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Type 2 diabetes constitutes an imposing epidemiological, economic, and scientific global
challenge. The chronic complications of type 2 diabetes are a major cause of mortality and
disability worldwide [1,2]. Clinical research is the main way to gain knowledge about long-
term diabetic complications and reduce the burden of diabetes. This allows for designing
effective programs for screening and follow-up and fine-targeted therapeutic interventions.
However, new research methodologies are needed to obtain more accurate and useful insights
into the biological and clinical processes involved in diabetic complication development.

During the last few years, new approaches for clinical research have incorporated
digital tools to analyze the complex physiopathological background of type 2 diabetes.
In this Special Issue, entitled “Clinical Research on Type 2 Diabetes and Its Complications”
and published in the Journal of Clinical Medicine (https://www.mdpi.com/journal/jecm/
special_issues/Type_2_Diabetes_Complications), some valuable digital methodologies
were used in different studies focusing on the type 2 diabetes syndrome. Novel machine
learning techniques for predicting long-term complications are one of these approaches,
as the studies of Huang, Rashid, and Shin et al. depict [3-5]. The data presented by
these authors suggest that machine learning may be more accurate in predicting diabetic
microvascular complications than traditional methods. Additionally, digital tools such as
artificial intelligence and machine learning can be implemented through an automated and
rapid process.

Among the frequent causes of frustration for people with diabetes and the health care
providers involved in their management is the delayed detection of diabetic complications.
The outlook of clinical research appears promising in the near future owing to the devel-
opment and implementation of advanced methods for the detection of early alterations
in the micro- and macrovascular complications associated with diabetes. Two papers
in this Special Issue cover the use of specific biomarkers tracing the progress of diabetic
cardiovascular complications [6,7]. In another contribution, Lee et al. revisit the long-term
glycemic variability and its relationship with end-stage kidney disease [8].

Besides the genetic approach, the application of digital techniques, including machine
learning and artificial intelligence, and novel biomarkers could be crucial for individualized
type 2 diabetes management, which is the backbone of precision medicine.

Two review papers address the complications that are non-traditionally linked to type 2
diabetes, although currently under exhaustive research: bone health and non-alcoholic
fatty liver disease [9,10]. The multifaceted nature of type 2 diabetes is clearly visualized
owing to the holistic angle used by these approaches.

The efficacy and safety of new type 2 diabetes pharmacological treatment are covered
by three original papers [11-13]. The Yu-Chuan Kang et al. study includes a large popu-
lation sample and an extended follow-up to evaluate the association between dipeptidyl
peptidase-4 inhibitors and diabetic retinopathy [13]. This could be the first signal for a new
safety risk of a pharmacological class of drugs used by millions worldwide.

The COVID-19 pandemic was first reported in China in December 2019 and continues
to be a devastating condition for global health and economy. The COVID-19 disease has
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immediate implications for common chronic metabolic disorders such as type 2 diabetes.
Both direct infection and the associated distress due to preventive measures in the general
population have worsened the control of type 2 diabetes. Some factors indicate that COVID-
19 or other coronavirus-caused diseases can be seasonal or persistent in the future. Type 2
diabetes has a strong negative effect on the prognosis of patients with COVID-19. Three papers
in this Special Issue review the implications of this disease in relation to diabetes [14-16].
Finally, the aim of researchers in this field should be to make all these remarkable
advances accessible to those populations experiencing more difficulties due to sociodemo-
graphic factors such as cultural deprivation, sex discrimination, or limited income [17-19].
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Abstract: Microvascular complications are one of the key causes of mortality among type 2 diabetic
patients. This study was sought to investigate the use of a novel machine learning approach for
predicting these complications using only the patient demographic, clinical, and laboratory profiles.
A total of 96 Bangladeshi participants with type 2 diabetes were recruited during their routine
hospital visits. All patient profiles were assessed by using a chi-squared (x?) test to statistically
determine the most important markers in predicting three microvascular complications: cardiac
autonomic neuropathy (CAN), diabetic peripheral neuropathy (DPN), and diabetic retinopathy
(RET). A machine learning approach based on logistic regression, random forest (RF), and support
vector machine (SVM) algorithms was then developed to ensure automated clinical testing for
microvascular complications in diabetic patients. The highest prediction accuracies were obtained by
RF using diastolic blood pressure, albumin—creatinine ratio, and gender for CAN testing (98.67%);
microalbuminuria, smoking history, and hemoglobin A1C for DPN testing (67.78%); and hemoglobin
A1C, microalbuminuria, and smoking history for RET testing (84.38%). This study suggests machine
learning as a promising automated tool for predicting microvascular complications in diabetic
patients using their profiles, which could help prevent those patients from further microvascular
complications leading to early death.

Keywords: microvascular complications; cardiac autonomic neuropathy; diabetic peripheral
neuropathy; diabetic nephropathy; diabetic retinopathy; patient profiles; machine learning

1. Introduction

Diabetes is called a ‘silent killer” that is killing around 1.6 million people each year,
making it the 5th leading cause of death worldwide [1]. There are two types of diabetes, type
1 and type 2. Type 2 is a chronic metabolic disorder and an expanding global health problem
in the past decades. It results in hyperglycemia, which reduces the ability of the body’s
cells to respond fully to insulin. This situation is called ‘insulin resistance’. In this state,
insulin production increases, due to the inaction of the hormone. The global prevalence
of type 2 diabetes in low- and middle-income countries was estimated to be 415 million
in 2015 and is predicted to rise to 642 million by 2040 [2]. Type 2 diabetes mellitus has
been rapidly rising worldwide over the past three decades, particularly in developing
countries, including Bangladesh [3]. The prevalence of type 2 diabetes in Bangladesh will

J. Clin. Med. 2022, 11, 903. https:/ /doi.org/10.3390/jcm11040903

https:/ /www.mdpi.com/journal /jcm



J. Clin. Med. 2022, 11, 903

be more than 50% within the next 15 years, placing Bangladesh as the country with the 8th
largest diabetic population in the world [4]. A study suggests that diabetic prevalence will
more than double between 2020 and 2030 [5]. The IDF (International Diabetes Federation)
Diabetes Atlas has estimated that if nothing is done, the number of diabetes patients may
rise to 629 million in 2045 [6] and cases may double from 151 million [7] from 2000 to
2025 [8]. The prevalence of diabetes is higher in rural areas [9], but it was high for males in
urban areas, whereas it was lower in rural areas compared to females in Bangladesh [10,11].

Neuropathies are a common persistent complication of both types of diabetes mellitus
that confer morbidity and mortality to diabetic patients. Cardiac autonomic neuropathy
(CAN) is associated with an increased risk of mortality [12,13]. A study including 1171 pa-
tients with type 1 and type 2 diabetes mellitus using a predefined HRV and spectral analysis
of R-R intervals reported abnormal findings for 34.3% of type 2 patients [14]. Neuropathy
is the most common microvascular complication of both type 1 and type 2 diabetes mel-
litus [15-17]. A study conducted in the outpatient section of BIRDEM Hospital, Dhaka,
Bangladesh found that 19.7% of all registered type 2 patients have diabetic peripheral neu-
ropathy (DPN) [18]. The prevalence of DPN among type 2 diabetic patients is much higher
in Europe. A study concludes that 32.1% of the diabetic patients in the United Kingdom,
17.6% in Turkey, and 35.4% in Spain have DPN [19]. The prevalence of DPN increases with
the age of the patient and also with the diabetic duration [18,20]. A multi-country study
conducted in Asia shows a 58.6% prevalence of micro or macroalbuminuria, indicating
an impending pandemic of diabetic renal (i.e., nephropathy) and cardiovascular diseases
in Asia [21]. A cross-sectional study with 836 rural Bangladeshi patients showed a high
prevalence of retinopathy in Bangladesh [22]. Results from 35 studies from 1980 to 2008
with 22,896 subjects with diabetes showed that the global prevalence for any RET was
34.6% (95% CI 34.5-34.8) [23]. Analyses of the exponential trend revealed an increase in
diabetes prevalence among the urban and rural populations at a rate of 0.05% and 0.06%
per year, respectively [24]. Increasing age, hypertension, and higher BMI were found to be
significant risk factors in the urban and rural communities of Bangladesh [25]. However,
the patients with type 2 diabetes in Bangladesh have limited knowledge of its risk factors,
cause, and management [26,27]. Depressive diabetic symptoms were found in 29% of males
and 30.5% of female participants with diabetes and 6.0% of males and 14.6% of female
subjects without diabetes [28].

Most recently, machine learning has emerged in many biomedical applications as a
promising tool to aid in decision-making regarding many diseases, including diabetes.
In [29], the authors managed to implement a machine learning approach based on decision
trees to identify the diabetic patients with or without treatment procedures from their lipid
profiles. In addition, Koren et al. [30] developed a trained model capable of diagnosing
diabetic patients with drugs that lower blood glucose levels. Moreover, in [30,31], the
authors proposed a deep neural network to diagnose diabetic patients from clinical profiles.
To recognize patterns among diabetic patients, Alloghani et al. [31] presented several
machine learning models that were able of characterizing patients and explain the re-
admission procedures. Several other studies [32-35] utilized machine learning and deep
neural networks in many other applications in diabetes diagnostics. However, even though
the implementation of machine learning models for diabetes diagnostics showed high
levels of performance, there is still a lack of knowledge about its impact on discriminating
between the various microvascular complications. In addition, it is essential to be able to
determine, both statistically as well as from a machine perspective, which features play a
critical role in characterizing these complications in type 2 diabetic patients.

In this paper, a study is conducted to investigate the efficiency of applying a machine-
learning-based approach in discriminating between diabetic patients, according to their
microvascular complication status (Figure 1). The novelty of the presented approach lies in
utilizing only the demographic, laboratory, and clinical information of patients within the
framework of machine learning for diabetes diagnostics. Therefore, time-consuming clinical
testing using advanced medical equipment can be avoided, which is essential in commu-
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Dataset and patient enrollment

A

nities with economic hardship or a lack of clinical expertise. In addition, the proposed
study allows for elaborating on the most important information within patient profiles
when testing for each microvascular complication. To the best of the authors” knowledge,
there have been very limited attempts towards identifying certain types of microvascular
complications using machine learning. Therefore, a gap still exists in the literature about
how certain patient information impacts the discrimination between diabetes complications.
The present study provides a complete clinical testing approach for CAN-, DPN-, and
RET-positive cases by looking into patient information from a machine-based perspective.
NEP cases were not used in a separate machine-learning-based testing scenario because
they can be easily identified from their patient profile information. Further, with a focus
on CAN cases, the study investigates the ability of trained models to deeply discriminate
between CAN-only patients and patients with additional complications alongside CAN.

Demographic, Clinical, and Laboratory information
A

Enrollment: 96 (with T2DM)
Diahetic duration = 10 years
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Figure 1. A graphical view of the complete research work in this study, including patient enrollment;
demographic, clinical, and laboratory information acquisition; machine learning modeling; and
performance evaluation of the model.

2. Materials and Methods
2.1. Study Type

This is a cross-sectional study of Bangladeshi patients from Dhaka who have had
type 2 diabetes mellitus for more than 10 years. We followed the STROBE cross-sectional
reporting guidelines [36]. The study was approved by the ethical review committee of the
Bangladesh University of Health Sciences (BUHS/BIO/EA/17/01) and conforms to the
ethical principles outlined in the declaration of Helsinki and the Ministry of Health and
Family Welfare of Bangladesh.

2.2. Inclusion and Exclusion Criteria

The parameters that were included in the inclusion criteria: Bangladeshi national,
diagnosis of type 2 diabetes mellitus, above 40 years of age, able to give written consent,
and the diabetes duration was 10 years or more. The exclusion criteria included: stroke
history, having any heart disease, not being able to give consent, diabetes duration of less
than 10 years, and the presence of any other pathophysiology that may lead to one or more
similar complications, such as cancer.
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2.3. Participants and Complications

One hundred and three (47 males and 56 females) unrelated patients of more than
40 years of age that had type 2 diabetes for 10 years or more were randomly selected and
enrolled in the study during routine visits to the BIHS [37] Hospital between 18 December
2017 and 26 April 1018. This hospital is one of the most visited hospitals for diabetic
patients in Bangladesh.

In this study, the recruited patients were diagnosed with complications, such as CAN,
DPN, NEP, and RET (Table 1). The presence of these complications was confirmed by a
qualified physician, based on the criteria outlined by the report of the WHO consultation
group [38]. A diagnosis of cardiac autonomic neuropathy (CAN) was obtained from the
Ewing test, which included five tests: deep breathing, lying to standing, the Valsalva
maneuver, lying to standing BP, and sustained handgrip BP [39]. A diagnosis of diabetic
peripheral neuropathy (NCV) was obtained using a nerve conduction velocity (NCV) test.
There were several tests for recognizing polyneuropathy, CTS (carpal tunnel syndrome),
peroneal neuropathy, and other types of neuropathies. A diagnosis of nephropathy (NEP)
was determined by the ACR (albumin-creatinine ratio) level >30 mg/mmol for microalbu-
minuria, and >300 mg/mmol for macroalbuminuria [40]. A diagnosis of retinopathy (RET)
was obtained from the fundus image test and classified according to the WHO criteria [41].
Fundus imaging is a process where 3-D retinal semi-transparent tissues are projected onto
the imaging plane using reflected light and represented in 2-D [42].

Table 1. Types of complications of patients included in this study.

Name of the Number of Patients,
Complication Type N (%) Total, N
pCAN (with CAN) 65 (67.708) 96
nCAN (without
CAN CAN) 10 (10.417)
Test result
unavailable 21(21.875)
pDPN (with DPN) 44 (45.833) 96
DPN nDPN (without DPN) 46 (47.917)
Test result
unavailable 6 (6.250)
PRET (with RET) 7 (7.292) 96
RET
nRET (without RET) 89 (92.708)

Among these subjects, 70 were able to complete the diagnostic tests for all three
complications (CAN, DPN, and RET). There were several combined complications found
in some patients. The frequency of complications is shown in Table 2. To observe the
importance of demographic, clinical, and laboratory profiles, a multiclass analysis (3-class
analysis) was conducted using the classes marked in bold in Table 2 (CAN vs. CAN + DPN
vs. CAN + DPN + Others). CAN + DPN + Others are the combinations of CAN + DPN +
NEP, CAN + DPN + RET, and CAN + DPN + NEP + RET. These three classes were selected
from Table 2 with higher numerals.
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Table 2. Types and frequency of complications of diabetes patients.

Types of Complications Numerals, N (%) Total, N

nComp (no complication) 4 (4.16)

CAN 21 (21.875)
Single DPN 3(3.125)
Complications NEP 0 (0.00)
RET 0(0.00)

CAN and DPN 16 (16.67) 96

CAN and NEP 6 (6.25)
Combined DPN and NEP 2 (2.083)
Complications CAN, DPN, and NEP 12 (12.5)
CAN, DPN, and RET 2 (2.083)
CAN, DN, N, 116

Not sure (due to unavailable test results) 26 (27.08)

2.4. Types of Variables
2.4.1. Demographic and Clinical Variables

The demographic data were collected from the patients at the time of enrollment. We
measured the waist circumference, height, and weight at the time of enrollment and listed the
value for the diabetic duration, age, gender, smoking history, and smokeless tobacco history.
All of these data were verified from the necessary and relevant documents. The clinical data
were measured at the time of enrollment. The blood pressure was measured on the first day
before starting their Ewing test. If the systolic blood pressure was >130 mm Hg and diastolic
blood pressure was >80 mm Hg or they were taking antihypertensive medications, it was called
hypertension. Dyslipidemia was diagnosed from the medications of the patient or by checking
the history of dyslipidemia of that patient. The data and its basic analysis are shown in Table 3.

Table 3. Demographic and clinical variables of patients.

Demographic Variables
Variables and Male Female All
their subdivisions Mean = SD N (%of M) Mean = SD N (% of F) Mean = SD N (% of total)

Patients 47 (45.63) 56 (54.37) 103 (100)
Age (years) 57.70 +9.78 47 (100) 54.60 +7.93 56 (100) 56.01 £+ 8.91 103 (100)
>40 and <50 44.8 £3.22 10(21.28) 45.6 £2.95 15(26.79) 45.28 £ 3.02 25(24.27)
>50 and <60 532 +27 15(31.91) 52.86 4 3.17 22(39.29) 53 +2.95 37(35.92)
>60 66.63 £+ 4.78 22 (46.81) 63.73 £3.79 19 (33.93) 65.29 £ 4.54 41 (39.80)
CAN 58.74 + 9.63 31 (65.95) 53.32 +7.40 37 (66.07) 55.79 + 8.85 68 (66.01)
DPN 58.95 + 10.33 21 (44.68) 52.58 £ 6.33 24 (42.85) 55.55 £ 8.93 45 (43.68)
Nep 58.5 +10.37 12 (25.53) 54.37 £ 8.75 16 (28.57) 56.14 £ 9.52 28 (27.18)
Ret 56.8 4 11.64 5(10.63) 47.5 £ 0.707 2(3.571) 54.14 4 10.54 7 (6.796)
BMI (kg/m?) 25.53 + 3.47 47 (100) 27.93 £5.08 56 (100) 26.84 + 4.56 103 (100)

Underweight: <18.5 0 0(0) 0 0(0) 0 0(0)
Normal: >18.5, <25 23.54 £ 1.45 27 (57.45) 2293 £ 1.69 17 (30.36) 23.31 £ 1.56 44 (42.72)
Overweight: >25.0, <30 26.54 +1.03 15 (31.91) 27.58 +1.32 24 (42.86) 27.18 £1.31 39 (37.86)
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Table 3. Cont.

Obese: >30 3323 +4.09 5 (10.638) 3418 £ 477 15 (26.79) 33.94 +4.52 20 (19.42)
CAN 26.26 4 3.71 31 (65.95) 27.94 + 582 37 (66.07) 27.17 4+ 5.01 68 (66.01)
DPN 25.52 + 3.56 21 (44.68) 28.75 + 5.01 24 (42.85) 27.24 + 4.64 45 (43.68)
Nep 2617 +4.22 12 (25.53) 29.18 + 5.60 16 (28.57) 27.89 +5.19 28 (27.18)
Ret 26.79 + 5.53 5 (10.63) 26.29 + 2.09 2 (3571) 26.65 % 4.60 7 (6.796)
Smoking history 9(19.15) 0(0) 9 (8.74)
Smokeless tobacco history 10 (21.28) 17 (30.357) 27 (26.21)
Clinical variables
Name of the Variables Male Female All
their su‘%n icions Mean + SD N (%of M) Mean + SD N (% of F) Mean + SD N (% of total)
Diabetes duration (years) 16.17 + 6.07 47 (100) 15.55 + 5.76 56 (100) 15.83 + 5.88 103 (100)
>10and <20 13.54 +2.76 37(78.72) 12.60 + 2.64 41 (7321) 13.05 + 2.73 78 (75.73)
>20 and <30 2443116 8(17.02) 2230 +1.93 13 (23.21) 22.95 +2.52 21 (20.39)
>30 335 +£2.12 2 (4.26) 324+ 2.828 2(3.57) 32.75 4222 4(3.89)
CAN 16.54 + 6.20 31 (65.95) 16.13 + 6.01 37 (66.07) 16.32 + 6.05 68 (66.01)
DPN 17.33 + 7.43 21 (44.68) 14.16 + 4.80 24 (42.85) 15.64 % 6.30 45 (43.68)
Nep 1891 + 8.1 12 (25.53) 16.81 & 6.63 16 (28.57) 17.71 +7.24 28 (27.18)
Ret 13 +2.828 5 (10.63) 17.5 + 3.535 2 (3.571) 14.28 + 3.49 7 (6.796)
Waist Circumference (cm) 90.84 £ 8.61 47 (100) 97.38 £ 9.46 56 (100) 94.39 £ 9.61 103 (100)
Men >90 97.40 + 6.7 23 (48.94)
Women >80 97.72 +9.19 55 (98.21)
CAN 92.09 4 8.47 31 (65.95) 96.58 +9.30 37 (66.07) 94.54 + 9.15 68 (66.01)
DPN 92.64 4 8.13 21 (44.68) 98.63 & 9.07 24 (42.85) 95.84 + 9.06 45 (43.68)
Nep 91.22 + 671 12 (25.53) 97.31 + 9.80 16 (28.57) 94.70 + 9.00 28 (27.18)
Ret 89.91 + 5.26 5 (10.63) 93.98 + 14.36 2(3.571) 91.07 +7.53 7 (6.796)
Systolic blood pressure 1412 +195 47 (100) 136.0 + 20.14 56 (100) 138.4 + 19.94 103 (100)
(mmHg)
<119 108 + 5.29 4(851) 108.3 + 8.96 12 (21.43) 108.2 + 8.03 16 (15.53)
>120 and <14 1292 + 6.67 19 (40.43) 130.1 + 4.98 19 (33.93) 129.7 +5.82 38 (36.89)
>140 and <160 1482 +7.52 15 (31.91) 1483 £5.71 19 (33.93) 1482 & 6.47 34 (33.01)
>160 169.6 +9.72 9(19.15) 1713 + 6.40 6 (10.714) 170.3 + 8.33 15 (14.56)
CAN 145.0 + 20.16 31 (65.95) 134.0 + 21.30 37 (66.07) 139.0 + 21.35 68 (66.01)
DPN 1485 + 20.82 21 (44.68) 134.8 £ 1596 24 (42.85) 1412 £+ 1943 45 (43.68)
Nep 153.0 + 15.16 12 (25.53) 136.1 +17.22 16 (28.57) 143.4 +18.19 28 (27.18)
Ret 158.6 + 16.14 5 (10.63) 1375 + 17.67 2 (3.571) 1525 + 18.21 7 (6.796)
Diastolic blood pressure 78.97 +9.86 47 (100) 76.42 + 11.9 56 (100) 77,59 + 11.07 103 (100)
(mmHg)
<79 71.36 4 7.45 22 (46.81) 67.96 & 6.98 32 (57.14) 69.35 + 7.30 54 (52.43)
>80-89 82.73 +2.83 19 (40.43) 83.81 + 3.08 16 (28.57) 83.22 +2.95 35 (33.98)
>90-99 94 +339 5 (10.64) 94.14 + 2.61 7 (12.5) 94.08 + 2.81 12 (11.65)
>100 100 + 0 1(2.13) 105 +£0 1(1.79) 1025 & 3.54 2(1.94)
CAN 78.45 + 11.40 31 (65.95) 7548 + 1276 37 (66.07) 76.83 +£12.16 68 (66.01)
DPN 7819 + 12.23 21 (44.68) 76.87 + 10.63 24 (42.85) 7748 +11.29 45 (43.68)
Nep 7491 4 1348 12 (25.53) 75.93 4 10.81 16 (28.57) 75.5 + 11.79 28 (27.18)
Ret 84.6 + 10.13 5 (10.63) 72.5 + 3.54 2 (3.571) 81.14 + 1027 7 (6.796)

10
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2.4.2. Laboratory Data
The laboratory data were taken from the laboratory of the hospital after the enrollment.
The laboratory test parameters were hemoglobin Alc (HbAlc), microalbuminuria, urinary

creatinine, and the albumin-creatinine ratio. The data and its basic analysis are shown in
Table 4.

Table 4. Laboratory variables of patients.

Types and Their

Variables Male Female All
Mean + SD N (%of M) Mean + SD N (% of F) Mean + SD N (% of total)
HbA1c (mmol/mol,%)
Not specified 9.066 £+ 1.944 47 (45.63) 8.621 £+ 1.453 56 (54.37) 8.824 £ 1.701 103 (100.0)
Optimal: <7 2 (4.26) 8 (14.29) 10 (9.71)
Fair: 7-8 12 (25.53) 11 (19.64) 23 (22.33)
High: >8 33 (70.21) 37 (66.07) 70 (67.96)
CAN 9.213 £ 1.790 31 (45.59) 8.716 £+ 1.491 37 (54.41) 8.943 £ 1.640 68 (66.02)
Optimal: <7 1(3.23) 4(10.81) 5 (7.35)
Fair: 7-8 6 (19.35) 8 (21.62) 14 (20.59)
High: >8 24 (77.42) 25 (67.57) 49 (72.06)
DPN 9.291 + 1.988 21 (46.67) 8.930 £ 1.667 24 (53.33) 9.098 + 1.810 45 (43.69)
Optimal: <7 2(9.52) 3 (12.50) 5(11.11)
Fair: 7-8 3 (14.29) 4(16.67) 7 (15.56)
High: >8 16 (76.19) 17 (70.83) 33 (73.33)
Nephropathy 9.9750 £ 2.221 12 (42.86) 8.763 £ 1.902 16 (57.14) 9.282 £+ 2.094 28 (27.18)
Optimal: <7 1(8.33) 3 (18.75) 4(14.29)
Fair: 7-8 1(8.33) 4 (25.00) 5(17.86)
High: >8 10 (83.33) 9 (56.25) 19 (67.86)
Retinopathy 10.720 + 3.334 5(71.43) 11.100 + 1.980 2(28.57) 10.829 + 2.846 7 (6.80)
Optimal: <7 0 (0.00) 0 (0.00) 0 (0.00)
Fair: 7-8 2 (40.00) 0 (0.00) 2 (28.57)
High: >8 3 (60.00) 2 (100.00) 5(71.43)
Microalbuminuria (mg)
Not specified 60.6164 + 99.490 47 (46.08) 49.571 £ 82.123 55 (53.92) 54.661 + 90.247 102 (99.03)
Optimal: <30 34 (72.34) 38 (69.09) 72 (70.59)
Microalbuminuria: 30-300 10 (21.28) 15 (27.27) 25 (24.51)
Macro albuminuria: >300 3(6.38) 2 (3.64) 5 (4.90)
CAN 88.439 +113.172 31 (45.59) 56.981 £ 93.199 37 (54.41) 71.322 +103.204 68 (66.02)
Optimal: <30 18 (58.06) 25 (67.57) 43 (63.24)
Microalbuminuria: 30-300 10 (32.26) 10 (27.03) 20 (29.41)
Macro albuminuria: >300 3(9.68) 2 (5.41) 5(7.35)
DPN 121.925 + 124.49 21 (47.73) 55.2565 + 87.479 23 (52.27) 87.075 + 110.720 44 (42.72)
Optimal: <30 10 (47.62) 15 (65.22) 25 (56.82)
Microalbuminuria: 30-300 8(38.10) 7 (30.43) 15 (34.09)
Macro albuminuria: >300 3(14.29) 1(4.35) 4(9.09)
Nephropathy 210.308 £ 91.414 12 (42.86) 144.519 + 98.407 16 (57.14) 172.7143 +99.417 28 (27.18)
Optimal: <30 0(0.00) 1(6.25) 1(3.57)
Microalbuminuria: 30-300 9 (75.00) 13 (81.25) 22 (78.57)
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Table 4. Cont.

Types and Their

Variables Male Female All
Macro albuminuria: >300 3(25.00) 2 (12.50) 5(17.86)
Retinopathy 158.62 + 140.295 5(71.43) 136.15 4+ 178.691 2(28.57) 152.20 + 136.247 7 (6.80)
Optimal: <30 2 (40.00) 1 (50.00) 3 (42.86)
Microalbuminuria: 30-300 2 (40.00) 1 (50.00) 3 (42.86)
Macro albuminuria: >300 1 (20.00) 0 (00.00) 1(14.28)
Urinary Creatinine (mg/ dL)
Not specified 194.46 £+ 139.83 130.87 + 117.85 160.17 & 131.70 102 (99.03)
Target 20-320
Sy 41 (87.23) 50 (90.91) 91 (89.22)
Non-Target >320
gy dL 6 (12.77) 4(7.27) 10 (9.80)
CAN 236.15 £ 150.39 31 (45.59) 123.28 +107.24 37 (54.41) 174.74 £ 139.68 68 (66.02)
Target 20-320
e dL 25 (80.65) 34 (91.89) 59 (86.76)
Non-Target >320
g dl 6 (19.35) 2 (5.41) 8 (11.76)
DPN 236.84 £+ 160.20 21 (47.73) 157.52 & 149.63 23 (52.27) 195.34 + 158.11 44 (42.72)
Target 20-320
Sy 17 (80.95) 20 (86.96) 37 (84.09)
Non-Target >320
gy dL 4(19.05) 3 (13.04) 7 (15.91)
Nephropathy 256.43 £ 205.44 12 (42.86) 152.65 £ 77.99 16 (57.14) 197.13 £ 152.68 28 (27.18)
Target 20-320
e dL 9 (75.00) 16 (100.0) 25 (89.29)
Non-Target >320
g dL 3 (25.00) 0 (0.00) 3(10.71)
Retinopathy 211.36 £ 55.58 5(71.43) 159.95 + 135.98 2(28.57) 196.67 £ 75.96 7 (6.80)
Target 20-320
Sy 5 (100.0) 2(100.0) 7 (100.0)
Non-Target >320
gy dL 0 (0.00) 0 (0.00) 0 (0.00)
Albumin-Creatinine Ratio (mg/mmol)
Not Specified 32.09 £ 52.45 47 (46.08) 39.28 +74.58 55 (53.92) 35.97 £ 65.11 102 (99.03)
Optimal: <3 12 (25.53) 10 (18.18) 22 (21.57)
Borde;]_igg high: 23 (48.94) 29 (52.73) 52 (50.98)
High: >30 12 (25.53) 16 (29.09) 28 (27.45)
CAN 44.35 £ 60.99 31 (45.59) 45.36 £ 86.19 37 (54.41) 4490 £ 7522 68 (66.02)
Optimal: <3 7 (22.58) 6(16.22) 13 (19.12)
Bordegljgg high: 12 (38.71) 20 (54.05) 32 (47.06)
High: >30 12 (38.71) 11 (29.73) 23 (33.82)
DPN 60.73 £ 68.22 21 (47.73) 35.97 £+ 51.28 23 (52.27) 47.79 £ 60.55 44 (42.72)
Optimal: <3 6 (28.57) 5 (21.74) 11 (25.00)
Borde;{‘glg high: 4(19.05) 11 (47.83) 15 (34.09)
High: >30 11 (52.38) 7 (30.43) 18 (40.91)
Nephropathy 105.960 £ 57.952 12 (42.86) 111.404 & 109.675 16 (57.14) 109.071 & 89.771 28 (27.18)
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Table 4. Cont.

Types and Their

Variables Male Female All
Optimal: <3 0(0.00) 0 (0.00) 0(0.00)
Borderline high: 0(0.00) 0.(0.00) 0.(0.00)
3-30
High: >30 12 (100.0) 16 (100.0) 28 (100.0)
Retinopathy 86,567 + 87.999 5 (71.43) 58.923 + 61.616 2 (2857) 78.671 + 77.312 7 (6.80)
Optimal: <3 0(0.00) 0 (0.00) 0(0.00)
B"rde;l_‘g‘g high: 2 (40.00) 1(50.00) 3 (42.86)
High: >30 3 (60.00) 1(50.00) 4(57.14)

2.5. Machine Learning Modeling
2.5.1. Clinical Testing Approach

To provide a complete diagnosis of a type 2 diabetes patient, four tests in two steps
were applied sequentially (Figure 2) on patients’ demographic, clinical, and laboratory
(DCL) information. This study supports type 2 diabetic patients with microvascular com-
plications having a better screening from their DCL information. The approach combines
a single-class binary classification model with three different classifiers and a multiclass
classification model. The single-class classification model can run three tests in parallel
to classify CAN, DPN, and RET separately. If all three tests result in a negative class, it
means the patient with type 2 diabetes has no microvascular complications. If the test
shows positive results, the patient goes for that specific complication treatment. However,
obtaining a positive class from the CAN test leads to a multiclass classification model. This
model can determine whether the patient has other microvascular complications along
with CAN. Thus, this results of this model include: CAN (having only CAN), CANDPN
(having DPN with CAN), CANDPN+ (having NEP or RET with CAN and DPN). The
resulting class determines the treatment that should be provided to the patient.

2.5.2. Analysis of the Demographic Clinical and Laboratory Profiles

The demographic variables (such as gender, height, age, weight, smoking history,
tobacco history, and diabetes duration), clinical measurements (waist circumference, BMI,
systolic blood pressure, and diastolic blood pressure), and measured laboratory values
(such as HbAlc, microalbuminuria, urinary creatinine, and albumin—creatinine ratio) were
selected for further analysis as patient information.

A feature selection approach was then followed based on the univariate chi-squared
test to choose the foremost critical factors among all the demographic, clinical, and labora-
tory variables. In this test, a statistical hypothesis investigation is performed for each DCL
feature to test whether the observed calculations coordinate with the anticipated ones, i.e.,
patient’s complication type. Moreover, it gives a noteworthy distinction p-value measure
(p-value < 0.05) between categories based on the statistical calculations and desire [43]. A
feature with a lower p-value signifies that this variable is most likely dependent on the
complication label. Hence, it is vital for anticipating the complication and has discrimina-
tory characteristics. In this way, a score of significance is returned for each DCL profile
utilized within the test as score = —log (p). In this work, we call this score importance. We
calculated importance using a function called fscchi2 () in MATLAB 2021a.
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Figure 2. The proposed procedure for screening diabetic patients. Every patient initially goes through
the information acquisition of this clinical diagnosis flowchart. Five tests are then applied in two
stages. The second stage (multiclass class is only for the patients who go through the CAN test
and have a positive CAN. A single-class classification can predict the presence of microvascular
complications (CAN, DPN, or RET) and can predict whether there is any presence of complications.
Multiple complications with CAN could be classified using the multiclass classifier.

2.5.3. Support Vector Machine (SVM)

SVM is an exceedingly popular machine learning algorithm used in classification and
regression problems. It is one of the classic machine learning techniques that can help to
solve big data classification problems. SVM allows the classification of single-class as well as
multiclass classification problems. It is commonly utilized as an exception finder, where the
model is prepared to recognize training data from any other irrelevant information [44]. The
model tends to distinguish which unused objects are closely representing the selected class
in the training phase, which is generally called a positive class [45]. A set of probabilities
has been returned by the model to show the degree of matching between the testing and
training samples. In this paper, a single-class SVM was used for the training model in the
CAN, DPN, and RET tests. Having the complication has been considered as the positive
class in the single-class classification. However, a multiclass SVM was for training in the
CANDPNOthers test. To guarantee the highest performance from the model, a non-linear
RBF (radial basis function) kernel was used with fine-tuned hyper-parameters.

2.5.4. Random Forest (RF)

Random forest (RF), also known as classification and regression tree (CART), is a
form of decision trees, where a set of tree-like trait nodes is associated with a set of sub-
trees of decision nodes [46,47]. This algorithm is considered a conglomeration strategy
that employs the concepts of bagging. All the decision trees are calculated based on the
corresponding resource cost, outcome chances, and utility to provide a prediction. The
prediction preparation begins by doling out an occasion at each tree to its root node. At that
point, for each of the subsequent sub-nodes, the results are calculated successively. Once a
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leaf is experienced, the tree-like nodes halt and an occasion is relegated with a prediction.
All of the occasions and predictions shape the ultimate choice made by the tree model [48].
In this work, 20-120 decision trees were utilized to construct the model. The choice of the
number of trees for each single-class test, as well as the multiclass test, was fine-tuned to
guarantee the greatest conceivable performance from the model.

2.5.5. Logistic Regression

Logistic regression is one of the most commonly used machine learning algorithms in
statistics. It is a statistical model that uses a logistic function to represent a binary dependent
variable in its most basic form, though there are many more advanced variants. Logistic
regression is a technique for estimating the parameters of a logistic model in regression
analysis. The natural logarithm of the odds is used as a regression function of the predictors
in the logistic regression model. The expression for a one predictor (X) one outcome (Y)
logistic regression model is In [odds (Y = 1)] = B0 + f1X, where In is the natural algorithm,
Y =1or Y = 0 refers to the event occurrence of the event, 30 is the intercept term, and 1 is
the regression coefficient that refers to the change in the logarithm of the event’s odds with
a 1-unit change in the predictor X [49].

2.5.6. Training and Testing

A leave-one-out scheme was followed in the single-class models, as well as in the
multiclass model, to ensure the incorporation of the highest possible number of samples
within the prepared models. Besides, it was fundamental to supply a prediction for each
and every patient. An iterative process was applied in this scheme by selecting one subject
as testing data, whereas the remaining subjects were used for training. The method repeated
on each cycle until a prediction was given for every subject.

2.5.7. Parameter Optimization

In each test, several model parameters were fine-tuned to ensure the highest acquirable
model performance. Performance was measured in the form of accuracy, sensitivity, specificity,
precision, f1-score, and area under the curve (AUC). To handle data imbalance (65 positive
classes vs. 10 negative classes in the CAN test and 7 positive classes vs. 89 negative classes in
the RET test), a model parameter called “prior probability’ was introduced in the algorithm
during the training phase. The prior probabilities were found observationally, where the initial
weight was set to each class that was equal to its number of samples relative to the whole
number of samples [50]. Prior probability was not used in the DPN test, as it had balanced
classes. The minimum leaf size and bag fraction value were used as per the behavior of the
RF model, on an iterative basis and keeping the optimum value.

3. Results
3.1. Demographic, Clinical, and Laboratory Profiles

Demographic and clinical data, along with major comorbidities with type 2 diabetes, are
shown in Table 3, and laboratory profiles are shown in Table 4. There were 47 (45.63%) male
patients and 56 (54.37%) female patients. The mean age of the patients was 56 years (+8.913),
the mean ages of the male and female patients were 57.1 years (£9.78) and 54.6 years (+7.93),
respectively. This is consistent with the finding that the diabetic population in Bangladesh, as
well as south Asia, are comparatively younger than in the west [51,52]. The sub-variables under
‘Age’ show that 46.8% of the male subjects were greater than 60 years old, but about 40% female
subjects were between 40 and 50, though, overall, the patients showed an increasing prevalence
for a higher age. A study in Spain also showed that an increase in patient age increases the
prevalence of diabetic complications [19]. In this study, 27 (57.45%) males, 35 (62.50%) females,
and a total of 62 (60.19%) patients had a history of hypertension (mean systolic blood pressure
was 138.4 mm Hg). A total of 35 (33.98%) patients had dyslipidemia, where 14 (29.79%) were
male and 21 (37.5%) were female. Only nine (8.74%) patients had a history of smoking, and
they were all male. In addition, the overweight condition (42.86%) was common for female
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diabetic patients, with more than 98% female subjects having a waist circumference higher than
80 cm, while 57.45% of the male subjects had a normal weight. Though obesity was relatively
common for female patients (27%), a total of 20 (19.42%) patients were obese (mean BMI (body
mass index) = 33.94 kg/ m? and mean waist circumference = 90.84 cm for males and 97.38 cm
for females). For the retinopathy patients, the waist circumference was 89.91 cm for males and
93.98 cm for females, where 15 (26.79%) were female and 5 (10.638%) were males.

More than 67% of the patients for any type of complication had a high HbAlc (mean
HbA1lc = 8.824, male mean HbAlc = 9.066, and female mean HbAlc = 8.621 for the
patients with CAN). The retinopathy patients had very high HbAlc (mean HbAlc = 10.829,
male mean HbAlc = 10.720, and female mean HbAlc = 11.100). Microalbuminuria was
found in 25 (24.51%) patients, where 10 were male and 15 were female. In the case of
nephropathy, a total of 22 (78.57%) patients had microalbuminuria. All the retinopathy
patients had a creatinine level of 20 to 320 mg/dL. The mean ACR (albumin—creatinine ratio)
for the patients was 35.967 mg/mmol, where 47 (46.08%) males had a mean ACR of 32.092
mg/mmol, and 55 (53.92%) females had a mean ACR of 39.280 mg/mmol. Neuropathy
was the most common complication in Bangladeshi diabetic type 2 patients of more than
40 years’ old who had diabetes for more than 10 years. Besides, there were very few
retinopathy patients, so it implies that the rate of retinopathy in Bangladeshi type 2 diabetes
patients is very low.

3.2. Complications of Type 2 Diabetes

Overall, more than one clinically diagnosed complication was present in 99 subjects
out of the cohort of 103 diabetics included in this study. Most of the subjects had CAN
(66.02%), followed by diabetic peripheral neuropathy (43.69%), nephropathy (27.18%), and
retinopathy (6.8%). Those patients who had retinopathy also had CAN and DPN. The rate
of retinopathy complication was very low. Only seven retinopathy patients were found,
and five patients out of them had all types of complication, while the other two had CAN
and DPN. This trend suggests that RET should be the final stage of the above four diabetes
microvascular complications in Bangladesh. We did not find any subject with only NEP
or only RET. If a patient had RET, we can say that he/she had CAN and DPN both or
CAN, DPN, and NEP, i.e., all the complications. The average diabetic duration of the male
patients with CAN and DPN was high (17.33 years for CAN and 18.91 years for DPN) and
comparatively lower for RET (13 years). The female patients with retinopathy had a high
diabetic duration of 17.5 years. They did not check for DM until they became very ill, so
their reported DM duration is from the day they first found out, not from the actual moment
of DM development. The overall result indicates a high prevalence of complications in
Bangladeshi type 2 diabetes patients.

3.3. Classification of Cardiac-Related Microvascular Complications

To assess the association between any complication (as an outcome) and significant
demographic, clinical, and laboratory variables of the patients, several machine learning
models (logistic regression, RF, and SVM) were trained by changing the model parameters
in an iterative way and observing the sensitivity, specificity, precision, f1-score, and accuracy
of the model. The chi-squared (x?) test was used to choose significant variables and we use
only these significant variables to determine the classification accuracy. The threshold for a
significant importance level was different for each test.

3.3.1. CAN

We found diastolic BP (importance 2.1), albumin—creatinine ratio (importance 1.6),
and gender (importance 1) to be the significant predictors for screening CAN, which is the
most common complication among Bangladeshi patients with type 2 diabetes. We had
65 positive and 10 negative CAN patients in our study. To find the best suitable result
and to maximize the model performance, we used prior probability in the classification
model of CAN. We found that RF was the best model at the weight of (1.05 and 0.9). The
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performance (shown in Table 5) of the model was obtained as accuracy 98.68%, sensitivity
98.48%, and specificity 100%. The performance is shown in Figure 3. In Table 6, the 95%
confidence intervals, including the mean values of the features, are provided for CAN
patients to represent the true mean of the population.

Table 5. Comparison between two machine learning models for each test.

Tests CAN DPN RET
(pCAN vs. nCAN) (pDPN vs. nDPN) (pRET vs. nRET)
Accuracy, % 80 55.56 88.54
logistic regression Sensitivity, % 85.71 55.77 93.33
Specificity, % 85.71 55.26 16.67
Accuracy, % 77.33 67.8 80.5
SVM Sensitivity, % 29.41 68.89 96.05
Specificity, % 91.34 66.67 20
Accuracy, % 98.67 67.8 84.38
RF Sensitivity, % 100 68.09 97.44
Specificity, % 98.48 67.44 27.78
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Figure 3. (a) Chi-squared test result. The importance of different marked features was used in the
model as an identifier; (b) confusion matrix of the CAN test (pClass vs. nClass); (c) performance
evaluation matrices; (d) TPR vs. FPR, graphical view of the CAN classifier model performance.
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Table 6. 95% Confidence intervals for cardiac autonomic neuropathy patients (categorical features,
such as gender, smoking history, and smokeless tobacco history, have been omited from the table);.
The subject count is 75 (65 pCAN, and 10 nCAN patients), and the features that are used in the model
classifier are marked in bold text.

Features Mean 95% CI (Lower Limit to Upper Limit)

‘Age’ 56.167 54.315 58.018
‘Waist Circumference’ 141.382 136.503 146.262
‘Diabetes Duration” 15.844 14.571 17.117
‘BMI" 26.657 25.694 27.621
‘Systolic BP 138.900 134.847 142.953
‘Diastolic BP’ 77.600 75.355 79.845
“Weight’ 65.517 63.634 67.400
‘Height’ 157.399 155.252 159.546

‘HbAlcd 8.799 8.465 9.133
‘Microalbuminuria’ 55.741 36.539 74.943
‘Urinary Creatinine’ 160.656 131.724 189.588
‘Albumin—-Creatinine Ratio’ 37.387 23.178 51.595

3.3.2. DPN

Similarly, microalbuminuria (importance 5.1), smoking history (importance 2.9), smoke-
less tobacco history (importance 2.7), HbAlc (importance 2.4), albumin-creatinine ratio
(importance 1.9), systolic BP (importance 1.8), diastolic BP (importance 1.4), and urinary
creatinine (importance 1.4) were found to be the most significant predictors for determining
DPN from type 2 diabetes patients in Bangladesh. This is consistent with other findings
that age and diabetic duration are insignificant [15,53-58] here, since all the patients were
more than 40 years of age and the diabetic duration was a minimum of 10 years. Both
the RF and SVM models showed the highest accuracy for classifying DPN in the patients
with type 2 diabetes mellitus from Bangladesh. Figure 4 illustrates the result of classifying
DPN, and the numeric values are stored in Table 5. Table 7 shows the true means and 95%
confidence intervals of the populations included in the DPN test.

Table 7. 95% confidence intervals for diabetic peripheral neuropathy patients (categorical features,
such as gender, smoking history, and smokeless tobacco history, have been omited from the table).
The subject count is 90 (44 pDPN, and 46 nDPN patients), and the features that are used in the model
classifier are marked in bold text.

Features Mean 95% CI (Lower Limit to Upper Limit)

‘Age’ 55.844 54.017 57.671
‘Waist Circumference’ 140.642 135.853 145.432
‘Diabetes Duration” 15.781 14.580 16.983
‘BMI" 26.657 25.713 27.600
‘Systolic BP’ 138.385 134.449 142.322
‘Diastolic BP’ 77.615 75.473 79.756
“Weight’ 65.658 63.824 67.491
‘Height’ 157.603 155.475 159.730

‘HbA1c’ 8.902 8.554 9.251
‘Microalbuminuria’ 55.269 36.692 73.847
“Urinary Creatinine’ 160.770 133.508 188.032
‘Albumin-Creatinine Ratio’ 36.744 23.202 50.286
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Figure 4. (a) Chi-squared test result. The importance of different marked features was used in the
model as an identifier; (b) confusion matrix of the DPN test (pClass vs. nClass); (c) performance
evaluation matrices; (d) TPR vs. FPR, graphical view of the DPN classifier model performance.

3.3.3. RET

In the case of diabetic retinopathy (RET), HbAlc (importance 6.1), microalbuminuria
(importance 4.7), smokeless tobacco history (importance 2.8), weight (importance 1.9),
gender (importance 1.8), urinary creatinine (importance 1.7), and albumin—creatinine ratio
(importance 1.7) were found to be significant predictors to classify whether a type 2 diabetes
mellitus patient has retinopathy (Figure 5). A previous study in Bangladesh showed a 5.4%
prevalence of retinopathy patients [22], and in our study, we had 6.8% of type 2 diabetes
patients with retinopathy. The accuracy (shown in Table 5) of the RF model was 84.38%.
To show the true mean of the features in diabetic retinopathy test, Table 8 is added with
means and 95% confidence interval information.
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Figure 5. (a) Chi-squared test result. The importance of different marked features was used in the
model as an identifier; (b) confusion matrix of the RET test (pClass vs. nClass); (c) performance
evaluation matrices; (d) TPR vs. FPR, graphical view of the RET classifier model performance.

Table 8. 95% confidence interval for diabetic retinopathy patients (categorical features, such as gender,
smoking history, and smokeless tobacco history, have been omited from the table). The subject count
is 96 (7 pRet and 89 nRet patients) and the features that are used in the model classifier are marked in

bold text.
Features Mean 95% CI (Lower Limit to Upper Limit)

‘Age’ 55.707 53.651 57.763

‘Waist Circumference’ 139.958 134.525 145.391
‘Diabetes Duration’ 15.827 14.486 17.167
‘BMI’ 26.817 25.683 27.951
‘Systolic BP’ 138.813 134.153 143.474
‘Diastolic BP’ 77.347 74.802 79.891
‘Weight’ 65.601 63.476 67.727
‘Height 157.177 154.610 159.744

‘HbA1c¢’ 8.955 8.553 9.356
‘Microalbuminuria’ 67.648 44.636 90.660
‘Urinary Creatinine’ 172.120 139.197 205.044

‘Albumin-Creatinine

., 44.128 27.134 61.123
Ratio

3.3.4. CANDPNOthers

The multiclass analysis test provides a comprehensive picture of patients who have
other diabetic neuropathies in addition to CAN. A total of 55 patients were considered as
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training and testing inputs for machine learning models, with 16 suffering from CANDPN
and 14 suffering from CANDPN+, where ‘Others” included NEP and RET. In the CANDP-
NOther test, three classes were assigned to the model, i.e., CAN vs. CANDPN (the patients
with both CAN and DPN complications) vs. CANDPN+ (the patients with CAN, DPN, and
NEP; CAN, DPN, and RET; or CAN, DPN, NEP, and RET). We only included these classes
due to the insufficient number of patients in the other classes. SVM performed better in
this multiclass classification rather than RF. The confusion matrix (Figure 6) illustrates
that the CAN and CANDPN+ classes could be classified effectively. However, identifying
CANDPN patients using this model might be inefficient. The features used in this model
were the albumin—creatinine ratio and microalbuminuria. These two features are common
for all the binary tests that have been performed in this study.

a)
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Figure 6. Performance comparison (confusion matrix) between the multiclass SVM classifier and the
multiclass RF classifier. (a) Confusion matrix of SVM classifier; (b) confusion matrix of RF classifier;
classes: 1. CAN, patients with CAN; 2. CANDPN, with DPN and CAN; 3. CANDPNH+, patients with
NEP and/or RET with CAN and DPN.

4. Discussion

This study demonstrated the importance of demographic, clinical, and laboratory
profiles in the machine learning domain for the classification of diabetic microvascular
complications. Moreover, this study illustrated a complete machine-learning-based clinical
approach to screen diabetic patients suffering from diabetic microvascular complications.
It also provides an association of other microvascular complications along with CAN. It
provides a stepwise clinical approach to screen diabetes microvascular complications for
the Bangladeshi type 2 diabetic cohort. The high performance achieved in each test strongly
suggests that DCL profiles should be included as features in the machine learning approach
to ensure a high classification accuracy. In our study, we also showed the DCL profiles that
are highly associated with a kind of complication. Thus, the clinician can easily coordinate
the physiological grounds.

4.1. Demographic, Clinical, and Laboratory Profiles

In this study, we demonstrated the significance of DCL profiles to screen a microvas-
cular complication of the type 2 diabetic population in Bangladesh. The profiles that were
used in this study are easily collectible by any hospital in Bangladesh. Moreover, gathering
this information from a patient is not costly. Furthermore, all the DCL profiles used in this
study are not required to be collected for screening using the proposed method. Only the
significant features that are listed (Section 3.3) for each test will be needed to execute the
test. However, to execute all the tests proposed in this study, a mathematical union of all
the significant features that are used in each test would be required.
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Diastolic BP, Albumin—Creatinine Ratio, and Gender were highly associated with CAN
in our CAN test. Thus, we have found the highest accuracy for the CAN classifier by using
these three predictors. In [59,60], the authors showed the influence of hypertension on diabetic
complications, and our study we found that diastolic BP was a good predictor variable to classify
CAN. However, we have found that HbAlc was not required for testing CAN. On the other
hand, microalbuminuria was significantly associated with peripheral neuropathy, nephropathy,
and retinopathy. This finding supports both the studies in [61,62], where the authors showed
the association of microalbuminuria with nephropathy and retinopathy. Moreover, in [63],
Bell et. al. observed the significant association of microalbuminuria with diabetic neuropathy.
HbA1c was significantly associated with retinopathy in our study. It was also associated with
peripheral neuropathy. In [64,65], the authors established the relationship between HbAlc and
microvascular complications. Many authors showed the significance and association of different
demographic, clinical, and laboratory parameters with diabetic microvascular complications.
However, in our study, we found significant DCL profiles using a statistical model and used
these significant profiles with a machine learning model to show the performance.

4.2. Machine Learning as a Screening Tool

This work describes the application of a modern machine learning model, combining
the use of statistically significant features to exploit demographic, clinical, and laboratory
data to extract a classifier that can classify type 2 diabetes microvascular complications.
To address the class imbalance, a machine learning hyper-parameter ‘prior probability”
was used. Picking up the benefits of the recent advances of machine learning in the area
of diabetes diagnosis is considered to be fundamental. It makes a difference within the
investigation of colossal healthcare records and changes them into clinical experiences that
can help healthcare experts in prompt and intelligent decision-making. Even though the
involvement of a clinician within the diagnosis and treatment of diabetic patients may be
necessary, machine learning models might be able to provide an early-stage screening that
can avoid numerous complications from further development. Besides, when there is a
tremendous request for medical specialists or unbounded data available, it is quite hard to
provide a complete diagnostic for each quite effectively. In this manner, pre-trained machine
learning models can make the process faster and less rigorous for healthcare suppliers
and practitioners. Different sorts of machine learning algorithms, such as support vector
machines (SVM), K-nearest neighbor (KNN), choice trees, etc., have been utilized broadly
within the research associated with type 2 diabetes microvascular complications [66].

CAN plays a major role in myocardial ischemia and infarction, heart arrhythmias,
hypertension, and heart disappointment and it increases the risk of sudden cardiac death.
Jelinek and Cornforth [67] proposed a novel clustering technique using a graph-based
machine learning system that enables the identification of severe diabetic neuropathies in
2016. This proposed model outperforms SVM, RE, and KNN. Cho et al. [68] showed an
accuracy of 88.7% (AUC 0.969 and specificity 0.85) using SVM classifiers along with a feature
selection method for the prediction of diabetic nephropathy from the data of 4321 patients.
Reedy et. al. [69] proposed a multi-model ensemble-based machine learning algorithm to
classify diabetic retinopathy. The authors included several machine learning classifiers
in their research and concluded that the ensemble model provides better accuracy with
better sensitivity and specificity. Sambyal et. al. [66] provided a review of using machine
learning models to classify diabetes microvascular complications in 2020. The authors
showed that most of the work for classifying RET had been conducted using fundus image
as the input, and he compared the different achieved accuracies of the different classifiers
by different authors. By only using the demographic, clinical, and laboratory profiles, our
model outperforms all the models reviewed by the author in terms of classifying diabetic
retinopathy. The authors also have reviewed several machine learning models proposed by
different authors for classifying cardiac autonomic neuropathy and nephropathy. However,
we only used DCL profiles as independent features to classify microvascular complications.
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4.3. Clinical Relevance

The test schemes followed in this work offer physicians an important clinical diagnostic
method in the evaluation and diagnosis of type 2 diabetes microvascular complications.
The single-class classifiers can operate individually in parallel or sequentially. However, for
finding combined complications with CAN, the model works sequentially with the CAN
testing classifier. Since this model is sequential, this digs deeper by analyzing diabetics
with single and combined complications. Single-class classifiers identify any microvascular
complication that is present in a patient, regardless of whether the multiclass classifier
predicts the presence of other complications with CAN. Such a clinical test will ensure a
better diagnose of type 2 diabetes microvascular complications by distinguishing the cause
of single CAN and other related complications. Furthermore, the silent nature of these
complications makes it difficult to diagnosis correctly, especially when combined with
other microvascular complications. The performance achieved through machine learning
using only DCL profiles in this study provides a path to prevent many undiagnosed CAN-
only cases. Since a CAN-only medical procedure may not provide effective treatment if
additional complications are not properly identified. It is vital to know about combined
complications. The multiclass classification test helps to identify multiple complications
with autonomic neuropathy.

4.4. Key Message to the Health Community of Bangladesh

Globally, healthcare stakeholders are entering a new era of data-driven clinical detec-
tion and prognostication. The application of modern machine-learning-based approaches
offers great promises for early diagnosis or prognosis of various health complications. The
early identification of patients at risk of microvascular complications due to type 2 diabetes
can mitigate the burden on the healthcare system, especially in the context of a resource-
limited setup. As the present study shows that screening is feasible from the demographic,
clinical, and laboratory (DCL) variables using a proper machine learning classification
model, the health community can utilize this benefit for screening that can avoid numerous
complications from further development. It also can help healthcare experts in prompt and
intelligent decision-making and save the patients from incurring greater healthcare costs.

5. Conclusions

This study explored the present status of microvascular complications in a cohort of
type 2 diabetes patients in Bangladesh. Higher comorbidities and microvascular complica-
tions were found as compared with neighboring countries, most likely due to the increased
levels of hypertension in this cohort. This study also suggests that a high diastolic BP and
albumin-creatinine ratio are related to CAN; high microalbuminuria, HbAlc, and blood
pressure are related to DPN; high HbAlc and microalbuminuria are related to RET. These
findings may be useful in finding risk factors for the development of diabetic complications.
Using these risk factors as the independent features, a machine learning model could be de-
signed to screen microvascular complications. This study shows a machine learning model
could be utilized to identify diabetes complications in Bangladesh, where the majority of its
population is poor. We believe this study could contribute to more effective and affordable
screening techniques [70] for diabetes-related microvascular complications.

It is worth noting that the proposed study should be further validated on a wider
patient cohort to strengthen the observations. Although the findings of this study were
promising and correlate with the observations found in the literature, one limitation to the
current work was the small sample size, which is a common situation in biomedical studies
that rely on patient data. Overall, RF and SVM are known to handle small sample sizes
with high performance capabilities [71-73], especially when compared to other artificial
intelligence algorithms, such as deep neural networks, that require large datasets. Therefore,
an essential future direction to the current study is to be tested on large clinical data and
with additional machine/deep learning algorithms.
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Abstract: Diabetic sensorimotor polyneuropathy (DSPN) is a major complication in patients with
diabetes mellitus (DM), and early detection or prediction of DSPN is important for preventing
or managing neuropathic pain and foot ulcer. Our aim is to delineate whether machine learning
techniques are more useful than traditional statistical methods for predicting DSPN in DM patients.
Four hundred seventy DM patients were classified into four groups (normal, possible, probable, and
confirmed) based on clinical and electrophysiological findings of suspected DSPN. Three ML methods,
XGBoost (XGB), support vector machine (SVM), and random forest (RF), and their combinations were
used for analysis. RF showed the best area under the receiver operator characteristic curve (AUC,
0.8250) for differentiating between two categories—criteria by clinical findings (normal, possible,
and probable groups) and those by electrophysiological findings (confirmed group)—and the result
was superior to that of linear regression analysis (AUC = 0.6620). Average values of serum glucose,
International Federation of Clinical Chemistry (IFCC), HbAlc, and albumin levels were identified as
the four most important predictors of DSPN. In conclusion, machine learning techniques, especially
RF, can predict DSPN in DM patients effectively, and electrophysiological analysis is important for
identifying DSPN.

Keywords: machine learning; diabetes mellitus; diabetic sensorimotor polyneuropathy; random
forest; prediction; electrophysiology

1. Introduction

Type 2 diabetes mellitus (T2DM), the most common form of diabetes, is a major dis-
ease in humans worldwide [1], and its incidence is increasing with aging and lifestyle
changes [2]. There is evidence that half of T2DM patients experience neurological disorders
and a progressive disability of nerve fibers in the course of diabetes, and serious neurologi-
cal symptoms lead to poor quality of life [3]. Diabetic sensorimotor polyneuropathy (DSPN)
is a common neurological complication resulting from neuroinflammation, mitochondrial
dysfunction, and apoptosis due to hyperglycemia, dyslipidemia, and altered insulin sig-
naling, and leads to various symptoms and signs, including neuropathic pain, decreased
sensation, and foot ulceration [4,5]. The management of DSPN is not limited to controlling
hyperglycemia, and multidisciplinary programs, such as patient education, lifestyle modi-
fication, and physical activity, are required to control various physical and psychological
symptoms and foot complications [6]. Therefore, early detection and prediction of DSPN is
very important in DM patients.
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The classification of DSPN has been defined in previous studies [7-10]. Typical DSPN
is the most common form in DM patients and chronic, symmetrical, and length-dependent
sensorimotor polyneuropathy [11]. Tesfaye et al. defined the minimal criteria for typical
DSPN to estimate severity: possible, probable, confirmed, and subclinical based on clinical
symptoms and signs and electrophysiology [7]. Numerous staging and scoring systems
have been developed to assess the severity of DSPN; however, choosing the optimal scoring
system is confusing because the results of previous studies are different regarding which
system is effective [12-14]. Electrophysiological assessments, including nerve conduction
studies (NCS), are important for diagnosing DSPN objectively [15,16]; however, special
equipment is needed, and these assessments cannot be performed routinely for patients
without clinical symptoms or signs because of the discomfort caused by electrical stimu-
lation or needle insertion. Because the pathophysiology of diabetic neuropathy reveals a
broad spectrum of axonal involvement and segmental demyelination, electrophysiological
findings also indicate both axonal degeneration and demyelination [17]. Numerous predis-
posing factors for the development of DSPN have been found [18-21]. DSPN is significantly
correlated with poor glucose control [18,19], longer duration of diabetes, poor metabolic
management, smoking and the presence of cardiovascular disease, and DSPN severity is
correlated with hypertension, dyslipidemia, microalbuminuria, alcohol consumption, and
body mass index [20,21]. Most previous studies on the prediction of DSPN used various
statistical methods. While traditional statistical methods draw only population inferences
from clinical information, recently developed machine learning (ML) methods focus on
developing predictive models from general-purpose learning algorithms [22]. Therefore,
ML is considered to be a better way to predict DSPN in DM patients.

ML is a computationally broad and powerful data mining technique that can accom-
modate a large set of proposed variables as inputs to identify factors related to the results of
interest [23], and ML develops algorithms that can learn patterns and decision rules, such
as early detection, prediction and diagnosis, from data that are attributable to the medical
field. Recent studies have used various ML techniques to predict complications, including
retinopathy, nephropathy, foot ulceration and DSPN, in T2DM patients [24-28], and ML
was effective for prediction of DSPN severity [24], 3-year complication developments [25],
high-risk retinopathy, and numerous complications in nonadherent T2DM [27]. Haque
et al. found that machine learning algorithms, especially random forest (RF), were effective
in predicting DSPN severity based on the scoring system using Michigan Neuropathy
Screening Instrumentation [29], which is not used widely, and that study assessed only
type 1 diabetes mellitus (T1DM) patients.

The purpose of the current study was to delineate whether machine learning tech-
niques are more useful than traditional statistical methods for predicting DSPN in type
2 DM patients, and whether the widely used classification for DSPN, which is based on
clinical and electrophysiological findings, is amenable to the use of predictive models.

2. Materials and Methods
2.1. Subjects

Medical records of patients with T2DM who visited Dankook University Hospital for
the management of DM were collected, and 746 subjects were initially enrolled (Figure 1).
Patients were diagnosed with T2DM by a physician at the Department of Endocrinology,
based on the guideline of the American Diabetes Association [30]. Patients who did not
undergo electrophysiological studies (1 = 206) or had incomplete clinical data (1 = 53) were
excluded at first, and then patients who had other types of polyneuropathies, including
heavy alcohol use (1 = 3), hepatic failure (n = 2), renal failure (n = 4), chemotherapy for
malignancy (n = 7), and typical musculoskeletal anomalies (1 = 1), were subsequently
excluded. As a result, 470 patients were included in the study (Figure 1). This study
was approved by the Dankook University Hospital Institutional Review Board (IRB No.
2019-12-009).
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Figure 1. Flow and grouping of patients.

2.2. Classification

Subjects were classified into 4 groups according to definitions of minimal criteria
for typical DSPN based on the area of clinical care by Tesfaye et al. [7]: normal, possible,
probable, and confirmed. The normal group (1 = 93) consisted of subjects without any
neurological symptoms or signs as previously described [7], and the possible group (n = 91)
comprised subjects with one of the neurological symptoms or signs. The probable group
(n = 13) comprised subjects with two or more neurological symptoms or signs. The
confirmed group (1 = 273) consisted of subjects with abnormal electrophysiological findings
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and neurological symptoms or signs. Electrophysiological assessments were performed
according to the guidelines of the American Academy of Neurology [16], and NCS and
electromyography of the upper and lower extremities were conducted. According to
electrophysiological findings, the confirmed group was divided into two subgroups: A
demyelinated subgroup (1 = 87) with subjects who predominantly showed demyelination
and a mixed subgroup (n = 186) with subjects who showed abnormal spontaneous activities
during needle electromyography and demyelination (Figure 1).

2.3. Clinical Data

All subjects’ clinical information, such as baseline characteristics, past medical history,
current health status, diabetic complications, and medications, was analyzed. Baseline
characteristics included age, sex, weight, height, body mass index (BMI), disease duration
(from initial diagnosis of T2DM to the date of the last follow-up at the hospital), smoking
(current smoking, past smoking, or nonsmoking), family history of T2DM, and diabetes
education. Past medical history included hypertension (HTN), dyslipidemia, and history
of stroke and coronary artery disease. HTN was defined as systolic blood pressure >
140 mmHg, diastolic blood pressure > 90 mmHg or the use of antihypertensive medica-
tions. Diabetic retinopathy was included in diabetic complications. Medications for DM,
HTN and dyslipidemia were included; medications for DM were metformin, sulfonylureas,
thiazolidinediones (TZDs), dipeptidyl peptidase-4 inhibitors (DPP4is), sodium-glucose
cotransporter-2 inhibitors (SGLT2is), and insulin; medications for HTN were calcium chan-
nel blockers (CCBs), angiotensin-converting-enzyme inhibitors (ACEis), angiotensin II
receptor blockers (ARBs), beta blockers (BBs) and thiazides; and medications for dyslipi-
demia were statins. BMI was calculated as weight in kilograms divided by the square of
height in meters.

2.4. Laboratory Data

A total of 432 laboratory codes from blood and urine tests were obtained from all
subjects, and we divided subjects into a control group (1 = 197) with normal electrophysi-
ological findings and a test group (1 = 273) with abnormal electrophysiological findings
within the criteria of DSPN to identify the optimal number of laboratory codes (Figure 2).
Forty-eight codes could be obtained for more than half of the subjects (1 = 98) in the control
group, and 62 codes could be obtained for more than half of the subjects (n = 135) in the
test group (Figure 2a). When the results of the two groups were combined, 39 laboratory
codes were ultimately selected (Figure 2b). Each laboratory code was assessed several
times during the follow-up periods (range: 31-18368 days, mean value: 5202.9 days), and
various changes in the values were observed within the period (Figure 2c).

Three methods were used to standardize the values of laboratory codes for ML analysis.
Method 1 refers to the average value of each laboratory code during the follow-up period,
method 2 is the first value of each laboratory code when T2DM was initially diagnosed
while visiting the hospital, and method 3 refers to the pattern of laboratory code changes.
The pattern was defined as —1, 0, and 1 as follows. If the initial value was 10% or more
lower than the overall average of the values excluding the initial value, it was considered
—1; if the change was less than 10%, it was regarded as 0; and if the initial value was greater
than 10% of the overall average of the values excluding the initial value, it was regarded
as 1.
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Figure 2. Selection of laboratory codes for machine learning analysis. (a) The distribution of laboratory codes according to
tested subject numbers in the control and test groups, (b) lists of 39 selected laboratory codes, (c) graphs showing the changes
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in 39 selected laboratory codes at the initial and follow-up periods. Abbreviations: ALP = alkaline phosphatase; ALT (GPT) =
alanine aminotransferase (glutamic pyruvate transaminase); AST (GOT) = aspartate aminotransferase (glutamic oxaloacetic

transaminase); BST = blood sugar test; BUN = blood urea nitrogen; Diff = differential; T4 = thyroxine; Hb = hemoglobin;
HbA1lc = hemoglobin Alc; HCT = hematocrit; HDL = high-density lipoprotein cholesterol; IFCC = International Federation
of Clinical Chemistry; LDL = low-density lipoprotein cholesterol; MCH = mean corpuscular hemoglobin; MCHC = mean

corpuscular hemoglobin concentration; MCV = mean cell volume; PLT = platelet; RBC = red blood cell; TG = triglyceride;

TSH = thyroid-stimulating hormone; SG = specific gravity; WBC = white blood cell.

2.5. Machine Learning Analysis

First, to define which variable set will be used for the classification model, a random
forest (RF) model trained by different variable combinations was tested. As described
above, there are four different variable sets: clinical data and methods 1, 2, and 3 for
laboratory data. RF was trained with all possible combinations of four variable sets.
Because of the limitation of the sample size, the sample was divided into ten groups, and
each group was used as the test set. For each test set, the remainder of the samples were
divided into a training set and a validation set at a 4:1 ratio by preserving the percentage of
samples for each class. Fivefold cross-validation was performed for each test set, and the
final performance was defined as the average of the performance over 10 iterations [31].
The combination set of clinical data and methods 1 and 3 for laboratory data (total, 105
variables) showed the best performance in cases of classifying patients [area under the
curve (AUC) = 0.8350 and accuracy = 74.85%, Table 1; therefore, the combination set was
used as an input variable for model training.

Table 1. Identification of the selection of data and methods for machine learning analysis of subjects.

Feature Set Used Lab Feature Extraction Method Feature Counts AUC Accuracy (%)
Method 1 39 0.7954 73.74
Method 2 39 0.7790 71.53
Laboratory data only Method 3 36 0.7226 65.32
Method 1 +3 75 0.8095 73.83
Method 2 + 3 75 0.7950 72.26
Method 1 +2 +3 114 0.8012 73.06
Clinical data only - 30 0.7493 69.79
Method 1 69 0.8284 76.09
Method 2 69 0.8096 72.68
- Method 3 66 0.8100 72.98
Laboratory and clinical data Method 1 + 3 105 0.8350 7485
Method 2 + 3 105 0.8141 73.02
Method 1 +2 +3 144 0.8219 74.21

Note: method 1 = average value of each laboratory code during the follow-up period; method 2 = the first value of each laboratory code
when T2DM was diagnosed initially; method 3 = the pattern of laboratory code changes (-1, 0, or 1), Abbreviations: AUC = area under

the curve.

The DSPN predictor model was trained with the input variables identified above. The
model performance was tested with the same method used when identifying the input
variables. Three ML algorithms were used: XGBoost (XGB) [32], support vector machine
(SVM) [33], and random forest (RF) [23], which were used alone or in combinations of two or
more, that is, an ensemble of models for improvement of the model performance by fusion
of the contents learned by different models and reduction of overfitting problems [34].
Among the various methods, the model averaging method for averaging the predicted
values of several models was used in this work. AUC, accuracy, sensitivity, and specificity
were used as performance metrics.

Finally, the feature importance of the best model among 7 models (XGB, SVM, RF,
ensemble of XGB and SVM, ensemble of XGB & RF, ensemble of SVM and RF and ensemble
of XGB and SVM and RF) was extracted from each model. If the best model was an
ensemble of more than two models, the average feature importance obtained from each
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model was used as the feature importance of the ensemble model. Next, the models
were retrained and evaluated with input features by adding features one by one, from
the most to the least important. This was done to select the best set of features for DSPN
prediction based on feature importance, and the performance was better when using the
top 69 features for AUC and top 38 features for accuracy rather than all 105 features.

2.6. Statistics

To compare the predictability of ML results, traditional statistical methods were also
carried out. All statistical analyses were performed with SPSS 26 (IBM, Armonk, NY, USA).
The Shapiro-Wilk test was performed to assess the normal distribution of all quantified
histological and functional data from each group. Categorical parameters were compared
by likelihood ratio, and numerical parameters among groups were compared by one-way
analysis of variance (ANOVA) and the Games-Howell post hoc test. Logistic regression was
performed using statistically significant parameters and parameters that were identified to
be important in previous studies, and the AUC, accuracy, sensitivity, and specificity were
analyzed. p-values less than 0.05 were considered to indicate statistical significance.

3. Results
3.1. Baseline Characteristics among the Four Groups

When comparing baseline characteristics among the four groups, disease duration
was significantly longer in the confirmed group than in the normal and possible groups
(4543.18 + 2849.75 days and 4464.03 + 2934.87 days vs. 5686.67 + 3648.57 days and
in the normal, possible, and confirmed groups, respectively), and height was higher in
the confirmed group than in the normal group (1.61 & 0.09 m vs. 1.64 £ 0.09 m in the
normal and confirmed groups, respectively). BMI and the initial values of BST and HbAlc
were also different between the confirmed group and normal group and between the
confirmed group and possible group (Table 2). The incidence of diabetic retinopathy was
higher in the confirmed group (51.6%) than in the other groups (23.1-28.6%). Age; sex;
weight; incidence of hypertension and dyslipidemia; smoking habit; past medical history of
coronary artery disease, cerebrovascular disease, and stroke; and number of subjects who
received diabetes education were not different among the groups (Table 2). Medications for
diabetes control were different among groups; metformin (89.2-94.5%), sulfonylureas (68.1-
68.8%), dipeptidyl peptidase-4 inhibitors (66.7-71.4%), and sodium-glucose cotransporter-2
inhibitors (17.2-20.9%) were used by a higher proportion of subjects in the normal and
possible groups, whereas the proportion of subjects in the confirmed group who used
insulin (65.6%) was higher than that in other groups (Table 2).

Table 2. Baseline characteristics of participants.

Normal (A) Possible (B) Probable (C) Confirmed (D) Val Post H
(1 =93) (=91 (n=13) (n=273) p-yalue ost Hoce
Disease duration (days)  4543.18 +2849.75  4464.03 4-2934.87  4933.46 + 3463.31  5686.67 + 3648.57 0.004 A<>D, B<>D
Age (years) 51.33 £12.30 49.74 £11.51 53.85 £+ 8.92 51.32 + 1491 0.676
Sex (male) 48 (51.6) 48 (52.7) 5 (38.5) 176 (64.5) 0.027
Height (m) 1.61 £0.09 1.62 £0.09 1.59 £0.09 1.64 £ 0.09 0.006 A<>D
Weight (kg) 66.10 + 11.76 66.26 + 11.14 62.21 +11.41 64.29 +11.92 0.308
BMI (kg/mz) 25.33 £3.81 25.26 +3.48 24.65 + 4.07 23.82 £ 3.66 0.001 A<>D, B<>D
Initial BST 211.78 £+ 98.75 196.51 &+ 87.62 178.21 + 104.57 249.06 £ 117.68 0.000 A<>D, B<>D
Initial HbAlc 8.69 £ 2.18 8.72 £ 2.06 9.03 £ 3.09 9.59 +£2.54 0.002 A<>D, B<>D
DM retinopathy 25 (26.9) 26 (28.6) 3(23.1) 141 (51.6) 0.000
Hypertension 54 (58.1) 56 (61.5) 8 (61.5) 186 (68.1) 0.304
Dyslipidemia 76 (81.7) 70 (76.9) 10 (76.9) 197 (72.2) 0.29
Smoking
No 61 (65.6) 57 (62.6) 12 (92.3) 163 (59.7)
Current 18 (19.4) 19 (20.9) 1(7.7) 57 (20.9) 0.172
Past smoking 14 (15.1) 15 (16.5) 0(0.0) 53 (19.4)
Family history of DM 28 (30.1) 51 (56.0) 4(30.8) 106 (38.8) 0.003
CAD Hx 25 (26.9) 24 (26.4) 6(46.2) 93 (34.1) 0.248
CVD Hx 43 (46.2) 33 (36.3) 6 (46.2) 134 (49.1) 0.205
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Table 2. Cont.

Normal (A) Possible (B) Probable (C) Confirmed (D)
(1 =93) (=91 (1=13) (n =273) p-Value Post Hoc
Stroke Hx 25 (26.9) 16 (17.6) 2 (15.4) 63 (23.1) 0.427
Diabetes education 43 (46.2) 36 (39.6) 8 (61.5) 128 (46.9) 0.412
Medications
Metformin 83 (89.2) 86 (94.5) 11 (84.6) 201 (73.6) 0.000
Sulfonylureas 64 (68.8) 62 (68.1) 5(38.5) 159 (58.2) 0.048
TZDs (11.8) 5 (5.5) 1(7.7) 3 (13.6) 0.158
DPP4is 62 (66.7) 65 (71.4) 8 (61.5) 147 (53.8) 0.011
SGLI2is 16 (17.2) 19 (20.9) 1(7.7) 21(7.7) 0.004
Insulin (39.8) 32 (35.2) 8 (61.5) 179 (65.6) 0.000
CCBs (34.4) 26 (28.6) 7 (53.8) 104 (38.1) 0.204
ACEis 10 (10.8) 10 (11.0) 1(7.7) 32(11.7) 0.965
ARBs 51 (54.8) 54 (59.3) 7 (53.8) 156 (57.1) 0.933
BBs 21 (22.6) 24 (26.4) 6 (46.2) 76 (27.8) 0.355
Thiazides 15 (16.1) 20 (22.0) 2 (15.4) 47 (17.2) 0.723
Statins 78 (83.9) 70 (76.9) 10 (76.9) 192 (70.3) 0.058

Note: Values are presented as the mean =+ standard deviation or number of subjects (%). p < 0.05 among the four groups by one-way
ANOVA for continuous data or likelihood ratio for categorical data. Post hoc testing was performed using the Games-Howell test.
Abbreviations: BMI = body mass index; BST = blood sugar test; HbAlc = hemoglobin Alc; DM = diabetes mellitus; Hx = history; CAD =
coronary artery disease; CVD = cerebrovascular disease; TZDs = thiazolidinediones; DPP4is = dipeptidyl peptidase-4 inhibitors; SGLT2is =
sodium-glucose cotransporter-2 inhibitors; CCBs = calcium channel blockers, ACEis = angiotensin-converting-enzyme inhibitors; ABRs =
angiotensin II receptor blockers; BBs = beta blockers.

3.2. Identification of an Appropriate Classification for Prediction Using Machine
Learning Analysis

Using ML algorithms, four groups of normal (A), possible (B), probable (C), and
confirmed (D) samples were analyzed with various combinations. When comparing all
groups separately (A vs. B vs. C vs. D) using the combined analysis of XGB and RF, the
AUC was 0.8546, and the accuracy was 60.85% (Table 3). One of the classifications set to
three groups (combination of A and B vs. C vs. D) showed the highest AUC value (0.8925)
using the same analysis (XGB + RF); however, this classification was not appropriate
because the number of group C patients was small (n = 13), which can result in imbalanced
results [35]. When looking at the classification that combined group C with other groups,
rather than alone, the classification with the combination of A, B and C vs. D showed
a higher value of AUC (0.8250) than the other classifications and the highest value of
accuracy (74.47%) (Table 3). Therefore, we performed all ML analyses and statistics based
on this classification (A + B + C vs. D).

Table 3. Values of AUC and accuracy of machine learning analysis when comparing each group or
their combinations.

e e ML Model Which Showed o
Classification the Best Result AUC Accuracy (%)
Avs.Bvs. Cvs. D XGB + RF 0.8546 60.85
Avs.Bvs.C+D RF 0.8105 62.34
Avs.B+Cvs. D RF 0.8075 61.32
A+Bvs. Cvs.D XGB + RF 0.8925 73.40
A+Bvs.C+D RF 0.8103 72.68
A+B+Cvs.D RF 0.8250 74.47

Note: A =normal group, B = possible group, C = probable group, D = confirmed group. Abbreviations: AUC =
area under the curve; XGB = XGBoost; RF = random forest; SVM = support vector machine.

3.3. Identification of an Appropriate ML Algorithm for the Prediction of DSPN and Analysis of
Predictive Values

When we compared various ML techniques (XGB, SVM, REF, and their combinations),
RF showed the best AUC (0.8250) and accuracy (74.47%), and the sensitivity and specificity
were also higher (0.7940 and 0.6720, respectively) than those of any other single algorithm
or their combination (Table 4). Logistic regression analysis was performed to compare the

36



J. Clin. Med. 2021, 10, 4576

combination of normal, possible, and probable groups with the confirmed group using
meaningful parameters of the following basic characteristics and laboratory data: disease
duration, initial value of HbAlc, DM retinopathy, family history of DM, use of metformin
and insulin, serum levels of glucose, HDL cholesterol, albumin, and creatinine. The results
of logistic regression analysis showed lower AUC (0.6620) and specificity (0.3519) values
than RF. The receiver operating characteristic (ROC) curves of each ML algorithm and
logistic regression analysis are shown in Figure 3. The AUC of RF was the highest (0.8250)
among the 7 ML models, as described earlier, whereas the AUC of logistic regression was
the lowest AUC value (0.6620).

Table 4. Values of machine learning and logistic regression analysis using the classification of the
combination of the normal, possible, and probable groups versus the confirmed group.

Model AUC Accuracy (%) Sensitivity Specificity
XGB 0.7604 69.83 0.7708 0.5899
SVM 0.7535 66.81 0.6643 0.6721
RF 0.8250 74.47 0.7940 0.6720
XGB + SVM 0.7822 71.28 0.7712 0.6363
XGB + RF 0.8235 7447 0.7927 0.6743
SVM + RF 0.8070 73.19 0.7957 0.6478
XGB + RF + SVM 0.8105 73.62 0.8103 0.6342
Logistic regression 0.6620 84.76 0.9721 0.3519

Abbreviations: AUC = area under the curve; XGB = XGBoost; RF = random forest; SVM = support vector machine.
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Figure 3. Receiver operating characteristic (ROC) curve for single or combinations of various machine
learning algorithms and logistic regression analysis in the classification of the combination of the
normal, possible, and probable groups versus the confirmed group. Abbreviations: AUC = area
under the curve; XGB = XGBoost; RF = random forest; SVM = support vector machine.
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3.4. Development of a Decision-Making Model Using Influential Features from the RF Algorithm

RF analysis using the classification of the combination of the normal, possible, and
probable groups versus the confirmed group was used to derive influential features, which
consisted of clinical data and methods 1 and 3 for laboratory data. When these features
are accumulated in the order of the importance score, the AUC and accuracy increase and
then reach a maximum value at a certain moment (Figure 4a,b). In the case of AUC, the
maximum value was reached when the number of parameters reached 69 (0.8302), and in
the case of accuracy, the maximum value was reached when the number of parameters
was 38 (76.17%) (Figure 4a,b). From this classification, the average value of HbAlc was
identified as the first single discriminator for group determination between the combination
of the normal, possible, and probable groups and the confirmed group (Figure 4c). The
top 69 influential features are shown in Table 5. The average serum glucose level during
the follow-up period was the most important feature (importance score = 0.997768) for
determining the group in the classification, and the average values of the International
Federation of Clinical Chemistry (IFCC; 0.794161), HbAlc (0.789265), and albumin levels
(0.731579) during the follow-up period are shown in order of importance score (Table 5).

Table 5. Top 69 influential features in the classification of the combination of the normal, possible, and probable groups

versus the confirmed group.

Ranking Feature Name Importance Score Ranking Feature Name Importance Score
1 Avg glucose 0.997768 36 Avg WBC 0.280162
2 Avg IFCC 0.794161 37 Avg PLT 0.262754
3 Avg HbAlc 0.789265 38 Avg chloride 0.250326
4 Avg albumin 0.731579 39 Avg uric acid 0.246706
5 Height 0.57069 40 P IFCC 0.246499

Avg Diff count CP creatinine
6 (lymphocyte %) 0.546759 41 (spot urine) 0.242497
7 Avg creat}nlne 0.493981 42 Avg MCV 0.240183
(spot urine)
Avg Diff count Avg Diff count
8 (neutrophil %) 0.486409 43 (eosinophil%) 0.237532
9 Disease duration 0.467576 44 Avg MCH 0.229848
10 Avg sodium 0455435 45 Avg Diff count 0.225926
(monocyte %)
11 Avg HCT 0.451166 46 CP HbAlc 0.225847
12 Avg ALT (GPT) 0.450865 47 Avg MCHC 0.222184
13 Avg RBC 0.417525 48 Avg bilirubin 0.217108
14 Avg Hb 0.383685 49 Avg free T4 0.208568
15 BMI 0.375055 50 CP urine SG 0.204239
Avg Diff count
16 Avg HDL 0.374211 51 (basophil %) 0.201151
17 Avg BUN 0.351033 52 Diabetic retinopathy 0.176286
18 Avg AST (GOT) 0.348776 53 CP TG 0.155261
19 Avg ALP 0.342055 54 Use of insulin 0.14617
20 Avg BST 0.33438 55 CP HDL 0.146164
21 Avg creatinine 0.332449 56 CP cholesterol 0.127665
22 Age 0.319338 57 CP WBC 0.096003
23 Avg urine pH 0.31512 58 CP PLT 0.09567
24 Avg calcium 0.309396 59 Sex 0.084762
25 Avg TG 0.307935 60 CP BST 0.083089
26 Avg LDL 0.305571 61 CP ALP 0.080399
27 Avg TSH 0.303504 62 Smoking 0.068729
28 Avg protein 0.302998 63 CP creatinine 0.065407
CP Diff count
29 CP glucose 0.297945 64 (lymphocyte %) 0.065285
30 CP urine pH 0.290718 65 CP bilirubin 0.060325
31 Avg cholesterol 0.287416 66 Use of sulfonylurea 0.05838
32 Avg potassium 0.286635 67 CP AST (GOT) 0.052956
33 Weight 0.285151 68 CP ALT (GPT) 0.050693
34 AV% urine SG 0.282845 69 Use of metformin 0.048544
35 P LDL 0.280875

Abbreviations: Avg = average; IFCC = International Federation of Clinical Chemistry; HbAlc = hemoglobin Alc; Diff = differential; HCT =
hematocrit; ALT (GPT) = alanine aminotransferase (glutamic pyruvate transaminase); BST = blood sugar test; RBC = red blood cell; Hb =
Hemoglobin; BMI= body mass index; HDL = high-density lipoprotein cholesterol; BUN = blood urea nitrogen; AST (GOT) = aspartate
aminotransferase (glutamic oxaloacetic transaminase); ALP = alkaline phosphatase; TG = triglyceride; LDL = low-density lipoprotein
cholesterol; TSH = thyroid-stimulating hormone; CP = change pattern; SG = specific gravity; WBC = white blood cell; PLT = platelet; MCV
= mean cell volume; MCH = mean corpuscular hemoglobin; MCHC = mean corpuscular hemoglobin concentration; T4 = thyroxine.
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Figure 4. Application of random forest algorithm and process of extraction of important features in the classification
of the combination of the normal, possible, and probable groups versus the confirmed group. (a) Model performance
according to the number of input features sorted by importance, (b) the result of arranging input features in order of
importance score, (c) a decision tree using the random forest algorithm with the classification of the combination of the
normal, possible, and probable groups versus the confirmed group. Note: Group 1 = a group in which the normal, possible,
and probable groups are combined, Group 2 = the confirmed group. Black arrow = positive results for the above features,
red arrow = negative results for the above features, gini = gini index. Abbreviations: AUC = area under the curve; ALP =
alkaline phosphatase; ALT (GPT) = alanine aminotransferase (glutamic pyruvate transaminase); AST (GOT) = aspartate
aminotransferase (glutamic oxaloacetic transaminase); Avg = average; BST = blood sugar test; BUN = blood urea nitrogen;
CP = change pattern; Diff = differential; T4 = thyroxine; Hb = hemoglobin; HbAlc = hemoglobin Alc; HCT = hematocrit;
HDL = high-density lipoprotein cholesterol; IFCC = International Federation of Clinical Chemistry; LDL = low-density
lipoprotein cholesterol; MCH = mean corpuscular hemoglobin; MCHC = mean corpuscular hemoglobin concentration;
MCYV = mean cell volume; PLT = platelet; RBC = red blood cell; TG = triglyceride; TSH = thyroid-stimulating hormone; SG
= specific gravity; WBC = white blood cell.
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3.5. ML Analysis of the Confirmed Group to Identify Demyelinated and Mixed Types of DSPN

We compared the demyelinated subgroup with the mixed subgroup, as shown in
electrophysiological studies of the confirmed group, using various ML algorithms and
logistic regression analysis (Table 6). ML analysis revealed that the combination of XGB
and SVM models showed the highest AUC and accuracy values of 0.5698 and 67.78%,
respectively, whereas the statistical method using logistic regression showed a higher
AUC value (0.6350). However, the overall AUC values of all ML algorithms and logistic
regression analysis were much lower than the AUC value (0.8250) when RF was used
to compare the combination of the normal, possible, and probable groups versus the
confirmed group, and the specificity was quite low (0 and 0.3889 for RF and logistic
regression, respectively) to predict the two subgroups within the confirmed group (Table 6).

Table 6. Machine learning and logistic regression results analyzing the demyelinated type vs.

mixed type.

Model AUC Accuracy (%) Sensitivity Specificity

XGB 0.5492 62.39 0.8329 0.1797

SVM 0.5105 68.15 1.0000 0.0000

RF 0.5426 64.25 0.9245 0.0436

XGB + SVM 0.5698 67.78 0.9947 0.0000

XGB + RF 0.5579 64.52 0.9317 0.0378

SVM + RF 0.5457 67.41 0.9889 0.0000

XGB + RF + SVM 0.5601 67.41 0.9897 0.0000

Logistic regression 0.6350 70.97 0.8812 0.3889

Abbreviations: AUC = area under the curve; XGB = XGBoost; RF = random forest; SVM = support vector machine.

4. Discussion

Interest in machine learning algorithms is widely increasing in the medical field
because they can be used to predict disease development and generate semantic interpreta-
tions [36]. In the field of endocrinology, the prediction of diabetes is expected to be very
useful for preventing disease progression and complications [37]. In this study, we have
performed conventional statistics, as well as various ML algorithms to compare predictive
power expressed in AUC and accuracy. Logistic regression analysis, a traditional statistical
method, has an obvious limitation compared to the ML analysis. Only a small number
of clinical and laboratory data (9 variables among over 400 data) were used during the
statistical processing, which inevitably resulted in poor AUC whereas ML analysis could
include over 100 meaningful data. Classical statistics usually draw population inferences,
but become less precise when input variables that exceed the number of subjects, therefore
appropriate ML method can help overcome this limitation [22].

As in all other fields, for the results of ML analysis to be more accurate, the input
data must have extensive and accurate information. Laboratory data are usually obtained
numerous times for a single subject during the follow-up period, and effective processing
of meaningful data can have a significant impact on the establishment of predictive models.
In this study, we tried various methods to optimize input data during the preprocessing
step, especially for standardization of laboratory tests conducted at various time points.
First, from the 432 types of laboratory data received for all patients, only 39 datapoints
repeatedly obtained for more than half of all patients were filtered out. Then, depending
on the timing of the laboratory data received, data were classified into average, initial,
and change patterns of each value, and we found that average and changed patterns were
meaningful parameters for ML analysis. Through these preprocesses, we are confident that
we have increased the reliability of laboratory data and created a more accurate predictive
model. When compared to previous studies that made predictive models of DSPN using
ML algorithms in diabetic patients (Table 7), they did not explain what time point was
used or whether there was any consideration of the amount of change in the laboratory
data in addition to the data imputation process that handles missing data [24,25,27,38]. In
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addition, they did not provide any diagnostic tools, such as decision tree or nomogram,
except Dagliati et al. [25].

Table 7. Comparison of previous studies that used machine learning algorithms to predict DPSN in type 2 diabetes mellitus

patients.
Criteria to Suggested ML Laboratory Data  Providing Decision-
References Diagnose DSPN Models AUC/Accuracy Processing Making Tool
Kazemi et al., clinical (T1DM and
2016 [24] T2DM) MSVM uc/0.76 ucC N
Dagliati et al.,
2018 [25] ucC LR 0.726/0.746 ucC nomogram
Fan et al., 2021 [27] ucC EM 0.847/0.783 ucC N
Maeda-Gutierrez .
etal,, 2021 [38] clinical RF 0.65/UC ucC N
Current study electrophysiological RF 0.825/0.7447 average/change decision tree

pattern

Abbreviations: ML = machine learning, AUC = area under the curve; MSVM = multicategory support vector machine; LR = logistic
regression; EM = ensemble model; RF = random forest; UC = uncheckable; N = none.

Various criteria for defining DSPN have been developed, and many of them have
been designed to classify the severity of DSPN based on clinical signs and symptoms
alone [39] or in combination with physical examination [40,41] or electrophysiological
findings [7,10]. Neurological signs, especially sensory abnormalities, are sensitive and
specific findings for diagnosing DSPN and have been correlated with electrophysiological
findings in previous studies [12,42,43]; however, we found that clinical data alone, which
was categorized as normal, possible and probable groups defined in a previous study [7],
was not effective in predicting DSPN in T2DM patients. Other studies have revealed that
clinical symptoms and signs are too variable and inaccurate [44] and do not correlate well
with the development of pathophysiological changes in the peripheral nervous system [13].
On the basis of our results, we confirmed that severity grading based on clinical symptoms
and signs is not helpful and that electrophysiological assessment is essential in predicting
DSPN. However, small fiber involvement, which is frequently occurs in early DSPN, is
not identified by conventional NCS. Therefore, more specialized diagnostic tools such as
quantitative sensory testing, skin biopsy, and corneal confocal microscopy are needed to
identify small fiber damage [45,46].

We failed to classify the demyelinated and mixed types in the confirmed group in this
study. Axonal involvement is frequently observed in DSPN, as is demyelination [17], and
even axonal loss, which precedes demyelination, in sural nerves or plantar nerves of DSPN
patients might be a primary finding [47,48]. Electrophysiological analysis, which shows
decreased conduction velocity of sensory and motor nerves, decreased compound muscle
action potential, and prolonged latency of F-wave, is considered to be highly sensitive for
early diagnosis of DSPN [16,49], but NSC cannot be used to assess therapeutic effects in
diabetic patients [49]. Electromyography can be useful for detecting abnormal spontaneous
activities in distal muscles in moderate to severe DSPN [50], although this test is also
useful for ruling out other neuropathies, such as radiculopathies, mononeuropathies, or
myopathies. In this study, we could not find axonal involvement without demyelination
within DSPN patients. In T2DM, segmental demyelination is prominent with a milder
axonal involvement whereas axonal loss is more severe in TIDM [51,52]. Initially, we
considered abnormal electromyographic findings with abnormal NCS (mixed type) to be
advanced or severe type DSPN, and diabetic patients with mixed type DSPN might show
abnormal clinical and laboratory findings more frequently than those with demyelinated
type DSPN. However, ML analysis and logistic regression did not effectively suggest any
difference between the demyelinated and mixed types. Therefore, electrophysiological
analysis is necessary to differentiate these two types of diabetic patients.
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Numerous ML algorithms have been used to predict DM and diabetic complications
such as retinopathy, nephropathy, foot ulceration and DSPN [24-29]. XGB is a scalable
end-to-end tree boosting system [32] and is more suitable for small sample sizes unless the
data are not highly dispersed when predicting glucose variability in T2DM patients [53].
SVM was used for microarray or high-dimensional data and is suitable for predicting DSPN
in DM patients with a clinical data-based classification [24] and distinguishing retinopathy
between diabetic patients and normal controls [26]. RF is an ensemble of decision trees
and can minimize the individual error of trees [23]. RF has shown good performance in
predicting the development and classification of DSPN based on clinical symptoms and
examinations of type 1 diabetic patients [29]. Logistic regression analysis is a common
statistical method used to develop a model for binary outcomes in the medical field [54] and
can also be used as a supervised learning technique in ML methods. Even though various
ML algorithms have been successfully developed as predictive models for the purpose
of preventing the occurrence of diseases or their complications, some recent studies have
shown that logistic regression has similar results to ML analysis [55,56], and attempts to
combine logistic regression and ML methods also appear to enhance the performance of
statistical methods in an automated manner [57]. In our study, the AUC of RF was superior
to that of logistic regression when subjects were classified into two groups: confirmed vs.
other combinations (Table 4), but the AUC of logistic regression was higher than that of
ML algorithms for comparison between the demyelinated and mixed subgroups within
the confirmed group (Table 6). The development of proper hybrid models for statistical
and ML algorithms might increase the power of DSPN prediction in future studies.

In previous studies, numerous predisposing factors have been associated with DSPN
in diabetic patients, particularly, duration of diabetes and HbA1c in T2DM patients [21,58];
moreover, old age, increased height, obesity, higher body mass index, poor glucose control,
alcohol abuse, smoking, hypertension, cardiovascular disease, low level of HDL, dys-
lipidemia, hypertriglyceridemia, and microalbuminuria have also been shown to be risk
factors in previous studies [18-21,58-61]. We found that the average values of numerous
laboratory datapoints during the follow-up period (serum glucose, IFCC, HbA1lc, albumin,
and differential counts of lymphocytes and neutrophils) were important predisposing
factors, as were clinical data such as height and disease duration (Table 5). The albumin
has important antioxidant and anti-inflammatory properties, and the lower level of serum
albumin was associated with the prevalence of DSPN or peripheral nerve dysfunctions in
T2DM patients in previous studies [62,63] In our study, average value of HbAlc is the most
sensitive node of a decision tree among the influence features, and average differential
counts of lymphocytes and neutrophils are the second node (Figure 4c). Although there is
no standardized decision-making algorithm for DSPN diagnosis, HbAlc qualifies as an im-
portant diagnostic criterion for DPSN because HbA1lc a major risk factor for microvascular
complications and closely associated with DSPN in T2DM [64] The neutrophil-lymphocyte
ratio is an inflammatory marker and an important factor that predicts cardiovascular dis-
ease [65] and foot ulcer infection [66] in diabetic patients. Neutrophil level was also the
most sensitive node for decision making of DPSN prediction in a previous study [67], and
higher neutrophil-lymphocyte ratio might be related to chronic inflammatory process and
increase the risk of DSPN [68].

In this study, we analyzed a small-sized sample, especially the probable group (1 = 13),
which might cause problems for pattern recognition and poor accuracy [69]. Many studies
in the medical field often have only a small number of patients. In this study, we tried
to increase the accuracy by dividing the patients into ten groups for use as a test set and
a tenfold stratified cross validation set to compensate for the small sample size [31], but
a more accurate prediction might be achieved with a larger number of diabetic patients.
We further plan to perform ML analysis to predict various complications in diabetic
patients in a prospective multicenter study and develop an application attached to an
existing electronic health record system for easier transfer of patient data that can assist
in predicting complications in diabetic patients. In addition, it was difficult to use deep
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learning model because insufficient sample size can lead to overfitting. If sufficient data is
accumulated, it is possible to build deep learning model using time-series laboratory data
or to apply a method of transfer learning with DSPN patient using pre-trained models for
all diabetic patients.

5. Conclusions

In this study, we revealed that the ML algorithms, whose AUC values were superior
to logistic regression, can be applied to type 2 DM patients to predict DSPN and that the
classification depending only on clinical symptoms and signs of suspected DSPN was not
appropriate for the application of ML algorithms to develop prediction models. In addition,
ML algorithms cannot predict the type of electrophysiological features in DSPN, namely,
demyelinated and mixed subgroups. We concluded that ML techniques, especially RF, can
predict DSPN effectively when comparing the combination of the normal, possible, and
probable groups with the confirmed group of DM patients and that electrophysiological
analysis is important for identifying DSPN.
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Abstract: The urine albumin—creatinine ratio (1ACR) is a warning for the deterioration of renal
function in type 2 diabetes (T2D). The early detection of ACR has become an important issue.
Multiple linear regression (MLR) has traditionally been used to explore the relationships between
risk factors and endpoints. Recently, machine learning (ML) methods have been widely applied in
medicine. In the present study, four ML methods were used to predict the uACR in a T2D cohort. We
hypothesized that (1) ML outperforms traditional MLR and (2) different ranks of the importance of the
risk factors will be obtained. A total of 1147 patients with T2D were followed up for four years. MLR,
classification and regression tree, random forest, stochastic gradient boosting, and eXtreme gradient
boosting methods were used. Our findings show that the prediction errors of the ML methods are
smaller than those of MLR, which indicates that ML is more accurate. The first six most important
factors were baseline creatinine level, systolic and diastolic blood pressure, glycated hemoglobin,
and fasting plasma glucose. In conclusion, ML might be more accurate in predicting uACR in a T2D
cohort than the traditional MLR, and the baseline creatinine level is the most important predictor,
which is followed by systolic and diastolic blood pressure, glycated hemoglobin, and fasting plasma
glucose in Chinese patients with T2D.

Keywords: type 2 diabetes; nephropathy; urine albumin-creatinine ratio; machine learning

1. Introduction

Type 2 diabetes (T2D) has become a growing global issue in recent decades. According
to the 2021 Atlas of the International Diabetes Federation, it is estimated that there are
5.37 billion patients worldwide, and this trend will further increase to 6.0 billion by 2045 [1].
Not surprisingly, a similar endemic was noted in Taiwan. According to the data bank of the
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National Health Insurance Company, the total number of diabetic patients increased from
1.32 million to 2.2 million within 10 years (2005 to 2014). This represents an astonishing 66%
increase [2]. It is now the 5th highest cause of death. In 2020, the cost spent on T2D was
over 10 billion USD, which is approximately 4.66% of the budget of the National Health
Insurance Company in one year. The accompanying complications, such as micro- and
macrovascular diseases, impose heavy burdens on individuals and their families, as well
as health providers and society [3,4]. It is important to note that this trend is particularly
prominent among people aged <40 and >80 years [5].

Among all the complications, diabetic nephropathy is the leading cause of chronic
kidney disease and end-stage renal disease (ESRD) [6], which are associated with high
morbidity and mortality rate. According to the annual report of the US Renal Data System,
Taiwan has the highest incidence (523 per million population) and prevalence of treated
ESRD requiring renal replacement therapy [7]. In 2019, there were 84,615 dialysis patients
and the National Health Insurance spent 1.54 billion, which is approximately 8.7-9.3% of
the annual budget [8,9]. Therefore, its early detection and prevention are urgently required.

It is well known that urine albumin—creatinine ratio (WACR) is a strong predictor
of the subsequent decline of the glomerular filtration rate in T2D, with an average of
0.93 mL per minute per month in approximately 35% of the subjects [10]. The underlying
pathophysiology is due to the increased glomerular pressure, which is independent of
hyperfiltration or hyperglycemia [11-13].

Traditionally, most studies have used multiple linear regression (MLR) to explore
the relationships between risk factors and outcomes (complications) in medical research.
Nevertheless, artificial intelligence using machine learning (ML), which enables machines
to learn from past data or experiences without being explicitly programmed, has now
become a new modality for data analysis that is competitive with MLR [14-16]. Because
ML can capture nonlinear relationships in data and complex interactions among multiple
predictors, it has the potential to outperform conventional MLR in disease prediction [17].

To our knowledge, only one study has attempted to predict the uACR in a T2D cohort.
Thus, in the present study, we applied four different ML methods and attempted to answer
the following questions in a diabetic cohort that was followed up for four years.

1.  Compare the prediction accuracy between ML and traditional MLR.
2. Rank the importance of risk factors, such as demographic and biochemistry data.

2. Methods
2.1. Participant and Study Design

Data for this study were obtained from the diabetic outpatient clinic of the Cardinal
Tien Hospital in Taiwan from 2013 to 2019. This study is a prospective study, as we have
collected our patients from 2013 to 2016. We designated this cohort as the Cardinal Tien
Diabetes Study Cohort. Informed consent was obtained from all participants, and data
were collected anonymously. The study protocol was approved by the Institutional Review
Board of the hospital. In total, 1682 T2D patients were enrolled. After excluding subjects
with different causes, 1147 subjects remained for analysis (women: 608, men: 539), as
shown in Figure 1. They were followed up for 4 years. The following were the criteria for
inclusion: (1) type 2 diabetes; (2) age between 50 and 75 years; (3) body mass in the range
of 22-30 kg/m?; (4) glycated hemoglobin level between 6.5 and 10.5%; (5) the patients did
not undergo regular dialysis. A flowchart of participant selection is displayed in Figure 1.

On the day of the study, senior nursing staff recorded the subject’s medical history,
including information on any current medications, and a physical examination was per-
formed. The waist circumference was measured horizontally at the level of the natural waist.
The body mass index (BMI) was calculated as the participant’s body weight (kg) divided by
the square of the participant’s height (m). The systolic blood pressure (SBP) and diastolic
blood pressure (DBP) were measured using standard mercury sphygmomanometers on the
right arm of each subject while seated.
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Cardinal Tien Hospital Diabetes
Study Cohort (1=1682)

———— Exclude 25 type 1 diabetes

—>» Exclude 17 with dialysis

A 4

Entire albuminuria prospective
cohort (n=1642)

3 Exclude 350 with missing data of albuminuria
at the end of follow-up

Exclude 145 with other important missing

5 data

h 4

Albuminuria prospective cohort for
modeling (7=1147)

Figure 1. Flowchart of sample selection from the Cardinal Tien Hospital Diabetes Study Cohort.

As previously published, the procedures for collecting demographic and biochemical
data are as follows [18]. After fasting for 10 h, blood samples were collected for biochemical
analyses. Plasma was separated from the blood within 1 h of collection and stored at 30 °C
until the analysis of fasting plasma glucose (FPG) and lipid profiles. FPG was measured
using the glucose oxidase method (YSI 203 glucose analyzer; Yellow Springs Instruments,
Yellow Springs, OH, USA). The total cholesterol and triglyceride (TG) levels were measured
using the dry multilayer analytical slide method with a Fuji Dri-Chem 3000 analyzer
(Fuji Photo Film, Tokyo, Japan). The serum high-density lipoprotein cholesterol (HDL-C)
and low-density lipoprotein cholesterol (LDL-C) concentrations were analyzed using an
enzymatic cholesterol assay, following dextran sulfate precipitation. A Beckman Coulter
AU 5800 biochemical analyzer was used to determine the urine ACR by turbidimetry.

Table 1 lists the definitions of the 15 baseline clinical variables (independent variables,
sex, age, BMI, duration of diabetes, smoking, alcohol use, FPG, glycated hemoglobin,
triglyceride, HDL-C, LDL-C, alanine aminotransferase, creatinine (Cr), SBP, and DBP) used
in this study. The uACR at the end of the follow-up was a numerical variable, which
was used as a dependent (target) variable, while the remaining 15 variables were used as
predictor variables in this study.
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Table 1. Variable definition.

Variables Description Unit
Sex Male/Female -

Age Patient age year
Body mass index Body mass index Kg/m?
Duration of diabetes Duration of diabetes year
Smoking No/Yes -
Alcohol No/Yes -
Baseline fasting plasma glucose Fasting plasma glucose baseline mg/dL
Baseline glycated hemoglobin HbAlc (Glycated hemoglobin) baseline %
Baseline triglyceride Triglyceride baseline mg/dL
Baseline high-density lipoprotein cholesterol High-density lipoprotein cholesterol baseline mg/dL
Baseline low-density lipoprotein cholesterol Low-density lipoprotein cholesterol baseline mg/dL
Baseline alanine aminotransferase baseline Alanine aminotransferase baseline U/L
Baseline creatinine Creatinine baseline mg/dL
Baseline systolic blood pressure Systolic blood pressure baseline mmHg
Baseline diastolic blood pressure Diastolic blood pressure baseline mmHg
UACR at the end of follow-up Urine albumin to creatinine ratio = albumin mg/g

(mg/dL)/urine creatinine (mg/dL) follow up 4 year

uACR: urine albumin—creatinine ratio.

2.2. Proposed Scheme

This research proposed a scheme based on four machine learning methods, namely
classification and regression tree (CART), random forest (RF), stochastic gradient boosting
(SGB), and eXtreme gradient boosting (XGBoost), to construct predictive models for predict-
ing diabetic uACR and to identify the importance of these risk factors. These ML methods
have been applied in various healthcare applications and do not have prior assumptions
regarding data distribution [19-28]. MLR was used as the benchmark for comparison.

The first method, CART, is a tree-structure method [29]. It is composed of root nodes,
branches, and leaf nodes that grow recursively based on the tree structures from the root
nodes and split at each node based on the Gini index to produce branches and leaf nodes
with the rule. Then, the pruning node in the overgrown tree for optimal tree size using the
cost-complexity criterion generates different decision rules to compose a complete structure
tree [30,31].

REF, the second method in this study, is an ensemble learning decision tree algorithm
that combines bootstrap resampling and bagging [32]. RF’s principle entails randomly
generating many different and unpruned CART decision trees, in which the decrease in
Gini impurity is regarded as the splitting criterion, and all generated trees are combined
into a forest. Then, all the trees in the forest are averaged or voted to generate output
probabilities and a final model that generates a robust model [33].

The third method, SGB, is a tree-based gradient boosting learning algorithm that
combines both bagging and boosting techniques to minimize the loss function to solve
the overfitting problem of traditional decision trees [34,35]. In SGB, many stochastic weak
learners of trees are sequentially generated through multiple iterations, in which each
tree concentrates on correcting or explaining errors of the tree generated in the previous
iteration, that is, the residual of the previous iteration tree is used as the input for the
newly generated tree. This iterative process is repeated until the convergence condition or a
stopping criterion is reached for the maximum number of iterations. Finally, the cumulative
results of many trees are used to determine the final robust model.
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XGBoost, the fourth method of this study, is a gradient boosting technology based on
an SGB optimized extension [36]. Its principle is to train many weak models sequentially
to ensemble them using the gradient boosting method of outputs, which achieves a better
prediction performance. In XGBoost, Taylor binomial expansion is used to approximate
the objective function and arbitrary differentiable loss functions to accelerate the model
construction convergence process [37]. Then, XGBoost applies a regularized boosting
technique to penalize the complexity of the model and correct overfitting, thus increasing
model accuracy [36].

A flowchart of the proposed prediction and important variable identification scheme
that combines the four ML methods is shown in Figure 2. First, patient data were collected
using the proposed method to prepare the dataset. The dataset was then randomly divided
into an 80% training dataset for model building and a 20% testing dataset for model
testing. In the training process, each ML method has its hyperparameters that must
be tuned to construct a relatively well-performed model. In this study, a 10-fold cross-
validation (CV) technique for hyperparameter tuning was used. The training dataset was
further randomly divided into a training dataset to build the model with a different set of
hyperparameters and a validation dataset for model validation. All possible combinations
of the hyperparameters were investigated using a grid search. The model with the lowest
root mean square error for the validation dataset was viewed as the best model for each
ML method. The best turned RF, SGB, CART, and XGBoost models were generated, and
the corresponding variable importance ranking information was obtained.

During the testing process, the testing dataset was used to evaluate the predictive
performance of the best RE, SGB, CART, and XGBoost models. As the target variable of the
models built in this study is a numerical variable, the metrics used for model performance
comparison are the mean absolute percentage error (MAPE), symmetric MAPE (SMAPE),
and relative absolute error (RAE), which are shown in Table 2.

Table 2. Equation of Performance Metrics.

Metrics Description Calculation
MAPE Mean Absolute Percentage Error MAPE = % i ‘ % 100
=1
SMAPE Symmetric Mean Absolute Percentage Error SMAPE = l i \%7}" % 100
n 2 (il +19i0) 72 %
RAE Relative Absolute Error RAE — | B (wi=9:)” —9:)’
Lit ( )

where 7; and y; represent predicted and actual values, respectively;  stands the number of instances.

To provide a more robust comparison, the training and testing processes mentioned
above were randomly repeated 10 times. The averaged metrics of the RE, SGB, CART, and
XGBoost models were used to compare the model performance of the benchmark MLR
model that used the same training and testing dataset as the ML methods. An ML model
with an average metric lower than that of MLR was considered a convincing model.

Because all of the ML methods used can produce the importance ranking of each
predictor variable, we defined that the priority demonstrated in each model ranked 1
as the most critical risk factor and 15 as the last selected risk factor. The different ML
methods may produce different variable importance rankings because they have different
modeling characteristics; therefore, we integrated the variable importance ranking of the
convincing ML models to enhance the stability and integrity of re-ranking the importance
of risk factors. In the final stage of the proposed scheme, we summarize and discuss our
significant findings regarding the convincing ML models and identify important variables.
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Figure 2. Proposed ML prediction scheme.
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In this study, all methods were performed using R software version 4.0.5 and RStudio
version 1.1.453 with the required packages installed (http:/ /www.R-project.org, accessed
on 1 February 2022; https:/ /www.rstudio.com/products/rstudio/, accessed on 1 February
2022). The implementations of RF, SGB, CART, and XGBoost were the “randomForest”
R package version 4.6-14 [38], “gbm” R package version 2.1.8 [39], “rpart” R package
version 4.1-15 [40], and “XGBoost” R package version 1.5.0.2, respectively [41]. In addition,
to estimate the best hyperparameter set for the developed effective CART, RF, SGB, and
XGBoost methods, the “caret” R package version 6.0-90 was used [42]. The MLR was
implemented using the “stats” R package version 4.0.5, and the default setting was used to
construct the models.

3. Results

A total of 1147 participants were enrolled in the study (men: 539, women: 608). The
demographic data are shown in Table 3 (mean =+ standard deviation). The results of the
comparison between the traditional MLR and the four ML methods (i.e., RF, SGB, CART,
and XGBoost) in predicting diabetic uACR in a 4-year follow-up cohort are shown in Table 4.
From the table, it can be seen that all four ML methods yielded lower prediction errors
than the MLR method and were all convincing ML models. To determine whether the
four ML methods significantly outperformed the MLR method, the Wilcoxon signed-rank
test was used. The Wilcoxon signed-rank test is one of the most popular distribution-
free, non-parametric statistical tests for evaluating the performance of two prediction
models [43]. Table 5 shows the test results of the four ML methods and the MLR method.
It can be observed from the table that the prediction error values of all ML methods were
significantly different from those of the MLR method. Therefore, it can be determined
that the ML methods used in this study significantly outperformed traditional MLR in
predicting uACR at the end of the follow-up in terms of prediction error.

Table 3. Participant demographics.

Variables Mean + SD N
Age 63.82 4+ 11.49 1123
BMI 26.45 £ 3.95 1134
Duration of diabetes 14.13 £7.65 1137
Baseline fasting plasma glucose 149.84 + 42.80 1146
Baseline glycated hemoglobin 7.74 £1.49 1140
Baseline triglyceride 142.99 + 94.55 1144
Baseline high-density lipoprotein cholesterol 44.87 £12.00 845
Baseline low-density lipoprotein cholesterol 98.82 +27.73 1129
Baseline alanine aminotransferase baseline 29.38 +21.48 1134
Baseline creatinine 0.90 £0.37 1093
Baseline systolic blood pressure 131.13 £ 14.07 969
Baseline diastolic blood pressure 75.91 £ 11.66 969
uACR at the end of follow-up 195.30 + 711.98 1147
N (%) N

Sex 1147

Male 608 (53.01%)

Female 539 (46.99%)
Smoking 716

No 430 (60.06%)

Yes 286 (39.94%)
Alcohol 789

No 715 (90.62%)

Yes 74 (9.38%)

BMI: body mass index. uACR: urine albumin—creatinine ratio.
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Table 4. The average performance of the MLR, RF, SGB, CART, and XGBoost methods.

MAPE SMAPE RAE
MLR 18.245 (4.79) 1.545 (0.04) 1.126 (0.17)
RE 16.174 (4.82) 1.266 (0.05) 1.072 (0.19)
SGB 14.850 (3.09) 1522 (0.07) 1.040 (0.16)
CART 9.528 (1.76) 1.312 (0.06) 0.841 (0.10)
XGBoost 11.872 (2.80) 1.274 (0.06) 0.915 (0.11)

MLR: multiple linear regression; RF: random forest; SGB: stochastic gradient boosting; CART: classification and
regression tree; XGBoost: eXtreme gradient boosting; MAPE: mean absolute percentage error; SMAPE: symmetric
mean absolute percentage error; RAE: relative absolute error.

Table 5. Wilcoxon sign-rank test between four ML methods and MLR method.

RF SGB CART XGBoost
MLR 41.736 (0.001) **  20.814 (0.001) **  30.680 (0.001) **  44.489 (0.001) **

The numbers in parentheses are the corresponding p-value; **: p < 0.05.

Table 6 presents the average importance ranking of each factor generated by the RE,
SGB, CART, and XGBoost methods. It can be observed from the figure that the different ML
methods generated different relative importance rankings for each factor. The darkness of
the blue color indicates the importance of risk factors. The darker the blue color, the more
important the risk factor. For instance, in the RF method, the first three important factors
were baseline Cr, age, and baseline SBP. The most important feature of the SGB method was
baseline Cr, which was followed by baseline HDL-C and baseline DBP. To fully integrate
the importance rankings of each factor in all the four ML methods, the average importance
ranking of each risk factor was obtained by averaging the ranking values of each variable
in each method.

Table 6. Importance ranking of each risk factor using the four convincing methods.

Variables RF SGB CART XGBoost Average
Sex 11.3 14.9 15.0 13.7 13.7
Age 48 9.0 9.5 54 7.2
Body mass index 14.9 11.8 12.0 9.8 121
Duration of diabetes 8.8 7.0 10.7 8.4 8.7 Rank value
Smoking 10.8 144 15.0 14.7 13.7
Alcohol 11.6 13.6 15.0 14.6 13.7 -
Baseline fasting plasma glucose 5.4 6.3 10.9 5.3 7.0 2.5~3.4
Baseline glycated hemoglobin 5.8 5.0 10.3 6.1 6.8 3.5~4.4
Baseline triglyceride 119 10.2 12.7 13.1 12.0 45~54
Baseline high-density lipoprotein cholesterol 7.7 2.8 58 6.8 5.8 5.5~
Baseline low-density lipoprotein cholesterol 5.8 10.9 11.2 7.5 8.9
Baseline alanine aminotransferase baseline 9.6 8.3 124 126 10.7
Baseline creatinine
Baseline systolic blood pressure 5.0 49 43 3.9 45
Baseline diastolic blood pressure 5.3 41 41 4.7 4.6

Note: Different blue colors indicate different rank values of risk factors. The darker the blue color, the more
important the risk factor.

Figure 3 depicts the risk factors based on the increasing order of the averaged ranking
values. It can be noted from the figure that the first six important risk factors in predicting
diabetic uACR in a 4-year follow-up cohort are baseline Cr, baseline SBP, baseline DBP,
baseline HDL-C, baseline glycated hemoglobin, and baseline FPG.
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Baseline creatinine IR 1.3

Baseline systolic blood pressurc I 4.5

Baseline diastolic blood pressurc HEEEGCGE 4.6
Baseline high density lipoprotein cholesterol IEIITGCGCGCG————. 5.8

Variables

Baseline glycated hemoglobin I 6.8
Baseline fasting plasma glucosc GGG 7.(

Age 7.2
Duration of diabetes 8.7

Baseline low density lipoprotein cholesterol 8.9

Baseline alanine aminotransferase baseline 10.7

Baseline triglyceride 12.0
Body mass index 12.1
Alcohol 13.7
Smoking 13.7
Sex 13.7

0.0 2.0 4.0 6.0 8.0 100 12.0 140 16.0
Average Rank

Figure 3. Integrated importance ranking of all risk factors. Note: The darker color indicates the first
six important risk factors of this study.

4. Discussion

As mentioned in the Introduction, the present study has two goals. The first was to
compare the accuracy between ML methods and MLR, and the second was to identify
the rank of different risk factors for predicting uACR. Our study showed that all four ML
methods outperformed the MLR. We also found that baseline Cr, blood pressure, HDL-C,
glycated hemoglobin, and FPG were the most important factors.

Traditionally, MLR has been widely used to analyze medical research to deal with
continuous variables. However, it is difficult to describe the nonlinear data patterns of
MLR, and the effective use of MLR requires fitting its strong assumptions during modeling.
Unlike MLR, ML does not require strong model assumptions and can capture the delicate
underlying nonlinear relationships contained in empirical data [19]. Our present data
showed that all four ML methods are superior to MLR because the MAPE and RAE of the
ML methods all have lower values (Table 4). Our results suggest that ML might have a
great potential for medical studies and applications.

Because diabetic nephropathy causes a serious burden on individuals and consumes
a large portion of the government health budget, extensive studies have focused on this
topic [6,44—47]. From these previous studies, it could be concluded that sex, high blood
glucose and blood pressure, smoking, dyslipidemia, decreased glomerular filtration rate,
BMI, and uACR are common risk factors for future uACR. However, in the present study,
our data showed that baseline Cr, DBP, SBP, HDL-C, glycated hemoglobin, and FPG were
the most important risks. Additionally, the roles of diabetes duration, glycated hemoglobin,
BMI, HDL-cholesterol, triglyceride, sex, smoking, and alcohol use were less important.

Our data suggest that the most important predictor of albuminuria is baseline Cr.
This is not surprising because albuminuria occurs early in the course of diabetic nephropa-
thy [48]. According to the majority of previous studies, a summary of this relationship
could be depicted as follows: diabetic patients with albuminuria are at a higher risk of
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end-stage renal and cardiovascular diseases [49,50]. This indicates that albuminuria is the
cause of end-stage renal disease, which differs from the findings of the present study. Our
results show that an increase in serum Cr level could predict albuminuria four years later,
which is an opposite cause—effect relationship to the majority of the other studies. However,
our finding can be supported by the cornerstone study conducted by Gansevoort et al. [51].
This meta-analysis clearly showed that there are independent, continuous, and negative
associations between serum Cr and albuminuria. Thus, it could be postulated that each of
these factors could affect the other at the same time. Further research is required to explore
this area.

Both diastolic and systolic blood pressures were identified as the second and third
important factors for predicting albuminuria. Their relationships are well known and have
been extensively studied [52]. Similar to the role of increased serum Cr levels, kidney
disease causes an increase in BP, which could further deteriorate renal function. More
specifically, the change in BP is in concordance with and even precedes albuminuria [53]. By
controlling BP, the speed of end-stage renal disease progression can be slowed down [54].

Interestingly, HDL cholesterol level was the only lipid found to be correlated with
albuminuria. However, few studies have focused on this topic. Most previous studies
have demonstrated that different stages of diabetic kidney disease (DKD) have different
influences on blood lipid levels [55,56]. Other studies measured apolipoproteins and
the size of LDL-cholesterol, which all showed positive correlations with DKD, including
albuminuria [57]. To our knowledge, only two studies are relatively close to the present
findings. The first study was performed by Sacks et al. In a group of 2535 T2D patients, they
evaluated the impact of HDL-C levels on uACR. Furthermore, kidney disease was defined
as albuminuria, proteinuria, or decreased eGFR. The data showed that the odds ratio of
having kidney disease decreased by 0.86 (0.82-0.91) for every 0.2 mmol/L (approximately
1 quintile) increase in HDL-C [58]. The second study was conducted on a cohort of 524
Chinese patients. Using multiple logistic regression, after adjusting for the available
confounding factors, they suggested that subjects with the highest quartile HDL-C had a
lower odds ratio (OR = 0.17, 95% confidence interval 0.15-0.52) of having uACR than the
lowest quartile. However, a limitation of this study was that it was cross-sectional. Thus,
it was unable to infer the causation or directionality of this relationship [59]. This study
responds to this limitation in its longitudinal design. The causative influence of HDL-C level
can be explained by several assumptions. First, the glomerular and renal tubules could be
injured by impaired HDL-C function, which hinders the reversal of the cholesterol transport
process [60]. Second, the antioxidative ability of the HDL-C is reduced and oxidative stress
is increased, which further influences the immune-mediated diabetic nephropathy [61].
Finally, it is well known that low HDL-C levels are associated with insulin resistance,
hyperinsulinemia, and hyperglycemia. All these untoward derangements can damage
endothelial cells in the glomerulus [62,63].

The last two factors affecting albuminuria are glycated hemoglobin and FPG levels.
This finding is compatible with the results of the Diabetes Control and Complication Trial
(DCCT) [64]. The data showed positive relationships between glucose control and albumin-
uria. Moreover, after controlling for blood glucose levels, albuminuria also improved [65].
Because DCCT enrolled patients with type 1 diabetes, its pathophysiology is different
from that of the present study. Regarding T2D, few studies have been conducted in this
area. A comprehensive meta-analysis conducted by Lo et al. [66] showed that for intensive
control (glycated hemoglobin < 7% and FPG < 6.6 mmol/L), the relative risk of having
uACR was 0.59 (confidence interval: 0.38-0.93). As this study enrolled 11 studies (29,141
subjects) and follow-ups were conducted for an average of 56.7 months, their conclusion
is convincing. The underlying pathophysiology to support this result is that high blood
glucose concentration could involve mesangial cell damage in nephrons [67]. However,
it is worth noting that both Alc and FPG were classified as important predictors. This
might indicate that because FPG is only one blood glucose measurement within 90 days
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compared to Alg, it is less accurate than Alc. Our results show that they are ‘independent’
of each other.

Interestingly, in the present study, the duration of diabetes, body mass index, sex,
smoking, and alcohol use were less important. This finding could be attributed to the
nature of the ML. ML methods are data-driven, non-parametric models. They can map
any nonlinear function without an a priori assumption about the properties of the data
and have the ability to capture subtle functional relationships among the empirical data,
even though the underlying relationships are unknown or difficult to describe [68-70].
These factors may contain richer linear pattern information and less important nonlinear
information than baseline creatinine, blood pressure, albuminuria level, and age. Thus,
they were ranked as less important risk factors using ML methods.

This study had some limitations. First, the smoking and alcohol details need to be more
defined because some other reports have shown that they have an important impact on the
occurrence of diabetic nephropathy. Second, we did not collect information on the use of
angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, sodium-glucose
cotransporter 2 inhibitors, and glucagon-like peptide-1 agonists. All these medications
would have beneficial effects on DKD. Third, some of the data, such as uACR and blood
pressure, were collected only once. For some of the participants, we did have data more
than once. However, because the number is less than the present number, we still chose
to enroll subjects with only one value. Even though these drawbacks do exist, our large
n number and the characteristics of ML (alleviating the effects of extremes) could at least
partially adjust.

5. Conclusions

ML might be more accurate in predicting uACR in T2D than the traditional MLR,
and the baseline creatinine level is the most important factor to predict uUACR in a T2D
cohort, which is followed by systolic and diastolic blood pressure, glycated hemoglobin,
and fasting plasma glucose.
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Abstract: Background: Patients with diabetes mellitus (DM) are known to show poor recovery after
stroke. This specific burden might be due to acute and chronic hyperglycemic effects. Meanwhile,
the underlying mechanisms are a cause of discussion, and the best measure to predict the outcome
is unclear. Skin autofluorescence (SAF) reflects the in-patient load of so-called advanced glycation
end products (AGEs) beyond HbAlc and represents a valid and quickly accessible marker of chronic
hyperglycemia. We investigated the predictive potential of SAF in comparison to HbAlc and acute
hyperglycemia on the functional outcome at 90 days after ischemic stroke in a cohort of patients
with DM. Methods: We prospectively included 113 patients with DM type 2 hospitalized for acute
ischemic stroke. SAF was measured on each patient’s forearm by a mobile AGE-Reader mu®© in
arbitrary units. HbAlc and the area under the curve (AUC) of the blood sugar profile after admission
were assessed. Functional outcome was assessed via phone interview after 90 days. A poor outcome
was defined as a deterioration to a modified Rankin Scale score > 3. A good outcome was defined
as a modified Rankin Scale score < 3 or as no deterioration from premorbid level. Results: Patients
with a poor outcome presented with higher values of SAF (mean 3.38 (SD 0.55)) than patients with a
good outcome (mean 3.13 (SD 0.61), p = 0.023), but did not differ in HbAlc and acute glycemia. In
logistic regression analysis, age (p = 0.021, OR 1.24 [1.12-1.37]) and SAF (p = 0.021, OR 2.74 [1.16-6.46])
significantly predicted a poor outcome, whereas HbAlc and acute glycemia did not. Patients with
a poor 90-day outcome and higher SAF experienced more infections (4.2% vs. 33.3% (p < 0.01))
and other various in-hospital complications (21.0% vs. 66.7% (p < 0.01)) than patients with a good
outcome and lower SAF levels. Conclusions: SAF offers an insight into glycemic memory and appears
to be a significant predictor of poor stroke outcomes in patients with DM exceeding HbAlc and acute
glycemia. Measuring SAF could be useful to identify specifically vulnerable patients at high risk of
complications and poor outcomes.

Keywords: stroke outcome; diabetes mellitus; hyperglycemia; skin autofluorescence; advanced
glycation end products; poststroke complications

1. Introduction

Around 30% of patients in ischemic stroke care suffer from diabetes mellitus (DM).
Concomitantly, due to acute and chronic hyperglycemic effects, patients with DM show
poor recovery after stroke [1]. HbAlc from nonenzymatic glycation of hemoglobin repre-
sents the best-established marker of chronic hyperglycemia regarding the last three months.
Meanwhile, different long-lasting molecules underlie similar transformations and form the
group of advanced glycation end products (AGEs), also known as glycemic memory [2].
Skin autofluorescence (SAF) represents a valid, quick and noninvasive approach to measure
AGEs in vivo [3] and is a marker of vasculopathy in DM type 2 [4]. We aimed to investigate
the predictive potential of SAF as a surrogate of long-term hyperglycemia in comparison to
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HbA1lc as marker of intermediate glycemia and acute hyperglycemia on stroke outcome in
a cohort of patients with DM.

2. Materials and Methods

From December 2018 to September 2020, patients were prospectively recruited at the
University Hospital of Mannheim, Germany. Our assessments were based on the most
prevalent scoring scales in stroke medicine [5]. The modified Rankin scale (mRS) is a
7-item scale indicating functional dependency. A score of 0 is considered no disability,
5 is disability requiring constant care for all needs and 6 is death. A score of more than
2 is the hallmark of functional dependency. The Barthel Index (BI) is a scale used to
measure performance in activities of daily living according to 10 different variables. The
National Institutes of Health Stroke Scale (NIHSS) is a 15-item neurologic examination
scale evaluating the effect of cerebral infarction on the levels of consciousness, language,
neglect, visual field, extraocular movement, motor strength, ataxia, dysarthria and sensory
loss. We included adult patients with known DM type 2 or HbAlc > 6.5% at admission
hospitalized for ischemic stroke (according to World Health Organisation definition [6])
presenting within 3 days after symptom onset with a persistent deficit (mRS) score > 1).
Written consent was obtained from the patient or their legal representative. Patients
necessitating hemodialysis were excluded [7]. SAF was measured bedside on the patient’s
volar forearm by a mobile AGE-Reader mu®© (DiagnOptics Technologies B.V., Groningen,
The Netherlands). According to usage instructions, the patient placed their volar forearm on
the measurement window where light was radiated on the previously degreased skin. The
reflected light was registered to measure SAF that was displayed within 12 s in arbitrary
units (AU) (for validation study and technical details, see Meerwaldt et al., 2004 and
2005 [8,9]). Three measurements were performed bedside with a slight change in the
forearm’s position. The mean value was calculated for further analysis as intraindividual
variance in same-day measurement ranges around 5% according to reference data [8]
without relevant postprandial changes [10]. A routine blood analysis included HbAlc.
From routine capillary blood sugar profiling, we calculated the area under the curve (AUC)
in mg/mL x 24 h, representing acute glycemia with respect to the first two days after
admission, standardized in 24 h. Insulin was administered after blood sugar measuring,
as clinically required. Baseline parameters from medical history including preexisting
functional deficit (pre-mRS) were registered, as well as severity of stroke by NIHSS. If
indicated, acute revascularization therapy was performed according to local standards.
We recorded in-hospital complications such as (symptomatic) intracranial hemorrhage ((S)
ICH) [11] in follow-up cranial imaging, as well as infectious complications [12]. Other
complications (recurrent stroke, epileptic seizures, delirium, acute renal failure, thrombosis,
pulmonary embolism, myocardial infarction and others) were recorded if they required
diagnostic or therapeutic measures. For follow-up, we performed a phone interview after
90 (£3) days poststroke and determined mRS and BI. A poor functional outcome whilst
taking into account prior deficit was defined as a deterioration from premorbid mRS to
mRS > 3 at 90 days poststroke. A good outcome was defined as a mRS < 3 or as no
deterioration from premorbid mRS.

Statistical analysis was performed with spss® 27.0 (IBM, Armonk, New York, NY, USA).
p values < 0.05 were considered statistically significant. We compared baseline and clinical
characteristics, in-hospital complications and 90 days of BI between patients with a poor
and a good 90-day outcome. Intergroup differences were assessed using t-test for metric
variables, Mann-Whitney U test for ordinal variables and Chi? test/Fisher’s exact test for
categorical variables as appropriate. We further performed a multiple logistic regression
analysis, including the preliminarily defined predictors SAF, HbAlc and AUC as glycemic
variables adjusted for age and NIHSS at admission as the strongest known predictors of a
poor 90-day outcome [13].
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3. Results

A total of 113 patients (mean age 71.4 years, SD 10.29; 59.3% male) were included.
There was no significant correlation either between SAF and HbAlc (Pearson’s correlation
coefficient, r = 0.02) or between SAF and age (r = 0.17). Furthermore, we did not find a
correlation between NIHSS at admission and either glucose at admission (Spearman’s rank
correlation coefficient, p = 0.041) or glycemic AUC (p = 0.029). After three months, we were
unable to follow up on six patients (5.3%). The premorbid deficit was low in our cohort:
before the index stroke, 86.7% of the patients were functionally independent, as indicated
by mRS < 2. On day 90, this was the case for only 52.3% (see Figure 1). Additionally,
90 days poststroke, 62 (57.9%) patients showed a good outcome, while 45 (42.1%) showed a
poor outcome according to our definition.

Shift in functional outcome after 90 days
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Figure 1. Shift in functional outcome after 90 days: premorbid modified Rankin scale (Pre-mRS;
n = 113), modified Rankin Scale on day 90 (90 d-mRS; n = 107).
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When comparing patients with good versus poor outcome, (see in Table 1) patients with
poor outcomes were older (mean age 69.0 years (SD 9.57) vs. 76.3 years (SD 9.10), p < 0.001)
and had a higher level of premorbid functional deficit (pre-mRS: median 0 (IQR 0; 0) vs.
1 (IQR 0; 3), p < 0.001; pre-Bl: median 100 (IQR 100; 100) vs. 100 (IQR 85; 100), p < 0.001).
Male patients were more likely to achieve a good outcome (72.6% vs. 40.0%, p < 0.001).
Patients with a poor outcome exhibited more often known macrovascular disease (32.3%
vs. 60.0%, p = 0.004) and renal failure (29.0% vs. 48.9%, p = 0.036) and were more often
under antithrombotic treatment (27.4% vs. 48.9%, p = 0.023). Instead, patients with a
good outcome were more often under a combination of basal insulin and oral antidiabetic
treatment (BOT) (27.4% vs. 4.4%, p = 0.002). Considering stroke characteristics, patients
with a good outcome showed more frequently infratententorial strokes (30.6% vs. 11.1%,
p =0.017). There was no difference considering stroke outcome and stroke etiology in
our cohort.

Table 1. Baseline characteristics.

Good Outcome Poor Outcome
Population (90 d mRS < 3 or No (90 d mRs > 3 and p
Deterioration) Deterioration)
n 62 45

Age, mean (sd) [years] 69.0 (9.57) 76.3 (9.10) <0.001 *
Male, 1 (%) 45 (72.6) 18 (40.0) 0.001 *
Premorbid-mRS, median (IQR) 0(0; 0) 1(0;3) <0.001 *
Premorbid-BI, median (IQR) 100(100; 100) 100 (85; 100) <0.001 *
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Table 1. Cont.

Good Outcome

Poor Outcome

Population (90 d mRS < 3 or No (90 d mRs > 3 and p
Deterioration) Deterioration)
Risk factors
Hypertension, 1 (%) 54 (87.1) 40 (88.9) 0.779
Hyperlipidemia, 1 (%) 20 (32.3) 21 (46.7) 0.130
Atrial fibrillation, 1 (%) 13 (21.0) 17 (37.8) 0.056
Macrovascular disease, 1 (%) 20 (32.3) 27 (60.0) 0.004 *
Renal failure, 1 (%) 18 (29.0) 22 (48.9) 0.036 *
Previous stroke, 1 (%) 10 (16.1) 7 (15.6) 0.936
Smoking, 1 (%) 11 (17.7) 4 (8.9) 0.263
Alcohol abuse, 1 (%) 3(4.8) 1(2.2) 0.637
Premedication
Oral anticoagulation, 7 (%) 10 (16.1) 7 (15.6) 0.936
Antithrombotic agent, 1 (%) 17 (27.4) 22 (48.9) 0.023 *
Statin, n (%) 28 (45.2) 27 (60.0) 0.130
Antihypertensive medication, 1 (%) 46 (74.2) 39 (86.7) 0.115
BOT, 1 (%) 17 (27.4) 2(4.4) 0.002 *
Insulin, 1 (%) 22 (35.5) 14 (31.1) 0.637
Oral antidiabetic, 1 (%) 45 (72.6) 25 (55.6) 0.068
Glycemia
SAF, mean (sd) [AU] 3.13 (0.61) 3.38 (0.55) 0.023 *
AUC, mean (sd) [mg/(mL x 24 h)] 40.38 (10.58) 41.49 (14.16) 0.647
HbAlc, mean (sd) [%] 7.57 (1.29) 7.67 (1.58) 0.718
Admission variables
NIHSS, median (IQR) 4(2;6) 10 (5; 16) <0.001 *
Systolic blood pressure, mean (sd) [mmHg] 170.51 (32.35) 163.81 (24.48) 0.285
Plasma glucose, mean (sd) [mg/dL] 191.2 (65.01) 197.84 (79.48) 0.637
Acute revasculating therapy, n (%) 21 (33.9) 25 (55.6) 0.025 *
Intravenous thrombolysis, 1 (%) 19 (30.6) 20 (44.4) 0.143
Mechanical thrombectomy, 1 (%) 6(9.7) 11 (24.4) 0.039
Complications in stay
ICH, n (%) 13 (21.0) 11 (24.4) 0.670
SICH, 1 (%) 0(0.0) 1(22) 0.421
Poststroke infection, 1 (%) 3(4.8) 15 (33.3) <0.001 *
Death, 11 (%) 0(0.0) 4(8.9) 0.029 *
Other complications, 1 (%) 13 (21.0) 30 (66.7) <0.001 *
90 d Outcome
90 d mRS, median (IQR) 1(0;2) 4(3;5) <0.001 *
90 d Barthel, median (IQR) 100 (100; 100) 35 (0; 65) <0.001 *
Stroke characteristics
Supratentorial, 1 (%) 48 (77.4) 40 (88.9) 0.125
Infratentorial, 1 (%) 19 (30.6) 5(11.1) 0.017
Supratent. and Infratent., 7 (%) 6(9.7) 0(0.0) 0.039
Large artery disease, 1 (%) 6(9.7) 9 (20.0) 0.129
Small artery disease, 1 (%) 15(24.2) 10 (22.2) 0.812
Proximal embolism, n (%) 41 (66.1) 28 (62.2) 0.677

p-values < 0.005 are considered statistically significant; * significant, (%) percentage of outcome quality, day (d),
number (1), skin autofluorescence (SAF), arbitrary unit (AU), basal insulin and oral antidiabetic treatment (BOT),
area under the curve (AUC), modified Rankin Scale (mRS), National Institutes of Health Stroke Scale (NIHSS),
Barthel Index (BI), intracerebral hemorrhage (ICH), symptomatic intracerebral hemorrhage (SICH), standard
deviation (SD), interquartile range (IQR).

Considering the severity of stroke, patients with a poor outcome showed higher
NIHSS scores at admission (median 10 (IQR 5; 16) vs. median 4 (IQR 2; 6), p < 0.001), and
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they received more frequently revascularization therapy (55.6% vs. 33.9%, p = 0.025). There
was no significant group difference concerning intravenous thrombolysis, but a higher
frequency of mechanical thrombectomy in patients with poor outcome (24.4% vs. 9.7%,
p =0.039). Complications during the hospital stay did not differ between patients with
poor outcome and good outcome in terms of hemorrhagic complications, whereas the
rate of intracerebral hemorrhage was generally low in our sample. Poststroke infection
occurred more often in patients with poor outcome (33.3% vs. 4.8%, p < 0.001) as well as
other complications during hospital care (66.7% vs. 21.0%, p < 0.001). The total in-patient
mortality rate amounted to 3.5%. Among patients with a poor outcome, 8.9% died during
the initial hospital stay.

Patients with a poor versus good outcome did not differ in admission glucose, in
glycemic AUC, or in HbAlc. However, patients with a poor outcome showed higher SAF
(mean 3.13 (SD 0.61) vs. mean 3.38 (SD 0.55), p = 0.023) (see Figure 2).

Differences in glycemic variables
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Figure 2. Differences in glycemic variables according to 90-day outcome: mean and standard
deviation of SAF, HbAlc and AUC. * Significant difference, skin autofluorescence (SAF), area under
the curve (AUC), arbitrary units (AU).

Logistic regression analysis revealed rising age (p = 0.021; odds ratio (OR) 1.07 [1.01-1.12])
and rising NIHSS at admission (p < 0.001, OR 1.24 [1.12-1.37]) as predictors being significantly
associated with a poor outcome. Regarding glycemic variables, rising SAF turned out to be
significantly associated with a poor outcome (p = 0.021, OR 2.74 [1.16-6.46]). Meanwhile,
HbAlc and AUC did not add significant prediction to the model (see in Table 2).

Table 2. Predictors of outcome.

Predictor 14 OR [CI]
Age [years] 0.021 * 1.07 [1.01-1.12]
NIHSS [/] <0.001 * 1.24 [1.12-1.37]
HbAlc [%] 0.520 -
AUC [mg/mL x 24 h] 0.397 -
SAF [AU] 0.021* 2.74 [1.16-6.46]

p-values < 0.05 are considered statistically significant; * significant; OR: odds ratio; CI: confidence interval, skin
autofluorescence (SAF), area under the curve (AUC), National Institutes of Health Stroke Scale (NIHSS).

4. Discussion

The mechanisms mediating poor stroke outcome in patients with DM might consist of
acute and chronic hyperglycemic effects, although the best measure of hyperglycemia to
predict outcome is largely unknown [1].
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4.1. Troubled Water: Acute Hyperglycemia

Patients with DM are specifically prone to stress hyperglycemia in the context of a
severe illness such as stroke [14]. Acute hyperglycemia has been associated with poor
stroke outcome, as it was supposed to drive ischemic damage [15]. On the other hand,
interventions with aggressive insulin therapy in acute stroke care were not beneficial [16,17].
So, given a connection between hyperglycemia and poor outcome, cause and effect are not
clearly attributable. Most prior studies investigating the impact of acute hyperglycemia
on stroke outcome have referred to admission glucose and used different arbitrary cut-off
values to define hyperglycemia [18]. In this regard, Fuentes et al., (2009) performed blood
sugar profiling for 48 h postadmission and confirmed hyperglycemia exceeding 155 mg/dL
to be a significant predictor of a poor outcome. In our study, we did not focus on a cut-off
value, as we expected expansive glycemic variations in our cohort. In an attempt to meet
and objectify the glycemic ups and downs as a dynamic value, we operationalized acute
glycemia as the AUC of the blood sugar profile postadmission. Interestingly, patients with
a poor and a good outcome did not differ in acute glycemia, neither in admission glucose
nor in glycemic AUC. Additionally, AUC was not significantly associated with a poor
outcome in logistic regression analysis. In our cohort, neither admission glucose nor AUC
correlated with the NIHSS at admission. Accordingly, our data do not support the theory
of hyperglycemic derailment in the context of severe stroke in patients with DM. It must be
considered that revascularization therapy can result in a reversal of initially severe stroke
symptoms. Nevertheless, in our cohort, patients with a poor outcome more frequently
underwent acute therapy and thrombectomy, implying only moderate success. On the
other hand, in lacunar stroke, mild hyperglycemia might be even favorable [19]. However,
according to our results, we cannot attribute a poor stroke outcome to acute hyperglycemia.

4.2. The Foot of the Iceberg: Chronic Hyperglycemia

Meanwhile pre-stroke glycemic control might predict stroke outcome [20-23]. In our
study, patients with good and poor outcomes differed only in SAF regarding glycemic
variables, and SAF was the only glycemic predictor significantly associated with a poor
outcome, even when adjusting for age and NIHSS. An increase in SAF in one AU was
associated with an approximately three-fold risk of a poor outcome on day 90 (OR 2.74).
The SAF values we measured lay slightly above the range of age-adapted reference values
for patients with DM [4], reflecting the specific vascular risk in our cohort of acute stroke
patients. We deduce that SAF reflecting long-term glycemic control is supposed to have a
higher impact on stroke outcome than HbAlc or acute glycemia. Possible mechanisms by
which chronic hyperglycemia affects stroke outcome include preexisting vascular damage
on the macro- and microvascular level impairing collateral flow. Regarding the molecular
level, accumulated AGEs are supposed to mediate a self-perpetuating chronic vascular
inflammation [24], mainly by interaction with their receptor RAGE (receptor for advanced
glycation end products), leading to endothelial dysfunction and arterial stiffness [25],
hypercoagulation, diminished fibrinolysis and vasoconstriction [26]. An excess of AGE-
RAGE interaction-related downstream inflammatory markers is likely to increase poststroke
inflammation, which is known to increase ischemic damage within the brain but also leads
to systemic effects such as cardiac injury [27]. This effect seems to be most important
in cardioembolic stroke, which was the most frequent subtype in our sample without
having a statistical effect on outcome, likely due to a limited sample size. Additionally,
AGE-RAGE-mediated effects may promote ICH by blood-brain-barrier disruptions [28]
and may increase susceptibility to infectious complications [29]. In our sample, patients
with a poor outcome and with higher SAF levels showed more infectious [30] and other in-
hospital complications, which are known to impair long-term outcome poststroke [13] on a
sensorimotor but also on a cognitive level, especially when combined with renal failure [31].
It seems reasonable that patients with a good outcome and lower SAF benefitted from
a better long-term metabolic control prior to the index stroke. Our cohort reflects this
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point, as patients with a good outcome were more often under BOT, implying a more
sophisticated antidiabetic treatment.

We can assume that SAF offers an insight to the extent of the diabetic burden being
predictive for stroke outcome in DM, and HbA1c remains the “tip of the iceberg”.

5. Limitations

This was a monocentric study in a local urban population, and a certain selection bias
concerning standards of acute stroke treatment and further rehabilitation can be expected.
The limited number of included patients a priori impeded an exhaustive prediction model
with respect to additional potential predictors. The follow-up interviewer was not blinded
for glycemic values, allowing a certain rater bias. The measuring of acute glycemia was
not continuous but based on blood sugar profile. Still, we found SAF to have the highest
predictive value on stroke outcome amongst glycemic variables when controlling for age
and severity of stroke. An unexpected finding from our cohort was an important sex-
dependent difference in stroke outcome. A possible explanation could be higher age and
higher premorbid dependency in female patients [32].

6. Conclusions and Future Perspectives

According to our results, SAF, representing long-term glycemic memory;, is a signif-
icant predictor of a poor functional outcome after ischemic stroke in patients with DM
and exceeds HbAlc and acute hyperglycemia in its predictive value. SAF might be a
useful tool to identify patients at high risk of complications and poor outcome requiring
special attention (for example, preventive antibiotics, prolonged monitoring, adapted an-
tithrombotic treatment). Our study must be considered preliminary. Larger neurovascular
patient populations need to be investigated for SAF in the form of registries to create a
more exhaustive prediction model and to establish a sensitive and specific cut-off value to
distinguish patients at high risk of a poor outcome.

Regarding potential specific therapeutic interventions in the context of acute stroke, it
might not be possible to reverse the weight of an iceberg that has accumulated over the
years. However, to remain with the allegory, investigating water for potentially assailable
key point biomarkers along the RAGE axis could offer future opportunities. For example,
soluble RAGE showed a promising ability to counterbalance endothelial dysfunction in a
mouse model in the short term [33]. Along these lines, future research is needed.
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Abstract: Cardiac fibrosis is the basis of structural and functional disorders in patients with diabetes
mellitus (T2DM). A wide range of laboratory and instrumental methods is used for its prediction.
The study aimed to identify simple predictors of cardiac fibrosis in patients with T2DM based on the
analysis of circulating fibrosis biomarkers and arterial stiffness. The study included patients with
T2DM (n = 37) and cardiovascular risk factors (RF, n = 27) who underwent ECHO, cardiac magnetic
resonance imaging (MRI), pulse wave analysis (PWV), reactive hyperemia (RH), peripheral arterial
tonometry, carotid ultrasonography, and assessment of serum fibrosis biomarkers. As a control group,
15 healthy subjects were examined. Left ventricular concentric hypertrophy was accompanied by
an increased serum galectin-3 level in T2DM patients. There was a relationship between the PICP
and HbAlc levels in both main groups (R2 = 0.309; p = 0.014). A negative correlation between PICP
level and the global longitudinal strain (GLS) was found (r = —0.467; p = 0.004). The RH index
had a negative correlation with the duration of diabetes (r = —0.356; p = 0.03), the carotid-femoral
PWV (r = —0.371; p = 0.024), and the carotid intima-media thickness (r = —0.622; p < 0.001). The
late gadolinium-enhanced (LGE) cardiac MRI was detected in 22 (59.5%) T2DM and in 4 (14.85%)
RF patients. Diabetes, its baseline treatment with metformin, HbAlc and serum TIMP-1 levels, and
left ventricle hypertrophy had moderate positive correlations with LGE findings (p < 0.05). Using
the multivariate regression analysis, increased TIMP-1 level was identified as an independent factor
associated with cardiac fibrosis.

Keywords: cardiac fibrosis; diabetes mellitus; pulse wave velocity

1. Introduction

Cardiovascular (CV) complications remain the leading cause of premature death and
disability in type 2 diabetes mellitus (T2DM) [1]. According to the population-based studies,
patients with T2DM have a 2-5-fold increased CV risk when combined with traditional risk
factors such as hypertension, dyslipidemia, advanced age, obesity, and smoking [2]. At the
same time, obesity is among the strongest predictors of T2DM development. T2DM pro-
motes pro-inflammatory and prothrombotic signaling, resulting in endothelial dysfunction
and atherogenesis acceleration associated with CV events [3].

Heart failure seems to become one of the most prevalent and serious T2DM conse-
quences, being considered either manifestation of diabetic cardiomyopathy or macrovascu-
lar ischemic heart disease or both [4]. Left ventricular (LV) hypertrophy with myocardial
fibrosis is a typical sign of diabetic cardiomyopathy. Echocardiographic (ECHO) parameters
of LV diastolic function and global longitudinal strain (GLS) are widely used as nonspecific
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surrogate markers of myocardial fibrosis in clinical practice [5,6]. Unlike ECHO as a screen-
ing tool for functional LV assessment, cardiac magnetic resonance imaging (MRI) is a robust
non-invasive method for myocardial fibrosis detection and quantification. Despite cardiac
MRI’s potential benefits, its real implementation is limited by low availability and high
cost [7]. Plasma-circulating biomarkers are also widely used for indirect cardiac fibrosis
assessment; however, their diagnostic value is still a matter of debate [8,9]. T2DM is one of
the major determinants of accelerated arterial stiffening along with hypertension and age.
It is suggested that cardiac fibrosis in T2DM patients is associated with increased arterial
wall stiffness as well. The increased arterial stiffness has been shown significantly impact
LV afterload and, therefore, is crucial for the development of heart failure with preserved
ejection fraction (HFpEF) [10,11].

The elaboration of non-invasive markers predicting cardiac fibrosis is of essential
importance since fibrosis is strongly associated with CV events and may require more
aggressive treatment.

The present study aimed at identifying simple predictors of cardiac fibrosis in patients
with T2DM based on the analysis of circulating fibrosis biomarkers and arterial stiffness.
T2DM has been shown to be associated with tissue fibrosis in general and cardiac fibrosis
in particular [12]. Plasma concentrations of circulating biomarkers that may characterize
the presence and extent of fibrosis are associated with other morbidity and risk factors,
such as obesity and hypertension. Moreover, their reference level should be evaluated in
healthy subjects for the assessment of their significance when changed. Therefore, along
with T2DM patients, we included two more subgroups: subjects without T2DM but with
cardiovascular risk factors and healthy controls.

2. Materials and Methods
2.1. Study Population

The cross-sectional study recruited subjects from the outpatient clinic of the Almazov
National Medical Research Centre between August 2019 and July 2020. Subjects fulfilling
inclusion criteria were invited into the study by a treating physician (screening) and referred
to an investigator. The subjects were divided into three groups: T2DM patients, patients
with CV risk factors (RF), and healthy control (HC) subjects.

The inclusion criteria for the T2DM group were the following: glycated hemoglobin
(HbAlc) level > 6.5% at screening and T2DM diagnosed >1 year ago. The RF group inclusion
criteria were the combination of two common risk factors: obesity (BMI > 30.0 kg / m?) and
hypertension (office blood pressure level > 140/90 mm Hg) or dyslipidemia (the history of
LDL cholesterol > 3 mmol/L). The HC group comprised blood donors without a history of
CV disease.

The exclusion criteria were changes in pharmacological treatment (drugs and/or
doses) within 1 month; inadequate blood pressure control (>140/80 mm Hg at office visits);
a history of coronary artery disease, myocardial infarction, or TIA /stroke; LV ejection
fraction < 50%; an implanted pacemaker or cardioverter-defibrillator; ongoing infectious or
neoplastic diseases; documented osteoporosis or osteopenia; pregnancy or breastfeeding;
any intervention or surgery within 6 months. The study was approved by the Ethics
Committee of the Almazov Centre (No. 05072019 dated 8 July 2019), and all participants
signed an informed consent form before the inclusion. The baseline evaluation included
medical history and physical examination, routine laboratory tests, circulating fibrosis
biomarkers, endothelial function assessment, pulse wave analysis, carotid intima-media
thickness, and echocardiography. Contrast-enhanced cardiac MRI was performed in the
T2DM and RF groups. The HC group underwent biomarker analysis only.

The primary study assessment measure included the evaluation of a possible associa-
tion between cardiac fibrosis as detected by cardiac MRI, artery stiffness, and circulating
biomarkers. The secondary study analysis was the evaluation of factors independently
associated with the presence of cardiac fibrosis.
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This observational study was registered as a part of an umbrella project #075-15-2020-
800 by the Ministry of Science and Higher Education. The local legislation does not require
observational studies registration in public databases.

2.2. Blood Assays

Peripheral venous blood samples were obtained at the first visit. Serum samples
were obtained following centrifugation at 2500x g for 10 min at 4 °C. Samples were
aliquoted and stored at —80 °C until required. Lab parameters included HbAlc (Tina-
Quant Hemoglobin Alc Gen.3, Cobas Integra 400+, Roche Diagnostics GmbH, Mannheim,
Germany), creatinine, lipids (Cobas Integra 400+, Roche Diagnostics GmbH, Mannheim,
Germany), high-sensitivity C-reactive protein by the immunoturbidimetric CRP-Latex
assay (Tina—quant® CRP latex, Cobas Integra 400+, Roche Diagnostics GmbH, Mannheim,
Germany), NT-proBNP (Elecsys, Roche Diagnostics GmbH, Mannheim, Germany), and
soluble suppression of tumorigenicity 2 sST2 (Presage ST2 kit, Critical Diagnostics, CA,
USA). Carboxy-terminal propeptide of collagen 1 (PICP, USCN Life Science, Wuhan, China),
amino-terminal propeptide of collagen 3 (PIIINP, USCN Life Science, Wuhan, China),
carboxy-terminal telopeptide of collagen 1 (ICTP, MyBioSource, San Diego, CA, USA),
transforming growth factor 3-1 (TGFf1, R&D systems Inc., Minneapolis, MN, USA), matrix
metalloproteinase 9 (MMP9, R&D systems Inc., Minneapolis, MN, USA), tissue inhibitor of
metalloproteinase 1 (TIMP1, R&D systems Inc., Minneapolis, MN, USA), and galectin-3
(R&D systems Inc., Minneapolis, MN, USA) were quantified using a specific enzyme-linked
immunosorbent assay (ELISA, microplate reader “Bio-Rad 680", Bio-Rad Laboratories
Inc, Hercules, California, USA) as a serum biomarker of fibrosis. These biomarkers were
selected based on previous publications demonstrating their role in cardiac fibrosis [8].

2.3. Blood Pressure Measurement

Office blood pressure (BP) was measured with a calibrated automatic sphygmo-
manometer (OMRON M3 Expert, Omron Dalian, Kioto, Japan). We used a BP cuff that fits
the participants’” arm circumference. Three measurements were performed in a seated posi-
tion after a 5-min rest with a 5-min interval. The average value of the two last measurements
was calculated.

2.4. Pulse Wave Analysis

BP waveforms were recorded on the carotid and femoral arteries using applanation
tonometry (SphygmoCor, AtCor Medical, Sidney, Australia) in standardized conditions
(supine position, quiet atmosphere, and temperature 24 °C). Caffeine and smoking were
not allowed within 3 h before evaluation. Pulse wave velocity (PWV) was calculated
automatically according to the patient’s height, weight, and brachial BP assessed before the
procedure. The cut-off value for carotid-femoral PWV was 10 m/s [13].

2.5. Reactive Hyperemia Peripheral Arterial Tonometry

Endothelial function was assessed using peripheral arterial tonometry with the Endo-
PAT2000 device (Itamar Medical, Caesarea, Israel). Reactive hyperemia index (RHI) was
evaluated according to the previously reported protocol [14]. RHI < 1.67 was considered a
sign of peripheral arterial endothelial dysfunction [14].

2.6. Echocardiography

Echocardiography was performed using the Vivid 7 system (GE Healthcare, Chicago,
IL, USA) according to a standard protocol with an assessment of global longitudinal
strain (GLS) and the ratio of early diastolic transmitral flow velocity to the average peak
early diastolic mitral annular velocity (E/e’) as a measure of filling pressures [14,15]. LV
mass/body surface area >115 g/m2 in men and >95 g/rn2 in women was defined as LV
hypertrophy [15,16].
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2.7. Cardiac MRI

Cardiac MRI was carried out using a high-field 3 T MRI scanner MAGNETOM Trio
A Tim System 3T (Siemens Healthineers, Erlangen, Germany) in an ECG-synchronized
mode. The procedure was performed according to the standard protocol, which included
late gadolinium enhancement (LGE) sequences using PSIR (Phase-sensitive Inversion Re-
covery) sequences with an inversion time of 200 ms, a repetition time of 8.5 ms, and an
echo time of 3.5 ms, after 10 min gadopentetate dimeglumine (0.2 mmol/kg, Gadovist,
BayerHealthcare, Berlin, Germany) administration. All analyses were performed by an
independent reader. Left ventricular function was evaluated semi-automatically using
commercially available software (Syngo Via, Siemens Healthineers, Erlangen, Germany)
according to ACCF/ACR/AHA /NASCI/SCMR recommendations [17]. Following auto-
matic contour detection of the LV endocardium, all borders were corrected manually. The
extent of LGE was calculated semi-quantitatively by counting the number of LV segments
showing visually-determined LGE. LGE volume was calculated by summation of the LGE
areas in all short-axis slices, which was expressed as a volumetric proportion of the total
LV myocardium using a similar approach previously described [18]. Analysis of LGE was
performed visually in a short-axis stack and a four-chamber view for the presence of LGE
using the 17-segment model of the American Heart Association (AHA) [19].

2.8. Carotid Ultrasonography

Carotid ultrasound studies were performed by high-resolution B-mode ultrasonogra-
phy (Vivid7, GE Healthcare, Chicago, IL, USA) with a linear array broadband transducer
7 MHz. The standard protocol included bilateral measurements at a distance of 1 cm from
the bifurcation of the common carotid artery along its posterior wall in three positions
(anterior, middle, and posterior longitudinal). The intima-media thickness (IMT) was
defined as the distance between the first and second echogenic lines of the artery. Then, the
mean IMT on both sides was calculated as an arithmetic mean of three dimensions. The
subclinical vascular damage was detected if IMT > 0.9 mm.

2.9. Statistical Analysis

Data are presented as mean (+standard deviation) or median (interquartile range) for
normal and abnormal distributed continuous variables, respectively, whereas categorical
data were expressed as frequencies and percentages. Differences in baseline characteristics
were evaluated using Student’s t-test, Mann-Whitney U test, or Chi-square test, depending
on the variable category. The one-way ANOVA and post hoc (Tukey-Kramer test) were also
used for the comparison of parameters in three groups. Spearman correlation was used to
evaluate relationships involving ordinal variables. Statistical significance was considered
atp <0.05. A correlation matrix incorporating all evaluated clinical, laboratory parameters,
and serum biomarkers was created. Those factors that had a statistically significant correla-
tion with MRI-LGE-positive findings were studied using logistic regression. When factors
had a significant cross-correlation (p > 0.65), one of them was selected for the multivariate
regression analysis based on a higher correlation coefficient with LGE positivity. Factors in-
dependently associated with MRI-detected fibrosis were evaluated using two multivariate
binary logistic regression models: the first aimed at the inclusion of all factors significantly
correlated with MRI-detected fibrosis and incorporated a combination of clinical, echocar-
diography, and biochemical markers; the second model aimed at the inclusion of only
additional factors with moderate-to-significant correlation (serum biomarkers and pulse
wave velocity). We suggested that the latter model would be practically applicable for the
identification of cardiac-fibrosis-positive serum biomarkers in the mixed population. The
regression analysis was performed for the total study population and for T2DM patients
separately. IBM software SPSS Version 23 (SPSS, Inc., Chicago, IL, USA) and Statistica 13.0
(Statsoft, Tulsa, OK, USA) were applied for statistical analysis.
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3. Results
3.1. Patient Baseline Characteristics

The study population comprised 79 subjects: 37 subjects in the T2DM group (age
ranging between 44 and 70 years), 27 subjects in the risk factors (RF) group (age 40-68 years),
and 15 subjects in the healthy control (HC) group (age 50-65 years). The baseline subjects’
characteristics are summarized in Table 1. There were no differences in age, sex, blood
pressure (BP) level, and smoking status between the T2DM and RF groups. Patients without
diabetes tended to have a higher body mass index (BMI) with the same waist circumference,
but statistically it was not significant. All hypertensive patients were receiving angiotensin-
converting enzyme inhibitors (ACEI) or angiotensin II receptor blockers (ARB). Although
statistically borderline, the prevalence of carotid intima-media thickness (IMT) > 0.9 mm
tended to be higher in T2DM patients (19% vs. 3.7% in the RF group, p = 0.052), whereas the
carotid-femoral PWV > 10 m/s was significantly more prevalent in the T2DM group (32%
vs. 3.7%, respectively; x2 = 8.65; p = 0,003). Despite a significantly lower reactive hyperemia
index in the diabetic patients, the percentage of patients with reactive hyperemia index
(RHI) < 1.67 did not differ between the T2DM and RF groups: 65% vs. 52%, respectively
(p = 0.296). The RHI had a negative correlation with the duration of diabetes (r = —0.356;
p = 0.03), the carotid-femoral PWV (r = —0.371; p = 0.024), and the carotid IMT (r = —0.622;
p <0.001). A negative correlation between the RHI and carotid IMT was observed in the RF
group (r = —0.558; p = 0.002). There was no difference in the estimated glomerular filtration
rate (eGFR) between the groups.

Table 1. Baseline characteristics of study subjects.

T2DM Group RF Group HC Group
Variables n=37 n=27 n=15 p 12-Value p 23-Value
1 2 3
Age, years 575+ 8.4 54.0 + 89 55.6 + 3.6 0.122 0.378
Male, 1 (%) 17 (46) 12 (44) 7 (47) 0.905 0.735
BMI, kg/m 329465 35.6 £ 2.7 23.8+2.0 0.051 <0.001
Waist circumference, cm 1094 £+ 14.0 113.6 == 8.9 0.186
Male 111.5 + 14.3 1182 +8.7 0.166
Female 107.8 4+ 14.0 1099 +74 0.598
T2DM duration, years 9.0 [5.0-12.0] -
Hypertension, n (%) 21 (57) 19 (70) 0 0.058
Current smoker, 11 (%) 12 (32) 11 (41) 3(20) 0.792 0.071
Office systolic BP, mm Hg 131 £17 130 £ 17 118 £9 0.673 0.002
Office diastolic BP, mm Hg 77 £ 10 81 + 14 75+ 8 0.415 0.130
Carotid-femoral PWV, m/s 99+22 794+17 0.0002
Carotid IMT, mm 0.715 £+ 0.374 0.618 £ 0.113 0.535 + 0.114 0.010 <0.001
RHI 1.50 + 0.35 1.70 +0.31 0.019
eGFR, mL/min/1.73 m2 88.4 +15.8 90.1 £15.9 0.550
Echocardiography
LA volume index, mL/m? 36.7 + 6.8 32.7 £ 6.0 0.016
LV mass index, g/m2 120.8 £+ 32.0 102.0 +23.3 0.008
Male 131.9 + 38.6 111.8 +24.1 90.3 +13.4 0.170 0.002
Female 111.3 +21.9 93.6 +£19.7 0.014
Relative wall thickness 0.448 + 0.050 0.434 + 0.048 0.813
LV EE, % 60.6 £5.5 60.9 +3.3 0.603
E/e 82+19 73+12 0.021
GLS, % —18.0 £ 3.0 —191+21 0.110
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Table 1. Cont.

T2DM Group RF Group HC Group
Variables n =237 n=27 n=15 p 12-Value p 23-Value
1 2 3
Medication

Metformin, n (%) 22(59) 1(4) <0.001

DPP-4 inhibitors, 1 (%) 5(13.5) _ _

Sulphonylureas, 1 (%) 2(5.4) _ _

Insulin, 1 (%) 8 (21.6) _ _
ACEI or ARB, 1 (%) 21 (56.8) 19 (70) 0.058
Low-dose aspirin, 1 (%) 13 (48.1) 4(14.8) 0.002
Statins, 1 (%) 18 (48.6) 4(14.8) <0.01

Data are presented as mean + SD or median (interquartile range, IQR) for normal and abnormal distributed
continuous variables. Categorical data were expressed as numbers of subjects and percentages. RE—risk factors;
HC—healthy control; BMI—body mass index; BP—blood pressure; IMT—intima-media thickness; RHI—reactive
hyperemia index; eGFR—estimated glomerular filtration rate (MDRD derived); LA—left atrium; LV—left ventricle;
EF—ejection fraction; E/e’—the ratio of mitral inflow early diastolic velocity to the average peak early diastolic
mitral annular velocity; GLS—global longitudinal strain; DPP-4—dipeptidylpeptidase-4; ACEI—angiotensin-
converting enzyme inhibitor; ARB—angiotensin II receptor blocker; BMI—body mass index; PWV—pulse wave
velocity; p 2—comparison between T2DM and RF groups; p >*—comparison with healthy controls.

3.2. Laboratory Measurements

There was a significant difference in serum lipid levels between the groups. Thus, RF
patients were characterized by higher mean low-density cholesterol (LDL-C) intima-media
thickness and triglyceride levels (Table 2). Surprisingly, the HC subjects had similar lipid
levels when compared with the RF group. Serum Carboxy-terminal propeptide of colla-
gen 1 (PICP) and amino-terminal propeptide of collagen 3 (PIIINP) levels as the collagen
metabolism markers were significantly increased in the T2DM and RF groups compared to
the HC subjects. Among T2DM patients, statin therapy was associated with a lower PICP
level: 129 ng/mL [QIR: 115-146] vs. 192 ng/mL [QIR: 169-195] in patients without statins
(p < 0.001). Interestingly, there were no differences in PIIINP levels between the T2DM
and RF groups. Concentrations of matrix metalloproteinase 9 (MMP9), tissue inhibitor
of metalloproteinase 1 (TIMP1), and carboxy-terminal telopeptide of collagen 1 (ICTP)
were the lowest in the HC group. However, T2DM patients had higher TIMP1 and ICTP
levels. The increased soluble suppression of tumorigenicity 2 (sST2) level was associated
with an increase in IMT in both T2DM (r = 0.361; p = 0.028) and RF patients (r = 0.499;
p = 0.008), presumably due to negative effects on endothelial function and RHI as its marker
(R? = 0.357; p = 0.004). Higher serum TGFf1 levels were revealed in T2DM and RF groups
compared to the HC subjects, but serum TGFf1 had a significant positive correlation with
BMI (body mass index) (r = 0.564; p = 0.0002), waist circumference (r = 0.432; p = 0.008) and
a negative correlation with eGFR (r = —0.471; p = 0.008) only in the T2DM group. Serum
galectin-3 level, as well as TGF, was predominantly increased in T2DM patients. There
were no gender differences in the profile of serum fibrosis biomarkers.

3.3. Echocardiography and Cardiac MRI Analysis

Left ventricle (LV) hypertrophy was revealed in 30 diabetic (81%) and 9 (33%) RF patients
(x2 =15.4; p = 0.0005), including 25 (67.6%) and 5 (18.5%) patients (p = 0.0005) with concentric
LV hypertrophy, respectively. The LV concentric hypertrophy was accompanied by an in-
creased serum galectin-3 level in T2DM patients: 9.92 ng/mL [QIR: 8.38-12.96] vs. 8.14 ng/mL
[QIR: 6.58-9.85], p = 0.039. Left atrial (LA) enlargement (index LA volume > 34 mL/m?)
was noted in 21 (56.8%) T2DM and 8 (29.6%) RF patients (p = 0.094). In T2DM patients,
LA enlargement was associated with a higher serum PIIINP level (r = 0.434; p = 0.007).
A negative correlation between PICP level and the global longitudinal strain (GLS) was
found (r = —0.467; p = 0.004). This fact is especially interesting since we revealed the
relationship between PICP and HbA1lc levels in both main groups (R2 = 0.309; p = 0.014).
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Another marker of diastolic dysfunction such as the E/e’ ratio correlated with HbAlc
(r=0.426; p = 0.029) and TIMP1 (r = 0.543; p = 0.004) levels only in RF patients.

Table 2. Lab tests and fibrosis biomarkers.

T2DM Group RF Group HC Group
Variables n=37 n=27 n=15 p 12-Value p >3-Value
1 2 3
Total cholesterol, mmol /L 4.84 £097 540 + 1,11 452 +1,24 0.056 0.095
HDL-C, mmol/L 1.11+£0.26 1.15+0.28 1.16 +0.31 0.757 0.62
LDL-C, mmol/L 2.67 £091 3.49 +£0.92 2.62 £+ 0.98 0.002 0.017
Triglycerides, mmol/L 2.58 £1.07 1.88 +0.78 1.67 +0.93 0.007 0.22
hsCRP, mg/L 2.55[1.21-4.78] 3.84 [1.99-5.70] 1.67 [0.73-2.96] 0.185 0.11
HbAlc, % 89+14 5.74 + 0.85 - <0.001 -
NT-proBNP, pg/mL 91 [16-148] 27.5 [15.7-47.6] - <0.001 -
PICP, ng/mL 136.0 [117.2-166.0] 108.4 [93.2-148.8] 84.0 [69.0-98.3] 0.006 0.001
PIINP, ng/mL 5.74 [4.43-6.77] 5.09 [4.44-5.96] 3.99 [3.27-4.27] 0.265 0.002
sST2, ng/mL 19.1 [14.9-26.7] 13.2[10.2-21.8] 12.6 [10.3-16.2] 0.016 0.912
MMP-9, ng/mL 794 [497-1015] 490 [341-911] 277 [253-319] 0.084 0.002
TIMP-1, ng/mL 188 [171-237] 152 [137-185] 141 [120-164] 0.004 0.023
TGF-$1, ng/mL 35.7 [24.5-48.6] 29.6 [15.3-42.2] 12.8 [11.9-18.6] 0.067 <0.001
galectin-3, ng/mL 9.5[7.8-12.5] 7.8 [6.8-9.9] 6.9 [6.0-7.2] 0.029 0.010
ICTP, ng/mL 5,25 [3.5-6.8] 3.49 [3.03-5.89] 2.98 [2.68-3.97] 0.046 0.030

Data are presented as mean + SD or median (interquartile range, IQR) for normal and abnormal distributed con-
tinuous variables. Categorical data were expressed as numbers of subjects and percentages. HDL-C—high-density
lipoproteins; LDL-C—low-density lipoproteins; hsCRP—high-sensitive C-reactive protein; HbAlc—glycated
hemoglobin Alc; NT-proBNP; RE—risk factors; HC—healthy control; PICP—carboxy-terminal propeptide of
collagen 1; PIIINP—amino-terminal propeptide of collagen 3; sST2—soluble suppression of tumorigenicity 2;
MMP-9—matrix metalloproteinase 9; TIMP-1—tissue inhibitor of metalloproteinase 1; TGF-B1—transforming
growth factor B-1; ICTP—carboxy-terminal telopeptide of collagen 1. p 2 and p 2*—compression between groups.

LGE was detected in 22 (59.5%) T2DM patients and in 4 (14.85%) RF patients. LGE
was found predominantly in the anteroseptal and inferior mid-wall and basal segments
(Figure 1). By semi-quantitative assessment, LGE volume was 13% [QIR: 9-14%] in T2DM
patients, while among RF patients only 4% [QIR: 2-4%] (p = 0.002).

Figure 1. Examples of cardiac MRI with and without LGE: (a) a T2DM patient with positive LGE;
(b) RF patient with positive LGE; (c) RF patient without LGE; the white arrows indicate LGE areas in
the septum; (a) left lateral LV wall (a,b).

Diabetes, its baseline treatment with metformin, HbAlc, and serum TIMP-1 levels,
and LV hypertrophy had moderate positive correlations with LGE-MRI findings (p < 0.05).
Although statistically significant, statin treatment, BMI, PWV, and galectin-3 serum level
had a weak positive correlation with LGE positivity. LDL-C level had a weak negative
correlation with cardiac MRI-detected fibrosis. Univariate logistic regression coefficients are
presented in Table 3. The multivariate regression analysis identified that in the first model,
TIMP-1 level was the only independent factor associated with cardiac fibrosis. The second
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model identified TIMP-1 levels and galectin-3 levels as factors independently associated
with cardiac fibrosis (Tables 4 and 5). In T2DM patients, the regression analysis confirmed
significant associations of TIMP-1 and PWV with cardiac fibrosis, and the multivariate
model identified TIMP-1 as the only factor independently associated with LGE-positive
findings (Tables 3 and 4).

Table 3. Univariate logistic regression analysis of factors associated with cardiac fibrosis as detected

by MRI
Estimate Standard Error Wald Stat. Lower CL—95. %  Upper CL—95. % p
All subjects (T2DM+RF+HC groups)
T2DM: Yes 1.101 0.32 11.807 0.473 1.728 <0.001
BMI, kg/m2 —0.104 0.053 3.832 —0.209 0.0001 0.05
Metformin baseline 1.06 0.305 12.042 0.461 1.659 <0.001
therapy: Yes

Statins: Yes 0.785 0.281 7.794 0.234 1.335 0.005
PWV, m/s 0.327 0.135 5.898 0.063 0.591 0.015
RHI —1.398 0.8 3.053 —2.966 0.17 0.081

LV hypertrophy 0.799 0.299 7.161 0.214 1.384 0.008
HbAlc, % 0.52 0.167 9.682 0.192 0.848 0.002
LDL-C, mM/L —0.534 0.294 3.306 —1.109 0.042 0.069
TIMP-1, ng/mL 0.018 0.006 8.438 0.006 0.03 0.004
Galectin-3, ng/mL 0.225 0.09 6.159 0.047 0.403 0.013

T2DM patients only

PWV, m/s —0.351 0.194 3.261 —-0.73 0.03 0.042
TIMP-1, ng/mL —0.02 0.008 5.187 0.036 —0.003 0.05

Table 4. General multivariate regression model of cardiac fibrosis predictors (as detected by MRI).

Estimate Standard Error Wald Stat. Lower CL—95, %  Upper CL—95, % P
All subjects (T2DM+RF+HC groups)
Intercept —5.596 2.189 6.533 —9.887 —1.304 0.01
PWV,m/s 0.12 0.175 0.471 —0.223 0.464 0.492
TIMP-1, ng/mL 0.014 0.007 4.042 0.0003 0.028 0.044
Galectin-3, ng/mL 0.136 0.109 1.57 -0.077 0.349 0.21
T2DM: Yes 0.67 0.426 2.466 —0.166 1.506 0.116
LV hypertrophy: Yes 0.524 0412 1.623 —0.282 1.331 0.203
T2DM patients only

Intercept 6.607 2.778 5.657 1.163 12.052 0.02
PWV, m/s —0.353 0.218 2.623 —0.780 0.074 0.12
TIMP-1, ng/mL —0.018 0.009 4.596 —0.035 —0.002 0.03

Table 5. Multivariate model with additional factors only that predicted cardiac fibrosis in all subjects

(as detected by MRI).
Estimate Standard Error Wald Stat. Lower CL—95, % Upper CL—95, % p
All subjects (T2DM+RF+HC groups)
Intercept —7.128 1.996 12.749 —11.04 -3.215 0.0004
PWV, m/s 0.208 0.155 1.796 —0.096 0.512 0.18
TIMP-1, ng/mL 0.017 0.007 6.265 0.004 0.029 0.01
Galectin-3, ng/mL 0.189 0.099 3.648 —0.005 0.384 0.049
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4. Discussion

Myocardial fibrosis is usually assessed by an easy scoring system using late gadolinium-
enhanced cardiac magnetic resonance (LGE-MRI) imaging. This method is widely used
for the risk stratification of patients with cardiovascular disease, yet it is the most accurate
method to reveal replacement myocardial fibrosis; however, it is less sensitive in interstitial
fibrosis detection. LGE has been reported to predict death and myocardial infarction in a
cohort of 1969 patients with and without T2DM [20].

The univariate logistic regression identified the association of T2DM, glycated hemoglobin
level, and metformin intake with LGE-positive MRI findings, emphasizing the important
role of impaired glucose metabolism in the development of myocardial fibrosis. Previously,
an in vitro study has shown that hyperglycemia is a powerful stimulator of fibroblast
proliferation, myofibroblast differentiation, and extracellular matrix proteins’ secretion [21].

T2DM patients have a higher prevalence of increased LV mass index, concentric LV
hypertrophy in combination with LA enlargement, and increased E/e’ ratio compared with
the RF group. This confirms a link between LV hypertrophy with positive LGE and might
be associated with poorly controlled T2DM and higher HbAlc levels. LV hypertrophy with
diastolic dysfunction is typical for diabetic cardiomyopathy but is also widely prevalent
in the elderly population, females, and patients with hypertension and obesity [22,23].
Importantly, we have not found any association between cardiac remodeling and the
above-mentioned risk factors in T2DM patients and suggest that this could be explained
in part by limited sample size and previous antihypertensive therapy. Moreover, T2DM
and RF groups included obese patients, and obesity is one of the pivotal contributors to
myocardial fibrosis [24]. This fact is confirmed by the results of the large Multi-Ethnic
Study of Atherosclerosis study, where an increased BMI has been shown to be associated
with the concentric hypertrophy by cardiac MRI [25].

Pulse wave velocity (PWV) is widely used for arterial stiffness measurement [26].
According to the univariate analysis, cardiac fibrosis is associated with TIMP and galectin-3
levels, as well as with the carotid-femoral PWV. Adjusted for age and blood pressure,
T2DM duration appears to be the most important contributor to arterial stiffness [27].
The relationship between arterial stiffness and the severity of LV diastolic dysfunction
has been confirmed in a wide variety of cardiovascular diseases [28,29]. Recently, PWV
has been linked to different cardiovascular events, including CV mortality [30]. The
association between obesity and arterial stiffness confirms the results of the previous study
by Desamericq et al. [31]. The correlation between positive LGE and PWV observed in our
study supports the conception of common pathophysiological mechanisms of cardiac and
vascular remodeling in T2DM. However, according to the multivariate analysis, PWV is
not an independent predictor of cardiac fibrosis, while circulating TIMP1 and galectin-3 are
strongly associated with cardiac fibrosis being active participants in the pathophysiology
of heart and vascular remodeling.

Studies on galectin-3, a protein of the lectin family secreted by activated macrophages
and fibroblasts, open novel opportunities for non-invasive cardiac remodeling monitoring
in T2DM patients. Previous studies have identified higher circulating galectin-3 levels
predicting the onset of HFpEF [32,33]. In addition to LGE-MRI, galectin-3 seems to play
an important role in the sudden death risk stratification of heart failure patients [34]. Our
study confirms the predictive value of galectin-3 in the diagnosis of cardiac fibrosis.

The circulating serum biomarkers of collagen synthesis and degradation are used
for indirect myocardial fibrosis assessment [8]. A distinctive feature of T2DM and RF
patients included in this study is the high PIIINP level (as a marker of III collagen synthesis
activation) [35]. Circulating PIIINP can serve as a marker of large vessel remodeling [36].
Histological studies have shown increased PICP and PIIINP levels associated with inter-
stitial and perivascular cardiac fibrosis in T2DM, regardless of the presence of coronary
atherosclerosis and hypertension [37]. In our study, elevated serum PIIINP levels were asso-
ciated with LA enlargement as a marker of LV diastolic dysfunction. Opposite, a decrease
in the GLS as an early marker of LV systolic dysfunction was related to the circulating PICP
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level. An interesting finding is a reduction in PICP level as a marker of type I collagen
synthesis during statin therapy. We speculate that low adherence to statin therapy might be
associated with an increase in heart failure and chronic kidney disease risk among T2DM
patients [38,39].

The presence of a positive correlation between BMI and serum TGF-f31 level, a
paracrine regulator of extracellular matrix synthesis, supports the consideration of obesity
as a myocardial fibrosis accelerator. A significant increase in TIMP1 and ICTP levels has
been identified in both groups. Previously, direct relations between plasma TIMP-1 levels
and all major CVD risk factors, including male gender, have been demonstrated in the
Framingham heart study [40]. It should be noted that obese patients in our study are
characterized by an increased HbAlc level, and the higher serum TIMP1 concentration
is associated with elevated E/e’ rati, as a marker of LV diastolic dysfunction. In a recent
study, TIMP1 has been shown to activate adipogenesis by accelerating lipid accumulation,
adipocyte differentiation, and pro-inflammatory cytokine production [41]. Thus, in T2DM
patients, TIMP1 may be involved in the target organ damage due to its role in adipogenesis,
systemic inflammation, and fibrosis. We suggest this is a major reason why among the
numerous factors, TIMP1 is an independent predictor of cardiac fibrosis.

Study Limitations

The study was performed on a limited non-random patient group who were referred
to the Almazov Centre due to poor glycemic control. Both cardiovascular (antihypertensive
and hypolipidemic) and antidiabetic therapy were not standardized before patient inclusion.
There was a significant overlap of CV risk factors between the groups, and all of them may
influence CV remodeling. Myocardial fibrosis was assessed with LGE-MRI imaging, which
is less informative when diffuse myocardial fibrosis is present.

5. Conclusions

Our cross-sectional study demonstrates that T2DM patients have elevated levels of
circulating fibrosis markers and a high prevalence of LGE-MRI. Galectin-3 and TIMP1
serum levels are strongly associated with LGE-MRI in T2DM patients and patients with car-
diovascular risk factors. Serum TIMP1 level is an independent predictor of cardiac fibrosis.
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Abstract: Given the fact that diabetes remains a leading cause of end-stage kidney disease (ESKD),
multi-aspect approaches anticipating the risk for ESKD and timely correction are crucial. We in-
vestigated whether fasting glucose variability (FGV) could anticipate the development of ESKD
and identify the population prone to the harmful effects of GV. We included 777,192 Koreans with
diabetes who had undergone health examinations more than three times in 2005-2010. We evaluated
the risk of the first diagnosis of ESKD until 2017, according to the quartile of variability independent
of the mean (VIM) of FG using multivariate-adjusted Cox proportional hazards analyses. During
the 8-year follow-up, a total of 7290 incidents of ESKD were found. Subjects in the FG VIM quartile
4 had a 27% higher risk for ESKD compared to quartile 1, with adjustment for cardiovascular risk
factors and the characteristics of diabetes. This effect was more distinct in patients aged < 65 years;
those with a long duration of diabetes; the presence of hypertension or dyslipidemia; and prescribed
angiotensin-converting enzyme inhibitors, metformin, sulfonylurea, x-glucosidase inhibitors, and
insulin. In contrast, the relationship between baseline FG status and ESKD risk showed a U-shaped
association. FGV is an independent risk factor for kidney failure regardless of FG.

Keywords: diabetes mellitus; glucose variability; end-stage kidney disease; Korean National Health
Insurance Corporation

1. Introduction

Diabetes remains a leading cause of end-stage kidney disease (ESKD) globally and
accounts for 35-50% of these cases [1].

Although several medications, such as sodium-glucose cotransporter 2 inhibitors
(SGLT2 inhibitors), angiotensin-converting enzyme inhibitors (ACE inhibitors), and
angiotensin-receptor blockers (ARBs), have some protective mechanism against deteriora-
tion of renal function, their prevention capacity for ESKD is only 22-40% [2,3]. Therefore,
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to reduce the burden of ESKD, multi-aspect approaches exploring new biomarkers for
anticipating the risk for ESKD and timely correction are crucial in patients with diabetes.

The variability of cardio-metabolic parameters has been an interesting issue because of
its predictive value for numerous clinical outcomes [4,5]. Glucose variability (GV) consists
of short-term, intraday GV derived from the continuous glucose monitoring system and
long-term fasting glucose (FG) variability over several months to years, reflecting the
stability of the medication’s effect, adherence, and residual insulin secretion [6]. Several
studies have reported that high GV is associated with an increased risk of diabetic vascular
complications [7,8], heart failure [9], and poor prognosis for acute lung diseases [10].

Regarding kidney outcomes, long-term variability in comprehensive cardio-metabolic
risk factors showed a positive association with the future risk of ESKD in the general
population, but not in diabetes [4,11]. Furthermore, in patients with diabetes, most evidence
adopted glycated hemoglobin (HbA1c) variability rather than GV, and study outcomes were
the development of macroalbuminuria or kidney function decline, rather than the development
of ESKD [12-15]. This is attributed to the lower incidence rates of ESKD compared to other
diabetic vascular complications, such as cardiovascular disease (CVD) [16]. To overcome this
limitation, large-scale epidemiologic studies are essential to explore ESKD outcomes.

Therefore, we investigated whether FGV could predict the risk of ESKD using nation-
ally representative population-based cohort data in Korea. We also compared the impact
of FGV with FG on future ESKD risk and verified the specific population prone to the
detrimental effect of higher FGV.

2. Materials and Methods
2.1. Study Design and Subjects

This was a retrospective observational study (Figures S1 and S2). We extracted the
data of the participants who had undergone health examinations supported by the National
Health Insurance Corporation (NHIC) at least twice from 2005 to 2008, and simultaneously
at least once between 1 January 2009 and 31 December 2010 (referred to as “baseline exam”).
That is, the study subjects underwent at least three health examinations during the five years
between 2005 and 2010 (referred to as the FGV assessment period). Among them, we excluded
16,736,363 participants without diabetes, aged < 40 years; those with previous histories of
ESKD and missing data in the inclusion criteria; and those who were diagnosed with ESKD
within one year after baseline. A total of 777,192 participants were included in the study.

The NHIC is a nationally operating health insurance system in Korea and covers
approximately 97% of Koreans. The NHIC database contains eligibility information; health
examination results, including questionnaires on lifestyle; and a medical care institution
database [17,18]. Enrollees of the NHIC are encouraged to perform a standardized medical
examination annually or biannually. Information about medical treatments was recognized
by the medical bills charged by healthcare providers with the International Classification
of Diseases, 10th Revision (ICD-10).

This research was approved by the NHIC and the Institutional Review Board of the Korea
University Ansan Hospital (2019AS0138) and followed the Helsinki Declaration of 1975.

2.2. Anthropometric and Laboratory Measurements

Demographic characteristics, lifestyle habits, and medical history were identified
using questionnaires during medical examinations. Alcohol consumption was categorized
as near abstinence, moderate (<30 g/day), or severe (>30 g/day). Smoking history was
stratified into never, ex-, and current smokers. Regular exercise was defined as >30 min of
moderate-intensity exercise or >20 min of vigorous-intensity exercise >1 per week [19].

Body mass index was calculated as weight (kg) divided by the square of height (m).
Blood pressure (BP) was checked after >5 min of rest.

Venous blood sampling was conducted in the morning after an overnight fast of >8 h to
measure the concentrations of hemoglobin, plasma glucose, creatinine, high-density lipoprotein
cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol.
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Midstream urine samples were collected to measure urine protein using a urine
dipstick with the following grades: absent, trace (+), 1+, 2+, 3+, and 4+, which corre-
spond to the amount of urine protein of undetectable, 10, 30, 100, 300, and 1000 mg/dL,
respectively [4].

Quality control of laboratory tests was performed, followed by the Korean Association
of Laboratory Quality Control.

2.3. Definition of Glucose Variability

Using FG concentrations measured at least three times during the five years prior
to and including the baseline, the variability independent of the mean (VIM) of FG was
calculated as a primary variability indicator (Figure S2). The equation is as follows:

SD

VIM = 100 x 5
mean

Standard deviation (SD), coefficient of variation (CV, SD/mean), and average real
variability (ARV) were estimated [20].

n—1

1
ARV = —— BPy.1 — BP
\4 n_lkng| k+1 K|

where n is the number of FG measurements, and k ranges from 1 ton — 1.

2.4. Operational Definition of Diseases

Diabetes was defined as a fasting plasma glucose level > 126 mg/dL or at least one
prescription of glucose-lowering medicine (GLM) per year with ICD-10 codes E10-14. We
defined type 1 diabetes in patients if they had both an ICD-10 code E10 and at least one
prescription history of insulin, while the remaining patients were referred to as having
type 2 diabetes.

The study outcome was a new diagnosis of ESKD, identified by the initiation of renal
replacement therapy or kidney transplantation under ICD-10 codes N18-19, Z49, 790,
794, or 799.2 [21]. Because dialysis is reimbursed when registered in Korea, we could
discern all cases of renal replacement therapy under the claim codes for peritoneal dialysis
(07071-07075 or V003), hemodialysis (07011-07020 or V001), and kidney transplantation
(R3280) [21]. We excluded acute renal failure events, which were defined as individuals
with transient renal replacement therapy or continuous renal replacement therapy without
a previous history of CKD. Deceased cases, identified by the nationwide death certificate
data of the Korea National Statistical Office, were censored at the time of their death. The
follow-up period was calculated from the time interval between the baseline exam and
incident ESKD, date of death, or 31 December 2017, whichever came first (Figure S2).

Hypertension was defined as systolic BP > 140 mmHg, diastolic BP > 90 mmHg, or at
least one prescription of antihypertensive drugs per year under ICD-10 codes I10-I115. The
presence of malignancy was defined by registration in the Korea Central Cancer Registry with
ICD-10 C00—-C96 before the baseline examination. Low-income status was defined as the low-
est 20% income identified by the amount of health insurance premium or eligibility as medical
care [17,18]. Dyslipidemia was determined by total cholesterol concentration >6.21 mmol/L
or at least one prescription of antihyperlipidemic medications under ICD-10 code E78. The
estimated glomerular filtration rate (e€GFR) < 60 mL/min/1.73 m?, estimated by the Modi-
fication of Diet in Renal Disease formula [22], was stratified according to the presence of
chronic kidney disease (CKD) [23].

The prescription of ACE inhibitors or ARBs, oral GLM among metformin, sulfonylurea,
meglitinide, thiazolidinedione, inhibitors of dipeptidyl peptidase 4 (DPP-4 inhibitors),
x-glucosidase inhibitor (AGI), and insulin in the 12 months before baseline was identified.
History of heart disease or stroke was estimated using self-reports.
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2.5. Statistical Analysis

Data are shown as mean + SD, median (interquartile range), or number (%). After
stratifying the subjects according to the FG VIM quartile, we compared baseline features
using chi-squared tests and analysis of variance for continuous variables. Triglyceride
concentrations were log-transformed for the analysis.

Multivariable regression analyses were conducted using the Cox proportional hazards
model to estimate the time-dependent risk of ESKD according to FG VIM quartiles, with
quartile 1 as the reference group. In model 1, age, sex, body mass index, alcohol drinking,
smoking, exercise, presence of CKD, hypertension, dyslipidemia, and low-income status
were adjusted. In model 2, the duration of diabetes as continuous variable, insulin pre-
scription, the number of classes of oral GLM during 12 months prior to baseline exam,
mean FG measured for the five years preceding the baseline exam, and the number of
exams were additionally adjusted. To evaluate the change in significance according to the
cutoff value of VIM, we further divided the study population into deciles and reiterated the
above-mentioned regression analysis with decile 1 as a reference. In addition, we explored
whether the main findings would change after replacing the parameters of FGV with SD,
CV, and ARV instead of VIM.

For subgroup analyses, we determined the hazard ratios (HRs) and 95% confidence
intervals (CIs) of FG VIM quartile 4 versus quartile 1-3 for ESKD after dividing the subjects
according to clinically relevant factors and the characteristics of diabetes. Regression
analysis was performed using the same adjustment strategy.

To evaluate the association of a single FG concentration with the risk of ESKD, we
repeated the analysis according to baseline FG concentration, with 100-119 mg/dL as a
reference group. The mean FG was excluded as a confounder in this analysis.

We found a variable inflation factor for all covariates of less than 2.0, and there was no
multicollinearity in the covariates. Statistical analysis was performed using SAS version 9.3
(SAS Institute Inc., Cary, NC, USA). Statistical significance was set at p < 0.05.

3. Results

Compared with participants in the FG VIM quartile 1, those in the FG VIM quartile 4
were younger, had a higher proportion of males, were current smokers, and had higher
fasting glucose and triglyceride levels (Table 1). Among comorbidities, they had more CKD
but less hypertension, dyslipidemia, ischemic heart disease, and stroke. In the case of the
characteristics of diabetes, people in FG VIM quartile 4 had a higher proportion of insulin
users, individuals prescribed with >2 GLM during one year before baseline, and those
with a duration of diabetes of at least five years.

Table 1. Baseline characteristics of the study subjects according to quartiles of fasting glucose variability 2.

N VIM 01 VIM Q2 VIM Q3 VIM Q4

Characteristics (n = 194,302) (n =194,201) (n = 194,301) (n=194,208)  P-Value
Age (years) 612+98 60.2 + 10.0 507 +10.2 504+ 105 <0.001
Sex, male (%) 109,509 (56.4) 116,074 (59.7) 120,274 (61.9) 125,355 (64.5) <0.001
BMI (kg/m?) 247 +3 249 +£3.1 249 £3.1 248 +32 <0.001
Systolic BP (mmHg) 1283 + 152 1287 + 15.2 1288 + 15.3 1285+ 153 <0.001
Fasting glucose (mg/dL) 125.0 £ 33.9 130.1 + 35.5 135.7 + 39.0 1460 + 53.4 <0.001
Total cholesterol (mg/dL) 193.6 + 39.1 194.9 + 39.9 195.6 + 40.7 1944 + 415 <0.001
Triglyceride (mg/dL) 1329 (1325-133.2) 1384 (138.1-138.8)  143(142.6-143.4) 1463 (146.0-1467)  <0.001
HDL-C (mg/dL) 527 + 228 523+ 215 5242138 515+ 21.3 <0.001
LDL-C (mg/dL) 1116 + 43.0 1116 + 427 1112 + 434 1095 + 445 <0.001
GLU_VIM (%) 8243 16.6+22 255+3 $35+111 <0.001
GLU_SD (mg/dL) 8.1+53 168 +£85 267 +13.1 49.0 £252 <0.001
GLU_CV (%) 62426 127429 19.9+43 35+ 112 <0.001
GLU_ARV (mg/dL) 10472 203 +119 316+ 183 565 + 343 <0.001
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Table 1. Cont.

VIM Q1

VIM Q2

VIM Q3

VIM Q4

Characteristics (1 = 194,302) (1 =194,291) (1 = 194,301) (n = 194,298) p-Value
Current smoker (%) 31,644 (16.3) 36,873 (19.0) 42,614 (21.9) 50,137 (25.8) <0.001
Heavy drinking (%) 12,395 (6.4) 13,844 (7.1) 14,670 (7.6) 14,289 (7.4) <0.001
Regular exercise (%) 49,893 (25.7) 48,442 (24.9) 46,317 (23.8) 43,246 (22.3) <0.001
eGFR (mL/minute/1.73 m2) 79.6 (68.5-92.6) 79.9 (685-929)  80.1(68.5-933)  79.6(67.7-929)  <0.001

Chronic kidney disease (%) ° 23,041 (11.9) 22,930 (11.8) 23,569 (12.1) 26,133 (13.5) <0.001
Dipstick proteinuria (%) <0.001
Absence (%) 178,444 (91.8) 177,043 (91.1) 175,837 (90.5) 173,973 (89.5)
Trace (%) 6065 (3.1) 6380 (3.3) 6777 (3.5) 6723 (3.5)
1+ (%) 5939 (3.1) 6580 (3.4) 6999 (3.6) 7742 (4)
2+ (%) 2841 (1.5) 3149 (1.6) 3450 (1.8) 4205 (2.2)
3+ (%) 841 (0.4) 924 (0.5) 1064 (0.6) 1378 (0.7)
4+ (%) 172 (0.1) 215 (0.1) 174 (0.1) 277 (0.1)
Comorbidities
Hypertension (%) 119,605 (61.6) 117,761 (60.6) 115,704 (59.6) 112,881 (58.1) <0.001
Dyslipidemia (%) 102,627 (52.8) 98,666 (50.8) 95,100 (48.9) 90,667 (46.7) <0.001
THD (%) 28,614 (14.7) 26,445 (13.6) 24,879 (12.8) 23,758 (12.2) <0.001
Stroke (%) 10,979 (5.7) 10,286 (5.3) 9961 (5.1) 9996 (5.1) <0.001
Income (lower 20%, %) 34,931 (18.0) 36,804 (18.9) 39,098 (20.1) 43,447 (22.4) <0.001
ACE inhibitors or ARBs (%) 71,197 (36.6) 69,355 (35.7) 67,950 (35.0) 67,800 (34.9) <0.001
Oral GLM
Metformin 72,551 (37.3) 75,633 (38.9) 79,615 (41.0) 85,739 (44.1) <0.001
Sulfonylurea 70,505 (36.3) 76,924 (39.6) 84,825 (43.7) 92,837 (47.8) <0.001
Meglitinide 3960 (2) 4286 (2.2) 4821 (2.5) 5950 (3.1) <0.001
Thiazolidinedione 11,624 (6) 12,466 (6.4) 13,402 (6.9) 14,708 (7.6) <0.001
DPP-4 inhibitor 7602 (3.9) 7871 (4.1) 8300 (4.3) 8531 (4.4) <0.001
a-Glucosidase inhibitor 18,941 (9.8) 21,134 (10.9) 24,274 (12.5) 28,984 (14.9) <0.001
Number of oral GLM <0.001
0 96,962 (49.9) 93,619 (48.2) 88,878 (45.7) 82,779 (42.6)
1 34,341 (17.7) 31,949 (16.4) 29,574 (15.2) 26,813 (13.8)
2 42,09 (21.7) 44,622 (23.0) 47,759 (24.6) 51,446 (26.5)
3 17,310 (8.9) 19,723 (10.2) 22,828 (11.8) 26,763 (13.8)
>4 3593 (1.9) 4378 (2.3) 5262 (2.7) 6497 (3.3)
Insulin 8125 (4.2) 9515 (4.9) 11,928 (6.1) 19,582 (10.1) <0.001
Duration of diabetes 27431 28431 3432 33432 <0.001
>5 years (%) 56,944 (29.3) 59,454 (30.6) 63,309 (32.6) 68,451 (35.2) <0.001
Type 1 diabetes (%) 1274 (0.7) 1537 (0.8) 2106 (1.1) 4153 (2.1) <0.001
Number of exams <0.001
3 167,018 (86.0) 152,379 (78.4) 146,220 (75.3) 142,455 (73.3)
4 13,832 (7.1) 19,418 (10.0) 22,307 (11.5) 24,566 (12.6)
5 13,452 (6.9) 22,494 (11.6) 25,774 (13.3) 27,277 (14)
Time interval between adjacent o7 (1 5.5 ) 18 (1.1-2.1) 176 (11-2.1) 171(11-21) <0001

exams (years)

aQ1: 0-12.7; Q2: 12.8-20.6; Q3: 20.7-31.2; Q4: >31.3. P Presence of chronic kidney disease represents estimated glomerular filtration
rate < 60 mL/minute/1.73 m?. Data are presented as mean + standard deviation, median (interquartile range), or number (%). One-way
analysis of variance and the chi-squared test were used to compare the characteristics of the study subjects at baseline. Post hoc multiple
comparison analysis was performed with Bonferroni correction, and triglyceride levels were log-transformed for analysis. p-values
were <0.001 for all variables because of the large sample size. Abbreviations: VIM, variability independent of mean; BMI, body mass index;
BP, blood pressure; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; SD, standard deviation; CV,
coefficient of variation; ARV, average real variability; eGFR, estimated glomerular filtration rate; IHD, ischemic heart disease; ACE inhibitor,
angiotensin-converting enzyme inhibitor; ARB, angiotensin-receptor blocker; GLM, glucose-lowering medicine; DPP-4 inhibitor, inhibitors
of dipeptidyl peptidase 4; ICD-10, International Classification of Diseases, 10th Revision.

During 8.0 (7.4-8.4) years of median (interquartile range) follow-up period, a total
of 7290 cases of ESKD were identified (Table 2). Age- and sex-adjusted HRs for ESKD
serially increased as the FG VIM quartile increased. In model 2, the HR (95% CI) for ESKD
of participants in FG VIM quartile 4 was 1.27 (1.19-1.36), with adjustment for clinically
relevant factors, duration of diabetes, history of CKD, mean FG, and the number of exams.
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When the participants were divided into deciles in more detail, significantly higher risks for
ESKD were found in D9 and D10 with a cutoff value of D9 of 34.4 (Table S1). A similar
association was observed when FGV parameters were changed to SD, CV, and ARV (Table S2).

Table 2. Hazard ratios and 95% confidence intervals for the incidence of end-stage of kidney disease by quartiles of fasting
glucose variability 2.

Follow-Up Incidence Rate  Age- and Sex- Multivariate-Adjusted

Events () Duration (Per 1000 Adjusted HR (95% CI)
(Person-Years) Person-Years) HR (95% CI) Model 1 Model 2
Q1 (n =194,302) 1412 1,478,422.2 0.96 1 (Ref.) 1 (Ref.) 1 (Ref.)
Q2 (n=194,291) 1487 1,483,681.0 1.00 1.07 (0.99-1.15)  1.05(0.97-1.13)  0.99 (0.92-1.06)
Q3 (n =194,301) 1721 1,482,829.3 1.16 1.25 (1.16-1.34) 1.21 (1.12-1.3) 1.03 (0.96-1.1)
Q4 (n =194,298) 2670 1,468,254.3 1.82 1.96 (1.84-2.10) 1.79 (1.68-1.91) 1.27 (1.19-1.36)

2Q1: 0-12.7; Q2: 12.8-20.5; Q3: 20.6-31.2; Q4: >31.3. Model 1 is adjusted for age, sex, body mass index, smoking, alcohol drinking, exercise,
presence of chronic kidney disease, dyslipidemia, hypertension, and low-income status. Model 2 is the same as model 1, plus an adjustment
for duration of diabetes as continuous variable, the number of classes of oral glucose-lowering medicine, the presence of prescription
history of insulin, the mean of fasting glucose, and the number of exams.

In subgroup analyses, increased risk for ESKD in VIM quartile 4 versus quartile 1-3
was more evident in individuals aged 40-64 years, with a prescription history of ACE inhibitors
or ARBs, hypertension, and dyslipidemia (Table 3). Among the various characteristics of
diabetes, the impact of higher FGV was more distinct in patients with a long duration of
diabetes and the prescription of metformin, sulfonylurea, AGI, and insulin (Table 4).

Table 3. Subgroup analysis according to clinically relevant factors in the fasting glucose variability quartile 4 versus quartiles 1-3.

IR per 1000 HR (95% CI) p for Interaction

Age (years) 0.000
40-64 (n = 521,902) 1.50 1.36 (1.28-1.45)
>65 (n = 255,290) 2.61 1.14 (1.06-1.23)

Sex 0.849
Male (n = 471,212) 2.02 1.26 (1.19-1.33)
Female (n = 305,980) 1.46 1.27 (1.16-1.39)

BMI 0.325
<25 kg/m? (n = 425,481) 1.94 1.24 (1.16-1.32)
>25 kg/m? (n = 351,711) 1.68 1.3 (1.2-1.4)

Current smoking 0.215
No (1 = 615,924) 1.88 1.28 (1.21-1.35)
Yes (n = 161,268) 1.63 1.19 (1.08-1.32)

Hypertension 0.004
No (n = 311,241) 0.51 1.05 (0.92-1.2)
Yes (n = 465,951) 2.80 1.3 (1.23-1.37)

ACE inhibitor or ARB 0.001
No (n = 500,890) 0.70 1.11 (1.01-1.21)
Yes (n = 276,302) 3.99 1.33 (1.25-1.4)

Chronic kidney disease 0.988
No (1 = 681,519) 0.75 1.26 (1.17-1.36)
Yes (n=95,673) 9.33 1.26 (1.19-1.34)

Dyslipidemia 0.035
No (n =390,132) 1.15 1.18 (1.09-1.28)
Yes (n = 387,060) 2.58 1.31 (1.23-1.39)

Income lower 20% 0.636
No (n = 622,912) 1.79 1.27 (1.2-1.34)
Yes (n = 154,280) 1.92 1.23 (1.12-1.37)

Adjusted for age, sex, body mass index, smoking, alcohol drinking, exercise, presence of dyslipidemia, hypertension, chronic kidney disease,
low-income status, duration of diabetes as continuous variable, the number of classes of oral glucose-lowering medicine, presence of prescription
history of insulin, mean fasting, and the number of exams. Each variable used to stratify the participants was excluded from the adjustment.
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Table 4. Subgroup analysis according to the characteristics of diabetes in the fasting glucose variability quartile 4 versus

quartiles 1-3.

IR per 1000 HR (95% CI) p for Interaction

Baseline fasting glucose 0.305
<126 mg/dL (n = 349,855) 2.67 1.16 (1.08-1.25)
>126 mg/dL (n = 427,337) 1.34 1.23 (1.15-1.31)

Duration of diabetes <0001
<5 years (n = 529,034) 0.63 1.01 (0.92-1.11)
>5 years (n = 248,158) 411 1.38 (1.3-1.46)

Type of diabetes 0.348
Type 2 diabetes (n = 768,122) 1.65 1.26 (1.19-1.32)
Type 1 diabetes (n = 9070) 10.06 1.16 (0.98-1.36)

Metformin 0.002
No (n = 463,634) 1.34 1.16 (1.08-1.25)
Yes (n = 313,538) 2.43 1.35 (1.26-1.44)

Sulfonylurea 0.011
No (n = 452,101) 1.24 1.16 (1.07-1.26)
Yes (1 = 325,091) 246 1.32 (1.25-1.41)

Meglitinide 0.276
No (1 = 758,175) 1.69 1.27 (1.21-1.34)
Yes (n =19,017) 5.99 1.16 (0.99-1.36)

Thiazolidinedione 0.174
No (n =724,992) 1.74 1.25(1.18-1.31)
Yes (n = 52,200) 2.73 1.39 (1.2-1.61)

DPP-4 inhibitor 0.182
No (n = 744,888) 1.80 1.25(1.19-1.31)
Yes (n = 32,304) 2.31 1.45 (1.17-1.78)

«-Glucosidase inhibitor 0.003
No (1 = 683,859) 1.42 1.2 (1.13-1.27)
Yes (n = 93,333) 4.20 1.4 (1.29-1.53)

Insulin 0.001
No (n =728,042) 1.14 1.19 (1.12-1.26)
Yes (n = 49,150) 8.38 1.42 (1.31-1.54)

Adjusted for age, sex, body mass index, smoking, alcohol drinking, exercise, presence of dyslipidemia, hypertension, chronic kidney
disease, low-income status, duration of diabetes as continuous variable, the number of classes of oral glucose-lowering medicine, presence
of prescription history of insulin, mean fasting, and the number of exams. Each variable used to stratify the participants was excluded from

the adjustment.

On the other hand, baseline FG levels showed a U-shaped association with the risk
of ESKD (Table S3). Compared to participants whose FG concentrations were in the range of
100-119 mg/dL, individuals with FG < 100 mg/dL or >180 mg/dL had a higher risk of ESKD.

4. Discussion
4.1. Significant Findings of the Present Study

These results confirmed the hypothesis that FGV is significantly associated with an
increased risk of ESKD among patients with diabetes. The risk for ESKD was 27% higher in
the group with the highest FGV than in the lowest FGV group. The predictive value of high
FGYV on the incident ESKD was more prominent in patients with young age; hypertension;
dyslipidemia; a long duration of diabetes; and who were treated with ACE inhibitors or
ARBs, metformin, sulfonylurea, AGI, and insulin. In contrast, the association between FG
and the risk of ESKD was U-shaped.

4.2. Kidney Outcomes and Long-Term Glucose Variability

Most previous studies have chosen HbAlc variability rather than FG variability for
glucose variability assessment, and their study outcomes were renal function decline
or development of albuminuria, not ESKD [17-19,21]. In the Action in Diabetes and
Vascular Disease: Preterax and Diamicron MR Controlled Evaluation (ADVANCE) trial,
SD of FG over 24 months exhibited a positive association with the risk of nephropathy
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combined with retinopathy [8]. Recently, a meta-analysis of three well-known clinical
trials, the U.K. Prospective Diabetes Study, the Action to Control Cardiovascular Risk in
Diabetes trial, and the Veteran Affairs Diabetes Trial, showed that FGV was associated
with a 30-40% increase in the risk of incident moderate to severe nephropathy, defined by
eGFR < 45 mL/min/1.73 m? [24].

Only one study has evaluated the impact of FGV on the development of ESKD using
a population-based study [25,26]. The Taiwan Diabetes Study reported that FG-CV and
HbA1c-CV could predict the development of diabetic nephropathy [27] and ESKD [28]
in patients with type 2 diabetes. In the present study, compared to the previous one, we
included more patients with diabetes (1 = 777,192 vs. 31,841) and calculated the FGV
for a longer period (5 vs. 1 year). Although ESKD is a hard outcome of diabetic renal
complications, it is hard to study ESKD as an outcome due to the lower incidence. The
incidence rate of ESKD in 2018 was 374.7 cases per million [16], lower than that of CVD,
at 8980 cases per million in 2017 [29]. To overcome this limitation, a large population-
based study is necessary. Because the NHIC entirely operates the health insurance system
in Korea, we could use almost all Koreans with diabetes and subsequently obtained
777,192 individuals eligible for this study, making it possible to perform a more detailed
subgroup analysis.

In patients with diabetes, oscillation in the FG level during a long follow-up pe-
riod might reflect poor self-care, overall poor compliance, and suboptimal strategy for
GLMs [30]. Because HbAlc is the average plasma glucose during 2-3 months, HbAlc
variability implies a change in glycemic status rather than glucose fluctuation itself. In
other words, FG might be better at capturing real-time glucose variations than HbAlc
levels [7]. Therefore, FGV in our study was derived from yearly or biannually measured
FG levels over five years, allowing for a comprehensive evaluation of a patient over a long
period of time. In addition, this simple strategy for estimating FGV could be helpful for
public health policy makers to select high-risk populations and support active prevention.

On the other hand, a high risk for ESKD was observed in individuals whose baseline
FG levels were <100mg/dL or >180 mg/dL. These findings were consistent with another
nationwide cohort study of Koreans with diabetes using GLMs [31], suggesting that
intensive glucose control might not necessarily diminish the progression of established
diabetic kidney disease.

4.3. Interpretation for the Impact of Glucose Variability

There is little data available to explain the mechanism linking glucose variability
and ESKD risk directly. Cha et al. demonstrated the negative association of plasma
adiponectin and glypican-4 levels with eGFR and positive association with urinary albumin
levels [32]. The findings that transient glucose spikes could induce oxidative stress and
impair endothelial function more than sustained hyperglycemia [33,34] and that glomerular
permeability, mesangial lipid accumulation, and collagen synthesis are increased after
intermittent exposure to high glucose levels [25,26] could be a pathophysiologic explanation
of this association.

The results of the subgroup analysis provide a chance to identify the population more
vulnerable to FGV (Table 3). It is possible that individuals with a long duration of diabetes
are sensitive to oxidative stress because their enzymatic antioxidant defense systems are
less efficient [29,35]. The presence of hypertension or dyslipidemia itself is an already
proven risk factor for ESKD [36]. Its significant interaction with the harmful effect of high
FGV on the risk of ESKD suggests a synergic relationship.

Interestingly, a significant effect of FGV was not observed in individuals aged > 65 years.
This may be due to the competing risk of death in patients with diabetic ESKD [37]. A
Finnish nationwide cohort study showed that the cumulative risk of ESKD decreased
with increasing age [38]. At the same time, mortality increased among the older age
groups, with a 100-fold higher incidence of death than the ESKD cases throughout the
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20-year-of follow-up [38]. Therefore, we theorize that the deceased cases ahead of ESKD
might diminish the ESKD cases, weakening the effect of FGV.

The valid interaction with the prescription of ACE inhibitors or ARB, metformin,
sulfonylurea, AGI, and insulin should be interpreted cautiously. There have been no
previous studies exploring the interaction between GLM and the impact of FGV on ESKD,
but only showed that sulfonylurea increases the glucose variability [39], whereas DPP-4
inhibitors and degludec reduced it [40,41]. Subjects with higher FGV might be treated with
more GLMs due to their clinical condition. If they were not prescribed more GLMs, their
FGV would be higher, and the association with ESKD risk might be stronger than in the
present study.

SGLT?2 inhibitors and glucagon-like peptide-1 receptor agonists, which have been
known to prevent CKD progression, have been reimbursable for patients with diabetes
in Korea since 2014 and 2015, respectively [2,3]. Because the prescriptions of these GLMs
were negligible during the glucose variability assessment period (2005-2010), their impact
on the incidence of ESKD until 2017 was expected to be minimal.

4.4. Parameters for Estimating Glycemic Variability

There is no consensus on a standardized index for glucose variability with distinct
characteristics [42]. SD refers to the dispersion of measurements around the mean, and
CV reflects a standardized variation that provides direct comparison among study groups.
ARV is the average of the absolute differences of successive measurements and might be a
reliable index for time series variability [20,43]. However, we chose VIM as the primary
parameter of FGV because VIM is a measure of variability designed not to correlate with
mean levels which is appropriate for the purpose of this study [44]. SD, CV, and ASV
are partially dependent on mean despite of adjustment for mean value [45]. When we
analyzed SD or CV again, a similar trend was observed (Table S2).

4.5. Limitations

This nationwide population-based study clearly showed the influence of long-term
FG variability on incident ESKD with a long-term follow-up period. The 5-year FGV levels
used in the present study were much longer than those used in previous studies. However,
several limitations of this study should be considered.

First, given that we extracted study subjects according to the times of health check-ups
to calculate long-term glucose variability, those with healthier lifestyle and slightly ele-
vated glucose concentrations could be included, which might be a source of selection bias.
Moreover, it is not available for complete information of hypoglycemia events. Second,
postprandial glucose, HbAlc, serum c-peptide, and autoantibody levels were not included
in this database. To enhance the accuracy of diagnosis of diabetes and subtype, we used
ICD-10 codes with prescription histories of GLM and FG levels. Although we could not
use HbAlc variability, the variability of FG was a stronger predictor of microvascular and
macrovascular events than HbAlc variability in the ADVANCE trial [8]. Third, health
examinations provided by the NHIC measure only dipstick proteinuria, not urine albumin-
uria. Finally, given the retrospective design of this study, reverse causation and undetected
exposure of the risk factors of ESKD were possible [46]. We excluded incident ESKD cases
developed one year after the baseline to minimize this issue. Additionally, the fasting
period was not standardized fasting period could influence the FG levels.

Despite those limitations, a large-sized population-based cohort study covering almost
entire Koreans is still the most suitable design for investigating rare outcomes such as
ESKD possible [46].

5. Conclusions

This large-scale nationwide population-based study demonstrated that FG variability
was independently associated with an increased risk of ESKD among patients with diabetes,
especially in those with young age, long duration of diabetes, and comorbidities who need
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more GLM and RAS inhibitors. These findings highlight that reducing FGV is a vital
strategy to reduce the incidence of ESKD in diabetes, especially in high-risk populations.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/jem10245948 /51, Figure S1: Selection of study subjects. Figure S2: Study design showing
the period estimating glucose variability and the risk of incident end-stage kidney disease (ESKD).
Table S1: Hazard ratios (HRs) and 95% confidence intervals (Cls) for the incidence of end-stage kidney
disease by deciles of fasting glucose variability. Table S2: Hazard ratios (HRs) and 95% confidence
intervals (CIs) for the incidence of end-stage kidney disease by quartiles of fasting glucose variability,
assessed by standard deviation, coefficient of variation, and average real variability. Table S3: Hazard
ratios and 95% confidence intervals for the incidence of end-stage of renal disease according to
baseline fasting glucose concentration.
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Abstract: Bone fragility is a common complication in subjects with type 2 diabetes mellitus (T2DM).
However, traditional techniques for the evaluation of bone fragility, such as dual-energy X-ray ab-
sorptiometry (DXA), do not perform well in this population. Moreover, the Fracture Risk Assessment
Tool (FRAX) usually underestimates fracture risk in T2DM. Importantly, novel technologies for the
assessment of one microarchitecture in patients with T2DM, such as the trabecular bone score (TBS),
high-resolution peripheral quantitative computed tomography (HR-pQCT), and microindentation,
are emerging. Furthermore, different serum and urine bone biomarkers may also be useful for
the evaluation of bone quality in T2DM. Hence, in this article, we summarize the limitations of
conventional tools for the evaluation of bone fragility and review the current evidence on novel
approaches for the assessment of quality and bone microstructure alterations in patients with T2DM.

Keywords: type 2 diabetes mellitus; bone fragility; fracture risk; bone structure; bone quality

1. Introduction

In the last few decades, type 2 diabetes mellitus (T2DM) has dramatically increased
in prevalence worldwide, resulting in significant burdens on patients suffering from this
condition and healthcare systems [1]. Of note, the rising prevalence of this disease is
associated with the development of a wide range of complications, including retinopathy,
nephropathy, neuropathy, and cardiovascular disease [1,2]. These complications often
affect the quality of life of patients with T2DM, including their physical and psychological
functioning [3]. Although some of these comorbidities have a well-known impact on the
quality of life [4,5], others have received less attention [6].

Mounting evidence reveals that bone fragility is common in T2DM [7]. Several studies
have shown that T2DM constitutes an independent risk factor for osteoporotic fractures,
presenting a particularly strong association with hip fractures [8-11]. Indeed, a num-
ber of meta-analyses have confirmed that T2DM is associated with an increased risk of
incident hip, vertebral, and non-vertebral fractures [12-14]. Since T2DM has a strong
relationship with hip fractures that need replacement surgery using total hip arthroplasty,
new techniques have been developed in this field [15,16]. Importantly, increases in the
incidence of fractures lead to greater costs and healthcare resource utilization in this popu-
lation [17]. Moreover, fractures are associated with functional impairment and reduction
of health-related quality of life [18,19]. Given the important health and socioeconomic
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impact of skeletal fragility and fractures, individuals with T2DM, especially those with
major diabetes-related determinants and other conventional risk factors for osteoporosis,
should be assessed for the presence of bone fragility and their fracture risk [20]. However,
traditional imaging techniques and fracture risk assessment tools may not be accurate for
this purpose in patients with T2DM [21].

In this review, we summarize the main limitations of commonly used methods to eval-
uate bone fragility and estimate fracture risk in patients with T2DM, and we also discuss the
potential role of novel strategies in the evaluation of quality and bone microstructure alter-
ations in this population. Although some of these issues have been addressed in previous
works [22], the current knowledge on novel techniques and biomarkers for the evaluation
of bone fragility in T2DM is still limited. We have updated all the information available on
the pathogenic mechanisms that explain bone fragility in patients with T2DM. In addition,
we have reviewed the role of new technologies and biomarkers in the assessment of bone
fragility in T2DM, considering the main clinical studies currently available.

2. Search Strategy and Limitations of the Review

We conducted a comprehensive literature search of articles published in PubMed
until March 2022. Peer-reviewed articles related to T2DM and bone fragility published in
English were selected, with special attention to clinical studies evaluating bone mineral
density (BMD) by dual energy X-ray absorptiometry (DXA) in patients with T2DM, as well
as clinical studies assessing bone microstructure through the trabecular bone score (TBS),
high-resolution peripheral quantitative computed tomography (HR-pQCT), and microin-
dentation in this population. Finally, we included clinical studies related to the evaluation
of novel non-invasive biomarkers of bone quality and fracture risk prediction in T2DM.
Original human research articles, including randomized controlled trials, prospective and
retrospective observational studies, and cross-sectional studies were considered. The largest
studies, as well as the most recent and solid available evidence, were prioritized. Remark-
ably, a considerable number of the available studies were conducted in postmenopausal
women with T2DM,; therefore, these results have to be considered cautiously in subjects
with T2DM and different characteristics. Moreover, several studies included in this review
had a cross-sectional design; thus, further large-scale long-term prospective studies are
needed in this field.

3. Determinants of Skeletal Fragility and Increased Risk of Fracture in T2DM

Several determinants have been identified in the pathogenesis of bone fragility and
increased fracture risk in subjects with T2DM [23] (Figure 1). Notably, a longer duration of
T2DM was reported to be an independent risk factor for major osteoporotic fractures in
women aged >40 and with >10 years of diabetes duration [24], and a recent meta-analysis
showed a greater increase in the risk of both hip and non-vertebral fractures in subjects with
longer diabetes duration [13]. Besides this, poor glycemic control is closely linked to fracture
risk, as several large-scale population-based cohort studies have demonstrated [25-27].
In this regard, the generation of advanced glycation end-products (AGEs) resulting from
chronic exposure to hyperglycemia is one of the key mechanisms in the pathophysiology
of bone fragility in T2DM [23]. As such, non-enzymatic glycosylation of collagen leads
to the formation of collagen-AGEs, which are involved in the development of impaired
bone mineralization and quality through different alterations of the extracellular matrix,
a reduction of alkaline phosphatase activity in osteoblasts, and an overactivation of the
receptor for AGEs (the latter associated with the release of pro-inflammatory cytokines
and reactive oxygen species—ROS—by osteoclasts) [23,28]. On the other hand, it is also
postulated that the main event related to bone fragility in T2DM is an overall inhibition of
bone cells function and decreased bone turnover [23,29]. This effect may be driven in part
by insulin resistance [30].
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Figure 1. Determinants of bone fragility and increased fracture risk in type 2 diabetes. AGEs,
advanced glycation end products.

In addition to chronic hyperglycemia and AGE formation, other mechanisms play
a role in bone fragility in T2DM, as previously reviewed [7,23,31]. Among them, a pro-
inflammatory state and oxidative stress, along with adipokine dysregulation and marrow
adiposity, have a strong influence on bone metabolism [7,31]. Loss of incretin effect has also
been implicated in the pathogenesis of skeletal fragility in T2DM [31,32]. Microvascular
disease and impaired vascular bone intercommunication determine alterations of bone
quality and microarchitecture [7,31]. Ischemic heart disease has also been reported to be
associated with an increased risk of vertebral fractures in T2DM [33]. Vitamin D deficiency,
commonly found in patients with T2DM, could play a role in both T2DM development and
bone fragility [34]. Pathological changes in gut microbiota composition in T2DM may also
trigger bone alterations in this population [35].

Further to this, glucose-lowering agents may also be crucial contributors to the re-
ported associations between T2DM and bone fragility [36,37]. The potential benefits of
some drugs for bone density and fracture risk (i.e., metformin, glucagon-like peptide 1
receptors agonists and dipeptidyl peptidase-4 inhibitors) [38—40] remain to be confirmed
in specifically designed studies. Conversely, the long-term use of thiazolidinediones has
been independently associated with fracture risk [41], and sodium-glucose cotransporter-2
inhibitors could also have this effect [42,43]. Remarkably, both insulin and sulfonylureas
significantly increase fall-related fractures due to episodes of hypoglycemia [44]. In this
vein, other prevalent factors in T2DM (i.e., visual impairment, peripheral neuropathy,
autonomic dysfunction/postural hypotension, foot ulcers/amputation, and sarcopenia)
also lead to an increased risk of fall-related fractures [31,45].

4. Bone Density and Fracture Risk Prediction in T2DM

Despite skeletal fragility and fracture risk being greater in subjects with T2DM, this
condition is usually associated with normal or even increased BMD measured by DXA [46].
Thus, women with T2DM in the Women’s Health Initiative Observational Study presented
higher hip and spine BMD scores compared to those without T2DM [47]. Similarly, in
a cross-sectional study including two Swedish cohorts, both men and women exhibited
a progressively higher hip BMD according to normal fasting plasma glucose/impaired
fasting plasma glucose/T2DM subgroups [48]. In the prospective population-based cohort
from the Rotterdam Study, inadequate glycemic control was associated with both higher
BMD and increased fracture risk in participants with T2DM [27]. Furthermore, a meta-
analysis of 15 observational studies (3473 subjects with T2DM and 19,139 healthy controls)
showed that participants with T2DM had significantly higher BMD at the femoral neck,
hip, and spine [49].

It is noteworthy that these results contrast with those reported by studies assessing
BMD in type 1 diabetes mellitus (TIDM), in which BMD is generally low [50]. Although
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the mechanisms involved in the association between T2DM and normal/high BMD are
not fully understood, some data suggest that these findings might be related to chronic
hyperinsulinemia and insulin resistance [51], as well as the effect of some adipokines, such
as leptin, on bone metabolism [52]. Excess weight/obesity, which are often encountered in
patients with T2DM, could also play a role in increased BMD, although some studies have
reported that this relationship remains after adjusting for the body mass index (BMI) [49].
Since T2DM is associated with increased fracture risk, regardless of whether there is a nor-
mal/high BMD, a fact known as “the diabetic paradox of bone fragility” [53], the diagnosis
of osteoporosis based on BMD measured by DXA, should be cautiously considered [21].

On the other hand, the Fracture Risk Assessment Tool (FRAX), which is widely used
to estimate 10-year absolute fracture risk, has been demonstrated to underestimate the
risk for both hip and major osteoporotic fractures in patients with T2DM [54]. These
results are influenced, in part, by the higher BMD observed in patients with T2DM [49].
Indeed, contrary to T1IDM, T2DM is not included in the FRAX tool as a secondary cause
of osteoporosis [55]. In this regard, some authors have proposed a correction factor with
the use of glycated hemoglobin in order to improve the predictive ability of this algorithm
for fracture risk [56]. Recently, adjustment of FRAX for T2DM has been suggested in order
to create a useful alternative [57,58], although further research is warranted to confirm
these results. Alternatively, certain methods (i.e., inputting rheumatoid arthritis, adjusting
FRAX by TBS, reducing the femoral T-score by 0.5, and increasing the age by 10 years)
have been proposed to improve the performance of FRAX in T2DM, although no single
method appears to be optimal in all settings [59]. In light of the above, new approaches to
the evaluation of bone fragility in patients with T2DM are needed.

5. Bone Microstructure in T2DM

As previously discussed, patients with T2DM have normal or elevated BMD; however,
bone microarchitecture alterations may be present in this group, resulting in an increased
fracture risk [60]. In this context, the trabecular bone score, high-resolution peripheral
quantitative computed tomography, and microindentation are useful techniques for the
evaluation of the bone microstructure in T2DM.

5.1. Trabecular Bone Score

The TBS is a non-invasive, indirect index of trabecular microarchitecture [61]. It is
derived from experimental variograms of the projected two-dimensional lumbar spine DXA
image and can assess pixel gray-level variations of this area, which translate into a bone
microstructure-related score [61]. Accordingly, a high TBS is related to numerous, well-
connected and less sparse trabeculae (i.e., normal bone microarchitecture), whereas a low
TBS indicates a reduced number of trabeculae and less connectivity, as well as trabecular
separation (i.e., altered bone microarchitecture) [61], as shown in Figure 2. In this regard,
the proposed TBS cut-off values are as follows: TBS > 1.31 (normal microarchitecture), TBS
between 1.23 and 1.31 (partially degraded microarchitecture), and TBS < 1.23 (degraded
microarchitecture) [62].

TBS has been demonstrated to be an independent predictor for osteoporotic frac-
tures [62-64]. In addition to this, TBS can detect differences between DXA images with
similar BMDs [61] and helps to improve the performance of BMD assessed by DXA in the
prediction of osteoporotic fractures [65,66]. Indeed, TBS has been incorporated into the
FRAX algorithm (FRAX adjusted for TBS), although the clinical impact of this adjustment
is yet to be properly evaluated [62].

In patients with T2DM, TBS has been reported to be significantly decreased compared
to subjects without diabetes, which suggests that this index could be a useful tool for the di-
agnosis of bone fragility in this population [67]. TBS may be decreased even in prediabetes,
indicating that the degradation of bone microarchitecture may occur in early stages of the
disease [68]. Interestingly, in a recent cross-sectional study including 137 patients with
T2DM aged 49-85 and 300 healthy controls, the presence of T2DM was associated with
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significantly lower TBS values despite higher lumbar spine BMD; adiposity (estimated by
the relative fat mass) and insulin resistance could play a role in these results [69]. Accord-
ingly, visceral fat reduction may increase TBS values [70]. Furthermore, higher glycated
hemoglobin levels and a longer disease duration in patients with T2DM are related to
lower TBS values, although the interference of abdominal soft tissue thickness should be
considered when interpreting these findings [68,71-73]. Moreover, diabetic microvascular
disease may be linked to lower TBS [74].

Normal microarchitecture Altered microarchitecture

TBS=1.512 TBS =1.029

"
BMD =0.928 BMD =0.921 ’

Figure 2. Trabecular bone score (TBS) as a useful technology for the assessment of the trabecular
microarchitecture. TBS > 1.31 (left) denotes a normal microarchitecture, whereas TBS < 1.23 (right)
indicates an altered microarchitecture. TBS can detect differences between similar values of lumbar
spine bone mineral density (BMD) estimated by dual-energy X-ray absorptiometry (DXA) (g/cm?).

Notably, several studies have shown that TBS can predict incident/prevalent os-
teoporotic fractures independent of BMD [75-78] (Table 1). In a retrospective cohort
study from the Manitoba Bone Density Program (29,407 women > 50 years, 2356 with
diagnosed T2DM), lumbar spine TBS was a BMD-independent predictor of major osteo-
porotic fractures in both participants with and without T2DM [75]. In a study including
206 postmenopausal women with /without T2DM, TBS values <1.130 presented an ade-
quate diagnostic accuracy for vertebral fractures in the former [76], whereas, in a cross-
sectional study conducted on 548 patients with T2DM, TBS correlated with prevalent
vertebral fractures [77]. Finally, in a study including 285 postmenopausal women with
T2DM, TBS had the strongest association with vertebral fractures [78]. Considering all
these findings together, TBS may constitute a useful approach for the diagnosis of bone
fragility and the evaluation of fracture risk in T2DM, although further prospective studies
are needed to corroborate these data.

Table 1. Clinical studies showing an independent association between the trabecular bone score (TBS)
and osteoporotic fractures in patients with type 2 diabetes mellitus.

Study

Design Study Population Results

Leslie et al., 2013 [75]
Zhukouskaya et al., 2015 [76]
Yamamoto et al., 2019 [77]

Lin et al., 2019 [78]

Retrospective cohort (mean follow-up 29,407 women > 50 years (2356 with

TBS predicted major osteoporotic fractures
(hip, spine, forearm and humerus) in T2DM

4.7 years) diagnosed T2DM) (HR1.27, C1 1.10-1.46)
Cross-sectional 99 postmenopausal women with TBS was associated with VF (AUC 0.69,
S-sect T2DM /107 healthy controls cut-off value 1.130 in ROC curve analysis)
584 patients with T2DM

TBS correlated with prevalent VF in

Cross-sectional (257 postmenopausal women and ltivariate logisti - lysi
291 men > 50 years) multivariate logistic regression analysis
Cross-sectional 285 postmenopausal women TBS had the strongest association with VF
with T2DM (AUC 0.775)

T2DM, type 2 diabetes mellitus; TBS, trabecular bone score; VF, vertebral fractures; HR, hazard ratio; CI, confidence
interval; ROC, receiver operating characteristic; AUC, area under the curve.
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5.2. High-Resolution, Peripheral, Quantitative Computed Tomography

HR-pQCT is a non-invasive three-dimensional imaging modality that permits the
assessment of bone microarchitecture, including the measurement of volumetric cortical
and trabecular bone mineral density (vBMD), cortical thickness/porosity, bone strength,
and other parameters in the appendicular skeleton (i.e., distal radius and tibia) [79]. In
recent years, HR-pQCT has emerged as a promising technique that could become widely
used for the diagnosis of osteoporosis and for clinical fragility fracture prediction [80,81].

In a pilot study conducted on 19 postmenopausal women with T2DM matched to
19 controls, Burghardt et al. showed for the first time that T2DM may be associated with
bone microarchitecture alterations, as assessed by HR-pQCT [82]. It was observed that,
although participants with T2DM had higher trabecular vBMD and trabecular thickness,
they also presented higher cortical porosity and impaired bone strength, measured by micro-
finite element analysis [82]. Similarly, Patsh et al. reported increased cortical porosity at the
ultradistal and distal radio and tibia in 80 postmenopausal women with T2DM [83], while
Yu and colleagues also found defects in cortical bone microarchitecture (i.e., higher cortical
porosity and lower cortical vBMD) in African American women with T2DM compared to
healthy controls [84]. Data from the Framingham Study (a total of 1069 subjects underwent
HR-pQCT, 129 subjects with T2DM) showed that patients with T2DM had lower vBMD
and higher cortical porosity compared to controls [85]. Interestingly, in a prospective
exploratory study that involved postmenopausal women with T2DM with/without a
history of fragility fractures and controls, patients with T2DM and a history of fractures
exhibited the highest cortical porosity [86]. Cortical porosity increased over time similarly
in the three groups, although patients with T2DM and a history of fractures presented the
greatest decreases in bone strength indices in the follow-up period, a fact that suggests that
cortical porosity may develop early, followed by small increases in this parameter along
with significant material strength impairment [86]. Of note, cortical bone deficits assessed
by HR-pQCT in T2DM may be driven by the presence of microvascular disease and/or
poor metabolic control [87,88].

Conversely, other studies did not find significant differences in bone microarchitecture
determined by HR-pQCT between subjects with and without T2DM [89]. Intriguingly, in a
population-based sample of women aged 75-80 (99 women with T2DM and 954 controls),
T2DM was associated with better bone microarchitecture (including higher trabecular
and cortical vBMD in several regions and lower cortical porosity) [90]. In this context,
large-scale clinical studies on the topic are required to evaluate the role of HR-pQCT in the
diagnosis of bone fragility in T2DM. Moreover, the impacts of cortical porosity and other
parameters, as estimated by HR-pQCT, on the prediction of fractures in T2DM are yet to
be elucidated.

5.3. Microindentation

Microindentation is an invasive technique that enables percutaneous evaluation of the
resistance of bone to indentation in vivo [91]. By indenting a probe tip through the skin
covering the tibia and measuring the depth that it penetrates the bone after the generation
of an impact force, impact microindentation measurement directly assesses the mechan-
ical characteristics of cortical bone, which are estimated by the bone material strength
index (BMSi) [92]. This technique may be particularly useful in populations presenting
discrepancies between BMD and increased fracture risk, such as those with T2DM [93].
Accordingly, some studies have reported decreased BMSi in postmenopausal women with
T2DM [89,90,94]. Moreover, altered matrix bone properties evaluated by microindentation
were confirmed in this population, even though BMD assessed by DXA and/or bone mi-
croarchitecture assessed by HR-pQCT showed no differences between subjects with T2DM
and healthy controls [89,90]. Remarkably, in a cross-sectional study including 340 men
aged 33-96, participants with T2DM exhibited lower mean BMSi compared to subjects with
normoglycemia/impaired fasting glucose [95]. However, it should be noted that further
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work is needed with regard to this technique for the assessment of bone fragility in patients
with T2DM.

6. Bone Quality in T2DM: The Role of Biomarkers of Bone Fragility

In addition to bone mineralization and microarchitecture, skeletal material properties
are also influenced by bone turnover and the quality of collagen, which may be affected by
the accumulation of AGEs, leading to the alteration of collagen crosslinks and function as
discussed in previous sections [23]. In this regard, it has been stated that bone turnover
is decreased in T2DM, which results in reduced serum levels of bone remodeling mark-
ers [23,96-98]. However, it remains unknown whether these biochemical markers may be
helpful for the diagnosis of bone fragility or the prediction of fracture risk in patients with
T2DM. On the one hand, decreased circulating levels of parathyroid hormone (PTH) along
with osteocalcin were shown to be associated with a higher risk of vertebral fracture in
postmenopausal women with T2DM [99]. On the contrary, in a recent study, Napoli et al.
showed that serum bone turnover markers (terminal telopeptide of type 1 collagen-CTX,
osteocalcin, and procollagen type 1 N-terminal propeptide-P1NP) were not able to predict
fracture risk in T2DM [100].

On the other hand, AGES related to collagen, such as pentosidine and N-carboxymethyl
lysine (CML), are increased in bone biopsy specimens from subjects with T2DM [60,101,102].
Therefore, circulating/urinary levels of these AGEs may become attractive surrogate mark-
ers of bone quality in subjects with T2DM. Besides this, other novel biomarkers could play
a role in the evaluation of bone fragility in T2DM.

6.1. Pentosidine

Pentosidine is a well-characterized AGE derived from the non-enzymatic reaction
of pentoses with lysine and arginine residues [103]. Pentosidine levels are increased in
T2DM [104]; moreover, circulating levels of pentosidine appear to be higher in patients
with T2DM and poor metabolic control, and they are also related to T2DM-associated
cardiovascular disease and microvascular complications [104-106].

Higher concentrations of pentosidine can also be found in the cancellous bone of
patients with T2DM, and this accumulation may be associated with bone fragility via
reduced post-yield strain and toughness due to alterations of the bone matrix [60,107,108].
These disturbances may be related to a decreased bone turnover induced by this AGE [109].
Of note, serum/urinary levels of pentosidine may also be applicable markers of bone
fragility in T2DM. Thus, serum levels of pentosidine have been reported to be linked to
the presence of vertebral fractures in postmenopausal women with T2DM, who presented
similar BMD values/bone turnover markers to controls [110]. Furthermore, in a cross-
sectional study, urine pentosidine levels were higher in patients with T2DM and vertebral
fractures, and were negatively correlated with TBS [111]. In an observational cohort
study (501 participants with T2DM and 427 without T2DM), Schwartz et al. showed that
urine pentosidine was able to predict incident clinical fractures only in adults with T2DM,
while prevalent vertebral fractures were also associated with urine pentosidine in this
population [112].

6.2. N-carboxymethyl Lysine

The AGE N-carboxymethyl lysine (CML) may also play an important role in bone
fragility in patients with T2DM [102]. In this regard, CML content in human cortical bone
has been reported to be higher in subjects with T2DM, which may affect collagen prop-
erties [102]. In a large cohort from the Cardiovascular Health Study (3373 participants),
serum levels of CML were associated with increased risk of incident hip fracture, indepen-
dent of the BMD, with no differences in the hazard ratio between participants with and
without T2DM [113]. Recently, in a cohort study including 712 participants with T2DM and
2332 subjects without, Dhaliwal et al. showed that circulating levels of CML were higher
in patients with T2DM, and higher levels of this AGE were related to an increased risk
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of incident clinical fractures in this group, independent of the BMD [114]. Indeed, in this
study, no relationship was found between hip BMD and CML, which reinforces the notion
that bone quality is a major determinant of the pathophysiology of increased fracture risk
in T2DM [114].

6.3. Sclerostin

Sclerostin is an inhibitor of the pro-osteogenic Wnt signaling pathway, which results
in decreased bone turnover [23,115]. Hence, some studies have found that higher levels of
this protein could be associated with a higher risk of osteoporotic fractures [116,117].

Increased circulating levels of sclerostin have been observed in patients with T2DM
and may be involved in low bone turnover and a greater risk of fracture found in this
population [118]. Thus, higher serum levels of sclerostin have been reported in post-
menopausal women with T2DM and fragility fractures, compared to those without fragility
fractures [119,120]. In addition to this, in a cross-sectional study including postmenopausal
women and men aged >50 years with T2DM, elevated sclerostin levels correlated with the
presence of vertebral fractures [121].

6.4. MicroRNAs

MicroRNAs (miRNAs) are epigenetic regulators of different cellular processes, includ-
ing bone development, homeostasis, and healing [122]. Although evidence regarding the
role of these elements in bone fragility in T2DM is still limited, some studies have shed light
on their potential utility [123-125]. In a study conducted on 168 postmenopausal women
with T2DM, three different miRNAs, including senescent miR-31-5p, were significantly
associated with incident fragility fractures [123]. In previous analyses, Heilmeier et al. also
reported that individual miRNAs or miRNA combinations were able to discriminate the
fracture status in postmenopausal women with T2DM [124]. Chen et al. also described
several miRNAs with potential implications for fracture prediction in postmenopausal
women with T2DM [125].

6.5. Other Biomarkers

Aside from in the serum and urine, AGE deposition can be measured in other tissues,
such as the skin. Therefore, skin autofluorescence (SAF), which is based on the non-
invasive measurement of AGE accumulation in the human skin, has emerged as a promising
technique [126]. However, little evidence is available concerning bone fragility / fracture risk
estimation through this tool. In two cross-sectional studies, SAF was inversely correlated
with BMSi in patients with T2DM [94,127]. Interestingly, SAF was associated with prevalent
vertebral and major osteoporotic fractures in participants from the Rotterdam Study [128].
However, these data must be assessed specifically in individuals with T2DM.

In another area, the fingernail quality may serve as a non-invasive marker of the bone
quality in T2DM [129,130]. Nevertheless, further investigation is needed.

7. Conclusions

Since traditional methods for the evaluation of BMD and fracture risk in individuals
with T2DM can lead to significant errors, additional techniques are needed. TBS may
be considered as a useful non-invasive index of bone microarchitecture, which is often
altered in patients with T2DM. Since TBS is derived from DXA images, it may represent an
applicable tool for the diagnosis of bone fragility in T2DM. In addition, it could facilitate
follow-up and the evaluation of response to treatment in these patients, and may help to
unravel the role of certain glucose-lowering agents in bone fragility. HR-pQCT also permits
the evaluation of bone microstructure; however, this technique involves significant costs
and exposure to radiation, which should be considered. Future opportunities in this area
include the evaluation of bone microstructure by DXA-3D, which has shown remarkable
results in several conditions other than T2DM and may provide accurate estimations of
bone structure and strength, thus offering additional information with regard to fracture
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risk. Despite the fact that microindentation is a promising method for the evaluation of
bone matrix properties, it requires an invasive procedure, which may limit its application in
clinical practice. On the other hand, some biochemical markers may represent interesting
non-invasive alternatives for the evaluation of skeletal fragility /fracture risk prediction in
patients with T2DM, although it is noteworthy that the current evidence regarding some
of these alternatives is still limited; therefore, further research (e.g., validation studies)
is needed before these biomarkers may be included in routine practice. Further large-
scale, long-term prospective studies are needed in the evaluation of quality and bone
microstructure alterations in patients with T2DM.
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Abstract: Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of
metabolic syndrome. To date, NAFLD is the most frequent chronic liver disease seen day by day in
clinical practice across most high-income countries, affecting nearly 25-30% of adults in the general
population and up to 70% of patients with T2DM. Over the last few decades, it clearly emerged
that NAFLD is a “multisystemic disease” and that the leading cause of death among patients with
NAFLD is cardiovascular disease (CVD). Indeed, several observational studies and some meta-
analyses have documented that NAFLD, especially its advanced forms, is strongly associated with
fatal and non-fatal cardiovascular events, as well as with specific cardiac complications, including
sub-clinical myocardial alteration and dysfunction, heart valve diseases and cardiac arrhythmias.
Importantly, across various studies, these associations remained significant after adjustment for
established cardiovascular risk factors and other confounders. Additionally, several observational
studies and some meta-analyses have also reported that NAFLD is independently associated with
specific microvascular conditions, such as chronic kidney disease and distal or autonomic neuropathy.
Conversely, data regarding a potential association between NAFLD and retinopathy are scarce and
often conflicting. This narrative review will describe the current evidence about the association
between NAFLD and the risk of macro- and microvascular manifestations of CVD, especially in
patients with T2DM. We will also briefly discuss the biological mechanisms underpinning the
association between NAFLD and its advanced forms and macro- and microvascular CVD.

Keywords: non-alcoholic fatty liver disease; NAFLD; non-alcoholic steatohepatitis; NASH; type 2
diabetes; cardiovascular disease; cardiovascular complications; CVD

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a metabolic liver disease, which classically
includes a spectrum of progressive pathological conditions, ranging from simple steatosis
to non-alcoholic steatohepatitis (NASH) with different grades of fibrosis and cirrhosis
(Figure 1) [1,2]. At present, NAFLD is the most common chronic liver disease seen day by
day in clinical practice, as it affects roughly 25-30% of adults in the general population
across various high-income countries [3], up to 70% of patients with type 2 diabetes
(T2DM) [4] and all patients with obesity [5]. On the other side, most NAFLD patients
have relevant metabolic comorbidities, including atherogenic dyslipidemia (~70%), obesity
(~50%), hypertension (~40%) and T2DM (~30%) [6]. In this regard, alongside the increasing
prevalence of metabolic syndrome worldwide, the overall prevalence of NAFLD is believed
to rise further in the coming years.
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Figure 1. Progression of non-alcoholic fatty liver disease (NAFLD). The stages of NAFLD develop-
ment classically are simple steatosis, non-alcoholic steatohepatitis (NASH) and cirrhosis.

The diagnosis of NAFLD is a diagnosis of exclusion [7]. It is essentially based on the
following criteria: (a) presence of hepatic steatosis, as detected by specific serum biomarker
scores (e.g., fatty liver index [FLI]), imaging techniques or liver histology, (b) no alcohol
consumption (<20 g/day for women and <30 g/day for men), and (c) no other secondary
causes of liver steatosis (e.g., virus, hepatotoxic drugs, hemochromatosis, autoimmune hep-
atitis) [7]. In the last two years, several experts in the field and many scientific societies have
proposed a revision of the terminology, switching from NAFLD to metabolic-associated
fatty liver disease (MAFLD) [8,9]. In this regard, the diagnosis of MAFLD can be undertaken
from the presence of hepatic steatosis and at least one of the following criteria: (a) over-
weight/obesity, (b) T2DM, and (c) metabolic dysregulation (i.e., two or more factors among
increased waist circumference, hypertriglyceridemia, low serum HDL-cholesterol levels,
hypertension, impaired fasting glucose, insulin resistance and chronic inflammation) [8,9].
Several studies and some meta-analyses have recently indicated that the MAFLD criteria
can identify more individuals with liver damage than NAFLD criteria [10]. However, given
that there is still an intense debate about which term should be used [11,12], we have
preferred to use still NAFLD term in this manuscript.

Importantly, in the last decades, it has also become clear that NAFLD is a “multi-
systemic” disease [13]. Indeed, several observational studies and some meta-analyses
have clearly documented that NAFLD is independently associated with serious hepatic
complications (e.g., hepatic decompensation, hepatocellular carcinoma [HCC]) [5], but also
with an increased risk of developing cardiovascular disease (CVD) [14], T2DM [15], chronic
kidney disease (CKD) [16] and some extra-hepatic cancers [17]. Notably, among the various
hepatic and extra-hepatic complications related to NAFLD, CVD is the leading cause of
death among NAFLD patients.

This narrative review will discuss the current evidence regarding the association be-
tween NAFLD and the risk of macro- and microvascular CVD (Figure 2). In particular,
it will describe the association between NAFLD and the risk of sub-clinical myocardial
remodelling and dysfunction, heart valve diseases, cardiac arrhythmias, chronic kidney
disease, distal or autonomic neuropathy, retinopathy and fatal and non-fatal cardiovascu-
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lar events. A brief insight into the biological mechanisms underpinning the association
between NAFLD and macro- and microvascular complications has been also given.

NAFLD/NASH

Release of pro-inflammatory, pro-
oxidant and pro-fibrogenic mediators

Myocardial remodelling and Induction of
dysfunction

atherogenic
lipoproteins

Subclinical myocardial
dysfunction, heart e Chronic kidney
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Macro- and microvascular CVD

Figure 2. Macro- and microvascular manifestations of cardiovascular disease (CVD) linked to NAFLD
and its advanced forms. Several observational studies and meta-analyses have clearly reported that
NAFLD, mainly in its advanced forms, is strongly associated with an increased risk of sub-clinical
myocardial remodelling and dysfunction, heart valve diseases, cardiac arrhythmias, chronic kidney
disease, and distal or autonomic neuropathy. See text for details.

2. Biological Link between Non-Alcoholic Fatty Liver Disease (NAFLD) and
Cardiovascular Disease (CVD)

The underlying biological mechanisms responsible for the association between NAFLD
and the risk of specific cardiac complications are not completely established to date. It
is beyond the scope of this narrative review to illustrate in detail the current evidence
suggesting a specific role of NAFLD in the development and progression of various cardiac
complications. That said, in brief, accumulating evidence now indicates that NAFLD,
especially its severe forms, may play a part in the pathophysiology of cardiac complications
through different mechanisms, such as:

(a) hepatic lipid accumulation (e.g., di-acyl glycerol [DAG]) in NAFLD patients impairs
insulin signalling, thereby conditioning insulin resistance (IR) through different mech-
anisms, including the inhibition of phosphorylation of insulin receptor substrate-1
(IRS-1) [18] and the activation of protein kinase C (PKC)-e that can inhibit the action
of insulin receptor and promote the lipid accumulation [19]. In particular, hepatic
and systemic insulin resistance is one of the primary mechanisms for inducing athero-
genic lipoproteins and dysglycaemia. Notably, both atherogenic dyslipidemia and
dysglycaemia mediate CVD risk in NAFLD patients with T2DM;

(b) the release into the bloodstream of several pro-inflammatory (e.g., tumour necro-
sis factor-a [TNF-a], interleukin-6 [IL-6]), pro-oxidant and pro-coagulant factors
(e.g., fibrinogen, factor VIII, plasminogen activator inhibitor-1) as well as pro-fibrogenic
mediators. In particular, the synthesis of lipids, including DAG, may also con-
tribute to the hepatic production of inflammatory cytokines and pro-coagulant fac-
tors [13,20-22];

(c) thebidirectional relationship between NAFLD and hypertension [23]. Several observa-
tional studies and some meta-analyses have reported that patients with NAFLD have
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an increased risk of developing hypertension [24], thus suggesting that this association
may partly mediate the relationship between NAFLD and cardiac complications and
that that NAFLD may be a consequence, but also a cause of hypertension [23];

(d) patients with NAFLD have early changes in myocardial substrate metabolism in-
ducing cardiac functional disturbances, probably conditioning a higher risk of heart
failure [25] and arrhythmias [22,26];

(e) chronic hyperglycemia induces an inflammatory and osteoblastic phenotype in valvu-
lar interstitial cells in experimental models of aortic valve sclerosis [27]. Increased
valvular inflammation, through a systemic inflammatory state, could also mediate
the increased cardiac valve sclerosis in NAFLD patients, independent of the presence
of T2DM;

(f) experimental data also indicate that NAFLD, mainly when advanced stages occur, may
contribute to the activation of multiple pathways involved in the pathophysiology
of CKD [10,28]. In this regard, atherogenic dyslipidaemia, hypertension, insulin
resistance, oxidative stress and pro-inflammatory factors that, as mentioned above, are
promoted and exacerbated by NAFLD status, may directly contribute to the vascular
and renal damage [28]. Moreover, impaired activation of the renin-angiotensin system
(RAS) may also contribute to the renovascular injury by inflammation pathways [28].
Finally, accumulating evidence also suggests a potential and independent association
between PNPLA3 (patatin like phospholipase domain containing-3) rs738409, which
is the most important polymorphism associated with NAFLD and its advanced
forms [29], and kidney dysfunction [28].

All these factors can promote myocardial remodelling and dysfunction, thereby pre-
disposing to the development of various cardiac complications [13,20-22].

3. Risk of Microvascular Complications
3.1. Chronic Kidney Disease (CKD)

Several observational studies and some meta-analyses have reported that NAFLD, as
detected by indirect biomarkers of steatosis, ultrasonography or liver biopsy, is associated
with an increased risk of prevalent and incident chronic kidney disease (CKD) in patients
with and without T2DM, independent of established cardio-metabolic risk factors, diabetes-
related variables and other potential confounders [28,30]. In a recent 2022 meta-analysis
of 13 longitudinal studies for a total of 1,222,032 patients (~28% with NAFLD as detected
by biomarkers, International Classification of Diseases [ICD] codes, imaging techniques
or biopsy) and 33,840 new cases of incident CKD stage (defined as CKD stage >3 and/or
overt proteinuria) over a median follow-up of nearly 10 years, our research group reported
that NAFLD was associated with a 43% increased risk of incident CKD (random-effects
hazard ratio 1.43, 95% confidence interval 1.33 to 1.54; 12 = 60.7%), independent of age, sex,
obesity, hypertension, T2DM and other CKD risk factors [16]. In a 2018 meta-analysis, the
same research group documented that such association was slightly higher when the analy-
sis was restricted to cohort studies involving exclusively patients with diabetes mellitus
(random-effects hazard ratio 1.56, 95% confidence interval 1.07-2.05; I2 = 0%) [31]. Interest-
ingly, accumulating observational studies using vibration controlled transient elastography
(VCTE), as non-invasive method to evaluate the degree of liver fibrosis, also reported an
independent association between liver stiffness and renal dysfunction. In this regard, for
instance, in a 2022 systematic review and meta-analysis of seven cross-sectional studies
for a total of 7736 individuals with NAFLD, Ciarduillo et al. showed that liver fibrosis (as
assessed by VCTE) was associated with an increased risk of prevalent CKD (defined as
eGFR < 60 mL/min/1.73 m? and urinary albumin to creatinine ratio >30 mg/g) (random-
effects odds ratio 2.49, 95% confidence interval 1.89-3.29; 12 = 46.5%), as well as with an
increased risk of prevalent albuminuria (random-effects odds ratio 1.98, 95% confidence
interval 1.29-3.05; I2 = 46.5%) [32]. However, it should be noted that, at present, only few
observational studies on this topic have used liver biopsy for the diagnosis of NAFLD,
which is the reference standard for diagnosing and staging NAFLD [1,2]. Conversely,
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most available studies on this topic have used liver ultrasonography, which is to date the
recommended first-line imaging method for detecting NAFLD in clinical practice [1,2], able
to accurately detect mild-to-moderate hepatic steatosis, as assessed by liver biopsy [7].

Notably, the presence of NAFLD may be even associated with CKD progression [33].
In a cohort study of nearly 1500 CKD patients who underwent periodic health check-
ups, Jang et al. showed that age- and sex-adjusted decline in eGFR values was higher in
patients with NAFLD (as detected by ultrasonography) when compared with those without
NAFLD [34]. In that study, interestingly, the decline in estimated eGFR related to NAFLD
was even higher in patients with higher NAFLD fibrosis score (which is an indirect marker
of advanced liver fibrosis), in those with proteinuria and/or low eGFR values at baseline
and in those who were active smokers or had hypertension at baseline [34]. Although
additional studies are needed, preliminary evidence also indicates that the improvement in
liver histology in NAFLD patients is associated with improved kidney function [33,35].

Observational studies involving patients with and without T2DM have reported that
the presence of the G allele of rs738409 in the PNPLA3 gene is associated with lower
eGFR values and/or higher prevalence of CKD, even after adjustment for the presence
of NAFLD and other cardio-renal risk factors [28,30,33,36-39]. In a cross-sectional study
including 157 Italian patients with T2DM, who underwent liver ultrasonography and
kidney function assessment, our research group reported that the presence of the G allele
of rs738409 in the PNPLA3 gene was associated with an increased risk of CKD (defined as
<60 mL/min/1.73 m? and/or abnormal albuminuria), independent of liver disease severity,
cardiorenal risk factors and other potential confounders [37]. Interestingly and notably, in
that study, the authors also found that PNPLA3 mRNA expression was greatest in the liver
and renal cortex, thereby suggesting that the PNPLA3 rs738409 variant might contribute, at
least in part, to the impaired kidney function in these patients [37]. These findings have
also been confirmed in some cohorts of children and adolescents [40-42].

Taken together, these data strongly indicate that patients with NAFLD, especially
those with severe forms, have an increased risk of developing CKD, independent of
several cardio-renal risk factors and other confounders [28,33]. Interestingly, novel data
also suggest that MAFLD criteria might identify patients with CKD better than NAFLD
criteria [43]. However, seeing the observational nature of all studies available so far, it is
essential to underline that a causal relationship between NAFLD and incident CKD cannot
be proven yet [28,33].

3.2. Distal Symmetric Polyneuropathy and Autonomic Neuropathy

Some observational studies [44—46], although not all [47,48], have documented an
association between NAFLD and the risk of prevalent distal symmetric polyneuropathy
in T2DM patients, independent of multiple cardio-metabolic risk factors and diabetes-
related variables. In a cross-sectional study involving roughly 400 outpatients with T2DM
attending five Italian diabetes centers, who underwent liver ultrasonography, vibration
controlled transient elastography (by FibroScan®) and evaluation of microvascular diabetic
complications, Lombardi et al. documented that significant liver fibrosis (i.e., liver stiffness
measurement [LSM] > 7.0 and 6.2 kPa with M and XL probes, respectively) was indepen-
dently associated with higher prevalence of microvascular diabetic complications (28% in
patients with LSM < 7.0/6.2 kPa vs. 50% in patients with LSM > 7.0/6.2 kPa, p < 0.001),
including distal symmetric polyneuropathy (3% in patients with LSM <7.0/6.2 kPa vs.
14% in patients with LSM > 7.0/6.2 kPa, p < 0.05) [46]. Accumulating evidence also sug-
gests the existence of an association between hepatic steatosis (as detected by imaging
techniques) and cardiac autonomic dysfunction in patients with and without T2DM [49,50].
For instance, in a recent cross-sectional study including 173 individuals with T2DM and
183 age- and sex-matched nondiabetic controls from the Cooperative Health Research in
South Tyrol (CHRIS) study, Targher et al. reported that individuals with T2DM and NAFLD
(on ultrasonography) and individuals with NAFLD alone, but not those with T2DM alone,
had an increased risk of cardiac sympathetic/parasympathetic imbalance (as assessed by
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low- to high-frequency power ratio and other heart rate variability measures obtained
by a 20 min resting electrocardiogram), when compared with those without NAFLD and
T2DM [50].

However, although this evidence is interesting, additional research is needed to cor-
roborate these findings in larger populations and, more willingly, in longitudinal studies.

3.3. Diabetic Retinopathy

Some cross-sectional studies have investigated the relationship between NAFLD
(as detected by imaging techniques) and the risk of prevalent diabetic retinopathy in
patients with T2DM, reporting inconsistent results [44,51]. In this regard, a 2021 meta-
analysis of nine cross-sectional studies for a total of 7170 patients with T2DM (57% with
NAFLD on ultrasonography) reported no association between NAFLD and risk of prevalent
diabetic retinopathy (random-effects odds ratio 0.94, 95% confidence interval 0.51-1.71;
12 = 96%) [52]. In addition, in that meta-analysis, subgroup analyses suggested that in
China, Korea and Iran, T2DM patients with NAFLD had a decreased risk of diabetic
retinopathy when compared with those without NAFLD, whereas in Italy and India, T2DM
patients with NAFLD had an increased risk [52]. As suggested by the authors of that
meta-analysis, the aforementioned results should be interpreted with caution, because
of the high heterogeneity observed and the differences in the results seen across various
countries. Hence, additional research is needed to better explore this issue [52].

4. Risk of Macrovascular Complications
4.1. Sub-Clinical Myocardial Remodelling and Dysfunction, Heart Valve Diseases and
Cardiac Arrhythmias

A large body of evidence now supports the existence of a strong and indepen-
dent association between NAFLD and sub-clinical myocardial remodelling and dysfunc-
tion, heart valve diseases (i.e., aortic-valve sclerosis and mitral annulus calcification)
and cardiac arrhythmias (mainly atrial fibrillation) in patients with and without T2DM
(Table 1) [13,22,23,53-56]. For instance, in a cross-sectional study involving 222 outpatients
with T2DM (~70% with NAFLD on ultrasonography), our research group showed that
NAFLD was associated with increased risk of left ventricular diastolic dysfunction (as eval-
uated by trans-thoracic echocardiography), independent of established CVD risk factors,
diabetes-related covariates and other confounders [57]. Some recent observational studies
using biopsy or vibration-controlled transient elastography (by FibroScan®) also observed
a graded relationship between functional and structural myocardial abnormalities and
NAFLD severity in patients with and without T2DM [22]. A 2019 meta-analysis of 16 obser-
vational studies further confirmed that NAFLD (as detected by imaging techniques or liver
biopsy) was independently associated with many functional and structural myocardial
abnormalities, including higher left ventricle mass, higher left ventricular end diastolic
diameter, higher left atrium diameter and the ratio between left atrial volume and body sur-
face area, higher posterior wall and septum thickness, lower E/ A wave ratio, higher E/E’
ratio, longer deceleration time and longer relaxation time [58]. Interestingly, recent observa-
tional studies also indicated that NAFLD (as detected by ultrasonography) was associated
with a reduction in global longitudinal strain, which is a relatively novel echocardiographic
parameter strongly associated with adverse cardiovascular outcomes [59-61].
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Relating to heart valve calcifications, some cross-sectional studies have shown an
independent association between NAFLD and risk of aortic valve sclerosis (AVS) and mitral
annulus calcification (MAC) in patients with and without T2DM [22,62]. For instance, in
a study involving nearly 250 consecutive outpatients with T2DM (~70% with NAFLD on
ultrasonography), our research group documented that NAFLD was strongly associated
with cardiac calcifications in both the aortic and mitral valves, even after adjustment for
established CVD risk factors, diabetes-related covariates and other confounders [62]. These
findings may be clinically relevant, as functional and structural myocardial abnormalities
and AVS/MAC are strongly associated with all-cause and cardiovascular mortality in
patients with and without T2DM [63].

Relating to cardiac arrhythmias, several observational studies and some meta-analyses [64-67]
have documented that NAFLD (as detected by imaging techniques) is associated with prevalent
and incident permanent atrial fibrillation (AF) in patients with and without T2DM (Table 1) [22].
Notably, AF is, at present, the most frequent cardiac arrhythmia observed day by day in clinical
practice and, importantly, it is strongly linked to adverse cardiovascular outcomes [22]. In a recent
meta-analysis of five observational studies for a total of roughly 240,000 adult individuals with and
without T2DM, our research group documented that NAFLD (as detected by imaging techniques)
was associated with higher prevalence and incidence of AF [66]. Interestingly, in a recent retrospec-
tive longitudinal study including 267 patients (33% with NAFLD as detected by ultrasonography
and 17% with T2DM at baseline) undergoing AF ablation, Donnellan et al. reported that NAFLD
was associated with increased arrhythmia recurrence rates following AF ablation, during a mean
follow-up of nearly 2.5 years [68]. Other observational studies and meta-analyses, also enrolling
T2DM patients, have reported that NAFLD (as detected by ultrasonography) was associated with
an increased risk of prolonged QIc, ventricular arrhythmias or conduction defects, independent of
established cardiovascular risk factors, diabetes-related covariates and other confounders [22,67,69—
72]. Interestingly, in a 2021 meta-analysis of 19 observational studies, Gong et al. confirmed that
NAFLD (as detected by indirect markers of steatosis or imaging techniques) was independently
associated with higher risks of prolonged QT interval (random-effects odds ratio 2.86, 95% con-
fidence interval 1.644.99), premature atrial/ventricular contraction (random-effects odds ratio
2.53, 95% confidence interval 1.70-3.78) and heart block (random-effects odds ratio 2.65, 95%
confidence interval 1.88-3.72) [67]. These data are clinically relevant, because NAFLD-related
cardiac arrhythmias complications might contribute to explaining, at least in part, the increased
risk of fatal and non-fatal CVD events observed in NAFLD patients.

4.2. Fatal and Non-Fatal Cardiovascular Events

Over the last few decades, it has become increasingly evident that the leading cause of
death in NAFLD patients is CVD [22,23,73-75]. In this regard, using data from the National
Vital Statistics System multiple-cause mortality data (2007-2016), Paik et al. reported that
CVD was the main cause of death among US patients with NAFLD, as detected by ICD
codes [74]. In a meta-analysis of 45 observational studies for a total of approximately
8 million individuals followed up to 13 years, Younossi et al. also estimated that the
pooled CVD-specific mortality rate among NAFLD patients with or without T2DM was
nearly 5 per 1000 person-years [3]. Several longitudinal studies and some meta-analyses
confirmed that patients with NAFLD (as detected by imaging techniques, ICD codes or
liver biopsy) have an increased risk of developing fatal and non-fatal CVD events, even
after adjustment for several traditional CVD risk factors, diabetes-related variables, spe-
cific medications and other potential confounders (Table 1) [22,23,54-56,76-79]. In a 2021
meta-analysis of 36 longitudinal studies for a total of 5,802,226 adults and 99,668 incident
cases of fatal and non-fatal CVD events over a median follow-up of 6.5 years, our research
group reported that NAFLD (as detected by imaging techniques, ICD codes or liver biopsy)
was associated with a 45% increased risk of fatal or non-fatal CVD events, independent
of age, sex, body mass index, waist circumference, presence of T2DM and other cardio-
vascular risk factors (random-effects hazard ratio 1.45, 95% confidence interval 1.31-1.61;
12 = 86.2%) [14]. Such risk further increased in patients with severe forms of NAFLD,
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especially those with advanced fibrosis [14]. Another 2021 meta-analysis confirmed that
NAFLD (as detected by imaging techniques, ICD codes or liver biopsy) was indepen-
dently associated with increased risk of myocardial infarction (random-effects odds ratio
1.66, 95% confidence interval 1.39-1.99), ischemic stroke (random-effects odds ratio 1.41,
95% confidence interval 1.29-1.55) and heart failure (random-effects odds ratio 1.62, 95%
confidence interval 1.43-1.84) [26]. In this regard, it is important to underline that the
magnitude of cardiovascular risk is strongly related to the severity of NAFLD [25,80-82].
For instance, in a nationwide, matched cohort study of 10,568 Swedish individuals with
biopsy-confirmed NAFLD (11% with T2DM at baseline) who were followed for a median
period of 14 years, Simon et al. reported that, when compared to 49,925 adults of the
general population (3% with established T2DM at baseline), mortality rates from CVD
were significantly elevated in patients with simple steatosis (adjusted-hazard ratio 1.25,
95% confidence interval 1.16-1.35), and that these risks progressively increased in patients
with NASH without fibrosis (adjusted-hazard ratio 1.66, 95% confidence interval 1.38-2.01),
in those with non-cirrhotic fibrosis (adjusted-hazard ratio 1.40, 95% confidence interval
1.17-1.69) and also in those with cirrhosis (adjusted-hazard ratio 2.11, 95% confidence inter-
val 1.63-2.73) [80]. Similar findings were also documented in cohorts involving NAFLD
patients with T2DM [22,23,53-56].

To date, data regarding whether the improvement of NAFLD may reduce the incidence
of cardiovascular complications are scarce. Although some retrospective studies enrolling
Asian adults without pre-existing CVD have reported that the improvement or resolution
of NAFLD (on ultrasonography) could be associated with a reduced risk of (carotid)
atherosclerotic development in patients with and without T2DM [56,83], we believe that
additional information on this issue is needed. In addition, it is important to underline that
current evidence also indicates that histologic resolution of NASH could be associated with
beneficial changes in risk factors for CVD [56,83], thus suggesting a potential favorable
effect on cardiac complications.

Lastly, novel evidence also suggests that MAFLD criteria might identify patients with
CVD better than NAFLD criteria [84].

5. CVD Risk Assessment in Patients with NAFLD

Based on the aforementioned evidence, the EASL-EASO-EASD and American Asso-
ciation for the Study of Liver Diseases (AASLD) practice guidelines for diagnosing and
managing NAFLD now recommend a CVD risk assessment in all patients with NAFLD [1,2].
In this context, as suggested by several experts in the field [13], a potential comprehen-
sive CVD risk assessment may include (Table 2): (a) evaluation of coexisting risk factors
(such as a prior history of CVD, family history of premature CVDs or T2DM, cigarette
smoking, presence of T2DM, dyslipidemia, hypertension, obesity, metabolic syndrome,
chronic kidney disease and erectile dysfunction), (b) physical examination (such as body
weight, height, body mass index, waist circumference, blood pressure, arterial bruits and
pulse examination), (c) laboratory tests (such as blood count, lipid profile, fasting plasma
glucose, HbAlc, serum creatinine, transaminases, albumin, urinalysis, albuminuria) and
(d) cardiovascular examination tests (such as resting electrocardiogram, carotid artery
ultrasonography, and exercise stress test if coexisting CVD, CKD, T2DM or >2 CVD risk
factors). In addition, the current evidence on this topic also calls attention to a holistic
approach in managing and treating NAFLD patients [75,85].
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Table 2. Essential comprehensive cardiovascular risk assessment in patients with NAFLD.

History of CVD,

family history of premature CVDs or T2DM,
cigarette smoking,

presence of T2DM, dyslipidemia, hypertension, obesity, CKD, erectile
dysfunction (men),

alcohol use

Weight,

body mass index,

waist circumference,

blood pressure,

pulse examination

Cardiovascular risk factors

Physical examination

Blood count (including hemoglobin and platelets),
lipid profile,

fasting glucose,

HbAlc,

serum creatinine,

transaminases,

albumin,

albuminuria

Laboratory tests

Carotid artery ultrasonography,

resting electrocardiogram,

exercise stress test if coexisting CVD, CKD, T2DM or more than
2 CVD risk factors

This table is based on the review published by Byrne and Targher [13]. Abbreviations: CKD, chronic kidney
disease; CVD, cardiovascular disease; T2DM type 2 diabetes.

Cardiovascular examination tests

6. Conclusions

The aforementioned data support the concept that NAFLD is a “multisystemic” dis-
ease [13]. Indeed, NAFLD is not only associated with serious hepatic complications, but it
is also linked with macro- and microvascular complications. Importantly and notably, at
present, the main cause of death among NAFLD patients is CVD [14]. For this reason, a
comprehensive CVD risk assessment is essential in these patients [1,2,13]. That said, infor-
mation regarding the impact of histological improvement of NAFLD on CVD risk is still
scarce and needs further research [56,83]. In spite of our knowledge about epidemiology,
pathogenesis and natural history of NAFLD, no specific pharmacological therapies have
until now been approved for such a disease [86]. Lifestyle change promoting weight loss
and the correction of modifiable cardio-metabolic risk factors are still the cornerstone of the
treatment in NAFLD patients [86]. However, over the last few decades, several potential
agents have been tested to treat NAFLD and its advanced forms [86,87]. They encompass
some glucose-lowering drugs (especially pioglitazone, glucagon-like peptide-1 [GLP-1]
receptor agonists and sodium-glucose co-transporter-2 [SGLT-2] inhibitors) [87], bile and
non-bile acid farnesoid X activated receptor (FXR) agonists, anti-oxidants (i.e., vitamin E),
statins and others [86,88]. In this regard, for instance, in a 2022 systematic review of
randomised controlled trials testing the efficacy of peroxisome proliferator-activated recep-
tor (PPAR) agonists, GLP-1 receptor agonists and SGLT-2 inhibitors for treating NAFLD
in adults with or without type 2 diabetes, our research group found that pioglitazone
(a PPAR-y agonist), lanifibranor (a pan-PPAR agonist) and GLP1-R agonists (e.g., liraglu-
tide and semaglutide) are able to obtain the resolution of NASH without worsening of
fibrosis, whereas SGLT-2 inhibitors (e.g., empagliflozin and dapagliflozin) are able to reduce
liver fat content, as detected by magnetic resonance-based techniques [87]. Given the strong
relationship between NAFLD and macro- and microvascular complications, it is possible
to speculate that these agents may exert a beneficial effect not only on the hepatic disease,
but also in reducing the risk of developing cardiovascular and renal diseases [25,86-88].
However, herein it is important to note that pioglitazone is contraindicated in patients
with symptomatic heart failure or in patients with a high risk of heart failure [25]. Seeing

119



J. Clin. Med. 2022, 11, 968

the multiple pathways implicated in the pathogenesis of NAFLD and its complications,
as well as the single response from single-agent therapies across RCTs available so far, it
is also reasonable to hypothesize that the combination of different therapies (e.g., GLP-1
receptor agonists plus SGLT-2 inhibitors) will be more appropriate for treating NAFLD
patients [86,87,89]. In this context, as suggested by several experts in the field, a holistic
approach in managing and treating NAFLD patients seems to be fundamental [75,85].
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Abstract: Diabetes is a driver of non-alcoholic fatty liver disease (NAFLD) and fibrosis. We determine
current practices in examining liver fibrosis in people with diabetes and record prevalence levels
in primary and secondary care. We extracted HbA . results >48 mmol/mol to identify people
with diabetes, then examined the proportion who had AST, ALT, and platelets results, facilitating
calculation of non-invasive fibrosis tests (NIT), or an enhanced liver fibrosis score. Fibrosis markers
were requested in only 1.49% (390/26,090), of which 29.7% (n = 106) had evidence of significant
fibrosis via NIT. All patients at risk of fibrosis had undergone transient elastography (TE), biopsy
or imaging. TE and biopsy data showed that 80.6% of people with raised fibrosis markers had
confirmed significant fibrosis. We also show that fibrosis levels as detected by NIT are marginally
lower in patients treated with newer glucose lowering agents (sodium-glucose transporter protein
2 inhibitors, dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 receptor agonists). In
conclusion by utilising a large consecutively recruited dataset we demonstrate that liver fibrosis is
infrequently screened for in patients with diabetes despite high prevalence rates of advanced fibrosis.
This highlights the need for cost-effectiveness analyses to support the incorporation of widespread
screening into national guidelines and the requirement for healthcare practitioners to incorporate
NAFLD screening into routine diabetes care.

Keywords: fibrosis; NAFLD; diabetes; screening; primary care; secondary care

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease
in the UK and Europe [1], soon to become the most common indication for liver transplan-
tation in the next decade [2], as a result of the obesity and associated type 2 diabetes (T2D)
epidemics. Expert consensus has suggested NAFLD be re-named metabolic-associated
fatty liver disease (MAFLD) to reflect its strong association with insulin resistance and
the metabolic syndrome [3]. Type 2 diabetes is a condition characterised by peripheral
insulin resistance with inadequate compensatory pancreatic beta-cell insulin secretion.
Insulin resistance and systemic inflammation lead to accumulation of free fatty acids and
consequentially hepatocyte triglyceride accumulation characterising NAFLD [4,5]. NAFLD
is generally benign in the majority of individuals, however in up to 40% of people it can
progress to liver fibrosis [6,7]. Liver fibrosis describes the development of fibrous tissue
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due to the replacement of healthy tissue by extracellular matrix proteins, in NAFLD this is
the result of hepatotoxic injury and initially leads to non-alcoholic steatohepatitis (NASH)
and chronically to liver fibrosis [8]. Liver fibrosis, rather than simple steatosis or NASH,
is associated with an increased risk of liver-related morbidity and mortality [6,9], overall
mortality [10], and cardiovascular disease [11,12].

One of the most significant predictors of fibrosis progression and the development of
advanced fibrosis is diabetes, particularly T2D [13-18]. NAFLD is reported to be present in
40-70% of individuals with T2D [19-21]. Furthermore, UK diabetes prevalence according
to Quality Outcome Framework data is now 7.1% (2020/21), with an additional large
number of undiagnosed cases [22]. While the European Association for the Study of the
Liver (EASL) guidelines [23] and American Diabetes Association guidelines [24] suggest
surveillance for NAFLD in people with T2D, the American [25], Asian [26], and UK [27,28]
guidelines acknowledge that individuals with T2D are at greater risk of NAFLD, yet do
not advocate widespread screening.

We aimed to perform a cross-sectional analysis of the burden of significant liver
fibrosis in individuals with diabetes from both primary and secondary care to understand
the prevalence of potentially clinically significant liver disease in these settings; and to
provide a snapshot into current practice of examining fibrosis markers and ongoing risk
stratification in people with diabetes.

2. Materials and Methods

Screening with HbA. We extracted glycated haemoglobin (HbA.) results over a
21-month period (31 December 2019 to 14 September 21) from the Liverpool (University
Hospital Foundation Trust) Clinical Laboratories and identified a cohort of individuals
with an HbA;. > 48 mmol/mol indicative of a diagnosis of diabetes (Figure 1). Individuals
under 35 years old were excluded as fibrosis scores are inaccurate in this age group.
Results from blood requests from inpatient stays, the emergency department, cancer
services, and dialysis units were excluded, leaving those taken from primary care and other
outpatient departments.

Blood results reporting HbA, . 2 48 mmol/mol from Liverpool University Hospital Foundation Trust Clinical
Laboratories (31/12/2019 to 14/09/21)
n = 50,692

Exclusions

«  Duplicate results from same request (n=20)
Repeat result later over time-scale (n=22,278)
Results from blood requests from inpatient stays / emergency
department / cancer services / dialysis units (n=1140)
People under 35 years (n=1164)

HbA, result > 48 mmol/mol requested from primary care or outpatients in people > 35 years old
n =26,090

|

Blood results requested allowing calculation of simple fibrosis score (FIB-4 / APRI / AST:ALT) or ELF test
FIB-4 / APRI / AST:ALT: n = 385 (1.47%)
ELF test: n =5 (0.02%)
Total: n =390 (1.49%) (n = 357 post exclusion fibrosis markers > 6 months prior to HbAlc result)

l

Any one of the following raised - FIB-4 / APRI / AST:ALT / ELF: n = 106 (29.7%)

}

Transient elastography / liver biopsy performed: n = 67 (63.2%)

}

Transient elastography / liver biopsy confirms significant fibrosis / cirrhosis: n = 54 (80.6%)

Figure 1. Study flow chart and summary of results. HbA1, glycated haemoglobin; FIB-4, fibrosis-4;
APRI, aspartate transaminase to platelet ratio index; AST aspartate transaminase; ALT, alanine
transaminase; ELF, enhanced liver fibrosis score.
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2.1. Determination of Liver Biochemistry Results and Fibrosis Scores

We examined what proportion of these people had an aspartate transaminase (AST),
alanine transaminase (ALT), and platelet levels taken within this time frame. From these
results, we calculated three validated non-invasive scores of liver fibrosis, the fibrosis-4
(FIB-4) score [29], the AST to platelet ration index (APRI) [30], and the AST:ALT ratio
(Supplementary Table S1) [31]. Significant fibrosis was defined as either a FIB-4 score > 2.67,
APRI score > 1.0, or AST:ALT ratio > 1.0, where either the AST or ALT level was also
>40 IU/L. We also included patients with an enhanced liver fibrosis score (ELF), based on
tissue inhibitor metalloproteinases 1, amino-terminal pro-peptide of type III procollagen
and hyaluronic acid [32]. Significant fibrosis was defined as an ELF score of >9.8. We then
excluded results taken over 6 months prior to the HbA;. to ensure that individuals were
likely to have diabetes at the time the fibrosis tests were taken. We additionally compared
prevalence rates of liver fibrosis detected by primary and secondary care.

2.2. Confirmation of Fibrosis Identified with Non-Invasive Testing Using Transient Elastography
(TE) and/or Liver Biopsy

We further examined what proportion of individuals identified as being at risk of
significant liver fibrosis according to non-invasive tests (NITs), had gone on to have con-
firmatory testing with either TE or liver biopsy. TE suggestive of fibrosis was defined
according to a liver stiffness measurement > 8 kPa (Fibroscan, Echosens, Paris, France).
Histological evidence of significant fibrosis or cirrhosis was confirmed by percutaneous
liver biopsy and verified by an experienced liver histopathologist.

2.3. Association between Advanced Fibrosis According to FIB-4 Score and Glucose Lowering Agents

We examined prescription data for glucose lowering agents for patients who had data
available to calculate a FIB-4 score. We additionally examined the proportion of people
with a raised FIB-4 score > 2.67 according the number and classes of glucose lowering
medications prescribed.

2.4. Statistical Analysis

Results are presented as the median and interquartile range. Data validity was ensured
by examining ten random NHS numbers of both included and excluded patients and cross-
checking them across databases. Data was analysed using R version 4.1.1 (R Foundation
for Statistical Computing, Vienna, Austria) and Excel Kutools.

2.5. Ethics

As all patient data was anonymised this project did not require national ethical
approval; clinical audit approval was obtained locally (number 10864).

3. Results
3.1. Description of Study Cohort

We identified 26,090 individuals who had an HbA;. result >48 mmol/mol requested
from primary care or secondary care (outpatients department). Data was available to
calculate the APRI score, AST:ALT ratio and FIB-4 score in 385 (1.47%) of these individuals
and a further 5 (0.02%) had an ELF score requested, meaning that overall 390 (1.49%) people
with diabetes had undergone a non-invasive test for fibrosis. Following the exclusion of
results taken >6 months prior to the HbA . result, the final study cohort consisted of 357
individuals with diabetes (Figure 1). In total 134 (37.5%) results were ordered from primary
care and 223 from outpatients (62.5%). Baseline demographic data and laboratory results
from this cohort are presented in Table 1.
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Table 1. Baseline data from the cohort (1 = 357).

Variable Demographic Factor/Laboratory Finding
Sex (1 (%)) 204 (57.1) M, 153 (42.9) F

Age (years) (Median (IQR)) 60 (53-67)

HbA ;. (mmol/mol) (Median (IQR)) 62 (53-76)

AST (IU/L) (Median (IQR)) 30 (21-48)

ALT (IU/L) (Median (IQR)) 35 (23-53)

Platelets (x10° /L) (Median (IQR)) 223 (170-284)

ELF score 10.1 (10-10.7)

M, male; F, Female; IQR, interquartile range; HbA ., glycated haemoglobin; AST aspartate transaminase; ALT,
alanine transaminase; ELF, enhanced liver fibrosis.

3.2. Prevalence of Significant Fibrosis in Individuals with Diabetes According to Serum Fibrosis Scores

Between 13.7-19% individuals with diabetes were identified as having evidence of
significant fibrosis using simple NITs (Table 2, Figure 2) and 80% (4/5) of people who
had an ELF score requested had evidence of significant fibrosis. Using the previously
described definitions of significant fibrosis (one or more of FIB-4 score > 2.67, APRI > 1.0,
AST:ALT > 1.0, or ELF > 9.8), 106 (29.7%) people with diabetes were identified as being
at risk. Of the 106 people at risk of significant fibrosis, 30 (28.3%) had fibrosis markers
requested from primary care. Of the 76 outpatient blood requests, 66 (86.8%) came from
the liver clinic. Overall fibrosis scores derived from blood requests sent from secondary
care (34.1%) showed higher levels of significant fibrosis than primary care (22.4%) (Table 1,
Figure 2). There was no positive correlation between HbA;. and fibrosis scores when
examined on a continuous scale (Supplementary Figure S1).

Table 2. Percentage of people with diabetes found to have evidence of significant fibrosis determined
by non-invasive markers.

Non-Invasive Serum Total, % (n) Primary Care, % (n) Secondary Care, % (1)
Fibrosis Scores =357 37.5 (134) 62.5 (223)

FIB-4 > 2.67 19.0 (68) 13.4 (18) 22.4 (50)

APRI > 1.0 13.7 (49) 12.7 (17) 14.3 (32)

AST:ALT ratio > 1.0 and

AST or ALT > 40 TU/L 17.4 (62) 11.2 (15) 21.1 (47)

Any one of the above, or

LR Sos 29.7 (106) 224 (30) 34.1(76)

FIB-4, fibrosis-4; APRI, aspartate transaminase to platelet ratio index; AST aspartate transaminase; ALT, alanine
transaminase; ELF, enhanced liver fibrosis test; kPa kilopascal.

3.3. Prevalence of People with Diabetes and At-Risk Serum Fibrosis Scores with Confirmed
Significant Fibrosis/Cirrhosis

Of the 106 individuals with diabetes identified to be at risk of significant fibrosis
using non-invasive serum markers, 67/106 (63.2%) went on to have transient elastography
(TE/Fibroscan) (n = 50, 47.2%), liver biopsy (n = 24, 22.6%), or both (1 = 7, 6.6%). In total
54 /67 (80.6%) of these individuals had a liver stiffness measurement >8 kPa or evidence of
significant fibrosis or cirrhosis at biopsy. All 39 people with raised fibrosis markers who
did not receive a fibroscan or liver biopsy, had prior liver imaging via ultrasound (n = 30,
76.9%) or CT (n =9, 23.1%), and 21/39 (53.8%) had evidence of cirrhosis.
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Non-Invasive Fibrosis Tests

Location

kS
B o

APRI/FIB-4 / AST:ALT Ratio
o

APRI AST:ALT Ratio FiB-4

Figure 2. Summary Graphs of FIB-4, APRI, AST:ALT Ratio by Test Location. Red dotted line = cut-off
for high-risk fibrosis via APRI and AST:ALT Ration. Blue dotted line = cut-off for high risk liver
fibrosis via FIB-4, FIB-4 = Fibrosis 4, APRI = AST to Platelet Ratio Index, n = Number, GP = General
Practice, OP = Outpatient.

3.4. Prevalence of a Raised FIB-4 Score According to the Number and Class of Glucose Lowering Agent

Medication data was available for 91.6% (327/357) patients. A further 4 patients
were excluded who did not have data to calculate a FIB-4 score (final sample 1 = 323). A
breakdown of the number of drugs and subclasses of glucose lowering agents prescribed
are shown in Table 3. Patients who were not prescribed any glucose lowering therapies
had lower levels of fibrosis according to the FIB-4 score (12.5%), compared to those on
treatment (19.5%), however glycaemic control was also improved (Table 3, Supplementary
Figure S2). Patients treated with SGLT2 inhibitors (16.4%), GLP-1 receptors agonists (16.0%)
and DDP-4 inhibitors (15.1%) trended towards having non-significantly lower levels of
NIT fibrosis (Table 3, Supplementary Figure S3), whilst having no noticeable differences in
glycaemic control. Patients treated with metformin (18.6%) and sulphonylureas (18.4%)
had similar levels of fibrosis to the overall cohort. Patients treated with insulin trended
towards having non-significantly higher levels of fibrosis (23.8%) and higher HbA 1 levels
(median 73 mmol/mol) (Table 3, Supplementary Figure S3).

Table 3. Results of Non-Invasive Serum Fibrosis Tests for People with Diabetes according to Number and Sub-class of

Glucose-Lowering Agents Prescribed.

People with Diabetes Who Median HbA;. [IQR] : o

Had an NIT% (n) (mmol/mol) FIB-4>2.67% (n)

Number of Glucose Lowering Agents Prescribed
None 12.4 (40) 51 (49-55) 12.5 (5)
1 40.6 (131) 58 (52-70) 22.1(29)
2 29.1 (94) 67 (56-80) 17.0 (16)
>3 19.2 (62) 73 (62-86) 17.7 (11)
Subclasses of Glucose Lowering Agents Prescribed
SGLT2 inhibitors 18.9 (61) 67 (59-79) 16.4 (10)
GLP-1 receptors agonists 7.7 (25) 69 (55-77) 16.0 (4)
DDP-4 inhibitors 26.6 (86) 67 (57-80) 15.1 (13)
Metformin 65.0 (210) 63 (53-77) 18.6 (39)
Insulin 24.8 (80) 73 (62-87) 23.8(19)
Sulphonylurea 15.2 (49) 76 (63-86) 18.4 (9)
Thiazolidinediones 0.6 (2) n/A 0.0 (0)

FIB-4, Fibrosis 4; SGLT-2 inhibitor, sodium-glucose cotransporter 2 inhibitor; GLP-1 receptor agonist, Glucagon-Like Peptide 1 Receptor
Agonist; DDP-4 inhibitor, Dipeptidyl peptidase-4 inhibitor.
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4. Discussion
4.1. Summary of Findings

In this brief report, we utilise real world UK regional data from local populations
of people with diabetes and highlight two alarming findings. First, we demonstrate that
<2% of people with diabetes are being screened for liver fibrosis, and that use of patented
serum fibrosis biomarkers is minimal despite been advocated by the National Institute of
Health and Clinical Excellence (NICE) as first line assessment for people with NAFLD [27].
Secondly, up to 29.7% of people with diabetes, in whom serum fibrosis markers were
requested, were at risk of having significant liver fibrosis; subsequent confirmation of
fibrosis was provided by second line tests, TE or liver biopsy, in a high proportion (80.6%)
of cases. Thirdly, we report limited data showing a non-significant trend towards lower
fibrosis scores in patients treated with DDP-4 inhibitors, SGLT-2 inhibitors, and GLP-
1 receptor agonists. These findings reinforce the need for large prospective studies in
this clinical population to develop cost-effective and easily implementable approaches to
widespread screening for liver fibrosis in individuals with diabetes.

4.2. Comparison to the Existing Literature

While our estimates of fibrosis prevalence in people with diabetes are higher than
comparable studies, there is consensus in the literature that clinically relevant liver fi-
brosis is highly prevalent in this group. Global meta-analysis data in 439 biopsied pa-
tient with NAFLD and T2D identified that 17% had advanced fibrosis [21]. Data from
over 120,000 people with T2D from the Cleveland clinic suggests that 8.4% have a FIB-4
score >2.67; however, prevalence estimates varied widely depending on the non-invasive
score used [33]. Among individuals with T2D and a reliable TE result in the NHANES study
(n = 825), 15.4% had a liver stiffness measurement >9.7 kPa. In a recent cross-sectional
study from the US, 561 individuals with T2D attending primary care or endocrinology
clinics underwent non-invasive screening using serum markers and TE; liver biopsy was
performed where there was a suggestion of fibrosis [34]. In total 9% of people with diabetes
had advanced fibrosis (F3/F4) according to TE. Fibrosis prevalence levels with TE were
similar to that estimated using the FIB-4 and APRI panels, and both modalities correlated
well with biopsy findings. A similar analysis from the UK identified that 18.5% of people
with T2D attending primary care clinics (1 = 467) had a FIB-4 >1.3 for <65 years and >2.0
for >65 years, of which nearly two thirds had a TE >8 kPa [35].

4.3. Molecular Mechanisms Linking T2D and NAFLD

Pathogenic mechanisms linking T2D to NAFLD are complex; however, insulin resis-
tance and inflammation are central [36]. High levels of circulating glucose and insulin
increase rates of hepatic de novo lipogenesis leading to high levels of free fatty acids (FFA)
in the liver; excess FFAs are stored as intrahepatic triglycerides [37]. Adiposity and the
presence of insulin resistant adipose tissue leads to lipolysis; FFAs released from adipose
tissue are taken up by peripheral tissues including the liver and muscle. NAFLD itself
in turn leads to impairments in insulin signalling [38] and increased secretion of hepa-
tokines. Adipokines are lipotoxic agents arising from chronically inflamed adipose tissue
characterising T2D. These travel to the liver contributing to inflammation and NAFLD
development [39]. Lipotoxicity, along with oxidative stress and a pro-inflammatory en-
vironment, result in steatohepatitis and eventually activation of hepatic stellate cells and
extracellular matrix deposition. Clinical studies support this mechanism: stable isotope
analyses show patients with increased hepatic adiposity have higher plasma FFA levels
and ~3x greater de novo FFA synthesis [40].

4.4. Implications for Practice

We therefore propose that there is an urgent need for greater adoption of national and
international guidelines to implement widespread screening for fibrosis in individuals with
diabetes and undertake comprehensive cost-effectiveness analyses. Despite updated rec-
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ommendations from the EASL advocating the use of NITs and that ALT, AST, and platelets
should be part of the routine investigations in primary care in patients with suspected liver
disease [41], a huge shift in practice towards more widespread screening is unlikely to
be implemented in the UK without guidance from the NICE. Detection of liver cirrhosis,
which develops insidiously and without abnormalities in liver biochemistry, allows entry
of individuals into variceal and hepatocellular carcinoma surveillance programmes, the
latter being particularly relevant for people with diabetes [42,43]. Liver fibrosis is a partially
reversible state, achieved with weight loss (~7%) [44], while fibrosis progression may be
retarded with optimisation of glycaemic control, so multi-component metabolic interven-
tion programmes are likely to be highly effective. Detection of NAFLD, and associated
fibrosis, will facilitate enrolment in relevant clinical trials, and may encourage prescription
of glucose-lowering therapies that target steatosis, steatohepatitis, or even fibrosis (includ-
ing DDP-4 inhibitors, GLP receptor agonists and SGLT2 inhibitors) [45]. The burden of
NAFLD and liver fibrosis expands beyond the liver, with well-established associations
with cardiovascular morbidity and mortality [11,12] and extrahepatic cancer [46], so the
wider benefits of detection are considerable.

We additionally show that fewer patients treated with either GLP-1 receptor agonists,
SGLT 2 inhibitors and DDP-4 inhibitors have elevated FIB-4 scores. Glucose lowering
therapies are a potential therapy in NAFLD given the fact they reduce insulin resistance
and thus potentially reduce liver fat. DDP-4 inhibitors have not shown therapeutic effect
in NAFLD; however, data is limited so larger trials are required [45,47,48]. GLP-1 receptor
agonists have shown more promising findings. One study reported GLP-1 agonists sig-
nificantly reduce liver fat (relative reduction 42%) [49]. Similarly, in a larger randomised
controlled trial (RCT) (n = 320), semaglutide therapy led to higher rate of NASH resolution
than control. However, no clear dose-response relationship was reported between dosing
regimens (0.1 mg vs 0.2 mg vs 0.4 mg) [50]. A meta-analysis (1 = 4442) of patients treated
with liraglutide demonstrated ALT reduction [51]. For SGLT-2 inhibitors, a large RCT,
EMPA-REG OUTCOME, reported that empagliflozin reduced ALT with these findings
independent of glycaemic control (HbA.) [52]. Similarly, in a moderately sized Swedish
trial dapagliflozin reduced liver fat and ALT but did not improve glycaemic control. The
conflicting findings between these two trials may or may delineate that SGLT-2 inhibitors
have beneficial effects on NAFLD independent of glycaemic control [53]. Altogether, these
trials show that GLP-1 agonists and SGLT 2 inhibitors have beneficial effects on liver
biochemistry and liver fat levels in NAFLD. However, future trials need to assess the
effects of these glucose lowering therapies on liver fibrosis. This could be via measuring
non-invasive fibrosis scores (i.e., FIB-4, APRI, AST:ALT ratio), conducting fibroscans, liver
multi-scan MRI testing, and liver biopsies.

4.5. Strengths and Limitations

This dataset benefits from a systematic approach to screening individuals with diabetes
in both primary and secondary care. However, there are several limitations. The dataset is
biased by the fact that we were only able to examine fibrosis markers in people in whom
clinicians requested an AST level, i.e., influenced by clinical suspicion of liver disease.
Most outpatient requests were made from hepatology clinics, with an inevitable bias
towards higher rates of fibrosis or cirrhosis. These factors would lead to an over-estimation
of fibrosis prevalence compared to the overall population with diabetes. The positive
predictive values of NITs are only moderate, so the true prevalence of fibrosis confirmed
by biopsy would also have been lower. Furthermore the performance of NITs is less well
validated and less reliable in the diabetes population [54,55]. Individuals with exemplary
glycaemic control, with HbA;. < 48 mmol/mol would also have been overlooked, leading
to a selection bias towards a sub-population of lesser metabolic health at higher risk of
diabetes-related end-organ damage. This study was reliant on electronic medical records
and therefore we were unable to reliably determine the aetiology of diabetes (type 1 or type
2 diabetes), or liver disease (including alcohol excess or viral hepatitis). Approximately 95%
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References

of people with diabetes in the UK are estimated to have T2D; however, and all individuals
that we have assessed would have had either MAFLD or dual aetiology liver disease,
given the fact that they had diabetes. We examined the current practice of examining
fibrosis markers in individuals with diabetes over a 1 year window of an HbA;.. Current
guidelines advise screening every 1-3 years in people with confirmed NAFLD [41], so
some individuals may have had bloods taken which could have been used to calculate a
fibrosis score outside this time period. This study was limited by a significant proportion of
the data being extracted over the COVID-19 pandemic. This may have negatively affected
screening rates for fibrosis markers in both primary and secondary care and therefore may
have affected the results. In addition, this study was limited by omission of the body mass
index (BMI) data, which was not widely available from patient records. While we were
able to access prescription records, unfortunately data on duration of diabetes, duration a
glucose lowering agent had been prescribed and historic prescription data was no available
to allow a comprehensive assessment of the role of newer glucose lowering therapies on
fibrosis levels.

5. Conclusions

In summary, we found very limited evidence of systematic screening for liver fibrosis:
only 1.5% of individuals with diabetes had a NIT for assessment of fibrosis, despite
evidence of a high prevalence of significant fibrosis (29.8%) in those assessed. We also show
that fibrosis levels as detected by NIT is lower in patients treated with SGLT2 inhibitors,
DDP-4 inhibitors, and GLP-1 receptor agonists. There is an urgent and unmet need to
assess, develop, and implement cost-effective methods to provide widespread screening of
individuals with diabetes for liver fibrosis and for healthcare practitioners to incorporate
NAFLD screening into routine diabetes care. This will undoubtedly reap longer-term
clinical benefits in reducing the hepatic and extra-hepatic burden of NAFLD in patients
with diabetes.
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Abstract: Type 2 diabetes (T2D) is a complex disease for which an individualised treatment approach
is recommended. Once-weekly (OW) semaglutide is a glucagon-like peptide-1 receptor agonist ap-
proved for the treatment of insufficiently controlled T2D. The aim of this study was to investigate the
use of OW semaglutide in adults with T2D in a real-world context. SURE Spain, from the 10-country
SURE programme, was a prospective, multicentre, open-label, observational study, approximately
30 weeks in duration. Adults with T2D and >1 documented HbA ;. value <12 weeks before semaglu-
tide initiation were enrolled. Change in HbA . from baseline to end of study (EOS) was the primary
endpoint, with change in body weight (BW), waist circumference, and patient-reported outcomes
as secondary endpoints. Of the 227 patients initiating semaglutide, 196 (86.3%) completed the
study on-treatment with semaglutide. The estimated mean changes in HbA1, and body weight be-
tween baseline and EOS were —1.3%-points (95% confidence interval (CI) —1.51;—1.18%-points) and
—5.7 kg (95% CI —6.36;,—4.98 kg). No new safety concerns were identified. Therefore, in routine
clinical practice in Spain, OW semaglutide was shown to be associated with statistically significant
and clinically relevant reductions in HbA;. and BW in adults with T2D.

Keywords: body weight; glucagon-like peptide-1 receptor agonist; HbA; real-world evidence;
semaglutide; SURE study; type 2 diabetes

1. Introduction

Type 2 diabetes (T2D) places a heavy burden on individuals and healthcare systems
across the world. In Spain, an estimated 13.8% of people have T2D, and this is expected to
increase in the future [1,2].

The management of T2D is complex. The American Diabetes Association (ADA)
Standards of Medical Care in Diabetes 2022 [3] and the 2020 joint consensus statement of the
ADA and the European Association for the Study of Diabetes (EASD) [4] recommend that
physicians should take an individualised treatment approach when prescribing medications
for T2D, and that they consider drug efficacy, risk of hypoglycaemia, cardiorenal benefits,
effect on body weight (BW), adverse effects, pricing, and convenience for the patient [4].
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Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are an established class of
antihyperglycaemic drugs used for the treatment of T2D, which have demonstrated im-
provements in glycaemic control and reductions in BW in patients with T2D [5,6]. In
addition to their glucose-dependent function resulting in a low risk for hypoglycaemia [7],
some GLP-1RAs (dulaglutide, liraglutide, and semaglutide) have demonstrated cardiovas-
cular (CV) benefits in patients with T2D at high risk of CV disease [8-10]. Despite these
benefits, access to GLP-1RAs is limited in Spain, and GLP-1RAs are only reimbursed for
patients with obesity (body mass index [BMI] > 30 kg/ m?) and insufficient glycaemic
control as a second-line therapy after metformin [11].

Semaglutide is a human GLP-1 analogue, approved as an add-on to diet and exercise
for the treatment of adults with insufficiently controlled T2D, by the European Medicines
Agency in February 2018 [12]. It has a long half-life, which makes it suitable for once-weekly
(OW) dosing, [13] and is the only GLP-1RA that is available both in a OW subcutaneous
(s.c.) injectable formulation and as an oral formulation administered once-daily [14].

The extensive SUSTAIN randomised clinical trial (RCT) programme, which investi-
gated the efficacy and safety of OW s.c. semaglutide, demonstrated that 0.5 mg and 1.0 mg
doses were associated with superior, clinically relevant improvements in glycaemic control
and weight loss, compared with placebo or active comparators [8,15-23]. A safety profile
similar to other GLP-1RAs was also observed.

SURE Spain is part of the SURE real-world study programme, which aimed to explore
the use of OW semaglutide in a diverse population of adults with T2D in routine, real-world
clinical practice across 10 countries (Canada, Denmark/Sweden, France, Germany, Italy,
the Netherlands, Spain, Switzerland, and the United Kingdom) and to complement the
results of the SUSTAIN RCTs. Unlike RCTs, the SURE studies are non-interventional and
observational, allowing the assessment of patient outcomes, as well as product use and
performance, in diverse patient populations in routine clinical practice [24].

The aim of this study was to evaluate the real-world use of OW semaglutide in a
diverse T2D patient population in Spain.

2. Materials and Methods
2.1. Study Design

SURE Spain was a multicentre, prospective open-label, single-arm, non-interventional
study assessing the use of OW semaglutide in adult patients with T2D in routine clinical
practice in Spain. Informed consent and treatment initiation took place on the first visit
(week 0), followed by an anticipated exposure period of ~30 weeks (range: 28-38 weeks).
Intermediate visits scheduled according to local practice and data collection were performed
throughout the entire study.

The decision to initiate semaglutide treatment was at the discretion of the treat-
ing physician, following requirements stated in the Summary of Product Characteristics
(SmPC), therapeutic positioning report and local/regional guidelines, and clearly separated
from the decision to include the patient in the SURE Spain study. All parameters collected
in the study (except the patient-reported outcomes) were part of routine clinical practice.
Patients were treated OW with commercially available s.c. semaglutide (Ozempic®; Novo
Nordisk A/S, Bagsvaerd, Denmark), available in a pre-filled, multidose, pen injector. The
treating physician determined the maintenance dose and any subsequent changes to it. Diet
and physical activity counselling could be offered in line with routine clinical practice, with
modifications to prescribed antihyperglycaemic treatment at the physician’s discretion.

This study was conducted in accordance with the Declaration of Helsinki [25], the
Guidelines for Pharmacovigilance Practices Module VI [26], and Good Pharmacoepidemi-
ology Practices [27]. Prior to study initiation, the protocol, protocol amendment, pa-
tient information/informed consent form, together with any other written information
to be provided to the patient and patient enrolment procedures, were reviewed and ap-
proved by the independent ethics committee/institutional review board at each study site
(first approved in 2019 by the Ethics Committee of CEIm de EUSkadi, project identifier:
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NN9535-4368). Written informed consent was obtained from all patients prior to any
study-related activities. This study is registered on ClinicalTrials.gov (NCT04067999).

2.2. Study Population

Adult patients (age > 18 years) diagnosed with T2D were included from 34 sites in
Spain, with the first participant’s first visit on 5 August 2019, and the last participant’s
last visit on 19 July 2021. Inclusion criteria included diagnosis of T2D and availability of
one or more documented values of HbA . within 12 weeks prior to semaglutide treatment
initiation. Exclusion criteria included previous participation in a SURE study, mental
incapacity, unwillingness, or language barriers precluding adequate understanding or
cooperation, prior treatment with any investigational drug (90 days before enrolment),
and hypersensitivity to semaglutide or any of the excipients. The study duration of
30 weeks was considered sufficient to initiate and optimise the study treatment regimen
and to obtain real-world data for the evaluation of the primary endpoint.

2.3. Endpoints

The primary endpoint was a change from baseline to end of study (EOS) in HbA 1,
(%-point and mmol/mol). Supportive secondary endpoints included: change from baseline
to EOS in BW (kg and %) and waist circumference (cm); proportion of patients achieving
HbA < 8.0% (64 mmol/mol), <7.5% (59 mmol/mol) and <7.0% (53 mmol/mol) [28];
reduction in HbA;. from baseline to EOS of >1.0%-point; weight reduction from baseline to
EOS of >3.0% [29] and >5.0%; HbA . reduction from baseline to EOS of >1.0% and weight
reduction from baseline to EOS of >3.0% [29]; patient-reported severe or documented
hypoglycaemia between baseline and EOS; and change from baseline to EOS in scores for
patient-reported outcomes of: the Diabetes Treatment Satisfaction Questionnaire-status
(DTSQs; absolute treatment satisfaction) comprising eight questions, of which six questions
are combined into a total Treatment Satisfaction score (scale: 0 to 36); the Diabetes Treatment
Satisfaction Questionnaire—change (DTSQc; relative treatment satisfaction), total treatment
satisfaction (scale: —18.0 to 18.0); and the 36-item Short-Form Health Survey version 2
(SF-36®v2), physical and mental summary component. The proportion of patients who
completed the study under treatment with semaglutide was also investigated.

Exploratory assessments included: weekly dose of semaglutide at EOS; proportion
of patients who had not added new antihyperglycaemic drug(s) to semaglutide treatment
at any time during the study, evaluated at EOS; proportion of patients who had achieved
clinical success, in relation to the reason to initiate semaglutide treatment, as assessed
by the physician at EOS; patient-reported 8-Item Morisky Medication Adherence Scale
(MMAS-8) score at EOS (low, medium, high) [30-32]; and the number of severe or docu-
mented hypoglycaemic episodes. Post hoc assessments included change from baseline to
EOS in BMI (kg/ m?). Permission for use of the MMAS-8 was granted prior to the study.

2.4. Safety

Only information on serious adverse drug reactions (SADRs), fatal events, pregnancies
in female patients, and adverse events (AEs) in foetuses or newborns were systematically
collected during the study. Voluntary reporting of other safety information by the physician
followed the same process as for the systematic safety reporting. All episodes of patient-
reported documented and/or severe hypoglycaemia were to be recorded.

2.5. Statistical Analyses

Power calculations showed that a sample size of 130 patients was required, based
on the criterion of 90% probability of obtaining a 95% confidence interval (CI) for mean
change from baseline in HbA;. whose half-width was at most 0.30. The half-width of
0.30 was chosen as a reasonable uncertainty allowing for a robust evaluation of glycaemic
efficacy, in line with diabetes guidelines [33]. To ensure sufficient statistical power to
evaluate the efficacy of semaglutide on glycaemic control (on the basis of evidence from

139



J. Clin. Med. 2022, 11, 4938

previous observational studies with GLP-1RA treatment), it was necessary to include at least
217 enrolled patients initiating semaglutide, to ensure that 130 patients completed the study
on-treatment [34,35].

The Full Analysis Set (FAS), which included all patients in the study who initi-
ated semaglutide treatment, was used for characterising baseline demographics, analysis
of the secondary endpoint related to study completion on-treatment, the selected ex-
ploratory assessments, description of AEs, and the sensitivity analyses of the primary and
secondary endpoints.

The Effectiveness Analysis Set (EAS) included all patients in the FAS who completed
the study and were receiving semaglutide treatment at EOS. The EAS was used for charac-
terising baseline demographics at EOS, the description of antihyperglycaemic medications
at baseline and EOS, and the primary, secondary and exploratory endpoint analyses.

Baseline demographic data are summarised using descriptive statistics (mean + stan-
dard deviation [SD] or median and interquartile range for continuous variables and num-
ber and proportion for categorical variables). Change in the continuous variables of
the primary and secondary endpoints from baseline to EOS were analysed using the
Analysis of Covariance (ANCOVA) model. Categorical endpoints were analysed using
descriptive statistics.

Sensitivity analyses investigated the robustness of the conclusions from the main
analyses and explored the impact of missing data in the primary analysis, for which pa-
tients were excluded if they did not complete the study or discontinued treatment, or
if HbA;. data were missing at EOS. The prespecified in-study sensitivity analysis of the
primary endpoint included all patients in the FAS with at least one post-baseline HbA 1,
measurement in the in-study period. For this analysis, the primary endpoint was analysed
using a Mixed Model for Repeated Measures (MMRM) including all HbA;. assessments
in the in-study period. The on-treatment sensitivity analysis included patients in the
FAS with at least one post-baseline HbA . assessment, but it only included HbA . assess-
ments in the on-treatment period and used the same statistical approach as the in-study
sensitivity analysis.

Because of the COVID-19 pandemic, the EOS visit (V6) window was extended beyond
38 weeks to allow participants to complete their EOS assessments. Consequently, an
additional post hoc sensitivity analysis was performed to explore the impact of extending
the EOS visit (V6) window on the primary endpoint. The sensitivity analysis of the primary
endpoint was the same as the primary analysis of the primary endpoint but included
only those patients who had an EOS visit between weeks 28 and 38 (the original visit
window). An additional post hoc sensitivity analysis was performed to explore the impact
of extending the EOS visit on the secondary endpoint of change from baseline to EOS in BW.
This sensitivity analysis was the same as the main analysis of this endpoint but included
only those patients who had an EOS visit between weeks 28 and 38.

3. Results
3.1. Patient Population and Baseline Characteristics

Of the 228 patients who signed the consent form, one did not meet the eligibility
criteria. Therefore, the FAS comprised the 227 patients who were enrolled in the study
and who had initiated semaglutide treatment (Figure 1). A total of 210 patients (92.5%)
completed the study, and the mean treatment duration was 33.7 weeks. The reasons for
non-completion were: death (1 = 1; 0.4%), lost to follow-up (n = 3; 1.3%), withdrawal by
patient (n = 3; 1.3%), and missed EOS visit within the visit window (n = 10; 4.4%) (Figure 1).
The EAS comprised 196 patients (86.3%) who had completed the study on semaglutide
treatment (Figure 1). Twelve patients (5.2% of the FAS) had an unknown treatment status
at EOS. With regard to discontinuations, 16 patients (7.0%) discontinued treatment due
to unacceptable gastrointestinal (GI) intolerability, and a further three patients (1.3%) had
‘other’ recorded as the reason (Figure 1).
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| Signed informed consent form, n = 228 |

>{ Did not meet eligibility criteria, n =1 |

v

| All enrolled patients, n = 227 |

=I Did not initiate semaglutide, n =0 |

Y
| Full analysis set, n = 227 |

4 v

Death, n =1 (0.4%)

Did not complete study, n = 17 (7.5%) Discontinued study treatment, n = 19 (8.4%)
Lost to follow-up, n = 3 (1.3%) Other, n=3(1.3%)
No visit 6 within the visit window, n = 10 (4.4%) Unacceptable GI tolerability, n = 16 (7.0%)

Withdrawal by patient, n = 3 (1.3%)

Unknown treatment status, n = 12 (5.2%)

FPatients who discontinued treatment or had unknown treatment status at end
of study were not necessarily non-completers of the study

v

A
Completed study *, n = 210 (92.5%) Effectiveness analysis set, n = 196 (86.3%)

Figure 1. Patient disposition. * Patients who initiated semaglutide treatment and attended the end of
study visit. GI, gastrointestinal.

Baseline characteristics of patients are summarised in Table 1. Hypertension and
dyslipidaemia were the most frequent CV comorbidities at baseline, affecting 75.8% and
76.2% of patients, respectively.

Most patients initiated semaglutide at a dose of 0.25 mg (83.3%); 13.7% initiated at
0.5 mg and 3.1% at 1.0 mg. The most common reasons for initiating semaglutide as part of
T2D treatment were weight reduction (94.3%) and to improve glycaemic control (88.5%).

The most frequent antihyperglycaemic drugs used by patients in the EAS at baseline
were metformin (75.5% of patients), sodium—glucose cotransporter-2 inhibitors (SGLT-2is)
(42.3%), basal insulin (32.7%), and dipeptidyl peptidase-4 inhibitors (DPP-4is) (20.4%)
(Supplementary Table S1).

3.2. HbA1., BW, BMI, and Waist Circumference Outcomes

For patients in the EAS receiving semaglutide, statistically significant reductions were
observed at EOS for mean HbA ., BW, waist circumference and BMI (Table 2). The mean
HbA 1 at EOS was 7.1%, and the estimated mean change from baseline was —1.3%-points
[95% CI —1.51;,—1.18%-points; p < 0.0001] (Table 2, Supplementary Figure S1); mean BW
at EOS was 93.2 kg, and the estimated mean change from baseline was —5.7 kg [95% CI
—6.36; —4.98 kg; p < 0.0001] (Table 2, Supplementary Figure S1); mean BMI at EOS was
34.4 kg/m?, and the estimated mean change from baseline was —2.1 kg/m? [95% CI —2.37;
—1.86 kg/ mZ; p < 0.0001]; and mean waist circumference at EOS was 113.4 cm, and the
estimated mean change from baseline to EOS was —5.3 cm [95% CI —6.29; —4.41 cm;
p < 0.0001] (Table 2, Supplementary Figure S1).
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Table 1. Baseline characteristics of patients (FAS).

N 227
Age, years 59.1 (9.94)
Female, n (%) 111 (48.9)
Race, n (%)
White 221 (97.4)
American Indian or Alaska Native 2 (0.9)
Other 4(1.8)
Body weight, kg 98.3 (17.89)
Waist circumference, cm 118.8 (12.50)
BMI, kg/m? 36.4 (5.28)
BMI categories, 1 (%)

Normal (18.5—<25 kg/mz) 0
Overweight (25—<30 kg/m?) 12 (5.3)
Obese class I (30—<35 kg/m?) 89 (39.6)

Obese class IT & IIT (>35 kg/m?) 124 (55.1)
Diabetes duration, years 11.8 (8.10)
Baseline HbA1., % 8.5 (1.58)
HbA . level, n (%)
<8.0% 93 (41.0)
<7.5% 62 (27.3)
<7.0% 34 (15.0)
Baseline HbA1., mmol/L 69.1 (17.3)
FPG, mmol/L 9.9 (3.46)
eGFR, mL/min/1.73 m? 82.4 (22.58)
Lipid composition, mg/dL
HDL cholesterol 44.8 (13.31)
LDL cholesterol 92.5 (30.76)
Total cholesterol 175.7 (45.41)
Triglycerides 243.9 (298.8)
Lipid composition, mmol/L
HDL cholesterol 1.2 (0.34)
LDL cholesterol 2.4 (0.80)
Total cholesterol 4.6 (1.18)
Triglycerides 2.8 (3.37)
Comorbid conditions at baseline, 1 (%)
Diabetic retinopathy 29 (12.9)
Diabetic neuropathy 18 (7.9)
Diabetic nephropathy 38 (16.7)
Dyslipidaemia 173 (76.2)
Hypertension 172 (75.8)

Values based on FAS (n = 227). Data for continuous variables are mean (SD) unless otherwise specified. BMI, body
mass index; eGFR, estimated glomerular filtration rate; FAS, Full Analysis Set; FPG, fasting plasma glucose; HDL,
high-density lipoprotein; LDL, low-density lipoprotein; SD, standard deviation.

At EOS, 81.0%, 67.7% and 54.0% of patients in the EAS had an HbA;. of < 8.0%,
<7.5% and <7.0%, respectively (Figure 2). The proportion of patients achieving an HbA .
reduction >1%-point was 56.6% and the proportions achieving weight reduction of > 3.0%
and >5.0% were, respectively, 69.2% and 49.7% (Figure 2). The proportion of patients in
the EAS achieving the composite endpoint of an HbA . reduction of > 1.0% and weight
reduction >3.0% at EOS was 44.3% (Figure 2). In the FAS, 86.3% of patients completed the
study on-treatment with semaglutide (Figure 1).

3.3. Sensitivity Analyses

Prespecified sensitivity analyses were used to explore the impact of missing data in the
main analysis. The on-treatment sensitivity analysis of the FAS showed that the mean HbA .
decreased over time from initiation of semaglutide to week 30, with an estimated change
of —1.4%-points [95% CI —1.59; —1.27%-points] (Supplementary Figure S2). The estimated
mean changes from baseline to EOS and associated 95% ClIs were similar across sensitivity

142



J. Clin. Med. 2022, 11, 4938

analyses and showed that the mean changes in HbA ;. were statistically significantly different
from having no mean change in HbA;. (Supplementary Table S2, Supplementary Figure S2).
Moreover, the estimated mean HbA;. and estimated change in HbA;. were similar over
the course of the study for both the in-study and on-treatment period.

Table 2. Change from baseline to EOS in HbA ., body weight, waist circumference, and BMI (EAS).

N n Estimate 95% CI p-Value
HbAq., % 196 187 = - =
Observed mean at baseline - - 8.4 - -
Estimated mean at EOS - - 7.1 - -
Change from baseline to EOS - - -1.3 [—1.51; —1.18] <0.0001
HbA1,, mmol/mol 196 187 - - -
Observed mean at baseline - - 68.5 - -
Estimated mean at EOS - - 53.8 - -
Change from baseline to EOS - - —14.7 [—16.48; —12.86] <0.0001
Body weight, kg 196 194 - - <
Observed mean at baseline - - 98.9 - -
Estimated mean at EOS - - 93.2 - -
Change from baseline to EOS - - —5.7 [—6.36; —4.98] <0.0001
Percent change from baseline to EOS - - —5.7 [—6.41; —5.03] <0.0001
Waist circumference, cm 196 165 - - -
Observed mean at baseline - - 118.8 - -
Estimated mean at EOS - - 1134 - -
Change from baseline to EOS - - —-5.3 [—6.29; —4.41] <0.0001
BMI, kg/m? 196 194 - - -
Observed mean at baseline - - 36.5 - -
Estimated mean at EOS - - 34.4 - -
Change from baseline to EOS - - —2.1 [—2.37;, —1.86] <0.0001

Data are based on the EAS, which included patients who attended the EOS visit and were still receiving semaglu-
tide. Change in response from baseline to EOS is analysed using baseline, T2D duration, age, BMI, pre-initiation
use of GLP-1RA, pre-initiation use of DPP-4i, pre-initiation use of insulin, number of OADs used pre-initiation
(0-1/2+) and sex as covariates. p-value is reported for no average change in response from baseline to EOS. The
assessment of BMI was performed as a post hoc analysis. BMI, body mass index; CI, confidence interval; DPP-4i,
dipeptidyl peptidase-4 inhibitor; EAS, Effectiveness Analysis Set; EOS, end of study; GLP-1RA, glucagon-like
peptide-1 receptor agonist; N, total number of patients in EAS; n, total number of patients included in analyses;
OAD, oral antihyperglycaemic drug; T2D, type 2 diabetes.

HbA,, Body weight Composite
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reduction of 23.0% from
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Figure 2. Proportion of patients achieving HbA . targets and weight-loss goals (EAS). EAS, Effective-
ness Analysis Set; EOS, end of study.

Additional post hoc sensitivity analyses were performed in patients who had their
EOS visit within the original visit window (week 28-38). The post hoc analyses of the mean

143



J. Clin. Med. 2022, 11, 4938

changes from baseline to EOS for HbA . and for BW showed similar results to those seen
in the primary analysis (Supplementary Table S3).

Collectively, the sensitivity analyses supported the conclusions from the primary
analysis, which included assessments for patients who were on-treatment at the EOS visit
(V6), also including those completing the study after week 38.

3.4. Semaglutide Dose

The mean + SD weekly dose of semaglutide at EOS was 0.85 & 0.24 mg. At EOS, five
(2.6%) patients were receiving 0.25 mg OW semaglutide, 50 (25.5%) were receiving 0.5 mg,
two (1.0%) were receiving between >0.5 mg and <1.0 mg, and 139 (70.9%) were receiving
1.0 mg.

3.5. Patient-Reported Outcomes

In patients receiving semaglutide at EOS, DTSQs score increased by 4.4 [95% CI 3.66;
5.07; p < 0.0001] from baseline to EOS, representing a significant increase in absolute
treatment satisfaction (Figure 3). Patients receiving semaglutide also reported a DTSQc
score at EOS of 13.1 (95% CI 12.36; 13.85) out of a maximum score of 18, indicating a
significant relative improvement in treatment satisfaction (p < 0.0001) (Figure 3).

SF-36vs MCS

SF-36v2 PCS

DTSQs

DTSQc

%

0 10 20 30 40 50
Score

) N
. Baseline & EOS

Figure 3. Treatment satisfaction and HRQoL (EAS). * p = 0.0013; ** p < 0.0001. Data are based on
EAS. DTSQ status version (DTSQs) was measured at the informed consent and initiation visit, and
the EOS visit; with responses ranging from 0 (very dissatisfied) to 6 (very satisfied) for each item
of the questionnaire. The maximum total score is 36. The SF-36®v2 questionnaire has 36 questions
grouped into eight domains, which can be combined into two summary component scores (overall
mental and physical health); a higher SF-36®v2 score indicates lower disability. DTSQ, Diabetes
Treatment Satisfaction Questionnaire; DTSQc, DTSQ change version; DTSQs, DTSQ status version;
EAS, Effectiveness Analysis Set; EOS, end of study; HRQoL, health-related quality of life; MCS,
mental component summary; PCS, physical component summary; SF-36®v2, 36-Item Short-Form
Health Survey version 2.
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AtEOS, significant increases were observed in both the SF-36®v2 health-related quality-
of life (HRQoL) questionnaire physical component score (p < 0.0001) and the mental
component score (p = 0.0013), indicating an improvement in quality of life from baseline to
EOS (Figure 3).

Mean MMAS-8 score was 7.0 at baseline and 7.4 at EOS, indicating a medium level
of treatment adherence. The proportion of participants with medium and high adherence
was, respectively, 49.5% and 36.6% at baseline and 34.1% and 57.3% at EOS.

3.6. Adverse Events and Hypoglycaemia

AEs and severe or documented hypoglycaemic episodes in patients receiving semaglu-
tide are summarised in Table 3. In the FAS, 15 patients (6.6%) reported 26 treatment-
emergent AEs: 88.5% of AEs were non-serious (13 [5.7%] patients; 23 events) and 46.2%
were moderate in intensity (7 [3.1%] patients; 12 events). A total of 13 patients reported
22 GI AEs, which accounted for the highest number of AEs by system organ class. Three
serious AEs (SAEs) were reported (Medical Dictionary for Regulatory Activities preferred
terms: atrial fibrillation, left ventricular failure, and myocardial infarction) by two patients
(0.9%), which were all judged as unlikely to be related to semaglutide treatment by the
investigators. One severe SAE (preferred term: myocardial infarction) was reported, which
had a fatal outcome.

Table 3. AEs and severe or documented hypoglycaemic episodes in patients receiving semaglutide (FAS).

Serious Non-Serious Total
N (%) E N (%) E N (%) E
AE 2 0.9 B 13 5.7 23 15 6.6 26

Severity

Mild 0 0 0 6 2.6 12 6 2.6 12
Moderate 1 04 2 6 2.6 10 7 3.1 12
Severe 1 04 1 1 0.4 1 2 0.9 2
GI disorders 0 0 0 13 5.7 22 13 5.7 22
Nausea 0 0 0 7 3.1 7 7 3.1 7
Vomiting 0 0 0 5 2.2 5 5 2.2 5
Diarrhoea 0 0 0 3 1.3 3 3 L3 3
AEs leading to treatment discontinuation 0 0 0 5 2.2 6 5 22 6
SADRs 0 0 0 0 0 0 0 0 0

N (%)

Patients with severe or documented s 41

hypoglycaemic episodes

All other events were reported on a voluntary basis (FAS). AE, adverse event; E, event; FAS, Full Analysis Set; GI,
gastrointestinal; N, total number of patients in FAS; SADR, serious adverse drug reaction.

Eight patients (4.1%) in the EAS reported severe or documented hypoglycaemia
episodes between baseline and EOS, with similar results in the FAS (12 patients; 5.3%). At
EQOS, 20 severe or documented hypoglycaemic episodes were reported in the EAS, and 26
were reported in the FAS. Of these 26 events, 22 were reported by patients while using
insulin and 3 occurred while using sulphonylureas. The date of one hypoglycaemic episode
was unrecorded, which prevented an assessment of concurrent medication use. No severe
hypoglycaemic episodes were reported during the study.

4. Discussion

The SURE Spain study is part of the SURE study programme, which consists of nine
observational studies in ten countries and was conducted to assess the real-world use of
OW semaglutide.

The data reported indicate that when OW s.c. semaglutide was taken according
to local clinical practice by adult patients with T2D in Spain, a clinically relevant and
statistically significant reduction, compared with baseline, was observed for HbA;. at EOS
(p <0.0001) [36]. This was observed despite 14.5% of the study population switching from
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another GLP-1RA to semaglutide at baseline. While previous treatment may be expected to
influence outcomes, improvements have been reported in patients treated with semaglutide
who were not naive to GLP-1RAs [36].

At EOS, patients also experienced statistically significant decreases from baseline in
BW and waist circumference. A total of 97 (49.7%) patients achieved a weight reduction
from baseline of >5%. This weight reduction is a key consideration in terms of reducing CV
risk, in view of the beneficial reductions in triglycerides, total cholesterol, and low-density
lipoprotein cholesterol that are associated with a weight loss of 5-10% [37].

Furthermore, patients reported substantial improvements in treatment satisfaction and
HRQoL, as measured by the DTSQ and the SF-36%v2, respectively. In addition, patients’
adherence to OW semaglutide treatment was good, with 91.4% of patients reporting
either high (57.3%) or medium (34.1%) adherence at EOS. Adherence to OW semaglutide
in the SURE Spain study compares favourably to the adherence rates of 39.1-64.5% at
1 year reported for GLP-1RAs (including semaglutide) in retrospective, real-world cohort
studies [37,38].

Additionally, the patient population in this study had advanced T2D, as indicated by
the mean disease duration of 11.8 years from diagnosis and the complex pharmacological
treatment at baseline, with 41.9% of patients taking more than two antihyperglycaemic
medications and 47.5% taking insulin. These factors are associated with poorer treatment
outcomes and make it more difficult to achieve treatment goals.

Drawing comparisons between GLP-1RA RCTs and real-world evidence studies from
different countries can be challenging. Local T2D clinical guidelines vary and can restrict
clinical access to GLP-1RAs, while local reimbursement policies may impose further barri-
ers to patient access. In Spain, outside of private practice, GLP-1RAs are only reimbursed
for patients with a BMI > 30 kg/ m?2. This is in contrast with Denmark, where the recom-
mendation is independent of BMI, and the UK, where use is recommended in those with a
BMI > 35 kg/ m? who show an adequate metabolic response.

Overall, the results of this study support previously reported data on the real-world
use of OW semaglutide in Spain [39—41]. The reduction in HbA;. and BW observed in
Spain align with those observed in the countries that have published results from the SURE
programme to date—Canada, Denmark/Sweden, Switzerland, and the UK—for which
the mean change in HbA. from baseline to EOS was between —0.8 and —1.5%-points
and the mean change in BW from baseline to EOS was between —4.3 and —5.8 kg [42-45].
The results are also aligned with real-world evidence from other countries, for example,
a study by Marzullo et al., that showed reductions in HbAlc and body weight after
6 and 12 months of OW semaglutide treatment in people with T2D in Italy [46].

Metabolic control in patients with T2D is assessed using multiple factors (e.g., BW,
waist circumference), and not only HbA1.. In SURE Spain, the majority (70.9%) of patients
were receiving the recommended dose of 1.0 mg OW of semaglutide by EOS, and the
significant improvements in primary and secondary endpoints in the study may indicate
that this dose is appropriate for the goal of achieving global metabolic control. The safety
findings of the real-world T2D population in Spain were also consistent with the safety
profile of semaglutide established in the SUSTAIN programme and with that of the GLP-
1RA class, with no unexpected safety issues reported.

Study Limitations

The SURE Spain study was non-interventional and single-armed, so the potential
impact of other predictive factors cannot be excluded. The fundamental limitation of such
a study design is the absence of a randomised comparator, which would otherwise have
enabled differentiation of the changes caused by treatment, and the impact of other factors.
Data in this study were collected during routine clinical practice, rather than through
mandated examinations at predetermined time points, which may have impacted the
robustness and completeness of the dataset.
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The primary analysis was based on data from patients who completed the study
on semaglutide treatment and with their HbA . levels recorded at EOS. This could have
resulted in selection bias, because patients who benefit from the study treatment are more
likely to continue than those who do not. To account for this, sensitivity analyses of the
primary endpoint included all post-baseline HbA . assessments as well as evaluations from
intermediate visits also including patients who did not complete the study or discontinued
semaglutide during the study. In addition, secondary supportive analyses assessed the
percentage of patients who had started semaglutide treatment and were receiving it at
the EOS.

The inclusion criteria were purposely designed to be broad and reflect a real-world
T2D population, which is rarely the case in a standard RCT. However, it is likely that
physicians who were highly motivated would have been overrepresented among the
participating centres, and that the centres included either highly motivated patients or
patients who were difficult to treat with the other therapies available. As a result, the
enrolled group may only represent subsets of individuals who are eligible for semaglutide
therapy. Nevertheless, study participants were profiled in terms of demographics and
clinical data, which allowed for the assessment of the representativeness of the recruited
population. Details of medical history (including T2D diagnosis) and concurrent diseases
were obtained without further confirmation as provided by the investigators.

A potential limitation of SURE Spain is the study’s geographical location and time
of initiation. The study was conducted soon after the launch of OW semaglutide, in
a real-world setting, in a diverse T2D population recruited by investigators at 34 sites
in Spain. However, the 34 sites that enrolled patients account for approximately half
of the communities/regions within Spain, so may not be representative of the entire
population. Furthermore, in Spain, GLP-1RAs are only reimbursed for patients who have a
BMI > 30 kg/m?, and only approximately 8% of Spanish patients with T2D are prescribed
GLP-1RAs [11,47]. Therefore, none of the patients enrolled in the study had a ‘normal” BMI
(>18.5-<25 kg/m?). These country-specific factors may have influenced the study results;
in the future, however, semaglutide will likely be prescribed to a broader range of patients
with T2D, including those with less severe disease progression.

The COVID-19 pandemic impacted intermediate and EOS visits in SURE Spain. Be-
cause of accessibility issues, several of these visits were instead conducted by telephone,
rather than in-person. To further mitigate the challenges raised by the pandemic, changes
were made to the study design that allowed patients to postpone their last visit (after
the 38-week timepoint). An additional post hoc sensitivity analysis was performed to
assess how the primary and secondary endpoints were affected by extending the EOS visit
window. Extending the EOS visit window had no impact on the study outcomes.

Evidence has been reported that patients with T2D in Spain may have gained weight
during the COVID-19 lockdown, due to their substantial lifestyle changes [48]. Sanchez
et al. noted that if another lockdown were to be imposed, there should be greater emphasis
on avoiding weight gain, in which case GLP-1RAs might be an effective therapy for these
patients. Despite the influence of COVID-19, the data from this study are regarded as
robust, and are suitable for further interpretation.

5. Conclusions

In SURE Spain, patients treated with OW semaglutide experienced statistically sig-
nificant and clinically relevant reductions from baseline to EOS in HbA;., BW, and waist
circumference, and improvements in other clinical parameters such as treatment satisfaction
and HRQoL in a real-world setting. These findings were significant, despite the nature of
the population (advanced T2D) included in the SURE Spain study and the local limitations
on prescribing GLP-1RAs. The reported AEs were consistent with the known safety profile
of semaglutide, with no new safety concerns reported. These results support the use of OW
semaglutide in routine clinical practice in adults with T2D in Spain.
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Abstract: Objective: We systematically assessed the efficacy of liraglutide in non-diabetic obese
adults. Methods: Six databases were searched up to July 2021 for randomized controlled trials
(RCTs) assessing liraglutide versus placebo in obese adults. Primary outcomes were body weight
and body mass index (BMI). Secondary outcomes were treatment-emergent adverse events (TEAEs),
hypoglycemic episodes, HbAlc, and blood pressure. Effect measures were risk ratio (RR) or mean
difference (MD) with their confidence interval (95%CI). Random-effects models and inverse variance
meta-analyses were used. Quality of evidence was assessed using GRADE. Results: Twelve RCTs
(n = 8249) were included. In comparison to placebo, liraglutide reduced body weight (MD —3.35 kg;
95%CI —4.65 to —2.05; p < 0.0001), and BMI (MD —1.45 kg/m?; 95%CI —1.98 to —0.91; p < 0.0001).
Liraglutide did not reduce TEAEs (RR 1.08; 95%CI 0.92 to 1.27; p = 0.25), and Hb1Ac (MD —0.76%;
95%CI —2.24 to 0.72; p = 0.31). Furthermore, it did not increase hypoglycemic episodes (RR 2.01;
95%CI1 0.37 to 11.02; p = 0.28). Finally, liraglutide reduced systolic blood pressure (MD —3.07 mmHg;
95%CI —3.66 to —2.48; p < 0.0001) and diastolic blood pressure (MD —1.01 mmHg; 95%CI —1.55 to
—0.47; p = 0.0003). Seven RCTs had a high risk of bias. Subgroup analyses by length of treatment and
doses had effects similar to the overall analyses. Quality of evidence was low or very low for most
outcomes. Conclusions: In non-diabetic obese adults, liraglutide reduced body weight, BMI and
blood pressure in comparison to placebo. Adverse events, Hb1Ac levels and hypoglycemic episodes
were not different than placebo.

Keywords: liraglutide; body weight; obesity; hypoglycemia; meta-analysis

1. Introduction

Obesity is a major public health problem, affecting more than 603 million adults across
the globe [1]. It may also increase the risk of several diseases, including hypertension, dys-
lipidemia, type 2 diabetes (T2D), and coronary artery disease. Initial management of obese
patients includes a combination of dietary changes, exercise, and behavior modification.
Nevertheless, in some cases, this strategy is insufficient and pharmacological treatment is
required to achieve and maintain therapeutic goals in terms of weight loss.

Liraglutide is a glucagon-like peptide-1 (GLP-1) agonist and potential weight
loss drug [2]. It increases insulin concentrations after eating, prior to the elevation
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of blood glucose levels [3,4]. Liraglutide is a drug used in obese diabetic patients,
which justified the investigation of liraglutide as a treatment for non-diabetic obese
people. A study evaluated the efficacy at 12 weeks of low-dose liraglutide on the
weight of Taiwanese patients without T2D. Compared to baseline, 5.6% of patients
in the liraglutide 1.2 mg group reached weight reduction (p < 0.001), whereas in the
0.6 mg group 6.4% reached weight reduction (p < 0.001) [5]. However, there was no
difference in weight reduction between liraglutide doses (absolute difference 1.2 mg
vs. 0.6 mg —0.8%, 95%CI —0.12 to 0.11).

We conducted a systematic review and meta-analysis to evaluate the efficacy and
safety of liraglutide in non-diabetic obese adults.

2. Materials and Methods

We report the systematic review considering the guidelines of the PRISMA-2020
statement [6]. The protocol of this systematic review has been previously published in
PROSPERO (CRD42020172654).

2.1. Search of Studies

We searched in different search engines such as Web of Science, Pubmed, Embase,
Cochrane Central and Scopus, from inception to 7 October 2021. We performed Mesh
terms, Emtree terms and TIAB terms, and we designed different strategies for the selected
databases (Search strategy, Supplement). We did not limit our searches by language or year
of publication.

2.2. Eligibility Criteria

We included studies based on: (i) randomized controlled trials (RCTs), (ii) as-
sessed adults with obesity without diabetes type 1 or 2, (iii) evaluated liraglutide
compared with placebo or other drugs. Observational studies (case-control studies or
cohort), systematic reviews, case series/reports, abstract of conferences and editorials
were excluded.

2.3. Selection of Studies

One author (JJB) downloaded all registers, and these were added to Rayyan (https:
//rayyan.qcri.org/, accessed on 23 March 2022), and duplicate records were removed. Two
authors (JBM, MHR) independently reviewed the title and abstract regarding eligibility
criteria. Following this step, the full-texts were screened for further evaluation. Differences
in selections were addressed with a third author (AVH). Endnote 20 software (Philadelphia,
PA, USA) was used for saved registers.

2.4. Outcomes

Primary outcomes a were decrease in body mass index (BMI) and body weight loss.
Secondary outcomes were treatment-emergent adverse events (TEAEs), hypoglycemic
episodes, decrease of HbAlc, and blood pressure. The concepts and definitions of outcomes
described by the authors in each of the eligible studies were applied. TEAEs are defined as
undesirable or unexpected events, which are not present before medical treatment. It can
also be considered as an already present event that worsens in intensity or frequency after
the treatment provided [7]. TEAEs included gastro-intestinal disorders (nausea, abdominal
pain, vomiting, or diarrhea), nervous system disorders, infections and infestations, and
vascular disorders. Types of hypoglycemic events in non-diabetic child and adult were:
(a) reactive hypoglycemia (glycemia level <70 mg/dL at the time of symptoms and relief
after eating); and (b) fasting hypoglycemia (glycemia <50 mg/dL after an overnight fast,
between meals, or after physical activity) [8] Specific types of hypoglycemic events for any
hypoglycemia were extracted. Also, author-reported definitions were used.
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2.5. Data Extraction and Management

Two authors (JBM, MRH) independently extracted the data using a pre-developed
standard data extraction form. Disagreements were resolved by consensus, and a third
author (AVH) was consulted if needed. Data extracted per study were: name of author,
year, type of research, country, number of participants, mean age, initial and maximum
dosage of liraglutide, duration of treatment, and primary and secondary outcomes per trial
arm with baseline values of continuous outcomes.

2.6. Risk of Bias Assessment

The RoB 2.0 tool (Bristol, UK) of the Cochrane Collaboration was used for risk
of bias assessment [9]. The risk of bias judged the results as low risk, some concerns,
or high risk. RoB 2.0 assessment was performed independently by two authors (JBM
and MRH), and discrepancies resolved by discussion or with consultation with a third
author (AVH).

2.7. Statistical Analyses

For meta-analysis, we performed random effects models and followed the in-
verse variance method. The Paule-Mandel estimator was used for the assessment
of the between-study variance [10]. For continuous outcomes, effects of liraglutide
on outcomes were expressed as mean difference (MD) with 95% confidence intervals
(95% Cls). For dichotomous outcomes, relative risk (RR) with 95% CIs were assessed.
Baseline values of continuous outcomes were adjusted for per trial arm. Statistical
heterogeneity of effects among RCTs were evaluated using the I? statistic, with values
corresponding to low (<30%), medium (30-60%), and high (>60%) levels of heterogene-
ity. Subgroup analyses by length of treatment (<16 versus >16 weeks) and maximum
dosage (1.8 versus 3.0 mg/day) for all outcomes were performed. For sensitivity analy-
sis, we changed the model and method of meta-analysis. With regard to the model, we
applied fixed-effects, and regarding the methods, the Mantel-Haenzel method for sen-
sitivity analyses for the primary outcomes were performed. We used the metabin and
metacont functions of the meta library of R 3.5.1 (www.r-project.org, 23 March 2022).
For publication bias analysis, a funnel plot was used to assess asymmetry that may
indicate publication bias.

A summary of findings by GRADE methodology was used to rate the quality of
evidence (QoE) per outcome [11]. Risk of bias, indirectness, imprecision, inconsistency, and
publication bias were assessed, and QoE were rated as high, moderate, low, and very low.
QoE was described in the summary of findings (SoF) tables; GRADEpro GDT was used to
create SoF tables (GRADEpro).

3. Results
3.1. Selection of Studies

After the search, 2171 registers were found in all databases (Figure 1); 702 duplicate
registers were deleted. Of 1469 registers, 1447 were excluded by title and abstract. Thus,
22 full-text studies were assessed for eligibility and 10 studies were excluded. Finally,
12 RCTs were included for qualitative and quantitative analyses [4,12-22].
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Identification of new studies via databases and registers

5 Records removed before screening:
= - — - Duplicate records (n = 702)
__§ H;;g[adasslgse(r:”_'eg :r.f:;' Records marked as ineligible by automation
§ _ tools (n = 0)
ﬁ Records removed for other reasons (n = 0)
Records screened Records excluded
(n = 1469) (n=1447)
o Y
E Reports sought for retrieval Reports not retrieved
o (n=22) (n=0)
[&]
(%3]
Y Reports excluded:
Reports assessed for eligibility o Otheregaom;ﬁsoi Fﬂ _ 5)
(n=22) Conference (n = 5)
- New studies included in review
2 (n=12)
3 Reports of new included studies
£ (n=0)

Figure 1. PRISMA flow chart of the study selection process.

3.2. Characteristics of Included Studies

The main characteristics of the included RCTs are summarized in Table 1. A total of
8249 adults treated with liraglutide were evaluated. The mean age was 45.9 £ 5.5 years and
24% of patients were men. Liraglutide was started at 0.6 mg/day with a progressive increase
of 0.6 weekly up to a maximum of 1.8 mg/day [13,19,21] and 3.0 mg/day [4,12,14-18,20,22].
The mean duration of treatment was 35.1 &+ 19.1 weeks. All studies included body weight
loss as primary outcome, and other studies added inflammatory markers [13], glucose
tolerance [19], proportion of individuals with T2D [4], and adverse events only [15]. At
baseline, the mean Hb1Ac was 5.6% =+ 0.09% in the liraglutide arm and 5.6% =+ 0.07% in
the control arm. Also, the mean BMI was 36.6 + 2.6 kg/m? in the liraglutide arm and
36.8 + 2.9 in the control arm.
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3.3. Risk of Bias

Overall, seven RCTs were scored as high risk of bias [12-15,20-22]. One RCT showed
high risk in the randomization process [13]. Three RCTs showed high risk of devia-
tions from intended interventions [13,15,16], and five RCTs showed high risk of miss-
ing outcome data [12-14,20,22]. The other RCTs showed low or unclear risk of bias
(Supplementary Figure S1).

3.4. Effect on Primary Outcomes

In comparison to placebo, liraglutide significantly reduced body weight (MD —3.35 kg;
95% CI —4.65 to —2.05; p < 0.0001; 12 = 100%; Figure 2A), and reduced BMI (MD —1.45 kg/ m?;
95% CI —1.98 to —0.91; p < 0.0001; 2 = 99.5%; Figure 2B).

A
Liraglutide Placebo
Study Total Mean SD Total Mean sD Mean Difference MD 95%-Cl Weight
Astrup 2012 93 -7.80 10.6000 98 -3.80 10.9000 -4.00 [-7.05,-0.95] 6.7%
Blackman 2016 175 -6.70 05000 178 -190 0.4000 -4.80 [-4.89;-4.71] 10.6%
Halawi 2017 21 250 1.0400 19 5.30 0.4000 = -2.80 [-3.28;-2.32] 10.4%
Kim 2013 27 -6.80 2.5000 24 -3.30 1.9000 — -3.50 [4.71;-229] 9.7%
Larsen 2017 47 -4.70 0.5000 50 0.50 0.7000 -5.20 [-5.44;-4.96] 10.5%
Le Roux 2017 1472 -6.50 8.1000 738 -0.20 7.3000 — -6.30 [-6.97;-5.63] 10.3%
Pi-sunyer 2015 2437 -840 7.3000 1225 -3.90 6.6000 -4.50 [4.97,-4.03] 10.4%
Svensson 2019 41 -240 1.1000 46 0.10 1.3000 - -2.50 [-3.00;-2.00] 10.4%
Wadden 2013 212 -6.30 1.5000 210 -6.30 1.6000 0.00 [-0.30; 0.30] 10.5%
O'Neil 2018 103 -0.21 0.0300 136 -0.01 0.0300 A -0.20 [-0.21;-0.19] 10.6%
Random effects model 4628 2724 - -3.35 [-4.65; -2.05] 100.0%
Heterogeneity: /2 = 100%, v* = 4.1849, p = 0 = T
6 4 -2 0 2 4 6
B
Liraglutide Placebo
Study Total Mean SD Total Mean SD Mean Difference MD 95%-Cl Weight
Blackman 2016 178 -2.20 0.2000 179 -0.60 0.1000 | -1.60 [-1.63;-1.57] 14.5%
Larsen 2017 47 -1.60 1.2000 50 0.08 0.2000 —=+ -1.68 [-2.03;-1.33] 13.7%
Le Roux 2017 1472 -2.40 29000 738 -0.70 26000 — -1.70 [-1.94;-1.46] 14.1%
Pi-sunyer 2015 2437 -3.00 2.6000 1225 -1.00 2.3000 = -2.00 [-2.17;-1.83] 14.3%
Svensson 2019 41 -0.70 0.4000 46 0.20 0.5000 i -0.90 [-1.09;-0.71] 14.3%
Wadden 2013 212 -2.30 0.5000 210 -2.20 0.5000 i -0.10 [-0.20; 0.00] 14.5%
O'Neil 2018 103 -3.03 0.3300 136 -0.88 0.2900 ] -2.15 [-2.23;-2.07] 14.5%
Random effects model 4490 2584 — -1.45 [-1.98; -0.91] 100.0%

Heterogeneity: /2 = 99%, v = 0.5051, p < 0.01 I ' J !

Figure 2. Forest plot of primary outcomes. (A): body weight, (B): BMIL.

3.5. Effect on Secondary Outcomes

Liraglutide did not significantly reduce TEAEs (RR 1.08; 95% CI 0.92 to 1.27; p = 0.25;
12 = 90.2%; Figure 3a), and did not significantly increase hypoglycemic episodes (RR 2.01;
95% C10.37 to 11.02; p = 0.28; 12 = 54%; Figure 3b) in comparison to placebo. Liraglutide did
not reduce Hb1Ac in comparison to placebo (MD —0.76%; 95% CI —2.24 to 0.72; p = 0.31;
12 = 99.7%; Figure 3c). Finally, liraglutide significantly reduced systolic blood pressure
(MD —3.07 mmHg; 95% CI —3.66 to —2.48; p = <0.0001; 12 = 71%; Figure 3d), and diastolic
blood pressure (MD —1.01 mmHg; 95% CI —1.55 to —0.47; p = 0.0003; I> = 92.2%; Figure 3e).
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Risk Ratio RR

—45—

5 ———F

95%-Cl Weight

1.04 [0.82; 1.30]
0.46 [0.19;1.12)
1.06 [1.03; 1.09]
1.27 [1.21;1.33]
1.03 [0.97: 1.10]
1.09 [0.96; 1.22]

12.5%

1.7%
22.8%
22.3%
21.7%
18.9%

1.08 [0.92; 1.27] 100.0%

a

CAF TUN
Study Events Total Events Total
Astrup 2012 57 93 58 98
Larsen 2017 6 51 13
Le Roux 2017 1421 1501 668 747
Pi-sunyer 2015 1992 2481 786 1242
Wadden 2013 194 212 186 210
O'Neil 2018 88 103 107 136
Random effects model 4441 2484
Heterogeneity: 17 = 90%, v = 0.0164, p < 0.01 I

0.2

b

CAF TUN
Study Events Total Events Total
Astrup 2012 12 93 1 88
Larsen 2017 13 50 7 50
Wadden 2013 1 212 5 210
O’Neil 2018 4 103 8 136
Random effects model 458 494
Heterogeneity: I = 54%., 1 = 0.7491. p = 0.09
C

Liraglutide Placebo

Study Total Mean SD Total Mean sD
Astrup 2012 93 560 04000 98 5560 0.4000
Blackman 2016 174 040 0.1000 171 -0.20 0.1000
Larsen 2017 47 -0.20 0.0400 50 0.06 0.0400

Le Roux 2017
Pi-sunyer 2015

1472 -0.35 0.3200 738 -0.14 0.3400
2437 -0.30 02800 1225 -0.06 0.3000

Svensson 2019 41 12007000 46 0.40 05000
Wadden 2013 212 0.01 02000 210 0.00 0.3000
O'Neil 2018 103 -8.47 0.9300 136 -2.48 0.8200
Random effects model 4579 2674
Heterogeneity: /= 100%, v =4.5720,p = 0

Liraglutide Placeba
Study Total Mean SD Total Mean sb
Astrup 2012 93 -490 19.7000 98 -3.80 10.9000
Blackman 2016 178 -3.40 0.2000 179 000 1.0000
Kim 2013 24 -8.10 11.0000 27 -2.60 9.0000
Larsen 2017 47 -1.40 2.0000 50 1.10 1.8000

Le Roux 2017
Pi-sunyer 2015
Svensson 2019

1472 -3.20 13.0000 738 -0.50 13.7000
2437 -4.20 12.2000 1225 -1.50 12.4000

41 -2.04 1.8000 46 170 1.9000

0.5 2 5
Risk Ratio RR 95%-Cl Weight
——+—— 12.65 [1.68;95.34] 15.8%
L 1.86 [0.81; 4.26] 30.7%
2.18 [0.77: 6.16] 27.7%
066 [0.20; 2.13] 25.8%

Mean Difference MD

2.01 [0.37; 11.02] 100.0%

95%-Cl Weight

0.00 [0.11; 0.11] 12.5%
0.20 [0.22:-0.18] 125%

. -0.26 [0.28:-0.24] 125%
1 -0.21 [-0.24;-0.18] 12.5%
-0.24 [0.26;-0.22] 125%
0.80 [054; 1.06] 12.5%
0.01 [-0.04; 0.08] 12.5%
-5.99 [6.22;-5.76] 125%
-0.76 [2.24; 0.72] 100.0%
6 4 2 0 2 4 6

Mean Difference MD 95%-Cl Weight
— -1.10 [-565; 3.45] 1.5%
-340 [-3.60;-3.20] 19.1%
- -5.50 [-11.f .06]  1.1%
B =250 [-3.2 T4 14.7%
- -270 51] 10.9%
L 3 -2.70 13.9%
= 374 14.6%
Wadden 2013 212 -6.10 11.6000 210 -540 10.5000 —— -0.70 5.6%
O'Neil 2018 103 -5.45 1.1800 136 -1.58 1.0400 ] -3.87 18.7%
Random cffects model 4607 2709 < -3.07 [ -3.66; -2.48] 100.0%

Heterageneity: I° = 71%, ©° = 0.4628, p < 0.01
0 50 5 10

e

Liraglutide Placebo
Study Total Mean SD Total Mean sD
Astrup 2012 93 -2.80 135000 98 -1.70 13.9000
Blackman 2016 178 -0.70 06000 179 -040 0.7000
Kim 2013 24 -1.90 22000 27 -330 B.6000
Larsen 2017 47 050 1.5000 50 240 1.1000
Le Roux 2017 1472 -2.30 ©.0000 738 -1.90 9.3000
Pi-sunyer 2015 2437 -2.60 8.7000 1225 -1.90 8.7000
Svensson 2018 41 210 1.6000 46 430 1.3000
Wadden 2013 212 -3.80 8.2000 210 -3.30 7.4000
O'Neil 2018 103 -270 0.8200 136 -1.50 0.7300

Random effects model 4607
Heterogeneity: /2 = 92%, 1° = 0.4521, p < 0.01

2709

Figure 3. Forest plot of secondary outcomes. (a): TEAEs, (b): hypoglycemic episodes, (c): Hb1Ac,

Mean Di

fference wD 95%-C1 Weight
4110 [-4.99; 2.79]
030 [-044; -0.18]
140 [-196; 476]
-1.90 [-2.43;-1.37]
040 [1.21; 0.41]
-0.70 [1.30:-0.10]
-2.20 [-2.82;-1.58]
-0.50 [-1.99; 0.99]
-1.20 [1.40:-1.00]

18%
16.8%
2.3%
14.7%
12.3%
14.1%
14.0%
7.5%
16.6%

-1.01 [-1.55; -0.47] 100.0%

(d): Systolic blood pressure, (e): Diastolic blood pressure.
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3.6. Subgroup Analyses

Subgroup analyses by length of treatment and maximum dosage were like the overall
analyses for all outcomes (Supplementary Figures S2-S15).

3.7. Sensitivity Analyses

Effects on primary outcomes were the same, except for the effects of liraglutide vs.
placebo on TEAEs, where liraglutide was associated with higher TEAEs compared to
placebo (RR 1.15; 95% CI 1.12 to 1.18; p < 0.01) (Supplementary Figures S16 and S17).

3.8. Quality of Evidence

QoE was low or very low for most of the primary and secondary outcomes
(Supplementary Table S1). In body weight, body mass index, TEAEs, hypoglycemic
episodes, Hb1Ac, systolic blood pressure, and diastolic blood pressure, the QoE was
very low due to high risk of bias; the heterogeneity among the studies and the impreci-
sion of the effect. In systolic blood pressure, the QoE was low with regard to moderate
heterogeneity among the studies.

3.9. Publication Bias

In the graphical test for publication bias, no significant asymmetry indicating high
publication bias was observed (Supplementary Figure S18).

4. Discussion
Main Findings

In our systematic review in non-diabetic obese adults, liraglutide reduced body weight,
BMI and blood pressure. However, it did not reduce TEAEs episodes or HbAlc, or the risk
of hypoglycemic episodes compared with placebo. We also found that liraglutide reduced
body weight, BMI, systolic blood pressure, and diastolic blood pressure in comparison to
placebo. Subgroup analyses by duration of treatment and maximum dosage were like the
main analyses. The risk of bias was high in 30% of the trials. The QoE was low or very low
for most of the outcomes.

Liraglutide is a GLP-1 receptor agonist [23]. GLP-1 is known to be a hormone secreted
in the intestine, which is activated after food ingestion by enteroendocrine L cells located
in the distal jejunum and ileum [24]. It has been found that GLP-1 receptor agonists reduce
cardiovascular events in people with T2D and are also a recommended treatment for weight
reduction in these patients [25].

GLP-1 receptors are associated with weight loss by attenuating the fall in the anorexi-
genic hormone leptin that conditions this decrease [3,26]. Based on this, it has been reported
that although GLP-1 can increase energy expenditure, its influence on weight is related to
decreased energy intake through factors involved with the appetite reward centers of the
brain and through local gastrointestinal effects [27].

Some studies have evaluated the efficacy of liraglutide for weight reduction in non-
diabetic obese people. For example, a retrospective cohort study [5] evaluated the efficacy
of low-dose liraglutide (0.6 vs. 1.2 mg/day) for 12 weeks on body weight among Taiwanese
non-diabetic patients. The authors found that among patients in the liraglutide 1.2 mg
group, 5.6% reached weight reduction compared to baseline (p < 0.001), whereas in the
0.6 mg group 6.4% reached weight reduction (p < 0.001); however, no significant differ-
ences in weight reduction were found between the two dose groups (absolute difference
1.2 mg vs. 0.6 mg —0.8%, 95%CI —0.12 to 0.11).

In a similar population, a prospective cohort study [28] evaluated the effect of 1i-
raglutide on body weight and microvascular function in non-diabetic overweight women
with coronary microvascular dysfunction. The authors evaluated the intervention with
Liraglutide 3 mg daily for 11 to 13 weeks of treatment, compared to a previous control
stage, without treatment, for four to six weeks, and the baseline features. The authors
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found that a period of 12 weeks of liraglutide 3 mg daily led to a significant weight loss vs.
baseline (absolute difference —6.03 kg; 95%CI: —5.22 to —6.84; p < 0.001).

A systematic review and Bayesian meta-analysis of RCTs by Khera et al. [29] as-
sessed the effects of different drugs on weight loss and adverse effects in 29,018 patients.
The authors included studies that assessed obese (BMI > 30) or overweight (BMI > 27)
adults (aged >18 years), with or without weight-associated comorbidities. The authors
found higher odds of >5% weight loss with the liraglutide group compared to placebo
(three studies, 3301 patients, OR 5.09, 95%CI 4.07 to 6.37). A network meta-analysis sug-
gested that phentermine-topiramate, 15 mg/92 mg once daily, was associated with the
highest probability of achieving at least 5% weight loss (surface under the cumulative
ranking [SUCRA], 0.95), followed by liraglutide (SUCRA, 0.83) and other drugs.

In the 2016 systematic review by Khera et al. [29], the authors did not evaluate the
adverse effects or hypoglycemic events. For the liraglutide versus placebo comparison,
Khera et al. included 4424 patients, whereas our study included 7236 patients. The Khera
et al. study included studies published before 2016. The primary and secondary outcomes
were also different, as we included TEAEs, hypoglycemic episodes, body weight, BMI,
systolic and diastolic blood pressure and Hb1Ac levels; and they included proportion of
patients achieving at least 5% weight loss from baseline, weight loss and adverse events.
We used the Cochrane Collaboration RoB 2.0 tool, whereas the study by Khera et al. did
not specify the tool used. The study by Khera et al. did not perform subgroup analyses
due to a small number of included studies. The inclusion and exclusion criteria between
Khera et al. and our study were similar and searched the same databases, but with a
different search strategy. In addition, the search and selection of abstracts and full texts
was performed independently by two people in the same way as our selection has been
carried out. Something in common with the Khera et al. study was the use of the GRADE
methodology to evaluate QoE per outcome.

Another systematic review published by Zhang et al. [30], assessed the efficacy
and safety of liraglutide in obese, non-diabetic individuals. The authors reported five
RCTs involving a total of 4754 patients, and found that mean weight loss (MD = —5.52,
95% CI = —5.93 to —5.11, p < 0.00001); loss of more than 5% of body weight (OR = 5.46,
95% CI = 3.57 to 8.34, p < 0.00001), and key secondary efficacy end points: SBP decreased
(the MD = —2.56, 95% CI = —3.28 to —1.84, p < 0.00001). These results are similar to those
of our study. However, it is noteworthy that the authors reported a low risk of bias in
the trials included in the meta-analysis, whereas our study reported a comprehensive
risk of bias analysis, where the majority of trials were found to be at high risk of bias.
Another observation is that the authors refer to having used two different models for the
meta-analysis, and did not consider the implicit heterogeneity among the studies, and there
is no exact distinction about the model applied. Our study, on the other hand, used the
random effects model for all meta-analyses under the assumption of heterogeneity and
differences between studies.

5. Limitations

We have identified several limitations. First, there were differences in the starting
and maintenance dose of liraglutide. However, we did not find differences in the weight
loss effects between lower or higher liraglutide doses. Second, there was a difference
in follow-up time among studies. Most of the included studies had a follow-up time
longer than 17 weeks, and our subgroup analyses showed no difference between shorter
and longer follow up times. Third, the risk of bias in most studies was high, which may
compromise the true effect of most of the outcomes described, as in other studies that
applied meta-analysis with included studies and high risk of bias [31-34]. Finally, in the
evaluation of the QoE using GRADE methodology, we found low and very low quality of
evidence for most outcomes, which should be considered when interpreting the significant
effects that may favor the treatment.
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6. Conclusions

In non-diabetic obese adults, liraglutide reduced body weight, BMI, and blood pres-
sure in comparison to placebo. TEAEs rates, Hb1Ac and hypoglycemic episodes were not
different than placebo. However, the effects in the outcomes may have been compromised
due to the true effect related to the high risk of bias in the most studies, and the low or very
low level of recommendation in GRADE.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/jcm11112998 /s1. Figure S1: Risk of bias assessment of included
trials. Figure S2: Subgroup analyses by length of treatment of the effects of Liraglutide vs placebo
on TEAESs. Figure S3: Subgroup analyses by doses of the effects of Liraglutide vs placebo on hypo-
glycemia TEAES. Figure S4: Subgroup analyses by length of treatment of the effects of Liraglutide vs
placebo on hypoglycemia episodes. Figure S5: Subgroup analyses by doses of the effects of Liraglu-
tide vs placebo on hypoglycemia episodes. Figure S6: Subgroup analyses by length of treatment of
the effects of Liraglutide vs placebo on body weight loss. Figure S7: Subgroup analyses by doses of
the effects of Liraglutide vs placebo on body weight loss. Figure S8: Subgroup analyses by length of
treatment of the effects of Liraglutide vs placebo on BMI. Figure S9: Subgroup analyses by doses of
the effects of Liraglutide vs placebo on BMI. Figure S10: Subgroup analyses by length of treatment of
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Abstract: This study aimed to investigate the association of add-on dipeptidyl peptidase-4 inhibitor
(DPP4i) therapy and the progression of diabetic retinopathy (DR). In this retrospective population-
based cohort study, we examined Taiwanese patients with type 2 diabetes, preexisting DR, and aged
>40 years from 2009 to 2013. Prescription of DPP4i was defined as a medication possession ratio
of >80% during the first 6 months. The outcomes included vitreous hemorrhage (VH), tractional
retinal detachment, macular edema, and interventions including retinal laser therapy, intravitreal
injection (IVI), and vitrectomy. Of 1,767,640 patients, 62,824 were eligible for analysis. After matching,
the DPP4i and non-DPP4i groups each contained 20,444 patients. The risks of VH (p = 0.013) and
macular edema (p = 0.035) were higher in the DPP4i group. The DPP4i group also had higher risks of
receiving surgical interventions (retinal laser therapy (p < 0.001), IVI (p = 0.049), vitrectomy (p < 0.001),
and any surgical intervention (p < 0.001)). More patients in the DPP4i group received retinal laser
therapy (p < 0.001) and IVI (p = 0.001) than in the non-DPP4i group. No between-group differences in
cardiovascular outcomes were noted. In the real-world database study, add-on DPP4i therapy may be
associated with the progression of DR in patients with type 2 diabetes. No additional cardiovascular
risks were found. The early progression of DR in rapid glycemic control was inconclusive in our
study. The possible effect of add-on DPP4i therapy in the progression of DR in patients with type
2 diabetes requires further research.

Keywords: dipeptidyl peptidase-4 inhibitor; diabetes mellitus; diabetic retinopathy; progression

1. Introduction

Diabetic retinopathy (DR), a common microvascular complication in patients with
diabetes, is also a major cause of blindness in working-age adults [1]. The global number
of patients with diabetes is estimated to reach 600 million by 2040, one-third of whom
are expected to have DR [2]. Severe DR can lead to complications such as vitreous hem-
orrhage (VH), tractional retinal detachment (RD), and macular edema [3,4]. DR and its
complications may require surgical intervention such as retinal laser therapy, intravitreal
injection (IVI) of anti-vascular endothelial growth factor, and in some cases vitrectomy [3,4].
This imposes a substantial economic burden on patients with such conditions and their
families [5].

Numerous studies have been conducted on preventing or slowing the progression of
diabetic complications. A randomized controlled trial reported that appropriate glucose-
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lowering reduced the risk of cardiovascular diseases, microvascular complications, and
all-cause mortality in patients with diabetes [6]. Another randomized controlled trial
indicated that intensive glucose control effectively slowed DR progression in patients
with type 2 diabetes [7]. Treatment for systemic conditions, such as hypertension and
dyslipidemia, has been demonstrated to be associated with a low risk of DR development
or progression [7,8].

Dipeptidyl peptidase-4 (DPP4) inhibitors (DPP4i) are a class of oral hypoglycemics, of
which the first agent sitagliptin was approved in 2006 by the US Food and Drug Adminis-
tration [9]. DPP4i suppress the function of DPP4 and indirectly prolong the serum level
of glucagon-like peptide-1 (GLP-1), increasing insulin secretion and reducing glucagon
secretion from the pancreas [10]. Although a meta-analysis reported that DPP4i exerted a
better hypoglycemic effect than «-glucosidase inhibitors [11], other studies have observed
associations between its use and an increased risk of heart failure [12,13]. Moreover, another
meta-analysis indicated no beneficial association between DPP4i use and all-cause mor-
tality [14]. Regarding DPP4i use in DR, sitagliptin prevented the effect of diabetes on the
blood-retinal barrier in male Zucker diabetic fatty rats. Specifically, it improved endothelial
function and prevented inflammation, nitrative stress, and apoptosis in animals [15]. How-
ever, the association between DPP4i and DR has not been fully characterized [16,17]. The
first clinical study of the possible protective effects of DPP4i on DR progression, published
in 2016, included 28 patients with type 2 diabetes [18]. A 2018 population-based study
by Kim et al. that used data from the South Korean National Health Insurance Service
reported a possible association of DPP4i use with an increased risk of DR events early in
the treatment phase [19]. Using the same database, Chung et al. found a neutral associ-
ation between DPP4i use and sulfonylurea added to metformin therapy and the risk of
DR progression. The aggravation of DR by DPP4i remains a concern and requires more
clinical investigation [20]. In this study, we investigated the association between add-on
DPP4i therapy and DR progression in patients with type 2 diabetes and preexisting DR in
a real-world setting.

2. Materials and Methods
2.1. Data Source

This retrospective population-based cohort study was conducted using the Taiwan
National Health Insurance (NHI) Research Database (NHIRD) (Center for Biomedical
Resources of National Health Research Institutes, Miaoli, Taiwan). More than 99.8% of
the population in Taiwan (approximately 23.7 million people as of 2020) is covered by the
NHI program, a single-payer system established in March 1995. The NHIRD contains
de-identified information including medical claims data. Information on the NHI program
and its databases has been described in detail in previous publications [21,22]. The present
study was approved by the Chang Gung Memorial Hospital Ethics Institutional Review
Board (IRB No. 201800199B1) and adheres to the principles of the Declaration of Helsinki.

2.2. Inclusion and Exclusion Criteria

From 2009 to 2013, we identified patients with diabetes in the NHIRD by using the
diagnostic codes of the International Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM). These codes were validated in a study on the accuracy of diabetes
diagnosis in NHI claims data. Specifically, at least four outpatient visits for diabetes
corresponded to a 95.7% accuracy [23]. Another study observed that a prescription of
any oral hypoglycemic agent corresponded to an accuracy of 99% [24]. Therefore, in
the present study, we included patients with at least five outpatient diagnoses of type
2 diabetes who were also taking any oral hypoglycemics. Patients with type 2 diabetes and
preexisting DR were included in the analysis. We excluded patients who were aged under
40 years as well as those with missing demographic data, type 1 diabetes, retinal disorders
(including retinal vascular occlusion, separation of retinal layers, retina degeneration, and
chorioretinal inflammation), a history of receiving vitreoretinal interventions (including
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IVI], retinal laser therapy, scleral buckling, and vitrectomy), or were followed up for less

than 6 months (Figure 1).

Patients with diabetes between
1 January 2009 and 31 December 2013

(n=1,767,640)

Patients with type 2 diabetes
(n=1,606,518)

i—»

Exclude

Type 1 diabetes: 90,128
Missing demographics: 5
Age < 40 years old: 70,989

Exclude
Without diagnosis of DR: 1,392,753

Patients with type 2 diabetes and DR
(n=213,765)

Exclude
Diagnosis of retinal disorders.

Patients with type 2 diabetes were
eligible for analysis
(n =62,824)

Retinal vascular occlusion: 5383
Separation of retinal layers: 11,244
Retina degeneration: 28,183
Chorioretinal inflammation: 250
Other retinal disorders: 23,896

History of receiving
Intravitreal injection: 1661
l Laser treatment: 31,704
Scleral buckling: 6
Vitrectomy: 249

I

DPPA} Non-DPP4i
(n=24,623) (n=38,201)

During the 6-month follow up:
Follow-up < 6 months: 15,504
Primary and secondary outcomes: 24,902
Medication possession ratio <80%: 7959

11
matching

opPa Non-0PPai

(n=20,443) (n =20,444)
Figure 1. Flowchart of the inclusion and exclusion criteria of the patients. DR, diabetes retinopathy;
DPP4i, dipeptidyl peptidase 4 inhibitors.

2.3. Group Definition

The index date of the DPP4i group was defined as the date of the first DPP4i pre-
scription between 2009 and 2013. To prevent the immortal time bias, the index date of the
non-DPP4i group was assigned as the index date of the DPP4i group through an approach
known as prescription time-distribution matching [25]. To ascertain the compliance of
DPP4i use, patients in the DPP4i group with a medication possession ratio (MPR) of less
than 80% during the first 6 months of follow-up [26], specifically 144 days (180 days x 0.8),
were excluded from further analysis (Figure 1).

2.4. Outcomes

In this study, the primary ocular outcome was the composite DR outcome, which con-
sisted of any one of the following: VH, tractional RD, and macular edema. The secondary
ocular outcome was the composite outcome of any surgical intervention, namely retinal
laser therapy, IVI, and vitrectomy. The cardiovascular outcomes, including myocardial
infarction, hospitalization for heart failure, ischemic stroke, and hemorrhagic stroke, were
defined as safety outcomes. The primary DR outcome and its components were defined as
diagnosis after at least three outpatient diagnoses or one inpatient diagnosis. The surgical
interventions and other ocular outcomes were examined using the Taiwan NHI reimburse-
ment codes from the claims data for outpatient and inpatient visits. The occurrence of
safety outcomes was determined using the principal discharge diagnosis. Mortality and
cardiovascular events selected for analysis have been validated previously [27,28].

2.5. Covariates

Covariates were sex, age, proxy variables for compliance (i.e., the number of outpatient
visits for diabetes management), proxy variables for DR severity (previous proliferative
DR and previous DR duration), comorbidities as well as scores on the Charlson Comor-
bidity Index, indicators for diabetic severity (diabetes duration, diabetic neuropathy, and
diabetic foot ulcer), and concomitant medications. Comorbidities, namely dyslipidemia,
hypertension, ischemic heart disease, chronic kidney disease, peripheral arterial disease,
ischemic stroke, heart failure, and atrial fibrillation, were confirmed after at least three
outpatient diagnoses or one inpatient diagnosis in the previous year. Medications during
the first 6 months of follow-up were classified into three categories: antidiabetics, antihy-
pertensives, and other medications. Details of the ICD-9-CM diagnostic codes used in this
study are provided in Supplementary Materials (Table S1). The Charlson Comorbidity
Index scores were calculated as described previously [29].
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2.6. Statistics

To reduce confounding effects, the analysis of differences in outcomes between the
DPP4i and non-DPP4i groups was performed after propensity score matching (PSM). The
propensity score was the predicted probability given the value of the covariates, which
was calculated using a multivariable logistic regression model in which the study groups
(1: DPP4i and 0: non-DPP4i) were regressed on the selected covariates. The matching
was processed using a greedy nearest-neighbor algorithm with a caliper of 0.2 times the
standard deviation of the logit of the propensity score. The matching order was random,
and replacement was not allowed. Each patient in the DPP4i group was matched with a
non-DPP4i control. The matching quality was assessed after PSM by using the absolute
value of the standardized difference between the groups, where a value of less than 0.1 was
considered negligible.

The Fine-Gray subdistribution hazard model, which considers all-cause mortality a
competing risk, was used to compare the occurrence of time-to-event outcomes between
the groups. The average number of surgical interventions per decade was also analyzed
and compared using the Poisson model, in which the natural logarithm of the follow-up
duration was an offset variable. The study groups (DPP4i vs. non-DPP4i) were the only
explanatory variable in the regression analysis. The within-pair clustering of outcomes
after PSM was accounted for by using robust standard errors through the generalized
estimating equation approach [30]. Further subgroup analyses were conducted to evaluate
the consistency of the observed treatment effect on the specified outcomes across different
levels of subgroup variables. The outcomes of interest comprised the primary and sec-
ondary endpoints, namely the composite DR outcome and the composite outcome of any
surgical intervention, respectively. The selected subgroups were sex, age (dichotomized at
65 years), previous proliferative DR, hypertension, dyslipidemia, ischemic heart disease,
ischemic stroke, chronic kidney disease, peripheral arterial disease, diabetes duration
(dichotomized at 10 years), diabetic neuropathy, diabetic foot ulcer, and the use of concomi-
tant antidiabetics (e.g., metformin, sulfonylurea, thiazolidinediones, alpha-glucosidase
inhibitors, meglitinides, and insulin). A two-sided p-value of <0.05 was considered to be
significant. All analyses were performed using SAS software, Version 9.4 of the SAS System
(SAS Institute Inc., Cary, NC, USA), including the % cif macro for generating cumulative
incidence functions under the Fine-Gray sub-distribution hazard method.

3. Results
3.1. Participants

Between 2009 and 2013, a total of 1,767,640 patients with diabetes were identified.
After the exclusion of patients aged under 40 years as well as those with type 1 diabetes,
missing demographic data, and no DR diagnosis, 213,765 patients remained. We further
excluded patients who were followed up for less than 6 months or developed any of the
primary or secondary ocular outcomes within 6 months after the index date, as well as
those with retinal disorders, a history of receiving vitreoretinal interventions or who had
an MPR of less than 80%. After these procedures, 62,824 patients remained. After 1:1 PSM,
the non-DPP4i and DPP4i groups comprised 20,444 patients each (Figure 1).

3.2. Demographic Characteristics

Table 1 presents the demographic characteristics of the study groups before and after
matching. Before matching, the patients in the DPP4i group were younger; had more
outpatient visits for diabetes management in the previous year; were more likely to have
undergone a dilated fundus examination in the previous year; had a higher prevalence
of dyslipidemia; had a longer diabetes duration; had more prescriptions of sulfonylurea,
alpha-glucosidase inhibitors, meglitinides, beta-blockers, angiotensin-converting enzyme
inhibitors/angiotensin II receptor blockers, antiplatelets, statins, and fenofibrates, and
fewer prescriptions of insulin. After matching, the two groups were well balanced in
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terms of sex, age, comorbidities, indicators for diabetic severity, underlying ocular diseases,
medications, and follow-up duration.

Table 1. Characteristics of patients with type 2 diabetes and diabetic retinopathy before and after matching. Balance
achieved between the DPP4i and non-DPP4i groups after matching.

before Matching after Matching
. DDP4i Non-DDP4i DDP4i Non-DDP4i
Variable (n = 24,623) (n = 38,201) STD (n = 20,444) (n = 20,444) STD
Sex (male) 10,745 (43.6) 17,084 (44.7) —0.02 8936 (43.7) 9013 (44.1) —0.01
Age (years) 66.5 + 10.5 68.0 £ 11.0 —0.14 66.7 +10.5 66.7 £ 10.8 <0.01
Age > 65 years 13,606 (55.3) 22,849 (59.8) ~0.09 11,416 (55.8) 11,448 (56.0) <0.01
No. of outpatient visit in the 168+ 89 141+ 9.0 031 161+ 83 161497 <0.01
prior year
Previous proliferative DR 2195 (8.9) 3605 (9.4) ~0.02 1862 (9.1) 1879 (9.2) <0.01
Duration of DR (years) 6.1 £3.5 6.0 £3.5 0.03 6.0 34 6.0 £3.5 <0.01
Comorbidity
Dyslipidemia 20,277 (82.3) 29,405 (77.0) 0.13 16,560 (81.0) 16,673 (81.6) —0.01
Hypertension 17,202 (69.9) 25,236 (66.1) 0.08 14,038 (68.7) 14,140 (69.2) —0.01
Ischemic heart disease 11,746 (47.7) 17,433 (45.6) 0.04 9626 (47.1) 9608 (47.0) <0.01
Chronic kidney disease 6126 (24.9) 8035 (21.0) 0.09 4724 (23.1) 4745 (23.2) <0.01
Peripheral arterial disease 3350 (13.6) 5480 (14.3) ~0.02 2804 (13.7) 2739 (13.4) 0.01
Ischemic stroke 3015 (12.2) 4989 (13.1) ~0.02 2526 (12.4) 2512 (12.3) <0.01
Heart failure 1470 (6.0) 2464 (6.5) ~0.02 1186 (5.8) 1171 (5.7) <0.01
Atrial fibrillation 882 (3.6) 1459 (3.8) ~0.01 716 (3.5) 699 (3.4) <0.01
Charlson Comorbidity 25417 23+18 0.07 24417 24+18 <0.01
Index score
Indicator for diabetic severity
Diabetes duration, years 11.3+27 11.0 £ 3.0 0.11 11.2+28 11.2+£29 —0.01
Diabetic neuropathy 9887 (40.2) 14,112 (36.9) 0.07 7980 (39.0) 8065 (39.4) —0.01
Diabetic foot ulcer 3366 (13.7) 5152 (13.5) 0.01 2762 (13.5) 2751 (13.5) <0.01
Antidiabetics
Sulfonylurea 14,543 (59.1) 19,954 (52.2) 0.14 11,921 (58.3) 12,065 (59.0) ~0.01
Metformin 13,162 (53.5) 22,197 (58.1) ~0.09 11,396 (55.7) 11,537 (56.4) ~0.01
Alpha-glucosidase inhibitors 4636 (18.8) 4,779 (12.5) 0.17 3514 (17.2) 3490 (17.1) <0.01
Thiazolidinediones 3076 (12.5) 210 (13.6) ~0.03 2683 (13.1) 2812 (13.8) ~0.02
Meglitinides 2574 (10.5) 2918 (7.6) 0.10 1996 (9.8) 2024 (9.9) <0.01
Insulin 3873 (15.7) 8299 (21.7) ~0.15 3488 (17.1) 3633 (17.8) —0.02
Antihypertensives
Angiotensin-converting
L SrEme 15,630 (63.5) 20,002 (52.4) 0.23 12,445 (60.9) 12577 (61.5)  —001
inhibitors/angiotensin II ! ’ 4 /
receptor blockers
Calcium channel blockers 8509 (34.6) 14,036 (36.7) ~0.05 7174 (35.1) 7213 (35.3) <0.01
Beta blockers 7654 (31.1) 9780 (25.6) 0.12 6048 (29.6) 6023 (29.5) <0.01
Alpha blockers 1403 (5.7) 2154 (5.6) <0.01 1163 (5.7) 1176 (5.8) <0.01
Thiazide 1075 (4.4) 1545 (4.0) 0.02 886 (4.3) 866 (4.2) <0.01
Other medications
Antiplatelets 8767 (35.6) 11,115 (29.1) 0.14 6970 (34.1) 7074 (34.6) —0.01
Anticoagulants 380 (1.5) 473 (1.2) 0.03 304 (1.5) 284 (1.4) 0.01
Statins 10,788 (43.8) 12,319 (32.2) 0.24 8381 (41.0) 8346 (40.8) <0.01
Fenofibrates 2552 (10.4) 2894 (7.6) 0.10 1975 (9.7) 1972 (9.6) <0.01
Follow-up (years) 25+13 244+1.1 0.06 26+12 25+12 0.08

DDP4i, dipeptidyl peptidase 4 inhibitor; STD, standardized difference; DR, diabetic retinopathy. Data are presented as frequency
(percentage) or mean =+ standard deviation.

3.3. Primary Ocular Outcomes

Table 2 presents the primary ocular outcomes of the patients, including any surgical
intervention taken. Over a mean follow-up duration of 2.5 years, 366 and 294 patients (1.8%
and 1.4%, respectively) in the DPP4i and non-DPP4i groups developed the primary ocular
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outcome, namely the composite DR outcome. The risk of developing the composite DR
outcome was significantly higher in the DPP4i group (sub-distribution hazard ratio [SHR]
1.23, 95% confidence interval [CI] 1.06-1.44; Figure 2A). Among the individual components
of the composite DR outcome, the risks of VH (SHR 1.24, 95% CI 1.05-1.48) and macular

edema (SHR 1.48, 95% CI 1.03-2.13) were significantly higher in the DPP4i group.

Table 2. Primary ocular outcomes, including any surgical intervention taken, of patients with type 2 diabetes and diabetic

retinopathy demonstrating significantly higher risks of composite diabetic retinopathy and surgical interventions in the

DPP4i group.
DDP4i Non-DDP4i DPP4i vs. Non-DPP4i
Outcome (n =20,444) (n = 20,444) SHR (95% CI) p-Value

Primary ocular outcome
(composite DR outcome) 366 (1.8) 294 (1.4) 1.23 (1.06-1.44) 0.008

Individual component of

composite DR outcome
VH 292 (1.4) 232 (1.1) 1.24 (1.05-1.48) 0.013
Tractional RD 50 (0.24) 35 (0.17) 141 (0.91-2.17) 0.122
Macular edema 72 (0.35) 48 (0.23) 1.48 (1.03-2.13) 0.035

Surgical intervention

Retinal laser therapy 824 (4.0) 582 (2.8) 1.75 (1.33-2.30) <0.001
VI 140 (0.68) 79 (0.39) 1.32 (1.001-1.74) 0.049
Vitrectomy 118 (0.58) 88 (0.43) 1.32 (1.24-1.40) <0.001
Composite outcome of 891 (4.4) 636 (3.1) 1.40 (1.26-1.55) <0.001

any surgical intervention

Number of interventions per 10 years RR (95% CI) * p-value

Retinal laser therapy 0.6+34 04429 1.39 (1.23-1.58) <0.001
VI 0.06 £ 0.94 0.03 £ 0.67 1.84 (1.28-2.63) 0.001
Vitrectomy 0.03 £ 0.42 0.02 £0.38 1.29 (0.94-1.79) 0.117

DDP4i, dipeptidyl peptidase 4 inhibitor; SHR, sub-distribution hazard ratio; CI, confidence interval; RD, retinal detachment; DR, diabetic
retinopathy; RR, rate ratio; VH, vitreous hemorrhage; IVI, intravitreal injection. * Estimated using a Poisson model in which the logarithm
of follow-up duration was treated as an offset variable.

A. Composite diabetic retinopathy outcome
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Figure 2. Cumulative incidence function of (A) composite diabetic retinopathy outcome and
(B) composite outcome of any surgical intervention between the DPP4i and non-DPP4i group after

1 2 3 4 5

Follow-up year

propensity score matching. DPP4i, dipeptidyl peptidase 4 inhibitor; CI, confidence interval.
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The DPP4i group also had a higher risk of receiving surgical intervention for severe
DR or its complications (retinal laser therapy: SHR 1.75, 95% CI 1.33-2.30; IVI: SHR 1.32,
95% CI 1.001-1.74; vitrectomy: SHR 1.32, 95% CI 1.24-1.40; any surgical intervention: SHR
1.40, 95% CI 1.26-1.55; Figure 2B). As for the number of interventions, more patients in the
DPP4i group received retinal laser therapy (rate ratio (RR) 1.39, 95% CI 1.23-1.58) and IVI
(RR 1.84, 95% CI 1.28-2.63) than in the non-DPP4i group.

3.4. Safety Outcomes

The results of the safety outcomes are shown in Table 3. No between-group differences
were observed in any of the safety outcomes, namely myocardial infarction, hospitalization
for heart failure, ischemic stroke, hemorrhagic stroke, and the composite outcome of major
adverse cardiovascular events.

Table 3. Safety outcomes of patients with type 2 diabetes and diabetic retinopathy showing no significant risk in both

groups.
DDP4i Non-DDP4i DPP4i vs. Non-DPP4i
Outcome (n =20,444)