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José Ignacio Martı́nez-Montoro, Beatriz Garcı́a-Fontana, Cristina Garcı́a-Fontana

and Manuel Muñoz-Torres
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Type 2 diabetes constitutes an imposing epidemiological, economic, and scientific global
challenge. The chronic complications of type 2 diabetes are a major cause of mortality and
disability worldwide [1,2]. Clinical research is the main way to gain knowledge about long-
term diabetic complications and reduce the burden of diabetes. This allows for designing
effective programs for screening and follow-up and fine-targeted therapeutic interventions.
However, new research methodologies are needed to obtain more accurate and useful insights
into the biological and clinical processes involved in diabetic complication development.

During the last few years, new approaches for clinical research have incorporated
digital tools to analyze the complex physiopathological background of type 2 diabetes.
In this Special Issue, entitled “Clinical Research on Type 2 Diabetes and Its Complications”
and published in the Journal of Clinical Medicine (https://www.mdpi.com/journal/jcm/
special_issues/Type_2_Diabetes_Complications), some valuable digital methodologies
were used in different studies focusing on the type 2 diabetes syndrome. Novel machine
learning techniques for predicting long-term complications are one of these approaches,
as the studies of Huang, Rashid, and Shin et al. depict [3–5]. The data presented by
these authors suggest that machine learning may be more accurate in predicting diabetic
microvascular complications than traditional methods. Additionally, digital tools such as
artificial intelligence and machine learning can be implemented through an automated and
rapid process.

Among the frequent causes of frustration for people with diabetes and the health care
providers involved in their management is the delayed detection of diabetic complications.
The outlook of clinical research appears promising in the near future owing to the devel-
opment and implementation of advanced methods for the detection of early alterations
in the micro- and macrovascular complications associated with diabetes. Two papers
in this Special Issue cover the use of specific biomarkers tracing the progress of diabetic
cardiovascular complications [6,7]. In another contribution, Lee et al. revisit the long-term
glycemic variability and its relationship with end-stage kidney disease [8].

Besides the genetic approach, the application of digital techniques, including machine
learning and artificial intelligence, and novel biomarkers could be crucial for individualized
type 2 diabetes management, which is the backbone of precision medicine.

Two review papers address the complications that are non-traditionally linked to type 2
diabetes, although currently under exhaustive research: bone health and non-alcoholic
fatty liver disease [9,10]. The multifaceted nature of type 2 diabetes is clearly visualized
owing to the holistic angle used by these approaches.

The efficacy and safety of new type 2 diabetes pharmacological treatment are covered
by three original papers [11–13]. The Yu-Chuan Kang et al. study includes a large popu-
lation sample and an extended follow-up to evaluate the association between dipeptidyl
peptidase-4 inhibitors and diabetic retinopathy [13]. This could be the first signal for a new
safety risk of a pharmacological class of drugs used by millions worldwide.

The COVID-19 pandemic was first reported in China in December 2019 and continues
to be a devastating condition for global health and economy. The COVID-19 disease has
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immediate implications for common chronic metabolic disorders such as type 2 diabetes.
Both direct infection and the associated distress due to preventive measures in the general
population have worsened the control of type 2 diabetes. Some factors indicate that COVID-
19 or other coronavirus-caused diseases can be seasonal or persistent in the future. Type 2
diabetes has a strong negative effect on the prognosis of patients with COVID-19. Three papers
in this Special Issue review the implications of this disease in relation to diabetes [14–16].

Finally, the aim of researchers in this field should be to make all these remarkable
advances accessible to those populations experiencing more difficulties due to sociodemo-
graphic factors such as cultural deprivation, sex discrimination, or limited income [17–19].
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Abstract: Microvascular complications are one of the key causes of mortality among type 2 diabetic
patients. This study was sought to investigate the use of a novel machine learning approach for
predicting these complications using only the patient demographic, clinical, and laboratory profiles.
A total of 96 Bangladeshi participants with type 2 diabetes were recruited during their routine
hospital visits. All patient profiles were assessed by using a chi-squared (χ2) test to statistically
determine the most important markers in predicting three microvascular complications: cardiac
autonomic neuropathy (CAN), diabetic peripheral neuropathy (DPN), and diabetic retinopathy
(RET). A machine learning approach based on logistic regression, random forest (RF), and support
vector machine (SVM) algorithms was then developed to ensure automated clinical testing for
microvascular complications in diabetic patients. The highest prediction accuracies were obtained by
RF using diastolic blood pressure, albumin–creatinine ratio, and gender for CAN testing (98.67%);
microalbuminuria, smoking history, and hemoglobin A1C for DPN testing (67.78%); and hemoglobin
A1C, microalbuminuria, and smoking history for RET testing (84.38%). This study suggests machine
learning as a promising automated tool for predicting microvascular complications in diabetic
patients using their profiles, which could help prevent those patients from further microvascular
complications leading to early death.

Keywords: microvascular complications; cardiac autonomic neuropathy; diabetic peripheral
neuropathy; diabetic nephropathy; diabetic retinopathy; patient profiles; machine learning

1. Introduction

Diabetes is called a ‘silent killer’ that is killing around 1.6 million people each year,
making it the 5th leading cause of death worldwide [1]. There are two types of diabetes, type
1 and type 2. Type 2 is a chronic metabolic disorder and an expanding global health problem
in the past decades. It results in hyperglycemia, which reduces the ability of the body’s
cells to respond fully to insulin. This situation is called ‘insulin resistance’. In this state,
insulin production increases, due to the inaction of the hormone. The global prevalence
of type 2 diabetes in low- and middle-income countries was estimated to be 415 million
in 2015 and is predicted to rise to 642 million by 2040 [2]. Type 2 diabetes mellitus has
been rapidly rising worldwide over the past three decades, particularly in developing
countries, including Bangladesh [3]. The prevalence of type 2 diabetes in Bangladesh will
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be more than 50% within the next 15 years, placing Bangladesh as the country with the 8th
largest diabetic population in the world [4]. A study suggests that diabetic prevalence will
more than double between 2020 and 2030 [5]. The IDF (International Diabetes Federation)
Diabetes Atlas has estimated that if nothing is done, the number of diabetes patients may
rise to 629 million in 2045 [6] and cases may double from 151 million [7] from 2000 to
2025 [8]. The prevalence of diabetes is higher in rural areas [9], but it was high for males in
urban areas, whereas it was lower in rural areas compared to females in Bangladesh [10,11].

Neuropathies are a common persistent complication of both types of diabetes mellitus
that confer morbidity and mortality to diabetic patients. Cardiac autonomic neuropathy
(CAN) is associated with an increased risk of mortality [12,13]. A study including 1171 pa-
tients with type 1 and type 2 diabetes mellitus using a predefined HRV and spectral analysis
of R-R intervals reported abnormal findings for 34.3% of type 2 patients [14]. Neuropathy
is the most common microvascular complication of both type 1 and type 2 diabetes mel-
litus [15–17]. A study conducted in the outpatient section of BIRDEM Hospital, Dhaka,
Bangladesh found that 19.7% of all registered type 2 patients have diabetic peripheral neu-
ropathy (DPN) [18]. The prevalence of DPN among type 2 diabetic patients is much higher
in Europe. A study concludes that 32.1% of the diabetic patients in the United Kingdom,
17.6% in Turkey, and 35.4% in Spain have DPN [19]. The prevalence of DPN increases with
the age of the patient and also with the diabetic duration [18,20]. A multi-country study
conducted in Asia shows a 58.6% prevalence of micro or macroalbuminuria, indicating
an impending pandemic of diabetic renal (i.e., nephropathy) and cardiovascular diseases
in Asia [21]. A cross-sectional study with 836 rural Bangladeshi patients showed a high
prevalence of retinopathy in Bangladesh [22]. Results from 35 studies from 1980 to 2008
with 22,896 subjects with diabetes showed that the global prevalence for any RET was
34.6% (95% CI 34.5–34.8) [23]. Analyses of the exponential trend revealed an increase in
diabetes prevalence among the urban and rural populations at a rate of 0.05% and 0.06%
per year, respectively [24]. Increasing age, hypertension, and higher BMI were found to be
significant risk factors in the urban and rural communities of Bangladesh [25]. However,
the patients with type 2 diabetes in Bangladesh have limited knowledge of its risk factors,
cause, and management [26,27]. Depressive diabetic symptoms were found in 29% of males
and 30.5% of female participants with diabetes and 6.0% of males and 14.6% of female
subjects without diabetes [28].

Most recently, machine learning has emerged in many biomedical applications as a
promising tool to aid in decision-making regarding many diseases, including diabetes.
In [29], the authors managed to implement a machine learning approach based on decision
trees to identify the diabetic patients with or without treatment procedures from their lipid
profiles. In addition, Koren et al. [30] developed a trained model capable of diagnosing
diabetic patients with drugs that lower blood glucose levels. Moreover, in [30,31], the
authors proposed a deep neural network to diagnose diabetic patients from clinical profiles.
To recognize patterns among diabetic patients, Alloghani et al. [31] presented several
machine learning models that were able of characterizing patients and explain the re-
admission procedures. Several other studies [32–35] utilized machine learning and deep
neural networks in many other applications in diabetes diagnostics. However, even though
the implementation of machine learning models for diabetes diagnostics showed high
levels of performance, there is still a lack of knowledge about its impact on discriminating
between the various microvascular complications. In addition, it is essential to be able to
determine, both statistically as well as from a machine perspective, which features play a
critical role in characterizing these complications in type 2 diabetic patients.

In this paper, a study is conducted to investigate the efficiency of applying a machine-
learning-based approach in discriminating between diabetic patients, according to their
microvascular complication status (Figure 1). The novelty of the presented approach lies in
utilizing only the demographic, laboratory, and clinical information of patients within the
framework of machine learning for diabetes diagnostics. Therefore, time-consuming clinical
testing using advanced medical equipment can be avoided, which is essential in commu-
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nities with economic hardship or a lack of clinical expertise. In addition, the proposed
study allows for elaborating on the most important information within patient profiles
when testing for each microvascular complication. To the best of the authors’ knowledge,
there have been very limited attempts towards identifying certain types of microvascular
complications using machine learning. Therefore, a gap still exists in the literature about
how certain patient information impacts the discrimination between diabetes complications.
The present study provides a complete clinical testing approach for CAN-, DPN-, and
RET-positive cases by looking into patient information from a machine-based perspective.
NEP cases were not used in a separate machine-learning-based testing scenario because
they can be easily identified from their patient profile information. Further, with a focus
on CAN cases, the study investigates the ability of trained models to deeply discriminate
between CAN-only patients and patients with additional complications alongside CAN.

Figure 1. A graphical view of the complete research work in this study, including patient enrollment;
demographic, clinical, and laboratory information acquisition; machine learning modeling; and
performance evaluation of the model.

2. Materials and Methods

2.1. Study Type

This is a cross-sectional study of Bangladeshi patients from Dhaka who have had
type 2 diabetes mellitus for more than 10 years. We followed the STROBE cross-sectional
reporting guidelines [36]. The study was approved by the ethical review committee of the
Bangladesh University of Health Sciences (BUHS/BIO/EA/17/01) and conforms to the
ethical principles outlined in the declaration of Helsinki and the Ministry of Health and
Family Welfare of Bangladesh.

2.2. Inclusion and Exclusion Criteria

The parameters that were included in the inclusion criteria: Bangladeshi national,
diagnosis of type 2 diabetes mellitus, above 40 years of age, able to give written consent,
and the diabetes duration was 10 years or more. The exclusion criteria included: stroke
history, having any heart disease, not being able to give consent, diabetes duration of less
than 10 years, and the presence of any other pathophysiology that may lead to one or more
similar complications, such as cancer.
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2.3. Participants and Complications

One hundred and three (47 males and 56 females) unrelated patients of more than
40 years of age that had type 2 diabetes for 10 years or more were randomly selected and
enrolled in the study during routine visits to the BIHS [37] Hospital between 18 December
2017 and 26 April 1018. This hospital is one of the most visited hospitals for diabetic
patients in Bangladesh.

In this study, the recruited patients were diagnosed with complications, such as CAN,
DPN, NEP, and RET (Table 1). The presence of these complications was confirmed by a
qualified physician, based on the criteria outlined by the report of the WHO consultation
group [38]. A diagnosis of cardiac autonomic neuropathy (CAN) was obtained from the
Ewing test, which included five tests: deep breathing, lying to standing, the Valsalva
maneuver, lying to standing BP, and sustained handgrip BP [39]. A diagnosis of diabetic
peripheral neuropathy (NCV) was obtained using a nerve conduction velocity (NCV) test.
There were several tests for recognizing polyneuropathy, CTS (carpal tunnel syndrome),
peroneal neuropathy, and other types of neuropathies. A diagnosis of nephropathy (NEP)
was determined by the ACR (albumin–creatinine ratio) level >30 mg/mmol for microalbu-
minuria, and >300 mg/mmol for macroalbuminuria [40]. A diagnosis of retinopathy (RET)
was obtained from the fundus image test and classified according to the WHO criteria [41].
Fundus imaging is a process where 3-D retinal semi-transparent tissues are projected onto
the imaging plane using reflected light and represented in 2-D [42].

Table 1. Types of complications of patients included in this study.

Name of the
Complication

Type
Number of Patients,

N (%)
Total, N

CAN

pCAN (with CAN) 65 (67.708) 96

nCAN (without
CAN) 10 (10.417)

Test result
unavailable 21 (21.875)

DPN

pDPN (with DPN) 44 (45.833) 96

nDPN (without DPN) 46 (47.917)

Test result
unavailable 6 (6.250)

RET
pRET (with RET) 7 (7.292) 96

nRET (without RET) 89 (92.708)

Among these subjects, 70 were able to complete the diagnostic tests for all three
complications (CAN, DPN, and RET). There were several combined complications found
in some patients. The frequency of complications is shown in Table 2. To observe the
importance of demographic, clinical, and laboratory profiles, a multiclass analysis (3-class
analysis) was conducted using the classes marked in bold in Table 2 (CAN vs. CAN + DPN
vs. CAN + DPN + Others). CAN + DPN + Others are the combinations of CAN + DPN +
NEP, CAN + DPN + RET, and CAN + DPN + NEP + RET. These three classes were selected
from Table 2 with higher numerals.
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Table 2. Types and frequency of complications of diabetes patients.

Types of Complications Numerals, N (%) Total, N

nComp (no complication) 4 (4.16)

96

Single
Complications

CAN 21 (21.875)

DPN 3 (3.125)

NEP 0 (0.00)

RET 0 (0.00)

Combined
Complications

CAN and DPN 16 (16.67)

CAN and NEP 6 (6.25)

DPN and NEP 2 (2.083)

CAN, DPN, and NEP 12 (12.5)

CAN, DPN, and RET 2 (2.083)

CAN, DPN, NEP,
and RET

4 (4.16)

Not sure (due to unavailable test results) 26 (27.08)

2.4. Types of Variables
2.4.1. Demographic and Clinical Variables

The demographic data were collected from the patients at the time of enrollment. We
measured the waist circumference, height, and weight at the time of enrollment and listed the
value for the diabetic duration, age, gender, smoking history, and smokeless tobacco history.
All of these data were verified from the necessary and relevant documents. The clinical data
were measured at the time of enrollment. The blood pressure was measured on the first day
before starting their Ewing test. If the systolic blood pressure was >130 mm Hg and diastolic
blood pressure was >80 mm Hg or they were taking antihypertensive medications, it was called
hypertension. Dyslipidemia was diagnosed from the medications of the patient or by checking
the history of dyslipidemia of that patient. The data and its basic analysis are shown in Table 3.

Table 3. Demographic and clinical variables of patients.

Demographic Variables

Variables and
their subdivisions

Male Female All

Mean ± SD N (%of M) Mean ± SD N (% of F) Mean ± SD N (% of total)

Patients 47 (45.63) 56 (54.37) 103 (100)

Age (years) 57.70 ± 9.78 47 (100) 54.60 ± 7.93 56 (100) 56.01 ± 8.91 103 (100)

≥40 and <50 44.8 ± 3.22 10 (21.28) 45.6 ± 2.95 15 (26.79) 45.28 ± 3.02 25 (24.27)

≥50 and <60 53.2 ± 2.7 15 (31.91) 52.86 ± 3.17 22 (39.29) 53 ± 2.95 37 (35.92)

≥60 66.63 ± 4.78 22 (46.81) 63.73 ± 3.79 19 (33.93) 65.29 ± 4.54 41 (39.80)

CAN 58.74 ± 9.63 31 (65.95) 53.32 ± 7.40 37 (66.07) 55.79 ± 8.85 68 (66.01)

DPN 58.95 ± 10.33 21 (44.68) 52.58 ± 6.33 24 (42.85) 55.55 ± 8.93 45 (43.68)

Nep 58.5 ± 10.37 12 (25.53) 54.37 ± 8.75 16 (28.57) 56.14 ± 9.52 28 (27.18)

Ret 56.8 ± 11.64 5 (10.63) 47.5 ± 0.707 2 (3.571) 54.14 ± 10.54 7 (6.796)

BMI (kg/m2) 25.53 ± 3.47 47 (100) 27.93 ± 5.08 56 (100) 26.84 ± 4.56 103 (100)

Underweight: <18.5 0 0 (0) 0 0 (0) 0 0 (0)

Normal: ≥18.5, <25 23.54 ± 1.45 27 (57.45) 22.93 ± 1.69 17 (30.36) 23.31 ± 1.56 44 (42.72)

Overweight: ≥25.0, <30 26.54 ± 1.03 15 (31.91) 27.58 ± 1.32 24 (42.86) 27.18 ± 1.31 39 (37.86)
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Table 3. Cont.

Obese: ≥30 33.23 ± 4.09 5 (10.638) 34.18 ± 4.77 15 (26.79) 33.94 ± 4.52 20 (19.42)

CAN 26.26 ± 3.71 31 (65.95) 27.94 ± 5.82 37 (66.07) 27.17 ± 5.01 68 (66.01)

DPN 25.52 ± 3.56 21 (44.68) 28.75 ± 5.01 24 (42.85) 27.24 ± 4.64 45 (43.68)

Nep 26.17 ± 4.22 12 (25.53) 29.18 ± 5.60 16 (28.57) 27.89 ± 5.19 28 (27.18)

Ret 26.79 ± 5.53 5 (10.63) 26.29 ± 2.09 2 (3.571) 26.65 ± 4.60 7 (6.796)

Smoking history 9 (19.15) 0 (0) 9 (8.74)

Smokeless tobacco history 10 (21.28) 17 (30.357) 27 (26.21)

Clinical variables

Name of the Variables
and

their subdivisions

Male Female All

Mean ± SD N (%of M) Mean ± SD N (% of F) Mean ± SD N (% of total)

Diabetes duration (years) 16.17 ± 6.07 47 (100) 15.55 ± 5.76 56 (100) 15.83 ± 5.88 103 (100)

≥10 and <20 13.54 ± 2.76 37 (78.72) 12.60 ± 2.64 41 (73.21) 13.05 ± 2.73 78 (75.73)

≥20 and <30 24 ± 3.116 8 (17.02) 22.30 ± 1.93 13 (23.21) 22.95 ± 2.52 21 (20.39)

≥30 33.5 ± 2.12 2 (4.26) 32 ± 2.828 2 (3.57) 32.75 ± 2.22 4 (3.88)

CAN 16.54 ± 6.20 31 (65.95) 16.13 ± 6.01 37 (66.07) 16.32 ± 6.05 68 (66.01)

DPN 17.33 ± 7.43 21 (44.68) 14.16 ± 4.80 24 (42.85) 15.64 ± 6.30 45 (43.68)

Nep 18.91 ± 8.11 12 (25.53) 16.81 ± 6.63 16 (28.57) 17.71 ± 7.24 28 (27.18)

Ret 13 ± 2.828 5 (10.63) 17.5 ± 3.535 2 (3.571) 14.28 ± 3.49 7 (6.796)

Waist Circumference (cm) 90.84 ± 8.61 47 (100) 97.38 ± 9.46 56 (100) 94.39 ± 9.61 103 (100)

Men ≥90 97.40 ± 6.7 23 (48.94)

Women ≥80 97.72 ± 9.19 55 (98.21)

CAN 92.09 ± 8.47 31 (65.95) 96.58 ± 9.30 37 (66.07) 94.54 ± 9.15 68 (66.01)

DPN 92.64 ± 8.13 21 (44.68) 98.63 ± 9.07 24 (42.85) 95.84 ± 9.06 45 (43.68)

Nep 91.22 ± 6.71 12 (25.53) 97.31 ± 9.80 16 (28.57) 94.70 ± 9.00 28 (27.18)

Ret 89.91 ± 5.26 5 (10.63) 93.98 ± 14.36 2 (3.571) 91.07 ± 7.53 7 (6.796)

Systolic blood pressure
(mmHg) 141.2 ± 19.5 47 (100) 136.0 ± 20.14 56 (100) 138.4 ± 19.94 103 (100)

≤119 108 ± 5.29 4 (8.51) 108.3 ± 8.96 12 (21.43) 108.2 ± 8.03 16 (15.53)

≥120 and <14 129.2 ± 6.67 19 (40.43) 130.1 ± 4.98 19 (33.93) 129.7 ± 5.82 38 (36.89)

≥140 and <160 148.2 ± 7.52 15 (31.91) 148.3 ± 5.71 19 (33.93) 148.2 ± 6.47 34 (33.01)

≥160 169.6 ± 9.72 9 (19.15) 171.3 ± 6.40 6 (10.714) 170.3 ± 8.33 15 (14.56)

CAN 145.0 ± 20.16 31 (65.95) 134.0 ± 21.30 37 (66.07) 139.0 ± 21.35 68 (66.01)

DPN 148.5 ± 20.82 21 (44.68) 134.8 ± 15.96 24 (42.85) 141.2 ± 19.43 45 (43.68)

Nep 153.0 ± 15.16 12 (25.53) 136.1 ± 17.22 16 (28.57) 143.4 ± 18.19 28 (27.18)

Ret 158.6 ± 16.14 5 (10.63) 137.5 ± 17.67 2 (3.571) 152.5 ± 18.21 7 (6.796)

Diastolic blood pressure
(mmHg) 78.97 ± 9.86 47 (100) 76.42 ± 11.96 56 (100) 77.59 ± 11.07 103 (100)

≤79 71.36 ± 7.45 22 (46.81) 67.96 ± 6.98 32 (57.14) 69.35 ± 7.30 54 (52.43)

≥80–89 82.73 ± 2.83 19 (40.43) 83.81 ± 3.08 16 (28.57) 83.22 ± 2.95 35 (33.98)

≥90–99 94 ± 3.39 5 (10.64) 94.14 ± 2.61 7 (12.5) 94.08 ± 2.81 12 (11.65)

≥100 100 ± 0 1 (2.13) 105 ± 0 1 (1.79) 102.5 ± 3.54 2 (1.94)

CAN 78.45 ± 11.40 31 (65.95) 75.48 ± 12.76 37 (66.07) 76.83 ± 12.16 68 (66.01)

DPN 78.19 ± 12.23 21 (44.68) 76.87 ± 10.63 24 (42.85) 77.48 ± 11.29 45 (43.68)

Nep 74.91 ± 13.48 12 (25.53) 75.93 ± 10.81 16 (28.57) 75.5 ± 11.79 28 (27.18)

Ret 84.6 ± 10.13 5 (10.63) 72.5 ± 3.54 2 (3.571) 81.14 ± 10.27 7 (6.796)
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2.4.2. Laboratory Data

The laboratory data were taken from the laboratory of the hospital after the enrollment.
The laboratory test parameters were hemoglobin A1c (HbA1c), microalbuminuria, urinary
creatinine, and the albumin–creatinine ratio. The data and its basic analysis are shown in
Table 4.

Table 4. Laboratory variables of patients.

Types and Their
Variables

Male Female All

Mean ± SD N (%of M) Mean ± SD N (% of F) Mean ± SD N (% of total)

HbA1c (mmol/mol,%)

Not specified 9.066 ± 1.944 47 (45.63) 8.621 ± 1.453 56 (54.37) 8.824 ± 1.701 103 (100.0)

Optimal: <7 2 (4.26) 8 (14.29) 10 (9.71)

Fair: 7–8 12 (25.53) 11 (19.64) 23 (22.33)

High: >8 33 (70.21) 37 (66.07) 70 (67.96)

CAN 9.213 ± 1.790 31 (45.59) 8.716 ± 1.491 37 (54.41) 8.943 ± 1.640 68 (66.02)

Optimal: <7 1 (3.23) 4 (10.81) 5 (7.35)

Fair: 7–8 6 (19.35) 8 (21.62) 14 (20.59)

High: >8 24 (77.42) 25 (67.57) 49 (72.06)

DPN 9.291 ± 1.988 21 (46.67) 8.930 ± 1.667 24 (53.33) 9.098 ± 1.810 45 (43.69)

Optimal: <7 2 (9.52) 3 (12.50) 5 (11.11)

Fair: 7–8 3 (14.29) 4 (16.67) 7 (15.56)

High: >8 16 (76.19) 17 (70.83) 33 (73.33)

Nephropathy 9.9750 ± 2.221 12 (42.86) 8.763 ± 1.902 16 (57.14) 9.282 ± 2.094 28 (27.18)

Optimal: <7 1 (8.33) 3 (18.75) 4 (14.29)

Fair: 7–8 1 (8.33) 4 (25.00) 5 (17.86)

High: >8 10 (83.33) 9 (56.25) 19 (67.86)

Retinopathy 10.720 ± 3.334 5 (71.43) 11.100 ± 1.980 2 (28.57) 10.829 ± 2.846 7 (6.80)

Optimal: <7 0 (0.00) 0 (0.00) 0 (0.00)

Fair: 7–8 2 (40.00) 0 (0.00) 2 (28.57)

High: >8 3 (60.00) 2 (100.00) 5 (71.43)

Microalbuminuria (mg)

Not specified 60.6164 ± 99.490 47 (46.08) 49.571 ± 82.123 55 (53.92) 54.661 ± 90.247 102 (99.03)

Optimal: <30 34 (72.34) 38 (69.09) 72 (70.59)

Microalbuminuria: 30–300 10 (21.28) 15 (27.27) 25 (24.51)

Macro albuminuria: >300 3 (6.38) 2 (3.64) 5 (4.90)

CAN 88.439 ± 113.172 31 (45.59) 56.981 ± 93.199 37 (54.41) 71.322 ± 103.204 68 (66.02)

Optimal: <30 18 (58.06) 25 (67.57) 43 (63.24)

Microalbuminuria: 30–300 10 (32.26) 10 (27.03) 20 (29.41)

Macro albuminuria: >300 3 (9.68) 2 (5.41) 5 (7.35)

DPN 121.925 ± 124.49 21 (47.73) 55.2565 ± 87.479 23 (52.27) 87.075 ± 110.720 44 (42.72)

Optimal: <30 10 (47.62) 15 (65.22) 25 (56.82)

Microalbuminuria: 30–300 8 (38.10) 7 (30.43) 15 (34.09)

Macro albuminuria: >300 3 (14.29) 1 (4.35) 4 (9.09)

Nephropathy 210.308 ± 91.414 12 (42.86) 144.519 ± 98.407 16 (57.14) 172.7143 ± 99.417 28 (27.18)

Optimal: <30 0 (0.00) 1 (6.25) 1 (3.57)

Microalbuminuria: 30–300 9 (75.00) 13 (81.25) 22 (78.57)
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Table 4. Cont.

Types and Their
Variables

Male Female All

Macro albuminuria: >300 3 (25.00) 2 (12.50) 5 (17.86)

Retinopathy 158.62 ± 140.295 5 (71.43) 136.15 ± 178.691 2 (28.57) 152.20 ± 136.247 7 (6.80)

Optimal: <30 2 (40.00) 1 (50.00) 3 (42.86)

Microalbuminuria: 30–300 2 (40.00) 1 (50.00) 3 (42.86)

Macro albuminuria: >300 1 (20.00) 0 (00.00) 1 (14.28)

Urinary Creatinine (mg/ dL)

Not specified 194.46 ± 139.83 130.87 ± 117.85 160.17 ± 131.70 102 (99.03)

Target 20–320
mg/ dL 41 (87.23) 50 (90.91) 91 (89.22)

Non-Target >320
mg/ dL 6 (12.77) 4 (7.27) 10 (9.80)

CAN 236.15 ± 150.39 31 (45.59) 123.28 ± 107.24 37 (54.41) 174.74 ± 139.68 68 (66.02)

Target 20–320
mg/ dL 25 (80.65) 34 (91.89) 59 (86.76)

Non-Target >320
mg/ dL 6 (19.35) 2 (5.41) 8 (11.76)

DPN 236.84 ± 160.20 21 (47.73) 157.52 ± 149.63 23 (52.27) 195.34 ± 158.11 44 (42.72)

Target 20–320
mg/ dL 17 (80.95) 20 (86.96) 37 (84.09)

Non-Target >320
mg/ dL 4 (19.05) 3 (13.04) 7 (15.91)

Nephropathy 256.43 ± 205.44 12 (42.86) 152.65 ± 77.99 16 (57.14) 197.13 ± 152.68 28 (27.18)

Target 20–320
mg/ dL 9 (75.00) 16 (100.0) 25 (89.29)

Non-Target >320
mg/ dL 3 (25.00) 0 (0.00) 3 (10.71)

Retinopathy 211.36 ± 55.58 5 (71.43) 159.95 ± 135.98 2 (28.57) 196.67 ± 75.96 7 (6.80)

Target 20–320
mg/ dL 5 (100.0) 2 (100.0) 7 (100.0)

Non-Target >320
mg/ dL 0 (0.00) 0 (0.00) 0 (0.00)

Albumin–Creatinine Ratio (mg/mmol)

Not Specified 32.09 ± 52.45 47 (46.08) 39.28 ± 74.58 55 (53.92) 35.97 ± 65.11 102 (99.03)

Optimal: <3 12 (25.53) 10 (18.18) 22 (21.57)

Borderline high:
3–30 23 (48.94) 29 (52.73) 52 (50.98)

High: >30 12 (25.53) 16 (29.09) 28 (27.45)

CAN 44.35 ± 60.99 31 (45.59) 45.36 ± 86.19 37 (54.41) 44.90 ± 75.22 68 (66.02)

Optimal: <3 7 (22.58) 6 (16.22) 13 (19.12)

Borderline high:
3–30 12 (38.71) 20 (54.05) 32 (47.06)

High: >30 12 (38.71) 11 (29.73) 23 (33.82)

DPN 60.73 ± 68.22 21 (47.73) 35.97 ± 51.28 23 (52.27) 47.79 ± 60.55 44 (42.72)

Optimal: <3 6 (28.57) 5 (21.74) 11 (25.00)

Borderline high:
3–30 4 (19.05) 11 (47.83) 15 (34.09)

High: >30 11 (52.38) 7 (30.43) 18 (40.91)

Nephropathy 105.960 ± 57.952 12 (42.86) 111.404 ± 109.675 16 (57.14) 109.071 ± 89.771 28 (27.18)
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Table 4. Cont.

Types and Their
Variables

Male Female All

Optimal: <3 0 (0.00) 0 (0.00) 0 (0.00)

Borderline high:
3–30 0 (0.00) 0 (0.00) 0 (0.00)

High: >30 12 (100.0) 16 (100.0) 28 (100.0)

Retinopathy 86.567 ± 87.999 5 (71.43) 58.923 ± 61.616 2 (28.57) 78.671 ± 77.312 7 (6.80)

Optimal: <3 0 (0.00) 0 (0.00) 0 (0.00)

Borderline high:
3–30 2 (40.00) 1 (50.00) 3 (42.86)

High: >30 3 (60.00) 1 (50.00) 4 (57.14)

2.5. Machine Learning Modeling
2.5.1. Clinical Testing Approach

To provide a complete diagnosis of a type 2 diabetes patient, four tests in two steps
were applied sequentially (Figure 2) on patients’ demographic, clinical, and laboratory
(DCL) information. This study supports type 2 diabetic patients with microvascular com-
plications having a better screening from their DCL information. The approach combines
a single-class binary classification model with three different classifiers and a multiclass
classification model. The single-class classification model can run three tests in parallel
to classify CAN, DPN, and RET separately. If all three tests result in a negative class, it
means the patient with type 2 diabetes has no microvascular complications. If the test
shows positive results, the patient goes for that specific complication treatment. However,
obtaining a positive class from the CAN test leads to a multiclass classification model. This
model can determine whether the patient has other microvascular complications along
with CAN. Thus, this results of this model include: CAN (having only CAN), CANDPN
(having DPN with CAN), CANDPN+ (having NEP or RET with CAN and DPN). The
resulting class determines the treatment that should be provided to the patient.

2.5.2. Analysis of the Demographic Clinical and Laboratory Profiles

The demographic variables (such as gender, height, age, weight, smoking history,
tobacco history, and diabetes duration), clinical measurements (waist circumference, BMI,
systolic blood pressure, and diastolic blood pressure), and measured laboratory values
(such as HbA1c, microalbuminuria, urinary creatinine, and albumin–creatinine ratio) were
selected for further analysis as patient information.

A feature selection approach was then followed based on the univariate chi-squared
test to choose the foremost critical factors among all the demographic, clinical, and labora-
tory variables. In this test, a statistical hypothesis investigation is performed for each DCL
feature to test whether the observed calculations coordinate with the anticipated ones, i.e.,
patient’s complication type. Moreover, it gives a noteworthy distinction p-value measure
(p-value < 0.05) between categories based on the statistical calculations and desire [43]. A
feature with a lower p-value signifies that this variable is most likely dependent on the
complication label. Hence, it is vital for anticipating the complication and has discrimina-
tory characteristics. In this way, a score of significance is returned for each DCL profile
utilized within the test as score = −log (p). In this work, we call this score importance. We
calculated importance using a function called fscchi2 () in MATLAB 2021a.
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Figure 2. The proposed procedure for screening diabetic patients. Every patient initially goes through
the information acquisition of this clinical diagnosis flowchart. Five tests are then applied in two
stages. The second stage (multiclass class is only for the patients who go through the CAN test
and have a positive CAN. A single-class classification can predict the presence of microvascular
complications (CAN, DPN, or RET) and can predict whether there is any presence of complications.
Multiple complications with CAN could be classified using the multiclass classifier.

2.5.3. Support Vector Machine (SVM)

SVM is an exceedingly popular machine learning algorithm used in classification and
regression problems. It is one of the classic machine learning techniques that can help to
solve big data classification problems. SVM allows the classification of single-class as well as
multiclass classification problems. It is commonly utilized as an exception finder, where the
model is prepared to recognize training data from any other irrelevant information [44]. The
model tends to distinguish which unused objects are closely representing the selected class
in the training phase, which is generally called a positive class [45]. A set of probabilities
has been returned by the model to show the degree of matching between the testing and
training samples. In this paper, a single-class SVM was used for the training model in the
CAN, DPN, and RET tests. Having the complication has been considered as the positive
class in the single-class classification. However, a multiclass SVM was for training in the
CANDPNOthers test. To guarantee the highest performance from the model, a non-linear
RBF (radial basis function) kernel was used with fine-tuned hyper-parameters.

2.5.4. Random Forest (RF)

Random forest (RF), also known as classification and regression tree (CART), is a
form of decision trees, where a set of tree-like trait nodes is associated with a set of sub-
trees of decision nodes [46,47]. This algorithm is considered a conglomeration strategy
that employs the concepts of bagging. All the decision trees are calculated based on the
corresponding resource cost, outcome chances, and utility to provide a prediction. The
prediction preparation begins by doling out an occasion at each tree to its root node. At that
point, for each of the subsequent sub-nodes, the results are calculated successively. Once a
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leaf is experienced, the tree-like nodes halt and an occasion is relegated with a prediction.
All of the occasions and predictions shape the ultimate choice made by the tree model [48].
In this work, 20–120 decision trees were utilized to construct the model. The choice of the
number of trees for each single-class test, as well as the multiclass test, was fine-tuned to
guarantee the greatest conceivable performance from the model.

2.5.5. Logistic Regression

Logistic regression is one of the most commonly used machine learning algorithms in
statistics. It is a statistical model that uses a logistic function to represent a binary dependent
variable in its most basic form, though there are many more advanced variants. Logistic
regression is a technique for estimating the parameters of a logistic model in regression
analysis. The natural logarithm of the odds is used as a regression function of the predictors
in the logistic regression model. The expression for a one predictor (X) one outcome (Y)
logistic regression model is ln [odds (Y = 1)] = β0 + β1X, where ln is the natural algorithm,
Y = 1 or Y = 0 refers to the event occurrence of the event, β0 is the intercept term, and β1 is
the regression coefficient that refers to the change in the logarithm of the event’s odds with
a 1-unit change in the predictor X [49].

2.5.6. Training and Testing

A leave-one-out scheme was followed in the single-class models, as well as in the
multiclass model, to ensure the incorporation of the highest possible number of samples
within the prepared models. Besides, it was fundamental to supply a prediction for each
and every patient. An iterative process was applied in this scheme by selecting one subject
as testing data, whereas the remaining subjects were used for training. The method repeated
on each cycle until a prediction was given for every subject.

2.5.7. Parameter Optimization

In each test, several model parameters were fine-tuned to ensure the highest acquirable
model performance. Performance was measured in the form of accuracy, sensitivity, specificity,
precision, f1-score, and area under the curve (AUC). To handle data imbalance (65 positive
classes vs. 10 negative classes in the CAN test and 7 positive classes vs. 89 negative classes in
the RET test), a model parameter called ‘prior probability’ was introduced in the algorithm
during the training phase. The prior probabilities were found observationally, where the initial
weight was set to each class that was equal to its number of samples relative to the whole
number of samples [50]. Prior probability was not used in the DPN test, as it had balanced
classes. The minimum leaf size and bag fraction value were used as per the behavior of the
RF model, on an iterative basis and keeping the optimum value.

3. Results

3.1. Demographic, Clinical, and Laboratory Profiles

Demographic and clinical data, along with major comorbidities with type 2 diabetes, are
shown in Table 3, and laboratory profiles are shown in Table 4. There were 47 (45.63%) male
patients and 56 (54.37%) female patients. The mean age of the patients was 56 years (±8.913),
the mean ages of the male and female patients were 57.1 years (±9.78) and 54.6 years (±7.93),
respectively. This is consistent with the finding that the diabetic population in Bangladesh, as
well as south Asia, are comparatively younger than in the west [51,52]. The sub-variables under
‘Age’ show that 46.8% of the male subjects were greater than 60 years old, but about 40% female
subjects were between 40 and 50, though, overall, the patients showed an increasing prevalence
for a higher age. A study in Spain also showed that an increase in patient age increases the
prevalence of diabetic complications [19]. In this study, 27 (57.45%) males, 35 (62.50%) females,
and a total of 62 (60.19%) patients had a history of hypertension (mean systolic blood pressure
was 138.4 mm Hg). A total of 35 (33.98%) patients had dyslipidemia, where 14 (29.79%) were
male and 21 (37.5%) were female. Only nine (8.74%) patients had a history of smoking, and
they were all male. In addition, the overweight condition (42.86%) was common for female
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diabetic patients, with more than 98% female subjects having a waist circumference higher than
80 cm, while 57.45% of the male subjects had a normal weight. Though obesity was relatively
common for female patients (27%), a total of 20 (19.42%) patients were obese (mean BMI (body
mass index) = 33.94 kg/m2 and mean waist circumference = 90.84 cm for males and 97.38 cm
for females). For the retinopathy patients, the waist circumference was 89.91 cm for males and
93.98 cm for females, where 15 (26.79%) were female and 5 (10.638%) were males.

More than 67% of the patients for any type of complication had a high HbA1c (mean
HbA1c = 8.824, male mean HbA1c = 9.066, and female mean HbA1c = 8.621 for the
patients with CAN). The retinopathy patients had very high HbA1c (mean HbA1c = 10.829,
male mean HbA1c = 10.720, and female mean HbA1c = 11.100). Microalbuminuria was
found in 25 (24.51%) patients, where 10 were male and 15 were female. In the case of
nephropathy, a total of 22 (78.57%) patients had microalbuminuria. All the retinopathy
patients had a creatinine level of 20 to 320 mg/dL. The mean ACR (albumin–creatinine ratio)
for the patients was 35.967 mg/mmol, where 47 (46.08%) males had a mean ACR of 32.092
mg/mmol, and 55 (53.92%) females had a mean ACR of 39.280 mg/mmol. Neuropathy
was the most common complication in Bangladeshi diabetic type 2 patients of more than
40 years’ old who had diabetes for more than 10 years. Besides, there were very few
retinopathy patients, so it implies that the rate of retinopathy in Bangladeshi type 2 diabetes
patients is very low.

3.2. Complications of Type 2 Diabetes

Overall, more than one clinically diagnosed complication was present in 99 subjects
out of the cohort of 103 diabetics included in this study. Most of the subjects had CAN
(66.02%), followed by diabetic peripheral neuropathy (43.69%), nephropathy (27.18%), and
retinopathy (6.8%). Those patients who had retinopathy also had CAN and DPN. The rate
of retinopathy complication was very low. Only seven retinopathy patients were found,
and five patients out of them had all types of complication, while the other two had CAN
and DPN. This trend suggests that RET should be the final stage of the above four diabetes
microvascular complications in Bangladesh. We did not find any subject with only NEP
or only RET. If a patient had RET, we can say that he/she had CAN and DPN both or
CAN, DPN, and NEP, i.e., all the complications. The average diabetic duration of the male
patients with CAN and DPN was high (17.33 years for CAN and 18.91 years for DPN) and
comparatively lower for RET (13 years). The female patients with retinopathy had a high
diabetic duration of 17.5 years. They did not check for DM until they became very ill, so
their reported DM duration is from the day they first found out, not from the actual moment
of DM development. The overall result indicates a high prevalence of complications in
Bangladeshi type 2 diabetes patients.

3.3. Classification of Cardiac-Related Microvascular Complications

To assess the association between any complication (as an outcome) and significant
demographic, clinical, and laboratory variables of the patients, several machine learning
models (logistic regression, RF, and SVM) were trained by changing the model parameters
in an iterative way and observing the sensitivity, specificity, precision, f1-score, and accuracy
of the model. The chi-squared (χ2) test was used to choose significant variables and we use
only these significant variables to determine the classification accuracy. The threshold for a
significant importance level was different for each test.

3.3.1. CAN

We found diastolic BP (importance 2.1), albumin–creatinine ratio (importance 1.6),
and gender (importance 1) to be the significant predictors for screening CAN, which is the
most common complication among Bangladeshi patients with type 2 diabetes. We had
65 positive and 10 negative CAN patients in our study. To find the best suitable result
and to maximize the model performance, we used prior probability in the classification
model of CAN. We found that RF was the best model at the weight of (1.05 and 0.9). The
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performance (shown in Table 5) of the model was obtained as accuracy 98.68%, sensitivity
98.48%, and specificity 100%. The performance is shown in Figure 3. In Table 6, the 95%
confidence intervals, including the mean values of the features, are provided for CAN
patients to represent the true mean of the population.

Table 5. Comparison between two machine learning models for each test.

Tests
CAN

(pCAN vs. nCAN)
DPN

(pDPN vs. nDPN)
RET

(pRET vs. nRET)

logistic regression
Accuracy, % 80 55.56 88.54
Sensitivity, % 85.71 55.77 93.33
Specificity, % 85.71 55.26 16.67

SVM
Accuracy, % 77.33 67.8 80.5
Sensitivity, % 29.41 68.89 96.05
Specificity, % 91.34 66.67 20

RF
Accuracy, % 98.67 67.8 84.38
Sensitivity, % 100 68.09 97.44
Specificity, % 98.48 67.44 27.78

Figure 3. (a) Chi-squared test result. The importance of different marked features was used in the
model as an identifier; (b) confusion matrix of the CAN test (pClass vs. nClass); (c) performance
evaluation matrices; (d) TPR vs. FPR, graphical view of the CAN classifier model performance.
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Table 6. 95% Confidence intervals for cardiac autonomic neuropathy patients (categorical features,
such as gender, smoking history, and smokeless tobacco history, have been omited from the table);.
The subject count is 75 (65 pCAN, and 10 nCAN patients), and the features that are used in the model
classifier are marked in bold text.

Features Mean 95% CI (Lower Limit to Upper Limit)

‘Age’ 56.167 54.315 58.018
‘Waist Circumference’ 141.382 136.503 146.262

‘Diabetes Duration’ 15.844 14.571 17.117
‘BMI’ 26.657 25.694 27.621

‘Systolic BP’ 138.900 134.847 142.953
‘Diastolic BP’ 77.600 75.355 79.845

‘Weight’ 65.517 63.634 67.400
‘Height’ 157.399 155.252 159.546
‘HbA1c’ 8.799 8.465 9.133

‘Microalbuminuria’ 55.741 36.539 74.943
‘Urinary Creatinine’ 160.656 131.724 189.588

‘Albumin–Creatinine Ratio’ 37.387 23.178 51.595

3.3.2. DPN

Similarly, microalbuminuria (importance 5.1), smoking history (importance 2.9), smoke-
less tobacco history (importance 2.7), HbA1c (importance 2.4), albumin–creatinine ratio
(importance 1.9), systolic BP (importance 1.8), diastolic BP (importance 1.4), and urinary
creatinine (importance 1.4) were found to be the most significant predictors for determining
DPN from type 2 diabetes patients in Bangladesh. This is consistent with other findings
that age and diabetic duration are insignificant [15,53–58] here, since all the patients were
more than 40 years of age and the diabetic duration was a minimum of 10 years. Both
the RF and SVM models showed the highest accuracy for classifying DPN in the patients
with type 2 diabetes mellitus from Bangladesh. Figure 4 illustrates the result of classifying
DPN, and the numeric values are stored in Table 5. Table 7 shows the true means and 95%
confidence intervals of the populations included in the DPN test.

Table 7. 95% confidence intervals for diabetic peripheral neuropathy patients (categorical features,
such as gender, smoking history, and smokeless tobacco history, have been omited from the table).
The subject count is 90 (44 pDPN, and 46 nDPN patients), and the features that are used in the model
classifier are marked in bold text.

Features Mean 95% CI (Lower Limit to Upper Limit)

‘Age’ 55.844 54.017 57.671
‘Waist Circumference’ 140.642 135.853 145.432

‘Diabetes Duration’ 15.781 14.580 16.983
‘BMI’ 26.657 25.713 27.600

‘Systolic BP’ 138.385 134.449 142.322
‘Diastolic BP’ 77.615 75.473 79.756

‘Weight’ 65.658 63.824 67.491
‘Height’ 157.603 155.475 159.730
‘HbA1c’ 8.902 8.554 9.251

‘Microalbuminuria’ 55.269 36.692 73.847
‘Urinary Creatinine’ 160.770 133.508 188.032

‘Albumin-Creatinine Ratio’ 36.744 23.202 50.286
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Figure 4. (a) Chi-squared test result. The importance of different marked features was used in the
model as an identifier; (b) confusion matrix of the DPN test (pClass vs. nClass); (c) performance
evaluation matrices; (d) TPR vs. FPR, graphical view of the DPN classifier model performance.

3.3.3. RET

In the case of diabetic retinopathy (RET), HbA1c (importance 6.1), microalbuminuria
(importance 4.7), smokeless tobacco history (importance 2.8), weight (importance 1.9),
gender (importance 1.8), urinary creatinine (importance 1.7), and albumin–creatinine ratio
(importance 1.7) were found to be significant predictors to classify whether a type 2 diabetes
mellitus patient has retinopathy (Figure 5). A previous study in Bangladesh showed a 5.4%
prevalence of retinopathy patients [22], and in our study, we had 6.8% of type 2 diabetes
patients with retinopathy. The accuracy (shown in Table 5) of the RF model was 84.38%.
To show the true mean of the features in diabetic retinopathy test, Table 8 is added with
means and 95% confidence interval information.

19



J. Clin. Med. 2022, 11, 903

Figure 5. (a) Chi-squared test result. The importance of different marked features was used in the
model as an identifier; (b) confusion matrix of the RET test (pClass vs. nClass); (c) performance
evaluation matrices; (d) TPR vs. FPR, graphical view of the RET classifier model performance.

Table 8. 95% confidence interval for diabetic retinopathy patients (categorical features, such as gender,
smoking history, and smokeless tobacco history, have been omited from the table). The subject count
is 96 (7 pRet and 89 nRet patients) and the features that are used in the model classifier are marked in
bold text.

Features Mean 95% CI (Lower Limit to Upper Limit)

‘Age’ 55.707 53.651 57.763
‘Waist Circumference’ 139.958 134.525 145.391
‘Diabetes Duration’ 15.827 14.486 17.167

‘BMI’ 26.817 25.683 27.951
‘Systolic BP’ 138.813 134.153 143.474
‘Diastolic BP’ 77.347 74.802 79.891

‘Weight’ 65.601 63.476 67.727
‘Height’ 157.177 154.610 159.744
‘HbA1c’ 8.955 8.553 9.356

‘Microalbuminuria’ 67.648 44.636 90.660
‘Urinary Creatinine’ 172.120 139.197 205.044
‘Albumin-Creatinine

Ratio’ 44.128 27.134 61.123

3.3.4. CANDPNOthers

The multiclass analysis test provides a comprehensive picture of patients who have
other diabetic neuropathies in addition to CAN. A total of 55 patients were considered as
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training and testing inputs for machine learning models, with 16 suffering from CANDPN
and 14 suffering from CANDPN+, where ‘Others’ included NEP and RET. In the CANDP-
NOther test, three classes were assigned to the model, i.e., CAN vs. CANDPN (the patients
with both CAN and DPN complications) vs. CANDPN+ (the patients with CAN, DPN, and
NEP; CAN, DPN, and RET; or CAN, DPN, NEP, and RET). We only included these classes
due to the insufficient number of patients in the other classes. SVM performed better in
this multiclass classification rather than RF. The confusion matrix (Figure 6) illustrates
that the CAN and CANDPN+ classes could be classified effectively. However, identifying
CANDPN patients using this model might be inefficient. The features used in this model
were the albumin–creatinine ratio and microalbuminuria. These two features are common
for all the binary tests that have been performed in this study.

Figure 6. Performance comparison (confusion matrix) between the multiclass SVM classifier and the
multiclass RF classifier. (a) Confusion matrix of SVM classifier; (b) confusion matrix of RF classifier;
classes: 1. CAN, patients with CAN; 2. CANDPN, with DPN and CAN; 3. CANDPN+, patients with
NEP and/or RET with CAN and DPN.

4. Discussion

This study demonstrated the importance of demographic, clinical, and laboratory
profiles in the machine learning domain for the classification of diabetic microvascular
complications. Moreover, this study illustrated a complete machine-learning-based clinical
approach to screen diabetic patients suffering from diabetic microvascular complications.
It also provides an association of other microvascular complications along with CAN. It
provides a stepwise clinical approach to screen diabetes microvascular complications for
the Bangladeshi type 2 diabetic cohort. The high performance achieved in each test strongly
suggests that DCL profiles should be included as features in the machine learning approach
to ensure a high classification accuracy. In our study, we also showed the DCL profiles that
are highly associated with a kind of complication. Thus, the clinician can easily coordinate
the physiological grounds.

4.1. Demographic, Clinical, and Laboratory Profiles

In this study, we demonstrated the significance of DCL profiles to screen a microvas-
cular complication of the type 2 diabetic population in Bangladesh. The profiles that were
used in this study are easily collectible by any hospital in Bangladesh. Moreover, gathering
this information from a patient is not costly. Furthermore, all the DCL profiles used in this
study are not required to be collected for screening using the proposed method. Only the
significant features that are listed (Section 3.3) for each test will be needed to execute the
test. However, to execute all the tests proposed in this study, a mathematical union of all
the significant features that are used in each test would be required.
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Diastolic BP, Albumin–Creatinine Ratio, and Gender were highly associated with CAN
in our CAN test. Thus, we have found the highest accuracy for the CAN classifier by using
these three predictors. In [59,60], the authors showed the influence of hypertension on diabetic
complications, and our study we found that diastolic BP was a good predictor variable to classify
CAN. However, we have found that HbA1c was not required for testing CAN. On the other
hand, microalbuminuria was significantly associated with peripheral neuropathy, nephropathy,
and retinopathy. This finding supports both the studies in [61,62], where the authors showed
the association of microalbuminuria with nephropathy and retinopathy. Moreover, in [63],
Bell et. al. observed the significant association of microalbuminuria with diabetic neuropathy.
HbA1c was significantly associated with retinopathy in our study. It was also associated with
peripheral neuropathy. In [64,65], the authors established the relationship between HbA1c and
microvascular complications. Many authors showed the significance and association of different
demographic, clinical, and laboratory parameters with diabetic microvascular complications.
However, in our study, we found significant DCL profiles using a statistical model and used
these significant profiles with a machine learning model to show the performance.

4.2. Machine Learning as a Screening Tool

This work describes the application of a modern machine learning model, combining
the use of statistically significant features to exploit demographic, clinical, and laboratory
data to extract a classifier that can classify type 2 diabetes microvascular complications.
To address the class imbalance, a machine learning hyper-parameter ‘prior probability’
was used. Picking up the benefits of the recent advances of machine learning in the area
of diabetes diagnosis is considered to be fundamental. It makes a difference within the
investigation of colossal healthcare records and changes them into clinical experiences that
can help healthcare experts in prompt and intelligent decision-making. Even though the
involvement of a clinician within the diagnosis and treatment of diabetic patients may be
necessary, machine learning models might be able to provide an early-stage screening that
can avoid numerous complications from further development. Besides, when there is a
tremendous request for medical specialists or unbounded data available, it is quite hard to
provide a complete diagnostic for each quite effectively. In this manner, pre-trained machine
learning models can make the process faster and less rigorous for healthcare suppliers
and practitioners. Different sorts of machine learning algorithms, such as support vector
machines (SVM), K-nearest neighbor (KNN), choice trees, etc., have been utilized broadly
within the research associated with type 2 diabetes microvascular complications [66].

CAN plays a major role in myocardial ischemia and infarction, heart arrhythmias,
hypertension, and heart disappointment and it increases the risk of sudden cardiac death.
Jelinek and Cornforth [67] proposed a novel clustering technique using a graph-based
machine learning system that enables the identification of severe diabetic neuropathies in
2016. This proposed model outperforms SVM, RF, and KNN. Cho et al. [68] showed an
accuracy of 88.7% (AUC 0.969 and specificity 0.85) using SVM classifiers along with a feature
selection method for the prediction of diabetic nephropathy from the data of 4321 patients.
Reedy et. al. [69] proposed a multi-model ensemble-based machine learning algorithm to
classify diabetic retinopathy. The authors included several machine learning classifiers
in their research and concluded that the ensemble model provides better accuracy with
better sensitivity and specificity. Sambyal et. al. [66] provided a review of using machine
learning models to classify diabetes microvascular complications in 2020. The authors
showed that most of the work for classifying RET had been conducted using fundus image
as the input, and he compared the different achieved accuracies of the different classifiers
by different authors. By only using the demographic, clinical, and laboratory profiles, our
model outperforms all the models reviewed by the author in terms of classifying diabetic
retinopathy. The authors also have reviewed several machine learning models proposed by
different authors for classifying cardiac autonomic neuropathy and nephropathy. However,
we only used DCL profiles as independent features to classify microvascular complications.
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4.3. Clinical Relevance

The test schemes followed in this work offer physicians an important clinical diagnostic
method in the evaluation and diagnosis of type 2 diabetes microvascular complications.
The single-class classifiers can operate individually in parallel or sequentially. However, for
finding combined complications with CAN, the model works sequentially with the CAN
testing classifier. Since this model is sequential, this digs deeper by analyzing diabetics
with single and combined complications. Single-class classifiers identify any microvascular
complication that is present in a patient, regardless of whether the multiclass classifier
predicts the presence of other complications with CAN. Such a clinical test will ensure a
better diagnose of type 2 diabetes microvascular complications by distinguishing the cause
of single CAN and other related complications. Furthermore, the silent nature of these
complications makes it difficult to diagnosis correctly, especially when combined with
other microvascular complications. The performance achieved through machine learning
using only DCL profiles in this study provides a path to prevent many undiagnosed CAN-
only cases. Since a CAN-only medical procedure may not provide effective treatment if
additional complications are not properly identified. It is vital to know about combined
complications. The multiclass classification test helps to identify multiple complications
with autonomic neuropathy.

4.4. Key Message to the Health Community of Bangladesh

Globally, healthcare stakeholders are entering a new era of data-driven clinical detec-
tion and prognostication. The application of modern machine-learning-based approaches
offers great promises for early diagnosis or prognosis of various health complications. The
early identification of patients at risk of microvascular complications due to type 2 diabetes
can mitigate the burden on the healthcare system, especially in the context of a resource-
limited setup. As the present study shows that screening is feasible from the demographic,
clinical, and laboratory (DCL) variables using a proper machine learning classification
model, the health community can utilize this benefit for screening that can avoid numerous
complications from further development. It also can help healthcare experts in prompt and
intelligent decision-making and save the patients from incurring greater healthcare costs.

5. Conclusions

This study explored the present status of microvascular complications in a cohort of
type 2 diabetes patients in Bangladesh. Higher comorbidities and microvascular complica-
tions were found as compared with neighboring countries, most likely due to the increased
levels of hypertension in this cohort. This study also suggests that a high diastolic BP and
albumin-creatinine ratio are related to CAN; high microalbuminuria, HbA1c, and blood
pressure are related to DPN; high HbA1c and microalbuminuria are related to RET. These
findings may be useful in finding risk factors for the development of diabetic complications.
Using these risk factors as the independent features, a machine learning model could be de-
signed to screen microvascular complications. This study shows a machine learning model
could be utilized to identify diabetes complications in Bangladesh, where the majority of its
population is poor. We believe this study could contribute to more effective and affordable
screening techniques [70] for diabetes-related microvascular complications.

It is worth noting that the proposed study should be further validated on a wider
patient cohort to strengthen the observations. Although the findings of this study were
promising and correlate with the observations found in the literature, one limitation to the
current work was the small sample size, which is a common situation in biomedical studies
that rely on patient data. Overall, RF and SVM are known to handle small sample sizes
with high performance capabilities [71–73], especially when compared to other artificial
intelligence algorithms, such as deep neural networks, that require large datasets. Therefore,
an essential future direction to the current study is to be tested on large clinical data and
with additional machine/deep learning algorithms.
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Abstract: Diabetic sensorimotor polyneuropathy (DSPN) is a major complication in patients with
diabetes mellitus (DM), and early detection or prediction of DSPN is important for preventing
or managing neuropathic pain and foot ulcer. Our aim is to delineate whether machine learning
techniques are more useful than traditional statistical methods for predicting DSPN in DM patients.
Four hundred seventy DM patients were classified into four groups (normal, possible, probable, and
confirmed) based on clinical and electrophysiological findings of suspected DSPN. Three ML methods,
XGBoost (XGB), support vector machine (SVM), and random forest (RF), and their combinations were
used for analysis. RF showed the best area under the receiver operator characteristic curve (AUC,
0.8250) for differentiating between two categories—criteria by clinical findings (normal, possible,
and probable groups) and those by electrophysiological findings (confirmed group)—and the result
was superior to that of linear regression analysis (AUC = 0.6620). Average values of serum glucose,
International Federation of Clinical Chemistry (IFCC), HbA1c, and albumin levels were identified as
the four most important predictors of DSPN. In conclusion, machine learning techniques, especially
RF, can predict DSPN in DM patients effectively, and electrophysiological analysis is important for
identifying DSPN.

Keywords: machine learning; diabetes mellitus; diabetic sensorimotor polyneuropathy; random
forest; prediction; electrophysiology

1. Introduction

Type 2 diabetes mellitus (T2DM), the most common form of diabetes, is a major dis-
ease in humans worldwide [1], and its incidence is increasing with aging and lifestyle
changes [2]. There is evidence that half of T2DM patients experience neurological disorders
and a progressive disability of nerve fibers in the course of diabetes, and serious neurologi-
cal symptoms lead to poor quality of life [3]. Diabetic sensorimotor polyneuropathy (DSPN)
is a common neurological complication resulting from neuroinflammation, mitochondrial
dysfunction, and apoptosis due to hyperglycemia, dyslipidemia, and altered insulin sig-
naling, and leads to various symptoms and signs, including neuropathic pain, decreased
sensation, and foot ulceration [4,5]. The management of DSPN is not limited to controlling
hyperglycemia, and multidisciplinary programs, such as patient education, lifestyle modi-
fication, and physical activity, are required to control various physical and psychological
symptoms and foot complications [6]. Therefore, early detection and prediction of DSPN is
very important in DM patients.

J. Clin. Med. 2021, 10, 4576. https://doi.org/10.3390/jcm10194576 https://www.mdpi.com/journal/jcm
29



J. Clin. Med. 2021, 10, 4576

The classification of DSPN has been defined in previous studies [7–10]. Typical DSPN
is the most common form in DM patients and chronic, symmetrical, and length-dependent
sensorimotor polyneuropathy [11]. Tesfaye et al. defined the minimal criteria for typical
DSPN to estimate severity: possible, probable, confirmed, and subclinical based on clinical
symptoms and signs and electrophysiology [7]. Numerous staging and scoring systems
have been developed to assess the severity of DSPN; however, choosing the optimal scoring
system is confusing because the results of previous studies are different regarding which
system is effective [12–14]. Electrophysiological assessments, including nerve conduction
studies (NCS), are important for diagnosing DSPN objectively [15,16]; however, special
equipment is needed, and these assessments cannot be performed routinely for patients
without clinical symptoms or signs because of the discomfort caused by electrical stimu-
lation or needle insertion. Because the pathophysiology of diabetic neuropathy reveals a
broad spectrum of axonal involvement and segmental demyelination, electrophysiological
findings also indicate both axonal degeneration and demyelination [17]. Numerous predis-
posing factors for the development of DSPN have been found [18–21]. DSPN is significantly
correlated with poor glucose control [18,19], longer duration of diabetes, poor metabolic
management, smoking and the presence of cardiovascular disease, and DSPN severity is
correlated with hypertension, dyslipidemia, microalbuminuria, alcohol consumption, and
body mass index [20,21]. Most previous studies on the prediction of DSPN used various
statistical methods. While traditional statistical methods draw only population inferences
from clinical information, recently developed machine learning (ML) methods focus on
developing predictive models from general-purpose learning algorithms [22]. Therefore,
ML is considered to be a better way to predict DSPN in DM patients.

ML is a computationally broad and powerful data mining technique that can accom-
modate a large set of proposed variables as inputs to identify factors related to the results of
interest [23], and ML develops algorithms that can learn patterns and decision rules, such
as early detection, prediction and diagnosis, from data that are attributable to the medical
field. Recent studies have used various ML techniques to predict complications, including
retinopathy, nephropathy, foot ulceration and DSPN, in T2DM patients [24–28], and ML
was effective for prediction of DSPN severity [24], 3-year complication developments [25],
high-risk retinopathy, and numerous complications in nonadherent T2DM [27]. Haque
et al. found that machine learning algorithms, especially random forest (RF), were effective
in predicting DSPN severity based on the scoring system using Michigan Neuropathy
Screening Instrumentation [29], which is not used widely, and that study assessed only
type 1 diabetes mellitus (T1DM) patients.

The purpose of the current study was to delineate whether machine learning tech-
niques are more useful than traditional statistical methods for predicting DSPN in type
2 DM patients, and whether the widely used classification for DSPN, which is based on
clinical and electrophysiological findings, is amenable to the use of predictive models.

2. Materials and Methods

2.1. Subjects

Medical records of patients with T2DM who visited Dankook University Hospital for
the management of DM were collected, and 746 subjects were initially enrolled (Figure 1).
Patients were diagnosed with T2DM by a physician at the Department of Endocrinology,
based on the guideline of the American Diabetes Association [30]. Patients who did not
undergo electrophysiological studies (n = 206) or had incomplete clinical data (n = 53) were
excluded at first, and then patients who had other types of polyneuropathies, including
heavy alcohol use (n = 3), hepatic failure (n = 2), renal failure (n = 4), chemotherapy for
malignancy (n = 7), and typical musculoskeletal anomalies (n = 1), were subsequently
excluded. As a result, 470 patients were included in the study (Figure 1). This study
was approved by the Dankook University Hospital Institutional Review Board (IRB No.
2019-12-009).
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Figure 1. Flow and grouping of patients.

2.2. Classification

Subjects were classified into 4 groups according to definitions of minimal criteria
for typical DSPN based on the area of clinical care by Tesfaye et al. [7]: normal, possible,
probable, and confirmed. The normal group (n = 93) consisted of subjects without any
neurological symptoms or signs as previously described [7], and the possible group (n = 91)
comprised subjects with one of the neurological symptoms or signs. The probable group
(n = 13) comprised subjects with two or more neurological symptoms or signs. The
confirmed group (n = 273) consisted of subjects with abnormal electrophysiological findings
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and neurological symptoms or signs. Electrophysiological assessments were performed
according to the guidelines of the American Academy of Neurology [16], and NCS and
electromyography of the upper and lower extremities were conducted. According to
electrophysiological findings, the confirmed group was divided into two subgroups: A
demyelinated subgroup (n = 87) with subjects who predominantly showed demyelination
and a mixed subgroup (n = 186) with subjects who showed abnormal spontaneous activities
during needle electromyography and demyelination (Figure 1).

2.3. Clinical Data

All subjects’ clinical information, such as baseline characteristics, past medical history,
current health status, diabetic complications, and medications, was analyzed. Baseline
characteristics included age, sex, weight, height, body mass index (BMI), disease duration
(from initial diagnosis of T2DM to the date of the last follow-up at the hospital), smoking
(current smoking, past smoking, or nonsmoking), family history of T2DM, and diabetes
education. Past medical history included hypertension (HTN), dyslipidemia, and history
of stroke and coronary artery disease. HTN was defined as systolic blood pressure >
140 mmHg, diastolic blood pressure > 90 mmHg or the use of antihypertensive medica-
tions. Diabetic retinopathy was included in diabetic complications. Medications for DM,
HTN and dyslipidemia were included; medications for DM were metformin, sulfonylureas,
thiazolidinediones (TZDs), dipeptidyl peptidase-4 inhibitors (DPP4is), sodium-glucose
cotransporter-2 inhibitors (SGLT2is), and insulin; medications for HTN were calcium chan-
nel blockers (CCBs), angiotensin-converting-enzyme inhibitors (ACEis), angiotensin II
receptor blockers (ARBs), beta blockers (BBs) and thiazides; and medications for dyslipi-
demia were statins. BMI was calculated as weight in kilograms divided by the square of
height in meters.

2.4. Laboratory Data

A total of 432 laboratory codes from blood and urine tests were obtained from all
subjects, and we divided subjects into a control group (n = 197) with normal electrophysi-
ological findings and a test group (n = 273) with abnormal electrophysiological findings
within the criteria of DSPN to identify the optimal number of laboratory codes (Figure 2).
Forty-eight codes could be obtained for more than half of the subjects (n = 98) in the control
group, and 62 codes could be obtained for more than half of the subjects (n = 135) in the
test group (Figure 2a). When the results of the two groups were combined, 39 laboratory
codes were ultimately selected (Figure 2b). Each laboratory code was assessed several
times during the follow-up periods (range: 31–18368 days, mean value: 5202.9 days), and
various changes in the values were observed within the period (Figure 2c).

Three methods were used to standardize the values of laboratory codes for ML analysis.
Method 1 refers to the average value of each laboratory code during the follow-up period,
method 2 is the first value of each laboratory code when T2DM was initially diagnosed
while visiting the hospital, and method 3 refers to the pattern of laboratory code changes.
The pattern was defined as −1, 0, and 1 as follows. If the initial value was 10% or more
lower than the overall average of the values excluding the initial value, it was considered
−1; if the change was less than 10%, it was regarded as 0; and if the initial value was greater
than 10% of the overall average of the values excluding the initial value, it was regarded
as 1.
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Figure 2. Selection of laboratory codes for machine learning analysis. (a) The distribution of laboratory codes according to
tested subject numbers in the control and test groups, (b) lists of 39 selected laboratory codes, (c) graphs showing the changes
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in 39 selected laboratory codes at the initial and follow-up periods. Abbreviations: ALP = alkaline phosphatase; ALT (GPT) =
alanine aminotransferase (glutamic pyruvate transaminase); AST (GOT) = aspartate aminotransferase (glutamic oxaloacetic
transaminase); BST = blood sugar test; BUN = blood urea nitrogen; Diff = differential; T4 = thyroxine; Hb = hemoglobin;
HbA1c = hemoglobin A1c; HCT = hematocrit; HDL = high-density lipoprotein cholesterol; IFCC = International Federation
of Clinical Chemistry; LDL = low-density lipoprotein cholesterol; MCH = mean corpuscular hemoglobin; MCHC = mean
corpuscular hemoglobin concentration; MCV = mean cell volume; PLT = platelet; RBC = red blood cell; TG = triglyceride;
TSH = thyroid-stimulating hormone; SG = specific gravity; WBC = white blood cell.

2.5. Machine Learning Analysis

First, to define which variable set will be used for the classification model, a random
forest (RF) model trained by different variable combinations was tested. As described
above, there are four different variable sets: clinical data and methods 1, 2, and 3 for
laboratory data. RF was trained with all possible combinations of four variable sets.
Because of the limitation of the sample size, the sample was divided into ten groups, and
each group was used as the test set. For each test set, the remainder of the samples were
divided into a training set and a validation set at a 4:1 ratio by preserving the percentage of
samples for each class. Fivefold cross-validation was performed for each test set, and the
final performance was defined as the average of the performance over 10 iterations [31].
The combination set of clinical data and methods 1 and 3 for laboratory data (total, 105
variables) showed the best performance in cases of classifying patients [area under the
curve (AUC) = 0.8350 and accuracy = 74.85%, Table 1; therefore, the combination set was
used as an input variable for model training.

Table 1. Identification of the selection of data and methods for machine learning analysis of subjects.

Feature Set Used Lab Feature Extraction Method Feature Counts AUC Accuracy (%)

Laboratory data only

Method 1 39 0.7954 73.74
Method 2 39 0.7790 71.53
Method 3 36 0.7226 65.32

Method 1 + 3 75 0.8095 73.83
Method 2 + 3 75 0.7950 72.26

Method 1 + 2 + 3 114 0.8012 73.06
Clinical data only - 30 0.7493 69.79

Laboratory and clinical data

Method 1 69 0.8284 76.09
Method 2 69 0.8096 72.68
Method 3 66 0.8100 72.98

Method 1 + 3 105 0.8350 74.85
Method 2 + 3 105 0.8141 73.02

Method 1 + 2 + 3 144 0.8219 74.21

Note: method 1 = average value of each laboratory code during the follow-up period; method 2 = the first value of each laboratory code
when T2DM was diagnosed initially; method 3 = the pattern of laboratory code changes (−1, 0, or 1), Abbreviations: AUC = area under
the curve.

The DSPN predictor model was trained with the input variables identified above. The
model performance was tested with the same method used when identifying the input
variables. Three ML algorithms were used: XGBoost (XGB) [32], support vector machine
(SVM) [33], and random forest (RF) [23], which were used alone or in combinations of two or
more, that is, an ensemble of models for improvement of the model performance by fusion
of the contents learned by different models and reduction of overfitting problems [34].
Among the various methods, the model averaging method for averaging the predicted
values of several models was used in this work. AUC, accuracy, sensitivity, and specificity
were used as performance metrics.

Finally, the feature importance of the best model among 7 models (XGB, SVM, RF,
ensemble of XGB and SVM, ensemble of XGB & RF, ensemble of SVM and RF and ensemble
of XGB and SVM and RF) was extracted from each model. If the best model was an
ensemble of more than two models, the average feature importance obtained from each
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model was used as the feature importance of the ensemble model. Next, the models
were retrained and evaluated with input features by adding features one by one, from
the most to the least important. This was done to select the best set of features for DSPN
prediction based on feature importance, and the performance was better when using the
top 69 features for AUC and top 38 features for accuracy rather than all 105 features.

2.6. Statistics

To compare the predictability of ML results, traditional statistical methods were also
carried out. All statistical analyses were performed with SPSS 26 (IBM, Armonk, NY, USA).
The Shapiro-Wilk test was performed to assess the normal distribution of all quantified
histological and functional data from each group. Categorical parameters were compared
by likelihood ratio, and numerical parameters among groups were compared by one-way
analysis of variance (ANOVA) and the Games–Howell post hoc test. Logistic regression was
performed using statistically significant parameters and parameters that were identified to
be important in previous studies, and the AUC, accuracy, sensitivity, and specificity were
analyzed. p-values less than 0.05 were considered to indicate statistical significance.

3. Results

3.1. Baseline Characteristics among the Four Groups

When comparing baseline characteristics among the four groups, disease duration
was significantly longer in the confirmed group than in the normal and possible groups
(4543.18 ± 2849.75 days and 4464.03 ± 2934.87 days vs. 5686.67 ± 3648.57 days and
in the normal, possible, and confirmed groups, respectively), and height was higher in
the confirmed group than in the normal group (1.61 ± 0.09 m vs. 1.64 ± 0.09 m in the
normal and confirmed groups, respectively). BMI and the initial values of BST and HbA1c
were also different between the confirmed group and normal group and between the
confirmed group and possible group (Table 2). The incidence of diabetic retinopathy was
higher in the confirmed group (51.6%) than in the other groups (23.1–28.6%). Age; sex;
weight; incidence of hypertension and dyslipidemia; smoking habit; past medical history of
coronary artery disease, cerebrovascular disease, and stroke; and number of subjects who
received diabetes education were not different among the groups (Table 2). Medications for
diabetes control were different among groups; metformin (89.2–94.5%), sulfonylureas (68.1–
68.8%), dipeptidyl peptidase-4 inhibitors (66.7–71.4%), and sodium-glucose cotransporter-2
inhibitors (17.2–20.9%) were used by a higher proportion of subjects in the normal and
possible groups, whereas the proportion of subjects in the confirmed group who used
insulin (65.6%) was higher than that in other groups (Table 2).

Table 2. Baseline characteristics of participants.

Normal (A)
(n = 93)

Possible (B)
(n = 91)

Probable (C)
(n = 13)

Confirmed (D)
(n = 273)

p-Value Post Hoc

Disease duration (days) 4543.18 ± 2849.75 4464.03 ± 2934.87 4933.46 ± 3463.31 5686.67 ± 3648.57 0.004 A<>D, B<>D
Age (years) 51.33 ± 12.30 49.74 ± 11.51 53.85 ± 8.92 51.32 ± 14.91 0.676
Sex (male) 48 (51.6) 48 (52.7) 5 (38.5) 176 (64.5) 0.027
Height (m) 1.61 ± 0.09 1.62 ± 0.09 1.59 ± 0.09 1.64 ± 0.09 0.006 A<>D
Weight (kg) 66.10 ± 11.76 66.26 ± 11.14 62.21 ± 11.41 64.29 ± 11.92 0.308

BMI (kg/m2) 25.33 ± 3.81 25.26 ± 3.48 24.65 ± 4.07 23.82 ± 3.66 0.001 A<>D, B<>D
Initial BST 211.78 ± 98.75 196.51 ± 87.62 178.21 ± 104.57 249.06 ± 117.68 0.000 A<>D, B<>D

Initial HbA1c 8.69 ± 2.18 8.72 ± 2.06 9.03 ± 3.09 9.59 ± 2.54 0.002 A<>D, B<>D
DM retinopathy 25 (26.9) 26 (28.6) 3 (23.1) 141 (51.6) 0.000

Hypertension 54 (58.1) 56 (61.5) 8 (61.5) 186 (68.1) 0.304
Dyslipidemia 76 (81.7) 70 (76.9) 10 (76.9) 197 (72.2) 0.29

Smoking
No 61 (65.6) 57 (62.6) 12 (92.3) 163 (59.7)

0.172Current 18 (19.4) 19 (20.9) 1 (7.7) 57 (20.9)
Past smoking 14 (15.1) 15 (16.5) 0 (0.0) 53 (19.4)

Family history of DM 28 (30.1) 51 (56.0) 4 (30.8) 106 (38.8) 0.003
CAD Hx 25 (26.9) 24 (26.4) 6 (46.2) 93 (34.1) 0.248
CVD Hx 43 (46.2) 33 (36.3) 6 (46.2) 134 (49.1) 0.205
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Table 2. Cont.

Normal (A)
(n = 93)

Possible (B)
(n = 91)

Probable (C)
(n = 13)

Confirmed (D)
(n = 273)

p-Value Post Hoc

Stroke Hx 25 (26.9) 16 (17.6) 2 (15.4) 63 (23.1) 0.427
Diabetes education 43 (46.2) 36 (39.6) 8 (61.5) 128 (46.9) 0.412

Medications
Metformin 83 (89.2) 86 (94.5) 11 (84.6) 201 (73.6) 0.000

Sulfonylureas 64 (68.8) 62 (68.1) 5 (38.5) 159 (58.2) 0.048
TZDs 11 (11.8) 5 (5.5) 1 (7.7) 3 (13.6) 0.158

DPP4is 62 (66.7) 65 (71.4) 8 (61.5) 147 (53.8) 0.011
SGLT2is 16 (17.2) 19 (20.9) 1 (7.7) 21 (7.7) 0.004
Insulin 37 (39.8) 32 (35.2) 8 (61.5) 179 (65.6) 0.000
CCBs 32 (34.4) 26 (28.6) 7 (53.8) 104 (38.1) 0.204
ACEis 10 (10.8) 10 (11.0) 1 (7.7) 32 (11.7) 0.965
ARBs 51 (54.8) 54 (59.3) 7 (53.8) 156 (57.1) 0.933
BBs 21 (22.6) 24 (26.4) 6 (46.2) 76 (27.8) 0.355

Thiazides 15 (16.1) 20 (22.0) 2 (15.4) 47 (17.2) 0.723
Statins 78 (83.9) 70 (76.9) 10 (76.9) 192 (70.3) 0.058

Note: Values are presented as the mean ± standard deviation or number of subjects (%). p < 0.05 among the four groups by one-way
ANOVA for continuous data or likelihood ratio for categorical data. Post hoc testing was performed using the Games–Howell test.
Abbreviations: BMI = body mass index; BST = blood sugar test; HbA1c = hemoglobin A1c; DM = diabetes mellitus; Hx = history; CAD =
coronary artery disease; CVD = cerebrovascular disease; TZDs = thiazolidinediones; DPP4is = dipeptidyl peptidase-4 inhibitors; SGLT2is =
sodium-glucose cotransporter-2 inhibitors; CCBs = calcium channel blockers, ACEis = angiotensin-converting-enzyme inhibitors; ABRs =
angiotensin II receptor blockers; BBs = beta blockers.

3.2. Identification of an Appropriate Classification for Prediction Using Machine
Learning Analysis

Using ML algorithms, four groups of normal (A), possible (B), probable (C), and
confirmed (D) samples were analyzed with various combinations. When comparing all
groups separately (A vs. B vs. C vs. D) using the combined analysis of XGB and RF, the
AUC was 0.8546, and the accuracy was 60.85% (Table 3). One of the classifications set to
three groups (combination of A and B vs. C vs. D) showed the highest AUC value (0.8925)
using the same analysis (XGB + RF); however, this classification was not appropriate
because the number of group C patients was small (n = 13), which can result in imbalanced
results [35]. When looking at the classification that combined group C with other groups,
rather than alone, the classification with the combination of A, B and C vs. D showed
a higher value of AUC (0.8250) than the other classifications and the highest value of
accuracy (74.47%) (Table 3). Therefore, we performed all ML analyses and statistics based
on this classification (A + B + C vs. D).

Table 3. Values of AUC and accuracy of machine learning analysis when comparing each group or
their combinations.

Classification
ML Model Which Showed

the Best Result
AUC Accuracy (%)

A vs. B vs. C vs. D XGB + RF 0.8546 60.85
A vs. B vs. C + D RF 0.8105 62.34
A vs. B + C vs. D RF 0.8075 61.32
A + B vs. C vs. D XGB + RF 0.8925 73.40
A + B vs. C + D RF 0.8103 72.68
A + B + C vs. D RF 0.8250 74.47

Note: A = normal group, B = possible group, C = probable group, D = confirmed group. Abbreviations: AUC =
area under the curve; XGB = XGBoost; RF = random forest; SVM = support vector machine.

3.3. Identification of an Appropriate ML Algorithm for the Prediction of DSPN and Analysis of
Predictive Values

When we compared various ML techniques (XGB, SVM, RF, and their combinations),
RF showed the best AUC (0.8250) and accuracy (74.47%), and the sensitivity and specificity
were also higher (0.7940 and 0.6720, respectively) than those of any other single algorithm
or their combination (Table 4). Logistic regression analysis was performed to compare the
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combination of normal, possible, and probable groups with the confirmed group using
meaningful parameters of the following basic characteristics and laboratory data: disease
duration, initial value of HbA1c, DM retinopathy, family history of DM, use of metformin
and insulin, serum levels of glucose, HDL cholesterol, albumin, and creatinine. The results
of logistic regression analysis showed lower AUC (0.6620) and specificity (0.3519) values
than RF. The receiver operating characteristic (ROC) curves of each ML algorithm and
logistic regression analysis are shown in Figure 3. The AUC of RF was the highest (0.8250)
among the 7 ML models, as described earlier, whereas the AUC of logistic regression was
the lowest AUC value (0.6620).

Table 4. Values of machine learning and logistic regression analysis using the classification of the
combination of the normal, possible, and probable groups versus the confirmed group.

Model AUC Accuracy (%) Sensitivity Specificity

XGB 0.7604 69.83 0.7708 0.5899
SVM 0.7535 66.81 0.6643 0.6721
RF 0.8250 74.47 0.7940 0.6720

XGB + SVM 0.7822 71.28 0.7712 0.6363
XGB + RF 0.8235 74.47 0.7927 0.6743
SVM + RF 0.8070 73.19 0.7957 0.6478

XGB + RF + SVM 0.8105 73.62 0.8103 0.6342
Logistic regression 0.6620 84.76 0.9721 0.3519

Abbreviations: AUC = area under the curve; XGB = XGBoost; RF = random forest; SVM = support vector machine.

Figure 3. Receiver operating characteristic (ROC) curve for single or combinations of various machine
learning algorithms and logistic regression analysis in the classification of the combination of the
normal, possible, and probable groups versus the confirmed group. Abbreviations: AUC = area
under the curve; XGB = XGBoost; RF = random forest; SVM = support vector machine.
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3.4. Development of a Decision-Making Model Using Influential Features from the RF Algorithm

RF analysis using the classification of the combination of the normal, possible, and
probable groups versus the confirmed group was used to derive influential features, which
consisted of clinical data and methods 1 and 3 for laboratory data. When these features
are accumulated in the order of the importance score, the AUC and accuracy increase and
then reach a maximum value at a certain moment (Figure 4a,b). In the case of AUC, the
maximum value was reached when the number of parameters reached 69 (0.8302), and in
the case of accuracy, the maximum value was reached when the number of parameters
was 38 (76.17%) (Figure 4a,b). From this classification, the average value of HbA1c was
identified as the first single discriminator for group determination between the combination
of the normal, possible, and probable groups and the confirmed group (Figure 4c). The
top 69 influential features are shown in Table 5. The average serum glucose level during
the follow-up period was the most important feature (importance score = 0.997768) for
determining the group in the classification, and the average values of the International
Federation of Clinical Chemistry (IFCC; 0.794161), HbA1c (0.789265), and albumin levels
(0.731579) during the follow-up period are shown in order of importance score (Table 5).

Table 5. Top 69 influential features in the classification of the combination of the normal, possible, and probable groups
versus the confirmed group.

Ranking Feature Name Importance Score Ranking Feature Name Importance Score

1 Avg glucose 0.997768 36 Avg WBC 0.280162
2 Avg IFCC 0.794161 37 Avg PLT 0.262754
3 Avg HbA1c 0.789265 38 Avg chloride 0.250326
4 Avg albumin 0.731579 39 Avg uric acid 0.246706
5 Height 0.57069 40 CP IFCC 0.246499

6 Avg Diff count
(lymphocyte %) 0.546759 41 CP creatinine

(spot urine) 0.242497

7 Avg creatinine
(spot urine) 0.493981 42 Avg MCV 0.240183

8 Avg Diff count
(neutrophil %) 0.486409 43 Avg Diff count

(eosinophil%) 0.237532

9 Disease duration 0.467576 44 Avg MCH 0.229848

10 Avg sodium 0.455435 45 Avg Diff count
(monocyte %) 0.225926

11 Avg HCT 0.451166 46 CP HbA1c 0.225847
12 Avg ALT (GPT) 0.450865 47 Avg MCHC 0.222184
13 Avg RBC 0.417525 48 Avg bilirubin 0.217108
14 Avg Hb 0.383685 49 Avg free T4 0.208568
15 BMI 0.375055 50 CP urine SG 0.204239

16 Avg HDL 0.374211 51 Avg Diff count
(basophil %) 0.201151

17 Avg BUN 0.351033 52 Diabetic retinopathy 0.176286
18 Avg AST (GOT) 0.348776 53 CP TG 0.155261
19 Avg ALP 0.342055 54 Use of insulin 0.14617
20 Avg BST 0.33438 55 CP HDL 0.146164
21 Avg creatinine 0.332449 56 CP cholesterol 0.127665
22 Age 0.319338 57 CP WBC 0.096003
23 Avg urine pH 0.31512 58 CP PLT 0.09567
24 Avg calcium 0.309396 59 Sex 0.084762
25 Avg TG 0.307935 60 CP BST 0.083089
26 Avg LDL 0.305571 61 CP ALP 0.080399
27 Avg TSH 0.303504 62 Smoking 0.068729
28 Avg protein 0.302998 63 CP creatinine 0.065407
29 CP glucose 0.297945 64 CP Diff count

(lymphocyte %) 0.065285
30 CP urine pH 0.290718 65 CP bilirubin 0.060325
31 Avg cholesterol 0.287416 66 Use of sulfonylurea 0.05838
32 Avg potassium 0.286635 67 CP AST (GOT) 0.052956
33 Weight 0.285151 68 CP ALT (GPT) 0.050693
34 Avg urine SG 0.282845 69 Use of metformin 0.048544
35 CP LDL 0.280875

Abbreviations: Avg = average; IFCC = International Federation of Clinical Chemistry; HbA1c = hemoglobin A1c; Diff = differential; HCT =
hematocrit; ALT (GPT) = alanine aminotransferase (glutamic pyruvate transaminase); BST = blood sugar test; RBC = red blood cell; Hb =
Hemoglobin; BMI= body mass index; HDL = high-density lipoprotein cholesterol; BUN = blood urea nitrogen; AST (GOT) = aspartate
aminotransferase (glutamic oxaloacetic transaminase); ALP = alkaline phosphatase; TG = triglyceride; LDL = low-density lipoprotein
cholesterol; TSH = thyroid-stimulating hormone; CP = change pattern; SG = specific gravity; WBC = white blood cell; PLT = platelet; MCV
= mean cell volume; MCH = mean corpuscular hemoglobin; MCHC = mean corpuscular hemoglobin concentration; T4 = thyroxine.
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Figure 4. Application of random forest algorithm and process of extraction of important features in the classification
of the combination of the normal, possible, and probable groups versus the confirmed group. (a) Model performance
according to the number of input features sorted by importance, (b) the result of arranging input features in order of
importance score, (c) a decision tree using the random forest algorithm with the classification of the combination of the
normal, possible, and probable groups versus the confirmed group. Note: Group 1 = a group in which the normal, possible,
and probable groups are combined, Group 2 = the confirmed group. Black arrow = positive results for the above features,
red arrow = negative results for the above features, gini = gini index. Abbreviations: AUC = area under the curve; ALP =
alkaline phosphatase; ALT (GPT) = alanine aminotransferase (glutamic pyruvate transaminase); AST (GOT) = aspartate
aminotransferase (glutamic oxaloacetic transaminase); Avg = average; BST = blood sugar test; BUN = blood urea nitrogen;
CP = change pattern; Diff = differential; T4 = thyroxine; Hb = hemoglobin; HbA1c = hemoglobin A1c; HCT = hematocrit;
HDL = high-density lipoprotein cholesterol; IFCC = International Federation of Clinical Chemistry; LDL = low-density
lipoprotein cholesterol; MCH = mean corpuscular hemoglobin; MCHC = mean corpuscular hemoglobin concentration;
MCV = mean cell volume; PLT = platelet; RBC = red blood cell; TG = triglyceride; TSH = thyroid-stimulating hormone; SG
= specific gravity; WBC = white blood cell.
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3.5. ML Analysis of the Confirmed Group to Identify Demyelinated and Mixed Types of DSPN

We compared the demyelinated subgroup with the mixed subgroup, as shown in
electrophysiological studies of the confirmed group, using various ML algorithms and
logistic regression analysis (Table 6). ML analysis revealed that the combination of XGB
and SVM models showed the highest AUC and accuracy values of 0.5698 and 67.78%,
respectively, whereas the statistical method using logistic regression showed a higher
AUC value (0.6350). However, the overall AUC values of all ML algorithms and logistic
regression analysis were much lower than the AUC value (0.8250) when RF was used
to compare the combination of the normal, possible, and probable groups versus the
confirmed group, and the specificity was quite low (0 and 0.3889 for RF and logistic
regression, respectively) to predict the two subgroups within the confirmed group (Table 6).

Table 6. Machine learning and logistic regression results analyzing the demyelinated type vs.
mixed type.

Model AUC Accuracy (%) Sensitivity Specificity

XGB 0.5492 62.39 0.8329 0.1797
SVM 0.5105 68.15 1.0000 0.0000
RF 0.5426 64.25 0.9245 0.0436

XGB + SVM 0.5698 67.78 0.9947 0.0000
XGB + RF 0.5579 64.52 0.9317 0.0378
SVM + RF 0.5457 67.41 0.9889 0.0000

XGB + RF + SVM 0.5601 67.41 0.9897 0.0000
Logistic regression 0.6350 70.97 0.8812 0.3889

Abbreviations: AUC = area under the curve; XGB = XGBoost; RF = random forest; SVM = support vector machine.

4. Discussion

Interest in machine learning algorithms is widely increasing in the medical field
because they can be used to predict disease development and generate semantic interpreta-
tions [36]. In the field of endocrinology, the prediction of diabetes is expected to be very
useful for preventing disease progression and complications [37]. In this study, we have
performed conventional statistics, as well as various ML algorithms to compare predictive
power expressed in AUC and accuracy. Logistic regression analysis, a traditional statistical
method, has an obvious limitation compared to the ML analysis. Only a small number
of clinical and laboratory data (9 variables among over 400 data) were used during the
statistical processing, which inevitably resulted in poor AUC whereas ML analysis could
include over 100 meaningful data. Classical statistics usually draw population inferences,
but become less precise when input variables that exceed the number of subjects, therefore
appropriate ML method can help overcome this limitation [22].

As in all other fields, for the results of ML analysis to be more accurate, the input
data must have extensive and accurate information. Laboratory data are usually obtained
numerous times for a single subject during the follow-up period, and effective processing
of meaningful data can have a significant impact on the establishment of predictive models.
In this study, we tried various methods to optimize input data during the preprocessing
step, especially for standardization of laboratory tests conducted at various time points.
First, from the 432 types of laboratory data received for all patients, only 39 datapoints
repeatedly obtained for more than half of all patients were filtered out. Then, depending
on the timing of the laboratory data received, data were classified into average, initial,
and change patterns of each value, and we found that average and changed patterns were
meaningful parameters for ML analysis. Through these preprocesses, we are confident that
we have increased the reliability of laboratory data and created a more accurate predictive
model. When compared to previous studies that made predictive models of DSPN using
ML algorithms in diabetic patients (Table 7), they did not explain what time point was
used or whether there was any consideration of the amount of change in the laboratory
data in addition to the data imputation process that handles missing data [24,25,27,38]. In

40



J. Clin. Med. 2021, 10, 4576

addition, they did not provide any diagnostic tools, such as decision tree or nomogram,
except Dagliati et al. [25].

Table 7. Comparison of previous studies that used machine learning algorithms to predict DPSN in type 2 diabetes mellitus
patients.

References
Criteria to

Diagnose DSPN
Suggested ML

Models
AUC/Accuracy

Laboratory Data
Processing

Providing Decision-
Making Tool

Kazemi et al.,
2016 [24]

clinical (T1DM and
T2DM) MSVM UC/0.76 UC N

Dagliati et al.,
2018 [25] UC LR 0.726/0.746 UC nomogram

Fan et al., 2021 [27] UC EM 0.847/0.783 UC N
Maeda-Gutierrez

et al., 2021 [38] clinical RF 0.65/UC UC N

Current study electrophysiological RF 0.825/0.7447 average/change
pattern decision tree

Abbreviations: ML = machine learning, AUC = area under the curve; MSVM = multicategory support vector machine; LR = logistic
regression; EM = ensemble model; RF = random forest; UC = uncheckable; N = none.

Various criteria for defining DSPN have been developed, and many of them have
been designed to classify the severity of DSPN based on clinical signs and symptoms
alone [39] or in combination with physical examination [40,41] or electrophysiological
findings [7,10]. Neurological signs, especially sensory abnormalities, are sensitive and
specific findings for diagnosing DSPN and have been correlated with electrophysiological
findings in previous studies [12,42,43]; however, we found that clinical data alone, which
was categorized as normal, possible and probable groups defined in a previous study [7],
was not effective in predicting DSPN in T2DM patients. Other studies have revealed that
clinical symptoms and signs are too variable and inaccurate [44] and do not correlate well
with the development of pathophysiological changes in the peripheral nervous system [13].
On the basis of our results, we confirmed that severity grading based on clinical symptoms
and signs is not helpful and that electrophysiological assessment is essential in predicting
DSPN. However, small fiber involvement, which is frequently occurs in early DSPN, is
not identified by conventional NCS. Therefore, more specialized diagnostic tools such as
quantitative sensory testing, skin biopsy, and corneal confocal microscopy are needed to
identify small fiber damage [45,46].

We failed to classify the demyelinated and mixed types in the confirmed group in this
study. Axonal involvement is frequently observed in DSPN, as is demyelination [17], and
even axonal loss, which precedes demyelination, in sural nerves or plantar nerves of DSPN
patients might be a primary finding [47,48]. Electrophysiological analysis, which shows
decreased conduction velocity of sensory and motor nerves, decreased compound muscle
action potential, and prolonged latency of F-wave, is considered to be highly sensitive for
early diagnosis of DSPN [16,49], but NSC cannot be used to assess therapeutic effects in
diabetic patients [49]. Electromyography can be useful for detecting abnormal spontaneous
activities in distal muscles in moderate to severe DSPN [50], although this test is also
useful for ruling out other neuropathies, such as radiculopathies, mononeuropathies, or
myopathies. In this study, we could not find axonal involvement without demyelination
within DSPN patients. In T2DM, segmental demyelination is prominent with a milder
axonal involvement whereas axonal loss is more severe in T1DM [51,52]. Initially, we
considered abnormal electromyographic findings with abnormal NCS (mixed type) to be
advanced or severe type DSPN, and diabetic patients with mixed type DSPN might show
abnormal clinical and laboratory findings more frequently than those with demyelinated
type DSPN. However, ML analysis and logistic regression did not effectively suggest any
difference between the demyelinated and mixed types. Therefore, electrophysiological
analysis is necessary to differentiate these two types of diabetic patients.
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Numerous ML algorithms have been used to predict DM and diabetic complications
such as retinopathy, nephropathy, foot ulceration and DSPN [24–29]. XGB is a scalable
end-to-end tree boosting system [32] and is more suitable for small sample sizes unless the
data are not highly dispersed when predicting glucose variability in T2DM patients [53].
SVM was used for microarray or high-dimensional data and is suitable for predicting DSPN
in DM patients with a clinical data-based classification [24] and distinguishing retinopathy
between diabetic patients and normal controls [26]. RF is an ensemble of decision trees
and can minimize the individual error of trees [23]. RF has shown good performance in
predicting the development and classification of DSPN based on clinical symptoms and
examinations of type 1 diabetic patients [29]. Logistic regression analysis is a common
statistical method used to develop a model for binary outcomes in the medical field [54] and
can also be used as a supervised learning technique in ML methods. Even though various
ML algorithms have been successfully developed as predictive models for the purpose
of preventing the occurrence of diseases or their complications, some recent studies have
shown that logistic regression has similar results to ML analysis [55,56], and attempts to
combine logistic regression and ML methods also appear to enhance the performance of
statistical methods in an automated manner [57]. In our study, the AUC of RF was superior
to that of logistic regression when subjects were classified into two groups: confirmed vs.
other combinations (Table 4), but the AUC of logistic regression was higher than that of
ML algorithms for comparison between the demyelinated and mixed subgroups within
the confirmed group (Table 6). The development of proper hybrid models for statistical
and ML algorithms might increase the power of DSPN prediction in future studies.

In previous studies, numerous predisposing factors have been associated with DSPN
in diabetic patients, particularly, duration of diabetes and HbA1c in T2DM patients [21,58];
moreover, old age, increased height, obesity, higher body mass index, poor glucose control,
alcohol abuse, smoking, hypertension, cardiovascular disease, low level of HDL, dys-
lipidemia, hypertriglyceridemia, and microalbuminuria have also been shown to be risk
factors in previous studies [18–21,58–61]. We found that the average values of numerous
laboratory datapoints during the follow-up period (serum glucose, IFCC, HbA1c, albumin,
and differential counts of lymphocytes and neutrophils) were important predisposing
factors, as were clinical data such as height and disease duration (Table 5). The albumin
has important antioxidant and anti-inflammatory properties, and the lower level of serum
albumin was associated with the prevalence of DSPN or peripheral nerve dysfunctions in
T2DM patients in previous studies [62,63] In our study, average value of HbA1c is the most
sensitive node of a decision tree among the influence features, and average differential
counts of lymphocytes and neutrophils are the second node (Figure 4c). Although there is
no standardized decision-making algorithm for DSPN diagnosis, HbA1c qualifies as an im-
portant diagnostic criterion for DPSN because HbA1c a major risk factor for microvascular
complications and closely associated with DSPN in T2DM [64] The neutrophil-lymphocyte
ratio is an inflammatory marker and an important factor that predicts cardiovascular dis-
ease [65] and foot ulcer infection [66] in diabetic patients. Neutrophil level was also the
most sensitive node for decision making of DPSN prediction in a previous study [67], and
higher neutrophil-lymphocyte ratio might be related to chronic inflammatory process and
increase the risk of DSPN [68].

In this study, we analyzed a small-sized sample, especially the probable group (n = 13),
which might cause problems for pattern recognition and poor accuracy [69]. Many studies
in the medical field often have only a small number of patients. In this study, we tried
to increase the accuracy by dividing the patients into ten groups for use as a test set and
a tenfold stratified cross validation set to compensate for the small sample size [31], but
a more accurate prediction might be achieved with a larger number of diabetic patients.
We further plan to perform ML analysis to predict various complications in diabetic
patients in a prospective multicenter study and develop an application attached to an
existing electronic health record system for easier transfer of patient data that can assist
in predicting complications in diabetic patients. In addition, it was difficult to use deep
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learning model because insufficient sample size can lead to overfitting. If sufficient data is
accumulated, it is possible to build deep learning model using time-series laboratory data
or to apply a method of transfer learning with DSPN patient using pre-trained models for
all diabetic patients.

5. Conclusions

In this study, we revealed that the ML algorithms, whose AUC values were superior
to logistic regression, can be applied to type 2 DM patients to predict DSPN and that the
classification depending only on clinical symptoms and signs of suspected DSPN was not
appropriate for the application of ML algorithms to develop prediction models. In addition,
ML algorithms cannot predict the type of electrophysiological features in DSPN, namely,
demyelinated and mixed subgroups. We concluded that ML techniques, especially RF, can
predict DSPN effectively when comparing the combination of the normal, possible, and
probable groups with the confirmed group of DM patients and that electrophysiological
analysis is important for identifying DSPN.
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Abstract: The urine albumin–creatinine ratio (uACR) is a warning for the deterioration of renal
function in type 2 diabetes (T2D). The early detection of ACR has become an important issue.
Multiple linear regression (MLR) has traditionally been used to explore the relationships between
risk factors and endpoints. Recently, machine learning (ML) methods have been widely applied in
medicine. In the present study, four ML methods were used to predict the uACR in a T2D cohort. We
hypothesized that (1) ML outperforms traditional MLR and (2) different ranks of the importance of the
risk factors will be obtained. A total of 1147 patients with T2D were followed up for four years. MLR,
classification and regression tree, random forest, stochastic gradient boosting, and eXtreme gradient
boosting methods were used. Our findings show that the prediction errors of the ML methods are
smaller than those of MLR, which indicates that ML is more accurate. The first six most important
factors were baseline creatinine level, systolic and diastolic blood pressure, glycated hemoglobin,
and fasting plasma glucose. In conclusion, ML might be more accurate in predicting uACR in a T2D
cohort than the traditional MLR, and the baseline creatinine level is the most important predictor,
which is followed by systolic and diastolic blood pressure, glycated hemoglobin, and fasting plasma
glucose in Chinese patients with T2D.

Keywords: type 2 diabetes; nephropathy; urine albumin-creatinine ratio; machine learning

1. Introduction

Type 2 diabetes (T2D) has become a growing global issue in recent decades. According
to the 2021 Atlas of the International Diabetes Federation, it is estimated that there are
5.37 billion patients worldwide, and this trend will further increase to 6.0 billion by 2045 [1].
Not surprisingly, a similar endemic was noted in Taiwan. According to the data bank of the
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National Health Insurance Company, the total number of diabetic patients increased from
1.32 million to 2.2 million within 10 years (2005 to 2014). This represents an astonishing 66%
increase [2]. It is now the 5th highest cause of death. In 2020, the cost spent on T2D was
over 10 billion USD, which is approximately 4.66% of the budget of the National Health
Insurance Company in one year. The accompanying complications, such as micro- and
macrovascular diseases, impose heavy burdens on individuals and their families, as well
as health providers and society [3,4]. It is important to note that this trend is particularly
prominent among people aged <40 and ≥80 years [5].

Among all the complications, diabetic nephropathy is the leading cause of chronic
kidney disease and end-stage renal disease (ESRD) [6], which are associated with high
morbidity and mortality rate. According to the annual report of the US Renal Data System,
Taiwan has the highest incidence (523 per million population) and prevalence of treated
ESRD requiring renal replacement therapy [7]. In 2019, there were 84,615 dialysis patients
and the National Health Insurance spent 1.54 billion, which is approximately 8.7–9.3% of
the annual budget [8,9]. Therefore, its early detection and prevention are urgently required.

It is well known that urine albumin–creatinine ratio (uACR) is a strong predictor
of the subsequent decline of the glomerular filtration rate in T2D, with an average of
0.93 mL per minute per month in approximately 35% of the subjects [10]. The underlying
pathophysiology is due to the increased glomerular pressure, which is independent of
hyperfiltration or hyperglycemia [11–13].

Traditionally, most studies have used multiple linear regression (MLR) to explore
the relationships between risk factors and outcomes (complications) in medical research.
Nevertheless, artificial intelligence using machine learning (ML), which enables machines
to learn from past data or experiences without being explicitly programmed, has now
become a new modality for data analysis that is competitive with MLR [14–16]. Because
ML can capture nonlinear relationships in data and complex interactions among multiple
predictors, it has the potential to outperform conventional MLR in disease prediction [17].

To our knowledge, only one study has attempted to predict the uACR in a T2D cohort.
Thus, in the present study, we applied four different ML methods and attempted to answer
the following questions in a diabetic cohort that was followed up for four years.

1. Compare the prediction accuracy between ML and traditional MLR.
2. Rank the importance of risk factors, such as demographic and biochemistry data.

2. Methods

2.1. Participant and Study Design

Data for this study were obtained from the diabetic outpatient clinic of the Cardinal
Tien Hospital in Taiwan from 2013 to 2019. This study is a prospective study, as we have
collected our patients from 2013 to 2016. We designated this cohort as the Cardinal Tien
Diabetes Study Cohort. Informed consent was obtained from all participants, and data
were collected anonymously. The study protocol was approved by the Institutional Review
Board of the hospital. In total, 1682 T2D patients were enrolled. After excluding subjects
with different causes, 1147 subjects remained for analysis (women: 608, men: 539), as
shown in Figure 1. They were followed up for 4 years. The following were the criteria for
inclusion: (1) type 2 diabetes; (2) age between 50 and 75 years; (3) body mass in the range
of 22–30 kg/m2; (4) glycated hemoglobin level between 6.5 and 10.5%; (5) the patients did
not undergo regular dialysis. A flowchart of participant selection is displayed in Figure 1.

On the day of the study, senior nursing staff recorded the subject’s medical history,
including information on any current medications, and a physical examination was per-
formed. The waist circumference was measured horizontally at the level of the natural waist.
The body mass index (BMI) was calculated as the participant’s body weight (kg) divided by
the square of the participant’s height (m). The systolic blood pressure (SBP) and diastolic
blood pressure (DBP) were measured using standard mercury sphygmomanometers on the
right arm of each subject while seated.
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Figure 1. Flowchart of sample selection from the Cardinal Tien Hospital Diabetes Study Cohort.

As previously published, the procedures for collecting demographic and biochemical
data are as follows [18]. After fasting for 10 h, blood samples were collected for biochemical
analyses. Plasma was separated from the blood within 1 h of collection and stored at 30 ◦C
until the analysis of fasting plasma glucose (FPG) and lipid profiles. FPG was measured
using the glucose oxidase method (YSI 203 glucose analyzer; Yellow Springs Instruments,
Yellow Springs, OH, USA). The total cholesterol and triglyceride (TG) levels were measured
using the dry multilayer analytical slide method with a Fuji Dri-Chem 3000 analyzer
(Fuji Photo Film, Tokyo, Japan). The serum high-density lipoprotein cholesterol (HDL-C)
and low-density lipoprotein cholesterol (LDL-C) concentrations were analyzed using an
enzymatic cholesterol assay, following dextran sulfate precipitation. A Beckman Coulter
AU 5800 biochemical analyzer was used to determine the urine ACR by turbidimetry.

Table 1 lists the definitions of the 15 baseline clinical variables (independent variables,
sex, age, BMI, duration of diabetes, smoking, alcohol use, FPG, glycated hemoglobin,
triglyceride, HDL-C, LDL-C, alanine aminotransferase, creatinine (Cr), SBP, and DBP) used
in this study. The uACR at the end of the follow-up was a numerical variable, which
was used as a dependent (target) variable, while the remaining 15 variables were used as
predictor variables in this study.
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Table 1. Variable definition.

Variables Description Unit

Sex Male/Female -

Age Patient age year

Body mass index Body mass index Kg/m2

Duration of diabetes Duration of diabetes year

Smoking No/Yes -

Alcohol No/Yes -

Baseline fasting plasma glucose Fasting plasma glucose baseline mg/dL

Baseline glycated hemoglobin HbA1c (Glycated hemoglobin) baseline %

Baseline triglyceride Triglyceride baseline mg/dL

Baseline high-density lipoprotein cholesterol High-density lipoprotein cholesterol baseline mg/dL

Baseline low-density lipoprotein cholesterol Low-density lipoprotein cholesterol baseline mg/dL

Baseline alanine aminotransferase baseline Alanine aminotransferase baseline U/L

Baseline creatinine Creatinine baseline mg/dL

Baseline systolic blood pressure Systolic blood pressure baseline mmHg

Baseline diastolic blood pressure Diastolic blood pressure baseline mmHg

uACR at the end of follow-up Urine albumin to creatinine ratio = albumin
(mg/dL)/urine creatinine (mg/dL) follow up 4 year mg/g

uACR: urine albumin–creatinine ratio.

2.2. Proposed Scheme

This research proposed a scheme based on four machine learning methods, namely
classification and regression tree (CART), random forest (RF), stochastic gradient boosting
(SGB), and eXtreme gradient boosting (XGBoost), to construct predictive models for predict-
ing diabetic uACR and to identify the importance of these risk factors. These ML methods
have been applied in various healthcare applications and do not have prior assumptions
regarding data distribution [19–28]. MLR was used as the benchmark for comparison.

The first method, CART, is a tree-structure method [29]. It is composed of root nodes,
branches, and leaf nodes that grow recursively based on the tree structures from the root
nodes and split at each node based on the Gini index to produce branches and leaf nodes
with the rule. Then, the pruning node in the overgrown tree for optimal tree size using the
cost-complexity criterion generates different decision rules to compose a complete structure
tree [30,31].

RF, the second method in this study, is an ensemble learning decision tree algorithm
that combines bootstrap resampling and bagging [32]. RF’s principle entails randomly
generating many different and unpruned CART decision trees, in which the decrease in
Gini impurity is regarded as the splitting criterion, and all generated trees are combined
into a forest. Then, all the trees in the forest are averaged or voted to generate output
probabilities and a final model that generates a robust model [33].

The third method, SGB, is a tree-based gradient boosting learning algorithm that
combines both bagging and boosting techniques to minimize the loss function to solve
the overfitting problem of traditional decision trees [34,35]. In SGB, many stochastic weak
learners of trees are sequentially generated through multiple iterations, in which each
tree concentrates on correcting or explaining errors of the tree generated in the previous
iteration, that is, the residual of the previous iteration tree is used as the input for the
newly generated tree. This iterative process is repeated until the convergence condition or a
stopping criterion is reached for the maximum number of iterations. Finally, the cumulative
results of many trees are used to determine the final robust model.
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XGBoost, the fourth method of this study, is a gradient boosting technology based on
an SGB optimized extension [36]. Its principle is to train many weak models sequentially
to ensemble them using the gradient boosting method of outputs, which achieves a better
prediction performance. In XGBoost, Taylor binomial expansion is used to approximate
the objective function and arbitrary differentiable loss functions to accelerate the model
construction convergence process [37]. Then, XGBoost applies a regularized boosting
technique to penalize the complexity of the model and correct overfitting, thus increasing
model accuracy [36].

A flowchart of the proposed prediction and important variable identification scheme
that combines the four ML methods is shown in Figure 2. First, patient data were collected
using the proposed method to prepare the dataset. The dataset was then randomly divided
into an 80% training dataset for model building and a 20% testing dataset for model
testing. In the training process, each ML method has its hyperparameters that must
be tuned to construct a relatively well-performed model. In this study, a 10-fold cross-
validation (CV) technique for hyperparameter tuning was used. The training dataset was
further randomly divided into a training dataset to build the model with a different set of
hyperparameters and a validation dataset for model validation. All possible combinations
of the hyperparameters were investigated using a grid search. The model with the lowest
root mean square error for the validation dataset was viewed as the best model for each
ML method. The best turned RF, SGB, CART, and XGBoost models were generated, and
the corresponding variable importance ranking information was obtained.

During the testing process, the testing dataset was used to evaluate the predictive
performance of the best RF, SGB, CART, and XGBoost models. As the target variable of the
models built in this study is a numerical variable, the metrics used for model performance
comparison are the mean absolute percentage error (MAPE), symmetric MAPE (SMAPE),
and relative absolute error (RAE), which are shown in Table 2.

Table 2. Equation of Performance Metrics.

Metrics Description Calculation

MAPE Mean Absolute Percentage Error MAPE = 1
n

n
∑

i=1

∣∣∣ yi−ŷi
yi

∣∣∣× 100

SMAPE Symmetric Mean Absolute Percentage Error SMAPE = 1
n

n
∑

i=1

|yi−ŷi |
(|yi |+|ŷi |)/2 × 100

RAE Relative Absolute Error RAE =

√
∑n

i=1(yi−ŷi)
2

∑n
i=1(yi)

2

where ŷi and yi represent predicted and actual values, respectively; n stands the number of instances.

To provide a more robust comparison, the training and testing processes mentioned
above were randomly repeated 10 times. The averaged metrics of the RF, SGB, CART, and
XGBoost models were used to compare the model performance of the benchmark MLR
model that used the same training and testing dataset as the ML methods. An ML model
with an average metric lower than that of MLR was considered a convincing model.

Because all of the ML methods used can produce the importance ranking of each
predictor variable, we defined that the priority demonstrated in each model ranked 1
as the most critical risk factor and 15 as the last selected risk factor. The different ML
methods may produce different variable importance rankings because they have different
modeling characteristics; therefore, we integrated the variable importance ranking of the
convincing ML models to enhance the stability and integrity of re-ranking the importance
of risk factors. In the final stage of the proposed scheme, we summarize and discuss our
significant findings regarding the convincing ML models and identify important variables.
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Figure 2. Proposed ML prediction scheme.
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In this study, all methods were performed using R software version 4.0.5 and RStudio
version 1.1.453 with the required packages installed (http://www.R-project.org, accessed
on 1 February 2022; https://www.rstudio.com/products/rstudio/, accessed on 1 February
2022). The implementations of RF, SGB, CART, and XGBoost were the “randomForest”
R package version 4.6-14 [38], “gbm” R package version 2.1.8 [39], “rpart” R package
version 4.1-15 [40], and “XGBoost” R package version 1.5.0.2, respectively [41]. In addition,
to estimate the best hyperparameter set for the developed effective CART, RF, SGB, and
XGBoost methods, the “caret” R package version 6.0–90 was used [42]. The MLR was
implemented using the “stats” R package version 4.0.5, and the default setting was used to
construct the models.

3. Results

A total of 1147 participants were enrolled in the study (men: 539, women: 608). The
demographic data are shown in Table 3 (mean ± standard deviation). The results of the
comparison between the traditional MLR and the four ML methods (i.e., RF, SGB, CART,
and XGBoost) in predicting diabetic uACR in a 4-year follow-up cohort are shown in Table 4.
From the table, it can be seen that all four ML methods yielded lower prediction errors
than the MLR method and were all convincing ML models. To determine whether the
four ML methods significantly outperformed the MLR method, the Wilcoxon signed-rank
test was used. The Wilcoxon signed-rank test is one of the most popular distribution-
free, non-parametric statistical tests for evaluating the performance of two prediction
models [43]. Table 5 shows the test results of the four ML methods and the MLR method.
It can be observed from the table that the prediction error values of all ML methods were
significantly different from those of the MLR method. Therefore, it can be determined
that the ML methods used in this study significantly outperformed traditional MLR in
predicting uACR at the end of the follow-up in terms of prediction error.

Table 3. Participant demographics.

Variables Mean ± SD N

Age 63.82 ± 11.49 1123
BMI 26.45 ± 3.95 1134
Duration of diabetes 14.13 ± 7.65 1137
Baseline fasting plasma glucose 149.84 ± 42.80 1146
Baseline glycated hemoglobin 7.74 ± 1.49 1140
Baseline triglyceride 142.99 ± 94.55 1144
Baseline high-density lipoprotein cholesterol 44.87 ± 12.00 845
Baseline low-density lipoprotein cholesterol 98.82 ± 27.73 1129
Baseline alanine aminotransferase baseline 29.38 ± 21.48 1134
Baseline creatinine 0.90 ± 0.37 1093
Baseline systolic blood pressure 131.13 ± 14.07 969
Baseline diastolic blood pressure 75.91 ± 11.66 969
uACR at the end of follow-up 195.30 ± 711.98 1147

N (%) N

Sex 1147
Male 608 (53.01%)
Female 539 (46.99%)

Smoking 716
No 430 (60.06%)
Yes 286 (39.94%)

Alcohol 789
No 715 (90.62%)
Yes 74 (9.38%)

BMI: body mass index. uACR: urine albumin–creatinine ratio.
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Table 4. The average performance of the MLR, RF, SGB, CART, and XGBoost methods.

MAPE SMAPE RAE

MLR 18.245 (4.79) 1.545 (0.04) 1.126 (0.17)
RF 16.174 (4.82) 1.266 (0.05) 1.072 (0.19)

SGB 14.850 (3.09) 1.522 (0.07) 1.040 (0.16)
CART 9.528 (1.76) 1.312 (0.06) 0.841 (0.10)

XGBoost 11.872 (2.80) 1.274 (0.06) 0.915 (0.11)
MLR: multiple linear regression; RF: random forest; SGB: stochastic gradient boosting; CART: classification and
regression tree; XGBoost: eXtreme gradient boosting; MAPE: mean absolute percentage error; SMAPE: symmetric
mean absolute percentage error; RAE: relative absolute error.

Table 5. Wilcoxon sign-rank test between four ML methods and MLR method.

RF SGB CART XGBoost

MLR 41.736 (0.001) ** 20.814 (0.001) ** 30.680 (0.001) ** 44.489 (0.001) **
The numbers in parentheses are the corresponding p-value; **: p < 0.05.

Table 6 presents the average importance ranking of each factor generated by the RF,
SGB, CART, and XGBoost methods. It can be observed from the figure that the different ML
methods generated different relative importance rankings for each factor. The darkness of
the blue color indicates the importance of risk factors. The darker the blue color, the more
important the risk factor. For instance, in the RF method, the first three important factors
were baseline Cr, age, and baseline SBP. The most important feature of the SGB method was
baseline Cr, which was followed by baseline HDL-C and baseline DBP. To fully integrate
the importance rankings of each factor in all the four ML methods, the average importance
ranking of each risk factor was obtained by averaging the ranking values of each variable
in each method.

Table 6. Importance ranking of each risk factor using the four convincing methods.

Variables RF SGB CART XGBoost Average

Sex 11.3 14.9 15.0 13.7 13.7

Age 4.8 9.0 9.5 5.4 7.2

Body mass index 14.9 11.8 12.0 9.8 12.1

Duration of diabetes 8.8 7.0 10.7 8.4 8.7 Rank value

Smoking 10.8 14.4 15.0 14.7 13.7 1.0~1.4

Alcohol 11.6 13.6 15.0 14.6 13.7 1.5~2.4

Baseline fasting plasma glucose 5.4 6.3 10.9 5.3 7.0 2.5~3.4

Baseline glycated hemoglobin 5.8 5.0 10.3 6.1 6.8 3.5~4.4

Baseline triglyceride 11.9 10.2 12.7 13.1 12.0 4.5~5.4

Baseline high-density lipoprotein cholesterol 7.7 2.8 5.8 6.8 5.8 5.5~

Baseline low-density lipoprotein cholesterol 5.8 10.9 11.2 7.5 8.9

Baseline alanine aminotransferase baseline 9.6 8.3 12.4 12.6 10.7

Baseline creatinine 1.3 1.1 1.8 1.1 1.3

Baseline systolic blood pressure 5.0 4.9 4.3 3.9 4.5

Baseline diastolic blood pressure 5.3 4.1 4.1 4.7 4.6

Note: Different blue colors indicate different rank values of risk factors. The darker the blue color, the more
important the risk factor.

Figure 3 depicts the risk factors based on the increasing order of the averaged ranking
values. It can be noted from the figure that the first six important risk factors in predicting
diabetic uACR in a 4-year follow-up cohort are baseline Cr, baseline SBP, baseline DBP,
baseline HDL-C, baseline glycated hemoglobin, and baseline FPG.
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Figure 3. Integrated importance ranking of all risk factors. Note: The darker color indicates the first
six important risk factors of this study.

4. Discussion

As mentioned in the Introduction, the present study has two goals. The first was to
compare the accuracy between ML methods and MLR, and the second was to identify
the rank of different risk factors for predicting uACR. Our study showed that all four ML
methods outperformed the MLR. We also found that baseline Cr, blood pressure, HDL-C,
glycated hemoglobin, and FPG were the most important factors.

Traditionally, MLR has been widely used to analyze medical research to deal with
continuous variables. However, it is difficult to describe the nonlinear data patterns of
MLR, and the effective use of MLR requires fitting its strong assumptions during modeling.
Unlike MLR, ML does not require strong model assumptions and can capture the delicate
underlying nonlinear relationships contained in empirical data [19]. Our present data
showed that all four ML methods are superior to MLR because the MAPE and RAE of the
ML methods all have lower values (Table 4). Our results suggest that ML might have a
great potential for medical studies and applications.

Because diabetic nephropathy causes a serious burden on individuals and consumes
a large portion of the government health budget, extensive studies have focused on this
topic [6,44–47]. From these previous studies, it could be concluded that sex, high blood
glucose and blood pressure, smoking, dyslipidemia, decreased glomerular filtration rate,
BMI, and uACR are common risk factors for future uACR. However, in the present study,
our data showed that baseline Cr, DBP, SBP, HDL-C, glycated hemoglobin, and FPG were
the most important risks. Additionally, the roles of diabetes duration, glycated hemoglobin,
BMI, HDL-cholesterol, triglyceride, sex, smoking, and alcohol use were less important.

Our data suggest that the most important predictor of albuminuria is baseline Cr.
This is not surprising because albuminuria occurs early in the course of diabetic nephropa-
thy [48]. According to the majority of previous studies, a summary of this relationship
could be depicted as follows: diabetic patients with albuminuria are at a higher risk of
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end-stage renal and cardiovascular diseases [49,50]. This indicates that albuminuria is the
cause of end-stage renal disease, which differs from the findings of the present study. Our
results show that an increase in serum Cr level could predict albuminuria four years later,
which is an opposite cause–effect relationship to the majority of the other studies. However,
our finding can be supported by the cornerstone study conducted by Gansevoort et al. [51].
This meta-analysis clearly showed that there are independent, continuous, and negative
associations between serum Cr and albuminuria. Thus, it could be postulated that each of
these factors could affect the other at the same time. Further research is required to explore
this area.

Both diastolic and systolic blood pressures were identified as the second and third
important factors for predicting albuminuria. Their relationships are well known and have
been extensively studied [52]. Similar to the role of increased serum Cr levels, kidney
disease causes an increase in BP, which could further deteriorate renal function. More
specifically, the change in BP is in concordance with and even precedes albuminuria [53]. By
controlling BP, the speed of end-stage renal disease progression can be slowed down [54].

Interestingly, HDL cholesterol level was the only lipid found to be correlated with
albuminuria. However, few studies have focused on this topic. Most previous studies
have demonstrated that different stages of diabetic kidney disease (DKD) have different
influences on blood lipid levels [55,56]. Other studies measured apolipoproteins and
the size of LDL-cholesterol, which all showed positive correlations with DKD, including
albuminuria [57]. To our knowledge, only two studies are relatively close to the present
findings. The first study was performed by Sacks et al. In a group of 2535 T2D patients, they
evaluated the impact of HDL-C levels on uACR. Furthermore, kidney disease was defined
as albuminuria, proteinuria, or decreased eGFR. The data showed that the odds ratio of
having kidney disease decreased by 0.86 (0.82–0.91) for every 0.2 mmol/L (approximately
1 quintile) increase in HDL-C [58]. The second study was conducted on a cohort of 524
Chinese patients. Using multiple logistic regression, after adjusting for the available
confounding factors, they suggested that subjects with the highest quartile HDL-C had a
lower odds ratio (OR = 0.17, 95% confidence interval 0.15–0.52) of having uACR than the
lowest quartile. However, a limitation of this study was that it was cross-sectional. Thus,
it was unable to infer the causation or directionality of this relationship [59]. This study
responds to this limitation in its longitudinal design. The causative influence of HDL-C level
can be explained by several assumptions. First, the glomerular and renal tubules could be
injured by impaired HDL-C function, which hinders the reversal of the cholesterol transport
process [60]. Second, the antioxidative ability of the HDL-C is reduced and oxidative stress
is increased, which further influences the immune-mediated diabetic nephropathy [61].
Finally, it is well known that low HDL-C levels are associated with insulin resistance,
hyperinsulinemia, and hyperglycemia. All these untoward derangements can damage
endothelial cells in the glomerulus [62,63].

The last two factors affecting albuminuria are glycated hemoglobin and FPG levels.
This finding is compatible with the results of the Diabetes Control and Complication Trial
(DCCT) [64]. The data showed positive relationships between glucose control and albumin-
uria. Moreover, after controlling for blood glucose levels, albuminuria also improved [65].
Because DCCT enrolled patients with type 1 diabetes, its pathophysiology is different
from that of the present study. Regarding T2D, few studies have been conducted in this
area. A comprehensive meta-analysis conducted by Lo et al. [66] showed that for intensive
control (glycated hemoglobin < 7% and FPG < 6.6 mmol/L), the relative risk of having
uACR was 0.59 (confidence interval: 0.38–0.93). As this study enrolled 11 studies (29,141
subjects) and follow-ups were conducted for an average of 56.7 months, their conclusion
is convincing. The underlying pathophysiology to support this result is that high blood
glucose concentration could involve mesangial cell damage in nephrons [67]. However,
it is worth noting that both A1c and FPG were classified as important predictors. This
might indicate that because FPG is only one blood glucose measurement within 90 days
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compared to A1c, it is less accurate than A1c. Our results show that they are ‘independent’
of each other.

Interestingly, in the present study, the duration of diabetes, body mass index, sex,
smoking, and alcohol use were less important. This finding could be attributed to the
nature of the ML. ML methods are data-driven, non-parametric models. They can map
any nonlinear function without an a priori assumption about the properties of the data
and have the ability to capture subtle functional relationships among the empirical data,
even though the underlying relationships are unknown or difficult to describe [68–70].
These factors may contain richer linear pattern information and less important nonlinear
information than baseline creatinine, blood pressure, albuminuria level, and age. Thus,
they were ranked as less important risk factors using ML methods.

This study had some limitations. First, the smoking and alcohol details need to be more
defined because some other reports have shown that they have an important impact on the
occurrence of diabetic nephropathy. Second, we did not collect information on the use of
angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, sodium-glucose
cotransporter 2 inhibitors, and glucagon-like peptide-1 agonists. All these medications
would have beneficial effects on DKD. Third, some of the data, such as uACR and blood
pressure, were collected only once. For some of the participants, we did have data more
than once. However, because the number is less than the present number, we still chose
to enroll subjects with only one value. Even though these drawbacks do exist, our large
n number and the characteristics of ML (alleviating the effects of extremes) could at least
partially adjust.

5. Conclusions

ML might be more accurate in predicting uACR in T2D than the traditional MLR,
and the baseline creatinine level is the most important factor to predict uACR in a T2D
cohort, which is followed by systolic and diastolic blood pressure, glycated hemoglobin,
and fasting plasma glucose.
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Abstract: Background: Patients with diabetes mellitus (DM) are known to show poor recovery after
stroke. This specific burden might be due to acute and chronic hyperglycemic effects. Meanwhile,
the underlying mechanisms are a cause of discussion, and the best measure to predict the outcome
is unclear. Skin autofluorescence (SAF) reflects the in-patient load of so-called advanced glycation
end products (AGEs) beyond HbA1c and represents a valid and quickly accessible marker of chronic
hyperglycemia. We investigated the predictive potential of SAF in comparison to HbA1c and acute
hyperglycemia on the functional outcome at 90 days after ischemic stroke in a cohort of patients
with DM. Methods: We prospectively included 113 patients with DM type 2 hospitalized for acute
ischemic stroke. SAF was measured on each patient’s forearm by a mobile AGE-Reader mu© in
arbitrary units. HbA1c and the area under the curve (AUC) of the blood sugar profile after admission
were assessed. Functional outcome was assessed via phone interview after 90 days. A poor outcome
was defined as a deterioration to a modified Rankin Scale score ≥ 3. A good outcome was defined
as a modified Rankin Scale score < 3 or as no deterioration from premorbid level. Results: Patients
with a poor outcome presented with higher values of SAF (mean 3.38 (SD 0.55)) than patients with a
good outcome (mean 3.13 (SD 0.61), p = 0.023), but did not differ in HbA1c and acute glycemia. In
logistic regression analysis, age (p = 0.021, OR 1.24 [1.12–1.37]) and SAF (p = 0.021, OR 2.74 [1.16–6.46])
significantly predicted a poor outcome, whereas HbA1c and acute glycemia did not. Patients with
a poor 90-day outcome and higher SAF experienced more infections (4.2% vs. 33.3% (p < 0.01))
and other various in-hospital complications (21.0% vs. 66.7% (p < 0.01)) than patients with a good
outcome and lower SAF levels. Conclusions: SAF offers an insight into glycemic memory and appears
to be a significant predictor of poor stroke outcomes in patients with DM exceeding HbA1c and acute
glycemia. Measuring SAF could be useful to identify specifically vulnerable patients at high risk of
complications and poor outcomes.

Keywords: stroke outcome; diabetes mellitus; hyperglycemia; skin autofluorescence; advanced
glycation end products; poststroke complications

1. Introduction

Around 30% of patients in ischemic stroke care suffer from diabetes mellitus (DM).
Concomitantly, due to acute and chronic hyperglycemic effects, patients with DM show
poor recovery after stroke [1]. HbA1c from nonenzymatic glycation of hemoglobin repre-
sents the best-established marker of chronic hyperglycemia regarding the last three months.
Meanwhile, different long-lasting molecules underlie similar transformations and form the
group of advanced glycation end products (AGEs), also known as glycemic memory [2].
Skin autofluorescence (SAF) represents a valid, quick and noninvasive approach to measure
AGEs in vivo [3] and is a marker of vasculopathy in DM type 2 [4]. We aimed to investigate
the predictive potential of SAF as a surrogate of long-term hyperglycemia in comparison to
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HbA1c as marker of intermediate glycemia and acute hyperglycemia on stroke outcome in
a cohort of patients with DM.

2. Materials and Methods

From December 2018 to September 2020, patients were prospectively recruited at the
University Hospital of Mannheim, Germany. Our assessments were based on the most
prevalent scoring scales in stroke medicine [5]. The modified Rankin scale (mRS) is a
7-item scale indicating functional dependency. A score of 0 is considered no disability,
5 is disability requiring constant care for all needs and 6 is death. A score of more than
2 is the hallmark of functional dependency. The Barthel Index (BI) is a scale used to
measure performance in activities of daily living according to 10 different variables. The
National Institutes of Health Stroke Scale (NIHSS) is a 15-item neurologic examination
scale evaluating the effect of cerebral infarction on the levels of consciousness, language,
neglect, visual field, extraocular movement, motor strength, ataxia, dysarthria and sensory
loss. We included adult patients with known DM type 2 or HbA1c ≥ 6.5% at admission
hospitalized for ischemic stroke (according to World Health Organisation definition [6])
presenting within 3 days after symptom onset with a persistent deficit ((mRS) score ≥ 1).
Written consent was obtained from the patient or their legal representative. Patients
necessitating hemodialysis were excluded [7]. SAF was measured bedside on the patient’s
volar forearm by a mobile AGE-Reader mu© (DiagnOptics Technologies B.V., Groningen,
The Netherlands). According to usage instructions, the patient placed their volar forearm on
the measurement window where light was radiated on the previously degreased skin. The
reflected light was registered to measure SAF that was displayed within 12 s in arbitrary
units (AU) (for validation study and technical details, see Meerwaldt et al., 2004 and
2005 [8,9]). Three measurements were performed bedside with a slight change in the
forearm’s position. The mean value was calculated for further analysis as intraindividual
variance in same-day measurement ranges around 5% according to reference data [8]
without relevant postprandial changes [10]. A routine blood analysis included HbA1c.
From routine capillary blood sugar profiling, we calculated the area under the curve (AUC)
in mg/mL × 24 h, representing acute glycemia with respect to the first two days after
admission, standardized in 24 h. Insulin was administered after blood sugar measuring,
as clinically required. Baseline parameters from medical history including preexisting
functional deficit (pre-mRS) were registered, as well as severity of stroke by NIHSS. If
indicated, acute revascularization therapy was performed according to local standards.
We recorded in-hospital complications such as (symptomatic) intracranial hemorrhage ((S)
ICH) [11] in follow-up cranial imaging, as well as infectious complications [12]. Other
complications (recurrent stroke, epileptic seizures, delirium, acute renal failure, thrombosis,
pulmonary embolism, myocardial infarction and others) were recorded if they required
diagnostic or therapeutic measures. For follow-up, we performed a phone interview after
90 (±3) days poststroke and determined mRS and BI. A poor functional outcome whilst
taking into account prior deficit was defined as a deterioration from premorbid mRS to
mRS ≥ 3 at 90 days poststroke. A good outcome was defined as a mRS < 3 or as no
deterioration from premorbid mRS.

Statistical analysis was performed with SPSS® 27.0 (IBM, Armonk, New York, NY, USA).
p values < 0.05 were considered statistically significant. We compared baseline and clinical
characteristics, in-hospital complications and 90 days of BI between patients with a poor
and a good 90-day outcome. Intergroup differences were assessed using t-test for metric
variables, Mann–Whitney U test for ordinal variables and Chi2 test/Fisher’s exact test for
categorical variables as appropriate. We further performed a multiple logistic regression
analysis, including the preliminarily defined predictors SAF, HbA1c and AUC as glycemic
variables adjusted for age and NIHSS at admission as the strongest known predictors of a
poor 90-day outcome [13].
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3. Results

A total of 113 patients (mean age 71.4 years, SD 10.29; 59.3% male) were included.
There was no significant correlation either between SAF and HbA1c (Pearson’s correlation
coefficient, r = 0.02) or between SAF and age (r = 0.17). Furthermore, we did not find a
correlation between NIHSS at admission and either glucose at admission (Spearman’s rank
correlation coefficient, ρ = 0.041) or glycemic AUC (ρ = 0.029). After three months, we were
unable to follow up on six patients (5.3%). The premorbid deficit was low in our cohort:
before the index stroke, 86.7% of the patients were functionally independent, as indicated
by mRS ≤ 2. On day 90, this was the case for only 52.3% (see Figure 1). Additionally,
90 days poststroke, 62 (57.9%) patients showed a good outcome, while 45 (42.1%) showed a
poor outcome according to our definition.

Figure 1. Shift in functional outcome after 90 days: premorbid modified Rankin scale (Pre-mRS;
n = 113), modified Rankin Scale on day 90 (90 d-mRS; n = 107).

When comparing patients with good versus poor outcome, (see in Table 1) patients with
poor outcomes were older (mean age 69.0 years (SD 9.57) vs. 76.3 years (SD 9.10), p < 0.001)
and had a higher level of premorbid functional deficit (pre-mRS: median 0 (IQR 0; 0) vs.
1 (IQR 0; 3), p < 0.001; pre-BI: median 100 (IQR 100; 100) vs. 100 (IQR 85; 100), p < 0.001).
Male patients were more likely to achieve a good outcome (72.6% vs. 40.0%, p < 0.001).
Patients with a poor outcome exhibited more often known macrovascular disease (32.3%
vs. 60.0%, p = 0.004) and renal failure (29.0% vs. 48.9%, p = 0.036) and were more often
under antithrombotic treatment (27.4% vs. 48.9%, p = 0.023). Instead, patients with a
good outcome were more often under a combination of basal insulin and oral antidiabetic
treatment (BOT) (27.4% vs. 4.4%, p = 0.002). Considering stroke characteristics, patients
with a good outcome showed more frequently infratententorial strokes (30.6% vs. 11.1%,
p = 0.017). There was no difference considering stroke outcome and stroke etiology in
our cohort.

Table 1. Baseline characteristics.

Population
Good Outcome

(90 d mRS < 3 or No
Deterioration)

Poor Outcome
(90 d mRs ≥ 3 and

Deterioration)
p

n 62 45

Age, mean (sd) [years] 69.0 (9.57) 76.3 (9.10) <0.001 *
Male, n (%) 45 (72.6) 18 (40.0) 0.001 *

Premorbid-mRS, median (IQR) 0 (0; 0) 1 (0; 3) <0.001 *
Premorbid-BI, median (IQR) 100(100; 100) 100 (85; 100) <0.001 *
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Table 1. Cont.

Population
Good Outcome

(90 d mRS < 3 or No
Deterioration)

Poor Outcome
(90 d mRs ≥ 3 and

Deterioration)
p

Risk factors
Hypertension, n (%) 54 (87.1) 40 (88.9) 0.779

Hyperlipidemia, n (%) 20 (32.3) 21 (46.7) 0.130
Atrial fibrillation, n (%) 13 (21.0) 17 (37.8) 0.056

Macrovascular disease, n (%) 20 (32.3) 27 (60.0) 0.004 *
Renal failure, n (%) 18 (29.0) 22 (48.9) 0.036 *

Previous stroke, n (%) 10 (16.1) 7 (15.6) 0.936
Smoking, n (%) 11 (17.7) 4 (8.9) 0.263

Alcohol abuse, n (%) 3 (4.8) 1 (2.2) 0.637

Premedication
Oral anticoagulation, n (%) 10 (16.1) 7 (15.6) 0.936
Antithrombotic agent, n (%) 17 (27.4) 22 (48.9) 0.023 *

Statin, n (%) 28 (45.2) 27 (60.0) 0.130
Antihypertensive medication, n (%) 46 (74.2) 39 (86.7) 0.115

BOT, n (%) 17 (27.4) 2 (4.4) 0.002 *
Insulin, n (%) 22 (35.5) 14 (31.1) 0.637

Oral antidiabetic, n (%) 45 (72.6) 25 (55.6) 0.068

Glycemia
SAF, mean (sd) [AU] 3.13 (0.61) 3.38 (0.55) 0.023 *

AUC, mean (sd) [mg/(mL × 24 h)] 40.38 (10.58) 41.49 (14.16) 0.647
HbA1c, mean (sd) [%] 7.57 (1.29) 7.67 (1.58) 0.718

Admission variables
NIHSS, median (IQR) 4 (2; 6) 10 (5; 16) <0.001 *

Systolic blood pressure, mean (sd) [mmHg] 170.51 (32.35) 163.81 (24.48) 0.285
Plasma glucose, mean (sd) [mg/dL] 191.2 (65.01) 197.84 (79.48) 0.637

Acute revasculating therapy, n (%) 21 (33.9) 25 (55.6) 0.025 *

Intravenous thrombolysis, n (%) 19 (30.6) 20 (44.4) 0.143

Mechanical thrombectomy, n (%) 6 (9.7) 11 (24.4) 0.039

Complications in stay
ICH, n (%) 13 (21.0) 11 (24.4) 0.670

SICH, n (%) 0 (0.0) 1 (2.2) 0.421
Poststroke infection, n (%) 3 (4.8) 15 (33.3) <0.001 *

Death, n (%) 0 (0.0) 4 (8.9) 0.029 *
Other complications, n (%) 13 (21.0) 30 (66.7) <0.001 *

90 d Outcome
90 d mRS, median (IQR) 1 (0; 2) 4 (3; 5) <0.001 *

90 d Barthel, median (IQR) 100 (100; 100) 35 (0; 65) <0.001 *

Stroke characteristics
Supratentorial, n (%) 48 (77.4) 40 (88.9) 0.125
Infratentorial, n (%) 19 (30.6) 5 (11.1) 0.017

Supratent. and Infratent., n (%) 6 (9.7) 0 (0.0) 0.039
Large artery disease, n (%) 6 (9.7) 9 (20.0) 0.129
Small artery disease, n (%) 15 (24.2) 10 (22.2) 0.812
Proximal embolism, n (%) 41 (66.1) 28 (62.2) 0.677

p-values < 0.005 are considered statistically significant; * significant, (%) percentage of outcome quality, day (d),
number (n), skin autofluorescence (SAF), arbitrary unit (AU), basal insulin and oral antidiabetic treatment (BOT),
area under the curve (AUC), modified Rankin Scale (mRS), National Institutes of Health Stroke Scale (NIHSS),
Barthel Index (BI), intracerebral hemorrhage (ICH), symptomatic intracerebral hemorrhage (SICH), standard
deviation (SD), interquartile range (IQR).

Considering the severity of stroke, patients with a poor outcome showed higher
NIHSS scores at admission (median 10 (IQR 5; 16) vs. median 4 (IQR 2; 6), p < 0.001), and
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they received more frequently revascularization therapy (55.6% vs. 33.9%, p = 0.025). There
was no significant group difference concerning intravenous thrombolysis, but a higher
frequency of mechanical thrombectomy in patients with poor outcome (24.4% vs. 9.7%,
p = 0.039). Complications during the hospital stay did not differ between patients with
poor outcome and good outcome in terms of hemorrhagic complications, whereas the
rate of intracerebral hemorrhage was generally low in our sample. Poststroke infection
occurred more often in patients with poor outcome (33.3% vs. 4.8%, p < 0.001) as well as
other complications during hospital care (66.7% vs. 21.0%, p < 0.001). The total in-patient
mortality rate amounted to 3.5%. Among patients with a poor outcome, 8.9% died during
the initial hospital stay.

Patients with a poor versus good outcome did not differ in admission glucose, in
glycemic AUC, or in HbA1c. However, patients with a poor outcome showed higher SAF
(mean 3.13 (SD 0.61) vs. mean 3.38 (SD 0.55), p = 0.023) (see Figure 2).

Figure 2. Differences in glycemic variables according to 90-day outcome: mean and standard
deviation of SAF, HbA1c and AUC. * Significant difference, skin autofluorescence (SAF), area under
the curve (AUC), arbitrary units (AU).

Logistic regression analysis revealed rising age (p = 0.021; odds ratio (OR) 1.07 [1.01–1.12])
and rising NIHSS at admission (p < 0.001, OR 1.24 [1.12–1.37]) as predictors being significantly
associated with a poor outcome. Regarding glycemic variables, rising SAF turned out to be
significantly associated with a poor outcome (p = 0.021, OR 2.74 [1.16–6.46]). Meanwhile,
HbA1c and AUC did not add significant prediction to the model (see in Table 2).

Table 2. Predictors of outcome.

Predictor p OR [CI]

Age [years] 0.021 * 1.07 [1.01–1.12]
NIHSS [/] <0.001 * 1.24 [1.12–1.37]
HbA1c [%] 0.520 -

AUC [mg/mL × 24 h] 0.397 -
SAF [AU] 0.021 * 2.74 [1.16–6.46]

p-values < 0.05 are considered statistically significant; * significant; OR: odds ratio; CI: confidence interval, skin
autofluorescence (SAF), area under the curve (AUC), National Institutes of Health Stroke Scale (NIHSS).

4. Discussion

The mechanisms mediating poor stroke outcome in patients with DM might consist of
acute and chronic hyperglycemic effects, although the best measure of hyperglycemia to
predict outcome is largely unknown [1].
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4.1. Troubled Water: Acute Hyperglycemia

Patients with DM are specifically prone to stress hyperglycemia in the context of a
severe illness such as stroke [14]. Acute hyperglycemia has been associated with poor
stroke outcome, as it was supposed to drive ischemic damage [15]. On the other hand,
interventions with aggressive insulin therapy in acute stroke care were not beneficial [16,17].
So, given a connection between hyperglycemia and poor outcome, cause and effect are not
clearly attributable. Most prior studies investigating the impact of acute hyperglycemia
on stroke outcome have referred to admission glucose and used different arbitrary cut-off
values to define hyperglycemia [18]. In this regard, Fuentes et al., (2009) performed blood
sugar profiling for 48 h postadmission and confirmed hyperglycemia exceeding 155 mg/dL
to be a significant predictor of a poor outcome. In our study, we did not focus on a cut-off
value, as we expected expansive glycemic variations in our cohort. In an attempt to meet
and objectify the glycemic ups and downs as a dynamic value, we operationalized acute
glycemia as the AUC of the blood sugar profile postadmission. Interestingly, patients with
a poor and a good outcome did not differ in acute glycemia, neither in admission glucose
nor in glycemic AUC. Additionally, AUC was not significantly associated with a poor
outcome in logistic regression analysis. In our cohort, neither admission glucose nor AUC
correlated with the NIHSS at admission. Accordingly, our data do not support the theory
of hyperglycemic derailment in the context of severe stroke in patients with DM. It must be
considered that revascularization therapy can result in a reversal of initially severe stroke
symptoms. Nevertheless, in our cohort, patients with a poor outcome more frequently
underwent acute therapy and thrombectomy, implying only moderate success. On the
other hand, in lacunar stroke, mild hyperglycemia might be even favorable [19]. However,
according to our results, we cannot attribute a poor stroke outcome to acute hyperglycemia.

4.2. The Foot of the Iceberg: Chronic Hyperglycemia

Meanwhile pre-stroke glycemic control might predict stroke outcome [20–23]. In our
study, patients with good and poor outcomes differed only in SAF regarding glycemic
variables, and SAF was the only glycemic predictor significantly associated with a poor
outcome, even when adjusting for age and NIHSS. An increase in SAF in one AU was
associated with an approximately three-fold risk of a poor outcome on day 90 (OR 2.74).
The SAF values we measured lay slightly above the range of age-adapted reference values
for patients with DM [4], reflecting the specific vascular risk in our cohort of acute stroke
patients. We deduce that SAF reflecting long-term glycemic control is supposed to have a
higher impact on stroke outcome than HbA1c or acute glycemia. Possible mechanisms by
which chronic hyperglycemia affects stroke outcome include preexisting vascular damage
on the macro- and microvascular level impairing collateral flow. Regarding the molecular
level, accumulated AGEs are supposed to mediate a self-perpetuating chronic vascular
inflammation [24], mainly by interaction with their receptor RAGE (receptor for advanced
glycation end products), leading to endothelial dysfunction and arterial stiffness [25],
hypercoagulation, diminished fibrinolysis and vasoconstriction [26]. An excess of AGE-
RAGE interaction-related downstream inflammatory markers is likely to increase poststroke
inflammation, which is known to increase ischemic damage within the brain but also leads
to systemic effects such as cardiac injury [27]. This effect seems to be most important
in cardioembolic stroke, which was the most frequent subtype in our sample without
having a statistical effect on outcome, likely due to a limited sample size. Additionally,
AGE-RAGE-mediated effects may promote ICH by blood–brain-barrier disruptions [28]
and may increase susceptibility to infectious complications [29]. In our sample, patients
with a poor outcome and with higher SAF levels showed more infectious [30] and other in-
hospital complications, which are known to impair long-term outcome poststroke [13] on a
sensorimotor but also on a cognitive level, especially when combined with renal failure [31].
It seems reasonable that patients with a good outcome and lower SAF benefitted from
a better long-term metabolic control prior to the index stroke. Our cohort reflects this
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point, as patients with a good outcome were more often under BOT, implying a more
sophisticated antidiabetic treatment.

We can assume that SAF offers an insight to the extent of the diabetic burden being
predictive for stroke outcome in DM, and HbA1c remains the “tip of the iceberg”.

5. Limitations

This was a monocentric study in a local urban population, and a certain selection bias
concerning standards of acute stroke treatment and further rehabilitation can be expected.
The limited number of included patients a priori impeded an exhaustive prediction model
with respect to additional potential predictors. The follow-up interviewer was not blinded
for glycemic values, allowing a certain rater bias. The measuring of acute glycemia was
not continuous but based on blood sugar profile. Still, we found SAF to have the highest
predictive value on stroke outcome amongst glycemic variables when controlling for age
and severity of stroke. An unexpected finding from our cohort was an important sex-
dependent difference in stroke outcome. A possible explanation could be higher age and
higher premorbid dependency in female patients [32].

6. Conclusions and Future Perspectives

According to our results, SAF, representing long-term glycemic memory, is a signif-
icant predictor of a poor functional outcome after ischemic stroke in patients with DM
and exceeds HbA1c and acute hyperglycemia in its predictive value. SAF might be a
useful tool to identify patients at high risk of complications and poor outcome requiring
special attention (for example, preventive antibiotics, prolonged monitoring, adapted an-
tithrombotic treatment). Our study must be considered preliminary. Larger neurovascular
patient populations need to be investigated for SAF in the form of registries to create a
more exhaustive prediction model and to establish a sensitive and specific cut-off value to
distinguish patients at high risk of a poor outcome.

Regarding potential specific therapeutic interventions in the context of acute stroke, it
might not be possible to reverse the weight of an iceberg that has accumulated over the
years. However, to remain with the allegory, investigating water for potentially assailable
key point biomarkers along the RAGE axis could offer future opportunities. For example,
soluble RAGE showed a promising ability to counterbalance endothelial dysfunction in a
mouse model in the short term [33]. Along these lines, future research is needed.
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Abstract: Cardiac fibrosis is the basis of structural and functional disorders in patients with diabetes
mellitus (T2DM). A wide range of laboratory and instrumental methods is used for its prediction.
The study aimed to identify simple predictors of cardiac fibrosis in patients with T2DM based on the
analysis of circulating fibrosis biomarkers and arterial stiffness. The study included patients with
T2DM (n = 37) and cardiovascular risk factors (RF, n = 27) who underwent ECHO, cardiac magnetic
resonance imaging (MRI), pulse wave analysis (PWV), reactive hyperemia (RH), peripheral arterial
tonometry, carotid ultrasonography, and assessment of serum fibrosis biomarkers. As a control group,
15 healthy subjects were examined. Left ventricular concentric hypertrophy was accompanied by
an increased serum galectin-3 level in T2DM patients. There was a relationship between the PICP
and HbA1c levels in both main groups (R2 = 0.309; p = 0.014). A negative correlation between PICP
level and the global longitudinal strain (GLS) was found (r = −0.467; p = 0.004). The RH index
had a negative correlation with the duration of diabetes (r = −0.356; p = 0.03), the carotid-femoral
PWV (r = −0.371; p = 0.024), and the carotid intima-media thickness (r = −0.622; p < 0.001). The
late gadolinium-enhanced (LGE) cardiac MRI was detected in 22 (59.5%) T2DM and in 4 (14.85%)
RF patients. Diabetes, its baseline treatment with metformin, HbA1c and serum TIMP-1 levels, and
left ventricle hypertrophy had moderate positive correlations with LGE findings (p < 0.05). Using
the multivariate regression analysis, increased TIMP-1 level was identified as an independent factor
associated with cardiac fibrosis.

Keywords: cardiac fibrosis; diabetes mellitus; pulse wave velocity

1. Introduction

Cardiovascular (CV) complications remain the leading cause of premature death and
disability in type 2 diabetes mellitus (T2DM) [1]. According to the population-based studies,
patients with T2DM have a 2–5-fold increased CV risk when combined with traditional risk
factors such as hypertension, dyslipidemia, advanced age, obesity, and smoking [2]. At the
same time, obesity is among the strongest predictors of T2DM development. T2DM pro-
motes pro-inflammatory and prothrombotic signaling, resulting in endothelial dysfunction
and atherogenesis acceleration associated with CV events [3].

Heart failure seems to become one of the most prevalent and serious T2DM conse-
quences, being considered either manifestation of diabetic cardiomyopathy or macrovascu-
lar ischemic heart disease or both [4]. Left ventricular (LV) hypertrophy with myocardial
fibrosis is a typical sign of diabetic cardiomyopathy. Echocardiographic (ECHO) parameters
of LV diastolic function and global longitudinal strain (GLS) are widely used as nonspecific
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surrogate markers of myocardial fibrosis in clinical practice [5,6]. Unlike ECHO as a screen-
ing tool for functional LV assessment, cardiac magnetic resonance imaging (MRI) is a robust
non-invasive method for myocardial fibrosis detection and quantification. Despite cardiac
MRI’s potential benefits, its real implementation is limited by low availability and high
cost [7]. Plasma-circulating biomarkers are also widely used for indirect cardiac fibrosis
assessment; however, their diagnostic value is still a matter of debate [8,9]. T2DM is one of
the major determinants of accelerated arterial stiffening along with hypertension and age.
It is suggested that cardiac fibrosis in T2DM patients is associated with increased arterial
wall stiffness as well. The increased arterial stiffness has been shown significantly impact
LV afterload and, therefore, is crucial for the development of heart failure with preserved
ejection fraction (HFpEF) [10,11].

The elaboration of non-invasive markers predicting cardiac fibrosis is of essential
importance since fibrosis is strongly associated with CV events and may require more
aggressive treatment.

The present study aimed at identifying simple predictors of cardiac fibrosis in patients
with T2DM based on the analysis of circulating fibrosis biomarkers and arterial stiffness.
T2DM has been shown to be associated with tissue fibrosis in general and cardiac fibrosis
in particular [12]. Plasma concentrations of circulating biomarkers that may characterize
the presence and extent of fibrosis are associated with other morbidity and risk factors,
such as obesity and hypertension. Moreover, their reference level should be evaluated in
healthy subjects for the assessment of their significance when changed. Therefore, along
with T2DM patients, we included two more subgroups: subjects without T2DM but with
cardiovascular risk factors and healthy controls.

2. Materials and Methods

2.1. Study Population

The cross-sectional study recruited subjects from the outpatient clinic of the Almazov
National Medical Research Centre between August 2019 and July 2020. Subjects fulfilling
inclusion criteria were invited into the study by a treating physician (screening) and referred
to an investigator. The subjects were divided into three groups: T2DM patients, patients
with CV risk factors (RF), and healthy control (HC) subjects.

The inclusion criteria for the T2DM group were the following: glycated hemoglobin
(HbA1c) level > 6.5% at screening and T2DM diagnosed >1 year ago. The RF group inclusion
criteria were the combination of two common risk factors: obesity (BMI > 30.0 kg/m2) and
hypertension (office blood pressure level > 140/90 mm Hg) or dyslipidemia (the history of
LDL cholesterol > 3 mmol/L). The HC group comprised blood donors without a history of
CV disease.

The exclusion criteria were changes in pharmacological treatment (drugs and/or
doses) within 1 month; inadequate blood pressure control (≥140/80 mm Hg at office visits);
a history of coronary artery disease, myocardial infarction, or TIA/stroke; LV ejection
fraction < 50%; an implanted pacemaker or cardioverter-defibrillator; ongoing infectious or
neoplastic diseases; documented osteoporosis or osteopenia; pregnancy or breastfeeding;
any intervention or surgery within 6 months. The study was approved by the Ethics
Committee of the Almazov Centre (No. 05072019 dated 8 July 2019), and all participants
signed an informed consent form before the inclusion. The baseline evaluation included
medical history and physical examination, routine laboratory tests, circulating fibrosis
biomarkers, endothelial function assessment, pulse wave analysis, carotid intima-media
thickness, and echocardiography. Contrast-enhanced cardiac MRI was performed in the
T2DM and RF groups. The HC group underwent biomarker analysis only.

The primary study assessment measure included the evaluation of a possible associa-
tion between cardiac fibrosis as detected by cardiac MRI, artery stiffness, and circulating
biomarkers. The secondary study analysis was the evaluation of factors independently
associated with the presence of cardiac fibrosis.
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This observational study was registered as a part of an umbrella project #075-15-2020-
800 by the Ministry of Science and Higher Education. The local legislation does not require
observational studies registration in public databases.

2.2. Blood Assays

Peripheral venous blood samples were obtained at the first visit. Serum samples
were obtained following centrifugation at 2500× g for 10 min at 4 ◦C. Samples were
aliquoted and stored at −80 ◦C until required. Lab parameters included HbA1c (Tina-
Quant Hemoglobin A1c Gen.3, Cobas Integra 400+, Roche Diagnostics GmbH, Mannheim,
Germany), creatinine, lipids (Cobas Integra 400+, Roche Diagnostics GmbH, Mannheim,
Germany), high-sensitivity C-reactive protein by the immunoturbidimetric CRP-Latex
assay (Tina-quant® CRP latex, Cobas Integra 400+, Roche Diagnostics GmbH, Mannheim,
Germany), NT-proBNP (Elecsys, Roche Diagnostics GmbH, Mannheim, Germany), and
soluble suppression of tumorigenicity 2 sST2 (Presage ST2 kit, Critical Diagnostics, CA,
USA). Carboxy-terminal propeptide of collagen 1 (PICP, USCN Life Science, Wuhan, China),
amino-terminal propeptide of collagen 3 (PIIINP, USCN Life Science, Wuhan, China),
carboxy-terminal telopeptide of collagen 1 (ICTP, MyBioSource, San Diego, CA, USA),
transforming growth factor β-1 (TGFβ1, R&D systems Inc., Minneapolis, MN, USA), matrix
metalloproteinase 9 (MMP9, R&D systems Inc., Minneapolis, MN, USA), tissue inhibitor of
metalloproteinase 1 (TIMP1, R&D systems Inc., Minneapolis, MN, USA), and galectin-3
(R&D systems Inc., Minneapolis, MN, USA) were quantified using a specific enzyme-linked
immunosorbent assay (ELISA, microplate reader “Bio-Rad 680”, Bio-Rad Laboratories
Inc, Hercules, California, USA) as a serum biomarker of fibrosis. These biomarkers were
selected based on previous publications demonstrating their role in cardiac fibrosis [8].

2.3. Blood Pressure Measurement

Office blood pressure (BP) was measured with a calibrated automatic sphygmo-
manometer (OMRON M3 Expert, Omron Dalian, Kioto, Japan). We used a BP cuff that fits
the participants’ arm circumference. Three measurements were performed in a seated posi-
tion after a 5-min rest with a 5-min interval. The average value of the two last measurements
was calculated.

2.4. Pulse Wave Analysis

BP waveforms were recorded on the carotid and femoral arteries using applanation
tonometry (SphygmoCor, AtCor Medical, Sidney, Australia) in standardized conditions
(supine position, quiet atmosphere, and temperature 24 ◦C). Caffeine and smoking were
not allowed within 3 h before evaluation. Pulse wave velocity (PWV) was calculated
automatically according to the patient’s height, weight, and brachial BP assessed before the
procedure. The cut-off value for carotid-femoral PWV was 10 m/s [13].

2.5. Reactive Hyperemia Peripheral Arterial Tonometry

Endothelial function was assessed using peripheral arterial tonometry with the Endo-
PAT2000 device (Itamar Medical, Caesarea, Israel). Reactive hyperemia index (RHI) was
evaluated according to the previously reported protocol [14]. RHI < 1.67 was considered a
sign of peripheral arterial endothelial dysfunction [14].

2.6. Echocardiography

Echocardiography was performed using the Vivid 7 system (GE Healthcare, Chicago,
IL, USA) according to a standard protocol with an assessment of global longitudinal
strain (GLS) and the ratio of early diastolic transmitral flow velocity to the average peak
early diastolic mitral annular velocity (E/e’) as a measure of filling pressures [14,15]. LV
mass/body surface area >115 g/m2 in men and >95 g/m2 in women was defined as LV
hypertrophy [15,16].
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2.7. Cardiac MRI

Cardiac MRI was carried out using a high-field 3 T MRI scanner MAGNETOM Trio
A Tim System 3T (Siemens Healthineers, Erlangen, Germany) in an ECG-synchronized
mode. The procedure was performed according to the standard protocol, which included
late gadolinium enhancement (LGE) sequences using PSIR (Phase-sensitive Inversion Re-
covery) sequences with an inversion time of 200 ms, a repetition time of 8.5 ms, and an
echo time of 3.5 ms, after 10 min gadopentetate dimeglumine (0.2 mmol/kg, Gadovist,
BayerHealthcare, Berlin, Germany) administration. All analyses were performed by an
independent reader. Left ventricular function was evaluated semi-automatically using
commercially available software (Syngo Via, Siemens Healthineers, Erlangen, Germany)
according to ACCF/ACR/AHA/NASCI/SCMR recommendations [17]. Following auto-
matic contour detection of the LV endocardium, all borders were corrected manually. The
extent of LGE was calculated semi-quantitatively by counting the number of LV segments
showing visually-determined LGE. LGE volume was calculated by summation of the LGE
areas in all short-axis slices, which was expressed as a volumetric proportion of the total
LV myocardium using a similar approach previously described [18]. Analysis of LGE was
performed visually in a short-axis stack and a four-chamber view for the presence of LGE
using the 17-segment model of the American Heart Association (AHA) [19].

2.8. Carotid Ultrasonography

Carotid ultrasound studies were performed by high-resolution B-mode ultrasonogra-
phy (Vivid7, GE Healthcare, Chicago, IL, USA) with a linear array broadband transducer
7 MHz. The standard protocol included bilateral measurements at a distance of 1 cm from
the bifurcation of the common carotid artery along its posterior wall in three positions
(anterior, middle, and posterior longitudinal). The intima-media thickness (IMT) was
defined as the distance between the first and second echogenic lines of the artery. Then, the
mean IMT on both sides was calculated as an arithmetic mean of three dimensions. The
subclinical vascular damage was detected if IMT ≥ 0.9 mm.

2.9. Statistical Analysis

Data are presented as mean (±standard deviation) or median (interquartile range) for
normal and abnormal distributed continuous variables, respectively, whereas categorical
data were expressed as frequencies and percentages. Differences in baseline characteristics
were evaluated using Student’s t-test, Mann–Whitney U test, or Chi-square test, depending
on the variable category. The one-way ANOVA and post hoc (Tukey–Kramer test) were also
used for the comparison of parameters in three groups. Spearman correlation was used to
evaluate relationships involving ordinal variables. Statistical significance was considered
at p < 0.05. A correlation matrix incorporating all evaluated clinical, laboratory parameters,
and serum biomarkers was created. Those factors that had a statistically significant correla-
tion with MRI-LGE-positive findings were studied using logistic regression. When factors
had a significant cross-correlation (ρ > 0.65), one of them was selected for the multivariate
regression analysis based on a higher correlation coefficient with LGE positivity. Factors in-
dependently associated with MRI-detected fibrosis were evaluated using two multivariate
binary logistic regression models: the first aimed at the inclusion of all factors significantly
correlated with MRI-detected fibrosis and incorporated a combination of clinical, echocar-
diography, and biochemical markers; the second model aimed at the inclusion of only
additional factors with moderate-to-significant correlation (serum biomarkers and pulse
wave velocity). We suggested that the latter model would be practically applicable for the
identification of cardiac-fibrosis-positive serum biomarkers in the mixed population. The
regression analysis was performed for the total study population and for T2DM patients
separately. IBM software SPSS Version 23 (SPSS, Inc., Chicago, IL, USA) and Statistica 13.0
(Statsoft, Tulsa, OK, USA) were applied for statistical analysis.
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3. Results

3.1. Patient Baseline Characteristics

The study population comprised 79 subjects: 37 subjects in the T2DM group (age
ranging between 44 and 70 years), 27 subjects in the risk factors (RF) group (age 40–68 years),
and 15 subjects in the healthy control (HC) group (age 50–65 years). The baseline subjects’
characteristics are summarized in Table 1. There were no differences in age, sex, blood
pressure (BP) level, and smoking status between the T2DM and RF groups. Patients without
diabetes tended to have a higher body mass index (BMI) with the same waist circumference,
but statistically it was not significant. All hypertensive patients were receiving angiotensin-
converting enzyme inhibitors (ACEI) or angiotensin II receptor blockers (ARB). Although
statistically borderline, the prevalence of carotid intima-media thickness (IMT) ≥ 0.9 mm
tended to be higher in T2DM patients (19% vs. 3.7% in the RF group, p = 0.052), whereas the
carotid-femoral PWV ≥ 10 m/s was significantly more prevalent in the T2DM group (32%
vs. 3.7%, respectively; χ2 = 8.65; p = 0,003). Despite a significantly lower reactive hyperemia
index in the diabetic patients, the percentage of patients with reactive hyperemia index
(RHI) < 1.67 did not differ between the T2DM and RF groups: 65% vs. 52%, respectively
(p = 0.296). The RHI had a negative correlation with the duration of diabetes (r = −0.356;
p = 0.03), the carotid-femoral PWV (r = −0.371; p = 0.024), and the carotid IMT (r = −0.622;
p < 0.001). A negative correlation between the RHI and carotid IMT was observed in the RF
group (r = −0.558; p = 0.002). There was no difference in the estimated glomerular filtration
rate (eGFR) between the groups.

Table 1. Baseline characteristics of study subjects.

Variables

T2DM Group
n = 37

RF Group
n = 27

HC Group
n = 15 p 1,2-Value p 2,3-Value

1 2 3

Age, years 57.5 ± 8.4 54.0 ± 8.9 55.6 ± 3.6 0.122 0.378
Male, n (%) 17 (46) 12 (44) 7 (47) 0.905 0.735
BMI, kg/m 32.9 ± 6.5 35.6 ± 2.7 23.8 ± 2.0 0.051 <0.001

Waist circumference, cm 109.4 ± 14.0 113.6 ± 8.9 0.186
Male 111.5 ± 14.3 118.2 ± 8.7 0.166

Female 107.8 ± 14.0 109.9 ± 7.4 0.598
T2DM duration, years 9.0 [5.0–12.0] -
Hypertension, n (%) 21 (57) 19 (70) 0 0.058

Current smoker, n (%) 12 (32) 11 (41) 3 (20) 0.792 0.071
Office systolic BP, mm Hg 131 ± 17 130 ± 17 118 ± 9 0.673 0.002
Office diastolic BP, mm Hg 77 ± 10 81 ± 14 75 ± 8 0.415 0.130
Carotid-femoral PWV, m/s 9.9 ± 2.2 7.9 ± 1.7 0.0002

Carotid IMT, mm 0.715 ± 0.374 0.618 ± 0.113 0.535 ± 0.114 0.010 <0.001
RHI 1.50 ± 0.35 1.70 ± 0.31 0.019

eGFR, mL/min/1.73 m2 88.4 ± 15.8 90.1 ± 15.9 0.550

Echocardiography

LA volume index, mL/m2 36.7 ± 6.8 32.7 ± 6.0 0.016
LV mass index, g/m2 120.8 ± 32.0 102.0 ± 23.3

90.3 ± 13.4
0.008

0.002Male 131.9 ± 38.6 111.8 ± 24.1 0.170
Female 111.3 ± 21.9 93.6 ± 19.7 0.014

Relative wall thickness 0.448 ± 0.050 0.434 ± 0.048 0.813
LV EF, % 60.6 ± 5.5 60.9 ± 3.3 0.603

E/e′ 8.2 ± 1.9 7.3 ± 1.2 0.021
GLS, % −18.0 ± 3.0 −19.1 ± 2.1 0.110
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Table 1. Cont.

Variables

T2DM Group
n = 37

RF Group
n = 27

HC Group
n = 15 p 1,2-Value p 2,3-Value

1 2 3

Medication

Metformin, n (%) 22(59) 1(4) <0.001
DPP-4 inhibitors, n (%) 5(13.5) _ _
Sulphonylureas, n (%) 2(5.4) _ _

Insulin, n (%) 8 (21.6) _ _
ACEI or ARB, n (%) 21 (56.8) 19 (70) 0.058

Low-dose aspirin, n (%) 13 (48.1) 4 (14.8) 0.002
Statins, n (%) 18 (48.6) 4 (14.8) <0.01

Data are presented as mean ± SD or median (interquartile range, IQR) for normal and abnormal distributed
continuous variables. Categorical data were expressed as numbers of subjects and percentages. RF—risk factors;
HC—healthy control; BMI—body mass index; BP—blood pressure; IMT—intima-media thickness; RHI—reactive
hyperemia index; eGFR—estimated glomerular filtration rate (MDRD derived); LA—left atrium; LV—left ventricle;
EF—ejection fraction; E/e’—the ratio of mitral inflow early diastolic velocity to the average peak early diastolic
mitral annular velocity; GLS—global longitudinal strain; DPP-4—dipeptidylpeptidase-4; ACEI—angiotensin-
converting enzyme inhibitor; ARB—angiotensin II receptor blocker; BMI—body mass index; PWV—pulse wave
velocity; p 1,2—comparison between T2DM and RF groups; p 2,3—comparison with healthy controls.

3.2. Laboratory Measurements

There was a significant difference in serum lipid levels between the groups. Thus, RF
patients were characterized by higher mean low-density cholesterol (LDL-C) intima-media
thickness and triglyceride levels (Table 2). Surprisingly, the HC subjects had similar lipid
levels when compared with the RF group. Serum Carboxy-terminal propeptide of colla-
gen 1 (PICP) and amino-terminal propeptide of collagen 3 (PIIINP) levels as the collagen
metabolism markers were significantly increased in the T2DM and RF groups compared to
the HC subjects. Among T2DM patients, statin therapy was associated with a lower PICP
level: 129 ng/mL [QIR: 115–146] vs. 192 ng/mL [QIR: 169–195] in patients without statins
(p < 0.001). Interestingly, there were no differences in PIIINP levels between the T2DM
and RF groups. Concentrations of matrix metalloproteinase 9 (MMP9), tissue inhibitor
of metalloproteinase 1 (TIMP1), and carboxy-terminal telopeptide of collagen 1 (ICTP)
were the lowest in the HC group. However, T2DM patients had higher TIMP1 and ICTP
levels. The increased soluble suppression of tumorigenicity 2 (sST2) level was associated
with an increase in IMT in both T2DM (r = 0.361; p = 0.028) and RF patients (r = 0.499;
p = 0.008), presumably due to negative effects on endothelial function and RHI as its marker
(R2 = 0.357; p = 0.004). Higher serum TGFβ1 levels were revealed in T2DM and RF groups
compared to the HC subjects, but serum TGFβ1 had a significant positive correlation with
BMI (body mass index) (r = 0.564; p = 0.0002), waist circumference (r = 0.432; p = 0.008) and
a negative correlation with eGFR (r = −0.471; p = 0.008) only in the T2DM group. Serum
galectin-3 level, as well as TGF, was predominantly increased in T2DM patients. There
were no gender differences in the profile of serum fibrosis biomarkers.

3.3. Echocardiography and Cardiac MRI Analysis

Left ventricle (LV) hypertrophy was revealed in 30 diabetic (81%) and 9 (33%) RF patients
(χ2 = 15.4; p = 0.0005), including 25 (67.6%) and 5 (18.5%) patients (p = 0.0005) with concentric
LV hypertrophy, respectively. The LV concentric hypertrophy was accompanied by an in-
creased serum galectin-3 level in T2DM patients: 9.92 ng/mL [QIR: 8.38–12.96] vs. 8.14 ng/mL
[QIR: 6.58–9.85], p = 0.039. Left atrial (LA) enlargement (index LA volume ≥ 34 mL/m2)
was noted in 21 (56.8%) T2DM and 8 (29.6%) RF patients (p = 0.094). In T2DM patients,
LA enlargement was associated with a higher serum PIIINP level (r = 0.434; p = 0.007).
A negative correlation between PICP level and the global longitudinal strain (GLS) was
found (r = −0.467; p = 0.004). This fact is especially interesting since we revealed the
relationship between PICP and HbA1c levels in both main groups (R2 = 0.309; p = 0.014).
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Another marker of diastolic dysfunction such as the E/e’ ratio correlated with HbA1c
(r = 0.426; p = 0.029) and TIMP1 (r = 0.543; p = 0.004) levels only in RF patients.

Table 2. Lab tests and fibrosis biomarkers.

Variables

T2DM Group
n = 37

RF Group
n = 27

HC Group
n = 15 p 1,2-Value p 2,3-Value

1 2 3

Total cholesterol, mmol/L 4.84 ± 0.97 5.40 ± 1,11 4.52 ± 1,24 0.056 0.095
HDL-C, mmol/L 1.11 ± 0.26 1.15 ± 0.28 1.16 ± 0.31 0.757 0.62
LDL-C, mmol/L 2.67 ± 0.91 3.49 ± 0.92 2.62 ± 0.98 0.002 0.017

Triglycerides, mmol/L 2.58 ± 1.07 1.88 ± 0.78 1.67 ± 0.93 0.007 0.22
hsCRP, mg/L 2.55 [1.21–4.78] 3.84 [1.99–5.70] 1.67 [0.73–2.96] 0.185 0.11

HbA1c, % 8.9 ± 1.4 5.74 ± 0.85 - <0.001 -
NT-proBNP, pg/mL 91 [16–148] 27.5 [15.7–47.6] - <0.001 -

PICP, ng/mL 136.0 [117.2–166.0] 108.4 [93.2–148.8] 84.0 [69.0–98.3] 0.006 0.001
PIIINP, ng/mL 5.74 [4.43–6.77] 5.09 [4.44–5.96] 3.99 [3.27–4.27] 0.265 0.002
sST2, ng/mL 19.1 [14.9–26.7] 13.2 [10.2–21.8] 12.6 [10.3–16.2] 0.016 0.912

MMP-9, ng/mL 794 [497–1015] 490 [341–911] 277 [253–319] 0.084 0.002
TIMP-1, ng/mL 188 [171–237] 152 [137–185] 141 [120–164] 0.004 0.023
TGF-β1, ng/mL 35.7 [24.5–48.6] 29.6 [15.3–42.2] 12.8 [11.9–18.6] 0.067 <0.001

galectin-3, ng/mL 9.5 [7.8–12.5] 7.8 [6.8–9.9] 6.9 [6.0–7.2] 0.029 0.010
ICTP, ng/mL 5,25 [3.5–6.8] 3.49 [3.03–5.89] 2.98 [2.68–3.97] 0.046 0.030

Data are presented as mean ± SD or median (interquartile range, IQR) for normal and abnormal distributed con-
tinuous variables. Categorical data were expressed as numbers of subjects and percentages. HDL-C—high-density
lipoproteins; LDL-C—low-density lipoproteins; hsCRP—high-sensitive C-reactive protein; HbA1c—glycated
hemoglobin A1c; NT-proBNP; RF—risk factors; HC—healthy control; PICP—carboxy-terminal propeptide of
collagen 1; PIIINP—amino-terminal propeptide of collagen 3; sST2—soluble suppression of tumorigenicity 2;
MMP-9—matrix metalloproteinase 9; TIMP-1—tissue inhibitor of metalloproteinase 1; TGF-β1—transforming
growth factor β-1; ICTP—carboxy-terminal telopeptide of collagen 1. p 1,2 and p 2,3—compression between groups.

LGE was detected in 22 (59.5%) T2DM patients and in 4 (14.85%) RF patients. LGE
was found predominantly in the anteroseptal and inferior mid-wall and basal segments
(Figure 1). By semi-quantitative assessment, LGE volume was 13% [QIR: 9–14%] in T2DM
patients, while among RF patients only 4% [QIR: 2–4%] (p = 0.002).

Figure 1. Examples of cardiac MRI with and without LGE: (a) a T2DM patient with positive LGE;
(b) RF patient with positive LGE; (c) RF patient without LGE; the white arrows indicate LGE areas in
the septum; (a) left lateral LV wall (a,b).

Diabetes, its baseline treatment with metformin, HbA1c, and serum TIMP-1 levels,
and LV hypertrophy had moderate positive correlations with LGE-MRI findings (p < 0.05).
Although statistically significant, statin treatment, BMI, PWV, and galectin-3 serum level
had a weak positive correlation with LGE positivity. LDL-C level had a weak negative
correlation with cardiac MRI-detected fibrosis. Univariate logistic regression coefficients are
presented in Table 3. The multivariate regression analysis identified that in the first model,
TIMP-1 level was the only independent factor associated with cardiac fibrosis. The second
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model identified TIMP-1 levels and galectin-3 levels as factors independently associated
with cardiac fibrosis (Tables 4 and 5). In T2DM patients, the regression analysis confirmed
significant associations of TIMP-1 and PWV with cardiac fibrosis, and the multivariate
model identified TIMP-1 as the only factor independently associated with LGE-positive
findings (Tables 3 and 4).

Table 3. Univariate logistic regression analysis of factors associated with cardiac fibrosis as detected
by MRI.

Estimate Standard Error Wald Stat. Lower CL—95. % Upper CL—95. % p

All subjects (T2DM+RF+HC groups)

T2DM: Yes 1.101 0.32 11.807 0.473 1.728 <0.001
BMI, kg/m2 −0.104 0.053 3.832 −0.209 0.0001 0.05

Metformin baseline
therapy: Yes 1.06 0.305 12.042 0.461 1.659 <0.001

Statins: Yes 0.785 0.281 7.794 0.234 1.335 0.005
PWV, m/s 0.327 0.135 5.898 0.063 0.591 0.015

RHI −1.398 0.8 3.053 −2.966 0.17 0.081
LV hypertrophy 0.799 0.299 7.161 0.214 1.384 0.008

HbA1c, % 0.52 0.167 9.682 0.192 0.848 0.002
LDL-C, mM/L −0.534 0.294 3.306 −1.109 0.042 0.069
TIMP-1, ng/mL 0.018 0.006 8.438 0.006 0.03 0.004

Galectin-3, ng/mL 0.225 0.09 6.159 0.047 0.403 0.013

T2DM patients only

PWV, m/s −0.351 0.194 3.261 −0.73 0.03 0.042
TIMP-1, ng/mL −0.02 0.008 5.187 0.036 −0.003 0.05

Table 4. General multivariate regression model of cardiac fibrosis predictors (as detected by MRI).

Estimate Standard Error Wald Stat. Lower CL—95, % Upper CL—95, % p

All subjects (T2DM+RF+HC groups)

Intercept −5.596 2.189 6.533 −9.887 −1.304 0.01
PWV, m/s 0.12 0.175 0.471 −0.223 0.464 0.492

TIMP-1, ng/mL 0.014 0.007 4.042 0.0003 0.028 0.044
Galectin-3, ng/mL 0.136 0.109 1.57 −0.077 0.349 0.21

T2DM: Yes 0.67 0.426 2.466 −0.166 1.506 0.116
LV hypertrophy: Yes 0.524 0.412 1.623 −0.282 1.331 0.203

T2DM patients only

Intercept 6.607 2.778 5.657 1.163 12.052 0.02
PWV, m/s −0.353 0.218 2.623 −0.780 0.074 0.12

TIMP-1, ng/mL −0.018 0.009 4.596 −0.035 −0.002 0.03

Table 5. Multivariate model with additional factors only that predicted cardiac fibrosis in all subjects
(as detected by MRI).

Estimate Standard Error Wald Stat. Lower CL—95, % Upper CL—95, % p

All subjects (T2DM+RF+HC groups)

Intercept −7.128 1.996 12.749 −11.04 −3.215 0.0004
PWV, m/s 0.208 0.155 1.796 −0.096 0.512 0.18

TIMP-1, ng/mL 0.017 0.007 6.265 0.004 0.029 0.01
Galectin-3, ng/mL 0.189 0.099 3.648 −0.005 0.384 0.049
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4. Discussion

Myocardial fibrosis is usually assessed by an easy scoring system using late gadolinium-
enhanced cardiac magnetic resonance (LGE-MRI) imaging. This method is widely used
for the risk stratification of patients with cardiovascular disease, yet it is the most accurate
method to reveal replacement myocardial fibrosis; however, it is less sensitive in interstitial
fibrosis detection. LGE has been reported to predict death and myocardial infarction in a
cohort of 1969 patients with and without T2DM [20].

The univariate logistic regression identified the association of T2DM, glycated hemoglobin
level, and metformin intake with LGE-positive MRI findings, emphasizing the important
role of impaired glucose metabolism in the development of myocardial fibrosis. Previously,
an in vitro study has shown that hyperglycemia is a powerful stimulator of fibroblast
proliferation, myofibroblast differentiation, and extracellular matrix proteins’ secretion [21].

T2DM patients have a higher prevalence of increased LV mass index, concentric LV
hypertrophy in combination with LA enlargement, and increased E/e’ ratio compared with
the RF group. This confirms a link between LV hypertrophy with positive LGE and might
be associated with poorly controlled T2DM and higher HbA1c levels. LV hypertrophy with
diastolic dysfunction is typical for diabetic cardiomyopathy but is also widely prevalent
in the elderly population, females, and patients with hypertension and obesity [22,23].
Importantly, we have not found any association between cardiac remodeling and the
above-mentioned risk factors in T2DM patients and suggest that this could be explained
in part by limited sample size and previous antihypertensive therapy. Moreover, T2DM
and RF groups included obese patients, and obesity is one of the pivotal contributors to
myocardial fibrosis [24]. This fact is confirmed by the results of the large Multi-Ethnic
Study of Atherosclerosis study, where an increased BMI has been shown to be associated
with the concentric hypertrophy by cardiac MRI [25].

Pulse wave velocity (PWV) is widely used for arterial stiffness measurement [26].
According to the univariate analysis, cardiac fibrosis is associated with TIMP and galectin-3
levels, as well as with the carotid-femoral PWV. Adjusted for age and blood pressure,
T2DM duration appears to be the most important contributor to arterial stiffness [27].
The relationship between arterial stiffness and the severity of LV diastolic dysfunction
has been confirmed in a wide variety of cardiovascular diseases [28,29]. Recently, PWV
has been linked to different cardiovascular events, including CV mortality [30]. The
association between obesity and arterial stiffness confirms the results of the previous study
by Desamericq et al. [31]. The correlation between positive LGE and PWV observed in our
study supports the conception of common pathophysiological mechanisms of cardiac and
vascular remodeling in T2DM. However, according to the multivariate analysis, PWV is
not an independent predictor of cardiac fibrosis, while circulating TIMP1 and galectin-3 are
strongly associated with cardiac fibrosis being active participants in the pathophysiology
of heart and vascular remodeling.

Studies on galectin-3, a protein of the lectin family secreted by activated macrophages
and fibroblasts, open novel opportunities for non-invasive cardiac remodeling monitoring
in T2DM patients. Previous studies have identified higher circulating galectin-3 levels
predicting the onset of HFpEF [32,33]. In addition to LGE-MRI, galectin-3 seems to play
an important role in the sudden death risk stratification of heart failure patients [34]. Our
study confirms the predictive value of galectin-3 in the diagnosis of cardiac fibrosis.

The circulating serum biomarkers of collagen synthesis and degradation are used
for indirect myocardial fibrosis assessment [8]. A distinctive feature of T2DM and RF
patients included in this study is the high PIIINP level (as a marker of III collagen synthesis
activation) [35]. Circulating PIIINP can serve as a marker of large vessel remodeling [36].
Histological studies have shown increased PICP and PIIINP levels associated with inter-
stitial and perivascular cardiac fibrosis in T2DM, regardless of the presence of coronary
atherosclerosis and hypertension [37]. In our study, elevated serum PIIINP levels were asso-
ciated with LA enlargement as a marker of LV diastolic dysfunction. Opposite, a decrease
in the GLS as an early marker of LV systolic dysfunction was related to the circulating PICP
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level. An interesting finding is a reduction in PICP level as a marker of type I collagen
synthesis during statin therapy. We speculate that low adherence to statin therapy might be
associated with an increase in heart failure and chronic kidney disease risk among T2DM
patients [38,39].

The presence of a positive correlation between BMI and serum TGF-β1 level, a
paracrine regulator of extracellular matrix synthesis, supports the consideration of obesity
as a myocardial fibrosis accelerator. A significant increase in TIMP1 and ICTP levels has
been identified in both groups. Previously, direct relations between plasma TIMP-1 levels
and all major CVD risk factors, including male gender, have been demonstrated in the
Framingham heart study [40]. It should be noted that obese patients in our study are
characterized by an increased HbA1c level, and the higher serum TIMP1 concentration
is associated with elevated E/e’ rati, as a marker of LV diastolic dysfunction. In a recent
study, TIMP1 has been shown to activate adipogenesis by accelerating lipid accumulation,
adipocyte differentiation, and pro-inflammatory cytokine production [41]. Thus, in T2DM
patients, TIMP1 may be involved in the target organ damage due to its role in adipogenesis,
systemic inflammation, and fibrosis. We suggest this is a major reason why among the
numerous factors, TIMP1 is an independent predictor of cardiac fibrosis.

Study Limitations

The study was performed on a limited non-random patient group who were referred
to the Almazov Centre due to poor glycemic control. Both cardiovascular (antihypertensive
and hypolipidemic) and antidiabetic therapy were not standardized before patient inclusion.
There was a significant overlap of CV risk factors between the groups, and all of them may
influence CV remodeling. Myocardial fibrosis was assessed with LGE-MRI imaging, which
is less informative when diffuse myocardial fibrosis is present.

5. Conclusions

Our cross-sectional study demonstrates that T2DM patients have elevated levels of
circulating fibrosis markers and a high prevalence of LGE-MRI. Galectin-3 and TIMP1
serum levels are strongly associated with LGE-MRI in T2DM patients and patients with car-
diovascular risk factors. Serum TIMP1 level is an independent predictor of cardiac fibrosis.
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Abstract: Given the fact that diabetes remains a leading cause of end-stage kidney disease (ESKD),
multi-aspect approaches anticipating the risk for ESKD and timely correction are crucial. We in-
vestigated whether fasting glucose variability (FGV) could anticipate the development of ESKD
and identify the population prone to the harmful effects of GV. We included 777,192 Koreans with
diabetes who had undergone health examinations more than three times in 2005–2010. We evaluated
the risk of the first diagnosis of ESKD until 2017, according to the quartile of variability independent
of the mean (VIM) of FG using multivariate-adjusted Cox proportional hazards analyses. During
the 8-year follow-up, a total of 7290 incidents of ESKD were found. Subjects in the FG VIM quartile
4 had a 27% higher risk for ESKD compared to quartile 1, with adjustment for cardiovascular risk
factors and the characteristics of diabetes. This effect was more distinct in patients aged < 65 years;
those with a long duration of diabetes; the presence of hypertension or dyslipidemia; and prescribed
angiotensin-converting enzyme inhibitors, metformin, sulfonylurea, α-glucosidase inhibitors, and
insulin. In contrast, the relationship between baseline FG status and ESKD risk showed a U-shaped
association. FGV is an independent risk factor for kidney failure regardless of FG.

Keywords: diabetes mellitus; glucose variability; end-stage kidney disease; Korean National Health
Insurance Corporation

1. Introduction

Diabetes remains a leading cause of end-stage kidney disease (ESKD) globally and
accounts for 35–50% of these cases [1].

Although several medications, such as sodium-glucose cotransporter 2 inhibitors
(SGLT2 inhibitors), angiotensin-converting enzyme inhibitors (ACE inhibitors), and
angiotensin-receptor blockers (ARBs), have some protective mechanism against deteriora-
tion of renal function, their prevention capacity for ESKD is only 22–40% [2,3]. Therefore,
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to reduce the burden of ESKD, multi-aspect approaches exploring new biomarkers for
anticipating the risk for ESKD and timely correction are crucial in patients with diabetes.

The variability of cardio-metabolic parameters has been an interesting issue because of
its predictive value for numerous clinical outcomes [4,5]. Glucose variability (GV) consists
of short-term, intraday GV derived from the continuous glucose monitoring system and
long-term fasting glucose (FG) variability over several months to years, reflecting the
stability of the medication’s effect, adherence, and residual insulin secretion [6]. Several
studies have reported that high GV is associated with an increased risk of diabetic vascular
complications [7,8], heart failure [9], and poor prognosis for acute lung diseases [10].

Regarding kidney outcomes, long-term variability in comprehensive cardio-metabolic
risk factors showed a positive association with the future risk of ESKD in the general
population, but not in diabetes [4,11]. Furthermore, in patients with diabetes, most evidence
adopted glycated hemoglobin (HbA1c) variability rather than GV, and study outcomes were
the development of macroalbuminuria or kidney function decline, rather than the development
of ESKD [12–15]. This is attributed to the lower incidence rates of ESKD compared to other
diabetic vascular complications, such as cardiovascular disease (CVD) [16]. To overcome this
limitation, large-scale epidemiologic studies are essential to explore ESKD outcomes.

Therefore, we investigated whether FGV could predict the risk of ESKD using nation-
ally representative population-based cohort data in Korea. We also compared the impact
of FGV with FG on future ESKD risk and verified the specific population prone to the
detrimental effect of higher FGV.

2. Materials and Methods

2.1. Study Design and Subjects

This was a retrospective observational study (Figures S1 and S2). We extracted the
data of the participants who had undergone health examinations supported by the National
Health Insurance Corporation (NHIC) at least twice from 2005 to 2008, and simultaneously
at least once between 1 January 2009 and 31 December 2010 (referred to as “baseline exam”).
That is, the study subjects underwent at least three health examinations during the five years
between 2005 and 2010 (referred to as the FGV assessment period). Among them, we excluded
16,736,363 participants without diabetes, aged < 40 years; those with previous histories of
ESKD and missing data in the inclusion criteria; and those who were diagnosed with ESKD
within one year after baseline. A total of 777,192 participants were included in the study.

The NHIC is a nationally operating health insurance system in Korea and covers
approximately 97% of Koreans. The NHIC database contains eligibility information; health
examination results, including questionnaires on lifestyle; and a medical care institution
database [17,18]. Enrollees of the NHIC are encouraged to perform a standardized medical
examination annually or biannually. Information about medical treatments was recognized
by the medical bills charged by healthcare providers with the International Classification
of Diseases, 10th Revision (ICD-10).

This research was approved by the NHIC and the Institutional Review Board of the Korea
University Ansan Hospital (2019AS0138) and followed the Helsinki Declaration of 1975.

2.2. Anthropometric and Laboratory Measurements

Demographic characteristics, lifestyle habits, and medical history were identified
using questionnaires during medical examinations. Alcohol consumption was categorized
as near abstinence, moderate (<30 g/day), or severe (≥30 g/day). Smoking history was
stratified into never, ex-, and current smokers. Regular exercise was defined as >30 min of
moderate-intensity exercise or >20 min of vigorous-intensity exercise ≥1 per week [19].

Body mass index was calculated as weight (kg) divided by the square of height (m).
Blood pressure (BP) was checked after ≥5 min of rest.

Venous blood sampling was conducted in the morning after an overnight fast of ≥8 h to
measure the concentrations of hemoglobin, plasma glucose, creatinine, high-density lipoprotein
cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol.
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Midstream urine samples were collected to measure urine protein using a urine
dipstick with the following grades: absent, trace (±), 1+, 2+, 3+, and 4+, which corre-
spond to the amount of urine protein of undetectable, 10, 30, 100, 300, and 1000 mg/dL,
respectively [4].

Quality control of laboratory tests was performed, followed by the Korean Association
of Laboratory Quality Control.

2.3. Definition of Glucose Variability

Using FG concentrations measured at least three times during the five years prior
to and including the baseline, the variability independent of the mean (VIM) of FG was
calculated as a primary variability indicator (Figure S2). The equation is as follows:

VIM = 100 × SD
meanβ

Standard deviation (SD), coefficient of variation (CV, SD/mean), and average real
variability (ARV) were estimated [20].

ARV =
1

n − 1

n−1

∑
k=1

×|BPk+1 − BPK|

where n is the number of FG measurements, and k ranges from 1 to n − 1.

2.4. Operational Definition of Diseases

Diabetes was defined as a fasting plasma glucose level ≥ 126 mg/dL or at least one
prescription of glucose-lowering medicine (GLM) per year with ICD-10 codes E10–14. We
defined type 1 diabetes in patients if they had both an ICD-10 code E10 and at least one
prescription history of insulin, while the remaining patients were referred to as having
type 2 diabetes.

The study outcome was a new diagnosis of ESKD, identified by the initiation of renal
replacement therapy or kidney transplantation under ICD-10 codes N18–19, Z49, Z90,
Z94, or Z99.2 [21]. Because dialysis is reimbursed when registered in Korea, we could
discern all cases of renal replacement therapy under the claim codes for peritoneal dialysis
(O7071-O7075 or V003), hemodialysis (O7011-O7020 or V001), and kidney transplantation
(R3280) [21]. We excluded acute renal failure events, which were defined as individuals
with transient renal replacement therapy or continuous renal replacement therapy without
a previous history of CKD. Deceased cases, identified by the nationwide death certificate
data of the Korea National Statistical Office, were censored at the time of their death. The
follow-up period was calculated from the time interval between the baseline exam and
incident ESKD, date of death, or 31 December 2017, whichever came first (Figure S2).

Hypertension was defined as systolic BP ≥ 140 mmHg, diastolic BP ≥ 90 mmHg, or at
least one prescription of antihypertensive drugs per year under ICD-10 codes I10–I15. The
presence of malignancy was defined by registration in the Korea Central Cancer Registry with
ICD-10 C00–C96 before the baseline examination. Low-income status was defined as the low-
est 20% income identified by the amount of health insurance premium or eligibility as medical
care [17,18]. Dyslipidemia was determined by total cholesterol concentration ≥6.21 mmol/L
or at least one prescription of antihyperlipidemic medications under ICD-10 code E78. The
estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2, estimated by the Modi-
fication of Diet in Renal Disease formula [22], was stratified according to the presence of
chronic kidney disease (CKD) [23].

The prescription of ACE inhibitors or ARBs, oral GLM among metformin, sulfonylurea,
meglitinide, thiazolidinedione, inhibitors of dipeptidyl peptidase 4 (DPP-4 inhibitors),
α-glucosidase inhibitor (AGI), and insulin in the 12 months before baseline was identified.
History of heart disease or stroke was estimated using self-reports.
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2.5. Statistical Analysis

Data are shown as mean ± SD, median (interquartile range), or number (%). After
stratifying the subjects according to the FG VIM quartile, we compared baseline features
using chi-squared tests and analysis of variance for continuous variables. Triglyceride
concentrations were log-transformed for the analysis.

Multivariable regression analyses were conducted using the Cox proportional hazards
model to estimate the time-dependent risk of ESKD according to FG VIM quartiles, with
quartile 1 as the reference group. In model 1, age, sex, body mass index, alcohol drinking,
smoking, exercise, presence of CKD, hypertension, dyslipidemia, and low-income status
were adjusted. In model 2, the duration of diabetes as continuous variable, insulin pre-
scription, the number of classes of oral GLM during 12 months prior to baseline exam,
mean FG measured for the five years preceding the baseline exam, and the number of
exams were additionally adjusted. To evaluate the change in significance according to the
cutoff value of VIM, we further divided the study population into deciles and reiterated the
above-mentioned regression analysis with decile 1 as a reference. In addition, we explored
whether the main findings would change after replacing the parameters of FGV with SD,
CV, and ARV instead of VIM.

For subgroup analyses, we determined the hazard ratios (HRs) and 95% confidence
intervals (CIs) of FG VIM quartile 4 versus quartile 1–3 for ESKD after dividing the subjects
according to clinically relevant factors and the characteristics of diabetes. Regression
analysis was performed using the same adjustment strategy.

To evaluate the association of a single FG concentration with the risk of ESKD, we
repeated the analysis according to baseline FG concentration, with 100–119 mg/dL as a
reference group. The mean FG was excluded as a confounder in this analysis.

We found a variable inflation factor for all covariates of less than 2.0, and there was no
multicollinearity in the covariates. Statistical analysis was performed using SAS version 9.3
(SAS Institute Inc., Cary, NC, USA). Statistical significance was set at p < 0.05.

3. Results

Compared with participants in the FG VIM quartile 1, those in the FG VIM quartile 4
were younger, had a higher proportion of males, were current smokers, and had higher
fasting glucose and triglyceride levels (Table 1). Among comorbidities, they had more CKD
but less hypertension, dyslipidemia, ischemic heart disease, and stroke. In the case of the
characteristics of diabetes, people in FG VIM quartile 4 had a higher proportion of insulin
users, individuals prescribed with ≥2 GLM during one year before baseline, and those
with a duration of diabetes of at least five years.

Table 1. Baseline characteristics of the study subjects according to quartiles of fasting glucose variability a.

Characteristics
VIM Q1

(n = 194,302)
VIM Q2

(n = 194,291)
VIM Q3

(n = 194,301)
VIM Q4

(n = 194,298)
p-Value

Age (years) 61.2 ± 9.8 60.2 ± 10.0 59.7 ± 10.2 59.4 ± 10.5 <0.001
Sex, male (%) 109,509 (56.4) 116,074 (59.7) 120,274 (61.9) 125,355 (64.5) <0.001
BMI (kg/m2) 24.7 ± 3 24.9 ± 3.1 24.9 ± 3.1 24.8 ± 3.2 <0.001
Systolic BP (mmHg) 128.3 ± 15.2 128.7 ± 15.2 128.8 ± 15.3 128.5 ± 15.3 <0.001
Fasting glucose (mg/dL) 125.0 ± 33.9 130.1 ± 35.5 135.7 ± 39.0 146.0 ± 53.4 <0.001
Total cholesterol (mg/dL) 193.6 ± 39.1 194.9 ± 39.9 195.6 ± 40.7 194.4 ± 41.5 <0.001
Triglyceride (mg/dL) 132.9 (132.5–133.2) 138.4 (138.1–138.8) 143(142.6–143.4) 146.3 (146.0–146.7) <0.001
HDL-C (mg/dL) 52.7 ± 22.8 52.3 ± 21.5 52 ± 21.8 51.5 ± 21.3 <0.001
LDL-C (mg/dL) 111.6 ± 43.0 111.6 ± 42.7 111.2 ± 43.4 109.5 ± 44.5 <0.001
GLU_VIM (%) 8.2 ± 3 16.6 ± 2.2 25.5 ± 3 43.5 ± 11.1 <0.001
GLU_SD (mg/dL) 8.1 ± 5.3 16.8 ± 8.5 26.7 ± 13.1 49.0 ± 25.2 <0.001
GLU_CV (%) 6.2 ± 2.6 12.7 ± 2.9 19.9 ± 4.3 35 ± 11.2 <0.001
GLU_ARV (mg/dL) 10 ± 7.2 20.3 ±11.9 31.6 ± 18.3 56.5 ± 34.3 <0.001
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Table 1. Cont.

Characteristics
VIM Q1

(n = 194,302)
VIM Q2

(n = 194,291)
VIM Q3

(n = 194,301)
VIM Q4

(n = 194,298)
p-Value

Current smoker (%) 31,644 (16.3) 36,873 (19.0) 42,614 (21.9) 50,137 (25.8) <0.001
Heavy drinking (%) 12,395 (6.4) 13,844 (7.1) 14,670 (7.6) 14,289 (7.4) <0.001
Regular exercise (%) 49,893 (25.7) 48,442 (24.9) 46,317 (23.8) 43,246 (22.3) <0.001
eGFR (mL/minute/1.73 m2) 79.6 (68.5–92.6) 79.9 (68.5–92.9) 80.1 (68.5–93.3) 79.6 (67.7–92.9) <0.001

Chronic kidney disease (%) b 23,041 (11.9) 22,930 (11.8) 23,569 (12.1) 26,133 (13.5) <0.001
Dipstick proteinuria (%) <0.001

Absence (%) 178,444 (91.8) 177,043 (91.1) 175,837 (90.5) 173,973 (89.5)
Trace (%) 6065 (3.1) 6380 (3.3) 6777 (3.5) 6723 (3.5)
1 + (%) 5939 (3.1) 6580 (3.4) 6999 (3.6) 7742 (4)
2 + (%) 2841 (1.5) 3149 (1.6) 3450 (1.8) 4205 (2.2)
3 + (%) 841 (0.4) 924 (0.5) 1064 (0.6) 1378 (0.7)
4 + (%) 172 (0.1) 215 (0.1) 174 (0.1) 277 (0.1)

Comorbidities
Hypertension (%) 119,605 (61.6) 117,761 (60.6) 115,704 (59.6) 112,881 (58.1) <0.001
Dyslipidemia (%) 102,627 (52.8) 98,666 (50.8) 95,100 (48.9) 90,667 (46.7) <0.001
IHD (%) 28,614 (14.7) 26,445 (13.6) 24,879 (12.8) 23,758 (12.2) <0.001
Stroke (%) 10,979 (5.7) 10,286 (5.3) 9961 (5.1) 9996 (5.1) <0.001

Income (lower 20%, %) 34,931 (18.0) 36,804 (18.9) 39,098 (20.1) 43,447 (22.4) <0.001
ACE inhibitors or ARBs (%) 71,197 (36.6) 69,355 (35.7) 67,950 (35.0) 67,800 (34.9) <0.001
Oral GLM

Metformin 72,551 (37.3) 75,633 (38.9) 79,615 (41.0) 85,739 (44.1) <0.001
Sulfonylurea 70,505 (36.3) 76,924 (39.6) 84,825 (43.7) 92,837 (47.8) <0.001
Meglitinide 3960 (2) 4286 (2.2) 4821 (2.5) 5950 (3.1) <0.001
Thiazolidinedione 11,624 (6) 12,466 (6.4) 13,402 (6.9) 14,708 (7.6) <0.001
DPP-4 inhibitor 7602 (3.9) 7871 (4.1) 8300 (4.3) 8531 (4.4) <0.001
a-Glucosidase inhibitor 18,941 (9.8) 21,134 (10.9) 24,274 (12.5) 28,984 (14.9) <0.001

Number of oral GLM <0.001
0 96,962 (49.9) 93,619 (48.2) 88,878 (45.7) 82,779 (42.6)
1 34,341 (17.7) 31,949 (16.4) 29,574 (15.2) 26,813 (13.8)
2 42,096 (21.7) 44,622 (23.0) 47,759 (24.6) 51,446 (26.5)
3 17,310 (8.9) 19,723 (10.2) 22,828 (11.8) 26,763 (13.8)
≥4 3593 (1.9) 4378 (2.3) 5262 (2.7) 6497 (3.3)

Insulin 8125 (4.2) 9515 (4.9) 11,928 (6.1) 19,582 (10.1) <0.001
Duration of diabetes 2.7 ± 3.1 2.8 ± 3.1 3 ± 3.2 3.3 ± 3.2 <0.001
≥5 years (%) 56,944 (29.3) 59,454 (30.6) 63,309 (32.6) 68,451 (35.2) <0.001

Type 1 diabetes (%) 1274 (0.7) 1537 (0.8) 2106 (1.1) 4153 (2.1) <0.001
Number of exams <0.001

3 167,018 (86.0) 152,379 (78.4) 146,220 (75.3) 142,455 (73.3)
4 13,832 (7.1) 19,418 (10.0) 22,307 (11.5) 24,566 (12.6)
5 13,452 (6.9) 22,494 (11.6) 25,774 (13.3) 27,277 (14)

Time interval between adjacent
exams (years) 1.87 (1.3–2.1) 1.8 (1.1–2.1) 1.76 (1.1–2.1) 1.71 (1.1–2.1) <0.001

a Q1: 0–12.7; Q2: 12.8–20.6; Q3: 20.7–31.2; Q4: ≥31.3. b Presence of chronic kidney disease represents estimated glomerular filtration
rate < 60 mL/minute/1.73 m2. Data are presented as mean ± standard deviation, median (interquartile range), or number (%). One-way
analysis of variance and the chi-squared test were used to compare the characteristics of the study subjects at baseline. Post hoc multiple
comparison analysis was performed with Bonferroni correction, and triglyceride levels were log-transformed for analysis. p-values
were <0.001 for all variables because of the large sample size. Abbreviations: VIM, variability independent of mean; BMI, body mass index;
BP, blood pressure; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; SD, standard deviation; CV,
coefficient of variation; ARV, average real variability; eGFR, estimated glomerular filtration rate; IHD, ischemic heart disease; ACE inhibitor,
angiotensin-converting enzyme inhibitor; ARB, angiotensin-receptor blocker; GLM, glucose-lowering medicine; DPP-4 inhibitor, inhibitors
of dipeptidyl peptidase 4; ICD-10, International Classification of Diseases, 10th Revision.

During 8.0 (7.4–8.4) years of median (interquartile range) follow-up period, a total
of 7290 cases of ESKD were identified (Table 2). Age- and sex-adjusted HRs for ESKD
serially increased as the FG VIM quartile increased. In model 2, the HR (95% CI) for ESKD
of participants in FG VIM quartile 4 was 1.27 (1.19–1.36), with adjustment for clinically
relevant factors, duration of diabetes, history of CKD, mean FG, and the number of exams.
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When the participants were divided into deciles in more detail, significantly higher risks for
ESKD were found in D9 and D10 with a cutoff value of D9 of 34.4 (Table S1). A similar
association was observed when FGV parameters were changed to SD, CV, and ARV (Table S2).

Table 2. Hazard ratios and 95% confidence intervals for the incidence of end-stage of kidney disease by quartiles of fasting
glucose variability a.

Events (n)
Follow-Up
Duration

(Person-Years)

Incidence Rate
(Per 1000

Person-Years)

Age- and Sex-
Adjusted

HR (95% CI)

Multivariate-Adjusted
HR (95% CI)

Model 1 Model 2

Q1 (n = 194,302) 1412 1,478,422.2 0.96 1 (Ref.) 1 (Ref.) 1 (Ref.)
Q2 (n = 194,291) 1487 1,483,681.0 1.00 1.07 (0.99–1.15) 1.05 (0.97–1.13) 0.99 (0.92–1.06)
Q3 (n = 194,301) 1721 1,482,829.3 1.16 1.25 (1.16–1.34) 1.21 (1.12–1.3) 1.03 (0.96–1.1)
Q4 (n = 194,298) 2670 1,468,254.3 1.82 1.96 (1.84–2.10) 1.79 (1.68–1.91) 1.27 (1.19–1.36)

a Q1: 0–12.7; Q2: 12.8–20.5; Q3: 20.6–31.2; Q4: ≥31.3. Model 1 is adjusted for age, sex, body mass index, smoking, alcohol drinking, exercise,
presence of chronic kidney disease, dyslipidemia, hypertension, and low-income status. Model 2 is the same as model 1, plus an adjustment
for duration of diabetes as continuous variable, the number of classes of oral glucose-lowering medicine, the presence of prescription
history of insulin, the mean of fasting glucose, and the number of exams.

In subgroup analyses, increased risk for ESKD in VIM quartile 4 versus quartile 1–3
was more evident in individuals aged 40–64 years, with a prescription history of ACE inhibitors
or ARBs, hypertension, and dyslipidemia (Table 3). Among the various characteristics of
diabetes, the impact of higher FGV was more distinct in patients with a long duration of
diabetes and the prescription of metformin, sulfonylurea, AGI, and insulin (Table 4).

Table 3. Subgroup analysis according to clinically relevant factors in the fasting glucose variability quartile 4 versus quartiles 1–3.

IR per 1000 HR (95% CI) p for Interaction

Age (years) 0.000
40–64 (n = 521,902) 1.50 1.36 (1.28–1.45)
≥65 (n = 255,290) 2.61 1.14 (1.06–1.23)

Sex 0.849
Male (n = 471,212) 2.02 1.26 (1.19–1.33)
Female (n = 305,980) 1.46 1.27 (1.16–1.39)

BMI 0.325
<25 kg/m2 (n = 425,481) 1.94 1.24 (1.16–1.32)
≥25 kg/m2 (n = 351,711) 1.68 1.3 (1.2–1.4)

Current smoking 0.215
No (n = 615,924) 1.88 1.28 (1.21–1.35)
Yes (n = 161,268) 1.63 1.19 (1.08–1.32)

Hypertension 0.004
No (n = 311,241) 0.51 1.05 (0.92–1.2)
Yes (n = 465,951) 2.80 1.3 (1.23–1.37)

ACE inhibitor or ARB 0.001
No (n = 500,890) 0.70 1.11 (1.01–1.21)
Yes (n = 276,302) 3.99 1.33 (1.25–1.4)

Chronic kidney disease 0.988
No (n = 681,519) 0.75 1.26 (1.17–1.36)
Yes (n= 95,673) 9.33 1.26 (1.19–1.34)

Dyslipidemia 0.035
No (n = 390,132) 1.15 1.18 (1.09–1.28)
Yes (n = 387,060) 2.58 1.31 (1.23–1.39)

Income lower 20% 0.636
No (n = 622,912) 1.79 1.27 (1.2–1.34)
Yes (n = 154,280) 1.92 1.23 (1.12–1.37)

Adjusted for age, sex, body mass index, smoking, alcohol drinking, exercise, presence of dyslipidemia, hypertension, chronic kidney disease,
low-income status, duration of diabetes as continuous variable, the number of classes of oral glucose-lowering medicine, presence of prescription
history of insulin, mean fasting, and the number of exams. Each variable used to stratify the participants was excluded from the adjustment.
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Table 4. Subgroup analysis according to the characteristics of diabetes in the fasting glucose variability quartile 4 versus
quartiles 1–3.

IR per 1000 HR (95% CI) p for Interaction

Baseline fasting glucose 0.305
<126 mg/dL (n = 349,855) 2.67 1.16 (1.08–1.25)
≥126 mg/dL (n = 427,337) 1.34 1.23 (1.15–1.31)

Duration of diabetes <0001
<5 years (n = 529,034) 0.63 1.01 (0.92–1.11)
≥5 years (n = 248,158) 4.11 1.38 (1.3–1.46)

Type of diabetes 0.348
Type 2 diabetes (n = 768,122) 1.65 1.26 (1.19–1.32)
Type 1 diabetes (n = 9070) 10.06 1.16 (0.98–1.36)

Metformin 0.002
No (n = 463,634) 1.34 1.16 (1.08–1.25)
Yes (n = 313,538) 2.43 1.35 (1.26–1.44)

Sulfonylurea 0.011
No (n = 452,101) 1.24 1.16 (1.07–1.26)
Yes (n = 325,091) 2.46 1.32 (1.25–1.41)

Meglitinide 0.276
No (n = 758,175) 1.69 1.27 (1.21–1.34)
Yes (n = 19,017) 5.99 1.16 (0.99–1.36)

Thiazolidinedione 0.174
No (n = 724,992) 1.74 1.25 (1.18–1.31)
Yes (n = 52,200) 2.73 1.39 (1.2–1.61)

DPP-4 inhibitor 0.182
No (n = 744,888) 1.80 1.25 (1.19–1.31)
Yes (n = 32,304) 2.31 1.45 (1.17–1.78)

α-Glucosidase inhibitor 0.003
No (n = 683,859) 1.42 1.2 (1.13–1.27)
Yes (n = 93,333) 4.20 1.4 (1.29–1.53)

Insulin 0.001
No (n = 728,042) 1.14 1.19 (1.12–1.26)
Yes (n = 49,150) 8.38 1.42 (1.31–1.54)

Adjusted for age, sex, body mass index, smoking, alcohol drinking, exercise, presence of dyslipidemia, hypertension, chronic kidney
disease, low-income status, duration of diabetes as continuous variable, the number of classes of oral glucose-lowering medicine, presence
of prescription history of insulin, mean fasting, and the number of exams. Each variable used to stratify the participants was excluded from
the adjustment.

On the other hand, baseline FG levels showed a U-shaped association with the risk
of ESKD (Table S3). Compared to participants whose FG concentrations were in the range of
100–119 mg/dL, individuals with FG < 100 mg/dL or ≥180 mg/dL had a higher risk of ESKD.

4. Discussion

4.1. Significant Findings of the Present Study

These results confirmed the hypothesis that FGV is significantly associated with an
increased risk of ESKD among patients with diabetes. The risk for ESKD was 27% higher in
the group with the highest FGV than in the lowest FGV group. The predictive value of high
FGV on the incident ESKD was more prominent in patients with young age; hypertension;
dyslipidemia; a long duration of diabetes; and who were treated with ACE inhibitors or
ARBs, metformin, sulfonylurea, AGI, and insulin. In contrast, the association between FG
and the risk of ESKD was U-shaped.

4.2. Kidney Outcomes and Long-Term Glucose Variability

Most previous studies have chosen HbA1c variability rather than FG variability for
glucose variability assessment, and their study outcomes were renal function decline
or development of albuminuria, not ESKD [17–19,21]. In the Action in Diabetes and
Vascular Disease: Preterax and Diamicron MR Controlled Evaluation (ADVANCE) trial,
SD of FG over 24 months exhibited a positive association with the risk of nephropathy
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combined with retinopathy [8]. Recently, a meta-analysis of three well-known clinical
trials, the U.K. Prospective Diabetes Study, the Action to Control Cardiovascular Risk in
Diabetes trial, and the Veteran Affairs Diabetes Trial, showed that FGV was associated
with a 30–40% increase in the risk of incident moderate to severe nephropathy, defined by
eGFR < 45 mL/min/1.73 m2 [24].

Only one study has evaluated the impact of FGV on the development of ESKD using
a population-based study [25,26]. The Taiwan Diabetes Study reported that FG-CV and
HbA1c-CV could predict the development of diabetic nephropathy [27] and ESKD [28]
in patients with type 2 diabetes. In the present study, compared to the previous one, we
included more patients with diabetes (n = 777,192 vs. 31,841) and calculated the FGV
for a longer period (5 vs. 1 year). Although ESKD is a hard outcome of diabetic renal
complications, it is hard to study ESKD as an outcome due to the lower incidence. The
incidence rate of ESKD in 2018 was 374.7 cases per million [16], lower than that of CVD,
at 8980 cases per million in 2017 [29]. To overcome this limitation, a large population-
based study is necessary. Because the NHIC entirely operates the health insurance system
in Korea, we could use almost all Koreans with diabetes and subsequently obtained
777,192 individuals eligible for this study, making it possible to perform a more detailed
subgroup analysis.

In patients with diabetes, oscillation in the FG level during a long follow-up pe-
riod might reflect poor self-care, overall poor compliance, and suboptimal strategy for
GLMs [30]. Because HbA1c is the average plasma glucose during 2–3 months, HbA1c
variability implies a change in glycemic status rather than glucose fluctuation itself. In
other words, FG might be better at capturing real-time glucose variations than HbA1c
levels [7]. Therefore, FGV in our study was derived from yearly or biannually measured
FG levels over five years, allowing for a comprehensive evaluation of a patient over a long
period of time. In addition, this simple strategy for estimating FGV could be helpful for
public health policy makers to select high-risk populations and support active prevention.

On the other hand, a high risk for ESKD was observed in individuals whose baseline
FG levels were <100mg/dL or ≥180 mg/dL. These findings were consistent with another
nationwide cohort study of Koreans with diabetes using GLMs [31], suggesting that
intensive glucose control might not necessarily diminish the progression of established
diabetic kidney disease.

4.3. Interpretation for the Impact of Glucose Variability

There is little data available to explain the mechanism linking glucose variability
and ESKD risk directly. Cha et al. demonstrated the negative association of plasma
adiponectin and glypican-4 levels with eGFR and positive association with urinary albumin
levels [32]. The findings that transient glucose spikes could induce oxidative stress and
impair endothelial function more than sustained hyperglycemia [33,34] and that glomerular
permeability, mesangial lipid accumulation, and collagen synthesis are increased after
intermittent exposure to high glucose levels [25,26] could be a pathophysiologic explanation
of this association.

The results of the subgroup analysis provide a chance to identify the population more
vulnerable to FGV (Table 3). It is possible that individuals with a long duration of diabetes
are sensitive to oxidative stress because their enzymatic antioxidant defense systems are
less efficient [29,35]. The presence of hypertension or dyslipidemia itself is an already
proven risk factor for ESKD [36]. Its significant interaction with the harmful effect of high
FGV on the risk of ESKD suggests a synergic relationship.

Interestingly, a significant effect of FGV was not observed in individuals aged ≥ 65 years.
This may be due to the competing risk of death in patients with diabetic ESKD [37]. A
Finnish nationwide cohort study showed that the cumulative risk of ESKD decreased
with increasing age [38]. At the same time, mortality increased among the older age
groups, with a 100-fold higher incidence of death than the ESKD cases throughout the
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20-year-of follow-up [38]. Therefore, we theorize that the deceased cases ahead of ESKD
might diminish the ESKD cases, weakening the effect of FGV.

The valid interaction with the prescription of ACE inhibitors or ARB, metformin,
sulfonylurea, AGI, and insulin should be interpreted cautiously. There have been no
previous studies exploring the interaction between GLM and the impact of FGV on ESKD,
but only showed that sulfonylurea increases the glucose variability [39], whereas DPP-4
inhibitors and degludec reduced it [40,41]. Subjects with higher FGV might be treated with
more GLMs due to their clinical condition. If they were not prescribed more GLMs, their
FGV would be higher, and the association with ESKD risk might be stronger than in the
present study.

SGLT2 inhibitors and glucagon-like peptide-1 receptor agonists, which have been
known to prevent CKD progression, have been reimbursable for patients with diabetes
in Korea since 2014 and 2015, respectively [2,3]. Because the prescriptions of these GLMs
were negligible during the glucose variability assessment period (2005–2010), their impact
on the incidence of ESKD until 2017 was expected to be minimal.

4.4. Parameters for Estimating Glycemic Variability

There is no consensus on a standardized index for glucose variability with distinct
characteristics [42]. SD refers to the dispersion of measurements around the mean, and
CV reflects a standardized variation that provides direct comparison among study groups.
ARV is the average of the absolute differences of successive measurements and might be a
reliable index for time series variability [20,43]. However, we chose VIM as the primary
parameter of FGV because VIM is a measure of variability designed not to correlate with
mean levels which is appropriate for the purpose of this study [44]. SD, CV, and ASV
are partially dependent on mean despite of adjustment for mean value [45]. When we
analyzed SD or CV again, a similar trend was observed (Table S2).

4.5. Limitations

This nationwide population-based study clearly showed the influence of long-term
FG variability on incident ESKD with a long-term follow-up period. The 5-year FGV levels
used in the present study were much longer than those used in previous studies. However,
several limitations of this study should be considered.

First, given that we extracted study subjects according to the times of health check-ups
to calculate long-term glucose variability, those with healthier lifestyle and slightly ele-
vated glucose concentrations could be included, which might be a source of selection bias.
Moreover, it is not available for complete information of hypoglycemia events. Second,
postprandial glucose, HbA1c, serum c-peptide, and autoantibody levels were not included
in this database. To enhance the accuracy of diagnosis of diabetes and subtype, we used
ICD-10 codes with prescription histories of GLM and FG levels. Although we could not
use HbA1c variability, the variability of FG was a stronger predictor of microvascular and
macrovascular events than HbA1c variability in the ADVANCE trial [8]. Third, health
examinations provided by the NHIC measure only dipstick proteinuria, not urine albumin-
uria. Finally, given the retrospective design of this study, reverse causation and undetected
exposure of the risk factors of ESKD were possible [46]. We excluded incident ESKD cases
developed one year after the baseline to minimize this issue. Additionally, the fasting
period was not standardized fasting period could influence the FG levels.

Despite those limitations, a large-sized population-based cohort study covering almost
entire Koreans is still the most suitable design for investigating rare outcomes such as
ESKD possible [46].

5. Conclusions

This large-scale nationwide population-based study demonstrated that FG variability
was independently associated with an increased risk of ESKD among patients with diabetes,
especially in those with young age, long duration of diabetes, and comorbidities who need
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more GLM and RAS inhibitors. These findings highlight that reducing FGV is a vital
strategy to reduce the incidence of ESKD in diabetes, especially in high-risk populations.
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Abstract: Bone fragility is a common complication in subjects with type 2 diabetes mellitus (T2DM).
However, traditional techniques for the evaluation of bone fragility, such as dual-energy X-ray ab-
sorptiometry (DXA), do not perform well in this population. Moreover, the Fracture Risk Assessment
Tool (FRAX) usually underestimates fracture risk in T2DM. Importantly, novel technologies for the
assessment of one microarchitecture in patients with T2DM, such as the trabecular bone score (TBS),
high-resolution peripheral quantitative computed tomography (HR-pQCT), and microindentation,
are emerging. Furthermore, different serum and urine bone biomarkers may also be useful for
the evaluation of bone quality in T2DM. Hence, in this article, we summarize the limitations of
conventional tools for the evaluation of bone fragility and review the current evidence on novel
approaches for the assessment of quality and bone microstructure alterations in patients with T2DM.

Keywords: type 2 diabetes mellitus; bone fragility; fracture risk; bone structure; bone quality

1. Introduction

In the last few decades, type 2 diabetes mellitus (T2DM) has dramatically increased
in prevalence worldwide, resulting in significant burdens on patients suffering from this
condition and healthcare systems [1]. Of note, the rising prevalence of this disease is
associated with the development of a wide range of complications, including retinopathy,
nephropathy, neuropathy, and cardiovascular disease [1,2]. These complications often
affect the quality of life of patients with T2DM, including their physical and psychological
functioning [3]. Although some of these comorbidities have a well-known impact on the
quality of life [4,5], others have received less attention [6].

Mounting evidence reveals that bone fragility is common in T2DM [7]. Several studies
have shown that T2DM constitutes an independent risk factor for osteoporotic fractures,
presenting a particularly strong association with hip fractures [8–11]. Indeed, a num-
ber of meta-analyses have confirmed that T2DM is associated with an increased risk of
incident hip, vertebral, and non-vertebral fractures [12–14]. Since T2DM has a strong
relationship with hip fractures that need replacement surgery using total hip arthroplasty,
new techniques have been developed in this field [15,16]. Importantly, increases in the
incidence of fractures lead to greater costs and healthcare resource utilization in this popu-
lation [17]. Moreover, fractures are associated with functional impairment and reduction
of health-related quality of life [18,19]. Given the important health and socioeconomic
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impact of skeletal fragility and fractures, individuals with T2DM, especially those with
major diabetes-related determinants and other conventional risk factors for osteoporosis,
should be assessed for the presence of bone fragility and their fracture risk [20]. However,
traditional imaging techniques and fracture risk assessment tools may not be accurate for
this purpose in patients with T2DM [21].

In this review, we summarize the main limitations of commonly used methods to eval-
uate bone fragility and estimate fracture risk in patients with T2DM, and we also discuss the
potential role of novel strategies in the evaluation of quality and bone microstructure alter-
ations in this population. Although some of these issues have been addressed in previous
works [22], the current knowledge on novel techniques and biomarkers for the evaluation
of bone fragility in T2DM is still limited. We have updated all the information available on
the pathogenic mechanisms that explain bone fragility in patients with T2DM. In addition,
we have reviewed the role of new technologies and biomarkers in the assessment of bone
fragility in T2DM, considering the main clinical studies currently available.

2. Search Strategy and Limitations of the Review

We conducted a comprehensive literature search of articles published in PubMed
until March 2022. Peer-reviewed articles related to T2DM and bone fragility published in
English were selected, with special attention to clinical studies evaluating bone mineral
density (BMD) by dual energy X-ray absorptiometry (DXA) in patients with T2DM, as well
as clinical studies assessing bone microstructure through the trabecular bone score (TBS),
high-resolution peripheral quantitative computed tomography (HR-pQCT), and microin-
dentation in this population. Finally, we included clinical studies related to the evaluation
of novel non-invasive biomarkers of bone quality and fracture risk prediction in T2DM.
Original human research articles, including randomized controlled trials, prospective and
retrospective observational studies, and cross-sectional studies were considered. The largest
studies, as well as the most recent and solid available evidence, were prioritized. Remark-
ably, a considerable number of the available studies were conducted in postmenopausal
women with T2DM; therefore, these results have to be considered cautiously in subjects
with T2DM and different characteristics. Moreover, several studies included in this review
had a cross-sectional design; thus, further large-scale long-term prospective studies are
needed in this field.

3. Determinants of Skeletal Fragility and Increased Risk of Fracture in T2DM

Several determinants have been identified in the pathogenesis of bone fragility and
increased fracture risk in subjects with T2DM [23] (Figure 1). Notably, a longer duration of
T2DM was reported to be an independent risk factor for major osteoporotic fractures in
women aged ≥40 and with ≥10 years of diabetes duration [24], and a recent meta-analysis
showed a greater increase in the risk of both hip and non-vertebral fractures in subjects with
longer diabetes duration [13]. Besides this, poor glycemic control is closely linked to fracture
risk, as several large-scale population-based cohort studies have demonstrated [25–27].
In this regard, the generation of advanced glycation end-products (AGEs) resulting from
chronic exposure to hyperglycemia is one of the key mechanisms in the pathophysiology
of bone fragility in T2DM [23]. As such, non-enzymatic glycosylation of collagen leads
to the formation of collagen-AGEs, which are involved in the development of impaired
bone mineralization and quality through different alterations of the extracellular matrix,
a reduction of alkaline phosphatase activity in osteoblasts, and an overactivation of the
receptor for AGEs (the latter associated with the release of pro-inflammatory cytokines
and reactive oxygen species—ROS—by osteoclasts) [23,28]. On the other hand, it is also
postulated that the main event related to bone fragility in T2DM is an overall inhibition of
bone cells function and decreased bone turnover [23,29]. This effect may be driven in part
by insulin resistance [30].
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Figure 1. Determinants of bone fragility and increased fracture risk in type 2 diabetes. AGEs,
advanced glycation end products.

In addition to chronic hyperglycemia and AGE formation, other mechanisms play
a role in bone fragility in T2DM, as previously reviewed [7,23,31]. Among them, a pro-
inflammatory state and oxidative stress, along with adipokine dysregulation and marrow
adiposity, have a strong influence on bone metabolism [7,31]. Loss of incretin effect has also
been implicated in the pathogenesis of skeletal fragility in T2DM [31,32]. Microvascular
disease and impaired vascular bone intercommunication determine alterations of bone
quality and microarchitecture [7,31]. Ischemic heart disease has also been reported to be
associated with an increased risk of vertebral fractures in T2DM [33]. Vitamin D deficiency,
commonly found in patients with T2DM, could play a role in both T2DM development and
bone fragility [34]. Pathological changes in gut microbiota composition in T2DM may also
trigger bone alterations in this population [35].

Further to this, glucose-lowering agents may also be crucial contributors to the re-
ported associations between T2DM and bone fragility [36,37]. The potential benefits of
some drugs for bone density and fracture risk (i.e., metformin, glucagon-like peptide 1
receptors agonists and dipeptidyl peptidase-4 inhibitors) [38–40] remain to be confirmed
in specifically designed studies. Conversely, the long-term use of thiazolidinediones has
been independently associated with fracture risk [41], and sodium-glucose cotransporter-2
inhibitors could also have this effect [42,43]. Remarkably, both insulin and sulfonylureas
significantly increase fall-related fractures due to episodes of hypoglycemia [44]. In this
vein, other prevalent factors in T2DM (i.e., visual impairment, peripheral neuropathy,
autonomic dysfunction/postural hypotension, foot ulcers/amputation, and sarcopenia)
also lead to an increased risk of fall-related fractures [31,45].

4. Bone Density and Fracture Risk Prediction in T2DM

Despite skeletal fragility and fracture risk being greater in subjects with T2DM, this
condition is usually associated with normal or even increased BMD measured by DXA [46].
Thus, women with T2DM in the Women’s Health Initiative Observational Study presented
higher hip and spine BMD scores compared to those without T2DM [47]. Similarly, in
a cross-sectional study including two Swedish cohorts, both men and women exhibited
a progressively higher hip BMD according to normal fasting plasma glucose/impaired
fasting plasma glucose/T2DM subgroups [48]. In the prospective population-based cohort
from the Rotterdam Study, inadequate glycemic control was associated with both higher
BMD and increased fracture risk in participants with T2DM [27]. Furthermore, a meta-
analysis of 15 observational studies (3473 subjects with T2DM and 19,139 healthy controls)
showed that participants with T2DM had significantly higher BMD at the femoral neck,
hip, and spine [49].

It is noteworthy that these results contrast with those reported by studies assessing
BMD in type 1 diabetes mellitus (T1DM), in which BMD is generally low [50]. Although
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the mechanisms involved in the association between T2DM and normal/high BMD are
not fully understood, some data suggest that these findings might be related to chronic
hyperinsulinemia and insulin resistance [51], as well as the effect of some adipokines, such
as leptin, on bone metabolism [52]. Excess weight/obesity, which are often encountered in
patients with T2DM, could also play a role in increased BMD, although some studies have
reported that this relationship remains after adjusting for the body mass index (BMI) [49].
Since T2DM is associated with increased fracture risk, regardless of whether there is a nor-
mal/high BMD, a fact known as “the diabetic paradox of bone fragility” [53], the diagnosis
of osteoporosis based on BMD measured by DXA, should be cautiously considered [21].

On the other hand, the Fracture Risk Assessment Tool (FRAX), which is widely used
to estimate 10-year absolute fracture risk, has been demonstrated to underestimate the
risk for both hip and major osteoporotic fractures in patients with T2DM [54]. These
results are influenced, in part, by the higher BMD observed in patients with T2DM [49].
Indeed, contrary to T1DM, T2DM is not included in the FRAX tool as a secondary cause
of osteoporosis [55]. In this regard, some authors have proposed a correction factor with
the use of glycated hemoglobin in order to improve the predictive ability of this algorithm
for fracture risk [56]. Recently, adjustment of FRAX for T2DM has been suggested in order
to create a useful alternative [57,58], although further research is warranted to confirm
these results. Alternatively, certain methods (i.e., inputting rheumatoid arthritis, adjusting
FRAX by TBS, reducing the femoral T-score by 0.5, and increasing the age by 10 years)
have been proposed to improve the performance of FRAX in T2DM, although no single
method appears to be optimal in all settings [59]. In light of the above, new approaches to
the evaluation of bone fragility in patients with T2DM are needed.

5. Bone Microstructure in T2DM

As previously discussed, patients with T2DM have normal or elevated BMD; however,
bone microarchitecture alterations may be present in this group, resulting in an increased
fracture risk [60]. In this context, the trabecular bone score, high-resolution peripheral
quantitative computed tomography, and microindentation are useful techniques for the
evaluation of the bone microstructure in T2DM.

5.1. Trabecular Bone Score

The TBS is a non-invasive, indirect index of trabecular microarchitecture [61]. It is
derived from experimental variograms of the projected two-dimensional lumbar spine DXA
image and can assess pixel gray-level variations of this area, which translate into a bone
microstructure-related score [61]. Accordingly, a high TBS is related to numerous, well-
connected and less sparse trabeculae (i.e., normal bone microarchitecture), whereas a low
TBS indicates a reduced number of trabeculae and less connectivity, as well as trabecular
separation (i.e., altered bone microarchitecture) [61], as shown in Figure 2. In this regard,
the proposed TBS cut-off values are as follows: TBS > 1.31 (normal microarchitecture), TBS
between 1.23 and 1.31 (partially degraded microarchitecture), and TBS < 1.23 (degraded
microarchitecture) [62].

TBS has been demonstrated to be an independent predictor for osteoporotic frac-
tures [62–64]. In addition to this, TBS can detect differences between DXA images with
similar BMDs [61] and helps to improve the performance of BMD assessed by DXA in the
prediction of osteoporotic fractures [65,66]. Indeed, TBS has been incorporated into the
FRAX algorithm (FRAX adjusted for TBS), although the clinical impact of this adjustment
is yet to be properly evaluated [62].

In patients with T2DM, TBS has been reported to be significantly decreased compared
to subjects without diabetes, which suggests that this index could be a useful tool for the di-
agnosis of bone fragility in this population [67]. TBS may be decreased even in prediabetes,
indicating that the degradation of bone microarchitecture may occur in early stages of the
disease [68]. Interestingly, in a recent cross-sectional study including 137 patients with
T2DM aged 49–85 and 300 healthy controls, the presence of T2DM was associated with
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significantly lower TBS values despite higher lumbar spine BMD; adiposity (estimated by
the relative fat mass) and insulin resistance could play a role in these results [69]. Accord-
ingly, visceral fat reduction may increase TBS values [70]. Furthermore, higher glycated
hemoglobin levels and a longer disease duration in patients with T2DM are related to
lower TBS values, although the interference of abdominal soft tissue thickness should be
considered when interpreting these findings [68,71–73]. Moreover, diabetic microvascular
disease may be linked to lower TBS [74].

Figure 2. Trabecular bone score (TBS) as a useful technology for the assessment of the trabecular
microarchitecture. TBS > 1.31 (left) denotes a normal microarchitecture, whereas TBS < 1.23 (right)
indicates an altered microarchitecture. TBS can detect differences between similar values of lumbar
spine bone mineral density (BMD) estimated by dual-energy X-ray absorptiometry (DXA) (g/cm2).

Notably, several studies have shown that TBS can predict incident/prevalent os-
teoporotic fractures independent of BMD [75–78] (Table 1). In a retrospective cohort
study from the Manitoba Bone Density Program (29,407 women ≥ 50 years, 2356 with
diagnosed T2DM), lumbar spine TBS was a BMD-independent predictor of major osteo-
porotic fractures in both participants with and without T2DM [75]. In a study including
206 postmenopausal women with/without T2DM, TBS values ≤1.130 presented an ade-
quate diagnostic accuracy for vertebral fractures in the former [76], whereas, in a cross-
sectional study conducted on 548 patients with T2DM, TBS correlated with prevalent
vertebral fractures [77]. Finally, in a study including 285 postmenopausal women with
T2DM, TBS had the strongest association with vertebral fractures [78]. Considering all
these findings together, TBS may constitute a useful approach for the diagnosis of bone
fragility and the evaluation of fracture risk in T2DM, although further prospective studies
are needed to corroborate these data.

Table 1. Clinical studies showing an independent association between the trabecular bone score (TBS)
and osteoporotic fractures in patients with type 2 diabetes mellitus.

Study Design Study Population Results

Leslie et al., 2013 [75] Retrospective cohort (mean follow-up
4.7 years)

29,407 women ≥ 50 years (2356 with
diagnosed T2DM)

TBS predicted major osteoporotic fractures
(hip, spine, forearm and humerus) in T2DM

(HR 1.27, CI 1.10–1.46)

Zhukouskaya et al., 2015 [76] Cross-sectional 99 postmenopausal women with
T2DM/107 healthy controls

TBS was associated with VF (AUC 0.69,
cut-off value 1.130 in ROC curve analysis)

Yamamoto et al., 2019 [77] Cross-sectional
584 patients with T2DM

(257 postmenopausal women and
291 men > 50 years)

TBS correlated with prevalent VF in
multivariate logistic regression analysis

Lin et al., 2019 [78] Cross-sectional 285 postmenopausal women
with T2DM

TBS had the strongest association with VF
(AUC 0.775)

T2DM, type 2 diabetes mellitus; TBS, trabecular bone score; VF, vertebral fractures; HR, hazard ratio; CI, confidence
interval; ROC, receiver operating characteristic; AUC, area under the curve.
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5.2. High-Resolution, Peripheral, Quantitative Computed Tomography

HR-pQCT is a non-invasive three-dimensional imaging modality that permits the
assessment of bone microarchitecture, including the measurement of volumetric cortical
and trabecular bone mineral density (vBMD), cortical thickness/porosity, bone strength,
and other parameters in the appendicular skeleton (i.e., distal radius and tibia) [79]. In
recent years, HR-pQCT has emerged as a promising technique that could become widely
used for the diagnosis of osteoporosis and for clinical fragility fracture prediction [80,81].

In a pilot study conducted on 19 postmenopausal women with T2DM matched to
19 controls, Burghardt et al. showed for the first time that T2DM may be associated with
bone microarchitecture alterations, as assessed by HR-pQCT [82]. It was observed that,
although participants with T2DM had higher trabecular vBMD and trabecular thickness,
they also presented higher cortical porosity and impaired bone strength, measured by micro-
finite element analysis [82]. Similarly, Patsh et al. reported increased cortical porosity at the
ultradistal and distal radio and tibia in 80 postmenopausal women with T2DM [83], while
Yu and colleagues also found defects in cortical bone microarchitecture (i.e., higher cortical
porosity and lower cortical vBMD) in African American women with T2DM compared to
healthy controls [84]. Data from the Framingham Study (a total of 1069 subjects underwent
HR-pQCT, 129 subjects with T2DM) showed that patients with T2DM had lower vBMD
and higher cortical porosity compared to controls [85]. Interestingly, in a prospective
exploratory study that involved postmenopausal women with T2DM with/without a
history of fragility fractures and controls, patients with T2DM and a history of fractures
exhibited the highest cortical porosity [86]. Cortical porosity increased over time similarly
in the three groups, although patients with T2DM and a history of fractures presented the
greatest decreases in bone strength indices in the follow-up period, a fact that suggests that
cortical porosity may develop early, followed by small increases in this parameter along
with significant material strength impairment [86]. Of note, cortical bone deficits assessed
by HR-pQCT in T2DM may be driven by the presence of microvascular disease and/or
poor metabolic control [87,88].

Conversely, other studies did not find significant differences in bone microarchitecture
determined by HR-pQCT between subjects with and without T2DM [89]. Intriguingly, in a
population-based sample of women aged 75–80 (99 women with T2DM and 954 controls),
T2DM was associated with better bone microarchitecture (including higher trabecular
and cortical vBMD in several regions and lower cortical porosity) [90]. In this context,
large-scale clinical studies on the topic are required to evaluate the role of HR-pQCT in the
diagnosis of bone fragility in T2DM. Moreover, the impacts of cortical porosity and other
parameters, as estimated by HR-pQCT, on the prediction of fractures in T2DM are yet to
be elucidated.

5.3. Microindentation

Microindentation is an invasive technique that enables percutaneous evaluation of the
resistance of bone to indentation in vivo [91]. By indenting a probe tip through the skin
covering the tibia and measuring the depth that it penetrates the bone after the generation
of an impact force, impact microindentation measurement directly assesses the mechan-
ical characteristics of cortical bone, which are estimated by the bone material strength
index (BMSi) [92]. This technique may be particularly useful in populations presenting
discrepancies between BMD and increased fracture risk, such as those with T2DM [93].
Accordingly, some studies have reported decreased BMSi in postmenopausal women with
T2DM [89,90,94]. Moreover, altered matrix bone properties evaluated by microindentation
were confirmed in this population, even though BMD assessed by DXA and/or bone mi-
croarchitecture assessed by HR-pQCT showed no differences between subjects with T2DM
and healthy controls [89,90]. Remarkably, in a cross-sectional study including 340 men
aged 33–96, participants with T2DM exhibited lower mean BMSi compared to subjects with
normoglycemia/impaired fasting glucose [95]. However, it should be noted that further
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work is needed with regard to this technique for the assessment of bone fragility in patients
with T2DM.

6. Bone Quality in T2DM: The Role of Biomarkers of Bone Fragility

In addition to bone mineralization and microarchitecture, skeletal material properties
are also influenced by bone turnover and the quality of collagen, which may be affected by
the accumulation of AGEs, leading to the alteration of collagen crosslinks and function as
discussed in previous sections [23]. In this regard, it has been stated that bone turnover
is decreased in T2DM, which results in reduced serum levels of bone remodeling mark-
ers [23,96–98]. However, it remains unknown whether these biochemical markers may be
helpful for the diagnosis of bone fragility or the prediction of fracture risk in patients with
T2DM. On the one hand, decreased circulating levels of parathyroid hormone (PTH) along
with osteocalcin were shown to be associated with a higher risk of vertebral fracture in
postmenopausal women with T2DM [99]. On the contrary, in a recent study, Napoli et al.
showed that serum bone turnover markers (terminal telopeptide of type 1 collagen-CTX,
osteocalcin, and procollagen type 1 N-terminal propeptide-P1NP) were not able to predict
fracture risk in T2DM [100].

On the other hand, AGES related to collagen, such as pentosidine and N-carboxymethyl
lysine (CML), are increased in bone biopsy specimens from subjects with T2DM [60,101,102].
Therefore, circulating/urinary levels of these AGEs may become attractive surrogate mark-
ers of bone quality in subjects with T2DM. Besides this, other novel biomarkers could play
a role in the evaluation of bone fragility in T2DM.

6.1. Pentosidine

Pentosidine is a well-characterized AGE derived from the non-enzymatic reaction
of pentoses with lysine and arginine residues [103]. Pentosidine levels are increased in
T2DM [104]; moreover, circulating levels of pentosidine appear to be higher in patients
with T2DM and poor metabolic control, and they are also related to T2DM-associated
cardiovascular disease and microvascular complications [104–106].

Higher concentrations of pentosidine can also be found in the cancellous bone of
patients with T2DM, and this accumulation may be associated with bone fragility via
reduced post-yield strain and toughness due to alterations of the bone matrix [60,107,108].
These disturbances may be related to a decreased bone turnover induced by this AGE [109].
Of note, serum/urinary levels of pentosidine may also be applicable markers of bone
fragility in T2DM. Thus, serum levels of pentosidine have been reported to be linked to
the presence of vertebral fractures in postmenopausal women with T2DM, who presented
similar BMD values/bone turnover markers to controls [110]. Furthermore, in a cross-
sectional study, urine pentosidine levels were higher in patients with T2DM and vertebral
fractures, and were negatively correlated with TBS [111]. In an observational cohort
study (501 participants with T2DM and 427 without T2DM), Schwartz et al. showed that
urine pentosidine was able to predict incident clinical fractures only in adults with T2DM,
while prevalent vertebral fractures were also associated with urine pentosidine in this
population [112].

6.2. N-carboxymethyl Lysine

The AGE N-carboxymethyl lysine (CML) may also play an important role in bone
fragility in patients with T2DM [102]. In this regard, CML content in human cortical bone
has been reported to be higher in subjects with T2DM, which may affect collagen prop-
erties [102]. In a large cohort from the Cardiovascular Health Study (3373 participants),
serum levels of CML were associated with increased risk of incident hip fracture, indepen-
dent of the BMD, with no differences in the hazard ratio between participants with and
without T2DM [113]. Recently, in a cohort study including 712 participants with T2DM and
2332 subjects without, Dhaliwal et al. showed that circulating levels of CML were higher
in patients with T2DM, and higher levels of this AGE were related to an increased risk
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of incident clinical fractures in this group, independent of the BMD [114]. Indeed, in this
study, no relationship was found between hip BMD and CML, which reinforces the notion
that bone quality is a major determinant of the pathophysiology of increased fracture risk
in T2DM [114].

6.3. Sclerostin

Sclerostin is an inhibitor of the pro-osteogenic Wnt signaling pathway, which results
in decreased bone turnover [23,115]. Hence, some studies have found that higher levels of
this protein could be associated with a higher risk of osteoporotic fractures [116,117].

Increased circulating levels of sclerostin have been observed in patients with T2DM
and may be involved in low bone turnover and a greater risk of fracture found in this
population [118]. Thus, higher serum levels of sclerostin have been reported in post-
menopausal women with T2DM and fragility fractures, compared to those without fragility
fractures [119,120]. In addition to this, in a cross-sectional study including postmenopausal
women and men aged >50 years with T2DM, elevated sclerostin levels correlated with the
presence of vertebral fractures [121].

6.4. MicroRNAs

MicroRNAs (miRNAs) are epigenetic regulators of different cellular processes, includ-
ing bone development, homeostasis, and healing [122]. Although evidence regarding the
role of these elements in bone fragility in T2DM is still limited, some studies have shed light
on their potential utility [123–125]. In a study conducted on 168 postmenopausal women
with T2DM, three different miRNAs, including senescent miR-31-5p, were significantly
associated with incident fragility fractures [123]. In previous analyses, Heilmeier et al. also
reported that individual miRNAs or miRNA combinations were able to discriminate the
fracture status in postmenopausal women with T2DM [124]. Chen et al. also described
several miRNAs with potential implications for fracture prediction in postmenopausal
women with T2DM [125].

6.5. Other Biomarkers

Aside from in the serum and urine, AGE deposition can be measured in other tissues,
such as the skin. Therefore, skin autofluorescence (SAF), which is based on the non-
invasive measurement of AGE accumulation in the human skin, has emerged as a promising
technique [126]. However, little evidence is available concerning bone fragility/fracture risk
estimation through this tool. In two cross-sectional studies, SAF was inversely correlated
with BMSi in patients with T2DM [94,127]. Interestingly, SAF was associated with prevalent
vertebral and major osteoporotic fractures in participants from the Rotterdam Study [128].
However, these data must be assessed specifically in individuals with T2DM.

In another area, the fingernail quality may serve as a non-invasive marker of the bone
quality in T2DM [129,130]. Nevertheless, further investigation is needed.

7. Conclusions

Since traditional methods for the evaluation of BMD and fracture risk in individuals
with T2DM can lead to significant errors, additional techniques are needed. TBS may
be considered as a useful non-invasive index of bone microarchitecture, which is often
altered in patients with T2DM. Since TBS is derived from DXA images, it may represent an
applicable tool for the diagnosis of bone fragility in T2DM. In addition, it could facilitate
follow-up and the evaluation of response to treatment in these patients, and may help to
unravel the role of certain glucose-lowering agents in bone fragility. HR-pQCT also permits
the evaluation of bone microstructure; however, this technique involves significant costs
and exposure to radiation, which should be considered. Future opportunities in this area
include the evaluation of bone microstructure by DXA-3D, which has shown remarkable
results in several conditions other than T2DM and may provide accurate estimations of
bone structure and strength, thus offering additional information with regard to fracture
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risk. Despite the fact that microindentation is a promising method for the evaluation of
bone matrix properties, it requires an invasive procedure, which may limit its application in
clinical practice. On the other hand, some biochemical markers may represent interesting
non-invasive alternatives for the evaluation of skeletal fragility/fracture risk prediction in
patients with T2DM, although it is noteworthy that the current evidence regarding some
of these alternatives is still limited; therefore, further research (e.g., validation studies)
is needed before these biomarkers may be included in routine practice. Further large-
scale, long-term prospective studies are needed in the evaluation of quality and bone
microstructure alterations in patients with T2DM.
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Abstract: Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of
metabolic syndrome. To date, NAFLD is the most frequent chronic liver disease seen day by day in
clinical practice across most high-income countries, affecting nearly 25–30% of adults in the general
population and up to 70% of patients with T2DM. Over the last few decades, it clearly emerged
that NAFLD is a “multisystemic disease” and that the leading cause of death among patients with
NAFLD is cardiovascular disease (CVD). Indeed, several observational studies and some meta-
analyses have documented that NAFLD, especially its advanced forms, is strongly associated with
fatal and non-fatal cardiovascular events, as well as with specific cardiac complications, including
sub-clinical myocardial alteration and dysfunction, heart valve diseases and cardiac arrhythmias.
Importantly, across various studies, these associations remained significant after adjustment for
established cardiovascular risk factors and other confounders. Additionally, several observational
studies and some meta-analyses have also reported that NAFLD is independently associated with
specific microvascular conditions, such as chronic kidney disease and distal or autonomic neuropathy.
Conversely, data regarding a potential association between NAFLD and retinopathy are scarce and
often conflicting. This narrative review will describe the current evidence about the association
between NAFLD and the risk of macro- and microvascular manifestations of CVD, especially in
patients with T2DM. We will also briefly discuss the biological mechanisms underpinning the
association between NAFLD and its advanced forms and macro- and microvascular CVD.

Keywords: non-alcoholic fatty liver disease; NAFLD; non-alcoholic steatohepatitis; NASH; type 2
diabetes; cardiovascular disease; cardiovascular complications; CVD

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a metabolic liver disease, which classically
includes a spectrum of progressive pathological conditions, ranging from simple steatosis
to non-alcoholic steatohepatitis (NASH) with different grades of fibrosis and cirrhosis
(Figure 1) [1,2]. At present, NAFLD is the most common chronic liver disease seen day by
day in clinical practice, as it affects roughly 25–30% of adults in the general population
across various high-income countries [3], up to 70% of patients with type 2 diabetes
(T2DM) [4] and all patients with obesity [5]. On the other side, most NAFLD patients
have relevant metabolic comorbidities, including atherogenic dyslipidemia (~70%), obesity
(~50%), hypertension (~40%) and T2DM (~30%) [6]. In this regard, alongside the increasing
prevalence of metabolic syndrome worldwide, the overall prevalence of NAFLD is believed
to rise further in the coming years.
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Figure 1. Progression of non-alcoholic fatty liver disease (NAFLD). The stages of NAFLD develop-
ment classically are simple steatosis, non-alcoholic steatohepatitis (NASH) and cirrhosis.

The diagnosis of NAFLD is a diagnosis of exclusion [7]. It is essentially based on the
following criteria: (a) presence of hepatic steatosis, as detected by specific serum biomarker
scores (e.g., fatty liver index [FLI]), imaging techniques or liver histology, (b) no alcohol
consumption (<20 g/day for women and <30 g/day for men), and (c) no other secondary
causes of liver steatosis (e.g., virus, hepatotoxic drugs, hemochromatosis, autoimmune hep-
atitis) [7]. In the last two years, several experts in the field and many scientific societies have
proposed a revision of the terminology, switching from NAFLD to metabolic-associated
fatty liver disease (MAFLD) [8,9]. In this regard, the diagnosis of MAFLD can be undertaken
from the presence of hepatic steatosis and at least one of the following criteria: (a) over-
weight/obesity, (b) T2DM, and (c) metabolic dysregulation (i.e., two or more factors among
increased waist circumference, hypertriglyceridemia, low serum HDL-cholesterol levels,
hypertension, impaired fasting glucose, insulin resistance and chronic inflammation) [8,9].
Several studies and some meta-analyses have recently indicated that the MAFLD criteria
can identify more individuals with liver damage than NAFLD criteria [10]. However, given
that there is still an intense debate about which term should be used [11,12], we have
preferred to use still NAFLD term in this manuscript.

Importantly, in the last decades, it has also become clear that NAFLD is a “multi-
systemic” disease [13]. Indeed, several observational studies and some meta-analyses
have clearly documented that NAFLD is independently associated with serious hepatic
complications (e.g., hepatic decompensation, hepatocellular carcinoma [HCC]) [5], but also
with an increased risk of developing cardiovascular disease (CVD) [14], T2DM [15], chronic
kidney disease (CKD) [16] and some extra-hepatic cancers [17]. Notably, among the various
hepatic and extra-hepatic complications related to NAFLD, CVD is the leading cause of
death among NAFLD patients.

This narrative review will discuss the current evidence regarding the association be-
tween NAFLD and the risk of macro- and microvascular CVD (Figure 2). In particular,
it will describe the association between NAFLD and the risk of sub-clinical myocardial
remodelling and dysfunction, heart valve diseases, cardiac arrhythmias, chronic kidney
disease, distal or autonomic neuropathy, retinopathy and fatal and non-fatal cardiovascu-
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lar events. A brief insight into the biological mechanisms underpinning the association
between NAFLD and macro- and microvascular complications has been also given.

Figure 2. Macro- and microvascular manifestations of cardiovascular disease (CVD) linked to NAFLD
and its advanced forms. Several observational studies and meta-analyses have clearly reported that
NAFLD, mainly in its advanced forms, is strongly associated with an increased risk of sub-clinical
myocardial remodelling and dysfunction, heart valve diseases, cardiac arrhythmias, chronic kidney
disease, and distal or autonomic neuropathy. See text for details.

2. Biological Link between Non-Alcoholic Fatty Liver Disease (NAFLD) and
Cardiovascular Disease (CVD)

The underlying biological mechanisms responsible for the association between NAFLD
and the risk of specific cardiac complications are not completely established to date. It
is beyond the scope of this narrative review to illustrate in detail the current evidence
suggesting a specific role of NAFLD in the development and progression of various cardiac
complications. That said, in brief, accumulating evidence now indicates that NAFLD,
especially its severe forms, may play a part in the pathophysiology of cardiac complications
through different mechanisms, such as:

(a) hepatic lipid accumulation (e.g., di-acyl glycerol [DAG]) in NAFLD patients impairs
insulin signalling, thereby conditioning insulin resistance (IR) through different mech-
anisms, including the inhibition of phosphorylation of insulin receptor substrate-1
(IRS-1) [18] and the activation of protein kinase C (PKC)-e that can inhibit the action
of insulin receptor and promote the lipid accumulation [19]. In particular, hepatic
and systemic insulin resistance is one of the primary mechanisms for inducing athero-
genic lipoproteins and dysglycaemia. Notably, both atherogenic dyslipidemia and
dysglycaemia mediate CVD risk in NAFLD patients with T2DM;

(b) the release into the bloodstream of several pro-inflammatory (e.g., tumour necro-
sis factor-a [TNF-a], interleukin-6 [IL-6]), pro-oxidant and pro-coagulant factors
(e.g., fibrinogen, factor VIII, plasminogen activator inhibitor-1) as well as pro-fibrogenic
mediators. In particular, the synthesis of lipids, including DAG, may also con-
tribute to the hepatic production of inflammatory cytokines and pro-coagulant fac-
tors [13,20–22];

(c) the bidirectional relationship between NAFLD and hypertension [23]. Several observa-
tional studies and some meta-analyses have reported that patients with NAFLD have
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an increased risk of developing hypertension [24], thus suggesting that this association
may partly mediate the relationship between NAFLD and cardiac complications and
that that NAFLD may be a consequence, but also a cause of hypertension [23];

(d) patients with NAFLD have early changes in myocardial substrate metabolism in-
ducing cardiac functional disturbances, probably conditioning a higher risk of heart
failure [25] and arrhythmias [22,26];

(e) chronic hyperglycemia induces an inflammatory and osteoblastic phenotype in valvu-
lar interstitial cells in experimental models of aortic valve sclerosis [27]. Increased
valvular inflammation, through a systemic inflammatory state, could also mediate
the increased cardiac valve sclerosis in NAFLD patients, independent of the presence
of T2DM;

(f) experimental data also indicate that NAFLD, mainly when advanced stages occur, may
contribute to the activation of multiple pathways involved in the pathophysiology
of CKD [10,28]. In this regard, atherogenic dyslipidaemia, hypertension, insulin
resistance, oxidative stress and pro-inflammatory factors that, as mentioned above, are
promoted and exacerbated by NAFLD status, may directly contribute to the vascular
and renal damage [28]. Moreover, impaired activation of the renin-angiotensin system
(RAS) may also contribute to the renovascular injury by inflammation pathways [28].
Finally, accumulating evidence also suggests a potential and independent association
between PNPLA3 (patatin like phospholipase domain containing-3) rs738409, which
is the most important polymorphism associated with NAFLD and its advanced
forms [29], and kidney dysfunction [28].

All these factors can promote myocardial remodelling and dysfunction, thereby pre-
disposing to the development of various cardiac complications [13,20–22].

3. Risk of Microvascular Complications

3.1. Chronic Kidney Disease (CKD)

Several observational studies and some meta-analyses have reported that NAFLD, as
detected by indirect biomarkers of steatosis, ultrasonography or liver biopsy, is associated
with an increased risk of prevalent and incident chronic kidney disease (CKD) in patients
with and without T2DM, independent of established cardio-metabolic risk factors, diabetes-
related variables and other potential confounders [28,30]. In a recent 2022 meta-analysis
of 13 longitudinal studies for a total of 1,222,032 patients (~28% with NAFLD as detected
by biomarkers, International Classification of Diseases [ICD] codes, imaging techniques
or biopsy) and 33,840 new cases of incident CKD stage (defined as CKD stage ≥3 and/or
overt proteinuria) over a median follow-up of nearly 10 years, our research group reported
that NAFLD was associated with a 43% increased risk of incident CKD (random-effects
hazard ratio 1.43, 95% confidence interval 1.33 to 1.54; I2 = 60.7%), independent of age, sex,
obesity, hypertension, T2DM and other CKD risk factors [16]. In a 2018 meta-analysis, the
same research group documented that such association was slightly higher when the analy-
sis was restricted to cohort studies involving exclusively patients with diabetes mellitus
(random-effects hazard ratio 1.56, 95% confidence interval 1.07–2.05; I2 = 0%) [31]. Interest-
ingly, accumulating observational studies using vibration controlled transient elastography
(VCTE), as non-invasive method to evaluate the degree of liver fibrosis, also reported an
independent association between liver stiffness and renal dysfunction. In this regard, for
instance, in a 2022 systematic review and meta-analysis of seven cross-sectional studies
for a total of 7736 individuals with NAFLD, Ciarduillo et al. showed that liver fibrosis (as
assessed by VCTE) was associated with an increased risk of prevalent CKD (defined as
eGFR < 60 mL/min/1.73 m2 and urinary albumin to creatinine ratio ≥30 mg/g) (random-
effects odds ratio 2.49, 95% confidence interval 1.89–3.29; I2 = 46.5%), as well as with an
increased risk of prevalent albuminuria (random-effects odds ratio 1.98, 95% confidence
interval 1.29–3.05; I2 = 46.5%) [32]. However, it should be noted that, at present, only few
observational studies on this topic have used liver biopsy for the diagnosis of NAFLD,
which is the reference standard for diagnosing and staging NAFLD [1,2]. Conversely,
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most available studies on this topic have used liver ultrasonography, which is to date the
recommended first-line imaging method for detecting NAFLD in clinical practice [1,2], able
to accurately detect mild-to-moderate hepatic steatosis, as assessed by liver biopsy [7].

Notably, the presence of NAFLD may be even associated with CKD progression [33].
In a cohort study of nearly 1500 CKD patients who underwent periodic health check-
ups, Jang et al. showed that age- and sex-adjusted decline in eGFR values was higher in
patients with NAFLD (as detected by ultrasonography) when compared with those without
NAFLD [34]. In that study, interestingly, the decline in estimated eGFR related to NAFLD
was even higher in patients with higher NAFLD fibrosis score (which is an indirect marker
of advanced liver fibrosis), in those with proteinuria and/or low eGFR values at baseline
and in those who were active smokers or had hypertension at baseline [34]. Although
additional studies are needed, preliminary evidence also indicates that the improvement in
liver histology in NAFLD patients is associated with improved kidney function [33,35].

Observational studies involving patients with and without T2DM have reported that
the presence of the G allele of rs738409 in the PNPLA3 gene is associated with lower
eGFR values and/or higher prevalence of CKD, even after adjustment for the presence
of NAFLD and other cardio-renal risk factors [28,30,33,36–39]. In a cross-sectional study
including 157 Italian patients with T2DM, who underwent liver ultrasonography and
kidney function assessment, our research group reported that the presence of the G allele
of rs738409 in the PNPLA3 gene was associated with an increased risk of CKD (defined as
<60 mL/min/1.73 m2 and/or abnormal albuminuria), independent of liver disease severity,
cardiorenal risk factors and other potential confounders [37]. Interestingly and notably, in
that study, the authors also found that PNPLA3 mRNA expression was greatest in the liver
and renal cortex, thereby suggesting that the PNPLA3 rs738409 variant might contribute, at
least in part, to the impaired kidney function in these patients [37]. These findings have
also been confirmed in some cohorts of children and adolescents [40–42].

Taken together, these data strongly indicate that patients with NAFLD, especially
those with severe forms, have an increased risk of developing CKD, independent of
several cardio-renal risk factors and other confounders [28,33]. Interestingly, novel data
also suggest that MAFLD criteria might identify patients with CKD better than NAFLD
criteria [43]. However, seeing the observational nature of all studies available so far, it is
essential to underline that a causal relationship between NAFLD and incident CKD cannot
be proven yet [28,33].

3.2. Distal Symmetric Polyneuropathy and Autonomic Neuropathy

Some observational studies [44–46], although not all [47,48], have documented an
association between NAFLD and the risk of prevalent distal symmetric polyneuropathy
in T2DM patients, independent of multiple cardio-metabolic risk factors and diabetes-
related variables. In a cross-sectional study involving roughly 400 outpatients with T2DM
attending five Italian diabetes centers, who underwent liver ultrasonography, vibration
controlled transient elastography (by FibroScan®) and evaluation of microvascular diabetic
complications, Lombardi et al. documented that significant liver fibrosis (i.e., liver stiffness
measurement [LSM] ≥ 7.0 and 6.2 kPa with M and XL probes, respectively) was indepen-
dently associated with higher prevalence of microvascular diabetic complications (28% in
patients with LSM < 7.0/6.2 kPa vs. 50% in patients with LSM ≥ 7.0/6.2 kPa, p < 0.001),
including distal symmetric polyneuropathy (3% in patients with LSM < 7.0/6.2 kPa vs.
14% in patients with LSM ≥ 7.0/6.2 kPa, p < 0.05) [46]. Accumulating evidence also sug-
gests the existence of an association between hepatic steatosis (as detected by imaging
techniques) and cardiac autonomic dysfunction in patients with and without T2DM [49,50].
For instance, in a recent cross-sectional study including 173 individuals with T2DM and
183 age- and sex-matched nondiabetic controls from the Cooperative Health Research in
South Tyrol (CHRIS) study, Targher et al. reported that individuals with T2DM and NAFLD
(on ultrasonography) and individuals with NAFLD alone, but not those with T2DM alone,
had an increased risk of cardiac sympathetic/parasympathetic imbalance (as assessed by
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low- to high-frequency power ratio and other heart rate variability measures obtained
by a 20 min resting electrocardiogram), when compared with those without NAFLD and
T2DM [50].

However, although this evidence is interesting, additional research is needed to cor-
roborate these findings in larger populations and, more willingly, in longitudinal studies.

3.3. Diabetic Retinopathy

Some cross-sectional studies have investigated the relationship between NAFLD
(as detected by imaging techniques) and the risk of prevalent diabetic retinopathy in
patients with T2DM, reporting inconsistent results [44,51]. In this regard, a 2021 meta-
analysis of nine cross-sectional studies for a total of 7170 patients with T2DM (57% with
NAFLD on ultrasonography) reported no association between NAFLD and risk of prevalent
diabetic retinopathy (random-effects odds ratio 0.94, 95% confidence interval 0.51–1.71;
I2 = 96%) [52]. In addition, in that meta-analysis, subgroup analyses suggested that in
China, Korea and Iran, T2DM patients with NAFLD had a decreased risk of diabetic
retinopathy when compared with those without NAFLD, whereas in Italy and India, T2DM
patients with NAFLD had an increased risk [52]. As suggested by the authors of that
meta-analysis, the aforementioned results should be interpreted with caution, because
of the high heterogeneity observed and the differences in the results seen across various
countries. Hence, additional research is needed to better explore this issue [52].

4. Risk of Macrovascular Complications

4.1. Sub-Clinical Myocardial Remodelling and Dysfunction, Heart Valve Diseases and
Cardiac Arrhythmias

A large body of evidence now supports the existence of a strong and indepen-
dent association between NAFLD and sub-clinical myocardial remodelling and dysfunc-
tion, heart valve diseases (i.e., aortic-valve sclerosis and mitral annulus calcification)
and cardiac arrhythmias (mainly atrial fibrillation) in patients with and without T2DM
(Table 1) [13,22,23,53–56]. For instance, in a cross-sectional study involving 222 outpatients
with T2DM (~70% with NAFLD on ultrasonography), our research group showed that
NAFLD was associated with increased risk of left ventricular diastolic dysfunction (as eval-
uated by trans-thoracic echocardiography), independent of established CVD risk factors,
diabetes-related covariates and other confounders [57]. Some recent observational studies
using biopsy or vibration-controlled transient elastography (by FibroScan®) also observed
a graded relationship between functional and structural myocardial abnormalities and
NAFLD severity in patients with and without T2DM [22]. A 2019 meta-analysis of 16 obser-
vational studies further confirmed that NAFLD (as detected by imaging techniques or liver
biopsy) was independently associated with many functional and structural myocardial
abnormalities, including higher left ventricle mass, higher left ventricular end diastolic
diameter, higher left atrium diameter and the ratio between left atrial volume and body sur-
face area, higher posterior wall and septum thickness, lower E/A wave ratio, higher E/E′
ratio, longer deceleration time and longer relaxation time [58]. Interestingly, recent observa-
tional studies also indicated that NAFLD (as detected by ultrasonography) was associated
with a reduction in global longitudinal strain, which is a relatively novel echocardiographic
parameter strongly associated with adverse cardiovascular outcomes [59–61].
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Relating to heart valve calcifications, some cross-sectional studies have shown an
independent association between NAFLD and risk of aortic valve sclerosis (AVS) and mitral
annulus calcification (MAC) in patients with and without T2DM [22,62]. For instance, in
a study involving nearly 250 consecutive outpatients with T2DM (~70% with NAFLD on
ultrasonography), our research group documented that NAFLD was strongly associated
with cardiac calcifications in both the aortic and mitral valves, even after adjustment for
established CVD risk factors, diabetes-related covariates and other confounders [62]. These
findings may be clinically relevant, as functional and structural myocardial abnormalities
and AVS/MAC are strongly associated with all-cause and cardiovascular mortality in
patients with and without T2DM [63].

Relating to cardiac arrhythmias, several observational studies and some meta-analyses [64–67]
have documented that NAFLD (as detected by imaging techniques) is associated with prevalent
and incident permanent atrial fibrillation (AF) in patients with and without T2DM (Table 1) [22].
Notably, AF is, at present, the most frequent cardiac arrhythmia observed day by day in clinical
practice and, importantly, it is strongly linked to adverse cardiovascular outcomes [22]. In a recent
meta-analysis of five observational studies for a total of roughly 240,000 adult individuals with and
without T2DM, our research group documented that NAFLD (as detected by imaging techniques)
was associated with higher prevalence and incidence of AF [66]. Interestingly, in a recent retrospec-
tive longitudinal study including 267 patients (33% with NAFLD as detected by ultrasonography
and 17% with T2DM at baseline) undergoing AF ablation, Donnellan et al. reported that NAFLD
was associated with increased arrhythmia recurrence rates following AF ablation, during a mean
follow-up of nearly 2.5 years [68]. Other observational studies and meta-analyses, also enrolling
T2DM patients, have reported that NAFLD (as detected by ultrasonography) was associated with
an increased risk of prolonged QTc, ventricular arrhythmias or conduction defects, independent of
established cardiovascular risk factors, diabetes-related covariates and other confounders [22,67,69–
72]. Interestingly, in a 2021 meta-analysis of 19 observational studies, Gong et al. confirmed that
NAFLD (as detected by indirect markers of steatosis or imaging techniques) was independently
associated with higher risks of prolonged QT interval (random-effects odds ratio 2.86, 95% con-
fidence interval 1.64–4.99), premature atrial/ventricular contraction (random-effects odds ratio
2.53, 95% confidence interval 1.70–3.78) and heart block (random-effects odds ratio 2.65, 95%
confidence interval 1.88–3.72) [67]. These data are clinically relevant, because NAFLD-related
cardiac arrhythmias complications might contribute to explaining, at least in part, the increased
risk of fatal and non-fatal CVD events observed in NAFLD patients.

4.2. Fatal and Non-Fatal Cardiovascular Events

Over the last few decades, it has become increasingly evident that the leading cause of
death in NAFLD patients is CVD [22,23,73–75]. In this regard, using data from the National
Vital Statistics System multiple-cause mortality data (2007–2016), Paik et al. reported that
CVD was the main cause of death among US patients with NAFLD, as detected by ICD
codes [74]. In a meta-analysis of 45 observational studies for a total of approximately
8 million individuals followed up to 13 years, Younossi et al. also estimated that the
pooled CVD-specific mortality rate among NAFLD patients with or without T2DM was
nearly 5 per 1000 person-years [3]. Several longitudinal studies and some meta-analyses
confirmed that patients with NAFLD (as detected by imaging techniques, ICD codes or
liver biopsy) have an increased risk of developing fatal and non-fatal CVD events, even
after adjustment for several traditional CVD risk factors, diabetes-related variables, spe-
cific medications and other potential confounders (Table 1) [22,23,54–56,76–79]. In a 2021
meta-analysis of 36 longitudinal studies for a total of 5,802,226 adults and 99,668 incident
cases of fatal and non-fatal CVD events over a median follow-up of 6.5 years, our research
group reported that NAFLD (as detected by imaging techniques, ICD codes or liver biopsy)
was associated with a 45% increased risk of fatal or non-fatal CVD events, independent
of age, sex, body mass index, waist circumference, presence of T2DM and other cardio-
vascular risk factors (random-effects hazard ratio 1.45, 95% confidence interval 1.31–1.61;
I2 = 86.2%) [14]. Such risk further increased in patients with severe forms of NAFLD,
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especially those with advanced fibrosis [14]. Another 2021 meta-analysis confirmed that
NAFLD (as detected by imaging techniques, ICD codes or liver biopsy) was indepen-
dently associated with increased risk of myocardial infarction (random-effects odds ratio
1.66, 95% confidence interval 1.39–1.99), ischemic stroke (random-effects odds ratio 1.41,
95% confidence interval 1.29–1.55) and heart failure (random-effects odds ratio 1.62, 95%
confidence interval 1.43–1.84) [26]. In this regard, it is important to underline that the
magnitude of cardiovascular risk is strongly related to the severity of NAFLD [25,80–82].
For instance, in a nationwide, matched cohort study of 10,568 Swedish individuals with
biopsy-confirmed NAFLD (11% with T2DM at baseline) who were followed for a median
period of 14 years, Simon et al. reported that, when compared to 49,925 adults of the
general population (3% with established T2DM at baseline), mortality rates from CVD
were significantly elevated in patients with simple steatosis (adjusted-hazard ratio 1.25,
95% confidence interval 1.16–1.35), and that these risks progressively increased in patients
with NASH without fibrosis (adjusted-hazard ratio 1.66, 95% confidence interval 1.38–2.01),
in those with non-cirrhotic fibrosis (adjusted-hazard ratio 1.40, 95% confidence interval
1.17–1.69) and also in those with cirrhosis (adjusted-hazard ratio 2.11, 95% confidence inter-
val 1.63–2.73) [80]. Similar findings were also documented in cohorts involving NAFLD
patients with T2DM [22,23,53–56].

To date, data regarding whether the improvement of NAFLD may reduce the incidence
of cardiovascular complications are scarce. Although some retrospective studies enrolling
Asian adults without pre-existing CVD have reported that the improvement or resolution
of NAFLD (on ultrasonography) could be associated with a reduced risk of (carotid)
atherosclerotic development in patients with and without T2DM [56,83], we believe that
additional information on this issue is needed. In addition, it is important to underline that
current evidence also indicates that histologic resolution of NASH could be associated with
beneficial changes in risk factors for CVD [56,83], thus suggesting a potential favorable
effect on cardiac complications.

Lastly, novel evidence also suggests that MAFLD criteria might identify patients with
CVD better than NAFLD criteria [84].

5. CVD Risk Assessment in Patients with NAFLD

Based on the aforementioned evidence, the EASL-EASO-EASD and American Asso-
ciation for the Study of Liver Diseases (AASLD) practice guidelines for diagnosing and
managing NAFLD now recommend a CVD risk assessment in all patients with NAFLD [1,2].
In this context, as suggested by several experts in the field [13], a potential comprehen-
sive CVD risk assessment may include (Table 2): (a) evaluation of coexisting risk factors
(such as a prior history of CVD, family history of premature CVDs or T2DM, cigarette
smoking, presence of T2DM, dyslipidemia, hypertension, obesity, metabolic syndrome,
chronic kidney disease and erectile dysfunction), (b) physical examination (such as body
weight, height, body mass index, waist circumference, blood pressure, arterial bruits and
pulse examination), (c) laboratory tests (such as blood count, lipid profile, fasting plasma
glucose, HbA1c, serum creatinine, transaminases, albumin, urinalysis, albuminuria) and
(d) cardiovascular examination tests (such as resting electrocardiogram, carotid artery
ultrasonography, and exercise stress test if coexisting CVD, CKD, T2DM or >2 CVD risk
factors). In addition, the current evidence on this topic also calls attention to a holistic
approach in managing and treating NAFLD patients [75,85].
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Table 2. Essential comprehensive cardiovascular risk assessment in patients with NAFLD.

Cardiovascular risk factors

• History of CVD,
• family history of premature CVDs or T2DM,
• cigarette smoking,
• presence of T2DM, dyslipidemia, hypertension, obesity, CKD, erectile

dysfunction (men),
• alcohol use

Physical examination

• Weight,
• body mass index,
• waist circumference,
• blood pressure,
• pulse examination

Laboratory tests

• Blood count (including hemoglobin and platelets),
• lipid profile,
• fasting glucose,
• HbA1c,
• serum creatinine,
• transaminases,
• albumin,
• albuminuria

Cardiovascular examination tests

• Carotid artery ultrasonography,
• resting electrocardiogram,
• exercise stress test if coexisting CVD, CKD, T2DM or more than

2 CVD risk factors
This table is based on the review published by Byrne and Targher [13]. Abbreviations: CKD, chronic kidney
disease; CVD, cardiovascular disease; T2DM type 2 diabetes.

6. Conclusions

The aforementioned data support the concept that NAFLD is a “multisystemic” dis-
ease [13]. Indeed, NAFLD is not only associated with serious hepatic complications, but it
is also linked with macro- and microvascular complications. Importantly and notably, at
present, the main cause of death among NAFLD patients is CVD [14]. For this reason, a
comprehensive CVD risk assessment is essential in these patients [1,2,13]. That said, infor-
mation regarding the impact of histological improvement of NAFLD on CVD risk is still
scarce and needs further research [56,83]. In spite of our knowledge about epidemiology,
pathogenesis and natural history of NAFLD, no specific pharmacological therapies have
until now been approved for such a disease [86]. Lifestyle change promoting weight loss
and the correction of modifiable cardio-metabolic risk factors are still the cornerstone of the
treatment in NAFLD patients [86]. However, over the last few decades, several potential
agents have been tested to treat NAFLD and its advanced forms [86,87]. They encompass
some glucose-lowering drugs (especially pioglitazone, glucagon-like peptide-1 [GLP-1]
receptor agonists and sodium-glucose co-transporter-2 [SGLT-2] inhibitors) [87], bile and
non-bile acid farnesoid X activated receptor (FXR) agonists, anti-oxidants (i.e., vitamin E),
statins and others [86,88]. In this regard, for instance, in a 2022 systematic review of
randomised controlled trials testing the efficacy of peroxisome proliferator-activated recep-
tor (PPAR) agonists, GLP-1 receptor agonists and SGLT-2 inhibitors for treating NAFLD
in adults with or without type 2 diabetes, our research group found that pioglitazone
(a PPAR-γ agonist), lanifibranor (a pan-PPAR agonist) and GLP1-R agonists (e.g., liraglu-
tide and semaglutide) are able to obtain the resolution of NASH without worsening of
fibrosis, whereas SGLT-2 inhibitors (e.g., empagliflozin and dapagliflozin) are able to reduce
liver fat content, as detected by magnetic resonance-based techniques [87]. Given the strong
relationship between NAFLD and macro- and microvascular complications, it is possible
to speculate that these agents may exert a beneficial effect not only on the hepatic disease,
but also in reducing the risk of developing cardiovascular and renal diseases [25,86–88].
However, herein it is important to note that pioglitazone is contraindicated in patients
with symptomatic heart failure or in patients with a high risk of heart failure [25]. Seeing
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the multiple pathways implicated in the pathogenesis of NAFLD and its complications,
as well as the single response from single-agent therapies across RCTs available so far, it
is also reasonable to hypothesize that the combination of different therapies (e.g., GLP-1
receptor agonists plus SGLT-2 inhibitors) will be more appropriate for treating NAFLD
patients [86,87,89]. In this context, as suggested by several experts in the field, a holistic
approach in managing and treating NAFLD patients seems to be fundamental [75,85].
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Abstract: Diabetes is a driver of non-alcoholic fatty liver disease (NAFLD) and fibrosis. We determine
current practices in examining liver fibrosis in people with diabetes and record prevalence levels
in primary and secondary care. We extracted HbA1c results ≥48 mmol/mol to identify people
with diabetes, then examined the proportion who had AST, ALT, and platelets results, facilitating
calculation of non-invasive fibrosis tests (NIT), or an enhanced liver fibrosis score. Fibrosis markers
were requested in only 1.49% (390/26,090), of which 29.7% (n = 106) had evidence of significant
fibrosis via NIT. All patients at risk of fibrosis had undergone transient elastography (TE), biopsy
or imaging. TE and biopsy data showed that 80.6% of people with raised fibrosis markers had
confirmed significant fibrosis. We also show that fibrosis levels as detected by NIT are marginally
lower in patients treated with newer glucose lowering agents (sodium-glucose transporter protein
2 inhibitors, dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 receptor agonists). In
conclusion by utilising a large consecutively recruited dataset we demonstrate that liver fibrosis is
infrequently screened for in patients with diabetes despite high prevalence rates of advanced fibrosis.
This highlights the need for cost-effectiveness analyses to support the incorporation of widespread
screening into national guidelines and the requirement for healthcare practitioners to incorporate
NAFLD screening into routine diabetes care.

Keywords: fibrosis; NAFLD; diabetes; screening; primary care; secondary care

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease
in the UK and Europe [1], soon to become the most common indication for liver transplan-
tation in the next decade [2], as a result of the obesity and associated type 2 diabetes (T2D)
epidemics. Expert consensus has suggested NAFLD be re-named metabolic-associated
fatty liver disease (MAFLD) to reflect its strong association with insulin resistance and
the metabolic syndrome [3]. Type 2 diabetes is a condition characterised by peripheral
insulin resistance with inadequate compensatory pancreatic beta-cell insulin secretion.
Insulin resistance and systemic inflammation lead to accumulation of free fatty acids and
consequentially hepatocyte triglyceride accumulation characterising NAFLD [4,5]. NAFLD
is generally benign in the majority of individuals, however in up to 40% of people it can
progress to liver fibrosis [6,7]. Liver fibrosis describes the development of fibrous tissue
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due to the replacement of healthy tissue by extracellular matrix proteins, in NAFLD this is
the result of hepatotoxic injury and initially leads to non-alcoholic steatohepatitis (NASH)
and chronically to liver fibrosis [8]. Liver fibrosis, rather than simple steatosis or NASH,
is associated with an increased risk of liver-related morbidity and mortality [6,9], overall
mortality [10], and cardiovascular disease [11,12].

One of the most significant predictors of fibrosis progression and the development of
advanced fibrosis is diabetes, particularly T2D [13–18]. NAFLD is reported to be present in
40–70% of individuals with T2D [19–21]. Furthermore, UK diabetes prevalence according
to Quality Outcome Framework data is now 7.1% (2020/21), with an additional large
number of undiagnosed cases [22]. While the European Association for the Study of the
Liver (EASL) guidelines [23] and American Diabetes Association guidelines [24] suggest
surveillance for NAFLD in people with T2D, the American [25], Asian [26], and UK [27,28]
guidelines acknowledge that individuals with T2D are at greater risk of NAFLD, yet do
not advocate widespread screening.

We aimed to perform a cross-sectional analysis of the burden of significant liver
fibrosis in individuals with diabetes from both primary and secondary care to understand
the prevalence of potentially clinically significant liver disease in these settings; and to
provide a snapshot into current practice of examining fibrosis markers and ongoing risk
stratification in people with diabetes.

2. Materials and Methods

Screening with HbA1c We extracted glycated haemoglobin (HbA1c) results over a
21-month period (31 December 2019 to 14 September 21) from the Liverpool (University
Hospital Foundation Trust) Clinical Laboratories and identified a cohort of individuals
with an HbA1c ≥ 48 mmol/mol indicative of a diagnosis of diabetes (Figure 1). Individuals
under 35 years old were excluded as fibrosis scores are inaccurate in this age group.
Results from blood requests from inpatient stays, the emergency department, cancer
services, and dialysis units were excluded, leaving those taken from primary care and other
outpatient departments.

Figure 1. Study flow chart and summary of results. HbA1c, glycated haemoglobin; FIB-4, fibrosis-4;
APRI, aspartate transaminase to platelet ratio index; AST aspartate transaminase; ALT, alanine
transaminase; ELF, enhanced liver fibrosis score.
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2.1. Determination of Liver Biochemistry Results and Fibrosis Scores

We examined what proportion of these people had an aspartate transaminase (AST),
alanine transaminase (ALT), and platelet levels taken within this time frame. From these
results, we calculated three validated non-invasive scores of liver fibrosis, the fibrosis-4
(FIB-4) score [29], the AST to platelet ration index (APRI) [30], and the AST:ALT ratio
(Supplementary Table S1) [31]. Significant fibrosis was defined as either a FIB-4 score > 2.67,
APRI score ≥ 1.0, or AST:ALT ratio ≥ 1.0, where either the AST or ALT level was also
>40 IU/L. We also included patients with an enhanced liver fibrosis score (ELF), based on
tissue inhibitor metalloproteinases 1, amino-terminal pro-peptide of type III procollagen
and hyaluronic acid [32]. Significant fibrosis was defined as an ELF score of >9.8. We then
excluded results taken over 6 months prior to the HbA1c to ensure that individuals were
likely to have diabetes at the time the fibrosis tests were taken. We additionally compared
prevalence rates of liver fibrosis detected by primary and secondary care.

2.2. Confirmation of Fibrosis Identified with Non-Invasive Testing Using Transient Elastography
(TE) and/or Liver Biopsy

We further examined what proportion of individuals identified as being at risk of
significant liver fibrosis according to non-invasive tests (NITs), had gone on to have con-
firmatory testing with either TE or liver biopsy. TE suggestive of fibrosis was defined
according to a liver stiffness measurement > 8 kPa (Fibroscan, Echosens, Paris, France).
Histological evidence of significant fibrosis or cirrhosis was confirmed by percutaneous
liver biopsy and verified by an experienced liver histopathologist.

2.3. Association between Advanced Fibrosis According to FIB-4 Score and Glucose Lowering Agents

We examined prescription data for glucose lowering agents for patients who had data
available to calculate a FIB-4 score. We additionally examined the proportion of people
with a raised FIB-4 score > 2.67 according the number and classes of glucose lowering
medications prescribed.

2.4. Statistical Analysis

Results are presented as the median and interquartile range. Data validity was ensured
by examining ten random NHS numbers of both included and excluded patients and cross-
checking them across databases. Data was analysed using R version 4.1.1 (R Foundation
for Statistical Computing, Vienna, Austria) and Excel Kutools.

2.5. Ethics

As all patient data was anonymised this project did not require national ethical
approval; clinical audit approval was obtained locally (number 10864).

3. Results

3.1. Description of Study Cohort

We identified 26,090 individuals who had an HbA1c result ≥48 mmol/mol requested
from primary care or secondary care (outpatients department). Data was available to
calculate the APRI score, AST:ALT ratio and FIB-4 score in 385 (1.47%) of these individuals
and a further 5 (0.02%) had an ELF score requested, meaning that overall 390 (1.49%) people
with diabetes had undergone a non-invasive test for fibrosis. Following the exclusion of
results taken >6 months prior to the HbA1c result, the final study cohort consisted of 357
individuals with diabetes (Figure 1). In total 134 (37.5%) results were ordered from primary
care and 223 from outpatients (62.5%). Baseline demographic data and laboratory results
from this cohort are presented in Table 1.

127



J. Clin. Med. 2021, 10, 5755

Table 1. Baseline data from the cohort (n = 357).

Variable Demographic Factor/Laboratory Finding

Sex (n (%)) 204 (57.1) M, 153 (42.9) F
Age (years) (Median (IQR)) 60 (53–67)
HbA1c (mmol/mol) (Median (IQR)) 62 (53–76)
AST (IU/L) (Median (IQR)) 30 (21–48)
ALT (IU/L) (Median (IQR)) 35 (23–53)
Platelets (×109/L) (Median (IQR)) 223 (170–284)
ELF score 10.1 (10–10.7)

M, male; F, Female; IQR, interquartile range; HbA1c, glycated haemoglobin; AST aspartate transaminase; ALT,
alanine transaminase; ELF, enhanced liver fibrosis.

3.2. Prevalence of Significant Fibrosis in Individuals with Diabetes According to Serum Fibrosis Scores

Between 13.7–19% individuals with diabetes were identified as having evidence of
significant fibrosis using simple NITs (Table 2, Figure 2) and 80% (4/5) of people who
had an ELF score requested had evidence of significant fibrosis. Using the previously
described definitions of significant fibrosis (one or more of FIB-4 score > 2.67, APRI ≥ 1.0,
AST:ALT ≥ 1.0, or ELF > 9.8), 106 (29.7%) people with diabetes were identified as being
at risk. Of the 106 people at risk of significant fibrosis, 30 (28.3%) had fibrosis markers
requested from primary care. Of the 76 outpatient blood requests, 66 (86.8%) came from
the liver clinic. Overall fibrosis scores derived from blood requests sent from secondary
care (34.1%) showed higher levels of significant fibrosis than primary care (22.4%) (Table 1,
Figure 2). There was no positive correlation between HbA1c and fibrosis scores when
examined on a continuous scale (Supplementary Figure S1).

Table 2. Percentage of people with diabetes found to have evidence of significant fibrosis determined
by non-invasive markers.

Non-Invasive Serum
Fibrosis Scores

Total, % (n) Primary Care, % (n) Secondary Care, % (n)

n = 357 37.5 (134) 62.5 (223)

FIB-4 > 2.67 19.0 (68) 13.4 (18) 22.4 (50)
APRI ≥ 1.0 13.7 (49) 12.7 (17) 14.3 (32)
AST:ALT ratio ≥ 1.0 and
AST or ALT > 40 IU/L 17.4 (62) 11.2 (15) 21.1 (47)

Any one of the above, or
ELF > 9.8 29.7 (106) 22.4 (30) 34.1 (76)

FIB-4, fibrosis-4; APRI, aspartate transaminase to platelet ratio index; AST aspartate transaminase; ALT, alanine
transaminase; ELF, enhanced liver fibrosis test; kPa kilopascal.

3.3. Prevalence of People with Diabetes and At-Risk Serum Fibrosis Scores with Confirmed
Significant Fibrosis/Cirrhosis

Of the 106 individuals with diabetes identified to be at risk of significant fibrosis
using non-invasive serum markers, 67/106 (63.2%) went on to have transient elastography
(TE/Fibroscan) (n = 50, 47.2%), liver biopsy (n = 24, 22.6%), or both (n = 7, 6.6%). In total
54/67 (80.6%) of these individuals had a liver stiffness measurement >8 kPa or evidence of
significant fibrosis or cirrhosis at biopsy. All 39 people with raised fibrosis markers who
did not receive a fibroscan or liver biopsy, had prior liver imaging via ultrasound (n = 30,
76.9%) or CT (n = 9, 23.1%), and 21/39 (53.8%) had evidence of cirrhosis.
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Figure 2. Summary Graphs of FIB-4, APRI, AST:ALT Ratio by Test Location. Red dotted line = cut-off
for high-risk fibrosis via APRI and AST:ALT Ration. Blue dotted line = cut-off for high risk liver
fibrosis via FIB-4, FIB-4 = Fibrosis 4, APRI = AST to Platelet Ratio Index, n = Number, GP = General
Practice, OP = Outpatient.

3.4. Prevalence of a Raised FIB-4 Score According to the Number and Class of Glucose Lowering Agent

Medication data was available for 91.6% (327/357) patients. A further 4 patients
were excluded who did not have data to calculate a FIB-4 score (final sample n = 323). A
breakdown of the number of drugs and subclasses of glucose lowering agents prescribed
are shown in Table 3. Patients who were not prescribed any glucose lowering therapies
had lower levels of fibrosis according to the FIB-4 score (12.5%), compared to those on
treatment (19.5%), however glycaemic control was also improved (Table 3, Supplementary
Figure S2). Patients treated with SGLT2 inhibitors (16.4%), GLP-1 receptors agonists (16.0%)
and DDP-4 inhibitors (15.1%) trended towards having non-significantly lower levels of
NIT fibrosis (Table 3, Supplementary Figure S3), whilst having no noticeable differences in
glycaemic control. Patients treated with metformin (18.6%) and sulphonylureas (18.4%)
had similar levels of fibrosis to the overall cohort. Patients treated with insulin trended
towards having non-significantly higher levels of fibrosis (23.8%) and higher HbA1c levels
(median 73 mmol/mol) (Table 3, Supplementary Figure S3).

Table 3. Results of Non-Invasive Serum Fibrosis Tests for People with Diabetes according to Number and Sub-class of
Glucose-Lowering Agents Prescribed.

People with Diabetes Who
Had an NIT% (n)

Median HbA1c [IQR]
(mmol/mol)

FIB-4 > 2.67% (n)

Number of Glucose Lowering Agents Prescribed

None 12.4 (40) 51 (49–55) 12.5 (5)
1 40.6 (131) 58 (52–70) 22.1 (29)
2 29.1 (94) 67 (56–80) 17.0 (16)
≥3 19.2 (62) 73 (62–86) 17.7 (11)

Subclasses of Glucose Lowering Agents Prescribed

SGLT2 inhibitors 18.9 (61) 67 (59–79) 16.4 (10)
GLP-1 receptors agonists 7.7 (25) 69 (55–77) 16.0 (4)

DDP-4 inhibitors 26.6 (86) 67 (57–80) 15.1 (13)
Metformin 65.0 (210) 63 (53–77) 18.6 (39)

Insulin 24.8 (80) 73 (62–87) 23.8 (19)
Sulphonylurea 15.2 (49) 76 (63–86) 18.4 (9)

Thiazolidinediones 0.6 (2) n/A 0.0 (0)

FIB-4, Fibrosis 4; SGLT-2 inhibitor, sodium-glucose cotransporter 2 inhibitor; GLP-1 receptor agonist, Glucagon-Like Peptide 1 Receptor
Agonist; DDP-4 inhibitor, Dipeptidyl peptidase-4 inhibitor.
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4. Discussion

4.1. Summary of Findings

In this brief report, we utilise real world UK regional data from local populations
of people with diabetes and highlight two alarming findings. First, we demonstrate that
<2% of people with diabetes are being screened for liver fibrosis, and that use of patented
serum fibrosis biomarkers is minimal despite been advocated by the National Institute of
Health and Clinical Excellence (NICE) as first line assessment for people with NAFLD [27].
Secondly, up to 29.7% of people with diabetes, in whom serum fibrosis markers were
requested, were at risk of having significant liver fibrosis; subsequent confirmation of
fibrosis was provided by second line tests, TE or liver biopsy, in a high proportion (80.6%)
of cases. Thirdly, we report limited data showing a non-significant trend towards lower
fibrosis scores in patients treated with DDP-4 inhibitors, SGLT-2 inhibitors, and GLP-
1 receptor agonists. These findings reinforce the need for large prospective studies in
this clinical population to develop cost-effective and easily implementable approaches to
widespread screening for liver fibrosis in individuals with diabetes.

4.2. Comparison to the Existing Literature

While our estimates of fibrosis prevalence in people with diabetes are higher than
comparable studies, there is consensus in the literature that clinically relevant liver fi-
brosis is highly prevalent in this group. Global meta-analysis data in 439 biopsied pa-
tient with NAFLD and T2D identified that 17% had advanced fibrosis [21]. Data from
over 120,000 people with T2D from the Cleveland clinic suggests that 8.4% have a FIB-4
score >2.67; however, prevalence estimates varied widely depending on the non-invasive
score used [33]. Among individuals with T2D and a reliable TE result in the NHANES study
(n = 825), 15.4% had a liver stiffness measurement ≥9.7 kPa. In a recent cross-sectional
study from the US, 561 individuals with T2D attending primary care or endocrinology
clinics underwent non-invasive screening using serum markers and TE; liver biopsy was
performed where there was a suggestion of fibrosis [34]. In total 9% of people with diabetes
had advanced fibrosis (F3/F4) according to TE. Fibrosis prevalence levels with TE were
similar to that estimated using the FIB-4 and APRI panels, and both modalities correlated
well with biopsy findings. A similar analysis from the UK identified that 18.5% of people
with T2D attending primary care clinics (n = 467) had a FIB-4 >1.3 for ≤65 years and >2.0
for >65 years, of which nearly two thirds had a TE >8 kPa [35].

4.3. Molecular Mechanisms Linking T2D and NAFLD

Pathogenic mechanisms linking T2D to NAFLD are complex; however, insulin resis-
tance and inflammation are central [36]. High levels of circulating glucose and insulin
increase rates of hepatic de novo lipogenesis leading to high levels of free fatty acids (FFA)
in the liver; excess FFAs are stored as intrahepatic triglycerides [37]. Adiposity and the
presence of insulin resistant adipose tissue leads to lipolysis; FFAs released from adipose
tissue are taken up by peripheral tissues including the liver and muscle. NAFLD itself
in turn leads to impairments in insulin signalling [38] and increased secretion of hepa-
tokines. Adipokines are lipotoxic agents arising from chronically inflamed adipose tissue
characterising T2D. These travel to the liver contributing to inflammation and NAFLD
development [39]. Lipotoxicity, along with oxidative stress and a pro-inflammatory en-
vironment, result in steatohepatitis and eventually activation of hepatic stellate cells and
extracellular matrix deposition. Clinical studies support this mechanism: stable isotope
analyses show patients with increased hepatic adiposity have higher plasma FFA levels
and ~3x greater de novo FFA synthesis [40].

4.4. Implications for Practice

We therefore propose that there is an urgent need for greater adoption of national and
international guidelines to implement widespread screening for fibrosis in individuals with
diabetes and undertake comprehensive cost-effectiveness analyses. Despite updated rec-
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ommendations from the EASL advocating the use of NITs and that ALT, AST, and platelets
should be part of the routine investigations in primary care in patients with suspected liver
disease [41], a huge shift in practice towards more widespread screening is unlikely to
be implemented in the UK without guidance from the NICE. Detection of liver cirrhosis,
which develops insidiously and without abnormalities in liver biochemistry, allows entry
of individuals into variceal and hepatocellular carcinoma surveillance programmes, the
latter being particularly relevant for people with diabetes [42,43]. Liver fibrosis is a partially
reversible state, achieved with weight loss (~7%) [44], while fibrosis progression may be
retarded with optimisation of glycaemic control, so multi-component metabolic interven-
tion programmes are likely to be highly effective. Detection of NAFLD, and associated
fibrosis, will facilitate enrolment in relevant clinical trials, and may encourage prescription
of glucose-lowering therapies that target steatosis, steatohepatitis, or even fibrosis (includ-
ing DDP-4 inhibitors, GLP receptor agonists and SGLT2 inhibitors) [45]. The burden of
NAFLD and liver fibrosis expands beyond the liver, with well-established associations
with cardiovascular morbidity and mortality [11,12] and extrahepatic cancer [46], so the
wider benefits of detection are considerable.

We additionally show that fewer patients treated with either GLP-1 receptor agonists,
SGLT 2 inhibitors and DDP-4 inhibitors have elevated FIB-4 scores. Glucose lowering
therapies are a potential therapy in NAFLD given the fact they reduce insulin resistance
and thus potentially reduce liver fat. DDP-4 inhibitors have not shown therapeutic effect
in NAFLD; however, data is limited so larger trials are required [45,47,48]. GLP-1 receptor
agonists have shown more promising findings. One study reported GLP-1 agonists sig-
nificantly reduce liver fat (relative reduction 42%) [49]. Similarly, in a larger randomised
controlled trial (RCT) (n = 320), semaglutide therapy led to higher rate of NASH resolution
than control. However, no clear dose–response relationship was reported between dosing
regimens (0.1 mg vs 0.2 mg vs 0.4 mg) [50]. A meta-analysis (n = 4442) of patients treated
with liraglutide demonstrated ALT reduction [51]. For SGLT-2 inhibitors, a large RCT,
EMPA-REG OUTCOME, reported that empagliflozin reduced ALT with these findings
independent of glycaemic control (HbA1c) [52]. Similarly, in a moderately sized Swedish
trial dapagliflozin reduced liver fat and ALT but did not improve glycaemic control. The
conflicting findings between these two trials may or may delineate that SGLT-2 inhibitors
have beneficial effects on NAFLD independent of glycaemic control [53]. Altogether, these
trials show that GLP-1 agonists and SGLT 2 inhibitors have beneficial effects on liver
biochemistry and liver fat levels in NAFLD. However, future trials need to assess the
effects of these glucose lowering therapies on liver fibrosis. This could be via measuring
non-invasive fibrosis scores (i.e., FIB-4, APRI, AST:ALT ratio), conducting fibroscans, liver
multi-scan MRI testing, and liver biopsies.

4.5. Strengths and Limitations

This dataset benefits from a systematic approach to screening individuals with diabetes
in both primary and secondary care. However, there are several limitations. The dataset is
biased by the fact that we were only able to examine fibrosis markers in people in whom
clinicians requested an AST level, i.e., influenced by clinical suspicion of liver disease.
Most outpatient requests were made from hepatology clinics, with an inevitable bias
towards higher rates of fibrosis or cirrhosis. These factors would lead to an over-estimation
of fibrosis prevalence compared to the overall population with diabetes. The positive
predictive values of NITs are only moderate, so the true prevalence of fibrosis confirmed
by biopsy would also have been lower. Furthermore the performance of NITs is less well
validated and less reliable in the diabetes population [54,55]. Individuals with exemplary
glycaemic control, with HbA1c < 48 mmol/mol would also have been overlooked, leading
to a selection bias towards a sub-population of lesser metabolic health at higher risk of
diabetes-related end-organ damage. This study was reliant on electronic medical records
and therefore we were unable to reliably determine the aetiology of diabetes (type 1 or type
2 diabetes), or liver disease (including alcohol excess or viral hepatitis). Approximately 95%
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of people with diabetes in the UK are estimated to have T2D; however, and all individuals
that we have assessed would have had either MAFLD or dual aetiology liver disease,
given the fact that they had diabetes. We examined the current practice of examining
fibrosis markers in individuals with diabetes over a 1 year window of an HbA1c. Current
guidelines advise screening every 1–3 years in people with confirmed NAFLD [41], so
some individuals may have had bloods taken which could have been used to calculate a
fibrosis score outside this time period. This study was limited by a significant proportion of
the data being extracted over the COVID-19 pandemic. This may have negatively affected
screening rates for fibrosis markers in both primary and secondary care and therefore may
have affected the results. In addition, this study was limited by omission of the body mass
index (BMI) data, which was not widely available from patient records. While we were
able to access prescription records, unfortunately data on duration of diabetes, duration a
glucose lowering agent had been prescribed and historic prescription data was no available
to allow a comprehensive assessment of the role of newer glucose lowering therapies on
fibrosis levels.

5. Conclusions

In summary, we found very limited evidence of systematic screening for liver fibrosis:
only 1.5% of individuals with diabetes had a NIT for assessment of fibrosis, despite
evidence of a high prevalence of significant fibrosis (29.8%) in those assessed. We also show
that fibrosis levels as detected by NIT is lower in patients treated with SGLT2 inhibitors,
DDP-4 inhibitors, and GLP-1 receptor agonists. There is an urgent and unmet need to
assess, develop, and implement cost-effective methods to provide widespread screening of
individuals with diabetes for liver fibrosis and for healthcare practitioners to incorporate
NAFLD screening into routine diabetes care. This will undoubtedly reap longer-term
clinical benefits in reducing the hepatic and extra-hepatic burden of NAFLD in patients
with diabetes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jcm10245755/s1, Table S1: Algorithms used to calculate Hepatic Steatosis Index and Fibrosis
scores, Figure S1: Correlation between HbA1c and Fibrosis Marker scores; Figure S2: Percentage
of people with a raised FIB-4 score according to Number of glucose lowering agents prescribed;
Figure S3: Percentage of people with a raised FIB-4 score according to subclasses of glucose lowering
agents prescribed.

Author Contributions: Conceptualization, all authors; methodology, all authors; formal analysis,
L.J.D., M.K. and T.J.H.; data curation, A.S.D. and P.G.; writing—original draft preparation, T.J.H.;
writing—review and editing, all authors; visualization, L.J.D.; supervision, D.J.C.; All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This project did not require ethical approval however was
approved by Aintree University Hospital Local Audit Committee (number 10864).

Informed Consent Statement: Patient consent was not required for this study, however we obtained
local approval from Aintree University Hospital Audit Committee (Number: 10864).

Data Availability Statement: Data is available upon reasonable request to the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver
disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [CrossRef]

2. Estes, C.; Razavi, H.; Loomba, R.; Younossi, Z.; Sanyal, A.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates
an exponential increase in burden of disease. Hepatology 2018, 67, 123–133. [CrossRef] [PubMed]

132



J. Clin. Med. 2021, 10, 5755

3. Eslam, M.; Sanyal, A.J.; George, J.; Sanyal, A.; Neuschwander-Tetri, B.; Tiribelli, C.; Kleiner, D.E.; Brunt, E.; Bugianesi, E.;
Yki-Järvinen, H.; et al. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease.
Gastroenterology 2020, 158, 1999–2014.e1. [CrossRef] [PubMed]

4. DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I.; et al.
Type 2 diabetes mellitus. Nat. Rev. Dis. Primers 2015, 1, 15019. [CrossRef]

5. Tomah, S.; Alkhouri, N.; Hamdy, O. Non-alcoholic Fatty Liver Disease and Type 2 Diabetes: Where do Diabetologists stand? Clin.
Diabetes Endocrinol. 2020, 6, 9. [CrossRef] [PubMed]

6. De, A.; Duseja, A. Natural History of Simple Steatosis or Nonalcoholic Fatty Liver. J. Clin. Exp. Hepatol. 2020, 10, 255–262.
[CrossRef] [PubMed]

7. Singh, S.; Allen, A.M.; Wang, Z.; Prokop, L.J.; Murad, M.H.; Loomba, R. Fibrosis Progression in Nonalcoholic Fatty Liver vs
Nonalcoholic Steatohepatitis: A Systematic Review and Meta-analysis of Paired-Biopsy Studies. Clin. Gastroenterol. Hepatol. 2015,
13, 643–654.e9. [CrossRef]

8. Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol.
2021, 18, 151–166. [CrossRef] [PubMed]

9. Dulai, P.S.; Singh, S.; Patel, J.; Soni, M.; Prokop, L.J.; Younossi, Z.; Sebastiani, G.; Ekstedt, M.; Hagstrom, H.; Nasr, P.; et al.
Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology
2017, 65, 1557–1565. [CrossRef]

10. Kim, D.; Kim, W.R.; Kim, H.J.; Therneau, T.M. Association between noninvasive fibrosis markers and mortality among adults
with nonalcoholic fatty liver disease in the United States. Hepatology 2013, 57, 1357–1365. [CrossRef]

11. Simon, T.; Corey, K.; Cannon, C.; Blazing, M.; Park, J.; O’Donoghue, M.; Chung, R.; Giugliano, R. The nonalcoholic fatty liver
disease (NAFLD) fibrosis score, cardiovascular risk stratification and a strategy for secondary prevention with ezetimibe. Int. J.
Cardiol. 2018, 270, 245–252. [CrossRef] [PubMed]

12. Baratta, F.; Pastori, D.; Angelico, F.; Balla, A.; Paganini, A.M.; Cocomello, N.; Ferro, D.; Violi, F.; Sanyal, A.J.; del Ben, M.
Nonalcoholic Fatty Liver Disease and Fibrosis Associated With Increased Risk of Cardiovascular Events in a Prospective Study.
Clin. Gastroenterol. Hepatol. 2020, 18, 2324–2331.e4. [CrossRef]

13. Adams, L.A.; Sanderson, S.; Lindor, K.D.; Angulo, P. The histological course of nonalcoholic fatty liver disease: A longitudinal
study of 103 patients with sequential liver biopsies. J. Hepatol. 2005, 42, 132–138. [CrossRef]

14. Koehler, E.M.; Plompen, E.P.C.; Schouten, J.N.L.; Hansen, B.E.; Darwish Murad, S.; Taimr, P.; Leebeek, F.W.G.; Hofman, A.;
Stricker, B.H.; Castera, L.; et al. Presence of diabetes mellitus and steatosis is associated with liver stiffness in a general population:
The Rotterdam study. Hepatology 2016, 63, 138–147. [CrossRef]

15. Bril, F.; Cusi, K. Management of Nonalcoholic Fatty Liver Disease in Patients with Type 2 Diabetes: A Call to Action. Diabetes Care
2017, 40, 419–430. [CrossRef] [PubMed]

16. Doycheva, I.; Cui, J.; Nguyen, P.; Costa, E.A.; Hooker, J.; Hofflich, H.; Bettencourt, R.; Brouha, S.; Sirlin, C.B.; Loomba, R.
Non-invasive screening of diabetics in primary care for NAFLD and advanced fibrosis by MRI and MRE. Aliment. Pharmacol.
Ther. 2016, 43, 83–95. [CrossRef]

17. McPherson, S.; Hardy, T.; Henderson, E.; Burt, A.D.; Day, C.P.; Anstee, Q.M. Evidence of NAFLD progression from steatosis
to fibrosing-steatohepatitis using paired biopsies: Implications for prognosis and clinical management. J. Hepatol. 2015, 62,
1148–1155. [CrossRef] [PubMed]

18. Ekstedt, M.; Franzén, L.E.; Mathiesen, U.L.; Thorelius, L.; Holmqvist, M.; Bodemar, G.; Kechagias, S. Long-term follow-up of
patients with NAFLD and elevated liver enzymes. Hepatology 2006, 44, 865–873. [CrossRef]

19. Liu, J.; Ayada, I.; Zhang, X.; Wang, L.; Li, Y.; Wen, T.; Ma, Z.; Bruno, M.J.; de Knegt, R.J.; Cao, W.; et al. Estimating global
prevalence of metabolic dysfunction-associated fatty liver diseasein overweight or obese adults. Clin. Gastroenterol. Hepatol. 2021,
in press. [CrossRef]

20. Anstee, Q.M.; Targher, G.; Day, C.P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev.
Gastroenterol. Hepatol. 2013, 10, 330–344. [CrossRef] [PubMed]

21. Younossi, Z.M.; Golabi, P.; de Avila, L.; Paik, J.M.; Srishord, M.; Fukui, N.; Qiu, Y.; Burns, L.; Afendy, A.; Nader, F. The global
epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J. Hepatol. 2019, 71,
793–801. [CrossRef]

22. Public Health England. Public Health England Diabetes Statistics. Available online: https://fingertips.phe.org.uk/profile/
diabetes-ft/data#page/0 (accessed on 1 November 2021).

23. European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European
Association for the Study of Obesity (EASO). EASL–EASD–EASO Clinical Practice Guidelines for the management of non-
alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [CrossRef] [PubMed]

24. Association, A.D. Comprehensive medical evaluation and assessment of comorbidities: Standards of Medical Care in Diabetes-
2020. Diabetes Care 2020, 43, S37–S47. [CrossRef]

25. Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis
and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver
Diseases. Hepatology 2018, 67, 328–357. [CrossRef]

133



J. Clin. Med. 2021, 10, 5755

26. Wong, V.W.S.; Chan, W.K.; Chitturi, S.; Chawla, Y.; Dan, Y.Y.; Duseja, A.; Fan, J.; Goh, K.L.; Hamaguchi, M.; Hashimoto, E.; et al.
Asia–Pacific Working Party on Non-alcoholic Fatty Liver Disease guidelines 2017—Part 1: Definition, risk factors and assessment.
J. Gastroenterol. Hepatol. 2018, 33, 70–85. [CrossRef] [PubMed]

27. National Guideline Centre (UK). Non-Alcoholic Fatty Liver Disease (NAFLD): Assessment and Management; National Institute for
Health and Care Excellence: London, UK, 2016.

28. National Guideline Centre (UK). Cirrhosis in over 16s: Assessment and Management; National Institute for Health and Care
Excellence: London, UK, 2016.

29. Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.;
Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV
coinfection. Hepatology 2006, 43, 1317–1325. [CrossRef] [PubMed]

30. Wai, C.; Greenson, J.K.; Fontana, R.J.; Kalbfleisch, J.D.; Marrero, J.A.; Conjeevaram, H.S.; Lok, A.S.-F. A simple noninvasive index
can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003, 38, 518–526. [CrossRef]

31. Williams, A.L.; Hoofnagle, J.H. Ratio of serum aspartate to alanine aminotransferase in chronic hepatitis. Relationship to cirrhosis.
Gastroenterology 1988, 95, 734–739. [CrossRef]

32. Lichtinghagen, R.; Pietsch, D.; Bantel, H.; Manns, M.P.; Brand, K.; Bahr, M.J. The Enhanced Liver Fibrosis (ELF) score: Normal
values, influence factors and proposed cut-off values. J. Hepatol. 2013, 59, 236–242. [CrossRef] [PubMed]

33. Singh, A.; Le, P.; Peerzada, M.M.; Lopez, R.; Alkhouri, N. The Utility of Noninvasive Scores in Assessing the Prevalence of
Nonalcoholic Fatty Liver Disease and Advanced Fibrosis in Type 2 Diabetic Patients. J. Clin. Gastroenterol. 2018, 52, 268–272.
[CrossRef]

34. Lomonaco, R.; Leiva, E.G.; Bril, F.; Shrestha, S.; Mansour, L.; Budd, J.; Romero, J.P.; Schmidt, S.; Chang, K.-L.; Samraj, G.; et al.
Advanced Liver Fibrosis Is Common in Patients With Type 2 Diabetes Followed in the Outpatient Setting: The Need for Systematic
Screening. Diabetes Care 2021, 44, 399–406. [CrossRef]

35. Mansour, D.; Grapes, A.; Herscovitz, M.; Cassidy, P.; Vernazza, J.; Broad, A.; Anstee, Q.M.; McPherson, S. Embedding assessment
of liver fibrosis into routine diabetic review in primary care. JHEP Rep. 2021, 3, 100293. [CrossRef] [PubMed]

36. Robertson, R.P.; Harmon, J.; Tran, P.O.T.; Poitout, V. β-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2
diabetes. Diabetes 2004, 53 (Suppl. 1), S119–S124. [CrossRef] [PubMed]

37. Smith, G.I.; Shankaran, M.; Yoshino, M.; Schweitzer, G.G.; Chondronikola, M.; Beals, J.W.; Okunade, A.L.; Patterson, B.W.;
Nyangau, E.; Field, T.; et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J. Clin.
Investig. 2020, 130, 1453–1460. [CrossRef] [PubMed]

38. Samuel, V.T.; Liu, Z.X.; Qu, X.; Elder, B.D.; Bilz, S.; Befroy, D.; Romanelli, A.J.; Shulman, G.I. Mechanism of hepatic insulin
resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 2004, 279, 32345–32353. [CrossRef] [PubMed]

39. Kantartzis, K.; MacHann, J.; Schick, F.; Fritsche, A.; Häring, H.U.; Stefan, N. The impact of liver fat vs visceral fat in determining
categories of prediabetes. Diabetologia 2010, 53, 882–889. [CrossRef]

40. Lambert, J.E.; Ramos-Roman, M.A.; Browning, J.D.; Parks, E.J. Increased de novo lipogenesis is a distinct characteristic of
individuals with nonalcoholic fatty liver disease. Gastroenterology 2014, 146, 726–735. [CrossRef]

41. Berzigotti, A.; Tsochatzis, E.; Boursier, J.; Castera, L.; Cazzagon, N.; Friedrich-Rust, M.; Petta, S.; Thiele, M. EASL Clinical Practice
Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis–2021 update. J. Hepatol. 2021, 75, 659–689.
[CrossRef] [PubMed]

42. Rousseau, M.C.; Parent, M.É.; Pollak, M.N.; Siemiatycki, J. Diabetes mellitus and cancer risk in a population-based case-control
study among men from Montreal, Canada. Int. J. Cancer 2006, 118, 2105–2109. [CrossRef]

43. Wang, P.; Kang, D.; Cao, W.; Wang, Y.; Liu, Z. Diabetes mellitus and risk of hepatocellular carcinoma: A systematic review and
meta-analysis. Diabetes. Metab. Res. Rev. 2012, 28, 109–122. [CrossRef] [PubMed]

44. Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.;
Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight Loss Through Lifestyle Modification Significantly Reduces Features of
Nonalcoholic Steatohepatitis. Gastroenterology 2015, 149, 367–378.e5. [CrossRef]

45. Brown, E.; Hydes, T.; Hamid, A.; Cuthbertson, D. Emerging and Established Therapeutic Approaches for Nonalcoholic Fatty
Liver Disease. Clin. Ther. 2021, 43, 1476–1504. [CrossRef] [PubMed]

46. Allen, A.M.; Hicks, S.B.; Mara, K.C.; Larson, J.J.; Therneau, T.M. The risk of incident extrahepatic cancers is higher in non-alcoholic
fatty liver disease than obesity—A longitudinal cohort study. J. Hepatol. 2019, 71, 1229–1236. [CrossRef] [PubMed]

47. Cui, J.; Philo, L.; Nguyen, P.; Hofflich, H.; Hernandez, C.; Bettencourt, R.; Richards, L.; Salotti, J.; Bhatt, A.; Hooker, J.; et al.
Sitagliptin vs. placebo for non-alcoholic fatty liver disease: A randomized controlled trial. J. Hepatol. 2016, 65, 369–376. [CrossRef]
[PubMed]

48. Macauley, M.; Hollingsworth, K.G.; Smith, F.E.; Thelwall, P.E.; Al-Mrabeh, A.; Schweizer, A.; Foley, J.E.; Taylor, R. Effect of
Vildagliptin on Hepatic Steatosis. J. Clin. Endocrinol. Metab. 2015, 100, 1578–1585. [CrossRef]

49. Cuthbertson, D.J.; Irwin, A.; Gardner, C.J.; Daousi, C.; Purewal, T.; Furlong, N.; Goenka, N.; Thomas, E.L.; Adams, V.L.;
Pushpakom, S.P.; et al. Improved Glycaemia Correlates with Liver Fat Reduction in Obese, Type 2 Diabetes, Patients Given
Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists. PLoS ONE 2012, 7, e50117. [CrossRef] [PubMed]

134



J. Clin. Med. 2021, 10, 5755

50. Newsome, P.N.; Buchholtz, K.; Cusi, K.; Linder, M.; Okanoue, T.; Ratziu, V.; Sanyal, A.J.; Sejling, A.-S.; Harrison, S.A. A
Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2021, 384, 1113–1124.
[CrossRef]

51. Armstrong, M.J.; Houlihan, D.D.; Rowe, I.A.; Clausen, W.H.O.; Elbrønd, B.; Gough, S.C.L.; Tomlinson, J.W.; Newsome, P.N. Safety
and efficacy of liraglutide in patients with type 2 diabetes and elevated liver enzymes: Individual patient data meta-analysis of
the LEAD program. Aliment. Pharmacol. Ther. 2013, 37, 234–242. [CrossRef]

52. Sattar, N.; Fitchett, D.; Hantel, S.; George, J.T.; Zinman, B. Empagliflozin is associated with improvements in liver enzymes
potentially consistent with reductions in liver fat: Results from randomised trials including the EMPA-REG OUTCOME® trial.
Diabetologia 2018, 61, 2155–2163. [CrossRef]

53. Eriksson, J.W.; Lundkvist, P.; Jansson, P.-A.; Johansson, L.; Kvarnström, M.; Moris, L.; Miliotis, T.; Forsberg, G.-B.; Risérus, U.;
Lind, L.; et al. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes:
A double-blind randomised placebo-controlled study. Diabetologia 2018, 61, 1923–1934. [CrossRef] [PubMed]

54. Grecian, S.M.; McLachlan, S.; Fallowfield, J.A.; Kearns, P.K.A.; Hayes, P.C.; Guha, N.I.; Morling, J.R.; Glancy, S.; Williamson, R.M.;
Reynolds, R.M.; et al. Non-invasive risk scores do not reliably identify future cirrhosis or hepatocellular carcinoma in Type 2
diabetes: The Edinburgh type 2 diabetes study. Liver Int. 2020, 40, 2252–2262. [CrossRef] [PubMed]

55. Morling, J.R.; Fallowfield, J.A.; Guha, I.N.; Nee, L.D.; Glancy, S.; Williamson, R.M.; Robertson, C.M.; Strachan, M.W.J.; Price, J.F.
Using non-invasive biomarkers to identify hepatic fibrosis in people with type 2 diabetes mellitus: The Edinburgh type 2 diabetes
study. J. Hepatol. 2014, 60, 384–391. [CrossRef] [PubMed]

135





Citation: Bellido, V.; Abreu Padín, C.;

Catarig, A.-M.; Clark, A.; Barreto

Pittol, S.; Delgado, E. Once-Weekly

Semaglutide Use in Patients with

Type 2 Diabetes: Results from the

SURE Spain Multicentre, Prospective,

Observational Study. J. Clin. Med.

2022, 11, 4938. https://doi.org/

10.3390/jcm11174938

Academic Editors:

Fernando Gómez-Peralta and

Gianluca Aimaretti

Received: 22 June 2022

Accepted: 11 August 2022

Published: 23 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Once-Weekly Semaglutide Use in Patients with Type 2
Diabetes: Results from the SURE Spain Multicentre,
Prospective, Observational Study

Virginia Bellido 1,2,*, Cristina Abreu Padín 3, Andrei-Mircea Catarig 4, Alice Clark 4, Sofía Barreto Pittol 5

and Elias Delgado 6,7,8,9

1 Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío,
41013 Sevilla, Spain

2 Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC,
Universidad de Sevilla, 41013 Sevilla, Spain

3 Hospital General de Segovia, 47002 Segovia, Spain
4 Novo Nordisk A/S, DK-2760 Søborg, Denmark
5 Novo Nordisk Pharma SA, 28033 Madrid, Spain
6 Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA),

33011 Oviedo, Spain
7 Department of Medicine, University of Oviedo, 33006 Oviedo, Spain
8 Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
9 Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029 Madrid, Spain
* Correspondence: virginiabellido@gmail.com

Abstract: Type 2 diabetes (T2D) is a complex disease for which an individualised treatment approach
is recommended. Once-weekly (OW) semaglutide is a glucagon-like peptide-1 receptor agonist ap-
proved for the treatment of insufficiently controlled T2D. The aim of this study was to investigate the
use of OW semaglutide in adults with T2D in a real-world context. SURE Spain, from the 10-country
SURE programme, was a prospective, multicentre, open-label, observational study, approximately
30 weeks in duration. Adults with T2D and ≥1 documented HbA1c value ≤12 weeks before semaglu-
tide initiation were enrolled. Change in HbA1c from baseline to end of study (EOS) was the primary
endpoint, with change in body weight (BW), waist circumference, and patient-reported outcomes
as secondary endpoints. Of the 227 patients initiating semaglutide, 196 (86.3%) completed the
study on-treatment with semaglutide. The estimated mean changes in HbA1c and body weight be-
tween baseline and EOS were −1.3%-points (95% confidence interval (CI) −1.51;−1.18%-points) and
−5.7 kg (95% CI −6.36;−4.98 kg). No new safety concerns were identified. Therefore, in routine
clinical practice in Spain, OW semaglutide was shown to be associated with statistically significant
and clinically relevant reductions in HbA1c and BW in adults with T2D.

Keywords: body weight; glucagon-like peptide-1 receptor agonist; HbA1c; real-world evidence;
semaglutide; SURE study; type 2 diabetes

1. Introduction

Type 2 diabetes (T2D) places a heavy burden on individuals and healthcare systems
across the world. In Spain, an estimated 13.8% of people have T2D, and this is expected to
increase in the future [1,2].

The management of T2D is complex. The American Diabetes Association (ADA)
Standards of Medical Care in Diabetes 2022 [3] and the 2020 joint consensus statement of the
ADA and the European Association for the Study of Diabetes (EASD) [4] recommend that
physicians should take an individualised treatment approach when prescribing medications
for T2D, and that they consider drug efficacy, risk of hypoglycaemia, cardiorenal benefits,
effect on body weight (BW), adverse effects, pricing, and convenience for the patient [4].
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Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are an established class of
antihyperglycaemic drugs used for the treatment of T2D, which have demonstrated im-
provements in glycaemic control and reductions in BW in patients with T2D [5,6]. In
addition to their glucose-dependent function resulting in a low risk for hypoglycaemia [7],
some GLP-1RAs (dulaglutide, liraglutide, and semaglutide) have demonstrated cardiovas-
cular (CV) benefits in patients with T2D at high risk of CV disease [8–10]. Despite these
benefits, access to GLP-1RAs is limited in Spain, and GLP-1RAs are only reimbursed for
patients with obesity (body mass index [BMI] ≥ 30 kg/m2) and insufficient glycaemic
control as a second-line therapy after metformin [11].

Semaglutide is a human GLP-1 analogue, approved as an add-on to diet and exercise
for the treatment of adults with insufficiently controlled T2D, by the European Medicines
Agency in February 2018 [12]. It has a long half-life, which makes it suitable for once-weekly
(OW) dosing, [13] and is the only GLP-1RA that is available both in a OW subcutaneous
(s.c.) injectable formulation and as an oral formulation administered once-daily [14].

The extensive SUSTAIN randomised clinical trial (RCT) programme, which investi-
gated the efficacy and safety of OW s.c. semaglutide, demonstrated that 0.5 mg and 1.0 mg
doses were associated with superior, clinically relevant improvements in glycaemic control
and weight loss, compared with placebo or active comparators [8,15–23]. A safety profile
similar to other GLP-1RAs was also observed.

SURE Spain is part of the SURE real-world study programme, which aimed to explore
the use of OW semaglutide in a diverse population of adults with T2D in routine, real-world
clinical practice across 10 countries (Canada, Denmark/Sweden, France, Germany, Italy,
the Netherlands, Spain, Switzerland, and the United Kingdom) and to complement the
results of the SUSTAIN RCTs. Unlike RCTs, the SURE studies are non-interventional and
observational, allowing the assessment of patient outcomes, as well as product use and
performance, in diverse patient populations in routine clinical practice [24].

The aim of this study was to evaluate the real-world use of OW semaglutide in a
diverse T2D patient population in Spain.

2. Materials and Methods

2.1. Study Design

SURE Spain was a multicentre, prospective open-label, single-arm, non-interventional
study assessing the use of OW semaglutide in adult patients with T2D in routine clinical
practice in Spain. Informed consent and treatment initiation took place on the first visit
(week 0), followed by an anticipated exposure period of ~30 weeks (range: 28–38 weeks).
Intermediate visits scheduled according to local practice and data collection were performed
throughout the entire study.

The decision to initiate semaglutide treatment was at the discretion of the treat-
ing physician, following requirements stated in the Summary of Product Characteristics
(SmPC), therapeutic positioning report and local/regional guidelines, and clearly separated
from the decision to include the patient in the SURE Spain study. All parameters collected
in the study (except the patient-reported outcomes) were part of routine clinical practice.
Patients were treated OW with commercially available s.c. semaglutide (Ozempic®; Novo
Nordisk A/S, Bagsværd, Denmark), available in a pre-filled, multidose, pen injector. The
treating physician determined the maintenance dose and any subsequent changes to it. Diet
and physical activity counselling could be offered in line with routine clinical practice, with
modifications to prescribed antihyperglycaemic treatment at the physician’s discretion.

This study was conducted in accordance with the Declaration of Helsinki [25], the
Guidelines for Pharmacovigilance Practices Module VI [26], and Good Pharmacoepidemi-
ology Practices [27]. Prior to study initiation, the protocol, protocol amendment, pa-
tient information/informed consent form, together with any other written information
to be provided to the patient and patient enrolment procedures, were reviewed and ap-
proved by the independent ethics committee/institutional review board at each study site
(first approved in 2019 by the Ethics Committee of CEIm de EUSkadi, project identifier:
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NN9535-4368). Written informed consent was obtained from all patients prior to any
study-related activities. This study is registered on ClinicalTrials.gov (NCT04067999).

2.2. Study Population

Adult patients (age ≥ 18 years) diagnosed with T2D were included from 34 sites in
Spain, with the first participant’s first visit on 5 August 2019, and the last participant’s
last visit on 19 July 2021. Inclusion criteria included diagnosis of T2D and availability of
one or more documented values of HbA1c within 12 weeks prior to semaglutide treatment
initiation. Exclusion criteria included previous participation in a SURE study, mental
incapacity, unwillingness, or language barriers precluding adequate understanding or
cooperation, prior treatment with any investigational drug (90 days before enrolment),
and hypersensitivity to semaglutide or any of the excipients. The study duration of
30 weeks was considered sufficient to initiate and optimise the study treatment regimen
and to obtain real-world data for the evaluation of the primary endpoint.

2.3. Endpoints

The primary endpoint was a change from baseline to end of study (EOS) in HbA1c
(%-point and mmol/mol). Supportive secondary endpoints included: change from baseline
to EOS in BW (kg and %) and waist circumference (cm); proportion of patients achieving
HbA1c < 8.0% (64 mmol/mol), <7.5% (59 mmol/mol) and <7.0% (53 mmol/mol) [28];
reduction in HbA1c from baseline to EOS of ≥1.0%-point; weight reduction from baseline to
EOS of ≥3.0% [29] and ≥5.0%; HbA1c reduction from baseline to EOS of ≥1.0% and weight
reduction from baseline to EOS of ≥3.0% [29]; patient-reported severe or documented
hypoglycaemia between baseline and EOS; and change from baseline to EOS in scores for
patient-reported outcomes of: the Diabetes Treatment Satisfaction Questionnaire–status
(DTSQs; absolute treatment satisfaction) comprising eight questions, of which six questions
are combined into a total Treatment Satisfaction score (scale: 0 to 36); the Diabetes Treatment
Satisfaction Questionnaire–change (DTSQc; relative treatment satisfaction), total treatment
satisfaction (scale: −18.0 to 18.0); and the 36-item Short-Form Health Survey version 2
(SF-36®v2), physical and mental summary component. The proportion of patients who
completed the study under treatment with semaglutide was also investigated.

Exploratory assessments included: weekly dose of semaglutide at EOS; proportion
of patients who had not added new antihyperglycaemic drug(s) to semaglutide treatment
at any time during the study, evaluated at EOS; proportion of patients who had achieved
clinical success, in relation to the reason to initiate semaglutide treatment, as assessed
by the physician at EOS; patient-reported 8-Item Morisky Medication Adherence Scale
(MMAS-8) score at EOS (low, medium, high) [30–32]; and the number of severe or docu-
mented hypoglycaemic episodes. Post hoc assessments included change from baseline to
EOS in BMI (kg/m2). Permission for use of the MMAS-8 was granted prior to the study.

2.4. Safety

Only information on serious adverse drug reactions (SADRs), fatal events, pregnancies
in female patients, and adverse events (AEs) in foetuses or newborns were systematically
collected during the study. Voluntary reporting of other safety information by the physician
followed the same process as for the systematic safety reporting. All episodes of patient-
reported documented and/or severe hypoglycaemia were to be recorded.

2.5. Statistical Analyses

Power calculations showed that a sample size of 130 patients was required, based
on the criterion of 90% probability of obtaining a 95% confidence interval (CI) for mean
change from baseline in HbA1c whose half-width was at most 0.30. The half-width of
0.30 was chosen as a reasonable uncertainty allowing for a robust evaluation of glycaemic
efficacy, in line with diabetes guidelines [33]. To ensure sufficient statistical power to
evaluate the efficacy of semaglutide on glycaemic control (on the basis of evidence from
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previous observational studies with GLP-1RA treatment), it was necessary to include at least
217 enrolled patients initiating semaglutide, to ensure that 130 patients completed the study
on-treatment [34,35].

The Full Analysis Set (FAS), which included all patients in the study who initi-
ated semaglutide treatment, was used for characterising baseline demographics, analysis
of the secondary endpoint related to study completion on-treatment, the selected ex-
ploratory assessments, description of AEs, and the sensitivity analyses of the primary and
secondary endpoints.

The Effectiveness Analysis Set (EAS) included all patients in the FAS who completed
the study and were receiving semaglutide treatment at EOS. The EAS was used for charac-
terising baseline demographics at EOS, the description of antihyperglycaemic medications
at baseline and EOS, and the primary, secondary and exploratory endpoint analyses.

Baseline demographic data are summarised using descriptive statistics (mean ± stan-
dard deviation [SD] or median and interquartile range for continuous variables and num-
ber and proportion for categorical variables). Change in the continuous variables of
the primary and secondary endpoints from baseline to EOS were analysed using the
Analysis of Covariance (ANCOVA) model. Categorical endpoints were analysed using
descriptive statistics.

Sensitivity analyses investigated the robustness of the conclusions from the main
analyses and explored the impact of missing data in the primary analysis, for which pa-
tients were excluded if they did not complete the study or discontinued treatment, or
if HbA1c data were missing at EOS. The prespecified in-study sensitivity analysis of the
primary endpoint included all patients in the FAS with at least one post-baseline HbA1c
measurement in the in-study period. For this analysis, the primary endpoint was analysed
using a Mixed Model for Repeated Measures (MMRM) including all HbA1c assessments
in the in-study period. The on-treatment sensitivity analysis included patients in the
FAS with at least one post-baseline HbA1c assessment, but it only included HbA1c assess-
ments in the on-treatment period and used the same statistical approach as the in-study
sensitivity analysis.

Because of the COVID-19 pandemic, the EOS visit (V6) window was extended beyond
38 weeks to allow participants to complete their EOS assessments. Consequently, an
additional post hoc sensitivity analysis was performed to explore the impact of extending
the EOS visit (V6) window on the primary endpoint. The sensitivity analysis of the primary
endpoint was the same as the primary analysis of the primary endpoint but included
only those patients who had an EOS visit between weeks 28 and 38 (the original visit
window). An additional post hoc sensitivity analysis was performed to explore the impact
of extending the EOS visit on the secondary endpoint of change from baseline to EOS in BW.
This sensitivity analysis was the same as the main analysis of this endpoint but included
only those patients who had an EOS visit between weeks 28 and 38.

3. Results

3.1. Patient Population and Baseline Characteristics

Of the 228 patients who signed the consent form, one did not meet the eligibility
criteria. Therefore, the FAS comprised the 227 patients who were enrolled in the study
and who had initiated semaglutide treatment (Figure 1). A total of 210 patients (92.5%)
completed the study, and the mean treatment duration was 33.7 weeks. The reasons for
non-completion were: death (n = 1; 0.4%), lost to follow-up (n = 3; 1.3%), withdrawal by
patient (n = 3; 1.3%), and missed EOS visit within the visit window (n = 10; 4.4%) (Figure 1).
The EAS comprised 196 patients (86.3%) who had completed the study on semaglutide
treatment (Figure 1). Twelve patients (5.2% of the FAS) had an unknown treatment status
at EOS. With regard to discontinuations, 16 patients (7.0%) discontinued treatment due
to unacceptable gastrointestinal (GI) intolerability, and a further three patients (1.3%) had
‘other’ recorded as the reason (Figure 1).
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Figure 1. Patient disposition. * Patients who initiated semaglutide treatment and attended the end of
study visit. GI, gastrointestinal.

Baseline characteristics of patients are summarised in Table 1. Hypertension and
dyslipidaemia were the most frequent CV comorbidities at baseline, affecting 75.8% and
76.2% of patients, respectively.

Most patients initiated semaglutide at a dose of 0.25 mg (83.3%); 13.7% initiated at
0.5 mg and 3.1% at 1.0 mg. The most common reasons for initiating semaglutide as part of
T2D treatment were weight reduction (94.3%) and to improve glycaemic control (88.5%).

The most frequent antihyperglycaemic drugs used by patients in the EAS at baseline
were metformin (75.5% of patients), sodium–glucose cotransporter-2 inhibitors (SGLT-2is)
(42.3%), basal insulin (32.7%), and dipeptidyl peptidase-4 inhibitors (DPP-4is) (20.4%)
(Supplementary Table S1).

3.2. HbA1c, BW, BMI, and Waist Circumference Outcomes

For patients in the EAS receiving semaglutide, statistically significant reductions were
observed at EOS for mean HbA1c, BW, waist circumference and BMI (Table 2). The mean
HbA1c at EOS was 7.1%, and the estimated mean change from baseline was −1.3%-points
[95% CI −1.51;−1.18%-points; p < 0.0001] (Table 2, Supplementary Figure S1); mean BW
at EOS was 93.2 kg, and the estimated mean change from baseline was −5.7 kg [95% CI
−6.36; −4.98 kg; p < 0.0001] (Table 2, Supplementary Figure S1); mean BMI at EOS was
34.4 kg/m2

, and the estimated mean change from baseline was −2.1 kg/m2 [95% CI −2.37;
−1.86 kg/m2; p < 0.0001]; and mean waist circumference at EOS was 113.4 cm, and the
estimated mean change from baseline to EOS was −5.3 cm [95% CI −6.29; −4.41 cm;
p < 0.0001] (Table 2, Supplementary Figure S1).
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Table 1. Baseline characteristics of patients (FAS).

N 227
Age, years 59.1 (9.94)

Female, n (%) 111 (48.9)
Race, n (%)

White 221 (97.4)
American Indian or Alaska Native 2 (0.9)

Other 4 (1.8)
Body weight, kg 98.3 (17.89)

Waist circumference, cm 118.8 (12.50)
BMI, kg/m2 36.4 (5.28)

BMI categories, n (%)
Normal (18.5−<25 kg/m2) 0

Overweight (25−<30 kg/m2) 12 (5.3)
Obese class I (30−<35 kg/m2) 89 (39.6)

Obese class II & III (≥35 kg/m2) 124 (55.1)
Diabetes duration, years 11.8 (8.10)

Baseline HbA1c, % 8.5 (1.58)
HbA1c level, n (%)

<8.0% 93 (41.0)
<7.5% 62 (27.3)
<7.0% 34 (15.0)

Baseline HbA1c, mmol/L 69.1 (17.3)
FPG, mmol/L 9.9 (3.46)

eGFR, mL/min/1.73 m2 82.4 (22.58)
Lipid composition, mg/dL

HDL cholesterol 44.8 (13.31)
LDL cholesterol 92.5 (30.76)
Total cholesterol 175.7 (45.41)

Triglycerides 243.9 (298.8)
Lipid composition, mmol/L

HDL cholesterol 1.2 (0.34)
LDL cholesterol 2.4 (0.80)
Total cholesterol 4.6 (1.18)

Triglycerides 2.8 (3.37)
Comorbid conditions at baseline, n (%)

Diabetic retinopathy 29 (12.9)
Diabetic neuropathy 18 (7.9)

Diabetic nephropathy 38 (16.7)
Dyslipidaemia 173 (76.2)
Hypertension 172 (75.8)

Values based on FAS (n = 227). Data for continuous variables are mean (SD) unless otherwise specified. BMI, body
mass index; eGFR, estimated glomerular filtration rate; FAS, Full Analysis Set; FPG, fasting plasma glucose; HDL,
high-density lipoprotein; LDL, low-density lipoprotein; SD, standard deviation.

At EOS, 81.0%, 67.7% and 54.0% of patients in the EAS had an HbA1c of < 8.0%,
<7.5% and <7.0%, respectively (Figure 2). The proportion of patients achieving an HbA1c
reduction ≥1%-point was 56.6% and the proportions achieving weight reduction of ≥ 3.0%
and ≥5.0% were, respectively, 69.2% and 49.7% (Figure 2). The proportion of patients in
the EAS achieving the composite endpoint of an HbA1c reduction of ≥ 1.0% and weight
reduction ≥3.0% at EOS was 44.3% (Figure 2). In the FAS, 86.3% of patients completed the
study on-treatment with semaglutide (Figure 1).

3.3. Sensitivity Analyses

Prespecified sensitivity analyses were used to explore the impact of missing data in the
main analysis. The on-treatment sensitivity analysis of the FAS showed that the mean HbA1c
decreased over time from initiation of semaglutide to week 30, with an estimated change
of −1.4%-points [95% CI −1.59; −1.27%-points] (Supplementary Figure S2). The estimated
mean changes from baseline to EOS and associated 95% CIs were similar across sensitivity
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analyses and showed that the mean changes in HbA1c were statistically significantly different
from having no mean change in HbA1c (Supplementary Table S2, Supplementary Figure S2).
Moreover, the estimated mean HbA1c and estimated change in HbA1c were similar over
the course of the study for both the in-study and on-treatment period.

Table 2. Change from baseline to EOS in HbA1c, body weight, waist circumference, and BMI (EAS).

N n Estimate 95% CI p-Value

HbA1c, % 196 187 - - -
Observed mean at baseline - - 8.4 - -

Estimated mean at EOS - - 7.1 - -
Change from baseline to EOS - - −1.3 [−1.51; −1.18] <0.0001

HbA1c, mmol/mol 196 187 - - -

Observed mean at baseline - - 68.5 - -
Estimated mean at EOS - - 53.8 - -

Change from baseline to EOS - - −14.7 [−16.48; −12.86] <0.0001
Body weight, kg 196 194 - - -

Observed mean at baseline - - 98.9 - -
Estimated mean at EOS - - 93.2 - -

Change from baseline to EOS - - −5.7 [−6.36; −4.98] <0.0001
Percent change from baseline to EOS - - −5.7 [−6.41; −5.03] <0.0001

Waist circumference, cm 196 165 - - -

Observed mean at baseline - - 118.8 - -
Estimated mean at EOS - - 113.4 - -

Change from baseline to EOS - - −5.3 [−6.29; −4.41] <0.0001
BMI, kg/m2 196 194 - - -

Observed mean at baseline - - 36.5 - -
Estimated mean at EOS - - 34.4 - -

Change from baseline to EOS - - −2.1 [−2.37; −1.86] <0.0001
Data are based on the EAS, which included patients who attended the EOS visit and were still receiving semaglu-
tide. Change in response from baseline to EOS is analysed using baseline, T2D duration, age, BMI, pre-initiation
use of GLP-1RA, pre-initiation use of DPP-4i, pre-initiation use of insulin, number of OADs used pre-initiation
(0–1/2+) and sex as covariates. p-value is reported for no average change in response from baseline to EOS. The
assessment of BMI was performed as a post hoc analysis. BMI, body mass index; CI, confidence interval; DPP-4i,
dipeptidyl peptidase-4 inhibitor; EAS, Effectiveness Analysis Set; EOS, end of study; GLP-1RA, glucagon-like
peptide-1 receptor agonist; N, total number of patients in EAS; n, total number of patients included in analyses;
OAD, oral antihyperglycaemic drug; T2D, type 2 diabetes.

Figure 2. Proportion of patients achieving HbA1c targets and weight-loss goals (EAS). EAS, Effective-
ness Analysis Set; EOS, end of study.

Additional post hoc sensitivity analyses were performed in patients who had their
EOS visit within the original visit window (week 28–38). The post hoc analyses of the mean
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changes from baseline to EOS for HbA1c and for BW showed similar results to those seen
in the primary analysis (Supplementary Table S3).

Collectively, the sensitivity analyses supported the conclusions from the primary
analysis, which included assessments for patients who were on-treatment at the EOS visit
(V6), also including those completing the study after week 38.

3.4. Semaglutide Dose

The mean ± SD weekly dose of semaglutide at EOS was 0.85 ± 0.24 mg. At EOS, five
(2.6%) patients were receiving 0.25 mg OW semaglutide, 50 (25.5%) were receiving 0.5 mg,
two (1.0%) were receiving between >0.5 mg and <1.0 mg, and 139 (70.9%) were receiving
1.0 mg.

3.5. Patient-Reported Outcomes

In patients receiving semaglutide at EOS, DTSQs score increased by 4.4 [95% CI 3.66;
5.07; p < 0.0001] from baseline to EOS, representing a significant increase in absolute
treatment satisfaction (Figure 3). Patients receiving semaglutide also reported a DTSQc
score at EOS of 13.1 (95% CI 12.36; 13.85) out of a maximum score of 18, indicating a
significant relative improvement in treatment satisfaction (p < 0.0001) (Figure 3).

Figure 3. Treatment satisfaction and HRQoL (EAS). * p = 0.0013; ** p < 0.0001. Data are based on
EAS. DTSQ status version (DTSQs) was measured at the informed consent and initiation visit, and
the EOS visit; with responses ranging from 0 (very dissatisfied) to 6 (very satisfied) for each item
of the questionnaire. The maximum total score is 36. The SF-36®v2 questionnaire has 36 questions
grouped into eight domains, which can be combined into two summary component scores (overall
mental and physical health); a higher SF-36®v2 score indicates lower disability. DTSQ, Diabetes
Treatment Satisfaction Questionnaire; DTSQc, DTSQ change version; DTSQs, DTSQ status version;
EAS, Effectiveness Analysis Set; EOS, end of study; HRQoL, health-related quality of life; MCS,
mental component summary; PCS, physical component summary; SF-36®v2, 36-Item Short-Form
Health Survey version 2.
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At EOS, significant increases were observed in both the SF-36®v2 health-related quality-
of life (HRQoL) questionnaire physical component score (p < 0.0001) and the mental
component score (p = 0.0013), indicating an improvement in quality of life from baseline to
EOS (Figure 3).

Mean MMAS-8 score was 7.0 at baseline and 7.4 at EOS, indicating a medium level
of treatment adherence. The proportion of participants with medium and high adherence
was, respectively, 49.5% and 36.6% at baseline and 34.1% and 57.3% at EOS.

3.6. Adverse Events and Hypoglycaemia

AEs and severe or documented hypoglycaemic episodes in patients receiving semaglu-
tide are summarised in Table 3. In the FAS, 15 patients (6.6%) reported 26 treatment-
emergent AEs: 88.5% of AEs were non-serious (13 [5.7%] patients; 23 events) and 46.2%
were moderate in intensity (7 [3.1%] patients; 12 events). A total of 13 patients reported
22 GI AEs, which accounted for the highest number of AEs by system organ class. Three
serious AEs (SAEs) were reported (Medical Dictionary for Regulatory Activities preferred
terms: atrial fibrillation, left ventricular failure, and myocardial infarction) by two patients
(0.9%), which were all judged as unlikely to be related to semaglutide treatment by the
investigators. One severe SAE (preferred term: myocardial infarction) was reported, which
had a fatal outcome.

Table 3. AEs and severe or documented hypoglycaemic episodes in patients receiving semaglutide (FAS).

Serious Non-Serious Total

N (%) E N (%) E N (%) E

AE 2 0.9 3 13 5.7 23 15 6.6 26
Severity

Mild 0 0 0 6 2.6 12 6 2.6 12
Moderate 1 0.4 2 6 2.6 10 7 3.1 12

Severe 1 0.4 1 1 0.4 1 2 0.9 2
GI disorders 0 0 0 13 5.7 22 13 5.7 22

Nausea 0 0 0 7 3.1 7 7 3.1 7
Vomiting 0 0 0 5 2.2 5 5 2.2 5
Diarrhoea 0 0 0 3 1.3 3 3 1.3 3

AEs leading to treatment discontinuation 0 0 0 5 2.2 6 5 2.2 6
SADRs 0 0 0 0 0 0 0 0 0

N (%)
Patients with severe or documented

hypoglycaemic episodes
8 4.1

All other events were reported on a voluntary basis (FAS). AE, adverse event; E, event; FAS, Full Analysis Set; GI,
gastrointestinal; N, total number of patients in FAS; SADR, serious adverse drug reaction.

Eight patients (4.1%) in the EAS reported severe or documented hypoglycaemia
episodes between baseline and EOS, with similar results in the FAS (12 patients; 5.3%). At
EOS, 20 severe or documented hypoglycaemic episodes were reported in the EAS, and 26
were reported in the FAS. Of these 26 events, 22 were reported by patients while using
insulin and 3 occurred while using sulphonylureas. The date of one hypoglycaemic episode
was unrecorded, which prevented an assessment of concurrent medication use. No severe
hypoglycaemic episodes were reported during the study.

4. Discussion

The SURE Spain study is part of the SURE study programme, which consists of nine
observational studies in ten countries and was conducted to assess the real-world use of
OW semaglutide.

The data reported indicate that when OW s.c. semaglutide was taken according
to local clinical practice by adult patients with T2D in Spain, a clinically relevant and
statistically significant reduction, compared with baseline, was observed for HbA1c at EOS
(p < 0.0001) [36]. This was observed despite 14.5% of the study population switching from
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another GLP-1RA to semaglutide at baseline. While previous treatment may be expected to
influence outcomes, improvements have been reported in patients treated with semaglutide
who were not naïve to GLP-1RAs [36].

At EOS, patients also experienced statistically significant decreases from baseline in
BW and waist circumference. A total of 97 (49.7%) patients achieved a weight reduction
from baseline of ≥5%. This weight reduction is a key consideration in terms of reducing CV
risk, in view of the beneficial reductions in triglycerides, total cholesterol, and low-density
lipoprotein cholesterol that are associated with a weight loss of 5–10% [37].

Furthermore, patients reported substantial improvements in treatment satisfaction and
HRQoL, as measured by the DTSQ and the SF-36®v2, respectively. In addition, patients’
adherence to OW semaglutide treatment was good, with 91.4% of patients reporting
either high (57.3%) or medium (34.1%) adherence at EOS. Adherence to OW semaglutide
in the SURE Spain study compares favourably to the adherence rates of 39.1–64.5% at
1 year reported for GLP-1RAs (including semaglutide) in retrospective, real-world cohort
studies [37,38].

Additionally, the patient population in this study had advanced T2D, as indicated by
the mean disease duration of 11.8 years from diagnosis and the complex pharmacological
treatment at baseline, with 41.9% of patients taking more than two antihyperglycaemic
medications and 47.5% taking insulin. These factors are associated with poorer treatment
outcomes and make it more difficult to achieve treatment goals.

Drawing comparisons between GLP-1RA RCTs and real-world evidence studies from
different countries can be challenging. Local T2D clinical guidelines vary and can restrict
clinical access to GLP-1RAs, while local reimbursement policies may impose further barri-
ers to patient access. In Spain, outside of private practice, GLP-1RAs are only reimbursed
for patients with a BMI ≥ 30 kg/m2. This is in contrast with Denmark, where the recom-
mendation is independent of BMI, and the UK, where use is recommended in those with a
BMI ≥ 35 kg/m2 who show an adequate metabolic response.

Overall, the results of this study support previously reported data on the real-world
use of OW semaglutide in Spain [39–41]. The reduction in HbA1c and BW observed in
Spain align with those observed in the countries that have published results from the SURE
programme to date—Canada, Denmark/Sweden, Switzerland, and the UK—for which
the mean change in HbA1c from baseline to EOS was between −0.8 and −1.5%-points
and the mean change in BW from baseline to EOS was between −4.3 and −5.8 kg [42–45].
The results are also aligned with real-world evidence from other countries, for example,
a study by Marzullo et al., that showed reductions in HbA1c and body weight after
6 and 12 months of OW semaglutide treatment in people with T2D in Italy [46].

Metabolic control in patients with T2D is assessed using multiple factors (e.g., BW,
waist circumference), and not only HbA1c. In SURE Spain, the majority (70.9%) of patients
were receiving the recommended dose of 1.0 mg OW of semaglutide by EOS, and the
significant improvements in primary and secondary endpoints in the study may indicate
that this dose is appropriate for the goal of achieving global metabolic control. The safety
findings of the real-world T2D population in Spain were also consistent with the safety
profile of semaglutide established in the SUSTAIN programme and with that of the GLP-
1RA class, with no unexpected safety issues reported.

Study Limitations

The SURE Spain study was non-interventional and single-armed, so the potential
impact of other predictive factors cannot be excluded. The fundamental limitation of such
a study design is the absence of a randomised comparator, which would otherwise have
enabled differentiation of the changes caused by treatment, and the impact of other factors.
Data in this study were collected during routine clinical practice, rather than through
mandated examinations at predetermined time points, which may have impacted the
robustness and completeness of the dataset.
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The primary analysis was based on data from patients who completed the study
on semaglutide treatment and with their HbA1c levels recorded at EOS. This could have
resulted in selection bias, because patients who benefit from the study treatment are more
likely to continue than those who do not. To account for this, sensitivity analyses of the
primary endpoint included all post-baseline HbA1c assessments as well as evaluations from
intermediate visits also including patients who did not complete the study or discontinued
semaglutide during the study. In addition, secondary supportive analyses assessed the
percentage of patients who had started semaglutide treatment and were receiving it at
the EOS.

The inclusion criteria were purposely designed to be broad and reflect a real-world
T2D population, which is rarely the case in a standard RCT. However, it is likely that
physicians who were highly motivated would have been overrepresented among the
participating centres, and that the centres included either highly motivated patients or
patients who were difficult to treat with the other therapies available. As a result, the
enrolled group may only represent subsets of individuals who are eligible for semaglutide
therapy. Nevertheless, study participants were profiled in terms of demographics and
clinical data, which allowed for the assessment of the representativeness of the recruited
population. Details of medical history (including T2D diagnosis) and concurrent diseases
were obtained without further confirmation as provided by the investigators.

A potential limitation of SURE Spain is the study’s geographical location and time
of initiation. The study was conducted soon after the launch of OW semaglutide, in
a real-world setting, in a diverse T2D population recruited by investigators at 34 sites
in Spain. However, the 34 sites that enrolled patients account for approximately half
of the communities/regions within Spain, so may not be representative of the entire
population. Furthermore, in Spain, GLP-1RAs are only reimbursed for patients who have a
BMI ≥ 30 kg/m2, and only approximately 8% of Spanish patients with T2D are prescribed
GLP-1RAs [11,47]. Therefore, none of the patients enrolled in the study had a ‘normal’ BMI
(≥18.5–<25 kg/m2). These country-specific factors may have influenced the study results;
in the future, however, semaglutide will likely be prescribed to a broader range of patients
with T2D, including those with less severe disease progression.

The COVID-19 pandemic impacted intermediate and EOS visits in SURE Spain. Be-
cause of accessibility issues, several of these visits were instead conducted by telephone,
rather than in-person. To further mitigate the challenges raised by the pandemic, changes
were made to the study design that allowed patients to postpone their last visit (after
the 38-week timepoint). An additional post hoc sensitivity analysis was performed to
assess how the primary and secondary endpoints were affected by extending the EOS visit
window. Extending the EOS visit window had no impact on the study outcomes.

Evidence has been reported that patients with T2D in Spain may have gained weight
during the COVID-19 lockdown, due to their substantial lifestyle changes [48]. Sánchez
et al. noted that if another lockdown were to be imposed, there should be greater emphasis
on avoiding weight gain, in which case GLP-1RAs might be an effective therapy for these
patients. Despite the influence of COVID-19, the data from this study are regarded as
robust, and are suitable for further interpretation.

5. Conclusions

In SURE Spain, patients treated with OW semaglutide experienced statistically sig-
nificant and clinically relevant reductions from baseline to EOS in HbA1c, BW, and waist
circumference, and improvements in other clinical parameters such as treatment satisfaction
and HRQoL in a real-world setting. These findings were significant, despite the nature of
the population (advanced T2D) included in the SURE Spain study and the local limitations
on prescribing GLP-1RAs. The reported AEs were consistent with the known safety profile
of semaglutide, with no new safety concerns reported. These results support the use of OW
semaglutide in routine clinical practice in adults with T2D in Spain.
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Abstract: Objective: We systematically assessed the efficacy of liraglutide in non-diabetic obese
adults. Methods: Six databases were searched up to July 2021 for randomized controlled trials
(RCTs) assessing liraglutide versus placebo in obese adults. Primary outcomes were body weight
and body mass index (BMI). Secondary outcomes were treatment-emergent adverse events (TEAEs),
hypoglycemic episodes, HbA1c, and blood pressure. Effect measures were risk ratio (RR) or mean
difference (MD) with their confidence interval (95%CI). Random-effects models and inverse variance
meta-analyses were used. Quality of evidence was assessed using GRADE. Results: Twelve RCTs
(n = 8249) were included. In comparison to placebo, liraglutide reduced body weight (MD −3.35 kg;
95%CI −4.65 to −2.05; p < 0.0001), and BMI (MD −1.45 kg/m2; 95%CI −1.98 to −0.91; p < 0.0001).
Liraglutide did not reduce TEAEs (RR 1.08; 95%CI 0.92 to 1.27; p = 0.25), and Hb1Ac (MD −0.76%;
95%CI −2.24 to 0.72; p = 0.31). Furthermore, it did not increase hypoglycemic episodes (RR 2.01;
95%CI 0.37 to 11.02; p = 0.28). Finally, liraglutide reduced systolic blood pressure (MD −3.07 mmHg;
95%CI −3.66 to −2.48; p < 0.0001) and diastolic blood pressure (MD −1.01 mmHg; 95%CI −1.55 to
−0.47; p = 0.0003). Seven RCTs had a high risk of bias. Subgroup analyses by length of treatment and
doses had effects similar to the overall analyses. Quality of evidence was low or very low for most
outcomes. Conclusions: In non-diabetic obese adults, liraglutide reduced body weight, BMI and
blood pressure in comparison to placebo. Adverse events, Hb1Ac levels and hypoglycemic episodes
were not different than placebo.

Keywords: liraglutide; body weight; obesity; hypoglycemia; meta-analysis

1. Introduction

Obesity is a major public health problem, affecting more than 603 million adults across
the globe [1]. It may also increase the risk of several diseases, including hypertension, dys-
lipidemia, type 2 diabetes (T2D), and coronary artery disease. Initial management of obese
patients includes a combination of dietary changes, exercise, and behavior modification.
Nevertheless, in some cases, this strategy is insufficient and pharmacological treatment is
required to achieve and maintain therapeutic goals in terms of weight loss.

Liraglutide is a glucagon-like peptide-1 (GLP-1) agonist and potential weight
loss drug [2]. It increases insulin concentrations after eating, prior to the elevation
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of blood glucose levels [3,4]. Liraglutide is a drug used in obese diabetic patients,
which justified the investigation of liraglutide as a treatment for non-diabetic obese
people. A study evaluated the efficacy at 12 weeks of low-dose liraglutide on the
weight of Taiwanese patients without T2D. Compared to baseline, 5.6% of patients
in the liraglutide 1.2 mg group reached weight reduction (p < 0.001), whereas in the
0.6 mg group 6.4% reached weight reduction (p < 0.001) [5]. However, there was no
difference in weight reduction between liraglutide doses (absolute difference 1.2 mg
vs. 0.6 mg −0.8%, 95%CI −0.12 to 0.11).

We conducted a systematic review and meta-analysis to evaluate the efficacy and
safety of liraglutide in non-diabetic obese adults.

2. Materials and Methods

We report the systematic review considering the guidelines of the PRISMA-2020
statement [6]. The protocol of this systematic review has been previously published in
PROSPERO (CRD42020172654).

2.1. Search of Studies

We searched in different search engines such as Web of Science, Pubmed, Embase,
Cochrane Central and Scopus, from inception to 7 October 2021. We performed Mesh
terms, Emtree terms and TIAB terms, and we designed different strategies for the selected
databases (Search strategy, Supplement). We did not limit our searches by language or year
of publication.

2.2. Eligibility Criteria

We included studies based on: (i) randomized controlled trials (RCTs), (ii) as-
sessed adults with obesity without diabetes type 1 or 2, (iii) evaluated liraglutide
compared with placebo or other drugs. Observational studies (case-control studies or
cohort), systematic reviews, case series/reports, abstract of conferences and editorials
were excluded.

2.3. Selection of Studies

One author (JJB) downloaded all registers, and these were added to Rayyan (https:
//rayyan.qcri.org/, accessed on 23 March 2022), and duplicate records were removed. Two
authors (JBM, MHR) independently reviewed the title and abstract regarding eligibility
criteria. Following this step, the full-texts were screened for further evaluation. Differences
in selections were addressed with a third author (AVH). Endnote 20 software (Philadelphia,
PA, USA) was used for saved registers.

2.4. Outcomes

Primary outcomes a were decrease in body mass index (BMI) and body weight loss.
Secondary outcomes were treatment-emergent adverse events (TEAEs), hypoglycemic
episodes, decrease of HbA1c, and blood pressure. The concepts and definitions of outcomes
described by the authors in each of the eligible studies were applied. TEAEs are defined as
undesirable or unexpected events, which are not present before medical treatment. It can
also be considered as an already present event that worsens in intensity or frequency after
the treatment provided [7]. TEAEs included gastro-intestinal disorders (nausea, abdominal
pain, vomiting, or diarrhea), nervous system disorders, infections and infestations, and
vascular disorders. Types of hypoglycemic events in non-diabetic child and adult were:
(a) reactive hypoglycemia (glycemia level <70 mg/dL at the time of symptoms and relief
after eating); and (b) fasting hypoglycemia (glycemia <50 mg/dL after an overnight fast,
between meals, or after physical activity) [8] Specific types of hypoglycemic events for any
hypoglycemia were extracted. Also, author-reported definitions were used.
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2.5. Data Extraction and Management

Two authors (JBM, MRH) independently extracted the data using a pre-developed
standard data extraction form. Disagreements were resolved by consensus, and a third
author (AVH) was consulted if needed. Data extracted per study were: name of author,
year, type of research, country, number of participants, mean age, initial and maximum
dosage of liraglutide, duration of treatment, and primary and secondary outcomes per trial
arm with baseline values of continuous outcomes.

2.6. Risk of Bias Assessment

The RoB 2.0 tool (Bristol, UK) of the Cochrane Collaboration was used for risk
of bias assessment [9]. The risk of bias judged the results as low risk, some concerns,
or high risk. RoB 2.0 assessment was performed independently by two authors (JBM
and MRH), and discrepancies resolved by discussion or with consultation with a third
author (AVH).

2.7. Statistical Analyses

For meta-analysis, we performed random effects models and followed the in-
verse variance method. The Paule-Mandel estimator was used for the assessment
of the between-study variance [10]. For continuous outcomes, effects of liraglutide
on outcomes were expressed as mean difference (MD) with 95% confidence intervals
(95% CIs). For dichotomous outcomes, relative risk (RR) with 95% CIs were assessed.
Baseline values of continuous outcomes were adjusted for per trial arm. Statistical
heterogeneity of effects among RCTs were evaluated using the I2 statistic, with values
corresponding to low (<30%), medium (30–60%), and high (>60%) levels of heterogene-
ity. Subgroup analyses by length of treatment (≤16 versus >16 weeks) and maximum
dosage (1.8 versus 3.0 mg/day) for all outcomes were performed. For sensitivity analy-
sis, we changed the model and method of meta-analysis. With regard to the model, we
applied fixed-effects, and regarding the methods, the Mantel-Haenzel method for sen-
sitivity analyses for the primary outcomes were performed. We used the metabin and
metacont functions of the meta library of R 3.5.1 (www.r-project.org, 23 March 2022).
For publication bias analysis, a funnel plot was used to assess asymmetry that may
indicate publication bias.

A summary of findings by GRADE methodology was used to rate the quality of
evidence (QoE) per outcome [11]. Risk of bias, indirectness, imprecision, inconsistency, and
publication bias were assessed, and QoE were rated as high, moderate, low, and very low.
QoE was described in the summary of findings (SoF) tables; GRADEpro GDT was used to
create SoF tables (GRADEpro).

3. Results

3.1. Selection of Studies

After the search, 2171 registers were found in all databases (Figure 1); 702 duplicate
registers were deleted. Of 1469 registers, 1447 were excluded by title and abstract. Thus,
22 full-text studies were assessed for eligibility and 10 studies were excluded. Finally,
12 RCTs were included for qualitative and quantitative analyses [4,12–22].
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Figure 1. PRISMA flow chart of the study selection process.

3.2. Characteristics of Included Studies

The main characteristics of the included RCTs are summarized in Table 1. A total of
8249 adults treated with liraglutide were evaluated. The mean age was 45.9 ± 5.5 years and
24% of patients were men. Liraglutide was started at 0.6 mg/day with a progressive increase
of 0.6 weekly up to a maximum of 1.8 mg/day [13,19,21] and 3.0 mg/day [4,12,14–18,20,22].
The mean duration of treatment was 35.1 ± 19.1 weeks. All studies included body weight
loss as primary outcome, and other studies added inflammatory markers [13], glucose
tolerance [19], proportion of individuals with T2D [4], and adverse events only [15]. At
baseline, the mean Hb1Ac was 5.6% ± 0.09% in the liraglutide arm and 5.6% ± 0.07% in
the control arm. Also, the mean BMI was 36.6 ± 2.6 kg/m2 in the liraglutide arm and
36.8 ± 2.9 in the control arm.
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3.3. Risk of Bias

Overall, seven RCTs were scored as high risk of bias [12–15,20–22]. One RCT showed
high risk in the randomization process [13]. Three RCTs showed high risk of devia-
tions from intended interventions [13,15,16], and five RCTs showed high risk of miss-
ing outcome data [12–14,20,22]. The other RCTs showed low or unclear risk of bias
(Supplementary Figure S1).

3.4. Effect on Primary Outcomes

In comparison to placebo, liraglutide significantly reduced body weight (MD −3.35 kg;
95% CI −4.65 to −2.05; p < 0.0001; I2 = 100%; Figure 2A), and reduced BMI (MD −1.45 kg/m2;
95% CI −1.98 to −0.91; p < 0.0001; I2 = 99.5%; Figure 2B).

Figure 2. Forest plot of primary outcomes. (A): body weight, (B): BMI.

3.5. Effect on Secondary Outcomes

Liraglutide did not significantly reduce TEAEs (RR 1.08; 95% CI 0.92 to 1.27; p = 0.25;
I2 = 90.2%; Figure 3a), and did not significantly increase hypoglycemic episodes (RR 2.01;
95% CI 0.37 to 11.02; p = 0.28; I2 = 54%; Figure 3b) in comparison to placebo. Liraglutide did
not reduce Hb1Ac in comparison to placebo (MD −0.76%; 95% CI −2.24 to 0.72; p = 0.31;
I2 = 99.7%; Figure 3c). Finally, liraglutide significantly reduced systolic blood pressure
(MD −3.07 mmHg; 95% CI −3.66 to −2.48; p = <0.0001; I2 = 71%; Figure 3d), and diastolic
blood pressure (MD −1.01 mmHg; 95% CI −1.55 to −0.47; p = 0.0003; I2 = 92.2%; Figure 3e).
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Figure 3. Forest plot of secondary outcomes. (a): TEAEs, (b): hypoglycemic episodes, (c): Hb1Ac,
(d): Systolic blood pressure, (e): Diastolic blood pressure.
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3.6. Subgroup Analyses

Subgroup analyses by length of treatment and maximum dosage were like the overall
analyses for all outcomes (Supplementary Figures S2–S15).

3.7. Sensitivity Analyses

Effects on primary outcomes were the same, except for the effects of liraglutide vs.
placebo on TEAEs, where liraglutide was associated with higher TEAEs compared to
placebo (RR 1.15; 95% CI 1.12 to 1.18; p < 0.01) (Supplementary Figures S16 and S17).

3.8. Quality of Evidence

QoE was low or very low for most of the primary and secondary outcomes
(Supplementary Table S1). In body weight, body mass index, TEAEs, hypoglycemic
episodes, Hb1Ac, systolic blood pressure, and diastolic blood pressure, the QoE was
very low due to high risk of bias; the heterogeneity among the studies and the impreci-
sion of the effect. In systolic blood pressure, the QoE was low with regard to moderate
heterogeneity among the studies.

3.9. Publication Bias

In the graphical test for publication bias, no significant asymmetry indicating high
publication bias was observed (Supplementary Figure S18).

4. Discussion

Main Findings

In our systematic review in non-diabetic obese adults, liraglutide reduced body weight,
BMI and blood pressure. However, it did not reduce TEAEs episodes or HbA1c, or the risk
of hypoglycemic episodes compared with placebo. We also found that liraglutide reduced
body weight, BMI, systolic blood pressure, and diastolic blood pressure in comparison to
placebo. Subgroup analyses by duration of treatment and maximum dosage were like the
main analyses. The risk of bias was high in 30% of the trials. The QoE was low or very low
for most of the outcomes.

Liraglutide is a GLP-1 receptor agonist [23]. GLP-1 is known to be a hormone secreted
in the intestine, which is activated after food ingestion by enteroendocrine L cells located
in the distal jejunum and ileum [24]. It has been found that GLP-1 receptor agonists reduce
cardiovascular events in people with T2D and are also a recommended treatment for weight
reduction in these patients [25].

GLP-1 receptors are associated with weight loss by attenuating the fall in the anorexi-
genic hormone leptin that conditions this decrease [3,26]. Based on this, it has been reported
that although GLP-1 can increase energy expenditure, its influence on weight is related to
decreased energy intake through factors involved with the appetite reward centers of the
brain and through local gastrointestinal effects [27].

Some studies have evaluated the efficacy of liraglutide for weight reduction in non-
diabetic obese people. For example, a retrospective cohort study [5] evaluated the efficacy
of low-dose liraglutide (0.6 vs. 1.2 mg/day) for 12 weeks on body weight among Taiwanese
non-diabetic patients. The authors found that among patients in the liraglutide 1.2 mg
group, 5.6% reached weight reduction compared to baseline (p < 0.001), whereas in the
0.6 mg group 6.4% reached weight reduction (p < 0.001); however, no significant differ-
ences in weight reduction were found between the two dose groups (absolute difference
1.2 mg vs. 0.6 mg −0.8%, 95%CI −0.12 to 0.11).

In a similar population, a prospective cohort study [28] evaluated the effect of li-
raglutide on body weight and microvascular function in non-diabetic overweight women
with coronary microvascular dysfunction. The authors evaluated the intervention with
Liraglutide 3 mg daily for 11 to 13 weeks of treatment, compared to a previous control
stage, without treatment, for four to six weeks, and the baseline features. The authors
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found that a period of 12 weeks of liraglutide 3 mg daily led to a significant weight loss vs.
baseline (absolute difference −6.03 kg; 95%CI: −5.22 to −6.84; p < 0.001).

A systematic review and Bayesian meta-analysis of RCTs by Khera et al. [29] as-
sessed the effects of different drugs on weight loss and adverse effects in 29,018 patients.
The authors included studies that assessed obese (BMI ≥ 30) or overweight (BMI ≥ 27)
adults (aged ≥18 years), with or without weight-associated comorbidities. The authors
found higher odds of >5% weight loss with the liraglutide group compared to placebo
(three studies, 3301 patients, OR 5.09, 95%CI 4.07 to 6.37). A network meta-analysis sug-
gested that phentermine-topiramate, 15 mg/92 mg once daily, was associated with the
highest probability of achieving at least 5% weight loss (surface under the cumulative
ranking [SUCRA], 0.95), followed by liraglutide (SUCRA, 0.83) and other drugs.

In the 2016 systematic review by Khera et al. [29], the authors did not evaluate the
adverse effects or hypoglycemic events. For the liraglutide versus placebo comparison,
Khera et al. included 4424 patients, whereas our study included 7236 patients. The Khera
et al. study included studies published before 2016. The primary and secondary outcomes
were also different, as we included TEAEs, hypoglycemic episodes, body weight, BMI,
systolic and diastolic blood pressure and Hb1Ac levels; and they included proportion of
patients achieving at least 5% weight loss from baseline, weight loss and adverse events.
We used the Cochrane Collaboration RoB 2.0 tool, whereas the study by Khera et al. did
not specify the tool used. The study by Khera et al. did not perform subgroup analyses
due to a small number of included studies. The inclusion and exclusion criteria between
Khera et al. and our study were similar and searched the same databases, but with a
different search strategy. In addition, the search and selection of abstracts and full texts
was performed independently by two people in the same way as our selection has been
carried out. Something in common with the Khera et al. study was the use of the GRADE
methodology to evaluate QoE per outcome.

Another systematic review published by Zhang et al. [30], assessed the efficacy
and safety of liraglutide in obese, non-diabetic individuals. The authors reported five
RCTs involving a total of 4754 patients, and found that mean weight loss (MD = −5.52,
95% CI = −5.93 to −5.11, p < 0.00001); loss of more than 5% of body weight (OR = 5.46,
95% CI = 3.57 to 8.34, p < 0.00001), and key secondary efficacy end points: SBP decreased
(the MD = −2.56, 95% CI = −3.28 to −1.84, p < 0.00001). These results are similar to those
of our study. However, it is noteworthy that the authors reported a low risk of bias in
the trials included in the meta-analysis, whereas our study reported a comprehensive
risk of bias analysis, where the majority of trials were found to be at high risk of bias.
Another observation is that the authors refer to having used two different models for the
meta-analysis, and did not consider the implicit heterogeneity among the studies, and there
is no exact distinction about the model applied. Our study, on the other hand, used the
random effects model for all meta-analyses under the assumption of heterogeneity and
differences between studies.

5. Limitations

We have identified several limitations. First, there were differences in the starting
and maintenance dose of liraglutide. However, we did not find differences in the weight
loss effects between lower or higher liraglutide doses. Second, there was a difference
in follow-up time among studies. Most of the included studies had a follow-up time
longer than 17 weeks, and our subgroup analyses showed no difference between shorter
and longer follow up times. Third, the risk of bias in most studies was high, which may
compromise the true effect of most of the outcomes described, as in other studies that
applied meta-analysis with included studies and high risk of bias [31–34]. Finally, in the
evaluation of the QoE using GRADE methodology, we found low and very low quality of
evidence for most outcomes, which should be considered when interpreting the significant
effects that may favor the treatment.
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6. Conclusions

In non-diabetic obese adults, liraglutide reduced body weight, BMI, and blood pres-
sure in comparison to placebo. TEAEs rates, Hb1Ac and hypoglycemic episodes were not
different than placebo. However, the effects in the outcomes may have been compromised
due to the true effect related to the high risk of bias in the most studies, and the low or very
low level of recommendation in GRADE.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11112998/s1. Figure S1: Risk of bias assessment of included
trials. Figure S2: Subgroup analyses by length of treatment of the effects of Liraglutide vs placebo
on TEAEs. Figure S3: Subgroup analyses by doses of the effects of Liraglutide vs placebo on hypo-
glycemia TEAES. Figure S4: Subgroup analyses by length of treatment of the effects of Liraglutide vs
placebo on hypoglycemia episodes. Figure S5: Subgroup analyses by doses of the effects of Liraglu-
tide vs placebo on hypoglycemia episodes. Figure S6: Subgroup analyses by length of treatment of
the effects of Liraglutide vs placebo on body weight loss. Figure S7: Subgroup analyses by doses of
the effects of Liraglutide vs placebo on body weight loss. Figure S8: Subgroup analyses by length of
treatment of the effects of Liraglutide vs placebo on BMI. Figure S9: Subgroup analyses by doses of
the effects of Liraglutide vs placebo on BMI. Figure S10: Subgroup analyses by length of treatment of
the effects of Liraglutide vs placebo on SBP. Figure S11: Subgroup analyses by doses of the effects of
Liraglutide vs placebo on SBP. Figure S12: Subgroup analyses by length of treatment of the effects of
Liraglutide vs placebo on DBP. Figure S13: Subgroup analyses by doses of the effects of Liraglutide
vs placebo on DBP. Figure S14: Subgroup analyses by length of treatment of the effects of Liraglutide
vs placebo on Hb1Ac. Figure S15: Subgroup analyses by doses of the effects of Liraglutide vs placebo
on Hb1Ac. Figure S16: Sensitivity analyses of the effects of Liraglutide vs placebo on body weight
loss. Figure S17: Sensitivity analyses of the effects of Liraglutide vs placebo on BMI. Figure S18:
Publication bias. Table S1: GRADE summary of findings table.
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Abstract: This study aimed to investigate the association of add-on dipeptidyl peptidase-4 inhibitor
(DPP4i) therapy and the progression of diabetic retinopathy (DR). In this retrospective population-
based cohort study, we examined Taiwanese patients with type 2 diabetes, preexisting DR, and aged
≥40 years from 2009 to 2013. Prescription of DPP4i was defined as a medication possession ratio
of ≥80% during the first 6 months. The outcomes included vitreous hemorrhage (VH), tractional
retinal detachment, macular edema, and interventions including retinal laser therapy, intravitreal
injection (IVI), and vitrectomy. Of 1,767,640 patients, 62,824 were eligible for analysis. After matching,
the DPP4i and non-DPP4i groups each contained 20,444 patients. The risks of VH (p = 0.013) and
macular edema (p = 0.035) were higher in the DPP4i group. The DPP4i group also had higher risks of
receiving surgical interventions (retinal laser therapy (p < 0.001), IVI (p = 0.049), vitrectomy (p < 0.001),
and any surgical intervention (p < 0.001)). More patients in the DPP4i group received retinal laser
therapy (p < 0.001) and IVI (p = 0.001) than in the non-DPP4i group. No between-group differences in
cardiovascular outcomes were noted. In the real-world database study, add-on DPP4i therapy may be
associated with the progression of DR in patients with type 2 diabetes. No additional cardiovascular
risks were found. The early progression of DR in rapid glycemic control was inconclusive in our
study. The possible effect of add-on DPP4i therapy in the progression of DR in patients with type
2 diabetes requires further research.

Keywords: dipeptidyl peptidase-4 inhibitor; diabetes mellitus; diabetic retinopathy; progression

1. Introduction

Diabetic retinopathy (DR), a common microvascular complication in patients with
diabetes, is also a major cause of blindness in working-age adults [1]. The global number
of patients with diabetes is estimated to reach 600 million by 2040, one-third of whom
are expected to have DR [2]. Severe DR can lead to complications such as vitreous hem-
orrhage (VH), tractional retinal detachment (RD), and macular edema [3,4]. DR and its
complications may require surgical intervention such as retinal laser therapy, intravitreal
injection (IVI) of anti-vascular endothelial growth factor, and in some cases vitrectomy [3,4].
This imposes a substantial economic burden on patients with such conditions and their
families [5].

Numerous studies have been conducted on preventing or slowing the progression of
diabetic complications. A randomized controlled trial reported that appropriate glucose-
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lowering reduced the risk of cardiovascular diseases, microvascular complications, and
all-cause mortality in patients with diabetes [6]. Another randomized controlled trial
indicated that intensive glucose control effectively slowed DR progression in patients
with type 2 diabetes [7]. Treatment for systemic conditions, such as hypertension and
dyslipidemia, has been demonstrated to be associated with a low risk of DR development
or progression [7,8].

Dipeptidyl peptidase-4 (DPP4) inhibitors (DPP4i) are a class of oral hypoglycemics, of
which the first agent sitagliptin was approved in 2006 by the US Food and Drug Adminis-
tration [9]. DPP4i suppress the function of DPP4 and indirectly prolong the serum level
of glucagon-like peptide-1 (GLP-1), increasing insulin secretion and reducing glucagon
secretion from the pancreas [10]. Although a meta-analysis reported that DPP4i exerted a
better hypoglycemic effect than α-glucosidase inhibitors [11], other studies have observed
associations between its use and an increased risk of heart failure [12,13]. Moreover, another
meta-analysis indicated no beneficial association between DPP4i use and all-cause mor-
tality [14]. Regarding DPP4i use in DR, sitagliptin prevented the effect of diabetes on the
blood-retinal barrier in male Zucker diabetic fatty rats. Specifically, it improved endothelial
function and prevented inflammation, nitrative stress, and apoptosis in animals [15]. How-
ever, the association between DPP4i and DR has not been fully characterized [16,17]. The
first clinical study of the possible protective effects of DPP4i on DR progression, published
in 2016, included 28 patients with type 2 diabetes [18]. A 2018 population-based study
by Kim et al. that used data from the South Korean National Health Insurance Service
reported a possible association of DPP4i use with an increased risk of DR events early in
the treatment phase [19]. Using the same database, Chung et al. found a neutral associ-
ation between DPP4i use and sulfonylurea added to metformin therapy and the risk of
DR progression. The aggravation of DR by DPP4i remains a concern and requires more
clinical investigation [20]. In this study, we investigated the association between add-on
DPP4i therapy and DR progression in patients with type 2 diabetes and preexisting DR in
a real-world setting.

2. Materials and Methods

2.1. Data Source

This retrospective population-based cohort study was conducted using the Taiwan
National Health Insurance (NHI) Research Database (NHIRD) (Center for Biomedical
Resources of National Health Research Institutes, Miaoli, Taiwan). More than 99.8% of
the population in Taiwan (approximately 23.7 million people as of 2020) is covered by the
NHI program, a single-payer system established in March 1995. The NHIRD contains
de-identified information including medical claims data. Information on the NHI program
and its databases has been described in detail in previous publications [21,22]. The present
study was approved by the Chang Gung Memorial Hospital Ethics Institutional Review
Board (IRB No. 201800199B1) and adheres to the principles of the Declaration of Helsinki.

2.2. Inclusion and Exclusion Criteria

From 2009 to 2013, we identified patients with diabetes in the NHIRD by using the
diagnostic codes of the International Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM). These codes were validated in a study on the accuracy of diabetes
diagnosis in NHI claims data. Specifically, at least four outpatient visits for diabetes
corresponded to a 95.7% accuracy [23]. Another study observed that a prescription of
any oral hypoglycemic agent corresponded to an accuracy of 99% [24]. Therefore, in
the present study, we included patients with at least five outpatient diagnoses of type
2 diabetes who were also taking any oral hypoglycemics. Patients with type 2 diabetes and
preexisting DR were included in the analysis. We excluded patients who were aged under
40 years as well as those with missing demographic data, type 1 diabetes, retinal disorders
(including retinal vascular occlusion, separation of retinal layers, retina degeneration, and
chorioretinal inflammation), a history of receiving vitreoretinal interventions (including

166



J. Clin. Med. 2021, 10, 2871

IVI, retinal laser therapy, scleral buckling, and vitrectomy), or were followed up for less
than 6 months (Figure 1).

Figure 1. Flowchart of the inclusion and exclusion criteria of the patients. DR, diabetes retinopathy;
DPP4i, dipeptidyl peptidase 4 inhibitors.

2.3. Group Definition

The index date of the DPP4i group was defined as the date of the first DPP4i pre-
scription between 2009 and 2013. To prevent the immortal time bias, the index date of the
non-DPP4i group was assigned as the index date of the DPP4i group through an approach
known as prescription time-distribution matching [25]. To ascertain the compliance of
DPP4i use, patients in the DPP4i group with a medication possession ratio (MPR) of less
than 80% during the first 6 months of follow-up [26], specifically 144 days (180 days × 0.8),
were excluded from further analysis (Figure 1).

2.4. Outcomes

In this study, the primary ocular outcome was the composite DR outcome, which con-
sisted of any one of the following: VH, tractional RD, and macular edema. The secondary
ocular outcome was the composite outcome of any surgical intervention, namely retinal
laser therapy, IVI, and vitrectomy. The cardiovascular outcomes, including myocardial
infarction, hospitalization for heart failure, ischemic stroke, and hemorrhagic stroke, were
defined as safety outcomes. The primary DR outcome and its components were defined as
diagnosis after at least three outpatient diagnoses or one inpatient diagnosis. The surgical
interventions and other ocular outcomes were examined using the Taiwan NHI reimburse-
ment codes from the claims data for outpatient and inpatient visits. The occurrence of
safety outcomes was determined using the principal discharge diagnosis. Mortality and
cardiovascular events selected for analysis have been validated previously [27,28].

2.5. Covariates

Covariates were sex, age, proxy variables for compliance (i.e., the number of outpatient
visits for diabetes management), proxy variables for DR severity (previous proliferative
DR and previous DR duration), comorbidities as well as scores on the Charlson Comor-
bidity Index, indicators for diabetic severity (diabetes duration, diabetic neuropathy, and
diabetic foot ulcer), and concomitant medications. Comorbidities, namely dyslipidemia,
hypertension, ischemic heart disease, chronic kidney disease, peripheral arterial disease,
ischemic stroke, heart failure, and atrial fibrillation, were confirmed after at least three
outpatient diagnoses or one inpatient diagnosis in the previous year. Medications during
the first 6 months of follow-up were classified into three categories: antidiabetics, antihy-
pertensives, and other medications. Details of the ICD-9-CM diagnostic codes used in this
study are provided in Supplementary Materials (Table S1). The Charlson Comorbidity
Index scores were calculated as described previously [29].
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2.6. Statistics

To reduce confounding effects, the analysis of differences in outcomes between the
DPP4i and non-DPP4i groups was performed after propensity score matching (PSM). The
propensity score was the predicted probability given the value of the covariates, which
was calculated using a multivariable logistic regression model in which the study groups
(1: DPP4i and 0: non-DPP4i) were regressed on the selected covariates. The matching
was processed using a greedy nearest-neighbor algorithm with a caliper of 0.2 times the
standard deviation of the logit of the propensity score. The matching order was random,
and replacement was not allowed. Each patient in the DPP4i group was matched with a
non-DPP4i control. The matching quality was assessed after PSM by using the absolute
value of the standardized difference between the groups, where a value of less than 0.1 was
considered negligible.

The Fine–Gray subdistribution hazard model, which considers all-cause mortality a
competing risk, was used to compare the occurrence of time-to-event outcomes between
the groups. The average number of surgical interventions per decade was also analyzed
and compared using the Poisson model, in which the natural logarithm of the follow-up
duration was an offset variable. The study groups (DPP4i vs. non-DPP4i) were the only
explanatory variable in the regression analysis. The within-pair clustering of outcomes
after PSM was accounted for by using robust standard errors through the generalized
estimating equation approach [30]. Further subgroup analyses were conducted to evaluate
the consistency of the observed treatment effect on the specified outcomes across different
levels of subgroup variables. The outcomes of interest comprised the primary and sec-
ondary endpoints, namely the composite DR outcome and the composite outcome of any
surgical intervention, respectively. The selected subgroups were sex, age (dichotomized at
65 years), previous proliferative DR, hypertension, dyslipidemia, ischemic heart disease,
ischemic stroke, chronic kidney disease, peripheral arterial disease, diabetes duration
(dichotomized at 10 years), diabetic neuropathy, diabetic foot ulcer, and the use of concomi-
tant antidiabetics (e.g., metformin, sulfonylurea, thiazolidinediones, alpha-glucosidase
inhibitors, meglitinides, and insulin). A two-sided p-value of <0.05 was considered to be
significant. All analyses were performed using SAS software, Version 9.4 of the SAS System
(SAS Institute Inc., Cary, NC, USA), including the % cif macro for generating cumulative
incidence functions under the Fine–Gray sub-distribution hazard method.

3. Results

3.1. Participants

Between 2009 and 2013, a total of 1,767,640 patients with diabetes were identified.
After the exclusion of patients aged under 40 years as well as those with type 1 diabetes,
missing demographic data, and no DR diagnosis, 213,765 patients remained. We further
excluded patients who were followed up for less than 6 months or developed any of the
primary or secondary ocular outcomes within 6 months after the index date, as well as
those with retinal disorders, a history of receiving vitreoretinal interventions or who had
an MPR of less than 80%. After these procedures, 62,824 patients remained. After 1:1 PSM,
the non-DPP4i and DPP4i groups comprised 20,444 patients each (Figure 1).

3.2. Demographic Characteristics

Table 1 presents the demographic characteristics of the study groups before and after
matching. Before matching, the patients in the DPP4i group were younger; had more
outpatient visits for diabetes management in the previous year; were more likely to have
undergone a dilated fundus examination in the previous year; had a higher prevalence
of dyslipidemia; had a longer diabetes duration; had more prescriptions of sulfonylurea,
alpha-glucosidase inhibitors, meglitinides, beta-blockers, angiotensin-converting enzyme
inhibitors/angiotensin II receptor blockers, antiplatelets, statins, and fenofibrates, and
fewer prescriptions of insulin. After matching, the two groups were well balanced in
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terms of sex, age, comorbidities, indicators for diabetic severity, underlying ocular diseases,
medications, and follow-up duration.

Table 1. Characteristics of patients with type 2 diabetes and diabetic retinopathy before and after matching. Balance
achieved between the DPP4i and non-DPP4i groups after matching.

before Matching after Matching

Variable
DDP4i

(n = 24,623)
Non-DDP4i
(n = 38,201)

STD
DDP4i

(n = 20,444)
Non-DDP4i
(n = 20,444)

STD

Sex (male) 10,745 (43.6) 17,084 (44.7) −0.02 8936 (43.7) 9013 (44.1) −0.01
Age (years) 66.5 ± 10.5 68.0 ± 11.0 −0.14 66.7 ± 10.5 66.7 ± 10.8 <0.01

Age ≥ 65 years 13,606 (55.3) 22,849 (59.8) −0.09 11,416 (55.8) 11,448 (56.0) <0.01
No. of outpatient visit in the

prior year 16.8 ± 8.9 14.1 ± 9.0 0.31 16.1 ± 8.3 16.1 ± 9.7 <0.01

Previous proliferative DR 2195 (8.9) 3605 (9.4) −0.02 1862 (9.1) 1879 (9.2) <0.01
Duration of DR (years) 6.1 ± 3.5 6.0 ± 3.5 0.03 6.0 ± 3.4 6.0 ± 3.5 <0.01

Comorbidity
Dyslipidemia 20,277 (82.3) 29,405 (77.0) 0.13 16,560 (81.0) 16,673 (81.6) −0.01
Hypertension 17,202 (69.9) 25,236 (66.1) 0.08 14,038 (68.7) 14,140 (69.2) −0.01

Ischemic heart disease 11,746 (47.7) 17,433 (45.6) 0.04 9626 (47.1) 9608 (47.0) <0.01
Chronic kidney disease 6126 (24.9) 8035 (21.0) 0.09 4724 (23.1) 4745 (23.2) <0.01

Peripheral arterial disease 3350 (13.6) 5480 (14.3) −0.02 2804 (13.7) 2739 (13.4) 0.01
Ischemic stroke 3015 (12.2) 4989 (13.1) −0.02 2526 (12.4) 2512 (12.3) <0.01

Heart failure 1470 (6.0) 2464 (6.5) −0.02 1186 (5.8) 1171 (5.7) <0.01
Atrial fibrillation 882 (3.6) 1459 (3.8) −0.01 716 (3.5) 699 (3.4) <0.01

Charlson Comorbidity
Index score 2.5 ± 1.7 2.3 ± 1.8 0.07 2.4 ± 1.7 2.4 ± 1.8 <0.01

Indicator for diabetic severity
Diabetes duration, years 11.3 ± 2.7 11.0 ± 3.0 0.11 11.2 ± 2.8 11.2 ± 2.9 −0.01

Diabetic neuropathy 9887 (40.2) 14,112 (36.9) 0.07 7980 (39.0) 8065 (39.4) −0.01
Diabetic foot ulcer 3366 (13.7) 5152 (13.5) 0.01 2762 (13.5) 2751 (13.5) <0.01

Antidiabetics
Sulfonylurea 14,543 (59.1) 19,954 (52.2) 0.14 11,921 (58.3) 12,065 (59.0) −0.01
Metformin 13,162 (53.5) 22,197 (58.1) −0.09 11,396 (55.7) 11,537 (56.4) −0.01

Alpha-glucosidase inhibitors 4636 (18.8) 4,779 (12.5) 0.17 3514 (17.2) 3490 (17.1) <0.01
Thiazolidinediones 3076 (12.5) 210 (13.6) −0.03 2683 (13.1) 2812 (13.8) −0.02

Meglitinides 2574 (10.5) 2918 (7.6) 0.10 1996 (9.8) 2024 (9.9) <0.01
Insulin 3873 (15.7) 8299 (21.7) −0.15 3488 (17.1) 3633 (17.8) −0.02

Antihypertensives
Angiotensin-converting

enzyme
inhibitors/angiotensin II

receptor blockers

15,630 (63.5) 20,002 (52.4) 0.23 12,445 (60.9) 12,577 (61.5) −0.01

Calcium channel blockers 8509 (34.6) 14,036 (36.7) −0.05 7174 (35.1) 7213 (35.3) <0.01
Beta blockers 7654 (31.1) 9780 (25.6) 0.12 6048 (29.6) 6023 (29.5) <0.01

Alpha blockers 1403 (5.7) 2154 (5.6) <0.01 1163 (5.7) 1176 (5.8) <0.01
Thiazide 1075 (4.4) 1545 (4.0) 0.02 886 (4.3) 866 (4.2) <0.01

Other medications
Antiplatelets 8767 (35.6) 11,115 (29.1) 0.14 6970 (34.1) 7074 (34.6) −0.01

Anticoagulants 380 (1.5) 473 (1.2) 0.03 304 (1.5) 284 (1.4) 0.01
Statins 10,788 (43.8) 12,319 (32.2) 0.24 8381 (41.0) 8346 (40.8) <0.01

Fenofibrates 2552 (10.4) 2894 (7.6) 0.10 1975 (9.7) 1972 (9.6) <0.01
Follow-up (years) 2.5 ± 1.3 2.4 ± 1.1 0.06 2.6 ± 1.2 2.5 ± 1.2 0.08

DDP4i, dipeptidyl peptidase 4 inhibitor; STD, standardized difference; DR, diabetic retinopathy. Data are presented as frequency
(percentage) or mean ± standard deviation.

3.3. Primary Ocular Outcomes

Table 2 presents the primary ocular outcomes of the patients, including any surgical
intervention taken. Over a mean follow-up duration of 2.5 years, 366 and 294 patients (1.8%
and 1.4%, respectively) in the DPP4i and non-DPP4i groups developed the primary ocular
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outcome, namely the composite DR outcome. The risk of developing the composite DR
outcome was significantly higher in the DPP4i group (sub-distribution hazard ratio [SHR]
1.23, 95% confidence interval [CI] 1.06–1.44; Figure 2A). Among the individual components
of the composite DR outcome, the risks of VH (SHR 1.24, 95% CI 1.05–1.48) and macular
edema (SHR 1.48, 95% CI 1.03–2.13) were significantly higher in the DPP4i group.

Table 2. Primary ocular outcomes, including any surgical intervention taken, of patients with type 2 diabetes and diabetic
retinopathy demonstrating significantly higher risks of composite diabetic retinopathy and surgical interventions in the
DPP4i group.

DDP4i Non-DDP4i DPP4i vs. Non-DPP4i

Outcome (n = 20,444) (n = 20,444) SHR (95% CI) p-Value

Primary ocular outcome
(composite DR outcome) 366 (1.8) 294 (1.4) 1.23 (1.06–1.44) 0.008

Individual component of
composite DR outcome

VH 292 (1.4) 232 (1.1) 1.24 (1.05–1.48) 0.013
Tractional RD 50 (0.24) 35 (0.17) 1.41 (0.91–2.17) 0.122

Macular edema 72 (0.35) 48 (0.23) 1.48 (1.03–2.13) 0.035
Surgical intervention
Retinal laser therapy 824 (4.0) 582 (2.8) 1.75 (1.33–2.30) <0.001

IVI 140 (0.68) 79 (0.39) 1.32 (1.001–1.74) 0.049
Vitrectomy 118 (0.58) 88 (0.43) 1.32 (1.24–1.40) <0.001

Composite outcome of
any surgical intervention 891 (4.4) 636 (3.1) 1.40 (1.26–1.55) <0.001

Number of interventions per 10 years RR (95% CI) * p-value
Retinal laser therapy 0.6 ± 3.4 0.4 ± 2.9 1.39 (1.23–1.58) <0.001

IVI 0.06 ± 0.94 0.03 ± 0.67 1.84 (1.28–2.63) 0.001
Vitrectomy 0.03 ± 0.42 0.02 ± 0.38 1.29 (0.94–1.79) 0.117

DDP4i, dipeptidyl peptidase 4 inhibitor; SHR, sub-distribution hazard ratio; CI, confidence interval; RD, retinal detachment; DR, diabetic
retinopathy; RR, rate ratio; VH, vitreous hemorrhage; IVI, intravitreal injection. * Estimated using a Poisson model in which the logarithm
of follow-up duration was treated as an offset variable.

Figure 2. Cumulative incidence function of (A) composite diabetic retinopathy outcome and
(B) composite outcome of any surgical intervention between the DPP4i and non-DPP4i group after
propensity score matching. DPP4i, dipeptidyl peptidase 4 inhibitor; CI, confidence interval.
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The DPP4i group also had a higher risk of receiving surgical intervention for severe
DR or its complications (retinal laser therapy: SHR 1.75, 95% CI 1.33–2.30; IVI: SHR 1.32,
95% CI 1.001–1.74; vitrectomy: SHR 1.32, 95% CI 1.24–1.40; any surgical intervention: SHR
1.40, 95% CI 1.26–1.55; Figure 2B). As for the number of interventions, more patients in the
DPP4i group received retinal laser therapy (rate ratio (RR) 1.39, 95% CI 1.23–1.58) and IVI
(RR 1.84, 95% CI 1.28–2.63) than in the non-DPP4i group.

3.4. Safety Outcomes

The results of the safety outcomes are shown in Table 3. No between-group differences
were observed in any of the safety outcomes, namely myocardial infarction, hospitalization
for heart failure, ischemic stroke, hemorrhagic stroke, and the composite outcome of major
adverse cardiovascular events.

Table 3. Safety outcomes of patients with type 2 diabetes and diabetic retinopathy showing no significant risk in both
groups.

DDP4i Non-DDP4i DPP4i vs. Non-DPP4i

Outcome (n = 20,444) (n = 20,444) SHR (95% CI) p-Value

Myocardial infarction 252 (1.2) 268 (1.3) 0.93 (0.78–1.10) 0.396
Hospitalization for heart failure 495 (2.4) 441 (2.2) 1.11 (0.98–1.26) 0.115

Ischemic stroke 872 (4.3) 839 (4.1) 1.02 (0.93–1.13) 0.621
Hemorrhagic stroke 131 (0.64) 151 (0.74) 0.85 (0.68–1.08) 0.183

Major adverse cardiovascular events * 1600 (7.8) 1529 (7.5) 1.05 (0.98–1.12) 0.198

DDP4i, dipeptidyl peptidase 4 inhibitor; SHR, sub-distribution hazard ratio; CI, confidence interval. * Any one of myocardial infarction,
heart failure, or stroke.

3.5. Subgroup Analysis

We further conducted subgroup analysis on the primary composite DR outcome and
the composite outcome of any surgical interventions. The results showed that the observed
hazardous effect of DPP4i on the risk of primary composite DR outcome was particularly
obvious in the following population: females, younger patients, patients with relatively
shorter diabetes duration, and those without taking insulin (All p-values for interaction
<0.05; Figure 3A). Similarly, the observed increased risk of the composite outcome of any
surgical interventions due to DPP4i was more apparent in patients with relatively shorter
diabetes duration, and those who took sulfonylurea, and those without insulin therapy
(All p-values for interaction <0.05; Figure 3B).

Figure 3. Cont.
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Figure 3. Subgroup analysis of (A) composite diabetic retinopathy outcomes and (B) compos-
ite outcome of any surgical interventions of the diabetic patients with DR between the DPP4i
users and non-DPP4i controls in the propensity score-matched cohort. The red color indicates a
statistical significance.

4. Discussion

The use of DPP4i in glucose-lowering for diabetes has increased considerably over
the past decade after being introduced in 2006 [31]. To reduce mortality and morbidity,
measuring drugs’ protective effects and related diabetes complications are essential. As
mentioned, DR, a major microvascular complication in diabetes, can cause severe visual
impairment. Thus, in this population-based study, we evaluated the association between
the add-on DPP4i therapy and the progression of preexisting DR in patients with type
2 diabetes aged ≥ 40 years. During the 2.5-year follow-up, the add-on DPP4i therapy
was associated with increased risks of composite DR outcome and needs of surgical
interventions. However, it did not increase the risk of cardiovascular events.

The association between DPP4i and DR remains a matter of contention in the literature.
A study including 82 patients with type 2 diabetes reported that DPP4i use had protective
effects on DR progression [18]. A study using a cohort representative of individuals
in the US population aged ≥ 65 years observed that DPP4i use had a neutral effect on
DR [32]. Some other studies have found that DPP4i cause adverse retinal outcomes. In the
Trial Evaluating Cardiovascular Outcomes With Sitagliptin (TECOS), DR occurred more
frequently in patients under add-on sitagliptin therapy than in those who were not (2.8% vs.
2.2%) [33]. Another study, using a sample representative of the South Korean population,
also indicated an increased risk of DR in early DPP4i treatment (<12 months) [19]. These
findings indicate that the pharmacodynamic or effects of DPP4i may vary with population
or patient characteristics.

The non-DPP4i and DPP4i groups in the present study comprised 20,444 patients (after
matching) with type 2 diabetes (mean duration of 11 years since onset) and preexisting DR,
respectively. VH and macular edema occurred significantly more frequently in the DPP4i
group than in the non-DPP4i group. Furthermore, patients in the DPP4i group under
add-on DPP4i therapy for diabetes control were more likely to receive surgical intervention
for advanced DR. In short, add-on DPP4i therapy increased the risk of DR progression.
However, no significant between-group differences in safety outcomes were noted. In
addition, DPP4i was not associated with an increased risk of cardiovascular events.

Although the exact mechanism remains uncertain, biochemical changes in retinal cells
after DPP4i administration in experimental studies have been inconsistent. Numerous
laboratory studies have reported the protective effects of DPP4i on retinal health. For ex-
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ample, Gonçalves et al. found that sitagliptin had an antioxidative effect on rat retinas [34].
In another of their studies, sitagliptin ameliorated bovine retinal endothelial dysfunction
caused by inflammation [15]. Another study noted that linagliptin had anti-angiogenic
effects on mice with oxygen-induced retinopathy [35]. However, Lee et al. indicated that
DPP4i caused disruptions in endothelial cell-to-cell junctions by accumulating stromal
cell-derived factor 1α and phosphorylating vascular endothelial cadherin, as well as further
increasing retinal vascular permeability [36]. In a 2020 experimental study, the results
revealed that prolonged DPP4 inhibition destabilized the blood-retina barrier, potentially
inducing retinal edema [37]. Early deterioration of DR was also reported in a GLP-1 ana-
log, semaglutide, although the pharmacodynamic may be different with the DPP4i [38].
Retinal changes under DPP4i therapy may depend on the duration of DPP4i treatment
and the severity of diabetes and its complications. Long-term administration of DPP4i
in patients with preexisting DR might induce the development of excess vasculature as
well as vascular permeability, potentially contributing to exudate production and further
exacerbating DR. Thus, more awareness of DR progression may be necessary for patients
under long-term DPP4i treatment.

Cardiovascular complications of DPP4i remain the topic of an ongoing debate. Some
studies have reported a decreased risk of cardiovascular events after DPP4i therapy [39,40].
By contrast, other studies have indicated that DPP4i use increased the risk of cardiovascular
disorders [17,41]. In our study, the safety outcomes (including myocardial infarction, heart
failure, ischemic stroke, hemorrhagic stroke, and composite cardiovascular outcomes) did
not differ significantly between the groups. This is consistent with the assessment from the
TECOS [33], the Examination of Cardiovascular Outcomes with Alogliptin versus Standard
of Care, and the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with
Diabetes Mellitus (SAVOR)—Thrombolysis in Myocardial Infarction (TIMI) [12]. Thus,
our additional finding also supported a neutral association between DPP4i use and the
occurrence of major adverse cardiovascular events.

A limited number of large-scale clinical studies have evaluated the association of
DPP4i and the progression of retinopathy in patients with diabetes. The strength of the
present study is that, to the best of our knowledge, it is the first observational investi-
gation of the association of an add-on DPP4i in DR progression in a population-based
cohort. By systemically assessing the possible confounding factors and making adjust-
ments through PSM, we minimized detection bias and balanced the clinical characteristics
between the groups. The approximately 2.5-year follow-up also means that the present
findings demonstrate the long-term impacts—as opposed to the short-term effects—of
DPP4i use. The potential harm that may accompany DPP4i use indicated in the present
study raises substantial concerns regarding its safe use as an antidiabetic.

This study has some limitations. First, because only patients older than 40 years
were included, the present findings cannot be extrapolated to other age groups. Moreover,
because the patients were all Taiwanese, it remains unclear whether our findings are
generalizable to other populations. Second, we could not completely prevent confounding
effects. Nevertheless, we performed matching by systematically considering various
variables, minimizing any imbalance between the groups. Third, we could not obtain
information on the patients’ diabetes control, as well as the hypoglycemic events, which
are important factors of diabetes management. Nevertheless, we have matched the patients
in the two groups based on their hypoglycemic agent use. Fourth, data on laboratory
tests, such as the serum glucose level or hemoglobin A1c, are not available in the NHIRD.
Rapid reduction of hemoglobin A1c may affect early worsening of DR [8]. However, this
phenomenon should be counterbalanced in a long-term observation in the patients with
better glucose control, which has been reported in the Semaglutide Unabated Sustainability
in Treatment of Type 2 Diabetes (SUSTAIN) study [38]. In our study, the follow-up period
of 2.5 years is comparable with the previous study, and our case number (n = 20,444 in both
study and control groups) is higher than the SUSTAIN study (n = 8105 across the SUSTAIN
1 to 6 studies) [38]. Whether the DR progression in the add-on DPP4i use is related to
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rapid hypoglycemic response needs further study. Fifth, the between-patient variation in
diabetes severity (with some patients in severe condition) means that the alleviation of
systemic disorders with medications remains challenging. The blood pressure change in
our study was also not available. Nevertheless, we have matched the groups according to
their disease duration, complications, medications, and underlying conditions. Therefore,
the clinical characteristics of patients in the two groups were comparable at least in theory.
Last, the database did not contain the results of ocular exams including optical coherence
tomography, which is essential to differentiate the involvement of diabetic macular edema.
The association of DPP4i and the involvement of diabetic macular edema may need further
investigations. A prospective randomized trial may be required for understanding the
possible effect of add-on DPP4i therapy in the progression of DR in patients with type
2 diabetes.

5. Conclusions

In conclusion, add-on DPP4i therapy may be associated with the progression of
preexisting DR in patients with type 2 diabetes aged ≥40 years, but the cause and effect need
further research DPP4i therapy did not increase the risk of cardiovascular events. Therefore,
when choosing hypoglycemic treatments for patients with diabetes and preexisting DR,
the possible promoting effect of DPP4i on DR progression should be considered. A close
retinal evaluation may be necessary for long-term DPP4i administration.
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Abstract: Alpha-glucosidase inhibitor (αGIs)-induced pneumatosis intestinalis (PI) has been narrated
in case reports but never systematically investigated. This study aimed to investigate the concurrency
of PI and αGIs. A literature search was performed in PubMed, Google Scholar, WorldCat, and
the Directory of Open-Access Journals (DOAJ) by using the keywords “pneumatosis intestinalis”,
“alpha-glucosidase inhibitors”, and “diabetes”. In total, 29 cases of αGIs-induced PI in 28 articles
were included. There were 11 men, 17 women, and one undefined sex, with a median age of 67. The
most used αGI was voglibose (44.8%), followed by acarbose (41.4%) and miglitol (6.8%). Nine (31%)
patients reported concomitant use of prednisone/prednisolone with or without immunosuppressants.
The main symptoms were abdominal pain (54.5%) and distention (50%). The ascending colon (55.2%)
and the ileum (34.5%) were the most affected. Nineteen (65.5%) patients had comorbidities. Patients
with comorbidities had higher rates of air in body cavities, the portal vein, extraintestinal tissues,
and the wall of the small intestine. Only one patient was found to have non-occlusive mesenteric
ischemia. Twenty-five patients were treated with conservative therapy alone, and two patients
received surgical intervention. All patients recovered. In conclusion, comorbidities, glucocorticoids,
and immunosuppressants aggravate αGIs-induced PI. Conservative therapy is recommended when
treating αGIs-induced PI.

Keywords: pneumatosis intestinalis; diabetes; alpha-glucosidase inhibitors; acarbose; voglibose;
miglitol; comorbidities; concomitant drugs; prednisone; immunosuppressants

1. Introduction

Pneumatosis intestinalis (PI) is a condition in which gas is present within the walls
of the intestines [1]. It is characterized by gas and free air in the mucosa, submucosa, and
subserosa, and it can present in linear and/or cystic forms [2]. It is also called pneumatosis
cystoides intestinalis. The incidence of PI is 2/6553 (0.03%) in autopsies [3]. There are two
subtypes of PI: primary/idiopathic and secondary; secondary PI consists of up to 85% of
all PI cases in adults [1,2].

PI is diagnosed via imaging techniques that include X-ray, computed tomography
(CT), and endoscopy [4]. CT is the most sensitive medium for diagnosing PI.

PI can cause a wide range of symptoms with varying levels of severity. Some patients
are asymptomatic, while others have life-threatening symptoms [5]. When patients with
PI are asymptomatic, they may go undiagnosed [6]. On the other hand, the rupture of the
subserosal cysts of PI could result in pneumoperitoneum without clinical peritonitis, and
portal venous gas is often associated with pathological lesions [3]. Some PI cases may be
secondary to transmural ischemia or necrosis of the gastrointestinal wall [7]. The mortality
rates of PI increase in patients with bowel obstruction, toxic megacolon, cecal ileus, bone
marrow transplants, and collagen vascular diseases [8].

Given that PI is a rare finding, its etiology is not well understood. However, PI has been
reported in association with different disorders, including inflammatory bowel diseases,
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cytomegalovirus (CMV) colitis, acquired immunodeficiency syndrome (AIDS), emphysema,
chronic obstructive pulmonary disease (COPD), cystic fibrosis, asthma, diabetes, cancer,
organ transplants, fecal impaction, and mesenteric ischemia and necrosis [6,8,9].

While uncommon, some drugs are suspected of causing PI [8]. In particular, PI has
been described in patients receiving corticosteroids, immunosuppressants, anticancer drugs,
alpha-glucosidase inhibitors (αGIs), lactulose, and sorbitol [2,8,10]. In a multicenter study
in Japan, out of 167 PI patients, 31 (19%) cases were related to diabetes. Among those
31 patients, 74.2% of them (23/31) had used αGIs [11].

αGIs competitively inhibit the intestinal α-glucosidase, thus delaying carbohydrate
absorption in the small intestine. αGIs are commonly used to treat diabetes, especially type
II diabetes. It has been thought that αGIs increase gastrointestinal luminal gas, contributing
to the development of PI [12]. This raises a question: why does PI occur in some patients
but not in others? So far, there have not yet been any systematic investigations on αGIs and
PI. This study investigated the concurrency of PI and αGIs in patients with diabetes and
sought to identify what other factors precipitate αGIs-induced PI.

2. Methods

2.1. Literature Search

A literature search was performed up to 7 June 2022, in PubMed/MEDLINE, World-
Cat, Google Scholar, and the Directory of Open-Access Journals (DOAJ). We searched for
articles using the following keywords: “pneumatosis intestinalis” AND “diabetes”, or
“pneumatosis intestinalis” AND “alpha-glucosidase inhibitors”, or “acarbose” OR “vogli-
bose” OR “miglitol” AND “pneumatosis intestinalis”. Inclusion criteria were the following:
clinical trials/observational studies/case series or case reports that identified patients with
intramural intestinal air, the usage of alpha-glucosidase inhibitors, and studies written in
English. Exclusion criteria were the following: congress abstracts, and no alpha-glucosidase
inhibitors involved.

All authors participated in the initial screening. Data extraction was performed by
all authors and confirmed independently by two authors (B.M. and Q.Z.) to assess for
correctness and bias. Data syntheses and analyses were performed by one author (Q.Z.) and
confirmed by another (M.S.). Interpretations of the results were agreed upon by all authors.

2.2. Statistical Analysis

The characteristics of αGIs-induced PI cases were compared in patients with or without
comorbidities, and between patients treated with voglibose and patients treated with
acarbose, using the Student’s t-test or X2 test with a p < 0.05 as statistically significant.

3. Results

3.1. Articles Included

Our search resulted in 151 unique titles. All titles were screened, after which 30 full-
text articles were assessed for eligibility. Ultimately, 28 articles with a total of 29 cases met
our inclusion criteria, as shown in Figure 1. No clinical trials and observational studies were
found. Details regarding patients’ information and characters are provided in Supplemental
Tables S1 and S2 [4,12–38].
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Figure 1. Literature search flow. Legend: A total of 151 abstracts were found from four databases of
Pubmed, WorldCat, Google Scholar, and DOAJ. Twenty-eight articles met the inclusion criteria.

3.2. Clinical Characteristics of PI

A total of 29 patients’ general information, comorbidities, past medical histories,
and medication uses (Sections 3.2–3.4) are shown in Table 1. Twenty-three patients were
diagnosed with type II diabetes, and six patients were diagnosed with steroid-induced
diabetes as their diabetes occurred after prednisone use [23,25,26,28,34].

Eleven patients were men, 17 were women, and the sex of one patient was not defined.
Ages ranged from 48 to 87, with a median of 67. The duration of time with diabetes varied
from 2 days to 20 years.

Nineteen (65.5%) patients had comorbidities. Seven cases had connective tissue dis-
orders/autoimmune diseases, including dermatomyositis [25], neuropsychiatric systemic
lupus erythematosus [28], polymyalgia rheumatica [32], rheumatoid arthritis [34], granu-
lomatosis with polyangiitis [34], hypothyroidism [22], and myasthenia gravis [26]. Three
cases had immunocompromising conditions, including post-lung transplantation [38], min-
imal change disease-nephrotic syndrome [24], and non-specific interstitial pneumonitis
(NSIP) [23]. Three patients had concomitant infections: one with acute cholecystitis [31],
one with E.coli sepsis [24], and another with Pseudomonas putida detected in peritoneal
dialysate effluent [37]. Five patients had hypertension, three of them with ischemic dis-
ease (post-cerebral infarction, vascular ischemia, heart ischemia, and/or nonocclusive
mesenteric ischemia (NOMI)) and/or kidney failure [27,29,30,33,37].

Only 10 (34.5%) patients had no comorbidities. The number of patients with comor-
bidities was 1.9 times the number of patients without comorbidities.
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Table 1. Clinical characteristics of patients with pneumatosis intestinalis.

Characteristics n (% of Cases)

Number of patients 29

Men/women/undefined sex 11/17/1

Age in years (mean ± SD) (median) 68.1 ± 10.3 (67)

Age range 48–87

Diabetes’ duration (mean ± SD) (median) 6.0 ± 6.1 (4)

Range 2 days to 20 years

Comorbidities and/or past medical history

Number of patients 19 (65.5)

Connective tissue disorders/autoimmune diseases 7 (24.1)

Hypertension 2 (6.9)

Hypertension + post cerebral infarction 1 (3.4)

Hypertension + diabetic nephropathy + ischemic heart disease 1 (3.4)

Hypertension + diabetic nephropathy + peritonitis + nonocclusive mesenteric
ischemia (NOMI) + ischemic disease + post cerebral infarction 1 (3.4)

Minimal change disease—nephrotic syndrome + E. coli sepsis 1 (3.4)

Chronic inflammatory colitis 2 (6.9)

Post lung transplantation + pneumonia 1 month prior 1 (3.4)

Sigmoid volvulus/dolichocolon 1 (3.4)

Non-specific interstitial pneumonitis (NSIP) 1 (3.4)

Acute cholecystitis 1 (3.4)

Medications

Alpha-glucosidase inhibitors

Acarbose 12 (41.4)

Median of duration (year) (Range) 5 (1–12)

Voglibose 13 (44.8)

Median of duration (year) (Range) 0.6 (0.005–10)

Miglitol 2 (6.9)

Median of duration (year) (Range) 3.8 (0.7–7)

Undefined 2 (6.9)

Concomitant drugs/supplements

Prednisone/prednisolone 6 (20.7)

Prednisolone + tacrolimus 1 (3.4)

Prednisolone + mizoribine 1 (3.4)

Prednisolone + methotrexate 1 (3.4)

Insulin 7 (24.1)

Sulfonylurea 4 (13.8)

Dipeptidyl peptidase-4 inhibitors 2 (6.9)

Metformin 1 (3.4)

Maltitol 1 (3.4)
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3.3. Type of αGIs

All three available αGIs—acarbose, voglibose, and miglitol—were related to PI. The
most common one was voglibose (44.8%), followed by acarbose (41.4%). There were
only two cases of miglitol (6.9%). Two cases did not define a specific alpha-glucosidase
inhibitor [17,30].

3.4. Concomitant Use of Other Drugs

As shown in Table 1, nine (31%) patients used prednisone or prednisolone ± other
immunosuppressants or cytotoxic drugs [23–26,28,32,34,38]. Among those cases, one was
combined with mizoribine (inhibiting guanosine synthesis), one with methotrexate, and
one with tacrolimus [24,25,38]. Other antidiabetic drugs that were used consisted of insulin
(seven cases), sulfonylurea (four cases), dipeptidyl peptidase-4 inhibitors (two cases), and
metformin (one case). One patient used the carbohydrate supplement maltitol [22].

3.5. Symptoms

Characteristics of PI, including symptoms; diagnostic imaging; complications; the
segments involved; the presence of free gas in cavities or other tissues; treatment; and
outcomes (Sections 3.5–3.11) are shown in Table 2.

Table 2. Characteristics of PI.

Characteristics n (%)

Symptoms

Asymptomatic 7 (24.1)

Symptomatic 22 (75.9)

Imaging

Abdominal X-ray 29 (100)

Abdominal CT 29 (100)

Colonoscopy 11 (37.9)

Segments involved

Large bowel only

Ascending colon only 5 (17.2)

Sigmoid only 5 (17.2)

Ascending + sigmoid 1 (3.4)

Ascending + transverse colon 2 (6.9)

Ascending + descending colon 2 (6.9)

Cecum + splenic flexure colon 1 (3.4)

Cecum + ascending + transverse + sigmoid colon 1 (3.4)

All colon 2 (6.9)

Small intestine only

Ileum only 1 (3.4)

Whole small intestine 6 (20.7)

Combined

Ileum + ascending colon 2 (6.9)

Ileum + ascending + transverse colon 1 (3.4)

Free gas in cavities or other tissue
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Table 2. Cont.

Characteristics n (%)

Pneumoperitoneum 7 (24.1)

Pneumoretroperitoneum 2 (6.9)

Portal venous gas 2 (6.9)

Portal venous gas + pneumoperitoneum 1 (3.4)

Subcutaneous air in the cervical region + pneumomediastinum + pneumoretroperitoneum +
pneumoperitoneum 1 (3.4)

Pneumomediastinum + pneumopericardium + pneumoretroperitoneum 1 (3.4)

Treatment

Termination of alpha-glucosidase inhibitors 29 (100)

Conservative 25 (86.2)

Fasting 12 (41.4)

Fluid supplementation 8 (27.6)

Antibiotics 7 (24.1)

Oxygen therapy

Conventional 5 (17.2)

Mechanical 1 (3.4)

Endoscopy (colonoscopy) therapy

Needle puncture + electro-resection of gas cysts 1 (3.4)

Hemofiltration 2 (6.9)

Exploratory laparotomy but with conservative therapy 2 (6.9)

Laparoscopic sigmoidectomy 1 (3.4)

Laparotomy and hemicolectomy 1 (3.4)

Outcome

Survival 29 (100)

Free air disappearance was confirmed radiologically 22 (75.9)

Median of duration in days (range) 18 (2-180)

Abbreviations: CT: computed tomography; PI: pneumatosis intestinalis.

Patients presented with symptoms in 22/29 (75.9%) of the cases. As shown in Figure 2,
the most common symptoms were abdominal pain (54.5%) and abdominal distention (50%),
followed by diarrhea (22.7%), bloody stool (22.7%), and constipation (13.6%).
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Figure 2. Overview of the symptoms of αGIs-induced PI. Legend: abdominal pain and distention
were the most common symptoms, followed by diarrhea and bloody stool.

3.6. Segment of Bowel Involved

The location of PI had a wide distribution throughout the intestines. Nineteen (65.5%)
cases had only large intestine involvement, seven (24.1%) had only small intestine involve-
ment, and three (10.3%) had combinations of small and large intestine involvement. The as-
cending colon was the most involved (16/29, 55.2%), followed by the ileum (10/29, 34.5%).

3.7. Free Air in the Portal Vein and Intraabdominal Cavities and Extraintestinal Involvement

As shown in Table 3, patients with comorbidities had significantly higher rates of
free air in the peritoneum or retroperitoneum (9/19 (47.4%) vs. 1/10 (10%), p < 0.05), and
with small intestine involvement (8/19 (42.1%) vs. 2/10 (20%), p < 0.05), compared to
patients without comorbidities. Only in patients with comorbidities was free air found in
the mediastinum, pericardium, or subcutaneous space (2/19 (10.5%) vs. 0/10 (0%)) or the
portal vein (3/19 (15.8%) vs. 0/10 (0%)).

Table 3. Comparison between patients with and without comorbidities.

Patient without Comorbidities
(n = 10)

Patients with Comorbidities
(n = 19)

Age (years) (mean±SD) (median) 65.5 ± 8.4 (64.5) 69.6 ± 11.0 (70)

Pneumoperitoneum or pneumoretroperitoneum 1 9 *

Pneumomediastinum or pneumopericardium or
subcutaneous air 0 2

Portal venous gas 0 3

Small intestine involvement 2 8 *

Combination of small and large intestines 1 2

Exploratory laparotomy 1 2

Surgery 1 1

PI disappearance (days) (median) (range) 21.5 (4–180) 21 (4–90)

* p < 0.05 compared to patients without comorbidities.
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3.8. Comparison between Patients Treated with Acarbose and Patients Treated with Voglibose

As shown in Table 1, the duration range for voglibose usage was 2 days to 10 years,
with 6/13 (46.2%) having a duration shorter than 2 months. The duration range for acarbose
usage was 1 year to 12 years, with 5/12 (41.7%) having a duration of less than five years.
The median time of voglibose usage was relatively shorter than that of acarbose usage
(0.6 years vs. 5 years).

As shown in Table 4, 7/12 (58.3%) patients who used acarbose and 10/13 (76.9%)
patients who used voglibose had comorbidities. The durations of voglibose usage were
shorter than those of acarbose regardless of the presence of comorbidities (without comor-
bidities: median 0.17 years vs. 3 years; with comorbidities: median 1.7 years vs. 8 years).

Table 4. Comparison between patients who used acarbose and patients who used voglibose.

Acarbose Voglibose

Without
Comorbidities

With
Comorbidities

Without
Comorbidities

With
Comorbidities

Number of patients 5 7 3 10

Age (years) (mean±SD) (median) 63.6 ± 8.2 (65) 72.6 ± 9.3 (72) 67.7 ± 9.1 (64) 64.8 ± 10.1 (69.5)

Diabetes’ duration (years) (mean ± SD)
(median) Unknown 9.8 ± 3.5 (10) 11.5 ± 12 (11.5) 1.1 ± 1.6 (0.08)

αGIs duration
range (years) (median) 1–10 (3) 2–12 (8) 0.05–5 (0.17) 0.005–10 (1.7)

Concomitant prednisone/prednisolone ±
immunosuppressants (case) (%) 1 (14.3%) 8 (80%) **

Portal venous gas 1 (14.3%) 2 (20%)

Pneumoperitoneum +/−
Pneumoretroperitoneum 3 (42.9%) 5 (50%)

Pneumomediastinum,
Pneumopericardium,
Pneumoretroperitoneum

1(10%)

Subcutaneous air in the cervical region,
pneumomediastinum, pneumoperitoneum,
pneumoretroperitoneum

1(10%)

Exploratory laparotomy 1 (14.3%) 1(10%)

Laparoscopic sigmoidectomy 1 (14.3%)

** p < 0.01 compared to the acarbose group with comorbidities.

The voglibose group with comorbidities had a significantly higher ratio of concomitant
usage of glucocorticoids compared to the acarbose group with comorbidities (80% vs. 14.3%,
p < 0.01). The three cases of glucocorticoids + immunosuppressants were all in the voglibose
group. Free air in the mediastinum, pericardium, or subcutaneous space only developed in
the voglibose group with comorbidities (two cases, 20%).

3.9. Diagnosis

All cases of PI were confirmed by X-ray and computed tomography. Eleven (37.9%)
patients were also checked with colonoscopy, and two patients were examined with endo-
scopic ultrasonography [26,35].

3.10. Treatment and Complications

The αGIs were recognized as potential causal drugs in all cases and were terminated.
Twenty-five (86.2%) patients were only treated with conservative therapy: fasting was
initiated at the onset of the disease in 12 (41.4%) patients, fluid supplementation in eight
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(27.5%) patients, antibiotic therapy in seven (24.1%) patients, and O2 therapy in six (20.6%)
patients. One case delayed terminating the αGIs treatment until three months later, when
the PI disappeared [35]. This same patient also received unique endoscopic needle puncture
and high-frequency electro-scission of submucosal air cysts [35].

An exploratory laparotomy ruled out ischemia and necrosis in two (6.9%) patients with
portal venous gas; therefore, no surgical intervention was needed, and the patients were
treated with conservative therapy [31,33]. One case of portal venous gas was confirmed to
have non-occlusive mesenteric ischemia by CT and endoscopic ultrasound examination,
and the patient developed peritonitis and hypotension [37]. This case was treated with
antibiotics, vasopressors, and continuous hemodiafiltration [37]. One patient developed E.
coli sepsis that resulted in disseminated intravascular coagulation (DIC), acute renal failure,
and acute respiratory distress syndrome [24]. This patient was treated with antibiotics,
continuous hemofiltration, and mechanical ventilation [24].

Surgical intervention was performed in two cases. Laparotomy and hemicolectomy
were performed on one patient [17], and a sigmoidectomy was performed on another to
release a sigmoid volvulus [36].

3.11. Outcome or Duration of PI

All patients completely recovered. Symptom resolution ranged from 4 to 90 days,
with a median of 7 days recorded in 16 (55.2%) patients. Resolution of PI was confirmed
via images (CT and/or X-ray) or colonoscopy in 4 to 180 days, with a median of 18 days
in 22 (75.9%) patients.

Although patients with comorbidities had increased rates of free air in cavities or
extraintestinal tissues compared to patients without comorbidities, the median time of
disappearance of PI was similar between those two groups, with a median of 21 to 21.5 days,
as shown in Table 3.

4. Discussion

4.1. Mechanisms of αGIs-Induced PI

We summarized 29 cases of αGIs-induced PI. The number of patients with other
comorbidities was 1.9 times the number of patients without comorbidities. The exact
pathophysiological mechanism of PI is unclear, but there are three theories: “mechanical
theory” (the air penetrates the bowel wall), “bacterial theory” (gas-forming bacteria pen-
etrate the submucosa), and “biochemical theory” (luminal carbohydrates are fermented,
increasing intraluminal pressure) [2,36]. Based on those theories, the authors propose that
multiple factors contribute to the development of αGIs-induced PI: increased production
of intestinal gas, the hypomotility of the gastrointestinal tract, weakened intestinal mucosa
and wall, and/or air carried from the lungs. These mechanisms are depicted in Figure 3.

Increased production of intestinal gas could be due to αGIs, supplemental carbohy-
drates, and bacterial infection. αGIs lead to an increase in intestinal gas by suppressing
carbohydrate absorption, resulting in the retention of carbohydrates in the lumen of the
intestine. The unabsorbed carbohydrates are subsequently fermented by normal flora
to produce carbon dioxide, methane, and hydrogen [22,35]. An additional carbohydrate
supplement maltitol, a natural sweetener that is considered a sugar alcohol, or polyol may
have played a concomitant role in one case of αGIs-induced PI as it is not readily absorbed
in the small intestine and thus is fermented in the large intestine [22]. Three cases had
bacterial infections [21,31,37]. Bacterial infection, especially gas-producing bacteria, not
only increases gas production in the lumen of the intestine but also can invade and produce
gas within the intestinal wall [39].

Hypomotility of the gastrointestinal (GI) tract will prolong the fermentation of carbo-
hydrates and increase luminal pressure. In our series of cases, the hypomotility of the GI
tract could be caused by diabetic autonomic nerve damage, hypothyroidism [22], dolicho-
colon (an abnormally long large intestine) [36], and atrophy and fibrosis of smooth-muscle
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cells of GI in dermatomyositis [25]. Increased intraluminal pressure could cause mechanical
damage to the intestinal mucosa, resulting in gas migration into the intestinal wall [36].

Figure 3. Possible mechanisms of αGIs-induced PI. Legend: There are multiple contributors to
the development of αGIs-induced PI: increased production of intestinal gas, hypomotility of the
gastrointestinal tract, weakened intestinal mucosa and wall, and/or air carried from the lungs.
Abbreviations: IBD: inflammatory bowel disease; GI: the gastrointestinal tract.

The intestinal mucosa and wall could be weakened or damaged by inflammation,
infection, or low blood perfusion. In our case series, there were two cases of colitis [4,35],
three cases of infection [24,31,37], five cases of hypertension with or without vasculopa-
thy (one of them with non-occlusive mesenteric ischemia), five cases of connective tissue
disorders [25,28,32,34], and three cases of autoimmune diseases [22,23,26]. Bowel inflam-
matory diseases, including ulcerative colitis and Crohn’s disease, have been reported to be
related to PI [9]. Hypertension and vasculopathy are important contributors to mesenteric
ischemia in the elderly [16]. Connective tissue disorders could cause vasculitis or atrophy
and fibrosis of smooth muscles of the GI tract, resulting in hypomotility [40].

Some drugs could also weaken or damage the intestinal mucosa and wall as well.
In our series of cases, nine patients used prednisone/prednisolone, with three of them
adding immunosuppressants or cytotoxic drugs [23–26,28,32,34,38]. Prednisone and im-
munosuppressants could deplete lymphocytes and shrink Peyer’s patches, facilitating gas
entry into the intestinal wall [41]. Mizoribine and methotrexate are cytotoxic and may
cause mucosa and epithelial cell damage directly [2]. In our case series, the patient with
dermatomyositis treated with prednisolone and methotrexate was the only one developing
subcutaneous air in the cervical area, along with pneumomediastinum, pneumoperitoneum,
pneumoretroperitoneum, and PI [25].

Furthermore, a pulmonary cause needs consideration. Pulmonary diseases, such as
chronic obstructive pulmonary disease, asthma, cystic fibrosis, and chronic cough, may
force gas to enter the blood vessels and be carried from the lungs to the intestines [8]. In
Hisamoto et al.’s study, the patient had non-specific interstitial pneumonitis; after using
prednisone and voglibose, the patient presented with pneumomediastinum, pneumoperi-
cardium, pneumoretroperitoneum, and PI [23]. In Otsuka et al.’s study, the patient was a
lung transplantation recipient for 1031 days and had pneumonia 47 days before finding
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PI [38]. In these two cases, chronic cough-induced alveolar rupture and PI could not be
completely ruled out.

Patients with comorbidities not only have a higher risk of developing αGIs-induced
PI but also have more severe imaging findings. Patients with comorbidities had a higher
incidence of free air in cavities or extraintestinal tissues and a higher rate of small intes-
tine involvement. Portal venous gas was only found in three patients, all of whom had
comorbidities [31,33,37]. Only one of the three cases was confirmed to have non-occlusive
mesenteric ischemia [37]. Although portal venous gas may suggest intestinal ischemia [42],
it has been reported that 30% of patients with portal venous gas and PI were due to benign
idiopathic causes [43].

4.2. Comparison of Three αGIs

αGIs are especially effective in reducing postprandial hyperglycemia and are fre-
quently used to treat patients with type II diabetes in combination with other antidiabetic
drugs. The αGIs’ effect on lowering blood glucose is modest, but αGIs have the advan-
tage of a very low risk of hypoglycemia compared to sulfonylurea drugs. αGIs often
cause side effects of abdominal distention, flatulence, diarrhea, and abdominal pain. Be-
cause of the side effects, αGIs should not be used in patients who have gastrointestinal
disorders [44–46].

PI is a rare side effect of αGIs. Voglibose and acarbose were more commonly reported
than miglitol in causing PI. This may be due to different pharmacokinetics. Acarbose and
voglibose are poorly absorbed in the intestine and primarily excreted in the feces, with
approximately 30% that undergo fermentation by colonic microbiota [44]. In contrast,
miglitol is absorbed by the gut and excreted unchanged in the kidneys [45]. Fermentation
of voglibose and acarbose may increase luminal gas.

We found that PI developed more rapidly in patients treated with voglibose than in
patients treated with acarbose. In our case series, patients with comorbidities on voglibose
treatment had a higher ratio of simultaneous usage of glucocorticoids/immunosuppressants
than those on acarbose treatment. As we discussed in Section 4.1, concomitant glucocorti-
coids/immunosuppressants may precipitate the development of PI. In addition, voglibose
is 190 to 270 times more potent than acarbose [46]. Therefore, the authors hypothesize
that a higher ratio of concomitant usage of glucocorticoids/immunosuppressants and a
higher potency of voglibose contribute to a short duration of time that is needed to trigger
PI compared to that with acarbose. Clinicians should be alerted that voglibose may cause
PI in the first few months of its usage, whereas acarbose has the propensity to cause PI at
any time during its usage, even a decade after its initiation.

4.3. Symptoms and Treatments

The most common symptoms are abdominal distension and pain, followed by di-
arrhea and bloody stool in the cases we analyzed. As these are non-specific symptoms,
physicians should have a high level of suspicion for possible PI in patients that present with
gastrointestinal complaints while taking αGIs. Additionally, physicians should be aware
that PI may be identified incidentally on radiological imaging, endoscopy, or laparotomy
in patients taking αGIs because several of the reviewed cases were asymptomatic.

The majority of patients fully recovered after conservative therapy, which includes
the termination of alpha-glucosidases, fasting, fluid supplementation, antibiotics, and
inhalation of oxygen. The authors recommend conservative treatment to be the mainstay
of treatment in αGIs-induced PI.

We recommend sustaining from surgery, including exploratory laparotomies, if pa-
tients are stable without guarding or rebound tenderness. Taking into context the clinical
presentation of the patients, PI and pneumoperitoneum or portal venous gas should not
be used as an indication by themselves for an exploratory laparotomy. Additional criteria,
including higher C-reactive protein concentrations, higher white blood cell counts, higher
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lactate levels, and ascites, may be required to indicate inflammatory syndrome and the
likelihood of intestinal necrosis from mesenteric ischemia [7,47,48].

It is worth mentioning that although our case series had mild clinical features in most
cases with patients recovering, severe complications from PI such as perforation and death
have been reported in PI patients of other etiologies [2,7,47]. It is important to combine
detailed history, laboratory, and image examinations to make differential diagnoses. While
it is beneficial to avoid unnecessary laparotomy in patients with non-inflammatory signs, it
is also important to keep patients whose clinical features worsen under careful observation.

4.4. Strength and Limitations

The strength of this study is its analysis of the contributions to PI from three alpha-
glucosidase inhibitors, comorbidities, and other offending drugs. To our knowledge, this is
the first thorough review of αGIs-induced PI.

This review, however, also has some limitations. Due to the low incidence rate, we
cannot calculate the actual prevalence of αGIs-induced PI. Moreover, this study is only a
description and observation, and no correlation or causative assessment has been generated.
Furthermore, the possibilities of PI induced by other types of antidiabetic drugs have not
been analyzed.

5. Conclusions

Alpha-glucosidase inhibitors are related to the development of PI. The most com-
mon ones are voglibose and acarbose. Voglibose usage may cause a much more rapid
development of PI than acarbose. Patients with comorbidities and concurrent usage of
glucocorticoids and/or immunosuppressants have a relatively higher risk of developing
αGIs-induced PI with complications of free gas in cavities, portal veins, and extraintestinal
tissues. The authors propose that multiple factors contribute to the development of PI
when using αGIs. Intestinal ischemia or necrosis in αGIs-induced PI is uncommon, with
only 1/29 (3.4%) patients having non-occlusive mesenteric ischemia in our study. The
majority of patients recovered after conservative therapy. Therefore, the authors advocate
for conservative therapy and the avoidance of any unnecessary surgery.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/jcm11195918/s1, Table S1: Clinical features of patients without comorbidi-
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can be found in the supplementary materials.
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Abstract: Purpose: Hyperglycaemia-induced oxidative stress and inflammation contribute to vas-
cular cell dysfunction and subsequent cardiovascular events in T2DM. Selective sodium-glucose
co-transporter-2 (SGLT-2) inhibitor empagliflozin significantly improves cardiovascular mortality
in T2DM patients (EMPA-REG trial). Since SGLT-2 is known to be expressed on cells other than the
kidney cells, we investigated the potential ability of empagliflozin to regulate glucose transport and
alleviate hyperglycaemia-induced dysfunction of these cells. Methods: Primary human monocytes
were isolated from the peripheral blood of T2DM patients and healthy individuals. Primary human
umbilical vein endothelial cells (HUVECs) and primary human coronary artery endothelial cells
(HCAECs), and fetoplacental endothelial cells (HPECs) were used as the EC model cells. Cells
were exposed to hyperglycaemic conditions in vitro in 40 ng/mL or 100 ng/mL empagliflozin. The
expression levels of the relevant molecules were analysed by RT-qPCR and confirmed by FACS.
Glucose uptake assays were carried out with a fluorescent derivative of glucose, 2-NBDG. Reactive
oxygen species (ROS) accumulation was measured using the H2DFFDA method. Monocyte and
endothelial cell chemotaxis were measured using modified Boyden chamber assays. Results: Both
primary human monocytes and endothelial cells express SGLT-2. Hyperglycaemic conditions did
not significantly alter the SGLT-2 levels in monocytes and ECs in vitro or in T2DM conditions. Glu-
cose uptake assays carried out in the presence of GLUT inhibitors revealed that SGLT-2 inhibition
very mildly, but not significantly, suppressed glucose uptake by monocytes and endothelial cells.
However, we detected the significant suppression of hyperglycaemia-induced ROS accumulation
in monocytes and ECs when empagliflozin was used to inhibit SGLT-2 function. Hyperglycaemic
monocytes and endothelial cells readily exhibited impaired chemotaxis behaviour. The co-treatment
with empagliflozin reversed the PlGF-1 resistance phenotype of hyperglycaemic monocytes. Similarly,
the blunted VEGF-A responses of hyperglycaemic ECs were also restored by empagliflozin, which
could be attributed to the restoration of the VEGFR-2 receptor levels on the EC surface. The induction
of oxidative stress completely recapitulated most of the aberrant phenotypes exhibited by hyper-
glycaemic monocytes and endothelial cells, and a general antioxidant N-acetyl-L-cysteine (NAC)
was able to mimic the effects of empagliflozin. Conclusions: This study provides data indicating
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the beneficial role of empagliflozin in reversing hyperglycaemia-induced vascular cell dysfunction.
Even though both monocytes and endothelial cells express functional SGLT-2, SGLT-2 is not the
primary glucose transporter in these cells. Therefore, it seems likely that empagliflozin does not
directly prevent hyperglycaemia-mediated enhanced glucotoxicity in these cells by inhibiting glucose
uptake. We identified the reduction of oxidative stress by empagliflozin as a primary reason for the
improved function of monocytes and endothelial cells in hyperglycaemic conditions. In conclusion,
empagliflozin reverses vascular cell dysfunction independent of glucose transport but could partially
contribute to its beneficial cardiovascular effects.

Keywords: diabetes mellitus; empagliflozin; SGLT-2; monocytes; endothelial cells; vascular dysfunc-
tion; chemotaxis; reactive oxygen species (ROS); glucose transport; VEGFR-2; VEGFR-1

1. Introduction

Diabetes mellitus-associated hyperglycaemia is a significant risk factor for developing
cardiovascular disease (CVD) and associated cardiovascular mortality [1]. Diabetic vascular
disease is responsible for a 2–4-fold rise in the development of coronary artery disease
(CAD) [2,3]. Oxidative stress plays a vital role in developing complications associated with
diabetes by inducing vascular cell dysfunction [4]. There are a variety of pathways through
which hyperglycaemia transduces its deleterious effects downstream. The induction of
inflammation through the activation of NF-κB pathway is one of the major determinants
contributing to vascular complications in diabetes [5]. Prolonged hyperglycaemia-induced
advanced glycation end products (AGEs) through the Receptor for Advanced Glycation
End-products (RAGE)–NF-κB pathway contribute heavily to inflammation induction in
T2DM [6]. RAGE has also been implicated in mediating the dysfunction of both mono-
cytes [7] and endothelial cells [8]. There is significant cross-talk between oxidative stress
induction and AGE-RAGE signalling [9,10].

The sodium-glucose co-transporter 2 (SGLT2) is a major glucose transporter account-
able for the renal reabsorption of almost 90% of the glucose from the urine [11]. SGLT-2
inhibitor empagliflozin, is used to treat T2DM and heart failure. It is considered a new
therapy for cardiovascular diseases as numerous clinical trials have shown favourable
outcomes. These include the EMPA-REG OUTCOME (NCT01131676) [1,12], DAPA-HF
(NCT03036124) [13] and the EMPORER-Reduced (NCT03057977) [14]. The EMPA-REG
OUTCOME trial demonstrated the ability of empagliflozin to reduce cardiovascular events
and overall mortality in T2DM patients with higher cardiovascular risk [1,12,15], and
this by far outweighs the benefits of other glucose-lowering T2DM medications such as
dipeptidyl peptidase 4 inhibitors or glucagon-like peptide-1 analogues.

Several animal studies have reported the pleiotropic effects of empagliflozin, and this
drug is known to give protection against high glucose level-independent diseases such
as atherosclerosis [16], heart failure [17,18] and myocardial infarction [19]. Therefore, it is
highly likely that the cardiovascular benefits of empagliflozin are not solely through the
reduction of blood glucose levels. The favourable pleiotropic effects of empagliflozin have
already been described and discussed in several studies [20,21]. Empagliflozin is known to
interfere with cellular redox status by attenuating ROS generation [22,23]. Previous studies
from our laboratory have shown that in the T2DM environment, monocytes [7] and endothe-
lial cells [24] are dysfunctional due to the accumulation of reactive oxygen species (ROS).
Both monocytes and endothelial cells carry out vital functions in cardiovascular physiology,
and their function is compromised during T2DM conditions [7,24–26]. Indeed, the reversal
of endothelial dysfunction and imparting vascular protective effects by empagliflozin has
been described in both T1DM [27] and T2DM [28]. However, Empagliflozin’s beneficial
effects on monocyte function have not been reported so far.

The increased incidence of CAD in T2DM patients has been linked to the impaired
arteriogenesis and angiogenesis found in these patient groups [29–31]. Lack of proper
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VEGF responses contributes to endothelial and monocyte dysfunction in T2DM [24,31–33].
The inability of T2DM endothelial cells to respond to VEGF-2 activating growth factors
leads to impaired VEGFR-2-dependent processes such as proliferation, migration and
angiogenesis [24,31]. Abnormalities of angiogenesis induced by T2DM directly contribute
in the pathogenesis of diabetes complications [34]. Furthermore, T2DM individuals have
reduced coronary collateral formation compared to non-diabetics [35]. The defective
arteriogenesis is hypothesised to be due to the dysfunction of “arteriogenic” cells, leading
to the disability of these cells to home to the sites of vessel growth. Monocytes from T2DM
patients were found to be defective in their migratory potential towards VEGFA and PlGF-
1, previously described as “VEGF resistance” [7,26,33]. VEGF resistance is based on the
non-specific activation of downstream signalling pathways in vascular cells. Pre-activation
results in these cells’ resistance to respond to more specific signals. As the VEGFA or PlGF-1
responses are very specific for endothelial cells and monocytes, resistance to these growth
factors results in monocyte and endothelial dysfunction [36,37].

Considering the importance of oxidative stress in contributing to both monocyte and
endothelial dysfunction, the proposed role of empagliflozin as a redox modulator and
the ability of empagliflozin to improve cardiovascular outcomes, we hypothesised that
empagliflozin could circumvent both monocyte and endothelial dysfunction through a
glucose transport-dependent or independent mechanism, thereby improving vascular
health. Such a possibility was investigated in this study.

2. Results

2.1. Primary Human Monocytes and Primary Endothelial Cells Express SGLT-2

SGLT-2 is the glucose transporter is primarily expressed in the kidneys on the epithelial
cells lining the first segment of the proximal tubule. Since the reports about the expression
of SGLT-2 in monocytes and endothelial cells were not robust, we decided to analyse the
expression pattern of SGLT-2 in these two cell types. First, we used Immortalised Human
Kidney Epithelial cells (IHKE1) as a positive control to detect a positive signal for SGLT-2.
We used CD14++CD16− primary monocytes and THP-1 monocytic cell line and detected
the mRNA levels of SGLT-2 using RT-qCR. We used two sets of primers, one designed
to span the boundaries of exons 6 and 7 and another located at exon 13 of SGLT-2, as
reported previously [38]. The exon 13 primers were reported robust in amplifying the
SGLT-2 gene. Figure 1A,B shows that both primary monocytes and THP-1 monocytic cells
express SGLT-2 mRNA. Both set of primers amplified the SGLT-2 gene. Even though only
at a 50% expression level compared to the positive control, IHKE-1 cells, both monocytic
cells expressed SGLT-2 transcripts. As reported, the exon 13 primer was more efficient
in amplifying the SGLT-2 gene. In order to confirm the gene product, we sequenced the
product, and it was confirmed to be the SGLT-2 gene (results not shown).

Furthermore, using FACS, we reliably detected the surface levels of the SGLT-2 protein.
Similar to the situation in monocytic cells, three different types of endothelial cells, the
Human Umbilical Vein Endothelial Cells (HUVEC), Human Coronary Artery Endothelial
Cells (HCAEC) and Human fetoplacental Endothelial Cells (HPEC), showed varying
degrees of SGLT-2 gene expression, with HPEC expressing the lowest levels (Figure 1C).
Interestingly, we detected the SGLT-2 transcript amplification only when we used the exon
13 primers. We could not detect any SGLT-2 transcripts reliably when the exon 6/7 was used
(Figure 1D). Nevertheless, using FACS, we detected SGLT-2 protein levels on the surfaces
of these three endothelial cell types and the protein expression pattern matched with the
transcript levels, with HPEC showing the lowest SGLT-2 expression. (Figure 1E). Taken
together, these data confirm that both monocytes and endothelial cells express SGLT-2.
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Figure 1. Monocytic and endothelial cells express SGLT-2. (A,B) CD14++CD16 monocytes isolated
from healthy individuals (n = 5) and THP-1 monocytic cells (n = 5) were analysed for the transcript
levels of SGLT-2 using two different primer pairs targeting the exon 13 and exon 6/7 using RT-qPCR.
Immortalised Human Kidney Epithelial cells (IHKE1) were used as a positive control. rPLO was
used as the house/keeping gene to normalise the gene expression. All data are means ± SEM. (C)
CD14++CD16 monocytes isolated from healthy individuals (n = 4), and THP-1 monocytic cells were
analysed by flow cytometry for the surface expression of SGLT-2 compared to the signal from the
isotype-specific antibody. The mean fluorescence intensity (MFI) was then quantified. All data are
means ± SEM. (D,E) Human Umbilical Vein Endothelial Cells (HUVEC), Human Coronary Artery
Endothelial Cells (HCAEC) and Human fetoplacental Endothelial Cells (HPEC) (n = 5 each) were
analysed for the transcript levels of SGLT-2 using two different primer pairs targeting the exon 13
and exon 6/7 using RT-qPCR. Immortalised Human Kidney Epithelial cells (IHKE1) were used as a
positive control. rPLO was used as the house/keeping gene to normalise the gene expression. All
data are means ± SEM. (F) Human Umbilical Vein Endothelial Cells (HUVEC), Human Coronary
Artery Endothelial Cells (HCAEC) and Human fetoplacental Endothelial Cells (HPEC) (n = 5 each)
were analysed by flow cytometry for the surface expression of SGLT-2 compared to the signal from
the isotype-specific antibody. The mean fluorescence intensity (MFI) was then quantified. All data
are means ± SEM.

2.2. CD14++CD16− Monocytes Exposed to Hyperglycemic Conditions Do Not Exhibit an
Enhanced Transmigration Phenotype

Since there are reports that diabetic conditions upregulate the expression of SGLT-
2 [39], we wondered whether hyperglycaemic conditions or diabetes could modulate the
expression of SGLT-2 in monocytes and endothelial cells. For that, we used monocytic cells
and endothelial cells cultured under hyperglycaemic conditions in vitro. In addition, we
also used CD14++CD16− monocytes isolated from T2DM patients and human fetoplacental
endothelial cells (HPEC) isolated from gestational diabetes patients. As shown in Figure 2A,
hyperglycaemic conditions did not alter the expression of SGLT-2 transcripts in both THP-1
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monocytic cells and primary monocytes. Furthermore, T2DM monocytes did not reveal
any significant modulation of SGLT-2 expression (Figure 2B).

Figure 2. Diabetic conditions do not alter the expression of SGLT-2 in monocytes and endothelial
cells. (A) CD14++CD16− monocytes isolated from healthy individuals (n = 4) and THP-1 monocytic
cells (n = 4) were exposed to either normoglycemic or hyperglycaemic conditions for 48 h. The
cells were then analysed for the transcript levels of SGLT-2 using primer pairs targeting the exon
13 using RT-qPCR. rPLO was used as the house/keeping gene to normalise the gene expression.
All data are means ± SEM. (B) CD14++CD16 monocytes isolated from T2DM patients (n = 12) and
non-T2DM individuals (n = 12) were analysed for the transcript levels of SGLT-2 using primer pairs
targeting the exon 13 using RT-qPCR. rPLO was used as the house/keeping gene to normalise the
gene expression. (C) Human Umbilical Vein Endothelial Cells (HUVEC), Human Coronary Artery
Endothelial Cells (HCAEC) and Human fetoplacental Endothelial Cells (HPEC) (n = 4 each) were
exposed to either normoglycemic or hyperglycaemic conditions for 48 h. The cells were then analysed
for the transcript levels of SGLT-2 using primer pairs targeting the exon 13 using RT-qPCR. rPLO was
used as the house/keeping gene to normalise the gene expression. All data are means ± SEM. (D)
HPECs (Human fetoplacental Endothelial Cells) isolated from gestational diabetes patients (n = 6)
and non-diabetic individuals (n = 6) were analysed for the transcript levels of SGLT-2 using primer
pairs targeting the exon 13 using RT-qPCR. rPLO was used as the house/keeping gene to normalise
the gene expression. (E) HCAECs (Human Coronary Artery Endothelial Cells) isolated from T2DM
patients (n = 3) and non-T2DM individuals (n = 3) were analysed for the transcript levels of SGLT-2
using primer pairs targeting the exon 13 using RT-qPCR. rPLO was used as the house/keeping gene
to normalise the gene expression. All data are means ± SEM. ns = non-significant.

Similarly, the in vitro hyperglycaemia treatment of HUVEC, HCAEC and HPEC did
not alter the levels of SGLT-2 (Figure 2C). Again, neither gestational DM nor T2DM con-
ditions were found to alter the expression levels of SGLT-2 (Figure 2D,E). These data
indicate that diabetic conditions do not alter the SGLT-2 expression levels in monocytes
and endothelial cells.
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2.3. SGLT-2 Is Weakly Involved in the Glucose Transport in Both Monocytes and Endothelial Cells

Since we detected the transcripts and surface expression of SGLT-2 in monocytes
and endothelial cells, we wondered about the potential function of these transporters in
these cells. In order to understand the role of SGLT-2 as a glucose transporter, we used
fluorescent-tagged glucose derivative (2-NBDG) and carried out glucose transport assays.
Since GLUT-dependent transport has been reported in monocytes [40] and endothelial
cells [41], we employed a GLUT1 inhibitor to understand GLUT-dependent glucose trans-
port. As shown in Figure 3A, inhibition of GLUT resulted in the significant reduction of
2-NBDG accumulation in primary monocytes. However, the inhibition of SGLT-2 using
empagliflozin resulted in a steady but not significant reduction in the 2-NBDG uptake.
Both GLUT and SGLT-2 inhibitors did not synergistically influence the glucose uptake
(Figure 3A). A similar trend was observed for GLUT inhibition in HUVEC, but the inhibi-
tion of SGLT-2 resulted in a meagre but significant difference in the 2-NBDG accumulation
(Figure 3B). For HCAEC, SGLT-2 inhibition did not result in a significant difference in the
glucose transport but showed a clear tendency in that direction (Figure 3C).

Figure 3. SGLT-2-dependent glucose transport in monocytes and endothelial cells. (A) CD14++CD16−

monocytes were starved without glucose and serum for 2 h, along with either GLUT inhibitor or
SGLT-2 inhibitor. Afterwards, the cells were exposed to the fluorescent-tagged derivative of glucose
(2-NBDG) for 2–4 h in the presence of GLUT or SGLT-2 inhibitor or both in combination. Cells were
then washed and analysed for intracellular fluorescence using FACS or fluorescence plate reader.
n = 5. All data are means ± SEM. (B) HUVECs were starved without glucose and serum for 2 h,
along with either GLUT inhibitor or SGLT-2 inhibitor. After that, the cells were exposed to the
fluorescent-tagged derivative of glucose (2-NBDG) for 2–4 h in the presence of a GLUT or SGLT-2
inhibitor or both in combination. Cells were then washed and analysed for intracellular fluorescence
using FACS or fluorescence plate reader. n = 5. All data are means ± SEM. (C) HCAECs were
starved without glucose and serum for 2 h, along with either GLUT inhibitor or SGLT-2 inhibitor.
Afterwards, the cells were exposed to the fluorescent-tagged derivative of glucose (2-NBDG) for 2–4 h
in the presence of GLUT or SGLT-2 inhibitor or both in combination. Cells were then washed and
analysed for intracellular fluorescence using FACS or fluorescence spectroscopy. n = 5. All data are
means ± SEM. ns = non-significant. * p < 0.05, ** p < 0.01 and *** p < 0.001.

2.4. Hyperglycemia-Induced Monocyte Dysfunction Is Oxidative Stress-Dependent, and
Empagliflozin Alleviates ROS Accumulation and Reverses Monocyte Dysfunction

Monocytes are rendered dysfunctional in T2DM conditions. As shown in Figure 4A,
hyperglycaemic monocytes cannot migrate toward a strong arteriogenic stimulus, the pla-
cental growth factor-1 (PlGF-1), which is a direct readout indicating monocyte dysfunction.
This inability is partly attributed to the ligand-independent activation monocytes resulting
in random motility. The random motile monocytes (termed chemokinesis) cannot sense
and specifically respond to growth factor stimulation. As expected, the hyperglycaemic
monocytes readily undergo chemokinesis (Figure 4B). Oxidative stress was found to be a
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primary driver of monocyte dysfunction. The exogenous addition of hydrogen peroxide
(H2O2) was found to be sufficient to induce monocytes’ refractoriness to respond to PlGF-1
(Figure 4C). Exactly as in hyperglycaemic conditions, H2O2 treatment alone was sufficient
to induce monocyte chemokinesis (Figure 4D). Since empagliflozin has several pleiotropic
effects and is considered to be a redox modulator [28], we hypothesised that empagliflozin
could interfere with hyperglycaemia-induced ROS accumulation. As shown in Figure 4E,
empagliflozin significantly attenuated hyperglycaemia-induced ROS accumulation. Sim-
ilarly, hyperglycaemia-induced monocyte dysfunction (Figure 4F) and the induction of
monocyte chemokinesis (Figure 4G) were significantly reinstated by empagliflozin. Since
empagliflozin does not significantly modulate glucose transport in monocytes, these bene-
ficial effects are independent of the intracellular glucose levels.

Figure 4. Hyperglycaemia-induced monocyte dysfunction is reversed by empagliflozin through
the modulation of oxidative stress. (A) CD14++CD16− monocytes were cultured in vitro in normo-
glycemic (5 mM glucose) or hyperglycaemic (30 mM glucose + 100 μM methylglyoxal) for 48 h and
were analysed for their ability to undergo chemotaxis (directional migration) towards arteriogenic
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stimuli PlGF-1. Boyden chamber assays were performed. n = 6. (B) CD14++CD16− monocytes
were cultured in vitro in normoglycemic (5 mM glucose) or hyperglycaemic (30 mM glucose +
100 μM methylglyoxal) for 48 h and were analysed for their ability to undergo chemokinesis (random
migration). Checkerboard analyses were performed for this. n = 6. All data are means ± SEM.
(C,D) CD14++CD16− monocytes were cultured in vitro in normoglycemic (5 mM glucose) conditions
in the presence of 200 μM H2O2 for 24 h. After that, the cells were analysed for their ability to
undergo chemotaxis towards PlGF-1 and chemokinesis using Boyden chamber assays. n = 6. All data
are means ± SEM. (E) CD14++CD16− monocytes were cultured in vitro in normoglycemic (5 mM
glucose) or hyperglycaemic (30 mM glucose + 100 μM methylglyoxal) for 48 h. The reactive oxygen
species (ROS) accumulated was detected by fluorescence spectroscopy using 5-(and-6)-carboxy-
2′,7′-difluorodihydrofluorescein diacetate (H2-DFFDA) reagent. n = 3. All data are means ± SEM.
(F,G) CD14++CD16− monocytes were cultured in vitro under hyperglycaemic (30 mM glucose +
100 μM methylglyoxal) conditions for 48 h in the presence or absence of 100 ng/mL SGLT-2 inhibitor
empagliflozin. After that, the cells were analysed for their ability to undergo chemotaxis towards
PlGF-1 and chemokinesis using Boyden chamber assays. n = 6. All data are means ± SEM. ns = non-
significant. * p < 0.05, ** p < 0.01 and *** p < 0.001.

2.5. Oxidative Stress-Dependent Impairment of VEGFR-2 Contributes to Endothelial Dysfunction
in Hyperglycemia, and Empagliflozin Restores VEGFR-2 to Alleviate Endothelial Dysfunction

Similar to dysfunctional monocytes, diabetes conditions render endothelial cells un-
able to carry out their primary physiological functions. Most of the signals from the physio-
logical functions of the endothelial cells are transduced through the Vascular Endothelial
Growth Factor Receptor-2 (VEGFR-2), and defective VEGFR-2 signalling characterises
endothelial dysfunction. We tested this. The ability to respond to VEGFR-2 ligand VEGF-A
was significantly reduced in hyperglycaemic endothelial cells (Figure 5A). This defect
was found to be due to the reduction of VEGFR-2 surface expression (Figure 5B). Indeed,
oxidative stress is vital in mediating the refractoriness of endothelial cells to VEGF-A. The
treatment of endothelial cells with exogenous H2O2 readily recapitulated the impaired abil-
ity to respond to VEGF-A stimulation (Figure 5C), and the induction of oxidative stress was
sufficient to impair the surface expression of VEGFR-2 levels (Figure 5D). Confirming the
role of empagliflozin as a redox modulator, hyperglycaemia-induced ROS accumulated was
reduced in empagliflozin-treated endothelial cells (Figure 5E). Furthermore, empagliflozin
restored the ability of hyperglycaemic endothelial cells to respond to VEGF-A (Figure 5F),
and this was due to the improved surface expression of the VEGFR-2 receptor (Figure 5G).
Taken together, these data indicate that empagliflozin modulates redox homeostasis in
endothelial cells.

2.6. A General Antioxidant Improves Cell Function, Whereas Induction of Oxidative Stress
Reverses the Beneficial Effects of Empagliflozin

From the results described so far, it seems likely that the modulation of oxidative stress
by empagliflozin contributes to improving cell function in hyperglycaemic conditions. We
used a very commonly used antioxidant, N-acetyl cysteine (NAC), in our system. In fact,
NAC is known to impart a protective effect against diabetes-associated cardiovascular
complications [42]. As hypothesised, the application of NAC reversed hyperglycaemia-
induced monocyte and endothelial dysfunction (Figure 6A,B). NAC, such as empagliflozin,
significantly restored both the impairment of PlGF-1 and VEGF-A responses. This indicated
that oxidative alleviation is central to improving vascular cell function. Next, we asked if
we were able to suppress the beneficial effects of empagliflozin by the induction of oxidative
stress. For that, we used H2O2. Oxidative stress significantly attenuated the improvement
of monocyte and endothelial cell function induced by empagliflozin in hyperglycaemic
conditions (Figure 6C,D). These data further confirmed the role of empagliflozin as a redox
regulator in monocytes and endothelial cells.
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Figure 5. Empagliflozin reverses hyperglycaemia-induced endothelial dysfunction by reducing
oxidative stress. (A) HUVECs were exposed to in vitro normoglycemic conditions (5 mM glucose) or
hyperglycaemic conditions mimicking a diabetic milieu (30 mM glucose + 100 μM methylglyoxal)
for 24 h. The cells were then analysed for their ability to undergo chemotaxis (directional migration)
towards angiogenic stimuli VEGF-A. Boyden chamber assays were performed. n = 5. (B) HUVECs
were exposed to in vitro normoglycemic conditions (5 mM glucose) or hyperglycaemic conditions
mimicking a diabetic milieu (30 mM Glucose + 100 μM methylglyoxal) for 24 h. Thereafter, FACS
analysis of the surface expression of VEGFR-2 on hyperglycaemic HUVECs was done. (n = 5). All
data are means ± SEM. (C) HUVECs were exposed to in vitro normoglycemic conditions (5 mM
glucose) in the presence of 200 μM H2O2 for 24 h. After that, the cells were analysed for their ability
to undergo chemotaxis towards VEGF-A using Boyden chamber assays. n = 5. (D) HUVECs were
exposed to in vitro normoglycemic conditions (5 mM glucose) in the presence of 200 μM H2O2 for
24 h. After that, the cells were analysed for the surface expression of VEGFR-2 using FACS. n = 4. Data
are means ± SEM. (E) HUVECs were exposed to in vitro normoglycemic conditions (5 mM glucose)
or hyperglycaemic conditions mimicking a diabetic milieu (30 mM Glucose + 100 μM methylglyoxal
for 24 h. The reactive oxygen species (ROS) accumulated was detected by fluorescence spectroscopy
using 5-(and-6)-carboxy-2′,7′-difluorodihydrofluorescein diacetate (H2-DFFDA) reagent. n = 3. All
data are means ± SEM. (F) HUVECs were exposed to in vitro normoglycemic conditions (5 mM
glucose) or hyperglycaemic conditions mimicking a diabetic milieu (30 mM Glucose + 100 μM
methylglyoxal) for 24 h in the presence or absence of 100 ng/mL SGLT-2 inhibitor empagliflozin.
After that, the cells were analysed for their ability to undergo chemotaxis towards VEGF-A using
Boyden chamber assays. n = 5 (G) FACS analysis of the surface expression of VEGFR-2 of the cells
grown under conditions as described for F. n = 4. All data are means ± SEM. ns = non-significant.
* p < 0.05, ** p < 0.01 and *** p < 0.001.
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Figure 6. Manipulating the redox status of the cells recapitulates the dysfunction phenotype. (A)
CD14++CD16− monocytes were cultured in vitro in normoglycemic (5 mM glucose) or hypergly-
caemic (30 mM glucose + 100 μM methylglyoxal) for 48 h in the presence or absence of 5 mM
N-acetylcysteine (NAC) and were analysed for their ability to undergo chemotaxis (directional mi-
gration) towards arteriogenic stimuli PlGF-1. Boyden chamber assays were performed. n = 5. (B)
HUVECs were exposed to in vitro normoglycemic conditions (5 mM glucose) or hyperglycaemic
conditions mimicking a diabetic milieu (30 mM Glucose + 100 μM methylglyoxal) for 24 h in the
presence or absence of 5 mM N-acetylcysteine (NAC). The cells were then analysed for their ability to
undergo chemotaxis (directional migration) towards angiogenic stimuli VEGF-A. Boyden chamber
assays were performed. n = 5. (C) CD14++CD16− monocytes were cultured in vitro under hypergly-
caemic (30 mM glucose + 100 μM methylglyoxal) conditions for 48 h in the presence or absence of
100 ng/mL SGLT-2 inhibitor empagliflozin. In addition, cells were treated with or without 200 μM
H2O2. After that, the cells were analysed for their ability to undergo chemotaxis towards PlGF-1 in
the presence of 200 μM H2O2. n = 5. (D) HUVECs were exposed to in vitro normoglycemic conditions
(5 mM glucose) or hyperglycaemic conditions mimicking a diabetic milieu (30 mM Glucose + 100 μM
methylglyoxal) for 24 h in the presence or absence of 100 ng/mL SGLT-2 inhibitor empagliflozin. In
addition, cells were treated with or without 200 μM H2O2. After that, the cells were analysed for
their ability to undergo chemotaxis towards VEGF-A using Boyden chamber assays in the presence
of 200 μM H2O2. n = 5. ns = non-significant. ** p < 0.01 and *** p < 0.001.

3. Discussion

The present study demonstrates that the two important cell types, the monocytes and
endothelial cells, are dysfunctional in hyperglycaemic conditions. These cells are required
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for vascular repair processes and contribute to atherosclerosis development in diabetic
patients when dysfunctional. Empagliflozin, the SGLT-2 inhibitor—developed to attenuate
the glucose reabsorption by the kidneys as a strategy to reduce blood glucose levels in
diabetes patients—improves both hyperglycaemia-induced monocyte and endothelial cell
dysfunction by glucose transport-independent mechanisms. Even though monocytes and
endothelial cells express functional SGLT-2, glucose transport is not primarily mediated
through SGLT-2 but via GLUT. Empagliflozin interferes with the hyperglycaemia-induced
oxidative stress induction and attenuates ROS accumulation. Empagliflozin-treated hyper-
glycaemic monocytes displayed attenuated chemokinesis and were readily responding to
arteriogenic stimuli.

Similarly, empagliflozin-treated endothelial cells displayed improved VEGFR-2 recep-
tor levels on the cell surface and responded robustly to angiogenic stimuli. The attenuation
of arteriogenesis and angiogenesis is a hallmark of diabetes mellitus contributing to micro-
and macrovascular complications [30,34]. Other than interfering with the glucose transport
in the proximal kidney tubules and contributing positively to the reduction of glucotoxicity-
dependent alterations in cell function, the results described here highlight the pleiotropic
effects of empagliflozin and can be a contributing pathway through which this drug offers
protection in diabetic and heart failure patients.

Even though SGLT-2 expression is primarily confined to the kidneys, its expression
has been reported in various other cell types, including endothelial cells [23,43] and smooth
muscle cells [44]. However, the expression of SGLT-2 on monocytes and monocytic cell
lines was not reported. Here, we detected the mRNA and protein expression of SGLT-2 in
both primary monocytes and several primary endothelial cell types. These data confirm
that SGLT-2 is expressed in vascular cells. SGLT-2 expression is regulated dynamically,
and several biochemical stimuli such as TNFα and Ang-II have been reported to increase
its expression [23,45]. Furthermore, there are reports about the upregulation of SGLT-2 in
diabetes [46,47] and heart failure patients [48]. However, our investigations using in vitro
hyperglycaemic conditions and monocytes and endothelial cells from T2DM patients did
not reveal any differences in the expression pattern of SGLT-2, indicating that diabetes
conditions do not stimulate SGLT-2 expression in these cells. The signalling pathways
responsible for the induction of SGLT2 in monocytes and endothelial cells have not been
delineated.

We identified that the SGLT-2 expressed on monocytes and endothelial cells are also
functionally active. Even though to a very low level, the inhibition of SGLT-2 using em-
pagliflozin resulted in slightly altered glucose transport in both these cell types. Although
the differences were minimal, there was always a tendency to downgrade glucose transport.
This indicates that SGLT-2 is able to transport glucose in these cells, albeit to a lower level.
These also validate our data that the positive effect of empagliflozin on monocyte and
endothelial function is not secondary to the reduction of glucose transport. As expected,
GLUT inhibition significantly blocked glucose transport in both monocytes and endothelial
cells. This is in line with the published data on the vital role of GLUT in transporting
glucose [49,50].

This study’s most exciting and novel finding is the influence of empagliflozin in
improving monocyte function in hyperglycaemic conditions. Even though several animal
studies have shown that empagliflozin is able to improve endothelial function [27,28,51],
its positive effects on monocyte function have not yet been reported. Furthermore, most of
the positive effects of empagliflozin on endothelial function in vivo are also secondary to
its role in reducing glucotoxicity. However, we report that empagliflozin imparts positive
effects on endothelial cells and monocytes through a pleiotropic mechanism. Indeed, this
ambiguous role of empagliflozin has been reported in several studies [20]. Our data refer
to the specific contribution of empagliflozin in alleviating the oxidative stress-dependent
induction of monocyte and endothelial cell function. Further studies are required to
evaluate the improvement of endothelial function in vivo using the flow-mediated dilation
(FMD) method [52].
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Translational data suggest that SGLT2 inhibitors may positively affect plaque compo-
sition and burden through the reduction of inflammatory and cell adhesion pathways. Still,
human data are not available to make solid conclusions. However, endothelial dysfunction
represents an important mechanism underlying heart failure with preserved ejection frac-
tion (HFpEF) [53]. Impaired coronary microvascular function is strongly associated with
the severity of heart failure [54]. Even though published data do not completely support a
causative role for monocytes and heart failure, their role in atrial fibrillation (AF) has been
postulated [55]. Therefore, the improvement of both endothelial and monocyte function by
empagliflozin could improve heart failure outcomes.

The modulation of oxidative stress by empagliflozin is a pleiotropic mechanism on
which several positive effects of this drug could be based. Such a possibility is currently
being tested in patients with type 2 diabetes (EMPOX study) in a clinical trial. (Clini-
calTrials.gov Identifier: NCT02890745). Our data confirm the notion that empagliflozin
can reduce the ROS accumulation induced by hyperglycaemia. This could be secondary
to reducing oxidative stress-inducing machinery such as NADPH oxidases (NOXs) or
improving the antioxidant system [56]. The dysfunction of monocytes and endothelial cells
induced by hyperglycaemia is oxidative stress-dependent [24,33], and the complete allevia-
tion of this dysfunction phenotype of empagliflozin demonstrates its function as a redox
regulator. The alleviation of the beneficial effects of empagliflozin by the induction of ox-
idative stress demonstrates that the beneficial effects of empagliflozin are redox-dependent.
Since functionally active monocytes and endothelial cells could carry out a wide array of
repair and regeneration processes in diabetes, empagliflozin-mediated improvement of
these two cell types would contribute to the beneficial aspects of empagliflozin. Further
investigations are necessary to understand how empagliflozin is able to impart its effects
as a redox modulator.

4. Materials and Methods

4.1. Monocyte Isolation from Clinical Cohorts and Healthy Individuals

CD14++CD16− human monocytes were isolated from healthy donors and from non-
T2DM individuals or T2DM patients according to a published protocol [33] using Magnet-
assisted cell sorting (MACS) using negative selection with the human Monocyte Isolation
Kit II from Miltenyi Biotec (Bergisch Gladbach, Germany). The study was approved by
the scientific and ethics committee of the University of Münster and the University of Jena
and conformed to the principles of the Declaration of Helsinki. Written informed consent
was obtained from all donors by the blood bank, and thrombocyte reduction filters were
provided anonymously without sharing personal and detailed information. The purity
of isolated cells was confirmed by FACS, and they were around 98% pure. The clinical
characteristics are described in detail in Supplementary Table S1.

4.2. Human Umbilical Vein Endothelial Cells Isolation and Ethics

Human umbilical vein endothelial cells (HUVEC) were isolated from anonymously
acquired umbilical cords according to the Declaration of Helsinki, “Ethical Principles for
Medical Research Involving Human Subjects” (1964), as described previously [57]. The
study was approved by the Jena University Hospital Ethics Committee (no. 3130-05/11),
and donors were informed and gave written consent. For cell preparation, umbilical
cord veins were cleaned with 0.9% NaCl solution, and cells were detached with 0.01%
collagenase dissolved in M199 for 3 min at 37 ◦C. Veins were then rinsed with M199/10%
FCS, and the cell suspension was centrifuged (500× g, 6 min). The pellet was resuspended
in M199/10% FCS and seeded on a cell culture flask coated with 0.2% gelatine. After 24 h,
cells were washed and cultured in full growth medium (M199, 20% FCS, 7.5 U/mL heparin,
100 U/mL penicillin and 100 μg/mL streptomycin).
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4.3. Human Fetoplacental Endothelial Cell Isolation from Clinical Cohorts and Healthy Individuals

Primary HPEC were isolated from arterial vessels of human term placentas obtained
from healthy and GDM pregnancies, as described previously [58]. In brief, arterial vessels
from the apical surface of the chorionic plate were dissected and cells were isolated by per-
fusion of the arteries with Hank’s balanced salt solution (HBSS, Invitrogen, Waltham, MA,
USA) containing 0.1 U/mL collagenase, 0.8 U/mL dispase II (Roche, Basel, Switzerland)
and 10 mg/mL penicillin/streptomycin for 8 min. Digested suspension was centrifuged
(200× g, 5 min), the cell pellet resuspended in EBM-2 Media supplemented with the EGM-2
MV Bullet Kit (Lonza, Basel, Switzerland), containing 5% human heat-inactivated serum
of pregnant women instead of FCS and plated on 1% gelatine-coated wells of a 12-well
plate. Cells were split into a 12 cm2 flask, 25 cm2 flask and, finally, 75 cm2 flask accord-
ingly when cells were confluent. The identity and purity of HPEC were confirmed by
immunocytochemistry staining of specific endothelial markers for von Willebrand factor
and CD31 (PECAM1), fibroblast markers (CD90 and TE-7) and smooth muscle cell markers
(SMA and Desmin). For maintaining a culture, primary cells were grown in EBM-2 Media
supplemented with the EGM-2 MV Bullet Kit containing 5% FCS, and cells split for less than
10 passages were used for experiments. The ethics committee of the Medical University
of Graz approved this study (27-265 ex 14/15). All individuals gave voluntary informed
consent and underwent an oral glucose tolerance test (OGTT) at 24 weeks of gestation.
Control subjects were selected based on negative OGGT. Women with GDM diagnosed
according to the WHO/IADPSG criteria, but without other pregnancy complications, were
recruited before delivery. All subjects included in the GDM group were managed by diet
and lifestyle modifications during the remaining time of pregnancy. The study conforms to
the Declaration of Helsinki. Clinical characteristics are listed in Supplementary Table S2.

4.4. Monocyte, HUVEC, HCAEC and HPEC Culture

Primary human monocytes were maintained in RPMI-1640 medium (+L-glutamine,
D(+)-glucose; Thermo Scientific, Waltham, MA, USA) supplemented with 5 mM glucose,
10% foetal bovine serum (FBS) and 1% penicillin/streptomycin (P/S). For migration ex-
periments, cells were starved for 2–4 h in FBS-free RPMI-1640 medium. Monocytes were
kept in an incubator at 37 ◦C and 5% CO2. Normoglycemic medium contained 5 mM
glucose and 25 mM mannitol. In hyperglycaemic medium, 30 mM glucose and 100 μM
methylglyoxal were used, and the cells were treated for 48 h. HUVECs were cultured in
full growth medium (M199, 20% FCS, 7.5 U/mL heparin and 1% penicillin/streptomycin).
In general, HUVEC from 2–5 passages were used for the experiments. For migration
experiments, cells were starved for 2–4 h in FBS-free M199 medium. Monocytes were
kept in an incubator at 37 ◦C and 10% CO2. Normoglycemic medium contained 5 mM
glucose and 25 mM mannitol. In hyperglycaemic medium, 30 mM glucose and 100 μM
methylglyoxal were used, and the cells were treated for 24 h. HCAECs were obtained from
Lonza and were maintained in EBMTM-2 Basal Medium (CC-3156) and EGMTM-2 MV
Microvascular Endothelial Cell Growth Medium SingleQuotsTM supplements (CC-4147),
as per the recommendations of the manufacturer. Cells up to a passage of 6 were used
for the experiments. HPECs were grown in EBM-2 media supplemented with the EGM-2
MV Bullet Kit containing 5% FCS, and cells split for less than 10 passages were used for
experiments.

4.5. Reagents

Cell culture media RPMI 1640 Medium GlutaMAXTM was obtained from Life Tech-
nologies. Human VEGF-A and PlGF-1 were from Peprotech. H2DFFDA and CellROX were
from Life Technologies. Hydrogen peroxide, methylglyoxal, NAC and 2-NBDG were from
Sigma Aldrich. All the primers for qPCR were custom synthesised from Sigma Aldrich.
Primer sequences are described in Supplementary Table S3.
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4.6. RNA Isolation and qPCR

For the extraction of RNA, roughly 5–8 × 106 monocytes were used. For in vitro
experiments, the RNA was extracted between 8 and 12 h post-cell treatment. Total RNA pu-
rification was performed using a NucleoSpin RNA isolation kit (Macherey-Nagel, Dueren,
Germany), and cDNA was synthesised using a RevertAid First Strand cDNA Synthesis
Kit (Thermo Scientific, Waltham, MA, USA). qPCR was carried out using iTaq™ Universal
SYBR®® Green supermix (Bio-Rad, Hercules, CA, USA) in the Connect Real-Time PCR
Detection System (Bio-Rad, Hercules, CA, USA). The threshold cycle (Cq) value of each
sample was calculated, and the expression of the target gene mRNA relative to rplO was
determined by the 2−ΔΔCt method. The sequences of the primers used can be found in
Supplementary Table S3.

4.7. Glucose Uptake Assay

Cells were equilibrated in glucose-free medium with 1% serum for three hours prior to
being treated with 10 μM of 2-NBDG for 30 min at 37 ◦C, together with GLUT inhibitor or
empagliflozin. Cells were washed two times, and the flow cytometry analysis was carried
out using Guava easyCyte (Millipore, Burlington, MA, USA).

4.8. Monocyte Chemotaxis and Chemokinesis Assay

Chemotaxis assays were performed as described previously [7,59] using a 48-well
Boyden chamber (Neuroprobe, Gaithersburg, MD, USA) and Nucleopore PET membrane
(Whatman, Maidstone, UK) with 5 μm diameter pores. Cells in a concentration from
0.5 × 106 cells/mL were allowed to migrate for 90 min at 37 ◦C and 5% CO2. The cells that
migrated through the pores were counted. For quantification, migrated cells were counted
by 20 high-power fields in four wells using the Axioskop 2 Plus microscope (Carl Zeiss,
Jena, Germany).

4.9. Chemotaxis Assay of Endothelial Cells

For the detection of endothelial cell chemotaxis, a modified 48-well Boyden chamber
(Nucleopore) and a polycarbonate membrane with a pore diameter of 8 mm (Nucleopore)
were used as described earlier [24,33]. Endothelial cells were cultured for 24 h under
normal and high glucose conditions with or without empagliflozin. For the assay, cells
were starved in a serum-free M199 medium for 1 h, trypsinised, washed and resuspended
in serum-free medium. Cells were seeded in a concentration of 0.35 × 106 cells/mL and
allowed to migrate for 1.5 h at 37 ◦C and 5% CO2 with and without 25 ng/mL VEGF-A
stimulation. Migrated cells were fixed with 99% ethanol for 10 min and stained with Giemsa
staining solution. Cells at the upper side of the filter membrane were scraped off. Migrated
cells were counted using ZEISS Axioskop 2 Plus at 10X magnification from 3 different wells.

4.10. Intracellular Reactive Oxygen Species Detection

HUVECs were seeded in a 12-well plate in different glucose conditions with or without
100 ng/mL empagliflozin for 24–48 h. The method was based on the modification of the
published protocol [60]. After that, cells were washed twice with Krebs-Ringer phosphate
glucose buffer (KRPG; 145 mM NaCl, 5.7 mM KH2PO4, 4.86 mM KCl, 0.54 mM CaCl2,
1.22 mM MgSO4 and 5.5 mM glucose) and then resuspended in 1 mL KRPG. Carboxy-
H2DFFDA (20 μM) or CellROX (5 μM) was added; the suspension mixed well and then
incubated in dark for 20 to 30 min at room temperature. The subsequent steps were strictly
carried out in the dark. The cells were washed twice with KRPG. The fluorescence intensity
was quantified with a fluorescence multimode microplate reader (Vector, Perkin Elmer)
with excitation at 485 nm and emission at 530 nm or by Guava easyCyte FACS using the
FITC-channel (Millipore, Burlington, MA, USA).
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4.11. Detection of the Surface Expression of VEGFR-2

HUVECs were cultured in normoglycemic or hyperglycaemic conditions with or
without 100 ng/mL empagliflozin for 24 h in a 12-well plate. For the assay, the cells were
trysinised, washed once with 1X PBS and resuspended in 500 μL of PBS/BSA (0.5% BSA)
solution. Fc-R blocking reagent was added for 10 min at room temperature, and 2 μL of
PE-VEGFR2 antibody (Miltenyi Biotec, Bergisch Gladbach, Germany) were added and
incubated for 15 min at room temperature in the dark, and the FACS analysis was done
using Guava easyCyte (Millipore, Burlington, MA, USA).

4.12. Statistical Analysis

To analyse the significance of differences in experiments with monocytes isolated from
diabetic or healthy individuals/mice, the Mann–Whitney Rank Sum Test (for intergroup
comparisons) or Kruskal–Wallis One-Way Analysis of Variance on Ranks with Tukey’s
or Dunn’s post hoc correction was used. For all the other experiments, two-sample in-
dependent t-tests or when multiple comparisons were made, Kruskal–Wallis One-Way
Analysis of Variance on Ranks with Tukey’s or Dunn’s post hoc correction was performed.
SigmaPlot 12 software was used for the statistical analysis. The level of significance was
defined as p < 0.05. All other statistics and graphs were generated using GraphPad Prism
8 software.

5. Conclusions

In conclusion, using the cell culture model of in vitro hyperglycaemia and T2DM
monocytes and T2DM endothelial cells and endothelial cells from gestational diabetes
patients, we identified that both monocytes and endothelial cells express SGLT-2 transcripts
and harbour functionally active SGLT-2 on their surface. SGLT-2 was not responsible for the
glucose transport in these cells. However, the empagliflozin treatment significantly reversed
the monocyte and endothelial cell dysfunction induced by hyperglycaemia. This was
completely independent of glucose transport but through the reduction of oxidative stress.
Mechanistically, empagliflozin attenuated the oxidative stress-dependent chemokinesis of
monocytes and restored the surface levels of VEGFR-2 on endothelial cells. Furthermore,
our results highlight the pleiotropic role of empagliflozin as a redox modulator.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm12041356/s1: Table S1. Clinical characteristics of the non-
T2DM and T2DM individuals used in the study. Table S2. Clinical characteristics of non-diabetic
and diabetic individuals used for the HPEC isolation. Table S3. RT-qPCR primer sequences used in
the study.

Author Contributions: R.G. and J.W. conceived and developed the concept; R.G., D.S., J.O., M.D.
and J.W. designed the experiments and interpreted the data; D.S., J.O., M.D., P.H. and R.G. did
the experiments; J.S. and U.H. isolated, characterized, provided, and supported the experiments
using HPECs. N.M., U.A.M. and R.G. were involved with patient characterization, recruitment,
and isolation of diabetic and non-diabetic monocytes; R.G. drafted the manuscript; S.A.Z. and J.W.
contributed to the redrafting of the manuscript; R.G. and J.W. finalised the manuscript with input
from all the authors and R.G. and J.W. supervised the study. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was supported, in part, by the Innovative Medizinische Forschung (IMF) grant
GO121222 (to Godfrey), Interdisziplinäre Zentrum für Klinische Forschung (IZKF) grant IZKF-SEED
014/20 (to Dorenkamp), grants from the Deutsche Forschungsgemeinschaft (DFG), Collaborative
Research Centre 656 Münster (project C12) and grants from the Deanery of the Medical Faculty of the
Westfälische Wilhelms-Universität Münster (all to Waltenberger).

Institutional Review Board Statement: Human blood leukocyte reduction filters from healthy
subjects were received from the blood bank of the University Hospital Münster. Written informed
consent was obtained from all donors by the blood bank, and leukocyte reduction filters were
provided anonymously without sharing personal and detailed information. This study was approved

205



J. Clin. Med. 2023, 12, 1356

by the local ethics committee of Münster University Hospital, Germany, and Jena University Hospital,
Germany. All the DM patients and non-DM individuals provided written informed consent to
participate in the study. The ethical permission number is 2011-612-f-S (Münster) and 4125-06/14
(Jena). The study was conducted according to the principles of the Declaration of Helsinki.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Merle Leffers and Sybille Koch for their technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zinman, B.; Lachin, J.M.; Inzucchi, S.E. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J.
Med. 2016, 374, 1094. [CrossRef] [PubMed]

2. Prevalence of small vessel and large vessel disease in diabetic patients from 14 centres. The World Health Organisation
Multinational Study of Vascular Disease in Diabetics. Diabetes Drafting Group. Diabetologia 1985, 28, 615–640. [CrossRef]
[PubMed]

3. Aronson, D.; Edelman, E.R. Coronary artery disease and diabetes mellitus. Cardiol. Clin. 2014, 32, 439–455. [CrossRef]
4. Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [CrossRef] [PubMed]
5. Suryavanshi, S.V.; Kulkarni, Y.A. NF-kappabeta: A Potential Target in the Management of Vascular Complications of Diabetes.

Front. Pharmacol. 2017, 8, 798. [CrossRef]
6. Yamamoto, Y.; Yamamoto, H. RAGE-Mediated Inflammation, Type 2 Diabetes, and Diabetic Vascular Complication. Front.

Endocrinol. 2013, 4, 105. [CrossRef]
7. Tchaikovski, V.; Olieslagers, S.; Bohmer, F.D.; Waltenberger, J. Diabetes mellitus activates signal transduction pathways resulting

in vascular endothelial growth factor resistance of human monocytes. Circulation 2009, 120, 150–159. [CrossRef]
8. Gao, X.; Zhang, H.; Schmidt, A.M.; Zhang, C. AGE/RAGE produces endothelial dysfunction in coronary arterioles in type 2

diabetic mice. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H491–H498. [CrossRef]
9. Coughlan, M.T.; Thorburn, D.R.; Penfold, S.A.; Laskowski, A.; Harcourt, B.E.; Sourris, K.C.; Tan, A.L.; Fukami, K.; Thallas-Bonke,

V.; Nawroth, P.P.; et al. RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J. Am. Soc.
Nephrol. 2009, 20, 742–752. [CrossRef]

10. Wautier, M.P.; Chappey, O.; Corda, S.; Stern, D.M.; Schmidt, A.M.; Wautier, J.L. Activation of NADPH oxidase by AGE links
oxidant stress to altered gene expression via RAGE. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E685–E694. [CrossRef]

11. Rieg, T.; Masuda, T.; Gerasimova, M.; Mayoux, E.; Platt, K.; Powell, D.R.; Thomson, S.C.; Koepsell, H.; Vallon, V. Increase
in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in
euglycemia. Am. J. Physiol. Ren. Physiol. 2014, 306, F188–F193. [CrossRef]

12. Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle,
H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128.
[CrossRef]

13. Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al.
Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [CrossRef]

14. Zannad, F.; Ferreira, J.P.; Pocock, S.J.; Anker, S.D.; Butler, J.; Filippatos, G.; Brueckmann, M.; Ofstad, A.P.; Pfarr, E.; Jamal, W.; et al.
SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and
DAPA-HF trials. Lancet 2020, 396, 819–829. [CrossRef]

15. Fitchett, D.; Zinman, B.; Wanner, C.; Lachin, J.M.; Hantel, S.; Salsali, A.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Inzucchi,
S.E.; et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: Results of the
EMPA-REG OUTCOME(R) trial. Eur. Heart J. 2016, 37, 1526–1534. [CrossRef]

16. Han, J.H.; Oh, T.J.; Lee, G.; Maeng, H.J.; Lee, D.H.; Kim, K.M.; Choi, S.H.; Jang, H.C.; Lee, H.S.; Park, K.S.; et al. The beneficial
effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE (-/-) mice fed a western diet. Diabetologia 2017, 60,
364–376. [CrossRef]

17. Byrne, N.J.; Parajuli, N.; Levasseur, J.L.; Boisvenue, J.; Beker, D.L.; Masson, G.; Fedak, P.W.M.; Verma, S.; Dyck, J.R.B. Empagliflozin
Prevents Worsening of Cardiac Function in an Experimental Model of Pressure Overload-Induced Heart Failure. JACC Basic
Transl. Sci. 2017, 2, 347–354. [CrossRef]

18. Park, S.H.; Farooq, M.A.; Gaertner, S.; Bruckert, C.; Qureshi, A.W.; Lee, H.H.; Benrahla, D.; Pollet, B.; Stephan, D.; Ohlmann, P.;
et al. Empagliflozin improved systolic blood pressure, endothelial dysfunction and heart remodeling in the metabolic syndrome
ZSF1 rat. Cardiovasc. Diabetol. 2020, 19, 19. [CrossRef]

19. Andreadou, I.; Efentakis, P.; Balafas, E.; Togliatto, G.; Davos, C.H.; Varela, A.; Dimitriou, C.A.; Nikolaou, P.E.; Maratou, E.;
Lambadiari, V.; et al. Empagliflozin Limits Myocardial Infarction in Vivo and Cell Death in Vitro: Role of STAT3, Mitochondria,
and Redox Aspects. Front. Physiol. 2017, 8, 1077. [CrossRef]

206



J. Clin. Med. 2023, 12, 1356

20. Patel, D.K.; Strong, J. The Pleiotropic Effects of Sodium-Glucose Cotransporter-2 Inhibitors: Beyond the Glycemic Benefit. Diabetes
Ther. 2019, 10, 1771–1792. [CrossRef]

21. Satoh, H. Pleiotropic effects of SGLT2 inhibitors beyond the effect on glycemic control. Diabetol. Int. 2018, 9, 212–214. [CrossRef]
[PubMed]

22. Mone, P.; Varzideh, F.; Jankauskas, S.S.; Pansini, A.; Lombardi, A.; Frullone, S.; Santulli, G. SGLT2 Inhibition via Empagliflozin
Improves Endothelial Function and Reduces Mitochondrial Oxidative Stress: Insights From Frail Hypertensive and Diabetic
Patients. Hypertension 2022, 79, 1633–1643. [CrossRef] [PubMed]

23. Uthman, L.; Homayr, A.; Juni, R.P.; Spin, E.L.; Kerindongo, R.; Boomsma, M.; Hollmann, M.W.; Preckel, B.; Koolwijk, P.; van
Hinsbergh, V.W.M.; et al. Empagliflozin and Dapagliflozin Reduce ROS Generation and Restore NO Bioavailability in Tumor
Necrosis Factor alpha-Stimulated Human Coronary Arterial Endothelial Cells. Cell Physiol. Biochem. 2019, 53, 865–886. [CrossRef]

24. Hemling, P.; Zibrova, D.; Strutz, J.; Sohrabi, Y.; Desoye, G.; Schulten, H.; Findeisen, H.; Heller, R.; Godfrey, R.; Waltenberger,
J. Hyperglycemia-induced endothelial dysfunction is alleviated by thioredoxin mimetic peptides through the restoration of
VEGFR-2-induced responses and improved cell survival. Int. J. Cardiol. 2020, 308, 73–81. [CrossRef] [PubMed]

25. Avogaro, A.; Fadini, G.P.; Gallo, A.; Pagnin, E.; de Kreutzenberg, S. Endothelial dysfunction in type 2 diabetes mellitus. Nutr.
Metab. Cardiovasc. Dis. 2006, 16 (Suppl. S1), S39–S45. [CrossRef]

26. Waltenberger, J.; Lange, J.; Kranz, A. Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in
patients with diabetes mellitus: A potential predictor for the individual capacity to develop collaterals. Circulation 2000, 102,
185–190. [CrossRef]

27. Oelze, M.; Kroller-Schon, S.; Welschof, P.; Jansen, T.; Hausding, M.; Mikhed, Y.; Stamm, P.; Mader, M.; Zinssius, E.; Agdauletova,
S.; et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the
streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS ONE 2014, 9, e112394. [CrossRef]

28. Steven, S.; Oelze, M.; Hanf, A.; Kroller-Schon, S.; Kashani, F.; Roohani, S.; Welschof, P.; Kopp, M.; Godtel-Armbrust, U.; Xia, N.;
et al. The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biol. 2017, 13, 370–385.
[CrossRef]

29. Werner, G.S.; Richartz, B.M.; Heinke, S.; Ferrari, M.; Figulla, H.R. Impaired acute collateral recruitment as a possible mechanism
for increased cardiac adverse events in patients with diabetes mellitus. Eur. Heart J. 2003, 24, 1134–1142. [CrossRef]

30. Waltenberger, J. Impaired collateral vessel development in diabetes: Potential cellular mechanisms and therapeutic implications.
Cardiovasc. Res. 2001, 49, 554–560. [CrossRef]

31. Warren, C.M.; Ziyad, S.; Briot, A.; Der, A.; Iruela-Arispe, M.L. A ligand-independent VEGFR2 signaling pathway limits angiogenic
responses in diabetes. Sci. Signal. 2014, 7, ra1. [CrossRef]

32. Sasso, F.C.; Torella, D.; Carbonara, O.; Ellison, G.M.; Torella, M.; Scardone, M.; Marra, C.; Nasti, R.; Marfella, R.; Cozzolino,
D.; et al. Increased vascular endothelial growth factor expression but impaired vascular endothelial growth factor receptor
signaling in the myocardium of type 2 diabetic patients with chronic coronary heart disease. J. Am. Coll. Cardiol. 2005, 46, 827–834.
[CrossRef]

33. Dorenkamp, M.; Muller, J.P.; Shanmuganathan, K.S.; Schulten, H.; Muller, N.; Loffler, I.; Muller, U.A.; Wolf, G.; Bohmer, F.D.;
Godfrey, R.; et al. Hyperglycaemia-induced methylglyoxal accumulation potentiates VEGF resistance of diabetic monocytes
through the aberrant activation of tyrosine phosphatase SHP-2/SRC kinase signalling axis. Sci. Rep. 2018, 8, 14684. [CrossRef]

34. Fadini, G.P.; Albiero, M.; Bonora, B.M.; Avogaro, A. Angiogenic Abnormalities in Diabetes Mellitus: Mechanistic and Clinical
Aspects. J. Clin. Endocrinol. Metab. 2019, 104, 5431–5444. [CrossRef]

35. Ruiter, M.S.; van Golde, J.M.; Schaper, N.C.; Stehouwer, C.D.; Huijberts, M.S. Diabetes impairs arteriogenesis in the peripheral
circulation: Review of molecular mechanisms. Clin. Sci. 2010, 119, 225–238. [CrossRef]

36. Waltenberger, J. VEGF resistance as a molecular basis to explain the angiogenesis paradox in diabetes mellitus. Biochem. Soc.
Trans. 2009, 37, 1167–1170. [CrossRef]

37. Waltenberger, J. Stress testing at the cellular and molecular level to unravel cellular dysfunction and growth factor signal
transduction defects: What Molecular Cell Biology can learn from Cardiology. Thromb. Haemost. 2007, 98, 975–979. [CrossRef]

38. Chen, J.; Williams, S.; Ho, S.; Loraine, H.; Hagan, D.; Whaley, J.M.; Feder, J.N. Quantitative PCR tissue expression profiling of the
human SGLT2 gene and related family members. Diabetes Ther. 2010, 1, 57–92. [CrossRef]

39. Rahmoune, H.; Thompson, P.W.; Ward, J.M.; Smith, C.D.; Hong, G.; Brown, J. Glucose transporters in human renal proximal
tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 2005, 54, 3427–3434. [CrossRef]

40. Dimitriadis, G.; Maratou, E.; Boutati, E.; Psarra, K.; Papasteriades, C.; Raptis, S.A. Evaluation of glucose transport and its
regulation by insulin in human monocytes using flow cytometry. Cytom. A 2005, 64, 27–33. [CrossRef]

41. Tumova, S.; Kerimi, A.; Porter, K.E.; Williamson, G. Transendothelial glucose transport is not restricted by extracellular hypergly-
caemia. Vascul. Pharmacol. 2016, 87, 219–229. [CrossRef] [PubMed]

42. Dludla, P.V.; Dias, S.C.; Obonye, N.; Johnson, R.; Louw, J.; Nkambule, B.B. A Systematic Review on the Protective Effect of
N-Acetyl Cysteine Against Diabetes-Associated Cardiovascular Complications. Am. J. Cardiovasc. Drugs 2018, 18, 283–298.
[CrossRef] [PubMed]

43. Juni, R.P.; Al-Shama, R.; Kuster, D.W.D.; van der Velden, J.; Hamer, H.M.; Vervloet, M.G.; Eringa, E.C.; Koolwijk, P.; van Hinsbergh,
V.W.M. Empagliflozin restores chronic kidney disease-induced impairment of endothelial regulation of cardiomyocyte relaxation
and contraction. Kidney Int. 2021, 99, 1088–1101. [CrossRef] [PubMed]

207



J. Clin. Med. 2023, 12, 1356

44. Sukhanov, S.; Higashi, Y.; Yoshida, T.; Mummidi, S.; Aroor, A.R.; Jeffrey Russell, J.; Bender, S.B.; DeMarco, V.G.; Chandrasekar,
B. The SGLT2 inhibitor Empagliflozin attenuates interleukin-17A-induced human aortic smooth muscle cell proliferation and
migration by targeting TRAF3IP2/ROS/NLRP3/Caspase-1-dependent IL-1beta and IL-18 secretion. Cell Signal 2021, 77, 109825.
[CrossRef] [PubMed]

45. Park, S.H.; Belcastro, E.; Hasan, H.; Matsushita, K.; Marchandot, B.; Abbas, M.; Toti, F.; Auger, C.; Jesel, L.; Ohlmann, P.; et al.
Angiotensin II-induced upregulation of SGLT1 and 2 contributes to human microparticle-stimulated endothelial senescence and
dysfunction: Protective effect of gliflozins. Cardiovasc. Diabetol. 2021, 20, 65. [CrossRef]

46. Albertoni Borghese, M.F.; Majowicz, M.P.; Ortiz, M.C.; Passalacqua Mdel, R.; Sterin Speziale, N.B.; Vidal, N.A. Expression and
activity of SGLT2 in diabetes induced by streptozotocin: Relationship with the lipid environment. Nephron. Physiol. 2009, 112,
p45–p52. [CrossRef]

47. Umino, H.; Hasegawa, K.; Minakuchi, H.; Muraoka, H.; Kawaguchi, T.; Kanda, T.; Tokuyama, H.; Wakino, S.; Itoh, H. High Baso-
lateral Glucose Increases Sodium-Glucose Cotransporter 2 and Reduces Sirtuin-1 in Renal Tubules through Glucose Transporter-2
Detection. Sci. Rep. 2018, 8, 6791. [CrossRef]

48. Katsurada, K.; Nandi, S.S.; Sharma, N.M.; Patel, K.P. Enhanced Expression and Function of Renal SGLT2 (Sodium-Glucose
Cotransporter 2) in Heart Failure: Role of Renal Nerves. Circ. Heart Fail. 2021, 14, e008365. [CrossRef]

49. Malide, D.; Davies-Hill, T.M.; Levine, M.; Simpson, I.A. Distinct localization of GLUT-1, -3, and -5 in human monocyte-derived
macrophages: Effects of cell activation. Am. J. Physiol. 1998, 274, E516–E526. [CrossRef]

50. Huang, Y.; Lei, L.; Liu, D.; Jovin, I.; Russell, R.; Johnson, R.S.; Di Lorenzo, A.; Giordano, F.J. Normal glucose uptake in the brain
and heart requires an endothelial cell-specific HIF-1alpha-dependent function. Proc. Natl. Acad. Sci. USA 2012, 109, 17478–17483.
[CrossRef]

51. Ganbaatar, B.; Fukuda, D.; Shinohara, M.; Yagi, S.; Kusunose, K.; Yamada, H.; Soeki, T.; Hirata, K.I.; Sata, M. Empagliflozin
ameliorates endothelial dysfunction and suppresses atherogenesis in diabetic apolipoprotein E-deficient mice. Eur. J. Pharmacol.
2020, 875, 173040. [CrossRef]

52. Mucka, S.; Miodonska, M.; Jakubiak, G.K.; Starzak, M.; Cieslar, G.; Stanek, A. Endothelial Function Assessment by Flow-Mediated
Dilation Method: A Valuable Tool in the Evaluation of the Cardiovascular System. Int. J. Environ. Res. Public Health 2022, 19,
11242. [CrossRef]

53. Mone, P.; Lombardi, A.; Kansakar, U.; Varzideh, F.; Jankauskas, S.S.; Pansini, A.; Marzocco, S.; De Gennaro, S.; Famiglietti, M.;
Macina, G.; et al. Empagliflozin Improves the MicroRNA Signature of Endothelial Dysfunction in Patients with Heart Failure
with Preserved Ejection Fraction and Diabetes. J. Pharmacol. Exp. Ther. 2023, 384, 116–122. [CrossRef]

54. Cornuault, L.; Rouault, P.; Duplaa, C.; Couffinhal, T.; Renault, M.A. Endothelial Dysfunction in Heart Failure With Preserved
Ejection Fraction: What are the Experimental Proofs? Front. Physiol. 2022, 13, 906272. [CrossRef]

55. Miyosawa, K.; Iwata, H.; Minami-Takano, A.; Hayashi, H.; Tabuchi, H.; Sekita, G.; Kadoguchi, T.; Ishii, K.; Nozaki, Y.; Funamizu,
T.; et al. Enhanced monocyte migratory activity in the pathogenesis of structural remodeling in atrial fibrillation. PLoS ONE 2020,
15, e0240540. [CrossRef]

56. Das, N.A.; Carpenter, A.J.; Belenchia, A.; Aroor, A.R.; Noda, M.; Siebenlist, U.; Chandrasekar, B.; DeMarco, V.G. Empagliflozin
reduces high glucose-induced oxidative stress and miR-21-dependent TRAF3IP2 induction and RECK suppression, and inhibits
human renal proximal tubular epithelial cell migration and epithelial-to-mesenchymal transition. Cell Signal 2020, 68, 109506.
[CrossRef]

57. Spengler, K.; Kryeziu, N.; Grosse, S.; Mosig, A.S.; Heller, R. VEGF Triggers Transient Induction of Autophagy in Endothelial Cells
via AMPKalpha1. Cells 2020, 9, 687. [CrossRef]

58. Strutz, J.; Cvitic, S.; Hackl, H.; Kashofer, K.; Appel, H.M.; Thuringer, A.; Desoye, G.; Koolwijk, P.; Hiden, U. Gestational diabetes
alters microRNA signatures in human feto-placental endothelial cells depending on fetal sex. Clin. Sci. 2018, 132, 2437–2449.
[CrossRef]

59. Tchaikovski, V.; Tchaikovski, S.; Olieslagers, S.; Waltenberger, J. Monocyte dysfunction as a previously unrecognized pathophysio-
logical mechanism in ApoE-/- mice contributing to impaired arteriogenesis. Int. J. Cardiol. 2015, 190, 214–216. [CrossRef]

60. Godfrey, R.; Arora, D.; Bauer, R.; Stopp, S.; Muller, J.P.; Heinrich, T.; Bohmer, S.A.; Dagnell, M.; Schnetzke, U.; Scholl, S.; et al. Cell
transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine
phosphatase DEP-1/PTPRJ. Blood 2012, 119, 4499–4511. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

208



Citation: Ramírez-Morros, A.;

Franch-Nadal, J.; Real, J.; Gratacòs,

M.; Mauricio, D. Sex Differences in

Cardiovascular Prevention in Type 2:

Diabetes in a Real-World Practice

Database. J. Clin. Med. 2022, 11, 2196.

https://doi.org/10.3390/

jcm11082196

Academic Editor: Fernando

Gómez-Peralta

Received: 7 March 2022

Accepted: 12 April 2022

Published: 14 April 2022

Corrected: 2 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Sex Differences in Cardiovascular Prevention in Type 2:
Diabetes in a Real-World Practice Database

Anna Ramírez-Morros 1,2, Josep Franch-Nadal 3,4, Jordi Real 3,4, Mònica Gratacòs 3 and Didac Mauricio 3,4,5,6,*

1 DAP-Cat Group, Unitat de Suport a la Recerca de la Catalunya Central, Institut Universitari d’Investigació en
Atenció Primària Jordi Gol (IDIAP Jordi Gol), 08272 Sant Fruitós de Bages, Spain; amramirez.cc.ics@gencat.cat

2 Gerència Territorial de la Catalunya Central, Institut Català de la Salut, 08272 Sant Fruitós de Bages, Spain
3 DAP-Cat Group, Unitat de Suport a la Recerca de Barcelona, Institut Universitari d’Investigació en Atenció

Primària Jordi Gol (IDIAP Jordi Gol), 08007 Barcelona, Spain; josepfranch@gmail.com (J.F.-N.);
jreal@idiapjgol.info (J.R.); monica.gratacos@gmail.com (M.G.)

4 Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de
Salud Carlos III, 08907 Barcelona, Spain

5 Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau and Sant Pau Biomedical
Research Institute (IIB Sant Pau), 08041 Barcelona, Spain

6 Department of Medicine, University of Vic and Central University of Catalonia, 08500 Vic, Spain
* Correspondence: didacmauricio@gmail.com; Tel.: +34-93-556-5661

Abstract: Women with type 2 diabetes mellitus (T2DM) have a 40% excess risk of cardiovascular
diseases (CVD) compared to men due to the interaction between sex and gender factors in the
development, risk, and outcomes of the disease. Our aim was to assess differences between women
and men with T2DM in the management and degree of control of cardiovascular risk factors (CVRF).
This was a matched cross-sectional study including 140,906 T2DM subjects without previous CVD and
39,186 T2DM subjects with prior CVD obtained from the System for the Development of Research in
Primary Care (SIDIAP) database. The absolute and relative differences between means or proportions
were calculated to assess sex differences. T2DM women without previous CVD showed higher levels
of total cholesterol (12.13 mg/dL (0.31 mmol/L); 95% CI = 11.9–12.4) and low-density lipoprotein
cholesterol (LDL-c; 5.50 mg/dL (0.14 mmol/L); 95% CI = 5.3–5.7) than men. The recommended LDL-c
target was less frequently achieved by women as it was the simultaneous control of different CVRF. In
secondary prevention, women showed higher levels of total cholesterol (16.89 mg/dL (0.44 mmol/L);
95% CI = 16.5–17.3), higher levels of LDL-c (8.42 mg/dL (0.22 mmol/L); 95% CI = 8.1–8.8), and
higher levels of triglycerides (11.34 mg/dL (0.13 mmol/L); 95% CI = 10.3–12.4) despite similar
rates of statin prescription. Recommended targets were less often achieved by women, especially
LDL-c < 100 mg/dL (2.59 mmol/L). The composite control was 22% less frequent in women than men.
In conclusion, there were substantial sex differences in CVRF management of people with diabetes,
with women less likely than men to be on LDL-c target, mainly those in secondary prevention. This
could be related to the treatment gap between genders.

Keywords: risk factors; cardiovascular diseases; diabetes mellitus; type 2; gender

1. Introduction

According to the International Diabetes Federation (IDF), the global age-standardized
prevalence of diabetes in subjects 20–79 years in 2019 was similar between men and women
(9.6% and 9%, respectively) [1]. However, there were more diabetes-associated deaths
among women than in men (2.3 vs. 1.9 million) [1].

Large-scale meta-analyses have consistently shown that type 2 diabetes (T2DM) con-
fers a greater excess risk of macrovascular complications in women compared with men.
The relative risk of coronary heart disease (CHD) is estimated to be 44% higher in women;
the risk of stroke is 27% higher, the occlusive vascular mortality rate is nearly 50% higher,
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and the risk of vascular dementia is 19% higher [2–4]. Regarding microvascular complica-
tions, it has been reported that the risk of end-stage renal disease is 38% higher in women
than in men [2–4]. These disparities have been attributed to the interaction between sex
and gender factors in the development, risk, and outcomes of diabetes [3]. Sex differences
refer to biology-linked variations, such as sex hormones levels, body composition, and
glucose and fat metabolism. Gender differences arise from inequalities in sociocultural
processes (e.g., environmental influences, nutritional patterns, lifestyle, or attitudes toward
treatment and prevention) [3].

The mechanisms underpinning the biological disparities in the likelihood of devel-
oping diabetes-related vascular complications between sexes are not entirely understood.
Women develop diabetes at a higher body mass index (BMI) than men, and one of the
proposed explanations is that they usually have lower visceral and ectopic fat, which may
lead to a slower transition to insulin resistance and diabetes. As a result, women might be
exposed longer to hyperglycemia or a suboptimal glucose level state, resulting in greater
vascular damage and deterioration of the cardiovascular risk factors (CVRFs) [2–4]. In ad-
dition to these sex-specific differences, gender dissimilarities in diabetes management and
healthcare provision may partially contribute to the diabetes-related increased CVD risk.
For instance, although the recommendations on prevention, management, and treatment of
diabetes and diabetes-related complications are similar for both sexes, women are less likely
than men to receive guideline-recommended care [4]. Indeed, some studies have reported
that women are less likely than men to be monitored for foot and eye complications, and
they receive less effective management and screening of CV risk factors such as blood
pressure (BP), BMI, or smoking status [2,5]. Additionally, the odds of receiving statins,
antihypertensive, and antiplatelet medications differ between genders [6,7].

In Spain, a recent observational, prospective study reported that women with T2DM
have threefold higher odds of CV death than men [8]. Additionally, previously published
cross-sectional and population-based studies indicated a poorest control of CVRF in pri-
mary and secondary prevention among Spanish women [9–12]. In all of these studies,
the proportion of women was substantially lower than men, and, most importantly, the
baseline characteristics differed significantly between cohorts. For instance, women were
on average 2.5–4 years older than men, the duration of T2DM was nearly 1 year longer, they
were less likely to smoke, and the prevalence of diabetes-related micro- and macrovascular
complications was different between genders. Although these and other differences largely
exist in real-life clinical practice, they may limit the interpretation of research findings when
traditional cohort matching strategies, stratified analyses, or regression covariate adjust-
ments are used to consider heterogeneity [13]. In contrast, when patients are matched with
propensity modeling technologies, the cohorts have a balanced distribution of covariates,
thus allowing for equivalent comparisons between groups that can provide inferences
about causal effects in observational studies [13].

In Catalonia (Spain), the healthcare system is public and universal. The primary care
centers provide first contact and continuing care for persons with any health concerns,
and they are usually the principal place where T2DM is diagnosed and managed. The
antidiabetic treatment is free of charge for those retired and severely ill people, while active
subjects pay just a small part of the cost of the drugs [14]. Briefly, the primary care physi-
cians are responsible for prescribing medications through an electronic prescription that the
patient can pick up at the pharmacy. To assess prescribing practices concerning the appro-
priate use of drugs, the Health Institute of Catalonia uses a quality indicator system created
in 2003, the Pharmaceutical Prescription Quality Standard (EQPF) [15]. This study aimed
to evaluate whether the pharmacological management of T2DM and the degree of CVRF
control in primary care differ between sexes in primary and secondary prevention using a
propensity score matching method to balance the inequality of confounding covariates.
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2. Materials and Methods

2.1. Study Design

This was a matched, cross-sectional study including data from patients with T2DM
available from the SIDIAP population-based database. This database contains anonymized
patient information from the computerized medical records stored in the Electronic Clinical
station in Primary Care (eCAP). SIDIAP includes data from about 80% of the Catalonia pop-
ulation (5.835 million subjects) distributed within the 279 primary care centers belonging to
the Catalan Health Institute (ICS) [16]. The overall T2DM population has been previously
described [17], and this dataset was further used to apply the propensity score method.

The investigation conformed with the principles outlined in the Declaration of Helsinki.
The study was approved by the Ethics Committee of the Primary Healthcare Univer-
sity Research Institute (IDIAP) Jordi Gol (P14/018) and registered at ClinicalTrials.gov
(NCT04653805).

2.2. Study Variables

We used data extracted data from patients aged 31 to 90 years with a diagnosis
of T2DM (International Classification of Disease 10 [ICD-10] codes E11 and E14) as at
30 June 2013 who had at least one visit registered with the primary care team in the
previous 12 months. For this study, the following variables were used: age, gender, time
since diagnosis (years), smoking habit, number of visits with the primary care team in
the previous 12 months, estimated glomerular filtration rate (eGFR) with the MDRD
(modification of diet in renal disease) formula, presence of diabetic retinopathy (ICD-10
codes E11.3 and H36.0), albumin/creatinine ratio, BMI, glycated hemoglobin (HbA1c),
lipid profile (i.e., total cholesterol levels, high-density lipoprotein cholesterol (HDL-c), low-
density lipoprotein cholesterol (LDL-c), and triglycerides (TGs)), presence of dyslipidemia
(defined as receiving medication for this condition), prescription of glucose-lowering drugs,
lipid-lowering drugs (statins or other), blood pressure (BP) (diastolic (dBP) and systolic
(sBP)), hypertension (defined as receiving medication for this condition), prescription of
hypertension-lowering drugs, and antiplatelet and anticoagulant therapy. Chronic kidney
disease was assumed in patients with eGFR < 60 mL/min and/or albumin/creatinine
ratio > 300 mg/g. The most recent value registered was used in all cases. For those with
a previous CVD, diagnostic codes for macrovascular diseases were collected, including
coronary artery disease (CAD; ICD-10 codes I20-I24), cerebrovascular disease (ICD-10 codes
I63, I64, G45 or G46), and peripheral artery disease (PAD; ICD-10 code 173.9).

Variables to assess the degree of CVRF control and treatment goals achievement were
based on local guidelines [18], i.e., HbA1c ≤ 7% (53 mmol/mol), BP ≤ 140/90 mmHg, and
LDL-c < 130 mg/dL (3.37 mmol/L) for primary prevention and <100 mg/dL (2.59 mmol/L)
for secondary prevention. Additionally, the same variables were assessed according to the
threshold stated by our institution (ICS): HbA1c ≤ 8% (64 mmol/mol), BP ≤ 130/80 mmHg,
and LDL-c < 100 mg/dL for primary prevention and LDL-c < 70 mg/dL (1.81 mmol/L) for
secondary prevention.

2.3. Propensity Score Matching Method

Propensity score matching (PSM) was used to create subpopulations of women and
men with T2DM that were balanced in terms of baseline conditions, namely, age, duration
of T2DM, number of visits to the primary care team, presence of comorbidities (i.e., hyper-
tension, dyslipidemia, and diabetic retinopathy), eGFR value, albumin/creatinine ratio,
and smoking in primary prevention. For the analyses of those in secondary prevention,
subjects were also matched for previous macrovascular diseases. Matched groups (male
versus female group) were performed (1:1) using the one-to-one nearest neighbor algorithm
(with a caliper of 0.1 of the SD of the propensity score on the logit scale) and no replacement.
To evaluate PSM quality, we assessed the balance in covariates comparing the absolute
difference before and after the matching procedure.
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2.4. Statistical Analysis

We summarized data as the mean (standard deviation) for continuous variables
and number (percentage) for categorical variables by groups. To assess the association
between clinical variables and gender, we computed the absolute difference in the means or
proportions (Dif) between groups, and we estimated their 95% confidence interval (95% CI).
To assess the magnitude of the gender differences, we calculated the relative percentage
difference (rDif) between groups. Dif was calculated by subtracting the mean or proportion
for women from the mean or proportion for men, and rDif was calculated as the absolute
difference divided by the reference value (mean or proportion value of men) multiplied by
100. We performed graphical analyses with smoothing line plots to evaluate whether the
potential differences remained over all age ranges. We performed a complete-case analysis
excluding missing information for each quantitative variable. All analyses were performed
using the R free software environment for statistical computing (v3.5.1) and the “MatchIt”
library for the PSM [19].

3. Results

A total of 343,969 patients with T2DM were identified in the database. After the
matching procedure, there were 70,453 subjects in each primary prevention group and
19,593 in each secondary prevention group (Figure 1). Baseline characteristics in these
populations were well balanced (Figures S1 and S2).

Figure 1. Flow chart of the propensity score matching procedure.
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3.1. Primary Prevention

The baseline characteristics of the matched women and men in primary prevention are
shown in Table 1. The mean age of the overall population was 66.2 years (SD = 12.2), and
the mean duration of diabetes 7.1 years (SD = 5.4) years. Dyslipidemia was present in 52.3%
of the patients, hypertension was present in 66.7% of the patients, diabetic retinopathy was
present in 6.3% of the patients, and renal impairment was present in 15.9% of the patients.

Table 1. Baseline characteristics of matched women and men with T2DM in primary prevention by
gender.

Variable N Subjects Women N Subjects Men Dif 95% CI

Age (years), mean ± SD * 70,453 66.57 ± 12.22 70,453 65.88 ± 12.20 0.69 0.63 0.75
Diabetes duration (years),

mean ± SD *
7.10 ± 5.40 7.01 ± 5.34 0.09 0.07 0.12

Number of visits, mean ± SD *,† 6.39 ± 4.66 6.18 ± 5.08 0.21 0.19 0.24
Smoking habit, n (%) * 69,001 69,119

Nonsmoker 51,753 (75.00) 51,118 (73.96) 1.04 0.67 1.42
Smoker 7684 (11.14) 5934 (8.59) 2.55 2.29 2.81

Former smoker 9564 (13.86) 12,067 (17.46) −3.60 −3.90 −3.30
BMI (kg/m2), mean ± SD 48,047 31.09 ± 5.80 47,287 29.34 ± 4.47 1.75 1.72 1.78
HbA1c (%), mean ± SD 54,055 7.24 ± 1.37 53,476 7.22 ± 1.37 0.02 0.01 0.03

Dyslipidemia, n (%) * 70,453 37,367 (53.04) 70,453 36,264 (51.47) 1.57 1.13 2.00
Lipid profile (mg/dL), mean ± SD

Total cholesterol 54,561 199.02 ± 37.71 53,976 186.89 ± 37.16 12.13 11.91 12.35
HDL-c 49,918 53.76 ± 13.35 48,986 47.53 ± 12.15 6.23 6.15 6.31
LDL-c 116.10 ± 32.62 110.60 ± 31.29 5.50 5.30 5.70
TGs 51,514 152.23 ± 90.36 50,830 153.70 ± 110.82 −1.47 −2.09 −0.85

Hypertension, n (%) * 70,453 47,968 (68.09) 70,453 45,949 (65.22) 2.87 2.46 3.27
Blood Pressure (mmHg),

mean ± SD
59,795 59,067

dBP 75.95 ± 8.35 76.44 ± 8.62 −0.49 −0.54 −0.44
sBP 133.83 ± 13.25 134.86 ± 12.56 −1.03 −1.10 −0.96

Diabetic retinopathy, n (%) * 70,453 4418 (6.27) 70,453 4485 (6.37) −0.10 −0.29 0.10
Renal disease, n (%) *,$ 53,782 8617 (16.02) 53,493 8409 (15.72) 0.30 −0.06 0.66

95% CI, 95% confidence interval; BMI, body mass index; dBP, diastolic blood pressure; HbA1c, glycated
hemoglobin; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; Dif, differ-
ence between groups; sBP, systolic blood pressure; SD, standard deviation; TGs, triglycerides. * Variables matched
between study groups. † Number of visits with the primary care team in the previous 12 months. $ Renal disease,
including eGFR < 60 mL/min and/or albumin/creatinine ratio > 300 mg/g.

In this primary prevention population, women had higher BMI than men
(Dif = 1.75 kg/m2; 95% CI = 1.7 to 1.8) but similar values of HbA1c (Dif = 0.02%; 95% CI = 0.01
to 0.03) and BP (dBP Dif = −0.49 mmHg; 95% CI= −0.5 to −0.4 and sBP Dif = −1.03 mmHg;
95% CI = −1.1 to 0.9). Although the plasmatic TG concentration was comparable be-
tween genders, total cholesterol, HDL-c, and LDL-c were higher in women than men
(Dif = 12.13 mg/dL, 95% CI = 11.9 to 12.3; Dif = 6.23, 95% CI = 6.1–6.3; Dif = 5.50 mg/dL,
95% CI = 5.3 to 5.7, respectively). Moreover, this sex-difference in total cholesterol and
LDL-c was observed across all age ranges (Figure 2A).
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Figure 2. Smoothing line charts with changes in LDL-c, total cholesterol, and statin treatment
across age in subjects on primary prevention (A) and secondary prevention (B) by gender (LDL-c,
low-density lipoprotein cholesterol).

Differences by gender in the pharmacological management of T2DM and degree of
CVRF control are shown in Table 2 and Figure 3. As for lipid control, statins were more
frequently prescribed to women (rDif = 4.7%; Figure 3A). Regarding BP treatment, the
prescription of diuretics, beta-blockers, and two antihypertensive drugs was substantially
higher in women relative to men (rDif = 16.5%, 10.3%, and 8.1%, respectively). Lastly,
women received antiplatelet therapy less often than men (rDif = −15.0%).

Table 2. Pharmacological treatment and cardiovascular risk factor control in matched women and
men with T2DM in primary prevention by gender.

Variable N Subjects Women N Subjects Men Dif (95% CI)

Lipid-lowering treatment, n (%) * 37,367 36,264
Statins 34,933 (93.49) 32,374 (89.27) 4.22 (3.91/4.52)
Other 4653 (12.45) 6430 (17.73) −5.28 (−5.69/−4.87)

Antihypertensive treatment, n (%) † 47,968 45,949
ACEI/ARBII 38,757 (80.80) 39,492 (85.95) −5.15 (−5.54/−4.76)

CCBs 13,477 (28.10) 14,352 (31.23) −3.13 (−3.60/−2.68)
Beta-blockers 9893 (20.62) 8586 (18.69) 1.93 (1.53/2.34)

Diuretics 31,429 (65.52) 25,836 (56.23) 9.29 (8.80/9.79)
Other 2570 (5.36) 4054 (8.82) −3.46 (−3.69/−3.24)

Number of drugs
1 16,124 (33.61) 16,404 (35.70) −2.09 (−2.61/−1.57)
2 18,593 (38.76) 16,479 (35.86) 2.90 (2.40/3.40)
≥3 13,251 (27.62) 13,066 (28.44) −0.82 (−1.27/−0.35)
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Table 2. Cont.

Variable N Subjects Women N Subjects Men Dif (95% CI)

Antiplatelet therapy, n (%) 70,453 14,993 (21.28) 70,453 17,645 (25.05) −3.77 (−4.12/−3.41)
Target CVRF achievement, n (%)

BP ≤ 130/80 mmHg 59,795 20,442 (34.19) 59,067 18,558 (31.42) 2.77 (2.32/3.22)
BP ≤ 140/90 mmHg 44,555 (74.51) 42,955 (72.72) 1.79 (1.38/2.21)
LDL-c ≤ 130 mg/dL 49,918 34,707 (69.53) 48,986 36,831 (75.19) −5.66 (−6.14/−5.18)
LDL-c ≤ 100 mg/dL 16,661 (33.38) 19,213 (39.22) −5.84 (−6.35/−5.34)

HbA1c, % 54,055 53,476
≤7 30,262 (55.98) 30,152 (56.38) −0.40 (−0.91/0.11)
≤8 43,269 (80.05) 42,767 (79.97) 0.08 (−0.32/0.47)
>8 10,786 (19.95) 10,709 (20.03) −0.08 (−0.47/0.32)

HbA1c ≤ 7%, BP ≤ 140/90 mmHg,
LDL-c < 130 mg/dL 43,956 13,173 (29.97) 42,788 13,863 (32.40) −2.43 (−2.96/−1.90)

HbA1c ≤ 7%, BP ≤ 140/90 mmHg,
LDL-c < 100 mg/dL 5935 (13.50) 6787 (15.86) −2.36 (−2.74/−1.98)

95% CI, 95% confidence interval; ACEI/ARBII, angiotensin-converting enzyme inhibitors/angiotensin II receptor
blockers; BP, blood pressure; CCB, calcium channel blockers; CVRF, cardiovascular risk factor; HbA1c, glycated
hemoglobin; LDL-c, low-density lipoprotein cholesterol; Dif, difference between groups. * Lipid-lowering
treatment, proportion data calculated on the basis of those with dyslipidemia. † Antihypertensive treatment,
proportion data calculated on the basis of those with hypertension.

The proportion of women who achieved BP target levels was greater in women for
both the ≤130/80 mmHg and the ≤140/90 mmHg goals (rDif = 8.8% and 2.5%, respec-
tively). Despite women being more frequently treated with statins than men, fewer women
attained the LDL-c ≤ 130 and ≤100 mg/dL thresholds relative to men (rDif = −7.5%
and rDif = −14.8%, respectively) (Figure 3B). Regarding glycemic control, the gender
differences in the proportion of subjects below the HbA1c ≤ 7 and 8% target was negli-
gible (rDif = −0.7% and 0.1%, respectively). Lastly, the combined achievement of HbA1c,
BP, and LDL-c goals was poorest in women relative to men (rDif = −7.4% for LDL-c
target < 130 mg/dL and rDif = −14.9% for target ≤ 100 mg/dL).

3.2. Secondary Prevention

Baseline characteristics of the matched women and men with T2DM in secondary
prevention are shown in Table 3. Overall, subjects were 74.9 years old (SD = 9.9) with a
mean diabetes duration of 9.3 years (SD = 6.4). A significant proportion of patients had
dyslipidemia (78.8%), and almost all had hypertension (92.6%). Moreover, 11.7% and 35.6%
of subjects presented diabetic retinopathy and renal impairment, respectively. Regarding
macrovascular diseases, CAD was the most common prior complication (59.9%), followed
by cerebrovascular disease (37.6%) and PAD (13.9%).
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Figure 3. Plot of the relative percent difference between genders for treatments prescribed (A)
and target achievement (B) in the population in primary prevention (ACEI/ARBII, angiotensin-
converting enzyme inhibitors/angiotensin II receptor blockers; BP, blood pressure; CCB, calcium
channel blockers; HbA1c, glycated hemoglobin; LDL-c, low-density lipoprotein cholesterol; OAD,
oral antidiabetic drug).
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Table 3. Baseline characteristics of matched women and men with T2DM in secondary prevention
by gender.

Variable N Subjects Women N Subjects Men Dif 95% CI

Age (years), mean ± SD * 19,593 75.39 ± 9.99 19,593 74.38 ± 9.73 1.01 0.91 1.11
Diabetes duration (years),

mean ± SD *
9.41 ± 6.50 9.19 ± 6.27 0.22 0.16 0.29

Number of visits, mean ± SD *,† 8.58 ± 5.99 8.34 ± 6.45 0.24 0.03 0.30
Smoking habit, n (%) * 19,324 19,342

Nonsmoker 16,389 (84.81) 16,230 (83.91) 0.90 0.26 1.54
Smoker 958 (4.96) 740 (3.83) 1.13 0.79 1.48

Former smoker 1977 (10.23) 2372 (12.26) −2.03 −2.57 −1.50
BMI (kg/m2), mean ± SD 13,022 30.52 ± 5.65 13,181 28.83 ± 4.22 1.69 1.63 1.75
HbA1c (%), mean ± SD 14,738 7.31 ± 1.35 14,494 7.20 ± 1.29 0.11 0.10 0.13

Dyslipidemia, n (%) * 19,593 15,046 (76.79) 19,593 15,814 (80.71) −3.92 −4.67 −3.17
Lipid profile (mg/dL), mean ± SD

Total cholesterol 15,142 180.71 ± 39.53 14,914 163.82 ± 35.82 16.89 16.46 17.32
HDL-c 13,854 50.87 ± 12.94 13,772 45.10 ± 11.77 5.77 5.62 5.92
LDL-c 100.16 ± 32.80 91.74 ± 29.62 8.42 8.05 8.79
TGs 14,339 152.88 ± 87.11 14,128 141.54 ± 92.12 11.34 10.30 12.38

Hypertension, n (%) * 19,593 18,113 (92.45) 19,593 18,152 (92.65) −0.20 −0.64 0.24
Blood pressure (mmHg),

mean ± SD
17,381 17,326

dBP 72.15 ± 8.85 71.62 ± 8.76 0.53 0.44 0.62
sBP 134.84 ± 14.51 133.84 ± 13.69 1.00 0.85 1.15

Diabetic retinopathy, n (%) * 19,593 2330 (11.89) 19,593 2254 (11.50) 0.39 −0.16 0.95
Renal disease, n (%) *,$ 15,067 5456 (36.21) 14,969 5223 (34.89) 1.32 0.255 2.384

Macrovascular disease, n (%) * 19,593 19,593
CAD 11,512 (58.76) 11,942 (60.95) −2.19 −3.12 −1.27

Cerebrovascular disease 7532 (38.44) 7199 (36.74) 1.70 0.79 2.61
PAD 3512 (17.92) 3881 (19.81) −1.89 −2.58 −1.19

≥2 macrovascular complications 2771 (14.14) 3157 (16.11) −1.97 −2.53 −1.35

95% CI, 95% confidence interval; BMI, body mass index; CAD, coronary artery disease; dBP, diastolic blood
pressure; Dif, difference of means between groups; HbA1c, glycated hemoglobin; HDL-c, high-density lipoprotein
cholesterol; LDL-c, low-density lipoprotein cholesterol; PAD, peripheral artery disease; rDif, relative percentage
difference between sexes; sBP, systolic blood pressure; SD, standard deviation; TGs, triglycerides. * Variables
matched between study groups. † Number of visits with the primary care team in the previous 12 months. $ Renal
disease, including eGFR < 60 mL/min and/or albumin/creatinine ratio > 300 mg/g.

Similar to what was observed in primary prevention patients, women had higher
BMI than men (Dif = 1.69 kg/m2, 95% CI = 1.6 to 1.8) but there were no clinically signif-
icant differences in HbA1c levels (Dif = 0.11%, 95% CI = 0.09 to 0.1) and BP values (dBP
Dif = 0.53 mmHg, 95% CI = 0.4 to 0.6; sBP Dif = 1.00 mmHg, 95% CI = 0.9 to 1.1). Regarding
the lipid profile, TG levels in women were comparable to those observed in primary pre-
vention while they were considerably lower in men, which widened the difference between
genders (Dif = 11.34 mg/dL; 95% CI = 10.3 to 12.4). All other parameters, such as total
cholesterol, HDL-c, and LDL-c were lower than those observed in primary prevention sub-
jects, particularly in men, and all substantially higher among women (Dif = 16.89 mg/dL;
95% CI = 16.5 to 17.3; Dif = 5.77, 95% CI = 5.6 to 5.9; Dif = 8.42 mg/dL; 95% CI = 8.1
to 8.8, respectively). As shown in Figure 2B, these higher total cholesterol and LDL-c
levels in women were observed from 40 years onward and persisted in all age groups. In
comparison, values in men progressively decreased until around 80 years of age.

Differences by gender in the pharmacological management of T2DM and degree of
CVRF control are shown in Table 4 and Figure 4. The proportion of patients prescribed
statins was similar between genders (rDif = −0.5%), but treatment with diuretics and three
antihypertensive drugs was more frequent in women relative to men (rDif = 18.5% and
rDif = 5.3%, respectively) (Figure 4A). Moreover, women received less often antiplatelet and
anticoagulant therapy (rDif = −5.7% and −4.0%, respectively). Although the proportion of
patients treated with glucose-lowering drugs was similar between groups (rDif = −1%),
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women were less often prescribed one or more oral antidiabetic drugs (OAD) than men
(rDif = −3.8% for one and −18.6% for more than one OAD). Moreover, women were more
frequently treated with either insulin alone (rDif = 19.6%) or combined with one or more
OAD (rDif =32.2% with one OAD and 8.2% with more than one OAD).

Table 4. Pharmacological treatment and cardiovascular risk factor control of matched women and
men with T2DM in secondary prevention by gender.

Variable N Subjects Women N Subjects Men Dif (95% CI)

Lipid-lowering treatment, n (%) * 15,046 15,814
Statins 14,592 (96.98) 15,407 (97.43) −0.45 (−0.75/−0.14)
Other 1952 (12.97) 2185 (13.82) −0.85 (−1.53/−0.16)

Antihypertensive treatment, n (%) † 18,113 18,152
ACEI/ARBII 14,549 (80.32) 14,581 (80.33) −0.01 (−0.75/0.75)

CCB 7584 (41.87) 7427 (40.92) 0.95 (−0.03/1.93)
Betablockers 9314 (51.42) 9850 (54.26) −2.84 (−3.84/−1.85)

Diuretics 12,805 (70.70) 10,831 (59.67) 11.03 (10.10/11.95)
Other 1988 (10.98) 2867 (15.79) −4.81 (−5.42/−4.22)

Number of drugs
1 3037 (16.77) 3400 (18.73) −1.96 (−2.67/−1.26)
2 5652 (31.20) 5779 (31.84) −0.64 (−1.54/0.28)
≥3 9424 (52.03) 8973 (49.43) 2.60 (1.60/3.59)

Antiplatelet therapy, n (%) 19,593 15,203 (77.59) 19,593 16,127 (82.31) −4.72 (−5.45/−3.99)
Anticoagulant therapy, n (%) 19,593 2895 (14.78) 19,593 3018 (15.40) −0.62 (−1.23/0.03)

Diabetes treatment, n (%) 16,896 17,066
OAD

1 6220 (36.81) 6528 (38.25) −1.44 (−2.44/−0.44)
>1 4093 (24.22) 5076 (29.74) −5.52 (−6.41/−4.63)

Insulin and 1 OAD 2893 (17.12) 2210 (12.95) 4.17 (3.48/4.87)
Insulin and combined OAD 1532 (9.07) 1430 (8.38) 0.69 (0.17/1.21)

Insulin 2158 (12.77) 1822 (10.68) 2.09 (1.48/2.71)
Target CVRF achievement, n (%)

BP ≤ 130/80 mmHg 17,381 6228 (35.83) 17,326 6666 (38.47) −2.64 (−3.62/−1.66)
BP ≤ 140/90 mmHg 12,372 (71.18) 12,840 (74.11) −2.93 (−3.82/−2.04)
LDL-c < 100 mg/dL 13,854 7669 (55.36) 13,772 9161 (66.52) −11.16 (−12.31/−10.02)
LDL-c < 70 mg/dL 2245 (16.20) 3087 (22.42) −6.22 (−7.07/−5.35)
LDL-c < 55 mg/dL 762 (5.50) 1068 (7.75) −2.25 (−2.74/−1.77)

HbA1c, % 14,738 14,494
≤7 7634 (51.80) 7905 (54.54) −2.74 (−3.88/−1.60)
≤8 11,391 (77.29) 11,607 (80.08) −2.79 (−3.68/−1.90)
>8 3347 (22.71) 2887 (19.92) 2.79 (1.90/3.68)

HbA1c ≤ 7%, BP ≤ 140/90 mmHg,
LDL-c < 100 mg/dL 12,365 2593 (20.97) 12,239 3275 (26.76) −5.79 (−6.82/−4.76)

HbA1c ≤ 7%, BP ≤ 140/90 mmHg,
LDL-c < 70 mg/dL 767 (6.20) 1083 (8.85) −2.65 (−3.20/−2.09)

HbA1c ≤ 7%, BP ≤ 140/90 mmHg,
LDL-c < 55 mg/dL 262 (2.12) 379 (3.10) −0.98 (−1.28/−0.67)

Statin treatment and LDL
cholesterol target, n (%)

13,854 13,772

LDL-c < 100 mg/dL and statins 6500 (46.92) 7897 (57.34) −10.42 (−11.60/−9.24)
LDL-c < 100 mg/dL and no statins 1014 (7.32) 1090 (7.91) −0.59 (−1.13/−0.06)

LDL-c ≥ 100 mg/dL and statins 4223 (30.48) 3168 (23.00) 7.48 (6.46/8.50)
LDL-c ≥ 100 mg/dL and no statins 2117 (15.28) 1617 (11.74) 3.54 (2.79/4.29)

95% CI, 95% confidence interval; ACEI/ARBII, angiotensin-converting enzyme inhibitors/angiotensin II receptor
blockers; BP, blood pressure; CCB, calcium channel blockers; CVRF, cardiovascular risk factor; Dif, difference
between groups; HbA1c, glycated hemoglobin; LDL-c, low-density lipoprotein cholesterol; OAD, oral antidiabetic
drug; rDif, relative percentage difference between sexes. * Lipid-lowering treatment, proportion data calculated
on the basis of those with dyslipidemia. † Antihypertensive treatment, proportion data calculated on the basis of
those with hypertension.
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Figure 4. Plot of the relative percentage difference between genders for treatments prescribed (A)
and target achievement (B) in the population in secondary prevention (ACEI/ARBII, angiotensin-
converting enzyme inhibitors/angiotensin II receptor blockers; BP, blood pressure; CCB, calcium
channel blockers; HbA1c, glycated hemoglobin; LDL-c, low-density lipoprotein cholesterol; OAD,
oral antidiabetic drug).
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Despite women receiving more intensive antihypertensive treatment, they achieved
BP control less frequently than men, either at the ≤130/80 mmHg or at the ≤140/90 mmHg
goal (rDif = −6.9% and rDif = −4%, respectively) (Figure 4B). Although the proportion
of patients prescribed lipid-lowering treatments was similar between sexes, the targets
LDL < 100 mg/dL and <70 mg/dL were less often reached among women (rDif = −16.8%
and rDif = −27.7%). Regarding glycemic goals, women showed slightly worse control
relative to men (rDif = −5.0% for HbA1c ≤ 7% and −3.5% for HbA1c ≤ 8%). In accordance,
the combined target goals of glycemia (HbA1c ≤ 7%), blood pressure (BP ≤ 140/90 mmHg),
and LDL-c were less frequently achieved by women than men (rDif = −21.6% for
LDL-c < 100 mg/dL and rDif = −29.9% for LDL-c < 70 mg/dL).

4. Discussion

The results of this propensity score-matched analysis in patients with T2DM showed
that both genders exhibited comparable BP and HbA1c levels, but women had higher BMI
and a significantly poorer lipid profile than men. Moreover, there were sex disparities in
treatment prescription. Women were more frequently above recommended treatment goals,
particularly LDL-c, and the worst overall CVRF control was more pronounced in secondary
prevention patients.

The disparities in baseline characteristics between groups were observed in both the
primary and secondary prevention cohorts and agree with previous observational studies
conducted in Spain and other international large cohort studies assessing sex differences
in T2DM risk and management [2,9–12,20]. Indeed, it has been estimated that women
have a BMI nearly 2 kg/m2 higher than men at T2DM diagnosis despite similar levels
of HbA1c [21,22]. This discrepancy has mainly been attributed to the physiological fat
distribution in women, which is characterized by more subcutaneous fat mass and less
liver and visceral fat, in addition to greater glucose sensitivity compared with men [20].
Thus, women need to gain more weight and accumulate adiposity to establish a diagnosis
of diabetes, which extends the prediabetes state with a result of impairment of CVRF [23].

In our study, women had a worse overall lipid profile relative to men, mainly from
approximately 40 years onward. These results agree with recent studies reporting that
women with T2DM, particularly after menopause, have higher total cholesterol, LDL-c,
and HDL-c than men with T2DM [19,24]. This disparity would lead to a more atherogenic
lipid and proinflammatory profile in women with T2DM, in turn linked with an increased
cardiometabolic risk [25].

Most notably, our findings confirm inequalities between genders in the pharmacologi-
cal treatment of T2DM and the ability to reach guideline-recommended targets [2]. The
unfavorable lipid profile and difficulties in reaching LDL-c levels below treatment goals
among T2DM women regardless of statin treatment are well documented [10,12,19,26].
Although the prescription of statins in our study was slightly more frequent in women in
primary prevention and used at similar rates in both genders in secondary prevention, a
considerably higher proportion of women were not able to reach the corresponding LDL-c
targets relative to men in either condition. One explanation for this disparity could be
that women are less likely to receive high-intensity statins than men [27,28]. Other factors
may interfere, such as an inadequate adherence to statins (estimated to be 10% greater in
women than in men [29]), worse tolerance to this drug class, and less likelihood than men
to believe that statins are safe or effective [28].

Although there are divergences in the literature, most studies reported no differ-
ences between sexes regarding HbA1c control [2]. Our findings show that the degree
of glycemic control was similar in both groups in primary prevention, but it was a little
worse among women in secondary prevention. However, women were more likely to be
prescribed insulin, alone or in combination. A large population-based study conducted
in 415,294 Italian patients with T2DM reported that insulin was more frequently used in
women than men when off the HbA1c target [26]. Moreover, that study found a wider
use of diuretics in women than men and a slightly higher likelihood of reaching the BP
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target < 130/80 mmHg [26]. We also found that women received more intense antihyper-
tensive treatment, particularly diuretics, but they were more frequently on BP target only
in the case of primary prevention. This agrees with a previous study conducted in our
population [10], but contrasts two observational studies conducted in the Netherlands,
where stratified analyses found no gender differences in the percentage of patients with
or without CVD receiving antihypertensive medication and attaining BP control [20,30].
The discrepancy between studies may be more related to sociodemographic factors than
sex-specific differences. For instance, one of the Dutch studies found that women with
lower educational level had a higher likelihood of receiving antihypertensive medication
when systolic BP > 140 mmHg and were at a higher CVD risk than men [20].

As a result of the suboptimal management of individual CVRF among women (particu-
larly LDL-c levels in primary prevention, and LDL-c and BP levels in secondary prevention),
the simultaneous attainment of glucose, lipid, and BP recommended goals was considerably
less satisfactory among women even when more intensely treated than men. It has been
reported that this gap in CV risk burden is due to the existence of additive factors beyond
biological dissimilarities, such as lifestyle, cultural and/or socioeconomic factors, and
physician biases [2]. For instance, physical activity levels are lower in women with T2DM
than their male counterparts [31], and men were more successful in reducing and maintain-
ing weight than women in most studies [32]. Furthermore, there is still a widespread belief
among health professionals that CVD is more prevalent in men, leading to underestima-
tion of the problem among women and, consequently, to undertreatment [23]. Moreover,
the intensified multifactorial treatment approach, including nonpharmacological (lifestyle
recommendations and close monitoring of laboratory and clinical parameters) and pharma-
cological treatment, have demonstrated a remarkable benefit for reducing the risk of major
cardiovascular events (MACEs) and mortality in high-risk diabetic kidney disease [33]

The main strength of this study is the use of real-world data from a large dataset of
primary healthcare services in Catalonia that includes urban and rural areas. Moreover, we
used a propensity score matching method to homogenize the sample with a satisfactory
reduction in absolute differences of potential confounding variables between genders after
the matching procedure. Some studies examined the performance of several methods using
PSM for the estimation of different measures of association, showing that the PSM approach
estimates with less bias than other regression techniques [34–36]. However, the findings
of this study must be seen in light of some limitations. Firstly, the cross-sectional design
did not allow establishing a causal relationship between the variables. Secondly, we had
no data on variables known to contribute to the observed sex dimorphism in diabetes risk
and outcome, such as psychosocial risk factors (e.g., socioeconomic status, social support,
or educational level) or health behavior (e.g., diet, physical activity, alcohol consumption).
Thirdly, we had no data on the doses of the prescribed drugs and whether there were
any contraindications (allergies, comorbidities, etc.) that could partially explain gender
differences in the disease management. Moreover, we could not assess adherence to the
prescribed medications, which may have partly contributed to the observed disparity in
CVRF control between sexes. Fourthly, it is not known which comes first, the specific
laboratory result (total cholesterol, LDL-c, HDL-c, TGs, and HbA1c) or the particular drug
prescription. However, this bias would be present in both groups. Moreover, we did not
use the CV risk classification from the 2019 ESC/EASD Guidelines (i.e., moderate, high,
or very high CV risk) as the data used predated this recommendation, and the applicable
stratification at that time was the requirement of primary vs. secondary prevention. A
large population-based study conducted on 373,185 type 2 diabetic subjects in Catalonia
reported that at least 50% of them were at very high risk of CV events according to
ESC/EASD 2019 classification, and approximately 26% presented with previous CVD [37].
This figure is similar to the proportion of subjects with prior CVD that we included in the
secondary prevention group in our study (21.8%). However, categorizing and treating
patients according to their CV risk as per the new recommendations will probably provide
a more comprehensive and tailored T2DM management than if we only consider the
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primary/secondary approach [38]. Lastly, we cannot discard that the physician’s sex might
have somehow influenced the patient’s assessment and care.

5. Conclusions

It is essential that, in the process of care, healthcare professionals, from nurses to physi-
cians and researchers, know and consider that CVD is not only a male issue. Inequalities in
the management and control of CVRF in women with T2DM may contribute to an increased
risk of CVD compared with men. While more research is needed to elucidate the causes of
these inequalities, there is a need to implement gender-sensitive strategies to minimize the
existing treatment gap. These should include more stringent follow-up implementing an
intensified multifactorial treatment approach to achieve optimal risk factor management
and educational programs for healthcare professionals and patients to give visibility and
cope with gender disparities.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/jcm11082196/s1: Figure S1. Absolute differences between patients
with T2DM according gender in primary prevention (DaysDM, days since type 2 diabetes mellitus di-
agnosis; Smoke: n/d, smoking status not known; ExSmoke, former smoker; HTA, hypertension; DSL,
dyslipidemia; Nvis_m, number of visits done in primary healthcare last year; FG_cat62, glomerular
filtration rate < 15 mL/min; FG_cat63, glomerular filtration rate 15–30 mL/min; FG_cat64, glomeru-
lar filtration rate 31–44 mL/min; FG_cat65, glomerular filtration rate 45–59 mL/min; FG_cat69,
glomerular filtration rate > 60 mL/min; QAC_cat2, urinary albumin creatinine ratio < 30 mg/g;
QAC_cat3, urinary albumin creatinine ratio 30–300 mg/g; QAC_cat4, urinary albumin creatinine
ratio > 300 mg/g; RD, diabetic retinopathy); Figure S2. Absolute differences between patients with
T2DM according gender in secondary prevention (DaysDM, days since type 2 diabetes mellitus diag-
nosis; Smoke: n/d, smoking status not known; ExSmoke, former smoker; HTA, hypertension; DSL,
dyslipidemia; Nvis_m, number of visits done in primary healthcare last year; FG_cat62, glomerular
filtration rate < 15 mL/min; FG_cat63, glomerular filtration rate 15–30 mL/min; FG_cat64, glomeru-
lar filtration rate 31–44 mL/min; FG_cat65, glomerular filtration rate 45–59 mL/min; FG_cat69,
glomerular filtration rate > 60 mL/min; QAC_cat2, urinary albumin creatinine ratio < 30 mg/g;
QAC_cat3, urinary albumin creatinine ratio 30–300 mg/g; QAC_cat4, urinary albumin creatinine
ratio > 300 mg/g; RD, diabetic retinopathy; artper, peripheral artery disease; ci, coronary disease; avc,
cerebrovascular disease; ic, heart failure).
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Abstract: There has been little focus on designing tailored diabetes management strategies in devel-
oping countries. The aim of this study is to develop a theory-driven, tailored and context-specific
complex intervention for the effective management of type 2 diabetes at a tertiary care setting of a
developing country. We conducted interviews and focus groups with patients, health professionals,
and policymakers and undertook thematic analysis to identify gaps in diabetes management. The
results of our previously completed systematic review informed data collection. We used the United
Kingdom Medical Research Council framework to guide the development of the intervention. Results
comprised 48 interviews, two focus groups with 11 participants and three co-design panels with
24 participants. We identified a lack of structured type 2 diabetes education, counselling, and collabo-
rative care of type 2 diabetes. Through triangulation of the evidence obtained from data collection, we
developed an intervention called VICKY (patient-centred collaborative care and structured diabetes
education and counselling) for effective management of type 2 diabetes. VICKY comprised five
components: (1) patient-centred collaborative care; (2) referral system for patients across transitions
of care between different health professionals of the diabetes care team; (3) tools for the provision
of collaborative care and documentation of care; (4) diabetes education and counselling by trained
diabetes educators; and (5) contextualised diabetes education curriculum, educational materials, and
documentation tools for diabetes education and counselling. Implementation of the intervention
may help to promote evidence-based, patient-centred, and contextualised diabetes care for improved
patient outcomes in a developing country.

Keywords: type 2 diabetes; complex intervention; behaviour change intervention; co-design; conti-
nuity of care; developing country; Ethiopia; patient participation; patient transfer

1. Introduction

Type 2 diabetes is a global public health problem and an economic burden to nations,
particularly developing countries [1]. It contributes to cardiovascular complications, such
as ischemic heart disease, heart failure, and renal disorders [2–4].

Ineffective management of type 2 diabetes has been associated with poor clinical out-
comes, which include disease progression, and increased health services utilisation, such as
repeated hospitalisations and high all-cause mortality [5–7]. In Sub-Saharan Africa (SSA) [8–10]
including Ethiopia [11–13], there exists a high rate of diabetes-related morbidity and mortality,
high cost of diabetes care, and poor quality of life for patients with type 2 diabetes. Excessive
levels of diabetes-related problems and high cost of type 2 diabetes care in SSA are attributed to
widespread lack of treatment success, stemming from inadequate organisational involvement
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and delivery of care [8,9,14]. Multiple contributing factors exist in the region, such as a lack of
contextually tailored diabetes management approaches, inadequate diabetes training of health
professionals, and low levels of collaborative care and effective shared treatment plans devel-
oped by patients and health professionals [10,14–16]. In Ethiopia, similar factors contributing
to ineffective management of type 2 diabetes exist, including inadequate collaborative care
among pharmacists, physicians, and nurses; lack of structured diabetes education; and high
levels of medication therapy problems and diabetes complications [13,17–23].

Patient-centred collaborative care and the use of culturally tailored interventions,
including behavioural interventions, can improve diabetes care in low-income coun-
tries [14,24,25]. Evidence indicates that SSA nations require evidence-based type 2 diabetes
management strategies tailored to the context and aimed at reducing diabetes-related
morbidity and mortality and high healthcare costs [10,16,26]. However, there has been
little focus on designing contextually tailored type 2 diabetes management strategies in
this region. While evidence suggests that structured diabetes education and counselling
and collaborative care by pharmacists, physicians, nurses, and other health professionals
can improve health outcomes and cost of type 2 diabetes treatment [27–30], implemen-
tation needs for such elements of care are not readily understood for type 2 diabetes in
Ethiopia [21,22,31,32]. Furthermore, studies examining type 2 diabetes in Ethiopia are
mainly observational and focused on the rate of glycemic control, magnitude of diabetes-
related complications, quality of care, and mortality. Moreover, there has been no focus on
designing appropriately tailored interventions to improve diabetes care [12,13,18,33–38].
To the authors’ knowledge, there has been no pragmatic study undertaken to explore the
dynamics of current management for type 2 diabetes at a micro- or meso-level or devise
much-needed diabetes management strategies tailored to SSA [10,14,16,39,40].

The aim of this study was to develop a theory-driven, tailored, and context-specific
complex intervention for the effective management of type 2 diabetes at a tertiary care
setting of a developing country.

2. Materials and Methods

The study was undertaken at the diabetes centre of a tertiary teaching hospital (Tikur
Anbessa Specialised Hospital) in Addis Ababa, Ethiopia. Diabetes care is provided at the
diabetes centre of the hospital by endocrinologists, endocrinology fellows, internal medicine
residents, and nurses [41]. Each month, the diabetes centre serves about 1200 ambulatory
patients with type 2 diabetes [42].

The United Kingdom Medical Research Council (UK MRC) [43] framework was used
to guide the development of a complex intervention. The MRC framework comprises
detailed information about the systematic development of interventions. It utilises the best
available evidence and appropriate theory to develop an intervention using a carefully
phased approach [43]. The framework has four key elements (Figure 1) [43]: developing a
complex intervention, feasibility and piloting, evaluation, and implementation.

2.1. Developing a Complex Intervention

Developing a complex intervention involves three steps (Figure 1): (1) identifying the
evidence base, (2) identifying and developing an appropriate theory of the intervention,
and (3) modelling the process and outcomes of a complex intervention [43]. This study
used all three steps throughout the development of the intervention.

2.2. Identifying the Evidence Base

The first stage in the development of a complex intervention is to identify an existing,
relevant evidence base [43]. We undertook a systematic review on the effectiveness of
clinical pharmacy interventions on health and economic outcomes of patients with type 2
diabetes [30]. We also completed semi-structured interviews and focus groups with adult
patients with type 2 diabetes, health professionals, and policymakers of Tikur Anbessa
Specialised Hospital (TASH) and the Ministry of Health of Ethiopia to generate evidence
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and identify gaps in the management of type 2 diabetes at the hospital. We brought all
the relevant evidence obtained through the systematic review [30], interviews, and focus
groups together to understand the issues relating to effective and ineffective management
of type 2 diabetes and the relevant behaviours that could be targeted for the intervention.

 

Figure 1. Key elements of the development and evaluation process (Craig et al., 2008). Reproduced
with permission of the UK Medical Research Council.

2.3. Identifying and Developing Theory

Identification and development of appropriate theory in intervention design is key to un-
derstanding the possible processes of change [43,44]. The use of a theoretical approach in the
design of healthcare interventions has been demonstrated to improve the effectiveness of the
interventions [44–46]. In this study, the Behaviour Change Wheel (BCW) framework [46,47]
was used as a guide to develop an evidence-based behaviour change intervention for the
effective management of type 2 diabetes. Use of the BCW supplements the MRC framework to
design effective complex interventions to change behaviour in a healthcare system [44,48]. The
framework can be used to develop interventions at any level (individuals, groups, and organi-
sations) in healthcare systems [47]. The BCW framework has been effectively implemented in
developing behaviour change interventions in healthcare [49–53]. The theory of the complex
intervention for this study focused on designing an organisational level intervention, as this
approach has been demonstrated to improve the effectiveness of type 2 diabetes management
in previous studies [54–56].

We used a co-design panel comprising patients, health professionals, and policymak-
ers at TASH and the Ministry of Health of Ethiopia with a representative of the Ethiopian
Diabetes Association and incorporated the findings from the systematic review [30], in-
terviews, and focus groups to inform the initial stages of development of the theory of
the complex intervention. We conducted three consecutive co-design workshops with the
co-design panel to help with the first two stages of the BCW [47] (Figure 2).
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Figure 2. Activities undertaken in the co-design workshops.

2.3.1. Workshop I

The first co-design workshop involved health professionals, policymakers from TASH
and the Ministry of Health of Ethiopia, and a professional officer from the Ethiopian
Diabetes Association (Figure 2). During the workshop, we sought to define the problems
affecting the effective management of type 2 diabetes in behavioural terms and selected
potential target behaviours deemed to improve the management of type 2 diabetes. The
co-design panel also discussed the findings of interviews and focus groups and validated
that they truly reflected the existing challenges of diabetes care at the diabetes centre of
TASH. The panel then defined the problem of suboptimal management of type 2 diabetes
in behavioural terms and identified potential target behaviours for the intervention that
would help to improve the management of type 2 at TASH using the findings from the
systematic review [30], interviews, and focus groups [42]. The identification of potential
target behaviour based on impact, measurability, changeability, and spillover effect was
undertaken by rating each list of potential target behaviours identified via interviews and
focus groups as unacceptable, unpromising but worth considering, promising, and very
promising, by each participant of the co-design panel [47].

2.3.2. Workshop II

We conducted the second co-design workshop with patients with type 2 diabetes (Figure 2).
The purpose of undertaking workshop II was to incorporate the views and experiences of
patients and engage them in the intervention design. In this workshop, patients discussed the
findings of the systematic review [30], interviews and focus groups, and validated these find-
ings; they defined the problem related to facilitating effective management of type 2 diabetes in
behavioural terms; and selected potential target behaviours deemed to address the problem. In
this workshop, each co-design panel member rated and identified potential target behaviours
as described for workshop I. The panel also elected and assigned one patient amongst the
group who participated in the third co-design workshop.
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2.3.3. Workshop III

A joint workshop was undertaken with a nominated patient, health professionals,
policymakers, and a professional officer from the Ethiopian Diabetes Association. The
workshop involved examining the defined problem related to the effective management of
type 2 diabetes and the selected potential target behaviours during the two separate work-
shops (workshop I and II). The workshop panel members specified the target behaviours
that were agreed upon. In workshop III, the panel members discussed and reached a
consensus on the defined problem related to effective management of type 2 diabetes
and the selected potential target behaviours at workshops I and II (Figure 2). The criteria
for prioritisation and selection of the potential target behaviours for the intervention in
workshop III followed the same procedures used in workshops I and III. The co-design
panel in the third workshop specified the potential target behaviours for the intervention
in terms of the following:

• Who needs to perform the behaviour?
• What do they need to do differently to achieve the desired change?
• When do they need to do it?
• Where do they need to do it?
• How often do they need to do it?
• With whom do they need to do it?

The co-design panel worked through stage one to stage three of the behaviour change
intervention design process [47]. The steps in the BCW (Figure 3) were sequentially explored
by the co-design panel throughout the three workshops, to both ensure that the appropriate
behaviours were targeted, and the intervention functions were achievable and practical in
the context of TASH.

Figure 3. Behaviour change intervention design process (Michie et al., 2014).

Stage One

This stage involved four steps (Figure 3) [47]. Step I involved defining the problem
in behavioural terms (i.e., being specific about the target individual, group, or population
involved in the behaviour and the behaviour itself). Step II comprised selecting the target
behaviour for the intervention among a list of behaviours [47]. Step III involved specifying
the target behaviour. Step IV comprised identifying what needs to change for the behaviour
to change in terms of capability, opportunity, and/or motivation in the target population,
group, or individual [47].

Stage Two

This stage involves the use of the behavioural diagnosis [47] to:

a. Decide what ‘intervention functions’ to apply: education, persuasion, incentivisation,
coercion, training, restriction, environmental restructuring, modelling, and enablement;
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b. Select implementation strategy: fiscal policy, legislation, regulation, environmental
planning, communications, service provision, and guidelines development.

Stage Three

The focus of the third stage is to:

a. Develop a detailed intervention plan by selecting from among a range of specific
behaviour change techniques (BCTs) [57]. Michie identified 93 BCTs within 16 group-
ings. We used Michie’s BCTs [57] to characterise components for the behavioural
intervention in this study;

b. Create the detailed intervention specification covering all aspects of content and de-
livery of the intervention structured around the chosen BCTs and modes of delivery.

Appropriate intervention functions, BCTs, and intervention contents were determined
through discussion between the co-design panel and the research team and using the
APEASE criteria [47]. The APEASE criteria refer to affordability, practicability, effectiveness,
acceptability, safety/side effects, and equity [47].

2.4. Modelling and Creating a Complex Intervention

Modelling of a complex intervention [43] helps to precisely describe and comprehend
the interaction of individual intervention components, and perceive possible effects of the
intervention [58]. The careful design of a model of a complex intervention is a critical step
in designing tailored and contextualised interventions in healthcare systems and choosing
appropriate outcomes so that the benefits and risks of the interventions are demonstrated
effectively [58].

In this study, we operationalised the intervention functions and BCTs into a complex
intervention to improve the effectiveness of type 2 diabetes management. The researchers
collaborated with the co-design panels in operationalising the intervention functions and
BCTs into the mode of care delivery using the BCW framework [47]. We used the Re-
vised Standards for Quality Improvement Reporting Excellence: (SQUIRE 2.0) publication
guidelines [59] to report the findings of this study (Supplementary Materials Table S1).

3. Results

3.1. Study Participants

We undertook interviews with 48 participants and two focus groups (n = 11) with
patients with type 2 diabetes, health professionals, and policymakers from TASH and the
Ministry of Health of Ethiopia [42] comprising an overall sample of 59 participants; three co-
design workshops (n = 24); and a systematic review on the effectiveness of clinical pharmacy
interventions on health and economic outcome of patients with type 2 diabetes [30] to help
with the intervention design.

3.2. Step One: Define the Health Problem in Behavioural Terms

Evidence from the interviews and focus groups we have undertaken, previous find-
ings [11–13,60], feedback from the co-design workshops, and the context of the hospital
enabled identification of the health problem. We identified that improving the effectiveness
of type 2 diabetes management for patients with type 2 diabetes was the specific problem
existing at the diabetes centre of TASH.

3.3. Step Two: Select the Target Behaviour

We identified through interviews, focus groups, and co-design workshops that had
challenges for the effective management of type 2 diabetes related to:

1. Lack of resources, such as medications, laboratory, and diagnostic tests;
2. Lack of continuity of care, such as prolonged follow up clinic visits;
3. Lack of knowledge and awareness of patients about type 2 diabetes and its complications;
4. Lack of self-care activities;
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5. Low level of type 2 diabetes education and counselling services;
6. Low competence and experience of health professionals providing diabetes care;
7. Inefficient collaboration among health professionals (nurses, physicians, and pharma-

cists) in the care of type 2 diabetes;
8. Absence of involvement of clinical pharmacists, dietitians or nutritionists, and psy-

chologists in the care of type 2 diabetes.

Our findings from interviews and focus groups demonstrated that the problem of the
effective management of type 2 diabetes can be addressed through multiple behaviours
targeted in a complex intervention. These include: ensuring continuity of care; enabling
provision of structured type 2 diabetes education and counselling by competent health
professionals; providing collaborative care of type 2 diabetes, involving clinical pharmacists,
dietitians or nutritionists, and psychologists in type 2 diabetes care; improving health
professionals’ competency, commitment and professional ethics; and improving the referral
system of patients with type 2 diabetes between TASH and other health institutions [42].
The co-design panels in workshop I and II discussed the identified list of potential target
behaviours for the intervention that helped with improving the effective management of
type 2 diabetes at TASH.

During the co-design workshop, the co-design panel prioritised the potential target
behaviours, out of which the four potential target behaviours are listed from highest to
lowest priority:

1. Provide structured diabetes education and counselling with competent health profes-
sionals;

2. Enable collaborative care of type 2 diabetes;
3. Involve clinical pharmacists, dietitians or nutritionists, and psychologists in the care

of type 2 diabetes as members of the collaborative care team;
4. Improve health professionals’ competency, commitment, and professional ethics

through trainings.

Similarly, the co-design panel in workshop II identified and prioritised the following
potential target behaviours for intervention in descending order of priority.

1. Ensure continuous availability of medications;
2. Ensure continuous availability of laboratory and diagnostic tests;
3. Involve clinical pharmacists, dietitians or nutritionists, and psychologists in the care

of type 2 diabetes as members of the collaborative care team;
4. Enable collaborative care of type 2 diabetes;
5. Integrate all type 2 diabetes care services at the diabetes centre.

Given the evidence from the interviews, focus groups, and previous findings [22,30,61],
based on the context of the hospital, and the “less is more approach” of the BCW [47], it
was beneficial to start the intervention with few behaviours and build upon these incre-
mentally [47]. The panels in the co-design workshop III then identified and agreed that the
effective management of type 2 diabetes at TASH may most likely be improved through the
provision of structured diabetes education, counselling, and collaborative care (involving
clinical pharmacists, dietitians or nutritionists, and psychologists) of type 2 diabetes. The
panels agreed that these behaviours could easily be changed, measured, and be shared by
other health professionals and health facilities with the available resources.

The co-design panels confirmed that there was no involvement of clinical pharmacists,
dietitians or nutritionists, and psychologists in the provision of type 2 diabetes care. It
was found that there was a profound deficiency of the collaborative care of type 2 diabetes
at the diabetes centre of TASH. A collaboratively working care team is more likely to be
responsive, efficient, and provide improved care [61]. As multiple behaviours interact
and play a role in the provision of structured diabetes education and counselling and
collaborative care of type 2 diabetes [62–65], the co-design panel and the research team
targeted changing the behaviours of the health professionals (physicians, nurses, and
pharmacists, and dietitians or nutritionists) to improve the care of type 2 diabetes at TASH.
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3.4. Step Three: Specify the Target Behaviour

After the selection of the potential target behaviours for intervention, the co-design
panel in workshop III specified the two target behaviours, namely to enable the provision of
structured type 2 diabetes education, counselling, and collaborative care of type 2 diabetes.
These details are found in the table of Supplementary Materials (Table S2).

The findings of the interviews, focus groups, and co-design panel workshops indicated
the need for the involvement of physicians, nurses, clinical pharmacists, dietitians or nutri-
tionists, psychologists, and peer diabetes educators in the provision of structured diabetes
education and counselling with patients or family members (caregivers) to improve the
care of type 2 diabetes at TASH. The structured diabetes education involved the education
of patients with type 2 diabetes about the condition, its complications, and management
and self-care activities (Table S2).

In enabling the collaborative care of type 2 diabetes, physicians, nurses, clinical
pharmacists, dietitians or nutritionists, and psychologists would work in coordination
with patients and their families (caregivers), administrative bodies of the hospital, and
the Ministry of Health of Ethiopia. A collaborative care team would be organised at the
diabetes centre of TASH. The duties and activities of each member of the diabetes care team
are described in the table of Supplementary Materials (Table S2).

3.5. Step Four: Identify What Needs to Change

We used the COM-B system [47] to identify health professionals’ and policymakers’
capabilities (C), opportunities (O), and motivations (M) for providing or not providing struc-
tured diabetes education, counselling, and collaborative care of type 2 diabetes (Table S3).
The research team performed behavioural diagnosis through triangulation of the findings
of the interviews, focus groups, the systematic review [30]; and feedback from the co-design
panels and the research team discussions. This information was used to determine what
needed to change to enable health professionals to provide structured type 2 diabetes
education, counselling, and collaborative care of type 2 diabetes at TASH.

3.5.1. Structured Type 2 Diabetes Education and Counselling

The provision of structured diabetes education and counselling at TASH was ham-
pered by a lack of availability and involvement of trained and qualified multidisciplinary
health professionals in diabetes education and counselling (C). Insufficient time for the
consultation of patients (O) and inadequate space (O) led to a lack of physical opportunity
to provide structured diabetes education and counselling about type 2 diabetes. Patient
adherence to diabetes educations sessions (O) negatively affected the provision of type
2 diabetes education at TASH. A triangulation of evidence from the interviews, focus
groups, systematic review [30], co-design workshops, and the research team discussions
and behavioural analysis ensured that there is a need to change the psychological capability,
physical and social opportunity, and reflective and automatic motivation of health profes-
sionals to achieve the provision of structured type 2 diabetes education and counselling of
type 2 diabetes at TASH (Table S3).

3.5.2. Collaborative Care

Time shortages and inappropriate space (O), poor communication among health pro-
fessionals (O), lack of commitment and motivation of health professionals and policymakers
(M), and absence of policies and guidelines for collaboration (O) contributed to a lack of
collaborative care of type 2 diabetes at TASH. We triangulated the findings from interviews,
focus groups, the co-design panel workshops, and the research team discussions and per-
formed the behavioural analysis using the COM-B [47]. We analysed that the psychological
capability, physical and social opportunity, and reflective and automatic motivation of
health professionals have to be changed in order to provide collaborative care of type 2
diabetes at TASH (Table S3).
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3.6. Step Five: Identify Intervention Functions

Intervention functions appropriate to the context of TASH and that help to improve the
management of type 2 diabetes were determined using the APEASE criteria [47] (Table S4).

3.6.1. Intervention Functions for the COM-B Components of the Target Behaviour
Provision of Structured Diabetes Education and Counselling

We used the BCW [47] mapping matrix to link the identified COM-B components;
namely, psychological capability, physical and social opportunity, automatic and reflective
motivation for the target behaviour, and provision of structured diabetes education and
counselling with intervention functions. Based on the results of the APEASE criteria [47], we
identified five intervention functions (Table S4); namely, education, training, environmental
restructuring, modelling, and enablement that help with the intervention to bring about
change in the targeted behaviour [47].

3.6.2. Intervention Functions for the COM-B Components of The Target Behaviour in
Collaborative Care of Type 2 Diabetes

We linked the COM-B components of the collaborative care of type 2 diabetes (psycho-
logical capability, physical and social opportunity, and automatic and reflective motivation)
with intervention functions using the BCW [47] mapping matrix to identify intervention
functions for the collaborative care of type 2 diabetes. We identified that education, incen-
tivisation, training, environmental restructuring, modelling, and enablement were the most
appropriate and pertinent intervention functions to the existing context of TASH in helping
to change the target behaviour (collaborative care) (Table S4).

3.7. Step Six: Identifying Policy Categories for the Target Behaviours’ Provision of Structured
Diabetes Education, Counselling, and Collaborative Care of Type 2 Diabetes

After identification of the intervention functions, we evaluated the appropriate policy
categories that support the delivery of the intervention functions using the APEASE crite-
ria [47]. Guidelines, environmental/social planning, and service provision were deemed
appropriate to our context to support the intervention functions for the target behaviour
provision of structured diabetes education and counselling. To support the delivery of the
intervention functions for the target behaviour provision of the collaborative care of type 2
diabetes, guidelines, regulation, environmental/social planning, and service provision were
the policy categories identified that were deemed appropriate to our context (Table S4).

3.8. Step Seven: Identifying Behaviour Change Techniques

Behaviour change techniques are active components of an intervention designed to
change behaviour [57] that help to characterise the active components of the healthcare
intervention [66]. We specified BCTs deemed to be the most effective and feasible in
our context of improving the provision of structured diabetes education, counselling,
and collaborative care of type 2 diabetes through the triangulation of a literature review;
findings of the interviews, focus groups, and the systematic review [30]; and using the
APEASE criteria [47]. We linked the intervention functions identified in step five with
the most commonly used BCTs described in the Behaviour Change Technique Taxonomy
version 1 (BCTTv1) [57] and identified the following 12 BCTs for the target behaviour
provision of structured diabetes education and counselling (Table S5):

1. Feedback on behaviour;
2. Self-monitoring of behaviour;
3. Prompt/cues;
4. Salience of consequences;
5. Instruction on how to perform the behaviour;
6. Demonstration of the behaviour;
7. Restructuring the physical environment;
8. Restructuring the social environment;
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9. Adding objects to the environment;
10. Goal setting behaviour;
11. Action planning;
12. Social support (unspecified).

3.9. Step Eight: Mode of Delivery and Development of the Complex Intervention

We operationalised the identified BCTs and identified modes of delivery for the provi-
sion of structured education and counselling with trained diabetes educators and collabora-
tive care of type 2 diabetes and developed a complex intervention (Table S6). We created a
complex intervention called VICKY (Patient-centred collaborative care and evidence-based
structured diabetes education and counselling supported with educational materials) to im-
prove the management of type 2 diabetes at TASH. Figure 4 summarises the development
of the complex intervention according to the first stage of the UK MRC framework [43].

Figure 4. The processes involved in modelling and creating the complex intervention.

The complex intervention (VICKY) consisted of five components (Table 1).
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Table 1. Components and intervention plan of the complex (VICKY) intervention.

Components of the Complex Intervention
(VICKY)

Intervention Plan and Activities

1

Patient-centred collaborative care
by a team of physicians, clinical
pharmacists, nurses, dietitians or
nutritionists, psychologists,
and policymakers.

• Establish a multidisciplinary collaborative care team of physicians, nurses, clinical pharmacists, dietitians or
nutritionists, psychologists, policymakers, and trained diabetes educators

• Educational meetings, refresher trainings, discussion forums and refreshments, and feedback mechanisms for
the collaborative care team

• Training of the collaborative care team about collaborative care through practical clinic attachments, role plays,
and videos.

• Organise a separate working room for clinical pharmacists for the provision of clinical pharmacy services.
• Mentorship and supervision of junior health professionals by senior professionals.
• Establish a referral system for patients during transition of care between health professionals.

2

Referral system for patients
across transition of care between
different health professionals of
the diabetes care team
(physicians, clinical pharmacists,
nurses, dietitians or nutritionists,
psychologists, and policymakers).

3

Tools for provision of
collaborative care and
documentation for the
care provided.

• Protocol that guides the diabetes care team for the provision of collaborative care and referral systems across
transition of care between health professionals.

• Develop checklists to document the services provided by the collaborative care team to ensure collaborative
care was provided

• Checklists and documentation tools such as clinical pharmacy services documentation forms that support the
provision of collaborative care activities.

4

Evidence-based structured
diabetes education and
counselling by a team of trained
physician, nurse, clinical
pharmacist, dietitian or
nutritionist, and expert patient.

• A multidisciplinary team of individuals comprising nurses, clinical pharmacists, physicians, dietitians or
nutritionists, peer diabetes educators, and policymakers will be established as a team of diabetes educators at
the diabetes centre of TASH.

• Diabetes educators’ training tailored to the context of the hospital and the country will be provided to the
multidisciplinary team of nurses, clinical pharmacists, physicians, dietitians or nutritionists, peer diabetes
educators, and policymakers to produce trained diabetes educators at the diabetes centre.

• Context-specific diabetes education manual and educational materials such as brochures, leaflets, audio-visuals.
• Design computerised patient referral forms for patients that require diabetes education and counselling.
• Contextualised diabetes education checklist and patient diary will be developed.

5

Educational materials and
documentation tools for
structured diabetes education
and counselling.

The following 13 BCTs were linked to the intervention functions for the target be-
haviour in the collaborative care of type 2 diabetes (Table S5).

1. Self-monitoring of behaviour;
2. Prompt/cues;
3. Feedback on behaviour;
4. Instruction on how to perform the behaviour;
5. Restructuring the physical environment;
6. Restructuring the social environment;
7. Adding objects to the environment;
8. Demonstration of the behaviour;
9. Goal setting behaviour;
10. Action planning;
11. Social support (unspecified);
12. Social support (practical);
13. Problem solving.

We used the logic model (Figure 5) to link the context of the healthcare system, such
as study setting, the resources, intervention activities, theory, and assumptions underlying
the intervention, and the intervention plan, in a logical order [67,68].
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Figure 5. Logic Model linking context of the healthcare system, resources, and intervention activities
(Conrad et al., 1999).

4. Discussion

This paper describes a systematic development of a tailored complex intervention to
improve the effectiveness of the management of type 2 diabetes in a tertiary care setting of a
developing country. To our knowledge, the complex intervention is the first theory-driven
and context-specific intervention designed using the first stage of the UK MRC framework
and the BCW and co-design approaches for the management of type 2 diabetes in Ethiopia.

Our intervention addresses an organisational level intervention that involves multiple
stakeholders and multifaceted approaches, such as the training of health professionals,
provision of educational materials, collaborative care, and patient involvement in the care
process. Multifaceted approaches have been demonstrated to be successful in improving
healthcare in resource-limited settings, including SSA [69–72]. Moreover, multi-level
involvement comprising patient and healthcare provider-targeted interventions are likely
to be successful in improving healthcare [73–75].

Implementation science offers opportunities to design novel healthcare approaches to
ensure the utilisation of resources for evidence-based healthcare delivery in developing
countries, including SSA [76,77]. Efforts have also been undertaken to enhance the use
of implementation science in SSA [76,78,79] in view of the feasibility and effectiveness
of implementation science in the healthcare intervention in this setting [70,76,80]. The
resources available for healthcare in SSA are limited, which therefore requires the design,
testing, and implementation of novel approaches for healthcare [81,82]. In this study, a
novel approach for diabetes care that is based on the context of the available resources
of a tertiary care setting in a developing country [22,31,32,41,83–85], has been designed.
The intervention developed in this study may be of value in improving the quality and
outcomes of diabetes care at the study setting and to tailor similar diabetes care strategies
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in other healthcare settings in the country [84,86]. The evidence also indicated that health-
care implementation strategies in low-income countries, such as SSA, would be feasible,
sustainable, and of interest to policymakers if they are designed based on the contexts of
the settings in these countries [71,76,80].

The MRC framework [43] guided the identification of an evidence base, development
of theory, and modelling processes and outcomes. The BCW [47] was used to develop
a theory-driven intervention, identify intervention strategies, and create elements of the
complex intervention tailored to the context of the setting. We used the BCW, as it is a com-
prehensive framework that considers the context in intervention design [47]. Theory-driven
interventions designed for patients with diabetes have been demonstrated to improve
care delivery and patient outcomes [44]. Complex interventions are likely to work best if
tailored to local contexts [43]. A systematic review of behavioural interventions to improve
glycemic control in patients with diabetes indicated that tailored behavioural interventions
improved glycemic control of patients with type 2 diabetes [87].

There have been tailored complex interventions [44,48] designed using the UK MRC [43]
framework and the BCW [47] for diabetes care in developed countries. Previously developed
interventions [44,48] lacked the triangulation of multiple data sources, such as interviews, fo-
cus groups, and a co-design approach in their intervention design. The distinguishing feature
of our intervention design is the use of multifaceted data sources, such as consumers, health
professionals of various disciplines and key policymakers, a literature review, and systematic
review [30], and extensive feedback from the co-design panels comprising individuals of
diverse backgrounds in contextualising the intervention. Our intervention addresses a tailored
and evidence-based strategy in diabetes care delivery in a resource-limited setting.

We designed an organisational level intervention to improve the effectiveness of
type 2 diabetes management. There is a broad range of evidence internationally in sup-
port of organisational interventions to improve the care of type 2 diabetes and patient
outcomes [54–56]. Similarly, health system interventions that involved patient-centred
collaborative care with multiple health professionals and diabetes education have shown
effectiveness in improving the glycemic control of patients with type 2 diabetes in both
developing and developed countries [56,88,89]. As multiple behaviours interact and play a
role in the provision of structured diabetes education, counselling, and collaborative care of
type 2 diabetes [75–78], the intervention was targeted at changing the health professionals’
behaviour involved in diabetes care delivery. Similar interventions that targeted changing
health professional behaviour were found to be effective in improving diabetes care and
patient outcomes [44,48,90–92]. In a systematic review of behaviour change interventions,
such as education, training, collaborative care including physicians, nurses, and phar-
macists, audit and feedback targeted at health professionals were effective in improving
healthcare delivery and patient outcomes [93]. Successful management and the improved
outcome of diabetes requires interaction and implementation of multiple behaviours of
different health professionals, such as motivation and commitment, diabetes management
knowledge and skills, interprofessional or intraprofessional communications, and compas-
sion [62–65,91,94]. As a result, modifying multiple behaviours of professionals of various
disciplines helps to improve the management of diabetes and patient outcomes [62–65,94].

Diabetes care models of developed countries are evidence-based, patient-centred,
team-based, and guided by contextually tailored diabetes management guidelines and
educational materials, where diabetes education by trained diabetes educators are essential
elements of care [95–97]. Studies demonstrated a lack of collaborative care of diabetes,
diabetes training of health professionals, diabetes guidelines, and diabetes education in
SSA [8–10,98], including in Ethiopia [22]. This situation is partly attributed to the lack of
facility-specific evidence about contextual factors, such as the socio-economic factors of
diabetes care in SSA and the failure to tailor the diabetes care approach to the context of
the SSA setting [10,42]. Therefore, it is essential to understand the specific context of a SSA
diabetes care setting and design an evidence-based diabetes care strategy tailored to the
context of this setting [9,99].
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Our proposed intervention involves the collaborative care of diabetes, diabetes train-
ing of health professionals, and diabetes education by a trained team of health professionals.
Evidence also indicates that the diabetes care team needs to incorporate a multidisciplinary
group involving physicians, nurses, clinical pharmacists, dietitians or nutritionists, and psy-
chologists [62–65]. Expanding diabetes management to several healthcare team disciplines
helps patients receive the most optimal and cost-effective diabetes care and achieve better
treatment outcomes [65,100,101]. Structured diabetes education is also a key component
of the intervention in this study, which has been previously demonstrated to improve
diabetes care delivery and treatment outcomes [30,102–105]. The evidence also indicates
that multicomponent educational interventions significantly improved the glycemic control
of patients with type 2 diabetes [106]. In general, our intervention, which focuses on
collaborative care and structured diabetes education, will fill the gaps identified in diabetes
management in SSA in general, and Ethiopia in particular [8–10,22,98].

This study has some limitations. We did not include the views of nutritionists or
dietitians, psychologists, and laboratory personnel in the intervention design. The interven-
tion was designed at a single healthcare setting, requiring feasibility and piloting prior to
evaluation and implementation. Nevertheless, the information obtained can be transferred
to other similar settings.

5. Conclusions

This paper indicated the usability and applicability of the UK MRC framework and
the BCW to designing tailored and evidence-informed behaviour change interventions in
SSA. We developed the UK MRC-guided intervention called patient-centred collaborative
care and structured diabetes education and counselling (VICKY) using the BCW. VICKY,
which is a tailored intervention to the context of a tertiary care setting of a developing
country, is a complex intervention for diabetes management to be tested for feasibility and
effectiveness in later phases of this project. This intervention will help to manage diabetes
effectively by addressing the current practice gap existing at the hospital, and the country
in general. VICKY is a comprehensive diabetes care model co-designed by key stakeholders
involving consumers, healthcare providers of various disciplines, and policymakers using
multiple evidence sources. This model, if found effective, may serve as a springboard to
design similar tailored interventions for other non-communicable diseases in the country.
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Abstract: (1) Background: Recent reports suggest a decrease in the prevalence of depression among
people with diabetes and important sex-differences in the association between these conditions,
however data from Spain is sparse. We aim to assess trends in the prevalence of depression and in-
hospital outcomes among patients with type 2 diabetes (T2DM) hospitalized (2011–2020) identifying
sex-differences. (2) Methods: Using the Spanish national hospital discharge database we analysed the
prevalence of depression globally, by sex, and according to the conditions included in the Charlson
comorbidity index (CCI). We tested factors associated with the presence of depression and with
in-hospital mortality (IHM). Time trends in the prevalence of depression and variables independently
associated with IHM were analyzed using multivariable logistic regression. (3) Results: From 2011 to
2020, we identified 5,971,917 hospitalizations of patients with T2DM (5.7% involved depression). The
prevalence of depression decreased significantly between 2011 and 2020. The adjusted prevalence
of depression was 3.32-fold higher in women than in men (OR 3.32; 95%CI 3.3–3.35). The highest
prevalence of depression among men and women with T2DM was found among those who also
had a diagnosis of obesity, liver disease, and COPD. Older age, higher CCI, pneumonia, and having
been hospitalized in 2020 increased the risk of IHM in patients with T2DM and depression. Obesity
was a protective factor for IHM in both sexes, with no differences detected for IHM between men
and women. Among patients hospitalized with T2DM, concomitant depression was associated with
lower IHM than among patients without depression (depression paradox). (4) Conclusions: The
prevalence of depression decreased over time in both sexes. The prevalence of depression was over
three-fold higher in women. Female sex and depression were not associated with higher IHM. Based
on our results we recommend that clinicians screen regularly for depression in patients with T2DM,
particularly women, younger patients, and those with multiple comorbidities.

Keywords: type 2 diabetes; depression; sex; in-hospital mortality; hospitalization

1. Introduction

Diabetes is one of the largest global public health problems, is among the top 10 causes
of death globally, and has the second biggest negative total effect on reducing global
health adjusted life expectancy worldwide [1]. The Global Burden of Disease (GBD) has
demonstrated a large and inexorably increasing burden of diabetes in the world since
1990 [1]. In Spain, according to the GBD, the prevalence and Disability-Adjusted Life
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Years (DALYs) have increased from 2000 to 2019 from 8.90% to 11.26% and from 3.80% to
4.15% [2].

In year 2019 depressive disorders ranked 13th among the leading causes of burden
worldwide with a significant greater burden in females than males [3]. Worldwide, the
prevalence of depression among adults has been estimated to be between 15% and 18%, and
an increase in the burden of this disease worldwide is projected in the coming decades [4].
In our country the time trend (2000–2019) has shown an increase in the prevalence from
3.57% to 4.24% among men with equivalent figures of 5.72% to 7.71% among women. For
both sexes, the DALYs also rose from 2.64% to 3.70% [2].

Like other chronic diseases, type 2 diabetes (T2DM) predisposes to depression [5–7].
The presence of complications, including depression, increases the risk of hospitalization
among people with T2DM [8]. Depression as a comorbidity of T2DM can alter glycaemic
control, reduce adherence to treatment, increase the risk of cardiac complications, health care
utilization, costs, and increased mortality risk [9]. In their meta-analysis, Nouwen et al. [10]
found that the presence of complications in patients with diabetes increased the likelihood
of incident depressive disorder (hazard ratio [HR] 1.14; 95% confidence interval [95% CI]:
1.07–1.21). However, other authors, after adjusting for the presence of comorbidities such as
coronary heart disease, found no significant association between T2DM and depression [11,12].

The association between depression and T2DM is thought to be bidirectional [13,14];
however, the role of the factors that modulate this association remains controversial [15].
Depression is associated with inadequate lifestyles (sedentary lifestyle, poor diet, obesity),
with increased hypothalamic-pituitary-adrenal axis activity, and with increased levels of
stress hormones and proinflammatory cytokines [16]. All these factors may affect insulin
resistance and subsequently the presence of T2DM [17].

Recognizing and addressing depression among patients with diabetes is an important
step in improving outcomes and reducing the growing burden of diabetes care [18]. Studies
conducted in the last decades of the past century and first years of the current century
showed that the prevalence of depression among people with diabetes was increasing in
our country and elsewhere [17–20]. However, more recent investigations suggest that a
change in the time trend may be taking place [21–23]. The lack of recent reports in our
country makes necessary to confirm if this new tendency is also happening.

In patients with T2DM and depression, sex differences may play a critical role in the
incidence and outcomes of hospitalizations, and meta-analyses have concluded that women
with T2DM have a higher prevalence of depression than men with T2DM [24,25]. In 2015,
the results of a population study in Spain found that the prevalence of depression was over
2.7 times higher in women with T2DM than in men with T2DM [19]. The probability of
being diagnosed with depression in patients with T2DM differs by sex [26–28].

There is very little information on the consequences of diabetes-depression comorbid-
ity in the hospital outcomes in Spain [19]. Furthermore, even if no doubt exists regarding
the sex-differences in the prevalence of depression among people with diabetes the fre-
quency of other comorbid conditions and how these conditions affect the hospital outcomes
among men and women has not been analysed in our country so far.

Therefore, the objective of our study, which was based on national administrative data,
was to describe trends in the prevalence of depression in patients with T2DM hospitalized
in Spain from 2011 to 2020. Furthermore, we analyzed sex differences in the prevalence of
depression among women and men with T2DM according to specific hospital admission
diagnoses and the effect of depression on hospital outcomes.

2. Materials and Methods

We conducted a population-based cohort study using data from a registry of hospital
discharges in Spain (Register of Specialized Care–Basic Minimum Database, RAE-CMBD)
collected from 1 January 2011 to 31 December 2020.

The methodological characteristics of the RAE-CMBD have been described else-
where [29]. Coding in this database was with the International Classification of Diseases
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(ICD), Ninth Revision, for the period between 2011 and 2015 (ICD-9), and the Tenth Revision
(ICD-10) from the year 2016 onwards.

The study population included patients aged ≥35 years with a T2DM code in any
diagnostic position (see ICD codes in Table S1). Patients with T1DM were excluded.

To respond to the objective of the study, the study population was stratified according
to the presence of ICD codes for depression (Table S1) in any diagnostic position in the
RAE-CMBD. All analyses were subsequently stratified according to sex.

To determine the prevalence of depression based on the most frequent hospital ad-
mission diagnoses, we used the conditions included in the Charlson Comorbidity Index
(CCI) in any diagnostic position, excluding diabetes [30,31]. The presence of codes for
obesity and pneumonia was also analysed. Table S1 shows the ICD-9 and ICD-10 codes
corresponding to the diagnoses included in our investigation.

Regarding hospital outcomes, we analysed length of hospital stay (LOHS) and in-
hospital mortality (IHM).

2.1. Statistical Analysis

For all the study years, we calculated the total prevalence of depression in patients
with T2DM. The prevalence of depression was stratified by sex, age group, and the above-
mentioned clinical diagnoses.

Prevalence was calculated by dividing the number of cases of depression in each year
by the number of patients with T2DM in each year and subgroup analysed.

The results of the descriptive statistical analysis are expressed as total frequencies with
percentages and means with standard deviations for categorical variables and as medians
with interquartile range for continuous variables.

The trend was analysed using the Cochran-Mantel-Haenszel statistic or Cochran-
Armitage test in the case of categorical variables and a linear regression t test or Jonckheere-
Terpstra test in the case of continuous variables.

Categorical variables were compared using the Fisher exact test. Continuous variables
were compared using the t test or the Wilcoxon rank sum test, as required.

We used multivariable logistic regression to analyse factors associated with the pres-
ence of depression, taking into account the effect of sex. We also identified the variables
associated with IHM in men and women with T2DM and depression.

Finally, we used logistic regression to assess the effect of depression on IHM in
both men and women with T2DM. Models were constructed for the concomitant clinical
conditions included in the CCI, obesity, and pneumonia.

The results were presented using the odds ratio (OR) and 95% CI.
We used version 14 of Stata to perform the statistical analysis (Stata, College Station,

TX, USA). Statistical significance was set at p < 0.05 (2-tailed).

2.2. Ethics

To carry out this study, it was not necessary to request the informed consent of the
patients or approval by an ethics committee, since the RAE-CMBD is anonymous and can
be requested from the Spanish Ministry of Health [32].

3. Results

During the period 2011–2020 in Spain, there were 5,971,917 hospitalizations of patients
aged ≥ 35years who had an ICD diagnostic code corresponding to T2DM. Of these, 333,226
(5.57%) had an ICD code for depression.

The overall prevalence of depression among patients hospitalized with T2DM in Spain
decreased significantly between 2011 and 2020 (5.72% vs. 5.04%; p < 0.05); however, it
should be noted that the prevalence increased between 2011 and 2015, before decreasing
from 2016 to 2020 (Table 1).

Regarding the distribution of the study population according to sex, the proportion
of women decreased (71.25% in 2011 vs. 67.89% in 2020; p < 0.05), whereas that of men
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increased (28.75% in 2011 vs. 32.11% in 2020; p < 0.05). The mean age of patients with
depression, as well as the associated comorbidity based on the CCI, increased significantly
throughout the study period (Table 1).

Between 2011 and 2020, the prevalence of depression coded as the primary diagnosis
decreased (1.23% in 2011 vs. 0.96% in 2020; p < 0.05) (Table 1).

In men with T2DM, the prevalence of depression decreased significantly throughout
the study period (2.97% in 2011 vs. 2.75% in 2020). Significant increases were also observed
during 2011–2020 for mean age (69.96 years vs. 72.67 years), the presence of associated
comorbidity (mean CCI 2.82 vs. 3.3), and a diagnosis of obesity (11.11% vs. 15.25%).

The crude IHM increased significantly between 2011 and 2020 (5.93% vs. 8.89%)
(Table 2).

The trend for women with T2DM was similar to that of men regarding prevalence
(9.15% in 2011 vs. 8.32% in 2020), mean age (73.42 years vs. 76.51 years), comorbidity (mean
CCI 2.35 vs. 2.86), and the presence of obesity (21.74% vs. 24.08%). The crude IHM almost
doubled (4.88% vs. 8.58%) over the 10 years analysed (Table 2).

Table 3 shows the prevalence of depression among people with T2DM who also had
other specific diagnoses. The highest prevalence of depression among men and women
with T2DM was found among those who also had a diagnosis of obesity, liver disease, and
COPD. A remarkable finding was the very high prevalence of depression among obese
women with diabetes, ranging from 10% to 12% over the study period.

The prevalence of depression decreased significantly between 2011 and 2020, in men
and women with T2DM who also had kidney disease, liver disease, cancer, and obe-
sity. However, in patients with peripheral vascular disease and COPD, the prevalence of
depression increased significantly.

Throughout the study period and for all specific hospital admission diagnoses, the
prevalence of depression was higher in women with T2DM than in men with T2DM (p < 0.05).

For all the specific hospital admission diagnoses analysed, IHM was significantly
lower in women with T2DM and depression than in women without depression. This
association was also found in men with T2DM and depression, except for those with acute
myocardial infarction and cancer (Table 4).

Table 5 presents the results of the multivariable analysis to identify the factors associ-
ated with the presence of depression and with IHM in men and women with T2DM and
depression. Older age and the most recent years of hospital admission (years 2018, 2019,
and 2020) were associated with a lower risk of depression. However, the prevalence of
depression increased significantly during the years 2013, 2014, and 2015 in both men and
women with T2DM. The presence of more comorbid conditions based on the CCI and
obesity was associated with a higher probability of a code for depression in both men and
women. In the T2DM population, and after adjusting for age and all the comorbid condi-
tions, women were 3.32-fold more likely to have a code for depression in their discharge
report than men (OR 3.32; 95%CI 3.3–3.35).
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Table 4. In-hospital mortality among men and women hospitalized with type 2 diabetes, according to
selected concomitant condition and to the presence of depression in Spain for the period 2011–2020.

IHM Men IHM Women

Without Depression With Depression p-Value Without Depression With Depression p-Value

Acute myocardial infarction, n (%) 25,562 (7.43) 587 (6.99) 0.132 14,672 (10.99) 904 (8.93) <0.001

Congestive heart failure, n (%) 62,701 (10.23) 1525 (9.5) 0.003 64,516 (11.68) 4220 (8.81) <0.001

Peripheral vascular disease, n (%) 28,165 (7) 656 (6.46) 0.034 11,607 (10.1) 700 (7.94) <0.001

Cerebrovascular disease, n (%) 37,223 (10.45) 1104 (8.28) <0.001 32,625 (13.19) 2352 (9.18) <0.001

COPD, n (%) 58,614 (7.52) 1737 (6.65) <0.001 23,433 (7.11) 1877 (4.73) <0.001

Renal disease, n (%) 66,215 (9.44) 1535 (8.39) <0.001 53,524 (11.1) 3254 (8.5) <0.001

Liver disease, n (%) 25,559 (8.23) 636 (6.14) <0.001 12,184 (8.6) 990 (5.82) <0.001

Cancer, n (%) 76,108 (12.59) 1973 (12.61) 0.946 34,828 (13.65) 2866 (12.67) <0.001

Obesity, n (%) 16,404 (4.29) 474 (3.59) <0.001 23,860 (5.83) 2218 (4.17) <0.001

Pneumonia, n (%) 36,745 (15.56) 1134 (14.41) 0.006 24,602 (17.41) 1760 (12.61) <0.001

IHM: in-hospital mortality. COPD: chronic obstructive pulmonary disease.

Table 5. Multivariate analysis of the factors associated with the presence of depression among men
and women hospitalized with type 2 diabetes and factors associated with in-hospital mortality among
patients with type 2 diabetes and concomitant depression., Spain 2011–2020.

Presence of Depression IHM of Patients with T2DM and Depression

Men Women Both Sexes Men Women Both Sexes

OR (95%CI) OR (95%CI) OR (95%CI) OR (95%CI) OR (95%CI) OR (95%CI)

Year 2011 1 1 1 1 1 1

Year 2012 1.01 (0.98–1.04) 1.03 (1.01–1.05) 1.02 (1–1.04) 0.95 (0.83–1.07) 1.03 (0.94–1.12) 1 (0.93–1.07)

Year 2013 1.07 (1.04–1.1) 1.08 (1.06–1.1) 1.07 (1.06–1.09) 0.95 (0.84–1.08) 0.97 (0.89–1.05) 0.96 (0.9–1.03)

Year 2014 1.05 (1.02–1.08) 1.13 (1.11–1.15) 1.11 (1.09–1.12) 0.86 (0.75–0.97) 0.93 (0.86–1.01) 0.91 (0.85–0.97)

Year 2015 1.09 (1.06–1.12) 1.13 (1.11–1.16) 1.12 (1.1–1.14) 0.92 (0.81–1.03) 1 (0.92–1.09) 0.97 (0.91–1.04)

Year 2016 1 (0.97–1.03) 0.96 (0.94–0.98) 0.97 (0.96–0.99) 0.87 (0.77–0.98) 1 (0.91–1.09) 0.95 (0.89–1.02)

Year 2017 1 (0.97–1.02) 1.02 (1–1.04) 1.01 (0.99–1.03) 0.97 (0.86–1.1) 1.03 (0.95–1.12) 1.01 (0.95–1.08)

Year 2018 0.9 (0.87–0.92) 0.9 (0.88–0.91) 0.9 (0.88–0.91) 0.98 (0.87–1.1) 1.01 (0.93–1.1) 1 (0.94–1.07)

Year 2019 0.93 (0.9–0.96) 0.91 (0.89–0.93) 0.92 (0.9–0.93) 0.96 (0.86–1.09) 1.01 (0.93–1.1) 1 (0.93–1.07)

Year 2020 0.94 (0.91–0.97) 0.92 (0.91–0.94) 0.93 (0.91–0.94) 1.3 (1.15–1.45) 1.4 (1.3–1.52) 1.37 (1.28–1.46)

Age, 35–59 years 1 1 1 1 1 1

Age, 60–69 years 0.84 (0.82–0.85) 1.08 (1.06–1.1) 0.98 (0.96–0.99) 1.67 (1.48–1.88) 1.41 (1.26–1.58) 1.52 (1.4–1.65)

Age, 70–79 years 0.78 (0.76–0.79) 0.98 (0.96–0.99) 0.9 (0.89–0.91) 2.31 (2.07–2.58) 2.19 (1.98–2.42) 2.23 (2.07–2.41)

Age, ≥80 year 0.82 (0.8–0.83) 0.79 (0.78–0.8) 0.78 (0.77–0.79) 4.02 (3.61–4.48) 4.39 (3.98–4.83) 4.29 (3.99–4.61)

CCI 1.13 (1.11–1.16) 1.03 (1.01–1.05) 1.07 (1.06–1.09) 1.3 (1.28–1.31) 1.34 (1.33–1.35) 1.33 (1.32–1.34)

Obesity 1.14 (1.12–1.16) 1.33 (1.32–1.35) 1.29 (1.27–1.3) 0.66 (0.6–0.73) 0.78 (0.74–0.82) 0.75 (0.72–0.79)

Pneumonia 0.97 (0.94–1.02) 0.95 (0.91–1.01) 0.96 (0.93–1.01) 2.48 (2.31–2.66) 2.37 (2.24–2.51) 2.41 (2.31–2.52)

Women 3.32 (3.3–3.35) 0.97 (0.94–1.01)

IHM: In-Hospital Mortality. T2DM: Type 2 diabetes. CCI: Charlson Comorbidity Index. OR: Odds Ratio.CI:
Confidence interval.

Older age, the presence of comorbidity (CCI), the presence of pneumonia, and having
been hospitalized in 2020 increased the risk of IHM in men and women with T2DM and
depression (Table 5). However, obesity was a protective factor for IHM in both men and
women. Sex was not associated with IHM in patients with depression and T2DM (OR for
women 0.97; 95% CI 0.94–1.01).

Finally, after multivariable adjustment by year, age and CCI, among men with T2DM
and cerebrovascular disease, kidney disease, and liver disease, the presence of depression
was associated with a lower risk of dying in hospital (Table S2). For all the specific hospital
admissions analysed (except for cancer) in women with T2DM, the presence of depression
had a protective effect on IHM (Table S3).
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4. Discussion

The results of this nationwide population-based observational study of almost six
million patients with T2DM hospitalized in Spain during 2011–2020 reveals several key
findings. First, a decrease in the prevalence of depression was observed in men and women
with T2DM between 2011 and 2020. Second, the prevalence of depression was 3.32 times
higher in women with T2DM than in men. Third, IHM among people with T2DM and
depression increased throughout the study period, although IHM was lower in patients
with depression than in those without depression. Finally, we found no sex differences in
IHM among people hospitalized with T2DM and depression.

Epidemiological studies over the last two decades have reported a global increase in
the prevalence of depression in persons with diabetes [20]. As in a previous report, we
found an increase in the prevalence of depression in patients hospitalized with T2DM from
2011 to 2015 [19]; however, since 2016, the prevalence of depression has been decreasing.
Our results could indicate that care and treatment of people with depression, particularly
those with diabetes, is improving. Screening for depression in clinical practice, particularly
among people with diabetes, may be a useful first step in identifying patients at high risk
of this disease. The change in the time trend of prevalence has been reported in various
studies [21–23]. In a population-based study in Norway, Bojanic et al. [21] found a general
decrease in depressive symptoms in men with diabetes and relatively stable symptoms in
women with this condition between 1995-97 and 2017-19, concluding that this change could
be explained in part by awareness of these psychological conditions and improvements in
treatment. Similarly, a decrease in prevalence was observed in a population-based study of
Mexican adults with diabetes (age ≥ 50 years) between 2001 and 2015 [33].

As has been described in the literature, the prevalence of depression is higher in
women with diabetes than in men [19,24,25]. In a recent study of 123,232 patients with
diabetes mellitus between 1997 and 2014, Deischinger et al. [28] concluded that a diagnosis
of depression is more likely in women than in men between age 30 and 69 years (OR 1.37;
95% CI: 1.32–1.43). Various factors seem to contribute to the difference between men and
women regarding depression. The prevalence of depression is higher in women owing
to biological factors and the fact that the psychological burden of having the disease is
greater [27]. Men, on the other hand, are thought to visit their doctor less frequently,
potentially leading to underdiagnosis of T2DM and depression. This effect might be
even more prominent in a multimorbid condition such as diabetes, which requires more
extensive medical care [34].

Furthermore, differences between women and men in psychological reactions following
cardiovascular events have been addressed in the literature. In a meta-analysis investigating
depression after diagnosis of cardiovascular disease/events, Buckland et al. [35] suggested
that women experience a higher level of depression after a coronary event than men.

In our study, obesity was associated with the presence of depression. A recent meta-
analysis concluded that persons with T2DM and obesity have a 1.63-fold greater risk of
depression than those with T2DM without obesity [36]. A strong relationship between
obesity and depression has been described in the literature, especially in women [37].
Vittengl et al. [38] indicate that this relationship can be explained by somatic, behavioural,
and psychosocial mechanisms, including physical deterioration, social dysfunction (dis-
crimination based on weight, low participation in social life or little social support), and
emotional eating, which are more frequent in women.

Diabetes and depression are chronic diseases in which ageing, and the presence
of concomitant medical conditions are crucial factors [13]. However, our results are in
line with the literature, showing that depression affects younger people more than older
people [6,19,25,39], because younger people find the onset of T2DM more difficult and
need a longer period of adaptation to their disease [40].

The presence of depression in persons with diabetes was recently associated with
a 2.16-fold increased risk of dying [41]. In our study, IHM increased over time, with
particularly high values in 2020 because of COVID-19.
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The main risk factors associated with IHM in patients with T2DM diagnosed with
depression are older age, comorbidity, the presence of pneumonia, and having been hos-
pitalized in 2020, as reported in the literature [19,41]. However, obesity was a protective
factor for IHM, thus confirming the obesity paradox, as described elsewhere [42].

In our study, female sex was not associated with higher IHM in patients with depres-
sion, even though depression is more prevalent in women. In a population-based study of
64,177 Norwegian adults, Naicker et al. [26] found that the presence of depression increased
the risk of mortality only in men with diabetes (HR 2.47; 95% CI 1.47–4.17) and not in
women with diabetes, suggesting that men were more likely to be diagnosed later with
depression and treated in more advanced stages of the disease. Consequently, they would
present greater functional impairment than women. Sex differences in the prevalence of
depressive disorders are well documented, although few studies to date have examined
sex differences in outcomes in patients hospitalized with depression.

Finally, we found that among men and women with T2DM who also experienced
depression, the risk of dying in hospital was similar to or even lower than among men and
women without depression. This unexpected result has also been reported elsewhere [43–45].
In their population-based study comparing 38,537 diabetic patients with depression and
154,148 diabetic patients without depression, Wu et al. [43] concluded that there were no
statistically significant differences in mortality from cardiovascular diseases. Patients with
depression adhered slightly better to antidiabetic medication and slightly more underwent
screening tests, thus potentially explaining the authors’ results. Pino et al. [44] studied patients
in the general population hospitalized for ST-elevation myocardial infarction and found
that, paradoxically, the probability of dying in hospital was lower among patients with a
clinically co-occurring depression and/or anxiety than those without. As an explanation for
this “depression paradox”, the authors suggested potentially underdiagnosed mental health
issues surrounding major cardiovascular events, and indeed, chronic disease as a whole.
Depression has also been associated with lower in-hospital mortality in patients undergoing
colorectal surgery [45]. Another possible reason is that T2DM patients with depression are
hospitalized with less severe acute or chronic conditions, thus increasing their probability of
surviving. More studies are needed to understand the factors underlying this paradox and
whether information or selection bias is responsible for the association.

The strengths of our study are the use of a national population database (RAE-CMBD),
the 10-year study period, and the fact that our methodology has been used elsewhere [19].
However, our study is also subject to a series of limitations. The RAE-CMBD collects practically
all hospitalizations in Spain; however, it is an administrative database and does not collect all
the variables included in the clinical history. Therefore, we have no data on disease severity,
glycaemic control, disease duration, or medication for diabetes or depression.

The decreased frequency of depression as of 2016 could be explained by the change in
coding in the RAE-CMBD. Consequently, the results should be interpreted with caution. In
addition, given that the RAE-CMBD provides anonymous patient data, we cannot know
whether a patient has been admitted more than once during the same year or whether
he/she has been transferred to another hospital, in which case he/she could appear twice.
However, the use of hospital discharge records and administrative databases for the diagnosis
of psychiatric illnesses, including depression, has been shown to be sufficiently sensitive and
specific for epidemiological investigations [46,47]. Finally, in year 2020 the COVID19 pandemic
had a very important impact in the Spanish health services and hospitals were collapsed by
patients with this infection. This may have resulted in underdiagnose of depression that year.
However, the decreasing trend in the prevalence of depression among patients with T2DM
was also observed in the years immediately before 2020.

5. Conclusions

The prevalence of depression in men and women with T2DM decreased between
2011 and 2020. Our data highlight major sex differences, indicating that the prevalence
of depression is more than three times higher in women than in men. However, female
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sex and depression are not associated with higher IHM than male sex. Older age, associ-
ated comorbidity, the presence of pneumonia, and having been hospitalized in 2020 are
predictors of IHM in men and women with T2DM and depression, with obesity being a
protective factor. IHM is lower in patients with T2DM and depression than in patients
without depression. Future studies should analyse the possible existence of a depression
paradox for in-hospital mortality among people with diabetes.

Based on our results we recommend that clinicians screen regularly for depression in patients
with T2DM, particularly women, younger patients, and those with multiple comorbidities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11216260/s1, Table S1: Diagnosis analyzed with their cor-
responding ICD-9-CM and ICD10 codes; Table S2: Multivariate analysis of the factors associated
with in-hospital mortality in men with type 2 diabetes and selected concomitant conditions in Spain,
2011–2020; Table S3: Multivariate analysis of the factors associated with in-hospital mortality in
women with type 2 diabetes and selected concomitant conditions in Spain, 2011–2020.

Author Contributions: Conceptualization, A.L.-d.-A., R.J.-G. and C.N.; methodology J.J.Z.-L. and
J.L.d.B.; validation, D.C.-A.; data curation, V.H.-B.; Formal analysis, V.H.-B. and J.d.M.-D.; Funding:
A.L.-d.-A. and R.J.-G.; Writing—original draft, A.L.-d.-A., R.J.-G. and C.N.; Writing—review & editing,
J.J.Z.-L., D.C.-A., J.L.d.B. and J.d.M.-D. All authors have read and agreed to the published version of
the manuscript.

Funding: This study is a part of the research funded by: Convenio V-PRICIT de la Comunidad de
Madrid y la Universidad Complutense de Madrid (“Programa de Excelencia para el Profesorado
Universitario” INV.AY.20.2021.1E126). And by: Universidad Complutense de Madrid. Grupo de
Investigación en Epidemiología de las Enfermedades Crónicas de Alta Prevalencia en España (970970).
And by: FIS (Fondo de Investigaciones Sanitarias—Health Research Fund, Instituto de Salud Carlos
III) and co-financed by the European Union through the Fondo Europeo de Desarrollo Regional
(FEDER, “Una manera de hacer Europa”): grant no. PI20/00118.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: According to the contract signed with the Spanish Ministry of Health
and Social Services, which provided access to the databases from the Spanish National Hospital
Database (RAE-CMBD, Registro de Actividad de Atención Especializada. Conjunto Mínimo Básico
de Datos, Registry of Specialized Health Care Activities. Minimum Basic Data Set), we cannot
share the databases with any other investigator, and we have to destroy the databases once the
investigation has concluded. Consequently, we cannot upload the databases to any public repository.
However, any investigator can apply for access to the databases by filling out the questionnaire
available at https://www.sanidad.gob.es/estadEstudios/estadisticas/estadisticas/estMinisterio/
SolicitudCMBD.htm. (accessed on 20 October 2022). All other relevant data are included in the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P.F. Global, regional, and national burden and trend of
diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci. Rep. 2020, 10, 14790. [CrossRef] [PubMed]

2. Institute for Health Metrics and Evaluation. GBD Results. Available online: https://www.healthdata.org/data-visualization/
gbd-results (accessed on 17 October 2022).

3. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and
territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150.
[CrossRef]

4. Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [CrossRef]
5. Farr, S.L.; Hayes, D.K.; Bitsko, R.H.; Bansil, P.; Dietz, P.M. Depression, diabetes, and chronic disease risk factors among US women

of reproductive age. Prev. Chronic. Dis. 2011, 8, A119. [PubMed]
6. Dogan, B.; Oner, C.; Akalin, A.A.; Ilhan, B.; Caklili, O.T.; Oguz, A. Psychiatric symptom rate of patients with Diabetes Mellitus: A

case control study. Diabetes Metab. Syndr. 2019, 13, 1059–1063. [CrossRef] [PubMed]

254



J. Clin. Med. 2022, 11, 6260

7. Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev.
Endocrinol. 2018, 14, 88–98. [CrossRef] [PubMed]

8. Greenberg, P.E.; Fournier, A.A.; Sisitsky, T.; Pike, C.T.; Kessler, R.C. The economic burden of adults with major depressive disorder
in the United States (2005 and 2010). J. Clin. Psychiatry 2015, 76, 155–162. [CrossRef]

9. Farooqi, A.; Khunti, K.; Abner, S.; Gillies, C.; Morriss, R.; Seidu, S. Comorbid depression and risk of cardiac events and cardiac
mortality in people with diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2019, 156, 107816. [CrossRef]

10. Nouwen, A.; Adriaanse, M.C.; van Dam, K.; Iversen, M.M.; Viechtbauer, W.; Peyrot, M.; Caramlau, I.; Kokoszka, A.; Kanc,
K.; de Groot, M.; et al. Longitudinal associations between depression and diabetes complications: A systematic review and
meta-analysis. Diabet. Med 2019, 36, 1562–1572. [CrossRef]

11. Brown, L.C.; Majumdar, S.R.; Newman, S.C.; Johnson, J.A. Type 2 diabetes does not increase risk of depression. CMAJ 2006, 175, 42–46.
[CrossRef]

12. Icks, A.; Kruse, J.; Dragano, N.; Broecker-Preuss, M.; Slomiany, U.; Mann, K.; Jöckel, K.H.; Erbel, R.; Giani, G.; Heinz Nixdorf
Recall Study Investigator Group; et al. Are symptoms of depression more common in diabetes? Results from the Heinz Nixdorf
Recall study. Diabet. Med. 2008, 25, 1330–1336. [CrossRef] [PubMed]

13. Tabák, A.G.; Akbaraly, T.N.; Batty, G.D.; Kivimäki, M. Depression and type 2 diabetes: A causal association? Lancet Diabetes
Endocrinol. 2014, 2, 236–245. [CrossRef]

14. Moulton, C.D.; Pickup, J.C.; Ismail, K. The link between depression and diabetes: The search for shared mechanisms. Lancet
Diabetes Endocrinol. 2015, 3, 461–471. [CrossRef]

15. Alzoubi, A.; Abunaser, R.; Khassawneh, A.; Alfaqih, M.; Khasawneh, A.; Abdo, N. The Bidirectional Relationship between
Diabetes and Depression: A Literature Review. Korean J. Fam. Med. 2018, 39, 137–146. [CrossRef] [PubMed]

16. Champaneri, S.; Wand, G.S.; Malhotra, S.S.; Casagrande, S.S.; Golden, S.H. Biological basis of depression in adults with diabetes.
Curr. Diab. Rep. 2010, 10, 396–405. [CrossRef] [PubMed]

17. van Dooren, F.E.; Nefs, G.; Schram, M.T.; Verhey, F.R.; Denollet, J.; Pouwer, F. Depression and risk of mortality in people with
diabetes mellitus: A systematic review and meta-analysis. PLoS ONE 2013, 8, e57058. [CrossRef] [PubMed]

18. Chima, C.C.; Salemi, J.L.; Wang, M.; Mejia de Grubb, M.C.; Gonzalez, S.J.; Zoorob, R.J. Multimorbidity is associated with increased
rates of depression in patients hospitalized with diabetes mellitus in the United States. J. Diabetes Complicat. 2017, 31, 1571–1579.
[CrossRef] [PubMed]

19. Lopez-de-Andrés, A.; Jiménez-Trujillo, M.I.; Hernández-Barrera, V.; de Miguel-Yanes, J.M.; Méndez-Bailón, M.; Perez-Farinos, N.;
de Burgos Lunar, C.; Cárdenas-Valladolid, J.; Salinero-Fort, M.Á.; Jiménez-García, R.; et al. Trends in the prevalence of depression
in hospitalized patients with type 2 diabetes in Spain: Analysis of hospital discharge data from 2001 to 2011. PLoS ONE 2015, 10,
e0117346. [CrossRef]

20. Chaturvedi, S.K.; Manche Gowda, S.; Ahmed, H.U.; Alosaimi, F.D.; Andreone, N.; Bobrov, A.; Bulgari, V.; Carrà, G.; Castelnuovo,
G.; de Girolamo, G.; et al. More anxious than depressed: Prevalence and correlates in a 15-nation study of anxiety disorders in
people with type 2 diabetes mellitus. Gen. Psychiatr. 2019, 32, e100076. [CrossRef]
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Abstract: Hospital readmission among people with diabetes is common and costly. A better under-
standing of the differences between people requiring hospitalization primarily for diabetes (primary
discharge diagnosis, 1◦DCDx) or another condition (secondary discharge diagnosis, 2◦DCDx) may
translate into more effective ways to prevent readmissions. This retrospective cohort study compared
readmission risk and risk factors between 8054 hospitalized adults with a 1◦DCDx or 2◦DCDx. The
primary outcome was all-cause hospital readmission within 30 days of discharge. The readmission
rate was higher in patients with a 1◦DCDx than in patients with a 2◦DCDx (22.2% vs. 16.2%, p < 0.01).
Several independent risk factors for readmission were common to both groups including outpatient
follow up, length of stay, employment status, anemia, and lack of insurance. C-statistics for the
multivariable models of readmission were not significantly different (0.837 vs. 0.822, p = 0.15). Read-
mission risk of people with a 1◦DCDx was higher than that of people with a 2◦DCDx of diabetes.
Some risk factors were shared between the two groups, while others were unique. Inpatient diabetes
consultation may be more effective at lowering readmission risk among people with a 1◦DCDx. These
models may perform well to predict readmission risk.

Keywords: diabetes; readmission; risk factors

1. Introduction

Readmission to the hospital is an undesirable outcome. Thus, there is widespread inter-
est in reducing readmission risk to improve both the patient health and control costs [1–3].
It has been established that diabetes is an independent risk factor for readmission [4,5].
Furthermore, the sheer number of readmissions and their associated costs among people
with diabetes are staggering. In the U.S., there were more than eight million hospital dis-
charges of patients with diabetes, accounting for nearly 30% of all discharges in 2018 [6,7].
At that time, 10.5% of the U.S. population had diabetes, a difference that reflects the overall
hospitalization risk associated with diabetes [8]. Given the 16.0 to 20.4% rate of readmission
within 30 days of discharge (30-day readmission) [9,10], the annual cost of such readmis-
sions is $20–25 billion in the U.S. alone. Of note, most hospitalized patients with diabetes
have type 2 diabetes, reflecting the underlying prevalence of type 2 diabetes in the general
population [7].

Over the past several years, there have been multiple efforts to determine the risk
factors for readmission among patients with diabetes [9,10]. Many risk factors across
several domains have been identified including sociodemographics, diabetic complications,
comorbidity burden, abnormal laboratory values, multiple hospitalizations, and hospital
length of stay. Patients with diabetes, however, are a heterogeneous population that
can be categorized as requiring hospitalization primarily for diabetes (primary discharge
diagnosis) or another condition (secondary discharge diagnosis of diabetes). One study
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found that hospitalized patients with a primary diagnosis of diabetes had a higher risk of
readmission than patients with a secondary diagnosis of diabetes [11], suggesting that the
readmission risk factors of these two populations may be different. Whether or not the risk
factors for readmission vary by the primary or secondary discharge diagnosis of diabetes
is unknown. A better understanding of the differences between these populations may
translate into more effective ways to prevent readmissions.

To compare the readmission risk and risk factors between patients with a primary
or secondary discharge diagnosis of diabetes, we performed a secondary analysis of a
previously described cohort [12].

2. Methods

2.1. Study Sample

This retrospective cohort study was based on electronic medical records of 17,284 patients
with 44,203 hospital discharges between 1 January 2004 and 1 December 2012 at Boston Med-
ical Center, an urban academic medical center in Boston, MA, as previously described [12].
The inclusion criteria were a diagnosis of diabetes defined by a hospital discharge associ-
ated with an International Classification of Diseases, Ninth Revision, Clinical Modification
(ICD-9-CM) code of 250.xx or preadmission documentation of a diabetes medication. Pa-
tients were excluded for the following: age less than 18 years on the day of an admission,
discharge by transfer to another hospital, discharge from an obstetric service, inpatient
death, outpatient death within 30 days of discharge, missing data, or lack of follow-up
30 days after discharge. A readmission within 8 h after an index discharge was considered
as a false positive and merged with the index discharge to avoid counting an in-hospital
transfer as a readmission. Among the discharges with a primary diagnosis of diabetes,
simple random sampling was used to select one discharge per patient, without replacement,
yielding 4027 discharges. Among the patients with only secondary discharge diagnoses of
diabetes, 4027 discharges were randomly selected, one discharge per patient. A post-hoc
analysis was performed in the subgroup of 3674 patients who had an HbA1c value available.
The Temple University Institutional Review Board approved the protocol.

2.2. Definition of Variables and Outcomes

A total of 49 sociodemographic, clinical, and administrative variables linked with
hospital discharges were evaluated for their association with all-cause hospital readmission
within 30 days of discharge, as previously described [12]. The first value of each variable
up to 24 h before the admission was analyzed so that the related outpatient and emer-
gency department visits were included. The most extreme blood glucose level was based
on capillary point-of-care or venous values during the entire hospitalization. The most
extreme value was placed into one of three categories: 70–180 mg/dL (3.9–10 mmol/L),
40–69 or 181–300 mg/dL (2.2–3.8 or 10.1–16.7 mmol/L), or <40 or >300 mg/dL (<2.2 or
>16.7 mmol/L). The most common ICD-9-CM codes within each cohort were grouped by
condition or organ system and sorted by frequency. Inpatient consultation by the diabetes
management team was assessed as present or absent. These consultations were requested
by primary hospital providers. The team consisted of a nurse practitioner/certified diabetes
educator, an endocrinology fellow, and an endocrinology attending with expertise in dia-
betes. Consultations may have consisted of a single visit or intermittent or daily follow-up
visits with co-management throughout the hospital stay including recommendations for
diabetes management upon discharge.

2.3. Statistical Analyses

Summaries of the categorical variables included the counts and percentages. For
continuous variables, the means and standard deviations or medians and interquartile
ranges were used accordingly after the assessment of normality. The characteristics of
patients with a primary diagnosis of diabetes were compared to the characteristics of those
with a secondary diagnosis of diabetes. In addition, readmitted and non-readmitted pa-
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tients were compared among those with a primary diagnosis of diabetes and among those
with a secondary diagnosis of diabetes. For the categorical variables, these comparisons
were conducted by χ2 tests. For continuous variables, 2-sample t tests or Wilcoxon rank
sum tests were used. For multivariable modeling, non-normally distributed continuous
variables (admission serum creatinine and length of stay) were log transformed. Univariate
analyses identified variables associated with 30-day readmission. Variables with p < 0.1 in
the univariate analyses were selected to undergo multivariable modeling. To determine
the adjusted associations of the variables with all-cause 30-day readmission, multivariable
logistic regression with generalized estimating equations and the best subset selection
was performed [13,14]. The threshold for retention in the multivariable models was an
association with 30-day all-cause readmission at p < 0.05. A p-value < 0.05 was consid-
ered statistically significant. To explore the performance of the models for readmission
prediction, c-statistics, a measure of discrimination representing the area under the receiver
operating characteristic curve [15], were calculated with 95% confidence intervals and
calibration plots were drawn [16]. All analyses were performed using SAS version 9.4 (SAS
Institute, Cary, NC, USA).

3. Results

A total of 8054 patients were analyzed: 4027 with a primary discharge diagnosis
of diabetes and 4027 with a secondary discharge diagnosis of diabetes (Table 1). The
cohort was ethnically diverse (40.4% Black, 24.3% White, 12.5% Hispanic), well-distributed
across four age brackets, and balanced for sex (47.1% female). Most of the patients were
unmarried, educated at a high-school level or greater, not employed, insured by Medicare
or Medicaid, and lived within 5 miles of the hospital. Nearly 40% of patients had at least
one microvascular diabetic complication and almost 50% had at least one macrovascular
complication. The most common comorbidities other than diabetic complications were
hypertension, anemia, and depression. The median hospital length of stay was 3.3 days.

Table 1. Characteristics of the hospitalized patients by the primary or secondary discharge diagnosis
of diabetes.

Variable
All Patients

N = 8054
Primary Diabetes Dx

N = 4027
Secondary Diabetes Dx

N = 4027
p Value

Age, N (%) <0.0001
<50 years 2246 (27.9) 1557 (38.7) 689 (17.1)
50–59 years 1890 (23.5) 972 (24.1) 918 (22.8)
60–69 years 1808 (22.4) 771 (19.1) 1037 (25.8)
70+ years 2110 (26.2) 727 (18.1) 1383 (34.3)

Female, N (%) 3796 (47.1) 1757 (43.6) 2039 (50.6) 0.0004
Marital status, a N (%) <0.0001

Married 2337 (29.0) 948 (23.5) 1389 (34.5)
Single 5558 (69.0) 3018 (74.9) 2540 (63.1)

Race/ethnicity, a N (%) <0.0001
Black 3254 (40.4) 1990 (49.4) 1264 (31.4)
Hispanic 1008 (12.5) 509 (12.6) 499 (12.4)
White 1956 (24.3) 785 (19.5) 1171 (29.1)
Not recorded 1522 (18.9) 616 (15.3) 906 (22.5)

English speaking, N (%) 6569 (81.6) 3409 (84.7) 3160 (78.5) <0.0001
Insurance status, N (%) <0.0001

Medicaid 1592 (19.8) 948 (23.5) 644 (16.0)
Medicare 2935 (36.4) 1366 (33.9) 1569 (39.0)
None 469 (5.8) 334 (8.3) 135 (3.4)
Private 1614 (20.0) 780 (19.4) 834 (20.7)
Not recorded 1444 (17.9) 599 (14.9) 845 (21.0)
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Table 1. Cont.

Variable
All Patients

N = 8054
Primary Diabetes Dx

N = 4027
Secondary Diabetes Dx

N = 4027
p Value

Home zip code < 5 mi. from hospital, N (%) 5688 (70.6) 3121 (77.5) 2567 (63.7) <0.0001
Educational level, N (%) <0.0001

Less than high school 1039 (12.9) 503 (12.5) 536 (13.3)
Any high school 4465 (55.4) 2366 (58.8) 2099 (52.1)
Some college 535 (6.6) 294 (7.3) 241 (6.0)
College graduate 1261 (15.7) 571 (14.2) 690 (17.1)
Not recorded 754 (9.4) 293 (7.3) 461 (11.4)

Employment, a N (%) <0.0001
Disabled 1742 (21.6) 1033 (25.7) 709 (17.6)
Employed 885 (11.0) 410 (10.2) 475 (11.8)
Retired 2536 (31.5) 941 (23.4) 1595 (39.6)
Unemployed 2635 (32.7) 1551 (38.5) 1084 (26.9)

Pre-admission sulfonylurea use, N (%) 1066 (13.2) 408 (10.1) 658 (16.3) <0.0001
Pre-admission metformin use, N (%) 2029 (25.2) 753 (18.7) 1276 (31.7) <0.0001
Pre-admission insulin use, N (%) 3404 (42.3) 2216 (55.0) 1188 (29.5) <0.0001
Steroids at admission 595 (7.4) 222 (5.5) 373 (9.3) <0.0001
Most extreme blood glucose level, b N (%) <0.0001

40–69 or 181–300 mg/dL 3008 (37.3) 1238 (30.7) 1770 (44.0)
70–180 mg/dL 2182 (27.1) 502 (12.5) 1680 (41.7)
<40 or >300 mg/dL 2864 (35.6) 2287 (56.8) 577 (14.3)

Diabetes inpatient consultation, N (%) 1854 (23.0) 1438 (35.7) 416 (10.3) <0.0001
Current or prior DKA or HHS, N (%) 1471 (18.3) 1416 (35.2) 55 (1.4) <0.0001
Microvascular complications, c N (%) <0.0001

0 5099 (63.3) 1938 (48.1) 3161 (78.5)
1 1781 (22.1) 1164 (28.9) 617 (15.3)
2 781 (9.7) 588 (14.6) 193 (4.8)
3 393 (4.9) 337 (8.4) 56 (1.4)

Macrovascular complications, d N (%) <0.0001
0 4207 (52.2) 2346 (58.3) 1861 (46.2)
1 2126 (26.4) 967 (24.0) 1159 (28.8)
2 1228 (15.2) 447 (11.1) 781 (19.4)
3 393 (4.9) 217 (5.4) 176 (4.4)
4 100 (1.2) 50 (1.2) 50 (1.2)

Pre-admission blood pressure meds, N (%) <0.0001
None 2743 (34.1) 1521 (37.8) 1222 (30.3)
ACE-i or ARB 3699 (45.9) 1789 (44.4) 1910 (47.4)
Non-ACE or ARB 1612 (20.0) 717 (17.8) 895 (22.2)

Pre-admission statin use, N (%) 3389 (42.1) 1462 (36.3) 1927 (47.9) <0.0001
Admission white blood cell count, N (%) <0.0001

Low < 4 K/μL 387 (4.8) 218 (5.4) 169 (4.2)
Normal 4–11 K/μL 6278 (77.9) 3228 (80.2) 3050 (75.7)
High > 11 K/μL 1389 (17.2) 581 (14.4) 808 (20.1)

Admission serum albumin, N (%) <0.0001
4+ g/dL 3116 (38.7) 1722 (42.8) 1394 (34.6)
<4 g/dL 4088 (50.8) 1984 (49.3) 2104 (52.2)
Unknown 850 (10.6) 321 (8.0) 529 (13.1)

Admission serum sodium, N (%) <0.0001
Low < 135 mmol/L 914 (11.3) 533 (13.2) 381 (9.5)
Normal 135–145 mmol/L 7078 (87.9) 3470 (86.2) 3608 (89.6)
High > 145 mmol/L 62 (0.8) 24 (0.6) 38 (0.9)

Admission serum potassium, N (%) <0.0001
Low < 3.1 mmol/L 95 (1.2) 46 (1.1) 49 (1.2)
Normal 3.1–5.3 mmol/L 7196 (89.3) 3473 (86.2) 3723 (92.5)
High > 5.3 mmol/L 763 (9.5) 508 (12.6) 255 (6.3)

Admission creatinine (mg/dL),
median (IQR) 0.9 (0.7–1.3) 1.0 (0.8–1.4) 0.9 (0.7–1.3) 0.0012

Discharged 90 d before index admission, N (%) 2390 (29.7) 1335 (33.2) 1055 (26.2) <0.0001
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Table 1. Cont.

Variable
All Patients

N = 8054
Primary Diabetes Dx

N = 4027
Secondary Diabetes Dx

N = 4027
p Value

Year of discharge, N (%) <0.0001
2004 805 (10.0) 411 (10.2) 394 (9.8)
2005 844 (10.5) 464 (11.5) 380 (9.4)
2006 878 (10.9) 496 (12.3) 382 (9.5)
2007 1048 (13.0) 574 (14.3) 474 (11.8)
2008 951 (11.8) 507 (12.6) 444 (11.0)
2009 1037 (12.9) 494 (12.3) 543 (13.5)
2010 1047 (13.0) 482 (12.0) 565 (14.0)
2011 788 (9.8) 321 (8.0) 467 (11.6)
2012 656 (8.1) 278 (6.9) 378 (9.4)

Length-of-stay (days), median (IQR) 3.3 (2.1–5.8) 3.1 (2.0–5.1) 3.6 (2.1–6.2) <0.0001
Urgent or emergent admission, N (%) <0.0001

No 955 (11.9) 318 (7.9) 637 (15.8)
Yes 7099 (88.1) 3709 (92.1) 3390 (84.2)
Yes 1395 (17.3) 717 (17.8) 678 (16.8)
No 6659 (82.7) 3310 (82.2) 3349 (83.2)

Blood transfusion given, N (%) <0.0001
Yes 885 (11.0) 319 (7.9) 566 (14.1)
No 7169 (89.0) 3708 (92.1) 3461 (85.9)

Parenteral or enteral nutrition, N (%) <0.0001
Yes 180 (2.2) 43 (1.1) 137 (3.4)
No 7874 (97.8) 3984 (98.9) 3890 (96.6)

Discharge status of index admission, a N (%) 0.0024
Home 4909 (61.0) 2475 (61.5) 2434 (60.4)
Home with nursing care 1550 (19.2) 786 (19.5) 764 (19.0)
Sub-acute facility 1363 (16.9) 628 (15.6) 735 (18.3)
Against medical advice 190 (2.4) 121 (3.0) 69 (1.7)

Discharge 1 year prior to index admission,
N (%) <0.0001

Home 2852 (35.4) 1562 (38.8) 1290 (32.0)
Home with nursing care 923 (11.5) 473 (11.7) 450 (11.2)
Sub-acute facility 774 (9.6) 383 (9.5) 391 (9.7)
Against medical advice 133 (1.7) 90 (2.2) 43 (1.1)
No discharge recorded 3372 (41.9) 1519 (37.7) 1853 (46.0)

Body mass index, N (%) <0.0001
<18.5 kg/m2 182 (2.3) 113 (2.8) 69 (1.7)
18.5–24.9 kg/m2 1587 (19.7) 971 (24.1) 616 (15.3)
25.0–29.9 kg/m2 2223 (27.6) 1082 (26.9) 1141 (28.3)
≥30.0 kg/m2 4062 (50.4) 1861 (46.2) 2201 (54.7)

Depression or psychosis ever, N (%) 2438 (30.3) 1358 (33.7) 1080 (26.8) 0.0002
Gastroparesis ever, N (%) 683 (8.5) 596 (14.8) 87 (2.2) <0.0001
Pancreatitis ever, N (%) 410 (5.1) 246 (6.1) 164 (4.1) 0.037
Hypertension ever, N (%) 5630 (69.9) 2631 (65.3) 2999 (74.5) <0.0001
COPD or asthma ever, N (%) 1551 (19.3) 625 (15.5) 926 (23.0) <0.0001
Cardiac dysrhythmias ever, N (%) 1431 (17.8) 492 (12.2) 939 (23.3) <0.0001
Malignant neoplasm ever, N (%) 596 (7.4) 140 (3.5) 456 (11.3) <0.0001
Drug abuse, N (%) <0.0001

Never 6262 (77.8) 2990 (74.2) 3272 (81.3)
History 1403 (17.4) 786 (19.5) 617 (15.3)
Current 389 (4.8) 251 (6.2) 138 (3.4)

Current complication of device, graft, or
implant, N (%) <0.0001

Yes 208 (2.6) 53 (1.3) 155 (3.8)
Current fluid or electrolyte disorder, N (%) 1695 (21.0) 969 (24.1) 726 (18.0) <0.0001
Charlson comorbidity index, N (%) <0.0001

0 1271 (15.8) 1269 (31.5) 2 (0.0)
1–2 2211 (27.5) 914 (22.7) 1297 (32.2)
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Table 1. Cont.

Variable
All Patients

N = 8054
Primary Diabetes Dx

N = 4027
Secondary Diabetes Dx

N = 4027
p Value

3–4 1503 (18.7) 508 (12.6) 995 (24.7)
5–6 791 (9.8) 370 (9.2) 421 (10.5)
>6 2278 (28.3) 966 (24.0) 1312 (32.6)

Outpatient visit, N (%) <0.0001
Yes 3683 (45.7) 1820 (45.2) 1863 (46.3)
No 2303 (28.6) 1239 (30.8) 1064 (26.4)
Unknown 2068 (25.7) 968 (24.0) 1100 (27.3)

a “Other” category not shown; b See text for SI units; c Retinopathy, neuropathy, nephropathy; d Coronary artery
disease, heart failure, stroke, peripheral vascular disease; ACE-i = Angiotensin-converting enzyme inhibitor;
ARB = Angiotensinogen receptor blocker; COPD = Chronic Obstructive Pulmonary Disease; DKA = Diabetic
ketoacidosis; Ever = current or prior; IQR = Interquartile range; HHS = Hyperglycemic Hyperosmolar Syndrome;
No = not recorded.

Out of the 49 characteristics analyzed, 44 were statistically significantly different
between patients with a primary and secondary discharge diagnosis of diabetes (Table 1).
There were no statistically significant differences in preadmission thiazolidinedione use,
admission hematocrit, intensive care unit admission, a diagnosis of anemia ever, or current
infection during the admission.

The readmission rate was higher in patients with a primary discharge diagnosis of
diabetes than in patients with a secondary discharge diagnosis of DM (22.2% vs. 16.2%,
p < 0.01). Several independent risk factors for readmission were common to both a primary
and a secondary discharge diagnosis of diabetes, specifically, a lack of an outpatient visit
within 30 days of discharge, length of stay, being unemployed, being discharged within
90 days before admission, and a diagnosis of anemia (Figures 1 and 2). Being uninsured
was associated with lower readmission risk. There were also multiple independent read-
mission risk factors unique to patients with a primary discharge diagnosis of diabetes
(Figure 3): the Charlson comorbidity index, education level, gastroparesis, higher serum
creatinine, and lower hematocrit. Inpatient diabetes consultation and preadmission TZD
use were associated with lower odds of readmission in this group. Similarly, there were
several independent readmission risk factors unique to those with a secondary discharge
diagnosis of diabetes (Figure 4): discharge against medical advice, discharge home with
nursing care, pancreatitis, abnormal serum sodium, urgent or emergent admission, and
low serum albumin.

C-statistics for the multivariable models of readmission indicated very good discrimi-
nation and were not significantly different between the study groups (0.837 [0.823–0.851]
95% CI vs. 0.822 [0.807–0.837] 95% CI, p = 0.15). Calibration of the primary discharge
diagnosis model was excellent, while calibration of the secondary discharge diagnosis
model was fair (Figures 5 and 6).

Many of the most frequent reasons for hospital admission based on primary ICD-
9-CM code among patients with a secondary discharge diagnosis of diabetes were also
frequent secondary ICD-9-CM codes among those with a primary discharge diagnosis of
diabetes (i.e., cardiovascular disease, infection, lung disease, procedure or postoperative
complications, and disorders of fluid electrolyte or acid–base balance, Tables S1 and S2).
Other common reasons for admission in the patients with a secondary discharge diagnosis
of diabetes were ischemic stroke, alteration of consciousness, hallucinations, syncope,
convulsions, dizziness, fever, or malaise, overweight, obesity and other hyperalimentation,
and pancreatitis (Table S2).

In the subgroup analysis performed among patients with an HbA1c value, the mean
HbA1c in the primary discharge diagnosis group was 10.7 ± 3.0% and in the secondary
discharge diagnosis group, it was 7.8 ± 2.0% (p < 0.001). When HbA1c was added to the
models for readmission, there was no association of HbA1c with readmission in either
group of patients (Tables S3 and S4). Although two and three of the variables in each model
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were no longer statistically significant, the direction of the odds ratios above or below 1
remained the same.

Figure 1. Risk factors for all-cause 30-day readmission among 4027 patients with primary discharge
diagnosis of diabetes in multivariable logistic regression model, OR (95% CI), adjusted for year of
discharge. � = Odds ratio.

 

Figure 2. Risk factors for all-cause 30-day readmission among 4027 patients with secondary discharge
diagnosis of diabetes in the multivariable logistic regression model, OR (95% CI). Adjusted for year
of discharge. � = Odds ratio.
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Figure 3. Risk factors for readmission unique to primary discharge diagnosis of diabetes, OR (95%
CI). � = Odds ratio.

Figure 4. Risk factors for readmission unique to the secondary discharge diagnosis of diabetes, OR
(95% CI). � = Odds ratio.

Figure 5. Calibration plot for the multivariable logistic regression model in people with primary
discharge diagnosis of diabetes. Each decile is denoted by a circle with a short intersecting line to
indicate the corresponding 95% confidence interval. The diagonal smooth line (Lowess) indicates
excellent agreement between the observed and expected values.
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Figure 6. Calibration plot for the multivariable logistic regression model in people with secondary
discharge diagnosis of diabetes. Each decile is denoted by a circle with a short intersecting line to
indicate the corresponding 95% confidence interval. The diagonal smooth line (Lowess) indicates fair
agreement between the observed and expected values.

4. Discussion

In this retrospective cohort study of 8054 hospitalized patients with either a pri-
mary or secondary diagnosis of diabetes, 49 socioeconomic, demographic, clinical, and
administrative variables were evaluated for associations with all-cause 30-day readmission.
Multivariable analysis revealed several independent risk factors for readmission, some of
which were shared between the two study groups and some of which were not. Both mod-
els performed well in terms of discrimination (c-statistics 0.834 and 0.822), suggesting very
good performance for prediction, with no statistically significant difference between them.
Post-hoc analysis in the subgroup of patients with an HbA1c value found no association
of HbA1c with readmission and did not substantively change the model in either group.
The loss of statistical significance in a few of the variables in the models was attributable to
the markedly smaller sample sizes. Finally, patients with a primary discharge diagnosis of
diabetes had a significantly higher readmission rate than those with a secondary discharge
diagnosis of diabetes.

The higher readmission rate of patients with a primary discharge diabetes diagnosis
was consistent with the existing literature as well as our clinical experience. In a study
of 16,266 people with diabetes, Sonmez and others reported 30-day readmission rates of
16.5% and 13.6% among those with a primary or secondary discharge diagnosis of diabetes,
respectively [11]. Another study of adults with type 1 diabetes hospitalized for diabetic
ketoacidosis (DKA) reported a readmission rate of 19.4% [17]. It has been speculated, and
we agree, that the higher readmission rate of those with a primary discharge diagnosis
of diabetes may be related to the more extreme metabolic abnormalities (e.g., diabetic
ketoacidosis, hyperglycemic hyperosmolar state, severe hyper and hypoglycemia) that
patients tend to have relative to those for whom diabetes is a secondary diagnosis [11].
Sonmez and colleagues called for studies to reveal the causes for the observed difference
in readmission rates between the two populations. We are not aware of studies besides
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ours that compared the multiple risk factors between patients with a primary or secondary
discharge diagnosis of diabetes.

The difference in readmission rates between patients with a primary or secondary
diabetes diagnosis may be at least partly attributable to the risk factors that were unique to
each subgroup. Most notably, inpatient consultation by a diabetes management service was
associated with lower odds of readmission in people with a primary discharge diagnosis
of diabetes. This association has been reported in other studies of hospitalized patients
with diabetes including one randomized controlled trial [18–21]. These studies, however,
did not distinguish between those with a primary or secondary discharge diagnosis of
diabetes. The literature, our findings, and clinical intuition considered together suggest
that inpatient diabetes team consultation is more effective at reducing readmission risk
among patients primarily admitted for diabetes than in patients with diabetes admitted for
another condition.

Risk factors unique to patients with a secondary discharge diagnosis of diabetes
include being discharged against medical advice, being discharged home with nursing
care, and urgent or emergent admission. In contrast to inpatient diabetes consultation,
these factors are not diabetes specific. Given that diabetes is not the central issue among
those with a secondary diagnosis, it is logical that non-specific risk factors are more im-
portant than among those with a primary diagnosis of diabetes. For secondary diabetes
diagnosis patients, it appears that the circumstances around the hospital admission and dis-
charge are more important for determining the readmission risk than for primary diabetes
diagnosis patients.

It is worth noting that the risk factors common to both primary and secondary diabetes
diagnosis patients (i.e., lack of an outpatient visit within 30 days of discharge, length of
stay, being unemployed, lacking health insurance, being discharged within 90 days before
admission, and a diagnosis of anemia) are also not specific to diabetes per se. In addition,
the only modifiable factors on this list are outpatient follow-up and insurance status.
There is some support from randomized controlled trials for the hypothesis that in-person
outpatient follow-up reduces readmission risk in people with diabetes [22,23], although
another trial has provided conflicting evidence [24], and the nature of follow-up and the
study population characteristics vary across the few trials that have examined this. Whether
follow-up by telephone and specific components of outpatient follow-up such as education
and medication adjustment contribute to readmission risk reduction has been reviewed
elsewhere recently and was beyond the scope of the current study [9]. Lack of health
insurance was strongly and inversely associated with readmission risk in both groups of
patients. Previously, we reported this association in a larger study of the parent cohort from
which the current sample was drawn [12]. We speculate that patients who lack insurance
delay seeking care to avoid paying medical bills. The association of hospital length of stay
with readmission has been widely reported [9,10], and likely represents a marker of illness
severity rather than a causal factor. It is unclear why a diagnosis of anemia is the only
condition among all the diagnoses evaluated to be shared as a risk factor for readmission
in both primary and secondary diabetes diagnosis patients. Additional research to both
confirm and explore reasons for this association is warranted.

There is some commonality and some differences between the risk factors reported
here and a study of adults with type 1 diabetes hospitalized with DKA [17]. Common risk
factors were Charlson comorbidity index and kidney disease. Risk factors identified in
the other study not identified in ours among patients with a primary discharge diagnosis
of diabetes include age, sex, income, large hospital bed size, smoking, discharge against
medical advice, obesity, and hypertension. These differences likely reflect differences in the
data available as well as the study populations. The other study used a national sample
of much younger patients and did not include much patient-level data such as laboratory
results and medication use.

The c-statistics of the two models presented here suggest very good prediction of
readmissions and compare favorably to other models that predict readmission risk in
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people with diabetes, for which the c-statistics ranged from 0.63 to 0.97 [9]. We previously
published a model using the parent cohort of people with diabetes without stratifying
the sample by discharge diagnosis, which had a comparable c-statistic of 0.82 [12]. These
two studies indicate that developing separate models for patients with either a primary
or secondary discharge diagnosis of diabetes did not yield better performance than a
single model developed in a unified cohort. They also reinforced the conclusion that using
more variables, especially variables based on data available on or after discharge, enabled
stronger prediction than models based only on variables available at the time of admission
such as the Diabetes Early Readmission Risk Indicator (DERRI®), which had a c-statistic of
0.69 [25]. It remains unknown whether models might perform better when stratified by
other characteristics such as the type of diabetes.

It is difficult to speculate how the readmission risk factors among people with diabetes
may have changed since the appearance of COVID-19. Given that the pandemic exacerbated
health disparities [26], it is possible that the associations related to access to care such as
outpatient visits, employment status, and insurance were strengthened. While several
studies have identified diabetes as a risk factor for readmission among people hospitalized
for COVID-19 [27], we are unaware of any studies that have examined COVID-19 as a risk
factor for readmission among people with diabetes.

The strengths of this study are a moderately large sample size, a diverse population,
and analysis of multiple socioeconomic, demographic, administrative, and clinical factors.
These strengths are tempered by some limitations. Because the sample came from one
urban academic medical center, the results may not be generalizable to other settings and
populations. Additionally, readmissions that may have occurred at other hospitals could
not be assessed. However, given that the readmission rate of 20.4% in the parent cohort is at
the higher end of the range reported for people with diabetes [9,10], it seems unlikely that a
substantial number of people were readmitted at other hospitals. Post-discharge mortality
data were not available, and different mortality rates between the two groups may have
influenced the observed readmission rates. Data on other potentially important risk factors
or confounders such as A1c (due to lack of collection in about half the cohort), diabetes
type (for which the accuracy of ICD-9-CM codes is suboptimal) [28], inpatient management,
and classification of primary teams as medical or surgical were not available to analyze.
Furthermore, the study period ended before FDA approval of SGLT2-inhibitors and the
widespread use of GLP1-receptor agonists, which are drug classes that may influence the
risk of hospitalization and readmission. Finally, the observational nature of this study
precludes causal inference.

In conclusion, this retrospective observational study of patients with a primary or
secondary discharge diagnosis of diabetes identified shared unique risk factors for all-cause
30-day readmission while confirming the higher readmission risk of patients with a primary
diabetes diagnosis. The results suggest that inpatient diabetes consultation may be more
effective at lowering the readmission risk among patients with a primary diabetes diagnosis
than those with a secondary diabetes diagnosis. Given the burden incurred and imposed by
hospital readmissions among people with diabetes, identifying those at greater risk of read-
mission offers the potential to allocate resources more efficiently and effectively to reduce
readmission risk. These models may perform well to predict readmission risk, although
additional study is needed to validate their performance. Randomized controlled trials are
needed to test the strategy of linking readmission risk prediction with interventions for
reducing such risk.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm12041274/s1, Table S1. Most common secondary ICD-9-
CM codes among 4027 patients with a primary discharge diagnosis of diabetes; Table S2. Most
common reasons for hospital admission based on primary ICD-9-CM code among 4027 patients with
a secondary discharge diagnosis of diabetes; Table S3. Risk factors for readmission in subgroup of
patients with a primary discharge diagnosis of diabetes and an HbA1c value (n = 2182), OR (95% CI);
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Table S4. Risk factors for readmission in subgroup of patients with a secondary discharge diagnosis
of diabetes and an HbA1c value (n = 1492), OR (95% CI).
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Abstract: Diabetes mellitus (DM) is one of the most common comorbid conditions in persons with
COVID-19 and a risk factor for poor prognosis. The reasons why COVID-19 is more severe in persons
with DM are currently unknown although the scarce data available on patients with DM hospitalized
because of COVID-19 show that glycemic control is inadequate. The fact that patients with COVID-19
are usually cared for by health professionals with limited experience in the management of diabetes
and the need to prevent exposure to the virus may also be obstacles to glycemic control in patients
with COVID-19. Effective clinical care should consider various aspects, including screening for the
disease in at-risk persons, education, and monitoring of control and complications. We examine the
effect of COVID-19 on DM in terms of glycemic control and the restrictions arising from the pandemic
and assess management of diabetes and drug therapy in various scenarios, taking into account factors
such as physical exercise, diet, blood glucose monitoring, and pharmacological treatment. Specific
attention is given to patients who have been admitted to hospital and critically ill patients. Finally,
we consider the role of telemedicine in the management of DM patients with COVID-19 during the
pandemic and in the future.

Keywords: diabetes mellitus; COVID-19; hyperglycemia; glycemic control; blood glucose monitoring;
telemedicine

1. Diabetes and COVID-19

Diabetes mellitus (DM) is a medical condition that can have a considerable impact on
affected persons and on society owing to the high costs associated with its care, especially
those arising from complications. The situation becomes more serious during a pandemic,
such as that of COVID-19, as having DM entails a greater risk of extended hospital stay
and death. In addition to the direct effects on health, the absence of regular care owing to
closure of outpatient clinics and social isolation—combined with changes in diet, physical
activity, and personal care—favors deterioration of disease control and hampers detection
of complications. All of the above factors could prove responsible for poorer clinical
outcomes in patients with DM

This study examines the impact of the COVID-19 pandemic on persons with DM and
covers implications for health in the short and long terms. It also examines how to address
the threat to persons with DM arising from more limited health services and changes in
lifestyle resulting from the pandemic.

2. COVID-19 in Persons with Diabetes

2.1. Impact of Diabetes on COVID-19

DM is one of the most common comorbid conditions in persons with COVID-19, and
while the presence of DM does not seem to increase the risk of infection [1], it is a risk factor
for poor prognosis [2,3]. The prevalence of DM in persons with COVID-19 varies widely
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according to published series, from 7% to 30% [4]. A meta-analysis by Fadini et al. [1] in
Italy examined 12 studies performed in China and, including outpatients and hospitalized
patients, found the prevalence of DM to be 10.3%, which overlapped with or was even
slightly inferior to the prevalence of DM in the Chinese population adjusted for age. In
the whole-population study by Barron et al. [5] in England, which included 61,414,470 live
individuals registered in primary care, 0.4% had been diagnosed with type 1 diabetes
(T1D), 4.7% had a diagnosis of type 2 diabetes (T2D), and 0.1% had other types of DM. The
odds ratios (ORs) for in-hospital COVID-19-related death were 3.51 (95% CI, 3.16–3.90)
in people with type 1 diabetes and 2.03 (1.97–2.09) in people with type 2 diabetes after
adjustment for age, sex, deprivation, ethnicity, and geographical region. These effects were
attenuated, reaching ORs of 2.86 (2.58–3.18) for type 1 diabetes and 1.80 (1.75–1.86) for
type 2 diabetes when also adjusted for previous hospital admissions with coronary heart
disease, cerebrovascular disease, and heart failure. Various studies have shown that DM
is present in approximately 20% of persons infected by type 2 coronavirus causing severe
acute respiratory syndrome (SARS-CoV-2) and that it is one of the most common comorbid
conditions together with arterial hypertension, obesity, and cardiovascular disease [6–8].

Once COVID-19 is acquired, DM might increase the severity and mortality of the
disease to the extent that patients with uncontrolled hyperglycemia or DM have a greater
risk of respiratory failure and cardiac complications and more than double the probability
of being admitted to the intensive care unit (ICU). Moreover, mortality is 3-fold greater
than in patients without DM or uncontrolled hyperglycemia [2,3,5,9,10]. In the study by
Barron et al. [5], 30% of deaths from COVID-19 were in persons with DM, and the risk of
death was almost 3-fold greater for persons with T1D and almost double for those with
T2D than in those who did not have DM. In addition to the impact on health, the COVID-19
pandemic considerably affects the use of health care resources and costs. In the USA, the
average direct medical cost during the course of the infection was estimated to double or
triple in patients with comorbid conditions, such as DM [11].

The reasons why COVID-19 is more severe in persons with DM are currently un-
known [12]. Potential pathophysiological mechanisms that contribute to the increase in
morbidity and mortality include presence of an underlying chronic inflammatory state
in DM, impaired immune response, and coagulation abnormalities. The high prevalence
of DM in severe cases of COVID-19 could reflect the greater prevalence of T2D in elderly
people. Furthermore, DM in the elderly is associated with cardiovascular diseases and
obesity, which in themselves go some way to explaining the association with the fatal
outcome of COVID-19. However, the association between DM and a poorer prognosis is
maintained in non-hypertensive younger patients [9]. Current studies have shown that
hyperglycemia at admission to hospital is a predictor of death and other severe outcomes
of COVID-19 [13,14]. The Spanish registry of the Spanish Society of Internal Medicine for
COVID-19 [14], which included 11,312 patients (18.9% with previous DM) hospitalized with
COVID-19 in 109 hospitals, showed that patients who were not critically ill but presented
with hyperglycemia at admission, irrespective of whether they had previously had DM or
not, were more likely to develop complications and die and that this risk increased with
the grade of hyperglycemia (blood glucose >180 mg/dL (>10 mmol/L); HR for mortality,
1.50; 95% CI, 1.31–1.73; and blood glucose 140–180 mg/dL (7.8–10 mmol/L); HR, 1.48;
95% CI, 1.29–1.70). A retrospective study of 1544 patients with COVID-19 from 91 hospi-
tals in the USA [13] showed that both hyperglycemia and hypoglycemia were associated
with poor outcomes in patients with COVID-19. In addition, although clearly insufficient,
available data support the fact that optimal control of glycemia during hospital stay could
prove to be beneficial in terms of clinical outcomes in patients with DM and COVID-19.
A study of 59 patients with COVID-19 admitted to two Italian hospitals [15] showed that
treatment with insulin infusion until blood glucose levels of <140 mg/dL (<7.8 mmol/L)
were reached in 15 subjects with hyperglycemia and improved their prognosis with respect
to patients who had not received an insulin infusion. Furthermore, levels of interleukin 6
and D-dimer decreased once hyperglycemia was treated.
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Specific mechanisms with a potential role in COVID-19 infection include angiotensin
II–converting enzyme (ACE2) and dipeptidyl peptidase 4 (DPP4) [12,16]. ACE2 has been
identified as a coronavirus surface protein receptor. COVID-19 reduces expression of
ACE2, thus inducing cell damage, hyperinflammation, and respiratory failure. Acute
hyperglycemia upregulates expression of ACE2 in cells, thus potentially facilitating the
entry of viral cells [3,17]. However, we know that chronic hyperglycemia negatively
regulates expression of ACE2, leaving cells vulnerable to the effects of the virus [18]. Cell
studies have identified DPP4 as a functional receptor for human coronavirus–Erasmus
Medical Center (HCoV-EMC) and antibodies targeting DPP4 inhibited infection of primary
cells by HCoV-EMC [16]. At present, it is unknown whether these mechanisms can also
be applied to COVID-19 and whether treatment of DM with DPP4 inhibitors in clinical
practice affects the course of the infection.

2.2. Impact of COVID-19 on Diabetes

DM is not only a risk factor for greater severity of COVID-19; in fact, the disease affects
persons with DM directly, as in other viral infections (by worsening previous DM and even
inducing new-onset DM), or indirectly, as a consequence of the restrictions arising from
lockdown during the COVID-19 pandemic.

2.2.1. Effects of COVID-19 on Glycemic Control

The scarce data available on patients with DM hospitalized because of COVID-19
show that glycemic control is inadequate [19,20]. A study that analyzed glycemic outcomes
during admission found that 39.1% of values were over 180 mg/dL (10 mmol/L) and that
the mean blood glucose level was over 180 mg/dL (10 mmol/L) for 37.8% of hospital
stay [19]. In a study carried out in the USA [13], more than half of patients admitted to
the ICU (56%) and outside the ICU (53%) did not reach their target blood glucose levels
during the first two or three days; a study performed in China found that 56.6% of capillary
blood glucose test results were higher than the recommended target (140–180 mg/dL)
(7.8–10 mmol/L) [20]. In patients who required insulin, SARS-CoV-2 infection was associ-
ated with very high insulin requirements, reaching doses of 201 IU/d (2.2 IU/kg/d) [21];
these high values are associated with levels of inflammatory cytokines. Decompensation in
the form of diabetic ketoacidosis has been reported in patients with T2D and COVID-19, as
is the case in other severe infections. One systematic review reported that 77% of patients
with COVID-19 who developed ketoacidosis had underlying T2D, and DM was diagnosed
in 10 patients at admission; of these, seven had glycated hemoglobin >9.5% [22]. The
pathophysiology of these manifestations of DM is complex and probably goes beyond the
well-established stress response associated with severe disease and the toxicity induced by
persistently elevated glucose concentrations. The proinflammatory medium induced by
COVID-19 can lead to a high degree of insulin resistance, thus increasing insulin require-
ments. Pancreatic β cells express ACE2, which can lead the virus to enter the pancreatic
islets and damage the β cells, thus causing insulin deficiency. This effect worsens the course
of DM and causes acute hyperglycemia, even in persons without DM [23]. Insulin defi-
ciency in the setting of marked insulin resistance might also explain the common finding
of cases of severe diabetic ketoacidosis and ketosis at admission [24]. Furthermore, drugs
that are commonly used in clinical practice for patients with COVID-19, such as systemic
corticosteroids and antiviral agents, worsen glycemic control and lead to marked glycemic
excursions over a 24-h period [25,26]. In addition, there have been reports of a high number
of hypoglycemic episodes at admission, probably favored by the anorexia induced by
COVID-19 and without the concomitant adjustment of glucose-lowering drugs [20,27].
Finally, the fact that patients with COVID-19 are cared for by health professionals with
limited experience in the management of hyperglycemia and the need to prevent exposure
to the virus may also be obstacles to glycemic control in patients with COVID-19. Therefore,
impaired glycemic control in patients with DM and hyperglycemia in patients without
previous DM is considered a complication of COVID-19.
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2.2.2. Effects on Diabetes of the Restrictions Arising from the COVID-19 Pandemic

The COVID-19 pandemic was and continues to be a considerable challenge for people
with DM since their normal routines have been interrupted in order to comply with social
distancing measures. The immediate consequence is that a patient’s ability to gain access to
and receive medical care, obtain medication and material for control of DM, and maintain a
healthy lifestyle and social connections have been considerably affected. While information
on the indirect consequences of the COVID-19 pandemic on DM is limited, we are now
seeing data that make it possible to evaluate the impact of the first wave.

Studies in patients with T1D who use continuous glucose monitoring (CGM) or flash
glucose monitoring (FGM) have shown that during lockdown, there was no deterioration
in glycemic control or even beneficial effects [28,29]. A recent meta-analysis including
3441 individuals with T1D with CGM or FGM showed that, during the lockdown period,
time in range 70–180 mg/dL increased by 3.05% (95% CI, 1.67–4.43%; p < 0.0001), while
time above range (>180 mg/dL and > 250 mg/dL) declined by 3.39% (–5.14 to –1.63%) and
1.96% (−2.51 to −1.42%), respectively (p < 0.0001 for both) [30]. It has been speculated that
this improvement could be associated with the ability to spend more time monitoring DM,
having more regular timetables, and experiencing less stress associated with going to and
from work. However, these findings may not be applicable to people with T1D who are
less motivated to control their disease, who do not use CGM, or whose social-occupational
situation competes for the time spent on managing DM. Of the 763 persons with T1D who
participated in the Taking Control of Your Diabetes study in the USA, 46% reported that
the pandemic hampered their management of DM. Furthermore, in approximately 25%,
there was an increase in the frequency of high blood glucose levels and variations in blood
glucose [31]. Finally, of the 603 patients with T1D who participated in a web survey in
Spain, two-thirds reported impaired glycemic control, and 4 out of 10 reported weight
gain [32].

The T2D population is much more heterogeneous than the T1D population in relevant
aspects such as treatment, monitoring, and ability to self-adjust treatment and use remote
consultation tools. The results of the survey among the subjects of Taking Control of Your
Diabetes (763 persons with T1D and 619 with T2D) show that the impact of lockdown
on management of DM was similar in both populations [31]. Patients were mainly non-
Hispanic White, were educated to a high level, and had good control of their glycemia.
Furthermore, in the case of patients with T2D, 46% received treatment with insulin, and
25% used CGM. A study of 114 patients with T2D followed at a tertiary center in Italy
found that lockdown led to poorer metabolic control in the short term in 26% of patients
who had previously been well controlled [33]. Given the characteristics of the populations
studied and the care setting, these data are not applicable to the general population with
T2D, especially in those patients who require care from the health system for monitoring of
control and intensification of treatment. In addition, given that published data are very
short term and that T2D is progressive, we might expect that the absence of or reduction in
monitoring and in intensification of treatment leads to more frequently impaired control in
the longer term. Data from the electronic medical records of a cohort of 13,352,550 patients
from 1709 primary care centers in the United Kingdom followed between March and April
2020 raise particular concern over the considerable reduction (77–84%) in testing of glycated
hemoglobin and in the prescription of metformin and insulin, especially in older persons
with T2D [34]. Similar changes in glucose-lowering therapy were reported in patients with
T2D in Germany between January and July 2019 (N = 79,268) and between January and
July 2020 (N = 85,046). Compared with 2019, the number of persons with ≥1 change in
medication fell in 2020, as follows: DPP4 inhibitors, –15%; sodium-glucose co-transporter
2 (SGLT2) inhibitors, –3%; glucagon-like peptide-1 (GLP1) receptor agonists, 0%; other
oral hypoglycemic drugs, –6%; and insulin, –21% [35]. Another indirect consequence of
the COVID-19 pandemic in T2D patients is the effect on diagnosis of DM, which requires
specific diagnostic tests that must be performed in a clinical setting. The first four months of
lockdown in the United Kingdom saw a reduction of 70% in new diagnoses of T2D; that is,
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more than 45,000 diagnoses were either not made or delayed during this period [34]. Taken
together, these data are worrying since absence of or delaying diagnosis and monitoring of
DM hampers decisions on therapy aimed at improving metabolic control and preventing
the development or progression of potentially severe complications in the long term.

3. Treatment of Diabetes during the COVID-19 Pandemic: Disease Management and
Drug Therapy in Various Scenarios

3.1. Diabetes Patients without COVID-19: Lockdown and Lack of Physical Exercise

People with DM must be aware of the importance of maintaining good glycemic
control during the COVID-19 pandemic since stability of blood glucose levels can help
to ensure a milder clinical course if the individual becomes infected [36]. Good glycemic
control depends on tailoring therapy to the individual patient’s situation. A balanced
diet, regular physical exercise, psychological stability, and adequately adjusted treatment
are key elements when attempting to achieve objectives for disease control. It is also
important to control comorbid conditions associated with DM, such as routine vaccination
against pneumococcus and influenza (Table 1) [37]. It is as well a priority for people with
diabetes to receive the COVID-19 vaccine. Clinical data have shown a robust neutralizing
antibody response in patients with diabetes [38]. However, recent data have shown
that hyperglycemia at the time of COVID-19 vaccination worsens the immune response,
whereas achieving adequate glycemic control during the post-vaccination period improves
the immune response [39]. Therefore, we need to focus on achieving good glycemic control,
which can play a role in clinical COVID-19 outcomes and vaccine efficiency

Table 1. General recommendations for the prevention of COVID-19 in persons with diabetes [37].

Hygiene and social Distancing Measures

Lifestyle

• Healthy diet: limit refined sugar and fat; avoid snacks [40,41]
• Physical exercise: avoid a sedentary lifestyle; take regular aerobic exercise (walking, cycling,

etc.) combined with strength exercise (weights, resistance bands, pushing exercises,
etc.) [42,43].

• Avoid smoking; avoid alcohol
• Stress management

Glycemic control

• Regular monitoring of blood glucose levels
• Continue with regular treatment, except in the case of contraindications
• Consider dose adjustment (insulin, sulfonylureas, etc.) depending on diet and

physical activity
• Ketone level monitoring in T1D, especially if hyperglycemia is persistent (>250 mg/dL), or

there are symptoms suggestive of ketoacidosis (nausea, vomiting, abdominal pain, etc.)

Control of comorbid conditions (obesity, blood pressure, dyslipidemia, etc.)

Vaccination (routine vaccination against pneumococcal and seasonal influenza)

Minimize exposure to SARS-CoV-2 (prioritize telemedicine)

SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Table 1 summarizes the main recommendations for the prevention of COVID-19 in
people with diabetes.

General public health measures issued by health authorities (e.g., social distancing,
hand washing, masks, and lockdown) should receive specific emphasis in people with DM.
Similarly, telemedicine should be preferred to limit exposure of people with DM while at
the same time guaranteeing continuity of care [44].

Greater vigilance is warranted for early detection of signs and symptoms—even
atypical ones—of SARS-CoV-2 infection in patients with DM. A lower clinical threshold for
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suspicion of COVID-19 should be established in order to avoid delays in health care and
adverse outcomes in this population [45].

3.2. Patients with Diabetes and COVID-19 Who Have Not Been Admitted to Hospital

Most persons with COVID-19 and DM develop mild disease that can be managed
at home according to local guidelines. In these cases, regular contact with and follow-up
by health services are crucial for identifying impaired control or clinical status. Similarly,
optimization of glycemic control is key if we are to reduce the risk of severe disease.
Therefore, blood glucose levels should be monitored frequently, and patients should follow
a healthy diet, ensure appropriate fluid intake, and adjust treatment in cases of impaired
glycemic control [37]. Integrated management of comorbid conditions and associated
cardiovascular risk factors are equally important during this period [37].

Figure 1 shows general recommendations for prevention and management of COVID-19
in people with diabetes.

Figure 1. General recommendations for prevention and management of COVID-19 in persons
with diabetes.

3.2.1. Objectives of Glycemic Control

The objectives of glycemic control should be tailored according to age, comorbid con-
ditions, complications, and the clinical severity of infection. It is generally recommended
to maintain preprandial glucose levels between 70 and 130 mg/dL and postprandial levels
<180 mg/dL. In the case of elderly or frail patients, more easily achievable objectives can
be set, with priority given to avoiding hypoglycemia [46].

In the case of patients who use CGM, the objective should be to reach time in range
(70 to 180 mg/dL) of more than 70%, with time in hypoglycemia (<70 mg/dL) lower than
4%. The values for elderly or frail patients are reaching time in range >50% and time in
hypoglycemia <1% [47,48].

3.2.2. Glucose Monitoring

Control of glucose levels is essential if we are to maintain good glycemic control during
infection and detect possible hyperglycemic complications or hypoglycemia. The number
of checks depends on the type of DM, treatment, and degree of control. However, in the
case of COVID-19 infection, the number of daily checks should be increased and the results
analyzed. The use of CGM or FGM systems as well as glucose monitors with the option to
download data and a cloud connection enables remote monitoring by health professionals.

In the case of CGM, it is important to remember the possible interference of parac-
etamol with some systems (Dexcom G5, Guardian Connect, Enlite-Guardian Link, Enlite-
Guardian 2 Link, Guardian Sensor 3-Guardian Link 3, Eversense, etc.) [49]. In these cases,
capillary blood glucose monitoring should be performed before taking paracetamol.

3.2.3. Pharmacologic Treatment

Various glucose-lowering agents (e.g., metformin, DPP4 inhibitors, and GLP1 receptor
agonists) have anti-inflammatory action, thus supporting the hypothesis that one or more
of these drugs could be particularly useful in persons with T2D and COVID-19 [50].
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However, in the absence of prospective randomized controlled trials, there continues to
be insufficient evidence for stating whether the use of a specific class of glucose-lowering
agents is beneficial or harmful for people with COVID-19 [51]. An analysis of COVID-19
results from 1317 persons with DM (88.5% with T2D) in French hospitals revealed no clear
association between glucose-lowering agents and symptom severity [52]. Similarly, no
significant association was found between treatment and clinical findings for COVID-19
infection in 1762 persons with T2D in the SEMI-COVID-19 registry in Spain [53].

Patients with mild COVID-19 can generally continue with their usual treatment,
providing they maintain adequate oral tolerance with good fluid intake, and there are no
contraindications for treatment. Nevertheless, factors such as kidney function, nutritional
status, risk of hypoglycemia, severity of infection, and glycemic control itself may require
treatment to be adjusted. The main recommendations for antihyperglycemic agents in
patients with COVID-19 are summarized in Table 2 [25,37,48,50].

Table 2. Recommendations on the use of antihyperglycemic drugs in patients with diabetes and COVID-19 [37,48,54–57].

Treatment Clinical Recommendation Special Considerations in COVID-19

Metformin
Suspend in severe cases, with hemodynamic

instability or hypoxia

Risk of lactic acidosis in hypoxia and acute disease
Monitor kidney function. Suspend if

glomerular filtration
<30 mL/min/1.73 m2

Sulfonylureas
Suspend in cases where food intake is not

guaranteed owing to the risk of hypoglycemia

The risk of hypoglycemia may be greater with
concomitant use of treatments such as

hydroxychloroquine

DPP4i
Continue in outpatients

Potential option in hospitalized patients with mild
hyperglycemia, combined with basal insulin

Favorable safety profile and possible use in
kidney failure

GLP1ra Suspend in severe cases

Risk of dehydration in the case of severe
gastrointestinal adverse effects (nausea,

vomiting, etc.)
Maintain a regular diet and ensure good hydration

SGLT2i
Suspend in severe cases, or if food/fluid intake

cannot be guaranteed

Risk of euglycemic diabetic ketoacidosis induced by
dehydration and insulin deficiency

Preserving cardiovascular and kidney function
is critical

for ensuring favorable progress of COVID-19 in
persons with diabetes

Glitazones
Suspend in severe cases with hemodynamic

instability or heart of liver dysfunction Risk of fluid retention and heart failure

Insulin

Continue treatment of choice in hospitalized
patients. Adjust dose depending on glycemic

control, risk of hypoglycemia, severity of infection,
and concomitant

treatment
Requires frequent monitoring of blood glucose

(capillary glycemia or CGM/FGM)

Insulin requirements may be very high in
hospitalized patients with severe infection

GLP1ra, glucagon-like peptide 1 receptor agonist; DPP4i, dipeptidyl peptidase 4 inhibitor; SGLT2i, sodium-glucose co- transporter-2
inhibitors; CGM, continuous glucose monitoring; FGM, flash glucose monitoring.

3.2.4. Control of Other Cardiovascular Risk Factors

Angiotensin-converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers
(ARA2) are essential for management of hypertension, heart failure, and diabetic nephropa-
thy. No clear evidence in favor of or against these agents in persons with T2D at risk of
or infected by SARS-CoV-2 has been published to date, despite speculation over possible
adverse effects [7]. There are clear risks associated with discontinuation since control of
hypertension and protection against kidney disease may be compromised. At present,
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most international organizations recommend continuation of ACEI/ARA2 unless there are
explicit contraindications, such as hypotension or acute kidney injury [58,59].

As for dyslipidemia, there is currently insufficient evidence in favor of or against
continuation of statins in patients with DM and COVID-19. Increased liver and muscle
enzymes have been associated with the infection [60], and some authors recommend
monitoring creatine kinase in affected patients [61]. Decisions should be tailored taking
into account the indication for statins as well as possible interactions with antiviral agents.

Risk of thrombosis should also be taken into account. Persons with DM are more likely
to experience thrombosis, which is a relatively frequent complication in COVID-19 [60].
Treatment should be continued in patients taking antithrombotic agents. Similarly, in
the absence of contraindications, all patients hospitalized with COVID-19 should receive
prophylaxis for venous thromboembolism [62].

3.2.5. Special Considerations in T1D

Persons with T1D should never discontinue insulin owing to the high risk of hyperos-
molar hyperglycemic syndrome and diabetic ketoacidosis after infection [63]. It is essential
to guarantee appropriate fluid intake and frequent monitoring of glucose levels and ketone
bodies. Patients should be trained to know when to monitor ketones and be aware of
the need for additional doses of insulin. In the case of blood ketone levels higher than
3 mmol/L, patients should consult their health professionals.

3.3. Hospitalized Patients with Diabetes and COVID-19

The COVID-19 pandemic has generated new challenges in hospital management
of DM. Good control of glycemia helps to improve clinical outcomes although it also
requires frequent contact between health care personnel and patients to ensure appropriate
monitoring of blood glucose, administration of insulin, and resolution of hypoglycemia
in a situation where it is recommended to minimize interactions with patients in order
to avoid exposure to COVID-19 [64]. Table 3 summarizes the main recommendations for
management of hyperglycemia in critically ill and non-critically ill patients depending on
their clinical status.

Table 3. Management of hyperglycemia in critically ill and non-critically ill patients with COVID-19 [65].

Blood Glucose
Target

Clinical Situation Insulin Regimen
Glucose

Monitoring

Critically ill patients 140–180 mg/dL *

Hemodynamically unstable
Parenteral nutrition

Varying insulin requirements
Treatment with corticosteroids

Continuous
intravenous

insulin infusion
Every hour

Hemodynamically stable
Stable insulin requirements

Subcutaneous insulin
Basal + correction or

basal-bolus +
correction

Every 4–6 h

Non-critically ill
patients

110–180 mg/dL **

T1D
T2D with OAD

± insulin

No oral intake Basal insulin +
correction Every 4–6 h ****

Oral intake Basal-bolus insulin +
correction

Before meals and at
bedtime ****

T2D with diet
DM not known

Glycemia on
admission

<180 mg/dL

Correction insulin
dose

before meals or every
6 h ***

Before meals and at
bedtime or every

6 h ****

Glycemia on
admission

>180 mg/dL

Basal-bolus insulin +
correction

Before meals and at
bedtime ****

* 110–140 mg/dL may be reasonable for selected patients, providing it can be reached without hypoglycemia. ** 110–140 mg/dL may be
reasonable in patients with mild disease and good previous glycemic control. Blood glucose >180 mg/dL may be reasonable for patients
with high risk of hypoglycemia or limited life expectancy. *** In order to calculate insulin requirements during the first 24 h. Afterwards,
intensify to basal correction or basal- bolus correction regimen. **** Consider using continuous glucose monitoring, if possible, in order to
limit the number of capillary blood glucose controls. OAD, oral antidiabetic agents; DM, diabetes mellitus; T1D, diabetes mellitus type 1;
T2D, diabetes mellitus type 2.
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3.3.1. Management of Hyperglycemia in Critically Ill Patients with COVID-19

Glucose levels should be maintained between 140 and 180 mg/dL in most critically
ill patients [66]; more rigorous targets (110–140 mg/dL) could be reasonable for selected
patients, providing they can be reached without significant hypoglycemia [67–70].

Insulin should be the treatment of choice for critically ill patients with COVID-19 [71].
The most effective way of reaching glucose targets is continuous intravenous infusion
based on validated written or computerized protocols [72,73]. Most protocols require
glucose to be monitored at least once hourly, thus necessitating contact with staff. Exposure
of health care staff managing hyperglycemia in critically ill patients with COVID-19 should
be minimized. In the case of hemodynamically stable patients not receiving parenteral
nutrition or high doses of corticosteroids, we recommend using subcutaneous insulin
regimens (basal-bolus correction or basal correction) instead of intravenous regimens and
monitoring blood glucose four times daily, together with other nursing care, in order to
reduce the need to enter the patient’s room [65].

Transferring administration of insulin from intravenous to subcutaneous is recom-
mended when the patient is clinically stable. The initial dose of subcutaneous insulin when
switching can be calculated as 60–80% of the intravenous dose administered during the
previous 24 h. Short-acting insulin can be administered for 1–2 h and long-acting insulin
for 2–3 h before interrupting administration of intravenous insulin [74,75].

3.3.2. Management of Hyperglycemia in Non-Critically Ill Patients with COVID-19

Glucose values before meals and after fasting <140 mg/dL with random maximum
glucose <180 mg/dL could be appropriate in stable patients with mild disease and strict
previous glycemic control, whereas glucose levels >180 mg/dL may be acceptable in
patients with a high risk of hypoglycemia or limited life expectancy as a way of minimizing
the risk of hypoglycemia [65].

Insulin is still considered the most appropriate drug for effective control of glycemia
in hospital. A regimen with basal, prandial, and correctional components is the preferred
approach in non-critically ill hospitalized patients with COVID-19 and good nutritional
intake; basal insulin or basal insulin with correction doses is the best choice for patients
whose oral intake cannot be guaranteed. Prolonged use of sliding-scale rapid-acting insulin
as the only treatment for hyperglycemia is not recommended.

DPP4 inhibitors combined with basal insulin can be an alternative in patients with
COVID-19 and mild-to-moderate hyperglycemia. The DARE-19 study recently showed
that in patients with cardiometabolic risk factors hospitalized with COVID-19, treatment
with dapagliflozin did not result in a statistically significant reduction in the risk of organ
dysfunction or death. Similarly, it did not result in a significant improvement in clinical
recovery although it was well tolerated. Therefore, these findings could support continua-
tion of SGLT2i for patients already receiving them before a COVID-19 diagnosis as long as
they are monitored [76].

Treatment of corticosteroid-induced hyperglycemia with insulin corticosteroids can
aggravate or induce hyperglycemia in hospitalized patients with COVID-19 with and
without DM [65,77]. As for management, some authors have reported their experience
adding neutral protamine Hagedorn insulin at doses of 20–30 IU in the morning as well as
the usual insulin regimen [71]. In our experience, the best option is to add the calculated
increase in the dose of insulin, taking into account body weight, corticosteroid dose, and
the patient’s usual total dose, which should be distributed according to the insulin regimen
and the usual corticosteroid schedule [26].

3.3.3. Glucose Monitoring of Patients with COVID-19 in Hospital

Control of DM in hospital usually requires multiple daily glucose readings. This is
challenging for patients who are in isolation. Therefore, the United States Food and Drug
Administration (FDA) has authorized self-monitoring of glucose in hospital by patients
using their own glucose monitors during the COVID-19 pandemic [78] and is in favor of
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using CGM in non-critically ill patients [79–81] although this does not imply approval for
use in hospital. Dexcom G6 and FreeStyle Libre have proven to reduce the incidence of
hypoglycemia in non-critically ill patients [82–84]. Neither requires calibration of capillary
glycemia, thus minimizing staff exposure and workload. Similarly, the fact that these
devices are not affected by interference with paracetamol is yet another advantage in
patients with COVID-19. A pilot study found that Dexcom G6 is feasible in non-critically
ill COVID-19 patients, with a MARD of 9.77% [85]. Similar results have been described in
critically ill hospitalized patients with COVID-19 [86].

Therefore, CGM and FGM could be considered for non-critically ill hospitalized pa-
tients with COVID-19 in order to limit the number of capillary glycemia tests, minimize
staff exposure, and optimize glycemic control [64]. Potential candidates include patients
with moderate-severe hyperglycemia requiring treatment with multiple doses of insulin,
patients with high glycemic variability or risk of hypoglycemia, and patients with hy-
perglycemia that is difficult to manage, such as corticosteroid-induced hyperglycemia or
hyperglycemia induced by artificial nutrition [87]. Similarly, persons using CGM or FGM
as outpatients could continue to use their devices in hospital, providing protocols are in
place, and there are staff trained in their management [88].

4. Care of Patients with Diabetes during the COVID-19 Pandemic and Afterwards

The pandemic led to unprecedented changes in clinical practice, including the closure
of some primary care centers and restructuring of hospitals, with considerable resources
aimed at management of patients with COVID-19 and a rapid transition to online care for
other conditions. As the government was promoting measures to curb and contain the
spread of the disease, health professionals faced the difficult task of managing risks both for
patients and for themselves while learning to implement new remote care systems. In this
setting, the first challenge was to maintain remote care, mainly by telephone, in order to
address urgent situations and patients whose care could not be delayed as well as to adapt
management protocols for hospitalized patients with DM to the special circumstances
affecting hospitalization of patients with COVID-19. The second challenge was to plan
health care after the initial phase in order not to postpone scheduled care and resume
previously postponed activity via a face-to-face or remote visit.

New management protocols have been suggested for hospitalized patients with DM
or hyperglycemia although information on the safety and efficacy of these protocols and
their application is lacking [65]. While waiting for these strategies to be evaluated, and
faced with the urgent need to implement effective approaches to glycemic control in
hospitalized patients with COVID-19, we recently proposed a series of recommendations
on management of hyperglycemia in the critical setting and noncritical care setting, taking
into account factors such as the need to prevent staff exposure and the fact that many
health professionals caring for patients with COVID-19 may be relatively unfamiliar with
management of hyperglycemia [65].

With the sudden outbreak of the COVID-19 pandemic, those working in outpatient
care have seen how the struggle against SARS-CoV-2 became a priority for the health system
and how care of persons with chronic diseases, such as DM, was interrupted partially or
completely. Health professionals responded with rapid and urgent adoption of alternative
means of caring for patients, as follows: online visits via video calls and, more commonly,
by telephone; easier access to prescription medication via online prescriptions; promotion
of structured educational resources online; and the increase in the use of telemedicine tools
that make it possible to transfer the results of glucose monitoring to health professionals
(limited until relatively recently to patients with T1D). However, many patients had their
visits and appointments for analyses and additional testing cancelled. In a survey on the
impact of COVID-19 on persons with DM carried out by the Spanish Diabetes Federation
(Federación Española de Diabetes (FEDE)) and the Spanish Diabetes Society (Sociedad
Española de Diabetes (SED)), 46% of the 335 patients surveyed (59% with T1D) had their
visit cancelled, and 40% had an online visit; furthermore, 78% felt that they would experi-
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ence difficulties making changes to their treatment. An audit of more than 125.8 million
primary care visits from the US National Disease and Therapeutic Index showed that
visit frequency decreased by 21.4% during the second quarter of 2020 compared with the
mean quarterly visit volume for the second quarters of 2018 and 2019, which were not
compensated for by remote visits. In addition, evaluation of risk factors was less common
during the remote visits than during face-to-face visits [89]. Similarly, changes in care were
implemented without clear guidelines or planning and mainly involved glycemia but not
other comorbid conditions, such as obesity, hypertension, dyslipidemia, and cardiovascular
disease. Moreover, evidence on the efficacy of these strategies in the case of the COVID-19
pandemic is scarce. A meta-analysis of randomized controlled clinical trials that compared
telemedicine-based interventions with standard care found that systems enabling adjust-
ments to medication with or without text messages or a web page improved glycosylated
hemoglobin but not other clinically relevant outcomes in patients with DM [90]. The most
recent meta-analysis, which included eight studies based on remote visits and 34 based
on remote monitoring in patients with T1D and T2D, revealed that telemedicine-based
interventions were more effective than standard care for control of DM [91].

One positive aspect is that the disruptive effect of the pandemic has led to the rapid
disappearance of barriers to the use of remote care tools, thus making telemedicine another
option in the care of chronically ill patients in the future. The pandemic has considerably
promoted the use of already available but rarely used applications and platforms, which
enable patients to upload data from their glucose monitors, CGM devices, or insulin pumps
so that their doctors can make decisions on treatment. In addition, health professionals and
probably health care organizations have recognized the value of some of these profound
changes in a sector such as that of health care, where habits are hard to change. However,
there are major limitations to telemedicine becoming a powerful tool in the care of patients
with DM. First, efficient use of this approach is currently restricted to patients who are fully
able to manage the necessary technology and are seen at centers whose professionals are
skilled in the use of this technology. In most cases, remote care is limited to telephone calls.
The FEDE/SED survey showed that 41% of patients considered remote visits to be poorly
efficient or inefficient, and 57% preferred their future health care to be based on a mix of
face-to-face and remote visits. Similarly, many of the tools were used on an improvised
basis, without previous cost-effectiveness studies and without changes in the care model to
make efficient application easier. Research on telemedicine during the pandemic, while
generating some knowledge, has generally been based on small or nonrepresentative
samples and limited to analysis of frequency of use although with few data on content and
safety and efficacy.

The question many of us ask today is whether this greater use of remote care will be
maintained once the health care crisis brought about by COVID-19 has passed. The answer
is not easy to predict although it seems foolish not to take advantage of what we have
learned from the rapid deployment of telemedicine, especially if we consider that this is
a broad area with room for development. Furthermore, while not replacing face-to-face
visits, telemedicine can facilitate processes, streamline the system, and provide valuable
information for health professionals and their patients. Nevertheless, it is also clear that for
telemedicine to become a reality, more widespread adoption as a result of the pandemic is
not sufficient, and a series of initiatives will be needed to improve it, as follows:

• Development and broad implementation of remote diagnostic and treatment technolo-
gies that make it possible to obtain variables of interest for management of DM from
the patient in his/her usual environment;

• General electronic clinical histories in health services that include all the information
generated during the patient’s lifetime. System standardization and interoperability
are essential if we are to ensure real integration and coordination between various
care levels;

• Establishment of universal mechanisms and protocols for transferring data on vari-
ables of interest independently of where they are generated to the clinical history in
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standard format and in such a way that they are easily interpretable. The complexity
and poor user-friendliness of the approach use up health professionals’ time and
are among the main reasons this modality is discontinued. All of these actions are
essential so that health professionals spend more time making decisions and less
time recording data, thus leading to greater clinical efficacy and reduced resistance to
change by professionals;

• In parallel, all those involved should be trained to avoid the digital gap between
patients and professionals, and collaboration between professionals and care levels
should be encouraged by providing reimbursement for the use of digital technology
and models for evaluation and assignment of resources that discourage silo working;

• As for any other medical intervention, it is necessary to generate evidence on use—
in terms of cost-effectiveness and implementation challenges—of new telemedicine
systems and strategies by comparing them with previously used approaches.

If these aspects are not taken into account, we will probably miss the opportunity
brought about by the COVID-19 pandemic to achieve the real goal, that is, to transform
our health care model so that it can respond to the challenges the system faces in providing
health care to persons with chronic diseases, such as DM.

While the long-term implications of COVID-19 in persons with DM are unknown,
available data indicate that even short-term interruption of care could prove catastrophic.
The impact is especially important in older persons from disadvantaged areas with reduced
ability to self-monitor and self-adjust treatment [30]. Prolongation of the pandemic and
restrictions in effective clinical care will worsen the situation. In order to minimize the
consequences of this situation, it is necessary to guarantee that patients receive efficient
clinical care that takes into account various services, including screening for the disease in
at-risk persons, education, and monitoring of control and complications at face-to-face or
remote visits as well as adaptation of treatment of DM in the setting of COVID-19.

5. Conclusions

Diabetes is one of the most common comorbidities linked to COVID-19, and there is
consistent evidence that diabetes increases the risk of severe COVID-19 disease, including
admission to the intensive care unit and death. Socioeconomic disadvantage and higher
blood glucose levels are associated with worse COVID-19 outcomes. Tight control of
glucose levels could prove crucial in patients with diabetes mellitus to prevent progression
to severe COVID-19. However, data on the effect of insulin and non-insulin anti-diabetic
drugs are lacking. To minimize the consequences of this situation, it is crucial to guarantee
that patients remain engaged with diabetes services and receive efficient clinical care,
including screening for the disease, education, and monitoring of control and complications
at face-to-face or remote visits. Treatment of diabetes must be adapted appropriately to the
COVID-19 setting.

This article summarizes recommendations for management of diabetes in various
situations during the COVID-19 pandemic and could serve as a guide for healthcare
providers to ensure continuity of care for people with diabetes. More research is needed
on the acute and long-term effects of COVID-19 in this population. It is also necessary
to assess the impact of these recommendations and the implementation of technological
advances in the deployment of telemedicine and management of diabetes in inpatient and
outpatient care.
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Abstract: Background: COVID-19 entails a higher rate of complications in subjects with type 2 dia-
betes mellitus (T2DM). Likewise, COVID-19 infection can cause alterations in glucose metabolism
that may lead to worse control. The aim of the study was to analyse the perceptions of a large group of
Spanish physicians about the relationship between COVID-19 and T2DM, as well as the management,
monitoring, and treatment of both diseases. Methods: A cross-sectional multicenter national project
was conducted based on a survey which included opinion, attitude, and behavior (OAB) questions.
Physicians specialised in internal medicine or endocrinology, whose usual clinical practices included
the management of T2DM, responded to the survey between March and April 2021. Results: A total
of 112 participants responded to the survey, from which 64.3% believed that COVID-19 entailed a
higher risk of glycaemic decompensation irrespective of the presence of previously known T2DM.
Obesity was considered a risk factor for poor control of T2DM by 57.7% and for a worse course of
COVID-19 by 61.0%. Treatment intensification in not-on-target patients was considered by 57.1% in
the presence of COVID-19 and by 73.2% in the absence of COVID-19. No participants considered the
suspension of dipeptidyl peptidase 4 inhibitors (DPP-4i) in ambulatory patients, 85.7% declared that
this therapeutic approach in hospitalized patients should be kept, and 88.4% supported the option of
maintaining DPP-4i when corticosteroids were prescribed. Conclusion: The physicians involved in
the management of T2DM and COVID-19 are aware of the bidirectional relationship between both
conditions. However, the monitoring and therapeutic management of patients with T2DM who are
infected by SARS-CoV-2 needs improvement through the following of the current recommendations
and available evidence.

Keywords: diabetes mellitus; type 2; diabetes complications; coronavirus infections; hypoglycemic
agents; hospitalization; ambulatory care; comorbidity

1. Introduction

Diabetes mellitus (DM) is a prevalent condition, affecting 9.3% of the worldwide
population. Its prevalence has been constantly growing over the past 20 years, and it is
expected to reach 10.9% of the population in 2045 [1,2]. In Spain, the prevalence of DM has
been described as being even higher, reaching 13.8% of the inhabitants [3].

Patients with DM are at a higher risk of several infections, such as those of the lower
respiratory tract, the urinary tract, and the skin and mucous, than patients without DM [4].
In the particular case of COVID-19, which has caused more than 11 million confirmed cases
and 100,000 deaths in Spain [5], no greater risk of being infected by SARS-CoV-2 has yet
been described in the population with DM. However, the SEMI-COVID-19 Registry found
a higher prevalence of DM in patients hospitalized due to COVID-19 (19.4%) than in the
general population [6]. Moreover, patients with DM have a higher rate of complications
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than subjects without DM when infected with SARS-CoV-2, such as severity, progression,
hospital and intensive care unit (ICU) admissions, severe pneumonia, and mortality [7–11].
A plausible explanation for these outcomes is that chronic hyperglycaemia is associated
with a chronic inflammatory state that can compromise the immune response [12]. Likewise,
patients with SARS-CoV-2 and DM have increased levels of IL-6 and C-reactive protein
(CRP), which can favour the systemic inflammatory response accompanying the typical
acute respiratory distress syndrome in COVID-19 [10].

The relationship between DM and COVID-19 seems to be bidirectional as SARS-CoV-2
can cause alterations in glucose metabolism that may lead to the appearance of DM [13].
The underlying pathophysiological mechanism for this event might be the binding of
SARS-CoV-2 to the ACE2 receptors in the pancreas (mainly in the islet cells), producing
the dysfunction of β cells and acute hyperglycaemia [14]. In line with this, a greater risk
of pancreatic injury has been observed among those patients with severe COVID-19 than
those with a mild condition [14]. Moreover, the infection with COVID-19 can cause a wide
range of sequelae, including DM, beyond the acute phase [15].

A proper blood glucose control seems to be important as hyperglycaemia, hypo-
glycaemia, and glycaemic variability can lead to worse outcomes in patients infected by
SARS-CoV-2 [16–21]. In fact, glycaemia at admission due to COVID-19 is a powerful
prognostic marker, not only in patients with DM but also in patients without diagnosed
DM [21].

The global pandemic caused by the SARS-CoV-2 coronavirus infection has entailed
a great impact on the routine care of patients with any chronic condition [22], as is the
case with type 2 DM (T2DM). The requirements in terms of the clinical management of
diabetes have probably changed after the COVID-19 pandemic: telemedicine, educational
programs, strategies to ensure adherence, and glucose testing availability and affordability
have become more necessary than ever [23].

In view of these new scenarios, it is crucial to optimise the management of patients
with T2DM and COVID-19 in order to improve the prognosis and reduce the burden
for health systems. The current study aimed to analyse the perception and experience
of a large group of physicians involved in the management of these patients (internal
medicine and endocrinology) on the relationship between COVID-19 and T2DM, their
management, their monitoring, and their treatment of patients, whether hospitalized or
not. Likewise, another objective was to identify potential differences between the current
clinical practice and the recommendations of the scientific societies and expert panels and
the best available evidence.

2. Materials and Methods

The present study is a cross-sectional multicentre national project based on a survey
designed by a dedicated scientific committee, including several opinion, attitude, and
behavior (OAB) questions (Appendix SA). This publication shows the results from a
selection of 15 OAB questions related to (a) the relationship between T2DM and COVID-
19; (b) the management of ambulatory patients with T2DM infected with COVID-19;
(c) the management of patients with T2DM hospitalized due to COVID-19; and (d) the
management of hyperglycaemia induced by corticosteroids (CS) in patients with COVID-19.

The participants were physicians specialised in internal medicine or endocrinology,
whose usual practice included the management of T2DM. They were selected by means
of a non-probabilistic directed sampling by conglomerates, according to proportional
geographic and demographic distribution criteria. Data collection was out carried between
the 15th of March and the 30th of April 2021 using an anonymous online questionnaire,
completed by physicians in accordance with their usual practice.

Regarding statistical methods and analysis, the sample was calculated according to a
95% confidence interval for a finite population proportion. The final sample size provided
a precision level between ±7% and ±6.5% for a 95% confidence interval. With a reference
population of 46,332,614 inhabitants and 217 hospitals with 100 beds or more, a sample
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of 108 physicians from different regions of Spain was estimated and was intended to be
representative of the specialists in internal medicine and endocrinology in Spain.

A descriptive statistical analysis was performed. The variables reported are quali-
tative and expressed as the values and percentages of multiple choice answers. Due to
the exploratory nature of the study, no inferential statistics or regression analyses were
performed. There were no missing data as the complete questionnaires were required.
Statistical analysis was performed using the statistical program Stata v15.1 (StataCorp LLC,
College Station, TX, USA).

3. Results

3.1. Participants

At the end of the field work, 112 invited participants had responded to all the survey
items. We evaluated whether the final collected sample followed the estimated random
sample, and we found that it was quite similar, although not exact, and supported the
appropriateness of our sample. A proportion of 51.8% of them were 45 years old or
younger; 67.9% were men. A total of 81.2% were specialists in internal medicine and 18.8%
in endocrinology. The percentage of participants who used to work in hospitals with more
than 300 beds was 59.8% (Table 1).

Table 1. Characteristics of participants (n = 112).

n (%)

30–45 58 (51.8)
46–55 27 (24.1)
56–65 26 (23.2)

Age

>65 1 (0.9)
Women 36 (32.1)

Gender Men 76 (67.9)
Internal medicine 91 (81.2)

Medical specialty
Endocrinology 21 (18.8)
<100 beds 13 (11.6)
100–200 beds 18 (16.1)
201–300 beds 14 (12.5)Work centre

>300 beds 67 (59.8)
None 95 (84.8)
Collaborative Open-Access Virtual
Database for COVID-19 in Diabetes 2 (1.8)

Participation in COVID-19/DM
data analysis initiatives

Others 15 (13.4)
Hospital protocols 71 (63.4)
Clinical sessions 65 (58.0)
Bibliography 82 (73.2)
Webinars 70 (62.5)
Pharmaceutical company initiatives 45 (40.2)
Courses 48 (42.9)

Training/update in the
management of COVID-19/DM

Task forces in scientific societies 75 (67.0)

3.2. COVID-19 and Type 2 Diabetes Mellitus Relationship

From the total pool of participants, 64.3% of the participants believed that COVID-19
always entailed a higher risk of glycaemic decompensation, while 14.3% considered it as
such only in patients with known previous T2DM (Figure 1). Treatment with corticosteroids
(CS), poor control of T2DM, and the presence of comorbidities were pointed to as factors for
a higher risk of decompensation by 12.5%, 4.5%, and 4.5% of the participants, respectively.
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Figure 1. Opinion on whether patients with COVID-19 have a higher risk of glycaemic decompensa-
tion (n = 112). CS, Corticosteroids.

Likewise, 71.4% of the sample believed that T2DM was an independent risk factor
for a bad prognosis of COVID-19, and 25.9% considered it as such only when T2DM was
uncontrolled. The percentage of participants declaring that they had become stricter in
terms of the objectives of T2DM control was 62.5%, while 37.5% answered that their clinical
practice had not changed due to the appearance of COVID-19 (Figure S1).

The impact of several comorbidities on the control of T2DM and on the course of
COVID-19 was inquired about among the participants; obesity was considered as a risk
factor for poorer control of T2DM by 57.7% and for a worse course of COVID-19 by 61.0%
of the participants. Frailty was considered as such by 13.5% and 10.5% and COPD by 10.6%
and 11.4% of the sample, respectively (Table 2).

Table 2. Opinion on the impact of comorbidities on T2DM control or on the course of COVID-19 in
patients with both diseases.

% of Responses

Comorbidity Poorer Control of T2DM
(n = 104)

Worse Course of COVID-19
(n = 105)

Obesity 57.7 61.0
Frailty 13.5 10.5
COPD 10.6 11.4
Renal insufficiency 7.7 4.8
Heart disease 6.7 8.6
Hypertension 2.9 2.9
Oncohematological disease 1.0 1.0

3.3. Ambulatory Patients with COVID-19 and Type 2 Diabetes Mellitus

With regard to the recommendations about glycaemia monitoring in patients with
T2DM and COVID-19 who did not require hospitalization, 73.2% of the participants de-
clared an increase in the frequency of the controls, 25.0% stated that they had maintained it,
and 0.9% that they had reduced it (Figure S2). The participants were also asked about the
incorporation of new measures for the optimization of glycaemia control. The percentage
of participants who responded that they had carried out treatment intensification in not-on-
target patients with COVID-19 was 57.1%, and without COVID-19 was 73.2%. Likewise,
42.9% and 64.3% declared that they had insisted on diet and exercise recommendations in
those patients with COVID-19 and without COVID-19, respectively (Table 3).

290



J. Clin. Med. 2022, 11, 4507

Table 3. Opinion on measures incorporated in clinical practice for the optimization of glycaemic
control in ambulatory patients with T2DM (n = 112).

% of Agreement

Measures Patients with
COVID-19

Patients without
COVID-19

Carry out treatment intensification if the
patient is not on target

57.1 73.2

Insist on recommendations about diet
and exercise

42.9 64.3

Frequent self-monitoring of glucose 42.0 27.7
Stricter control targets if well tolerated 28.6 33.9
Monitor glycemic variability in controls 25.9 25.9
More frequent HbA1c controls to confirm
degree of control

17.7 25.0

Continuous glucose monitoring systems 4.5 5.4

The participants gave their opinion on the therapeutic management of ambulatory
patients with T2DM and COVID-19, and 62.5% of the participants indicated that they
had maintained the usual treatment. From the 38.4% of participants who declared that
they had suspended medication sometimes, 69.8% pointed at sulphonylureas, 51.2% at
pioglitazone, and 46.5% at metformin. No participants considered the suspension of
dipeptidyl peptidase 4 inhibitors (DPP-4i). From the 19.6% of participants who declared
that they had reduced medication dosing sometimes, 59.1% pointed at sulphonylureas and
54.6% at metformin. iDPP4 and sodium-glucose transport protein 2 inhibitors (SGLT2i)
were selected by 4.6% and glucagon-like peptide 1 receptor agonists (GLP-1 RA) by none of
the participants (Figure 2A). The participants were asked to indicate which warning signs
should be considered as an indication for hospital admission. The common warning signs
of COVID-19, such as fever, cough, tiredness, and loss of taste or smell were selected by
65.2% of the participants. Impaired glycaemic control and altered ketone bodies values
were indicated by 37.5% and 32.1% of the sample, respectively (Figure 2B).

3.4. Patients Hospitalized Due to COVID-19 with Type 2 Diabetes Mellitus

The participants gave answers regarding the patients for whom they thought hyper-
glycaemia at admission meant a worse prognosis: 68% of them agreed that it was worse
in patients with both known and unknown T2DM; 23% stated that it was worse only in
patients with known T2DM; and 5% said that it was worse only in patients with unknown
T2DM (Figure S3).

In patients with unknown T2DM admitted to hospital due to COVID-19, who pre-
sented with hyperglycemia and did not require CS, 57.1% of the participants answered that
they had requested a determination of HbA1C if the basal blood glucose was >140 mg/dL
and/or the evening blood glucose was> 180 mg/dL. Moreover, 50.0% of them coincided in
adding DPP4i and basal insulin if the basal glycaemia exceeded 180 mg/dL (Figure 3).
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Figure 2. Opinion on management of ambulatory patients with T2DM and COVID-19: (A) therapeutic
decisions made in these patients; (B) specific warning signs of T2DM to indicate hospital admission in these
patients (n = 112). AGI: Alpha-glucosidase inhibitors; DPP-4i, Dipeptidyl peptidase 4 inhibitors; GLP-1
RA, Glucagon-like peptide 1 receptor agonists; SGLT2i, Sodium-glucose transport protein 2 inhibitors.

Figure 3. Opinion on therapeutic management of patients with unknown T2DM admitted to hospital
due to COVID-19, who presented with hyperglycemia and did not require corticosteroids (n = 112. CS,
Corticosteroids; DPP-4i, Dipeptidyl peptidase 4 inhibitors; EBG, evening blood glucose; FBG, fasting
blood glucose; HbA1c, Glycated haemoglobin.
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In the patients with known T2DM admitted to hospital due to COVID-19, the risk
of hypoglycemia, the value of glycemia at admission, the presence of comorbidities and
conditions, and the risk of ketoacidosis were the four most important factors to consider
when a glucose-lowering treatment was prescribed (Figure 4A).

Figure 4. Opinion on clinical practice in patients with known T2DM admitted to hospital due to
COVID-19: (A) factors to consider when choosing a glucose-lowering treatment; (B) criteria to
consider when treating hyperglycemia; (C) pharmacological class maintained during hospitalization;
(D) glucose-lowering approach taken at discharge (n = 112). AGI: Alpha-glucosidase inhibitors; DPP-
4i, Dipeptidyl peptidase 4 inhibitors; FBG, fasting blood glucose; GLP-1 RA, Glucagon-like peptide
1 receptor agonists; HbA1c, Glycated haemoglobin; IU, International units; NFBG, non-fasting blood
glucose: SGLT2i, Sodium-glucose transport protein 2 inhibitors.
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Considering the patients with T2DM hospitalized due to COVID-19, 67.8% of the par-
ticipants were in favour of setting a fasting glucose target < 140 mg/dL and 140–180 mg/dL
during the rest of the day. The percentage of participants in favour of considering milder
goals (<200 mg/dL) in elderly or frail patients was 65.1%. The percentage of participants
declaring that they had prescribed basal insulin and rapid insulin corrections when required
to patients with basal glycaemia > 180 mg/dL and/or non-basal glycaemia > 200 mg/dL
was 55.3% (Figure 4B).

From the total sample, 85.7% chose to keep the current glucose-lowering treatment
when this was DPP4i, while other therapeutic options, such as metformin or GLP-1 Ras,
were only considered by 20.5%. The maintenance of other options, such as sulfonylurea,
pioglitazone, or an alpha-glucosidase inhibitor (AGI), was supported by 0.9% of the par-
ticipants (Figure 4C). When the participants were asked about what glucose-lowering
approach they considered at discharge, 50.8% declared that they had returned to the previ-
ous treatment, 36.6% coincided with keeping the treatment prescribed at the hospital, and
10.7% stated that they had prescribed metformin plus DPP-4i (Figure 4D).

3.5. Corticosteroids-Induced Hyperglycaemia in Patients with COVID-19

In those patients with previously known T2DM who were admitted to hospital due to
COVID-19 and required treatment with CS, 88.4% of the participants supported the option
of maintaining the treatment with DPP-4i; the maintenance of metformin was supported
by 18.8% and of GLP-1 RA by 19.6%. None of the participants supported the maintenance
of sulphonylureas (Figure 5).

Figure 5. Opinion on pharmacological classes to be maintained in patients with known T2DM admit-
ted to hospital due to COVID-19 and requiring corticosteroids. AGI: Alpha-glucosidase inhibitors;
DPP-4i, Dipeptidyl peptidase 4 inhibitors; GLP-1 RA, Glucagon-like peptide 1 receptor agonists;
SGLT2i, Sodium-glucose transport protein 2 inhibitors.

The criteria for the treatment of CS-induced hyperglycaemia in patients with COVID-
19 were also inquired about. In the patients with unknown T2DM at the time of hypergly-
caemia onset, 76.8% considered it critical to control glycaemia within the days after starting
the treatment with CS, and 61.6% supported objectives of <140 mg/dL for basal glycaemia
and of <200 mg/dL for postprandial glycaemia. These percentages were 86.6% and 57.1%
when considering patients with a previous diagnosis of T2DM (Figure S4).

4. Discussion

The current publication provides an overview of the perception and the current clinical
practice in patients with T2DM who are infected with SARS-CoV-2 in the Spanish setting.
In general terms, the majority of the participants believed that COVID-19 itself entailed
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a higher risk of T2DM decompensation and T2DM new onset, as has been supported by
recent evidence [15]. As previously described, both the SARS-CoV-2 infection and the
therapy administered at admission, frequently including CS, increase the risk of glycaemic
decompensation [21,24]. A plausible explanation for this is the presence and replication
of the virus in the pancreatic islets [25,26] and the inflammation process generated by
COVID-19 [27], which could lead to insulin resistance. Some authors have hypothesized
that new-onset diabetes in patients with COVID-19 has a multifactorial nature and could
stem from factors that induce autoimmunity, β-cell stress, insulin resistance, and local hy-
poxia and from inflammation that damages β-cells [28]. At the same time, hyperglycemia
is associated with the need for mechanical ventilation and ICU admission and with mortal-
ity [21] in patients with COVID-19; so, it is important to reduce its risk. Despite these data,
and although hyperglycaemia is a factor of bad prognosis in all patients with COVID-19,
particularly in those with no diagnosis of T2DM [21,29], nearly 15% of the sample believed
that it only affected those patients with previously diagnosed T2DM. A similar percent-
age of participants believed that the risk of hyperglycaemia was only increased for those
patients treated with CS.

DM is one of the most prevalent comorbidities in patients hospitalized due to COVID-
19 in Spain, being present in 19.4% of patients with the infection [6]. DM has been described
as a risk factor for a bad prognosis of COVID-19 [20,30]. In this study, 71.4% of the sample
considered T2DM as an independent risk factor, and the rest took into consideration other
conditioning factors, such as poor control, comorbidities, or frailty. The percentage of
participants who declared that they had not modified their usual clinical practice in light of
this fact was 37.5%, probably meaning a problem of therapeutic inertia when it comes to
managing patients with T2DM infected by SARS-CoV-2.

Obesity is a highly prevalent condition in patients with severe manifestations of
COVID-19 [31]. In patients with T2DM, obesity also increases the risk of poor glycemic
control, and it is probably the comorbidity with the greatest impact on COVID-19 prog-
nosis [32]. However, around 40% of the participants did not identify it as a risk factor for
poorer control of T2DM and a worse course of COVID-19 in patients with both diseases.
Also remarkable was the low number of participants rating comorbidities such as hyper-
tension or heart disease as reasons for a worse course of COVID-19 in patients with T2DM,
even though they have been described as such in populations with T2DM, regardless of
COVID-19 disease [33].

The COVID-19 pandemic and the resulting lockdowns and behavioral changes could
have exerted an impact on the glycaemic control of patients with T2DM [34], although
the data from a large database in the USA showed no differences between HbA1c levels
between the pandemic period and the previous year [35]. In the current work, 73.2% of
the participants recommended increasing the frequency of glycaemia controls in SARS-
CoV-2-infected non-hospitalized patients. With regard to the glucose-lowering treatment of
patients who are affected by COVID-19, a large retrospective study conducted in Germany
showed a negative impact of the pandemic on T2DM patients’ care: the intensification
of the treatment with any therapeutic option was reduced. The number of uncontrolled
patients who underwent at least one therapeutic regimen change was reduced too [36].
From the measures for the optimization of glycemic control, 73.2% of the participants chose
the intensification of patients without COVID-19 who were not on target, and 57.1% chose
the patients with COVID-19. Thus, a relevant part of the sample did not agree with this
measure, although it is recommended in the main international guidelines [37] and, in
the case of patients with COVID-19, it helps to avoid severe manifestations. Moreover,
higher levels of HbA1c are associated with systemic inflammation, hypercoagulability, and
bad prognosis of COVID-19 [17], and hyperglycemia has also been shown to have a clear
negative impact on mortality in hospitalized patients with COVID-19 [21].

The participants also gave their opinion on the use of different glucose-lowering
therapeutic options in patients with T2DM and COVID-19. In this regard, GLP1 RA and
SGLT2i could be an inappropriate option as they can induce overexpression of angiotensin-
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converting enzyme 2 (ACE2) [38], the receptor by which SARS-CoV-2 attacks pneumo-
cytes [39]. Moreover, the discontinuation of SGLT2i is recommended at hospital admission,
as it can increase the risk of diabetic ketoacidosis, urinary and genital infections, and
volume depletion [40]. GLP1 RA should be used with caution, as long as dehydration does
not occur, and by always encouraging adequate fluid intake and regular meals [41]. Its
discontinuation should be considered in patients with long-term disease and intestinal
symptoms [42]. Sulfonylureas increase the risk of hypoglycemia and are discouraged in
hospitalized patients with severe disease. The use of metformin possesses a certain risk
of lactic acidosis in patients with hypoxia and acute disease [43], and it is consequently
contraindicated in patients with respiratory problems and hypoxia. Some authors advise a
careful monitoring of kidney disease and also the withdrawal of metformin in dehydrated
patients as there is a risk of lactic acidosis [41], and some others state its contraindication
in patients hospitalized due to COVID-19 [40]. Different meta-analyses have reported
a negative association with DPP-4 inhibitor use and a risk of mortality. DPP-4i may
represent a good option for preventing and reducing the complications of SARS-CoV-2
infection [12,44,45]. However, given the observational nature of the available studies,
the possible benefits of using any antidiabetic agent should be addressed [12,44]. In line
with these previous findings, the proportion of physicians who declared that they had
suspended or reduced the treatment with DPP-4i in ambulatory patients was imperceptible,
and this therapeutic option was the most valued when the participants were asked about
which glucose-lowering drug would be maintained in the case of hospitalization, even in
patients requiring CS therapy.

The use of CS in patients with pre-existing T2DM results in a worsening of glycemic
control [46], and it is the main cause of hyperglycemic decompensation in hospitalized
patients. For this reason, glycaemia needs to be narrowly monitored and treated accord-
ingly in all patients under CS treatment [46,47]. CS is a frequently prescribed medication
in patients with COVID-19 because of its effect on hyperinflammation and the potential
reduction in mortality [48]. Even so, the percentage of participants who did not agree with
controlling glycaemia during the days after introducing CS was 23.2% when it came to
patients with known T2DM, and 13.4% with unknown T2DM. Consequently, an impor-
tant proportion of physicians managing patients with T2DM and COVID-19 might not
be following the current recommendations and increasing the risk of hyperglycemia in
these patients.

This study entails certain limitations related to its qualitative nature and its design.
First, there was not a randomized selection, and this sample might not be representative of
the whole population of Spanish physicians specialised in internal medicine or endocrinol-
ogy. Consequently, the generalizations are limited; another sample may reach different
conclusions. However, we used the published data by the Spanish Ministry of Health
of 2008 to know the approximate distribution of internists and endocrinologists and the
female percentage for both specialties in Spanish hospitals, and by indirect comparison,
our sample was not very far from the published data.

Second, the number of specialists in internal medicine was greater than the number of
specialists in endocrinology. Once again, the purpose was not to compare results among
specialties, but to obtain the global opinion of physicians. Third, the survey was designed
with pre-defined answers, which could have made it difficult to contribute with personal
ideas or clarifications. In this regard, the inclusion of more answers or an open field
would have supposed a higher risk of an excessive dispersion of answers. To counteract
this limitation, the survey was designed by a scientific committee including specialists in
both internal medicine and endocrinology, thus ensuring the inclusion of those answers
considered to be more relevant. Last, but not least, the interpretation of the statements
or options of response could have been variable among the participants, but in any case,
the questionnaire was reviewed by experts belonging to both endocrinology and internal
medicine specialties.
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5. Conclusions

The appearance of COVID-19 has impacted on the clinical outcomes of patients with
T2DM. Thus, clinical management needs to be adapted to the new reality. Physicians
involved in this study seem to be aware of the bidirectional relationship between both
T2DM and the COVID-19/coronavirus infection. However, there is still room for improve-
ment in terms of the monitoring and therapeutic management of patients with T2DM who
are infected by SARS-CoV-2. It is important to put emphasis on spreading the available
evidence, following current recommendations, and favouring practices that ensure an ade-
quate metabolic control and that minimize the risk of complications and the hospitalization
of these patients. Although a randomized sample was desirable, the data obtained from this
large panel group of Spanish physicians concerning T2DM and COVID-19 management,
and the way in which the results are consistent with those suggested by the guidelines or
known evidence, can contribute to the identification of key issues and trends to explore in
further studies in order to identify strategies aimed at optimizing the clinical practice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11154507/s1, Figure S1: opinion on (a) the consideration of
T2DM as an independent risk factor of COVID-19 bad prognosis and (b) its impact in clinical practice
(n = 112), Figure S2: opinion on recommendations of blood glucose monitoring of ambulatory patients
with DM2 and COVID-19 (n = 112), Figure S3: opinion on which hospitalized patients have a worse
prognosis when hyperglycaemia at admission is present (n = 112), Figure S4: opinion on criteria for
the treatment of corticosteroid-induced hyperglycaemia in patients with COVID-19 (a) with unknown
T2DM and (b) with known T2DM (n = 112).
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Abstract: The purpose of this study was to identify clinical, analytical, and sociodemographic variables
associated with the need for hospital admission in people over 50 years infected with SARS-CoV-2
and to assess whether diabetes mellitus conditions the risk of hospitalization. A multicenter case-
control study analyzing electronic medical records in patients with COVID-19 from 1 March 2020
to 30 April 2021 was conducted. We included 790 patients: 295 cases admitted to the hospital and
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495 controls. Under half (n = 386, 48.8%) were women, and 8.5% were active smokers. The main
comorbidities were hypertension (50.5%), dyslipidemia, obesity, and diabetes (37.5%). Multivariable
logistic regression showed that hospital admission was associated with age above 65 years (OR
from 2.45 to 3.89, ascending with age group); male sex (OR 2.15, 95% CI 1.47–3.15), fever (OR 4.31,
95% CI 2.87–6.47), cough (OR 1.89, 95% CI 1.28–2.80), asthenia/malaise (OR 2.04, 95% CI 1.38–3.03),
dyspnea (4.69, 95% CI 3.00–7.33), confusion (OR 8.87, 95% CI 1.68–46.78), and a history of hypertension
(OR 1.61, 95% CI 1.08–2.41) or immunosuppression (OR 4.97, 95% CI 1.45–17.09). Diabetes was not
associated with increased risk of hospital admission (OR 1.18, 95% CI 0.80–1.72; p = 0.38). Diabetes did
not increase the risk of hospital admission in people over 50 years old, but advanced age, male sex,
fever, cough, asthenia, dyspnea/confusion, and hypertension or immunosuppression did.

Keywords: COVID-19; obesity and diabetes mellitus type 2; research; hospitalization; primary care

1. Introduction

Coronavirus type 2 is the cause of severe acute respiratory syndrome (SARS-CoV-2),
better known as coronavirus disease 2019 (COVID-19), representing a major global health
problem [1]. The infection presents an incubation period of around five days [2,3], after
which the most frequent presenting symptoms are fever, dry cough, and fatigue, although
other symptoms may also include productive cough, headache, hemoptysis, diarrhea,
dyspnea, or lymphopenia [4–6].

Regarding the prognosis of the disease, 80% of cases are mild, 15% severe, and around
5% are critical; the case fatality rate is about 2% [7]. These figures are consistent with a
technical document on the clinical management of COVID-19, wherein the Spanish Ministry
of Health also estimates that approximately 80% of reported cases are mild [8]. In other
countries, a hospitalization rate of 20 per 100,000 population between 1 January and 1
September has been described [9]. Applying this rate to the Spanish population would
mean that around 6% of patients with COVID-19 and treated in ambulatory care would
require hospitalization, leaving the vast majority of mild COVID-19 cases to be managed in
primary care or on an outpatient basis. However, practitioners in these settings need to be
able to identify the factors that increase the risk of severity and hospital admission in order
to carry out an adequate assessment of the patient’s clinical prognosis and management
and to assist in healthcare planning.

In that sense, some studies have suggested that diabetes mellitus is associated with a
worse clinical prognosis [9], while others with large samples find no such relationship [10].
However, to our knowledge, there is no published information on prognostic variables
predicting the need for hospitalization in patients with type 2 diabetes and COVID-19 who
are treated in ambulatory care.

The aim of this study is to identify clinical, analytical, and sociodemographic variables
associated with the need for hospital admission in people over 50 years of age who are
infected with SARS-CoV-2 and followed in ambulatory care, and to specifically assess
whether diabetes mellitus conditions the risk of hospitalization.

2. Materials and Methods

This retrospective case-control study was based on the analysis of variables included
in the patients’ EMRs.

2.1. Selection Criteria

The study included all patients aged 50 and over diagnosed with COVID-19 based on
laboratory tests and followed up in 41 participating primary care or outpatient endocrinology
units, with home isolation. Patients who did not have laboratory confirmation of COVID-19
were excluded. Cases were defined as patients attended in ambulatory care and later admitted
to the hospital due to COVID-19; controls were those who did not require admission.
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2.2. Follow-Up Period

Patients were followed up retrospectively from 1 March 2020 until the cure date in
cases of full ambulatory follow-up or the date of hospitalization in the admitted patients.
The inclusion of patients ended on 30 April 2021.

2.3. Sample Size

The sample size was calculated to identify variables that increased the risk of hospi-
talization by 50% or more (odds ratio (OR) > 1.5), as described for different pathologies,
including diabetes. Each study group required 173 patients, with an increase to account for
missing data in an estimated 15% of EMRs. To ensure greater validity and representative-
ness in the control group, especially in variables with low prevalence, two controls were
included for each case. Therefore, the estimated minimum sample size was 597 patients
(199 cases and 398 controls).

2.4. Data Collection and Analysis

All data were collected retrospectively from the EMRs.
A descriptive analysis was performed by calculating frequencies for qualitative vari-

ables and the minimum, maximum, mean, and standard deviation (SD) for quantitative
variables. The factors associated with hospital admission were analyzed using contingency
tables, applying the chi-square test for qualitative variables, the Student’s t test for compar-
ing means for quantitative variables, or nonparametric tests, as appropriate. To estimate
the magnitude of the associations with hospital admission, logistic regression models
were fit, using a simple adjustment for age and sex along with a multivariable adjustment.
A stepwise variable selection procedure was performed based on the Akaike Information
Criterion (AIC). Indicators of goodness-of-fit and predictive indicators such as the area
under the receiver operating curve (AUC) are shown. Results are expressed as ORs with
their 95% confidence intervals (CIs). Analyses were performed using SPSS (v.26) and
R (v.3.6.1) software.

2.5. Ethical Aspects

The study complies with the principles of the Declaration of Helsinki for medical research
involving humans and all relevant data protection laws. Data from EMRs were treated
anonymously by assigning an individual patient identifier that did not allow linkage to the
record number. The treatment, storage, and use of data complied with Organic Law 37/2018,
of 5 December, on the Protection of Personal Data, as well as Regulation 2016/679 of the
European Parliament and of the Council, of 27 April 2016, regarding the processing of personal
data, as well as all applicable regulations and/or legislation. The Ethics Committee of San
Juan University Hospital (Alicante) approved the study (code 20/025, dated 20 May 2020).

3. Results

A total of 790 patients throughout Spain were included by 61 researchers who had
performed clinical care and follow-up in primary care centers or in outpatient endocrinol-
ogy clinics (35%) (Supplementary Materials). Of these, 495 who were not hospitalized
during follow-up were assigned to the control group, and 295 who were admitted due to
SARS-COV-2 were assigned to the case group.

Figure 1 describes the most frequent comorbidities present in the sample of patients
studied. Hypertension was the most prevalent (50.5%), followed by dyslipidemia, obesity,
and diabetes (37.5%). Just under half the patients (n = 386, 48.8%) were women, and 8.5%
were active smokers. The distribution by age groups was as follows: <50–55 years, 18.1%
(n = 143); 55–64 years, 31.9% (n = 252); 65–74 years, 24.6% (n = 194); 74–84 years, 18.2%
(n = 144), and >84 years, 7.2% (n = 57). Table 1 describes the variables analyzed and their
distribution between cases and controls, using a bivariable analysis.
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Figure 1. Most frequent comorbidities.

Table 1. Variables associated with hospital admission for COVID-19, bivariable analysis.

Not Admitted
(n = 495)

Admitted
(n = 295) p Value

n % n %

Sex
Female 277 56.0% 109 36.9% <0.001
Male 218 44.0% 186 63.1%
Age

50–54 years 111 22.4% 32 10.8% <0.001
55–64 years 174 35.2% 78 26.4%
65–74 years 107 21.6% 87 29.5%
75–84 years 74 14.9% 70 23.7%
>84 years 29 5.9% 28 9.5%

Body mass
index

<25 kg/m2 65 13.1% 44 14.9% 0.002
25–30 kg/m2 97 19.6% 71 24.1%
>30 kg/m2 94 19.0% 78 26.4%

Missing 239 48.3% 102 34.6%
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Table 1. Cont.

Not Admitted
(n = 495)

Admitted
(n = 295) p Value

n % n %

O2 saturation

Normal
90–100 204 41.2% 202 68.5% <0.001

Low <90 1 0.2% 23 7.8%
Missing 290 58.6% 70 23.7%

Heart rate
<60 bpm 6 1.2% 15 5.1% <0.001

60–100 bpm 220 44.4% 184 62.4%
>100 bpm 17 3.4% 23 7.8%
Missing 252 50.9% 73 24.7%
Systolic
blood

pressure
<140 mmHg 217 43.8% 175 59.3% <0.001
≥140 mmHg 75 15.2% 70 23.7%

Missing 203 41.0% 50 16.9%
Diastolic

blood
pressure

<90 mmHg 260 52.5% 209 70.8% <0.001
≥90 mmHg 32 6.5% 36 12.2%

Missing 203 41.0% 50 16.9%
Symptoms

Fever 163 32.9% 222 75.3% <0.001
Cough 174 35.2% 190 64.4% <0.001

Asthenia/
malaise 177 35.8% 193 65.4% <0.001

Anorexia 26 5.3% 57 19.3% <0.001
Myalgia 122 24.6% 103 34.9% 0.002
Dyspnea 47 9.5% 135 45.8% <0.001

Productive
cough 39 7.9% 42 14.2% 0.004

Sore throat 87 17.6% 29 9.8% 0.003
Diarrhea 59 11.9% 62 21.0% 0.001
Nausea/
vomiting 31 6.3% 29 9.8% 0.067

Dizziness 17 3.4% 29 9.8% <0.001
Headache 94 19.0% 66 22.4% 0.25
Shivering 37 7.5% 53 18.0% <0.001

Loss of
taste/smell 66 13.3% 33 11.2% 0.38

Chest
tightness 18 3.6% 31 10.5% <0.001

Confusion 2 0.4% 18 6.1% <0.001
Comorbidities
Hypertension 218 44.0% 191 64.7% <0.001

Diabetes
mellitus 158 31.9% 138 46.8% <0.001

Dyslipidemia 210 42.4% 140 47.5% 0.17
Cardiovascular

disease 68 13.7% 63 21.4% 0.005

Cancer 24 4.8% 23 7.8% 0.090
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Table 1. Cont.

Not Admitted
(n = 495)

Admitted
(n = 295) p Value

n % n %

O2 saturation

Chronic
kidney
disease

27 5.5% 25 8.5% 0.098

Immunosuppression 6 1.2% 14 4.7% 0.002
Gastrointestinal

disease 28 5.7% 19 6.4% 0.65

COPD 25 5.1% 35 11.9% <0.001
Asthma 28 5.7% 15 5.1% 0.73

bpm: beats per minute; COPD: chronic obstructive pulmonary disease.

Table 2a shows the results of the logistic regression adjusted for age and sex, and
Table 2b shows a multivariate adjustment performed with a backward variable selection
strategy, based on the AIC criterion, to arrive at an optimal model with all significant
variables. The multivariable model used had a high explanatory power to assess the risk
of hospital admission (AUC 0.860). The warning signs of a patient at risk of hospital
admission were confusion, dyspnea, cough, and fever, while sore throat was associated
with a lower probability of admission. Patient characteristics conferring a higher risk of
hospitalization were age over 65 years and male sex, while the most relevant comorbidities
were hypertension and immunosuppression. After adjusting for all other variables ana-
lyzed, neither diabetes nor obesity were associated with a higher risk of hospital admission
in patients with COVID-19 followed in ambulatory care.

Table 2. (a) Variables associated with hospital admission for COVID-19, multivariable analysis.
Adjustment for age and sex. (b) Variables associated with hospital admission for COVID-19, multi-
variable analysis. Multivariable adjustment.

(a)

Adjustment for Age and Sex
OR 95% CI p

Body mass index

<25 kg/m2 1
25–30 kg/m2 0.80 (0.48–1.35) 0.41
>30 kg/m2 1.03 (0.62–1.72) 0.91

Missing 0.52 (0.33–0.84) 0.008

Active smoker
No 1
Yes 1.07 (0.61–1.88) 0.80

Missing 1.02 (0.71–1.46) 0.91

O2 saturation
Normal 90–100% 1

Low < 90% 25.05 (3.29–190.63) 0.002
Missing 0.24 (0.17–0.34) <0.001

Heart rate

<60 bpm 1
60–100 bpm 0.43 (0.15–1.18) 0.10
>100 bpm 0.76 (0.23–2.52) 0.66
Missing 0.15 (0.05–0.41) <0.001

Systolic blood
pressure

<140 mmHg 1
≥140 mmHg 0.94 (0.63–1.41) 0.77

Missing 0.30 (0.21–0.45) <0.001
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Table 2. Cont.

(a)

Adjustment for Age and Sex
OR 95% CI p

Symptoms

Fever 6.68 (4.74–9.41) <0.001
Cough 3.48 (2.53–4.78) <0.001

Asthenia/malaise 3.58 (2.60–4.92) <0.001
Anorexia 4.35 (2.61–7.26) <0.001
Myalgia 1.85 (1.32–2.58) <0.001
Dyspnea 7.89 (5.31–11.7) <0.001

Productive
cough 1.72 (1.06–2.80) 0.027

Sore throat 0.51 (0.32–0.81) 0.004
Diarrhea 2.01 (1.34–3.02) 0.001

Nausea/vomiting 2.04 (1.17–3.58) 0.012
Dizziness 3.18 (1.66–6.06) <0.001
Headache 1.43 (0.99–2.08) 0.060
Shivering 2.80 (1.74–4.49) <0.001

Loss of
taste/smell 1.00 (0.63–1.60) >0.99

Chest tightness 3.47 (1.86–6.48) <0.001
Confusion 10.35 (2.33–46.06) 0.002

Comorbidities Hypertension 1.70 (1.23–2.35) 0.001
Diabetes
mellitus 1.43 (1.05–1.96) 0.024

Dyslipidemia 0.99 (0.72–1.34) 0.93
Cardiovascular

disease 1.15 (0.77–1.72) 0.50

Cancer 1.20 (0.64–2.22) 0.57
Chronic kidney

disease 1.10 (0.60–2.01) 0.76

Immunosuppression 4.02 (1.46–11.07) 0.007
Gastrointestinal

disease 1.02 (0.55–1.91) 0.94

COPD 1.61 (0.91–2.83) 0.10
Asthma 0.73 (0.37–1.43) 0.36

(b)

Variables
Multivariable Adjustment

OR 95% CI p

Age

50–54 years 1
55–64 years 1.24 (0.69–2.22) 0.47
65–74 years 2.45 (1.32–4.54) 0.005
75–84 years 2.95 (1.52–5.73) 0.001
>84 years 3.89 (1.7–8.9) 0.001

Sex
Female 1
Male 2.15 (1.47–3.15) <0.001

Symptoms

Fever 4.31 (2.87–6.47) 0.000
Cough 1.89 (1.28–2.80) 0.001

Asthenia/malaise 2.04 (1.38–3.03) <0.001
Dyspnea 4.69 (3.00–7.33) <0.001

Sore throat 0.33 (0.18–0.58) <0.001
Confusion 8.87 (1.68–46.78) 0.010

Comorbidities Hypertension 1.61 (1.08–2.41) 0.020
Dyslipidemia 0.65 (0.44–0.96) 0.031

Immunosuppression 4.97 (1.45–17.09) 0.011
bpm: beats per minute; COPD: chronic obstructive pulmonary disease. n = 790; N hospital admissions = 295. Like-
lihood ratio test, multivariable model (chi2 338.3; p < 0.001); area under the receiver operating curve multivariable
model = 0.860 (95% CI 0.835–0.886).
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4. Discussion

This study included patients diagnosed with COVID-19 and followed-up in ambula-
tory care. Its main finding was that the risk of hospital admission was associated with the
presence of certain symptoms (cough, fever, dyspnea, and/or confusion) along with male
sex, age over 65 years, and comorbidities including hypertension or immunosuppression.
However, the presence of diabetes was not independently associated with a higher risk of
hospital admission.

Our sample had a rather high prevalence of several comorbidities (hypertension,
dyslipidemia, diabetes, and obesity) (Table 1). This was due to its case-control design,
where cases were defined by hospital admission. It is thus logical that the group of
cases would be older with a higher prevalence of comorbidities than that in the general
population. This was not a cross-sectional study, and its objective was not to describe the
prevalence of diabetes but rather its possible association with the risk of admission.

One of the first indications regarding the relationship between diabetes and COVID-19
was the finding of a higher prevalence of diabetes among patients infected by
COVID-19 [11,12]. Other studies have reported that the prevalence of diabetes is twice as
high in people who died of COVID-19 (31%) compared with that in survivors (14%) [13]. In
their meta-analysis, Puri et al. [14] identified 66 studies (39 in Asia and 27 in other regions)
showing that the proportion of hypertension, diabetes, cardiovascular disease, and chronic
kidney disease was significantly higher in patients with severe COVID-19 compared to
that in patients with milder cases. However, these were prevalence studies, and the risk of
hospitalization was not analyzed.

Other studies have focused on in-hospital mortality, observing that once adjusted for
age, sex, degree of deprivation, ethnicity, and geographic region, the risk of in-hospital
mortality doubled in people with type 2 diabetes (OR 2.03, 95% CI 1.97–2.09) and tripled in
those with type 1 diabetes (OR 3.1, 95% CI 3.16–3.90) [12].

Regarding the risk factors for hospital admission observed internationally, Zhou et al.
identified advanced age, the SOFA index (Sequential Organ Failure Assessment), and
increased D-dimers as the most important [13]. In a study of 5416 adults in the USA [15],
hospitalization rates were higher in patients with at least three comorbidities (aRR5.0,
95% CI 3.9–6.3), morbid obesity (aRR4.4, 95% CI 3.4–5.7), chronic kidney disease (aRR4.0,
95% CI 3.0–5.2), diabetes (aRR3.2, 95% CI 2.5–4.1), obesity (aRR2.9, 95% CI 2.3–3.5), hyper-
tension (aRR2.8, 95% CI 2.3–3.4), and asthma (aRR1.4, 95% CI 1.1–1.7) after adjusting for
age, sex, and race/ethnicity. Higher hospitalization rates were also seen in adults aged 65
years or older and in those aged from 45 to 64 years (vs. 18–44 years), in men (vs. women),
and in non-Hispanic Black people and other races/ethnicities (versus non-Hispanic whites).
Another study found higher rates of hospitalization in Black and Hispanic patients as well
as at different poverty levels [16], and two meta-analyses have described increased risk of
severe COVID-19 in patients with diabetes [17,18] and obesity [19]. In another study [20],
patients with advanced age or comorbidities, including diabetes mellitus (in 28.3% of all
patients), also had higher rates of hospitalization. Another meta-analysis presented similar
results [21]. In Spain [22], studies in the first months of the pandemic reported that diabetes
is associated with an increased risk of hospitalization and death, but the diagnosis of
COVID-19 was a clinical suspicion, with no laboratory confirmation. Another study was
done in patients with type 1 diabetes, confirmed COVID-19, and ambulatory follow-up
showed age over 40 years as the main independent risk factor for hospital admission due
to COVID-19, after adjusting for other variables such as HbA1c, sex, race, type of health
insurance, and comorbidities [23]. Another study, this time in England [24], analyzed
ambulatory EMRs to identify factors associated with COVID-19 mortality, finding that
advanced age is the main factor, with risk increasing after age 60; a weaker association is
also observed for diabetes. However, the interpretation of these results has been called into
question [25].

With specific regard to patients with diabetes, poor glycemic control has been asso-
ciated with an increased risk of complications in COVID-19 [26,27]. Hyperglycemia on
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admission also seems to be a risk factor for more complications and higher mortality [28].
As for antidiabetic treatment, a better prognosis has been observed in patients treated
with metformin or sulfonyl ureas, while those treated with insulin are more likely to fare
poorly [29]. In our subgroup of diabetic patients (n = 296), we observed that patients with
poor glycemic control were at higher risk of hospitalization, but testing that association was
not the objective of the study. Obtaining robust results about the impact of glycemic control
on the evolution of the patient would require a larger sample and a specifically articulated
research objective. For the same reason, antidiabetic treatments were not included in the
analysis, since a larger sample of patients would be required to achieve valid results.

Many studies concluding that diabetes is associated with a worse prognosis in
COVID-19 have a major limitation in that they either focus on the hospital setting (emer-
gencies, admissions) or they do not differentiate between patients attended in ambulatory
care versus those who are hospitalized or who present to the emergency department. Based
on those data, it is impossible to identify the factors associated with the risk of admission in
ambulatory patients, who represent approximately 85% of the population with COVID-19.

Another prevalent limitation in the literature is the lack of consideration for variables
related to COVID-19 symptoms, though a meta-analysis of 12 studies and 3046 patients
from the general population showed that fever, cough, fatigue, and dyspnea are associated
with greater severity [30–33].

In our study, the bivariable analysis showed a significant association between the
presence of diabetes and the risk of hospital admission, and the prevalence of diabetes was
higher in patients who required hospital admission (46.8% vs. 31.9%; p = 0.001; Table 1).
The same occurred with the presence of obesity (Table 1). However, after adjusting for the
other included variables, including the clinical symptoms presented by the patient, the
multivariable model could not confirm that diabetes and obesity were associated with an
increased risk of hospital admission (Table 2). Rather, these factors were confounded by
other variables (certain symptoms, advanced age, male sex, arterial hypertension), which
more precisely determined the risk of admission. In fact, our multivariable model had a
high explanatory capacity with an AUC of 0.86 (Table 2).

To our knowledge, this is the first study to identify prognostic variables related to the
need for hospital admission in patients with COVID-19 followed in ambulatory services,
considering both patient characteristics (age, sex, comorbidities) and the symptomatic
presentation of COVID-19, which are the two criteria that are usually used in the follow-up
of COVID-19 patients in clinical practice. We observed that the symptoms of the disease,
as well as age and sex, were the predominant factors determining the risk of admission,
outweighing some comorbidities such as diabetes or obesity. This result suggests that
patients were not more likely to be admitted because of diabetes but because of advanced
age, male sex, and presenting with fever, dyspnea, or confusion, among other symptoms.
These data are not incompatible with the results of studies that relate diabetes to severity,
since people with diabetes or obesity may present severe symptoms more frequently, but
the symptoms and demographic characteristics confer a higher risk than the comorbidities
themselves. All of this supports the applicability of these results to ambulatory practice in
patients with COVID-19.

Strengths and Limitations

The main strength of this study is the widely representative sample of patients, re-
cruited by 61 researchers (family doctors and endocrinologists) throughout Spain, and
the consideration of prognostic variables related to patient characteristics and COVID-19
symptoms (Supplementary Materials). The inclusion of patients with and without diabetes,
the confirmation of the diagnosis by laboratory tests, and the quality of the data collected
by the attending physicians are also strengths of the study.

Limitations include the lack of data on some analytical parameters for assessing
severity, which are routinely collected in the emergency department or during hospital
admissions, but not in the ambulatory setting. For this reason, analytical prognostic

309



J. Clin. Med. 2022, 11, 2092

variables such as neutrophils, lymphopenia, C-reactive protein, interleukin 6, serum ferritin,
procalcitonin, or D-dimer were not included, as these tend to be requested only at the
hospital level in patients presenting signs of severity in the emergency department or in
those who are already admitted.

Finally, this study focused exclusively on assessing the risk of hospital admission.
Mortality was not analyzed, since this would require a much larger sample size for the
study design we applied. There were three out-of-hospital deaths that were not included in
the analysis.

5. Conclusions

In patients over 50 years of age diagnosed with laboratory-confirmed COVID-19 and
followed in ambulatory services, the risk of hospitalization was associated with symptoms
such as cough, fever, confusion and dyspnea, underlying hypertension and immunosup-
pression, male sex, and advanced age. All these variables allowed the construction of a
patient profile that would indicate a higher risk of admission: male, over 65 years of age,
with high blood pressure or immunosuppression, who presented with cough, fever, dysp-
nea and/or confusion but not a sore throat. Finally, despite the relatively high prevalence
of diabetes in included patients with COVID-19, diabetes was not independently associated
with a higher risk of admission after adjusting for confounders. Although our findings
suggest the potential role of these variables in developing hospitalization risk scores in
ambulatory patients with COVID-19, regardless of the presence of diabetes, future studies
designed to adequately evaluate their applicability in clinical practice are needed.
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