evaluated to be one or two
orders of target concentrations from the strict criterion. In contrast, the present metasurface
biosensors provide almost four orders of target concentrations and, furthermore, exhibit
robustness for human serums (Figure 2c,e).

The CEA detections based on the EC methods in Table 1 tend to reduce the signals
when the target CEA was put in human serums. As an example, the LOD in PBS was
claimed to be 0.5 ng/mL, while the CEA detection in human serums was limited to the
concentrations at 100 ng/mL and more [6]. A similar reduction in the detection of CEA was
reported in an EC method using gold nanoparticles and protein A [34]; the dynamic range
was claimed to be from 1 pg/mL to 100 ng/mL; however, the detection range of CEA in rat
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serum was substantially reduced to a range of 1–50 ng/mL. In the optical sensing [14,16],
such heavy reductions were not observed. In this study, although some FL-signal reduction
was observed, the reduction was not substantial. Importantly, the metasurface biosensors
offer most precise detection among the related reports [6,9,12,14,16,17] and enable parallel
detection, even when PSA coexists (Figure 4). It is referred to that optical nanostructured
biosensors, such as metasurface biosensors, are extensively explored [35–38]; so far, better
performance and robustness for PSA and CEA than those of the present metasurface
biosensors are not found.

Table 1. PSA and CEA detections in human serums. EC and NP stand for electrochemical and
nanoparticle, respectively. AD-MSB denotes an all-dielectric metasurface biosensor. PlC denotes
plasmonic crystal. NS means the sample diluent NS buffer. The dynamic ranges in this Table are
not based on the claims in the references, but on the strict criterion described in the text because the
ranges were sometimes overestimated.

Target Method Feature Dynamic Range Buffer Reference
(ng/mL)

PSA EC flow on paper 0.063–0.25 Serum [7]
PSA EC MoS2-Au 15–110 Serum [8]
PSA EC Ag NP 2–8 Serum [10]
PSA EC polymer brush-Au NP 1–100 Serum [11]
PSA microwell digital FL 0.002–0.2 Serum [15]
PSA AD-MSB resonance shift 1–8 Serum [13]
PSA AD-MSB FL 0.16–1000 Serum This work

CEA EC aptamer 100–140 Serum [6]
CEA EC polyaniline-Au 1–50 Serum [9]
CEA EC aptamer 5–40 Serum [12]
CEA gold PlC resonance shift 3–18 Serum [14]
CEA gold PlC resonance shift 10–87 Serum [16]
CEA gold NP color change 1–30 Serum [17]
CEA AD-MSB FL 0.002–25 Serum This work
CEA ELISA Absorbance 1–50 NS Figure A1b

5. Conclusions

We have tested the detections of two cancer markers, PSA and CEA, using the meta-
surface biosensors. In the sample diluent buffer and human serums, the target makers
were successfully detected in similar manners. The dynamic ranges were almost four
orders of target concentrations of PSA and CEA. Furthermore, the metasurface biosensors
were hardly affected by the impeding biomolecules in human serums, demonstrating their
robustness. Thus, the all-dielectric metasurface biosensors demonstrated highly sensitive
and robust detections of the cancer markers.

6. Patents

Some of the contents in this article were filed in a Japanese patent (JP2022175611).
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Appendix A

Figure A1 shows further results of FL detection for CEA using a metasurface biosensor
and of CEA detection using a commercial ELISA kit (ab264604, Abcam). Figure A1a shows a
lower CEA-concentration range than that is Figure 3a, and indicates that CEA was actually
detected at the concentrations of 0.008 ng/mL (or 8 pg/mL). The zero level of the FL
measurement is shown with an arrow. Thus, it is confirmed that the dynamic range of the
metasurface biosensors for CEA covers from ∼1 pg/mL to 25 ng/mL.
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Figure A1. Detection of CEA by the metasurface biosensor and ELISA. (a) CEA detection curve in
a low concentration range down to 8 pg/mL, measured by the metasurface biosensor. Measured
data are shown using orange closed circles with error bars. Dashed curve is a fitted curve by the Hill
equation (Equation (1)). (b) Detection results for three CEAs (black closed circle: ab264604, Abcam,
blue triangle: 15-N-100, Alpha Diagnostic, green open circle: ab742, Abcam) by ELISA, which was
conducted using a commercial kit. The vertical axis represents optical density at 450 nm. Three
horizontal bars indicate zero levels for the three CEAs; the colors match up the measured data.

Figure A1b shows a set of ELISA results using the commercial kit, which claims high
throughput (i.e., 1.5 h running time) and high sensitivity. We used three CEA targets: block
closed circles correspond to CEA, ab264604, Abcam, blue triangles to CEA, CEA15-N-100,
Alpha Diagnostic, and green open circles to CEA, ab742, Abcam. The detection profiles of
the black closed circle and the blue triangle are similar; the dynamic ranges are estimated
to be from 0.63 to 50 ng/mL, based on intersection of the two profiles. In contrast, another
profile of the green open circle exhibited a lower response than the others, and the dynamic
range covers from 1.25 to 200 ng/mL. These results suggest that the enzyme reaction in
ELISA can change for detection targets. Practically, we can conclude that the ELISA kit is
effective at 1–50 ng/mL for a given CEA, and that the sub-ng/mL ranges are unreliable.

Additionally, we note that the actual running time for the ELISA was approximately
2 h, due to additional procedures (e.g., washing of a microplate) are inevitable; the runtime
falls within a short-time category among various ELISA kits. The metasurface biosensors
completed the runtime within 2 h and, moreover, exhibited the one-digit pg/mL detection
for CEA in a dynamical manner, which is 100-times more effective than the ELISA kit.
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Abstract: Determining nucleic acid concentrations in a sample is an important step prior to proceeding
with downstream analysis in molecular diagnostics. Given the need for testing DNA amounts and
its purity in many samples, including in samples with very small input DNA, there is utility of
novel machine learning approaches for accurate and high-throughput DNA quantification. Here, we
demonstrated the ability of a neural network to predict DNA amounts coupled to paramagnetic beads.
To this end, a custom-made microfluidic chip is applied to detect DNA molecules bound to beads
by measuring the impedance peak response (IPR) at multiple frequencies. We leveraged electrical
measurements including the frequency and imaginary and real parts of the peak intensity within a
microfluidic channel as the input of deep learning models to predict DNA concentration. Specifically,
10 different deep learning architectures are examined. The results of the proposed regression model
indicate that an R_Squared of 97% with a slope of 0.68 is achievable. Consequently, machine learning
models can be a suitable, fast, and accurate method to measure nucleic acid concentration in a sample.
The results presented in this study demonstrate the ability of the proposed neural network to use the
information embedded in raw impedance data to predict the amount of DNA concentration.

Keywords: nucleic acid concentration; biosensor; machine learning; regression model; impedance
cytometry; microfluidic chip

1. Introduction

DNA, the carrier of genetic information, is highly important in the biology and molec-
ular electronics fields [1]. In addition to its biological role, DNA is a topic of significant
interest with applications in nanotechnology, self-assembly, and structural flexibility, mak-
ing it a subject of great interest [2–4]. Moreover, the DNA molecule is a source of rich
electrical properties and has the potential to be used as a conducting material in electronic
circuits [1]. Due to its electrical properties, we can utilize a multi-frequency lock-in ampli-
fier (Zurich Instruments HF2A, Zurich, Switzerland) to measure the impedance response of
beads coupled with different DNA amounts [1]. In this instrument, when a paramagnetic
bead or particle passes through the sensing region, it interferes with the AC electric field
between two electrodes, and consequently, a momentary increase in impedance can be
observed [5]. Nowadays, an impedance-based cytometer can be implemented for the detec-
tion of bacteria, DNA amount per bead, cancer cells, and many other biological cells [5–9].
Many studies have shown the importance and application of microfluidic biosensors as a
fast, reliable, and rapid platform for early-stage disease detection, as well as many other
applications. For example, Mok et al. studied the development of a microfluidic platform
to detect proteins [10]. Mahmoodi et al. developed a biosensor platform to detect cortisol in
in small volumes of human serum [11]. The goal of this study was to create a cost-effective
point-of-care and self-testing platform. Furniturewalla et al. developed a platform to count
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the number of blood cells from a pin-prick blood sample pipetted into a standard microflu-
idic PDMS chip [12]. Xie et al. developed a biomolecular sensing method that utilizes an
array of nanoscale wells functionalized with antibodies. The method monitors changes
in ionic resistance as the target protein binds inside the wells [13]. On the other hand,
the development of microfluidic chips and experimental design often involves extensive
investment and time effort, and it is prone to user bias. In this paper, we propose a machine
learning (ML)-based model to address this difficulty.

Artificial intelligence (AI) has grown rapidly over the past decade and can be widely
used in many aspects of biological information, ranging from drug discovery prediction to
cancer prognosis [14–18]. Artificial intelligence employs a variety of statistical methods to
detect and extract key features from complex datasets. In addition, AI provides a robust
framework for creating feature representations from high-dimensional inputs and general-
izing knowledge to new scenarios [19]. In recent years, the integration of machine learning
methods with microfluidics has become a popular area of research. The combination of mi-
crofluidics, which generates large amounts of data, with machine learning for the analysis
of these complex data sets represents a promising development in biotechnology [19–24].
To date, many studies have shown the application of machine learning to impedance
cytometry. For example, Caselli et al. demonstrated the ability of neural networks to
decipher impedance cytometer signals. They utilized an experimental dataset to predict
single cell features, which were then used as inputs for classifier models [25]. Patel et al.
applied a designed biosensor for detecting hemoglobin biomolecules with high sensitivity
using polynomial regression models [26]. Schütt et al. applied a k-means algorithm for
subpopulation clustering of peripheral blood mononuclear cells, based on peak voltage
and phase [27]. As another example, Honrado et al. developed an ML-based method of
classification of impedance data to distinguish and quantify cellular subpopulations at the
early apoptotic versus late apoptotic and necrotic states [28]. Ahuja et al. used a support
vector machine (SVM) classifier to discriminate between live and dead breast cancer cells
by using the peak impedance magnitude and phase [29]. Feng et al. used fully connected
networks to estimate three biophysical parameters based on the peak impedance amplitude
at four frequencies, allowing them to classify five cell types [30]. Meanwhile, Sui et al. used
a combination of multi-frequency impedance cytometry and supervised machine learning
to classify particle barcodes [31].

Given the clinical significance of DNA, here we examine if a machine learning ap-
proach could facilitate and expedite the process of identifying the DNA amount per bead.
In this analysis, six different concentrations of DNA, with a fixed length of 300 bp (base
pairs), are coupled with 2.8 μm paramagnetic beads and passed through a custom-made
microfluidic channel. Then, electrical measurements within the microfluidic chip are ob-
tained to construct a machine learning model. The machine learning algorithm learns the
relationship between the electrical measurements as an input and the DNA concentration
per bead as an output. As a result, the machine learning approach could learn from histori-
cal data obtained from experiments to predict new output values [32]. With this technique,
a trained model can be generalized to predict the DNA amount per bead for beads with
an unknown DNA concentration. The objective of this study is to leverage the electrical
measurements obtained from the Zurich Instruments tool, such as the frequency, peak
intensity, and phase change of the peak intensity, to predict the DNA concentration. In this
work, we proposed a novel regression approach to predict the amount of DNA by using
electrical measurement features. To quantify the performance of the specified model, three
types of machine learning approaches were constructed: classification, regression, and a
hybrid model. In our analysis, we benchmarked 10 different deep learning architectures
from simple to complex on four figures of merit (FOMs), namely, accuracy and error for
the classification method, R_Squared, and the mean square error (MSE) of the regression
model. Furthermore, we combined the best architectures from classification and regression
to propose a novel hybrid regression model with an R_Squared value of 97%. The trained
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hybrid regression model may provide a general platform to predict the DNA amount per
bead from electrical measurements obtained from the Zurich Instruments tool.

2. Materials and Methods

2.1. Experimental Setup

As was described, nucleic acid quantification plays a major role in research and clinical
study, ranging from the diagnosis of infectious diseases to food safety assurance and so on.
Nucleic acids also have important biomarkers for biological studies and diagnosis [33]. In
this experiment, a novel technique to identify DNA fragments is introduced. This technique
identifies DNA fragments based on their frequency-dependent dielectric properties. In this
experiment, DNA fragments which are coupled on micron-sized particles pass through
a microfluidic channel made of polydimethylsiloxane (PDMS). The microfluidic PDMS
channel is the first layer of the device. The second layer is a pair of electron beam-deposited
reusable coplanar gold electrodes on a fused silica substrate. The microfluidic channel is
30 μm wide and 15 μm high, with a micron-sized electrode. The electrodes are 20 μm in
width, and the gap between the two electrodes is 30 μm. We should point out that we
experimentally verified that the sensitivity of the microfluidic channel increases as the
width of the channel decreases and approaches the size of the bead. However, this increases
the risk of clogging in the channel as it becomes too small. We designed the microchannel
with the aforementioned configuration, which is large enough to minimize clogging and
small enough to obtain sufficient sensitivity during measurements. Figure 1A represents
the image of device which is made from PDMS and Figure 1B illustrates the microscopic
image of the channel [5].

We compared our method to two commercially available technologies: gel elec-
trophoresis and real-time PCR (also known as quantitative PCR or qPCR). Both of these
are commonly used for DNA detection and sizing. The standard detection limit of gel
electrophoresis using DNA bound to ethidium bromide is between 0.5 and 5.0 ng/band.
However, with optimized gel electrophoresis technology, the Agilent Bioanalyzer can detect
PCR products at concentrations as low as 0.1 ng/band and complete the analysis within
30 min. Real-time PCR has a detection limit of several copies of a DNA molecule per
microliter or several fg/μL. However, it is relatively slow, with a sample processing time of
over an hour, and has limitations in terms of DNA fragment size (e.g., amplicon size should
be <200 bp). Furthermore, real-time PCR is costly and complex due to the need for simulta-
neous thermal cycling and fluorescence detection. It has limited multiplexing capabilities,
making it difficult to miniaturize for portable applications. In contrast, our impedance
sensor in combination with microfluidic technology has the potential for multiplexing
and portability.

In this experiment, six different quantities and concentrations of DNA with a fixed
length of 300 bp are integrated with a 2.8 μm paramagnetic bead and pass through a
custom-made microfluidic chip. Three different types of magnetic beads (M270, M280, and
C1) are tested. Based on the properties and the nature of our sensor, we chose to proceed
with the M280 type (2.8 μm paramagnetic bead).

In this study, purified biotinylated DNA of a known quantity was serially diluted to
obtain the desired concentrations. This DNA was then mixed with the beads to create DNA
bound to the beads. The number of DNA molecules per bead is only an estimated average
based on measurements of approximately 500 beads. This estimation was made after testing
approximately 2000 beads per sample. The DNA-binding efficiency is determined by the
very high binding affinity of the streptavidin–biotin interaction (Kd =10−15). The beads
contain streptavidin, and the DNA is biotin-labeled. These beads have a binding capacity of
10 ug ds-DNA per mg of beads. This knowledge was used when combining various DNA
amounts with the beads. In this study, the lower limit of detection identified is 0.0039 fmol,
and the maximum DNA concentration is 0.19 fmol [5]. For testing the sensitivity of the
sensor, we diluted a 1-microliter aliquot of the DNA-coated beads in 60 μL of phosphate-
buffered saline (PBS) for detecting small amounts of DNA. PBS, which has a relatively
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high salt concentration and high conductivity, has been shown to enhance the sensitivity
of impedance measurements. Our sensor is capable of quantifying DNA fragments at
high accuracy and precision at the femtomolar level and over a 100-fold dynamic range.
Figure 1C represents the streptavidin–biotin linkage between DNA and beads. In this
method, the target DNA was generated by using biotinylated DNA oligonucleotides and
PCR (polymerase chain reaction) [5]. The procedures are as follows:

1. Biotinylated oligos was synthesized by IDT (Coralville, IA, USA), which is used to
amplify different fragment sizes of DNA; in this case the fragment size is 300 bp.

2. The PCR product was purified by using a Qiaquick PCR purification kit to remove
any unincorporated biotinylated oligos.

3. The PCR was eluted in water and quantified for immobilization to the streptavidin
coated on 2.8 μm (M280) beads.

4. The purified biotinylated DNA was immobilized with beads in room temperature for
15 min using gentle rotation at 2000 rpm.

5. The biotinylated DNA-coated beads were separated on a magnet and washed
subsequently.

6. Finally, the washed biotinylated DNA-coated beads were resuspended in 10 μL of wa-
ter. Different concentrations of DNA were bound to paramagnetic beads (Table 1) [5].

Table 1. Model outputs [5].

DNA Length DNA Amount per Bead

Bare bead 0
300 bp 1.54 × 10−4

300 bp 7.69 × 10−5

300 bp 1.54 × 10−5

300 bp 1.54 × 10−6

300 bp 1.54 × 10−7

300 bp 1.54 × 10−8

Multi-frequency impedance cytometry techniques have been performed to detect the
impedance difference of beads integrated with different amounts of DNA. The impedance
response was measured at 8 different frequencies simultaneously by using a multi-frequency
lock-in amplifier (Zurich Instruments HF2A, Zurich, Switzerland). When an AC voltage is
applied between electrodes, a flowing particle or cell perturbs the AC electric field, which
results in a momentary increase in the impedance/decrease in the voltage.

In this experimental setup, the first electrode is excited with combination of 8 fre-
quencies ranging from 100 kHz to 20 MHz, and the second electrode is connected to the
transimpedance amplifier. Figure 1E shows representative multi-frequency time series
data of bare magnetic beads in voltage. The voltage is normalized for a straightforward
comparison. For testing of 300 bp DNA beads, 6 different concentrations of DNA were
measured to study the effect of the different amounts of DNA on the frequency. To compare
the impedance response from different DNA concentrations, the impedance of bare beads
with no DNA was measured in the same experiment. Figure 1F shows representative time
series data comparing bare magnetic beads to DNA at the highest concentration (500 kHz
frequency). In this figure, as well, the voltage is normalized for better comparison.

Table 1 showed the different concentrations of DNA coupled with paramagnetic
beads. To compare the impedance response of different concentrations of DNA integrated
with paramagnetic beads, we performed the same experiment with bare beads. In this
experiment, 2.8 μm paramagnetic beads with no DNA concentration passed through the
microfluidic channel, and the impedance response of a bare bead is obtained.
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Figure 1. Overview of the process. (A) Image of device. (B) Microscopic image of channel and
electrodes. (C) The sample preparation after binding of biotinylated DNA to paramagnetic beads.
(D) The schematic diagram of detection. (E) Representative data of bare paramagnetic beads. (F) Rep-
resentative data of bare paramagnetic beads and beads integrated with most-concentrated DNA.

The results showed that there is positive relationship between DNA amounts per bead
and the impedance peak response (IPR). As DNA concentration per bead increases, the
IPR increases as well. These findings showed the positive correlation of DNA amounts
attached to beads with IPR. In addition, increased DNA amounts resulted in a higher
surface potential of the beads, which was associated with a larger impedance difference
compared to the control bare bead. The details of the nucleic acid sample preparation
and the impedance chip preparation, along with the experimental procedures, are those
described in the work by Sui et al. [5].

As we described, in this experiment 6 different DNA concentrations coupled to para-
magnetic beads are examined. In addition, it is very difficult to bind very small inputs of
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DNA to beads. Given the need for testing small DNA amounts in many samples, there is a
utility for novel machine learning approaches for accurate and high-throughput DNA quan-
tification. Furthermore, by proposing a general regression model, we can predict unknown
DNA concentrations with a fixed length of 300 bp coupled to a bead. The combination
of microfluidics, which generates vast amounts of complex data, with machine learning
methods represents an emerging opportunity in biotechnology. On the other hand, the de-
velopment of microfluidic chips and experimental design is expensive and time-consuming,
and the method is prone to bias by the user. In the next section, we propose a novel hybrid
regression model to address this difficulty. All the electrical properties obtained from the
Zurich Instruments tools (including frequency, imaginary and real part of peak intensity)
are leveraged to identify correlations between these properties and the amount of DNA per
bead. Machine learning tools are then used to develop a general model and platform for
predicting nucleic acid concentration.

2.2. Dataset

This section explains the proposed approach to predicting the DNA amount per
bead using experimental data and leveraging deep learning methods. Figure 2 shows
an overview of the proposed method. In this study, the dataset was obtained from a
custom-based microfluidic chip to detect DNA molecules bound to beads by measuring the
impedance peak response (IPR) at multiple frequencies [5]. The proposed machine learning
method will be trained on the electrical signals obtained from the biosensor with a specific
configuration of the channel and electrode size. It is anticipated that increasing the size
of the channel decreases the sensitivity of the biosensor. This means that the passage of
beads or particles through the electrodes will result in weaker signals, i.e., smaller peaks
in the impedance signals. This makes it more difficult to distinguish the passage of beads
with very small amounts of DNA from the signal noise. Consequently, the accuracy of
the machine learning method will be negatively affected. In the case of using another
configuration, it would be more accurate to retrain the model based on the data obtained
from the sensor with the new configuration.

Figure 2. Overview of the proposed framework for prediction of DNA amount per bead.
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The impedance response was measured simultaneously at 8 different frequencies
ranging from 100 kHz to 20 MHz [5]. This dataset contains 105,104 data points collected
on different days. For each piece of data, the frequency; the real, imaginary, and absolute
values of the peak intensity; and the phase change of the peak intensity were measured
to calculate the DNA amount per bead. All these features are used as input for the neural
network model. In this work, our goal is to find a relationship between the aforemen-
tioned measurement features and the DNA amount per bead. To accomplish this, we
explored three different machine learning approaches: classification, regression, and a hy-
brid model. The hybrid model is a combination of the best architecture of the classification
and regression models.

The proposed model consists of three main steps, which are shown in Figure 2. The
frequency; real, imaginary, and absolute values of the peak intensity; and the phase change
of the peak intensity were recorded in measurements and will be used as input features.
The output is the DNA amount per bead. In total, 7 outputs were examined containing
6 different concentrations of DNA from low to high coupled to paramagnetic beads and
one control bead, which is a bare bead (i.e., a bead with no DNA concentration).

2.3. Data Preprocessing

The main goal of data preparation is to guarantee the quality of the data before
applying them in any type of machine learning algorithm [34]. Before employing data
in any learning algorithms, each input and output feature was normalized. Normalizing
data generally prevents any variable from dominating the output values and boosts the
accuracy of the model [35]. The most common normalization methods used in machine
learning algorithms include min–max scaling, the standard score (z-score), and decimal
scaling [36]. In this study, we applied two common normalization methods: the standard
score and min–max scaling. First, we applied standard score normalization, and then we
normalized the dataset between 0 and 1 (min–max scaling). In the standard score (z-score)
normalization, the values for a feature A are normalized based on the mean (i.e., average)
and standard deviation of A [34]. A value vi is normalized to v′i by computing:

v′ i =
vi − A

σA
(1)

where A and σA are the mean and standard deviation of attribute A, respectively [26]. Then,
we applied min–max scaling normalization to our input features. In this technique, the
attribute will be rescaled from its domain to a new range of values. In our case study, the
input features are normalized in the (0, 1) range [36], where the following relation is used:

f(v) =
v − min(v)

max(v)− min(v)
(2)

Dataset normalization has a great effect on preparing the input data to be suitable for
training and improving the accuracy of the output [35]. Many studies have employed more
than one normalization method on input data before feeding data to any neural network’s
algorithms to help comparing two or more datasets with different scales [37–41].

2.4. Target Preparation

Different quantities of DNA with a fixed length of 300 bp were tested in the ex-
periment [5]. The output of our model is the DNA amount per bead for tested beads,
including the bare bead and beads bonded with the least-concentrated DNA to those with
the most-concentrated DNA, which are exponentially distributed. There is a total number
of 7 outputs shown in Table 1. In situations where the data are distributed exponentially,
taking a log function is one common way to normalize the data [42]. Therefore, we normal-
ized the output features by using logarithmic transformation. In the next step, the standard
score and min–max normalization are applied, which were described in Section 2.3.

33



Biosensors 2023, 13, 316

2.5. Model Training

After feature extraction and preprocessing of data, 10 different deep learning archi-
tecture models are implemented to evaluate the performance of the approach. We employ
classification, regression, and a hybrid model. The scikit-learn library is used to build the
models in Google Colab using Python [43]. The data are shuffled randomly, and 30% is
used for testing, while the rest is used for training. The model training was stopped after
5000 epochs (iterations) for feature selection, which is described in Section 3.1, and after
10,000 epochs for deep learning models both in classification and regression.

Before training the model, the most important task is to determine the combination
of best features for DNA amount per bead prediction [40,44]. Moreover, the best number
of features is chosen for regression and classification analysis. In each part of the analysis,
10 different models consisting of different numbers of hidden layers and neurons were
implemented to examine the performance of different architectures. The best architecture
giving the highest test and train accuracy and the lowest error was used as the best model
for the classification part.

R_Squared and mean square error (MSE) are statistical parameters used to evaluate
the performance of regression models [45]. The best deep learning architecture giving the
highest R_Squared and lowest MSE was selected as the best candidate model. The hybrid
model (Figure 3) uses the best architecture of the classification and regression models to
train the model. The hybrid model is used to enhance the performance of the regression
model. The prediction results of the classification model and original features are used
as the input to the regression model. In other words, the 7 outputs from the classification
method, combined with the 8 original input features, result in a total of 15 features that
serve as the input to the candidate regression model. The output of the regression model is
the DNA amount per bead.

 

Figure 3. Hybrid model (combining the best architecture of the classification and regression models).

3. Results

3.1. Feature Selection

We first studied the effect of the number of features on the performance of the classifi-
cation and regression models, benchmarking their performance on four figures of merit
(FOMs) in terms of accuracy and error for classification, and R_Squared and MSE for
regression analysis. The model training stopped after 5000 epochs. The deep learning
model consists of 5 hidden layers with 70, 60, 30, 20, and 10 neurons in each layer. For the
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input features, we evaluated two different datasets, including those with five and eight
features. In the first dataset for DNA amount per bead prediction, five features consisting
of frequency; the real part, imaginary part, and absolute value of the peak intensity; and
the phase change of the peak intensity are used. For the second dataset, in addition to
the frequency and phase change of the peak intensity, we divided each exponential input
feature (real, imaginary, and absolute value of the peak intensity) into two parts: base
and power. Figure 4 compares the performance of the classification model trained on the
five-feature and eight-feature datasets. The results show that with the second dataset,
which includes eight features, can lead to a more than 16% improvement in both training
and testing accuracy. Furthermore, the train and test errors markedly decreased.

Figure 4. Effect of feature selection on FOMs (%).

The effect of the number of features on the performance of the regression model
was evaluated by the R_Squared and mean square error (MSE) values. The results are
shown in Figure 5, which indicates that the dataset with eight features yields better results.
Specifically, the regression model improved by around a 33% increase in R_Squared and
around a 7% decrease in the MSE. Overall, both the classification and regression models
performed better on representative FOMs; therefore, the dataset with eight features is
chosen as the input for the following analysis.

(a) (b)

Figure 5. Effect of feature selection on (a) R_Squared with respect to number of epochs; (b) mean
square error (MSE) with respect to number of epochs.
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3.2. Classification

To achieve robust network training, reduce the risk of overfitting, and increase the
network generalization capabilities, we constructed 10 different deep learning architectures,
from simple to complex. The implemented architectures are summarized in Table 2. Deter-
mining the optimal number of neurons and hidden layers is a very crucial step in deciding
the optimal deep learning architecture [46]. Using too many neurons and hidden layers
can result in overfitting by the model. On the other hand, having too few neurons and
hidden layers may result in underfitting [46]. There are several methods and approaches to
tuning the hyperparameters such as the number of neurons, activation function, number of
layers, batch size, and epochs of deep learning algorithms. The possible approaches for
finding the optimal parameters are hand or manual tuning, grid search, random search,
Bayesian search, and AutoML. Grid search and random search are the most widely used
strategies for hyperparameter optimization. In the grid search method, the domain of the
hyperparameters is divided into a discrete grid, and the performance of every combination
of values will be calculated. The point of the grid that maximizes the average value in
cross-validation is the optimal combination of values for the hyperparameters [47]. While
grid search evaluates the performance of every possible combination of hyperparameters to
find the best model, random search only selects and tests a random combination of hyper-
parameters. Bergstra et al. [47] demonstrated that the performance of the random search is
more efficient for hyperparameter optimization than trials on a grid. The Bayesian method,
in contrast to random and grid search, builds a probability model to find the next set of hy-
perparameters which performs best on a probability function [48]. In other words, Bayesian
optimization considers past evaluations when choosing the hyperparameter set to evaluate
the next set of parameters [48]. All the aforementioned techniques are dedicated to special
cases; as an example, grid search is only reliable for low-dimensional input spaces [47]. On
the other hand, it was shown that random search results in better sampling efficiency in
high-dimensional search spaces compared to grid search [49]. Bayesian optimization might
potentially trap the model at a local optimum. In this analysis, manual tuning has been
employed to determine the hyperparameters of the deep learning model to address these
difficulties. In addition, manual tuning provides us the behavior of hyperparameters and
reduces the runtime of the process. Therefore, we employed 10 architectures and analyzed
the effect of the numbers of neurons and hidden layers on FOMs.

Table 2. Deep learning models.

Model Number Number of Hidden Layers Number of Neurons in Each Layer

1 2 10,10
2 2 20,20
3 3 20,20,10
4 3 30,20,10
5 4 40,30,20,10
6 5 60,50,30,20,10
7 5 70,50,40,20,10
8 5 80,60,40,30,20
9 6 100,80,60,50,20,10

10 6 100,80,80,60,30,20

The test and train accuracy of each architecture are evaluated. The training procedure
was stopped after 10,000 iterations for all models. In addition, the ReLU activation function
was used, which is the most commonly used activation function in deep learning models.
ReLU stands for rectified linear unit and is an activation function commonly used in neural
networks. It is a simple function that outputs the input directly if it is positive and outputs
zero if it is negative. Figure 6 represents the train and test accuracy of each architecture.
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Figure 6. Effect of model complexity on train and test accuracy.

Among all architectures, model number 9 achieved the highest accuracy, which is
around 75% on the training data and around 74% on the test data. It is also worth men-
tioning that the selected model performed well on train and test data. This means that the
model generalizes well from observed data (train data) to predict unseen data (test data),
and no overfitting occurs [50]. Therefore, we selected model number 9 as the representative
model for classification. Table 3 shows the configuration matrix of the representative model.
To evaluate the performance of the representative model, the following metrics are used:
accuracy (ACC), true positive rate (TPR), true negative rate (TNR), false negative rate
(FNR), and false positive rate (FPR). These measures are computed using the following
equations:

Accuracy (ACC) =
TP + TN

TN + TP + FN + FP
(3)

Sensitivity (TRP) =
TP

TP + FN
(4)

Specificity (TNR) =
TN

TN + FP
(5)

Fallout (FPR) =
FP

TN + FP
(6)

False Negative Rate (FNR) =
FN

TP + FN
(7)

where TPs (FPs) refer to the number of correct (incorrect) predictions of outcomes in the
considered output class, whereas TNs (FNs) refer to the number of correct (incorrect)
predictions of outcomes in any other output classes [14]. The below table shows the
accuracy (ACC), true positive rate (TPR), true negative rate (TNR), false positive rate (FPR),
and false negative rate (FNR) for each individual output (class). For each individual class,
we achieved above 88% accuracy.

Table 3. Confusion matrix of representative model.

1 2 3 4 5 6 7

ACC 0.97 0.91 0.89 0.89 0.88 0.97 0.97
TPR 0.43 0.87 0.80 0.87 0.51 0.8 0.78
TNR 0.99 0.92 0.92 0.89 0.93 0.99 0.99
FPR 0.004 0.07 0.07 0.10 0.06 0.07 0.09
FNR 0.56 0.12 0.19 0.12 0.48 0.99 0.21
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3.3. Regression

Similar to classification, we constructed 10 different neural network architectures
using the same models previously shown in Table 2. Table 4 displays the R_Squared and
MSE of each model. According to the results given in Table 4, it can be concluded that
among all architectures, model number 8 achieved the highest R_Squared for both the train
and test data. Therefore, model number 8 is selected as the representative architecture for
the regression model. Figure 7 shows the results obtained by the representative regression
model on the test and train data. In this figure, the average DNA amount per bead
prediction for each of our seven outputs is plotted versus its corresponding ground truth.
The first point in Figure 7 represents the bare bead prediction, and the next six points
represent the beads coupled with DNA concentrations from the lowest to the highest.
This figure shows that there is a relationship between electrical measurements and DNA
concentrations coupled to paramagnetic beads.

Table 4. Effect of model complexity on R_Squared and MSE.

Model MSE Train MSE Test R2 Train (%) R2 Test (%)

1 0.3077 0.3077 67.61 67.98
2 0.2959 0.2954 57.34 56.83
3 0.2821 0.2873 72.64 71.26
4 0.2796 0.2811 75.39 74.76
5 0.2615 0.2786 90.69 90.6
6 0.2286 0.2481 93.34 93.13
7 0.2281 0.2373 91.89 92.16
8 0.2254 0.232 96.2 96.25
9 0.2117 0.2338 94.01 94.29
10 0.2087 0.2198 95.23 95.07

 
(a) (b) 

Figure 7. Results of representative regression model on (a) train and (b) test data.

A linear fit was applied to these results, and an R_Squared of around 96% is achieved
for both the train and test data, with a maximum standard error of 0.008. For an ideal
model, the slope of the trend line should be equal to one, as the prediction should be equal
to the ground truth. Here, the slope of trend line is around 0.47 indicating the error between
the prediction and ground truth values. This motivated us to design a hybrid model to
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improve the performance of the regression model. In the next section, the architecture of
the proposed hybrid model will be discussed.

3.4. Hybrid Model

The hybrid model shown in Figure 3 consists of the representative models of classifi-
cation and regression combined together to increase the accuracy of the regression model.
Model number 9 from the classification models (Table 2) is selected to be combined with the
representative regression model (model number 8 from Table 2). In the resulting model, the
output neurons of the classification model and original features are used as input features
for the regression model. In this case, the eight aforementioned features were fed into the
representative classification architecture, which resulted in seven categorical outputs. Then,
these seven outputs with the eight original features served as the inputs of the candidate
regression model. Finally, the regression model output is the DNA amount per bead.

The hybrid model is used to enhance the performance of regression. Figure 8 shows
the results of the hybrid model on the train and test data, with an R_Squared of around
97%, a slope of around 0.68, and a maximum standard error of 0.005. Similar to Figure 7,
the average DNA amount per bead prediction of each output class is plotted versus its
corresponding ground truth. Comparing the hybrid model (Figure 8) and regression model
(Figure 7), it can be seen that the slope of the model is improved by around 21%, by knowing
the fact that the ideal slope is 1. In addition, the R_Squared value for the train and test data
is improved.

 

(a) (b) 

Figure 8. Representative hybrid model on (a) train and (b) test data.

To date, many studies have shown the effectiveness of using a hybrid model to
enhance the performance of various systems. For instance, Liaqat et al. [44] proposed a
hybrid model approach that combines seven classification algorithms with deep learning
models to identify posture detection. In this study, the outputs of the ML classifiers and
deep learning models were used as inputs for a convolutional neural network (CNN)
architecture. The experimental results demonstrated that the proposed hybrid approach
resulted in a better performance compared to traditional machine learning methods [44].
Chieregato et al. [51] also proposed a hybrid model that integrates machine-learning with
deep learning methods and is designed to be used as a tool to support clinical decision-
making. The proposed hybrid model is capable of predicting COVID-19 outcomes from
CT images and clinical data. The reason for combining several state-of-the-art algorithms
to build hybrid models is to enhance the accuracy of the model and increase its capability
to tolerate significant data incompleteness [52]. However, complexity arises when one or
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more deep learning algorithms are combined, so careful consideration needs to be given
to the selection of algorithms with different architectures to achieve better performance.
Compared to conventional models, the hybrid model may take longer to train or tune.

By employing a hybrid regression model on data from impedance cytometry mea-
surements of DNA, we have observed an 8% improvement in R_Squared compared to
the linear regression model reported by Sui et al. [5]. The results presented in this work
demonstrate the ability of the proposed neural network to use the information embedded
in raw impedance data to predict the amount of DNA concentration coupled to beads.
Artificial intelligence (AI) approaches provide a promising new direction to efficiently
extract the information embedded in the electrical signals. From an application point of
view, machine learning algorithms enable the development of intelligent microfluidic plat-
forms. These platforms are operated by data-driven models and characterized by increased
automation [19]. The results presented in this work demonstrate the ability of neural
networks to efficiently predict the amount of immobilized DNA that is fixed in 300 bp. In
developing our methods, three network types were considered: classification, regression,
and a hybrid model. After selecting the best features, we constructed classification and
regression models with optimized numbers of hidden layers. In the next step, a hybrid
model was presented to improve the R_Squared of the model. The use of AI in analyzing
impedance signals could present new challenges and opportunities for next-generation
impedance cytometry systems.

4. Conclusions

In this study, we used a machine learning approach to predict the DNA amount
per bead by leveraging electrical measurements from a Zurich Instruments tool. Multi-
frequency impedance cytometry was performed to measure the electrical impedance re-
sponses at 8 different frequencies, ranging from 100 kHz to 20 MHz. In this experiment 6
different DNA concentrations were coupled to paramagnetic beads and passed through
the microfluidic channel. To account for device-to-device variation, the response of bare
streptavidin-coated paramagnetic beads was studied.

In the next step, we employed data from impedance cytometry measurements of DNA
immobilized on paramagnetic beads to develop deep learning methods that can predict
the amount of immobilized DNA that is fixed in 300 bp. The dataset used in this study
consists of around 105,000 pieces of data with five electrical features. As a first step, we
performed feature selection to identify the best combination of features. It was shown that
when the base and power for the real, imaginary, and absolute values of the peak intensity
were separated, better performance was achieved. Therefore, we continued our analysis
using eight features.

In the next step, three different machine learning methods were presented, namely,
classification, regression, and a hybrid model, to predict the DNA amount per bead. For
classification and regression, underfitting and overfitting were studied by investigating
10 different deep learning architectures. For both classification and regression problems,
the architecture with the highest performance was selected as the representative model. We
were able to achieve around 75% accuracy for classification and an R_Squared of around
96% for regression. For the regression model, the average prediction values were plotted
against ground truth, with a slope of 0.47 for the trend line.

To improve the performance of the regression model, a novel hybrid regression model
was presented. In this approach, the best deep learning architectures for classification and
regression were combined to predict the DNA amount per bead. The results showed that
the proposed hybrid approach achieved a better performance as compared to the previous
representative of regression models. In comparison to the regular regression model, the
slope of the trend line improved by around 21%. The outcomes presented in this study
demonstrate the ability of the proposed neural network to use the information embedded
in raw impedance data to predict the DNA concentrations coupled to beads.
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In future work, the focus will be on using automotive approaches to tune hyperpa-
rameters of deep learning methods, such as grid search, random search, and Bayesian
search. The hybrid model has a longer training runtime than traditional machine learning
algorithms, so further improvement and optimization are necessary to reduce the time cost.
Additionally, testing different configurations of microfluid channels in terms of size and
structure will be considered to assess the impact on the model’s performance and create a
more generalized model.
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Abstract: In this study, polypyrrole nanotubes (PPy-NT) and gold nanoparticles (AuNPs) were
electrochemically synthesized to form a hybrid material and used as an electroactive layer for the
attachment of proteins for the construction of a high-performance biosensor. Besides the enhancement
of intrinsic conductivity of the PPy-NT, the AuNPs act as an anchor group for the formation of
self-assembly monolayers (SAMs) from the gold–sulfur covalent interaction between gold and
Mercaptopropionic acid (MPA). This material was used to evaluate the viability and performance of
the platform developed for biosensing, and three different biological approaches were tested: first,
the Avidin-HRP/Biotin couple and characterizations were made by using cyclic voltammetry (CV)
and electrochemical impedance spectroscopy (EIS), wherein we detected Biotin in a linear range of
100–900 fmol L−1. The studies continued with folate group biomolecules, using the folate receptor
α (FR-α) as a bioreceptor. Tests with anti-FR antibody detection were performed, and the results
obtained indicate a linear range of detection from 0.001 to 6.70 pmol L−1. The same FR-α receptor
was used for Folic Acid detection, and the results showed a limit of detection of 0.030 nmol L−1 and
a limit of quantification of 90 pmol L−1. The results indicate that the proposed biosensor is sensitive
and capable of operating in a range of clinical interests.

Keywords: modified electrode; impedimetric biosensor; folate

1. Introduction

The development of electrochemical biosensors has been extensively explored so far.
With these devices, the selective detection of low concentrations of different analytes, such
as contaminants and biomolecules, is performed in a rapid and straightforward way; in
addition, other features are highly desirable, such as low-cost, easy operation, portability,
and no need of further analytical steps, as these are key parameters to obtaining an advan-
tageous alternative to the traditional monitoring methods, which are often expensive and
also not accessible to the entire population [1,2].

The construction of a high-performance electrochemical biosensor relies on a previous
study on the material interface and transduction. Different assemblies of materials and
architectures are possible in terms of nanomaterials, metals, and biomolecules to enhance
both detection and quantification [3,4]. Special care must be taken on the biomolecule
immobilization on the electrode surface, as this experimental step, consisting of the biore-
ceptor attachment needing to be stable, preserves its conformation and maintains a good
orientation to interact with the analyte and provides a reliable signal of recognition [5].

Many different methodologies have been described along the past years [6–8], and in
this context, the use of conducting polymers (CPs) and nanoparticles as hybrid synergist
materials presents several advantages, not only for biosensors but for any electrochemical-
based technology [9–11]. Among CPs, polypyrrole (PPy) plays an important role in elec-
trode modification, as it can be further chemically prepared to attach biomolecules [7,12].

Biosensors 2022, 12, 970. https://doi.org/10.3390/bios12110970 https://www.mdpi.com/journal/biosensors
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For biosensing, gold nanoparticles (AuNPs) are widely employed, as they present some
interesting advantage based on biocompatibility, chemical affinity with sulfur ending
molecules, besides the intrinsic metallic conductivity, which represents a rapid and reliable
electrochemical transduction signal [13–15]. This last point is a key feature for the devel-
opment of impedimetric biosensors which presents a remarkable sensitivity of detection;
thus, it is possible to obtain trustable results in different stages, even early periods, of any
disease [16,17]. Besides that, the impedimetric sensor proposed herein depends greatly on
the better accuracy on the measure of the electric resistance of the transducer, so the higher
the conductivity, the better will be the analytical parameters.

The folate group molecules have been found to possess different biological functions,
such as cellular regulation, DNA synthesis, reparation, and methylation. It is important
to adequately maintain the folate levels, as cardiovascular diseases, anemia, embryonic
disorders, and various types of cancer are highly related to those levels [18–20]. Mammals
do not synthetize folate, so its ingestion as vitamin B9 controls the adequate concentration
in organisms [21]. The absorption of folate is performed by three different mediators: the
reduced folate carrier (RFC); the proton-coupled folate transporter (PCFT); and the folate-
binding proteins (FBPs), e.g., the folate receptor (FR-α) [22,23]. The interaction between
FA and FR-α has a high specificity (KD = 10−9 mol L−1), so this strong interaction can
be explored for the biosensor transduction mechanism. Recent studies indicate that the
normal levels of FA in the human serum are around 11.3–34.0 nmol L−1, emphasizing
the need for a highly sensitive biosensor [24,25]. In this study, we developed a hybrid
nanomaterial formed by polypyrrole nanotubes and gold nanoparticles, electrochemically
synthesized in a rapid and straightforward methodology. This modified electrode was
employed as a platform to build up the well-known self-assembly monolayer (SAM) based
on thiol chemical bonds and the attachment of biomolecules for further detection and
quantification, using electrochemical impedance spectroscopy. All steps were properly
characterized as well.

2. Materials and Methods

2.1. Reagents and Solutions

All solutions were prepared with ultrapure water (ElgaLab water 18 MΩ cm−1).
Pyrrole (PI, Aldrich, San Luis, MO, USA) was distilled before use. Methyl orange (MO,
Aldrich), nitric acid (HNO3, Synth), gold chloride trihydrate (III) (HAuCl4.3H2O, Aldrich),
ethylenediaminetetraacetic acid (EDTA, Aldrich), and potassium chloride (KCl, Aldrich)
were used as received, without any further purification step. Mercaptopropionic acid
(MPA, Aldrich), N-ethyl-N-(3-dimethylaminopropyl) carbodiimide (EDC, Aldrich), N-
hydroxysuccinimide (NHS, Aldrich), and amino acetic acid (Glycine, Aldrich) were kept in
a refrigerator at 5 ◦C. The biological samples, Avidin/Biotin couplings, avidin conjugated
with horseradish peroxidase (Avidin-HRP, Abcam, Cambridge, UK), anti-avidin antibody
(Biotin, Abcam), recombinant human folate binding protein (FBP, Abcam), and anti-folate
binding protein antibody (FBP-Ab, Abcam), were kept in a refrigerator at 5 ◦C.

2.2. Characterization and Electrochemical Measurements

For the electrochemical experiments, Metrohm DropSens μStat-i 400s potentiostat
was employed. The EIS and CV were performed in PBS buffer 0.1 mol L−1 at pH 7.4; as
the reference electrode, we used Ag/AgCl/KClsat, and platinum wire served as a counter
electrode. The working electrode was 316 steel mesh–400 mesh, previously cleaned by
immersion in ethanol and ultrapure water. The spectroscopic and microscopic characteriza-
tions were performed in UFPR Electronic Microscopy Center (CME-UFPR), with Tescan
Vega3 LMU equipment and Transmission Electron Microscopy (MET) with JEOL JEM
1200EX-II equipment with 0.5 nm resolution. All experiments were performed in triplicate
to assure homogeneity and reliability of the results.
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2.3. Electrode Preparation and Electrochemical Synthesis of PPy/AuNPs

The electrochemical synthesis of PPy nanotubes was performed in aqueous solution
containing 100 mmol L−1 of pyrrole monomer, methyl orange (MO) 5 mmol L−1, and
8 mmol L−1 KNO3; the pH 3 was adjusted by dropping HNO3 solution. The electro-
chemical synthesis was performed over the steel mesh by potentiostatic method, applying
0.8 V over time, controlling the amount of polymer over the mesh with charge control of
0.5 C cm−2 [26].

The AuNPs deposition into PPy was performed in a solution of 1.0 mmol L−1 HAuCl4,
0.17 mol L−1 K2HPO4, 0.036 mol L−1 Na2SO3, and 0.48 mmol L−1 EDTA. The chemicals
were added in this sequence to avoid the darkening of the solution, due to gold precipita-
tion. The electrodeposition was performed by chronoamperometry, applying −1.1 V vs.
Ag/AgCl/Cl-sat, with charge control of 300 mC cm−2 [27,28].

2.4. Biosensor Construction and Characterization

For biosensor construction, the formation of a favorable environment for the biomolecule
immobilization is necessary. Gold has a strong interaction with sulfur, so organic molecules
with thiol groups can be easily anchored onto the AuNPs surface by stable covalent
bonds [29]. This affinity and stability are explored in SAMs formation, producing an
organized and compatible electrode surface for the immobilization of biomolecules.

The methodology for biosensor construction was the same for all the biological systems
studied. The modified electrode (PPy/AuNPs) was immersed into MPA 1 mmol L−1

aqueous solution for five hours to SAM formation and then was washed in ultrapure water
for 15 min. Thus was followed by activation with 100 and 150 mmol L−1 EDC:NHS aqueous
solution for 20 min. Then it was washed in ultrapure water for 1 min. After activation,
the biorecognition element was immobilized by immerging the electrode in a solution
of the respective biomolecule for 45 min, followed by a cleansing step in PBS for 15 min.
For the complex Avidin/Biotin, both were tested as a bioreceptor in the concentration of
25 μg mL−1. Moreover, in the other two tests evaluated for the folate biomarker, the same
bioreceptor was explored: FBP 8 nmol L−1. The next step was blocking unspecific active
sites with glycine 100 mmol L−1 by submerging the electrode into the glycine solution for
15 min. In Figure 1, the basic steps of the SAM formation are shown.

Figure 1. The SAM formation is due to the covalent interaction between gold and sulfur, which
makes possible biomolecule immobilization through the carboxylic groups.

The detection of the biomolecule analyte followed the same methodology, where the
electrode was immersed in a solution containing the analyte at a known concentration,
followed by a washing step in PBS for 5 min before CV and EIS measurements [28,30].
The impedimetric results were modeled by using the proper equivalent circuit and values
obtained from NOVA software.
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3. Results

3.1. Electrode Modification and Characterizations

The PPy-NT/AuNPs-modified electrodes were characterized by TEM and SEM, as
shown in Figure 2. The nanotube morphology is clearly present and fully covered the
mesh substrate (Figure 2A,B). The AuNPs can be seen in Figure 2C and in more detail in
Figure 2D, using backscattered electron images (Figure 2D); the gold presence was also
corroborated by EDS spectrum (Figure A1). The TEM images show individual AuNPs
(Figure 2E) with very few nanometers spread along the PPy-NT’s surface. Using TEM, it
was also possible to verify the filling of the mesh structure with the polymer nanotubes
(Figure 2F).

 
Figure 2. Representative SEM images from the steel mesh coverage: (A,B) closer approximation of a
wire mesh, (C) the wire-mesh image of secondary electrons of the hybrid PPy/AuNPs, and (D) the
SEM with backscattered electrons. (E,F) TEM representative images from a single nanotube and a
small gap in between the steel mash, respectively.

The electrochemical characterization of modified electrodes relies on two fundamental
techniques, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).
These two must be studied in consonance to obtain valuable information about the electrode
kinetics, adsorption and fouling effects, electron transfer, mass transport effects, steady
state conditions, and so on. For EIS studies, it is important to adopt an equivalent circuit
model to better understand and quantify different processes at the electrode surface; to date,
the Randles modified circuit is very common in the study of conductive-polymer-modified
electrodes [31,32]. For the biosensor proposed herein, the main information obtained by
the EIS technique is associated with the biomolecule interaction, such as antigen–antibody,
a so-called affinity interaction caused by the changes at the interface of the electrochemical
active material, in terms of both charge transfer and double-layer effects [1,5,31].

Electrochemical experiments of CV and EIS were performed to characterize and
compare the proprieties between PPy-NTs- and PPy-NTs/AuNPs-modified electrodes.
Figure 3A shows the CVs for each modified electrode, and it is possible to observe an
increment in the current in the presence of AuNPs. It is important to note that no addi-
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tional redox processes are observed; there is solely an increment of the capacitive current,
indicating an increase of the electroactive surface provoked by the exposure of a large area
of the AuNPs. Figure 3B shows the Nyquist plots of the modified electrodes; they show a
traditional semicircle response that is characteristic of conducting polymers. Clearly there
is a drastic decrease in the semicircle radius in the presence of AuNPs; in general lines,
this behavior indicates an increase in the electroactivity of the interface, thus corroborating
the presence of a metallic structure on a polymeric matrix. The equivalent circuit used
to fit the electrochemical parameters is found in Figure 3C; they can be summarized as
follows: the QDL parameter is related to the energy of the double layer at the interface
electrode/electrolyte, the RCT is the resistance of the charge transfer at the electrode surface,
RS is the resistance of the solution, and QLF deals with the number of interacted ions
inserted within the polymeric matrix.

Figure 3. (A) CV for the electrodes modified with just PPy (black) and PPy/AuNPs (red). The
Nyquist plot is shown in (B) from electrodes modified with PPy (black) and with PPy/AuNPs (red).
The equivalent circuit used to model the EIS results is also inserted as (C).

The experimental results obtained in Figure 3B were modeled according to the equiva-
lent circuit shown in Figure 3C; the results are shown in Table 1. As discussed previously,
there is a significant improvement in the charge transfer in the polymer/electrode interface
with the AuNPs, as indicated by the lower value of RCT. It is important to add that the pres-
ence of a metallic particle itself contributes to the increment of conductivity of the PPy-NTs,
and this also facilitates any electron transfer at the surface. Due to the high superficial area
of AuNPs, the QDL value shows an increment of almost 2.5 times, in agreement with the
increase that the capacitive current showed in CV. At a low frequency, the QLF value had no
significant variations, indicating that the intercalation of charges in the polymeric matrix is
not affected by the presence of AuNPs; this seems reasonable, as the amount of polymer
was kept the same, at the same cutoff charge. Regarding the morphology, after the AuNPs’
deposition, it was possible to observe a decrease in the nDL and nLF parameters, which
represent the escape from ideality of a traditional parallel capacitor, which represents n = 1;
thus, the further away it is from the unity, the rougher the surface is present at the electrode
surface [33,34].

49



Biosensors 2022, 12, 970

Table 1. Parameters’ values obtained by EIS to PPy e PPy/AuNPs, obtained from fitting of EIS results,
R2 > 0.99. The equivalent circuit was modeled by the NOVA software.

RS/kΩ QDL 10−5 F sn−1 nDL RCT/kΩ QLF 10−3 F sn−1 nLF

PPy-NTs 0.04 1.89 0.82 0.25 3.60 0.83
PPy-NTs/AuNPs 0.03 4.27 0.76 0.05 6.70 0.77

3.2. Functionalized Steel Mesh Electrode (PPy/AuNPs/MPA) for Biosensing Applications
Avidin-HRP/Biotin Complex: A Model System

The steps of the biosensor construction were characterized electrochemically by CV
and EIS, as shown in Appendix A Figures A1 and A2, where the blocking of the surface can
be easily identified. The availability for the attachment of biomolecules was performed by
the Avidin-HRP protein to detect Biotin, as a well-known system, possessing a very strong
interaction. Avidin is a basic tetrameric glycoprotein composed of four identical subunits,
and each of these subunits can bind to Biotin with high stability and affinity, being one of
nature’s strongest non-covalent interactions (dissociation constant = 10−15 mol L−1). Thus,
this interaction can be used to verify the effectiveness of the modified electrode, as shown
elsewhere [35,36].

In Figure 4A, it is shown how the concentration of Biotin affects the voltammetric
response of the electrode. The voltammogram just after the blocking of glycine is shown
for the sake of comparison, as no Biotin is added. Clearly the CVs present a diminishment
of the current response, indicating the adsorption of Biotin at the electrode surface, where
some active sites are no longer available. This effect is also observed in the Nyquist plots
(Figure 4B), with the change of the RCT parameter, as observed in other contributions [28,37].
As the concentration of the insulating Biotin increases, more electroactive sites are being
hindering, so there is the increment of the resistance of any potential redox reaction; since
this behavior is related to the amount of analyte, a proper analytical curve can be drawn, as
shown. The EIS results of Figure 4B were modeled, as mentioned before, and the results
are shown in Table 2. Besides the variation of the RCT, the QDL parameter also changes,
indicating that the double layer is also affected by the presence of Biotin, corroborating
the strong adsorption at the electrode’s surface. The other parameters have shown no
drastic changes, and this outcome is in consonance with no redox reactions promoted by
the PPy-NT electrodes.

Table 2. Parameters’ values obtained by EIS to PPy e PPy/AuNPs after fitting, R2 > 0.98.

Glycine Biotin Concentration (fmol L−1)

100 300 500 700 900
RS/kΩ 0.05 0.03 0.06 0.12 0.04 0.06

QDL/10 −5F sn−1 2.36 2.96 2.63 3.06 2.37 3.38
nDL 0.87 0.84 0.85 0.80 0.86 0.81

RCT/kΩ 0.16 0.48 1.11 1.31 2.11 2.56
QLF/10−3 F sn−1 4.6 4.6 5.35 4.37 5.17 4.83

nLF 0.80 0.81 0.90 0.84 0.91 0.86

These results obtained with the avidin/biotin biological system indicate the interesting
behavior of PPy-NTs/AuNPs-modified electrodes for the construction of biosensors based
on electrochemical response, as is later discussed.
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Figure 4. Cyclic voltammetry (A) and Nyquist plot (B) of the EIS measurement to Biotin detection
(100 up to 900 fmol L−1) indicated by colors in both CV and EIS.

3.3. Biosensor for Folate Detection from the Disposable Electrode Modified by PPy/AuNPs/MPA
3.3.1. Biofunctionalization Step: Recombinant Human Folate Binding Protein (FBP, Abcam)
as Recognition Element

After the interesting results presented by the PPy-NTs/AuNPs electrodes for the
Avidin/Biotin biomolecules, the same platform was used for the construction of FBP-
Ab/FBP biosensor. In the same perspective observed in Figure 4, the CV and EIS responses
in the presence of FBP-Ab are shown in Figure 5, and a similar behavior was found,
indicating that the same effects of strong interaction and adsorption are occurring.

To test the stability of the recognition process, several measurements of EIS were per-
formed for the same antibody concentration, as shown in Figure 5C and Tables A1 and A2.
After immersion in FBP-Ab, five measurements in a row were performed, applying analysis
of variance (ANOVA) with 95% confidence. The RCT parameter showed no significant
difference, maintaining the confidence in the analytical response; this point is related to the
strong interaction between the biosensor and analyte, with no desorption of the FBP-Ab
from the electrode’s surface [38].

We also tested and proved that the glycine blocking step is crucial. It is already
known that the adsorption of biomolecules in conductive polymers can cause non-specific
interactions on the electrode’s surface, interfering with the signal [39]. We performed a
test shown in Appendix A Figure A3, where we verified that, without a blocking step, it is
possible to have nonspecific antibody adsorption on the polymer matrix, which directly
interferes with the signal.

3.3.2. Detection Step: Determination of Femtomolar Concentrations of Folic Acid

Finally, the FBP/Folic Acid biosensor was assembled on the PPy-NT/AuNPs platform,
all electrochemical experiments were the same ones descried earlier for the detection of
the analyte. Folic Acid has a great affinity for FBP, and the impedimetric response is found
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in Figure 6, in the concentration range from 0.02 up to 113.3 nmol L−1, in triplicate. The
analytical curve was inserted; the limit of detection (LOD) was calculated as 0.030 nmol L−1,
and the limit of quantification (LOQ) was 0.090 nmol L−1, indicating that the proposed
biosensor herein can detect and quantify the range of concentration of clinical interest,
which is around 11 up to 34 nmol L−1 [24,25]. As this biomarker can be found as a group
of molecules, many different configurations of biosensors based on folate can be found in
the literature, and the simple comparison between analytical parameters is not always easy
to study. Nonetheless, in Table 3, different information is presented to better analyze the
recent development in this issue.

Figure 5. Cyclic voltammetry (A) and Nyquist plot (B) to FBP-Ab detection (0.001 up to 6.70 pmol L−1);
(C) the EIS response in stability test to 0.001 pmol L−1 of FBP-Ab. The gray measurement was
performed in the blank step, while the others correspond to the same antibody concentration.

52



Biosensors 2022, 12, 970

Figure 6. Folic Acid detection (0.02 up to 113.3 nmol L−1) using the PPy/AuNPs-modified electrode.

Table 3. Comparison between experimental conditions and LOD values between different biosensors
for FA detection.

Material Detection Method Concentration Range (nmol L−1)
LOD

(nmol L−1)
Reference

Steel mesh covered by
PPy/AuNPs EIS 0.02–113.3 0.030 This work

Gold/PPy/POM Cyclic voltammetry 0.01–1 0.0075 [40]
Gold electrode modified

with SAM Square wave voltammetry 0.008–1 0.004 [41]

Hydroxyapatite NPs/GCE Differential pulse
voltammetry 0.1–350 0.075 [42]

Platinum NPs/MWCNT/GCE Linear voltammetry 0.2–100 0.05 [43]

MoS2/rGO/GCE Differential pulse
voltammetry 0.1–100 0.01 [44]

Boron doped diamond electrode Stripping voltammetry 0.23–45 0.08 [45]
PPy-modified sol–gel

carbon ceramic
Differential pulse

voltammetry 7–55 1.8 [46]

Chromatographic column HPLC/UV–Vis 0.3–100 44.14 [42]
SPCE/GO Amperometry 100–1.6 × 106 20 [43]

SPCE/SWCNT Square wave voltammetry 70–500 × 103 800 [46]

4. Conclusions

The electrode modification with PPy-NTs/AuNPs has shown to be rapid, straightfor-
ward, and reliable for the construction of biosensors. This hybrid material was used as a
platform for SAM layers, followed by the anchoring of different biomolecules, indicating a
potential application in different types of biosensors and recognition elements. All char-
acterization experiments corroborated the influence of the nanometric architecture on the
electrochemical response for the detection and quantification of different analytes, with
the RCT parameter showing the most sensible response for the biological recognition of the
biological markers. The nanostructures also are responsible for the possibility of detection
in the range of femtomolar to picomolar, corroborating the great sensitivity achieved by
the combination of the nanostructures, specific adsorption, and impedance technique.
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Appendix A

Figure A1. EDS spectra were obtained for the characterization of the electrode modified with PPy (A)
and the electrode modified with PPy/AuNPs (B).

Figure A2. Characterization of the PPy/AuNPs-based biosensor construction steps for the Avidin-
HRP/Biotin couple. Cyclic voltammograms (A,B) show the characterization of different steps in
the construction of the platform-based biosensor, and the Nyquist diagram (C) is for the same
characterization.
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Table A1. Parameters’ values obtained by EIS to PPy e PPy/AuNPs, in electrode modification steps.

Parameter MPA Biotin Glycine Avidin-HRP

RS/kΩ 0.05 0.07 0.05 0.14
QDL/10−5F sn−1 1.87 1.88 1.61 2.43

nDL 0.90 0.90 0.91 0.85
RCT/kΩ 0.56 1.62 3.95 4.67

QLF/10−3 F sn−1 5.80 6.70 8.06 8.99
nLF 0.81 0.87 0.96 0.97

Table A2. Parameters’ values obtained by EIS to PPy e PPy/AuNPs for stabilization tests using
0.001 pmol L−1.

Glycine EIS Measurements to FBP-Ab to 0.001 pmol L−1

RCT (Ohm) 206.3 283.3 288.2 291.2 312.7 309.3 312.3 315.8 318.2

Figure A3. Adsorption test of different antibody concentrations (0.001, 0.67, 3.30, and 6.60 pmol L−1),
using a modified electrode only with PPy. Cyclic voltammograms (A), Nyquist diagram (B).
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Abstract: This paper presents the development of a compact, three-electrode electrochemical de-
vice functionalized by a biocompatible layer of hyaluronic acid methacrylate (HAMA) hydrogel
for the adsorptive removal of detrimental lead (Pb(II)) ions in aqueous solutions. An adsorption
mechanism pertaining to the observed analytical performance of the device is proposed and further
experimentally corroborated. It is demonstrated that both the molecular interactions originating
from the HAMA hydrogel and electrochemical accumulation originating from the electrode beneath
contribute to the adsorption capability of the device. Infrared spectral analysis reveals that the
molecular interaction is mainly induced by the amide functional group of the HAMA hydrogel,
which is capable of forming the Pb(II)–amide complex. In addition, inductively coupled plasma
mass spectrometric (ICP-MS) analysis indicates that the electrochemical accumulation is particularly
valuable in facilitating the adsorption rate of the device by maintaining a high ion-concentration
gradient between the solution and the hydrogel layer. ICP-MS measurements show that 94.08% of
Pb(II) ions present in the test solution can be adsorbed by the device within 30 min. The HAMA
hydrogel-modified electrochemical devices exhibit reproducible performance in the aspect of Pb(II)
removal from tap water, with a relative standard deviation (RSD) of 1.28% (for n = 8). The experimen-
tal results suggest that the HAMA hydrogel-modified electrochemical device can potentially be used
for the rapid, on-field remediation of Pb(II) contamination.

Keywords: electrochemical device; hyaluronic acid methacrylate hydrogel; metal ion–amide
complexation; electrochemical accumulation; lead removal

1. Introduction

Water contamination caused by toxic heavy metals has always been one of the greatest
threats to public health due to the aversion of heavy metals to natural degradation. Such
non-biodegradable properties enable heavy metals to move along the food chain, which
eventually accumulate inside the human body, resulting in severe detrimental effects on
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human health. Among the different kinds of heavy metals, lead (Pb(II)) is considered the
most hazardous contaminant owing to its strong toxicity. For instance, Pb(II) is capable
of restraining the formation of hemoglobin, which is an essential component of red blood
cells [1,2]. Other pathological symptoms, such as abdominal pain, arthralgia, anemia,
and cognitive deficit, may also occur when exposure rises to a certain limit [3]. More
worryingly, the intake of Pb(II) may cause permanent learning and behavioral disorders
in infants and children [4–6]. Hence, the development of devices to detect Pb(II) has been
of considerable interest to both academia and industry. Over the past decade, many re-
searchers have reported a variety of successfully designed chemical/electrochemical [7–10],
fluorescent [11–13], as well as biological devices [14–16] for Pb(II) detection. However,
research on developing compact devices for the removal of Pb(II) is still scanty, although
the importance of this research area has been reiterated in recent years because of the water
crisis [17].

Conventional approaches to achieving the removal of Pb(II) from aqueous solu-
tions include adsorption, chemical precipitation, ion exchange, reverse osmosis, coag-
ulation, and membrane filtration. Among all these approaches, adsorption has proved
to be the most practical method due to its simplicity of design and operation, high ef-
ficiency, and economical advantage [18–20]. Different kinds of polymer materials, such
as poly(pyrrole methane) [21], poly(allylamine-co-methacrylamide-co-acrylic acid) [22],
poly(N,N-dimethylacrylamide-co-2-hydroxyethyl methacrylate) [23], poly(acrylamide-co-
itaconic acid) [24], melamine-formaldehyde-diaminohexane [25], poly(trans-aconitic acid/2-
hydroxyethyl acrylate) [26], polyisoprene-b-polystyrene-b-poly(N,N-dimethylacrylamide) [27],
nanochitosan/polyurethane/polypropylene glycol [28], etc., have been functionalized or
directly utilized as effective adsorbents. Hyaluronic acid (HA), a carbohydrate polymer
with repeated disaccharide units of glucuronic acid and N-acetylglucosamine alternatively
linked by β-1,3 and β-1,4 glycosidic bonds, is widely present inside the human body (e.g.,
muscular connective tissues, epithelial tissues, and extracellular matrices). The excellent
biocompatible, nontoxic, and biodegradable characteristics of HA permit it to be extensively
adopted for clinical, surgical, and biomedical applications, such as (1) the formation of a
surgical glue with a higher shear strength for tissue adhesion [29], (2) the development
of an implantable macroporous scaffold with degradation regulatability to control tumor
microenvironments [30], (3) the manufacture of a pH-triggered nanogel system for tumor-
targeted drug delivery [31], and (4) the functionalization of a contact lens surface with
improved wettability, water retention, and reduced protein binding [32], to name a few.
However, the modification of HA for analytical devices for the adsorptive removal of heavy
metal ions is yet to be explored.

In this work, we have developed an electrochemical device that incorporates a layer
of methacrylated HA hydrogel for in situ adsorption of Pb(II) in solutions. The electro-
chemical device is configured to have three electrodes, i.e., one working electrode, one
counter electrode, and one reference electrode. The primary polymer is chosen as HA and
methacrylic anhydride (MA) is used as the precursor. The adsorption performance of the
HAMA hydrogel-modified electrochemical device is theoretically analyzed and further
comprehensively investigated through a series of experiments. The practical application of
the HAMA hydrogel-modified electrochemical devices for Pb(II) removal from tap water
is demonstrated. The use of electrochemical devices for the detection of heavy metal ions
has been extensively studied in the past [7–10]. However, the utilization of electrochemical
devices for the adsorptive removal of heavy metal ions has rarely been reported. This work
paves the way for the development of compact electrochemical devices for in situ removal
of heavy metal ions.

2. Materials and Methods

2.1. Chemicals and Reagents

The chemicals and reagents used throughout this study were of analytical grade.
Standard Pb(II) and bismuth (Bi(II)) stock solutions (1000 mg/L) were purchased from
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Sigma-Aldrich and Merck, respectively. Ultrapure water (18.2 MΩ·cm) collected from a
Milli-Q system was used to dilute the stock solutions. Acetate buffer (pH 4.6) was added
into diluted Pb(II) solutions as a supporting electrolyte. HA (molecular weight, 1 MDa) was
purchased from Samich (HK) Limited, China. Sodium chloride (NaCl), sodium hydroxide
(NaOH), MA, and absolute ethanol were used without purification. Nafion 117 solution
(5 wt% in a mixture of water and lower alcohols) was diluted by absolute ethanol. Photoini-
tiator Irgacure I2959 (I2959) was purchased from Ciba Specialty Chemicals, Switzerland.

2.2. Device Fabrication

As illustrated in Figure 1a, the electrochemical devices were fabricated via standard mi-
crofabrication techniques [33]. Initially, a liquid crystal polymer (LCP) sheet (ULTRALAM
3850, 100 μm) with copper cladding (18 μm) purchased from Rogers Corporation, USA,
was cut into a 4-inch wafer size and used as a substrate for the devices. The cladding layer
was removed by dipping the sheet in the copper etchant for 45 min, during which agitation
was provided in order to facilitate the etching process. The sheet was then ultrasonically
cleaned with acetone and deionized water to remove both organic and inorganic impurities.
After drying with nitrogen gas, the sheet was thermally attached to a 4-inch silicon wafer
using a photoresist (AZ 9260, 10 μm) as an adhesion layer. Thereafter, another layer of the
photoresist (5 μm) was spin-coated on top of the LCP sheet and baked on a hotplate at
110 ◦C for 4 min. Upon the exposure of the photoresist under ultraviolet (UV, 365 nm, i-line)
light followed by developing in the photoresist developer solution (AZ 400K), the patterns
of the electrodes, connection lines, and contact pads were formed. After photolithography, a
layer of chromium/gold (Cr/Au, 50/300 nm) was deposited using a magnetron sputtering
system, in which the Cr layer was used to improve adhesion between the Au layer and the
substrate. The remaining photoresist together with the deposited material was completely
removed through the lift-off process by dipping the wafer in acetone solution for 12 h. This
Au layer served as both the working and counter electrodes for the electrochemical devices.
By repeating the photolithography-deposition procedure with a different photomask, the
reference electrodes of the electrochemical devices were constructed by a combined layer
of silver/silver chloride (Ag/AgCl, 150/250 nm).

 
(a) (b) 

Figure 1. (a) Schematic drawing to illustrate the structure of the HAMA hydrogel-modified elec-
trochemical device. (b) Photograph of the HAMA hydrogel-modified electrochemical device after
packaging and modification, in which the cap on two sides of the polycarbonate mold is removed
in order to make the swollen hydrogel visible. A transparent HAMA hydrogel layer is successfully
formed on top of the electrochemical device inside the mold, which can be seen in the region marked
by the dashed red rectangle.

2.3. Device Packaging

The packaging of the electrochemical devices was performed by connecting three wires
with one set of contact pads of the working, counter, and reference electrodes, respectively,
using EPO-TEK® H20E conductive epoxy (Epoxy Technology, Billerica, MA, USA). After
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mixing the resin part A and the hardener part B of the H20E conductive epoxy in a weight
ratio of 1:1, the mixture was applied to each contact pad. Each device was then baked
inside an oven at 80 ◦C for 3 h to solidify the conductive epoxy. The resistance of all three
electrodes between the other set of contact pads and the wires was measured after the
baking process. If the resistance of any electrode was 10% higher than the average value,
that device was excluded from subsequent modification and experiment. This is due to the
concern that a higher resistance value usually suggests bad connectivity of the Au layer,
which can be caused by several factors, such as stripping of the metal connection line, a
crack on the electrode or the contact pad, and peeling of the Au layer at certain locations.
Thereafter, the EPO-TEK® H70E non-conductive epoxy mixture (resin part A and hardener
part B in a weight ratio of 1:1) was drop-casted on the devices to cover all the contact pads
(refer to Figure 1b) in order to provide electrical insulation. The non-conductive epoxy was
cured by baking inside an oven at 80 ◦C for 1.5 h. Each packaged device was then placed
into a 3D-printed polycarbonate mold for further modification. The detailed dimensions of
the mold are presented in Figure S1.

2.4. Device Modification

Hyaluronic acid was modified with methacrylic anhydride and then photocrosslinked
to obtain the HAMA hydrogel [34]. Briefly, the HA solution was prepared in ultrapure
water and MA (20 mol/L) was added to it. The pH of the solution was adjusted to 8
using 1 M NaOH. After 2 h of reaction (as illustrated in Figure 2), the HAMA solution was
incubated at 4 ◦C for 24 h and dialyzed (Spectra/Por 6 dialysis tubing, 10 kDa molecular
weight cutoff) against 0.1 M NaCl solution, 25% (v/v) ethanol and ultrapure water for 48 h
at room temperature. The modified HAMA solution was freeze-dried for 72 h and used
to prepare the HAMA hydrogel. An amount of 1% (w/v) of HAMA was first dissolved in
ultrapure water and then 1% (w/w) of I2959 photoinitiator (prepared in Nafion 117) was
added to it and mixed thoroughly. Thereafter, each electrochemical device was contained
in the polycarbonate mold, which had inlets for wires and cutout slots to hold a cap on
both sides of the mold to keep the swollen hydrogel intact. The HAMA solution was
spread uniformly over the device inside the mold without making any air bubbles and then
exposed to UV light for 5 min to complete the crosslinking process. The HAMA hydrogel
over the device was swollen in ultrapure water for 24 h to form a transparent gel layer, as
shown in the dashed red rectangle in Figure 1b.

 
Figure 2. Schematic representation of the synthetic route of HAMA hydrogel.

2.5. Investigation of Morphological and Chemical Structures of the Synthesized HAMA Hydrogel

The HAMA hydrogels were prepared using a similar approach to that mentioned
earlier with slight modifications. The hydrogels were formed inside 3D-printed disc-shaped
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polycarbonate molds (internal diameter 18 mm, outer diameter 20 mm, and depth 2.5 mm).
The HAMA solution together with the photoinitiator was spread uniformly into these
molds and exposed to UV light for crosslinking. After crosslinking, the hydrogels were
carefully removed from the molds and transferred to Petri dishes for swelling in ultrapure
water. For the swelling capacity study, the weights of all the wet hydrogel samples were
first recorded. Subsequently, the weights of all the dried hydrogels were measured upon
baking the samples inside an oven at 50 ◦C for 6 h. For scanning electron microscopy (SEM)
imaging, the hydrogel samples were quenched in liquid nitrogen for a few seconds and
then immediately lyophilized for 72 h. The dried samples were coated with Au and imaged
under an SEM microscope (JSM 6360A Jeol, Tokyo, Japan) at a 10 kV acceleration voltage.
For Fourier transform infrared spectroscopy (FTIR) analysis, after 24 h of swelling, the
ultrapure water was replaced by either a 0.1 M acetate buffer or 100 μg/L Pb(II) solution.
Before conducting FTIR analysis, the hydrogel samples were dried inside an oven at 50 ◦C
for 6 h. The FTIR experiments were carried out using a Nicolet iS10 FTIR Spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA) in a frequency range between 400 and
4000 cm−1. A total number of 32 scans with a resolution of 2 cm−1 were averaged for
each spectrum.

2.6. Investigation of Adsorption Performance of the Modified Device

The adsorption performance of the HAMA hydrogel-modified electrochemical de-
vices was evaluated by conducting a series of square-wave anodic stripping voltammetry
(SWASV) in the diluted Pb(II) solutions. The output of the devices was recorded on a
CHI 600 C electrochemical workstation (CH Instruments, Austin, TX, USA). The SWASV
measurements were initiated by applying a deposition potential of −1.0 V to the working
electrode for 120 s while the test solution was stirred (800 rpm). This deposition step was
aimed at the collection of Pb(II) ions that were available in the vicinity of the working
electrode. After an equilibration time of 2 s, the voltammograms were recorded under
quiescent conditions in a potential range from −1.2 to 0 V with a frequency of 50 Hz,
amplitude of 50 mV, and a step potential of 5 mV. This stripping step was proportionally
related to the deposition step, i.e., the higher the stripping current, the more the amount of
Pb(II) ions that were collected during the deposition step. Hence, a higher concentration of
Pb(II) should be present in the test solution. Prior to the next measurement, a conditioning
potential of −0.1 V was provided for 120 s in order to electrochemically clean the working
electrode. Herein, all the potentials applied or measured during the SWASV experiments
were with respect to the potential of the fabricated Ag/AgCl reference electrode.

2.7. Investigation of Adsorption Efficiency of the Modified Device

The adsorption rate of the HAMA hydrogel-modified electrochemical devices was
determined by applying a deposition potential of −1.0 V (with respect to the Ag/AgCl
reference electrode) for 5 min to the working electrode in a stirred (800 rpm) solution with
100 μg/L Pb(II). Thereafter, 5 mL of the test solution was transferred to a conical tube.
The Pb(II) concentration in the solution was measured using an Agilent 7700 inductively
coupled plasma mass spectrometry (ICP-MS) system (Agilent Technologies, Lexington, MA,
USA). This series of experiments were repeated 8 times within 40 min, i.e., the Pb(II) con-
centration in each test solution was separately measured after a period of 5, 10, 15, 20, 25, 30,
35, and 40 min of adsorption. In order to further investigate the influence of electrochemical
accumulation on the adsorption performance of the modified devices, another series of
experiments were conducted with the same experimental procedure, except for applying
the deposition potential, i.e., without the activation of electrochemical accumulation.

The applicability of the HAMA hydrogel-modified electrochemical devices was ex-
plored by testing the Pb(II) removal ability of the devices in tap water. Experiments were
conducted by keeping the devices in tap water with 400 μg/L Pb(II) for 20 min with the
activation of electrochemical accumulation. Thereafter, the Pb(II) concentration in the tap
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water was measured using the ICP-MS system. The removal efficiency of each device was
calculated based on the concentration difference before and after the adsorption.

3. Results and Discussion

3.1. Characterization of the Synthesized HAMA Hydrogel

First, the swelling capacities of the synthesized HAMA hydrogels were evaluated
using a gravimetrical approach. The weights of both the fully swollen and thermally dried
hydrogel samples were separately determined. The results obtained are presented in Figure
S2, where it can be observed that the average weight before swelling was ~8.17 mg. Once
the dried samples had absorbed a sufficient amount of water to reach the equilibrium state
of swelling (refer to Figure S3), the average weight dramatically increased to ~1526.23 mg,
giving an average swelling ratio of 18,581%. This massive extent of swelling could be due
to the superhydrophilic property of the HA. Thereafter, the morphology of the microscopic
structure established inside the hydrogel layer was inspected using SEM. Figure 3a depicts
the SEM image to illustrate the cross-sectional view of the synthesized HAMA hydrogel.
It can be observed that a highly porous structure with an interconnected backbone was
formed, in which most pores had either an oval or elongated bubble shape and their size
varied from 20 to 200 μm in diameter. Such a high density of the porous structure also
proved the considerable swelling capacity exhibited by the HAMA hydrogels.

  
(a) (b) 

Figure 3. (a) Cross-sectional SEM image and (b) FTIR spectrum of the synthesized HAMA hydrogel.
The numbers in (b) denote the prominent peaks detected by the FTIR analysis.

The functional groups associated with the synthesized HAMA hydrogels were iden-
tified by FTIR analysis. The FTIR spectrum acquired is presented in Figure 3b, in which
numbers (1 to 6) are used to denote the prominent peaks detected. Among all the peaks,
peak 1 situated at 3436.34 cm−1 was much broader than the others, which could be due to
the O-H or N-H stretching, considering that both stretching vibrations occurred at an over-
lapped frequency band between 3200 and 3600 cm−1 [35]. Peak 2 situated at 1628.07 cm−1

was likely contributed by the carbonyl (C=O) stretching rather than the N-H bending of
the secondary amide group. This is because, for most secondary amides, the weak N-H
bending adsorption often appears at the frequency band between 1500 to 1560 cm−1 [36].
Peak 3 situated at 1410.64 cm−1 corresponded to the vibration of the O-C=O group [37].
Peaks 4 and 5 situated at 1153.41 and 1046.36 cm−1 were related to the C-O and C-O-C
stretching, respectively. Peak 6 situated at 650.68 cm−1 was a fingerprint peak of HA [37],
which could have been caused by a combinational manner of bending vibrations.

3.2. Electrochemical Investigation of the HAMA Hydrogel-Modified Device

To evaluate the adsorption performance of the HAMA hydrogel-modified electro-
chemical devices, a series of SWASV experiments were carried out. The magnitude of
each stripping peak obtained in the SWASV experiments was measured with respect to its

64



Biosensors 2022, 12, 714

baseline. Initially, the response was recorded in a solution with 20 μg/L Pb(II) (blue line in
Figure 4a), in which a clear stripping peak was observed close to a potential −0.76 V, with
an average peak magnitude of 1.059 μA (refer to Figure 4b). When the Pb(II) concentration
was increased to 40 μg/L, the device exhibited a smaller stripping peak (green line in
Figure 4a) with a decreased average peak magnitude of 0.848 μA. To investigate whether
such a decrease in the stripping peak was caused by the reduced alloying capability of the
working electrode, 400 μg/L Bi(II) was added to the test solution. According to the litera-
ture [38–40], Bi is capable of forming low-melting-temperature alloys with heavy metals,
which significantly facilitates the accumulation of metal ions by the working electrode in
the course of the deposition. As shown by the orange line in Figure 4a, adding Bi(II) did
not improve the accumulation of Pb(II) ions for the device, which was manifested by an
even smaller stripping peak with a further decreased average peak magnitude of 0.496 μA.
With 400 μg/L Bi(II) in the test solution, a subsequent increase in the Pb(II) concentration to
60 μg/L (red line in Figure 4a) resulted in an indistinguishable stripping peak with a tiny
average peak magnitude of 0.199 μA. The experimental results imply that the developed
HAMA hydrogel-modified electrochemical device is capable of adsorbing the Pb(II) ions
that are available in the solution.

 
 

(a) (b) 

Figure 4. (a) Anodic stripping voltammograms and (b) the corresponding stripping peak currents
recorded for the HAMA hydrogel-modified electrochemical devices in different test solutions.

3.3. Adsorption Mechanism of the HAMA Hydrogel-Modified Device

To explain the observed phenomena, a hypothesis pertaining to the adsorption mecha-
nism of the HAMA hydrogel-modified electrochemical devices is proposed. A schematic
model illustrating the mechanism is depicted in Figure 5, in which red circles (with a plus
sign or number) represent the dissolved heavy metal ions in the solution. The network
denoted by black solid lines above the electrode layer represents the microscopic porous
structure of the HAMA hydrogel. First, free-moving metal ions in the solution migrated
to the vicinity of the hydrogel under the effect of diffusion due to a high concentration
gradient established between the solution and the hydrogel. Thereafter, the metal ions pen-
etrated the hydrogel and interacted with the functional groups of the hydrogel’s polymer
chain. Some of the metal ions (e.g., No. 1, 2, 3, and 6 in Figure 5) were directly captured by
the polymer chain due to the molecular interaction.
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Figure 5. Schematic model to illustrate the adsorption mechanism of the HAMA hydrogel-modified
electrochemical device. Red circles (⊕ and 1©– 6©) represent heavy metal ions.

On the other hand, some other metal ions (e.g., No. 4 and 5 in Figure 5) reached
the surface of the electrode by moving through the holes formed in the porous hydrogel.
These ions were further captured by the electrode due to the electrochemical accumulation
(M+ + e−→M) triggered by the applied deposition potential. We suspect that most of the
metal ions were collected by the hydrogel’s polymer chain considering the above electro-
chemical investigation. If the dominant adsorption was contributed by the electrochemical
accumulation, a relatively larger stripping peak should have been observed from the
voltammograms when the SWASV experiment was conducted in solutions with a higher
concentration. However, without the electrochemically induced adsorption, the collection
efficiency of the device should be adversely affected since the high concentration gradient
between the solution and the hydrogel could not be continuously maintained. Therefore,
we attribute the promising adsorption capability of the HAMA hydrogel-modified device
toward the Pb(II) ions to a combined effect of the molecular interaction and electrochemi-
cal accumulation.

3.4. Validation of the Molecular Interaction

The proposed hypothesis, specifically the molecular interaction, was validated by
analyzing the FTIR spectrum obtained from a HAMA hydrogel sample soaked in a Pb(II)
solution, as shown in Figure 6a. A comparison of all of the prominent peak positions in
terms of wavenumber (cm−1) between the pure HAMA hydrogel and the Pb(II)-soaked
HAMA hydrogel is listed in Table 1. It was found that peaks 1, 3, 4, 5, and 6 in both spectra
were situated at similar frequency bands. A new peak 7 emerged at 1237.61 cm−1 for the
Pb(II)-soaked HAMA hydrogel, which could have been due to either C-O or C-N stretching.
In addition, the original peak 2 (corresponding to the carbonyl stretching of the amide
group) for the pure HAMA hydrogel separated into two peaks, i.e., peak 2′ situated at
1640.03 cm−1 and peak 2′ ′ situated at 1565.72 cm−1 for the Pb(II)-soaked HAMA hydrogel,
as depicted in Figure 6b. The significant shift of peak 2 implies that the Pb(II) ions mainly
interact with the amide group of the HAMA hydrogel. We attribute such a molecular
interaction to the effect of the Pb(II)–amide complexation.
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(a) (b) 

Figure 6. (a) FTIR spectrum of the HAMA hydrogel soaked in a solution of 100 μg/L Pb(II), in
which the numbers 2′, 2′ ′, 7 (in blue) denote the new peaks. (b) Comparison of FTIR spectra in a
frequency band from 2050 to 1450 cm−1 between the pure HAMA hydrogel and the one soaked in
Pb(II) solution.

Table 1. Comparison of peak positions in terms of wavenumber (cm−1) between the pure HAMA
hydrogel and the Pb(II)-soaked HAMA hydrogel.

Peak No. HAMA (cm−1) Assignment Peak No.
HAMA with
Pb(II) (cm−1)

Assignment

1 3436.34 O-H or N-H 1 3430.24 O-H or N-H
2 1628.07 C=O 2′ 1640.03 Pb(II)-N

2′ ′ 1565.72 Pb(II)-O
3 1410.64 O-C=O 3 1413.62 O-C=O
4 1153.41 C-O 4 1155.69 C-O
5 1046.36 C-O-C 5 1049.44 C-O-C
6 650.68 bending 6 644.68 bending

7 1237.61 C-O or C-N

The resonance structure of an amide group has two possible configurations [41], which
are named type I and type II. For a type I configuration (refer to Figure 7a), the lone pair
of electrons on the N atom is not involved in the conjugation with the carbonyl group,
making the N atom relatively electronegative. Hence, a positively charged metal ion (here
is Pb2+) can coordinate with the N atom of the amide group. Such coordination would
result in a positive shift of the carbonyl infrared adsorption to a higher frequency [42].
For a type II configuration (refer to Figure 7b), the lone pair of electrons on the N atom
is delocalized into the carbonyl group, making the O atom of the carbonyl group more
electronegative. Therefore, a positively charged metal ion can also coordinate with the
O atom of the amide group, which would bring about a negative shift of the carbonyl
infrared adsorption to a lower frequency [42]. As illustrated in Figure 6b, peak 2′ with
a positive shift of ~12 cm−1 with respect to peak 2 could be due to the vibration of the
Pb(II)-N ligand, which corresponds to the type I complexation. On the other hand, peak 2′ ′
with a negative shift of ~62 cm−1 with respect to peak 2 could be due to the vibration of
the Pb(II)-O ligand, corresponding to the type II complexation. Based on the experimental
observations, it is highly possible that both nitrogen and the carbonyl oxygen of the amide
group of the HAMA hydrogel may be simultaneously involved in the formation of the
Pb(II)–amide complex.
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(a) (b) 

Figure 7. Schematic representation of (a) type I and (b) type II Pb(II)–amide complexations.

Despite the contribution from nitrogen, as well as carbonyl oxygen, in the process of the
complex formation, the tendency to form a Pb(II)-O ligand seems much higher than that of
a Pb(II)-N ligand if one compares the negative shift with the positive one. The negative shift
(~62 cm−1) is 5 times larger than the positive shift (~12 cm−1), suggesting that the carbonyl
oxygen of the amide group could play the dominant role in the construction of the Pb(II)–
amide complex. This could be explained by the fact that the type II configuration of an
amide group is more stable than the type I configuration [41]. Owing to the delocalization,
the electron density distributed on the carbonyl oxygen is much greater than that on the
nitrogen, making the carbonyl oxygen behave as though it is being completely negatively
charged, thereby attracting more Pb(II) ions.

3.5. Validation of the Electrochemical Accumulation

The effect of electrochemical accumulation pertaining to the proposed adsorption
mechanism was investigated by quantifying the amount of Pb(II) ions adsorbed by the
modified device. Originally, the Pb(II) concentration of each test solution was 100 μg/L.
The concentration was subsequently measured by the ICP-MS instrument after every 5 min
of adsorption. The results obtained are presented in Figure 8. When the electrochemical
accumulation was not activated, i.e., only the HAMA hydrogel was responsible for the
adsorption of Pb(II) ions (blue dots in Figure 8), the adsorption rate slowly increased
within the first 20 min. Thereafter, there was no significant increase in the adsorption
rate. The adsorption behavior of the HAMA hydrogel could be attributed to the diffu-
sion effect. Initially, metal ions moved into the vicinity of the hydrogel driven by the
high-ion-concentration gradient established between the solution and the hydrogel. This
corresponded to the increase in the adsorption rate observed at 5, 10, 15, and 20 min.
Thereafter, the concentration gradient was significantly reduced, which could have resulted
in a rapid saturation of adsorption for the HAMA hydrogel, corresponding to the data
points observed at 25, 30, 35, and 40 min. It was calculated that only 43.05% of Pb(II) ions
were adsorbed by the device if electrochemical accumulation was not triggered.

On the other hand, when the electrochemical accumulation was activated (red dots
in Figure 8), the adsorption rate continuously increased up to 30 min. In addition, the
slope of the increase was significantly higher than in the case where electrochemical
accumulation was not involved. It was found that 94.08% of Pb(II) ions were adsorbed by
the device within 30 min once the electrochemical accumulation had been triggered. These
experimental results confirm that electrochemical accumulation is particularly beneficial in
facilitating the adsorption rate for the device by maintaining a high concentration gradient
between the solution and the hydrogel. Considering the above discussion, it is apparent
that both intermolecular complexation and electrochemical accumulation make a significant
contribution to the adsorption capability of the HAMA hydrogel-modified electrochemical
devices. A comparison of the Pb(II) removal efficiency of the HAMA hydrogel-modified
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electrochemical device and other polymeric adsorbents is shown in Table 2. Based on the
data presented in Table 2, it can be observed that the developed HAMA hydrogel-modified
electrochemical device is capable of effectively removing Pb(II) ions with a short adsorption
time of 30 min.

 
Figure 8. Comparison of adsorption efficiency for the HAMA hydrogel-modified devices without
(blue dots) and with (red dots) electrochemical accumulation. Data obtained using three devices.

Table 2. Comparison of Pb(II) removal efficiency of different adsorbents.

Adsorbent
Removal

Efficiency (%)
Adsorption Time

(min)
Reference

Poly(allylamine-co-methacrylamide-co-acrylic
acid) cryogel 83.54 720 Kim et al. [22]

Poly(N,N-dimethylacrylamide-co-2-hydroxyethyl
methacrylate) copolymer 80.00 300 Ramos-Jacques et al. [23]

Melamine-based crosslinked
polyamine/CNT composite 98.63 360 Al Hamouz et al. [25]

Polyisoprene-b-polystyrene-b-poly(N,N-dimethyl-
acrylamide) polymer 94.80 480 Weidman et al. [27]

Nanochitosan/polyurethane/polypropylene glycol 95.00 60 Saranya et al. [28]
Chitosan-aminopropylsilane graphene oxide
nanocomposite hydrogel 82.30 60 Amiri et al. [43]

Copolymerized starch-based hydrogel 87.00 60 Aniagor et al. [44]
Thiol-functionalized silica microsphere-loaded
polymeric hydrogel 97.00 1440 Singh et al. [45]

HAMA hydrogel-modified electrochemical device 94.08 30 This work

3.6. Applicability of the HAMA Hydrogel-Modified Device

To explore the practical application of the HAMA hydrogel-modified electrochemical
device, adsorption experiments were performed in a solution of tap water with 400 μg/L
Pb(II). Each device was immersed in the test solution for 20 min, during which the elec-
trochemical accumulation was activated. As shown in Figure 9, all the devices exhibited
comparable Pb(II) removal capabilities with an average removal efficiency of 77.2%. The
relative standard deviation (RSD) among the eight devices was calculated to be as low
as 1.28%, demonstrating good repeatability and reproducibility of the devices. These ex-
perimental results reveal that the HAMA hydrogel-functionalized electrochemical device
has great potential for deployment at a variety of locations for in situ removal of Pb(II)
ions. It is worth mentioning that the water quality conditions (such as pH value, quantity
of suspended particulates, other heavy metal ions, etc.) at the locations of interest could
affect the adsorption performance of the HAMA hydrogel-modified electrochemical device.
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Therefore, it is recommended to conduct some preliminary experiments in some specific
areas before the large-scale deployment of the devices.

 

Figure 9. Removal efficiency measured for eight HAMA hydrogel-modified electrochemical devices
in a solution of tap water with 400 μg/L Pb(II).

4. Conclusions

In this work, an electrochemical device with a three-electrode configuration covered by
a layer of HAMA hydrogel was developed for in situ adsorption of Pb(II) ions in aqueous
solutions. The devices were successfully fabricated using microfabrication technology along
with a surface modification approach. The material properties of the synthesized HAMA
hydrogels in the aspects of the swelling capacity, microscopic structure, as well as molecular
composition, were systematically evaluated. Based on the analytical outcomes of the
fabricated HAMA hydrogel-modified devices, an adsorption mechanism associated with a
combined effect of molecular interaction and electrochemical accumulation, which could
explain the observed experimental results, was proposed. By performing FTIR analysis on
the Pb(II)-soaked HAMA hydrogel, the molecular interaction was corroborated to be the
Pb(II)-amide complexation. We found that both nitrogen and the carbonyl oxygen of the
amide group were responsible for the formation of the complex, though the carbonyl oxygen
could play a dominant role in the course of intermolecular complexation. The contribution
of electrochemical accumulation to the adsorption capability of the HAMA hydrogel-
modified devices was also confirmed by activating/deactivating the deposition potential
applied to the working electrode of the devices. The experimental investigation shows that
94.08% of Pb(II) ions present in the solution can be adsorbed by the device within 30 min.
Application of the HAMA hydrogel-modified devices for removing Pb(II) ions in tap water
reveals its potential for use for the rapid remediation of Pb(II) contamination. This study
paves the way for the design of compact and portable electrochemical devices for in situ
removal of Pb(II) ions. Future work will focus on exploring the HAMA hydrogel-modified
devices for the simultaneous adsorption of multiple heavy metal ions and employing
other validation methods to further investigate the molecular interaction between HAMA
hydrogels and different kinds of heavy metal ions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12090714/s1, Figure S1: Schematic drawing to show detailed
dimensions of the polycarbonate mold; Figure S2: The weight of the synthesized HAMA hydrogel
samples measured before and after swelling in ultrapure water; Figure S3: Photograph of the
synthesized HAMA hydrogel samples upon reaching the equilibrium state of swelling.
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Abstract: This paper aims to develop an amperometric, non-enzymatic sensor for detecting and
quantifying UA as an alert signal induced by allergens with protease activity in human cell lines
(HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern
(DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can
be an indicator of cell damage. Cell damage or stress can be caused by different health problems or
by environmental irritants, such as allergens. We can act and prevent the events that generate stress
by determining the extent to which cells are under stress. Amperometric calibration measurements
were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential
of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 μM to 121 μM
UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five
subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m
method. Interference studies and the real sample analysis of allergen-treated cell lines proved that
the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore,
it can potentially be used to evaluate stress factors in medical research and clinical practice.

Keywords: La(OH)3@MWCNT; electrochemical sensor; uric acid; DAMP molecule; cell damage; stress

1. Introduction

Various events can strain the human body, putting stress on the cells and tissues.
Oxidative stress, heat shock, hypersensitivity, autoimmune diseases and other disorders
can cause cell dysfunction and lead to apoptosis [1]. Besides passive release, dying cells
produce an increased amount of uric acid (UA), which can indicate both the environmental
and medical conditions that induce cell damage [2]. DAMPs are molecules that have a
physiological role inside the cell but acquire additional functions when released from the
cells: they alert the body about danger, stimulate an inflammatory response, and promote
the regeneration process [3]. Apart from their passive release by dead cells, some DAMPs
can be secreted or exposed by living cells undergoing life-threatening stress.

Uric acid, being a final product of purine metabolism, has a high impact on human
health. It is produced in the liver, intestines, kidneys, vascular endothelium, and muscles
by the metabolism of purine [2].
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Both high and low human plasma UA concentrations can indicate a pathological
state. On the one hand, UA acts as a scavenger of peroxyl radicals, hydroxyl radicals, and
singlet oxygen, thus exhibiting antioxidative features. It is a specific inhibitor of radicals
generated by the decomposition of peroxynitrite, preventing cell injuries and nitration of
tyrosine residues in proteins. Furthermore, it can protect against oxidative damage by
chelating metal ions such as iron and copper, lowering their catalytic activity in free-radical
reactions [4]. UA also shows neuroprotective properties and reduces the risk of multiple
sclerosis, Parkinson’s disease, Alzheimer’s disease, and optic neuritis [5].

UA also acts as an initiator and amplifier of allergic inflammation and can cause
hypertension and cardiovascular diseases via the induction of growth factors, hormones,
cytokines, and autacoids. UA penetrates vascular smooth muscle fibers and activates
signal transduction, increasing the expression of inflammatory mediators. Furthermore,
urate crystals can deposit in the connective tissues of the joints, tendons, kidneys, and
rarely in heart valves and the pericardium. Consequently, UA is a risk factor for renal
disorders (kidney injuries and kidney stones), acute and chronic inflammatory arthritis,
gout, myocardial infarction, and stroke [2,5]. Elevated serum uric acid levels are associated
with insulin resistance and diabetes mellitus [2].

The important UA feature is that it is produced in higher concentrations when the
cells suffer from stress. Both live and dying cells degrade their nucleic acids in deamination
and dephosphorylation processes. Purine nucleoside phosphorylase converts the relevant
degradation products, inosine and guanosine, to the purine bases, hypoxanthine and
guanine, which further metabolize to xanthine. Oxidation of xanthine via xanthine oxidase
leads to the formation of UA. Therefore, although uric acid is regularly present in cells, it
increases in concentration when the cells are damaged [2]. The UA’s release from dying
cells can serve as an indicator of unfavorable environmental factors or pathological states.

Considering its importance and abundance in the human body, it is no wonder that
numerous methods have been developed for UA detection and determination. The sepa-
ration and detection methods commonly involve chromatography or electrophoresis cou-
pled with UV/VIS [6–10] spectroscopy or electrochemical detection (voltammetry [11–16],
ECL [17–20], and amperometry [21–25]), including both enzymatic and nonenzymatic
approaches [26]. Recently, attention has shifted toward electrochemical sensors and biosen-
sors because they enable the fast, direct, and precise determination of the analyte in the
complex biological matrix.

Enzyme-based UA biosensors use uricase as an enzyme for the oxidation of uric
acid [27,28]. The enzyme-based approach is expensive, and the obtained sensor is sensitive
to environmental conditions, lacks reproducibility, and requires complicated immobiliza-
tion of the enzyme. Non-expensive and robust non-enzymatic sensors perform direct
oxidation of UA on the surface of the electrode material [29,30]. Various materials, such
as covalent organic and metal incorporated conductive polymers [13,16,19,23], metal ox-
ides [30–32], carbon-based materials, and their composites [11,12,33], have been tested for
UA detection [5,26]. These nanomaterials have been recognized as promising materials
for the development of analytical methods for the detection not only of UA but also of
numerous other biologically active compounds [34–37].

The use of La [32,38,39]-based electrode materials has been reported in the litera-
ture with the main applications in fuel cells [40–42] and sensing devices [43–46], while
Wang et al. [47] used LaFeO3 for the simultaneous determination of dopamine, uric acid
and ascorbic acid, thus proving the materials’ compatibility with these analytes. La doping
can affect lattice structures and phase transformations of compounds due to its larger
atomic radius and unique electron structure, thus enhancing the catalytic and electro-
chemical properties of La-doped materials [32]. Furthermore, Guo et al. [48] suggested
that the alkaline properties of La(OH)3 contribute to the acidic analytes’ bonding. To
improve the conductivity and increase the active surface and electron transfer of the
electrode, lanthanum hydroxide was incorporated into the composite with multi-walled

74



Biosensors 2022, 12, 705

carbon nanotubes (MWCNTs), which possess exceptional mechanical and physicochemical
properties [38,49].

This study aims to develop an electrochemical sensor for the fast, accurate, and precise
measurement of UA released from damaged cells, or rather for monitoring the dependence
between environmental factors and the stress they cause to the cells/tissues (Scheme 1).
An electrochemical sensor was developed using a glassy carbon paste electrode modified
with newly synthesized nanomaterial consisting of MWCNTs decorated with La(OH)3.
The obtained sensor was used for the amperometric detection of uric acid under optimal
experimental conditions. Furthermore, the influence of common interfering substances on
UA determination was examined, as well as the reproducibility, repeatability, and stability
of the proposed sensor. We showed that the proposed method could be used to evaluate
stress factors in medical research and clinical practice.

 

Scheme 1. Idea of the work.

2. Materials and Methods

2.1. Cell Cultures

Cell lines cultivated for the allergen treatment included HEK293 and HeLa. HEK293
cells were cultivated in Dulbecco’s modified Eagle medium (DMEM, Sigma-Aldrich,
St. Louis, MO, USA) supplemented with 10% heat-inactivated fetal bovine serum (FBS),
1% pen/strep (penicillin 10,000 U/mL; streptomycin 10 mg/mL) and 200 mM L-glutamine
(Sigma-Aldrich, St. Louis, MO, USA), and HeLa cells were cultivated in Eagle’s mini-
mum essential medium (EMEM, Lonza, Basel, Switzerland) supplemented with 20% FBS,
1% pen/strep (penicillin 10,000 U/mL; streptomycin 10 mg/mL) and 1% (v/v) 200 mM
L-glutamine. Cell lines were grown in a humidified atmosphere of 95% air and 6% CO2
at 37 ◦C, in T-25 flasks (Thermo Scientific, Waltham, MA, USA) until confluence and then
were trypsinized (0.25% Trypsin-0.53 mM EDTA). HEK293 (250,000 cells per mL) and HeLa
(300,000 cells per mL) cells were seeded at a volume of 1 mL in 12-well plates (Sarstedt,
Nümbrecht, Germany) and grown to confluence before allergen treatment.
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2.2. Cysteine Protease Treatment

Two proteolytic enzymes, papain from Carica papaya and actinidin from Actinidia
deliciosa, were employed for the induction of acute cellular response in the HEK293 and
HeLa cell lines. Commercial papain from papaya was purchased from Sigma–Aldrich
(P 4762, Sigma–Aldrich, St. Louis, MO, USA), while actinidin was isolated from kiwifruit
(Actinidia deliciosa) according to the previously published procedure [50]. Before the
treatment, actinidin (0.9 mg/mL) was incubated for 1 h at 37 ◦C in DMEM (enzyme
activation) or DMEM with an equimolar amount of E64 inhibitor (enzyme inactivation).
Before the treatment, papain (0.4 mg/mL) was dissolved in the medium without or with
an equimolar amount of E-64 cysteine protease inhibitor. Confluent HEK293 and HeLa cell
monolayers were treated with papain, inactivated papain, activated actinidin, inactivated
actinidin, or DMEM/EMEM without FBS at 37 ◦C for 0 (1 h before the treatment), 3, 6, or
12 h, respectively. The leakage of UA from HEK293 and HeLa cells into the medium was
measured using the electrochemical sensor La(OH)3@MWCNT/CP.

2.3. Reagents and Apparatus

The crystal structure of La(OH)3@MWCNT nanocomposite was examined using pow-
der X-ray diffraction (XRD) data collected using a high-resolution SmartLab® X-ray diffrac-
tometer (Rigaku, Japan) with a Cu Kα radiation source. The operating current and voltage
were 30 mA and 40 kV, respectively. For the experiments, the dried powders were flat-
tened with a zero-background silicon plate. Diffraction data were collected in the range
of 10–60◦ 2θ with a step of 0.03◦ and recording speed of 2◦/min. The average crystallite
size was estimated by applying Scherrer’s equation on the most intensive diffraction peaks
(Ls = κλ/βscos(θB. The morphology and surface properties of nanocomposite used for
electrode modification were investigated using a field emission-scanning electron micro-
scope FE-SEM MIRA3 (Tescan, Czech Republic) operating at 20 keV. The magnification
of the composites was in the range of 10–100,000 times. The samples were prepared by
fixating the conductive tape on a holder, vacuum drying, and spray-coating with gold
using a Sputter coater.

All electrochemical measurements were carried out using a CH Instruments ana-
lyzer (Austin, TX, USA) driven by voltammetric software CHI (Version 4.03). A three-
electrode system was employed, with a modified carbon paste (CP) working electrode
(WE), a Calomel reference electrode (RE), and a Pt wire as the counter electrode (CE). The
measurements were conducted in 10 mL of 0.1 phosphate buffer (PB) at pH 6. Electrochemi-
cal characterization of working electrodes was conducted using electrochemical impedance
spectroscopy (EIS) and cyclic voltammetry (CV) in 5 mM K3[Fe(CN)6]/K4[Fe(CN)6] (1:1) in
0.1 M KCl solution. EIS measurements were conducted in the frequency range from 10 kHz
to 10 mHz, at 0.3 V. The used experimental parameters for CV measurements were: poten-
tial range from −0.5 V to 1 V and the scan rate of 50 mV/s. The CV measurements were
also performed in the 0.1 M PB (pH 6) solution containing 10 μM UA Chronoamperometry
(CA) was the detection and quantification method of choice. Measurements were taken
in 0.1 M PB at pH 6, with the potential set on 0.3 V while adding an increasing quantity
of UA during the period of 600 s. High-performance liquid chromatography (HPLC) for
uric acid analysis was conducted (Dionex Ultimate 3000, Thermo Fisher, Waltham, Mas-
sachusetts, USA) with photodiode array detection on a Hypersil Gold aQ C18 analytical
column (150 mm × 3 mm, 3 μm).

2.4. Material Preparation
2.4.1. Synthesis of La(OH)3@MWCNT Nanocomposite

La(OH)3@MWCNT powder was prepared by means of the method reported in the
literature [51], after some modifications. At the very beginning, a 1 M solution of LaCl3
was prepared by dissolving the proper amount of corresponding salt in ultra-pure water.
A volume (5 mL) of the starting solution was treated with vigorous and constant stirring.
Then, the same volume of 2 M K2CO3 solution (5 mL) was rapidly introduced into this
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mixture, with the addition of a few drops of 1 M NaOH solution to initiate precipitation.
After the precipitation was complete, the precipitate was filtered and washed with distilled
water several times until the washed water became neutral (pH = 7). Furthermore, the
obtained product was washed three times with ethanol and then dried at 100 ◦C for 6 h.

2.4.2. Electrode Preparation

An unmodified glassy carbon paste electrode was prepared by mixing 80% of glassy
carbon powder and 20% of paraffin oil in a mortar to form the homogeneous carbon
paste. Modified glassy carbon paste electrodes were made by mixing 1.6 weight percent of
La(OH)3, 0.4% of MWCNTs and 2, 5, and 10% of La(OH)3@MWCNTs (with the La(OH)3 to
MWCNT balance being 4:1) in the unmodified paste. Subsequently, the working electrode
was filled with the paste, and the electrode surface was polished with paper, washed with
DI water, and directly used for measurements.

3. Results and Discussion

3.1. Characterization

The XRD patterns of synthesized La(OH)3@MWCNT are shown in Figure 1A. It is
clear that the sample is highly crystalline and the diffraction peaks at 15.6◦, 26.3◦, 27.9◦,
31.5◦, 36.0◦, 39.5◦, 47.1◦, 48.7◦, 49.9◦, and 55.3◦ match well with the crystal planes of (100),
(110), (101), (200), (111), (201), (002), (211), (102), (112). All of the reflections can be assigned
to lanthanum hydroxide having a hexagonal symmetry and P63/m space group (JCPDS
#36-148128) [52]. The average crystallite size of La(OH)3 nanoparticles is (26 ± 4) nm,
calculated by Scherrer’s equation. The peaks from other phases occurring at 19.6◦ and 42.3◦
can be assigned to (002) and (110) reflections of graphitic MWCNT [53]. This can be proof
of successful composite formation.

Figure 1. (A) XRD pattern of prepared La(OH)3@MWCNT composite, (B,C) SEM micrographs of
La(OH)3@MWCNT at different magnifications.
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The morphology and the shape of prepared La(OH)3, as well as the La(OH)3@MWCNT
composite, are analyzed by FE-SEM. Different magnifications of the composite are dis-
played in Figure 1B,C. The La(OH)3 nanoparticles are scattered over long multi-walled
carbon nanotubes. This makes the surface of the nanotubes significantly larger, which can
potentially affect the electrochemical properties of the composite. The rice-like lanthanum
hydroxide nanoparticles are partially agglomerated, with an average diameter between
100 and 200 nm, and a width ranging from 30 to 60 nm (inset of Figure 1C).

3.2. Treatment of HEK293 and HeLa Cells with Cysteine Proteases

Many allergens have biological activities, including enzymatic ones. Exposure to
proteases via the respiratory tract can induce the release of UA into the airway lumen,
and promote type 2 immune response [53]. In this study, two allergens with cysteine
protease activity, papain and actinidin, were employed as stressor agents for the induction
of UA release as an endogenous danger signal molecule. Papain is a potent proteolytic
enzyme [54] (EC 3.4.22.2) and allergen from papaya. Actinidin is a major allergen from
kiwifruit (Actinidia deliciosa), which was purified under native conditions. The purified
enzyme preserved cysteine protease activity [54] and was employed for cell treatment.
Detection of UA was performed in the respective cell culture medium after the treatment
of HEK293 cells as well as HeLa cells with papain and actinidin after 0, 6, 12, and 24 h,
respectively. Papain was a potent inducer of UA release from both cell lines in a time-
dependent manner, while actinidin did not induce detectable amounts of the UA molecule.
Although the molecular mechanisms for UA release upon allergen treatment are not
clarified in detail, papain exhibits five times higher proteolytic (caseinolytic) activity than
actinidin [54].

3.3. Electrocatalytic Properties of the Electrode Materials

Characterization of the electrodes’ surfaces during the optimization of the final elec-
trode modification was performed using CV and EIS. CV was employed to determine
the interfacial properties of electrode materials and examine electron transfer kinetics
between the electrode surface and the electrolyte. Firstly, the unmodified carbon paste
electrode was compared to La(OH)3-, MWCNT-, and La(OH)3@MWCNT-modified CP
electrodes to define the optimal nanomaterial composition to use for electrode modification.
CVs were performed in PB at pH 6 in the 5 mM redox probe K3[Fe(CN)6]/K4[Fe(CN)6]
and 0.1 M KCl support electrolyte, at the scan rate of 50 mV/s (Figure S1). The oxida-
tion and reduction peaks that originate from the Fe2+/3+ redox pair are visible on every
voltammogram obtained using unmodified and modified CP electrodes (Figure S1A). The
oxidation peak currents, for 2% (weight percent) of individual modifiers in the paste
amount 16.73 μA, 12.39 μA, 16.87 μA and 18.21 μA for CP, La(OH)3/CP, MWCNTs/CP and
La(OH)3@MWCNTs/CP, respectively. Consequently, La(OH)3@MWCNTs/CP was deter-
mined to have the best electrocatalytic properties and was chosen for further examination.
The next step in the electrode’s surface optimization was varying the modifier percent-
age in CP. The resulting voltammograms (Figure S1A) show a steady rise in oxidation
peak current with the increase in the share of the modifier in CP. The peak current values
equaled 18.13 μA for 2%, 23.47 μA for 5%, and 30.81 μA for 10% of La(OH)3@MWCNTs
in the CP. Furthermore, with the increase in the modifier content in CP from 2% to 10%,
the oxidation peak potential shifted from 0.46 V to 0.32 V, with peak-to-peak separations
(ΔE) = 0.69 V, 0.47 V and 0.36 V and oxidation/reduction current ratios (Ia/Ic) = 1.02, 1.01
and 1.04 for 2%, 5% and 10% La(OH)3@MWCNTs/CP, respectively. Higher values for the
peak-to-peak separation in this system, in comparison with the theoretical value of 59 mV,
is a common phenomenon and it is the product of the heterogeneity of the hand-made
carbon paste electrodes. The reported decrease in the ΔE value, as a result of the increase
in the amount of the modifier, indicate excellent properties of the selected composite re-
garding the diffusion properties of the electrode surface. Since oxidation occurs on lower
potentials and the other parameters point out that the electrode reaction is reversible when
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using 10% La(OH)3@MWCNTs/CP, this electrode material is assumed to have the best
electrocatalytic properties.

To further support the abovementioned assumptions, effective surface areas were esti-
mated for each electrode. Calculations were performed using the Randles–Sevcik Equation
and the specific surface areas of the electrodes were 2.02 mm2, 1.50 mm2, 2.04 mm2, 2.20 mm2,
2.83 mm2 and 3.72 mm2 for CP, La(OH)3/CP, MWCNT/CP, 2% La(OH)3@MWCNT/CP,
5% La(OH)3@MWCNT/CP and 10% La(OH)3@MWCNT/CP, respectively. This proves, once
again, that composite material formation is a crucial part of the modification process. Not
only does it enhance the material’s electrocatalytic properties, but also leads to an increase in
the effective surface area.

In addition to estimating the electron transfer resistance of the chosen electrode and
comparing its values to those obtained using different materials, EIS gives information on
other conductivity/resistance-related properties of the electrode system, such as double-
layer capacitance or diffusion rate. EIS spectra consist of a semicircle (high frequency)
and a linear (low frequency) region. The semicircle radius is electron transport resistance-
dependent and is defined by its Rct value, while the linear part is diffusion-dependent. The
measurements were conducted in PB pH 6, in the 5 mM redox probe containing Fe2+/3+

redox pair from cyano complexes and 0.1 M KCl support electrolyte. Rct values of CP,
La(OH)3/CP, MWCNTs/CP and La(OH)3@MWCNTs/CP (Figure S2A) were 40,480 Ω,
29,956 Ω, 48,345 Ω and 35,160 Ω, respectively.

Contrary to our beliefs, these values indicate that MWCNTs have the poorest electrocat-
alytic features. However, La(OH)3 encourages the electron shuttle and thus has the lowest
Rct value, while the composite material exhibits improved properties when compared to
the unmodified paste and MWCNTs alone. Moreover, as previously discussed, this material
shows the best current response in the cyclic voltammetry measurements, which confirms
that La(OH)3@MWCNTs exhibits the optimal electrocatalytic activity. Furthermore, the
increase in the La(OH)3@MWCNTs amount in the paste leads to the reduction in Rct and
thus the improvement of the overall electrochemical performance, which is evident from
the experimental data (Figure S2B). The obtained Rct values are 35,015 Ω, 29,889 Ω, and
19,559 Ω for the 2%, 5%, and 10% La(OH)3@MWCNTs/CP, respectively. In short, better CV
response and the decrease in the Rct values with the increase in the modifier content prove
the positive impact of the composite formation and the synergetic effect of its components
on the electron transfer kinetics enhancement.

3.4. The Material Behavior in the Presence of UA

To further examine electrodes’ compatibility with the chosen analyte, their electro-
chemical response was measured in the presence of UA. The measurements were conducted
in 10 mM uric acid solution in 0.1 M PB pH 6, in the potential range from 0.2 V to 1 V and
at the scan rate of 50 mV/s. Cyclic voltammograms of CP, La(OH)3/CP, MWCNTs/CP,
and La(OH)3@MWCNTs/CP electrodes show the oxidation peak current values 0.31 μA,
0.28 μA, 0.27 μA, and 0.27 μA, respectively (Figure S3A). Considering only anode peak
height, we could assume that electrode modification does not significantly influence the
electrodes’ performance in the presence of UA. We could also incorrectly conclude that the
unmodified CP electrode shows the best properties. However, reflecting on the complete
potential area, it is obvious this is not the case. We can see that with the electrode mod-
ification, the resolution of the peak improves and residual current decreases. This leads
to better peak to peak separation and to a lowering of the detection limit. Furthermore,
while the oxidation of the analyte occurs on the same potential on every voltammogram,
the electrolysis of the supporting electrolyte shifts to higher potentials as we proceed with
the electrode modification, from 0.49 V for CP to 0.67 V for La(OH)3@MWCNTs/CP. This
additionally lowers capacitive current, improves peak shape, and enables a stable and
reproductive environment for detecting low analyte concentrations.

When compared to an unmodified CP electrode, modified electrodes (MWCNTs/CP,
La(OH)3/CP, and La(OH)3@MWCNT/CP) provide a significantly improved voltammetric
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peak and higher currents (I) toward UA detection. The CV signals of UA using these
modified electrodes were similar, so for the selection of the optimal electrode for further
experiments, we used the data obtained from the electrochemical characterization of all
electrodes, as previously described. The La(OH)3/CP electrode had the poorest CV re-
sponse based on these measurements, most likely due to a decrease in electrode active
surface area. MWCNTs promoted electron transfer and decreased the interfacial resistance,
and better CV response was achieved when MWCNTs/CP were used. The La(OH)3 likely
makes the entire complex of MWCNTs and La(OH)3 more porous, which can help improve
the response of the modified electrode. All of this led to the conclusion that the synergistic
effect of MWCNTs and La(OH)3 improved the modified electrode’s electrochemical proper-
ties, which will contribute to the sensor’s analytical performance for uric acid detection.
The electrochemical behavior of La(OH)3@MWCNTs/CP electrodes, with different weight
percent of the modifier (from 2% to 10%) was compared using CV (Figure S3B). It is evident
from the graph that the material manifests a catalytic effect on the electron shuttle, with the
oxidation peak currents being 0.27 μA, 0.36 μA, and 0.45 μA for the electrodes containing
2%, 5%, and 10% of the modifier. Furthermore, the increase in the material contained in the
paste was followed by oxidation peak potential shift to lower values, from 0.39 V for 2%
to 0.33 V for 10% of the composite material in CP, in addition to a further decrease in the
capacitive current. Therefore, the material containing 10% of the composite was determined
to be the most suitable for further development of the sensing platform for UA detection
in human cells. Additionally, we recorded the CV of three different concentrations of UA,
using the electrode with 10% of the composite material in CP (Figure S3C).

3.5. Optimization of pH of the Supporting Electrolyte. Study of the Reaction Kinetics-Influence of
Varying Scan Rates on the Material

For optimization of the pH of the supporting electrolyte, CV measurements were
performed with La(OH)3@MWCNTs/CP electrode containing 10% of the modifier mixed
in the carbon paste. Measurements were taken in 0.1 M PB, in the pH range from 2 to 9,
at the scan rate of 50 mV/s, and they confirm that the reaction is pH-sensitive. The more
alkaline the solution becomes, the oxidation peak potential shifts to lower values, from
0.56 V at pH 2 to 0.24 V at pH 9 (Figure 2A). On the contrary, peak current values increase
with the rise in pH, only to gradually drop afterwards, reaching the maximum of 0.45 μA
at pH 6. Furthermore, peak resolution is fairly good on lower pH values, ending with pH
6 where the peak is well defined and narrow, unlike the broad peaks at higher pH. The
obtained results correlate well with UA’s pKa [55] values and electrocatalytic oxidation
mechanism (Scheme 2) [55].

Figure 2. (A) Optimization of pH of the 0.1 M PB supporting electrolyte from pH 2 to pH 9. (B) CV in
0.1 M PB pH 6 in the potential range from −0.5 V to 1 V at the scan rates from 2 mV/s to 100 mV/s.
(inset B) Linear plot of oxidation peak current vs. scan rate.
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Scheme 2. Mechanism of electrooxidation of UA.

The reported mechanism can be divided into three main steps—2e-/2H+ deproto-
nation and the oxidation of uric acid, the hydration of the intermediate diimine and its
subsequent decomposition into allantoin and CO2. While this mechanism infers that the
reaction is pH-dependent and that alkaline conditions allow the initial deprotonation to
proceed, it is less obvious as to why the pH values higher than pH 6 are less favorable.
Since pKa values for uric acid are 5.4 and 9.8, we can assume that the elevation of pH above
pH 6 leads to further deprotonation of urate or diimine, thus introducing new intermediate
species and broadening the oxidation peak, lowering its resolution and decreasing the
maximal peak current.

The best performance of the electrochemical system at pH 6, and its similarity with the
physiological conditions are the reasons why this pH is used for all further measurements.

The CV measurements in PB pH 6 were conducted with optimized electrode surface pa-
rameters at various scan rates (from 2 mV/s to 100 mV/s) to determine the reaction kinetics.
The oxidation peak potential and ΔE are constant for all scan rates in the measured range
(Figure 2B), while the peak current values (inset Figure 2B) increase linearly with the in-
crease in the scan rate, which is described by the equation I(nA) = 3.2436 v (mV/s) + 0.5213,
with the linear regression coefficient R = 0.9921. This means that the UA solution is stable,
the electron transfer processes are fast, and the electrode reaction is an adsorption-controlled
process. From the equation i_p = (n2 F2)/4RT vAΓ *, we can calculate the surface coverage of
the adsorbed species (Γ*) [56]. The surface coverage values for the scan rates from 2 mV/s
to 100 mV/s are 0.11 μmol/cm2, 44.08 nmol/cm2, 22.04 nmol/cm2, 11.02 nmol/cm2,
7.35 nmol/cm2, 5.51 nmol/cm2, 4.41 nmol/cm2, 2.94 nmol/cm2 and 2.20 nmol/cm2. These
values indicate that, although the adsorption of the UA on the electrode surface decreases
with the increase in the scan rate, it is not negligible and can influence the accuracy of the
measurements. To prevent introducing a systematic error in the measurements, the surface
of the electrode was renewed before each measurement (the excess paste was squeezed out
of the electrode, polished with a clean piece of paper and washed with deionized water).
The simple and reproducible restoration of the clean electrode surface was one of the major
advantages of using the carbon paste electrode in this study.

Even though the anodic peak does not show potential shift and its current linearly
increases with the scan rate, the reduction peak is almost absent in all voltammograms,
while the cathodic capacitive current increases with the increase in the scan rate. This indi-
cates that the electrode reaction is characterized by a reversible electron transfer followed
by an irreversible chemical reaction [56]. In this case, the irreversible chemical reaction is
allantoin formation, and it is incorporated in the electrochemical step.

3.6. Uric Acid Detection

Amperometric determination was used for UA quantification due to its low detection
limit, rapidness, wide linear range, easy signal processing, and the possibility of following
the real-time concentration changes in flow systems. The amperometric response of the
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La(OH)3@MWCNTs/CP electrode, containing 10% of nanomaterial mixed in the CP, toward
different standard solutions of the UA, was recorded in 0.1 M PB pH 6, at the fixed
potential at 0.3 V (Figure 3A). Successive UA addition to the solution was accompanied
by a corresponding current increase and the calibration plot I (nA) against c (μM) was
constructed (Figure 3B). The linear response was in the range from 0.67 μM to 121 μM UA
with the detection limit, calculated from the plot as 3 S/m (where S is the standard deviation
of the blanc and m is the slope of the calibration plot), 64.28 nM, and the analogously
calculated limit of quantification (10 S/m) was 0.22 μM. The calibration curve follows the
trend expressed by the linear regression equation I (nA) = 2,1582 + 0.4430 c (μM), with the
linear regression coefficient R = 0.9969.

Figure 3. (A) Amperometric response of the La(OH)3@MWCNT modified CP electrode in 0.1 M PB
pH 6 towards successive addition of UA standard solution. (B) Calibration curve of amperometric
current depending on the concentration of UA in the analyte solution, in the range from 0.67 μM to
121 μM.

Five successive measurements of 2 μM UA standard solution were performed, to test
the repeatability of the proposed sensing platform for UA determination and monitoring,
and the obtained current values were 6.01 nA, 5.71 nA, 5.70 nA, 5.71 nA and 5.42 nA, giving
an RSD of 3.65% (Figure S4). The reproducibility was estimated with five different elec-
trodes, which were constructed independently using the proposed procedure (Figure S4).
The RSD is 4.13% for the peak current measured in 2 μM UA in PBS (pH 6.0), which
demonstrates the reliability of the fabrication procedure. The stability of the modified
electrode was also studied using CV. When the electrode was cyclically swept for 30 cycles,
the decrease in the initial responses of the modified electrode was 3.6%.

Furthermore, we conducted an extensive literature overview and compared the linear
working range, LOD and RSD of our method to the best methods documented in the
literature (Table 1). The results suggest that the proposed sensing platform is comparable, if
not better than those previously reported. Several UA detection methods using only carbon
nanotubes as the electrode material have been reported [21,57]. Although these sensors
have adequate linear ranges, they generally have slightly higher detection limits compared
to electrode utilizing modified materials, or require complex purification techniques prior
analysis. By using MWCNTs decorated with La(OH)3 nanoparticles to modify the CP
electrode, a very good sensitivity of the UA detection method was achieved. This is
probably due to the joint action of the modifier—the alkaline properties of La(OH)3, which
facilitate the binding of UA, as well as the increase in the active surface area and electron
transfer efficiency by MWCNTs.
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Table 1. An overview of recently reported nanomaterial-based electrochemical methods for the
determination of UA.

Materials Used LOD Linear Working Range (μM)
RSD
(%)

Detection Method Ref. No.

La(OH)3@MWCNT/CP 64.28 nM 0.67–121 3.65 CA This work
SWCNTs array-GCE 0.82 μM 10–200 / SWV [57]

MoS2/rGO 0.46 μM 25–2745 3.23 DPV [58]
LaFeO3 30 nM 0.15–800 3.47 DPV [47]

NiO/GO 0.14 μM 2.0–120 / DPV [11]
TmPO4/GO 3.73 μM 10–100 3.20 DPV [12]

PEDOT/PANI 0.24 μM 0.7–100 3.10 DPV [13]
Fe2O3–NG/GCE 75 nM 10–100 3.09 DPV [14]

Au-MoS2 18.2 nM 0.033–10 1.29 DPV [15]
TiO2/TiCT/NUF 0.18 nM 0.001–60 0.42 DPV [16]

NiTSPc/ITO 8 μM 60–600 3.80 ECL [19]
Pt 20 nM 2.0–100 2.90 ECL [20]

CNT 60 nM 1–500 1.20 BIA-MPA [21]
Pd-Pt/OMC/SPCE 0.25 μM 0.25–800 2.40 FIA [22]

3.7. Interference Studies

One of the essential features of the sensor is its selectivity. CV measurements of
a 10 μM UA solution in 0.1 M PB at pH 6 were conducted in the presence of common
interferents found in biological matrices. Both organic and inorganic interfering species
which exist in the lysed cell culture were taken into account. The measurements are
performed in the potential range from −0.5 V to 1 V, at the scan rate of 50 mV/s, with
the ratio of UA and potential organic interferents 1:1. The chemical behavior of UA in the
presence of ascorbic acid (AA), citric acid (CA), dopamine (DOPA), gallic acid (GA) and
glucose (GLU) is shown in the Supplementary Data (Figure S5A). While CA and GLU do
not influence UA detection, the other interferents lead to signal elevation. However, the
peak originating from UA remains visible and measurable in the presence of DOPA, AA
and GA (Figure S5A). Although considerable interferences originating from the substances
commonly present in the biological matrix present the major drawback of the proposed
method, they can be overcome by careful experiment planning and execution and/or the
use of chemometric methods. We proved this by measuring only the height of the peak
originating from UA oxidation, which remains nearly the same in all samples, with the
highest deviation for the ascorbic acid (histogram on Figure S5B).

Considering the fact that high concentrations of salts can be present in the sample,
the influence of 0.1 M KCl, NaCl, CaCl2, MgOAc and NaOAc in 0.1 M PB at pH 6 on
detection of 10 mM UA was studied. The results show that none of the mentioned salts
in a 1000:1 ratio to UA influence UA detection. The interference study proves that the
proposed sensing platform shows satisfying selectivity towards UA in the presence of
common organic and inorganic interferents.

The practicability estimation of the developed method after the cell stress.
To analyse the applicability of the proposed sensing platform in biological samples,

measurements were conducted in a real sample matrix. CV measurements were performed
in the potential range from −0.5 V to 1 V at the scan rate of 50 mV/s in the presence and
absence of UA to scan for potential interferents (Figure S6A). The baseline in the biological
matrix gives a high current response, originating from the oxidation of electrochemically
active species contained in the matrix. However, this does not influence the UA amperomet-
ric detection, because, at 0.3 V, where uric acid oxidation occurs, no matrix interferences are
present. To prove this, a calibration curve is constructed once again in the biological sample
matrix (DMEM). The obtained results are displayed by the amperometric curve (Figure S5B)
and corresponding plot (inset Figure S6B). The amperometric current response changes
linearly with the UA concentration in the range from 1 μM to 38 μM, which is described by
the equation I (nA) = 4.1455 + 0.4326c μM, with the linear regression coefficient R = 0.9910.
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After the calibration, real sample analysis was conducted. The samples were obtained
by treating the human HEK293 and HeLa cell cultures with the papain, and the actinidin
allergen, respectively, during a time frame of 12 h. Ten microliters of the sample was
added to 5 mL of 0.1 PB at pH 6, and the change in the amperometric current at 0.3 V was
measured. However, the UA concentration in the sample was found to be lower than the
limit of quantification. Therefore, the sample was spiked with UA standard solution, so
the final concentration of UA (spiked) was 100 μM. The measurements were repeated five
times with the spiked sample, and the mean value of the rise in the amperometric signal
corresponded to the 0.2010 mM UA concentration in the 5 mL of PB, which agrees with the
total UA concentration in the sample of 100.5 μM. That proves that the proposed method is
applicable in real sample analysis. However, it requires either more concentrated samples,
larger quantities of samples, or spiking the samples with a known amount of UA.

To further support this claim, a series of HeLa and Hek293 cell cultures were treated
with papain and EG4 inhibited papain for prolonged periods. The cell cultures were
prepared in duplicate with each of the abovementioned allergens independently and the
amperometric response at 0.3 V was recorded immediately after the addition of allergens,
and after incubation periods of 3 h, 6 h and 12 h. The obtained results are given as
mean values of the measurements in Table 2. The control groups of cells, without the
added allergens, were also analyzed to compare the UA release from the treated and the
untreated cells.

Table 2. The concentrations of UA obtained using the developed amperometric method (sensor) and
HPLC as the reference method after the incubation of HeLa and HEK293 cells with papain.

Human Cell Lines Incubation Period Papain
Standard
Deviation

E64 Inhibited Papain Control

Sensor HPLC Sensor HPLC Sensor HPLC Sensor HPLC
HeLa 0 / / / / / / / /

3 / / / / / / / /
6 1.03 1.00 0.0919 0.10 / / / /

12 1.96 1.89 0.0981 0.11 / / / /
Hek 293 0 / / / / / / / /

3 / / / / / / / /
6 0.78 0.81 0.1626 0.16 / / / /

12 2.56 2.55 0.0283 0.03 / / / /

The acquired values indicate that the stress on the cells after the adequately long
(6 h and 12 h) exposure to papain is sufficient to release considerable amounts of UA.
Furthermore, the quantity of UA released is directly proportional to the incubation period,
proving that the developed method is suitable for real-time detection or monitoring of cell
damage or stress.

For method validation, the same real samples were analyzed by using HPLC as a
standard method. The obtained results display good agreement with those achieved in the
developed electrochemical method. The recoveries of the determination are 94.3–103.0%,
indicating good accuracy of the developed method in real sample analysis.

3.8. Environmental Impact of the Analysis

While developing an analytical procedure, attention is being shifted more and more to
its ecological acceptability. Several methods can assess the green aspects of an analytical
procedure in which the green analytical procedure index (GAPI) (Scheme 3A) and Ana-
lytical GREEnness metric approach and software (AGREE) (Scheme 3B) are used. While
GPAI is the most comprehensive and has the advantages of graphically describing all rele-
vant factors-quantification; sample collection, preservation, transport and storage; sample
preparation; reagents and compounds used and instrumentation, AGREE enables straight-
forward interpretation, since the level of greenness is expressed numerically on a scale from
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0 to 1, with 1 being the greenest. Furthermore, AGREE contains all the relevant data about
the analytical procedure and is easy to generate thanks to a free software downloadable
from https://mostwiedzy.pl/AGREE (accessed on 7 June 2022) [59]. For GAPI, each aspect
is presented with a pentagon further divided into segments that stand for specific demands
that make a procedure green (amounts of solutions used, purification, energy consumption,
generated waste, etc.). The colors of the segments depict the low, medium or high impact
of the method on the environment, moving from green through yellow to red, and each of
them has to fulfil certain conditions to be considered green [60].

Scheme 3. (A) GAPI and (B) AGREE pictograms for the estimation of the greenness of the
analytical procedure.

In Scheme 3, we can see that the analysis performed with the proposed sensing
platform is quantitative and can be performed at-line. Thus, no sample preservation,
transport or storage is needed. Furthermore, the cell culture matrix can be used directly or
dissolved in water or biological buffer without any prior purification or sample preparation.
This minimizes the energy consumption and the amount of generated waste, while the
minimum volume needed for the analysis is 5 mL. Overall, this analytical procedure
can be considered green, direct and robust and it can easily be further miniaturized for
commercial application.

4. Conclusions

This paper developed and tested a sensing platform for UA determination in the
biological sample. Knowing that the electrode surface modifications are the key enabler
for next-generation chemistries based on the interface reactions, we offered a sensing
platform based on the novel composite material, optimized to have the best electrochemical
performance. Their compatibility with the UA as the analyte was tested and the calibration
was performed in the optimal conditions, showing remarkable sensitivity and a wide
dynamic working range. Reproducibility and repeatability tests have shown excellent
accuracy and precision of the method as a limiting and key factor for practical application.
The disadvantage of this method is its limited selectivity in the presence of the common
interfering species in the biological matrix. However, this drawback can be bypassed by
good experiment planning and/or the use of chemometrics. In the end, the proposed
sensing platform was tested in the human cell cultures exposed to the allergens. In the first
series of samples (stressed with the papain, and actinidin allergen), concentrations of UA
were too low to perform the direct measurement, so the samples had to be spiked. In spite
of that, we were able to determine the UA concentration and to repeat the measurements
with the unspiked samples stressed with papain. In this way, we not only proved that the
stress induced in the cells can be measured by this method, but clearly distinguished the
levels of stress induced in HeLa and Hek 293 cell cultures by the use of three different
allergens (papain, and actinidin). Since UA is released when cells suffer from stress, sensing
devices that can measure a change in the UA concentration can provide us with plenty of
information on both the environmental factors and pathological states that cause stress
to the human organism. Furthermore, the simplicity of this method and the device itself
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opens up opportunities for its commercial use. Hence, we think that this sensing device, as
it is, can potentially find applications in medical research and clinical practice.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios12090705/s1. Figure S1. Cyclic voltammograms in 5 mM
Fe2+/3+ in 0.1 M KCl and 0.1 M PB pH 6, in the potential range from −0.5 V to 1 V at the 50 mV/s
scan rate of (A) unmodified CP electrode and electrodes modified with 2% of La(OH)3, MWCNT and
La(OH)3@MWCNT B) electrodes modified with 2%, 5% and 10% of La(OH)3@MWCNT. Figure S2.
EIS spectra in 5 mM Fe2+/3+ in 0.1 M KCl and 0.1 M PB pH 6 on 0.3 V and in the frequency range
from 10 kHz to 10 mHz of (A) unmodified CP electrode and electrodes modified with 2% of La(OH)3,
MWCNT and La(OH)3@MWCNT (B) electrodes modified with 2%, 5% and 10% of La(OH)3@MWCNT.
Figure S3. (A) CV in 0.1 M PB pH 6 in the presence of 10 μM UA—unmodified CP electrode and
electrodes modified with 2% of La(OH)3, MWCNT and La(OH)3@MWCNT (B) CV in 0.1 M PB pH 6
in the presence of 10 μM UA—electrodes modified with 2%, 5% and 10% of La(OH)3@MWCNT
(C) CV in 0.1 M PB pH 6 in the presence of 7.5; 10 and 100 μM UA using electrode modified with
10% of La(OH)3@MWCNT. Figure S4. Repeatability and reproducibility studies for proposed sensor.
Figure S5. Studying the impact of potential interferents on UA detection (A) CV in 0.1 M PB pH 6,
at the potential range from −0.05 V to 1 V at the scan rate 50 mV/s, (B) Histogram—percent of the
anodic peak current which arose from the oxidation of UA. Figure S6. (A) CV in the potential range
from 0.5 V to 1 V at the scan rate of 50 mV/s in the biological matrix in the presence and absence
of UA (B) Amperometric curve of UA in the real sample matrix (inset B) Calibration curve of UA
standard solutions in the biological matrix.
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Abstract: Cancer is a fatal disease and a significant cause of millions of deaths. Traditional methods
for cancer detection often have limitations in identifying the disease in its early stages, and they
can be expensive and time-consuming. Since cancer typically lacks symptoms and is often only
detected at advanced stages, it is crucial to use affordable technologies that can provide quick
results at the point of care for early diagnosis. Biosensors that target specific biomarkers associated
with different types of cancer offer an alternative diagnostic approach at the point of care. Recent
advancements in manufacturing and design technologies have enabled the miniaturization and cost
reduction of point-of-care devices, making them practical for diagnosing various cancer diseases.
Furthermore, machine learning (ML) algorithms have been employed to analyze sensor data and
extract valuable information through the use of statistical techniques. In this review paper, we
provide details on how various machine learning algorithms contribute to the ongoing development
of advanced data processing techniques for biosensors, which are continually emerging. We also
provide information on the various technologies used in point-of-care cancer diagnostic biosensors,
along with a comparison of the performance of different ML algorithms and sensing modalities in
terms of classification accuracy.

Keywords: biosensors; impedance cytometry; lab-on-a-chip; cancer detection; machine learning;
microfluidic chips

1. Introduction

Cancer is a major cause of death worldwide, and the incidence of cancer continues
to rise, making early detection and diagnosis essential. In 2020, nearly 10 million people
died of cancer, according to the World Health Organization [1]. Cancer is a genetic disease
caused by changes in the DNA sequence of cells due to DNA damage, harmful substances,
or errors in cell division [2]. Lung and breast cancers are prevalent types of cancer that
affect men and women. Carcinoma, lymphoma, leukemia, sarcoma, and melanoma are
frequently encountered cancer classifications that can emerge in various organs of the
human body. Aging, prolonged exposure to sunlight, smoking, radiation exposure, viral
infections, the use of hormonal medications, and exposure to certain chemicals are among
the known factors contributing to the development of cancer [3].

Cancer involves the abnormal growth of cells that are clones of each other, and these
cancerous cells can divide and spread beyond the neighboring cells, generating tumors.
Tumors can be benign or malignant [4]. Benign tumors stay in their primary stage and may
grow in size without spreading into neighboring tissues or organs. In contrast, malignant
tumors consist of cancer cells that grow uncontrollably and spread into neighboring cells,
tissues, or organs. Cancer cells can spread to other parts of the body via the lymphatic
node system or through the bloodstream. From benign tumors to malignant, cancer passes
through four stages, where the fourth stage is called metastatic, and the chances of survival
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are very low [5]. Unfortunately, there are no advanced methods to diagnose cancer at the
earliest stages.

Typical cancer detection processes involve physical exams, lab tests that use expensive
and harmful equipment based on electromagnetic radiation, or a surgical diagnosis called
a biopsy [6]. These lab tests use biological samples, such as blood, urine, saliva, or sweat,
to detect specific biomarkers. Imaging-based tests include magnetic resonance imaging
(MRI), computed tomography (CT), positron emission tomography (PET), ultrasound,
and X-rays [7–10]. Although these imaging tests are non-invasive, they require expensive
equipment and experienced pathologists. Biopsies are useful for determining the type
of tumor, but they are invasive, painful, time-consuming, and expensive [11–13]. These
issues with the current cancer diagnostic and detection methods make them unsuitable
for point-of-care testing (POCT) and early cancer diagnosis [14–19]. Therefore, there is an
urgent need to develop biosensing platforms for early cancer diagnosis that are low-cost,
non-invasive, accurate, less time-consuming, and can be used at the point of care.

Biosensors can fill the void of point-of-care testing by providing low-cost, non-invasive,
high-speed, and on-site testing of bio samples. A biosensor is a specialized type of sensor
designed to detect and capture biological signals or molecules within a given sample or
environment. These biological signals can include various entities, such as specific proteins,
enzymes, DNA sequences, antibodies, or even whole cells. Biosensors are particularly
significant in the field of medical and healthcare applications due to their ability to provide
valuable information about biological processes, disease diagnosis, and patient monitor-
ing [20]. Various point-of-care devices and lab-on-chip technologies have been employed to
detect and diagnose various biomarkers from bio samples, such as pregnancy tests, blood
glucose, or tuberculosis. Biosensors search for a specific biomarker in the bio sample and
use either electrical or optical sensing modalities to detect biomarkers [19,21–26] associated
with a cancer type. Additionally, researchers have conducted significant research on biosen-
sors that use sweat or exhaled air as a potential sensing mode and have tried to associate
the concentrations of volatile organic compounds with the presence of cancer or some other
disease [25,27].

Biosensors can generate large amounts of data at the time of diagnosis and may require
complex processing algorithms to generate the results. To effectively analyze the vast
amounts of data obtained from biosensors and extract valuable information, researchers
have harnessed the power of machine learning (ML) techniques. These methods include but
are not limited to support vector machines (SVM), k-nearest neighbor (KNN), decision trees
(DT), artificial neural networks (ANN), and convolutional neural networks (CNN) [28,29].
This paper is a review of the research projects that develop biosensors for early cancer
detection and diagnosis and employ ML algorithms to enhance data analysis. In this regard,
a review of ML algorithms is presented, along with the fundamental working principles of
different biosensing techniques. The papers in this review study are divided into two main
categories: electrical detection and optical detection biosensors. To facilitate a reader’s
understanding of how ML models are advancing biosensors in diagnosing different types
of cancer, sub-categories have been created based on the type of cancer detected using
specific biomarkers or cells.

2. Overview of Machine Learning Algorithms

Machine learning (ML) has grown rapidly over the past few decades and has widely
used applications not only limited to healthcare problems, such as predicting drug dis-
coveries and diagnosing diseases, but also in other fields, such as mechanics, robotics,
and image recognition [30–34]. In simple words, ML is a rapidly developing field of
computational algorithms that aims to replicate human intelligence by adapting to their
surroundings and learning from them [35]. There are two main types of machine learning
algorithms: supervised and unsupervised learning [36]. The difference between these
two main classes is the existence of labels in the training data subset, which will be
discussed in the following sections.

92



Biosensors 2023, 13, 884

2.1. Supervised Machine Learning

Supervised algorithms are a subset of machine learning models which generate a
function that maps inputs to desired outputs [37]. Supervised learning is characterized
by the usage of labeled datasets to train algorithms for accurate classification or outcome
prediction. The model adjusts its weights as input data is fed into it, achieving proper
fitting during the cross-validation process [38]. During the model training process, the
predicted output is compared to the actual output, and modifications are made to decrease
the overall error between the two. Supervised machine learning algorithms have a broad
range of applications in biosensors and healthcare, including tasks such as distinguishing
cancer from non-cancer cells, detecting circulating tumor cells (CTCs), and predicting
DNA quantities [31,38,39]. In the following sections, the most well-known and commonly
supervised algorithms will be discussed.

2.1.1. Support Vector Machines (SVMs)

The support vector machine algorithm is a popular supervised algorithm used both
in classification and regression models [40]. In classification, the SVM aims to identify a
hyperplane in an N-dimensional feature space, which effectively separates the data points
into distinct classes (Figure 1A), while, in regression models, the SVM aims to find a line
that best fits the data [41]. The kernel-based SVM algorithm uses kernel functions to
transform the input data into a higher dimensional feature space when the data cannot be
separated linearly. The performance of the SVM model depends on two hyperparameters:
kernel parameters and kernel types. The selection of the kernel type is determined based
on the characteristics of the input data [29].

2.1.2. K-Nearest Neighbor (KNN)

The k-nearest neighbor (KNN) algorithm is a type of supervised machine learning
algorithm that classifies objects based on the classes of their nearest neighbors [42]. It
is typically used for classification but can also be applied to regression problems. The
algorithm predicts the class or value of a new data point based on the k-closest data points
in the training dataset. To identify the nearest neighbors, the algorithm calculates the
distance between the new data point and all other data points in the dataset. For example,
in Figure 1B, the green unknown data point belongs to the red dataset. For classification,
the algorithm assigns the new data point to the most common class among its k-nearest
neighbors, while for regression analysis, it calculates the average value of the k-nearest
neighbors and assigns it to the new data point [42]. The value of k is usually determined
through cross-validation or other optimization techniques, and it impacts the bias-variance
trade-off of the model. Despite its simplicity, KNN is a highly effective algorithm and is
widely used in many fields, including image recognition, natural language processing, and
healthcare problems [43–45].

2.1.3. Decision Tree (DT)

The decision tree algorithm is a popular supervised machine learning algorithm
used for classification and regression tasks. It works by constructing a tree-like model
of decisions and their possible consequences based on the data [46]. The decision tree
algorithm works by dividing the feature space of the training set recursively. Its goal is
to identify a collection of decision rules that can partition the feature space in a way that
produces a reliable and informative hierarchical classification model. In this algorithm,
each node represents an attribute or feature, and each branch represents an outcome. The
root node represents the entire dataset, and at each internal node, the algorithm divides the
data based on a specific attribute’s value. The schematic of the DT algorithm is shown in
Figure 1C. This process is repeated recursively until a stopping condition is met, such as
achieving a specified level of purity or reaching a predetermined depth [46].
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2.1.4. Gaussian Naïve Bayes (GNB)

The Gaussian naïve Bayes (GNB) algorithm is a classification technique used in ma-
chine learning that leverages a probabilistic approach and the Gaussian distribution to
make predictions of input data. GNB treats each attribute variable as independent, enabling
it to be trained efficiently in supervised learning and used in complex real-world scenarios.
GNB is particularly effective when dealing with high-dimensional data since it assumes in-
dependence between features, making it less susceptible to the curse of dimensionality [47].

2.1.5. Logistic Regression (LR)

Logistic regression is a supervised machine learning algorithm designed to solve
classification problems where the target variable is categorical. The primary objective of
logistic regression is to establish a mapping function from the dataset’s features to the
target. This allows the algorithm to predict the probability of a new data point belonging to
a particular class [48]. As shown in Figure 1D, the input space is divided into two regions,
which are separated by a boundary. Logistic regression is a widely used algorithm in
many fields, such as marketing, healthcare, and finance, as it can help identify patterns
and relationships between variables that can assist in making accurate predictions and
decisions [49].

2.1.6. Random Forest (RF)

Random forest is a supervised machine learning algorithm that builds on the concept
of tree classifiers. It generates a large number of classification trees and uses them to
classify new feature vectors. Each tree in the forest classifies the input vector, and the tree’s
classification is counted as a “vote” for that class. The forest then chooses the classification
with the highest number of votes across all the trees in the forest as the final prediction. RF
is a highly effective algorithm for handling complex, high-dimensional datasets. It uses
ensemble learning to reduce overfitting and improve the model’s accuracy by combining
the outputs of multiple decision trees [50].

2.1.7. Artificial Neural Network (ANN)

Artificial neural networks (ANNs) are computer programs designed to mimic the way
the human brain processes information. They derive their inspiration from biological neural
networks and adopt a similar structure of interconnected neurons to perform complex tasks.
ANNs acquire knowledge through experience by identifying patterns and relationships in
data instead of relying on explicit programming to accomplish the task.

An ANN typically consists of many processing elements (PE), also known as artificial
neurons, which are connected by weights. These weights constitute the neural structure of
the network and are organized into layers. The structure of an ANN is shown in Figure 1E.
Through a process of training, the network learns to adjust the weights between the neurons
to produce the desired output given a specific input. ANNs can be used for a variety of
tasks, such as image and speech recognition, natural language processing, predictive
analytics, and healthcare [51]. Figure 1 represents common supervised ML algorithms.

2.2. Unsupervised Machine Learning

Unsupervised learning is a subfield of machine learning where the data provided
to the machine learning algorithm is unlabeled, and it is up to the algorithm to make
sense of the data on its own. In unsupervised learning, the algorithm looks for patterns
and structures in the data and tries to group similar data points together based on their
similarities or differences. One of the key advantages of unsupervised learning is that
it can reveal insights and relationships that may not be immediately apparent to human
observers. By discovering patterns and similarities in the data, unsupervised learning can
help uncover the hidden relationships that can be useful for making decisions or solving
problems. For example, unsupervised machine learning can be used to identify customer
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segments in a marketing dataset or to find anomalies or outliers in a dataset that may
indicate fraudulent activity [41].

Figure 1. Schematic illustrations of supervised machine learning algorithms. (A) SVM model.
Reprinted from [52]. (B) KNN model Reprinted from [53]. (C) DT model. Reprinted from [54]. (D) LR
model Reprinted from [55]. (E) ANN model. Reprinted from [56].

2.3. Machine Learning Figures of Merits

To evaluate the performance of the representative model, the following metrics are used:
accuracy (ACC), true positive rate (TPR), true negative rate (TNR), false negative rate (FNR),
and false positive rate (FPR). These measures are computed using the following forms:

Accuracy(ACC) =
TP + TN

TN + TP + FN + FP
(1)

Sensitivity(TRP) =
TP

TP + FN
(2)

Specificity(TNR) =
TN

TN + FP
(3)

Fallout(FPR) =
FP

TN + FP
(4)

False Negative Rate(FNR) =
FN

TP + FN
(5)

where the TP’s and FPs refer to the number of correct and incorrect predictions of outcomes
to be in the considered output class, whereas the TN’s and FNs refer to the number of correct
and incorrect predictions of outcomes to be in any other output classes respectively [30].

The ROC (receiver operating characteristic) curve is a graphical representation of the
performance of a binary classification model. It is a graph that shows the trade-off between
the true positive rate and the false positive rate. A diagonal line in the ROC curve indicates

95



Biosensors 2023, 13, 884

that the test has no discriminatory ability, while an ROC curve above the diagonal line
indicates a test with better-than-chance discrimination ability. The area under the ROC
curve (AUC) is a measure of the overall ability of the test to discriminate between the
presence or absence of a condition. An AUC of 1.0 indicates perfect discrimination, and an
AUC of 0.5 indicates no discriminatory ability [57].

3. Lab-on-a-Chip in Cancer Detection

This section provides a brief overview of the various types of sensors, including optical
and electrical sensors, such as image-based, fluorescence, and impedance sensors, that can
be used to detect cancer cells. Additionally, the results of machine learning algorithms to
analyze data collected from these sensors have been discussed.

3.1. Optical Detection

Optical detection of cells implies the use of optical techniques and instruments for
the detection, classification, and stratification of cells [41]. Various types of optical-based
biosensors have been developed and utilized for diverse biological and clinical applications,
such as surface plasmon resonance (SPR), optical waveguides, optical resonators, and
fluorescence [3,58,59]. Optical biosensors have several advantages, including their high
sensitivity, real-time detection, label-free analysis, small form factor, and low cost [41].
These characteristics make optical biosensors an appealing option for integration into
lab-on-a-chip devices, which seek to carry out sample preparation, research, and detection
in a miniaturized and automated format [59]. In the next section, we will review the latest
developments of optical-based biosensor devices in the identification and clinical diagnosis
of various types of cancers, as well as data analysis with machine learning techniques.

3.1.1. Breast Cancer

Based on the World Health Organization (WHO), breast cancer is the most frequent
cancer among women, affecting over 1.5 million women each year, and is responsible for
the most significant cancer-related deaths among women. In 2015, 570,000 women died
from breast cancer [60]. This highlights the potential of biosensors for the early detection of
cancer cells. Biosensors are promising and selective detection devices which hold immense
potential as point-of-care (POC) tools [61]. Several studies have shown the application
of optical-based biosensors to detect breast cancer cells, demonstrating the promising
potential of biosensors for early-stage detection of breast cancer cells.

The surface plasmon resonance (SPR) sensor is an optical sensor employing a unique
mode of electromagnetic field called the surface plasmon, which propagates at the interface
of a metal and a dielectric. The SPR sensor utilizes the evanescent field generated by the
surface plasmon to detect alterations in the refractive index of the dielectric material near
the interface [62]. Numerous studies have suggested the effectiveness of SPR sensors in
the early detection of cancers [63]. Kumar et al. [64] described a photonic crystal fiber-
based surface plasmon resonance (SPR) sensor for detecting breast cancer cells based
on their refractive index (Figure 2A). They used simulations and numerical analysis to
measure the wavelength sensitivity and resolution of the sensors for normal and cancerous
cells, achieving a high sensitivity and low resolution. The refractive index of normal and
cancerous cells was estimated using a multi-layer perceptron, and the machine learning
algorithm was used to optimize the structural parameters. The proposed sensor shows
promising results and could be a potential alternative sensing device for early-stage breast
cancer diagnosis. In another study, Verma et al. [65] developed a machine learning approach
for breast cancer cell detection using a surface plasmon resonance (SPR) based on a photonic
crystal fiber sensor, which is shown in Figure 2B. The sensor operates by detecting changes
in the refractive index of the fiber when breast cancer cells are present. The machine learning
algorithm is trained on a dataset of SPR spectra obtained from both breast cancer and non-
cancerous cells and is used to classify new samples as either cancerous or non-cancerous
based on their spectral patterns.
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Another type of optical sensor is the fluorescence sensor, widely used to identify and
measure biomolecules or metal ions. The advantages of this type of sensor include its
sensitivity, specificity, resistance to light scattering, and ease of use [66]. In a study reported
by Jin et al. [67], they developed a breast cancer liquid biopsy system that integrates a
fluorescence sensor array with a deep learning model. The sensor array uses fluorescent
probes to gather diverse information about cells and exosomes. The deep learning model
employs a CNN-based architecture to distinguish between normal and cancerous cells.
The system has demonstrated successful discrimination between normal and different
cancerous cells and achieved a 100% accurate classification of different breast cancer cells. In
addition, Pala et al. [68] constructed and tested a digital in-line holographic microscope for
imaging breast cancer cells using holography, which is shown in Figure 2C. The microscope
was constructed using a white LED for illumination, a pinhole to make the light semi-
coherent, and a CMOS sensor to record images of the plane above it. Holograms were
captured and numerically reconstructed, and the amplitude of individual cells was collected.
Using machine learning, these images were transformed into a fractal dimension and
rotated to calculate the identifying features of each cell. Upon testing the accuracy of this
system, the team achieved an accuracy of 99.65%.

3.1.2. Lung Cancer

Lung cancer is a primary cancer that poses a significant threat to human life globally,
having the highest mortality rate. Early detection of lung cancer is crucial for a timely
diagnosis and subsequent treatment. However, conventional methods for lung cancer
detection have limitations, such as their low sensitivity, high costs, and invasive procedures,
which restrict their practicality [69]. In this section, we will review the optical biosensors
for detecting lung cancer and explore how machine learning can aid in analyzing data and
improving their application.

Image-based detection implies the use of images or videos of cells. These images
or videos need to be processed to identify and quantify cells [41]. To demonstrate,
Hashemzadeh et al. [70] developed a microfluidic chip for lung cancer detection that
employs image-based analysis. Images were obtained using an inverted Olympus fluores-
cence microscope and were analyzed by a deep learning model. The researchers achieved
an accuracy of 98.37% in classifying images of lung cancer cell lines and normal cell lines.
The overview of the combined microfluidic deep learning approach has been shown in
Figure 3A. As another example, Sui et al. [71] described the development of a microfluidic
imaging flow cytometer that can detect lung cancer using complex-field imaging and
fluorescence detection subsystems. The system can analyze millions of cells and provide a
hierarchical analysis of the intrinsic morphological descriptors of single-cell optical and
mass density, as well as fluorescently labeled biochemical markers. The data collected from
the system were used to train deep learning-based models, which achieved a classification
accuracy ranging from 91% to 95% for lung cancer detection.

Volatile organic compounds (VOCs) are potential biomarkers for lung cancer detection.
In the study reported by Nguyen et al. [72], a controllable gap plasmonic color film biosensor
was developed for the detection and quantification of VOCs. The goal of the study was to
diagnose lung cancer based on VOC gas detection from exhaled breath samples. The color
changes in the sensor arrays when exposed to humidity and VOCs were recorded using a
camera, and a CNN model was trained to classify them into different VOCs (Figure 3B).
They collected the data from 70 healthy and 50 lung cancer patients and trained the ML
models, reporting a training classification accuracy of 90% and 92.8% for lung cancer
and healthy patients, respectively. They achieved a classification accuracy of 89% on the
test data.

A label-free classification of lung cancer cell lines was developed by Wei et al. [73] by
using a two-dimensional (2D) light-scattering static cytometric technique. In this study,
a method for the automatic classification of small cell lung cancer (SCLC) and poorly
differentiated lung adenocarcinoma (PD-LUAD) cells was introduced by using 2D light-
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scattering static cytometry and machine learning (Figure 3C). A laser was used to detect
the cells by means of a two-dimensional light-scattering static cytometric technique, where
measurements of forward and side scattered light enabled the differentiation of overlapping
SCLC and PD-LUAD cells. By employing a support vector machine (SVM) classifier, the
team achieved the classification of these cells with an accuracy greater than 99.78%.

Figure 2. (A) Cross-sectional view of the proposed SPR sensor with the experimental setup. Reprinted
with permission from [64]. Copyright 2023 Elsevier. (B) Colored entities of the designed sensor
with a cross-sectional view with the experimental setup. Reprinted with permission from [65].
Copyright 2023 IEEE. (C) Schemes of the digital in-line holographic microscope (DIHM). Reprinted
with permission from [68]. Copyright 2023 Springer Nature.
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Figure 3. (A) Overview of the combined microscopic cell imaging and deep learning approach.
Reprinted from [70]. Copyright 2021 Springer Nature. (B) Schematic of the biosensor with the
combination of machine learning methods to detect lung cancers. Reprinted from [72]. (C) Schematic
of the experimental setups. Reprinted with permission from [73]. Copyright 2018 John Wiley
and Sons.

Feature extraction plays a vital role in machine learning when dealing with large
amounts of data. It helps to identify and extract the most relevant and informative aspects
or characteristics from the data, enabling a more effective and efficient analysis [74]. For
example, Ahmad et al. [75] presented a microfluidic platform and light-sheet fluorescence
microscopy based on a single-cell classification system to classify human mammary epithe-
lial cells, primary tumor cells, and lung metastasis-derived cells. They used an optofluidic
device to deliver single cells to the fluorescent microscope and simulated 3D point clouds
of the fluorescent markers. They applied feature extraction techniques along with custom
CNN models to classify the images. The authors achieved high accuracy on both the
simulated and actual datasets and studied the effects of varying flow rates on accuracy.
They reported an accuracy of 99.4% on the actual dataset.

Surface-enhanced Raman scattering (SERS) is a powerful method for identifying chem-
ical information at a single molecular scale [76]. Lin et al. [76] developed a new biosensing
platform that can identify and differentiate exosomes derived from cancerous and non-
cancerous sources. The platform uses a porous-plasmonic SERS chip with CP05 polypeptide
to capture and distinguish exosomes without the need for labeling or purification. By com-
bining biological analysis with Raman spectra and machine learning methods, the team
accurately differentiated between lung and colon cancer cell–derived exosomes and normal
exosomes at the single vesicle level, achieving an 85.72% accuracy. This protocol is fast,
reliable, and easy to operate, making it a promising tool for early tumor detection and
prognosis. As another example, Park et al. [77] used SERS and statistical pattern analysis
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to identify lung cancer cells (Figure 4). Instead of looking at specific peak positions and
amplitudes in the spectrum, they analyzed the whole SERS spectra of exosomes using
principal component analysis (PCA). Using this approach, they were able to distinguish
the exosomes derived from lung cancer cells from those derived from normal cells, with a
95.3% sensitivity and 97.3% specificity.

Figure 4. Schematic diagram of lung cancer diagnosis by SERS classification of the exosome.
(A,B) Lung cancer cells and normal cells release exosomes to the extracellular environment, hav-
ing their own profiles by fusing multivesicular endosomes to the plasma membrane, respectively.
(C,D) Raman spectra of lung cancer cells and normal cell-derived exosomes were achieved by SERS,
respectively. (E) SERS spectra, achieved by methods of panels (C,D), are shown. Red lines indicate
specific peaks of lung cancer-derived exosomes. (F) Exosome classification is obtained by PCA of
SERS spectra. Reprinted with permission from [77]. Copyright 2017 American Chemical Society.

3.1.3. Gastrointestinal Cancer

In this section, we will review the application of optical-based biosensors in combina-
tion with machine learning to analyze the data collected from sensors for the detection of
gastrointestinal cancers, such as pancreatic and liver cancers.

Nowadays, many studies detect pancreatic cancer cells using exosomes, which are
small vesicles secreted by cancer cells, as biomarkers for detection. To demonstrate,
Ko et al. [78] developed a multichannel nanofluidic system to analyze crude clinical samples.
They used exosomes as biomarkers for detecting pancreatic cancer. The exosomes were
isolated and analyzed using a microfluidic chip with a nanoporous membrane that allowed
the capture of exosomes based on their size. The captured exosomes were then analyzed
using machine learning algorithms to classify them as either cancerous or non-cancerous.
The results showed that the approach had a high accuracy with an area under curve (AUC)
of 0.81 in diagnosing pancreatic cancer, indicating its potential for use in clinical settings
as a non-invasive diagnostic tool. As another example, Li et al. [79] developed a new
method for detecting colorectal cancer using exosomes as a specific protein biomarker.
They created a microfluidic chip with a 3D porous sponge structure and functionalized it
with CD9 antibodies to capture exosomes flowing through the microfluidic channel. The
authors then used an anti-SORL1 antibody modified with Si-QD silicon quantum dots to
label the captured exosomes and obtain fluorescence images. They extracted three features

100



Biosensors 2023, 13, 884

(luminance, mean, and variance) and trained an RF algorithm to classify the exosomes. The
authors report that they achieved a high classification accuracy of 91.14%. Last but not
least, Cheng et al. [80] described a nano biosensing chip that utilizes SERS to detect cancer
without the need for antibodies. This study showcased a simple and intelligent detection
method for efficiently screening liver cancer, achieving a sensitivity of 90% and specificity
of 92% in identifying 50 serum SERS spectra from HCC patients compared to 50 serum
SERS spectra from healthy individuals.

D’Orazio et al. [81] introduced the concept of machine learning phenomics (MLP),
which combines deep learning with time-lapse microscopy to monitor drug responses
in colorectal cancer cells. This study aims to evaluate the effectiveness of this approach
by comparing it with the conventional methods used to analyze drug responses in these
cells. The results demonstrate that MLP can accurately predict drug responses in colorectal
adenocarcinoma cells based on their gene expression patterns, and it outperforms the
conventional methods in terms of accuracy and efficiency.

Quantum dot immunobionsensors are powerful optical sensors used to detect cancer
cells, which were introduced by Saren et al. [82] to detect and quantify gastrointesti-
nal tumor biomarkers. They developed quantum dot (QD)-labeled biofilms to detect
four biomarkers: CEA, CA125, CA19-9, and AFP, indicating the presence of gastrointestinal
tumors. The antibody conjugates of the QD were analyzed using fluorescence and ultravio-
let absorption spectroscopy. The PCA technique was applied to the images obtained from
the data collected. The approach was tested on standard samples rather than clinical sam-
ples, achieving a classification precision of 99.52% and 99.03% and classification accuracy
of 94.86% and 94.2% for colon tumors and gastric tumors, respectively.

Pyruvate kinase disease (PKD) is an inherited disorder that affects red blood cell
metabolism and may have an increased risk of developing liver cancer and some types
of colon and kidney cancer [83,84]. Mencattini et al. [85] described a machine learning
microfluidic-based platform that integrates lab-on-chip devices and data analysis algo-
rithms to evaluate the plasticity of red blood cells in PKD monitoring. The platform uses
microfluidic channels to measure the deformability of red blood cells, which is a critical
indicator of the disease. The data collected from the microfluidic device are then analyzed
using machine learning algorithms to determine the severity of the disease. The blood cells
were recorded through a ‘forest of pillars’, and the video was saved for offline analysis.
The efficacy of three networks, AlexNet, ResNet-101, and NasNetLarge, pre-trained deep
learning architectures, was tested on actual samples. On the live samples, the performance
of AlexNet was 88%, ResNet-101 was 82%, and NasNetLarge was 85%.

3.1.4. Gynecological Cancer

The most common types of gynecological cancers are cervical, ovarian, and endome-
trial (uterine) cancers. Late diagnosis and chemoresistance present significant obstacles
to the successful treatment of gynecological cancers. Therefore, there is a pressing need
to develop new markers to detect gynecological cancers at an early stage. In this regard,
biosensors that are low-cost and non-invasive hold great potential for predicting these
types of cancers at an early stage [86]. Moreover, with the emergence of biosensors that
generate large amounts of data, the application of machine learning to analyze this data
has become increasingly important.

High-content VFC (video flow cytometry) utilizes a 2D light-scattering technique to
project optical signals from cells onto an image sensor without optical focusing. This allows
for high-content patterns to be obtained and combined with machine learning algorithms,
enabling automated, high-throughput analysis of single cells. The VFC technique devel-
oped by Liu et al. [87] achieves a measurement rate of around 1000 unlabeled cells per
minute and demonstrates high accuracy in classifying cervical carcinoma cell lines, includ-
ing Caski, HeLa, and C33-A cells. An accuracy of 91.5%, 90.5%, and 90.5% for these cell
lines by using a deep learning model has been reported. This study provides high-quality
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cell images, automatic digital filtering, and label-free cell classification, offering potential
clinical applications. The illustration of our high-content VFC is shown in Figure 5.

Figure 5. The schematic diagram of high-content VFC and the 3D schematic diagram of the sheath
flow in the flow chamber. Reprinted with permission from [87]. Copyright 2022 John Wiley and Sons.

Serum biomarkers are frequently utilized due to their sensitivity and specificity, which
makes them valuable for cancer screening or diagnostic testing purposes. To demonstrate,
Kim et al. [88] developed a nanosensor array and a computational model that resulted in the
perception-based detection of ovarian cancer from patient serum samples. The researchers
aimed to develop a novel approach for diagnosing ovarian cancer based on the unique
spectral characteristics of carbon nanotubes modified with quantum defects. They utilized
machine learning algorithms to analyze the spectral data obtained from the serum samples.
They trained and validated several machine learning classifiers with 269 serum samples to
distinguish patients from those with other diseases and healthy individuals. Their results
showed that the SVM algorithm yielded the best F-scores among the five machine learning
algorithms tested, with an accuracy of 95%.

In another study reported by Pirone et al. [89], a digital holography to model cells in 3D
space instead of 2D space was developed. This method provides a better characterization of
endometrial cancer cells. They extracted 67 features, such as morphology and histogram, as
inputs of machine learning algorithms. In order to test the classification performance with
the 3D and 2D features, several common machine-learning methods have been trained and
tested on the feature data. The results show that 3D features achieve a better classification
performance, and the LDA classifier achieves the best score.

3.1.5. Prostate Cancer

Prostate cancer (PCa) is a widespread health concern, affecting 1.3 million men globally
in 2018 [90]. Detecting prostate cancer (Pca) in its early stages is vital for effective treatment,
and the utilization of biosensors can assist in the early detection of Pca. Furthermore, by
utilizing machine learning to analyze the vast amounts of data generated by biosensors,
we can achieve highly accurate predictions, ultimately leading to better patient outcomes.
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Prostate cancer gene 3 (PCA3) is specifically expressed in the prostate and is strongly
associated with prostate cancer. It shows promise as a potential biomarker for detecting
prostate cancer. The PCA3 gene has been detected in 95% of prostate cancer samples,
making it highly associated with the disease. Even small amounts of PCA3 can indicate a
significant likelihood that a patient either has or will develop prostate cancer [91]. As an
example, Rodrigues et al. [91] developed a genosensor with carbon-printed electrodes and
a layer of a complementary DNA sequence (PCA3 probe). They investigated the ability of
electrochemical and optical detection methods, along with machine learning algorithms, to
diagnose prostate cancer using images of the genosensors. The study demonstrated that
the meta-classifier machine learning algorithms, including SVM and LDA, could accurately
classify scanning electron microscopy images with 99.9% accuracy.

Differences in the metabolite components between patient urine and normal urine
have been reported, indicating the need for a rapid, easy-to-use, and label-free technique to
analyze urine metabolites. Such a technique is crucial for developing on-site urine diagnos-
tic platforms and identifying unknown metabolite biomarkers for cancer detection. In a
study conducted by Ling et al. [92], the researchers applied an integrated on-site detection
system based on SERS sensor technology and deep learning models to diagnose prostate
and pancreatic cancer. The sensor is based on a 3D plasmonic coral nanoarchitecture
(3D-PCN) synthesized on a paper substrate, which was integrated with a handheld Raman
spectrometer to create an on-site diagnostic platform. Human urine samples are directly
absorbed into the paper-based 3D-PCN, and the SERS signals of complicated urine compo-
nents are obtained without any pretreatment. The RNN and CNN models are employed
for the supervised classification of SERS spectra, and the platform achieved high sensitivity
and specificity for detecting cancer. The system demonstrates the potential for use as a
diagnostic platform in various human biofluid analyses in the future.

The bio-nanochip platform shows promising potential as a versatile and efficient
biosensor system for various applications, including medical diagnostics and environmen-
tal monitoring. For instance, McRae et al. [93] designed a programmable bio-nanochip
(p-BNC) system, a biosensor platform with the capacity for learning. In this system, small
quantities of patient samples generate an immunofluorescent signal on agarose bead sensors
that are optically extracted and converted to antigen concentrations. This biochip sensor
has the potential to detect prostate cancer and ovarian cancer with single-use disposable
cartridges. They applied machine learning methods to analyze the dataset.

3.1.6. Brain Cancer

In this section, we will review the application of optical-based biosensors and machine
learning for brain cancer detection.

A supervised machine learning approach is commonly used for the identification and
classification of cancer cell gestures, enabling early diagnosis. Hasan et al. [94] developed a
system that captures time-lapse images of cancer cells and analyzes their morphological
changes over time using image-processing techniques (Figure 6). The system also incorpo-
rates machine learning algorithms for the automated classification of cancer cells based on
their dynamic morphology. As a proof of concept, the morphologies of human glioblastoma
(hGBM), which causes brain tumors [95,96], and astrocyte cells were used. The cells were
captured and imaged with an optical microscope. Three different classifier models, the
SVM, RF, and naïve Bayes classifier (NBC), were trained with the known dataset using
machine learning algorithms. All the classifier models detected the cancer cells with an
average accuracy of at least 82%.

In another study, Hossain et al. [97] employed a sensor-based portable microwave
brain imaging (SMBI) system to obtain the reconstructed microwave (RMW) brain images.
The proposed method consists of a segmentation model called MicrowaveSegNet (MsegNet)
and a classifier called BrainImageNet (BINet). A dataset of 300 RMW brain image samples
was used to create an original dataset, which was then augmented to make 6000 training
images for a five-fold cross-validation. The performance of MsegNet and BINet was
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compared to state-of-the-art segmentation and classification models, and the proposed
models achieved impressive results. The proposed cascaded model has the potential to be
used in sensor-based SMBI systems to investigate the progression of brain cancer disease.

Figure 6. The schematic shows an overview of the dynamic morphological analysis of cell gestures.
Reprinted with permission from [94]. Copyright 2018 Elsevier.

3.1.7. Hematological Cancer

Leukemic diseases are a diverse group of neoplasms that result from genetic disor-
ders affecting hematopoietic precursor cells, and they represent one of the most common
forms of hematologic cancer globally. Accurate diagnosis of these disorders requires spe-
cialized expertise and often involves using multiple techniques [98]. In this section, we
presented the use of optical biosensors in conjunction with machine learning for detecting
hematological cancer.

DNA methylation is a process in which a methyl group is attached to the fifth car-
bon atom of a cytosine (C) residue, resulting in the formation of 5-methylcytosine (5-mC).
The methylation patterns in cancer genomes exhibit unique characteristics, known as the
methyl cape, and can serve as a potential universal biomarker for cancer detection [99].
For example, Koowattanasuchat et al. [99] presented the development of a methyl cape
sensing platform for leukemia screening using cysteamine-decorated gold nanoparticles
(Cyst/AuNPs). The platform is based on methylation-dependent DNA solvation, and
normal and cancerous DNAs have distinct methylation profiles. The authors report
95.3% accuracy in leukemia screening using an optical spectrophotometer and 90% accuracy
when a smartphone system is used.

Minimal residual disease (MRD) testing is used mostly for blood cancers, such as lym-
phoma and leukemia [100,101]. Uslu et al. [102] investigated the signal readout mechanism
of a biochip designed to detect MRD, which refers to highly resistant cancer cells that can
cause relapse in cancer survivors after treatment. To improve the capture, isolation, and
counting of these tumor cells, the team combined previously explored methods with the
use of immunomagnetic beads. These beads are coated with receptors that bind to and
capture target molecules, allowing them to be manipulated using magnetic fields. Once the
unbound beads were filtered out of the microfluidic channel, the remaining beads were
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imaged at 20× and 40× magnifications using a CCD camera and processed using computer
vision. The authors demonstrated the accuracy and reproducibility of the method through
various experiments and comparisons with manual counting. They also discussed the
potential applications of the automated method in research and clinical settings for the
detection and monitoring of leukemia and other diseases. Machine learning algorithms to
analyze the images obtained were utilized. Among the algorithms tested, the RF algorithm
achieved the highest accuracy of 87.4%.

Tremendous progress has been made in the field of cancer treatment through the
utilization of high-affinity T-cell receptors and chimeric antigen receptor (CAR)-modified
T cells. These innovative approaches have recently obtained approval from the Food
and Drug Administration (FDA) for treating certain hematologic malignancies [103]. To
demonstrate, Sarkar et al. [103] implemented the droplet microfluidics-based cytotoxicity
imaging approach to isolate individual natural killer cells. They measured their ability to
kill cancer cells in the presence of different types of antibodies. Machine learning algorithms
for analyzing the resulting data were used, and they predicted which types of antibodies
were most effective in activating the natural killer cells.

Last but not least, Li et al. [104] presented a novel approach to improving the accuracy
of blood cancer cells and biomarker identification in label-free flow cytometry using par-
allel quantitative phase imaging. Such technology holds promise for the early detection
of primary cancer or metastasis. The team used this imaging technique to assess addi-
tional parameters, such as cell protein concentration, allowing for increased accuracy in
categorizing unlabeled cells. Additionally, they developed a CNN that directly operated
on the measurement signals of this setup to detect cancer cells more efficiently. They
demonstrated the applicability of the new method in the classification of white blood cells
and epithelial cancer cells with more than 95% accuracy in a label-free fashion. Table 1
provides a summary of the cancer cell types that were detected using optical biosensors,
along with the outcomes of the machine learning algorithms applied to the data.

Table 1. Comparison of different optical-based biosensors with ML analysis for cancer cell detection.

Authors Cancer Cell Type Biosensor Type ML Algorithm Results (%)

Kumar et al. [64] Breast Cancer (Surface plasmon
resonance) SPR sensor ANN MSE = 0.01525

percentage error of 2%
Verma et al. [65] Breast Cancer SPR sensor ANN MSE = 0.116

Jin et al. [67] Breast Cancer Fluorescence sensor ANN ACC = 100
Pala et al. [68] Breast Cancer CMOS imaging sensor ANN ACC = 99.65

Hashemzadeh et al. [70] Lung Cancer Olympus fluorescence
microscope ANN ACC = 98.37

Sui et al. [71] Lung Cancer Fluorescence sensor CNN ACC = 91–95

Nguyen et al. [72] Lung Cancer Gap plasmonic
color sensors

Convolutional neural
network (CNN) ACC = 89

Wei et al. [73] Lung Cancer Two-dimensional (2D)
light-scattering SVM ACC = 99.87

Ahmad et al. [75]

hTERT-immortalized
human mammary

epithelial cells
(IMEC WT)

Xenograft-derived
primary tumor

cells (XD)
Lung

metastasis-derived
cells (MD)

Fluorescence microscopy
Image-based sensor CNN ACC = 99.4

Lin et al. [76] Lung and Colon Cancer Localized
plasmonic sensor SVM ACC = 85.72
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Table 1. Cont.

Authors Cancer Cell Type Biosensor Type ML Algorithm Results (%)

Park et al. [77] Lung Cancer Surface-enhanced Raman
spectroscopy (SERS)

Principal component
analysis (PCA) Sensitivity = 95.3

Ko et al. [78] Pancreatic Cancer
Image-based
multichannel

nanofluidic system
LDA AUC = 0.81

Li et al. [79] Colorectal Cancer Image-based 3D porous
microfluidic chip RF ACC = 91.4

Cheng et al. [80] Liver Cancer SERS sensor ANN ACC = 91

D’Orazio et al. [81] Colorectal Cancer image-based time-lapse
microscopy ANN ACC = 86.77

Saren et al. [82] Gastrointestinal Cancer Quantum dot
(QD)-labeled biofilms

Principal component
analysis (PCA) ACC = 94

Mencattini et al. [85]
PKD, which may cause

Liver, Colon, and
Kidney Cancer

Image-based time-lapse
microscopy ANN ACC = 88

Liu et al. [87] Cervical Cancer
Image-based

high-content VFC
(video flow cytometry)

CNN + SVM ACC = 90.8

Kim et al. [88] Ovarian Cancer Nanosensor array SVM ACC = 95

Pirone et al. [89] Endometrial cancer Holographic flow
cytometry (DHFC) LDA ACC = 96

Rodrigues et al. [91] Prostate Cancer Genosensors SVM and LDA ACC = 99.9

Linh et al. [92] Prostate and
Pancreatic Cancers SERS sensor ANN ACC = 99.4

McRae et al. [93] Prostate and
Ovarian Cancer Bio-nanochip sensor ANN AUC = 0.94

Hasan et al. [94] Brain Cancer Image-based
time-lapse images SVM + RF + NBC ACC > 82

Hossain et al. [97] Brain Cancer
Sensor-based

microwave brain
imaging (SMBI)

CNN ACC = ~90

Koowattanasuchat et al.
[99] Leukemia Cancer Colorimetric biosensors RF + SVM ACC = 90

Uslu et al. [102] Lymphoma and
Leukemia Cancer

Microscope
images RF ACC = 87.4

Sarkar et al. [103] Hematological Cancer

Droplet
microfluidics-based

cytotoxicity
imaging approach

ANN ACC = 94

Li et al. [104] Epithelial Cancer Image-based
microfluidic channel CNN ACC > 95

3.2. Electrical Detection

The use of electrical circuits to gather data in the form of electrical signals is known as
electrical detection. These signals can take the form of impedance, voltage, current, or any
other electrical signal [41]. Among these, impedance is the most commonly used parameter
for identifying and quantifying cells. As a cell or particle passes through the electrodes in a
microfluidic channel, it causes a change in impedance, and the output signal is determined
by the cell’s properties, such as size, conductivity, and permittivity. Compared to traditional
optical detection, the electrical detection of cells has several advantages, including a smaller
footprint and lower cost due to the absence of bulky optical equipment [41]. In the following
paragraphs, we will discuss the biosensors that utilize machine learning techniques for the
electrical detection of various cancer cells. A schematic diagram of an electrical impedance
cytometer with ANN for data analysis is shown in Figure 7.
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Figure 7. Schematic diagram of an electrical impedance cytometer. As cells flow through microfluidic
chips, the change in impedance is measured by a lock-in amplifier. The lock-in amplifier can
apply signals in different frequencies at a time. The data is then recorded and analyzed using the
ANN algorithm.

Within the preceding section, we provided an overview of the optical biosensors,
which, in conjunction with machine learning, are utilized to analyze the data acquired from
the sensors. Additionally, we emphasized the utility of an affordable and non-invasive
biosensor in the detection of cancer cells. This section will focus on the employment of
electrical-based biosensors in combination with machine learning for the detection of cancer.

3.2.1. Breast Cancer

Electrical impedance spectroscopy/cytometry is a technique that allows the measure-
ment of AC electrical properties of particles in a liquid suspension. This method provides
information about the frequency-dependent dielectric parameters of the particles. The
main advantage of impedance cytometry is its label-free nature, allowing analysis to be
conducted at the individual cell level [41]. To demonstrate, a study by Ahuja et al. [105]
presented a microfluidic device that utilizes multifrequency impedance spectroscopy and
supervised machine learning, which is shown in Figure 8A, to rapidly evaluate the tu-
mor cell’s sensitivity to drugs. In this experiment, T47D cancer cells, which are a type
of breast cancer cell, were passed through a microfluidic chip and their impedance and
phase features were recorded. The goal of this experiment was to classify T47D cancer
cells treated with the target drug and T47D dead cancer cells. The resulting classifier
exhibited an accuracy of 95.9% using amplitude change and phase change as features for
the SVM classifier.

A surface acoustic wave (SAW) biosensor is an electrical biosensor. It operates based
on the generation and detection of surface acoustic waves on a piezoelectric substrate,
which are electrical signals. Sountharrajan et al. [106] developed a SAW biosensor for the
label-free detection of HER-2/neu, a biomarker associated with breast cancer cells. The
biosensor output, along with data from the Wisconsin dataset (the name of the breast cancer
dataset), was inputted into a proposed system for data mining classification algorithms.
The proposed model was improved by ranking the attributes using the Ranker algorithm,
resulting in an accuracy of 79.25% using an SVM classifier. Overall, the study demon-
strated the potential of SAW biosensors for the efficient detection of HER-2/neu, offering a
promising avenue for early breast cancer diagnosis.

Breast cancer causes metabolic alteration, and volatile metabolites in the breath of
patients may be used to diagnose breast cancer [107]. As a proof of concept, Yang et al. [107]
developed a new breath test for breast cancer by analyzing the volatile metabolites in
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exhaled breath (Figure 8B). They collected air samples from breast cancer patients and
non-cancer controls and used an electronic nose made of 32 carbon nanotube sensors to
analyze the volatile metabolites. Machine learning techniques were employed to create
predictive models for breast cancer. Using a RF algorithm, they achieved a 91% accuracy in
predicting breast cancer in the test set.

Figure 8. (A) Multifrequency impedance cytometry measures the response across a broad range of
frequencies to assess cellular responses to a target drug. Machine learning algorithms are utilized to
predict the viability of both live and dead cells. Reprinted with permission from [105]. Copyright 2021
Springer Nature. (B) Graphical representation illustrating the concept of breath biopsy. Breast cancer
cells produce volatile metabolites that travel to the lungs and are exhaled. By using a sensor array to
analyze these biomarkers in the breath, we can identify the molecular subtype of breast cancer at an
early stage. Reprinted from [107]. (C) The proposed breast cancer detection system is a Smart Bra.
Reprinted with permission from [108]. Copyright 2020 John Wiley and Sons. (D) The ML-assisted
biochip performs single-cell classification in a label-free manner. The machine learning algorithm is
used to perform both cell health classification (cancerous vs. non-cancerous) and cancer subtype cell
discrimination at the single cell level. Reprinted with the permission from [109]. Copyright 2020 John
Wiley and Sons.

One innovative way to detect breast cancer is through the use of a wearable system
designed for detecting breast tumors. For instance, Elsheakh et al. [108] presented a breast
cancer detection and monitoring system that utilizes microwave textile-based antenna
sensors. The system consists of a wearable device that integrates the microwave antenna
sensors and a portable measurement unit that wirelessly communicates with the device to
collect and analyze the sensor data, as seen in Figure 8C. The proposed system aims to pro-
vide a low-cost, non-invasive, and reliable solution for the early detection and monitoring
of breast cancer. The proposed system was tested on a dataset of 110 breast tissue samples,
and it achieved an accuracy of 100% for breast cancer detection and classification.
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As we discussed earlier, the most commonly used parameter for identifying and
quantifying cells is impedance. Joshi et al. [109] demonstrated the effectiveness of single-cell
impedance spectroscopy in distinguishing different types of breast cancer cells when used
in conjunction with a machine learning classifier (Figure 8D). To evaluate the effectiveness
of the method, the researchers pumped two types of cells through a microfluidic channel
while constantly measuring the channel’s impedance throughout the entire test. The
impedance measurements were then fed into a quadratic discriminant analysis (QDA)
classifier, which was able to distinguish between the two types of cells with an accuracy
of greater than 95% using single-feature classification. As another example, Bondancia
et al. [110] developed an immunosensor to detect the cancer biomarker p53 in MCF7 breast
cancer cells using electrical impedance spectroscopy. In this sensor, interdigitated electrodes
were printed on bacterial nanocellulose substrates using a screen-printing technique. These
electrodes were then coated with a layer-by-layer matrix of chitosan and chondroitin sulfate.
On top of this matrix, a layer of anti-p53 antibodies was applied by adsorption. They also
applied the DT algorithm and achieved 90% accuracy.

To enhance the detection of cancer cells, it is more logical to integrate the electrical
and optical methods together. For example, Liang et al. [111] introduced a novel imaging
and impedance-based single-cell analysis system called IM2Cell that enables multi-stress
level mechanical phenotyping. The system is capable of simultaneously measuring both
the mechanical and electrical properties of cells, providing high-dimensional information
on cell structures and functions. The authors validated the imaging and impedance-
based analyses separately and then combined the techniques to obtain high accuracy in
predicting the characteristics of fixed and living MDA-MB-231 breast cancer cells. The
authors also demonstrated IM2Cell’s ability to classify a mixture of unlabeled MCF-10A,
MCF-7, and MDA-MB-231 cell lines with high accuracy. Next, IM2Cell demonstrates a
91.2% classification accuracy in a mixture of unlabeled MCF-10A, MCF-7, and MDA-MB-231
cell lines.

3.2.2. Lung Cancer

In this section, we will explain two examples of different electrical sensors to detect
lung cancer cells. The first example is Zhang et al. [112] developing a new biosensing
strategy called SHARK (Synthetic Enzyme Shift RNA Signal Amplifier Related Cas13a
Knockdown Reaction) for lung cancer detection. SHARK has broad compatibility and
can be used as a portable SARS-CoV-2 biosensor with high sensitivity and selectivity,
consistent with qRT-PCR results. They combined the output from the biosensors with SVM
machine-learning algorithms to predict target miRNAs for (non-small cell lung cancer)
NSCLC diagnosis with an accuracy of 82.81%. As another example, Van de Goor et al. [113]
utilized five e-nose devices to collect breath samples from lung cancer patients and healthy
controls. A total of 60 lung cancer patients and 107 healthy individuals exhaled through
the e-nose for five minutes, with the participants assigned to either a training or a blinded
control group. The results showed that the e-nose had a diagnostic accuracy of 83%, with a
sensitivity of 83%, for discriminating between lung cancer patients and healthy controls.
This study provides evidence for the feasibility and effectiveness of using a portable e-nose
for accurately detecting lung cancer.

3.2.3. Liver Cancer

Volatile organic compounds (VOCs) in breath are increasingly being recognized as
favorable biomarkers, particularly for cancers, due to their ease of sample retrieval and
specific association with early metabolic changes [114]. In the article by Nazir and Ab-
bas [114], the use of an e-nose biosensor to detect phenol 2,2-methylene bis, 6 [1,1-D] in
breath samples of hepatocellular carcinoma (HCC), which is a type of primary liver cancer,
is described. Figure 9 represents an overview of the proposed model.
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Figure 9. Overview of e-nose biosensor for liver cancer detection from VOCs in breath. Reprinted
with permission from [114]. Copyright 2023 Elsevier.

They conducted a screening of breath samples from patients with HCC to iden-
tify volatile organic compounds (VOCs) using gas chromatography-mass spectrometry
(GC-MS). They applied unsupervised machine learning models to validate their findings.
The accuracy of the developed sensor was found to be 86%, demonstrating the promising
potential of this approach.

3.2.4. Pancreatic Cancer

Multifrequency single-cell impedance cytometry provides multiparametric biophys-
ical information. To demonstrate, Salahi et al. [115] developed a label-free approach to
distinguish pancreatic cancer cells from their associated fibroblasts based on their biophys-
ical properties using impedance cytometry data and machine learning algorithms. The
authors demonstrate that gemcitabine treatment changes the biophysical properties of
cancer cells and fibroblasts in different ways, resulting in distinguishable patterns in the
impedance measurements. The approach has potential applications in cancer diagnosis,
treatment monitoring, and drug development.

Combining various types of machine learning techniques has the potential to improve
the accuracy of classification. By integrating different approaches, we can leverage the
strengths of each method and mitigate their individual limitations, resulting in more
precise and reliable classification outcomes. For instance, Honrado et al. [116] improved
the classification of cancerous pancreatic cells by combining unsupervised clustering with
KNN classification to detect the state of cell death experienced by the cancerous cell. The
researchers collected impedance data from flow cytometry and fed it into an unsupervised
clustering algorithm that operated at a hyper-dimensional level to autonomously cluster
the data. The resulting metrics were then used to quantify the drug-sensitive phenotypes
of cancer cells across their progression from viable to early apoptotic, late apoptotic, and
necrotic subpopulations. To validate their findings, the team compared the results to those
obtained through staining and found that their model was 98.4% accurate in detecting the
correct phase of apoptosis in pancreatic cancer cells.

3.2.5. Hematological Cancer

Recently, impedance spectrometers have been shown to generate all-inclusive lab-
on-a-chip platforms to detect nucleus abnormalities. The paper, presented by Ferguson
et al. [117], is a proof-of-concept study on the classification of cancerous cells using a biosen-
sor that employs impedance-based spectroscopy to identify the type of cells based on the
size of their nucleus. The biosensor consists of a microfluidic channel attached to a quartz
substrate containing an ultra-wideband waveguide. The cells passing through the PDMS
channel are electrically trapped using a dielectrophoretic signal, and electrical signals
are collected using microwave spectroscopy. The authors used statistical elimination and
feature selection techniques along with SVMs and RF algorithms to achieve a 96% accuracy
on multi-class classification. The study demonstrates the potential of using machine learn-
ing in combination with microwave impedance spectroscopy for single-cell classification
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based on the population nucleus size, which could have significant implications for cancer
diagnosis and treatment.

3.2.6. Head and Neck Cancer

Currently, there is a lack of well-established effective biomarkers and convenient
detection methods for predicting radioresistance. In the study by Wu et al. [118], surface-
enhanced Raman spectroscopy combined with proteomics was employed to initially profile
the distinct spectral patterns of the exosomes released by self-established nasopharyngeal
cancer cells (NPC). They identified specific variations in protein expression during the
formation of radioresistance, including collagen alpha-2 (COL1A2), which is negatively
associated with DNA repair. The researchers used bioinformatics analysis and a deep learn-
ing model to accurately identify the exosomes from the radioresistance group, achieving
an accuracy of 92.4%. Overall, the study provides a promising approach for identifying
radioresistance-associated biomarkers in NPC.

Diagnosing cancer and other diseases using data from non-specific sensors, like elec-
tronic tongues (e-tongues), poses challenges due to the lack of selectivity and the variability
of biological samples [119]. Braz et al. [119] presented an e-tongue biosensor based on
microfluidic impedance flow cytometry for mouth cancer detection. Saliva samples from
27 individuals were analyzed using multidimensional projection techniques and machine
learning algorithms, including the SVM with a radial basis function kernel and RF algo-
rithms. The authors achieved an accuracy of over 80% for the binary classification of cancer
vs. healthy individuals. The study suggests that the impedance data obtained with the
e-tongue in saliva samples can be used for cancer diagnosis in the mouth, and the approach
presented here is promising for computer-assisted diagnoses. The accuracy tended to
increase when clinical information, such as alcohol consumption, was used in conjunction
with the e-tongue data.

3.2.7. Gynecological Cancer

A microfluidic chip for single-cell cultures utilizes self-assembled graphene oxide
quantum dots (GOQDs) to facilitate high-activity single-cell cultures. This chip enables the
maintenance of normal biomarker secretion in single cells and allows for efficient single cell
separation at high throughputs. Consequently, it provides an ample amount of statistical
data necessary for machine learning applications [120]. As a proof of concept, Wang
et al. [120] developed a novel method for profiling single cells in real time using microfluidic
chip technology and machine learning algorithms. They used this method to classify tumor
cells based on the secreted biomarkers they produce. The microfluidic chip is designed to
allow for the high-throughput analysis of single cells, enabling the measurement of multiple
secreted biomarkers in real time. Then, machine learning algorithms were employed to
analyze the data and classify the cells based on their biomarker profiles. The K-means
strategy with machine learning was combined to analyze thousands of single tumor cell
secretion data, resulting in the ability to classify tumor cells with a recognition accuracy
of 95.0%.

As another example, Feng et al. [121] proposed the use of neural network-enhanced
impedance flow cytometry (IFC) for the real-time, label-free, and non-invasive charac-
terization of single cells based on intrinsic biophysical metrics. The method can obtain
three intrinsic parameters (radius, cytoplasm conductivity, and specific membrane ca-
pacitance) online and in real time, achieving a significant improvement in the calcula-
tion speed. The experiments involved four cancer cell types and demonstrated a 91.5%
classification accuracy. The paper suggests that this method could provide a new plat-
form for high-throughput, real-time, and online cell intrinsic electrical characterization.
Table 2 summarizes the electrical-based biosensors in conjunction with machine learning
for cancer detection.

111



Biosensors 2023, 13, 884

Table 2. Comparison of different electrical-based biosensors with ML analysis for cancer cell detection.

Authors Cancer Cell Type Biosensor Type ML Algorithm Result (%)

Ahuja et al. [105] T47D cancer cells
(Type of Breast cancer)

Microfluidic device
impedance cytometry SVM ACC = 95.9

Sountharrajan et al. [106] Breast Cancer Surface acoustic wave
(SAW) biosensor SVM ACC = 79.25

Yang et al. [107] Breast Cancer Nanotube sensors Random forest (RF) ACC = 91

Elsheakh et al. [108] Breast Cancer Microwave textile-based
antenna sensors

CatBoost
(Type of gradient

boosting)
ACC = 100

Joshi et al. [109] Breast Cancer Microfluidic
channel sensor

Quadratic discriminant
analysis (QDA) ACC > 95.3

Bondancia et al. [110] Breast Cancer Immunosensor DT ACC = 90

Liang et al. [111]
Breast Cancer

Combination of electrical
and optical-based sensors

Impedance-based sensor (Linear discriminant
analysis) LDA + SVM ACC = 91.2

Zhang et al. [112] Lung Cancer

SHARK (Synthetic Enzyme
Shift RNA Signal Amplifier

Related Cas13a
Knockdown Reaction)

SVM ACC = 82.81

Van de Goor et al. [113] Lung Cancer E-nose biosensor ANN ACC = 93
Nazir and Abbas [114] Liver Cancer E-nose biosensor Unsupervised ML ACC = 86

Salahi et al. [115] Pancreatic Cancer Microfluidic device
impedance cytometry SVM ACC = 93.7

Honrado et al. [116] Pancreatic Cancer Microfluidic device
impedance cytometry KNN ACC = 98.4

Ferguson et al. [117] Jurkat Cells
(Type of Leukemia Cancer) Microfluidic device RF + SVM ACC = 96

Wu et al. [118] Nasopharyngeal Cancer Surface-enhanced
Raman spectroscopy ANN ACC = 92.4

Braz et al. [119] Oral Cancer E-tongue biosensor RF + SVM ACC = 80

Wang et al. [120] Ovarian, Kidney, Breast,
Lymph Cancer Microfluidic chip K-means ACC = 95

Feng et al. [121] Breast, Cervical, Lung,
Leukemia Cancer

Impedance flow
cytometry (IFC) ANN ACC = 91.5

4. Conclusions

The pressing need to identify cancer in its earliest stages while avoiding invasive
treatments has spurred the integration of innovative sensory techniques with cutting-edge
machine learning algorithms. This fusion holds the potential to create a future where
individuals can conveniently and promptly detect cancer within the confines of their
homes. With advancements in detection technology and machine learning algorithms, our
aim is to detect cancer at its early stage. Several studies have achieved highly accurate
results in excess of 90% with optical biosensors, regardless of the type of cancer cell being
detected or the ML algorithm used in the study. Among all the research papers analyzed
for this study, most teams utilized ANNs for the machine learning aspect of their optical
detection setups. On the other hand, some studies using electrical biosensors achieved
slightly lower, yet consistently high, results when compared to the teams that employed
optical biosensors. Slightly more than half of these teams recorded an accuracy greater
than 90%, while the remaining teams had accuracies that were slightly lower. Most of
these teams used SVMs to incorporate machine learning into their research, with ANNs
being used to a lesser extent than in the optical detection teams. With further progress and
advancements in these methodologies, we can hope for continuous improvements in the
results and eventually strive towards a cancer-free future.

Biosensors are analytical devices that combine biological components, known as biore-
ceptors, with transducers to detect specific biological or chemical analytes. Despite the
significant advancements, biosensors still face challenges related to the bioreceptor immobi-
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lization matrices, immobilization efficiency, and predicting responses in complex matrices.
Machine learning (ML) can play a vital role in addressing these issues. For instance, ML
models can assist in selecting the most suitable immobilization matrix for a specific biore-
ceptor by considering factors such as the bioreceptor type, analyte characteristics, and
environmental conditions. This predictive capability helps researchers optimize the immo-
bilization process and anticipate and correct deviations in sensor responses. Additionally,
ML can aid in sensor calibration and data fusion, enhancing the accuracy and reliability of
biosensor readings by continuously monitoring and adjusting the sensor responses based
on historical data and real-time measurements.

In summary, biosensors are essential analytical tools with some inherent limitations.
ML can offer valuable solutions by assisting in the selection of immobilization matri-
ces for bioreceptors and improving sensor calibration and data fusion processes. These
ML-driven interventions enhance the overall performance and reliability of biosensors,
making them more effective in applications such as cancer cell detection and other complex
analytical tasks.
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Abstract: Non-invasive, non-destructive, and label-free sensing techniques are required to monitor
real-time stem cell differentiation. However, conventional analysis methods, such as immuno-
cytochemistry, polymerase chain reaction, and Western blot, involve invasive processes and are
complicated and time-consuming. Unlike traditional cellular sensing methods, electrochemical and
optical sensing techniques allow non-invasive qualitative identification of cellular phenotypes and
quantitative analysis of stem cell differentiation. In addition, various nano- and micromaterials with
cell-friendly properties can greatly improve the performance of existing sensors. This review focuses
on nano- and micromaterials that have been reported to improve sensing capabilities, including
sensitivity and selectivity, of biosensors towards target analytes associated with specific stem cell
differentiation. The information presented aims to motivate further research into nano-and micro-
materials with advantageous properties for developing or improving existing nano-biosensors to
achieve the practical evaluation of stem cell differentiation and efficient stem cell-based therapies.

Keywords: stem cell differentiation; biosensing; nano- and micromaterials

1. Introduction

Stem cells can differentiate into specific cell subtypes, which has resulted in the
development of tissue engineering and regenerative medicine [1,2]. Due to stem cells’
ability to produce cells in vitro that are associated with the physiological functions of
specific tissues, stem cell therapy has emerged as a potential solution for many diseases
that are difficult to treat with conventional chemotherapy over the past few decades [3–6].
There have been 40,183 research papers about stem cell therapy published between 1971
and 2021; many of these studies demonstrated its clinical potential. However, the only
stem cell therapy approved by the United States Food and Drug Administration to date is
haematopoietic (or blood) stem cell transplantation [7–10].

There are many challenges in the development of stem cell therapy, including low
differentiation efficiency, differentiation into undesired cell subtypes, carcinogenesis, and
post-transplant inflammatory response [11,12]. Therefore, many stem cell differentiation
studies have been conducted to (i) understand the developmental stages of stem cell differ-
entiation, (ii) control stem cell behaviour in vitro, and (iii) enhance stem cell differentiation
efficiency [13–16]. Consequently, a need for measuring stem cell differentiation using
a variety of analytical methods has arisen. These techniques include polymerase chain
reaction (PCR), immunocytochemistry, flow cytometry and Western blot (WB), which
have been widely used with biomarkers, such as proteins, ribonucleic acid (RNA) and
deoxyribonucleic acid (DNA) [17–20]. However, these techniques are destructive, labo-
rious, and costly; therefore, they are inappropriate for the quantitative and qualitative
analysis of differentiated cells prearranged in therapeutic transplantation [21]. Hence, non-
destructive and real-time monitoring of cell differentiation is necessary for efficient stem
cell therapy. Many biosensing and nanotechnology methods have been proposed for the
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non-invasive monitoring of stem cell differentiation, such as impedance and Raman spec-
troscopy, deep learning-based approaches, electrochemical immunoassay biosensors, and
electroluminescence [22–33]. In particular, electrochemistry-based sensing methods, such
as impedance spectroscopy and electroluminescence, have been demonstrated as analytical
techniques that selectively detect target materials through electrical signals generated from
the redox reaction of analytes. These techniques have the following advantages: (i) facile,
(ii) inexpensive, (iii) simple, portable analytical devices, and (iv) non-invasive [34–38].
Similarly, optical sensing methods, such as fluorescence, near-infrared (NIR), and Raman
spectroscopy, can selectively detect the optical properties or signals of target materials.
These methods have the following advantageous features: (i) high selectivity, (ii) flexibility,
and (iii) non-invasive [39–44].

The medium for in vitro stem cell cultivation contains cells with many organelles, but
also several types of proteins, small molecules, and other chemicals; this means that the
analytical conditions for cell-based sensing are highly complex [41,45]. Therefore, improv-
ing sensing performance, including sensitivity and selectivity towards target analytes, is
essential for the accurate and sensitive label-free monitoring of stem cell differentiation
with electrochemical or optical-based sensors. More specifically, a highly sensitive sensing
capability for differentiation-associated targets is required to quantitatively analyse how
much differentiation was induced from the stem cells in real-time. In addition, to qualita-
tively analyse whether specific differentiation into desired cell subtypes has been induced
during stem cell differentiation, selectivity for the analytes is a key indicator.

Various nano- and micromaterials have been used to modify sensor surfaces to im-
prove performance, including sensitivity, selectivity, and reliability [44,46]. For instance,
highly conductive metal nanomaterials, such as gold nanoparticles (AuNPs) and silver
nanoparticles (AgNPs), and carbon-based conductive materials, such as graphene oxide
(GO), have excellent electrical or electrochemical properties and are widely used in elec-
trochemical sensors [47,48]. In addition, three-dimensional (3D) micromaterials, such
as microelectrode assays and microfluidics, have been used to improve electrochemical
sensors’ performance by increasing the active surface area [49–51]. In the case of Raman
spectroscopy-based sensors, two-dimensional (2D) or 3D combinations of metal nanoparti-
cles with good optical properties and carbon-based conductive materials have been used to
improve the sensitivity [52,53]. However, each electrochemical and optical-based sensor’s
sensing mechanism is different; therefore, the strategies for improving the sensing perfor-
mance and capabilities and the techniques for sensor surface modification are different.

This review highlights and compares recent studies on non-invasive and real-time
monitoring of stem cell differentiation, including neurogenesis, cardiomyogenesis, osteo-
genesis, and adipogenesis (Figure 1). In addition, various biosensors fused with specific
analysis technology, such as electrochemistry and optical sensing, and various nano- and
micro materials, such as AuNPs, AgNPs, upconversion nanoparticles (UCNPs), autofluores-
cence probes, nucleic acids, microfluidic systems, and microelectrode arrays, are reviewed
and compared (Table 1).
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Figure 1. Schematic illustration of traditional sensing and nano- and micromaterial-based methods
for monitoring stem cell differentiation. Created with BioRender.com.

2. Electrochemical Sensors

2.1. Gold Nanoparticle-Based Electrochemical Sensors

Gold’s conductivity is 4.11 × 107 S/m, which is highly favourable for electrochemical
sensors [54]. Moreover, gold is colloidal in AuNPs, which has various advantageous
features for electrochemical sensors [55–63]. For example, AuNPs are easy to synthesise
and can be conjugated with multiple biomolecules, such as protein ligands, nucleic acids,
and antibodies, which can enforce the intrinsic properties of the AuNPs [64–66]. Moreover,
it has been reported that AuNPs are non-cytotoxic, cell-friendly materials with great
potential for sensing biomolecules in a cell-based environment and for cell cultivation
platforms [67–72]. Therefore, AuNPs have been widely used to develop electrochemical
sensors with new nanostructures or modify existing electrochemical electrode surfaces at
the nanoscale.
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Many studies have described AuNP-based electrochemical sensors capable of sens-
ing stem cell differentiation. For example, Suhito et al. developed an electrochemical
AuNP-based electrochemical nano-biosensor to identify the differentiation of embryonic
stem cells (ESCs) [59]. To fabricate this sensor, AuNPs were densely deposited on a trans-
parent indium–tin oxide-coated glass electrode through electrochemical deposition. The
study’s cell detection results using differential pulse voltammetry (DPV) showed that
the undifferentiated ESCs generated relatively strong electrochemical signals compared
with differentiated ESCs-derived endothelial cells. Interestingly, this sensor could sensi-
tively measure ESCs based on the high electrical conductivity of gold, detecting at least
12,500 cells on one platform. Moreover, it was shown that this sensor could ensure ESCs’
adhesion and long-term cell growth, suggesting its application as an ESCs’ cultivation
platform and a platform for electrochemically monitoring various stem cell differentiation.

In another study, Lee et al. described a AuNP-based nano-biosensor for non-invasive,
real-time monitoring of the osteogenesis of mesenchymal stem cells (MSCs) [73]. Specifi-
cally, this sensor comprised a 3D AuNP-based nanoarray; the surface of the gold nanoarray
was modified with GO. This nanostructure efficiently increased gold’s electrical conduc-
tivity and electron transfer rate through GO modification, allowing the detection of p-
aminophenol (PAP) produced by the enzymatic reaction occurring in MSCs’ osteogenesis.
Furthermore, this study observed that this nanoarray provided physicochemical cues ben-
eficial to cellular adhesion and osteogenic differentiation. As a result, this gold-based
electrochemical sensing platform detected the anodic signals of PAP using cyclic voltam-
metry (CV), quantitatively monitoring differentiation during 3 weeks of osteogenesis.

In 2021, a AuNP-based sensing platform was developed that monitored the differenti-
ation of stem cells and controlled their cell differentiation by regulating cellular adhesion
(Figure 2a,b) [74]. This sensor was based on a nanoassembly in which AuNPs and Arg-
Gly-Asp peptide (RGD) ligands were conjugated on the surface of magnetic iron (II, III)
oxide (Fe3O4) nanoparticles. Specifically, the magnetite mediated the control of falling and
rising ligand movements via linker compression and stretching, thereby regulating MSCs’
integrin expression pattern, cellular adhesion, and consequent osteogenic differentiation.
Additionally, due to the high electrical conductivity of the AuNP nanoassembly-based
sensor, osteogenic differentiation could be monitored by sensitively measuring PAP’s redox
using CV.

In 2022, a AuNP-based electrochemical nano-biosensor capable of sensing the gen-
eration process and maturity of kidney organoids produced through the differentiation
of induced pluripotent stem cells (iPSCs) was developed (Figure 2c,d) [75]. Moreover,
the variations of organoids led to the need for a non-destructive evaluation of their matu-
rity [76–78]. Therefore, this sensor was developed to assess the iPSCs differentiation into
kidney organoid by sensitively detecting the electrochemical signals originating from the
organoids through a gold film structure on which there was electrochemically deposited
AuNPs. Interestingly, while monitoring the kidney organoid generation on this sensor, two
peaks were detected in the DPV results. Specifically, it was confirmed that the first peak
corresponded to cell outgrowth, while the second peak differed depending on the maturity
of kidney organoids. A strong second peak was observed for organoids with distinct
tubular structures. These results demonstrate that this electrochemical sensor could detect
the successful production of kidney organoids in a label-free, non-destructive manner.

In general, studies have shown that AuNPs can be applied to develop electrochemi-
cal sensors that sensitively detect the target analytes involved in stem cell differentiation
because of AuNPs’ excellent electrical conductivity, versatility, and ease of synthetic manip-
ulation with various biomolecules and nanomaterials.
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Figure 2. Gold nanoparticle-based electrochemical sensors. (a) Characterisation of gold nanoassem-
bly and magnetic nanoparticles. (b) Time-dependent monitoring of osteogenesis using the gold
nanoassembly-based electrochemical sensors. (c,d) DPV results of iPSCs differentiation and organoid
generation on gold-based electrochemical electrode. Reprinted with permission from [74]. Copyright
2021, Wiley Online Library; Reprinted with permission from [75]. Copyright 2022, Wiley Online
Library. AuNPs, gold nanoparticles; DPV, differential pulse voltammetry; Fe3O4, iron (II, III) oxide;
iPSCs, induced pluripotent stem cells. N.S. indicates “not significant.” ** p < 0.01, and *** p < 0.001.

2.2. Nucleic Acid-Based Electrochemical Sensors

Nucleic acids, including DNA and RNA, are biopolymers composed of nucleotide
units [79]. Nucleic acid molecules have specific nucleotide sequences, which comprise
of the bases of adenine, thymine, cytosine, and guanine, that can bind strongly with
complementary base-pair sequences. The intrinsic properties of nucleic acids have the
potential as nanomaterials for biosensors [74,80–83], as they impart high selectivity in
terms of the capability to detect target molecules selectively. In addition, nucleic acid-
based aptamers can be developed as ligands for target materials through the systematic
evolution of ligands by exponential enrichment technology [84,85]. These aptamers can
be developed faster and cheaper than antibodies. Moreover, aptamers have unique 3D
structures (e.g., loop, stem, quadruplex, bulge, hairpin, and pseudoknot) through the
nucleotide sequence alignment of the nucleic acids; this allows the aptamers to bind more
strongly and selectively to the target [86–88]. In addition, nucleic acid materials can be
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chemically conjugated to fluorescent or electrochemical probes, giving a stronger signal
and higher affinity toward analytes.

Park et al. [89] described a microelectrode based on carboxylated polypyrrole nan-
otubes conjugated with aptamers capable of evaluating the neuronal maturation of neurons.
These authors showed that the aptamer-based sensor could sensitively and selectively
measure dopamine (DA) exocytosis as a neuronal function. To improve the sensor’s perfor-
mance, the DA sensitivity according to the carboxylated polypyrrole nanotube diameter
was first analysed. Then, the optimised aptamer-based sensor was evaluated for DA-
sensing performance using amperometry, which showed an excellent limit of detection
(LOD) of 100 pM. Furthermore, the sensor could electrochemically distinguish DA in the
presence of other neurotransmitters, such as norepinephrine, serotonin, and phenethy-
lamine. This study demonstrated that the developed sensor could electrochemically detect
exocytotic DA released from neuronal cells due to DA’s high sensitivity and selectivity.
The study’s results suggested the possibility of aptamer-based electrochemical sensors to
monitor the neural differentiation process of stem cells.

A nucleic acid-based electrochemical sensor capable of monitoring cardiomyocyte
differentiation was reported in 2021 [90]. This nucleic acid-based sensor contained hybrid
materials, including short DNA domains and peptide motifs that bind complementarily
to cardiomyocyte-specific regulatory proteins. Notably, this sensor showed a low level
of LOD of 0.42 pg/mL. In addition, the sensor selectively detected electrochemical sig-
nals from cardiac troponin (cTnl) as a target molecule in the presence of other proteins,
including human serum albumin and human brain natriuretic peptide. Due to the sensor’s
high affinity and sensitivity to cTnl, it was possible to determine the cTnl expression level
through electrochemical signals measured from cardiomyocytes differentiated from MSCs.
In addition, the electrochemical signal for cTnl obtained while monitoring the cardiomy-
ocyte differentiation process was consistent with the result of flow cytometry, validating
the high reliability of this sensor.

In another study, an aptamer-based electrochemical sensor was developed to evaluate
the neuronal function at the single cell level [91]. This sensor comprised micro-wells, DA
aptamers, and co-reactant-embedded polymer dots (Pdots). The sensor’s embedded Pdots
provided electrochemical luminescence signals, which served to visualise the electrochem-
ical DA signal (Figure 3a,b). The hybrid structure of this sensor allowed it to capture a
single or a small number of differentiated cells inside a micro-well, which then selectively
detected the DA released from the captured neurons using the DA aptamer. This sensor
exhibited stable cell viability as a cell cultivation and differentiation platform with low cell
toxicity. In addition, this sensor demonstrated a low LOD of 53 pM DA (Figure 3c,d) and
was capable of evaluating the amount of DA exocytosis.

Nakatsuka et al. reported a DNA aptamer-based nanopipette capable of monitoring
the differentiation process of iPSCs into serotonin neurons [92]. This sensor was used to
electrochemically detect 5-hydroxytryptamine (5-HT) release from serotonin neurons as
differentiated cells. In addition, the nanopipette form of the sensor allowed size exclusion
of non-specific proteins in complex culture medium environments, further enhancing the
sensor’s 5-HT selectivity. Specifically, this sensor was able to detect 5-HT of less than 3 nM
using fast scan CV, which is an excellent sensing capability for DA, similar to the sensing
capability of enzyme-linked immunosorbent assay (ELISA). Above all, this sensor was able
to detect 5-HT released at the cellular level through the introduction of an aptamer capable
of binding specifically to 5-HT.

These studies support that nucleic acid materials can greatly improve electrochemical
sensing ability, especially target selectivity, through their specific binding sites. In addi-
tion, nucleic acid materials can be combined with other types of biomolecules or sensing
probes through chemical conjugation to provide various 3D ligands, which can improve
electrochemical sensors’ capabilities.
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Figure 3. Aptamer-based electrochemical sensors. (a,b) ECL images of neurons injected in the
micro-well and DA aptamer-based electrochemical sensor. (c,d) Analysis of DA sensing capability of
micro-well and DA aptamer-based electrochemical sensor. Reprinted with permission from [91]. 5-HT,
5-hydroxytryptamine; Ag, silver; AgCl silver chloride; Au, gold; DA, dopamine; ECL, electrochemical
luminescence; RSD, relative standard deviation.

2.3. Carbon Nanomaterial-Based Electrochemical Sensors

Carbon nanomaterials (CNPs), such as graphene and its derivatives, fullerene and
carbon nanotubes (CNTs), and nanofibres are composed of chemical structures in which
carbon atoms are combined through sp2 hybridisation, resulting in the delocalisation of
electrons [93]. The intrinsic properties of CNPs depend on their configuration and include
good thermal stability, mechanical properties and chemical resistance. Furthermore, due
to their structural characteristics, they have good electrical properties, including electron
mobility and electrical conductivity. Moreover, CNPs can be synthesised into specific
3D structures, such as CNTs, and sheet forms, such as graphene. In addition, CNPs
are biocompatible and can improve cellular functions, for example, cell adhesion and
proliferation, making them suitable for stem cell cultivation platforms [94–103].

In a 2021 article, Castagnola et al. describe a graphene-based electrochemical nanosen-
sor to evaluate neuronal function [104]. This sensor comprised graphene flakes with a
3D arrangement via photolithographic processes. This sensor showed high electrochemi-
cally active area enhancement. Specifically, the electrochemically active area of the sensor
was about 88 times higher than that of conventional carbon fibre electrodes. The sensor
sensitively and selectively detected DA as a target analyte using fast scan CV to evaluate
neuronal function; the LOD for DA was calculated to be approximately 364.44 nM. Further-
more, the sensor was demonstrated to discriminate between serotonin and DA. Overall,
this sensor’s enhanced electrochemical properties for sensitive and selective sensing of DA
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suggested that neurogenesis could be monitored in real-time by sensing DA released from
neurons in vitro.

Vasudevan et al. [105] developed a nanosensor based on CNPs (Figure 4a). Specifi-
cally, this sensor was composed of carbon fibre, which detected DA released from neural
stem cell-derived dopaminergic neurons and promoted neurogenesis in vivo based on
optogenetics as an optical fibre. To improve the electrochemically active surface area of the
sensor, a 15 μm thick polyimide buffer layer was coated onto the surface of a silica-based
optical fibre; then, this layer was processed to form of 8 μm thick pyrolytic carbon fibre
surrounded by cladding. Subsequently, human neural stem cells (hNSCs) were cultured on
the sensor surface and differentiated into dopaminergic neurons to detect DA exocytosis
electrochemically using an amperometric method. According to the amperometric results,
the electrochemical signal towards DA was not confirmed from undifferentiated cells on the
sensor surface. However, a clear electrochemical current peak towards DA was confirmed
from the differentiated cells (Figure 4b,c). Moreover, as a result of monitoring the DA
signals on the sensor surface during the 10-day differentiation period, it was observed that
the DA signal gradually improved according to dopaminergic differentiation. These results
suggested that the sensor could monitor dopaminergic differentiation non-invasively.

Figure 4. A carbon fibre-based electrochemical sensor for monitoring in vitro neurogenesis. (a) Immuno-
cytochemistry images of hNSCs-derived dopaminergic neurons cultured on the sensor. (b) Amperometry
graph of non-differentiated and differentiated cells after stimulating DA exocytosis. (c) Electrochemical
current peaks toward DA for time-dependent monitoring of the dopaminergic differentiation on the
sensor. Reprinted with permission from [105]. Copyright 2019, Wiley Online Library. DA, dopamine;
DNA, deoxyribonucleic acid; hNSCs, human neural stem cells; TH, tyrosine hydroxylase.

Similarly, Pham Ba et al. constructed a CNT-based nanosensor to monitor neuronal
differentiation [106]. This sensor’s Nafion®-radical layer was composed of CNT transistors
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and was demonstrated to selectively detect DA in the presence of the interfering molecules
acetylcholine and glutamine. In addition, it was confirmed that neuronal cells could be
normally attached and cultured on the sensor surface. Moreover, an amperometric response
to DA was observed immediately after potassium chloride (KCl) stimulation from neurons
cultured on the sensor surface. Furthermore, the sensor obtained different amperometric
responses to DA by adding different concentrations of KCl, suggesting that the sensor
could discriminate between different degrees of DA exocytosis.

The previously mentioned studies support that carbon nanomaterials, including
graphene, carbon fibre, and CNT, can be actively utilised to construct excellent sensing
platforms with high electrical properties. In particular, nanosensors based on the graphene
family have been demonstrated to monitor neuronal differentiation by sensitively and
selectively sensing DA through π-π stacking. Moreover, CNPs’ biocompatibility and high
sensing capability make them suitable for stem cell cultivation platforms and non-invasive
monitoring of various types of stem cells, such as ESCs and MSCs.

2.4. Microfluidic System-Based Electrochemical Sensors

Microfluidic systems refer to systems in which fluid can flow through micro-scale
channels fabricated on a substrate [107]. The microfluidic system has the advantage that
it can be performed on a single chip under various conditions in a short time using only
a small volume of reagents. Due to these structural features, microfluidic systems have
been actively applied as biosensors [108–110]. Furthermore, given that the microchannel
in microfluidic systems enables electrochemical species in the analytes to be confined
near the electrochemical electrodes, they are advantageous to electrochemical sensing
with high performance [111]. Above all, microfluidic systems can mimic the cellular
microenvironment, which can be applied as a stem cell cultivation platform [112].

An example of an electrochemical sensor based on a droplet microfluidic system
capable of sensing osteogenic differentiation was described by Fan et al. in 2019 [113]. This
sensor could detect the impedance of a single cell; therefore, it was possible to analyse
the differentiation of stem cells non-invasively without a label. The sensor detected a
difference between the impedance of undifferentiated and differentiated cells. As osteogenic
differentiation progressed, the variation in cell impedance decreased. In addition, the
average impedance decreased as the differentiation progressed. Conversely, the capacity
of the cells analysed on the sensor gradually increased with differentiation. These results
were consistent with the fact that calcium ion channels were gradually formed on the cell
membrane following osteogenic differentiation.

In 2020, a brain-on-a-chip device based on a microfluidic system capable of analysing
neural differentiation was developed [114]. This platform’s design structure included three
isolated compartments, suggesting that this structure was suitable for pharmacological
manipulations, and a plastic lid and a specific gas supply chamber to build a gas sup-
ply system. It was validated that neurons could be cultured and maintained for up to
98 days on the platform. In addition, it was confirmed that neurons were differentiated
normally on the device with positive expression of axonal and dendritic markers and
that their neuronal networks were formed normally. Furthermore, the spike train tiling
coefficient was successfully measured from the neuronal network of neurons differentiated
on the platform.

Another study by Lee et al. described a microfluidic system-based sensing and cultiva-
tion platform capable of electrochemically analysing the cellular function of cardiomyocytes
differentiated from iPSCs [115] (Figure 5a). Interestingly, the platform developed contained
an aptamer and a gold-based microfluidic system. The functionality of cardiomyocytes
could be electrochemically monitored by selectively sensing markers, such as troponin T,
creatine kinase, and human epidermal growth factor receptor 2; these markers are related
to the functionality of cardiomyocytes (Figure 5b). In addition, to investigate the interaction
between cardiac and heart cancer tissues cultured on the platform, troponin secreted from
each cell was detected after single or dual interaction with the platform on which each
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tissue was cultured (Figure 5c). Results showed that troponin released from healthy cardiac
tissues increased in the single and dual platforms. In contrast, troponin released from
healthy tissues on the dual platform was lower than from cells that did not interact with
heart cancer tissues. In addition, cell functionality was evaluated electrochemically by
measuring biomarkers released from healthy cardiomyocytes and heart cancer cells on the
aptamer and microfluidic system-based platforms. The results obtained on the platform
were consistent with ELISA results.

 

Figure 5. A microfluidic system-based electrochemical sensor for monitoring cardiomyocyte differ-
entiation. (a) A schematic illustration showing an aptamer and microfluidic system-based electro-
chemical sensor. (b) Analysis of the important role of interaction between cardiac and heart cancer
tissues through biomarkers sensing. (c) Monitoring of cardiotoxicity-associated biomarkers using the
aptamer and microfluidic system-based electrochemical sensor. Reprinted with permission from [115].
Copyright 2020, Wiley Online Library. DOX, doxorubicin; HER2, human epidermal growth factor
receptor 2; TGFβ1, transforming growth factor beta 1.* p < 0.05, ** p < 0.01, and *** p < 0.001.

Therefore, it can be concluded that microfluidic systems are effective micromaterials
for constructing sensing platforms for the non-invasive and label-free monitoring of stem
cell differentiation. In particular, microfluidic systems are suitable for application as a
stem cell culture platform and can considerably improve the performance of existing
electrochemical sensors.

2.5. Microelectrode Array-Based Electrochemical Sensors

Microelectrode arrays refer to micromaterials in which multiple micro-scale electrodes
are arranged on a single substrate [116]. Microelectrode arrays are based on a 3D structure
that improves and increases the electrochemically active area in which analytes participate
in the redox reaction, providing a high sensing performance [117]. In addition, considering
that a plurality of electrodes is spatially arranged in a microelectrode array, it is possible
to analyse signals of cells by position on a single substrate and to analyse single cells and
spheroids electrochemically [118].

The literature reports that microelectrode array-based electrochemical sensors that
can non-invasively monitor stem cell differentiation have been developed. For example,
a microelectrode array that electrochemically monitors cardiomyocyte differentiation has
been described [119]. This platform was designed to culture iPSCs for an extended period
and to perform qualitative and quantitative analyses of the differentiated cells’ maturity for
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efficient cardiomyocyte differentiation. The platform was used to monitor the cardiomy-
ocyte differentiation of iPSCs for 119 days using electrochemical impedance spectroscopy.
In addition, the effect of 2D and 3D culture environments on cardiomyocyte differentiation
was evaluated non-invasively by analysing the differentiated cells’ impedance. The results
confirmed that more mature cardiomyocytes were produced in a 3D environment.

Gao et al. [120] decribed a microelectrode array-based sensing platform that monitors
neuronal differentiation by electrochemically detecting neurotransmitters released from
olfactory bulb neurons. The olfactory bulb neurons were cultured in a microelectrode array
located on the corresponding platform; cells were stimulated using glutamate and gamma-
aminobutyric acid (GABA) to detect electrochemical signals from the cells. As a result of
detecting cells at various concentrations of glutamate and GABA, it was confirmed that cell
signals depended on the concentration of the stimulant and that neurotoxicity occurred at
high concentrations. The sensing ability of the platform to detect neurotransmitters through
GABA stimulation can be used to detect neural differentiation of stem cells non-invasively
and label-free.

Similarly, a sensing platform capable of electrochemically analysing DA exocytosis
in dopaminergic neurons differentiated from human ESCs was developed in 2020 [121].
The microelectrode array in the platform was composed of reduced GO and poly(3,4-
ethylene dioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanocomposites. Due to
the nanocomposites’ excellent electrochemical properties, the device’s LOD for DA was
calculated to be 2 nM. Moreover, it could detect DA released from neurons in a location-
by-amperometric manner thanks to the intrinsic advantage of the microelectrode array
(Figure 6). The platform’s superior dopaminergic sensing ability allowed dopaminergic
differentiation to be detected in real-time.

Figure 6. A microelectrode array-based electrochemical sensor. (a) Analysis of dopaminergic differen-
tiation of hESCs cultured on the platform. (b) Detection of DA exocytosis on the platform. Reprinted
with permission from [121]. Copyright 2022, Elsevier. DA, dopamine; DAPI, 4′,6-diamidino-2-
phenylindole; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; hESCs, human embryonic stem
cells; mRNA, messenger ribonucleic acid; TH, tyrosine hydroxylase. “n.d.”, indicates non-detected;
“n.s.”, indicates non-significant; ** p < 0.01, *** p < 0.001.
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A review of the current literature supports that microelectrode arrays have several
advantages as electrochemical sensors. First, the 3D regularly arranged electrodes could
considerably improve existing electrodes’ electrochemical sensing ability by increasing the
electrochemically active area. Second, the microelectrode array can be used as a stem cell
cultivation platform to analyse cells on a single substrate by location. In addition, single
cells and spheroids can be effectively detected.

3. Optical Sensors

3.1. Gold and Silver Nanoparticle-Based Optical Sensors

Nanomaterials, such as AuNPs and AgNPs, have excellent optical properties [122],
which are unique depending on their particle size [123,124]. In addition, AuNPs can be
modified through chemical conjugation with various other nanomaterials and probes to
form new types of hybrid nanomaterials; this allows sensors with higher selectivity and
sensitivity to target analytes to be developed [125,126]. In particular, AuNPs can greatly
enhance the surface plasmon effect because they are mainly applied to optical sensing
Raman spectroscopy methods [127].

Various AuNP-based optical sensors capable of monitoring stem cell differentiation
non-invasively and in real-time have been reported. For example, Cao et al. report a
gold-based surface-enhanced Raman spectroscopy (SERS) sensor for monitoring osteogenic
differentiation [128]. This sensor had a hybrid structure based on AuNPs and nucleic
acids and sensitively detectable micro-RNAs (miRs), such as miR-144-3p, associated with
osteogenesis. The DNA nucleic acid binds site-specific targets via its complementary in-
teraction. Therefore, hybrid nanostructures in which a specific DNA strand is conjugated
on the surface of AuNPs are highly selective. Furthermore, the gold-based nanostruc-
tures selectively detected the Raman signals from the target miR. In addition, the probe
showed high optical properties and enhanced Raman signals. These advantageous features
allowed the sensor to be used in stem cell cultivation and long-term monitoring of their
osteogenic differentiation.

In another study, Sun et al. developed a smart gold nanoprobe for detecting alkaline
phosphatase (ALP) activity during bone marrow MSCs’ osteogenic differentiation [129].
The smart nanoprobe was designed by decorating the surface of AuNPs with 5-bromo-
4-chloro-3-indolyl phosphate (Au@BCIP), which is suitable for use as a SERS nanoprobe.
This probe allowed non-invasive and living-cell permeable monitoring of ALP activity with
high sensitivity and selectivity. Moreover, this probe could detect a single cell without cell
deformation, and the preparation process was simple, so time and effort could be saved
compared to conventional methods. Therefore, the non-invasive detection of ALP activity
associated with bone disease in vivo models and osteogenic differentiation of bone marrow
MSCs can be more fully understood from the perspective of ALP activity.

A 2021 article by Hua et al. describes the development of an imaging probe consisting
of gold nanostars (AuStar) and silver sulphide quantum dots for labelling and accurately
tracking MSCs in a hypodermic and myocardial infarction model with deep tissue penetra-
tion [130] (Figure 7). The probe’s AuStar-disseminated tumour cell cluster section enabled
high-resolution Raman imaging, effectively delineating stem cells in surrounding normal
tissues at a single-cell resolution scale. In addition, the labelling agents were biocompati-
ble and did not alter the MSCs’ biological properties, compensating for existing invasive
monitoring methods used for tracking stem cells’ shortcomings.

Lee et al. [131] fabricated magneto-plasmonic nanorods that detected the expression
level of miRNA-124 and characterised the neurogenesis of human-iPSC-derived hNSCs in
a non-destructive and efficient way. The plasmonic (gold) parts of the nanorod selectively
and sensitively recognised target exosomal miRNAs using a molecular beacon (MB), which
was on the gold component. The MB and miRNA hybridised to form an MB–miRNA
complex with an increased fluorescence signal, increasing the signal-to-noise ratio through
the metal-enhanced fluorescence effect. This system was non-destructive and could possibly
advance the transplantation of differentiated stem cells.
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Figure 7. A gold-based NIR sensor for monitoring of chondrogenic differentiation. (a) Characteri-
sation of the AuStar-DTTC-Ag2S (GDS) nanoparticles. (b) Ex vivo Raman imaging of GDS-MSCs
in a myocardial infarction model. Reprinted with permission from [130]. Copyright 2020, Wiley
Online Library. Ag, silver; Ag2S, silver sulphide; Au, gold; AuStar, gold nanostar; BSA, bovine
serum albumen; DMEM, Dulbecco’s modified eagle medium; DTTC, 3.3′-diethylthiatricarbocyanine
iodide; GFP, green fluorescent protein; MSCs, mesenchymal stem cells; NIR, near-infrared; PBS,
phosphate-buffered saline; S, sulphur; SERS, surface-enhanced Raman spectroscopy.

An ultrasensitive nanosensor consisting of a Au-coated nanopore thin film was re-
ported by Yang et al. in 2021 [132]. This nanosensor was developed for the detection of
N27 cells’ Glial cell-derived neurotrophic factor (GDNF) secretion [132]. The GDNF is a
small protein that strongly promotes the survival of dopaminergic and motor neurons,
and the evaluation of its magnetic stimulation is valuable. Due to the characteristics of
gold, the nanosensor’s conversion signal appeared as an optical signal (optical interference
fringes) reflected from the nanopore thin film. The optical signal shift occurred because
of changes in the effective optical thickness when the GDNF bound to its antibody. The
nanostructure helped coat more gold, greatly increasing the sensor’s sensitivity; this was
demonstrated by a significantly improved GDNF LOD (2 pg/mL) compared with the rat
ELISA kit assay (32 pg/mL). In addition, it was inexpensive, easy to use, and suitable for
measuring GDNF secretion with ultra-high sensitivity. Furthermore, it can potentially be
used for other highly secreted substances.

In a study on AgNP-based optical sensors, Koh et al. [133] developed a 3D cell culture
scaffold and SERS-based biosensor to detect multiple differentiated markers from adipose-
derived MSCs. Scaffolds were composed of electrospun nanofibres with hydrogel patterns.
Moreover, the sensing scaffolds were coated with AgNPs, which can be conjugated with
specific antibodies for SERS analysis. This type of scaffold culture platform successfully
supported adipose-derived MSCs’ proliferation and differentiation in osteogenic differ-
entiation media. In addition, the SERS-capture substrate detected various differentiation
markers with SERS tags made of Au-Ag alloy nanoboxes. The time-dependent release
of three different osteogenic differentiation markers (ALP, osteocalcin, and fibronectin)
were detected up to the pg/mL levels without interference or crosstalk for three weeks.
Therefore, the platform was sufficiently sensitive to monitor markers during osteogenic
differentiation. This platform was suggested to overcome the limitations of existing stem
cell differentiation monitoring methods, as it did not require cell pre-processing, enabled
continuous analysis with a single platform, and the multi-sensing scaffold could detect
various biomarkers.

Similarly, Li et al. [134] developed a SERS sensor for accurate and quantitative detec-
tion of DA in blood. The sensor consisted of zipper-like ortho-nanodimers and AgNPs with
a uniform 1 nm gap. The AgNPs were electrostatically self-assembled onto a glass slide;
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then, the complementary DNA of the DA aptamer was bound to the surface of the AgNPs.
The SERS probe was synthesised by decorating AgNPs with DA aptamers and the Raman
reporter 5,5’-dithiobis-(2-nitrobenzoic acid). When these SERS probes were added to a sub-
strate, they combined with the complementary DNA forming zipper-like ortho nanodimers
with a 1 nm gap between the probe and AgNPs on the substrate in a state of equilibrium
between electrostatic repulsive force and hybridisation contractility. The uniform gap
allowed the SERS sensors to detect DA with ultra-high sensitivity (LOD = 10 aM) while
maintaining signal uniformity (relative standard deviation < 5%). Even in a complex serum
environment, the sensor maintained excellent validity and stability from 1 pM to 10 nM,
which was about two times lower than conventional methods. In addition, monitoring
the DA of cells released from living neurons was performed for the first time. This was
achieved by introducing a single microfluidic chip containing a 3D cell culture device.
The DA quantification in human blood samples showed recoveries ranging from 87.5%
to 123.7%. Given the difficulty of DA quantification in complex physiological samples,
this SERS sensor may provide a powerful tool for the in vitro investigation of neurological
processes and clinical examination of dopaminergic disorders.

Based on the literature reviewed, gold- and silver nanomaterials have excellent optical
properties and the advantage of being easily transformable into various 3D nanostructures.
In addition, AuNPs can be widely applied to optical sensing methods because of their easy
surface modification with other nanomaterials.

3.2. Upconversion Nanoparticle-Based Optical Sensors

Upconversion refers to a phenomenon in which external energy is changed into higher
energy through a phosphor [135]. Considering that UCNPs show unique optical properties
different from conventional phosphors, they have been applied to bioimaging and the
optical applications of conventional phosphors. Specifically, UCNPs do not quench and
are chemically stable. Furthermore, unlike conventional quantum dots, the maximum
emission wavelength does not depend on particle size. In addition, UCNPs can easily emit
multi-colour emissions by changing doping materials. In particular, UCNPs doped with
lanthanum elements are excited by long wavelengths and have very low cytotoxicity; there-
fore, they are very useful for use in cell-based sensors [136]. To date, various UCNP-based
sensors capable of monitoring stem cell differentiation have been reported in the literature.

For example, Wang et al. [137] developed a multifunctional UCNP capable of real-time
detection and control of osteogenic differentiation in MSCs using NIR. The researchers
synthesised thulium/erbium-doped core-shell UCNPs coated with mesoporous silica for
drug loading and to install photomechanical azobenzene that acted as an agitator. Then,
the RGD peptide and matrix metalloproteinase 13 (MMP13) sensitive peptide-black hole
quencher-3 group were conjugated to the UCNP surface responsible for cell targeting
and detecting differentiation. Finally, icariin, a drug that can induce MSCs’ osteogenic
differentiation, was loaded onto the UCNPs to form a nanocomplex. The drug was released
from the fabricated UCNP nanocomplexes using NIR light in a controlled way, which was
based on trans-azobenzene being converted to a cis isomer under UV and visible light.
According to the results of reverse transcription (RT)-PCR, WB, and autonomously replicat-
ing sequence (ARS), the UCNP nanocomplex efficiently induced osteogenic differentiation
of MSCs under NIR light at a wavelength of 980 nm and successfully detected MMP13
produced by osteogenesis. Therefore, this developed multifunctional UCNP could control
the osteogenesis of MSCs and detect cell differentiation in real time, making it a potential
tool for progressing regenerative medicine.

Similarly, Yan et al. [138] reported on the controlled osteogenic differentiation of MSCs
with a light-responsive nanoplatform to treat osteoporosis (OP). The nanoplatform was a
modification of that of Wang et al. described previously. Like Wang et al.’s method, the
UCNPs were first doped with thulium/erbium and coated with mesoporous silica. Then
photocaged linker 4-(hydroxymethyl)-3-nitrobenzoic acid and polyethylene glycol linker
were linked to the surface to conjugate to the cap β-cyclodextrin and the RGD-targeted
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peptide/MMP13-sensitive peptide-black hole quencher, creating a drug loading nanoplat-
form. According to the RT-PCR, WB, ALP/ARS/immunofluorescence staining, and ALP
activity results, the release of icariin by NIR light at 980 nm induced controlled osteogenic
differentiation of MSCs for OP treatment. In addition, MMP13 produced by the MSCs’
osteogenic differentiation cleaved the MMP13-sensitive peptide, removing the peptide-
black hole quencher and allowing the UCNPs to fluoresce; this allowed real-time detection
of osteogenic differentiation. The results of haematoxylin and eosin, Masson’s trichrome,
immunohistochemical, tartrate-resistant acid phosphatase, and toluidine blue staining of a
femoral terminal section showed that significant bone remodelling had occurred in the OP
rat model. This study’s results suggested that the synthesised UCNP nanoplatform enabled
remote control and real-time detection of osteogenic differentiation for OP treatment by
NIR and could be a potential alternative to current OP treatment.

Non-destructive stem cell differentiation control and monitoring using UCNPs has
also been studied for neural differentiation from MSCs. However, conventional UCNPs
have shortcomings, such as low emission intensity due to undesirable energy transfer paths.
Low power density excitations can minimise detrimental energy reverse transitions and
produce bright visible emissions. Therefore, Rabie et al. [139] developed a core–shell–shell
sandwich-structured UCNP with enhanced luminescent output relative to conventional
UCNPs. This core–shell–shell UCNP was then used to construct a biosensor to detect DA
released from stell cell-derived dopaminergic neurons (Figure 8). This UCNP detected DA
released in vivo during the differentiation of stem cells into specific neurons at the single
cell level in a highly selective, real-time, and non-invasive manner, with a sensitivity of at
least three times higher than similarly designed systems. This sensor was demonstrated
to detect DA at low concentrations. The developed NIR-based neurotransmitter detection
method has significant potential for the diagnosis of diseases related to neurodegenerative
diseases and stem cell treatment strategies.

Figure 8. Upconversion nanoparticle-based optical sensor capable of monitoring neurogenesis. (a) Upcon-
version luminescence profiles and analysis of the operating mechanism and characteristics of UCNPs for
each condition. (b) Monitoring of neuronal differentiation of hNSCs using the UCNPs-based optical sensor.
Reprinted with permission from [139]. Copyright 2019, Wiley Online Library. cAMP, cyclic adenosine
monophosphate; DA, dopamine; GDNF, neurotrophic factor; GO, graphene oxide; hNSCs, human neural
stem cells; NIR, near-infrared; UCNPs, upconversion nanoparticles. ** p < 0.01.

The literature identified several UCNPs with high optical properties and low cytotox-
icity. Moreover, UCNP-based sensors can monitor stem cell differentiation in real-time,
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non-invasively, without a label. In addition to cell imaging, UCNPs are potential drug
delivery systems to control stem cell differentiation.

3.3. Autofluorescence-Based Optical Sensors

Various biomaterials derived from cellular organisms have autofluorescence proper-
ties, which allows them the potential to be used in biosensors for invasive and label-free
sensing to obtain information about cells and tissues [140]. Furthermore, autofluores-
cence techniques do not require treatment or fixing of specimens and can be performed
in real-time. In addition, autofluorescence-based sensors can be applied to monitor stem
cell differentiation with invasive optical sensing methods, such as Raman spectroscopy
and NIR, because autofluorescence can indicate a specific cellular component [141,142].
Raman-based sensing applied with autofluorescence is especially advantageous to anal-
yse information about intracellular dynamics, which can be utilised to investigate the
intracellular changes during stem cell differentiation [103].

A label-free autofluorescence-based imaging system combining optical metabolic
modelling with quantitative image analysis was developed by Qian et al. [143] for moni-
toring human PSC (hPSC) differentiation into cardiomyocytes (Figure 9). This study was
based on the fact that hPSC-derived cardiomyocytes undergo significant metabolic changes
during differentiation. Specifically, the amount or ratio of oxidised flavin adenine dinu-
cleotide (FAD) and reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H),
both autofluorescence metabolic materials, is influenced by the cellular conditions and
differentiation and can be imaged to collect metabolic information at the single cell level.
Furthermore, the ratio of NAD(P)H to FAD provides information about the relative oxida-
tive state of the cells. Therefore, cardiomyocytes differentiated from different hPSC lines
were visualised with NAD(P)H and FAD autofluorescence probes. According to the autoflu-
orescence imaging on the eighth day, the intensity of NAD(P)H autofluorescence differed
depending on the differentiation efficiencies. In addition, the cardiomyocytes and non-
cardiomyocytes showed different autofluorescence intensities. For instance, NAD(P)H and
FAD fluorescence after 8 days was exhibited in 84.1% of the differentiated cells, compared
with 0.3% in undifferentiated cells.

 

Figure 9. An autofluorescence imaging for monitoring of cardiomyocyte differentiation. Single-
cell quantitative analysis of NAD(P)H during 8 days of the differentiation period. Reprinted with
permission from [143]. Copyright 2019, Wiley Online Library. EGFP, enhanced green fluorescent pro-
tein; NAD(P)H, reduced nicotinamide adenine dinucleotide (phosphate); NKX2.5-EGFP, homeobox
protein NKX2.5-EGFP.**** p < 0.0001.

134



Biosensors 2023, 13, 501

In another study, Suhito et al. [144] reported on an autofluorescence-integrated Raman
mapping analysis for label-free monitoring of adipogenic differentiation. Raman mapping
analysis has the critical issue of long detection time, which results in cell apoptosis. To
address this issue, these researchers developed a novel optical sensing method that enabled
the rapid and non-destructive analysis of adipogenesis. The authors confirmed that the
lipid droplets present in adipocytes were identified with the developed autofluorescence-
integrated Raman sensing method; the Raman scattering of lipid droplets was aroused at
2850–2855 cm−1. In addition, this method was utilised in the large-scale sensing analysis of
multiple cells in culture plates by obtaining Raman mapping images at low magnification.
Moreover, the analysis required a very short time (<20 min) and could scan 440 × 330 μm
area per mapping image. Furthermore, the authors analysed in-batch and batch-to-batch
variations of adipogenic differentiation throughout the autofluorescence-Raman imaging.

Similarly, Li et al. showed a label-free autofluorescence sensing system capable of
monitoring of neurogenesis [145]. The optical sensor was based on tetrapod-shaped ZnO
(t-ZnO) microparticles capable of label-free monitoring of neuronal differentiation. Specifi-
cally, this sensor formed 3D scaffolds that analysed DA released from neurons embedded
on the surface using autofluorescence imaging. Interestingly, t-ZnO nanoparticles with four
hexagonal arms were biocompatible and autofluorescence materials that fluoresced under
UV light because they contained anion vacancies. The nanoparticles’ autofluorescence was
demonstrated to be very sensitive to hole scavengers, which was used for quantitative
DA analysis. Furthermore, nanoparticles’ autofluorescence acted as a quencher for the
autofluorescence of the t-ZnO nanoparticles. Due to its 3D structures with high surface
area and autofluorescence, the t-ZnO nanoparticles-based sensor showed a high sensing
performance toward DA (LOD: 0.137 μM). Furthermore, DA was selectively datable in the
presence of interfering molecules, including citric acid, glutamine, ascorbic acid, glucose,
KCl and calcium chloride.

Autofluorescence-based optical sensing techniques were reported as suitable for non-
invasive, non-destructive, and label-free monitoring of stem cell differentiation. Chronic
lymphocytic leukaemia-derived autofluorescence could be utilised to analyse the biological
changes in stem cell differentiation. Furthermore, most autofluorescence is biocompatible,
which allows stem cells to be stably cultured and differentiated on the sensor for long
time periods.

4. Conclusions and Future Perspectives

This review summarised recent progress in nano-biosensors for non-invasively mon-
itoring of stem cell differentiation. Various nano- and micromaterials, such as AuNPs,
AgNPs, UCNPs, autofluorescence probes, nucleic acids, microfluidic systems and micro-
electrode arrays, were reviewed and compared. Furthermore, their advantageous use to
improve the biosensors’ performance, including sensitivity and selectivity, for monitor-
ing stem cell differentiation was appraised. In the case of electrochemical sensors, the
electrochemically active surface area was found to be a crucial parameter; this is because
the redox reaction of target analytes occurs on the electrode surface via electron transfer.
Moreover, various nanomaterials were identified that could be applied to improve the
electrochemically active surface. Furthermore, specific micro-scaled systems were identi-
fied that could be utilised to enhance the advantage of existing nanomaterials, providing
more sensitive and selective sensing capabilities toward target molecules. The literature
scrutinised supported that many nanomaterials have been applied in optical sensing to
enhance the optical signal intensity to target analytes specifically or to make the analysis
process simpler and faster. In addition to excellent sensing capabilities, various nano-
biosensors have functioned as stem cell cultivation platforms by providing cell-friendly
surfaces. In conclusion, electrochemical or optical nano-biosensors capable of monitoring
stem cell differentiation in a non-invasive, non-destructive, and label-free sensing system
could be used to control stem cell differentiation and develop practical and efficient stem
cell therapies.
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Abstract: The detection of pathogens in food substances is of crucial concern for public health and
for the safety of the natural environment. Nanomaterials, with their high sensitivity and selectivity
have an edge over conventional organic dyes in fluorescent-based detection methods. Advances
in microfluidic technology in biosensors have taken place to meet the user criteria of sensitive,
inexpensive, user-friendly, and quick detection. In this review, we have summarized the use of
fluorescence-based nanomaterials and the latest research approaches towards integrated biosensors,
including microsystems containing fluorescence-based detection, various model systems with nano
materials, DNA probes, and antibodies. Paper-based lateral-flow test strips and microchips as well as
the most-used trapping components are also reviewed, and the possibility of their performance in
portable devices evaluated. We also present a current market-available portable system which was
developed for food screening and highlight the future direction for the development of fluorescence-
based systems for on-site detection and stratification of common foodborne pathogens.

Keywords: food pathogen; microfluidic; biosensing; fluorescence microscopy; PoC device

1. Introduction

Food safety is an assurance for access to healthy and safe food for sustaining life
and good health. To ensure food safety, food hygiene must be undertaken in order to
preserve the nutritional value of food and protect it from microbial attack from production
to consumption. This food safety must ensure the nutritional requirement of the public
and, at the same time, it must not expose them to any foodborne illness. Currently, malnu-
trition and foodborne disease are the major food-related concerns in global population. To
avoid foodborne disease, timely detection of pathogens in the food responsible for toxin
production and disease is necessary. Food may contain microbes in the form of bacteria,
fungus, protozoa, or viruses that are responsible for causing hundreds of diseases from
mild through to severe. The United States reported an outbreak of foodborne infections,
particularly bacterial infections associated with fresh farm produce in multiple states from
2010 to 2017 [1]. Likewise, a retrospective study was performed to mark the status of
foodborne diseases (involving enteric bacteria) in South Africa, from 2013 to 2017 where
the presence of Salmonella species, Escherichia coli, Bacillus cereus, Listeria monocytogenes, and
Clostridium perfringens were reported in food samples [2].

Foodborne diseases are consequences of harmful toxins or other chemical substances
produced by naturally occurring microbes in the food material which, upon entering the
host body, lead to digestive-system dysfunction [3]. The escalation in foodborne diseases
and associated mortality is a result of the prevalence of harmful pathogens in food due to the
evolution in agricultural practices, food production and storage methods, under-cooked
animal products, ready-to-eat mixes, and, most importantly, globalization of the food
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trade [4]. In pursuance of safe food supply and reduced incidence of foodborne diseases, an
early, quick, and accurate detection of pathogens in food items is required [5]. A number of
conventional methods for detection of foodborne pathogens are available. These are based
on culturing microbes on differential media, biochemical characterization, sequencing,
and characterization through HPLC, MS, PCR, etc. [6]. However, these methods are
expensive, time-consuming, and unwieldy, thus restricting their use in point-of-care (PoC)
applications [7]. In the food industry, rapid detection of microbes, even at very low numbers
in food samples (both raw and processed), is of utmost importance in order to ensure the
food quality and safety [8,9]. With the advancement in point-of-care detection methods,
researchers have been now able to offer ASSURED (affordable, sensitive, specific, user-
friendly, rapid and robust, equipment-free, and deliverable) technologies to the users [10].
The signals in PoC applications are usually fluorescence-, colorimetric-, or electrochemical-
based and are simple and easy to interpret/read [11]. Nevertheless, PoC applications have
evolved greatly, with advancements still continuing to address challenges in translation
of methods from laboratory- into industrial-application detection systems. Some of the
key challenges which need attention are sensitivity, multiplexing, quantification, and
multi-functionality.

Indeed, rapid and sensitive detection methods have evolved greatly, and are still evolv-
ing, making them highly sensitive, compact, and reusable with almost no detection time.
In the present review, we have summarized the fluorescence biosensing basics of a variety
of fluorescence-sensing methods. The review describes fluorescence biosensing materials
stretching from nano to molecular to protein-based biomolecules. Further, the different ma-
terials used for integrating fluorescence-biosensing and fabrication-detection systems are
also been described. The various sequential aspects and approaches of fluorescent-based
biosensors are summarized under the schematic presentation in Figure 1. The figure is a
detailed flow-chart for detection of food microbes/toxins/ions with the help of bioreceptors
such as DNA/proteins generated against these food analytes conjugated with fluorescent
active bioprobes viz. nanoparticles/graphene/quantum dots, etc. The fluorescent signal
output thus generated can be in the form of FCS, FRET, or FILM; each of these components
is discussed in the following sections of the review.
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Figure 1. The schematic diagram presents the fundamental components for designing a fluorescence
biosensing platform for food sensing. The food analytes (microbes, pesticides, adulterants, pollutants)
are detected by using the specific bioreceptors (proteins, enzymes, cells, DNA) generated against vari-
ous toxins/pesticides/adulterants, etc. These bioreceptors are coupled with bioprobes (nanoparticles,
CNT, graphenes, quantum dots, etc.) that are fluorescently active to generate a fluorescent signal
(MEF, FERT) response.

2. Fundamental Aspects of Fluorescence Biosensing

Among the variety of available sensing options, fluorescence biosensors are the most
promising due to their high sensitivity and selectivity which extends their usefulness in
biosensors for clinical and environmental monitoring. When a substance absorbs light of
higher energy/shorter wavelength and emits low-wavelength light which is a very-short
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lived (10−9 to 10−8 s), this light is called fluorescence [12]. Fluorescence-based detection in
biosensors is beneficial for aspects such as sensitivity, signal detection limits, and accuracy.

Developments in nanotechnology have also revolutionized the field of fluorescence
biosensing and improved the specificity and sensitivity of the analyte to nano-levels. An
example of this is fluorescence-based detection using a cleavable hairpin beacon coupled
with LAMP (loop-mediated isothermal amplification) to probe the presence of the Borrelia
burgdorferi recA gene where the system showed a sensitivity of detecting nearly 100 copies of
the gene in 25 min [13]. This sensitivity is many folds higher than that of traditional organic
dyes and other fluorescent probes. Among the variety of nanomaterials, quantum dots and
carbon nanotubes/carbon dots have gained special attention due to better compatibility,
higher surface-to-volume ratio, better chemical and thermal stability, and faster detection.
The carbon-nanoparticle-based fluorescence detection of ferrocyanide ion in food samples
such as salted foods (radish, cucumber, cabbage) was achieved with a detection limit of as
low as 3 ng/mL [14]. Another efficient and sensitive quantum dot (QD)-based fluorescent
system to probe the presence of thiram in food samples was reported. The QD consisted
of mesoporous silica loaded with a gold nanocluster with the LoD of 0.19 ng/mL [15].
All these features favor its application in point-of-detection (PoD) devices which have
maximum demand in diagnostics where sensitivity, specificity, and user-friendly quick
response are needed for analyte detection. To utilize these fluorescent labels in biosensing
applications, the fluorescence measuring/sensing/estimating phenomenon also need to be
understood, and this is elaborated in the following section.

3. Fluorescence Biosensing Materials

With the advancements in the field of nanobiotechnology, fluorescence-based de-
tection methodologies have replaced conventional organic dyes with nanomaterials as
detection labels due to their superior optical properties viz. a wide range of excitation and
emission wavelengths and brighter fluorescence with better photostability [16]. Figure 2
summarizes a wide range of nanomaterials that are used for fluorescent based point-of-care
biosensing of food analytes such as varied nanoparticles, graphene derivatives, metal
organic frameworks, carbon-based nanomaterials, etc. Moreover, traditional fluorescence
biosensors employing organic dyes do not offer low detection limits, hence compromis-
ing the sensitivity of the assay due to limited quantum yields and low receptor binding
ratio of dyes. The potential biocompatibility of fluorescent nanomaterials owing to their
physico-chemical properties enhances the performance of biosensors, delivering low-cost
and portable point-of-care fluorescence sensing of food contamination. Additionally, these
fluorescent nanomaterials will impart a solid support system for biosensing conjugated
with multiple probes with high labeling ratio yielding high sensitivity [17]. Nanomaterials
as fluorescent packets are advantageous in having tunable optical properties with greater
quantum yield. Hence, considering the applications of fluorescent nanomaterials in food
sensing, we will discuss the major advances and improvements of various nanomaterials
that are currently being used for designing fluorescence biosensors. The applications of
different nanomaterials and the enhancement of their limits of detection in the system
are summarized in Table 1. A list of recent studies of metal nanomaterials and carbon-
based nanomaterials along with some other nanomaterials is featured in the table with
comparison between their limits of detection for analyzing a wide range of food analytes.
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Figure 2. Variety of nanomaterials and their surface modifications used in biosensing of food
toxins/pathogens like metallic nanoparticles such as AgNPs (Silver nanoparticles), AuNPs (Gold
nanoparticles), carbon nanomaterials viz. QDs (Quantum Dots), GO/rGO (Graphene oxide), car-
bon nanotubes and other MoFs (Metal organic frameworks), Silica nanoparticles, Microspheres,
Phosphors, etc. materials.

3.1. Nanomaterials

Metallic nanoparticles acquire quantum mechanical effects such as photolumines-
cence and the photobleaching resistance of gold nanoparticles encourages the development
of in vivo fluorescence biosensors with less toxicity [17]. Gold nanoparticles are excel-
lent FRET-quenchers due to their surface plasmon in visible range, which causes strong
absorption and scattering with huge extinction coefficients [18]. A study has reported
the gold-nanoparticle-based combined fluorometric and spectrophotometric biosensing
of biogenic amines in poultry meat samples. The excitation and emission of histamine
conjugated with gold nanoparticle was measured and showed 50 times enhanced fluo-
rescence compared to histamine alone [19]. Silver nanoparticles are great substrates for
metal-enhanced fluorescence (MEF) as they contribute towards enhanced fluorescence
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signal intensity lowering the detection limit of bioassays. These particles are also known
to be great acceptors in FRET, and they even promote the efficacy of the assays as FRET
pair enhancers. A recent work published by Kato et al. demonstrated a one-pot method for
stable coating of silver nanoparticles with a thiolated polymer to form polymeric shells that
behaved as an excellent quencher. Great potential for increase in fluorescent plasmonics
was observed along with efficient masking of fluorescence quenching with polymer-coated
silver nanoparticles [20].

Carbon nanotubes (CNTs), which have a unique arrangement of sp2 hybridized carbon
atoms that form a π-conjugated network, have been explored in depth in developing fluo-
rescent biosensing assays. The ability of CNTs to quench the fluorescence of organic dyes or
quantum dots in the NIR region is combined with photoluminescence properties through dy-
namic energy transfer [21]. Chen et al., reported on the development of an acetylcholine-based,
cost-effective, and sensitive electrochemical sensor to detect pesticides in food samples. The
assay used MWCNTs that increased surface area for effective electrochemical polymerization,
yet maintained the enzymatic activity, exhibiting a stable response towards multiple real
samples such as carbonated drinks, milk, orange juice, and beer [22].

Quantum dots (QDs), also known as semiconductor crystalline materials, are novel
fluorescence materials with quantum confinement effect, good photostability, and effective
biocompatibility, and they possess composition-based emission tunability [23]. With large
Stokes shift and flexible fluorescence, their applications include biosensing, biomedicine,
and optoelectronics [24]. QDs possess superior attributes of broader excitation with nar-
row emission spectra, longer time of fluorescence, and 100 times higher molar extinction
coefficient than conventional organic dyes [25]. All these exceptional properties have led
to the development of highly efficient and stable optical biosensing systems enabled via
QD-based FRET systems. QDs directly enable the sensing phenomenon by enhancing or
quenching via direct adsorption/chelation/interaction of specific conjugated bioreceptors
or metal ions [26]. Many studies have reported the applicability of QDs and their conju-
gated derivatives in developing fluorescence-based platforms for pathogen sensing and
food safety [27–29].

Graphene-based nanomaterials are graphene sheet, graphene oxide (GO), and a re-
duced form of graphene-oxide nanosheet (rGO). Graphene and its derivatives possess
outstanding ability in quenching fluorescent dyes so they are used as potential energy
acceptors in designing fluorescent sensors. They are often combined and conjugated with
fluorophores such as QDs and UCNPs in the form of FRET pairs [30]. Various aspects of
biomedical applications such as chemi-sensors, electrochemical sensors, and fluorescent
biosensors serving either as quenchers or fluorophores have been explored [31]. A study
reported a conjugated system of QD–aptamer–GO for detecting β-lactoglobulin in food
samples [32]. Other nanomaterials, such as metal organic frameworks, up-conversion
nanoparticles, silica nanoparticles, and phosphors, also contribute to the development of
point-of-care fluorescent biosensing technologies for food safety. Various food analytes
and the detection limit for these analytes are summarized in the Table 1. In conclusion, all
these nanomaterials, with their advanced properties have resulted in the development of
efficient fluorescent biosensors for food safety. Table 1 provides a comparative analysis
of the bioreceptors employed for detection and their LoD. Although major nanomaterials
exhibiting fluorescent properties have been discussed in this review, high-end nanohybrids
incorporating conjugated nanomaterials, magnetic nanoparticles, and co-embedded manip-
ulations that are easily fabricated have been reported to be upcoming substitutes. Moreover,
depending upon the fluorescent phenomenon being used, such as quenching/masking or
fluorescence enhancement involved in food sensing, the particular nanomaterial is selected
for its respective application providing improved sensitivity compared to traditional dyes.
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Table 1. List of food-analyte sensing by various types of nanomaterials (2018–2022).

Nanomaterial Analyte Biorecognition Element LoD Ref.

Metal Nanoparticles

Gold nanoparticles Salmonella typhimurium DNA aptamer 36 CFU/mL [33]

Gold nanoparticles Dipicolinic acid Eu3+ ion/gold nanocluster 0.8 μM [34]

Gold nanoparticles Histamine Gold nanoparticles 2.04 nM [35]

Silver nanoparticles Melamine Polyethyleneimine–silver
nanobioprobe 132 nM [36]

Silver nanoparticles Staphylococcal
enterotoxin A DNA aptamer 0.3393 ng/mL [37]

Silver nanoparticles Fe+3 ions
Vitamin B12-functionalized
biological silver nanoparticles
(FAgNPs)

2 mg/L [38]

Copper nanoparticles Zearalenone Antibodies 16.0 μg/kg [39]

Platinum nanoparticles Hypoxanthine Platinum nanoparticles 2.88 μM [40]

Tungsten nanoparticles Maltose and sucrose Fenugreek β-amylase functionalized
tungsten disulfide nanoparticles 0.052 and 0.096 mM [41]

Palladium nanoparticles Tetracyclines Graphene quantum dots/palladium
nanoparticles 45 ng/mL [42]

Carbon-based nanomaterials

Carbon nanotubes Escherichia coli O157:H7 Carbonyl iron
powder/MWCNT-DNA aptamer 3.15 × 102 cfu/mL [43]

Carbon nanotubes Patulin mycotoxin Carboxyfluorescein dye
MWCNTs–DNA aptamer 0.13 μg/L [44]

Carbon nanohorns Fipronil FAM–aptamer with oxidized
single-walled carbon nanohorns 3 nM [45]

Carbon dots Tartrazine Fluorescent carbon dots 12.4 nM [46]

Carbon dots Tetracyclines and Al3+ Fluorescent carbon dots 0.057–0.23 μM and 0.091 μM [47]

Carbon dots Ascorbic acid Carbon Dots/Fe3+ composite 3.11 μmol·L-1 μmol/L [48]

Quantum dots Acrylamide DNA aptamer 2.41 × 10−8 M [49]

Quantum dots Histamine Carbon quantum dots with peptide 13 μg/kg [50]

Quantum dots Biogenic amines Carbon dots/yellow fluorescent
CdTe quantum dots 1.259-5.428 μM [51]

Graphene oxide β-lactoglobulin DNA aptamer 96.91 μg/L [32]

Graphene quantum dots Formaldehyde Graphene quantum dots 0.0515 μg/mL [52]

Graphene oxide Zearalenone and
ochratoxin A

Cy3 aptamer and Alexa Fluor
488 aptamer

1.797 ng/mL and
1.484 ng/mL [53]

Other nanomaterials

Silica nanoparticles Thiram Mesoporous silica with gold
nanoparticles 0.19 ng/mL [15]

Silica nanoparticles Aflatoxin B1 DNA aptamer 0.13 ng/mL [54]

Up-conversion nanoparticles Staphylococcus aureus Aptamer-functionalized gold
nanoparticles 10.7 CFU/mL [55]

Up-conversion nanoparticles Histamine Up-conversion nanoparticles 7.34 mg/L [56]

Metal organic frameworks
(MOF) Acrylamide 6-carboxyfluorescein-labeled

aptamer (FAM-ssDNA) 1.9 nM [57]

Metal organic frameworks Tetracycline antibiotics Luminescent MOF 0.28–0.30 μM [58]

Metal organic frameworks Ethanolamine Zeolitic imidazolate
framework-8/FAM-aptamer 17.86 pM [59]

Phosphors Zearalenone in cereals Black phosphorus–gold
nanocomposite 2 μg/kg [60]
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3.2. Nucleic-Acid-Based Molecular Markers

Fluorescent-based molecular markers such as DNA/mRNA covalently conjugated with
fluorophore are used for sensing applications as they selectively bind to functional groups of
target molecules [61]. Fluorescent DNA/RNA can also be generated by use of 2-aminopurine
(for adenine) or isoxanthopterin (for guanine) nucleobase analogs and used as efficient molec-
ular recognition elements (MREs) for developing target-detection systems [62]. Generally,
fluorescent nucleic acids are classified based on their structures that begin with detecting
SNP based on duplex formation. Another structural analysis of homoadenine and A-cluster
systems demonstrated their applicability in three-way-junction (3WJ) probes for targeting
miRNA. Moreover, G-quadruplexes with their G-rich sequences form fluorescent probes
or detection of targets. Most important is the selectivity and specificity of a new group of
fluorescent molecular beacon (MB) systems towards target sequence [63]. MBs are highly
specific single-stranded DNA fluorescent probes that are dual modified at one end with
fluorophore (F) and at the other end with a quencher (Q), leading to their applicability in
detection systems [64]. An MB can acquire an open structural state where the quencher is
away from the fluorophore, spatially restoring the fluorescence that generally happens in
the presence of target and closed state where the fluorophore and quencher come into close
proximity, diminishing the fluorescence. A recent study reported the detection of signature
molecules of food-borne pathogens using the FRET mechanism of MBs, QDs, and nanoscale
quenchers [65]. Moreover, MB-based multiplex real-time PCR studies have been reported for
detection of various food pathogens [66–68]. Evolving from the inherent attribute of nucleic
acid to form Watson–Crick duplex structures to detect complementary nucleic acid strands,
there have been ground-breaking discoveries of generating affinity nucleic acids possessing
specific binding properties [69]. Over the last decade, single-stranded DNA/RNA aptamers
as a versatile class of bioreceptors, have been introduced. Their ease of synthesis and excellent
biofunctionalization properties enable efficient fluorescent sensing [70,71]. The fluorophore is
conjugated with an aptamer as a labeled/non-labeled moiety and target detection is deter-
mined by excitation-light interaction with the bioreceptor reflecting fluorescent intensity [72].
A recent study reported a signal-on fluorescent MB-aptamer-based sensor for rapid detection
of mercury in food samples [73].

Comprehensively, as compared to the classical conventional bioreceptors for sensing
applications, aptamers pave novel avenues for designing fluorescent detection strate-
gies due to their exceptional properties that allow bioconjugation with a large variety of
compounds. They offer high sensitivity for detection of target analytes enabling specific
biorecognition abilities that promote potential sensing applications.

3.3. Antibodies

Fluorescent immunoassays generally use antibodies covalently linked with fluo-
rochrome that absorbs light and emits at another wavelength as detection reagents. In point
of fact, a few years ago, the novel concept of a fluorescent immunosensor, a Quenchbody,
also known as a Q-body, was introduced by Ueda and colleagues. The key aspect of this
technology comprises antibody-labeling of the N-terminal region/antigen-binding frag-
ment (Fab) of an antibody with fluorescent dyes, delivering enhanced fluorescence when
antibody–antigen interaction occurs [74,75]. Fluorescent dyes such as TAMARA, ATTO520,
and rhodamine are conjugated with variable regions of antibodies via flexible linker pep-
tides [76]. These fluorescent-labeled antibodies are utilized in designing lateral-flow test
cards for sensing food contaminants. Alongside, smartphone integration with fluores-
cent detectors have been successfully used as efficient point-of-care systems for sensing
pathogenic bacteria in food samples [7]. Huang et al., in 2017, reported a protein-sensing
platform employing a combination of graphene-oxide sheets conjugated with antibodies
that displayed quantitative quenching of fluorescent signals [77]. Another fluorescence-
antibody-labeled sandwich immunoassay was reported using chitosan–cellulose nanocrys-
tal membrane for rapid detection of Listeria monocytogenes in food samples [78]. Over the
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recent years, the advancements in antibody-based detection techniques have increased due
to immunological modifications, resulting in effective food-sensing applications.

3.4. Proteins/Enzymes

Several protein-based assays have employed studies of protein modification/interaction,
kinase activity, time-bound fluorescent assays, detection of toxins/adulterants, identifi-
cation of viral antigens/pathogens, etc. These have incorporated fluorescent dyes viz.
Cy5, BEBO (cyanide dye), lanthanides (e.g., Eu3+, Sm3+, Tb3+ and Dy3+), SYBR green,
NanoOrange, and RiboGreen that have been utilized in fluorescent biomolecular assays
such as bimolecular fluorescence complementation (BiFC), lanthanide fluorescent im-
munoassay, fluorescent-dye-based assay, chemifluorescent enzyme-linked immunosorbent
assay (ELISA), real-time immuno-PCR, immuno-detection, and sandwich fluoroimmunoas-
say [79]. Green fluorescent protein (GFP) or yellow fluorescent protein (YFP) have quite
often been used as reporter conjugates/markers in the detection of pathogens for food
sensing, helping in enumerating/tracking of bacterial cells. For complex sample prepa-
ration, fluorescent proteins with their longer wavelengths avoid the limitation associated
with fluorescent dyes. Along with GFP and YFP, R-phycoerythrin (PE) isolated from red
algae is also used as stable fluorescent protein [80]. A study has reported a novel TurboGFP
expression vector for labeling of Yersinia species Y. enterocolitica biovar 1A, biovar 2, bio-
var 4, and Y. pseudotuberculosis. After being transformed with the vector, these bacteria
expressed fluorescence of bright green color that could be seen with the naked eye [81].
Similarly, a fiber-optic toxicity biosensor incorporating GFP label modification of Escherichia
coli was designed for detection of hazardous heavy metals such as Cu(II), Cd(II), Pb(II),
Zn(II), Cr(VI), Co(II), Ni(II), Ag(I), and Fe(III) and their toxicity in the samples [82]. Apart
from proteins, certain enzyme-based sensors utilizing peroxidase (HRP), glucose oxidase,
lactase, urease, alkaline phosphatase, etc., integrate fluorescent properties of coenzymes
that absorb light or substrates for catalytic reactions play a crucial role in sensing of food,
toxins, pathogens, etc. Enzymes, being different moieties than generalized bioreceptors,
are not directly involved in detection of analytes but they amplify the signal by catalyzing
certain reactions. Likewise the fact that they only need a substrates in order to work, but are
not affected by the working medium/environment, makes them outstanding as potential
substitutes for sensing and food-monitoring applications.

4. Integration of Fluorescence Biosensing for Microbe Detection

Over recent decades, development of fluorescence-based detection of pathogenic
microbes has accelerated, with the development of direct and rapid point-of-care test-
ing techniques that maintain proper safety assessments. Fluorescence biosensing has the
well-established advantages of immediate response time, highly sensitive detection, easy
labelling of fluorophore with functional groups, localized fluorescence signals that provides
visible output using multicolor dyes, and multiplexed detection assays [83]. For decades
culture-based methodology was the gold-standard. It offers low-cost, equipment-free,
and easy-operational detection assays. However, its time constraint compromises rapid
and on-site detection. Then, PCR (polymerase chain reaction) and LAMP (loop-mediated
isothermal amplification) assays were developed, offering high sensitivity and rapid bacte-
rial detection. However, several bottlenecks related to expensive instrumentation, false-
positive results, and the need for trained manpower also restricted their applicability for
point-of-care microbial detection systems. Moreover, immunological techniques, such as
ELISA, that are increasingly recommended for pathogen detection due to their sensitive
antigen–antibody interaction, also have shortcomings of cross-reactivity, longer durations
for result processing, and complex sample processing [84]. Therefore, to avoid the limita-
tions of the aforementioned methodologies, high-performance novel fluorescence-based
biosensing techniques were introduced. These are sensitive up to an ultralow level micro-
bial concentrations and satisfy the high demand for food safety. Here, we will focus upon
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these fluorescence-based bioassays comprising microarray/biochip assays, microfluidics
assays, paper-based hand-held devices, and lateral-flow devices.

4.1. Microarrays

Fluorescence-based microarrays comprise a microtiter plate, a glass slide onto which
the sample protein is bound in an array, and fluorescently labelled probe molecules which
are added to deliver chemiluminescence or a colorimetric signal readout. The fluorescence-
labelled probe interacts with the immobilized protein samples releasing a fluorescent
signal that is further scanned by laser for detection. The biochemical activity of protein-
sensing is generally studied using three types of array—analytical, functional, and reverse-
phase protein microarrays—that are consolidated for pathogen-sensing, ensuring food
safety. Studies have shown that the bead/suspension array technique provides detection
of bacterial/plant toxins, mycotoxins, and pesticides in food using microsphere beads
conjugated with biomolecules such as DNA oligonucleotides/proteins labeled with fluo-
rescent dye. The DNA microarray technique comprises immobilization of cDNA probes
on a solid matrix onto which PCR-amplified fluorescent-labeled DNA molecules are hy-
bridized. Their interaction generates a signal, allowing detection of known probes on
the microarray. DNA-microarray-technology applications have been extended to a great
extent for detection of food pathogens. Fluorophores that are generally incorporated
for labeling of probes are Cyanine5/Alexa Fluor 647 (excitation at 650 nm/emission at
668 nm), Cyanine3/Alexa Fluor 555 (excitation/emission values at 550/568 nm), and
bacterial-species-specific antibody-labeled and biotinylated DNA/RNA aptamers in com-
bination with fluorescence-labeled streptavidin [85]. An in situ generated biochip was
designed for detection of food pathogens present on freshly cut vegetables and fruits. Spe-
cific sequences of Vibrio parahemolyticus, Escherichia coli O157:H7, Salmonella typhimurium,
Staphylococcus aureus, and Listeria monocytogenes were identified using tilling array probes
in a hybridization array. The assay produced strong amplification signals with detection
limit of 3log CFU/gm on freshly cut lettuce and cantaloupe in 24 h time detection [86].
Another work studying the amplification of foodborne-pathogen sensing on microarray
comprised Cy5-dye-labeled double biotin DNA linkage and detection antibody as Cy5–Ab
complex. Simultaneous detection of Salmonella and E. coli was achieved as visual screening
followed by fluorescence-based quantification. A detection limit of 103 CFU/mL and 9
CFU/mL in buffer and real food was achieved via visual screening and quantification of
fluorescence intensity [87].

4.2. Microfluidic Devices

Microfluidics technology is considered to be a multidisciplinary technique interlink-
ing several aspects of science including biochemistry, fluid dynamics, material science,
physics, engineering, nanotechnology, chemistry, microtechnology, and biotechnology. It
has been introduced as a novel point-of-care testing device in biosensing, providing large
surface-to-volume ratio and making it a portable technology [88]. Fluorescence-based
detection on microfluidic chips comprises bioluminescence, laser-induced fluorescence,
immunofluorescence technique, and chemiluminescence, and the unique combination
of these biochips with fluorescence detectors efficiently promotes sensitive detection of
food-borne pathogens [89].

The fabrication of microfluidic-based devices comprises manufacturing technologies
using silicon, glass, polymer (polydimethylsiloxane:PDMS) and ceramic that employs
a photolithography method integrating mass production by micro electro-mechanical
systems (MEMS). Generally, there are three versions of microfluidics: (a) continuous-flow,
(b) droplet-based, and (c) digital, and their fabrication employs wet-etching, molding,
sanding, laser, and milling techniques. Microfluidic fluorescence sensors need to maintain
excitation spectra slightly different to the emissions in order to obtain complex spatial
arrangement in glass-based microfluidics, while polymer microsystems often use PDMS
that incorporates molding, layer structuration, or 3D printing which is an inexpensive
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method. Lastly, ceramic was primarily utilized in microelectronics due to its significant
features of designing 3D structures in low-temperature cofired ceramic (LTCC) [90]. PDMS
were also applied as the surface for capturing bacteria. A recent study presented a 3D
PDMS sponge fabrication utilizing salt crystals as the scarifying mold and the inner surface
of the PDMS sponge was functionalized by apolipoprotein-H (ApoH), as universal ligand
to capture both Gram-positive (L. monocytogenes) and Gram-negative (Salmonella spp.)
bacteria, in combination with a microfluidic bioreactor. The capture proficiency was found
greater than 70% for both targeted pathogens with an LoD of 103 and 104 CFU/mL for
Salmonella spp. and L. monocytogenes, respectively [91].

Microfluidic devices have facilitated lab-on-chip (LOC)-integrating micropores, mixers
enhancing capture efficiency, micropillars, and microfilters as additional modules com-
bining these analytical procedures onto the same chip. The miniaturization, portability,
instant detection, automation, and high-throughput are key advantages offered by microflu-
idics that are widely applicative in sensitive detection of food pathogens and toxins [92].
Recently, many smartphone microfluidic platforms integrating immunomagnetic nanopar-
ticles or urease enzyme or paper-based/impedance electrochemical measurements have
been introduced, offering high-end food sensing with multiplexed and rapid detection of
pathogens [93]. A study has reported QD fluorescent-probe-based readout integrated with
manganese nanoflowers as QD nanocarriers for signal amplification to detect Salmonella ty-
phimurium. The bacterial load was determined with a low detection limit of 43 CFU/mL in
food samples such as chicken, depending on the fluorescent intensity of released QDs [94].
Another sensor introduced immunomagnetic separation with fluorescent-labeling and
video-processing smartphone for detection of Salmonella. The immunomagnetic particles
separated and concentrated Salmonella followed by labeling with immunofluorescent mi-
crospheres to form fluorescent bacteria. This fluorescent Salmonella was injected into a
biochip integrated with a smartphone fluorescent microscopic system. A low detection
limit of 58 CFU/mL Salmonella was obtained by online counting of fluorescent spots using a
smartphone App. (as presented in Figure 3) [95]. Shin et al., recently proposed a lateral-flow
assay for multiplexed detection of E. coli, Salmonella typhimurium, Staphylococcus aureus, and
Bacillus cereus in contaminated lettuce samples (Figure 3c) [96].

Paper-based devices are facile and flexible analytical biosensors as they offer a wide
range of advantages over microfluidic chips in being cost-effective, with easy fabrication,
great biocompatibility and high capillary action [97]. Lateral-flow assays (LFAs) and
microfluidic paper-based analytical devices (μPADs) are the most common type of paper-
based devices. LFAs or dipsticks are known for their facile handling, and rapid and
naked-eye-visible readout without any additional equipment. Their cost-effectiveness and
versatility in assay formats and user-friendliness offer their wide applicability in point-of-
care testing of food pathogens. LFAs simply comprise a sample pad where sample is added,
a conjugate pad where the sample travels via capillary action activating the immobilized
molecules, an absorbent pad, and a nitrocellulose membrane; all arranged on a plastic
padding. The molecular components in the sample are separated as they travel across the
membrane and produce a test line as positive-result output and a control line [98]. LFAs that
are used for food-borne-pathogen detection incorporate monodispersed latex labels, gold
colloid, and fluorescent/carbon tags for conjugate labeling. The colored particle, generally
colloidal gold, binds to biomolecules (antigen/antibody/aptamer) immobilized onto test
line that correlates with the amount of sample added [99,100]. Commercial LFA strips
available in the market for bacterial sensing include Listeria-, Salmonella-, and Escherichia coli
O157-Reveal test kits (Neogen®) Lansing, USA; Listeria, Salmonella- and Escherichia coli-VIP
GOLD™ (BioControl Systems®) Bellevue, USA, and for Listeria, DuPont™ Lateral Flow
System (DuPontQualicon) [4].

Paper-based μPADs generally utilize paper instead of chip microfluidics and are
economical and efficient, removing the need for cleanroom facilities. Compared to silicon-
based conventional biochips, paper-based chips are simple and highly porous, allowing
physical absorption-generating devices that are easy to operate, modify and dispose of.
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These μPADs perform liquid transport, reactions, and even reagent storage on the hy-
drophilic porous paper that promotes transfer of liquids in the device. In this way, the
designed flow-channels obviate the requirement for an external pump for running the
assay [98]. The major component of paper μPADs is cellulose. Being biocompatible and
flexible, it somehow absorbs the reagents dried onto it and arranged this in a cartridge
integrated to a fluid delivery system viz. a droplet dispenser. Only the template has to be
added to the kit and the start button is pressed, triggering the fluid delivery into μPAD. The
fabrication of paper pads is categorized as patterning of hydrophobic barriers onto paper
such as wax/laser/inkjet printing and shaping techniques, for instance, paper cutting/laser
etching [98]. A recent work has developed an aptasensor integrating microfluidics paper-
based multiplexed detection of E. coli O157:H7 and S. typhimurium (as presented in Figure 4).
This novel sensor comprises single-input detection of more than single whole-cell food
pathogen providing a quantitative signal readout as image analysis with a low detection
limit of 103 and 104 CFU/mL, respectively [101].

Figure 3. (A) PDMS microfluidic-platform-based study reports QD fluorescent-probe-based detection
of Salmonella typhimurium. (i) Schematic presentation of microfluidic channel with inlet and out-
let and presentation of the experimental process and (ii) the bacterial load was determined with
LoD of 43 CFU/mL in food samples using the laser b. Copyright (2020), with permission from
MDPI [94]. (B) Immunomagnetic separation with fluorescent-labeled sample and (i) video-processed
using smartphone for detection of Salmonella with an LoD of 58 CFU/mL and (ii,iii) the efficiency of
salmonella detection compared to other bacteria and bacterial-capturing mechanism with nanoparti-
cle, respectively. Copyright (2019), with permission from Elsevier [95]. (C) Shin et al. presented a (i)
CD-disk-type microfluidic system for lateral-flow assay, (ii) the assembly of lateral-flow assay, and
(iii) multiplexed detection of E. coli, Salmonella Typhimurium, Staphylococcus aureus, and Bacillus cereus
in contaminated lettuce samples. Copyright (2018), with permission from the American Chemical
Society [96].
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Figure 4. (A) Paper-based microfluidics assembly for multiplexed assay. (B) Nanoparticle surface
modification and building with ssDNA and blocking BSA protein for detection of E. coli O157:H7 and
S. typhimurium. (C) Sensor detecting whole-cell food pathogen with an LoD of 103 and 104 CFU/mL,
respectively. Copyright (2022), with permission from Elsevier [101].

Finally, we can say that the traditional approaches, such as PCR-based techniques
and fluorescence detection on the surface are time-consuming and require specialized
instrumentation. The microfluidic-based biosensor has shown its potential in research into
rapid and sensitive detection with a very high limit of detection. Above, we discussed
some examples of microfluidic biosensors for the detection of food contaminants. As
add-ons to microfluidic systems and in integration with these methods, nanomaterials
have become attractive in attaining selectivity. Nanomaterial provides a large surface area
for binding of recognition molecules and enhances the signal for fluorescence. The use of
nanomaterials in these biosensors makes them easy to use and feasible for point-of-care
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detection. In particular, the pros and cons of microfluidic-based biosensors include (i)
high sensitivity in the analysis of small- and large-volume sample and (ii) high specificity
and multiplexity to detect different analytes. In microfluidic systems, the challenges for
food samples are is that some liquid samples are highly dense and cause blockage in the
microfluidic device. Still, it is predicted that the future for microfluidic-based sensing of
food samples is very promising.

5. Future Outlook

In this review, we have discussed the various research approaches, nanomaterials, and
methodologies in fluorescent-based detection methods used for food safety. Traditionally,
fluorescence-, and image-based biosensors are used to detect contamination in food and
water. Food and water are very complex matrices, which not only include several diet
elements (proteins, lipids, sugars, etc.), but also consist of parts such as additives. It
is important to mention that fluorphores have the challenge of the aggregation-caused
quenching (ACQ) effect, which restricts their function in sensing. The development of
biosensors for food safety and their in-field application deal with issues pertaining to
pre-treatment of complex samples such as the development of biosensors for food safety
and their in-field application deal with issues pertaining to pre-treatment of complex food
sample and maintain sensitivity. Moreover, a lower concentration of bacterial contamination
in food samples is also challenging for target sensitivity and detection limits. Although
microarrays are effective and accurate signal-producing technology, they require technical
expertise and are expensive. Therefore, microfluidics or lab-on-chip devices hold great
potential due to automation, miniaturization, and portability, and their ability to produce
fast signal readout. However, certain limitations due to blockage of microfluidic channels
or non-specific adsorption cause problems in complex sample analysis. In this context,
signal-amplification methodologies, along with deep-learning strategies, can improve food-
sensing fluorescent biosensing. Regardless of the performance of fluorescence- and image-
based biosensors, they still have several challenges in real-world applications due to a high
rate of false-negative or false-positive results and diet elements create autofluorescence and
disrupt sensitivity and trigger false results. The nanomaterial-based fluorescent biosensors
are able to address this problem. Although nano-biomaterials have benefits in operation,
several parameters must be adjusted and need optimization. Extensive research, over
several years, into sensing for food-safety purposes has shown that certain materials
(e.g., graphene, metal nanoparticles) are usually preferred for fluorescence-sensing of
food material. The advantage of using nanomaterials is the ability to achieve high signal
intensity with selectivity. Nanomaterial-based biosensors have been successfully developed
but suffer from constraints of stability, repeatability, and poor anti-interference ability.
To overcome some major problems in fluorescence sensing, it is necessary to integrate
and compare different methods to achieve optimum sensitivity. Chemometric, surface-
enhanced Raman scattering (SERS), electrochemical sensing can also be used along with
fluorescence for multiplexed sensing with high sensitivity. To date, fluorescent systems
are in the experimental stage and practical functions of nanomaterial-based fluorescent
biosensors in food matrices continue to remain under investigation. By implementing
artificial intelligence and microfluidic systems for fluorescence biosensors we may achieve
the goal of developing low-cost and real-time recognition of contaminants in food matrices.
Recent research has shown the possibility of achieving sensitive and precise detection
of food contaminants using the smartphone by enabling artificial intelligence for signal
analysis without the requirement for sophisticated equipment. This development opens the
door to a stand-alone, point-of-detection device for fluorescence-based detection, showing
the possibility of detection of food contaminants outside the laboratory.
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Abstract: The release of chemicals and microorganisms from various sources, such as industry, agri-
culture, animal farming, wastewater treatment plants, and flooding, into water systems have caused
water pollution in several parts of our world, endangering aquatic ecosystems and individual health.
World Health Organization (WHO) has introduced strict standards for the maximum concentration
limits for nutrients and chemicals in drinking water, surface water, and groundwater. It is crucial to
have rapid, sensitive, and reliable analytical detection systems to monitor the pollution level regularly
and meet the standard limit. Electrochemical biosensors are advantageous analytical devices or tools
that convert a bio-signal by biorecognition elements into a significant electrical response. Thanks
to the micro/nano fabrication techniques, electrochemical biosensors for sensitive, continuous, and
real-time detection have attracted increasing attention among researchers and users worldwide.
These devices take advantage of easy operation, portability, and rapid response. They can also be
miniaturized, have a long-life span and a quick response time, and possess high sensitivity and
selectivity and can be considered as portable biosensing assays. They are of special importance
due to their great advantages such as affordability, simplicity, portability, and ability to detect at
on-site. This review paper is concerned with the basic concepts of electrochemical biosensors and
their applications in various water quality monitoring, such as inorganic chemicals, nutrients, mi-
croorganisms’ pollution, and organic pollutants, especially for developing real-time/online detection
systems. The basic concepts of electrochemical biosensors, different surface modification techniques,
bio-recognition elements (BRE), detection methods, and specific real-time water quality monitoring
applications are reviewed thoroughly in this article.

Keywords: biosensors; electrochemical detection; water quality monitoring; bio-recognition element;
in-situ monitoring; surface modification

1. Introduction

Water is an essential part of all the living beings on earth, but in recent times, anthro-
pogenic activities have increased immensely, which are the major causes of water pollution,
disturbing the marine biodiversity and leading to a tremendous water shortage [1–3]. Even
though the chemicals and water nutrients are crucial to our day-to-day lives, the excessive
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amount threatens humans, aquatic life, and animals. The pollution of water and habitat
degradation are the causes of the escalating water shortage and the reasons for the deterio-
ration in marine biodiversity. Although freshwater accessibility has deteriorated over the
past decades, water demand has risen, particularly in warm areas with minimal rainfall.
Recently, 71% of the world’s inhabitants, equal to 4.3 billion, were dealing with water
shortages for several months [4]. Although water demand sharply increased, massive
water pollution increased water scarcity and declining water quality in the past decades.

The characteristics of water pollution are comprised of their physical presence, chem-
ical parameters, and richness of microorganisms. The concentration and composition of
ingredients in water differ extensively. They can be categorized into four distinct classifica-
tions, such as (i) inorganic chemicals, (ii) nutrients, (iii) microorganisms’ pollution, and (iv)
organic pollutants. They can bring about harmful ecological consequences, for example,
the interference of internal secretion and hormone systems, stimulation of genotoxicity and
cytotoxicity, and hazardous effects [5]. The strength of ingredients in water is essential for
selecting, designing, and operational treatment processes and recycling waste. The variable
quantity of contaminants in effluent over time also increases the attention to emerging
technologies for monitoring the water and applying reasonably priced and real-time ap-
proaches [6]. This review is mainly focused on monitoring heavy metals, nutrients, organic
pollutants, biochemical oxygen demand, and microorganisms. Heavy metals in soil and
water are considered environmental contaminants with elevated toxicity, easy accretion,
and complicated degradation [7]. Nutrients bring about water eutrophication. Organic
pollutants, particularly persistent organic pollutants (POPs), have harshly harmful im-
pacts on human health and the environment with their complex degradation and potential
bioaccumulation [8]. The biochemical oxygen demand (BOD) is the essential supervisory
index to measure organic water contamination and demonstrate water quality [9,10]. Water
quality monitoring is critical and closely related to our life and production.

Conventional analytical techniques or laboratory-based procedures, such as gas chro-
matography (GC), high-performance liquid chromatography (HPLC), atomic absorption
spectroscopy (AAS), atomic fluorescence spectrometry (AFS), and inductively coupled
plasma mass spectrometry (ICP-MS), are sensitive, precise, and consistent. They are reg-
ularly used to measure water parameters with the help of trained operators. However,
they are involved with bulky and costly instrumentation, take much time for sample
preparation, and are unsuitable for in situ measurements, especially requiring trained
operators’ help and transporting the water samples to laboratories for assessment [11–13].
Additionally, they cannot asses the accumulative toxicity or nutrient value of multiple
chemicals or pollutants in a sample, which is a crucial objective of water quality monitoring
applications [14]. Many property indicators are regularly used to determine the different
qualities of water for settling or recycling. Many of them are laboratory-based techniques,
which require complex pretreatment, and consequently, the methods are sluggish and
expensive [1,15]. These characteristics encourage developing new technologies that are
more low-cost, portable, sensitive, and efficient in the on-site real-time detection of multi-
contaminants containing a wide variety of materials [16,17]. The significant challenges of
developing a portable biosensing device are inadequate sensitivity and poor selectivity dur-
ing the on-site detection. The significant level of noises can come on chemical components
level from the sampling field and ambient environments can be variable due to the harsh
environments or diurnal variations. These are the major obstacles where the researchers
are putting lot of attentions on how to avoid these for generating a reliable and portable
biosensing output signal. The portable biosensing method is successfully utilized for other
applications, such as pesticide residues in fruits and vegetables [18], POC Detection for
biomedical application [19], chemical and biological pollutants in water [20].

In recent years, the advancement of electrochemical biosensors for detecting envi-
ronmental pollutants has received considerable attention [21–25]. Biosensors have many
advantages over the conventional lab-based method, including low costs, portability, fast
response time, less usage of reagents, and the capability to continuous monitor the complex
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wastewater [26–28]. Such sensors significantly benefit from sensing the minimum level in
polluted water, such as wastewater. Biosensors are also compact and miniaturized devices
that facilitate the advancement of portable sensing systems to monitor on-site effluents [29].
Bearing in mind the wide range of bio-recognition elements (including enzymatic, im-
munochemical, non-enzymatic receptor, whole-cell and DNA elements, and molecularly
imprinted polymer (MIP)), the various types of biosensors can be classified as (i) electro-
chemical [30], (iii) piezoelectric [31], (ii) optical [32], and (iv) thermal biosensors [33] based
on their working principles and transducing mechanisms [34], but the current review paper
will cover the topics which are related to electrochemical biosensing. An electrochemical
biosensor is based on the interactions between the immobilized bio-recognition element
on its surface with binding molecules (the analyte of interest) and generating the changes
in electrochemical properties, further translating into a meaningful electrical signal. The
electrochemical methods offer rapid detection, fabrication, excellent sensitivity, and low
cost.

Moreover, by operating at a wide range of potential, it is possible to simultaneously
determine multiple analytes with different electrochemical potentials. Electrochemical
biosensors’ efficiency in monitoring water pollutants’ presence relied on bio-recognition
elements, transducers, and immobilization techniques, which offer us the classification
criterion. In comparison with optical methods, electrochemical transduction has advantages
for analyzing turbid samples because it is non-sensitive to light. For optical sensing, they
are likely to be interference from environmental effects, costly, and susceptible to physical
damage.

This review provides an overview of recent progress in developing electrochemical
biosensors for water quality detection, focusing on the last decade. Some older publications
are cited to support and build up the critical concepts of electrochemical biosensors. We
expect this critical review will help those working in ecological toxicant analysis in water,
some scientists who might be unaware of electroanalytical chemistry and biosensors.

2. Electrochemical Biosensors

Electrochemistry is essential for achieving the biosensing process in various biomarker
analyses. Thus, electrochemical biosensing has attracted widespread attention in various
applications due to its considerable advantages. Electrochemical biosensors react with
the analyte of interest or molecules to produce an electrical signal proportionate to the
analyte concentration. A conventional electrochemical biosensor comprises a reference
electrode and a sensing electrode (working electrode) separated by an electrolyte. In most
applications, the electrochemical biosensors consist of a three-electrode system with the
reference electrode connected to a potentiostat, and the circuit can be completed by adding
a counter electrode for flowing the current. These sensing devices are inexpensive, low-cost
electrochemical cells that can be produced, portable, and easy to use, and can be operated
with reduced power consumption. It requires electronic components for detecting the
target analytes, unlike optical sensors. The following sections describe a range of elements
and techniques of the electrochemical biosensor for biosensing applications.

3. Surface Modification Technique

Surface chemistry plays a considerable role in electrochemical biosensors to link the
biological recognition element (BRE) on top of the sensing surface and prevent the substrate
electrode from nonspecific interactions. In addition, the functionalization of the surface
is conducive to noise control and sensitivity enhancement. BRE used in electrochemical
sensors mainly consists of enzymes, antibodies, DNA/RNA, aptamers, and whole cells [22],
which define a biosensor’s sensitivity and selectivity. Immobilization techniques, such
as adsorption, encapsulation in polymers or gel, chemical crosslinking, self-assembled
monolayer, covalent linking, affinity, and electrodeposition, have been widely investigated
for detecting various analysts in complex water samples. The surface modification of BRE
on the electrodes usually involves one or more strategies.
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3.1. Adsorption

Adsorption is a straightforward method of modifying the surface of the electrode to
a specific recognition element in an entirely arbitrary way. Every biological recognition
element needs to achieve the best conditions. Most proteins usually achieve the best
surface coverage on uncharged surfaces under the neutral pH and functional ionic strength,
using a specific 5−20 μg/mL concentration [35]. Yang et al. [36] have developed an
impedimetric-based immunosensor by the adsorption method of anti-E. coli antibodies
against the integrated microelectrode arrays for detecting the E. coli O157:H7. Surface
modification of the surface receptor proteins G and A can be produced by many bacterial
strains that can promote receptor binding. Each protein, such as A and G, can certainly
be capable of binding 4 and 2 molecules of IgG. An analogous method utilizes or takes
advantage of the strong binding of the glycoprotein avidin for biotin-functionalizing the
receptors due to the intense alienation of the avidin/biotin complex. The detection level of
E. coli was 1.3 × 10−15 M, which was as low as 10−100 CFU mL−1 in concentration. It may
be identified on the avidin-modified developed electrodes using biotinylated anti-E. coli as
the targeted recognition ligand.

3.2. Self-Assembled Monolayers (SAMs)

Self-Assembled Monolayers (SAMs) are chemisorbed and ordered with various layers
formed by the natural arrangement of thiolated molecules on the location of metallic
interfaces. The most extensively used methods consist of SAMs with n-alkanethiols on
noble metals [37], SAMs with carboxylate on the oxide surfaces [38], and SAMs with silane
on the glass/silicon surfaces [39]. Xia et al., immersed the sidewall of the silica core into
AuNSM colloid, forming a self-assembled AuNSM monolayer for sensitive wavelength-
modulated localized surface plasmon resonance (LSPR) for detecting the mercury (II) [40].
The label-free sensor obtained a very low LOD of 0.7 nM owing to the near field coupling
improvement by the proximity distance of two types of gold nanoparticles-DNA conjugates.

3.3. Covalent Attachment

Covalent attachment is another approach for the covalent coupling to the ligand
recognitions to electrochemical biosensor’s interfaces, and improvements from the arrays of
protein help form the most favorable conditions. A commonly used crosslinking molecule
is carboxylic acid (C(=O) OH) groups on the electrode’s surface as the biorecognition
element with amine functional groups for exploiting the amide bond formation using the
techniques of EDC/NHS chemistry. Likewise, this coupling approach has been effectively
applied in various three-dimensional supports, such as agarose, aldehyde−agarose, and
carboxymethylated dextran-based modified electrodes [41]. Carbon-based materials that
reduce graphene oxide and carbon nanotubes can be adjusted with carboxylic acid through
π−π stacking interaction. Furthermore, some researchers have lately proposed integrating
covalent functional groups using diazonium chemistry [42].

3.4. Electrodeposition

The electrochemical deposition was crucial in preparing nanomaterials reliably and
cost-effectively with mild physicochemical conditions. Furthermore, noble metals, mixed
metal oxides, carbon materials, or conducting polymers can be deposited on the electrode
with high deposition speed, straightforward scale-up techniques and commercial feasibility
with standard maintenance. This method helps form the hybrid films with the controlled
thickness and morphology, modifying the process parameters, controlling the bath condi-
tions (solvent, pH, temperature), and effectively regulating the electrolyte formula [43]. For
example, new properties immediately stand out when poly(3,4-ethylenedioxythiophene)
associates with one or more components deposited as films [44]. Table 1 shows the vari-
ous characteristics of the surface modification techniques for the BRE in electrochemical
biosensors.
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4. Biorecognition Elements

Biorecognition elements (Figure 1) are the most critical part of the electrochemi-
cal biosensor, shouldering specific pollutants’ specific recognition in a complex matrix.
The effective immobilization of biorecognition elements, including enzymes, antibodies,
DNA/RNA, aptamers, and whole cells, facilitates their binding to a noticeably broad range
of the target species or analyte of interest. As is shown in Table 2, different kinds of recogni-
tion elements were summarized, as well as the analytes, electrodes, type of transducers, and
the response of various electrochemical biosensors. Apart from conserving the functionality
of the bio-recognition elements, e.g., specific enzymatic activities, it is critical to ensure the
biomaterials’ accessibility to target analytes. The vicinity between the biomaterials and the
solid or metallic electrode surface is also preferred for achieving a fast and effective electron
transfer. Several techniques have been suggested, including physical (e.g., electrostatic
adsorption), chemical (e.g., self-assembled monolayers, covalent bonding, avidin-biotin
binding, hybridization), and electrochemical (e.g., electrochemical adsorption) methods,
but the optimal configuration for the biorecognition elements depends on the biomaterial
and the modified electrode materials and interface. Besides the immobilization strategies,
nonspecific adsorptions that mostly lead to high baseline signals and delayed responses
should also be considered. Generally, various highly hydrophilic composites, for instance,
poly (ethylene glycol) (PEG) and bovine serum albumin (BSA) and can be considered
as additional elements for eliminating the nonspecific binding sites at the electrode and
solution interface.

Figure 1. (a,b) Amperometric response of B.P.A. at XOD/GCE in the presence of 0.3 mM hypoxanthine
(Reproduced with the permission from [53]); (c) Schematic of magnetic beads (MBs) for the analyte
and its capturing technique on the electrode surface (Reproduced with the permission from [54]);
(d) The complete schematic diagram of the nanomaterial-based immunosensor based on ELISA
indirect competitive format (Reproduced with the permission from [55]); (e) Effect of various blocking
agents on background reading by eight percent skimmed milk, one percent BSA, casein, protein-free,
and superblock (Reproduced with the permission from [56]); (f) Schematic representation, SEM and
EIS responses of the fabricated aptasensor (Reproduced with the permission from [57]).

4.1. Enzyme-Based Bio-Recognition Materials

Enzym electrodes have been widely studied for the superior catalytic activity of inclu-
siveness of the enzymes and are commercially accessible. Regarding the electrochemical
detection of water pollutants with enzymes, in some cases, they are converted to indirect
detection of corresponding substrates by inhibiting enzyme activity. The biotransformation

170



Biosensors 2022, 12, 551

of various compounds can catalyze these enzymes through oxidation–reduction reactions
(REDOX). The amperometric biosensors’ electrical responses of Oxidase/Peroxidase have
electrical responses to a specific substrate that can be measured either by two different
methods, such as direct or indirect methods [58]. Enzymes can be immobilized by physical
adhesion or entrapped by the process of electrochemical techniques. According to the
Michaelis–Menten equation, the enzymatic sensor’s detection limit depends on the en-
zyme’s activity. Thus, accommodating proper conditions (desirable temperature and buffer
pH, etc.) for the development of the biosensor throughout the experiment is significant.

Ayenimo et al., rapidly developed a reliable, sensitive amperometric glucose biosensor
to rapidly determine Hg2+, Cu2+, Pb2+, and Cd2+. A conductive ultrathin polypyrrole (PPy)
film where the thickness was 55 nm thick was utilized to entrap glucose oxidase (GOx)
with a fast response time. Upon exposure to trace metals, a more robust inhibition of GOx
activity led to reduced glucose amperometric response [59]. Messaoud et al., have used
fixed potential amperometry to determine bisphenol A (BPA), based on xanthine oxidase
(XOD) enzymatic inhibition hypoxanthine as enzyme substrate, as is shown in Figure 1a,b.
The mechanism of enzyme inhibition was estimated from the Cornish–Bowden and Dixon
plots that were reversible with the competitiveness. An extremely low detection limit of
1.0 nM was achieved with excellent repeatability and reproducibility. The biosensor water
samples’ selectivity, stability, and practical tests were also investigated [60].

4.2. Antibody

Immunoassay is based on detecting antigen–antibody conjugates or excessive other
reagents (e.g., enzyme-labelled second antibody). Furthermore, it can be divided into
competitive mode and non-competitive mode based on whether the analyte competes
for a restricted number of binding antibody sites with the labelled analyte (e.g., indirect
competitive immunoassay) or not (e.g., sandwich format) [61]. Immunoassays can also be
classified as homogeneous and heterogeneous assays. Antibodies and antigens move freely
from a complex immune situation to the solution phase in a homogenous format. However,
it can be seen differently in a heterogeneous structure where the antibodies (or sometimes
antigens) can be immobilized on a solid support to form the complex. Both types have been
widely investigated, but homogeneous assays benefit from the possibility of multiplexing
the complex format and separations are fast.

In contrast, the heterogeneous structure takes advantage of the elevated ratio of surface
area to volume, which provides an additional higher sensitivity. Electrochemical immune
sensors exhibit high sensitivity and selectivity compared to redox detection, which is
extremely important in detecting various pesticides to decrease their mutual interference.
The detection principle is mainly based on the current or impedance changes induced by
antibody–antigen interaction, including chronoamperometry (CA) and electrochemical
impedance spectroscopy (EIS).

A non-competitive immunoassay combined the with magneto-electrochemical im-
mune sensors. It was developed to detect herbicide atrazine, one of the most used pesticides
globally [62]. It is based on the recombinant M13 phage particles that bear a molecule
named peptide. It is recognized explicitly as the immune complex of atrazine with an
anti-atrazine monoclonal antibody. However, it is worth mentioning that each phage
bore thousands of HRP Molecules, indicating the increased activity of pyrocatechol ox-
idation in the presence of hydrogen peroxide (H2O2). The phage anti-immunocomplex
electrochemical immunosensor (PhAIEI) had dominant features, which provided a 200-fold
improvement in sensitivity and a 10-fold wide linear working range compared with pre-
vious work with the same monoclonal antibody and anti-immunocomplex peptide. By
chronoamperometry (CA), the fabricated PhAIEI was successfully applied in untreated
river samples with excellent recoveries.

The leucomalachite green and malachite green in the water from a fish farm were
detected by a BSA-decorated gold nanocluster (BSA-AuNC) with antibody composite film
using the electrochemical impedance spectroscopy (EIS) method. The film was modified
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by a glassy carbon electrode (GCE). The modification was carried out due to the potential
hazards to the human immune system and the human reproductive system [63]. Moreover,
the BSA-AuNCs interface’s stability was improved via a diazotization method, and the
antibody against leucomalachite green was chemically connected with the interface under
the optimum conditions. After two weeks, the EIS immunosensor showed acceptable
repeatability and stability with a negligible impedance reduction. A low LOD of 0.03 ng/mL
was also obtained and compared with the ELISA method.

Azri et al., have developed an ultrasensitive electrochemical immunosensor for the
detection of aflatoxin B1 (AFB1) based on an indirect competitive enzyme-linked im-
munosorbent assay (ELISA) to study the antigen–antibody interaction and optimize the
optimum parameters of the assay [55]. The immunosensor demonstrated an excellent
duplicability (RSD of 9%), and the response was logarithmic, where the detection range of
50–10,000 pM of IMD under the optimal conditions. The sensor was developed with the
combination of BSA-labelled antigen and enzymatic tags. Compared with standard analyti-
cal methods, the developed sensor demonstrated a more comprehensive lower detection
limit and a comprehensive range of responses which satisfied the detection requirements
considering the European Union legislation. Saravanan et al., proposed a simple, dis-
posable, and low-cost, paper-based immunosensor to detect bacteria in water [64]. The
screen-printed fabrication technique was used for printing a conductive carbon electrode
onto a commercial hydrophobic paper. Carboxyl groups were utilized for functionalization
with the lectin Concanavalin A, which was covalently immobilized as the selective coating
for biorecognition element for interacting with mono- and oligosaccharides. A linear cali-
bration curve was developed for bacterial concentrations ranging from 103~106 CFU mL−1,
with the projected lower detection limit of 1.9 × 103 CFU mL−1.

Immunomagnetic assays with the introduction of magnetic beads (MBs) are particu-
larly effective for enhancing the analytical performance. A huge surface area allows them
to be utilized in immobilization of biomolecules, such as enzymes, DNA, and antibodies.
Chemical and physical stability, low toxicity, and high biocompatibility make them suitable
for the immobilization of biomolecules. Efficient dispersing ability enables them to shorten
the reaction time between dissolved species and biomolecules [54]. The electrochemical
glyphosate (N-(phosphonomethyl)glycine) biosensor has been developed with a disposable
screen-printed electrochemical cell and applied to the analysis of spiked beer samples based
on the competitive assay, as is shown in Figure 1c [54]. With tetramethylbenzidine (TMB)
as the enzymatic substrate, the affinity reaction’s scope has been achieved by monitoring
the current (A) due to reducing the enzymatic effect. The concentration range was found as
0–10,000 ng, where the detection limit was 5 ng/L and the quantification limit was 30 ng/L.
An indirect competitive ELISA was exhibited in Figure 1d [55], competition occurred be-
tween aflatoxin B1-bovine serum albumin (AFB1–BSA) and free AFB1 (in peanut sample
and standard) for the binding site of a fixed amount of anti-AFB1 antibody on the multi-
walled carbon nanotubes/chitosan/screen-printed carbon electrode (MWCNTs/CS/SPCE).
Figure 1e showed the effect of various blocking agents on background reading by eight
percent skimmed milk, one percent BSA, casein, protein-free, and superblock [55].

4.3. Nucleic Acid-Based Bio-Recognition Materials

Compared with enzyme and antibody, nucleic acid (DNA or RNA)-based electrochem-
ical biosensor was reported later, but their various applications are increased exponentially
due to their multiple advantages. Their conformation is more robust than antibodies or
enzymes. They can be entrapped in the biosensor assembly and bind with a wide range of
specific targets with elevated affinity and sensitivity [65]. The interaction between immo-
bilized nucleic acid and the analyte can change structures and electrochemical properties.
One of the analytes are aptamers, which have artificial functional single-stranded DNA
or RNA structures that can bind various target molecules, such as amino acids, small
molecules, proteins, and cells, with high specificity affinity [66]. Aptamers can be obtained
through an in the vitro selection procedure, followed by the classical methodology of
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systematic evolution of ligands by exponential enrichment (SELEX). Tuerk and Gold first
proposed it in 1990 [67]. Figure 1f showed a highly sensitive impedimetric aptasensor for
the selective detection of acetamiprid and atrazine [57].

Many nucleic acid-based electrochemical biosensor configurations have been exten-
sively studied in gene analysis, clinical diagnostics, and environmental monitoring due to
their fast, low-cost, sensitive, and selective responses to numerous analytes [68]. The most
crucial step in preparing the nucleic acid-based electrochemical biosensor is the surface
immobilization of the oligonucleotide strands. A terminal modification (sulfhydryl and
amino groups) is the most common method to immobilise nucleic acid. Its most significant
advantage lies in efficiently achieving directional and stable fixation. It is easy to prepare
DNA arrays and realize high-throughput determination combined with lab-on-a-chip tech-
nology. The electrochemical detection of nucleic acid can be divided into direct and indirect
methods. The electroactivity of oligonucleotide strands can be changed in the direct meth-
ods, which also changes the interfacial properties of the oligonucleotide strands-modified
electrode in terms of conductivity, capacitance, or impedance. The indirect methods depend
on the usage of electrochemical active nucleic acid labels [69] or intercalators [70] (e.g.,
methylene blue) [71].

Nucleic acids have been most widely used in metal ion detection, mainly consisting of
the following four types: metal ion-specific DNAs, aptamers, DNAzymes, and guanine
(G)-rich oligonucleotides, which can be related to G-quadruplexes [72]. Heavy metal ions
can generate the partial disordering of oligonucleotide strands and reduce base stacking
and base pairing after forming a metal–base complex. DPV studied the evaluation of
the interaction of Pb2+, Cd2+, Ni2+, and Pd2+ with dsDNA, including hydrogen bonding
cleavage, double helix conformation, and oxidative damage to DNA bases at GCE. [73].
Hg2+ can combine with two thymine bases (T) and mediate T–T mismatch to form a
stable T–Hg2+–T structure which is more durable than the natural adenine–thymine (A–
T) base pair with a binding constant close to 106 M−1 [74]. Ag+ can selectively interact
with cytosine (C)-rich oligonucleotide strands to form C–Ag+–C mismatch [75]. These
impressive mismatches belong to coordination bonds, and on these principles, significant
efforts have been made for high selectivity and sensitivity to determine Hg2+ [40,76] and
Ag+ [77,78]. As for the detection of Pb2+ ion, the G-rich DNA sequences are widely used
due to their ability to fold to form a most compact G-quadruplex structure, especially in
the presence of Pb2+ ion [79]. For example, the simultaneous detection and determination
of mercury (II) and lead (II) ions were implemented by Wang et al. [80]. The biosensor
functionality was improved by placing the amino-modified reduced graphene oxide (NH2-
rGO) nanofilm on a gold electrode as an excellent anchorage for the DNAzyme and the
DNA strands. The presence of target ions could be recognized through the difference in
charge-transfer resistance values before and after DNA interactions with Hg2+ and Pb2+

ions.

4.4. Whole Cell-Based Bio-Recognition Materials

Whole cells or microorganisms used for environmental biosensing can be classified
as bacteria, yeasts, and fewer algae. The whole cell-based biosensor combines cells and
transducers, generating a measurable electrical signal against the specific or target an-
alytes [81]. In recent years, the whole cell has become an excellent alternative to the
traditional bio-recognition elements due to their easy cultivation and manipulation, hosting
many enzymes to catalyze reactions and good compatibility with various types of trans-
ducers. Substantial efforts have been made, from commercial to well-characterized cells
with robust and specific enzymatic properties [82]. Moreover, they can give information on
the pollutants’ bioavailability and toxicity toward eukaryotic or prokaryotic cells [83].

Whole cells played an essential role in detecting heavy metal ions as the carrier to
adsorb, precipitate or metabolize heavy metal ions. The whole cell was integrated into
biosensors for low cost, low toxicity, high adsorption, and feasible fabrication based on the
complexation, ion exchange, and physical adsorption between the whole cell and metal
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ions. Alpat et al., used green microalgae (Tetraselmis chuii) for the biosorption, precon-
centration, and determination of Cu2+ in an easy, inexpensive, sensitive, and effective
way [84]. The working electrode was fabricated by mixing green microalgae and carbon
paste. Different pulse cathode differential voltammetry showed good linearity in the range
of 5.0 × 10−8–1.0 × 10−6 M with the L.O.D. of 4.6 × 10−10 mol L−1. A Phormidium sp.
modified voltammetric sensor for Pb2+ detection from aqueous solutions was also devel-
oped. Possible functional groups involved in Pb2+ accumulation were carboxyl, sulphoxide,
and alcoholic groups. The developed microbial biosensor’s analytical properties and
selectivity were investigated comprehensively, with a detection limit of 2.5 × 10−8 M [85].

The oxygen consumption estimates the biological oxygen demand (BOD) during the
biodegradation with the aerobic whole cells as the catalysts. It is known that the biosensors
need biorecognition elements with minimal selectivity and high activity of bio-oxidation
for a wide range of organics, which ensures their application in the practical water samples
containing water nutrients and complex organics. Xia’s group developed the fast detection
method of BOD by selecting the Bacillus subtilis as a biorecognition element for its resistance
in extreme conditions. They created a single-microbial-layered structure on the gold surface
where the Bacillus subtilis bonded covalently. However, the conductivity was low due to
the microbial electrode, and the biocompatibility was also poor [86]. In a second study,
they improved the performance by creating the rough electrode surface with the microbial
layer, and the carboxyl graphene and Au nanoparticles’ electrodeposition was used for
creating this roughness [87]. In a third study, they used magnetite-functionalized Bacillus
subtilis as the element of this BOD microsensor that can be regenerated and immobilized
on an ultramicroelectrode array (UMEA). Modification and regeneration of the electrodes
array are controlled magnetically. The assay can be performed in a short time (5 min) with
vastly improved sensitivity. The calibration plot is linear in 2–15 mg·L−1. The developed
biosensor was also applied successfully to determine BOD in spiked water samples [88].
Khor et al., constructed a two-electrode sensor system using calcium alginate to immobilize
microorganisms for BO detection [89]. Ferrocyanide can dissolve in the carrier solution and
be fixed into the membrane to participate in a biochemical reaction. Ultramicroelectrode
has the advantages of small size, fast diffusion and mass transfer, and a fast, stable state.
In the combination of optimized microbial-sensitive film thickness, the rapid detection of
BOD is realized.
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5. Type of Transducers

A transducer is considered a significant part of the biosensor. It can convert the
physical change of the surroundings to suitable electrical signals, which a reaction could
cause. Biological or bio-recognition elements can be associated with or integrated with a
transducer. The bio-recognition elements can be incorporated with chemical and physical
bounding on the surface of the transducer, which also depends on the immobilization
methods [97]. Significant electrochemical transducers are available, such as amperometric
or voltammetric, impedimetric, capacitive, potentiometric, and ion-selective field-effect
transistors. The following sections summarise these transducers for water quality detec-
tions in various applications. As is shown in Table 3, various types of transducers and
characteristics were summarized.

5.1. Voltammetric/Amperometric Biosensors

The method is based on the current detection technique, either by ramping up the
working electrode’s potential at a given rate or keeping the potential constant compared to
the reference electrode. The system’s response would be observed in both methods [65].
An amperometric biosensor (Figure 2) is based on the current generated from any electro-
chemical oxidation and reduction mechanisms of any electroactive species. It consists of a
three-electrode system where a time-dependent excited potential is applied to the working
electrode-changing the potential which is also relative to the fixed potential to the reference
electrode. A current flows between the working electrode and the auxiliary electrode (nA
to μA), where it is correlated with a bulk concentration of the electroactive species or the
construction and expenditure rate within the adjoining biocatalytic layer. Platinum wire
can be used as auxiliary electrode and an Ag/AgCl electrode can be used as reference
electrode.

Figure 2. (a) Schematic design of the catalyzed oxidation on the catechol (analyte) electrode surface
by laccase. (b) The proposed calibration curves of the catalytic currents vs. catechol (analyte)
concentrations; and (c) calibration curve (Adapted from [98]) based on amperometric responses;
(d) Schematic design of surface functionalization, where the Thiol-modified aptamers are bonded
covalently and immobilized on the surfaces; (e) The Bode plots of the functionalized sensors; (f) The
calibration curves are obtained for pesticides, such as acetamiprid (reproduced with the permission
of [57]).

In 1956, Leland C. Clark introduced the oxygen probe, the simplest form of an ampero-
metric biosensor. The oxygen probe measures the dissolved oxygen during the electrochem-
ical reduction of oxygen. The associated electrolyte current is considered a response signal.
This method can suit affinity sensors, which provide the electrochemically active compound
as the recognition material and electrochemical labelling. Some electrochemically active
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nucleobases are included in the nucleic acid structure and are used for monitoring the
recognition of hybridization. A new design [99] of biosensor strips was integrated with
a conducting copper track and a graphite–epoxy composite for pesticide analysis. It was
applied by screen-printing, and the enzyme (AChE or BChE) was immobilized manually
by crosslinking with glutaraldehyde. Micaela Badea et al. [100] have reported modified
platinum electrodes with a cellulose acetate membrane to fabricate rapid amperometric
detection of nitrites and nitrates in water. The developed method is simple, fast, and does
not need an extra reagent for nitrite detection.

Biagiotti, Vanessa, et al. [101] have reported a platinum electrode modified by elec-
tropolymerized films and polymer nanotubule nets. They tried several analytical parame-
ters; among them, poly(1,3-DAB) film showed the best performance for nitrite detection
in drinking water. The electrode was characterized electrochemically by cyclic voltam-
metry and amperometry coupled to flow injection analysis (FIA). It has shown the linear
range of concentration (10–1000 μM), LOD (2 μM), and good reproducibility (R.S.D.%:
0.4). Stoytcheva, Margarita, et al. [102] undertook a work to determine the enzymatic
phenols by developing polymer film formation on the working electrode. Pan, Yanhui,
et al. [103] developed an electrochemical biosensor that was constructed by nitrogen-doped
graphene nanoribbons (NGNRs) and ionic liquid (IL). The molecularly imprinted polymer
(MIP) was used to develop the composite film to determine 4-nonyl-phenol (NP), and the
determination of concentration range was 0.04–6 μM. They obtained satisfactory results
from real samples with high sensitivity, selectivity, and stability.
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5.2. Impedimetric Biosensors

An impedimetric biosensor (Figure 2) was fabricated by immobilizing the bio recog-
nition elements onto the surface of the electrode. Different bio-recognition elements can
detect nutrients, heavy metals, or waterborne pathogens. The targeted analyte can be mea-
sured through the output of an electrical impedance signal made proportional to activity of
the analyte. It is a two-electrode system where the alternating voltage can be applied with
a few to 100 mV amplitude. The impedance (Z), or the components of resistance (R) and
capacitance (C), can be changed due to the behaviour of the material. The applied voltage
frequency can be scanned over various frequencies to get the corresponding impedance
and characterize the sensor for specific material. The equivalent circuit parameters are
also used for impedance spectra for characterization purposes. For developing an impedi-
metric biosensor, the prerequisite condition is the reproducible ability of the immobilizing
bio-recognition molecules onto the sensor surface with the possession of their biological
activity [109].

The impedance spectrum can be displayed in Nyquist or Bode plots. The plot is a
semicircle region lying on the axis, followed by a straight line. Usually, electrochemical
impedance spectroscopy (EIS) is used to investigate the properties of bio-recognition events
at the modified surface.

An impedimetric biosensor was reported [110] with highly conductive tantalum sili-
cide (TaSi2) to detect and quantify E. coli O157:H7 in drinking water. The developed
biosensor shows a linear response with a concentration of 101–105 CFU mL−1 and a sensi-
tivity of 2.6 ± 0.2 kΩ. It can avoid interference which also confirms the excellent selectivity.
The developed biosensor can be used multiple times with good repeatability. Hnaien, M.
et al. have reported [111] a bacterial impedimetric biosensor for trichloroethylene (T.C.E.)
detection in drinking water. Gold microelectrodes were used with single-wall carbon
nanotubes, further linking with anti-Pseudomonas antibodies. It also showed a good linear
response with the T.C.E. concentration up to 150 μg L−1 and a low L.O.D. (20 μg L−1). It
also showed excellent stability and recovery in real sample water. Lin, Zhenzhen et al. [112]
have reported a biosensor for simultaneous detection of metal ions, such as Pb2+, Ag+,
and Hg2+ in lake water. The DNA-based bio-recognition element was immobilized on the
working gold electrodes. The developed biosensor had high sensitivity and selectivity,
which were evaluated using the charge transfer resistance (RCT) difference before and after
the immobilized DNA interactions with Pb2+, Ag+, and Hg2+. Madianos, L. et al. [113]
developed a biosensor to detect acetamiprid and atrazine (pesticides) in natural water.
The e-beam lithography technique deposited platinum nanoparticles (Pt NPs) between the
interdigitated electrodes (IDEs) to create a bridge structure. The aptamer was chemically
used to functionalize the Pt N.P.s on the sensing surface. The developed biosensor was
highly sensitive and selective and also showed excellent linear response in the range of
10 pM to 100 nM for acetamiprid and 100 pM to 1 μM for atrazine.

5.3. Capacitive Biosensors

Capacitive biosensors consider be the group of affinity biosensors that operate by
the direct binding between the surface of the sensor surface and the target molecule. It
measures the variations in the dielectric properties and/or the thickness of the dielectric
layer at the electrolyte/electrode interface location. A conventional electrical plate capacitor
contains two conductive metal plates with specific dielectric properties separated by a
certain distance. The following relations can express the:

C =
€A
d

(1)

where € is the permittivity of the dielectric material, A is the area of the plate, and d is
the distance between them. Therefore, when there is a change in the properties of the
materials, a change in capacitance can be measured by the above equation. The second type
of capacitive biosensor depends on the theory of electrical double-layer. The electrodes
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submerged in an electrolyte solution can resemble a capacitor for storing charge where an
insulating layer covers the surface. The specific biorecognition element can be immobilized
on top of this layer. The solvated ions and water molecules create a capacitance near the
electrode surface.

N. V. Beloglazova et al. [114] reported a capacitive biosensor to detect benzo(a)pyrene
(BaP) in river water. MIPs and monoclonal antibodies (mAb) are used as recognition
elements on the electrode. The sensor is validated in a contaminated water sample from
different places in Ghent, Belgium. Graniczkowska et al. [115] reported the development of
a capacitive biosensor to monitor an amphetamine as a trace amount in water samples. The
gold sensing electrode is immobilized with MIPs for creating sensing elements. Samuel
M. Mugo et al. [116] reported a pathogen imprinted polymer for detecting Escherichia coli
in water. The conducting electrode is based on multi-walled carbon nanotubes (CNT),
and nitrocellulose (CNC) films, which were integrated with polyaniline (PANI) doped
phenylboronic acid (PBA). The proposed sensor used both the capacitive and impediometric
method for detecting the E. coli with a rapid response of ≤5 μmin.

5.4. Conductometric Biosensors

Conductometric biosensors measure the conducting current between the electrodes
and reference electrodes where the analyte or the medium plays a vital role. Usually, a
differential measurement is performed between the working electrode with an enzyme
and an identical reference electrode without an enzyme in a biosensor. The sensitivity
of the sample amount is hampered by the parallel conductance of the target solution.
The technique is significantly like conventional conductometers. An alternating current
with the operating frequency is applied to the active electrodes to measure the potential.
Conductance is measured by using both the current and voltage. Glucose, urea, creatinine
acetaminophen, and phosphate are reported as different analytes to be determined using
conductometric biosensors [117].

G. A. Zhalyak et al. [118] reported an alkaline phosphate-based conductometric biosen-
sor for assessing the heavy metal ions in water. Gold-based electrode and residual enzyme
activity measured in tris-nitrate buffer without metal preincubation. Various metal toxicity
can be measured in the range as follows: Cd2+ > Co2+ > Zn2+ > Ni2+ > Pb2+. A similar
method (Figure 3) is reported [119] to identify the heavy metals in water. The alkaline
phosphate activity (APA) was collected from cyanobacterium to immobilize directly on the
substrate by physical absorption. The response time was 12 s. Other works [120–122] are
also reported for heavy metal detection in water.
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Figure 3. (A) Schematic of the microelectrodes with the gold electrode, the working electrode is im-
mobilized with Spirulina cells, the reference electrode is immobilized with inhibited APA, which also
includes Spirulina cells, and S.E.M. image of spirula cells with the gold electrodes of interdigitated
transducers. (B) The real-time response of the conductometric transducer. (C) Standard calibra-
tion curve for the detection of the alkaline phosphatase activity (reproduced with the permission
from [119]). (D) Fabrication process. (E) the response time of the sample solution. (F) The averaged
calibration curve (reproduced with the permission from [123]). (G) Schematics of the measurement
setup of the FET sensor. (H) Differential threshold voltage (ΔVth) measurement of the gold-coated
NWs vs concentration of the electrolyte and pH. (I) Response of the ionic strength of the gold-coated
NW fitted with a blended site-binding model for deprotonation, protonation, and Cl– adsorption
(reproduced with the permission from [124]).

In this work [125], the proposed biosensor was developed to determine the organic
matter in water by immobilizing the enzyme bilayer with bovine serum albumin in glu-
taraldehyde vapour. It can detect the protein as a biomarker in water to identify urban
pollution. The proposed method shows excellent sensitivity, reproducibility, and a long
lifetime. C. Chouteau et al. [126] reported the whole cell Chlorella vulgaris microalgae
as a bioreceptor on the interdigitated conductometric electrodes for detecting the toxic
compounds in aquatic habitats. N. Kolahchi et al., proposed a fast, sensitive miniaturized
conductometric biosensor for determining the phenol in water. Pseudomonas sp. (GSN23)
bacteria were immobilized on the gold interdigitated microelectrodes to create the sensor
assembly to determine phenol in river water.

5.5. Potentiometric Biosensors

A potentiometric biosensor works on the principle of potential difference between the
working electrode and the reference electrode. The measured analytes are not consumed in
the same way as in the amperometric biosensor. In this biosensing method, two electrodes
galvanic cells immersed in the electrolyte solution generate the electromotive force (e.m.f.)
measured by a high impedance voltmeter [127]. One electrode is used as a working
electrode, and another is used as a reference electrode. The e.m.f. value is determined
by the potential difference between the two electrodes. The analyte’s concentration and
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the potential difference is measured by the Nernst equation [128], which is explained as
follows:

Ecell = E0 − RT
zF

lnQ (2)

where Ecell is the e.m.f., E0 is the potential of the standard electrode, R is the gas constant,
T is the temperature in Kelvin, z is no of charge of the electrode reaction, F is the Faraday
constant, and Q is ion concentration ratio of the anode to cathode.

Huang, Mei Rong et al. [129] have reported a membrane based on semi-conducting
poly(phenylenediamine) microparticles for Pb2+ detection in natural water. The electrode
is selective towards the Pb2+ with the concentration range 3.16 × 10−6 to 0.0316 M with
a high sensitivity displaying a near-Nernstian slope of 29.8 mV decade−1. The proposed
electrode showed a long lifetime of 5 months, where the short response time was 14 s.
Thayyath S. Anirudhan, and S. Alexander [130] have developed a modified multiwalled
carbon nanotube (MWCNT) based imprinting polymer for the determination of pesticide
2,4-D (2,4-dichlorophenoxyacetic acid) in natural water. The sensor responds in the range
of 1 × 10−9–1 × 10−5 M, where the detection limit is 1.2 × 10−9 M. The developed sensor is
stable and can be reusable many times in the first 3 months. Mashhadizadeh, Mohammad
Hossein et al. [131] have reported a newly modified carbon electrode to determine the Cu2+

with the presence of other interfering ions. The proposed potentiometric sensor showed
a Nernstian slope of 30 (±0.5) mV/decade over a concentration range from 1.0 × 10−8–
1.0 × 10−2 mol L−1. The LOD was 7.0 × 10−9 mol L−1 and the response time was 30 s,
which can be used for at least 3 months without sacrificing any quality of the sensor’s
response without any considerable divergence in responses.

5.6. Ion-Selective Field-Effect Transistors (ISFET) Based Biosensors

The last few years saw a significant change in ion-sensitive field-effect transistor
(ISFET)-based devices, a principle initially proposed in the 1970s by Bergveld et al. [132].
This revolutionized the technology at a nanoscale level. These types of prototypes formed
using silicon nanowire FETs (SiNWFETs) have been used for a wide range of applications,
including pH sensing [133–135], chemical [136–139], and label-free biosensing [133,140–143]
applications. The downscaling of these devices has been done by determining the kinetic
studies on receptor binding [144] and intracellular recordings of action potentials [145]. The
working mechanism is based on the adsorption of charged species on the sensing surface,
causing variation in the surface potential and, thus, the current in the FET channel. These
devices provide an additional attribute over the conventional ion-selective electrodes by
transforming the high-impedance input signal into a low-impedance output signal. The
probability of downscaling the dimension and conjugation them with conditioning circuits
to detect multifunctional parameters [146] highlights the ability of SiNWFETs to operate as
low-cost, efficient, and robust devices.

In one of the examples, the selectivity of the sensing surface is induced to deduce
species other than protons. This was carried out to achieve high sensitivity by absorbing
the target analyte. The covalent bonding of the linked molecules to perform chemical
anchoring has been more than a viable method. The linker binding sites of the self-
assembled monolayers (SAMs) are situated in the proximity of the FET surface at a higher
density. The topic of SAMs has extensively been studied [49]. In ISFET systems, a technique
related to self-assembly of silane monolayers has been used to alter the surfaces of the
oxides [133,136,147].

Ion-sensitive field-effect transistors that use silicon nanowires have high dielectric
constant gate oxide layers formed with Al2O3 or H2O2. These devices exhibit responses
that are sensitive to pH variations and ions present in the electrolyte due to the presence
of hydroxyl groups. The complexity of the oxide surface due to its intrinsic non-selective
nature makes it challenging to sense ionic species other than protons. The modification of
the individual nanowires has been done with thin gold films to increase the specificity via
functionalization. It has also been shown that the sodium ion (Na+) detection using SAM
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of thiol-modified crown ethers has been done, where a response of ≈−44 mV per decade
was achieved for the sodium ions in a NaCl solution. The testing process was carried out
in the presence of various ions like protons (H+), potassium (K+), and chloride (Cl−) ions,
where the voltage difference between the gold-coated nanowire functionalized by the SAM
(active) and a gold-coated nanowire was determined. It was seen that the functional SAM
was unable to obtain any output from the bare gold-coated nanowire concerning pH and
background ionic species. This response increases the credibility of gold in comparison to
oxide surfaces when the devices are used for differential measurements.

6. Signal Amplification Strategy

One of the critical capabilities of a biosensor lies in its enhanced performance in terms
of the morphological, structural, and electrochemical characteristics of the considered
nanostructured material. In normal terms, the sensors are characterized using X-ray diffrac-
tion, confocal microscopy, transmission electron microscopy, and voltammetric techniques.
The hybrid prototypes used for biosensing applications constitute combined attributes that
have generated high sensitivity, selectivity, and rapid and stable response during the detec-
tion water pollutants. The synergy observed between the processed materials improved
the electrochemical activity, stability of the immobilization of bioreceptor, electron transfer
rate and surface area of the electrodes, thus obtaining a high magnitude of the peak current
during the detection of different analytes as a typical signal amplification strategy.

The use of metallic nanoparticles with a large electroactive surface area has been em-
ployed for electrochemical biosensing applications due to their high electrical conductivity,
catalytic properties, fast electron transfer, biocompatible nature, and easy incorporation
with different kinds of nanomaterials. Zeinab et al., showcased the use of an ultrasensitive
electrochemical aptasensor for quantitative detection of bisphenol A (B.P.A.) via signal
amplification strategy

The use of gold-platinum nanoparticles (Au-PtNPs) was carried out by electrodeposit-
ing them on acid-oxidized carbon nanotubes (CNTs-COOH)-modified glassy carbon (GC)
electrodes. Then, acriflavine was immobilized by covalent bonds at the surface to capture
BPA-aptamer by forming phosphoramidite bonds. The aptamer’s conformational change
occurred once the B.P.A. interacted with the aptamer. Thus, the retardation was carried out
for the interfacial electron transfer of acriflavine as a probe. The LOD for this technique
was calculated to be as low as 0.035 pM, which resulted from high-density Au-PtNPs and
superior electron transfer of acriflavine. The resulting aptasensor also exhibited reasonable
specificity, stability, and reproducibility.

Recently, the application of conducting polymer-based materials were made in biosen-
sors for two particular areas, including enhancing the affinity of these sensors as backbone
or side groups and using them as immobilization matrices for the bioreceptors with high
electrical conductivity and fast electron transfer [44]. Disposable nitrate biosensors were
used as nanoarrays to detect nitrate reductase as a target analyze. Bio-recognition element
was immobilized within a poly (3, 4-ethylenedioxythiophene) (PEDOT) matrix to produce a
quantifiable amperometric response. Superior analytical performance and quick fabrication
process, and easy operating principle were obtained with this PEDOT/nitrate reductase
nanowire sensor [148].

Dendrimers are synthetic three-dimensional macromolecule polymers with well-
defined, highly branched, globular-shaped molecular structures [149]. Poly (propylene
imine) dendrimer PPI has been popularized for biosensing applications due to its high
biocompatibility and compatibility with host–guest chemistry. Due to the disastrous effects
of cholera infection resulting in watery diarrhoea with severe dehydration and death,
Tshikalaha et al., developed biosensors to detect cholera toxins in the water. The sen-
sors are operated by co-electrodepositing PPI dendrimer and AuNPs on glassy carbon
electrodes. The probe of the anti-cholera toxin was dropped on GCE/PPI/AuNPs and
finally blocked with B.S.A. to reduce nonspecific binding[150]. A LOD of 7.2 × 10−13 and
4.2 × 10−13 g mL−1 were obtained from SWV and EIS analysis.
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Another significant strength in improving electrochemical signals is the core-shell or
core-satellite nanostructures. These nanomaterials can be loaded to the core nanoparticle
via surface functionalization in chemical ways. For example, heterogeneous magnetic
nanoparticles [151] and Mesoporous silica [152] have attracted increasing attention due
to their easy magnetic separation with labelled bio-receptors and easy encapsulation of
enormous materials in their structural pores, respectively. Ultrasensitive electrochemical
biosensors used to detect Ag+ ions were constructed using magnetic Fe3O4@gold core–shell
nanoparticles (Fe3O4@Au NPs) for labelling with H.C.R. product and enrichment on the
surface of the magnetic gold electrodes [153]. The prototypes showed high selectivity due
to their duplex-like DNA. scaffolds structure with specific C–Ag+–C base pairing. They also
had attributes like high sensitivity, low LOD of 0.5 fM and a wide dynamic range of 1 fM–
100 pM. Marcos et al. [154] reported a new hybrid nanomaterial platform that included
MWCNT and haemoglobin-functionalized mesoporous silica particles with highly sensitive
quantification of nitrite and trichloroacetic acid as processed materials. The efficient electron
transfer between haemoglobin and the electrode surface can be attributed to certain factors,
including the high surface area and protein loading capacity of the mesoporous silica
nanoparticles as well as the increased surface area and catalytic properties of MWCNTs.

In regards to the porous materials, metal–organic frameworks (MOFs) are another
interesting class of porous crystalline inorganic–organic hybrid materials, as Fe(III)-based
MOF (Fe-MOF) was reported [155] to have an excellent stability and redox activity when
used as the prime electrode materials [156]. As is shown in Figure 4, a core–shell nanos-
tructured Fe(III)-based metal–organic framework (Fe-MOF) and mesoporous Fe3O4@C
nanocapsules (denoted as Fe-MOF@mFe3O4@mC)-based aptasensor was constructed [155].
The EIS was used for detecting the responses, where an advantage of the conformational
transition interaction took place. This phenomenon was caused due to two factors: the
formation of the G-quadruplex between a single-stranded aptamer and a highly heavy
metal ion of Fe-MOF. The proposed aptasensor showcased a decent linear relationship with
the logarithm of heavy metals and a low LOD of 2.27 and 6.73 pM toward the detection of
metallic ions of Pb2+ and As3+, respectively.

Figure 4. Schematic diagram of the preparation process of nanocomposite and its related aptasen-
sor for detecting Pb2+ and As3+ via electrochemical techniques, including (i) the preparation of
the nanocomposite, (ii) the immobilization, and (iii) the determination of the heavy metal ions,
(reproduced with the permission from [155]).
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7. In Situ Monitoring System

The recent development of various biosensors recommends excellent potential for mon-
itoring water quality in the other treatment water recourses due to their simple, compact
design, dispensability, and cheapness. In situ can be considered as online monitoring and
offline or portable monitoring. Online monitoring defines as real-time in situ measurements
of any sampling for analysis and provides on-field sampling data compared to conventional
methods. It is incredibly challenging to monitor water contaminants, primarily chemical
pollutants, in online monitoring. It is a more flexible approach and can be conducted from
remote locations. An online monitoring system can be constructed utilizing a wireless
sensor network (WSN) or an Internet of Things (IoT)-enabled network [25,157,158]. Si-
multaneous data collections, higher detection, easy monitoring, and sufficient data are the
significant advantages of constructing the WSN network for monitoring purposes. Low
power consumption and energy harvesting options are essential for developing an online
monitoring network.

Pasternak et al., reported [136] a biological oxygen demand (BOD) biosensor, which
was self-powered and autonomous for water quality measurement. The energy harvesting
system, data logger, and sensing unit were developed continuously to monitor the sample
in water (Figure 5). This biosensor can detect urine contamination in water, and the system
can run autonomously for five months.

Figure 5. Schematic representation of the sensor’s proposed biosensor and operating principle.
The block diagram of the system shows the energy harvester charging/discharging repeatedly
(reproduced with the permission of [159]).

Quek et al. [160] reported an assimilable organic carbon (AOC) based amperomet-
ric biosensor for detecting marine microbial fuel cell (MFC) in marine water, where the
system was tested for 36 days. The response time, the reproducibility of the signal, and
recovery time were good, which are essential for developing an online monitoring system.
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Bio-recognition elements play a crucial role in developing robust biosensors, which could
be helpful for online monitoring. Among the many bio-recognition features, the enzymatic
biosensors method is used widely for electrochemical detection, as they have high sensi-
tivity for distinguishing the target elements from interference elements [161]. However,
they are a costly method, have an increased duration of immobilization procedure, and
have poor durability and stability, which is ascribed to the loss of enzyme activity during
the onsite monitoring [82]. Therefore, MFC biosensors are widely used for various target
analytes with an extensive range of cells [162]. They have mainly been installed to monitor
water quality, but very few commercial prototypes are available for monitoring water
toxicity. They can survive under harsh conditions, such as high and low pH, unusual
temperature, and salinity [161].

Figure 6 has shown the portable electrochemical EIS based system for monitoring
samples from water. Figure 7 shows the schematic block diagram of a standard electro-
chemical biosensor monitoring system. The sensing parameters would be capacitance,
impedance, current, or voltage based on the characteristics of the electrochemical biosensor.
The impedance analyzer relates to the sensor to collect the sensor data. It also provides
sufficient energy to the sensor. The microcontroller unit manages all the sensing data,
sends the data to the cloud server through the base station or the internet and manages
the operating condition of the complete sensing system. The energy harvesting unit con-
nects with the power management unit to supply continuous energy to the sensing unit.
The microcontroller unit also connects with the wireless communication module, another
crucial module for developing an online monitoring system. Different wireless communi-
cation modules are available, such as Bluetooth low energy, low power wide area network
(LPWAN) wireless modules, SigFox modules, WiFi modules, and ZigBee modules. The
modules are characterized based on their bandwidth, data transmission capability, power
consumption, and communication range. The communication module solely depends on
the installation duration of the network, the number of sensing systems, the content of
coverage regions of the networks, and the application.

Figure 6. (a) Design and fabrication of electrochemical-cell-chips development; (b) electrochemical
impedance portable platform for EIS measurements; and (c) complete portable system for automatic
detection (reproduced with the permission of [94]).
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Figure 7. Schematic diagram of an online monitoring system.

8. Challenges and Future Work

Although much work has been carried out to detect water quality using electrochemi-
cal biosensors, some bottlenecks still need to be addressed. Some challenges in microbial
biosensors’ detection process are low recognition limits, limited specificity, and high con-
tamination. It also has limitations in mass transmission due to the subsequently limited
penetration of substrates and products throughout the cells [163]. These bottlenecks pri-
marily exist and limit the sensitivity during these biosensors’ real-time application. These
prototypes can only detect certain microorganisms and limited chemicals present in wa-
ter, thus making them unsuitable for the in situ monitoring of unanticipated shocks in
wastewater [164,165]. Additionally, there is currently no verification on the immobilization
of enzymes or microorganisms on the surfaces of biosensors during their deployment in
harsh environments. They also have low durability, primarily when operated over several
hours [165–167]. This makes these prototypes unsuitable for long-term operations during
wastewater treatment. Other issues are the requirement of external power sources and
additional dissolved oxygen (DO) that deters the exact conductivity and pH probes to
measure various parameters [168,169]. These problems lead to the deterioration of their
performance over a prolonged period. The real-time monitoring has also been challenging
due to the delay in the response of these biosensors, thus hindering the timely action from
overcoming the shock effects. For example, when anaerobic granule biosensors were used
for the early alarm to detect copper and phenol in the wastewater [170], the delay (6–20 h)
in the response time created problems in the practical application and of these prototypes.

Generally, electrochemical sensors have specific attributes like lower detection limit of
detection than colourimetric and fluorescent sensors (pvalue 	0.05, d-value >0.8) [171].
Some of the primary characteristics of the electrochemical biosensors are their compatibility
with modern microfabrication technologies, low input power, roll-to-roll fabrication, and
the independence of sample turbidity and colour [172].

Even though the fabricated sensors have been used for multifunctional applications,
most focus on the detection criteria lying on the sampled genre like heavy metal ions. Rarely
have the sensors been used to detect some multi-analytes like antibiotics, small molecules,
and metal ions. Julius et al. [173] displayed the development and implementation of a
cell-free in vitro transcription system that deploys RNA output sensors activated by ligand
induction (ROSALIND) to detect specific contaminants based on aptamer transcription
and fluorescent signal analysis. Importantly, easy storage and distribution can also be
carried out with the ROSALIND system, thus making it easier to deploy. This assists in
determining their capability to test municipal water supplies and demonstrate their use for
monitoring water quality.

9. Conclusions

There is continuous fear about the risks caused by contaminations or pollutants to hu-
man health and marine ecosystems. However, standard analytical techniques are sensitive,
accurate, laborious, expensive, and unsuitable for on-site monitoring with complex water
sample pretreatment requirements before testing under the guidance of trained personnel.
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This review assessed the recent progress in developing electrochemical biosensors for water
quality sensing applications over the current time. Many of them also have certain advan-
tages over the other methods in detecting the aggregate outcomes of multiple pollutants
in water samples. Although electrochemical biosensors have great potential and are very
sensitive and cost-effective compared to the standard analytical methods, they still need
to reduce their cost and response time performance compared to the other sensors. The
research will likely continue by modifying the electrode surfaces and innovative biorecogni-
tion elements, using various nanomaterials, conducting polymers, etc., and improving the
surface-by-surface modification techniques to enhance electrochemical biosensor sensitivity
and selectivity and the quick response. Further integration with intelligent electronics and
wireless technologies will significantly benefit the development of biosensors for remote
sensing applications or in situ measurements. However, the stability of the electrochemical
biosensor remains a challenge that needs additional research to explore and to extend its
shelf life. Finally, this review outlines the current methods and technologies in electrochem-
ical biosensors for water quality sensing applications. We think that this review article will
be helpful for beginners and a helpful guide that will enhance the awareness of the role
that electrochemical biosensors can play in protecting our environment and most valuable
water resources.
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