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Preface

Sensors used to diagnose, monitor or treat diseases in the medical domain are known as medical

sensors. There are several types of medical sensors that can be utilized for various applications,

such as temperature probes, force sensors, pressure sensors, oximeters, electrocardiogram sensors

that measure the electrical activity of the heart, heart rate sensors, electroencephalogram sensors that

measure the electrical activity of the brain, electromyogram sensors that record electrical activity

produced by skeletal muscles, and respiration rate sensors that count how many times the chest

rises in a minute. The output of these sensors used to be interpreted by humans, which was

time consuming and tedious; however, such interpretations became easy with advances in artificial

intelligence (AI) techniques and the integration of the sensor outputs into computer-aided diagnostic

(CAD) systems.

This reprint highlights several studies that present state-of-the-art AI approaches used to

diagnose different diseases and disorders based on the data collected from different medical

sensors. This works towards developing comprehensive and automated computer-aided diagnosis

by focusing on the different machine learning algorithms that can be used for this purpose as well as

novel applications in the medical field.

Ayman El-Baz, Guruprasad A. Giridharan, Ahmed Shalaby, Ali H. Mahmoud, and

Mohammed Ghazal

Editors
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Editorial

Special Issue “Computer Aided Diagnosis Sensors”

Ayman El-Baz 1,*, Guruprasad A. Giridharan 1, Ahmed Shalaby 1, Ali H. Mahmoud 1

and Mohammed Ghazal 2

1 Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
2 Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University,

Abu Dhabi 59911, United Arab Emirates
* Correspondence: aselba01@louisville.edu

1. Introduction

Sensors used to diagnose, monitor or treat diseases in the medical domain are known
as medical sensors. There are several types of medical sensors that can be utilized for
various applications, such as temperature probes; force sensors; pressure sensors; oxime-
ters; electrocardiogram sensors which measure the electrical activity of the heart; heart
rate sensors; electroencephalogram sensors, which measure the electrical activity of the
brain; electromyogram sensors that record electrical activity produced by skeletal muscles;
and respiration-rate sensors that count how many times the chest rises in a minute. The
output of these sensors used to be interpreted by humans, which was time consuming
and tedious; however, interpretation became easy with the advance in artificial intelligence
(AI) techniques and the integration of the sensor outputs into computer-aided diagnostic
(CAD) systems.

This Special Issue has accepted 34 papers that present some of the state-of-the-art AI
approaches used to diagnose different diseases and disorders based on the data collected
from different medical sensors. This contributes towards achieving our goal, which is to
develop comprehensive and automated computer-aided diagnosis tools by focusing on the
different machine learning algorithms that can be used for this purpose as well as novel
applications in the medical field.

2. Overview of Contribution

Fraiwan and Faouri [1] used deep transfer learning for the automatic detection and
classification of skin cancer. Al Mudawi and Alazeb [2] presented an astute way to predict
cervical cancer with machine learning (ML) algorithms. AlSaeed and Omar [3] proposed a
pre-trained convolutional neural network (CNN) deep learning model (ResNet50) as an
automatic feature extraction method for diagnosing Alzheimer’s disease from magnetic
resonance imaging (MRI). Yasser et al. [4] described a novel framework that can detect
diabetic retinopathy (DR) from optical coherence tomography angiography (OCTA) based
on capturing the appearance and morphological markers of the retinal vascular system.
Holubiac et al. [5] discussed the effect of a strength-training protocol on bone mineral
density for postmenopausal women with osteopenia/osteoporosis assessed by dual-energy
X-ray absorptiometry (DEXA). Ayyad et al. [6] proposed a new framework for the precise
identification of prostatic adenocarcinoma from two imaging modalities.

Tariq et al. [7] proposed a novel feature-based fusion network called FDC-FS for
classifying heart and lung sounds. ElNakieb et al. [8] provided a thorough study of
implementing feature engineering tools to find discriminant insights from brain imaging
of white-matter connectivity and using a machine learning framework for the accurate
classification of autistic individuals. Diab et al. [9] presented a brain strategy algorithm for
multiple-object tracking based on merging semantic attributes and appearance features.
Fraiwan et al. [10] presented a non-contact spirometry using a mobile thermal camera and

Sensors 2022, 22, 8052. https://doi.org/10.3390/s22208052 https://www.mdpi.com/journal/sensors
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AI regression. Ramesh et al. [11] proposed the design and implementation of an explainable
deep learning 1D-CNN model for use in smart healthcare systems with general-purpose
devices such as smart wearables and smartphones. Liang et al. [12] developed a new flow
sensor-based suction index from a measured pump flow (SIMPF) control strategy for rotary
left ventricular assist devices (LVADs) to provide adequate cardiac output and prevent left
ventricle (LV) suction.

Al-Mohannadi et al. [13] proposed a deep-learning-based approach to apply semantic
segmentation for the intima-media complex (IMC) and to calculate the cIMT measurement.
Alshboul and Fraiwan [14] developed an algorithm to count the number of chews in eating
video recordings using discrete wavelet decomposition and low pass filtration. Hammouda
et al. [15] introduced a deep learning-based CAD system to classify the grade groups (GG)
system using digitized prostate biopsy specimens (PBSs) using pyramidal CNN, with
patch- and pixel-wise classifications. Ahmad et al. [16] provided proof-of-principle for
an optical-based, quick, simple, and sensitive screening technology for the detection of
SARS-CoV-2, utilizing antigen-antibody binding interactions. Fournelle et al. [17] devel-
oped a new mobile ultrasound device for long-term and automated bladder monitoring
without user interaction consisting of 32 transmit and receive electronic components as
well as a 32-element, phased array, 3 MHz transducer. Khasawneh et al. [18] customized
and pre-trained deep learning models based on convolutional neural networks were used
to detect pneumonia caused by COVID-19 respiratory complications. Al Ahmad et al. [19]
presented a novel immunophenotyping technique using electrical characterization to differ-
entiate between the following two most important cell types of the innate immune system:
dendritic cells (DCs) and macrophages (MACs).

Haweel et al. [20] proposed a novel CAD framework to classify 50 autism spectrum
disorder (ASD) and 50 typically developed toddlers with the adoption of CNN deep net-
works. The CAD system includes both local and global diagnosis in a response to speech
task. Sharafeldeen et al. [21] presented a new segmentation technique for delineating the
lung region in 3D computed tomography (CT) images. To accurately model the distribu-
tion of Hounsfield scale values within both chest and lung regions, a new probabilistic
model is developed that depends on a linear combination of Gaussians (LCG). Haggag
et al. [22] proposed a novel framework for the automatic quantification of the vitreous on
optical coherence tomography (OCT) with application for use in the grading of vitreous
inflammation. The proposed pipeline consists of two stages, vitreous region segmentation
followed by a neural network classifier. In the first stage, the vitreous region is automatically
segmented using a U-net CNN (U-CNN). El-Gamal et al. [23] developed a personalized,
cortical region-based CAD system that helps visualize the severity of Alzheimer’s disease
(AD) in different local brain regions. Shehata et al. [24] developed a comprehensive CAD
system for the early assessment of renal cancer tumors. The CAD system identifies and
integrates the optimal discriminating morphological, textural, and functional features that
best describe the malignancy status of a given renal tumor. Alwateer et al. [25] introduced
a novel approach for processing healthcare data and predicting useful information with
minimum computational cost, using a hybrid algorithm that consists of two phases.

Wagner et al. [26] compared a medical-grade electrocardiography (ECG) system with
an ECG sensor of the low-cost DiY (Do-it-Yourself) hardware toolkit BITalino. Their results
showed that the BITalino system can be considered as an equivalent recording device for
stationary ECG recordings in psychophysiological experiments. Naglah et al. [27] proposed
a novel multimodal MRI-based CAD system that differentiates malignant from benign
thyroid nodules, based on a novel CNN-based texture learning architecture. Alyoubi
et al. [28] proposed a screening system for DR fundus image classification and lesions
Localization to help ophthalmologists determine the patients’ DR stage. Abdelmaksoud
et al. [29] developed a CAD system that detects and identifies prostate cancer from diffusion-
weighted imaging (DWI). The identification of prostate cancer was achieved using two
previously trained CNN models (AlexNet and VGGNet) that were fed with the estimated
ADC maps of the segmented prostate regions. Jo et al. [30] introduced a novel customized

2



Sensors 2022, 22, 8052

optical imaging system for human conjunctiva with deep learning-based segmentation and
motion correction. The image segmentation process was performed by the Attention-UNet
structure to achieve high-performance segmentation results in conjunctiva images with
motion blur.

Dghim et al. [31] evaluated two different strategies of the automatic detection and
recognition of Nosema cells from microscopic images and achieved the identification of a
robust and successful methodology for automated identification and recognition of Nosema
cells versus the other existing objects in the same microscopic images. Hasnul et al. [32]
presented a review on emotion recognition research that adopted electrocardiograms as
a unimodal approach as well as part of a multimodal approach for emotion-recognition
systems. Ayyad et al. [33] presented a literature review of the use of histopathology images
and its challenges in detecting prostate cancer, studying different steps of the histopathology
image analysis methodology. Santos et al. [34] proposed a new approach based on image-
processing techniques, data augmentation, transfer learning, and deep neural networks to
assist in the medical diagnosis of fundus lesions.
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Abstract: Prostate cancer is one of the most identified cancers and second most prevalent among
cancer-related deaths of men worldwide. Early diagnosis and treatment are substantial to stop or
handle the increase and spread of cancer cells in the body. Histopathological image diagnosis is a
gold standard for detecting prostate cancer as it has different visual characteristics but interpreting
those type of images needs a high level of expertise and takes too much time. One of the ways to
accelerate such an analysis is by employing artificial intelligence (AI) through the use of computer-
aided diagnosis (CAD) systems. The recent developments in artificial intelligence along with its
sub-fields of conventional machine learning and deep learning provide new insights to clinicians
and researchers, and an abundance of research is presented specifically for histopathology images
tailored for prostate cancer. However, there is a lack of comprehensive surveys that focus on prostate
cancer using histopathology images. In this paper, we provide a very comprehensive review of
most, if not all, studies that handled the prostate cancer diagnosis using histopathological images.
The survey begins with an overview of histopathological image preparation and its challenges.
We also briefly review the computing techniques that are commonly applied in image processing,
segmentation, feature selection, and classification that can help in detecting prostate malignancies in
histopathological images.

Keywords: prostate cancer; image processing; histopathology images; digital image analysis; compu-
tational pathology; artificial intelligence

1. Introduction

Prostate cancer is one of the most common cancers all over the world and considered
the second cause of cancer deaths in several countries [1,2]. Nearly one in seven men will be
identified to have prostate cancer throughout his life [3,4]. In recent times, statistics show
the number of new patients only identified in the United States for 2021 with prostate cancer
is nearly 248,530 and the number of deaths is nearly 34,130 [5], so prostate cancer represents
a serious healthcare problem in the United States as in many countries. Most tumors do
not induce serious clinical symptoms, hence early detection, and localization of prostate
cancer at a curable stage is significant for making a medical decision in men with prostate
cancer [6].

Because of the lack of progress in the medical field, prostate cancer is increasing as
one of the most endemic diseases in the world. The large developments in computing

Sensors 2021, 21, 2586. https://doi.org/10.3390/s21082586 https://www.mdpi.com/journal/sensors
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technologies and hardware abilities offer the capability of using computing to tackle issues
in many areas. The medical domain is one such area where nowadays a judicious use of
technology can assist in improving people’s health and to help in tasks including diagnosis.
Medical imaging techniques such as computed tomography (CT), X-rays, magnetic reso-
nance imaging (MRI) and ultrasound imaging (sonography) are great models of computing
applications reliant on images, some examples of medical images are displayed in Figure 1.
In addition to all of these types of images, histopathology images (HI) are another type of
medical image that considered a golden standard to detect cancer and we will focus on it in
this survey. HI can be obtained by tissue microscopy from biopsies that help pathologists
analyze the characteristics of tissues in a cell basis and study cancer growth [7]. In recent
years, many studies have been conducted to capture the entire slide with a scanner and
save it as a digital image [8]. The word histopathology derives from the Greek histos (web
[in this case, of tissue]), pathos (suffering or disease), and logos (study) [9].

 

Figure 1. Different Types of Medical Images (I) MRI image of prostate, (II) CT image of prostate, (III) X-Ray image of
prostate pelvic area, (IV) Histopathological image of prostate tissue, and (V) Ultrasound for prostate biopsy.

In recent years, computer-aided diagnosis (CAD) has become the main player in radi-
ological detection, diagnosis, and management of diseases [8,10]. Nowadays, computer-
aided diagnosis has become a factor of common clinical diagnosis procedures for cancer
detection through the use of histopathological images at medical centers and consequently
it has become one of the most major topics in histopathological imaging and diagnosis
process [11]. There is a substantial requirement for CAD systems to reduce human errors.
Human errors happen because of many reasons including lack of expertise or errors caused
from image overlapping, blurring, noise, and weak edge detection. Furthermore, observa-
tion of the cells specifically composed of visualizing tiny structures, functions, composition,
cellular distribution, and cellular morphology across the tissue, which assists pathologists
to make a decision of whether the cells are normal and cancerous [11]. This manual process
is very time-consuming, difficult, requires a great deal of experience, and leads to variability
in diagnosis. Therefore, CAD is a good choice for pathologists for the development in
the improvement of histopathological image precision, segmentation of tumor parts, and
classification of disease [11]. The literature shows a plethora of CAD systems applied to
histopathological images.

In general, artificial intelligence (AI) has shown a significant growth in medical health
applications and in histopathology imagery provides a breeding ground for the expansion
of CAD systems [12]. AI and CAD systems will continue to grow among researchers and
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clinicians to constitute a prognostic set of tools to enable them to detect patients that are
susceptible to a specific disease and provide accurate, cheap, and fast technologies [12,13].
AI is an umbrella term encompassing both traditional machine learning (ML), and deep
learning (DL). The research we consider in our study is largely categorized as ML-based
techniques and DL-based techniques. Conventional machine learning techniques applied
in HI analysis typically involve several preprocessing steps, including feature selection,
image segmentation and classification. ML techniques have been reviewed extensively
in the literature, for instance in [2,14–22]. In the last decade, researchers have turned
their focus towards the development of new deep learning techniques as they outperform
conventional machine learning techniques in diverse fields and not only HI image analysis.
To date, many of these ML techniques have been supplanted by DL, and an abundance of
work has evaluated the use of deep learning techniques on HI of prostate cancer [23–33].
Moreover, studies that employ an ensemble of DL techniques and ML techniques gave
better results [34]. Table 1 summarizes reviewed papers on prostate cancer detection and
diagnosis. One of the main constraints in conventional ML techniques is their training with
a limited number of features, which has been overcome in DL techniques where hundreds
to thousands of features can be selected from digital images for classification; however,
this process requires significant amount of training time [35]. Some of these problems are
solved in ensemble techniques as the feature extraction stage is done using pretrained deep
networks and samples classified using conventional ML classifiers [35].

Table 1. A brief comparison between previous studies that proposed techniques for prostate histopathology images.

Reference Study Aim Year Strength Weakness
Number of

Patients

[2]

Automated
classification using

AdaBoost-based
Ensemble Learning

2016
They integrated various feature

descriptors, different color
channels, and classifiers.

The algorithm able to
discover only the critical

regions on the digital
slides

50

[14]

A novel technique of
labeling individual

glands as malignant or
benign was proposed.

2013

The technique can detect individual
malignant gland units without

relying on the neighboring
histology and/or the spatial extent

of the cancer.

It applied on a small
number of radical

prostatectomy patients
8

[15]
Methodology for

automated gland and
nuclei segmentation

2008

They incorporate low-, high-level
knowledge, and structural

constraints imposed via domain
knowledge.

They focused on a
smaller cohort of cancer
images and the dataset

is private

44

[16]
A new automated
method for gland

segmentation
2017 This method texture- and gland

structure-based methods

The method failed in the
images with the

cribriform pattern.
They validated data

using 2-fold cross
validation

10

[17]

Multistage
Segmentation Using

Sample Entropy
Texture Analysis

2020

An added advantage of performing
multistage segmentation using

sample entropy values is that one
could easily separate epithelial
nuclei from the stroma nuclei in
standard H&E stained images
without using any additional
immunohistochemical (IHC)

markers.

It requires identifying
sample entropy features 25
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Table 1. Cont.

Reference Study Aim Year Strength Weakness
Number of

Patients

[18]

A new approach to
identify prostate
cancer areas in

complex

2014

It utilizes the differential
information embedded in the

intensity characteristics of H&E
images to quickly classify areas of

the prostate tissue

Classification
performance is tested

using only KNN
algorithm

20

[19]

Ensemble based
system for feature

selection and
classification

2011

They addressed the possibility of
missing tumor regions through the
use of tile-based probabilities and

heat maps.

They focused only on
texture feature selection
and not used a voting

schema for the ensemble
classifier to enhance the

probability scores

14

[20]
A novel fully

automated CAD
system

2006

The proposed system represents the
first attempt to automatically
analyse histopathology across

multiple scales

Their system trained
using only 3 images 6

[21] A new multiclass
approach 2018 It obtained improved grading

results

It was evaluated based
on its impact on the
performance of the

ensemble framework
only

213

[22]

A bag-of-words
approach to classify

images using
SpeededUp Robust

Features (SURF)

2016

The drawbacks of scale-invariant
feature transform descriptor is

overcome by the SURF descriptors
causing an enhanced output

accuracy

More features needed to
be integrated with their

feature extraction
process to enhance

accuracy of the
classification

75

[23]

An automatic method
for segmentation and

classification
(Integration of Salp

Swarm Optimization
Algorithm and Rider

Optimization
Algorithm)

2019 Less time complexity

The maximal accuracy,
sensitivity, and

specificity does not
exceed 90%

20

[24]

A new region-based
convolutional neural
network framework

for multi-task
prediction

2018
The model achieved a detection

accuracy 99.07% with an average
area under the curve of 0.998

They didn’t have
patient-level

information with which
to perform a more

rigorous patient-level
stratification.

40

[25]

An approach to nuclei
segmentation using a
conditional generative
adversarial network

2019

It enforces higher-order consistency
and captures better results when
compared to conventional CNN

models.

The model trained on
small annotated patches 34

[26]

Deep neural network
algorithm for

segmentation of
individual nuclei

2019

A simple, fast, and parameter-free
postprocessing procedure is done to

get the final segmented nuclei as
one 1000 × 1000 image can be

segmented in less than 5 s.

The model is trained on
a small number of

images and has been
tested on the images that

may have different
appearances

30
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Table 1. Cont.

Reference Study Aim Year Strength Weakness
Number of

Patients

[27]

Two novel approaches
(combination of 4
types of feature

descriptors, advanced
machine-learning

classifiers) to
automatically identify

prostate cancer

2019

They apply for the first time on
prostate segmented glands,
deep-learning algorithms

modifying the popular VGG19
neural network.

The hand-driven
learning approach

employs SVM, where
selecting the suitable

kernel function could be
tricky

35

[28]
Automated Gleason

grading via deep
learning

2018
The study showed promising

results especially for cases with
heterogeneous Gleason patterns

The model trained on
small mini patches at

each iteration
886

[29]
A deep learning
system using the

U-Net
2019 The system outperformed 10 out of

15 pathologists

The system was built
upon three pretrained

preprocessing modules,
each of which still

required pixel-wise
annotations.

1243

[30]

Predicting Gleason
Score Using OverFeat
Trained Deep CNN as

feature extractor

2016
It is quite effective, even without

from-scratch training on WSI tiles.
Processing time is low

Small size of patches 213

[31] CNN to idiomatically
identify the features 2016

The system is not constrained to
H&E stained images and could

easily be applied to
immunohistochemistry

Some detection errors
happen at the

boundaries of the tissue
254

[32]

DL model to detect
cancer based on
NASNetLarge

architecture and
high-quality annotated

training dataset

2020
The model demonstrated its strong

ability in prediction as accuracy
attained 98%

The availability of fully
digitalized cohorts

represents a bottleneck
400

[33]

A novel benchmark
was designed for
measuring and
comparing the

performances of
different CNN models

with the proposed
PROMETEO

2021 Average processing time is less
compared to other architectures

The network validated
on 3-fold

cross-validation method
470

[34]

Novel features that
include spatial

inter-nuclei statistics
and intra-nuclei

properties for
discriminating

high-grade prostate
cancer patterns

2018

The system tackled the
inter-observer variability in

prostate grading and can lead to a
consensus-based training that
improves both classification

lack examples of the
highest grades of disease 56

Many surveys have been published in recent years reviewing histopathological image
analysis covering its history, and detailed information of general artificial intelligence
techniques [7,8,12,31,36–42]; the main limitation is the lack of comprehensive surveys of
histopathological image analysis that focus on prostate cancer [1,43,44]. Accordingly, in this
survey we present more prostate histopathology from an image analysis point of view. The
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main goal of this survey is providing readers a comprehensive overview of the state-of-the-
art in terms of image analysis and artificial intelligence techniques i.e., machine learning,
and deep learning being tailored specifically for histopathology images in prostate cancer,
and its challenges specific to histopathology images analysis, and the future scope. This
survey mentions 113 related works, comprising 63 papers that concentrate on prostate
cancer. Figure 2 depicts a statistical distribution of studies used in this survey.

Figure 2. Statistical distribution of studies used in this survey. (I) Number of studies per year; (II) Type of Publisher, where
other denotes a preprint or URL; (III) Publisher, where other includes MDPI, Frontiers, AVES, etc.

The selection methodology of our survey was conducted using the well-known aca-
demic search engines including IEEE Xplore, Google Scholar, Science Direct, Springer,
ACM Digital Library, and ResearchGate. We have employed the following criteria: (I) The
paper must be highly related to the research area; (II) papers published in highly rank
journals and conferences of relevant domain, such as Scientific Reports, Expert Systems with
Applications, IEEE Transactions on Medical Imaging, Neurocomputing, Journal of Pathology
Informatics, etc. and conferences, such as the International Symposium on Biomedical
Imaging, IEEE International Symposium on Biomedical Imaging, International Conference
on Machine Vision, etc. (III) Top cited papers are preferred. (IV) Papers that were published
within the last 5 years, although we also include papers published before that time if the
paper is of high quality. Meanwhile, we ignored many papers that have inadequate criteria
including low-quality papers, non-English written papers, and white papers.

This survey is organized as follows: Section 2 introduces a background of histopathol-
ogy images, their preparation, and challenges. Section 3 focuses on the whole histopathol-
ogy image analysis methodology and highlights the various methods used for this method-
ology. Finally, we provide some concluding remarks and present some future possibilities
in Section 4.

2. Histopathology Images Background

Histopathology is a significant branch of biology that covers the investigation of the
cell anatomy and tissues of organisms at a microscopic level by a histopathologist [45].
Histopathological images are very influential for the final decision procedure of effective
therapeutics; these images are essential to investigate the status of a certain biological
structure and to diagnose diseases like cancer [39,45]. Digital histopathology represents a
significant evolution in modern medicine [46]. It often uses machine vision techniques as a
basis. Nevertheless, because of the special properties of digital histopathology images and
their processing tasks, specific processing approaches are usually needed. In this survey,
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we describe the application of histopathology image analysis employing machine learning
and deep learning techniques.

Uropathologists use different screening methods to determine the various tumor
histology in the prostate in a good quality. Typical tissue of prostate incorporates glands
and stroma. The gland is the basic anatomical structural unit of the prostate. The stroma
is the fibromuscular tissue around glands [14]. Each gland unit consists of a lumen and
rows of epithelial layers surrounding the lumen. The stroma keeps the gland units together.
When cancer is in high-grade, stroma and lumen are both replaced by epithelial cells [24].
Once the slides are stained using a hematoxylin and eosin (H&E) solution, the nuclei
become dark blue and the epithelial layer and stroma become several shades of purple
to pink [14].

To date, one of the most effective ways to measure aggressiveness of prostate cancer is
using the Gleason grading system [24,43,47]. The Gleason grading system is completely
founded on architectural arrangements of prostatic carcinoma, and a substantial parameter
to a therapeutic final decision. Gleason grading has five grade groups from grade 1 (G1) to
grade 5 (G5), with a grade of G1 refers to tissue with a maximum grade of resemblance to
normal tissue and outstanding prognosis, and a grade of G5 refers to poorly differentiated
tissue and the worst prediction [24,29]. Artificial intelligence has the ability to improve the
quality of Gleason grading. Abundant automated Gleason grading systems were proposed
and have led to increased consistency [28–30,34,48–51].

Histopathology images can be acquired by using specialized cameras with a micro-
scope wherein an automated computerized approach can be carried out [9]. To study
various architecture and constituent of tissues under a microscope, the biopsy specimen
is embedded in wax and dyed with one or more stains. Staining procedures are used by
pathologists for cellular components separation for structural in addition to component
visualization of tissue for diagnosis [38]. Stages of the preparation process of the tissue
slides are as presented in Figure 3. It consists of five operations, and each of them can affect
the quality of the final image [38,45]. (I) Fixation: Samples of biological tissues are fixed
with chemical fixation. There are many ways of fixation, but the commonly applied way in
the biomedical field is fixation with formaldehyde or glutaraldehyde solution to protect the
cells [51]. This is a critical step in tissue preparation and aims to prevent tissue autolysis
and putrefaction; (II) Processing: Tissue processing is a crucial step and involves two
main processes: dehydration and clearing. Dehydration is used to extract water from the
gross tissue and substitute it with a certain concentration of alcohol which solidifies it [52].
This process helps incise superfine sections of the specimen. Clearing consists of removing
the dehydrator with a material that will be the solvent in both the embedding paraffin
and the dehydrating agent; (III) Tissue Embedding: Thus is the process wherein tissues
are carefully positioned in a medium such as wax [51], so when solidified, it will provide
enough external support to allow very thin sectioning. This process is essential as the
proper tissue orientation is necessary for precise microscopic evaluation; (IV) Sectioning:
this process is required to generate superfine slices of tissue samples sufficient such that
the details of the microstructure characterization of the cells can be obviously noticed using
microscopy methods. After that, carry the superfine slices of sample onto a clean glass
slide [38]; (V) Staining: The final step in preparing tissue for light microscopy is to stain it
and mount it on the slide. Staining increases contrast to the tissue and, also highlights some
specific features which would otherwise be practically invisible in the microscope [38].
There are many types of stain but the most common type of staining for histology is H & E.
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Figure 3. Illustrative figure showing the different preparation steps of histology slides.

2.1. Diagnostic Challenges Using Histopathological Images

Automated prostate cancer diagnosis using histopathology images is deemed to offer
great promise for advanced cancer therapy, however, it is not a simple task, as several
open scientific challenges have to be overcome before the CAD system of histopathology
images can become part of the routine healthcare diagnostic pipeline. These challenges
occur because of the numerous technical and computational variabilities and artifacts
incurred due to differences in slide preparation and because of the complicated structure
of the tumor tissues architecture [41]. Image analysis techniques are substantially reliant
on the quality of the digital slide images. In the following paragraphs, we will discuss the
different challenges of histopathology image analysis and computational techniques to
deal with them.

2.1.1. Extremely Large Image Size

These days, one of the growing challenges is how to handle the extremely large size
of histopathology image datasets [53]. Whenever images, for example, cars, humans,
or animals are classified using artificial intelligence techniques, small images such as
512 × 512 pixels are usually applied as an input [54,55]. Large-sized images usually have
to be rescaled into a smaller size, which is adequate for differentiation, as increasing the
size of the input image will result in increased computational complexity, thus making the
analysis process more challenging and time-consuming. On the contrary, histopathology
images contain as many as hundreds of thousands to millions of pixels, which is generally
laborious to analyze as is. Nevertheless, rescaling the whole image to a lower dimension
such as 512 × 512 may cause loss of information at the cellular level, which leads to a
marked drop of the identification accuracy. Thus, the whole histopathology image is often
divided into partial regions of about 1024 × 1024 pixels called patches, where each patch
is examined apart, such as detecting region-of-interests [56]. Thus, many studies such
as [16,24–27,48,57,58] presented in this survey, especially those dealing with deep learning
applied patching technique to overcome the extremely large histopathological images.

2.1.2. Insufficient Labeled Images

Perhaps the biggest challenge in analyzing histopathological images is that only a
limited number of training set data is available. As healthcare image datasets often have a
considerably lower size than a natural view of images, this causes direct application of many
conventional artificial intelligence techniques not suitable for medical image datasets [53].
One of the important keys of success of DL in common image recognition tasks is the
abundance of training data. Label information at a pixel level or a patch level is essential in
histopathology image tasks such as diagnosis. Label information could be collected easily
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in common image processing from the internet and it is also possible to use crowdsourced
labeling since the human brain is able to identify objects and perform labelling work while
ignoring artifacts [59]. Nevertheless, only highly qualified pathologists can manually
label histopathological images properly, and this process at the regional level in a large
histopathology image needs a long time and is tedious. Therefore, the paramount limitation
in designing high-quality histopathology image analysis techniques lies in the paucity of
freely public annotated datasets [24,60]. Many researchers have attempted to alleviate
such a problem of insufficient amount labeled images. Most of these solutions fall under
one of the following categories: (I) increasing the number of labeled data, such in [25,30],
(II) predicting the labels of test images or self-taught learning, such as applying transfer
learning [24,61], or (III) utilizing of weak label or unlabeled data [62].

2.1.3. Artifacts and Color Variation

Another major challenge is the presence of artifacts and color variation [8,11,36,59,63,64].
Histopathology images are captured through several stages as previously mentioned. At
each stage, unwanted anomalies that are unassociated with the underlying biological
factors, could be represented by differences in specimen preparation, staining, and even
scanning with equipment from different vendors. For instance, when specimen sections are
placed onto the slides, they may be folded and rumpled; dust may besmear the slides during
scanning process; loss of microscope focus leads to blurred regions, noise, and shadows;
and occasionally tissue regions are marked by color markers or chromatic aberrations [8,41].
Learning without considering these artifacts, as shown in Figure 4, may deteriorate the
performance of decision support algorithms. When digital images are produced, the slides
should be uniformly illuminated by the light source. Tissue autofluorescence differences in
microscopic setup, staining protocol, and organ size could generate irregular lighting across
the tissue samples. Additionally, the scanner’s sensitivity varies for different wavelengths
of the light spectrum [41]. Large variations in light are considered an important factor for
the precise prostate cancer diagnosis. These variations need to be handled earlier before
employing image processing techniques [63,64].

Figure 4. Examples of possible artifacts in histopathological images, where (I) contains chromatic aberrations and blurred
regions; (II) contains noise, and (III) contains specimen segments folded and blurred regions.

To tackle these problems, many different techniques have been designed, includ-
ing conversion to grayscale [65,66], color normalization [67,68], and color augmenta-
tion [69]. One of the simplest methods is the conversion of colored histopathology images
to grayscale, however, it disregards the significant information concerning the color repre-
sentation used by pathologists since the beginning. On the contrary, the color normalization
method attempts to adapt the color values of images on a pixel-by-pixel basis so that the
color distribution of the source image matches a reference image. Color separation and
stain normalization were applied on the histopathology images for the first time in [70].
Afterwards several distinct color and stain normalization techniques have been used as a
preprocessing step in several techniques for histopathological image analysis.
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2.1.4. Multi-Level Magnification Led to Multi-Level Information

Magnification is the phenomenon of enlarging the proportion of biological structures
that are apparent under the microscope based on different objective lenses [39]. Tradi-
tional microscopes have a standard set of objectives with 2X, 8X, 40X, 200X, and 400X
power [39]. Tissues generally consist of cells and fibers, where each tissue shows specific
cellular features. Information concerning cell shapes is taken accurately under a high
power objective and images are more deterministic and informative to predict disease
outcome, but structural information such as a glandular structure that are made of many
cells are better taken under a lower magnification, so that images cover a wider field of
view. Because malignant tissues exhibit both cellular and structural abnormalities, each
of the images captured at different magnifications could provide significant information.
Even in AI, researchers employing image datasets with different levels of magnifications,
such as in [71,72]. As already pointed out, it is challenging to process the images at its
original resolution directly, images are usually rescaled to adapt different magnifications
and configured to be input for processing. Regarding diagnosis, the most informative mag-
nification remains a subject of controversy, whereas efficiency enhancement is sometimes
attained by entering both low and high magnification images simultaneously as input,
probably depending on the applied AI technique or type of disease. Moreover, the status of
histopathological images does not need to be determined by the cells, images with different
levels of magnification are adopted to learn distinctive features [71].

As depicted in Figure 5, histopathological images with multiple levels of magnification
can depict various types of information. When the histopathological images are with low
magnification, cells will be difficult to detect, while the high magnification image shows
more fine-grained details.

Figure 5. Illustrative figure showing the different levels of magnification (starting from 2× up to more than 40×) that might
be applied on histopathological images.

3. Histopathology Image Analysis Methodology

Digitized histopathology is a current direction that makes huge numbers of images
available for automated analysis. It enables visualization and interpretation of pathology
cells and tissue samples in a great resolution images and with the assistance of software
tools [36,37]. This opens a new era to design image analysis techniques that assist clinicians
and promote their image descriptions (e.g., grading, staging) with the purpose of image
features quantification. In that respect, the computer-aided diagnosis of histological image
analysis is a newly challenging domain for biomedical image analysis. CAD can be defined
as detecting cancer within the examined tissue using computer software [60,73,74], which
is the main mission of the pathologist [8]. The combination of conventional diagnosis
techniques with computational AI techniques provides a good possibility to decrease the
workload of pathologists while preserving performance. There is a need for a precise
CAD system that minimizes reading interpretation times, lowers necessary experience
in anatomic pathology, and provides a consistent risk evaluation of cancer existence in
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prostate histopathology images without additional burden to pathologists. Such a CAD
system would automatically find out suspected lesions in prostate histopathology images
to assist screen for prostate cancer in large patient populations. A typical CAD system for
detecting prostate cancer receives raw histopathological images, preprocesses them, and
produces a particular diagnostic result [10].

Over the last two decades, numerous research papers on CAD systems were published.
Automated systems for digital histopathological imaging can maintain reproducibility
and consistency using suitable image processing techniques [41]. In fact, there are many
research perspectives for CAD systems applied in the histopathological domain, including:
(I) cancer detection in the given tissue, (II) automatic grading to correctly quantify the
level of the malignancy, which can offer more insights into disease characterization, (III)
cell/nuclei/gland segmentation that discovers and separates these regions from images,
and (IV) multi-class classification for the different subtypes of a specific type of cancer.

CAD systems can be broadly subdivided into two groups. The first uses handcrafted
features and relies on conventional machine learning techniques, while the second uses
deep learning techniques. For this reason, we will discuss these two groups separately in
Sections 3.2 and 3.3, below. Figure 6 displays the process model for handcrafted features
based on machine learning techniques versus deep learning techniques of histopathological
image analysis. The process model of the two groups of analysis passes through a number
of stages that highlight specific structures in the image analysis methodology. There are two
common components that are shared by the process model, which are image acquisition
and image preprocessing.

 
Figure 6. An illustrative block diagram of a typical prostate CAD System starting from the image acquisition until obtaining
the final diagnosis.

3.1. Image Acquisition

In the first phase, histopathology images can be acquired from a public dataset or a
private dataset. The choice of a dataset is a dominant factor to establish for any experimental
setup. One of the main challenges when dealing with prostate histopathology images is
the lack of representative public image datasets annotated by multiple pathologists with
high quality. Most research dealing with prostate histopathology images work with private
datasets. As shown in Table 2, we provide list of the publicly available datasets [75–79].
It is noted that PANDA challenge [78] provides the largest public histopathology image
dataset in prostate cancer.
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Table 2. Details of publicly available datasets containing prostate histopathology images.

Dataset URL Magnification Year Dataset Size
Number of

Patients

Annotated dataset [75] 40× 2017 4 images for training and 2 for validation 6

Prostate Fused-MRI-
Pathology [76] 20× Last modified

2021

comprises a total of 28 3 Tesla T1-weighted,
T2-weighted, Diffusion weighted and Dynamic

Contrast Enhanced prostate MRI along with
accompanying digitized histopathology images

28

TCGA-PRAD project [77] 40× Last modified
2020

It includes includes 368 digitized prostate
pathology slides 14

Prostate cANcer
graDe Assessment

(PANDA) Challenge
[78] 20× 2020 It consists of 11.000 cases for training, 400 cases for

public test set, and 400 cases for private test set NA

PESO dataset [79] 10× 2019 It consists of 62 case for the training set and 40 case
for the testing set 102

3.2. Image Preprocessing

Preprocessing is a basic stage of most automated CAD systems [35]. In the preprocess-
ing stage, raw data are processed to normalize the image or to transform the image to a
domain where cancer can be easily diagnosed [10]. Preprocessing can enhance histopathol-
ogy images and ameliorate the interpretability for human viewers since the acquired
images contain different types of noises or artifacts and may not have adequate contrast or
illumination due to the scanning [36,46]. It is necessary that the acquired images be of good
quality to generate the intended result [40]. Appropriate image pre-processing methods
could compensate for these differences between images. Various existing preprocessing
methods are commonly used to boost the results of the analysis process can be grouped as
illustrated in the following subsections and summarized in Figure 7.

Image Preprocessing
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Mean Filter

Median Filter

Adaptive Mean 
Filter

Adaptive 
Median Filter
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Filter
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Figure 7. Taxonomy of different image preprocessing methods.
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3.2.1. Filtering

There are various methods for enhancing images. The basic and simple methods
can be classified as filtering. Filtering is used to eradicate unwanted variation (noise)
from images. There are different noise eliminating filters used for removing undesirable
information from images, i.e., mean filters, median filters, adaptive mean filters, adaptive
median filters, and Gaussian smoothing filters. The mean filter is the simplest linear
filter [80]. It eliminates the noise, blur images, and reduces sharp edges [81]. Similarly, the
median filter has also been employed to eliminate noise from histopathology images [40].
The median filter is a nonlinear digital filtering method. It is commonly used in digital
image processing because under certain conditions, it maintains edges whilst removing
noise [82]. Adaptive filtering is used to remove noise from images without degradation.
It involves a tradeoff between smoothing efficiency, preservation of discontinuities, and
the generation of artifacts. Gaussian filtering is a smoothing filter method. It has been
applied for smoothing the images, to overcome the variations in staining, as well to reduce
noise [40]. The Gaussian filter is a very good filter for removing noise expressed in a normal
distribution [80].

3.2.2. Color Normalization Techniques

In histopathology CAD systems, color normalization plays a significant role because
the perception of information in images could negatively affected by color and concen-
tration differences [83,84]. Two issues have made the color normalization process a chal-
lenging task [83]: (I) the presence of diagnostically significant but visually subtle details
in color images. (II) the heterogeneous nature of tissue composition. Among the image
preprocessing techniques, color normalization was the most common. In the last two
decades, many color normalization techniques to histopathology image analysis have
been proposed. In [85], authors developed a reliable color-based segmentation approach
for histological structures that applied image gradients estimated in the LUV color space
instead of RGB color space to handle matters relating to stain variability. Another approach
presented in [84], founded on using of nine common color filters selected for histology
H & E stained slides. The authors conducted two experiments, and results showed that
pathologists became more sensitive to the color of the image than before. While in [86],
a new color correction technique is proposed and developed in the linear RGB color space.
This technique can easily be integrated to the slide scanning process. The technique is also
handy in the sense that the data needed for color correction are extracted from the color
calibration slide wherein nine reference color patches embedded on the glass slide, and the
spectral properties of these patches are known beforehand.

3.2.3. Histogram Equalization

The histogram of an image is a mathematical graph representing frequencies of
occurrence of distinct color intensities in that image. It summarizes the image with respect
to quality, contrast, and brightness [40]. Histogram equalization of the image is a popular
and simple ways for enhancing image contrast to normalize the distribution of probability
of occurrence of intensities in the image and used for removing color variations due
to illumination conditions and staining process [40]. There are many previous works
published in histogram equalization. In [87], the authors tried to overcome the problem of
changing the brightness of an image when applying traditional histogram equalization.
They introduced a novel extension of bi-histogram equalization technique. It effectively
separates the objects from the background. Another novel method for histopathology
images was introduced in [88], is a fully automated stain normalization technique to
minimize batch effects and thus help improving analysis of digitalized pathology images.
Among the different histogram techniques, one paper applied multi-objective histogram
equalization by using particle swarm optimization (PSO) [89]. The proposed technique
works by segmenting the histogram of the image into two sub-images. Then, a number
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of optimized constraints are employed. PSO used to explore the optimal constraints.
This technique preserves the brightness of the image while enhancing the contrast.

3.2.4. Data Augmentation

In the artificial intelligence domain, the model efficiency always enhances with the
amount of the training data that has been used. Data augmentation (DA) is a strategy used
to artificially enlarge the size of the training data without introducing labeling costs [90–94].
DA has already been used in many domains, including image processing and audio classifi-
cation. The most common means of data augmentation in image analysis include reflection,
translation, rotation, scaling, and cropping [90]. Applying conventional data augmentation
methods is one popular way to increase both the number and diversity of images in small
datasets. Nevertheless, it is not always used in all problems. A significant amount of DA
techniques on specific problem-dependent are proposed can also be applied to expand
small datasets. One of the powerful and common methods used in data augmentation is
generative adversarial networks (GANs) [91]. GANs are based on competition between two
neural networks. GANs consist of a discriminator and a generator, two neural networks
trained as adversaries, therefore its name is adversarial. Over the past years, there have
been many attempts in exploring the use of GANs in generating synthetic data for data
augmentation given limited or imbalanced datasets. One variant of GANs is proposed
in [92]. It is used to enhance generalizability in CT segmentation tasks. Another variant
of GANs used in histopathology images proposed in [93]. But applying these techniques
always require a relatively high effort. Moreover, there exist lots of excellent studies for
data augmentation. In [94], the authors proposed a novel technique capable of augmenting
histopathology images and distributing the variance between patients through image
blending using the Gaussian-Laplacian pyramid. This technique produces new training
images composed of half images of different patients. This method tries to prevent that a
model learns color representations of patients, which related but to the staining process.
Some studies aim to enhance the overfitting problem caused by the lack of samples by
employing different data augmentation techniques. For example, in [26] authors used five
DA techniques (rotation, flipping, shifting, rescaling, and random elastic transformation).
Experimental results showed the effectiveness of applying different DA methods in the
nuclei segmentation task.

3.3. Traditional Machine Learning Techniques

Machine learning (ML) is an automated learning process of machines to categorize
and recognize different data such as text, images, and videos. ML employs algorithmic
techniques to analyze, learn, and make decisions from the input data [95]. ML has been
widely employed in many applications, including image processing, specifically in our
study in histopathological image analysis. Traditional machine learning techniques typ-
ically involve several steps to deal with histopathology images including segmentation,
feature extraction, and classification, as represented in Figure 6. Each step is described in
the following subsections.

3.3.1. Image Segmentation

Segmentation process is one of the main research efforts in histopathology image anal-
ysis. It is the process of separating objects in an image that are of interest to the developed
application by using various methods [40]. It can make anatomical structures like glands,
nuclei and so on more obvious for a subsequent automatic or manual image classifica-
tion [7]. The various morphological features of these structures like size, shape, extent,
and color intensity, are also important factors for existence of prostate cancer. To analyse
all these indicators, images need to be segmented first [38]. Prostate segmentation is a
challenging process. It is difficult to determine the boundary between the prostate and the
surrounding tissues. Even for experienced pathologists, the interobserver variability of
manual prostate segmentation is large [10]. A precise prostate cancer segmentation may
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help effectively in guiding radiation therapy and biopsy therapy as well as its application
in diagnosis [10].

Many researchers have applied various segmentation techniques in their research,
which can be broadly classified into classical techniques and machine learning techniques,
as represented in Figure 8. However, there is no general segmentation technique proven to
be effective for all kind of images. In [23], the segmentation task in prostate cancer is carried
out using the color space transformation and thresholding techniques. This process aids to
form the gland region, which is subjected to feature extraction by applying multiple-kernel
scale-invariant feature transform method. In [15], authors presented a new automatic
nuclei and gland segmentation technique for prostate histopathology which incorporates
an integration of high-level, low-level, and domain-specific information. The segmentation
technique is utilized for three different applications: (I) classifying intermediate grades
of prostate cancer, (II) identifying cancer from normal regions, and (III) discriminating
Bloom-Richardson high-grade cancer from low-grade cancer. In [16], authors proposed
an automated technique for gland segmentation in prostate cancer using histopathology
images using machine learning and image processing methods. This technique outperforms
structure and texture-based techniques. However, this technique fails in the images with
the cribriform pattern, resulting in inaccurate segmentation. Another study [96] tried to
overcome the necessary condition of the conventional thresholding segmentation method
to give accurate results, where the nuclei must have a wide range of intensities to be easy
differentiated from the background. Their adaptive thresholding technique passes through
four different stages: (I) detecting the nuclei, (II) optimizing the primary contours through
a rough texture segmentation, (III) optimizing the convergence, and finally (IV) splitting
the overlapping segmentation masks.
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Figure 8. Image segmentation taxonomy compromising different techniques that are used to segment histopathological images.

Other methods such as [17] used two-stage segmentation. Firstly, the mean-shift (MS)
algorithm is used to perform the coarse segmentation to split the tissue constituents in four
parts. After that, wavelet filters are used to perform fine segmentation of glandular tissue.
Although, there exists other studies that segment each individual cell. for example, an early
study [97], where authors focused on dynamic segmentation of live cells for the purpose of
quantification of different modalities. Their technique can identify the cell boundary no
matter how many times it is used in the system.
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There exist few studies that focus on utilizing cell nucleus and blue mucin. In [98],
authors depend in their segmentation on the structure of glands to separate them from the
background by analyzing the color space of histopathology image. Another segmentation
technique, proposed in [99], combined the similarity of morphological characteristics re-
lated to the appearance of lumen components. It operated in three stages: (I) classification
of pixels, (II) extraction of inner gland boundary, and finally (III) complete gland construc-
tion. The performance of the abovementioned techniques is constrained by the size and
the characteristics of labelled datasets and the variation needed in the images to model the
distribution of relevant tissue features.

3.3.2. Feature Selection

Feature selection refers to eliciting the best feature subset that can accurately label
images from a dataset as belonging to one or more classes [100,101]. This has now been
a significant domain to researchers with new advancements in histopathological image
analysis. Just a few applications produce their data already in a form that classifiers can
construe and do not need a feature selection process. However, histopathology images
require representing characteristics of the tumor cells or tissues in a quantitative way [7,41].
The extracted features should be identifiable and distinct to an extent to be able to automat-
ically classify normal and malignant tissues and to grade them correspondingly [41]. In HI,
selecting which distinctive features will be feeding the classifier is more essential than pick-
ing the classifier itself, and when feature selection is applied, classification accuracy will be
improved as many features are selected from all features [10]. Selecting distinctive features
from targets of interest is a challenging task in an effective CAD system. Common features
for HI comprise size, shape, histogram, texture, intensity, and multiple features. Feature
descriptors to be selected in HI can be categorized into four groups: texture-based features,
topological-based features, morphological-based features, color-based features, and other
features [38,39,45,46]. Table 3 provides a brief view for the feature extraction publications
suggested in HI of prostate cancer. The following paragraphs detail the different features
selection procedures that have been employed for classifying histological images.

Table 3. Summary of publications focused on feature selection of prostate histopathology images.

Features Type Reference Year Accuracy Result

Texture

[56] 2011 The AUC value is 0.91 for the first database and 0.96 for the second database.

[102] 2015 The proposed method outperforms the classic SVM-RFE in accuracy and reducing
redundancy.

[103] 2018 The proposed method attained a classification accuracy around 99%.

Topological

[13] 2011 The model attainted an average accuracy 90%.

[50] 2011 The test classification results have an average of 96.76%

[49] 2017 The developed way achieved 93.0% training accuracy and 97.6% testing accuracy, for the
tested cases.

Morphological

[15] 2007 Average accuracy for prostate cancer classification was 92.48%

[104] 2011 The system achieved 0.55 under the precision recall curve measure

[58] 2019 The prediction model resulted an average accuracy of 90.2%

Color
[98] 2012 The proposed method attained an average of 86% accuracy in classifying a tissue pattern

into different classes.

[105] 2006 They achieved accuracy of 91.3%

Color & Texture

[106] 2012 The algorithm achieved an average of 86% and 93% of classification accuracy.

[107] 2012 Classification accuracies are 97.6%, 96.6% and 87.3% when differentiating Gleason 4
versus Gleason 3, Gleason 5 versus Gleason 3, and Gleason 5 versus Gleason 4.

Topological &
Morphological & Texture

[48] 2007
SVM classifier applied to test the accuracy of the extracted features and achieved about
93% when differentiating among Gleason grade 3 and stroma, 92.4% among epithelium

and stroma, and 76.9% among Gleason 4 and 3.

[27] 2019 The proposed model using hand-crafted features achieved an average accuracy of 94.6%.
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Texture-based features are related to the spatial distribution of repetitive intensities
inside the tissue [9]. Examination texture features of each tissue components gives a
valuable discriminative information in the diagnosis and grading systems of prostate
cancer. In [56], authors applied a quantitative texture feature selection, for example,
gland density, gland size, and gland circularity, and evaluated the accuracy of these
features in discriminating normal from cancer glands using the ROC curve. The model
achieved an average of 0.94 of AUC. In [102], a new method was proposed to overcome
redundancy among features and that considered one of the most important reasons for
weakness of SVM-RFE. The main purpose of their proposed feature selection method is
to merge the SVMRFE with filter measure to extract the least features and enhance the
classification accuracy of the model. Another work [103] focused on a type of texture-based
features, called local binary pattern (LBP), and introduced a new modified version called
multispectral multiscale LBP (MMLBP). This algorithm varies from the standard LBP in
which it takes into consideration the joint information within spectral and spatial directions
of the image. MMLBP attained a classification accuracy of around 99%.

Topological-based features enable characterization of cellular structure in histopathol-
ogy images. These features apply the theories of algebraic topology and this is especially
beneficial to the segmentation task [13,39]. In [13], 50 topological-based features were
selected for designing a new data fusion algorithm in prostate histopathology images,
incorporating 25 nearest-neighbor and 25 graph-based features. A pioneering effort on the
use of topological features for automated scoring of prostate cancer using histopathological
images was done in [50], where the authors introduced a new class of topological features
that make use of network cycle structure. Another work [49] selected a set of visually
significative features for the purpose of differentiation between different grades in prostate
cancer using topological-based features. It based on computing the shortest path from the
nuclei to their closest luminal spaces.

Morphological-based features give information about shape, color, structure, and
size of the cells in HI [39]. Morphological features are useful to provide details for form
and structure of abnormal cells of prostate cancer [9]. Many studies showed the viability
of this type of features to help characterization of the histopathological prostate images.
In [15], they presented a new automatic gland and nuclei segmentation system for prostate
histopathology images and utilize an accurate extraction of various morphological features.
In [104], the authors presented a content-based image retrieval system that takes advantage
of a novel set of morphological attributes called explicit shape descriptors that properly
depict the similarity between the morphology of objects of interest. A recent study [58],
proposed a new machine learning classification method to classify Gleason grade groups
of histopathology images for prostate cancer using new proposed morphological features.

Color-based features provide information of the grey level or color of pixels provided
in the region of interest. Feature selection based on this type of features utilizes different
color spaces. In [98], authors introduced a novel technique for grading prostate malignancy
using digitized histopathological specimens of the prostate tissue. The color space that
represents the tissue image is the Lab color space. The Lab color space is preferable than
RGB since it is designed to approximate the color perception in human visual system. Also,
in [14] classification is based on the lab color space. In [105], authors presented a wavelet-
based color feature selection technique utilizing CIELAB color space. They compared
CIELAB in their experiments with many color spaces e.g., RGB, KLT and HSV. CIELAB
attained the highest accuracy.

However, most of the research that focus on feature selection apply a combination
of different types of feature selection to improve the performance. The work presented
in [106] introduced a new content-based microscopic image. The authors applied a hybrid
color and texture feature selection method. They used RGB and HSV color spaces for color-
based feature selection and for each image, an overall of 80 texture features were selected.
The performance of the retrieval system was evaluated for various histopathology image
types and the best retrieval performance was obtained for prostate images. In [107], the
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authors proposed an integrated feature set that combines color and morphological features
to design new CAD system to automatic grade prostatic carcinoma biopsy images. Another
CAD system was introduced in [50] to automatic grade of prostate cancer. The research
used a total of 102 topological-based, morphological-based, and texture-based selected
features from each tissue patch so that quantifying the arrangement of glandular and
nuclei structures within histopathological images of prostate cancer tissues. Another
recent research in [27], provided an automatic system able to accurately detect specific
areas susceptible to be cancerous through presenting a novel method, a combination of
topological-based, morphological-based, and texture-based feature selection for addressing
the hand-crafted feature selection stage.

3.3.3. Classification

Classification is one of the important data analysis domains, which focuses on assign-
ing a sample to one of a set of classes, based on its features [108,109]. For histopathological
images, choosing the appropriate classifier is very significant to cope with huge, high vi-
sual complexity datasets. After segmentation and feature selection, the selected optimal
classifier is applied to classify images for detecting malignancy in HI. In this step, a cell
or tissue is assigned to one of the classes and then it can also be classified for malignancy
level e.g., grading of tumor or type of the tumor [38]. Machine learning classifiers operate
in two modes: learning mode and classification mode. In the learning mode, the selected
features from annotated histopathological images are used to train the classifier. After-
wards, the classifier is used in classification mode on cases without knowledge of true
annotation [10,41]. The different selected features from HI are used to classify the new
images as normal or malignant. Constructing automated classifier systems of histopatho-
logical images is a challenge task in machine learning as histopathological images do
not hold the same morphologic structure of macroscopic images such as human faces,
trucks, text, or animals [94]. Numerous classification methods have been developed for
histopathological images employing machine learning algorithms like k-nearest neighbors
(KNN), support vector machine (SVM), logistic regression method, random forests (RF),
decision trees, fuzzy systems, etc. The details regarding the developed classifiers dealt
with classifying histopathological prostate images have been summarized in Table 4.

Table 4. Summary of publications focused on Prostate histopathology image classification.

Classifier Reference Year AUC Accuracy Specificity Sensitivity

KNN
[66] 2003 - 0.917 - -

[18] 2014 - 0.76 - -

SVM

[48] 2007 - 0.876 - -

[14] 2013 0.75 - 0.83 0.81

[13] 2019

0.98 ± 0.011 for
artefacts versus

glands
0.92 ± 0.04 for
benign versus
pathological

0.95 ± 0.02 for
artefacts versus

glands
0.88 ± 0.07 for benign

versus pathological

0.95 ± 0.03 for
artefacts versus

glands
0.87 ± 0.07 for
benign versus
pathological

0.94 ± 0.01 for
artefacts versus

glands
0.80 ± 0.06 for
benign versus
pathological

[58] 2019 -

0.655 (one-shot
classification)
0.92 (Binary

classification)

- -

Bag-of-Words [22] 2016 - 0.901 0.905 0.79

MLA [21] 2018 - 0.883 0.94 0.876

Boosting Cascade [20] 2006 - 0.88 - -

SVM and Random Forest [19] 2011 0.95 - 0.91 0.89

Fuzzy Set Theory + Genetic
Algorithm [110] 2013 0.824 - 0.95714 0.7097

Adaboost [2] 2016 - 0.978 - -
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KNN is one of the simplest, versatile, and efficient methods used for image classifi-
cation [99]. For instance, the authors in [66] applied KNN to classify HI into four grades
of cancer ranked from 2 to 5. They used different K, e.g., 1, 3, 5, 7 and compared the
results. With K = 1, achieved the highest performance of classification. Another work [18]
applied a KNN classifier with K = 3 to develop an analytical framework to differentiate
between stroma and glands in histopathological images of radical prostatectomies and to
differentiate different Gleason grades. The proposed framework can be used firstly before
quantifying and stratifying anatomic tissue structures.

In theory, a support vector machine (SVM) algorithm could obtain a high performance
because it can maximize the margin between normal and cancerous training samples [10].
There exist many works that make use of SVM classifiers in prostate cancer histopatho-
logical images [13–15,48,58,103,106,107]. In [14], a novel methodology was proposed for
labelling individual glands as normal or cancerous. They applied SVM classifier. SVM is
trained by a linear kernel function to filter out the non-nuclei objects. In [13], the authors
addressed the classification stage using a hand-crafted method that make use of two widely
known classifiers. Specifically, they optimized SVM classifier and used a quadratic kernel
to handle the multi-class classification from a nonlinear method. They achieved promising
results. In [58], the authors developed an automated grading system for histopathological
images of prostate cancer using SVM. After several experiments to compare between SVM
and multilayer perceptron classification method (MLP), they reached to that SVM attained
better results than MLP. Another study introduced a new system for quantitative and
automated grading of prostate biopsy samples [48]. This work used a SVM classifier to
differentiate between four categories of tissue patterns and they used cross-validation to
get the best parameters for the classifier.

Inspired by the bag-of-words (BoW) model extensively used in natural language
processing, the authors in [22] developed a new CAD system for prostate cancer using
speeded-up robust features (SURF). In [21], a new method named multi-level learning
architecture (MLA) is proposed. It depends on the divide-and-conquer algorithm by
assigning each binary task into two different subtasks e.g., (strong and weak).

Multi-classifier systems or ensemble-based combine accuracies of different similar
classifiers for improving the predictions for a problem [7,36]. Early research [20] employed a
modified version of the popular ensemble classifier AdaBoost. To the best of our knowledge,
their research is the first attempt at automatically analyzing prostatic adenocarcinoma
across multiple scales. Some researchers tried to propose a classification technique to work
in multiclass problems. In [19], another ensemble method (SVM plus random forests) was
used to adapt to various imaging modalities, image features, and histological decisions.
They employed statistical analysis using the Friedman test to rank the results of classifiers
on datasets. To the best of our knowledge [110] is the only example that applied a fuzzy
system to HI of prostate cancer, where the authors designed membership functions of
the fuzzy system by using a genetic algorithm. In [2], the authors presented an adaptive
boosting algorithm to support automated Gleason grading of prostate adenocarcinoma
(PRCA). They prepared a pool of classifiers (SVM with linear and radial basis function kernels,
adaptive boosting algorithm, decision tree, RF, linear discriminant analysis (DA) and quadratic
DA). Results of all classifiers were combined using an adaptive boosting classifier.

3.4. Deep Learning-Based Techniques

Recently, adoption of deep learning (DL) techniques in biomedical imaging has had
a positive impact on a broad range of tasks including automatic analysis of histopathol-
ogy images [34,36]. DL creates new clinical tools that outperform the aforementioned
classical machine learning techniques with handcrafted features in terms of accuracy, ob-
jectivity, consistency, and reproducibility. It also provides new insights to clinicians and
researchers [59]. DL techniques are currently the most frequently studied in prostate cancer
histopathology imaging and studies [28,34] have proven that DL models can accurately
detect cancer in histopathological images. DL techniques takes original digital images as
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input, with a minimum preprocessing, and have the benefit of learning features instead
of the conventional selection of handcrafted features, which may be not sufficient or not
accurate [34]. Deep learning techniques learn salient features from data, so a large number
of input images is of great value to the training process. Deep learning cannot be regarded
as a singular technique; it can nearly be considered as adaptation of multi-layer artificial
neural networks to a large variety of challenges, from natural language processing, fraud
detection to computer vision [31]. Neural networks consist mainly of an input layer, a
number of hidden layers, and an output layer, where each layer is composed of neurons.
The input layer firstly takes input data, then the hidden layers execute some mathematical
computations on those input data [111]. The output values of the network are predicated
on the adjustment of internal weights [36]. These weights are computed by the network
through iterative forward or backward propagation of the training data and error back-
propagation respectively [36]. This process takes less effort to code than the conventional
machine learning.

The main obstacle of any deep learning technique is its need for a substantial training
set. Fortunately, histopathology images contain a great deal of information at small scales.
Accordingly, a single slide can produce considerable amount of training patches [34].
Patches generate the effect of extracting portions of an image with the same structure but
relate to images belonging to different classes [7]. Patches are commonly square portions
having dimensionality that ranges from 32 × 32 pixels to 10,000 × 10,000 pixels [59].
Another obstacle of deep learning is the inadequacy of interpreting features and this may
slow the development of CAD systems [34]. In the last decade, neural network architectures
like convolution neural network (CNN), fully convolutional network (FCN), deep neural
networks (DNN), and generative adversarial networks (GAN) are attracting the attention
from the research community because of its recently impressed results on large datasets. A
considerable amount of effort is done on prostate cancer histopathological images using
the different neural networks.

A particular neural network subtype, convolutional neural network; has made sound
advancements in image processing [31,112]. Convolutional networks have the ability to
identify visual patterns with less processing and is persistent in existence of variations and
distortions in pattern [36]. The basic CNN structure is comprised of convolutional, pooling,
activation, classification, and fully connected layers [36,90]. The Histopathology imagery
domain is rapidly adjusting this architecture to enhance a wide range of challenges. In [31],
authors investigated the general applicability of CNN for increasing the performance of
prostate and breast cancer detection in histopathology images. They used fully connected
CNN to get cancer maps for each pixel and make segmentation in the whole slide images.
Results proved that DL has great potential for increasing the performance of detecting
malignancies in H & E images as AUC ranges from 0.88 to 0.99. As far as we know,
researchers in [54] were the first to use images of the entire prostate gland as an input
to the network, instead of using image patches or regions with gland information. They
designed a new CNN architecture that comprises feature selection stage, characterized by
the compound of four convolutional blocks, and the classification phase compound of two
fully connected layers.

Various papers have applied CNN to automatic Gleason grading to perform better
than systems that use conventional machine learning methods. The first attempt to apply
convolutional networks to Gleason score grading prediction is [30], where the authors
applied a pre-trained CNN. The classification stage in CNN was excluded and replaced
with RF and SVM algorithms to classify the feature vectors selected from the network.
In [28], the authors trained different variants of CNN as Gleason score annotator and
utilized the prediction of the model to assign patients into low, medium, and high levels
of risk, attaining pathology stratification results at expert level. Their experiments shown
improved efficacy regarding the applicability of CNN reaching more reproducible and
consistent prostate cancer grading, specifically for cases with heterogeneous Gleason
patterns. Recently, a fully automated grading system using the U-Net was proposed in [29],
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where the authors adopted the conventional U-Net architecture, however after several
experiments, they made the network deeper to be composed of six levels as they added
additional skip connections within each layer block. Their model attained a high agreement
with pathologists.

Aside from CNN, many authors have tried to utilize different techniques in histopathol-
ogy imagery in prostate cancer, for example, the authors in [23] proposed a new deep learn-
ing technique that combines the multi-model neural network, ride NN and optimization
algorithm, Salp–Rider algorithm (SRA), generating the new technique SSA-RideNN. The
experiments showed that SSA-RideNN attained a maximal accuracy, specificity, and sensi-
tivity.

Since the comparison of different techniques is difficult, some studies like [34] tried
to compare different classifiers and deep learning algorithm for automatic grading of
prostate cancer in HI on their new CAD system. Specifically, they have evaluated the
performance of SVM, random forest with several number of trees, logistic regression, and
linear discriminant analysis, and they also estimated the performance of a convolutional
neural network (CNN) on the same training and testing subsets. They used Cohen’s kappa
coefficient to evaluate the performance. The highest value attained is 0.52 by logistic
regression, while 0.37 is attained by using CNN. More recently, the authors in [113] tried
to compare different architectures of CNN—EfficientNet, DenseNet, and U-Net—on two
datasets of prostate cancer HI. Experiments were performed on three-fold cross-validation
and U-Net attained the best results.

Some researchers have studied on the use of DL techniques for automated segmenta-
tion of prostate cancer on histopathology images. In [25], the authors tried to overcome the
struggles of CNN to distinguish overlapping segmentation instances. The study presented
a new nuclei segmentation technique that utilized the conditional generative adversarial
network (cGAN). Their proposed technique enforces a higher consistency when compared
with traditional CNN architectures. In [26], the authors proposed a new nuclei boundary
(NB) segmentation technique using CNN. The technique was proved to be efficient and
faster than other traditional techniques, as one image of dimension 1000 × 1000 pixel can
be segmented in less than five seconds. It works in the following way: firstly, the images are
normalized into the same color space. Secondly, images are split into overlapping patches
to tackle the extremely large image challenge. Thirdly, they proposed a new nucleus
segmentation technique to identify nuclei and boundaries on each patch. Finally, the pre-
dictions of all the patches are combined to get the final prediction result of the whole image.
Driven by the success of region-based CNN (RCNN) and its extensions, authors in [24]
applied RCNN for detection epithelial cells employing grading network head (GNH). They
applied a ResNet in their network for feature selection. Then, they employed GNH for
detecting the class. They added a branch that produces an epithelial cell score using GNH.
Since the proposed network was inspired by Mask RCNN, it was named Path R-CNN.
The details regarding deep learning methods for prostate histopathology images have been
summarized in Table 5.
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4. Conclusions and Future Perspectives

More than 28% of cancers in men arise in the prostate gland, causing prostate can-
cer, and detection of this type has a high priority in cancer research. Histopathology
images may enhance the early diagnosis and treatment of prostate cancer patients through
providing functional and morphological data about the prostate. Histology is nothing
but examining the stained sample on the slide glass under a microscope. In this survey,
we presented a literature review of the use of histopathology images and its challenges.
We studied different steps of histopathology image analysis methodology. This automatic
process assists pathologists and clinicians in diagnosis and lowers the time spent for exam-
ining large number of tissues. The survey revealed a greater utilization of deep learning
techniques and a constant use of conventional machine learning techniques. It also revealed
that the histopathology image analysis is a topic of increasing interest. Our findings reveal
that there is still room for improvement as CAD systems of histology images composed
of complicated combination of image processing, feature selection, image segmentation,
and classification stage. Moreover, the image processing techniques mentioned in this sur-
vey is not applicable for prostate histopathology image analysis only, but also applicable in
many image analysis domains. This research is an attempt to summarize the most common
and recent developments in prostate cancer CAD systems using histopathology images
and to give an outline on the performance and efficacy of different techniques.

The domain of histopathology image processing of prostate cancer detection is very
vast. According to the challenges to this type of images and disease characteristics, research
in this domain is still being unlocked and many opportunities and future perspectives
remain to study and analyze including: (I) the ability of enhanced interaction with images
from various scanners and across pathologies, in addition to the development of new
techniques that can learn from unlabeled or weakly labeled data; (II) allowing online
consultations; (III) providing accessible histopathology analysis services in remote areas
with limited pathology assist; (IV) developing of new data fusion techniques for integrating
radiologic and histologic measurements for improved disease diagnosis with the function-
ality of real-time image processing and finally (V) applications and computerized software
for histopathological image processing techniques may be incorporated into microscopes
with small size chips. It is therefore expected from those opportunities and future perspec-
tive that we are standing at the threshold of an era that will transform the personalized
diagnosis into better diagnostic systems to decrease the workload of pathologists.
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59. Dimitriou, N.; Arandjelović, O.; Caie, P.D. Deep Learning for Whole Slide Image Analysis: An Overview. Front. Med. 2019, 6, 264.
[CrossRef]

60. Veta, M.M.; Pluim, J.P.W.; Van Diest, P.J.; Viergever, M.A. Breast Cancer Histopathology Image Analysis: A Review. IEEE Trans.
Biomed. Eng. 2014, 61, 1400–1411. [CrossRef]
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Abstract: The use of image processing tools, machine learning, and deep learning approaches has
become very useful and robust in recent years. This paper introduces the detection of the Nosema
disease, which is considered to be one of the most economically significant diseases today. This work
shows a solution for recognizing and identifying Nosema cells between the other existing objects in
the microscopic image. Two main strategies are examined. The first strategy uses image processing
tools to extract the most valuable information and features from the dataset of microscopic images.
Then, machine learning methods are applied, such as a neural network (ANN) and support vector
machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores
deep learning and transfers learning. Several approaches were examined, including a convolutional
neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and
VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema
images from the other object images. The best accuracy was reached by the VGG-16 pre-trained
neural network with 96.25%.
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1. Introduction

Several deadly diseases endanger honeybees. Possibly one of the best known is
Nosema. Nosema, which is also called Nosemiasis or Nosemosi [1], is caused by two
species of microsporidia, Nosema apis (N. apis) and Nosema ceraena (N. ceraena) [2]. Several
works were published regarding the impact of Nosema disease on commerce, society and
food, as shown in [3,4], and the disease is currently of one the major economic importance
worldwide [5]. The health of the two species of bees is a particular interest of biologists,
not only because of their significant role in the economy and food production but also
because of the vital role they give in the pollination of agricultural and horticultural crops.
Many biological descriptions of its DNA and its behavior can be found in literature, for
example in [6,7]. Furthermore, several recent works try to treat this disease using a chemical
simulation, as presented in [8,9].

Furthermore, from a computer science point of view, honeybees are of significant
interest. Several works were, for example, involved in bees and controlling their behav-
ior [10]. The study presented monitoring the behavior of bees to help people associated
with beekeeping to manage their honey colonies and discover the bee disturbance caused
by a pathogen, Colony Collapse Disorder (CCD) or colony health assessment. In [11],
many tools of image analysis were explored to study the honeybee auto grooming behavior.
Chemical and gas sensors were used for measurement. Destructor infestations are applied
inside the honeybee colony to detect disease. The study was based on measurements of the
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atmosphere of six beehives using six types of solid-state gas sensors during a 12-h exper-
iment [12]. Regarding the image processing of Nosema disease part, there are currently
two major works. In [13], the authors used the Scale Invariant Feature Transform to extract
features from cell images. It is a technique that transforms image data into scale-invariant
coordinates relative to local features. A segmentation technique and a support vector
machine algorithm were then applied to microscopic processed images to automatically
classify N. apis and N. ceranae microsporidia. In [14], the authors used the image processing
techniques to extract the most valuable features from Nosema microscopic images and
apply an Artificial Neural Network (ANN) for the recognition, which was statistically
evaluated using the cross-validation technique. The last two works used image processing
tools for feature extraction and Support Vector Machine (SVM) and ANN for classification.
Today the traditional tools of machine learning like ANN, Convolutional Neural Network
(CNN), and SVM are frequently used in human disease detection [15], especially in medical
image classification of Heart diseases [16], Alzheimer disease [17] and Thorax diseases [18].
Deep learning approaches were used in [19] for semantic images segmentation. This work
used the Atrous convolutional Neural Network for segmentation and some pre-trained NN
for validation like PASCAL-Context, PASCAL-Person-Part and CityscapesDeep. In [20], a
method using a 2D overlapping ellipse was implemented using the tools of image process-
ing and applied to the problem of segmenting potentially overlapping cells in fluorescence
microscopy images. Deep learning is an end-to-end machine learning process that trains
feature extraction together with the classification itself. Instead of organizing statistics to
run through predefined equations, deep learning uses multiple layers of processing data
and setting fundamental parameters on knowledge records, and it trains the computer to
analyze and recognize data. Deep learning approaches are widely applied in the analy-
sis of microscopic images in many fields: human microbiota [21], material sciences [22],
microorganism detection [23], cellular image processing [24] and many other important
works in this field. Deep learning techniques have accelerated with transfer learning the
ability to recognize and classify several diseases. The objective of this paper is to validate
this hypothesis.

All the methods of Nosema detection and recognition presented by the biologists in
the literature were either molecular detections or genetic descriptions. This paper evaluates
two different strategies for automatic identification of the Nosema cell disease based on
the microscopic images. First, images of Nosema cells and the existing objects have been
cropped from the principal microscopic images. Using these images, the first dataset has
been built. Then, the obtained images were processed again and several different features
have been extracted. These features were used to create a second dataset. The obtained
databases were used for the evaluation recognition of the Nosema cells. The first approach
uses a model, which uses the extracted features by an ANN and an SVM. The second
approach uses the deep learning and transfer learning methods: first, CNN, and then
pre-trained networks AlexNet, VGG-16 and VGG-19. The tools of transfer learning used by
authors reached notable results as this is the first time they have been used for the purpose
of Nosema cell recognition.

The main innovation of this paper is the evaluation of two different strategies of
automatic detection and recognition Nosema cells from microscopic images and identi-
fication of the robust and successful approach as a robust methodology for automated
identifying and recognizing Nosema cells versus the other existing objects in the same
microscopic images.

The rest of the paper is organized as follow: Section 2 describes the dataset preparation.
In Section 3 is described dataset, segmentation, features extraction, ANN training, the use
of SVM, CNN, the use of Alex Net, VGG-16 and VGG-19. The experiments are described
in Section 4. Section 5 discusses the obtained results. Finally, the paper is concluded.
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2. Materials: Preparation of The Dataset

For the experiment, Nosema microscopic images were used. So far, it is not known
whether these images contain a sufficient amount of information for accurate detection
and recognition of the disease cells. It was only known that the important information
was diffused all over the image and behind the majority of unimportant data. The used
images in this work are 400 RGB images, encoded with JPEG and with a resolution of
2272 × 1704 pixels. Each sample was labelled by one of the 7 classes, according to the
severity of the disease or the number of disease cells present in the microscopic image.
From these 400 RGB images, a set of sub-images have been extracted. To do that, each
microscopic image was divided into many smaller images forming subdivisions of the
existing and clear objects. This first phase was done manually due to the low quality
of input images by cropping the object of interest (i.e., cells). All the existing objects in
the microscopic images were extracted as sub-images and labelled whether they stand
for: Nosema(N) and not Nosema cells (n-N), see Figure 1. The area chosen was as small
as possible, where an isolated and clear microscopic cell is located. Then, in the second
automatic phase, the selected objects are processed to prepare them for the segmentation
process (see Figure 1).

 

Figure 1. Example of extraction of Nosema cells and other existing objects in a part of one microscopic
image.

Based on the steps described above, a dataset containing 2000 sample images in total
was created. It consists of 1000 Nosema cells samples and 1000 images, which are not
Nosema cells, i.e., any other existing objects in the microscopic images. Table 1 below
shows information about the extracted sub-images for dataset construction.

Table 1. Dataset of extracted sub-images.

Images Number Color Type Resolution

Nosema sub-images 1000 RGB JPEG 229 × 161
Non-Nosema sub-images 1000 RGB JPEG 450 × 257

The microscopic sub-images were examined using two strategies:

• The first strategy is based on an image processing approach, where features were
extracted manually.

• The second set of strategies is based on the use of the whole sub-image and the
deep learning.

Figure 2 shows strategies covered in the paper.
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Figure 2. Implemented Strategies for Nosema Recognition.

3. Methods

In the scope of this study, two different strategies were implemented. All the methods
are shown according to both of the strategies. The methods are working on the dataset of
sub-images (2000 images).

3.1. Strategy 1: Nosema Cells Recognition with Image Processing and Machine Learning

This subsection is divided into two parts. The first part describes how the features
were extracted and prepared for the training of a model. The second part shows the
proposed classification systems.

3.1.1. Preprocessing for Feature Extraction

A preprocessing stage is necessary before extraction of the features. The initial point
is an RGB image. The first step is to convert the image from RGB to a grayscale image.
The second step consists of binarization of the image by the thresholding using the Otsu
method [25]. In the third step, the flood-fill operation was used on background pixels of
the input binary image to fill the object hole from its specific locations and then to ignore
all smaller existing objects in the image of the desired object. As the final step, the object
perimeter is enhanced using the dilatation method [26]. So, the desired shape of the object
is obtained by calculating the difference between the two images, before and after perimeter
enhancement. The result of the final step is a shape image, which was extracted from the
sub-image of the dataset (see Figure 3).

Figure 3. Shape results of two examples before and after preprocessing. The first sample is Nosema
and the second is non Nosema object.

From the shape image, in total 9 features were extracted. They describe the structure
of the Nosema cell and consist of 6 geometric and 3 statistic features. Furthermore, from the
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extracted sub-images, 6 texture features and 4 Gray Level Co-occurrence Matrices (GLCM)
color features were calculated.

Geometric Features Extraction

The geometric features describe basic characteristics of geometric form. They are
also the most significant for us because, after several experiments, the best results were
achieved using them. These parameters were used and defined in [14] respectively:

• The size/the perimeter: given that the shape of the Nosema cell is similar to an ellipse
form and the other objects have different rounds shapes, perimeter formula of an
ellipse adopted have been adopted in this study. This calculation is based on a and b
variables where a is the semi-major axis and b is the semi-minor axis. Perimeter P is
given by the following equation:

P = π·
√

2·(a2 + b)2 (1)

• Area A is given by the following formula:

A = π·a·b (2)

• Relation R is the dividing quotient of the height (H) and width (W) of the shape.

R = H/W (3)

• The equivalent diameter (D), which is the diameter of the circle with the same area of
the object,

D =

√
4 × A

π
(4)

• The solidity (S): it is the portion of the area of the convex region contained in the object,

S =
A

convex area
(5)

• The eccentricity (E): it is the relation between the distance of the focus of the ellipse
and the length of the principal axis. Let f = 1 − a

b in which a is the semi-major axis
and b is the semi-minor axis of the ellipse.

E =
√

f × (2 − f ) (6)

Statistic Features Extraction

The remaining features 7, 8 and 9 were calculated using the polar coordinates of the
object, in particular, the polar coordinates of a Cartesian point (x, y). Let us say that a
point M is at such a distance (r) and such a direction (θ) of the point of origin (o) of the
reference point. It is a projection or a one-dimensional representation of the boundary. This
is found by computing the distances from the centroid (center of “mass”) of the object
to the boundary as a function of angles in any chosen increment. The resulting set of
distances, when properly scaled, was the vector needed as distances of the angle to the
boundary pixel.

After that, a value for these distances is truncated, which are the nearest integers to a
value to calculate the last three respective parameters.

• The standard deviation of these distances have been calculated and which is the
feature number 7, the standard deviation is a measure of variability, or what the range
of values is, it normalizes the elements of N along the first array dimension whose
size does not equal to 1; where P can be a vector or a matrix and in this case is a vector
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of the radius values of polar coordinates of the studied object, and E is its mean. It is
given by Equation (7):

Std.deviation (σ) =

√√√√ 1
N
·

N

∑
j=1

(
Pij − Ei

)2 (7)

• The Variance σ2 is the mean of the squared distances between a value and the mean
of those values: it normalizes Y by n − 1 if n > 1, where n is the sample size or pixels
shape number. This is an unbiased estimator of the variance of the population from
which x is drawn, as long as x consists of independent, distributed distances. For n = 1,
Y is normalized by n with μ is the average of all x values. In this case, the variance is
calculated as the normalized distances between the centroid and every single pixel in
the object shape.

σ2 =
(x1 − μ) 2 + (x2 − μ)2 + (x3 − μ)2 + . . . + (xn − μ)2

n
(8)

• The Variance derivate is the derivate that calculates the difference and the approximate
derivative of the variance (X), for a vector X, is [X(2) − X(1) X(3) − X(2) . . . X(n) − X(n−1)].
It is given by the following equation:

f ′(σ2) = −n−2
[
(x1 − μ) 2 + (x2 − μ)2 + (x3 − μ)2 + . . . + (xn − μ)2

]
(9)

Features Extraction: Texture and GLCM

The next step consists of the use of the RGB object image to extract more information
about texture and color. Nevertheless, before that, it is needed to separate the object from
its background in the image; to do that: individual Hue (V), saturation (S) and Value (V)
channels have been extracted after converting the image from RGB to HSV color spice
image, then authors look for the vivid color by thresholding the V mask, after that, authors
set the H and S masks to 0 and the V mask to 1 and concatenate the three new HSV channels.
Finally, the authors convert back the image to RGB color image to have the object without
it’s background, as shown in Figure 4:

Figure 4. Example of a Nosema cell and non-Nosema object extraction from its backgrounds.

The number of texture parameters is 6 and they are the measurement of the entropy
of RGB and HSV channels; it can be defined as a logarithmic measurement of the number
of states with a significant probability of being occupied. The input intensity images are
the blue, red, green and yellow channels. Furthermore, the Hue and saturation masks’
randomness is calculated. The value/lightness channel was dropped since it does not give
any extra information. Suppose xi is the set of pixels with the color/channel i of the image
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and p(xi) is its probability. The 6 entropy parameters are calculated by the same equation
10 above:

E(xi) =
N

∑
i=1

P(xi)·log2(p(xi)). (10)

As mentioned before, the Nosema cells look to be more yellow inside, that is the way
a Grey Level Co-occurrence Matrix was applied to the yellow mask to extract more texture
information about this color. The GLCM is very widely used as a statistical method of
extracting a textural feature from images. It was used in several works of feature extraction,
like in features skin extraction [27] or plant disease feature extraction [28]. GLCM is widely
used to extract useful information from medical images, that is why GLCM is developed
to overcome the limitations of the available extracted features and to be more accurate as
indicated in [29], a novel strategy to compute the GLCM called HaraliCU can offload the
computations into the Graphics Processing Units (GPU) cores, thus allowing to drastically
reduce the running time required by the execution on Central Processing Units (CPUs).
In [30], a developed method called CHASM exploits the HaraliCU method mentioned
previously, a GPU-enabled approach, capable of overcoming the issues of existing tools by
effectively computing the feature maps for high-resolution images with their full dynamics
of grayscale levels, and CUDA-SOM, a GPU-based implementation of the SOMs for the
identification of clusters of pixels in the image. The general rule in the statistical texture
calculator says that these are calculated from the statistical distribution of combinations
of intensities observed at specified positions relative to each other in the image. Based on
the number of pixels in each combination, statistics are categorized into first-order, second-
order, and higher-order statistics. The GLCM is a method of extracting the second-order
statistical texture characteristics. Third-order and higher-order textures are theoretically
possible but not commonly implemented due to computation time demands and difficulty
to interpret them [31]. The GLCM is considered a greyscale image I defined in Z. The grey
level co-occurrence matrix is defined to be a square matrix Gd of size N where, N is the
total number of grey levels in the image. The (i, j) th entry of Gd represents the number of
times a pixel X with intensity value i is separated from a pixel Y with intensity value j at
a particular distance k in a particular direction d. Where the distance k is a non-negative
integer and the direction d is specified by d = (d1, d2, d3, . . . dn), where di ∈ {0, k, −k}
∀i = 1, 2, 3, . . . , n [32]. Four features were extracted from the Haralick GLCM applied to
the image of the yellow channel: contrast, correlation, energy, and homogeneity, the most
significant features given by the GLCM.

Contrast =
Ng−1

∑
n=0

n2·
[

Ng

∑
i=1

Ng

∑
j=1

p(i, j)

]
(11)

Correlation measures the linear dependency of grey levels of neighboring pixels:

Correlation =
1

(σi.σj)
·∑

i
∑

j
(i − μi)·(j − μj)·Pi,j . (12)

It is also called Angular Second Moment (ASM), and it is of high value when two
neighbor pixels are very similar:

Energy =
Ng−1

∑
i=0

Ng−1

∑
j=0

p(i, j)2 (13)

Homogeneity is high when a local grey level is uniform:

Homogeneity = ∑
i

∑
j

P(i, j)· 1

1 + (i − j)2 . (14)
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Segmentation Diagram Block and Recognition

The automatic approach of this part of work is to study the existing objects in the
microscopic images of Nosema disease; to study both Nosema cells and other types of
cells present in microscopic images, the desired objects are detected, useful features are
extracted (geometric, texture and statistic features) by an automatic segmentation method,
and the result is a vector of 19 features. Then, a multilayer Neural Network system is used
as a classifier, the set of features in order to recognize the Nosema disease cells vs. the other
objects in the images.

Once the features of the different object were extracted, the feature dataset is generated:
it consists of 19 features for 2000 objects, i.e., a 38,000 value divided equally between two
kind of objects: one for the calculated features of the objects of interest (Nosema cells), and
the other for other existed object in the microscopic images. This part of the work was
significantly computationally demanding since the extraction of 2000 sub-images as well
as the calculation of 19 features for each image cost many days of computations, using a
CPU, in particular, PcCom Basic Elite Pro Intel Core i7-9700/8GB/240SSD.

In this part of the paper, neural networks were used for the automatic detection of
Nosema diseases in honeybees. The neural networks proved their quality in many real-
world applications as well as for classification tasks. Usually, a neural network is made
up of two parts which constitute the set of learning functionalities used to train the NN
model, while a set of testing functionality is used to verify the correctness of the trained
NN model. The appropriate network design should be configured, including network
type, learning method and with one or two hidden layers. In the learning phase, the
connection weights were always updated until they reached the defined iteration number
or the acceptable error. Therefore, the ability of the ANN model to respond accurately
was ensured by using the mean squared error (MSE) criterion to emphasize the validity of
the model between input and network output. Furthermore, the network calculates the
outputs and automatically adjusts the weights to reduce errors and recognize the objects.

For the experiment, the dataset was divided into a learning part of the model and
another part for testing and validation. During the proposed approach, two types of exper-
iments were conducted: in the first one, the model was tested with only the 15 geometric,
statistic and texture features without counting the yellow color features calculated with
the GLCM. The second experiment was implemented by concatenating all the 19 features.
Furthermore, these two experiments were done to prove the strong presence of yellow
color in the cell of Nosema. The experiments were done by applying different precision
of the data division between data for training and the data for testing. The experiment
was conducted with several different neural network architectures—in particular, it has
experimented with the number of neurons in the hidden layer. Each test was repeated
at least 30 times to obtain the optimal value of success recognition accuracy. First of all,
the program was tested with a number of neurons equal to the number of input features
extracted from the images (15 or 19) in which the weight is added randomly, and after that,
the number of neurons was increased in the hidden layer by 50 in every new experiment
(see Table 2).

3.1.2. The Use of Support Vector Machine: SVM

Support vector machines SVM is a supervised learning algorithm used for classifica-
tion and regression problems [33]. To ensure that SVM will give the optimal result, the
parameters of the classifier were optimized. The optimized options have been the cost
“C”, also called error term or regularization parameter and the kernel trick function, which
calculates the dot product of two vectors in the space of very large characteristics. Different
kernel functions can be specified for the decision function and the radial basis function
(RBF) is commonly used, especially for nonlinear hyperplanes. RBF kernel for the SVM has
been chosen, which is in the following form:

K(X1, X2) = exponent
(
−γ·||X1−X2||2

)
(15)
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where ||X1−X2|| is the Euclidean distance between X1 and X2, and γ: gamma is used only
for RBF kernel. The non-regularization of the values of “γ” and “C” will cause overfitting
or an underfitting of the model. The SVM has been configured with C = 3 and γ = 5 × 10−5

as the architecture with the best result. In this case, the SVM model will classify two classes
corresponding to Nosema cells and non-Nosema cells (or other objects).

Figure 5 shows the diagram block of the processing model for ANN and SVM classifi-
cation systems for the first implemented strategy.

 
Figure 5. The Segmentation Diagram Block of the first strategy in Nosema detection: The Training Mode consists of the part
of dataset construction, features extraction, and their fusion to be trained with ANN and SVM. The Testing Mode consists of
data preparation for testing the model and decision making.

3.2. Strategy 2: Nosema Cells Recognition Using Deep Learning Approaches
3.2.1. Nosema Recognition with the Implemented CNN

A convolutional neural network CNN is a network architecture for deep learning
which learns directly from data. They are used to classify images or to predict continuous
data. In the scope of this paper, a new CNN network was designed, but before entering
them into the network, input data and the predictors have been normalized were normal-
ized. Furthermore, batch normalization layers should be used to normalize the outputs of
each convolutional and fully connected layer. The architecture of a CNN should contain
input layers that define the size and type of input data, the middle layers which contain
the main layers of learning and computation, and an output layer that defines the size and
type of output data. The experiment is described in detail in Table 3 and its description is
in the Experimental Methodology and Result section.

3.2.2. The Use of Transfer Learning

Another approach to work in Deep Learning is using a pre-trained Deep Neural
Network. For the first approach, the advantage is its structure; a model of an already
existing Deep Neural Network is used by applying a few simple changes. In the latter case,
a limited data set is used and knowledge is transferred from this model to a new task. It
is also said to transfer the learned characteristics of a pre-trained CNN to a new problem
with a limited data set. Transfer learning involves forming a CNN with available labelled
source data (called a source learner) and then extracting the inner layers that represent a
generic representation of mid-level entities to a target CNN learner. An adaptation layer
is added to the target CNN learner to correct for any different conditional distributions
between the source and target domains. The experiments are performed on the object
image classification, where the average precision is measured as a measure of performance.
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The first experiment was performed using the Pascal VOC 2007 dataset as the target and
ImageNet 2012 as the source. The second experiment was performed using the Pascal VOC
2012 dataset as the target and ImageNet 2012 as the source. The tests have successfully
demonstrated the ability to transfer information from one CNN learner to another [34].

The main advantage of transfer learning is that it does not need a lot of data to give a
good accuracy (and this is true in most cases). Transfer learning has proven to be a solution
to many real problems. Some of them are; for example [35], the transfer learning techniques
were used to improve the global climate by classifying aerosol dust particles. In [36], and
in using transfer learning tools, an approach has been proposed to be able to identify
low-income areas in developing countries that are important for disaster relief efforts.
In [37], transfer learning is used to improve disease prediction. In [38], transfer learning
was used to improve the problem of facial recognition using the face image information of
a source group to improve the learning of a classifier for a target group. In [39] transfer
learning was applied to the field of biology. Therefore, the following concept was applied
for the analysis of Nosema disease.

Nosema Recognition with Alexnet Classifier

Several architectures were examined, and AlexNet was one of them. AlexNet is one
of the first pre-trained Neural Networks; it is trained using a large image dataset called
ImageNet, which in turn contains more than millions of images and 22 thousand visual
categories. AlexNet is trained on more than a million images and can classify images into
1000 object categories. This paper used the pre-trained weights of the AlexNet network,
which contains 25 layers. Then, the network was fine-tuned for the classification problem
by replacing the last three layers of AlexNet pre-trained model with a fully connected layer
(layer number 23), a softmax layer (layer number 24) and a classification output layer (layer
number 25). The new model was fine-tuned using 2000 input cell images for two classes:
Nosema class and Non Nosema Class. Since AlexNet requires exactly 227 × 227 RGB
input images, the images were automatically resized to this dimension during the data
augmentation. The augmentation of the data helps prevent the network from overfitting
and helps its better generalization capabilities. Furthermore, the data were split into two
parts, one for training and the other for validation of results. Each experiment and its
results are shown in Table 7, Section 4.

Nosema Recognition VGG-16 and VGG-19 Classifiers

VGG-16 and VGG-19 are another pre-trained neural network models. They are again
pre-trained using ImageNet dataset. These two models were chosen because they learned a
good representation of low-level characteristics such as space, edges, color, lighting, texture
and shapes; and these characteristics are very useful for knowledge transfer and act as
a feature extractor for new images. Since the images in this work belong to completely
different categories from the source dataset, but the pre-trained model should still be
able to extract relevant features from these images based on transfer learning principles.
These pre-trained models—VGG-16 and VGG-19 were transferred again for classification
of images of Nosema cells against images of other objects.

VGG-16 pre-trained network contains 41 layers and VGG-19 contains 47 layers. The
last three layers of VGG-16 and the number of layers 45 and 47 for VGG-19 were replaced
with fully connected layers and trained with 1000 Nosema images and 1000 non-Nosema
images. The network expects 224 × 224 RGB or grayscale input images, so the input images
were resized. The dataset was split into learning and validation parts regarding different
average of data division. Figure 6 shows the used model for modification of the pre-trained
transfer learning models used in this paper.
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Figure 6. Modifying Transfer Learning Models for This Proposal.

4. Experimental Methodology and Results

For the statistical evaluation, the 10-fold cross-validation strategy was followed be-
tween 10% and 90%. Accuracy is used as a quality measure here. The experiments have
been designed for machine learning approaches (SVM and ANN), transfer learning ap-
proaches (AlexNet, VGG-16 and VGG-19), and deep learning method with CNN.

The first experiment was done for ANN and SVM. For ANN, just a single hidden
layer was used and only the number of neurons in the hidden layer was adjusted, using
15 or 19 neurons for the input layer and 1 neuron for the output layer (see Table 2).

Table 2. Results for experiments with ANN and SVM.

Number of Features Classifier Accuracy Observation

15 Features
ANN 79.00% For 1400 neurons in the hidden layer
SVM 81.00% Using kernel RBF

19 Features
ANN 83.20% For 1400 neurons in the hidden layer
SVM 83.50% Using kernel RBF

The next experiment used the deep learning method, in particular deep CNN classifier.
The architecture of CNN had 3 convolutional blocks, which have been stacked with 3 × 3
filters followed by a 2 × 2 subsampling layer (max_pooling). In this way, increasing
the number of filters increases the depth of the network, and a kind of cone is formed
with increasingly reduced but more relevant characteristics. It should be noted that in
convolutional layers, padding is used to ensure that the height and width of the output
feature maps match the inputs. Finally, each layer will use the ReLU activation function.
Additionally, dropout layers have been added that implement regularization. The dropout
technique is a simple technique that will randomly remove nodes from the network and
has the effect of regularization as the remaining nodes must adapt to compensate for
the slack of the removed nodes and a layer of batch normalization. Batch normalization
(batch_normalization) is a technique designed to automatically standardize inputs to a
layer in a deep learning neural network and has the effect of speeding up the process of
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training a neural network and, in some cases, improving the performance of the model.
Once the above has been commented on, in Table 3, the architecture used for an 80 × 80
input image with three RGB channels is shown. The accuracy reached 92.50%.

Table 3. CNN architecture for an 80 × 80 input image.

Layer Type Output Shape Number of Parameters

conv2d (Conv2D) (None, 80, 80, 32) 896
batch_normalization (BatchNo) (None, 80, 80, 32) 128

conv2d_1 (Conv2D) (None, 80, 80, 32) 9248
batch_normalization_1 (Batch) (None, 80, 80, 32) 128

max_pooling2d (MaxPooling2D) (None, 80, 80, 32) 0
dropout (Dropout) (None, 80, 80, 32) 0

conv2d_2 (Conv2D) (None, 80, 80, 64) 18,496
batch_normalization_2 (Batch) (None, 40, 40, 64) 256

conv2d_3 (Conv2D) (None, 40, 40, 64) 36,928
batch_normalization_3 (Batch) (None, 40, 40, 64) 256

max_pooling2d_1 (MaxPooling2) (None, 40, 40, 64) 0
dropout_1 (Dropout) (None, 40, 40, 64) 0

Finally, the last experiment was for transfer learning approaches. AlexNet is known
for its simplicity, but in the case of this experiment, it does not give an encouraging result.
SGDM was the default and chosen optimizer for AlexNet. AlexNet does not require many
options to work well, and the default training options were reserved. Sixty-four is the
size of mini-bach and the initial learning rate was chosen as 0.001. The maximum number
of epochs is fixed to 20; this chosen training options made the experiment faster (see
Table 4). Table 5 describes the four cross-validation folders experiments and given accuracy
by each one. As is shown in Table 5, the third experiments in which the data were split
between 70% for training and 30% for test and validation, give the best accuracy (87.48%)
by 6 epochs number.

Table 4. Experimental training parameters for AlexNet, VGG-16 and VGG-19.

Model Parameters Setting Values

AlexNet

Learning algorithm Sgdm
Initial Learning Rate 0.001

Mini-batchsize 64
Maximum epochs 0

VGG-16 and VGG-19

Learning algorithm Adam
Initial Learning rate 0.0004

Mini-batch size 10
Maximum epochs 25

Validation Frequency 3
Validation Information Test-Images

Table 5. Cross-validation and simulation results for Alex-Net classifier.

Experiment (Trained Data, the Rest for Validation) Accuracy Epochs Number

0.5 84.58% 6

0.6 83.98% 6

0.7 86.98% 6

0.8 85.28% 6

Only the last three layers of VGG-16 and VGG19 were modified to make them fit
the target domain. The fully connected layer (FC) in both models has been changed to a
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new FC layer with an output size of 2 according to the 2 classes, which were needed to
classify. Adam was the chosen optimizer, given his good learning rate and the specific
adaptive nature of the learning rate parameters. For Adam, the initial learning rate was
chosen as 0.0004; a small valor is a good option to increase the training time. The size of the
mini-batch was fixed at 10. The validation information of the model is that given in the test.
Thus, a learning factor of 10 is defined. The maximum number of epochs was fixed to 25
but during the simulation process, the number was variable according to the experiments
carried out, but it was initialized in the first experiment to 6. Finally, a validation frequency
set to 3. The trained options of the experiment are listed in Table 4.

Detailed results for VGG-16 and VGG-19 neural networks are shown in Table 4, and
while the best simulation accuracy is given by VGG-16, Figure 7 describes the followed
steps using VGG16 to identify the Nosema and Figure 8 shows the best accuracy. Three
experiments have been implemented, but only those that gave good results with a similar
number of epochs for the two pre-trained networks have been described in Table 6. The
data was split between training and validation, the experiments were conducted 30 times,
following a 10-fold cross-validation process. The three last experiments gave the best
accuracy; the first one took 70% of data for training and the 30% were for validation and
the best accuracy was given by 6 epochs number. In the second experiment, 80% were
placed for training, and the rest were for validation, the experiment was repeated several
times with increasing the number of epochs and as Table 6 shows, the best accuracy given
by VGG-16 is 96.25% with 20 epochs, and for VGG-19, the highest accuracy is 93.50% with
25 epochs, and in the third experiment presented in the result section, the data were divided
between 90% for training and 10% for testing, and the results made an accuracy fall.

Table 6. Cross-validation and simulation results for VGG-16 and VGG-19 classifiers.

Experiments Epochs
Accuracy

VGG-16 VGG-19

0.7 6 76.29% 71.95%

08

6 92.50% 93.00%
12 94.50% 82.00%
20 96.25% 92.32%
25 93.00% 93.50%

0.9 6 88.00% 77.00%

 

Figure 7. The steps followed for the recognition of Nosema cells using VGG 16 Model.
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Figure 8. The Accuracy (blue curve) and loss (orange curve) results given by VGG-16 simulation: 96.25% of success accuracy
with 20 epochs.

Table 7 summarizes the main results of the different experiments. The best result is
reached using VGG-16 with accuracy of 96.25%, and the lowest accuracy is given by ANN
(83.20%). Those results will be discussed in the next section.

Table 7. A summary of best results given by the 6 used tools for Nosema classification.

ANN SVM CNN AlexNet VGG-16 VGG-19

83.20% 83.50% 92.5% 87.48% 96.25% 93.00%

5. Discussion

This section discusses in detail the behavior and features of each experiment and it
discusses compromise between accuracy and the robustness of the proposed methods was
included. Besides, a comparison vs. the most representative publication on this topic (see
Table 8), with comparison vs. a previous work [14], authors increased the dataset from 185
to 2000 images and the extracted features number from 9 to 19, and those features for the
Nosema cell are related to several aspects of the image cell: geometric shape, statistical
characteristics, texture and color features given by GLCM. Two strategies were followed to
recognize Nosema; while only one was followed (ANN) in [14]; the first strategy consists
of the use of calculated characteristics by an ANN and an SVM and the second is based on
sub-images extracted from treated microscopic images using an implemented CNN and
the tools of transfer Learning. ANN used in [14] gave a success rate of 91.1% in Nosema
recognition. SVM also was used in [13] to classify the two types of Nosema and other
objects. The experiments reached relative and accurate values.
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Table 8. Results from other references for Nosema recognition.

Reference Data Size Method Accuracy

[14] 185 images (1655 extracted features) ANN 91.10%

This work 2000 images ANN 83.20%

This work 2000 images SVM 83.50%

This work 2000 images CNN 92.50%

This work 2000 images AlexNet 87.48%

This work 2000 images VGG-16 96.25%

This work 2000 images VGG-19 93.50%

From Tables 2–6, it can be concluded that whether it is the largest dataset or the
smallest dataset, the level of learning of the network with transfer learning models is
obviously better than the traditional models, especially ANNs are examined in this study
and SVM which brought near results. Furthermore, one notes a clear rate of convergence
of the transfer model VGG-16 and VGG-19 at the level of the provided results. In addition,
these transfer models are a bit faster than ANN and SVM, at least in this case. CNN has
demonstrated its effectiveness in this problem of recognizing or classifying Nosema cells
as a deep learning model. CNN was almost comparable to VGG-19. On the other hand,
it should be said that the training options for the ANNs, as well as the transfer learning
algorithms, make a difference in the results.

In front of AlexNet, the VGG-16, VGG-19 and CNN have proven their strong effec-
tiveness in this work in the classification of patterns, cells and objects.

For the features extraction part, several different features from the sub-images were
evaluated: geometric, statistic, texture and GLCM features extracted from the yellow
channel. This experiment used a large database, the results given by the ANN as well as
by the SVM good since it is the first time. The quality of the microscopic images used in
this work did not always help to extract clear and sharp objects. By calculating the results
with a different number of features (15 and 19), the importance of the data extracted by the
GLCM in the resulting amelioration was approved.

6. Conclusions

In order to identify Nosema cells, this experiment examined two strategies of classifi-
cation: the traditional ones and the deep learning classifiers. Different experiments were
implemented for both strategies, despite the noisy quality of the microscopic images used.
The best accuracy for the recognition or classification of Nosema is reached by VGG-16,
96.25%, which is compared to state of the art is the most accurate methodology in this area
so far.

The innovation of this proposal is to analyze and find the better option for this
identification, checking different strategies to implement an automatic identification of
Nosema cell, as was shown after experiments, and with good and robust accuracy. It was
reached with VGG-16 architecture.

After reviewing the state-of-the-art material, it can be concluded that only a few
automatic approaches have been introduced so far. Because of this, we contribute with a
variety of explored classification methods and their accuracies. In particular, we would
emphasize the difference between shallow ANNs with handcrafted features and end-to-
end learning using the deep learning approach using CNN together with several transfer
learning architectures.
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Abstract: The quantification of blood flow velocity in the human conjunctiva is clinically essential
for assessing microvascular hemodynamics. Since the conjunctival microvessel is imaged in several
seconds, eye motion during image acquisition causes motion artifacts limiting the accuracy of
image segmentation performance and measurement of the blood flow velocity. In this paper, we
introduce a novel customized optical imaging system for human conjunctiva with deep learning-
based segmentation and motion correction. The image segmentation process is performed by the
Attention-UNet structure to achieve high-performance segmentation results in conjunctiva images
with motion blur. Motion correction processes with two steps—registration and template matching—
are used to correct for large displacements and fine movements. The image displacement values
decrease to 4–7 μm during registration (first step) and less than 1 μm during template matching
(second step). With the corrected images, the blood flow velocity is calculated for selected vessels
considering temporal signal variances and vessel lengths. These methods for resolving motion
artifacts contribute insights into studies quantifying the hemodynamics of the conjunctiva, as well as
other tissues.

Keywords: blood flow velocity quantification; conjunctival microvessel; deep learning; image
processing; motion correction; optical imaging system; vessel segmentation

1. Introduction

The conjunctiva is a translucent and highly vascularized membrane covering the
sclera of the human eye. These properties enable the conjunctiva to be the only tissue ob-
serving red blood cell (RBC) shift that can be utilized for measuring the blood flow velocity
directly from the surface. Quantitative analysis of the blood flow velocity has been used to
estimate the progression of eye diseases, including diabetic retinopathy [1] and dry eye
syndrome [2–4]. The diabetic retinopathy patients group had slower blood flow velocities
in the conjunctiva than the control group [1]. In the case of dry eye syndrome, the normal
group had slow blood flow velocities in the conjunctiva [2–4]. Moreover, patients with
unilateral ischemic stroke [5] and high cardiovascular disease risk [6] tend to have slower
conjunctival blood flow velocities. These studies demonstrated that quantifying the con-
junctival blood flow velocity can contribute to evaluate not only ophthalmic diseases but,
also, systemic diseases in critical organs, especially the brain and cardiovascular system.

Conventional methods for quantifying the conjunctival blood flow velocity use func-
tional slit-lamp biomicroscopy [7], a noninvasive optical imaging system (EyeFlow) [8], and
orthogonal polarization spectral imaging [9]. These methods can be disturbed by motion
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artifacts inherited from the image acquisition process due to eye movements. The motion
artifacts cause two distinct problems: (1) image displacement and (2) low-quality images.

First, the image displacement problem causes the vessel to be misaligned from the
central point. Registration was performed by calculating the difference of the correlation
coefficients from the reference frame [10–12]. In another method, the sharpness index
of each image was measured by calculating pixel-to-pixel intensity variance, eliminating
the inadequate frames below the threshold value [13]. These two methods can compen-
sate for rapid eye movements but have difficulty correcting for fibrillation or respiratory
eye movements.

Second, the segmentation, which is the essential step for quantifying the microcir-
culation, remains challenging for low-quality images of blurry structures and uneven
light illumination by subject motions. Various segmentation methods [7,10,14,15] were
applied to the conjunctiva images with motion artifacts. The Frangi filter [10,14] is the
most commonly used segmentation algorithm and exploits multiscale information from
the eigenvalues of the Hessian matrix. The supervised method [16], which uses the Ga-
bor wavelet filter and the Gaussian mixture model (GMM) classifier, was suggested for
conjunctiva vessel segmentation [7,15]. These two segmentation methods are efficient in
identifying vessels but lack of the ability to identify low-quality vessels.

We solved the image displacement and low-quality image problems caused by motion
artifacts by proposing a custom-built optical system with a two-step calibration method
and a deep learning-based segmentation model. The custom-built optical system was
optimized to acquire human bulbar conjunctival images. The two-step calibration method
was motivated by the fact that image displacements can result from sudden eye movements
and respiratory movements. The first step, registration, corrects the sudden eye move-
ments. The second step, template matching, eliminates the respiratory movements. Since
deep learning-based segmentation is effective with low-quality conjunctival images [17], a
custom-built Attention-UNet model was constructed to extract accurate conjunctiva vascu-
lar information. The blood flow velocity was measured by generating a spatial–temporal
analysis (STA) image from the corrected image sequence and vascular features. With this
configured system, we can acquire a conjunctival vascular image set with minimal motion
and accurately quantify conjunctival blood flow velocity.

2. Materials and Methods

2.1. Process of Quantifying Blood Flow Velocity

Quantification of the blood flow velocity is performed by the six steps shown in
Figure 1. After acquiring image frames for 3 s with 25 fps, image processing, including
image registration, feature extraction, and motion correction, provides motion-free image
sequences for measuring the blood flow velocity through tracking the position of red blood
cells. Detailed explanations of imaging acquisition, registration, and deep learning-based
image segmentation and quantification are shown in following sections.

Figure 1. The summary of experimental phase in this study.
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2.2. Image Acquisition

The schematic of a customized optical imaging system is depicted in Figure 2. The
conjunctival imaging system uses a green LED with a central wavelength of 525 nm and
a spectral bandwidth of 5 nm, because hemoglobin and deoxyhemoglobin have high
extinction coefficients at a wavelength of 530 nm. Accordingly, the image contrast between
the blood vessels and the white sclera can be improved. We illuminate the uniform light
using a diffuser (ED1-C50-MD, Thorlabs Inc., Newton, NJ, USA) forward to the LED. The
power of the LED at the eye pupil is 300 μW/cm2, which is 0.3 times the laser safety
standards (ANSI) limits under the condition of 10-min exposure [18].

Figure 2. Custom-built optical imaging system for human bulbar conjunctiva.

The diffusely reflected light from the conjunctiva transmits to the complementary
metal oxide semiconductor (CMOS) sensor-based camera (UI-3080CP Rev.2, IDS Inc.,
Obersulm, Germany) with an imaging sensor size of 8.473 mm × 7.086 mm to acquire
a maximum resolution of 2456 × 2054 pixels. The pixel size on the camera sensor is
3.45 μm × 3.45 μm. The frame rate is set at 20 fps but is enhanced to 25 fps by binning the
image size to 2208 × 1848 pixels for a more continuous blood flow assessment. The video
data are recorded for approximately 3 s with 25 fps.

The magnification of the system is designed to achieve RBC flow imaging. An RBC
with an average diameter of 7.5 μm [19] should be imaged by at least 2 pixels on the camera
sensor to distinguish the individual RBC particles [20]. Moreover, the magnification
for the reliable quantification of RBC flow velocity requires 4 to 5 pixels imaged per
RBC [21], corresponding to 2× in our system. To achieve this magnification, we use a
high-magnification zoom lens (MVL6 × 12Z, Thorlabs Inc., Newton, NJ, USA) with an
adjustable magnification between 0.7× and 6×. An extension tube (MVL20A, Thorlabs
Inc., Newton, NJ, USA) with 2× magnification is connected for additional magnification,
for a total range of 1.832× to 7.5×. An optimized magnification is set at 3.798× for a field
of view of 2.00 mm × 1.68 mm, thereby sampling each RBC with 8.26 pixels.

2.3. Image Registration

Image registration is the process of eliminating the blurred frames caused by rapid eye
motion or blinking. Image sequences are first examined with an image contrast index that
can determine the quality of the images. To obtain the contrast index, we apply the Sobel
edge algorithm [22,23], a method of quantitatively measuring the contrast of an image [24].
The contrast index is calculated with the Equation (1).

Contrast Index =

(
N

∑
y=1

M

∑
x=1

Ixy

)
/(M·N) (1)
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where M, N are the dimensions of the image, x, y are the pixel indices of each axis, and Ixy
is the image pixel intensity. The overall image contrast is estimated by the average value of
the edge intensity. The blurred frames with low-contrast indices are resolved by extracting
only frames with a contrast index greater than 95% of the maximum value. A template
frame is then designated based on the highest contrast index. The rest of the consecutive
frames are automatically aligned to the template frame using the ImageJ plugin called
motion corrector [25]. This algorithm corrects the image translation by maximizing the
overlapping region between two images, thereby eliminating the significant displacement
caused by rapid eye motions.

2.4. Deep Learning Vessel Segmentation
2.4.1. Dataset

A conjunctival vessel dataset and a high-resolution fundus (HRF) dataset are used
to train and evaluate the deep learning model [26]. The HRF dataset has been estab-
lished by the research team at the Friedrich-Alexander Universität and used to test the
effectiveness of the deep learning-based segmentation algorithm [26]. The conjunctival
vessel data are collected from the conjunctiva of five healthy human subjects (five males,
age = 27 ± 1) with the custom-built imaging system. This dataset contains 15 conjunctiva
images with a size of 2208 × 1848 pixels. The conjunctiva images used for network learning
are randomly selected in the frames extracted from image sequences without motion-
blurred images. The HRF dataset comprises 45 color fundus images, equally distributed
into three subsets (healthy, diabetic retinopathy, and glaucoma). Each image in the HRF
dataset is 3304 × 2236 pixels. Both datasets have annotated vessel structures in the form of
binary images.

2.4.2. Image Preprocessing and Preparation

Preprocessing enhances the contrast of the vessel in the image and removes uneven
illuminations that occurred in the image acquisition step. We apply three preprocessing
steps. In the first step, we crop the HRF images from the center point to the same size as the
conjunctival images and resize both to 1104 × 924 pixels (0.5×). Figure 3a,e illustrates the
raw data of the conjunctival image and resized HRF image. In the second step, we extract
the green channel from the HRF images. The green channel has a higher contrast and lower
background noise than the other channels. Finally, contrast-limited adaptive histogram
equalization (CLAHE) [27] is applied in the green channel of the HRF in Figure 3f and
conjunctival images in Figure 3b to enhance the contrast of the images. After preprocessing,
two datasets are combined into a single dataset to enhance the generalization ability of
the model.

A convolutional neural network (CNN) requires large amounts of training data to
prevent overfitting of the network and improve the generalization ability. To train the
dataset, we exploit a patch-wise strategy [17,28–30] and data augmentation. The patch-wise
strategy is used to learn a small amount of data efficiently and overcome the memory
limitations caused by high-image resolution. This strategy randomly extracts patches in
the range of 64 to 128 pixels. The patch sizes from 65 × 65 pixels to 128 × 128 pixels are
resized to 64 × 64-pixel patches. After resizing the extracted patches, overlapped regions
of the conjunctiva in each different-sized patch are recognized as different regions in the
network model.

A total of 300,000 patches are obtained by sampling 5000 patches from each image.
Figure 3c,g are examples of patch-wise extractions. Figure 3d,h are the corresponding
ground-truth images of the patches (Figure 3c,g) for the supervised learning of the convo-
lutional neural network.
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Figure 3. Preparation steps of the conjunctival dataset and the HRF dataset. The conjunctival data preparation step: (a) raw
data of the conjunctival image, (b) CLAHE-adopted image, (c) conjunctiva patches, and (d) corresponding ground-truth
of (c). The HRF data preparation step: (e) resized HRF image, (f) CLAHE-adopted image, (g) HRF patches, and the
(h) corresponding ground-truth of (g).

Data augmentation is applied to extract the patches with additional vascular features
to improve the CNN generalization ability. We applied data augmentations such as geo-
metrical distortions (rotation, shearing, and transformation) and motion blur. Geometrical
distortions can increase the representation of the patches. Motion blur is used to learn the
deformed vessel based on the movements that occurred in the image acquisition step. The
patches are normalized to the zero mean and unit variance before the training process to
reduce the effect of the large intensity variance.

2.4.3. Network Architecture

The Attention-UNet architecture [31] is adopted to learn the vascular features. We
customize the Attention-UNet to optimize our datasets. The details of the architecture
are described in Figure 4. The architecture is based on a layered CNN, consisting of an
encoder–decoder structure with three stages and an attention mechanism.

Figure 4. Customized Attention-UNet architecture.

The encoder gradually reduces the spatial dimension of the input to learn a low-
resolution feature map. Each stage of the encoder consists of two convolution layers and
one max-pooling layer. At the end of the encoder stage, a bottom layer exists without
max-pooling. Whenever the stage progresses to the next stage, the filter size of the convo-
lution layer doubles, and the dimensions of the input are halved. Each convolution layer
comprises a 3 × 3 convolution filter with a stride of 1, batch normalization, and a rectified
linear unit (ReLU).

55



Sensors 2021, 21, 3224

The decoder enables precise localization by merging the low-resolution features from
the previous layer and high-resolution features from the encoder of the same stage. When
the low-resolution features are transported, the upsampling process, which is implemented
by transposing a convolution kernel (kernel size = 3 × 3, stride = 2), reconstructs the
salient features from the input. Before the encoder transfers the features, an attention
gate is used to suppress the irrelevant background of the input and highlight the relevant
foreground features. At the end of the 3-stage decoding, the last convolutional kernel
(kernel size = 1 × 1) and SoftMax activation function are used for mapping the feature
vector and classify the vessel.

2.4.4. Model Training and Testing

The deep learning model using Keras is trained and validated on a CPU (Xeon(R)
silver 4112, Intel Corporation, Santa Clara, CA, USA) and a GPU (Quadro P4000, Nvidia
Corporation, Santa Clara, CA, USA) operated by Ubuntu (16.04 LTS, Canonical Ltd,
London, UK).

In the training process, the complete set of augmented patches is split into 240,000
for training the network and 60,000 for validation. The training process has 150 epochs
with the strategy of reducing the learning rate on the plateau. A validation set is used to
evaluate the performance of the model in each epoch. If the performance of the model in
the validation set does not change in 15 epochs, the strategy will reduce the learning rate by
1/10. The training of the model is progressed by an adaptive moment estimation (Adam)
optimizer (initial learning rate = 0.00005) and the Dice coefficient [32] as the loss function.

In conjunctival images, blood vessel information occupies a small portion of the entire
image compared to the background region. Therefore, the Dice coefficient is used to solve
the class imbalance problem. The Dice coefficient is defined in the Equation (2):

Dice Coe f f icient =
2 ∑N

i pi·qi

∑N
I pi

2 + ∑N
i qi

2
(2)

where pi is predicted segmentation map, and qi is the binary ground-truth image. N
denotes the number of pixels in each image, and i is the position of the pixel in the image.

In the test phase, the CNN infers the test image, excluding the training dataset. The
test image is generated by averaging 30 frames to distinguish the obscure vessel from the
registered conjunctival images. By inferencing the test data using the optimal model for
validation, a reference segmentation map is acquired.

2.5. Morphological Feature Extraction

The vessel length and diameter are measured from segmented conjunctival vessel
images. Distinguishing the connected vessel segments is necessary to extract these morpho-
logical vessel features. The centerline and intersection points of the vessels are required to
separate individual vessel segments. The centerline is obtained by a skeleton image using
the pixel-wise thinning algorithm [33,34], a method of performing an iterative process until
it remains one pixel wide in the segmented vessels. Skeleton segments lower than 20 pixels
are removed, because these segments are not recognized as a connected vascular network.
The intersection points at bifurcation and crossover are determined by the number of
neighbors, a convolution result with a 3 × 3 unity kernel for each pixel of the centerline.
The bifurcation points correspond to three in the convolution result, and the crossovers
have a result greater than three. By removing these two points, each vessel segment is
separated and given identification. We measure the vessel length and the diameter from
the identified vessel segment. The length of the vessel is obtained by counting each pixel of
the skeletonized vessel along its centerline. Moreover, the vessel diameters are measured
in Euclidean distance by calculating the perpendicular distance from the centerline to the
nearest background of the binary segmented vessels.
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2.6. Template Matching for Motion Correction

The template matching algorithm is used for correcting the fine movements in image
sequences caused by respiratory movement. First, the template image is assigned by
selecting a template vessel considering the morphological features, including the vessel
length and diameter. The template vessel must be contained in all frames and distinguished
from other blood vessels. Equation (3) is applied to each vessel segment to select a vessel
of the template image with a long length and large diameter.

N(L, D) = w1·L + w2·D (3)

N(L, D) is the function for selecting the template vessel, w1, w2 are the weight factors,
L is the length of the vessel segment, and D is the diameter of the vessel. The vessel length
and diameter are normalized to equalize the scales of each parameter. The vessel segment
with the highest value of the function is determined as the template vessel.

We generate the template image by cropping the selected template vessel to the
minimum bounding box. The template-matching algorithm based on the assigned tem-
plate image is applied to the target frames, and this algorithm is implemented with the
cvMatchTemplate function in the OpenCV library [35]. This function calculates the normal-
ized correlation coefficient R(x, y) at each pixel to search the most similar region with the
template image, as shown in the Equation (4):

R(x, y) =
∑x′ ,y′(T(x′, y′)·I(x + x′, y + y′))√

∑x′ ,y′ T(x′, y′)2·∑x′ ,y′ I(x + x′, y + y′)2
(4)

where T is the template image, I is a source image to find a match with the template image,
x, y is the pixel location of the source image, and x′, y′ indicates the pixel location of the
template image. After finding the most similar region to the template image with the source
images, the displacement value is obtained from the center point of the source image. We
shift the source images as much as the displacement value, thereby successfully correcting
the fine movements.

2.7. Blood Flow Velocity Measurements

Several blood vessels can be observed in motion-corrected conjunctival images, but a
RBC shift is not detectable in all blood vessels. Measuring the blood flow velocity requires
distinguishing the blood vessels capable of detecting the RBC shift. Generally, vessels with
measurable blood flow have high temporal variance in the centerline due to the RBC shifts.
Moreover, vessels with longer lengths are more conducive to measuring the blood flow
velocity, because the movements of RBC can be observed continuously for a long duration.
Considering the temporal variance and vessel length, an index of observability is defined
as shown in the Equation (5):

Observability Index = α·σt + β·L (5)

where α, β is the weighting factor, σt is the temporal variance, and L is the length of the
vessel segments. Vessels with a high index are considered to be capable of measuring the
blood flow velocity. We choose 15 vessel segments with the highest observability index to
analyze the blood flow velocity.

The blood flow velocity is measured by tracking the RBC movements in the selected
vessels centerline, as depicted in Figure 5a. Tracking is performed using the spatial–
temporal analysis (STA) method, which demonstrates an alteration of the pixel intensity of
the centerline due to the RBC movements. Figure 5b displays an example of an alteration in
the pixel intensity of the vessel centerlines as a function of time. We generate the STA image
by stacking the centerlines to each column, as depicted in Figure 5c. Frames corresponding
to 3.7 s are stacked to form 70 columns. Consequently, the flow of the RBC cluster forms
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lines consistent with the yellow line in Figure 5c, with the slope on the STA image. The
blood flow velocities are measured by calculating the average values of the slopes.

Figure 5. (a) The RBC cluster shifts over time in the vessel centerline. (b) Pixel intensity of the vessel
centerline changes due to the RBC cluster shift. (c) Spatial–temporal analysis (STA) image generated
by the pixel intensity from the vessel centerline as stacking at each column. The x and y axes indicate
the frame time and vessel length, respectively. The yellow line shown in the STA image displays the
slope, indicating the blood flow velocity.

3. Results

3.1. Segmentation

We identified blurry, low-contrast conjunctival vessels by constructing a dataset mixed
with conjunctiva images and HRF to train the custom-built Attention-UNet model. The
segmentation map was obtained using model prediction on the averaged image. Figure 6
illustrates the results of the model prediction. The conjunctival image of Figure 6a is
unseen data obtained from healthy subjects. Figure 6b,e,h are additional processed images
to show the unseen data of Figure 6a,d,g for readers. Figure 6c results from the model
prediction in Figure 6a. Each box with a color boundary in Figure 6a–c represents regions
of interest for the low-contrast, blurry vessels. These results demonstrate that Attention-
UNet trained with mixed datasets is accurate for low-contrast vascular structures without
additional postprocessing.

3.2. Motion Correction

To evaluate the performance of the motion correction processes, we compare the
displacement values of 70 frames of the conjunctival microvessels. Figure 7 illustrates
the horizontal and vertical axial displacement values of the source images from the first
frame. In the uncorrected case (black line), the intense axial motions of the frames are
visible. After the correction process, the axial motions are noticeably reduced (red and blue
lines). For the horizontal axis depicted in Figure 7a, the mean axial displacement decreased
to 2.69 μm from 16.84 μm after the first registration process. After the second process of
motion correction, it decreased to 0.9 μm. For the vertical axis depicted in Figure 7b, it
also decreased to 0.81 μm from 14 μm. Consequently, most of the displacement values
decreased, except for the movements smaller than 1 μm.
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Figure 6. (a) Averaged conjunctival image. (b) Brightness and contrast-adjusted (a) by Image J
(set display range: 25–115). (c) Attention-UNet segmentation results. (d,g) Cropped images from
the low-contrast, blurry areas of (a). (e,h) Cropped images from (b). (f,i) Corresponding to the
prediction results of (d,g). Brightness and contrast-adjusted images (b,e,h) were placed to provide
easier visibility for the reader.

Figure 7. Comparison of the displacement values between uncorrected (black line) and motion-
corrected (red and blue lines) image sequence. Red line indicates the displacement values after
the first registration step, and the blue line represents after the second motion correction step.
(a) Horizontal displacement values. (b) Vertical displacement values.

Furthermore, we compared before and after the motion correction of the spatial–
temporal analysis (STA) images, which are crucial to quantifying the blood flow veloc-
ity. The red line in Figure 8a displays a target vessel to analyze the blood flow velocity.
Figure 8b illustrates an STA image before motion correction. In this STA image, the slope
required to calculate the blood flow velocity cannot be verified because of the motion
artifacts. In contrast, the clear edges of the slope displayed by the yellow line in Figure 8c
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are observed in the STA image after motion correction. Finally, the blood flow velocity
obtained from the average values of the yellow slopes is 0.338 mm/s.

Figure 8. (a) Vessel used to generate the STA image (red line). (b) STA image before motion
correction. (c) STA image after motion correction. Yellow lines represent slopes, which indicate blood
flow velocity.

Table 1 illustrates the characteristics of conjunctival microvessels, including diameter,
length, and blood flow velocity. These characteristics are measured in the selected vessel
segments with the highest observability indices. Starting with V1, 10 blood vessels with a
high observability index are sequentially arranged. The minimum and Table 1 illustrate
the characteristics of the conjunctival microvessels, including diameter, length, and blood
flow velocity. These characteristics are measured in the selected vessel segments with the
highest observability indices. Starting with V1, 10 blood vessels with a high observability
index are sequentially arranged. The minimum and maximum blood vessel diameters are
8.172 and 15.62 μm. The blood flow velocity ranges between 0.078 and 0.338 mm/s, similar
to the values in a previous study, were measured with other equipment [36].

Table 1. Diameter, length, and blood flow velocity of conjunctival microvessels.

Vessel Diameter (μm) Length (mm) Blood Flow Velocity (mm/s)

V1 13.158 0.414 0.086
V2 15.282 0.356 0.097
V3 8.172 0.338 0.338
V4 9.878 0.330 0.090
V5 10.170 0.318 0.270
V6 8.682 0.220 0.141
V7 9.574 0.250 0.078
V8 15.422 0.246 0.137
V9 15.620 0.128 0.114
V10 9.934 0.214 0.153

4. Discussion

In this paper, we introduced a system that can accurately quantify the conjunctival
blood flow velocity by overcoming motion artifacts. First, Attention-UNet was imple-
mented to precisely segment the low-quality vessel images. The Attention-UNet trained
with a retinal dataset was used to segment conjunctival vessels with low-contrast, blurry
structures [17]. This study inferred that Attention-UNet has a high generalization ability to
learn the vascular structure.

Second, we conducted a two-step correction process to solve the problem of changing
local information. Fine movements are critical to high magnification imaging to track red
blood cells (RBC) for measuring the blood flow. Although we corrected a large motion
through the registration process, 4–7 μm of the displacement remained. An additional
correction process was essential to obtain an accurate blood flow velocity by tracking RBC
particles of approximately 7.5 μm in diameter [19]. Therefore, we implemented an addi-
tional motion correction algorithm, template matching, by considering the vessel features,
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including diameter and length. The displacements of the conjunctival microvasculature
images are reduced to the order of 1 μm while minimizing the frame loss.

We construct a custom-built optical system to image the human conjunctiva and
acquire the conjunctival images from five healthy subjects. Conjunctival datasets have a
risk of overfitting due to a lack of images, which we avoided by adding a retinal dataset
with a similar domain to the conjunctival images. The high-resolution fundus (HRF) dataset
was selected as an additional dataset because of the vessel size similar to our conjunctival
image. The model trained by the mixed dataset achieved more accurate segmentation
results than the conjunctival dataset only.

Furthermore, our motion correction process can produce insights in observing blood
flow velocity for an extended period by correcting their fine control movements. When the
human eye gazes at a fixed object, the dwelling time ranges from 90 to 900 ms [37]. After
the dwelling time, the fixated eyes start vibrating. Due to eye movements caused by the
short dwelling time, conjunctival hemodynamics were observed for only 0.3 s in a previous
study [10].

However, the velocity pulse period (VPP), which is the time varying the blood flow
velocity, due to the cardiac impulse is 940 ms [38], longer than the dwelling time. Con-
sequently, it is necessary to observe the blood flow velocity for a more extended period
than the VPP. Since we compensate for the motion above the VPP, the blood flow velocity
is quantified above three seconds through the STA image. We created an opportunity for
quantifying the long-term blood flow assessment, limited by a dwelling time shorter than
the cardiac cycle time.

A limitation in the current configuration is that it can be difficult to compensate for the
motion blur caused by movements that are faster than the frame rates. This type of image
can be blurred, even if the location is not changed. One way to mitigate this problem is to
reduce the exposure time and increase the frame rate. However, such an approach would
inevitably decrease the contrast of the image. We overcame this limitation by comparing
the contrast index assigned during registration, thereby removing the blurred frames with
low-contrast values.

This study adopted several capabilities, including image registration, deep learning
vessel segmentation, and template matching for motion correction, to quantify the microcir-
culation of the human conjunctiva. Using these methods, we acquired a blood flow velocity
of 0.078 to 0.338 mm/s in the conjunctiva vessels. Although we could not perfectly control
the factors affecting the blood flow velocity, we could confirm that our results partially
corresponded to a previous study measuring the conjunctiva blood flow range as 0.19 to
0.33 mm/s [36].

As further works, our image processing method could provide blood flow velocity
in the retina, wrists, lips, and fingernails. In addition, when significant correlations of
conjunctival hemodynamics with cardiovascular diseases, as well as diabetes, are demon-
strated, the developed imaging system and processing method can be used as one of the
methods providing pre-diagnostic factors for systemic diseases [1,39].

5. Conclusions

We demonstrate a system that resolves motion artifacts to quantify the conjunctival
blood flow velocity. Deep learning-based segmentation and motion correction techniques
are used to solve the motion artifacts during image acquisition. We evaluated the sys-
tem performance by analyzing conjunctival images from five healthy volunteers. The
system segment low-contrast vessels reduced the image displacement to less than 1 to
2 μm. Pathways of red blood cells could be tracked free from the motion artifacts, resulting
in quantifying the blood flow velocity. The range of quantifying the conjunctival blood
flow velocity is 0.078~0.338 mm/s in a healthy subject. This conjunctival imaging instru-
ment is applicable for imaging subjects with limited forward-looking capabilities or an
unsteady fixation.
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Abstract: Background and Objective: The use of computer-aided detection (CAD) systems can help
radiologists make objective decisions and reduce the dependence on invasive techniques. In this
study, a CAD system that detects and identifies prostate cancer from diffusion-weighted imaging
(DWI) is developed. Methods: The proposed system first uses non-negative matrix factorization
(NMF) to integrate three different types of features for the accurate segmentation of prostate regions.
Then, discriminatory features in the form of apparent diffusion coefficient (ADC) volumes are
estimated from the segmented regions. The ADC maps that constitute these volumes are labeled by a
radiologist to identify the ADC maps with malignant or benign tumors. Finally, transfer learning
is used to fine-tune two different previously-trained convolutional neural network (CNN) models
(AlexNet and VGGNet) for detecting and identifying prostate cancer. Results: Multiple experiments
were conducted to evaluate the accuracy of different CNN models using DWI datasets acquired at
nine distinct b-values that included both high and low b-values. The average accuracy of AlexNet
at the nine b-values was 89.2 ± 1.5% with average sensitivity and specificity of 87.5 ± 2.3% and
90.9 ± 1.9%. These results improved with the use of the deeper CNN model (VGGNet). The average
accuracy of VGGNet was 91.2 ± 1.3% with sensitivity and specificity of 91.7 ± 1.7% and 90.1 ± 2.8%.
Conclusions: The results of the conducted experiments emphasize the feasibility and accuracy of the
developed system and the improvement of this accuracy using the deeper CNN.

Keywords: prostate cancer; transfer learning; ALexNet; VGGNet; ADC maps

1. Introduction

Prostate cancer is a major health problem, especially in western countries. For example,
this disease is the second leading cause of mortality among males in the United States [1].
In 2020, the number of new prostate cancer cases and the number of deaths caused by
prostate cancer among Americans are expected to be 191,930 and 33,330, respectively [1].
Currently, the definitive technique of diagnosing prostate cancer is transrectal ultrasound
(TRUS)-guided biopsy. However, biopsy is an invasive procedure that can miss up to 30%
of cancers [2]. In order to minimize the errors of detecting prostate cancer by TRUS-guided
biopsy, many alternatives, such as magnetic resonance imaging (MRI)-guided biopsy, have
been investigated [3].

Recently, MRI has evolved in its capabilities of detecting prostate cancer in addition
to its use in guiding biopsies for better accuracy. Multiple MRI sequences, which include
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T2-weighted MRI, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced
MRI (DCE-MRI), are used in various clinical tasks, such as active surveillance, localization,
and determining the stage of prostate cancer [4,5]. However, detecting and localizing
prostate cancer from MRI data is a challenging task. As large volumes of MRI data,
from different protocols and sometimes from different scanners, have to be analyzed, these
variations can lead to inter-observer differences. Computer-aided detection (CAD) systems
can help physicians make objective and fast decisions. These systems can also enhance the
quantitative evaluation of prostate cancer.

Developing MRI-based CAD systems for identifying prostate cancer has become
a subject of active research [6]. For instance, Viswanath et al. [7] examined the perfor-
mance of multiple classical classifiers and their bagging and boosting ensembles using
a multi-institutional T2-weighed MRI dataset of 85 subjects. These classifiers were fed
with radiomic features and their performance was evaluated using the receiver operating
characteristic (ROC) curve. The highest average area under the curve (AUC) was obtained
by the boosted quadratic discriminant analysis. Riccardo et al. [8] found that the accuracy
of targeted biopsy improved by 13.2% in case of combining physician analysis of multipara-
metric MRI with CAD results. Rampun et al. [9] compared the accuracy of eleven classifiers
using a T2-weighed MRI dataset of 45 subjects. Their system employed feature selection on
a feature space of size 215 to select the best discriminating features. The highest resulting
accuracy was 85.5%. More detailed and profound literature review can be found in the
recent survey by Gao et al. [10].

Although existing systems have achieved satisfactory results, these systems base their
diagnosis on handcrafted features that are validated on small datasets. The good empirical
design of these handcrafted features determines their accuracy. An alternative approach
for handcrafted features is to learn the discriminating features automatically.

Deep learning structures, especially convolutional neural networks (CNN), are able
to automatically learn multiple levels of features from data in a hierarchical manner [11].
These structures have achieved accurate results in multiple computer vision tasks [12–16]
as well as lesions detection tasks [17]. Ishioka et al. [18], developed a prostate cancer
CAD algorithm that aimed to reduce the variation in the interpretation of T2-weighted
MRI. They used histogram smoothing to convert the 12-bit intensity data from the original
T2-weighted MR images into 8-bit images. These images were normalized and subjected to
data augmentation to increase the employed training data. The detection of prostate cancer
was obtained using a CNN architecture that combined both U-net and ResNet50. Their
algorithm resulted in an AUC of 0.65. Mehrtash et al. [19] evaluated the performance of
CNN with different MRI modalities. The highest performance achieved by their system
in terms of AUC was 0.8. This performance was achieved by including zonal information
of tumors with DWI and DCE-MRI. Yang et al. [20] proposed a system for detecting and
localizing the presence of prostate cancer from T2-weighted MRI and apparent diffusion
coefficient (ADC) images. Their system used an individual CNN for each of the used two
modalities to produce a response map indicating the malignancy likelihood of each pixel.
An average pooling is performed before the last convolutional layer of each CNN to obtain
a feature vector. The feature vectors from each modality are concatenated and used as
input into a support vector machine (SVM). A sensitivity of 46% and 97% was achieved
at 0.1 and 10 false positives per normal case. Le et al. [21] integrated a similarity cost
function with the CNN cost function to better fuse ADCs with T2-weighted MRI. The au-
thors investigated multiple data augmentation techniques, multiple CNN architectures,
and multiple fusion schemes to find out the combination that can lead to the best accuracy.
The final differentiation between malignant and benign tissues was based on the integration
between the results of CNN and the results of handcrafted features using an SVM classifier.
An accuracy of 91.5% was achieved. Wang et al. [22] found that optimizing the steps of
prostate segmentation, multi-modal registration and cancer localization in a joint manner
can reduce the computation burdens of optimizing each step individually. Moreover, this
joint optimization improves the accuracy by reducing the accumulation of errors over
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the different steps. Song et al. [23] developed a patch-based CNN system for differenti-
ating between malignant and benign prostate lesions from multiparametric MRI. Their
proposed CNN model consisted of three blocks of layers before the final fully-connected
(FC) layers. Each block consisted of three convolutional layers followed by a dropout layer
and a max-pooling layer. Their model resulted in sensitivity and specificity of 87% and
90.6%, respectively. Hosseinzadeh et al. [24] developed 2D-UNet model to produce maps
of prostate zones. In their system, the inclusion of zonal information improved the average
sensitivity at three different false positives by 5%.

Schelb et al. [25] used a dataset of two modalities (T2-weighted MRI and DWI) to train
a U-Net classifier. Their system showed that the performance of a U-Net classifier is similar
to the clinical assessment. Xu et al. [26] developed a system to detect prostate lesions using
a residual network. Their system resulted in an accuracy of 93%. Yuan et al. [27] developed
a system for classifying prostate cancer from three MRI modalities. Their systems employed
three CNNs. Each CNN was fed with a different modality to learn discriminative features.
Their system resulted in an accuracy of 86.9%. Chen et al. [28] tuned two pre-trained CNNs,
namely, InceptionV3 and VGG-16, using PROSTATEx challenge dataset. An AUC of 0.83
was obtained using VGG-16. Abbasi et al. [29] tuned a pre-trained CNN model(GoogLeNet)
using a prostate cancer MRI dataset. They compared GoogLeNet with other classifiers, such
as, decision tree and SVM. They found that GoogLeNet outperformed these conventional
classifiers. A recent survey by Wildeboer et al. [30] listed more than 80 CAD systems for
diagnosing prostate cancer. In this survey, the different CAD systems were categorized
according to the employed imaging modalities and the employed classifiers.

Training deep architectures with huge numbers of parameters from scratch requires
large amounts of data. Typically, the amount of data in the medical domain is small when
compared to that of natural images used in conventional computer vision applications.
Training deep architectures with small amounts of data can lead to overfitting, which means
the network can correctly classify the data used for training but is not able to correctly
classify new data (i.e., the network does not generalize well). Moreover, if the amount of
medical data is sufficient, annotating this data by multiple experts to prepare it for training
can be an impeding factor. In order to overcome these limitations, this work modifies
previously-trained CNNs and fine-tunes them for detecting and identifying prostate cancer.
The process of fine-tuning such deep networks can be done with small datasets.

The main contribution of this work does not depend on which deep learning network
is used; the main contribution is representing the input data in a different form (ADC
maps) to be more separable to achieve acceptable accuracy, no matter which deep learning
network is used. To prove this point, AlexNet, which is a deep learning network that has
only five convolutional layers, is used in the beginning. AlexNet achieved an average
accuracy of 89.2 ± 1.5% at the nine b-values. For further validation, VGGNet, which has
more layers that increase its learning ability, is then used. VGGNet achieved an average
accuracy of 91.2 ± 1.3% at the nine b-values. The ADC maps used in the proposed system
are calculated at both low and high b-values. This enables the proposed system to capture
both blood perfusion and water diffusion for an accurate diagnosis of prostate cancer.
The b-value is a measure of the degree of diffusion weighting employed to generate
diffusion-weighted images. It is a parameter that relies on the timing and strength of the
used gradient pulses. The details of this process are discussed in the following sections.

2. Methods and Materials

The DWI datasets used in this work were collected from 37 subjects (16 benign and
21 malignant) using two distinct scanners (1.5 Tesla (T) scanner and 3T scanner) at nine dis-
tinct b-values (100, 200, . . . , 800, 1000 s/mm2). The acquisition parameters of the 1.5 T scan-
ner in axial plane were: TE = 84.6 ms, TR = 8000 ms, Bandwidth = 142.86 kHz, FOV = 34 cm,
slice thickness = 3 mm, inter-slice gap = 0 mm, voxel size = 1.25 × 1.25 × 3.00 mm3. The 3T
DW images were acquired in the transverse plane. The acquisition parameters of the sec-
ond 3T scanner were: TR = 4300–4800 ms, TE = 75–88 ms, acquisition matrix = 128 × 126,
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reconstruction matrix = 256 × 256, FOV = 20 cm. The scanning was done using full-echo
and full-k-space. However, a SENSE acceleration factor of 2 was used, thus skipping over
every-other line in k-space. Excitation and read-out were spectral fat-suppressed, standard
2D multi-slice 90–180 spin-echo Stejskal-Tanner DWI, with single-shot echo-planar-imaging
read-out. A single diffusion encoding direction of [1,1,1] was used (i.e., X,Y,Z gradient
channels were on simultaneously) to obtain minimal TE at the maximum b-value. Each
b-value was averaged 7 times. Big delta = 47 ms and little delta = 15 ms. All the cases
involved in this study performed MRI when there was a clinical suspicion of malignancy.
The final diagnosis of the cases was established by biopsy that was carried out after MRI.
Therefore, the ground truth of diagnosis of all subjects was based on the results of the
biopsy. From the malignant cases, 234 slices were labelled manually by a radiologist as
having malignant tumors. The analysis and labeling of all the cases were performed in a
slice-wise manner. A similar number, 236, of DW slices from benign cases were chosen to
create a balanced dataset of malignant and benign slices. These slices represent all the DW
slices of 13 benign cases in addition to 5 slices from the remaining 3 benign cases. The ADC
maps of the DWI datasets were calculated, as will be explained in the following subsection.
The corresponding 470 ADC maps of the labelled DW slices were used to train and test the
performance of the developed model, as explained in the following sections.

Figure 1 shows the general framework of the developed CAD system for detecting and
identifying prostate cancer, which incorporates three main steps: prostate segmentation,
identifying discriminatory features, and identifying slices with prostate cancer. Prostate
segmentation integrates three types of features using non-negative matrix factorization
(NMF) to guide the evolution of a level set model. These features are shape-priors of
prostates, intensities of voxels and spatial features of neighboring voxels. The effect of
incorporating each of these features into the accuracy of the used segmentation approach
is explained in detail in [31]. Appearance, shape and spatial information were extracted
for each voxel. NMF was used to reduce and make the combined features more separable.
Curvature and Euclidean distances between the reduced features (test subject) to the
centroids of NMF classes (calculated from training subjects) were used to estimate the
voxel-wise guiding force of the level set. If the voxel belongs to the prostate, the level
set grows. Otherwise, the level set shrinks. More details about the used segmentation
approach can be found in [31]. The second step was identifying discriminatory features,
which can discriminate malignant from benign cases. In this study, ADC volumes of the
segmented prostates were estimated and used for this purpose. By nature, the prostate is a
small organ compared to other organs. To be sure that the proposed model would capture
the features that discriminate between malignant tumors and benign tumors, the ADC
features were calculated only from the prostate region. This ensured that the system
learned the features related only to prostate cancer. The first two processing steps of the
proposed framework are illustrated for two different cases (one benign and one malignant)
in Figure 2.

Figure 1. Overall workflow of the proposed model showing the DWI input data at nine b-values and
its three basic steps, which are prostate segmentation, calculation of ADC maps as discriminating
features, and the identification of slices with tumor using previously-trained CNN models.
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Figure 2. Illustration of the first two processing steps of the proposed framework on two different
cases (one benign and one malignant).

The 2D cross sections that constitute these ADC volumes were extracted and used as
input to the employed CNN-based model. This process is shown in Figure 3. The final
step was identifying slices with tumors using a previously-trained CNN model. In the
following subsections, the details of estimating the ADC maps and the use of these maps
to fine-tune CNN models for identifying prostate cancer are presented.

Figure 3. Illustration of slice-wise analysis of ADC volumes.
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2.1. Identifying Discriminatory Features

Currently, DWI is one of the promising modalities utilized for the identification
of prostate cancer. DWI is a functional MRI modality similar to DCE-MRI. However,
what distinguishes DWI is its fast acquisition time, as there are no contrast agents used.
The problem with contrast agents is the potential harm they cause to patients who have
kidney disorders. DWI depends on the differences in the motion of water molecules inside
the body to create images. DW images visualize and quantify this microscopic motion [32].
The molecules’ motion is random, and there is a positive correlation between the level of
randomness and the loss in the signal, which is given by [33]:

Sd ∼ e−b×ADC, (1)

where b is a parameter that relies on the timing and strength of the used gradient pulses,
and ADC is a measure of the magnitude of water molecules’ diffusion within the tissues.
The utilization of gradient pulses gives rise to enhanced diffusion sensitivity compared to
the steady state gradients [34].

The intensities of pixels in a slice acquired at a specific b-value (Sb) are equal to the
intensities of the congruent pixels of the baseline slice (b = 0 s/mm2) lowered by the signal
loss defined in Equation (1). These intensities are given by:

Sb = S0 × e−b×ADC. (2)

There is a negative relationship between the cellular density of a tissue region and its
ADC values, as regions with dense cells restrict the mobility of water molecules. Since the
quality of DWI is low, a large number of researchers choose to utilize the quantitative ADC
maps computed from DWI to identify prostate cancer. The reason for the discriminating
capabilities of ADCs is that malignant prostate tissues have smaller ADC values than
healthy or benign tissues. The following equation shows that two DW images are required
to calculate an ADC map:

ADC = − lnSb1 − lnS0

b1
. (3)

The first image is collected at a specific b-value (b1 > 0 s/mm2) while the second is
collected at b0 (b = 0 s/mm2). Another justification for employing ADC maps in this study
is that the calculation of ADC maps is not sensitive to the used magnetic field strength [35].
This is suitable for the DWI datasets used in this study, as they were collected by two
scanners that have different magnetic field strengths. Moreover, integrating handcrafted
features with the automatically-learned features by CNNs can improve accuracy [36].
Since each ADC map represents the difference between two DW images, these maps are
themselves images. Therefore, they can be used as input to the CNN model instead of the
DW images. As these maps have better discriminating capabilities, their use improves the
accuracy of the system.

2.2. Identification of Prostate Cancer

In this study, two different CNN models were used for prostate cancer identification.
There are multiple advantages of using CNN over traditional neural networks. First, CNNs
typically contain a larger number of layers than traditional neural networks. Augmenting
the number of layers allows CNN to learn high levels of abstraction as the first layers learn
primitive components while end layers use these learned primitive features to form the
high-level features. The process of learning the features is done automatically by CNNs.
Second, CNN takes both 2D images and 3D volumes directly as inputs without the need
to convert these inputs into vectors, as in the case of neural networks. This preserves
the inputs’ spatial information. Third, the network connections and hence the network
parameters of CNNs are fewer than the network connections in similar traditional neural
networks. This reduction simplifies and expedites the training process of CNNs [37,38].
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In this work, DW slices that contained tumors were labeled by a radiologist. The ADC
maps that correspond to these labeled DW slices were divided into two groups. The first
group contained ADC maps with malignant tumors, and the second group contained
ADC maps from benign subjects. The number of ADC maps in the benign group was
236, and the number of ADC maps in the malignant group was 234. These ADC maps
were used to train and evaluate two different previously-trained CNN models, which are
AlexNet [39] and VGGNet [40].

ALexNet expects an input image of size 227 × 227 × 3, whereas the size of an input
image for VGGNet was 224 × 224 × 3. The sizes of the calculated ADC maps were the
same as the sizes of the corresponding DW images, which were 256 × 256 for the 1.5T
images and 144 × 144 for the 3T images. To make these ADC maps suitable as inputs for
the employed CNN models, the ADC maps of the larger sizes were center cropped, while
the ADC maps of smaller sizes were zero padded. Then, each of these ADC maps was
concatenated along the depth dimension to generate a three-channel image, which was the
expected input to each of the employed CNN models.

Since the number of ADC maps is considered small for training and evaluating a CNN
model from scratch, as training such deep structures from scratch with a small dataset leads
to overfitting, a transfer learning model was adopted in this study. The idea of transfer
learning is to modify a network that is trained to solve a certain problem and use it to solve
a new problem in a different domain. The training of the original network is typically done
with millions of images from the original domain. The advantage of transfer learning is
that the adoption of this previously-trained network to solve a new problem requires far
fewer images from the new domain. This is done by replacing the last few layers, including
the output layer of the original network, with new layers appropriate to the new problem.
In this work, the original output layer of either AlexNet or VGGNet, which assigns its
input image to one of 1000 categories, was replaced with an output layer that classified its
input ADC maps into either benign or malignant (Figure 4).

Figure 4. Illustration of the two different CNNs used in this study, (a) ALexNet, and (b) VGGNet.

The introduction and success of AlexNet have revolutionized the use of CNNs for
multiple classification tasks. AlexNet is a CNN that contains five convolutional layers and
three FC layers (Figure 4a). The network depth has a remarkable influence on its accuracy
as the accuracy of AlexNet drops by 2% in the case of removing any of the five convolution
layers. Rectified linear units (ReLUs) [41] are employed as activation functions by AlexNet.
There are two main advantages of using ReLUs. First, ReLUs are saturation-free even in
case of unnormalized inputs. Second, the training time of CNNs with ReLUs is shorter than
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the training time of CNNs with saturating activations (e.g., sigmoid). AlexNet is trained
with a large dataset of natural images (ImageNet). This dataset contains more than one
million images that belong to one thousand categories. To reduce the classification error,
AlexNet employs overlapping pooling and response normalization [39]. AlexNet employs
dropout [42] and data augmentation to overcome the overfitting issue. Two different forms
of data augmentation were used: intensity alteration and transformations (translations and
horizontal reflections) [39].

VGGNet is another deep CNN that is trained using ImageNet dataset. The main goal
of developing VGGNet is to evaluate the effect of the network depth on the accuracies of
CNNs. To achieve this goal, the developers examined five different network architectures
with different depths, while the other parameters are fixed for a fair comparison. The
input image is processed by a sequence of convolution layers, max-pooling layers [43], FC
layers, and a softmax layer. VGGNet uses ReLU non-linearity activation. The number of
convolutional layers of the different architectures ranges from 8 to 16 layers. The numbers
of pooling layers and FC layers are 5 and 3, respectively. These numbers do not differ across
the different architectures. The pooling layers follow some, but not all, of the convolutional
layers. The convolution layers use kernels of small fixed receptive fields of 3 × 3 to lower
the number of parameters. The pooling layers use fixed windows of 2 × 2 and a stride of 2.
The number of filters of the first convolutional layer is 64. When a pooling layer is used,
the number of filters of the following convolutional layer is doubled until the number of
kernels reaches 512 [40].

In this work, the deepest architecture was used. This architecture has 19 layers with
weights (16 convolutional layers and 3 FC layers) (Figure 4b). This architecture has 144 mil-
lion parameters. This large number of parameters increases the training time of VGGNet,
especially when compared with other CNNs with smaller numbers of parameters, such as
AlexNet (60 million parameters) and GoogLeNet (4 million parameters). However, the per-
formance of VGGNet in many transfer learning tasks is better than GoogLeNet [44]. Both
AlexNet and VGGNet were optimized using stochastic gradient descent with momentum
and the loss function was cross entropy. The other training parameters were the following:
number of epochs = 50, learning rate = 0.0001, momentum = 0.9, mini-batch-size = 10, L2
regularization = 0.0001. The basic architecture and configuration parameters of both the
original and the fine-tuned AlexNet and VGGNet are summarized in Table 1.

Table 1. Basic architecture and configuration parameters of both AlexNet and VGGNet, where Conv.
means convolutional, FC means fully-connected, SGDM means stochastic gradient descent with
momentum, and cross entr. means cross entropy.

AlexNet VGGNet

Original Fine-Tuned Original Fine-Tuned

No. of training images >1 million 329–423 >1 million 329–423

Size of input images 227 × 227 227 × 227 224 × 224 224 × 224

No. of output categories 1000 2 1000 2

No. of Conv. layers 5 5 16 16

FC layers 3 3 3 3

Optimizer SGDM SGDM SGDM SGDM

Loss function cross entr. cross entr. cross entr. cross entr.

3. Results

Multiple experiments were conducted to test the performance of the developed system
and to compare its performance with other modern machine-learning classifiers. In the first
experiment, 70% of the ADC maps of both the malignant and benign cases at each b-value
were used for fine-tuning an AlexNet-based model. The other 30%, which represent 71
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ADC maps from benign cases and 70 ADC maps with malignant tumors, were employed
to evaluate the accuracy of the tuned model. The ADC slices used for training were from
different patients to the ADC slices used for testing to avoid any correlation that could exist
between ADC slices of the same patient. The results of this experiment at each b-value are
shown in Table 2.

Table 2. Performance of AlexNet at 9 b-values using 141 ADC maps.

b-Value Accuracy%
Sensitivity
(Recall)%

Specificity% Precision%

100 s/mm2 86.52 84.29 88.73 88.06
200 s/mm2 90.07 85.71 94.37 93.75
300 s/mm2 88.65 85.71 91.55 90.91
400 s/mm2 88.65 88.57 88.73 91.18
500 s/mm2 91.49 91.43 91.55 91.43
600 s/mm2 89.36 88.57 90.14 89.86
700 s/mm2 87.94 85.71 90.14 89.55
800 s/mm2 90.07 90.00 90.14 90.00

1000 s/mm2 90.07 87.14 92.96 92.06

In a similar experiment, 80% of the ADC maps were used for tuning an AlexNet-based
model. The remaining 20% or 94 ADC maps were used to evaluate the accuracy of the
tuned model. The reason behind this 80:20 division of the dataset was to satisfy the Pareto
principle. The results of this experiment are reported in Table 3.

Table 3. Performance of AlexNet at 9 b-values using 94 randomly chosen ADC maps.

b-Value Accuracy%
Sensitivity
(Recall)%

Specificity% Precision%

100 s/mm2 87.23 87.23 87.23 87.23
200 s/mm2 90.43 89.36 91.49 91.30
300 s/mm2 89.36 89.36 89.36 89.36
400 s/mm2 89.36 91.49 87.23 87.76
500 s/mm2 90.43 91.49 89.36 89.58
600 s/mm2 91.49 89.36 93.62 93.33
700 s/mm2 88.33 89.36 87.23 87.50
800 s/mm2 91.49 93.62 89.36 89.80

1000 s/mm2 89.36 93.62 85.11 86.27

Similarly, in another experiment, 70% of the ADC maps of both the benign and
malignant cases at each b-value were randomly chosen for tuning an AlexNet-based model.
The other 30% of the ADC maps were used to evaluate the accuracy of the tuned model.
Since the ADC maps used for evaluating the accuracy of the system at each b-value were
chosen randomly, this experiment was repeated 10 times at each b-value. To ensure the
stability of the reported results, the mean accuracy of the 10 experiments conducted at each
b-value, in addition to the mean sensitivity and the mean specificity, are listed in Table 4.
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Table 4. Average Performance of AlexNet at 9 b-values using 141 randomly chosen ADC maps and
repeating the experiment 10 times.

b-Value Accuracy% Sensitivity% Specificity%

100 s/mm2 87.52 ± 0.01 89.14 ± 0.04 85.92 ± 0.04
200 s/mm2 89.29 ± 0.01 88.71 ± 0.04 89.86 ± 0.03
300 s/mm2 89.57 ± 0.02 89.00 ± 0.03 90.14 ± 0.03
400 s/mm2 89.57 ± 0.02 89.71 ± 0.03 89.44 ± 0.04
500 s/mm2 89.22 ± 0.03 88.29 ± 0.04 90.14 ± 0.04
600 s/mm2 88.01 ± 0.03 88.00 ± 0.07 88.03 ± 0.05
700 s/mm2 89.72 ± 0.02 89.29 ± 0.04 90.14 ± 0.03
800 s/mm2 89.63 ± 0.03 88.57 ± 0.05 90.70 ± 0.03

1000 s/mm2 90.43 ± 0.02 90.86 ± 0.04 90.00 ± 0.04

In another experiment, 10-fold cross validation was applied using the 470 ADC maps.
Each fold contained 47 ADC maps. Nine folds were used for training whereas the remaining
fold was used for testing the system. This operation was repeated 10 times with the change
of the testing fold each time. The performance of the 10-fold cross validation using AlexNet
at the different b-values is reported in Table 5.

Table 5. 10-fold cross validation of AlexNet at 9 b-values.

b-Value 100 200 300 400 500 600 700 800 1000

1st fold 93.62 87.23 93.62 93.62 91.49 89.36 91.49 91.49 87.23
2nd fold 78.72 82.98 78.72 82.98 87.23 82.98 85.11 80.85 78.72
3rd fold 91.49 95.74 91.49 89.36 93.62 93.62 95.74 93.62 91.49
4th fold 95.74 97.87 97.87 93.62 93.62 95.74 97.87 97.87 91.49
5th fold 87.23 89.36 91.49 91.49 89.36 93.62 87.23 91.49 91.49
6th fold 85.11 80.85 82.98 82.98 87.23 80.85 85.11 87.23 89.36
7th fold 91.49 93.62 89.36 97.87 95.74 93.62 93.62 95.74 93.62
8th fold 89.36 87.23 87.23 89.36 89.36 89.36 87.23 89.36 89.36
9th fold 93.62 91.49 91.49 93.62 91.49 93.62 89.36 91.49 91.49

10th fold 82.98 85.11 85.11 87.23 87.23 85.11 87.23 87.23 85.11
Average% 88.94 89.15 88.94 90.21 90.64 89.79 90.00 90.64 88.94

In order to evaluate the effect of the depth of the used CNNs on the resulting accuracy,
an experiment was conducted. In this experiment, 70% of the ADC maps were used for
tuning a deeper CNN (VGGNet), while the remaining 30% were used to evaluate the trained
model. VGGNet has 16 convolutional layers in comparison to five convolutional layers in
AlexNet. The performance using VGGNet is listed in Table 6. As can be noticed, the use of
the deeper network improves the accuracy at all b-values except for b-value = 500 s/mm2.
The highest improvement in the accuracy is at b-value = 600 s/mm2. The use of VGGNet
leads to an average improvement of 1.97% in the accuracy.

The time required for training VGGNet model is much longer than the time required
for training the AlexNet model. For example, the time required for fine-tuning AlexNet
in the first experiment was 5 min and 25 s, whereas the time required for fine-tuning the
deeper CNN (VGGNet) in the similar experiment was about 97 min. The proposed models
were developed using MATLAB 2017b. The training of the proposed model was performed
using a workstation with a graphics processing unit (GPU) of type NVIDIA Quadro K1200.

In a similar experiment, 80% of the ADC maps were used for tuning a VGGNet-based
model. The remaining 20% or 94 ADC maps were used to evaluate the accuracy of the
tuned model. The results of this experiment are reported in Table 7.
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Table 6. Performance of VGGNet at 9 b-values using 141 randomly chosen ADC maps.

b-Value Accuracy%
Sensitivity
(Recall)%

Specificity% Precision%

100 s/mm2 90.07 88.57 91.55 91.18
200 s/mm2 92.20 92.86 91.55 91.55
300 s/mm2 90.07 90.00 90.14 90.00
400 s/mm2 90.07 90.00 90.14 90.00
500 s/mm2 90.78 91.43 90.14 90.14
600 s/mm2 93.62 92.86 94.37 94.20
700 s/mm2 90.07 92.86 87.32 97.84
800 s/mm2 92.20 92.86 91.55 91.55

1000 s/mm2 91.49 92.86 90.14 90.28

Table 7. Performance of VGGNet at 9 b-values using 94 randomly chosen ADC maps.

b-Value Accuracy%
Sensitivity
(Recall)%

Specificity% Precision%

100 s/mm2 91.49 87.23 95.74 95.35
200 s/mm2 90.43 89.36 91.49 91.30
300 s/mm2 91.49 91.49 91.49 91.49
400 s/mm2 90.43 87.23 93.62 93.18
500 s/mm2 92.55 89.36 95.74 95.45
600 s/mm2 94.68 91.49 97.87 97.73
700 s/mm2 90.43 87.23 93.62 93.18
800 s/mm2 92.55 89.36 95.74 95.45

1000 s/mm2 92.55 93.62 91.49 91.67

In another experiment, 10-fold cross validation is applied using VGGNet at the differ-
ent b-values. The results of this experiment are reported in Table 8.

Table 8. 10-fold cross validation of VGGNet at 9 b-values.

b-Value 100 200 300 400 500 600 700 800 1000

1st fold 85.11 91.49 89.36 91.49 95.74 95.74 95.74 95.74 95.74
2nd fold 82.98 89.36 89.36 87.23 89.36 89.36 89.36 91.49 87.23
3rd fold 89.36 91.49 85.11 93.62 91.49 91.49 95.74 97.87 91.49
4th fold 93.62 91.49 89.36 93.62 97.87 97.87 97.87 93.62 97.87
5th fold 89.36 93.62 93.62 89.36 89.36 91.49 89.36 91.49 87.23
6th fold 89.36 80.85 87.23 87.23 82.98 85.11 89.36 89.36 82.98
7th fold 80.85 91.49 91.49 95.74 97.87 97.87 93.62 95.74 95.74
8th fold 87.23 97.87 93.62 91.49 97.87 87.23 89.36 93.62 85.11
9th fold 93.62 95.74 97.87 97.87 97.87 95.74 93.62 95.74 93.62

10th fold 78.72 80.85 89.36 82.98 85.11 85.11 80.85 85.11 87.23
Average% 87.02 90.43 90.64 91.06 92.55 91.70 91.49 92.98 90.43

In order to show the merits of CNNs over classical machine-learning classifiers,
the performance of CNN is compared to the performance of SVM with both linear and
quadratic kernels. The models of SVMs were trained using 70% of the ADC maps and
evaluated using the remaining 30% of the ADC maps. The inputs to the SVMs were the
same as the inputs to the CNNs. The inputs to the SVMs were the ADC maps (raw data).
In order to be used as input to the SVMs, each ADC map has to be transformed into a
vector. This vector represents a row in the data matrix used to train the SVM. The results of
these SVMs are reported in Table 9. The high performance of the CNN models highlights
the importance of the inputs’ spatial information that is preserved in the case of CNNs.
However, the inputs’ spatial information is lost in the case of conventional models such
as SVMs.
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Table 9. Performance of SVMs with linear kernel (lin. ker.) and quadratic kernel (quad. ker.) at
9 b-values using 141 randomly chosen ADC maps, where Acc. means accuracy, Sen. means sensitivity,
and Spec. means specificity.

SVM with Lin. Ker. SVM with Quad. Ker.

b-Value Acc. % Sen. % Spec. % Acc. % Sen. % Spec. %

100 s/mm2 75.18 65.71 84.51 78.01 71.43 84.51
200 s/mm2 75.89 72.86 78.87 78.72 78.57 78.87
300 s/mm2 73.05 58.57 87.32 82.27 77.14 87.32
400 s/mm2 68.79 75.71 61.97 80.85 88.57 73.24
500 s/mm2 79.43 82.86 76.06 82.27 81.43 83.10
600 s/mm2 73.76 68.57 78.87 80.14 77.14 83.10
700 s/mm2 68.79 71.43 66.20 80.14 80.00 80.28
800 s/mm2 71.63 74.29 69.01 81.56 87.14 76.06
1000 s/mm2 73.76 70.00 77.46 81.56 82.86 80.28

The ROC curves of two CNN models (AlexNet and VGGNet) and two variants of
SVMs with linear and quadratic kernels are shown in Figure 5. Since the ROC curves of
each of these classifiers at the distinct b-values have similar shapes, the ROC curves at only
five b-values are displayed to simplify the figures.

(a) ROC curve of VGGNet (b) ROC curve of AlexNet

(c) ROC curve of support vector machine (SVM) with
linear kernel

(d) ROC curve of SVM with quadratic kernel

Figure 5. ROC curves at five b-values(100, 300, 500, 700, and 1000 s/mm2) of four different classifiers:
(a) VGGNet, (b) AlexNet, (c) SVM with linear kernel, and (d) SVM with quadratic kernel. As these
figures show, CNN-based models (VGGNet and AlexNet) result in higher AUCs than the two variants
of SVMs with linear and quadratic kernels at the distinct b-values.

An experiment was conducted to compare the performance of the proposed approach
to one of the state-of-the-art CNNs, which is GoogLeNet [45]. This CNN was the winner
of the ImageNet challenge in 2014. This deep network consists of 22 layers. However,
the number of its parameters is reduced dramatically due to the use of the Inception module
and the removal of the FC layers. The resulting performance of GoogLeNet is listed in
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Table 10. The performance results of GoogLeNet are close to the results of both AlexNet
and VGGNet. These results boosts the feasibility of the transfer learning in diagnosing
prostate cancer.

Table 10. Performance of GoogLeNet at 9 b-values using 141 ADC maps.

b-Value Accuracy% Sensitivity% Specificity%

100 s/mm2 85.82 85.71 85.92
200 s/mm2 90.78 85.71 95.77
300 s/mm2 87.23 85.71 88.73
400 s/mm2 87.23 82.86 91.55
500 s/mm2 87.94 90.00 85.92
600 s/mm2 88.65 88.57 88.73
700 s/mm2 90.07 91.43 88.73
800 s/mm2 88.65 85.71 91.55

1000 s/mm2 89.36 90.00 88.73

4. Discussion

In this study, a transfer learning model is adopted to detect and identify prostate
cancer. When the employed CNN models were originally trained using natural images,
they used conventional techniques such as, data augmentation and dropout in order to
reduce the effect of overfitting. The combination of both conventional overfitting handling
techniques and transfer learning can minimize the effect of overfitting.

The proposed system starts with segmentation to limit the region-of-interest (ROI) to
the prostate region only. In this system, prostate segmentation is performed using level set
due to its capability to provide continuous segmented object. However, any segmentation
approach can be integrated with the proposed system, as long as, it provides a continuous
segmented object. For example, Comelli et al. [46], presented a fast deep learning network,
namely efficient neural network (ENet), for prostate segmentation from T2-weighted MRI.
ENet is initially used for image segmentation tasks in self-driving cars where hardware
availability is limited and the accuracy is critical for user safety. In this study [46], ENet is
trained using a dataset of 85 subjects and results in a dice similarity coefficient of 90.89%.

Several studies suggested that the use of DWI acquired at higher b-values are prefer-
able for accurate detection and diagnosis of prostate cancer [47–51]. This study shows
that the use of ADC maps calculated at lower b-values results in an accuracy close to the
accuracy of the ADC maps calculated at higher b-values. There is a slight accuracy increase
for the ADC maps calculated at higher b-values. This accuracy increase is more obvious in
the case of using a less-deeper CNN (AlexNet). One of the advantages of using ADC maps
is that they are insensitive to the magnetic field strengths of the used scanners (1.5T or
3T) [35]. The ADC maps used in this study were calculated from DWI acquired with 1.5T
and 3T scanners at nine b-values. The results show that the dependence on ADC maps can
also mitigate the differences in the accuracy between higher and lower b-values, especially
in the case of using deeper CNN models.

The developed approach performs slice-wise analysis. However, the proposed frame-
work is generic and can perform both slice-wise analysis and prostate-zonal analysis based
on how the model is trained. Since the system shows good performance in slice-wise
analysis, the authors did not investigate it on zonal analysis. Investigating the performance
of the system in prostate-zonal analysis is a good potential for future work.

According to the literature, a sensitivity and a positive predictive value of 80% and
87%, have been reported for men with high prostate-specific antigen (PSA) values using
positron emission tomography/computed tomography (PET/CT) [52,53].

According to Sun et al. [54], the performance of deep learning networks increases
logarithmically based on the size of the training data. One way to improve the performance
in the case of limited data is to conduct multiple experiments and choose the best results.
In this work, to obtain the best performance, 10-fold cross validation was used to obtain
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almost the same performance, no matter which fold was used for training and which fold
was used for testing.

The use of two different CNN models in this work shows that the depth of the CNN
model positively affects the performance of the system. However, much longer processing
times are required to train the deeper architectures. The results of this study show that
the use of a deeper CNN (VGGNet) increases the accuracy of prostate cancer detection
more than the less-deep CNN (AlexNet). However, this accuracy is still far from perfect.
Examining the effect of using much deeper CNN models, such as ResNet [55], can be
a potential future work. Moreover, in this system, prostate cancer identification from
DWI acquired at nine b-values was investigated. This investigation can be extended by
performing a statistical analysis of the used b-values to select the best minimal combination
of b-values that lead to the best accuracy. Choosing a minimal combination of b-values will
reduce both the acquisition time of DWI and the computational complexities. Another area
of potential future work could be the use of artificial intelligence optimization techniques
on a combination of imaging markers and clinical markers (such as PSA) to optimize
prostate cancer management.

5. Conclusions

In conclusion, this paper presents a CAD system for prostate cancer detection and iden-
tification from DWI. The identification of prostate cancer is achieved using two previously-
trained CNN models (AlexNet and VGGNet) that are fed with the estimated ADC maps
of the segmented prostate regions. The conducted experiments show that the use of
previously-trained CNN models for detecting prostate cancer is feasible. These previously-
trained CNN models learn the discriminatory features automatically. The results section
shows that CNN models outperform conventional models. The accuracy of conventional
models depends on the good design of the used handcrafted features.
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Abstract: Diabetic retinopathy (DR) is a disease resulting from diabetes complications, causing
non-reversible damage to retina blood vessels. DR is a leading cause of blindness if not detected
early. The currently available DR treatments are limited to stopping or delaying the deterioration of
sight, highlighting the importance of regular scanning using high-efficiency computer-based systems
to diagnose cases early. The current work presented fully automatic diagnosis systems that exceed
manual techniques to avoid misdiagnosis, reducing time, effort and cost. The proposed system
classifies DR images into five stages—no-DR, mild, moderate, severe and proliferative DR—as well
as localizing the affected lesions on retain surface. The system comprises two deep learning-based
models. The first model (CNN512) used the whole image as an input to the CNN model to classify it
into one of the five DR stages. It achieved an accuracy of 88.6% and 84.1% on the DDR and the APTOS
Kaggle 2019 public datasets, respectively, compared to the state-of-the-art results. Simultaneously,
the second model used an adopted YOLOv3 model to detect and localize the DR lesions, achieving
a 0.216 mAP in lesion localization on the DDR dataset, which improves the current state-of-the-art
results. Finally, both of the proposed structures, CNN512 and YOLOv3, were fused to classify DR
images and localize DR lesions, obtaining an accuracy of 89% with 89% sensitivity, 97.3 specificity
and that exceeds the current state-of-the-art results.

Keywords: computer-aided diagnosis; convolutional neural networks; deep learning; diabetic
retinopathy; diabetic retinopathy classification; diabetic retinopathy lesions localization; YOLO

1. Introduction

Diabetic retinopathy (DR) is a common diabetes complication that occurs when the
retina’s blood vessels are damaged due to high blood sugar levels, resulting in swelling
and leaking of the vessels [1]. In an advanced DR stage, the vision may be lost completely.
The percentage of blindness worldwide resulting from DR is 2.6% [2]. Therefore, diabetes
patients need regular screening of the retina to detect DR early, manage its progression and
avoid the risk of blindness.

The leaking blood and fluids appear as spots, called lesions, in the fundus retina
image. Lesions can be recognised as either red lesions or bright lesions. Red lesions involve
microaneurysms (MA) and haemorrhage (HM), while bright lesions involve soft and hard
exudates (EX) as shown in Figure 1. The small dark red dots are called MA and the larger
spots are called HM. Hard EX appears as bright yellow spots, while soft EX, also called
cotton wool, appears as yellowish-white and fluffy spots caused by nerve fiber damage [3].
The five DR stages depend on the types and numbers of lesions on the retina image, as
shown in Table 1. Samples of the various DR stages (no DR, mild DR, moderate DR, severe
DR, and proliferative DR) are shown in Figure 2.

Sensors 2021, 21, 3704. https://doi.org/10.3390/s21113704 https://www.mdpi.com/journal/sensors
81



Sensors 2021, 21, 3704

Figure 1. The different types of DR lesions.

Figure 2. The DR stages: (a) No DR (b) Mild, (c) Moderate, (d) Severe, (e) Proliferative DR.

Table 1. The DR stages depending on lesions classification [4].

DR Severity Level Lesions

No DR No lesions.
Mild DR MA only.
Moderate DR More than just MA but less than severe DR.

Severe DR

Any of the following:
more than 20 intraretinal HM in each of 4 quadrants; definite venous
beading in 2+ quadrants; Prominent intraretinal microvascular
abnormalities in 1+ quadrant and no signs of proliferative DR.

Proliferative DR One or more of the following:
neovascularization, pre-retinal HM.

The manual diagnosis of DR by ophthalmologists is time-consuming, requires con-
siderable effort, and is prone to disease misdiagnosis. Therefore, using a computer-aided
diagnosis system can avoid misdiagnosis and reduce overall cost, time and effort. During
the last decade, deep learning (DL) approach has emerged and been adopted in many
fields, including medical image analysis. DL can identify features accurately from input
data for classification or segmentation and typically outperforms all traditional image
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analysis techniques. DL techniques does not need to extract the hand-crafted features while
it requires extensive data for training [5]. In contrast, machine learning techniques require
extraction of the hand-crafted features, but they do not need extensive data for training. In
DR detection, the machine learning techniques need to extract the vessel firstly, as in [6,7].
Then, extract DR lesions’ features for classification as in [8]. DL applications include the
segmentation, classification, retrieval, detection and registration of the images [9]. Convo-
lutional Neural Network (CNN) is a type of DL method that is a widely used [9], highly
effective and successful method for image analysis [10,11].

There has been a considerable number of efforts to automate DR image classification
using DL to help ophthalmologists detect the disease in its early stages. However, most
of these efforts focused only on detecting DR instead of detecting various DR stages.
Moreover, there have been limited efforts to classify and localize all the DR lesions types,
which is very helpful in practice, as ophthalmologists can evaluate DR severity and monitor
its progression based on the appearance of these lesions. For these reasons, we propose a
fully automated screening system using CNN to detect the DR five stages and localize all
DR lesion types simultaneously. The proposed system helps ophthalmologists mimic their
DR diagnosis method, which localizes DR lesions, identifying its type and determining
the DR exact stage. The current study investigates three CNN-based models to classify
the DR images into stages. The first model was designed using transfer learning by fine-
tuning EfficientNetB0 [12]. The other two models, CNN512 and CNN229, were designed,
tuned and trained from scratch. For DR lesions localization and classification, a tuned
YOLOv3 [13] model was used. To achieve the best DR stages classification result, the image
classification model and the DR lesions localization model were fused. We investigate
many CNN structures to classify and localize DR images’ lesions until it reaches the best
combination of a CNN and YOLOv3 structure to present a fully automatic DR grading and
localization system. The present study’s main contribution is the promising new design
and fusion of two models to construct the proposed screening system. The first structure
is the CNN512, a CNN designed, tuned and trained from scratch to classify each image
according to one of the DR stages. While the second is a modified YOLOv3 to localize its
DR lesions simultaneously. The proposed system shows a promising result.

As far as we know, YOLOv3 has been used in the detection of the red lesion as in [14].
The novelty of the current work is considered the first research used YOLOv3 to detect the
different DR lesions.

This paper is structured as follows: Section 2 briefly analyses deep learning based
related works on DR stages and lesions detecting, while Section 3 presents the materials
and proposed methods. Section 4 describes the experiments and results. The discussion
and conclusion are presented in Sections 5 and 6, respectively.

2. Related Works

CNN has been used widely in the classification and localisation of retinal fundus
images. The DR detection works using DL can be categorized into three main categories:
binary DR classification, multi-level DR classification and hybrid classification. In the
following sections, we will summarise the recent efforts in DR classification in these three
categories. A comparison between the related works is presented in Table 2.

2.1. Binary Classification

This section looks at the studies that have classified DR images into two categories.
Pires et al. [15] proposed a custom CNN to detect referable DR images and non-referable
DR images. Their CNN were trained on the Kaggle [16] and achieved an AUC of 98.2% on
the Messidor-2 [17]. Jiang et al. [18] created a new dataset to classify DR images to referable
DR or not using three pretrained CNNs; Inception-Resnet-V2 [19], Inception V3 [20] and
Resnet152 [21]. These CNNs were combined using the Adaboost algorithm. They obtained
an AUC of 0.946. Liu et al. [22] created a weighted paths CNN called WP-CNN to classify
referable DR images in a private dataset. They reported an accuracy (ACC) of 94.23%.
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Das et al. [23] proposed two independent CNN to classify the images into normal or DR
images. Their CNNs obtained an ACC of 98.7% on the DIARETDB1 dataset. Although
the previous studies achieved good results in detecting DR, they did not take the five DR
stages and the various lesions into account. The main drawback of the binary classification
method is that it only classifies the DR images into two categories, without considering the
five DR stages. The identification of the exact DR stages is essential in selecting a suitable
treatment process and preventing retina deterioration.

Table 2. Comparison between the related works that used DL to classify DR Images.

Ref. Number of Classes
Detect
Lesion

Dataset
Performance Measure

AUC ACC SEN SP

[15] 2 No Messidor-2,
DR2

98.2%
98% - - -

[22] 2 No private dataset, STARE 0.9823
0.951

94.23%
90.84% 90.94% 95.74%

[18] 2 No private dataset 0.946 88.21% 85.57% 90.85%
[23] 2 No private dataset - 98.7% 0.996 98.2%
[24] 5 No Kaggle - 63.23% - -
[25] 5 No Kaggle 0.978 95.6% 86.4% 97.4%
[26] 4 No Messidor - 98.15% 98.94% 97.87%
[27] 4 No private dataset - 96.5% 98.1% 98.9%
[28] 5 No IDRiD - 90.07% - -
[29] 4 No Messidor - 96.35 92.35 97.45
[30] 5 No IDRiD - 65.1% - -
[31] 5 No APTOS 2019 - 0.77 - -

[32] 5 No Messidor, DDR, Kaggle -
0.8408
0.8569
0.8668

- -

[33] 5 No APTOS 2019 - 83.09 88.24 87
[34] 5 No APTOS 2019 - 82.54 83 -

[35] 3 No private dataset,
EYEPACS

0.955, 0.984,
0.955 - - -

[36] 2 Red lesion only Messidor 0.912 - 0.94 -
[37] 5 Yes DDR - 0.8284 - -

[38] 5 Red lesion only private dataset,
Messidor

-
0.972

92.95
-

99.39%
92.59%

99.93%
96.20%

2.2. Multi-Level Classification

This section reviews the works that have classified DR images into various stages.
Wang et al. [24] examined the performance of three pre-trained CNNs in the Kaggle
dataset [16] to classify all the stages of the DR images. The three CNN architectures
used were InceptionNet V3 [20], AlexNet [39] and VGG16 [40]. The best average ACC of
63.23% was obtained by InceptionNet V3. The work of [25] transferred learning pre-trained
AlexNet [39], VggNet [40], GoogleNet [41] and ResNet [21] to detect the different DR stages
in the Kaggle dataset [16]. Their results showed that VggNet achieved the higher ACC,
with a value of 95.68%. Mobeen-ur-Rehman et al. [26] proposed a simple CNN to detect the
DR stages of the Messidor dataset [17]. Their CNN obtained an excellent ACC of 98.15%.
Zhang et al. [27] proposed a method to detect the DR stages of their private dataset. They
fine-tuned InceptionV3 [20] , ResNet50 [42], Xception [43], InceptionResNetV2 [19], and
DenseNets [44] and then combined the strongest CNNs. This method obtained an ACC
of 96.5%. Harangi et al. [28] classified the DR stages by integrating hand-crafted features
and AlexNet [39]. They used the Kaggle dataset [16] for training and the IDRiD [45]
dataset for testing. This method achieved an ACC of 90.07%. Shanthi and Sabeenian [29]
used Alexnet [39] to classify the DR stages of the Messidor dataset [17]. Their ACC was
96.35%. Li et al. [30] used ResNet50 [21] with attention modules to classify the stages in the
IDRiD dataset [45], resulting in a 65.1% joint ACC. Dekhil et al. [31] transferred learning
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VGG16 [40] to classify the DR stages in the APTOS 2019 Kaggle dataset [46], and they
achieved an ACC of 77%. He et al. [32] proposed a CABNet network to classify DR images
into stages, achieving an ACC of 85.69% in the DDR [37]. Kassani et al. [33] modified
Xception model [43] to classify the DR stages in the APTOS 2019 Kaggle dataset [46],
resulting in a 83.09% ACC. Bodapati et al. [34] proposed a composite network with gated
attention to classify DR images into stages, achieving an ACC of 82.54% in the APTOS
2019 Kaggle dataset [46]. Hsieh et al. [35] trained the modified Inception-v4 [19] and
the modified ResNet [21] to detect any DR, proliferative DR and referable DR in their
private dataset and the EYEPACS dataset. They obtained an AUC of 0.955, 0.984 and 0.955,
respectively in detecting any DR, proliferative DR and referable DR.

These previous studies demonstrated that CNN is effective in classifying DR images.
However, localising DR lesions with DR image classification is more efficient for ophthal-
mologists at diagnosis. Moreover, Alyoubi et al. [47] reported that most of the studies,
almost 70%, classified the fundus images using binary classifiers such as DR or non-DR,
while only 27% classified the input to one or more stages, as shown in Figure 3.

Figure 3. The ratio of studies that classified the DR stages [47].

2.3. Hybrid Classification

This section presents the studies that classified DR images and localised lesions at
the same time. Zago et al. [36] used VGG16 [40] to detect red lesion patches of the DR
images, and then they classified the image to DR or no-DR based on the detected red
lesions. Their best results were achieved in the Messidor dataset [17] with an AUC of
0.912. Li et al. [37] created a dataset called the DDR to classify images into five DR stages
and to localise lesions. For the stages classification, they achieved the best ACC of 82.84%
using SE-BN-Inception [48], while for localisation, they achieved a mAP of 9.2 using Faster
RCNN [49]. Wang et al. [38] used two modified RFCN [50] to detect the stages of DR
and localise the MA and HM. Then the results from the two RFCN were merged. In their
private dataset, this method achieved a mAP of 92.15 in localizing, while in classification,
they achieved a 92.95% ACC.

Many studies, such as those by W. Alyoubi et al. [47] and T. Li et al. [51], show that
the main limitation of the DR classification systems is that only a limited number of the
studies detected and localized the types of DR lesions on the fundus image, as shown in
Figure 4. Furthermore, there are limited studies that detected the DR stages, grading and
lesions together. Lesions localization with high accuracy helps with grading the cases and
the patients’ follow-up, which is considered a critical requirement for DR patients.
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Figure 4. The ratio of studies that classified the DR lesions [47].

3. Materials and Methods

This section presents the datasets and the preprocessing methods used in the current
work. Moreover, it explains the two proposed methods, shown in Figure 5, to classify the
DR stages and localise the DR lesions types. The first method, called the Image-Based
Method, utilises the whole preprocessed RGB retina images as an input for the CNN, while
the second method, called Lesion localization method, is based on the lesions detection in
order to classify the images into the five DR stages.

Figure 5. Block diagram of the different proposed models for DR images classification and localization.

3.1. Datasets

Two publicly available fundus retina datasets were used in this work: the DDR [37]
and Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 Kaggle [46]. Table 3 shows
more details about these datasets.

• The DDR dataset [37] consists of 13673 fundus images acquired at a 45◦ field of view
(FOV). Among these, there are 1151 ungradable images, 6266 normal images, and
6256 DR images. There are 757 images annotated by providing a bounding box for
lesions (MA, HM, hard EX, and soft EX) to locate all DR lesion types. The dataset has
different image sizes, classified to five DR stages and split into train, valid, and test
images. The distribution of the dataset is imbalanced in that the normal images are
more than the DR images. The annotated lesions distribution is shown in Table 4.

• The APTOS 2019 Kaggle dataset [46] consists of 3662 retina images with different
image sizes. Only the ground truths of the training images are publicly available. The
dataset is classified into five DR stages. In addition, 1805 of the images are normal
and 1857 are DR images. The distribution of the dataset is imbalanced, with most of
the images normal.
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Table 3. The DR datasets details.

DDR
DDR Lesions

Annotated
APTOS 2019 Kaggle

Training 10,019 images 606 images 2929 images
Testing 2503 images 149 images 733 images
No DR 6266 images - 1805 images
Mild 630 images 99 images 370 images

Moderate 4477 images 548 images 999 images
Severe 236 images 34 images 193 images

Proliferative 913 images 74 images 295 images
Image Size Different image size Different image size Different image size

Total 12,522 images 755 images 3662 images

Table 4. The annotated lesions distribution in the DDR dataset.

MA Number HM Number
Hard EX
Number

Soft EX
Number

Total

Training 7824 11,196 21,739 944 41,703
Testing 2556 1342 1920 349 6167
Total 10,380 12,538 23,659 1293 47,870

3.2. Preprocessing

Image preprocessing is important for improving the quality of retinal images, since images
with low quality can reduce the network’s performance [25] and it is necessary to ensure that all
the images are consistent and that the features of the images are enhanced [52,53]. The applied
preprocessing methods, shown in Figure 6, are as follows. The result of the preprocessing
step is shown in Figure 7.

• Image Enhancement: Two methods were used to enhance the images, the enhance
luminosity method [54] and Contrast Limited Adaptive Histogram Equalization
(CLAHE). CLAHE [55] is successful in enhancing the contrast of the fundus im-
ages [56] and improving the low contrast of medical images [57]. CLAHE is applied
to the L channel of the retina images that have a higher contrast [44], with tile size
8 × 8 and Clip Limit 5.0.

• Image Noise Removal: The CLAHE method can cause some noise in the images [54]
and, to remove this noise, we applied the Gaussian filter, as represented in
Equation (1).

G0(x, y) = Ae
−(x−μx)2

2σ2
x

+
−(y−μy)2

2σ2
y (1)

where μ is the mean, A is the amplitude and σ is the standard deviation of each of the
variables x and y.

• Image Cropping: The images were cropped to eliminate the unnecessary black pixels
around the retina. Thus, the bounding box lesion positions in the annotation files
were changed. To fix that, we automated changing the bounding box position of each
image based on the number of removed pixels around the retina.

• Colour Normalisation: The retina images were captured from patients of different age,
and various ethnicity [58], at different levels of lighting in the fundus image. These
conditions have an effect on the value of pixel intensity of each image and create
unnecessary variation in the image [58]. To overcome this, the retina images were
normalised by normalising each channel of RGB images. For the normalization, we
subtract the mean, and after that, divide the variance of the images [25], as shown in
Equation (2).
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z =
(x − u)

s
(2)

where x is training RGB retina images, u is the mean of the RGB retina training images
and s is the standard deviation of the training RGB retina images.

• Online data augmentation was adopted to enlarge the training dataset and to improve
the generalisation and performance of the CNN. The images were augmented by
performing rotation, flipping, shearing, and translation, as well as randomly dark-
ening and brightening them, as shown in Figure 8. The augmentation parameters
are presented in Table 5. Finally, the images were resized into a fixed size that varied
according to the CNN used.

• Extract Lesions Patches: Some preprocessing methods were applied for Lesion local-
ization Method to extract the lesion patches from each image for the CNN training.
First, we cropped the annotated bounding box of each lesion and then padded it by
zero if its size was less than (65 × 65); otherwise, we resized the patch to (65 × 65) to
standardise the size of the patches.

Figure 6. The retina images preprocessing methods.

Figure 7. Sample images of the (a) original image and (b) the preprocessing image.

Figure 8. Sample of an image augmentation: (a) original image, (b) flipped image, (c) rotated image,
(d) sheared image, (e) translated image and (f) brightened image.
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In addition to the above preprocessing methods, we noticed that some of the image
annotation files contained duplicate lesions. Thus, we automated the removal of the
duplicate lesions in the annotation file as in Algorithm 1. Moreover, the bounding box of
each lesion was enlarged by 10 pixels around each lesion to make the lesions clearer for
learning. The chosen number was suitable for the resolution used.

Table 5. Data augmentation parameters.

Transformation Type Description

Rotation Rotate the image randomly between (−35◦, 35◦).
Flipping Horizontal and vertical flip for the images.
Shearing Randomly Shear images with angle between −15◦ and 15◦.
Translation Randomly with shift between −10% and 10% of pixels.

Brightness range
Randomly darken the image and brighten. The values less than 1.0
the image darken whereas values larger than 1.0 brighten the image.
The used values (0.25, 1.25).

Algorithm 1: Automate detecting and removing duplicate lesions.
Input : The annotation file of an image.
Ouput : The annotation file of an image without lesions duplication.
box: contain the position values (xmin, xmax, ymin and ymax) of a lesion.
Declare list Box-list.
for each box in annotation file do

Boxes = [xmin, xmax, ymin, ymax]
if boxes in Box-list then

remove box
else

append boxes to Box-list
end

end

3.3. Image Based Method

This method takes the whole image as input to the CNN. The CNN architecture
involves four main layers: convolution layers (CONV), pooling layers, fully connected
layers (FC) and classification layer. The CONV layer role is to extract the features of the
images by convolving different filters, while the pooling layer reduce the dimensions of the
feature maps [59]. The FC layers are a compact feature to describe the whole input image.
The Batch Normalisation layer role is to normalise the inputs of a layer during training to
increase the training speed and regularise the CNN. We proposed two simple custom CNN
models with different image sizes to classify the DR images. Moreover, EfficientNetB0 [12]
was fine-tuned to classify the DR images.

3.3.1. Designed CNN Model

We started designing the proposed CNN as similar CNN from related works like [26].
Then, we increased the input layer size to consider the MA lesion and the number of
CNN layers were increased gradually to improve the CNN performance. We adjusted the
hyperparameter as in Section 4. After many attempts with many CNNs architectures as
described in Section 4.3, we improved the DR classification using the proposed CNN.

The first proposed CNN (CNN299) contains one Zero Padding layer with a value
of 2, four CONV layers, four Max Pooling layers, six Batch Normalization layers, two
FC layers and one SoftMax layer for classification. The second proposed CNN (CNN512)
contains one Zero Padding layer with a value of 2, six CONV layers, each followed by Max
Pooling layers, eight Batch Normalization layers, two FC layers and one SoftMax layer for
classification. The used input size of the CNNs was chosen to be suitable to the available
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computation power and it was not too small in order to avoid losing small lesions. The
input image size was 299 × 299 × 3 for CNN299 and 512 × 512 × 3 for CNN512. The
number of parameters of the CNN299 was 28,412,981 and for the CNN512 was 8,211,613.
The CNN299 and CNN512 architectures are shown in Figure 9 and Table 6 and 7.

Figure 9. The proposed custom CNN architectures: (a) CNN299 and (b) CNN512.

Table 6. The proposed CNN299 layers detail.

Layer Operator Layer Details

Input Layer Zero Padding layer Padding (2,2)
Layer 1 2D CONV layer Kernel number = 32, kernel size = 3
Layer 2 Batch Normalization layer -
Layer 3 Relu layer -
Layer 4 Max Pooling layer Pooling size (2,2)
Layer 5 2D CONV layer Kernel number = 64, kernel size = 3
Layer 6 Batch Normalization layer -
Layer 7 Relu layer -
Layer 8 Max Pooling layer Pooling size (2,2)
Layer 9 2D CONV layer Kernel number = 96, kernel size = 3
Layer 10 Batch Normalization layer -
Layer 11 Relu layer -
Layer 12 Max Pooling layer Pooling size (2,2)
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Table 6. Cont.

Layer Operator Layer Details

Layer 13 2D CONV layer Kernel number = 96, kernel size = 3
Layer 14 Batch Normalization layer -
Layer 15 Relu layer -
Layer 16 Max Pooling layer Pooling size (2,2)
Layer 17 Flatten layer -
Layer 18 FC layer Neurons number = 1000
Layer 19 Batch Normalization layer -
Layer 20 Relu layer -
Layer 21 FC layer Neurons number = 500
Layer 22 Batch Normalization layer -
Layer 23 Relu layer -
Layer 24 FC layer With SoftMax activation

Table 7. The proposed CNN512 layers detail.

Layer Operator Layer Details

Input Layer Zero Padding layer Padding (2,2)
Layer 1 2D CONV layer Kernel number = 32, kernel size = 3
Layer 2 Batch Normalization layer -
Layer 3 Relu layer -
Layer 4 Max Pooling layer Pooling size (2,2)
Layer 5 2D CONV layer Kernel number = 64, kernel size = 3
Layer 6 Batch Normalization layer -
Layer 7 Relu layer -
Layer 8 Max Pooling layer Pooling size (2,2)
Layer 9 2D CONV layer Kernel number = 96, kernel size = 3
Layer 10 Batch Normalization layer -
Layer 11 Relu layer -
Layer 12 Max Pooling layer Pooling size (2,2)
Layer 13 2D CONV layer Kernel number = 96, kernel size = 3
Layer 14 Batch Normalization layer -
Layer 15 Relu layer -
Layer 16 Max Pooling layer Pooling size (2,2)
Layer 17 2D CONV layer Kernel number = 128, kernel size = 3
Layer 18 Batch Normalization layer -
Layer 19 Relu layer -
Layer 20 Max Pooling layer Pooling size (2,2)
Layer 21 2D CONV layer Kernel number = 200, kernel size = 3
Layer 22 Batch Normalization layer -
Layer 23 Relu layer -
Layer 24 Max Pooling layer Pooling size (2,2)
Layer 25 Flatten layer -
Layer 26 FC layer Neurons number = 1000
Layer 27 Batch Normalization layer -
Layer 28 Relu layer -
Layer 29 FC layer Neurons number = 500
Layer 30 Batch Normalization layer -
Layer 31 Relu layer -
Layer 32 FC layer With SoftMax activation

3.3.2. Using Transfer Learning

Transfer learning is a well-known machine learning technique in which a pre-trained
neural network is used to solve a problem similar to what the network was initially de-
signed and trained to solve. Transfer learning is a commonly used technique with deep
learning as it can overcome many problems associated with deep neural networks. Using
transfer learning can reduce the training time and tuning efforts for many hyperparame-
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ters [60]. It transfers the knowledge from a pretrained network that was trained on large
training data to a target network in which limited training data are available [11]. There
are two deep transfer learning strategies: feature extraction of pretrained models and
fine-tuning the pretrained models [10]. EfficientNet is a pretrained network [12]. It is a
recently proposed model and has achieved state-of-the-art results on the ImageNet dataset.
EfficientNetB0 [12] was fine-tuned by initialising its weights with ImageNet weights and
re-training all of its layers with the used retina datasets. The top layers of EfficientNetB0
were removed and replaced by new layers which are the Global Average Pooling (GAP)
layer, two FC layers and SoftMax layer, as shown in Figure 10. At FC layers, we added
Dropout with a rate of 0.5 in all used CNNs to overcome an overfitting problem.

Figure 10. Transfer learning EfficientNetB0.

3.4. Lesion Localization Method

The current work proposed two methods for the lesions localization: fine-tuning
YOLOv3 [13] and cropping the images into small and fixed-size patches. YOLOv3 is a
publicly available object detector model that predicts object bounding box (localise) and
predict its class. YOLOv3 predicts objects from the whole image at three different outputs
with three different scales in order to predict the object boxes. YOLOv3 contains 53 CONV
layers formed in a network called Darknet-53 [13].

In the first method, all the YOLOv3 [13] layers were fine-tuned and re-trained using
the preprocessed images of the DDR dataset, with an input size of 416 × 416 pixels to
localise and classify all the DR lesions types. One dropout after layer 79 was added to
improve the performance of YOLOv3. The second method to localise lesions is based on
cropping the preprocessing images of the size 600 × 600 into 65 × 65 patches and then
feeding them to CNN299 to classify them into different lesions types, as shown in Figure 11.
The annotated lesions files were used to extract the lesion patches and then preprocess
them. After that, these preprocessed patches were used to train the CNN299 from scratch
to classify the various DR lesions of the DDR dataset. For detecting the non-lesions patches,
we extracted patches from the non-DR images. Figure 11 illustrates the steps of the Lesion
Localization method.

Moreover, the performance of classifying the images into DR stages based on the
detected number of lesions types from Lesion localization Method was investigated by
training three machine learning methods. Three different classifiers were tested to classify
the DR stage according to the existence of various DR lesions. These classifiers were the
k-nearest neighbors (KNN) [61], artificial neural networks (ANN) and the support vector
machine (SVM). The ANN used contains three FC layers, with each FC followed by Batch
Normalization layers. The last layer was the SoftMax layer for classification. The classifi-
cation performance of localization method was compared with the Image Based Method.
Finally, the robust classification method was fused with a strong localization method.
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Figure 11. The proposed Lesion Localization method to detect DR stages and locate lesions for
(a) train and (b) test images.

4. Experiments and Results

4.1. Configuration

The proposed system was implemented using the Python language and Keras frame-
work [62] built on top of TensorFlow. All experiments were performed on two GPU
resources: NVIDIA Tesla K20 GPU with 5 GB memory and NVIDIA GeForce 930 mx with
2 GB memory. The datasets were split into 80% for training and 20% for testing.

Deep learning network hyperparameters are variables that pre-select by a human de-
signer or tuned via optimizing hyperparameters methods [63]. These methods involve random
search [64], grid search [65], and gradient-based optimization [66]. We utilized manual hyper-
parameters tuning to speed up the process of tuning hyperparameters. The hyperparameter
configuration of the used CNN models and YOLOv3 are shown in Tables 8 and 9, respectively.

Table 8. The hyperparameter configuration of CNNs.

Configuration Values

Optimizer SGD
Momentum 0.9

Max Learning rate 1 × 10−1 in custom CNNs
1 × 10−2 in EfficientNetB0

Base Learning rate 1 × 10−4

Mode triangular
Class weight auto
Dropout 0.5
Augmentation 20 times

Table 9. The YOLOv3 hyperparameter configuration.

Configuration Values

Optimizer SGD and Adam
Momentum 0.9
Learning rate 1 × 10−3

Anchors number 9
Augmentation 5 times
Input size (416,416,3)
CNN model Darknet53
Object threshold 0.45
NMS threshold 0.45
Dropout 0.5
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4.2. Performance Metrics

The metrics used to evaluate the performance of CNNs are accuracy (ACC), specificity
(SP), sensitivity (SEN), Receiver Operating Characteristic (ROC) curve, Area Under the ROC
Curve (AUC), positive predictive value (PPV) (also called Precision), Negative predictive
value (NPV) and Disc similarity coefficient (DSC). ACC is the percentage of accurately
classified images. SP is the percentage of images accurately classified as normal images,
while SEN is the percentage of images accurately classified as DR images. The ratio between
SEN and SP is graphically illustrated in the ROC curve and the value computed by ROC
AUC. PPV is the percentage of DR images accurately classified as DR images while NPV
is the percentage of normal images accurately classified as normal. The metrics used to
evaluate the performance of YOLOv3 is Average precision (AP). The mean AP (mAP) is
the average of the AP for each class. Each measurement is illustrated as follows.

SP =
TN

(TN + FP)
(3)

SEN =
TP

(TP + FN)
(4)

ACC =
(TN + TP)

(TN + TP + FN + FP)
(5)

PPV =
TP

(TP + FP)
(6)

NPV =
TN

(TN + FN)
(7)

AP = ∑
n
(Rn − Rn−1)Pn (8)

where false positive (FP) refers to the non-DR images that are classified as DR, while false
negative (FN) means the DR images that are classified as non-DR. True positive (TP) refers
to the DR images that are classified as DR and true negative (TN) is the non-DR images
that are classified as non-DR. Rn and Pn are the recall and the precision at the n threshold.

4.3. Image Based Method Results

Regarding the Image-Based Method, three CNN architectures were built for detecting
the five DR stages: two custom CNNs, with different input sizes that were trained from
scratch, and one fine-tuned EfficientNetB0. The CNNs were trained and tested on the DDR
and the Kaggle APTOS 2019 datasets independently.

In the experiments, the stochastic gradient descent (SGD) algorithm with the Nesterov
Momentum was adopted. Moreover, Cyclical Learning Rates [67] with Learning rate
range [1 × 10−4, 1 × 10−1] and [1 × 10−4, 1 × 10−2] were used for the custom CNNs and
EfficientNetB0, respectively. The dropout at FC layers of the CNNs was implemented
to reduce the overfitting and improve the CNNs’ performance. The distribution of all
datasets’ classes was imbalanced and, to fix that, the class weight parameter was set to
“auto”. The experiments showed that the CNN512 with the input size of 512 had a better
performance than the other CNNs in both datasets. From Tables 10 and 11, we found that
the CNN512 with dropout achieved the highest ACC of 0.841 and 0.886 in the APTOS
2019 and the DDR datasets, respectively. The experiments also showed that the enhanced
images luminosity method did not improve the classification accuracy when applied to the
APTOS 2019 dataset with the CNN299 model, as shown in Table 11. Tables 12 and 13 show
the classification results of each DR stage from the APTOS 2019 and the DDR datasets,
respectively. The ROC curves and confusion matrixes of the best proposed model results
are shown in Figure 12.
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Figure 12. The ROC curves of the (a) APTOS 2019 and (b) the DDR datasets on CNN512.

Table 10. Comparison between the proposed models and the state-of-the-art models on the DDR dataset.

Model Image Size ACC SEN SP AUC

Tao Li et al. [37] 224 0.828 - - -
Along He et al. [32] 512 0.856 - - -
CNN299 299 0.800 - - -
CNN299 + dropout 299 0.833 - - -
CNN512 512 0.858 0.858 0.963 0.975
CNN512 + dropout 512 0.886 0.886 0.971 0.979
EfficientNetB0 224 0.823 - - -
EfficientNetB0 + dropout 224 0.822 - - -
Models fusion 512 0.890 0.890 0.973 0.970

Table 11. Comparison between the proposed models and the state of-art models on the APTOS
2019 dataset.

Model Image Size ACC SEN SP AUC

Omar Dekhil et al. [31] 224 0.77 - - -
kassani et al. [33] 600 83.09 88.2 87.0 -
Bodapati et al. [34] - 82.54 83 - -
CNN299 299 0.821 - - -
CNN299 + dropout 299 0.832 - - -
CNN299 + dropout + enhance
luminosity 299 0.832 - - -

CNN512 512 0.834 0.834 0.957 0.97
CNN512 + dropout 512 0.841 0.841 0.960 0.973
EfficientNetB0 224 0.823 - - -
EfficientNetB0 + dropout 224 0.822 - - -
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Table 12. The performance measures of the DR stages using CNN512 for the APTOS 2019 dataset.

Stage SEN SP PPV NPV

No DR 0.978 0.991 0.991 0.979
Mild DR 0.730 0.959 0.667 0.969
Moderate DR 0.860 0.897 0.758 0.945
Severe DR 0 100 0 0.947
Proliferative DR 0.644 0.954 0.550 0.968

Table 13. The performance measures of the DR stages using CNN512 for the DDR dataset.

Stage SEN SP PPV NPV

No DR 0.998 0.904 0.912 0.997
Mild DR 0.246 0.993 0.660 0.961
Moderate DR 0.886 0.919 0.859 0.935
Severe DR 0.340 0.998 0.762 0.988
Proliferative DR 0.703 0.993 0.901 0.977

4.4. Lesion Localization Method Results

YOLOv3 is trained on the DDR dataset to locate all DR lesions types and draws a
bounding box around each lesion. YOLOv3 is trained using 608 images and tested using
149 images with 9 anchors. In the experiments, all YOLOv3 layers were retrained on the
DDR dataset with a SGD optimizer, 0.9 momentum and fixed 1 × 10−3 learning rate. It
was observed through the experiments that YOLOv3 with the learning rate 1 × 10−3 and
one dropout after layer 79 had a better performance on the valid DDR dataset. YOLOv3
achieved the highest mAP of 0.216 at localising the DR lesions of the valid set when one
dropout and the Adam optimizer were used, as shown in Table 14.

On the other hand, the KNN method obtained the best results for classifying the DR
lesions into various DR stages, as in Table 15. The detected lesions by YOLOv3 and CNN299
were fed to the KNN or ANN to classify them into the different DR stages. When YOLOv3
and CNN299 did not detect any lesions, the image was classified as no DR stage. From
Table 16, we found that the detected lesions from YOLOv3 with SGD and then classified by
the KNN achieved the highest ACC of 0.712 in the valid set of the DDR dataset.

Table 14. Results of YOLOv3 on the DDR Dataset.

Model mAP

YOLOv3 + SGD 0.110
YOLOv3 + SGD+ dropout 0.171
YOLOv3 + Adam optimizer + dropout 0.216

Table 15. The DR stages classification training results using machine learning.

Model ACC

KNN 0.985
ANN 0.893
SVM 0.872

Table 16. The results of DR stages classification using Lesion localization Method on the DDR dataset.

Model
Valid Images
Number

ACC SEN SP AUC

CNN299 + KNN 250 images 0.62 0.62 0.90 0.762
YOLOv3 + SGD+ dropout + KNN 250 images 0.712 0.712 0.928 0.820
YOLOv3 + Adam+ dropout + KNN 250 images 0.552 0.552 0.888 0.720
YOLOv3 + SGD+ dropout + KNN 2503 images 0.528 0.528 0.882 0.705
YOLOv3 + ADAM+ dropout +ANN 2503 images 0.481 0.481 0.870 0.789
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4.5. Comparison against State-of-the-Art Methods

Compared to the state of-the-art methods on the DDR and the APTOS 2019 datasets, our
CNN512 achieved high results. Our CNN512 on the DDR dataset achieved a 0.886 ACC, while
in the works of [32,37] achieved 0.828 and 0.856 ACC, respectively. In the APTOS 2019 dataset,
our CNN512 achieved a 0.841 ACC, which is better than the works of [31,33,34]. The results of
the CNNs in both datasets are shown in Tables 10 and 11, respectively.

When compared to the results achieved by YOLOv3 on the DDR dataset with the
state-of-the-art methods, YOLOv3 obtained better results. Table 17 shows that YOLOv3
achieved a better mAP on a valid set than the work of [37] that used Faster RCNN.

Table 17. Comparison between the YOLOv3 model and the state of-art models on the DDR dataset.

Model mAP

Tao li et al. [37] 0.092
YOLOv3 + Adam optimizer + dropout 0.216

4.6. Models Fusion

From the experiments, we found that the proposed CNN512 achieved the best DR
stages classification results on the DDR dataset unlike the classification based on the
detected DR lesions. Also, YOLOv3 classified and localised lesions on the retina with
the best results. Thus, for classifying the retina images to the DR stages and localising
DR lesions at the same time with the best results, CNN512 and YOLOv3 were fused.
The classification predictions from the CNN512 model and YOLOv3 model with ANN
were combined using average voting to fuse models. Average voting takes the average
probabilities predicted from the two models as the final prediction result. When compared
the results achieved by fused models on the DDR dataset with the state-of-the-art methods,
the fused models obtained a 0.890 ACC exceeds the state-of-the-art results as shown in
Table 10. Sample images visualization of lesions localising and stages classifying for the
ground truth images and predicted images by the fused models are shown in Figure 13.
The ROC curves and confusion matrixes of the fused models are shown in Figure 14. The
average inference time for the fused models is 6.36 s using NVIDIA Tesla K20 GPU.

Figure 13. Sample of the DDR images visualization for: (a) the ground truth images annotation,
(b) predicted images by fused model.
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Figure 14. The confusion matrixes and ROC curves of the DDR dataset on fused models.

5. Discussion

Diabetic retinopathy (DR) is one of the most severe diabetes complications, causing
non-reversible damage to retina blood vessels. Regular scanning using high-efficiency
computer-based systems to diagnose cases early will help diabetes patients to stop or
delay the deterioration of sight. This study proposed a DR screening system using the
deep learning technique. The proposed screening system provides classification and DR
lesions localization for DR images to help ophthalmologists diagnose the patients’ DR
stage. The experimental results demonstrated that our custom CNN512 model achieved
state-of-the-art classification results on the used two datasets.

Furthermore, the fine-tuned YOLOv3 model obtained state-of-the-art localization
results on the DDR dataset. CNN512 model and the fine-tuned YOLOv3 model were
integrated to classify the DR images into stages and localize all lesion types. As we notice
from the results, all of the models are slightly high with the DDR dataset rather than the
APTOS dataset, which might result from the larger DDR training set. If a close look is taken
on Tables 12 and 13, it will be noticed that the sensitivity for mild and severe DR is lower
than other stages; this resulted from the imbalance of the used datasets. For example, the
mild class on DDR is less than 5% of the total dataset size; also, the severe stage image size
is less than 2% of the DDR dataset. This limits the system performance for both mild and
severe classes’ diagnoses, and it is reflected on PPV value even when we used the data
augmentation technique to increase the data size. We inferred that, as the input image’s size
increased, the model’s accuracy increased but this is limited with the available computing
power. Some of the misclassified lesions in the images were examined and we found that
spots detected on the retina by YOLOv3 were not in the ground truth lesions. The missed
labeling of used images affected the results that the model obtained. Figure 15 shows
samples of the incorrectly labeled lesions from the DDR dataset.

Recently, a new trend has appeared in DR which is developing a system that attempts
to predict the development and change in DR over time as in [68,69]. In [68], they predicted
future DR image using vessel and lesion information, achieving a 0.74 F1-score. In contrast,
in [69], they evaluated the changes in DR using optimization algorithm and Support Vector
Machines, obtaining a 95.23% ACC.
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Figure 15. Samples of the miss labeled lesions from the DDR dataset compared to the predicted
lesions by YOLOv3.

In the future, we could improve the localization of the lesions by creating a custom
object detection model and by improving the performance classification of the CNN512
by adding more layers. Testing and tuning the system on more balanced datasets might
improve its performance. In addition, we aim to adopt YOLOv4 and YOLOv5 to detect
all DR lesions to obtain their benefits, such as ACC and speed. The current work opens
the pathway to building a complete automatic follow-up system for DR. DR is a lifelong
disease with a prolonged potential phase, so patients follow-up regularly will prevent
patients’ blindness and delay sight deterioration. Table 18 Comparing the performance of
the proposed models in term of accuracy.

Table 18. The performance comparison among all of the models.

Model EfficientNetB0
+ Dropout

CNN299 + Dropout CNN512 + Dropout Model
Fusion

Dataset APTOS DDR APTOS DDR APTOS DDR DDR
ACC 0.822 0.822 0.832 0.833 0.841 0.886 0.890

6. Conclusions

The prevalence of diabetes is increasing worldwide, and the complication of DR is
also increasing. This disorder is threatening diabetes patients’ vision if DR is detected in
the last stages. Therefore, the detection and treatment of DR in its early stages is essential
to decrease the risk of blindness. The manual diagnosis process of DR with the increasing
suffering from DR became not sufficiently effective. Therefore, automating DR’s diagnosis
using computer-aided screening systems (CASS) saves effort, time, and cost.

Additionally, the most critical point for using CASS is to avoid the negative impact
of losing eyesight. Recently, the deep learning (DL) method has achieved superior perfor-
mance in classification and segmentation. The current work provides an effective complete
automated screening system to help in DR diagnosis. The quality and balance of the
datasets used to build a DR screening system are very critical. In the future, we aim to
combine multiple datasets to achieve the balance of the dataset.
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Abstract: Early detection of thyroid nodules can greatly contribute to the prediction of cancer
burdening and the steering of personalized management. We propose a novel multimodal MRI-
based computer-aided diagnosis (CAD) system that differentiates malignant from benign thyroid
nodules. The proposed CAD is based on a novel convolutional neural network (CNN)-based texture
learning architecture. The main contribution of our system is three-fold. Firstly, our system is the first
of its kind to combine T2-weighted MRI and apparent diffusion coefficient (ADC) maps using a CNN
to model thyroid cancer. Secondly, it learns independent texture features for each input, giving it
more advanced capabilities to simultaneously extract complex texture patterns from both modalities.
Finally, the proposed system uses multiple channels for each input to combine multiple scans
collected into the deep learning process using different values of the configurable diffusion gradient
coefficient. Accordingly, the proposed system would enable the learning of more advanced radiomics
with an additional advantage of visualizing the texture patterns after learning. We evaluated the
proposed system using data collected from a cohort of 49 patients with pathologically proven thyroid
nodules. The accuracy of the proposed system has also been compared against recent CNN models
as well as multiple machine learning (ML) frameworks that use hand-crafted features. Our system
achieved the highest performance among all compared methods with a diagnostic accuracy of 0.87,
specificity of 0.97, and sensitivity of 0.69. The results suggest that texture features extracted using
deep learning can contribute to the protocols of cancer diagnosis and treatment and can lead to the
advancement of precision medicine.

Keywords: thyroid; cancer; CNN; MRI; DWI; radiomics

1. Introduction

In the United States, approximately 52,890 new cases of thyroid cancer and about
2180 deaths were estimated in 2020 according to the American Cancer Society’s most
recent statistics [1]. The prevalence of thyroid nodules is approximately 5% in women
and 1% in men [2]. Among the cases of thyroid nodules, 7–15% evolve into malignant
tumors (cancerous tissue), and this rate depends on age, sex, radiation exposure history,
family history, and other factors [2]. Malignant tumors can be classified into three major
categories: Differentiated thyroid cancer (DTC), medullary thyroid cancer, and anaplastic
thyroid cancer. DTC has the biggest share of thyroid cancer, with a share of more than 90%.
DTC includes two main subcategories: papillary thyroid carcinoma (PTC) and follicular
thyroid carcinoma (FTC). PTC accounts for more than 80% of all thyroid cancers [2].

Sensors 2021, 21, 3878. https://doi.org/10.3390/s21113878 https://www.mdpi.com/journal/sensors
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The diagnostic criteria of thyroid nodules involve different procedures that include
physical examination, blood test, ultrasound (US) imaging, magnetic resonance imaging
(MRI), and a biopsy procedure. The detection of smaller nodules becomes easier over
time due to the current advances in US and MRI. However, cancer diagnosis and early
stratification of nodules is still challenging and mainly performed using biopsy [2]. Al-
though biopsy, either fine-needle aspiration or surgical excision of the nodule, is still the
definitive way of clinical evaluation, this invasive procedure is costly and may introduce a
false negative error depending on the biopsy technique and the size of the nodule being
aspirated [3–6].

Non-invasive-based approaches have been proposed by several researchers to pro-
vide accurate detection and stratification of thyroid cancer [7–10]. These methods utilize
different types of medical images. The type of imaging technology used as an input to
artificial intelligence (AI) algorithms can affects the accuracy of the desired computer-aided
diagnosis (CAD) system. US imaging is currently used as a first-line evaluation of sus-
pected thyroid nodules [2], and specific features of thyroid nodules in US imaging can
be associated with higher risk of malignancy. However, the appearance of those features
in US images is operator-dependent, and also multiple features need to be considered
simultaneously during the evaluation in order to provide sufficient malignancy diagnostic
power [2]. These factors cause various limitations in AI-based systems that use US images
for thyroid nodule classification [7–9]. Compared to US, MR imaging modalities have
also been used in the literature recently. For instance, T1-weighted MRI and T2-weighted
MRI were used in a recent study to perform thyroid nodule classification [10]. Some MRI
modalities can help distinguish between different substances in the tissue. For example, fats
appear bright in T1-weighted MRI images [11], while fluids appear bright in T2-weighted
MRI images. Studying T2-weighted MRI images can help in the modeling of fluid patterns
in the tissue [12]. Over and above that, diffusion-weighted MRI (DWI) can model the
diffusivity of fluids in the tissue by measuring constraints of fluid diffusion in different
directions [13,14]. Therefore, DWI can model the dynamics of fluids in the tissue, and these
dynamics can be presented by computing the apparent diffusion coefficient (ADC).

The cell proliferation process associated with malignant thyroid nodules can have a
significant effect on the patterns and the dynamics of the extracellular matrix (ECM) in the
thyroid tissue. Studies suggest that statistical analysis between ADC value and T2-weighted
images, and therefore can differentiate between malignant and benign nodules [15–17].
Thus, in the preliminary analysis of our work, we examined if the intensity variations
between malignant and benign groups are significantly different or not, see Figure 1. To
achieve this, we employed a statistical analysis test to determine the differences between
the two groups as observed in each of the T2-weighted images and the ADC maps (three
different gradient coefficients were used to generate the ADC maps). Our analysis showed
significant heterogeneity in intensity variance between T2-weighted images and ADC
maps, which suggests that feeding the T2-weighted images and the ADC maps each to a
separate input branch of the CNN would enables learning of independent textures in each
branch and therefore this would enhance the accuracy of our system.

Inspired by our preliminary statistical analysis results, our initial exploratory work [18],
and other studies [15–17], we propose a novel CNN-based CAD system that integrate T2-
weighted images and ADC maps using a multi-input CNN network for thyroid nodules
detection and classification, see Figure 2. Our work is in contrast to one recent study
that proposed a CNN-based system using multimodel MRI but does not include ADC
maps [10]. ADC maps can be considered as an indication of cell density in tissues [19] and
therefore can be used to search for cancer biomarkers, which usually involve high rates of
cell proliferation. Similar to a recent study [20] that uses multiparametric MRI radiomics
for prediction, we use a CNN-based structure instead of hand-crafted features—namely, we
utilize a process of independent convolutions for ADC and DWI before fusing them using
the dense fully connected layer. This process increases the possibility to detect deep texture
patterns from each modality without loosing the capability for automatic searching for
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visual features, provided by the CNN. Our system integrates multiple ADC maps obtained
from different gradient coefficients (a configurable parameter in the MRI scanner) for each
sample. Then, the combination of all inputs is fed to our CNN model as a multichannel
3D input in order to achieve enhanced learning of texture features, thus providing a more
accurate diagnosis.

Figure 1. Illustrative diagram of the preliminary statistical study performed on our dataset. A high-pass Laplacian spacial
filter was applied to the images to estimate intensity variation at the pixel level. Following that, statistical analysis was
performed to calculate the mean difference between malignant and benign nodules.

Figure 2. Schematic diagram that represents the training pipeline for the proposed system. MRI data were collected from
human subject cohort. ADC maps were computed in order to prepare the two inputs for the CNN. The objective of the
proposed system was to learn the texture patterns in DWI images and correlate them with pathological finding.

2. Materials and Methods

2.1. Study Participants and Data Collection

Data were collected in this study from 49 patients with pathologically proven thyroid
nodules. The age range is 25 to 70 years. Imaging of the thyroid gland was performed at
Mansoura University, Egypt with a 1.5 T Ingenia MR scanner (Philips Medical Systems,
Best, Netherlands) using a head/neck circular polarization surface coil. All participants
were fully informed about the aims of the study and provided their informed consent.
The inclusion criteria for the study were untreated patients with thyroid nodules whose
malignancy status was unclear from ultrasound examination. Patients underwent thyroid
core biopsy or surgery after MR imaging. Histopathologic diagnoses were provided by an
experienced cytologist or pathologist. In total, there are 17 malignant nodules in 17 patients
and 40 benign nodules in 32 patients included in our study.

DWI volumes that employ a multislice, single-shot, spin-echo, echo-planar imaging
sequence with TR = 10,000 ms, TE = 108 ms, and 125 kHz bandwidth were extracted. Axial
diffusion-weighted slices over the region of interest were 5 mm thick with an inter-slice
gap of 1 mm, 25 cm or 30 cm FOV, and 256 × 256 acquisition matrix. For DWI, a diffusion
gradient was applied during scanning with b-values of b = 500 s/mm2, b = 1000 s/mm2,
and b = 1500 s/mm2. T2-weighted images are extracted using b-value of b = 0 s/mm2.
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2.2. ADC Map Calculation and Nodule Segmentation

Multiple steps were applied to the collected MR images in order to prepare the dataset
to be used by the training model, see Figure 2. Nodule segmentation was performed
manually in our study. An experienced radiologist segmented each nodule as it appeared
in each T2-weighted slice (b = 0 s/mm2) and in each DWI slice. Diffusion-weighted
MRI scans were taken in the same session and using the same resolution, number of
slices, and inter-slice gap. Therefore, no registration was applied to align the different
b-values. We have future plans to implement an automated segmentation algorithm for
nodule extraction. The produced manual segmentation was stored in the form of binary
images. The binary image produced from DWI slice with b = 0 s/mm2 was re-used
during processing phases on the corresponding slice at all other b-values, and also was
re-used for the corresponding slice at ADC500, ADC1000, and ADC1500. We extracted
each nodule in both T2-weighted images and ADC maps using a square-bounding box.
We regularized the spatial domain by resizing extracted box into unified 48 × 48 × 20
volumes by adding zero-padding channels. We then normalized the voxel-intensity in that
volume to be in 0–1 range. Each segmented nodule was provided for the network model
on a black background and padding. Apparent diffusion coefficients (ADC maps) were
calculated at each non-zero b-value (500, 1000, and 1500) by combining the diffusion images
at the corresponding b-value with the image at b = 0 s/mm2, and then we substituted, at
the voxel level, this into the Stejskal–Tanner equation [21]. The generated images of this
process are referred to as ADC500, ADC1000, and ADC1500. Since diffusion-weighted
MRI (DW-MRI) as an absolute value usually does not reflect direct biological activity, the
relative differences between DW-MRI at different b-values were used instead (i.e., ADC) to
model the diffusivity in the tissue. Usually, a b-value of 0 is taken as reference, and which
is why we computed three ADC values that correspond to 3 b-values of 500, 1000, and 1500
referenced to a b-value of 0.

2.3. Proposed Learning Model: Multi-Input CNN

To build our diagnostic system, we propose a novel multi-input deep-learning net-
work. Our architecture follows the feed-forward convolutional neural network (CNN)
structure. Our implementation uses the Keras package in Python, and the parameters
used in our training model are summarized in Table 1. The proposed architecture, shown
in Figure 3, consists of two identical branches in the structure. The advantages of our
network compared with others is that the generated kernels are governed by the fusion of
T2-weighted images and ADC maps of the training samples during the forward propaga-
tion and backward propagation of our neural network. Additionally, a 1 × 1 × 1 3Dconv
layer was added to the proposed design in order to perform compression for the features
maps. The advantage of this addition is that the number of weights that needs to be learned
during the training phase is extremely minmized, thus ensuring fast learning and diagnosis.
For the analysis, each of the base images and the ADC maps was fed to the respective
branch. The convolution layers were constructed from 3 × 3 × 3 3Dconv (with 32 filters and
3 × 3 × 3 kernel size), 1 × 1 × 1 3Dconv (with 16 filters and 1 × 1 × 1 kernel size), pooling
block (2 × 2 × 1 pool size, maximum value pooling). Each branch had two convolution
blocks before being concatenated into the dense fully connected layers (2 layers). Those lay-
ers were one hidden layer of 10 neurons with ReLU activation function [22] and one output
layer of 1 neuron with sigmoid activation function [23]. The total number of parameters in
our proposed network is 127,829 parameters.

The condition of unbalanced classes during the training phase was handled by con-
figuring the weights in the mean-square error (MSE) loss function we used in the back
propagation of the network. The ratio of the weight of malignant class to the weight of
benign class was set to 16/32 when leaving out one malignant sample for testing, and
the same ratio was set to 17/31 when leaving-out one benign sample for testing. The loss
function used is given in Equation (1), where N is the number of training samples, y is the
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output of the neural network observed during forward propagation, yi is the label of the
sample, and wi is the weight of each training sample.

Loss =
1
N

N

∑
i=0

wi(y − yi)
2 (1)

We used Adam stochastic to update the parameters of the network during learning [24].
The learning rate and other parameters of the optimizer were tuned and kept constant
during our evaluation. Additionally, we used the ratio of 1 to 3 of the samples as validation
data during the learning phase.

Table 1. Summary of the network parameters used during model training.

Parameter Value

Kernel Size 3 × 3 × 3
Number of Convolution Kernels 32
Number of 1 × 1 Kernels 16
Fully Connected Layers 2
Convolutional Layers 2
Activation ReLU
Pooling Size 2 × 2 × 2
Pooling MaxPooling
Number of Epochs 100
Input Shape 48 × 48 × 20

Figure 3. (a) Schematic diagram of the proposed CAD system that shows the design and the layers of the multi-input 3D
CNN deep-learning framework. (b) Illustrative diagram that shows the cross-validation criteria used in our processing.

2.4. Other Learning Models

In order to perform bench-marking for our system, we compared its performance
with other methods. We first compared the results with ML methods that use hand-
crafted features, and then we compared the results with two state-of-the-art CNN models.
Regarding the first comparison, the used hand-crafted features can be classified into three
groups: shape features, statistical features, and hand-crafted texture patterns features.
Starting with the shape features, we used nodule size (in voxels), convex hull ratio (defined
as the ratio between the nodule size and the convex hull size), bounding rectangle ratio
(defined as the ratio between the nodule size and the bounding rectangle size), and spherical
harmonics of 3D contour encapsulating the nodules. We estimated the spherical harmonics
inspired by [25] by the use of infinite set of harmonic functions defined on a spherical
representation. They arise from solving the angular portion of Laplace’s equation in
spherical coordinates using separation of variables. The degree of the spherical harmonics
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can define the level of non-homogeneity of the surface, and we can map this to the ability
to differentiate between malignant and benign nodules.

For the statistical features, we calculated the histogram of each image, and then in
each histogram we summarized their statistical profile using 5 features (mean, standard
deviation, entropy, skewness, kurtosis). This type of features is designed to summarize
the whole image by presenting it using certain values. The overall appearance of thyroid
nodule can reflect the first impression by experienced radiologists while examining the
MRI scan. Finally, for the hand-crafted texture patterns we built a filter-bank of 9 filters to
evaluate intensity variations between neighbor voxels. The used filter-bank is designed to
capture edges in 4 orientations, lines in 4 orientations, and the point response (all-directions
variability). The four orientations are horizontal, vertical and 2 diagonal orientations.

All features from the three hand-crafted features groups were evaluated for malig-
nancy detection capability using four different classifiers: decision tree (DT) [26], random
forest (RF) [27], Naive Bayes (NB) [28] and support vector machine (SVM) [29]. The classi-
fication models used in the benchmark were optimized to ensure appropriate comparison.
In DT, min sample split was examined. In RF, number of estimators and maximum depth
were examined. In SVM, C parameter is examined to tune the soft margin.

In addition to traditional ML methods, we compared our methods accuracy against
other CNN-based methods. For bench marking purpose, we used two state-of-the-art CNN
models for detection; AlexNet [30] and ResNet18 [31]. AlexNet is chosen as it is the first
deep learning computer vision to be recognized as a classification-winner of ILSVRC [32]
back in 2012. ResNet is chosen because it is the first ILSVRC winner that overachieve human
accuracy in classification under different appearance conditions [33]. For both methods, we
used Keras implementations in Python with the default configuration. AlexNet and ResNet
were applied to the combined T2-ADC input in the form of multiple input channels.

2.5. Evaluation Criteria

The evaluation criteria of our system use a leave-one-out cross-validation. We kept
the common network configuration fixed for our reported results, including the ablation
study, as well as when compared with other techniques. The proposed system evaluation
is based on four classification metrics: accuracy, precision, recall, and dice coefficient.

Additionally, further evaluation of the system robustness has been conducted using
the the receiver operating characteristics (ROC) analysis curve. The ROC curve is a plot
between the false positive rate and the true positive rate when we adjust the decision
threshold. Figure 4c shows ROCs of the proposed multi-input CNN framework compared
to the other frameworks discussed in this section. The area under the curve (AUC) of the
voting between two CNNs gives slightly higher value, but our system achieved the best
AUC compared with all other methods.

For the purpose of this analysis, the slice at which each thyroid nodule appears with
biggest size was extracted and processed as a 2D image for each of T2-weighted image and
ADC maps. Local intensity variations were modeled by high-pass filtering using a 3 × 3
Laplacian filter invariant to 45◦ rotations [34]. Tumor pixels were grouped into benign
and malignant groups (35,625 and 15,764 pixels, respectively). Supported by the high
number of samples, a Welch two-sample t-test was applied to determine difference the
mean between groups. A statistical package in R was used to generate the results.
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Figure 4. (a) Training versus validation accuracy curves with the number of epochs during network training. (b) Training
versus validation loss curves with the number of epochs during network training. (c) Receiver operating characteristic
curves (ROCs) of the proposed multi-input CNN framework compared to other methods. AUC is the area under the
curve.“DT”—Decision Tree. “RF”—random forest; “NB”—Naive Bayes; “SVM”—support vector machine.

2.6. Nodule Texture Visualization

Achieved kernels applied to each of the T2-weighted images and the ADC maps were
extracted from CNN network after the last epoch of training cycles. The extracted kernels
are converted from the 3D to 2D form by averaging the 3 depth channels. The kernels were
then clustered using hierarchical agglomerative clustering [35,36]. Silhouette score was
used for evaluating the fit of the estimated clusters [37]. The Sklearn package in Python
was used for both clustering processing and evaluation.

3. Experimental Results

The overall proposed framework is depicted in Figure 3. In this section, we present
our results, which include: (1) preliminary statistical analysis, (2) the performance of the
proposed CAD system compared to other machine learning models that use hand-crafted
features, (3) the performance of the proposed CAD system compared to state-of-the-art
CNN models, and (4) the results obtained of analyzing the texture patterns after learning.

3.1. Significant Differences in T2 and ADC Local Intensity Variations between Malignant and
Benign Groups

The results of analyzing local intensity variations in each of the T2-weighted images
and the ADC maps show that there is a significant difference in the mean of those variations
between benign and malignant groups. Table 2 presents the results obtained from the
Welch two-sample t-test that shows a significant difference with p < 0.05. Table 2 also
presents the achieved t value and the 95% confidence interval (CI). The CI values are
normalized with respect to the standard deviation (SD) of the benign group. By observing
the sign of CI, the malignant group has higher mean observed in T2-weighted images
while the benign group has a higher mean in ADC maps. This result suggests that having
convolution filters of T2-weighted images that are independent from those of ADC maps
enables conducting enhanced texture-learning process. Convolution filters map the conv
kernels in our proposed CNN architecture.
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Table 2. Statistical analysis results for the Welch t-test on the pixel-level intensity variations between
the malignant and benign groups.

Welch Two-Sample t-Test

MRI Parameter CI Δmean t p

T2 −4% to −1% −2.28 0.023
ADC500 5% to 9% 7.87 <0.001
ADC1000 26% to 34% 14.87 <0.001
ADC1500 4% to 8% 6.12 <0.001

3.2. Comparison with ML Methods That Use Hand-Crafted Features

The results are summarized in Table 3. As can be seen, the proposed multi-input CNN
system outperform all compared classifiers. Our proposed CAD system achieved the best
performance when compared to machine learning models that are based on hand-crafted
features. Our system achieved an AUC of 0.85 compared to 0.59 when using linear support
vector machine (SVM) classifier, see Figure 4c. Additionally, it achieved an accuracy,
sensitivity, and specificity of 0.87, 0.69, and 0.97, respectively, compared to an 0.77, 0.67 and
0.77 when using random forest (RF) classifier, which achieved the best accuracy among the
pool of classifiers used with hand-crafted features. The results in Table 3 show that using
automatic feature selection by the aid of CNN helps in achieving better diagnostic accuracy.

Table 3. Comparative performance for the proposed multi-input CNN system and machine learning
methods that use hand-crafted features. “DT”—Decision Tree. “RF”—Random Forest; “NB”—Naive
Bayes; “SVM”—Support Vector Machine.

Evaluation Metrics

Method Accuracy Sensitivity Specificity Dice Coefficient

DT classifier 0.70 0.66 0.70 0.57
NB classifier 0.76 0.73 0.77 0.63
RF classifier 0.77 0.67 0.77 0.53
SVM classifier 0.56 0.40 0.73 0.48
Proposed Multi-Input CNN 0.87 0.69 0.97 0.79

3.3. Comparison with State-of-the-Art CNNs

In addition to the comparison with the handcrafted-based ML approaches, comparison
against other state of the arts CNN models have been conducted. The comparative results,
shown in Table 4 also showed that the proposed CAD system achieved the best diagnostic
performance. It is worth mentioning that our system has relatively low number of layers
compared to the compared models. It achieved an AUC of 0.85 compared to 0.67 and 0.60
obtained using AlexNet and ResNet 18, respectively. Additionally, it achieved an accuracy
of 0.87, sensitivity of 0.69 and specificity of 0.97. The accuracy, sensitivity and specificity
using AlexNet were 0.61, 0.53, and 0.66, respectively, and those obtained using ResNet18
are 0.49, 1.00 and 0.22, respectively. Results document that using lower number of CNN
layers can achieve better diagnostic accuracy, which is considered an advantage of the
proposed method compare with other CNN-based techniques.

3.4. Texture Features of T2-Weighted Images Are Visually Different Compared to ADC Maps

The convolution kernels (filters) extracted from the CNN after learning were clustered,
see Figure 5a, and the clustering process was repeated for multiple runs each with different
number of target clusters k = 2, 4, 5, ..., 9. Figure 5b shows the evaluation of the generated
clusters using the Silhouette score. The clusters generated from the T2-weighted kernels
(green curve) achieved better clusters compared to ADC kernels (blue curve). Additionally,
k = 3 achieved the highest score in both T2-weighted and ADC images. Figure 5c,d show
the visualization of the generated clusters of T2-weighted and ADC kernels, respectively.
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The runs (with the corresponding number of clusters, or k) are represented on the y-axis.
Each row includes the generated clusters of the corresponding run, and the cluster index
inside each run is presented on the x-axis. Each cluster is illustrated by the mean of its
member kernels, and then each mean is normalized from 0 to 1. A gray-scale visualization
of each normalized mean is presented (at each row-column position) using a 3 × 3 board
image in a way that 0–1 is mapped to a white–black gradient.

Figure 5. Analysis of the patterns extracted from the CNN after training phase. (a) Illustrative diagram of the process
of extracting the kernels from the weights of each layer, and the processing of those kernels using a clustering technique
(hierarchical agglomerative clustering) in order to analyze the patterns found in T2-weighted MRI images and ADC maps.
(b) Evaluation metric of the clustering algorithm by computing Silhouette score while varying the number of clusters in the
clustering algorithm. (c) Visualization of the results of our analysis on the features extracted from T2-weighted images.
(d) Visualization of the results of our analysis on the features extracted from ADC maps. We can notice that the texture
patterns that distinguish between malignant and benign thyroid nodules are having a degree of heterogeneity according to
this visualization.
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Table 4. Comparative performance of the proposed multi-input CNN system with state-of-the-art
CNN-based classification.

Evaluation Metrics

Method Accuracy Sensitivity Specificity Dice Coefficient

AlexNet 0.61 0.53 0.66 0.49
ResNet18 0.49 1.00 0.22 0.58
Proposed Multi-Input CNN 0.87 0.69 0.97 0.79

4. Discussion and Conclusions

We proposed a new CAD system to distinguish between malignant and benign thyroid
nodules. The main contributions of the proposed pipeline is the use of multi-input CNN
that can detect texture patterns from each input independently. The first branch of our
CNN models the fluids patterns in the thyroid tissue by learning the texture patterns
in T2-weighted MRI images. The second branch of our CNN models the dynamics of
tissue fluids by learning the texture patterns in ADC maps. We validated our method by
applying leave-one-out cross-validation on multimodal data collected from 49 patients
with pathologically confirmed nodules. We compared the classification accuracy obtained
from our system with other ML and deep learning approaches. Experimental results from
our system surpass results obtained from other models.

To assess the advantage of integrating multiple MRI modalities as separate inputs of
the proposed network, we conducted a preliminary study that shows heterogeneity in the
intensity variation between malignant and benign samples. In this experiment, a Welch
two-sample t-test was used to assess the significant difference in mean variation between
the two groups (Table 2) across all modalities. The difference in mean between the two
groups in T2-weighted images has an opposite sign when compared to the corresponding
difference in ADC maps (Table 2). This also suggests that using independent features in
each input can enable finding more optimal features.

To assess the performance of our system, we compared it to other ML methods that
use hand-crafted features. In the comparison, we used three categories of hand-crafted
features. The first category is based on the statistical profile of image intensity. We evaluated
that statistical profile using five features (mean, standard deviation, entropy, skewness,
kurtosis). This category is designed to summarize the whole image by presenting it using
the profile of each features. The overall appearance of the tumor can reflect the first
impression by the physician while examining the MRI scan. The linear SVM classifier
exhibited the worst performance, which suggests a lack of a linear border between classes.
Results of the NB classifier showed the possibility of having a fairly distinguished statistical
distribution of the hand-crafted features extracted from benign and malignant nodules.
In order to benchmark our system, Figure 4c shows ROCs of the proposed multi-input
CNN framework compared to the other systems under comparison. As demonstrated, the
area under the curve (AUC) of our system is higher compared with all compared methods,
which highlights the higher accuracy of our method. Figure 4a,b show the training versus
validation accuracy and loss curves during the model training. Overall, the results showed
that handcrafted features failed to provide a good modeling of our classification problem,
and this suggests having multi-input CNNs that learn from paired features can enhance
diagnostic accuracy of the CAD system.

To further support our method, an ablation study has been conducted to assess the
accuracy of the proposed method. The study shows that the proposed fusion using multi-
input CNN outperformed single-input frameworks. In that study, a single input CNN with
the same structure was built and evaluated. Four scenarios were evaluated. Scenarios 1
and 2 use T2-weighted images and ADC maps, respectively. Scenario 3 uses a probability
voting scheme between the prediction of scenarios 1 and 2. We used the following equation
to acquire the resultant probability after voting: Pv = 1

2 (PT2Weighted + PADC). Scenario 4 uses
a single input that combines T2-weighted images and ADC maps in the input channels.
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Results obtained from the four scenarios are shown in Table 5. Using a multi-input CNN
enhances the classification accuracy. The two-CNN voting scenario showed high specificity,
but a low accuracy, sensitivity and dice coefficient compared to the proposed method. This
ablation study suggests that having independent features for each input can enhance the
detection performance of the CAD system.

Table 5. Ablation study results for the proposed system.

Evaluation Metrics

Method Accuracy Sensitivity Specificity Dice Coefficient

Single-Input CNN (T2-Weighted only) 0.76 0.56 0.87 0.62
Single-Input CNN (ADC only) 0.72 0.63 0.77 0.61
Two-CNN voting (base-images + ADC) 0.83 0.63 0.93 0.71
Multi-Input CNN (Proposed Method) 0.87 0.69 0.97 0.79

The main focus of this study is to investigate the ability to extract the texture features
associated with thyroid cancer by combining the texture in two input CNN with two
independent branches. The network was designed to minimize the number of layers in
order to extract the texture patterns that can be linked to the anatomical structure in the
nodules. This optimized architecture also supports fast processing, which can enable
further integration with MRI scanner devices to present the visual features automatically
extracted from MRI images. As a follow-up step in our study to evaluate the heterogeneity
of texture features between MRI modalities, we applied a method to extract and cluster
the learned features for each modality. An illustration is presented in Figure 5a and the
obtained feature visualization in each input is presented in Figure 5c,d. That visualization
suggests a heterogeneity in texture patterns between MRI modalities and supports the use
of our method for thyroid nodule classification.

Our system yielded promising results. However, there are some limitations that need
to be addressed in order to go forward with further clinical trials. The number of samples
is limited under the scope of our study, and the results can reflect the pattern that exists
in this cohort. Our model needs to be applied to another cohort with a higher number of
subjects in order to assess the homogeneity of texture across cohorts. More samples can be
collected to sufficiently cover the full spectrum of thyroid cancer.

In total, this paper shows that extracting texture patterns using deep learning can im-
prove the diagnostic performance and can help in performing accurate diagnosis of thyroid
cancer. For future work, our experiments can be applied to bigger cohort. Additionally, our
model can be adapted to perform classification of the types of thyroid cancer. It can be also
adapted to perform staging of thyroid cancer. Other modalities can be added to the model
to study the heterogeneity of MRI texture patterns in a more advanced way. Our model can
also be adapted to study the texture patterns of thyroid tissues while using other imaging
techniques such as US. Although, US can provide a limited capability of modeling thyroid
cancer compared to MRI, having a model that combines US and MRI can contribute to
establishing more accurate models to ensure precise and personalized medicine.

Data collection can be also expanded to collect multiple scan from each subject in a
different time points. By doing this, we can study the correlation between DWI patterns
and the patterns of the cell proliferation process, which is associated with thyroid nodules
at different stages of thyroid cancer.
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Abstract: Background and Objective: The reliability of low-cost mobile systems for recording Elec-
trocardiographic (ECG) data is mostly unknown, posing questions regarding the quality of the
recorded data and the validity of the extracted physiological parameters. The present study com-
pared the BITalino toolkit with an established medical-grade ECG system (BrainAmp-ExG). Methods:
Participants underwent simultaneous ECG recordings with the two instruments while watching
pleasant and unpleasant pictures of the “International Affective Picture System” (IAPS). Common
ECG parameters were extracted and compared between the two systems. The Intraclass Correlation
Coefficients (ICCs) and the Bland–Altman Limits of Agreement (LoA) method served as criteria for
measurement agreement. Results: All but one parameter showed an excellent agreement (>80%)
between both devices in the ICC analysis. No criteria for Bland–Altman LoA and bias were found
in the literature regarding ECG parameters. Conclusion: The results of the ICC and Bland–Altman
methods demonstrate that the BITalino system can be considered as an equivalent recording device
for stationary ECG recordings in psychophysiological experiments.

Keywords: BITalino; BrainAmp; ICC; intraclass correlation coefficient; Bland–Altman method

1. Introduction

In psychophysiological research, Electromyography (EMG), Electrocardiography
(ECG), Electrodermal Activity (EDA) and Electroencephalography (EEG) are common
electrophysiological methods to investigate the relationship between human behavior and
its physiological basis [1,2]. Current instruments are usually stationary, and hence the
transmission of the collected data is done by wire, restricting the movement of partici-
pants. This is especially detrimental when using such systems in conditions that usually
would require movement of participants (e.g., during naturalistic behavior or in virtual
reality). Nowadays, there are multiple wearable recording devices on the market. These
wearables are mobile and most of them can transmit ECG data wirelessly. However, not all
wearables provide access to the data while recording, and they are relatively expensive.
Often, proprietary software is necessary for data recording and export for subsequent anal-
yses, adding additional costs and restrictions for the measurement device. Recently, the
BITalino has been introduced as an inexpensive hardware and software toolkit specifically
designed to deal with the requirements of electrophysiological signal acquisition [3]. The
BITalino device transmits data wirelessly and provides the opportunity to access the data
while recording.

To ensure that the data recorded with new wearables devices is of sufficient quality
to be used in a research context or for non-scientific applications, new devices have to be
verified before using them in psychophysiological experiments. Regarding the BITalino,
only one study by Carreiras et al. [4] exists in which the BITalino was compared with an
established ECG system. However, the main focus of that study was to analyze the mor-
phological similarities between individual heartbeat waveforms and the general similarity
between the synchronized time series. Further, the authors used dry electrodes and the
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electrodes were applied to the hand palms or fingers and thus do not represent standard
ECG electrode placement. In addition, Carreiras et al. [4] did not use time or frequency
domain measures to compare the two devices. While time domain parameters such as heart
rate (HR) and heart rate variability (HRV) are established features that can be computed
effectively from the ECG, the use of frequency domain parameters provides additional
insights into the function of the cardiovascular system [5]. Specifically, the power spec-
trum of HRV allows for conclusions regarding the involvement of the parasympathetic
and sympathetic system in cardiovascular responses. The computation of these features,
however, critically depends on the data quality and data processing pipelines, as missing
or artifactual beats impact the frequency domain significantly [6–8]. The present study thus
used both time and frequency domain parameters to compare the two recording systems
and to provide a systematic analyses of ECG parameters.

While the test for concordance of ECG features recorded with two different recording
devices could be done based on non-specific ECG signals, the present study used an
established psychophysiological protocol to evoke specific ECG activity. We used the
“International Affective Picture System” (IAPS) [9] to provoke pronounced differences in
ECG features in different test blocks to increase variability in the recordings for a later,
more conservative, test for similarity. The IAPS allows for presenting different categories of
emotional stimuli (positive, negative and neutral) that are matched regarding their arousal
and dominance and that have been used in a large number of psychophysiological studies
to evoke different affective responses while controlling for the arousal and dominance
associated with a specific affective state [10].

Therefore, the aim of this study was to compare a medical-grade electrocardiography
(ECG) system with an ECG sensor of the low-cost DiY (Do-it-Yourself) hardware toolkit
BITalino. To evoke clear variation in ECG activity, an experimental protocol inducing
different affective states and associated cardiovascular changes was implemented. Several
established ECG parameters were extracted from both recordings and tested for similarity
between the parameters. Since a statistical test for differences of two or more measures only
provides information about differences between conditions, or, as in our case, between two
measurement devices, the absence of significance in such tests does not provide evidence
for similarity in performance. Correlational measures derived from two different system, in
contrast, explain the strength of the relation between two measures but do not indicate their
agreement [11]. Testing the agreement or similarity between two measures has to be done
using specific statistical approaches that test for the concordance between the measures.
There are several methods to test for the concordance of two or more measure with the
Intraclass Correlation Coefficients (ICCs) and the Bland–Altman Limits of Agreement (LoA)
method representing the most established and tested methods for continuous data with
two or more groups [12].

The present study demonstrates that it is possible to reliably record research-grade
ECG data with a wearable low-cost device. Reliable data acquisition with a system that
does not require proprietary software and can access the recorded data in real time while
providing wireless data transmission provides new opportunities for future mobile ECG in-
vestigations that do not require expensive laboratory equipment and that allow movement
of participants.

The remainder of the work is organized as follows. Section 2 describes the material
and methods. Section 3 provides an overview of the ICC and LoA statistical methods.
Section 4 summarizes the reliability assessment results. Section 5 presents a discussion and
main limitation of the work. Finally, Section 6 outlines the main conclusions and future
work perspectives.

2. Methods

2.1. Participants

Twenty-four participants were recruited through advertisement at the Technical Uni-
versity of Berlin. Only healthy participants without any history of heart disease or pharma-
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cological treatment of heart conditions were accepted. After the recordings, one participant
reported to take medication that influenced cardiovascular parameters, leading to the
exclusion of this participant. Thus, the final sample consisted of 23 participants (12 women,
11 men) with an age range from 22 to 57 (M = 28.3 years, SD = 8.8 years). Participation
was voluntary and participants received course credit. They were told not to consume
any form of caffeine for 2 h before the experiment and not to drink alcohol on the day of
the experiment. They also got a picture with all electrode positions indicated, so that they
could choose appropriate clothing. All subjects gave their consent before being enrolled
in the study. The study was approved by the Ethical Commission of IT—Instituto de
Telecomunicações with the matriculation number TUB-1234567. Participants provided
written informed consent, and the study was conducted in accordance with the Declaration
of Helsinki.

2.1.1. Hardware

The medical-grade ECG module ExG from BrainProducts was used as the standard
ECG system, hereinafter referred to as the BrainAmp-ExG. The BrainAmp-ExG amplifier
is an extension available for simultaneous measurement of EEG and other psychophys-
iological signals such as ECG, EMG and EDA, but it can also be used separately. The
BrainAmp-ExG amplifier has a bandwidth from 0 to 1000 Hz. The BrainAmp system is sep-
arated from the power grid by the use of a power pack. Electrodes from the BrainAmp-ExG
are connected via cables to the amplifier, which is connected to a PC.

As a DiY system, the BITalino version “Plugged BT Kit” was used in the experiment.
It contains a control block and sensors for ECG, EMG and EDA, as well as a photo resistor
(LUX) and an accelerometer (ACC). The BITalino ECG sensor has a bandwidth between
0.5 and 40 Hz. The electrodes of the BITalino are connected to the BITalino ECG module,
which is connected by cable to the BITalino control block. The data can be sent via stan-
dard Bluetooth to a recording device. The recording device can be an Android tablet or
smartphone, as well as a PC.

2.1.2. Software

To allow for a direct comparison of both ECG recordings, the data of the two different
amplifier systems were synchronized using the Lab Streaming Layer (LSL) (Christian Kothe,
https://github.com/sccn/labstreaminglayer). In Figure 1, the general data acquisition
approach is presented. LSL catches data streams in the network, which can be recorded time
synchronously by the Lab Recorder software (a part of the LSL package). For providing
the data streams to the network, applets were used. The ECG signal from the BrainAmp
system is usually recorded with the BrainAmp-Recorder software. An applet for redirecting
the data stream from the BrainAmp-Recorder to the network already exists and is part of
the LSL package. The applet for the BITalino had to be programmed for this study. The
BITalino team provided the BITalino Matlab API, which was added as an official Matlab
toolbox [13]. Using that API, the BITalino stream was forwarded to LSL based on the applet
for Matlab (9.2.0.538062 (R2017a)).

When different streams are available in the local network, the Lab Recorder detects
them and records all selected streams. The Lab Recorder saves the data streams to one file
in the open source “extensible data format” (.xdf). XDF is “a general purpose container
format for multi-channel time series data with extensive associated meta information. XDF
is tailored towards biosignal data such as EEG, EMG, EOG, ECG, GSR, MEG . . . ” [14].
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Figure 1. The left side of the image shows the adopted placement of electrodes. The BITalino leads are depicted in red and
the BrainAmp leads in blue: −, below right clavicular; +, left side of chest midclavicular line beneath last rib; G, below left
clavicular. The right side of the image shows the data acquisition workflow used for recording.

2.1.3. ECG Electrode Placement and Recording

A variation of Einthoven lead II was selected for the experiment, referred to as “al-
ternative leads”. To allow recordings of the ECG signal concurrently with two devices,
electrodes were placed according to the schema presented in Figure 1.

Because ECG is a fast changing signal, a high sampling rate was used. While for the
BrainAmp system it is possible to variably set different filters, the filters on the BITalino
system are fixed. The BITalino allows data acquisition at sampling rates of 10, 100 and
1000 Hz, and, consequently, a sampling rate of 1000 Hz was selected for both ECG systems,
resulting in one sample per millisecond. In addition, to reduce artifacts in the recordings,
high- and low-pass filters were used according to the options available in the two amplifier
systems. All settings are listed in Table 1.

Table 1. Hardware filtering specifications and settings used in the experiment. * Note that
0.016 Hz = time constant of 10 s ( f = 1

2πc , with f the frequency and c a time constant).

BrainAmp BITalino

high-pass filter 0.016 Hz * 0.5 Hz
low-pass filter 250 Hz 40 Hz
sampling rate 1000 Hz 1000 Hz

2.2. Materials
Stimuli (IAPS)

The result of this study aimed at establishing whether ECG data recorded with the
BITalino system are comparable to an established medical-grade ECG system used in
psychophysiological research. To this end, an established psychophysiological paradigm
to evoke affective responses that are associated with changes in heart rate was used.
Brouwer et al. [15] (p. 3) noted in their study that “most perception studies show va-
lence rather than arousal effects, where pleasant stimuli correlate with higher heart rate
acceleration than unpleasant stimuli [16–22]”.

We used IAPS pictures to induce two emotional states, pleasant and unpleasant. For
the pleasant conditions, pictures with medium arousal ratings were selected, while, for
the unpleasant condition, pictures with medium to high arousal ratings were chosen. If
the data quality of both the BrainAmp-ExG and the BITalino ECG is comparable, changes
in HR dependent on the emotional picture condition should reveal similar values for
both systems.
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2.3. Procedure

Participants were seated in front of a monitor with a distance of approximately 50 cm
to the screen. They were instructed to sit still for the time of the experimental task, which
took 35 min on average. Stimuli were presented in four blocks (two blocks with pictures
of the unpleasant and 2 blocks with pictures of the pleasant condition), consisting of
60 pictures each (Figure 2A). The order of blocks was counterbalanced across participants.

Each picture was presented for 4 s and stimulus presentations was separated by a
fixation cross with 1 s duration (Figure 2B). After a block of 60 pictures, participants were
asked to rate valence and arousal of the entire block on a 10-point scale from 0 to 9, with
9 indicating the highest arousal or valence, respectively. Before and after two blocks, a
5 min baseline block consisting of a gray fixation cross on black background was added.
To control the potential impact of the picture order, pictures were randomly selected from
the pool of pictures for each condition and blocks with pleasant and unpleasant pictures
were counterbalanced across participants.

After participants were prepared and electrodes were attached, a first baseline block
was used for acclimatization. The second baseline block was introduced in the middle
of the experiment to recover to the resting heart rate before the last two experimental
blocks were presented. After all blocks with picture presentations, a third and final baseline
block followed.

Figure 2. Block diagram of the experimental protocol and analyses pipeline, depicting the stimuli
blocks (A), the fixation cross and picture presentation (B), and the overall processing pipeline (C).

2.4. Data Analysis
2.4.1. Data Processing

Data processing was done in Matlab version 9.2.0.538062 (R2017a) with the use of
ECG tool, Matlab-based software developed in-house. The ECG tool offers the option to
load .xdf-files. As a result of LSL, both signals were combined with markers in an .xdf-file.
Streaming the BITalino data to LSL, after receiving them via Bluetooth from the BITalino
devices, had never been tested before. Therefore, visual inspection was done by plotting
both signals of one participant in one graph. The overall processing pipeline is depicted in
Figure 2C. Due to temporal incongruity of both graphs, alignment was done before data
processing. To this end, R-peaks were identified and exported with the corresponding
timestamp for each participant. A window of 201 ms (100 before the R-peak and 100 after
the R-peak) was searched to find the timestamp of the corresponding R-peak of the other
system. This comparison resulted in differences with a mean difference per participant
varying from 19 to 28 ms. The signals were re-synchronized using the mean difference for
each participant.

After alignment, the signals from both devices were filtered with a third-order high-
pass Butterworth filter at 1 Hz and a third-order low-pass filter at 40 Hz. Then, artifacts
were manually identified and subsequently interpolated. For automated R-peak detection
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and to avoid false positives as far as possible, the allowed number of beats per minute
(bpm) was set to range between 40 and 125 bpm. After automated R-peak detection,
false R-peaks were marked and rejected and, in the case of missing peaks, the data were
interpolated based on the mean peak interval 5 periods before the missing R-peak.

2.4.2. Dependent Variables

According to the Task Force of the European Society of Cardiology and others [23],
we computed selected heart rate variability measurements that can be used for short-
term analysis. The aim of the study was to determine whether the BITalino can be used
in psychophysiological experiments and, as such, measures were selected which were
used in previous experiments. According to Gramann and Schandry [24], the number of
heartbeats per minute (designated as heart rate (HR)) is still the most common indicator
in psychophysiology to measure cardiovascular events. Heart rate changes accompany
almost every change of physical and mental load.

In addition to heart rate measures, measures of heart rate variability were used. For
short-term HRV time domain measures, the ref. [23] recommends using RMSSD as an
estimate of the short-term components of HRV, which is often used in psychophysiological
research. Brouwer et al. [15] also used RMSSD as an estimate for HRV in their study.

In the frequency domain, the ref. [23] recommends three main spectral components
for short-term analyses: the very low-frequency (VLF), the low-frequency (LF) and the
high-frequency (HF) components. According to the [23] “the distribution of the power and
the central frequency of LF and HF are not fixed but may vary in relation to changes in
automatic modulations of the heart period . . . ”. The LF component reflects parasympathetic
innervation, whereas HF reflects sympathetic and parasympathetic innervation. In addition
to this, the ratio between LF and HF (LF/HF) is an indicator of ANS balance. We did not
analyze the VLF component as it is not as well defined as the other parameters according
to the [23]. In this study, LF, HF and LF/HF ratio were used to investigate whether both
systems recorded comparable signals in the experiment.

We expected to see increased HR in blocks with pleasant stimuli as compared to
unpleasant stimuli while no directed hypothesis were put forward regarding HRV due to
inconsistent results in the literature [16–22,25–28]. While these results would confirm the
general validity of our experimental manipulation, the main research question concerned
the comparability of the features as measured with the two different ECG systems.

A summary of all measures used in this study can be seen in Table 2.

Table 2. Dependent variables.

HR Measures HR Heart Rate [bpm]

root mean
time domain RMSSD square of [ms]

successive differences
HRV measures LF low frequency

frequency domain HF high frequency [ms2]
LF/HF ratio between LF and HF

3. Statistical Methods

To investigate whether the BITalino system allows for recordings of comparable
quality as the established ECG recordings with the BrainAmp system, two methods were
used: the Intraclass Correlation Coefficient (ICC) and Bland–Altman Limits of Agreement
(LoA) method.

3.1. Intraclass Correlation Coefficient (ICC)

According to Müller and Büttner [29] (p. 2465), ICCs are used in medicine to “assess
agreement of quantitative measurements in the sense of consistency and conformity”. The
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ICC ranges, similar to other correlation coefficients, from 0.00 to 1.00 and is presented in
this work as a percentage.

ICCs above 80% are usually regarded as indicating good to excellent reliability,
whereas an ICC between 0.6 and 0.8 (60% and 80%) may be taken to represent substantial
reliability [30]. Portney and Watkins [31] indicated that clinical measurements should show
reliability of at least 90%. In addition to the ICC, the lower 95% confidence interval (lower
CI) of the ICC can be calculated. Lee et al. [32] reported that an agreement sufficient for
the interchangeable use of two methods is suggested only when a lower CI value of >75%
is observed.

In this study, the ICC form for two-way mixed-effects using single measurements
was used to investigate the absolute agreement defined by McGraw and Wong [33]. This
approach is mathematically identical to ICC (2,1), as defined by Shrout and Fleiss [34].

3.2. Bland–Altman Limits of Agreement (Loa) Method

“The limits of agreement (LoA) method (Altman and Bland [35]; Bland and Altman [11])
for assessing the agreement between two methods of medical measurement is widely
used (Bland and Altman [36], Ryan and Woodall [37])” [38] (p. 571).The Bland–Altman
method obtains “the differences between measurements by the two methods for each
individual” [38] (p. 571) and calculates “the mean and standard deviation” [38] (p. 571).
In [38], the authors proposed methods for analyzing repeated data. The LoA were calcu-
lated according to the formulas presented in [38].

4. Results

4.1. Descriptive Results

The HR and HRV parameters in the time and frequency domain revealed only min-
imal differences in all selected parameters between the two recording devices (Table 3).
Moreover, the extracted parameters from both systems during the baseline and the IPAS
conditions showed only small differences overall. During blocks with unpleasant stimuli,
the heart was lowest for unpleasant followed by pleasant and lastly the baseline blocks.
For the RMSSD measures, the lowest HRV was observed during pleasant blocks, followed
by unpleasant and baseline blocks. A similar pattern was observed for the ratio LF/HF.

Table 3. Descriptive results.

BITalino BrainAmp BITalino BrainAmp
Mean Mean SD SD

HR
Fixation Cross 73.065 73.025 10.190 10.205

Pleasant 72.624 72.625 10.274 10.276
Unpleasant 71.515 71.504 9.379 9.381

RMSSD
Fixation Cross 0.045 0.045 0.025 0.025

Pleasant 0.043 0.043 0.025 0.025
Unpleasant 0.044 0.044 0.023 0.022

ratio LF/HF
Fixation Cross 3.109 2.973 3.970 3.797

Pleasant 2.993 2.988 4.220 4.204
Unpleasant 3.081 3.078 4.889 4.875

4.2. ANOVA

A 2 × 3 analysis of variance with two levels of the factor “device” (BrainAmp, BITal-
ino) and three levels of the factor “condition” (Baseline (Fixation Cross), pleasant IAPS,
unpleasant IAPS) was calculated for all dependent variables. For this analysis, the first
fixation block was excluded as it was for acclimatization. Thus, the mean for the factor
condition was built of two blocks each. There was a significant main effect of the factor
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“condition” for HR (F (1.486, 32.685) = 4.694, p = 0.025), as shown in Table 4. For RMSSD,
LF, HF and LF/HF ratio, the main effect of condition was not significant and there was no
interaction effect for “condition × device” for any dependent variable.

Table 4. Results of 2 × 3 ANOVA for the factor “condition” all dependent variables.

Dependent Variable Main Factor “Condition”

HR F(1.486, 32.685) = 4.694 * p = 0.025 *
RMSSD F(2, 44) = 0.567 p = 0.571
HRV LF F(1.200, 26.408) = 6.204 * p = 0.15 *
HRV HF F(1, 44) = 0.127 p = 0.881

HRV LF/HF F(1.454, 31.997) = 0.910 * p = 0.384 *
* Greenhouse–Geisser corrected.

A post hoc pairwise comparison with Bonferroni correction was done for heart rate
with an alpha value of 0.05. None of the pairwise comparisons was significant.

4.3. Intraclass Correlation Coefficient

The ICCs and the lower CIs were calculated for all dependent variables over all blocks
and, in addition, for each block separately. To gain good to excellent agreement of both
devices, the ICC should be higher than 90% for clinical measurements [31] and the lower
CI should be higher than 75% for the interchangeable use of two methods [32]. The ICC
estimates over all blocks for all dependent variables were over 90% and the lower CIs were
over 75% (Tables 5 and 6). Therefore, all dependent variables met the criterion for good
to excellent agreement. For each block separately, the ICC estimates were over 90% and
the lower CIs were over 75% for all blocks and dependent variables, except for the LF/HF
ratio in the second fixation cross (Block 4) (Tables 5 and 6).

Table 5. ICC in percent for each block and dependent variable.

Overall
B1 B2 B3 B4 B5 B6 B7

Fix 1 P 1 UP 1 Fix 2 P 2 UP 2 Fix 3

HR 100.0% 100.0% 100.0% 100.0% 99.9% 100.0% 100.0% 100.0%
RMSSD 99.6% 99.9% 100.0% 100.0% 97.4% 99.8% 100.0% 100.0%
HRV LF 100.0% 100.0% 100.0% 100.0% 99.9% 100.0% 100.0% 100.0%
HRV HF 99.6% 99.9% 99.8% 100.0% 97.3% 99.9% 100.0% 99.9%

HRV LF/HF 98.8% 100.0% 100.0% 100.0% 83.6% 100.0% 100.0% 99.8%
B1–B7, block number; Fix, fixation cross; P, pleasant IAPS; UP, unpleasant IAPS.

Table 6. Lower CI in percent for each block and dependent variable.

Overall
B1 B2 B3 B4 B5 B6 B7

Fix 1 P 1 UP 1 Fix 2 P 2 UP 2 Fix 3

HR 100.0% 100.0% 100.0% 100.0% 99.8% 100.0% 100.0% 100.0%
RMSSD 99.4% 99.8% 100.0% 100.0% 94.0% 99.6% 100.0% 99.8%
HRV LF 99.9% 99.9% 100.0% 100.0% 99.8% 100.0% 100.0% 100.0%
HRV HF 99.4% 99.8% 100.0% 100.0% 93.8% 99.7% 100.0% 99.9%

HRV LF/HF 98.4% 99.9% 100.0% 100.0% 65.6% 100.0% 100.0% 99.6%
B1–B7, block number; Fix, fixation cross; P, pleasant IAPS; UP, unpleasant IAPS.

4.4. Bland–Altman Method

An assumption for calculating Bland–Altman bias and limits of agreement is that
the difference between both devices are normally distributed. A Shapiro–Wilk test [39]
revealed that the data were not normally distributed. Bland and Altman [40] recommended
a logarithmic transformation of differences in that case, which also revealed non-normal
distribution of the transformed data. Quantile-Quantile plots (Q-Q plots) of the difference
between data of the two devices were made to detect the problem on normality tests. The
Q-Q plot for the difference of low-frequency measures is shown in Figure 3.

124



Sensors 2021, 21, 4485

Figure 3. Q-Q plot of differences between the BrainAmp and the BITalino for LF.

In the Q-Q plot, it can be seen that there were several outliers, which may have
negatively affected the results of the normality test. Therefore, outliers were excluded
and tested again for normality. In some measurements, more than half of the data points
had to be excluded to reach normal distribution. However, this heavy reduction of data
points may distort the results. According to Bland and Altman [40] (p. 139), a non-normal
distribution of the differences values may not be a comparably serious issue for the Bland–
Altman method as compared to other statistical tests. Non-normal distributed differences
will lead to more conservative results than normally distributed differences. For this
reason, the non-normal distributed data were used for Bland–Altman analysis even though
the normality assumption was violated. The results of the Bland–Altman analysis for
non-normal distributed differences are presented in Table 7.

Table 7. Results of Bland–Altman absolute bias and absolute limits of agreement (LoA) for all
dependent variables.

LoA
Measure Bias Lower LoA - Upper LoA Outlier (in %)

HR −0.01990803 −0.33662671 - 0.29681066 4.83%
RMSSD 0.00003761 −0.00439510 - 0.00447032 3.22%
HRV LF −0.00000880 −0.00011612 - 0.00009852 4.83%
HRV HF 0.00000290 −0.00019657 - 0.00020236 4.83%
HRV LF/HF −0.06054003 −1.32977327 - 1.20869321 3.22%

The bias was close to 0 and limits of agreements were quite narrow for all dependent
variables. Different results for low and high frequency were found, which may influence
the result of the LF/HF ratio negatively. Next, percentages of differences lying outside
the LoA were calculated for all dependent variables, as Weippert et al. [41] did in their
analysis. The results are presented in Table 7. The percentage of outliers was lower than 5%
for all measures. Therefore, more than 95% of differences between the two devices were
observed within the limits of agreement. Although the results of Bland–Altmam bias and
limits of agreement were quite different, they revealed the same percentage of differences
lying outside the limits of agreement.

Visual Inspection of Bland–Altman Plots

Bland and Altman [40] suggested “to plot the difference between the measurements
by the two methods for each subject against their mean” (p.140). This kind of plot allows
for investigating possible relationships between the discrepancies and the true value. In
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contrast to R-peak analysis, the extracted parameters in the current study were mean
values built over a period of time (here over one block). Thus, only seven measures by
the two methods were available for each subject. Due to this small amount of measures
per subject, Bland–Altman plots of all subjects were created [41]. Percentage of differences
lying outside the LoA was under 5% for each measure, therefore the y-axes of the plots
were restricted to the LoA.

The results for Heart Rate (HR) show a bias of −0.01991 bpm and LoA were at
±0.31672 bpm. Therefore, the BITalino yields on average 0.01991 bpm higher values than
the BrainAmp-ExG, and the BITalino may yield between ±0.31672 bpm compared to the
BrainAmp-ExG. The Bland–Altman plot for HR can be seen in Figure 4.

Due to some extreme data points below 0, the bias was probably shifted away from 0
to negative. The distribution of data points with the bias of −0.01991 bpm showed that the
BrainAmp was consistently higher than the BITalino for most of the data points.

Figure 4. Bland–Altman plot of heart rate. (Some data points outside the LoA are cutoff to offer a
more detailed view of the distribution inside the LoA.)

RMSSD. The bias for RMSSD of the complete dataset was at 0.00004 ms and limits of
agreement were at ±0.00443 ms. Thus, the BITalino yielded on average 0.00004 ms lower
values than the the BrainAmp-ExG, and the BITalino may yield ±0.00443 ms compared to
the BrainAmp system. The Bland–Altman plot for RMSSD can be seen in Figure 5.

The distribution of the data showed that most of the data points were near the bias,
but that there was a tendency for values of the BrainAmp-ExG to be slightly smaller than
the values of the BITalino. Again, limits of agreement were quite narrow despite some
extreme values (data points below −0.00075 ms and data points above 0.003 ms).

Low and high frequency. The bias for LF was at −0.0088 ms2 and limits of agreement
were at ±0.10732 ms2. Thus, the BITalino yields on average 0.0088 ms2 higher values than
the BrainAmp, and the BITalino may yield ±0.10732 ms2 compared to the BrainAmp.

The bias for HF was at 0.0029 ms2 and limits of agreement were at ±0.19946 ms2 .
Thus, the BITalino yields on average 0.0029 ms2 higher values than the BrainAmp, and the
BITalino may yield ±0.199 ms2 compared to the BrainAmp.
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Figure 5. Bland–Altman plot of RMSSD. (Some data points outside the LoA are cutoff to offer a more
detailed view of the distribution inside the LoA).

The Bland–Altman plot of high- and low-frequency components of HRV are shown in
Figures 6 and 7. In the Bland–Altman plot of the low-frequency component (Figure 6), it
can be seen that there were several data points above the bias and a few below the bias.
The data points below may have influenced the results of bias and LoA negatively. They
may result from interpolated artifacts, which occurred only in one of the systems.

A similar distribution of differences was found for the high-frequency component of
HRV (Figure 7). For HF, the bias was positive and most of the data points were below the
bias. For both frequency components, there was an increased variability of small values.
This may indicate that there is less reliability at small values.

Figure 6. Bland–Altman plot of LF. (Some data points outside the LoA are cutoff to offer a more
detailed view of the distribution inside the LoA.)
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Figure 7. Bland–Altman plot of HF. (Some data points outside the LoA are cutoff to offer a more
detailed view of the distribution inside the LoA.)

LF/HF ratio. The bias for LF/HF was at −0.06054 and limits of agreement were
±1.26923, which was the largest bias and widest LoA of all measures. Therefore, the
Bland–Altman plot was inspected for LF/HF ratio too (Figure 8).

Figure 8. Bland–Altman plot of LF/HF ratio. (Some data points out- side the LoA are cutoff to offer
a more detailed view of the distribution inside the LoA.)

Although all the parameters have different measurement scales, differences between
measurement devices should always be close to 0. Therefore, a comparison of limits
of agreement between measurements can be done. For the LF/HF ratio, the limits of
agreement were 6 times larger than for the HF and 11 times larger than for the LF. Due to
the fact that the ratio is built by both components, artifacts may influence the LF/HF ratio
even more than both frequency components separately. One extreme difference of −8 (this
point is not shown in the graph) may be the result of artifact interpolation in one of the
measurements. Both frequency components showed agreement between the measurement
devices. However, these different results may indicate that there is probably no or little
agreement for the ratio of LF and HF.
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5. Discussion

5.1. Overall ICC and Bland–Altman Method

All blocks were used in the overall ICC and Bland–Altman analysis. The results reveal
that all measures show good to excellent agreement with the ICC method when using the
criterion for clinical measurements (ICC > 90%). This result is consistent with the result of
the study by Sandercock et al. [42], who found good to excellent agreement for all measures
(LF, LF(nu), HF, HF(nu), LF:HF, RMSSD, SDNN and Mean R- R) when comparing different
devices. They also used the Bland–Altman method in addition to the ICC.

In contrast to the ICC, Sandercock et al. [42] found no acceptable agreement be-
tween three instruments in the Bland–Altman analysis. They found one acceptable Bland–
Altman result for the high frequency band of the HRV in one condition for two of the
three instruments. They found a bias of −1 ms and a LoA of ±264.6 ms. In contrast to
Sandercock et al. [42], the present study analyzed high and low frequency measures of
HRV in ms2 and not in ms.

The results of the analyses demonstrate a bias for the high-frequency components of
the HRV with 0.0029 ms2 and LoA at ±0.19946 ms2 . Similar results were found for the
low-frequency component of HRV with a bias of −0.0088 ms2 and a LoA of ±0.10732 ms2.
Based on the results and comparison with previous studies, it can be concluded that
the low- and high-frequency components of HRV measured with the BITalino and the
BrainAmpp-ExG showed a high level of agreement between the two systems.

In addition, the limits of agreement were more conservative for these non-normally
distributed differences than for normally distributed differences.

5.2. ICC for Each Block

All measures showed a good to excellent agreement in all blocks except the ratio of
LF/HF in the second baseline block (Block 4). The second unpleasant IAPS block (Block 3)
and the second baseline block (Block 4) each contained more than 40 a of artifacts only
in the BrainAmp recordings. However, the LF/HF showed 100% agreement in Block 3
but only 83.6% in Block 4. This might indicate that there was no evidence of artifact
interpolation to influence the result of the ICC. The poor agreement of the LF/HF ratio in
the second baseline block (Block 4) may be the result of movement, as participants had
to sit still already for 15 min when beginning with the fourth block. Due to the fact that
Bland–Altman uses all blocks as repeated measurements, the poor agreement for Block 4
may explain the wider limits of the LF/HF ratio in Bland–Altman analysis.

5.3. Conclusion of Method Comparison

As mentioned above, ICC and Bland–Altman analysis as clinical measurements are
discussed controversially in the literature. Most of the researched studies investigating ECG
comparisons [42,43] used both methods. In the case of Bland–Altman analyses, calculations
depended on the design of the study. In the present study, measures of different blocks
were used as repeated measurements. None of the referenced comparison studies described
which Bland–Altman calculation was used. In addition, criteria for accepting both devices
as interchangeable were not mentioned in these studies. For the ICC method, criteria were
defined and therefore the interpretation of the results shows higher validity as compared
to the Bland–Altman analysis.

Evaluating both methods and comparing their results, as well as inspecting Bland–
Altman plots, allowed for an objective conclusion about the agreement of measures based
on the two systems. Unfortunately, there are no guidelines for a Bland–Altman plot
inspection. As demonstrated for the heart rate measure, scaling of the y-axis may mislead
the interpretation of the distribution of differences. Furthermore, in the current study,
the differences of all measures were not normally distributed, nor were the logarithmic
transformed differences normally distributed. Nevertheless, Bland–Altman analysis was
computed for the non logarithmic transformed and non-normal distributed data, violating
the assumptions of distribution values bias and LoA.
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ICC showed good to excellent agreement, Bland–Altman bias was small and LoA
were narrow for almost all variables. The bigger bias and LoA for LF/HF may be explained
by the influence of artifacts on one of the devices. If there is a big difference in LF and a
small difference in HF, the ratio will be large and vice versa. However, taking all results,
the data provide good evidence that both instruments showed very good agreement and
can be used in further experiments interchangeably.

5.4. Limitation of Comparison Methods in the Current Study

The study was carried out with a sample composed of healthy participants, spanning
an age range between 22 and 57 years old. To further encompass the variance that studies
in psychophysiology require, future work should be developed focusing on replicating the
current study for other sample profiles. Nevertheless, the critical comparison of the two
systems was a within-subject design that should not be influenced by a restricted sample
profile. The current study is in line with the state-of-the-art, in terms of sample size, and
demonstrates the validity of the low-cost system under analysis for the sample enrolled in
the study.

Integrating the BITalino stream via LSL required the use of an applet. In the current
study, signals of both systems were not aligned. The validity of synchronously acquired
data was already demonstrated by da Silva et al. [44]. This non-constant difference between
R-peaks of both devices may arise from the working memory load of the Matlab-applet
receiving data from the BITalino and forwarding it as a data stream over the network to
LSL. The applet for receiving and forwarding the signal from the BITalino to LSL may
be implemented in another programming language for future experiments to avoid this
non-constant shift.

Furthermore, the BrainAmp ECG was used in comparison as the standard method.
However, 93.52% of artifacts were found in the signals of the BrainAmp ECG. Different
leads were used for the BrainAmp and the BITalino, because of the different connection
of the leads to the specific system. The BrainAmp leads had been used very often before
this experiment which might may have caused some material degradation and, as a
consequence, worse signal quality as compared to the new BITalino sensors. Therefore,
the BrainAmp-ExG leads had a higher sensitivity to movements and resulting movement
artifacts. In the pretests before the experiments, both devices showed no artifacts and
therefore the same leads were used in the experiment.

6. Conclusions and Future Work

Due to the comparison results of ICC and the Bland–Altman method, the BITalino
can be considered as an equivalent recording device for stationary ECG recordings in
psychophysiological experiments. The applet to stream the data will be implemented in
another programming language and will be tested for future experiments. A new version
of the BITalino called “(r)evolution” was introduced in the middle of 2017. Cable plugs
were improved (from Molex Sherlock connectors to USB-like UC-E6 connectors); WiFi
and BLE (Bluetooth Low Energy or Bluetooth 4.0) were added as technologies for data
transmission; and new sensors were introduced. The first BITalino used Molex Sherlock
connectors for the electrode leads, which was highly sensitive to cable movement. This
may be fixed with the new UC-E6 plugs. The connectivity for data transmission was
limited to Bluetooth 2.0. With the new version of BITalino, data can also be sent via BLE or
WiFi, which can be advantageous in several use cases. This may fix some of the problems
associated with receiving data from the BITalino in the current study. The improvements
of the new BITalino (r)evolution and the sensors will be tested in further experiments,
following the procedure of the current study. Overall, the results of the present study
demonstrate good agreement between an inexpensive DiY system and an established
medical grade ECG system. This provides a basis for the BITalino to be used for research in
the lab and due to its portability, potentially mobile ECG system outside the lab.
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Abbreviations

The following abbreviations are used in this manuscript:

ACC accelerometer
ANS autonomic nervous system
API application programming interface
BLE Bluetooth Low Energy/Bluetooth 4.0
Bpm/bpm beats per minute
CI confidence interval
DiY do-it-yourself
ECG electrocardiography
EDA electrodermal activity
EEG electroencephalography
EMG electromyography
EOG electrooculography
GSR galvanic skin response
HF High Frequency
HF(nu) High Frequency normalized unit
HR Heart Rate
HRV heart rate variability
Hz Hertz
IAPS International Affective Picture System
ICC Intraclass Correlation Coefficient
LF Low Frequency
LF(nu) Low Frequency normalized unit
LF/HF ratio between low frequency and high frequency
LoA Limits of Agreement
LSL Lab Streaming Layer
LUX photo transistor
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MEG magnetoencephalography
Q-Q plot quantile-quantile plot
RMSSD Root Mean Square of Successive Differences
SDNN Standard deviation of the NN (R-R) intervals
USB Universal Serial Bus
VLF very low frequency
XDF extensible data format
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Abstract: There is a crucial need to process patient’s data immediately to make a sound decision
rapidly; this data has a very large size and excessive features. Recently, many cloud-based IoT health-
care systems are proposed in the literature. However, there are still several challenges associated
with the processing time and overall system efficiency concerning big healthcare data. This paper
introduces a novel approach for processing healthcare data and predicts useful information with the
support of the use of minimum computational cost. The main objective is to accept several types of
data and improve accuracy and reduce the processing time. The proposed approach uses a hybrid
algorithm which will consist of two phases. The first phase aims to minimize the number of features
for big data by using the Whale Optimization Algorithm as a feature selection technique. After
that, the second phase performs real-time data classification by using Naïve Bayes Classifier. The
proposed approach is based on fog Computing for better business agility, better security, deeper
insights with privacy, and reduced operation cost. The experimental results demonstrate that the
proposed approach can reduce the number of datasets features, improve the accuracy and reduce the
processing time. Accuracy enhanced by average rate: 3.6% (3.34 for Diabetes, 2.94 for Heart disease,
3.77 for Heart attack prediction, and 4.15 for Sonar). Besides, it enhances the processing speed by
reducing the processing time by an average rate: 8.7% (28.96 for Diabetes, 1.07 for Heart disease,
3.31 for Heart attack prediction, and 1.4 for Sonar).

Keywords: big healthcare data; classification; decision-making; feature selection; whale optimization;
naive bayes

1. Introduction

Recently, many medical devices are equipped with sensors to collect, communicate,
and integrate the massive generated medical data. Modern healthcare systems are based
on emerging technology such as Wireless Sensor Networks (WSN) and the Internet of
Things (IoT). Moreover, there is a widespread deployment for smart mobility initiatives that
increase the development of intelligent healthcare systems. The objective is to maximize
the use of real-time data streaming out of various medical, sensory services. The IoT
generates diverse and complex big healthcare data. This data poses many challenges to
the storage and analysis infrastructure. The convergence of IoT and several fundamental
technologies such as cloud computing has become necessary to address the aforementioned
challenges [1]. As shown in Figure 1, IoT-based healthcare systems may deploy a wide
range of computing technologies such as cloud, edge, and fog computing, as a virtual
resource utilization infrastructure.

Big data has become a slogan for many scientific and technological enterprises, re-
searchers, data analysts, and technical practitioners. Big data can be defined as any large
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and complex data source (gold mine) combined with a combination of old and new data-
management technologies and architecture. Organizations can gather, store, manage,
and manipulate extremely large volumes and a wide variety of data from many sources
at the required speed and the proper time to gain the right insights [2]. Big data offers
the basic functionalities that enable different organizations to manage data rapidly, timely
conducted, and obtain smart decisions to gain the value of big data [3]. Big data is charac-
terized by three V’s (Volume, Velocity, and Variety), according to industrial data analyst
Doug Laney [4]. Three V’s are increased by four more V’s (Variability, Veracity, Validity,
and Volatility) up to seven V’s later, as shown in Figure 2. To cope, the big biomedical data
is characterized by scale, diversity, and complexity. Biomedical data processing consists of
phases that are collecting, processing, and managing data. The main objective is to produce
new information for end-users [5]. There are four steps for big data analysis, defined as
four A’s: Acquisition, Assembly, Analyze, and Action.

Figure 1. Modern healthcare systems’ structure.

The main objective of big data architecture is to extract value from a wide range of
data by collecting the raw generated data from various data sources (Acquisition) [2]. Data
collection techniques are used to collect raw data from various data formats. Analyze
means using analytical methods, algorithms, and tools to find new insights and extract
value. Data mining simultaneously helps to generate insight and forecasting patterns and
provides smart query functions, then decisions (Action) must be available [6].

The biomedical domain also joins the era of the development of big data. The big
data contains patient information, essential signals, and others from a wide range of data
sources. Big data technology stores, analyzes, and exploits patient information. However, a
cloud-based IoT healthcare system suffers from challenging problems that are demanding
prompt solutions. The following list surveys some barriers [7] such as:

• The massive collected data storage;
• Eliminate privacy and security leakage at a different platform level;
• Energy management with continuous monitoring leads to an increase in data volume

and analytical demands;
• Deliver the information at the proper time and in a reliable manner;
• Heterogeneity: the diversity of the connected things;
• High dynamics: the dynamic global network infrastructure;

136



Sensors 2021, 21, 4579

• Quality of Service (QoS) supports both QoS and functional properties concerning a
Service-Level Agreement (SLA).

Figure 2. Big data multi-V’s model.

Speed, efficiency, and high computational cost problems can be solved by saving
time and reducing processing costs. We need to reduce the volume of data, and this
can be implemented by reducing the feature of big data being processed. Data volume
minimization can be achieved via the implementation of a Feature Selection (FS) technique.
FS affects performance and offers faster decisions. FS determines the features that should
be employed to improve performance [2].

The metaheuristic algorithms find the optimal settings of the application parameters
and hyperparameters [8]. Metaheuristic algorithms can be categorized into three categories:
evolutionary algorithms (EAs), trajectory-based algorithms, and swarm-based algorithms.
Swarm-based algorithms are intuitive and inspired by nature, humans, and animals.
While working with these algorithms, the researcher should make a compromise between
exploration and exploitation. It turns out that the exploration process is searching far
from the current candidate solution, while the exploitation is searching in the vicinity,
near the current solution. The Whale Optimization Algorithm (WOA) has a low number of
adjustable hyperparameters. The WOA mimics the humpback whale in searching for prey.
The WOA consists of three operators to model the behavior of humpback whales. The WOA
can accomplish data optimization missions by minimizing the number of features with
high performance and making data ready to classify. The data are currently ready to be
categorized, and several classification algorithms are included, including Decision Tree,
Deep Learning (DL), K-Nearest Neighbor (KNN), and Naïve Bayes (NB). The NB classifier
is a Bayes theorem-based model of probabilistic machine learning. NB can accomplish data
classification as fast, simple to enforce, and real-time action support.

The main objective of this study is to propose a suitable approach for processing
medical data rapidly in real-time and increasing its accuracy in a form that saves compu-
tational costs. This can be achieved by proposing an Ambient Healthcare approach with
the Hybrid Whale Optimization Algorithm and Naïve Bayes Classifier (AHCA-WOANB)
to perform feature selection on data and then classify it to reduce processing time while
increasing performance.

The remaining of this paper will be as following: Section 2 will discuss related work
and put a spotlight on the pros and cons of every discussed contribution; Section 3 will

137



Sensors 2021, 21, 4579

introduce the proposed AHCA-WOANB approach and the way of embedding the hybrid
algorithm; Section 4 will introduce the experimental results that obtained; Finally, Section 5
will introduce the conclusion and future work.

2. Related Work

Medical services expect significant advancements through IoT and cloud computing
integration. This integration introduces new forms of intelligent medical equipment and
applications. The recently developed and introduced medical systems are targeted at
the industry and academia to implement modern healthcare systems. IoT-based health
architecture captures, processes, and analyzes medical data. In this vein, developing
healthcare architectures, feature selection, and data classification has received significant
attention in academia and the industry in the last few years [9]. In the next subsections,
there will be a detailed description of the recent healthcare architecture. The WoA and NB
classifier will also be surveyed.

2.1. Healthcare Architectures

Abawajy et al. [6] suggested a Cloud-based Patient monitoring architecture. There are
three stages to their proposed architecture: collection station, data center, and monitoring
station. Andriopoulou et al. [10] proposed a healthcare service framework based on fog
computing that intermediates between clouds and loT devices and allows for new forms of
computing and services. Their architecture comprises three main layers: data aggregation
fog nodes, information storage, data processing and analysis fog servers, and data storage
clouds. The same study introduced an IoT-based architecture for fog-based healthcare
networks [10]. The design and implementation of the proposed architecture were in three
layers. The first layer is IoT-based devices. The second layer consists of fog, while the third
layer consists of the cloud layer. This architecture reduces cloud service traffic and provides
low delays and immense permanent storage space. The integrated edge, fog, healthcare IoT-
based cloud infrastructure was implemented by Dimosthenis et al. [11]. Their architecture
consists of three layers for acquiring operation, data storage, and decision-making in
real-time. The three layers are the edge layer that is close to the patients, the fog layer
responsible for storing and processing data, and the cloud infrastructure that stores and
analyzes data extracted from the fog and edge layers. Hassan et al. [9] have developed a
4-layer hybrid architecture named HAAL-NBFA, inspired by a growing interest in the use
of AmI to develop care assistance systems for elderly patients. The HAAL-NBFA used both
local monitoring and cloud-based architectures. The goal was to predict a patient’s health
status from contextual circumstances. They suggested a five-stage cloud classification
model that can deal with broad imbalanced datasets. The Deep Learning Three-Layer
Architecture called HealthFog was proposed by Shreshth Tuli et al. [12]. HealthFog shows
its performance in energy usage, latency, and execution time. QoS attributes are not taken
into account. The comparison of recent health system architectures in the literature is
shown in Table 1.

Table 1. Recent healthcare system architecture.

Architecture No. of Layers Scalability Flexibility Real-Time Support Energy-Efficiency Computational Cost

PPHM [6] Three Layer Scalable Flexible N/A Energy-efficient High
HSDA [10] Three Layers Moderate Moderate support Moderate Moderate
EFCHioT [11] Three Layers Scalable Limited support Energy-efficient High
HAAL-NBFA [9] Four Layers Scalable Limited support Moderate High
HealthFog [12] Three Layers Limited Moderate support Energy-efficient Low

2.2. Whale Optimization Algorithm

One of the well-known metaheuristic optimization algorithms is the Whale Optimiza-
tion Algorithm (WOA) [13,14]. WOA is considered a Wrapper-based Feature Selection
technique, influenced by nature, proposed by Seyedali Mirjalili et al. [13,14]. The main in-
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spiration for WOA is the actions of humpback whales. Whether by encircling or bubble-net
approaches, they strike the prey. The current optimal location in the surrounding activity is
treated as the prey, and according to Equations (1) and (2), the whale updates its position.

�D =
∣∣∣C. �X∗(t))− X(t)

∣∣∣ (1)

�X(t + 1) = �X∗(t)− �A.�D (2)

where t refers to the current iteration, X∗ is the vector that corresponds to the best solution,
and X defines the position vector of the whale. The absolute value is || and . is the
element-wise multiplication. �A and �C are determined as follows in Equations (3) and (4).

�A = 2�a.�r −�a (3)

�C = 2.�r (4)

where a is linearly decreased from 2 to 0 throughout iterations, and r indicates a random
number in [0, 1].

There are only two ways to simulate bubble-net behavior. The first is to shrink the
enclosing using Equation (3) with a reduced range of A by a. The search agent’s new
position can be defined anywhere between the best possible current position and the
original position. Figure 3 depicts the feasible position from (X, Y) to (X∗, Y∗) that �A
can obtain in a 2D space, as given by Equation (3). The second one is the spiral updating
positions; Equation (5) is used as a logarithmic spiral equation. The movement of humpback
whales around the prey is helix-shaped, which is mimicked using Equation (5).

�X(t + 1) = �D′ .ebl .cos(2πl) + �X∗(t) (5)

Here, �D′ =
∣∣∣ �X∗(t)− X(t)

∣∣∣ is the distance from the ith whale to the victim, and B is a
parameter for determining the form of the logarithmic spiral. l denotes a random number
in [−1, 1] that determines how close the next location of the whale is to the victim. l = −1
is the nearest location to the victim as shown in Figure 4.

Figure 3. The WOA shrinking encircling mechanism.
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Figure 4. The spiral updating position.

It is worth remembering that humpback whales will simultaneously swim around the
prey and along spiral-shaped tracks in a shrinking circle. To model this concurrent activity,
the researchers believe that the processes of shrinking or the spiral model for adjusting
the whale’s location are equally probable. Equation (6) defines the mathematical model as
follows.

�x(t + 1) =

{
�X∗(t)− �A.�D if p < 0.5
X(t + 1) = �D

′
.ebl .cos(2πl) + �X∗(t) if p ≥ 0.5

(6)

Here, p is a random number in [0, 1], which decides when to use the spiral model
or the shrinking encircling method to change the whale position. In addition, humpback
whales will search randomly, depending on the location of each other. The mechanism can
be accomplished as follows:

�D =
∣∣∣�C. �Xrand(t)−�x(t)

∣∣∣ (7)

�X(t + 1) = �Xrand(t)− �A.�D (8)

where �Xrand is a random whale (a random position vector) chosen from the current popula-
tion. The WOA algorithm’s pseudo-code is shown in Algorithm 1. The WOA algorithm
randomly chooses X as the optimal way to enhance exploration.

The X∗ value is chosen in the WOA algorithm for moving randomly selected whales
rather than the best one to boost exploration. Besides Features Selection as a way to process
data, there are other methods, including data classification. Data classification can be done
in more than one form and by using many algorithms that differ in how they classify the
big data.
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Algorithm 1: The WOA

1 Initialize search agents.
2 Evaluate fitness function.
3 it ← 0
4 X∗ = the best search agent.
5 while t < MaxIteration do
6 foreach SearchAgent do
7 Update A, C, l, p, and a.
8 if p ≥ 0.5 then
9 X(t + 1) = Updating the search agent’s position using the spiral

method (Equation (5)).
10 else
11 if |A| < 1 then
12 X(t + 1) = Updating the position of the current search agent using

the encircling mechanism (Equation (1)).
13 else if |A| ≥ 1 then
14 Random search agent is selected.
15 X(t + 1) = Updating the position of the current search agent by

using the prey searching method (Equation (8)).
16 end

17 end

18 end
19 If there is better solution, update X∗ = X(t + 1).
20 t = t + 1
21 end
22 return X∗

2.3. Naïve Bayes Algorithm

The Naïve Bayes Algorithm (NB) is a Bayes Theorem-based classification technique
with an assumption of independence among predictors. It can be used for spam filters, text
analysis, and medical diagnosis [15]. Naïve Bayes is considered one of the best algorithms
with several advantages, such as easy implementation, high speed, and efficiency. NB
requires less training data, is scalable, handles both continuous and discrete data, and is
best suited for text data and fog computing support. The Naïve Bayes model is simple to
construct and especially effective for very large datasets. Naïve Bayes also provides highly
advanced classification methods as well as simplicity. The theorem of Bayes provides a way
of calculating posterior probability P(c | x) from P(c), P(x), and P(x | c). The equation
will be:

P(c | x) =
P(x | c).P(c)

P(x)
(9)

The equation parameters are:

• P(c | x): the posterior probability of class (c, target) given predictor (x, attributes).
• P(c): the prior probability of class.
• P(x | c): the likelihood which is the probability of the predictor given class.
• P(x): the prior probability of the predictor.

The classification process can easily be described in three simple steps: (i) create
the frequency table from the dataset, (ii) establish a Likelihood table by specifying the
probabilities, and (iii) use the Bayesian equation to measure the post-class probability.
The prediction result is the class with the highest posterior probability. In practice, it
is nearly impossible to obtain a set of completely independent predictors. Assume the
categorical variable in the test data has a category but not in the train data; in this case,
the probability of this category is set to zero, and prediction is impossible.

To summarize, medical data has a very large size and has many features that can
be decreased to make processing faster. There is a need to find a suitable method for
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processing medical data rapidly in real-time and increasing its accuracy in a form that
saves computational cost. Many attempts were spotted on this point, and many solutions
were introduced but with drawbacks in processing time and performance.

3. Methods

3.1. The Ambient Intelligent Healthcare Approach

Data evolves over time in most challenging data analysis applications and must be
analyzed in near real-time. Patterns and relationships in such data frequently evolve over
time, so models built to analyze such data quickly become obsolete. This phenomenon is
known as concept drift in machine learning and data mining. In machine learning and
data mining, concept drift refers to changes in the relationships between input and output
data in the underlying problem over time. There are several approaches to dealing with
concept drift; the most common is ignoring it and assuming that the data does not change.
If you suspect that your dataset may be subject to concept drift, you can use a static model
to detect Concept Drift Detection and a Baseline Performance. This should be your starting
point and benchmark for comparing other methods. Solving the problem of increased
processing time and high computational cost for medical big data systems is crucial. This
can be achieved via (i) proposing an approach for processing various types of medical data,
(ii) predicting useful information with minimum computational costs, and (iii) processing
data in real-time. Therefore, a hybrid algorithm that consists of two phases is proposed.
First, a feature selection technique is used to minimize the number of features. Thereafter,
the second phase of the proposed hybridized algorithm is data classification.

As shown in Figure 5, the block structure of the proposed Ambient Healthcare ap-
proach with the Hybrid Whale Optimization Algorithm and the Naïve Bayes Classifier
(AHCA-WOANB) consists of three main phases, which are the data collection phase, data
processing phase, and services layer. Based on fog computing, the AHCA-WOANB gains
most of its benefits, including enhanced business agility, improved security, deeper privacy
knowledge, and reduced cost of operation.

The proposed approach phases are working according to specific steps. The first
phase starts collecting data from various sources. Data diversity is concerned at this phase.
For performing the data management process, data are transferred to the second phase.
In the second phase, data are stored, then optimized and classified in a suitable way that
facilitates the third phase to work correctly and introduce perfect services. In the next
sections, there will be a detailed description of the phases of the AHCA-WOANB approach.

3.1.1. The Data Collection Phase

This phase consists of two steps: one for data perceptions and the second one re-
sponsible for transferring collected data to the next phase. The data comes from various
sources such as hospitals, research institutes, wearable devices, and public organizations.
After that, the collected data is transferred to the next phase via a networking medium.

3.1.2. The Data Management Phase

Fog technology is used to provide low latency and real-time communication between
the data management phase and the other phases. To this end, this phase is applied using
Hadoop [16,17], which is an open-source, Java-based software framework. The main
objective of deploying Hadoop is to distribute data stores and applications processing on
large clusters.
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Figure 5. The proposed Ambient Intelligent Healthcare approach.

Hadoop provides massive storage for any kind of data, which is called the Hadoop
Distributed File System (HDFS), and enormous processing power that is accomplished by
Hadoop MapReduce programming, and this processing is easily made based on parallel
computing. These support Hadoop with the ability to handle virtually limitless concurrent
tasks or jobs and make it highly fault-tolerant and deployable on low-cost hardware. All of
this makes it easy to depend on Hadoop as a backbone of any modern big data framework.
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The data management phase consists of two modules that are responsible for data
storage and processing. The first module is data storage, in which data are stored in
the HDFS [16]. HDFS can store and spread massive datasets on hundreds of low-cost
parallel servers. This supports the proposed approach with cost efficiency, flexibility, speed,
and resilience to failure. The second module is data processing and classification, which
uses Hadoop MapReduce [17] programming based on the proposed hybrid algorithm
(WOA for feature selection then NB for classifying) and parallel computing to process
many types of data.

The processing in this phase means optimizing data by using a hybrid algorithm.
This algorithm performs a feature selection on big data that is stored in the HDFS using
WOA, then classifies this optimized data using NB, and this processing is accomplished by
MapReduce programming and parallel computing, as shown in Figure 6.

Figure 6. The proposed AHCA-WOANB approach data processing steps.

Data optimization and classification, as shown in Figure 7, are performed using
MapReduce programming and parallel computing. This step is executed with the WOA
for optimizing data by reducing the number of features of the currently processed dataset.
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Figure 7. The proposed AHCA-WOANB approach flowchart.

Whales in the classical WOA move within the continuous search space to change their
positions, referred to as continuous space. However, to solve Feature Selection problems,
the solutions are limited to only 0 and 1 values. Therefore, continuous (free position)
solutions must be converted to binary solutions to solve feature selection problems. As a
result, a binary version of WOA is introduced to investigate the Feature Selection problem.
The conversion is carried out by utilizing specific transfer functions, such as the S-shaped
function. As a result, several studies have considered that the FS problem is an optimization
problem; thus, the fitness function for the optimization algorithm has been changed to
classifier accuracy, which the chosen features may maximize.

In this case, the proposed WOA algorithm is used to find the best features in an
adaptive feature space search. This combination is obtained by achieving the highest
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classification accuracy while using the fewest features. The fitness function is depicted in
Equation (10) below and the two proposed versions for evaluating individual whale posi-
tions.

F = αγR(D) + β
|C − R|
|C| (10)

where:

• F denotes fitness function.
• R: the length of the selected feature subset.
• C: the total feature numbers.
• γR(D): classification accuracy of the subset with length R.
• α: argument ∈ [0, 1].
• β: argument = 1 − α.

As a result, the fitness function with the highest classification accuracy will be pro-
duced. Based on the classification error rate and selected features, the equation above can
be converted to a minimization problem. As a result, the obtained minimization problem
can be solved, as shown in Equation (11).

F = αER(D) + β
|R|
|C| (11)

where ER(D) is the classification error.
The method entails dividing a dataset into two subsets. The first subset, referred to as

the training dataset 70%, is used to fit the model. The second subset is not used to train
the model; rather, the model is fed the dataset’s input element, and predictions are made
based on the expected values. The second dataset is referred to as the test dataset 30%. The
NB algorithm received the optimized datasets and started its mission to classify them and
prepare for the predicting data stage. This means that while fewer features result in less
computational complexity (both storage and execution), fewer features usually result in
less accurate results due to the absence of useful information. The exception to this is when
there are outliers and irrelevant features.

3.1.3. The Service Phase

The service phase consists of a set of modules: data access, Application Programming
Interface (API), and User Interface (UI) modules. These modules interact with each other
for performing the appropriate decision making. The data access module receives data and
statistics from the processing and classification module then prepares the data to be used
with the API and UI modules.

4. Simulation and Computer Results

This section evaluates the performance of the proposed AHCA-WOANB approach.
The performance metrics that the system is seeking to improve are:

1. Accuracy: The validity of the predicted data by the system; improving this factor
makes the decision making easier and more convenient.

2. Time: The time that the system will take to classify the data; eliminating this factor
will minimize the cost.

3. Data Variety: The amount of accepted data by the system; this indicates how flexible
the approach is by accepting more forms of data.

4.1. Used Datasets and Physical Meaning

This section explores the common datasets that were obtained from Kaggle [18]. These
datasets will be used to test the approach and produce results. They are also various
types, and the proposed approach will accept them easily, as mentioned in the first phase’s
description. Table 2 summarizes the characteristics of the used datasets.
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Table 2. The characteristics of the used datasets.

Dataset # Instances # Features
Clasisfication

Type
Availability

Heart disease UCI 303 14 Multiclass

The data set is publicly available on the
Kaggle website https://www.kaggle.
com/ronitf/heart-disease-uci
(accessed on 2 July 2021)

Pima Indians Diabetes
Database 768 9 Binary class

The data set is publicly available on the
Kaggle website
https://www.kaggle.com/uciml/
pima-indians-diabetes-database
(accessed on 2 July 2021)

Heart Attack Prediction 294 76 Multiclass

The data set is publicly available on the
Kaggle website https:
//www.kaggle.com/imnikhilanand/
heart-attack-prediction (accessed on 2
July 2021)

Sonar 1334 60 Binary class

The data set is publicly available on the
Kaggle website https://www.kaggle.
com/ypzhangsam/sonaralldata
(accessed on 2 July 2021)

4.1.1. Diabetes

The dataset comes from the Diabetes and Digestive and Kidney Diseases National
Institute. The dataset’s purpose is to predict based on certain measures contained in the
dataset whether a patient has diabetes or not. The collection of these instances from a large
database has been limited by many constraints. All patients here are women of Pima’s
Indigenous Heritage who are at least 21 years old. The dataset contains multiple variables
of the medical indicator and one variable objective, Outcome. Predictor variables (e.g., the
number, BMI level, insulin level, age, and so on) of pregnancies that the patient has had.

4.1.2. Heart Disease Uci

There are 76 attributes in this database, but recent research refers to the use of a
subset of 14. The only one used by ML researchers to date was the Cleveland database.
The target area applies to the patient’s involvement in heart disease. The integer value
is between 0 (no presence) and 4. This set of data includes age, sex, type of chest pain (4
values), blood pressure, serum cholesterol in mg/dL, fasting blood sugar >120 mg/dL,
electrocardiographic rest results (values, 1.2), achieved maximum heart rate, exercise
inducing angina, exercise-induced ancient peak = ST exercise-induced depression, peak ST
slopes, and the number of major vessels (0–3).

4.1.3. Heart Attack Prediction

The content of the cardiac disease directory is listed in this database. The data collec-
tion consists of various sources, including the Cleveland Clinical Foundation (Cleveland
data) and the University Hospital, Zurich, Switzerland (SWID). Data are available from a
wide variety of sources, including the VA Medical Center, Long Beach, CA (long-beach-
va.data).

4.1.4. Sonar

This data collection includes 60 patterns derived from photos during pregnancy, which
are used to assess fetal biometrics through ultrasound imagery. One such measurement is
the circumference of the fetal head (HC). The HC can be used to estimate the pregnancy
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and to track fetal development. In a certain cross-section of the fetal head, called the default
plane, HC is calculated. A total of 1334 2D images of the Standard Plane can be used to cal-
culate the HC in the dataset for this challenge. In this challenge, algorithms built to calculate
the fetal head circumference automatically can be compared in 2D ultrasound images.

4.2. Computer Results

This section presents the results that were achieved from testing the hybrid WOA-NB
algorithm. First, we will introduce a comparison between the accuracy and speed of pro-
cessing for every tested dataset using two ways. The first one is by executing classification
only by using NB. The second one is by executing feature selection then classification by
using WOA then NB, and this is the hybrid algorithm mentioned previously. The first-way
results are introduced in Liangxiao et al. [19], which give NB results without other algo-
rithms on multiple datasets. The second-way results will be calculated after executing the
proposed hybrid algorithm. The comparison results will be shown in Table 3. Figures 8–11
depict the original and predicted data shapes for different datasets.

Table 3. Accuracy and speed comparison between NB and WOA-NB.

Classifier Datasets

Algorithm(s) Parameters Diabetes Heart-C Heart-H Sonar

No. of Features 8 of 8 13 of 13 13 of 13 60 of 60

Accuracy (%) 77.24 83.04 83.91 85.4NB

Time (s) 1.3151 0.81224 0.82374 0.87044

No. of Features 4 of 8 12 of 13 12 of 13 52 of 60

Accuracy (%) 79.82 85.48 87.07 88.94WOA and NB

Time (s) 0.93421 0.80358 0.79651 0.85827

Figure 8. The Diabetes original and predicted data.
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Figure 9. The Heart-C original and predicted data.

Figure 10. The Heart-H original and predicted data.

Figure 11. The Sonar original and predicted data.

The results show an enhancement in accuracy and time using the proposed approach
over classification with only NB [19]. The enhancement is based on the number of reduced
features after applying the WOA feature selection technique. In the Diabetes dataset, there
are four of eight fewer features, and this enhanced the accuracy by 3.34% and reduced the
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computational time by 28.96%. In the Heart disease UCI dataset, there are 12 of 13 reduced
features, and this enhanced the accuracy by 2.94% and reduced computational time by
1.07%. In the Heart attack prediction dataset, there are 12 of 13 reduced features, and this
enhanced the accuracy by 3.77% and reduced the computational time by 3.31%. There are
52 of 60 fewer features in the Sonar dataset, which enhanced the accuracy by 4.15% and
reduced the computational time by 1.4%. Figures 12 and 13 compare accuracy results and
processing time results calculated from both Jiang [19] and the proposed approach.

Figure 12. Accuracy comparison between NB and the proposed approach.

Figure 13. Time comparison between and the proposed approach.

The confusion matrix [20] is a performance calculation for a classification problem of
learning machines that can measure the effectiveness of the proposed approach. The output
can be two or more classes, as shown in Figure 14. It is a table of four different expected
and true value combinations.

Figure 14. The confusion matrix.
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There are two classes (Class 1: Positive and Class 2: Negative), and there are many
terms as follows: Positive (P), Negative (N), True Positive (TP), False Negative (FN), True
Negative (TN), and False Positive (FP) as follows:

• Positive (P): Observation is positive (for example: is an apple).
• Negative (N): Observation is not positive (for example: is not an apple).
• True Positive (TP): Observation is positive and is predicted to be positive.
• False Negative (FN): Observation is positive but is predicted negative.
• True Negative (TN): Observation is negative and is predicted to be negative.
• False Positive (FP): Observation is negative but is predicted positive.

The Classification Rate or Accuracy can be calculated from Equation (12). Now,
the confusion matrix results of the proposed WOA-NP algorithm are depicted in Table 4.
Precision, as in Equation (13), tells us how many samples were actual positive out of all
positive predicted samples. Recall, Equation (14), tells us how many positive samples were
detected out of all actual positive samples.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (12)

Precision = (TP)/(TP + FP) (13)

Recall = (TP)/(TP + FN) (14)

Sensitivity represents a positive data points proportion, which is correctly considered
positive to all positive data points and calculated using Equation (15).

Sensitivity =
TP

TP + FN
(15)

Specificity is a negative data point proportion that is incorrectly considered positive
to all negative data points. It can be calculated using Equation (16).

Speci f icity =
TN

FP + TN
(16)

The confusion matrix is useful to calculate the Recall, Precision, Specificity, and most
significantly, the Receiver Operating Characteristic (ROC) curve (simply AUC) [21], and
the confusion matrix is also useful for accuracy. The ROC curve is a graphical approach
to demonstrate the difference between a classifier’s true-positive and false-positive rates.
This allows for an approach under the ROC curve (AUC) to determine which classifier is
on average better.

Table 4. The confusion matrix results.

Datasets/Metrics TP FP FN TN Precision Recall Specificity Sensitivity

Diabetes 4730 410 1140 1400 92% 80.57% 77% 81%

Heart disease uci 1120 260 180 1470 81% 86.15% 85% 86%

Heart attack prediction 1660 250 130 900 82% 90% 78% 93%

Sonar 980 130 100 870 88% 91% 87% 91%

AUC is a threshold invariant of classification. It tests the accuracy of model’s predic-
tions regardless of the classification threshold selected. This implies the classifier is the
greater the area under the curve more efficiently. Furthermore, there is a point on the curve
that represents the optimal operating point of the classifier. Figures 15–18 show the ROC
curves for every tested dataset while processing. From these curves, we notice that the area
under every curve is excellent, proving that the AHCA-WOANB approach classification
is efficient.
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Figure 15. The ROC curve: Diabetes.

Figure 16. The ROC curve: Heart-C.
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Figure 17. The ROC curve: Heart-H.

Figure 18. The ROC curve: Sonar.

Finally, all of these results lead us to clearly determine that the AHCA-WOANB hybrid
algorithm (WOA for optimization and NB for classification) increases and enhances the
accuracy by the average rate: 3.6% (3.34 for Diabetes, 2.94 for Heart disease UCI, 3.77
for Heart attack prediction, and 4.15 for Sonar) also can enhance the processing speed by
reducing the processing time by the average rate: 8.7% (28.96 for Diabetes, 1.07 for Heart
disease UCI, 3.31 for Heart attack prediction, and 1.4 for Sonar). The rate of these improved
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results, which are based on Datasets’ Characteristics, should be aware that whenever the
optimization step can reduce the number of dataset features, this will improve the accuracy
and reduce the processing time even more than improving them for those datasets that
have less few features.

5. Conclusions

Many healthcare big data needs too much effort to give humanity useful information
that can help develop and enhance this field reasonably with the low computational cost.
Therefore, the AHCA approach with a hybrid algorithm has been proposed to process
various types of medical data. Then it can be easy for us to predict data and introduce useful
information and statics to submit it to several parties that concerned this area. The AHCA-
WOANB approach has two steps of processing. This is to optimize data to make the second
one more efficient, while the second one is responsible for classifying the optimized data.
The proposed algorithm increases and enhances the accuracy by approximately 4%. It
can also enhance the processing speed by reducing the processing time by approximately
9%. (These results are the average of the results for all tested datasets that are based on
characteristics of data and the number of features that have been reduced by the WOA.)

The future mission is to try to support the proposed algorithm by modifying the WOA
parameters set automatically by using a conventional neural network algorithm to get
better results because it optimizes the used data perfectly before it is processed with the NB
algorithm. This will reduce human interactions, so it will reduce human mistakes, reduce
the duration time of processing, and give better accuracy than before.
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Abstract: Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant
renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating mor-
phological, textural, and functional features that best describe the malignancy status of a given renal
tumor. The integrated discriminating features may lead to the development of a novel comprehensive
renal cancer computer-assisted diagnosis (RC-CAD) system with the ability to discriminate between
benign and malignant renal tumors and specify the malignancy subtypes for optimal medical man-
agement. Informed consent was obtained from a total of 140 biopsy-proven patients to participate
in the study (male = 72 and female = 68, age range = 15 to 87 years). There were 70 patients who
had RCC (40 clear cell RCC (ccRCC), 30 nonclear cell RCC (nccRCC)), while the other 70 had benign
angiomyolipoma tumors. Contrast-enhanced computed tomography (CE-CT) images were acquired,
and renal tumors were segmented for all patients to allow the extraction of discriminating imaging
features. The RC-CAD system incorporates the following major steps: (i) applying a new parametric
spherical harmonic technique to estimate the morphological features, (ii) modeling a novel angular
invariant gray-level co-occurrence matrix to estimate the textural features, and (iii) constructing wash-
in/wash-out slopes to estimate the functional features by quantifying enhancement variations across
different CE-CT phases. These features were subsequently combined and processed using a two-stage
multilayer perceptron artificial neural network (MLP-ANN) classifier to classify the renal tumor
as benign or malignant and identify the malignancy subtype as well. Using the combined features
and a leave-one-subject-out cross-validation approach, the developed RC-CAD system achieved a
sensitivity of 95.3% ± 2.0%, a specificity of 99.9% ± 0.4%, and Dice similarity coefficient of 0.98 ± 0.01
in differentiating malignant from benign tumors, as well as an overall accuracy of 89.6% ± 5.0% in
discriminating ccRCC from nccRCC. The diagnostic abilities of the developed RC-CAD system were
further validated using a randomly stratified 10-fold cross-validation approach. The obtained results
using the proposed MLP-ANN classification model outperformed other machine learning classifiers
(e.g., support vector machine, random forests, relational functional gradient boosting, etc.). Hence,
integrating morphological, textural, and functional features enhances the diagnostic performance,
making the proposal a reliable noninvasive diagnostic tool for renal tumors.

Keywords: renal cell carcinoma; CE-CT; morphology; texture; functionality; RC-CAD

Sensors 2021, 21, 4928. https://doi.org/10.3390/s21144928 https://www.mdpi.com/journal/sensors
157



Sensors 2021, 21, 4928

1. Introduction

Renal cancer is one of the most common malignancies, being the sixth most prevalent
type of cancer among men and the eighth most prevalent among women. For the past
several decades, an increasing number of new patients have been diagnosed with renal
cancer. The year 2020 saw approximately 74,000 diagnoses of renal cancer in the United
States [1,2], and 15,000 patients are expected to have died from renal cancer in that same
time period [1,2]. Roughly two thirds of the time, renal cancer is diagnosed before it
has metastasized, in which case the 5 y survival rate is 93%. Once it has spread to the
lymph nodes or the surrounding abdominal structures (i.e., other organs or tissues), the
5 y survival rate falls to 70%. In the worst case of metastasis to distant parts of the body,
the 5 y survival rate is a mere 12% [1,2]. In addition, the National Cancer Institute had an
approximated cost estimate of $5.1 billion for renal cancer care in the United States by the
end of 2020 [3].

Renal cancer is a heterogeneous disease in which the renal cells become malignant
(cancerous) and form tumors called renal masses. These renal masses, if not detected early
and treated promptly, will lead to mortality. The most common, and also the most aggres-
sive, renal cancer is renal cell carcinoma (RCC), accounting for 70% of all cases [4,5]. In turn,
70% of RCC are clear cell renal cell carcinoma (ccRCC), and of the remaining nonclear cell
subtypes (nccRCC), the most prevalent are papillary (paRCC) and chromophobe (chrRCC)
renal cell carcinomas, accounting for 15% and 5% of all RCC, respectively [6]. The World
Health Organization (WHO) taxonomy of RCC [6] has clinical significance because the var-
ious subtypes can have very different prognoses [6–8]. Differential diagnosis of RCC must
look out for the benign tumors angiomyolipoma (AML) and oncocytoma (ONC), which
are easily confused with RCC using conventional diagnostic techniques [9–13]. AMLs with
low fat content are particularly prone to misdiagnosis [14]. Diagnostic error leads to un-
necessary surgical intervention for benign lesions, to the point where 15–20% of surgically
resected “RCC” may actually be AML [15]. Therefore, accurate characterization of such
renal masses at an early stage is crucial to the identification of appropriate intervention
plans and/or treatment courses.

1.1. Current Diagnostic Techniques and Their Limitations

Evidence of renal cancer can be found in complete blood count (CBC) to check for
the number of red blood cells; urine tests to look for blood, bacteria, or cancerous cells in
urine; and blood chemistry tests to quantify renal function by checking the levels of certain
chemicals in the blood. These signs are suggestive at best, and inadequate for diagnosis or
typing of renal cancer. Only biopsy, performed using interventional radiology, can provide
a definite diagnosis of renal cancer, and thus remains the gold standard [1,2]. However,
it can only be used as the last resort due to its high invasiveness, cost, and turnaround
and recovery times (approximately a week). Therefore, the investigation of noninvasive
imaging modalities (e.g., computed tomography (CT), magnetic resonance imaging (MRI),
and ultrasounds) to provide an early, reliable, accurate, cost-effective, and rapid diagnosis
of renal tumors is underway [16–19].

1.2. Related Work

One of the most important diagnostic imaging modalities for the accurate diagnosis
of renal tumors is contrast-enhanced CT (CE-CT) [20,21]. Besides specifying the location,
shape, and size of a tumor, CE-CT can also distinguish RCC from benign lesions with
77–84% accuracy based on their different uptake of the contrast agent [18,22,23]. For this
purpose, texture analysis (TA) is performed on the CE-CT images to extract quantitative
features [24,25]. As a radiomic technique, TA has seen an array of applications in typing,
staging, and grading tumors and even in predicting treatment response and survival
rates [24]. A recent study by Deng et al. [26] utilized TA techniques along with CE-CT to
discriminate malignant from benign renal tumors. Their study included 501 renal tumors
of which 354 were RCCs and 147 were benign lesions. From the portal-venous phase,
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they manually placed a region of interest (ROI) in the largest CE-CT cross-section of the
tumor volume. Then, they extracted four textural features, namely entropy, kurtosis, mean
positive pixel density, and skewness. Utilizing logistic regression, they found that higher
values of entropy were significantly associated with a greater likelihood of malignancy
(p = 0.022). As a diagnostic indicator of RCC, the entropy feature had high specificity
(85.5%), but quite low sensitivity (31.3%) [26].

Another study was conducted by Kunapuli et al. [27] to explore the potential of CE-CT
along with TA to identify malignant renal tumors. Their dataset included images of 100
malignant (70 ccRCC, 20 paRCC, and 10 chrRCC) and 50 benign (20 AML and 30 ONC)
tumors. After segmenting renal tumors manually using image-rendering software, 2D
and 3D TAs were performed on tumor with the largest diameter and the entire tumor
volume, respectively. Fifty-one 2D and 3D textural features were extracted from each of
four different CT phases, yielding a total of two-hundred and four features per subject.
These comprised 8 histogram features (i.e., first-order textural features), 40 s-order textural
features (20 grey-level co-occurrence matrix (GLCM) and 20 grey-level difference matrix
(GLDM)), and 3 spectral features derived from the 2D Fourier transform. Recursive feature
elimination [28] was used to reduce the number of features to 10 per phase, or a total of
40. Their classification algorithm incorporating these features, using relational functional
gradient boosting, had a reported 82% accuracy and an 0.83 area under the curve. The
classifier was developed to discriminate between malignant and benign tumors only, and
the authors did not investigate the subtype classification of malignant RCC [27].

Kocak et al. [29] conducted a study to classify ccRCC renal tumors from nccRCC ones
using CE-CT along with TA. A total of 68 RCCs were included for internal validation
(N = 48 ccRCC and N = 20 nccRCC). For external validation purposes, they included
an additional 26 RCC from a public dataset (N = 13 and N = 13 nccRCC). Their study
utilized MaZda image-rendering software [30] to manually segment renal tumors on the
largest/middle cross-section. This was followed by an extraction of 275 textural-related
features from each subject in both the enhanced CT phase and the unenhanced phase. In
addition, a wrapper-based nested cross-validation approach was employed to select the
reproducible features in both phases and to optimize their classification model. Artificial
neural networks (ANNs) were used, and a classification accuracy of 86.7%, a sensitivity of
80%, and a specificity of 89.6% on internal data and an accuracy of 84.6%, a sensitivity of
69.2%, and a specificity of 100% on external data were reported in differentiating ccRCC
from nccRCC. Although their study reported a good overall classification performance
between ccRCC and nccRCC, they were limited by their low sensitivity. In addition, they
reported a very poor diagnostic performance to differentiate chrRCC from paRCC and
from ccRCC. They suggested that CE-CT is more powerful at providing useful textural
features than the unenhanced CT.

A bigger study was performed by Sun et al. [31] to compare between the diagnostic
performance of machine learning approaches and four expert radiologists in differentiating
malignant from benign renal tumors, as well as ccRCC from nccRCC malignant tumors
using CE-CT. Their study included 254 malignant tumors (ccRCC = 190, nccRCC = 64
(chrRCC = 38, paRCC = 26)), 26 AML benign tumors, and 10 ONCs. After performing
manual delineation of the tumor lesions, they used open-source software packages to
extract and analyze textural features and used another open-source software to complete
their analysis. Then, they utilized a support vector machine (SVM) classifier with a radial
basis function along with a 10-fold cross-validation approach to obtain the final diagnosis.
They reported sensitivities of 90%, 86.3%, and 73.4% using SVM compared to 73.7–96.8%,
73.7–96.8%, and 28.1–60.9% obtained by the 4 expert radiologists in differentiating ccRCC
from nccRCC, ccRCC from AML and ONC, and nccRCC from AML and ONC, respectively.
Hence, they concluded that machine learning approaches along with textural features have
potential power, as well as low-variance performance in diagnosing renal tumors.

Lee et al. [32] used TA and CE-CT in their study to differentiate between ccRCC ma-
lignant and AML benign renal tumors. Their study included 80 renal tumors (ccRCC = 41
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and AML = 39). They combined several hand-crafted textural features extracted from a
2D manually annotated central image of the entire mass with automated deep features
extracted by different ImageNet pretrained convolutional neural network (CNN) classifica-
tion models, namely AlexNet [33], VGGNet [34], GoogleNet [35], and ResNet [36]. Then,
they used the combined features to train and test a random forest (RF) classifier. Using
a leave-one-out cross-validation approach, their combined model achieved a diagnostic
accuracy of 76.6% ± 1.4%, outperforming the individual diagnostic results using either the
hand-crafted features alone or the deep features alone.

Oberai et al. [37] investigated the potential power of CNN along with multiphasic
CE-CT images to differentiate benign from malignant renal masses. Their study included
143 patients (malignant = 97 and benign = 46). After performing manual segmentation
of the whole tumor volume, they selected the largest axial segmented tumor image from
each CE-CT phase to input in the CNN for training and validation. Using an 8-fold cross-
validation approach, they reported an accuracy of 78%, a sensitivity of 70%, and a specificity
of 81%. However, their dataset had an approximately 2:1 class imbalance, which might
contribute to the reduced diagnostic performance. Although their study included different
types of malignant tumors, they did not investigate the subtyping of malignant class.

Zhou et al. [38] conducted a study to distinguish between malignant and benign
renal tumors using CE-CT along with an ImageNet-pretrained InceptionV3 model. This
model was then cross-trained using transfer learning on their own dataset of 192 renal
tumors (malignant: ccRCC = 117 and nccRCC = 17, benign: renal cyst = 50 and AML = 8).
Several image-level models were considered, using whole CT slices, ROIs, and rectangular
subregions of the CT-CT data. Then, during the transfer learning, different number of
layers were frozen, resulting in two-patient level models based on the optimal image-level
models. Using a five-fold cross-validation approach, they reported a 69% accuracy using
the slice dataset, a 97% accuracy using the ROI dataset, and a 93% accuracy using the RBR
dataset. In spite of achieving a high accuracy in differentiating malignant from benign renal
tumors, 50 out of 58 benign cases were renal cysts, which are much easier to distinguish
from RCC compared to AML. In addition, they did not investigate discriminating ccRCC
from nccRCC renal tumors.

Shehata et al. [39] published a recent study to differentiate malignant RCC from benign
AML renal tumors, as well as to identify the malignant RCC subtype using CE-CT. Their
data included 105 biopsy-confirmed cases (ccRCC = 40, nccRCC = 30, and AML = 35). After
performing manual segmentation to delineate the renal tumor, they extracted 22 first- and
second-order textural features, as well as two functional features represented by wash-in
and wash-out slopes. These features were subdivided into four groups. To differentiate
RCC from AML, they obtained four preliminary diagnoses using separate RF classifiers
on each feature group, then used weighted-majority voting to produce the final diagnosis.
They reported a 96% accuracy, a 100% sensitivity, and an 89% specificity. Subsequently, for
cases diagnosed as RCC, they utilized SVM classifiers along with the weighted-majority
voting technique to specify the subtype of malignancy as ccRCC or nccRCC, for which the
reported accuracy was 71.4%. In spite of correctly identifying 70 of 70 RCC cases, their
system was not specific enough. This could be a consequence of the imbalance between
the RCC and AML group sizes. In addition, their technique did not achieve a sufficient
diagnostic performance in malignancy subtyping.

Most of the studies referenced above were pure applications of TA to CE-CT imaging.
That is to say, they did not integrate other features (e.g., morphological and functional) with
two- or three-dimensional textural features to diagnose RCC. Only a few studies addressed
typing of RCC, i.e., discrimination between ccRCC and nccRCC, which is vital information
for deciding the course of treatment from the beginning. To overcome these limitations, we
developed RC-CAD, a two-stage system for comprehensive computer-assisted diagnosis of
renal cancer based on CE-CT imaging. RC-CAD (Figure 1) incorporates 3D morphological
features, first- and second-order 3D textural features, and time-dependent metrics of renal
function (wash-in/-out slopes) to provide a high diagnostic accuracy of cancerous renal
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tumors. The developed RC-CAD system has the ability to (i) discriminate malignant (RCC)
from benign (AML) renal tumors and (ii) specify the subtype of malignant tumors as
ccRCC vs. nccRCC. To the best of our knowledge, the developed CE-CT-based RC-CAD
system is unique with the ability to integrate 3D morphological features with 3D textural
features and functional features for early discrimination of RCC malignant tumors from
AML benign tumors and determine the subtype of malignancy as ccRcc or nccRCC.

Figure 1. The proposed renal cancer computer-assisted diagnosis (RC-CAD) system.

It is worth noting that this paper extends our recent work [39] with the following
substantial modifications: (i) increasing the sample size from 105 (70 RCC vs. 35 AML) to
140 renal tumors (70 RCC vs. 70 AML) to ensure data balancing and to avoid any possible
classification bias towards the majority class, (ii) applying a new parametric spherical
harmonic technique to estimate the morphological features from the segmented renal
tumors to capture the surface complexity/irregularity between different types of renal
tumors, (iii) integrating/concatenating the estimated morphological features with the first-
and second-order textural features and functional features, and (iv) modeling a two-stage
classification using a multilayer perceptron artificial neural network (MLP-ANN) whose
inputs comprise all the aforementioned discriminant features. The first stage decides if
the renal tumor is malignant (RCC) or benign (AML). In the former case, the second stage
identifies the malignancy subtype as ccRCC or nccRCC.

2. Materials

Patients who had undergone renal biopsy for suspected cancer (N = 140) ranged from
15 to 87 years of age (mean = 50.5 years and standard deviation = 13.4 years). There were
72 patients who were males, while the remaining 68 were female. Informed consent was
obtained from the patients themselves or their parents/legal guardians (age < 18 years) to
participate in this study. Biopsy reports confirmed that 70 patients had RCC (40 ccRCC and
30 nccRCC, of which 17 were paRCC and 13 were chrRCC), while the other 70 had benign
AML tumors. Study participants had undergone a multiphase CT examination prior to
biopsy. Imaging was performed with a Brilliance CT 64 multislice scanner (Philips Medical
Systems, Best, The Netherlands). A mechanical injector was used to administer contrast
agent into an antecubital vein with a dose of 120 mL at a rate of 4.0 mL/s. The abdomen
scanning included three main phases: a precontrast phase, a portal-venous phase, and a
delayed-contrast phase acquired at t = 0, t = 80, and t = 300 s, respectively. All images were
acquired using the following parameters: slice thickness = 2.5 mm; pitch = 0.984; rotation
time = 0.75 s.
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3. Methods

The proposed RC-CAD system pipeline (see Figure 1) performs the following steps
to obtain the final diagnosis: (i) constructs 3D models of renal tumors from manually
segmented 2D ROIs, (ii) applies a new parametric spherical harmonic technique to estimate
the morphological features of the tumor boundary, (iii) constructs a rotation-invariant
gray-level co-occurrence matrix (GLCM) to extract the textural features of the tumor
volume, (iv) estimates the wash-in/wash-out slopes inside the 3D region, and (v) performs
two-stage classification using an MLP-ANN whose inputs comprise all aforementioned
discriminant features. The first stage decides if the renal tumor is malignant (RCC) or
benign (AML). These steps are presented in detail next.

3.1. Renal Tumor Preprocessing

To provide a more accurate extraction of morphological, textural, and functional
discriminating imaging features, for each subject, each CT slice intersecting the renal tumor
was accurately and manually segmented by expert radiologists to define the 2D ROI. Then,
all 2D ROIs were stacked together to construct the 3D renal tumor object (3D ROI), as
shown in Figure 2.

Figure 2. Visualization of the segmentation process to obtain 3D renal tumors.

3.2. Extracting Imaging Features

For accurate identification of malignant renal tumors and the associated subtype, all
3D segmented volumes were characterized by their morphological, textural, and functional
features, as described below.

Morphological features: To enhance both the sensitivity and specificity of early renal
cancer diagnosis, morphological features of the tumor are incorporated into the algorithm.
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These features were designed to quantify the complex shape of the tumor boundary. This
was motivated by the hypothesis that rapidly growing, malignant tumors develop more
irregular/complex shapes relative to more slowly growing, benign tumors. Therefore, the
utilization of such shape descriptors would enhance the performance of the automatic
diagnosis. Examples of this phenomenon are illustrated in Figure 3.

Naturally, in order to measure the irregularity of the boundary, we must first construct
an accurate shape model of the tumor. In this paper, we incorporated a state-of-the-art
spectral decomposition in terms of spherical harmonics (SHs) [40] to construct this shape
model. An arbitrary point in the interior of the tumor, or more specifically, the interior of
its convex kernel, was selected as the origin (0, 0, 0). In this coordinate system, the tumor’s
surface may be considered a function of the polar and azimuthal angle, f (θ, ϕ), which can
be expressed as a linear combination of basis functions Yτβ defined on the unit sphere.
Starting with a discrete approximation of the surface, i.e., a triangular mesh, the proposed
algorithm uses an attraction–repulsion technique [41] to map this mesh to the unit sphere.
The mapping fixes the image of each mesh vertex at the unit distance from the origin, while
preserving the mesh topology and maintaining the distance between adjacent vertices as
much as possible.

Figure 3. Visualizing 3D surface complexity differences between different renal tumors (benign are
shown in blue, while malignant are shown in red).

Each iteration α of the attraction-repulsion works as follows. Let Cα,i be the coordinates
of the node on the unit sphere corresponding to mesh vertex i at the beginning of iteration α.
Denote the vector from node i to node j by dα,ji = Cα,j − Cα,i; then, the Euclidean distance
between nodes i and j is dα,ji =

∥∥dα,ji
∥∥. Finally, let Ji denote the index set of neighbors of

vertex i in the triangulated mesh. Then, the attraction step updates the position of each
node to keep it centered with respect to its neighbors:

C′
α+1,i = Cα,i + CA,1 ∑

j∈Ji

(
dα,jid2

α,ji + CA,2
dα,ji

dα,ji

)
, (1)

The quantities CA,1 and CA,2 are implementation-defined parameters that determine
the strength of the attractive force. The next step, repulsion, inflates the spherical mesh to
prevent it from degenerating (the attraction step by itself would allow nodes to become
arbitrarily close to one another).

C′′
α+1,i = C′

α+1,i +
CR
2I

I

∑
j=1;j 
=i

dα,ji

d2
α,ji

, (2)

Just as the attraction step, the repulsion step uses an implementation-defined param-
eter CR to set the strength of the repulsive force. Subsequently, the nodes are projected
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back onto the sphere by giving them the unit norm, and these are their coordinates at the
beginning of the next iteration, Cα+1,i = C′′

α+1,i/‖C′′
α+1,i‖.

At the terminal iteration α f of the attraction–repulsion algorithm, the surface of the renal
tumor is in a one-to-one correspondence with the unit sphere. Each node Ci = (xi, yi, zi) of
the original mesh is mapped to a corresponding point Cα f ,i = (sin θi cos φi, sin θi sin φi, cos θi)

with polar angle θi ∈ [0, π] and azimuthal angle φi ∈ [0, 2π). Considering these points as
samples of a continuous function f (θ, ϕ) defining the boundary, the tumor shape may be
estimated by fitting an SH series to the sample nodes, since the SHs form an orthogonal
basis for functions on a sphere. The SH Yτβ of degree τ and order β is defined as:

Yτβ =

⎧⎪⎪⎨⎪⎪⎩
cτβG|β|

τ cos θ sin(|β|ϕ) −τ ≤ β ≤ −1
cτβ√

2
G|β|

τ cos θ β = 0

cτβG|β|
τ cos θ cos(|β|ϕ) 1 ≤ β ≤ τ

(3)

where cτβ is the SH factor and G|β|
τ is the associated Legendre polynomial of degree τ and

order β.
In practice, of course, the SH series is truncated by discarding harmonics above

degree N, yielding an Nth order approximation. N = 70 suffices to accurately model the
surface of renal tumors. Finally, the renal tumor object is reconstructed from the SHs of
Equation (3). The first few harmonics describe the rough extent of the tumor, while higher
degree harmonics provide the finer details of its surface. Therefore, benign tumors are
accurately represented by a lower-order SH model, while malignant tumors, with their
more complex morphology, require higher-order SH model to describe their shape.

Figure 4 shows the morphology approximation for three different renal tumors: ma-
lignant ccRCC, malignant nccRCC, and benign AML tumors. A summary of the attraction–
repulsion algorithm is provided below.

Figure 4. Renal tumors’ reconstruction meshes showing the morphological differences among
malignant ccRCC, malignant nccRCC, and benign AML tumors.

Initialization:

• Triangulate the surface of the tumor.
• Smooth the triangulated mesh with Laplacian filtering.
• Initialize the spherical parameterization with an arbitrary, topology-preserving map

onto the unit sphere.
• Fix values of CA,1, CA,2, CR, and threshold T.

Attraction–repulsion:

• For α = 0, 1, . . .

– For i = 1, . . . , I
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* Calculate C′
α+1,i using Equation (1)

– For i = 1, . . . , I

* Calculate C′′
α+1,i using Equation (2)

* Let Cα+1,i = C′′
α+1,i/‖C′′

α+1,i‖
– If maxi ‖Cα+1,i − Cα,i‖ ≤ T Then, let α f = α + 1, and Stop.

Textural features: Recently, TA has become a popular research topic, particularly
in the field of medical imaging. New techniques of TA provide different quantitative
patterns/descriptors by combining the grey values of each pixel/voxel in a tumor im-
age/volume. As a result of these abilities, TA has been used in the diagnosis of several
tumors and their related subtypes with encouraging classification abilities [24,25,42–48].
Therefore, in this manuscript, TA techniques were applied on the segmented 3D renal tu-
mor volumes to precisely extract first- and second-order textural features that best describe
the homogeneity/heterogeneity between renal tumors with different diagnoses. The use
of such comprehensive textural features relies on the fact that malignant tumors mostly
show high textural heterogeneity when compared to benign ones. The success of these
findings would enhance the sensitivity and the specificity towards an early identification of
renal cancer tumors. Figure 5 demonstrates the lesion texture differences of two malignant
ccRCC subjects, two malignant nccRCC subjects, and two benign (AML) subjects.

Figure 5. An illustrative example showing differences in texture between various renal tumor types.

First-order textural features: These textural features include any quantity that can be
derived from the gray-level histogram of the tumor volume. In particular, mean, variance,
standard deviation, entropy, skewness, kurtosis, cumulative distribution functions, and the
grey-level percentiles [49] were extracted.

Figure 6 shows the average normalized histogram curves for all benign subjects (blue)
vs. malignant (red). To construct these curves, the grey-level range was normalized first by
dividing by the maximum grey-level value obtained from all subjects. Then, all histograms
were constructed for all subjects within the new normalized grey-level range from 0 to
255. For each subject, the individual grey-level probability was obtained by dividing the
histogram values by the corresponding number of voxels. Then, all normalized histograms
from a particular group (malignant or benign) were averaged pointwise to obtain the
final curve.
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Figure 6. A visualization of the average normalized histogram curves for all benign subjects (blue)
vs. malignant (red).

Second-order textural features: Since the first-order textural features might not be
sufficient, with their range of values exhibiting significant overlap across classes, especially
between subtypes of malignant tumor, second-order textural features were incorporated
into the system. These features describe the joint distribution of gray values in multiple
voxels that are considered to be neighbors of each other. In particular, the grey-level
co-occurrence matrix (GLCM) [50] was used to capture the heterogeneous appearance of
renal tumors.

To construct the GLCM, we must count the number of times an ordered pair of two
grey values occurs in two neighboring voxels within the renal tumor object. This technique
is continued until all conceivable occurrence frequencies within the grey-level range of
the renal tumor item are found, which covers all possible pairs of neighbors. For this,
we first contrast stretched the renal tumor object’s original grey-level range to fit the
desired span 0–255, yielding a GLCM matrix with a size of 256 × 256. Then, all feasible pair
combinations were identified to construct the GLCM matrix (i.e., neighbors with gray levels
i and j contribute to row i, column j of the GLCM). To define our neighborhoods, we used
a distance criterion that voxels must be separated by ≤√

2 mm, making the calculations
rotation invariant (see Figure 7). The resultant GLCM was then normalized and used
to extracting the following second-order texture features [49,50]: contrast, dissimilarity,
homogeneity, angular second moment (ASM), energy, and correlation.

Figure 7. Visualization of the rotation-invariant neighborhood calculation system used to construct
the grey-level co-occurrence matrix (GLCM). The GLCM can be constructed by counting the oc-
currence frequency of different grey-level pairs in-plane and in adjacent planes accounting for the
26-neighbor voxels (blue) of the central voxel (red).

The definitions of all first- and second-order textural features are provided in Tables 1 and A1
in Appendix A.
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Table 1. Definition of first- and second-order textural features.

Textural Feature Definition

First-Order

Mean The average grey value of voxels within the tumor.
Variance Second central moment of gray values.
Standard deviation Square root of variance.
Skewness (Skew) Asymmetry of the distribution of gray values about the mean. If Skew < 0, that

means the grey level spreads out more to the left of the mean than to the right, and
if Skew > 0, that means the grey level spreads out more to the right of the mean
than to the left. Skew will equal zero in the case of normal distributions.

Kurtosis (Kurt) Measures the tail weight, or tendency to extreme values, of the object grey-level
distribution. The normal distribution has Kurt = 3; distributions with heavier tails
have Kurt > 3; distributions with less weight in the tails have Kurt < 3.

Entropy A measure of randomness of grey values within an input image.
CDFs A distribution function that accumulates voxel-wise grey values from the whole

tumor object with minimum value = 0 and maximum value = 1.
Percentiles Grey values percentiles corresponding to the CDFs (from 10% to 100%)

Second-Order

Contrast Measures the disparity in grey-level values between neighbors.
Dissimilarity Finds to what extent voxels are different from their neighbors.
Homogeneity Expresses the inverse difference moment among neighbors.
Angular second moment (ASM) Determines the gray levels’ local uniformity (orderliness).
Energy The square root of the ASM.
Correlation Determines the grey-level linear dependency in neighborhood blocks.

Functional features: Discriminating RCC from AML, as well as ccRCC from nccRCC
might be achieved using time-dependent characteristics of CE-CT imaging. The most
relevant CE-CT findings for this purpose are generally homogenous and prolonged en-
hancement patterns [51]. The time dependency can be expressed by the slopes of wash-in
and wash-out. Wash-in is described as the rate of increasing attenuation (in HU) from the
precontrast to portal-venous phase. Similarly, wash-out is the rate of decrease in attenua-
tion between the portal-venous and delayed-contrast phase [52]. Higher slopes of wash-in
and wash-out are typically associated with malignancy. Moreover, nccRCC demonstrates
wash-in and wash-out slopes intermediate between those of AML and those of ccRCC [53].
Therefore, we constructed both wash-in and wash-out slopes for all renal tumor subjects
for the classification of the renal tumor status. Examples of wash-in/-out slopes showing
the differences across ccRCC, nccRCC, and AML are shown in Figure 8.

Figure 8. Example of the wash-in and wash-out slopes construction process for various types of renal
tumors. When compared to nccRCC (green) and AML (blue), ccRCC tumors exhibit higher and faster
wash-in/-out slopes (red).

167



Sensors 2021, 21, 4928

3.3. Feature Integration and Renal Tumor Classification

Following the extraction of morphological, textural, and functional features from
all given renal tumors, RC-CAD proceeds with two-stage diagnostic classification. The
first stage aims to differentiate malignant (RCC) from benign (AML) tumors. In the case
of malignancy, the second stage provides the classification of RCC tumors as ccRCC
or nccRCC.

The multilayer perceptron (MLP) artificial neural network (ANN) consists of at least
three layers: an input layer, one or more hidden layers, and an output layer, each with
arbitrarily many activation/processing units, known as nodes/neurons. Each layer is
fully connected to the next layer in sequence. Neurons use nonlinear activation functions
to give the MLP-ANN the capability to divide the feature space into arbitrarily complex
regions. The MLP-ANN mainly utilizes supervised backpropagation learning technique in
the training phase, in which gradient descent methods are utilized to update the connection
weights and additive biases in order to minimize the loss function. To achieve our goal, we
utilized the MLP-ANN in both classification stages to obtain the final diagnosis. Classifier
performance was assessed using five different feature sets (Table 2) as the ANN input in
both stages. Feature Set 1 includes first-order histogram textural features (N = 6; mean,
variance, standard deviation, skewness, kurtosis, and entropy); Feature Set 2 includes
first-order percentile textural features (N = 10; from the 10th to the 100th percentile in
10% point steps); Feature Set 3 includes second-order GLCM textural features (N = 6;
contrast, dissimilarity, homogeneity, ASM, energy, and correlation); Feature Set 4 includes
SH reconstruction error (SHRE) morphological features (N = 70); and Feature Set 5 includes
functional features (N = 2; wash-in slope and wash-out slope). At each classification stage,
the individual feature sets were concatenated to obtain the combined features (N = 94) and
were fed to a MLP-ANN to obtain the final diagnosis.

Table 2. Details of the extracted feature sets used in the two-stage renal tumor classification.

Texture Features

Feature Set 1: First-order (histogram features) 6 features
Feature Set 2: First-order (percentiles) 10 features
Feature Set 3: Second-order (GLCM) 6 features

Shape Features

Feature Set 4: Spherical harmonic reconstruction errors 70 features

Functional Features

Feature Set 5: Wash-in/out slopes 2 features

Combined Features

Feature Sets 1, 2, 3, 4, and 5 94 features

4. Results

The diagnostic performance of the RC-CAD system on our dataset of 140 renal tumors
was assessed using leave-one-subject-out (LOSO) cross-validation. The system’s diagnostic
capabilities were assessed, evaluated, and compared in both classification stages using
the individual feature sets, as well as the combined features. Each classification process
was repeated 10 times, and the results were tabulated in terms of the mean ± the standard
deviation to provide a more quantitative expression of the diagnostic performance.

The first stage classification (RCC vs. AML) performance for the RC-CAD system
was first evaluated using individual Feature Sets 1, 2, 3, 4, and 5 (see Table 2) along with
different MLP-ANN classification models. Then, the RC-CAD system was evaluated using
the combined features, resulting in a noticeably enhanced diagnostic performance. A
summary of the first stage performance in terms of the sensitivity, specificity, and Dice
similarity coefficient (DSC) [54,55] is presented in Table 3.
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Table 3. Diagnostic performance results of the first stage classification (RCC vs. AML) using
different individual feature sets along with multilayer perceptron artificial neural network (MLP-
ANN) classification models. The RC-CAD system diagnostic performance using the combined
features outperformed the diagnostic abilities using individual feature sets. Sens: sensitivity, Spec:
specificity, DSC: Dice coefficient of similarity, hln: size of hidden layer n.

RCC vs. AML Classification Performance (Mean ± SD ≈)

Feature Set Sens% Spec% DSC MLP-ANN

Set 1 94.1 ± 1.5 97.9 ± 1.5 0.96 ± 0.01 hl1 = 10 nodes
Set 2 92.4 ± 2.9 95.1 ± 3.5 0.94 ± 0.02 hl1 = 10 nodes
Set 3 94.9 ± 2.2 95.3 ± 2.5 0.95 ± 0.02 hl1 = 10 nodes
Set 4 92.0 ± 2.4 96.6 ± 2.0 0.94 ± 0.02 hl1 = 10 nodes, hl2 = 5 nodes
Set 5 82.7 ± 4.1 91.7 ± 2.0 0.87 ± 0.02 hl1 = 10 nodes

RC-CAD 95.3 ± 2.0 99.9 ± 0.4 0.98 ± 0.01 hl1 = 50 nodes, hl2 = 25 nodes

Hyperparameters: MLP-ANN (optimization function: trainlm, max epochs = 500, goal = 0, max validation
failure = 6, min gradient = 10−7, training gain (μ): initial μ = 0.001, μ decrease factor = 0.1, μ increase factor = 10,
max μ = 1e10).

The diagnostic performance of the second stage classification (ccRCC vs. nccRCC) of the
RC-CAD system was evaluated using the same LOSO cross-validation approach. As before,
specially tailored MLP-ANN models were used with different feature sets. The best second
stage classifier performance was obtained using the concatenated feature set (Table 4).

Table 4. Results from the second stage classification (ccRCC vs. nccRCC) using individual feature
sets (1, 2, 3, 4, and 5) along with the multilayer perceptron artificial neural network (MLP-ANN)
classification models. The RC-CAD system diagnostic performance using the combined features
outperformed the diagnostic abilities using individual feature sets. Acc: accuracy, hln: size of hidden
layer n.

ccRCC vs. nccRCC Classification Performance (Mean ± SD ≈)

Feature Set Acc% MLP-ANN Architecture

Set 1 76.8 ± 2.6 hl1 = 10 nodes
Set 2 75.7 ± 3.8 hl1 = 10 nodes
Set 3 83.3 ± 5.6 hl1 = 10 nodes
Set 4 81.4 ± 5.1 hl1 = 10 nodes, hl2 = 5 nodes
Set 5 76.2 ± 2.33 hl1 = 10 nodes

RC-CAD 89.6 ± 5.0 hl1 = 50 nodes, hl2 = 25 nodes

Hyperparameters: MLP-ANN (optimization function: trainlm, max epochs = 500, goal = 0, max validation
failure = 6, min gradient = 10−7, training gain (μ): initial μ = 0.001, μ decrease factor = 0.1, μ increase factor = 10,
max μ = 1e10).

Figure 9 demonstrates a difficult case presentation for two ccRCC, two nccRCC, and
two AML renal tumors. This figure visualizes the texture differences, wash-in and wash-
out slope differences, and morphological differences between the different types of renal
tumors, which emphasizes the potential power of the integration process of such features
in providing a precise identification of a given renal tumor.

To ensure that our system is not prone to overfitting and to validate the reproducibility
and robustness of RC-CAD, we performed a randomly stratified 10-fold cross-validation
approach in both stages using the combined features. Likewise, the classification process
was repeated 10 times using the same MLP-ANN classification model, and the results are
tabulated in terms of the mean ± the standard deviation (Table 5).
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Figure 9. A difficult case presentation showing the textural differences, wash-in and wash-out slope differences, and shape
differences between two ccRCC, two nccRCC, and two AML renal tumors.

Table 5. Diagnostic performance comparison for both classification stages between the developed RC-
CAD system and other classification approaches (e.g., random forest (RF) and support vector machine
(SVM)). Using leave-one-subject-out (LOSO) and a randomly stratified 10-fold cross-validation
approach, the diagnostic abilities of the RC-CAD outperformed the others. Let Sens: sensitivity, Spec:
Specificity, DSC: Dice similarity coefficient, and Acc: Accuracy.

First Stage Classification (RCC vs. AML) Performance (Mean ± SD ≈)

Method Validation Sens% Spec% DSC

RC-CAD (Proposed)
LOSO 95.3 ± 2.0 99.9 ± 0.4 0.98 ± 0.01
10-fold 89.0 ± 3.4 91.0 ± 2.7 0.90 ± 0.02

RFs LOSO 89.0 ± 1.7 92.7 ± 2.7 0.91 ± 0.02
10-fold 88.4 ± 1.0 90.7 ± 3.0 0.89 ± 0.01

SVMQuad
LOSO 82.9 ± 0.0 88.6 ± 0.0 0.85 ± 0.00
10-fold 81.9 ± 2.2 87.7 ± 2.5 0.84 ± 0.02

Second Stage Classification (ccRCC vs. nccRCC) Performance (Mean ± SD ≈)

Method Validation Acc%

RC-CAD (Proposed)
LOSO 89.6 ± 5.0
10-fold 78.6 ± 5.7

RFs LOSO 53.7 ± 3.7
10-fold 51.9 ± 2.6

SVMQuad
LOSO 52.9 ± 0.0
10-fold 54.3 ± 3.0

Hyperparameters: MLP-ANN (optimization function: trainlm, max epochs = 500, hidden layers: hl1 = 50 nodes,
hl2 = 25 nodes, goal = 0, max validation failure = 6, min gradient = 10−7, training gain (μ): initial μ = 0.001,
μ decrease factor = 0.1, μ increase factor = 10, max μ = 1e10); RF (method: Bag, number of learning cycles = 30);
SVM (kernel function: quadratic, box constraint = 1).

To highlight the advantages of using the MLP-ANN classifier, we compared RC-
CAD with other, well-known machine learning classifiers (e.g., SVMQuad and RF). As
documented in Table 5, the diagnostic performance obtained by the developed RC-CAD
system outperformed all other machine learning classifiers in both classification stages,
which justifies the potential of such MLP-ANN classifiers being utilized for the developed
RC-CAD system. It is worth mentioning that, in each classification stage, a grid search
algorithm was employed to find the optimal set of hyperparameters, with the classification
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accuracy optimization criterion, for each of the classifier techniques being evaluated. The
results of the hyperparameter optimization are appended to Table 5.

For the comparison with RC-CAD, we applied the existing state-of-the-art approach [27]
using a total of 10 textural markers extracted from the portal-venous phase only along with
the gradient boosting classification technique. In addition, we applied the state-of-the-art
deep learning CNN approaches proposed by Lee et al. [32] and Oberai et al. [37] on our
own datasets (first stage: N = 140; second stage: N = 70). To highlight the advantages of
the RC-CAD system, all results are compared in Table 6. The diagnostic performance of
RC-CAD exceeded that of other approaches in both classification stages.

Table 6. Diagnostic performance comparison for both classification stages between the developed
RC-CAD system and the state-of-the-art approaches by [27,32,37]. The diagnostic abilities of the
RC-CAD outperformed all other methods in both classification stages. Let Sens: sensitivity, Spec:
Specificity, DSC: Dice similarity coefficient, and Acc: Accuracy.

First Stage Classification (RCC vs. AML) Performance (Mean ± SD ≈)

Method Sens% Spec% DSC

RC-CAD (Proposed) 95.3 ± 2.0 99.9 ± 0.4 0.98 ± 0.01
Kunapuli [27] 81.4 ± 0.0 95.7 ± 0.0 0.88 ± 0.00
Oberai [37] 88.9 ± 1.7 87.4 ± 1.4 0.91 ± 0.01

Lee [32]

AlexNet 84.0 ± 1.7 93.4 ± 1.9 0.88 ± 0.02
GoogleNet 88.3 ± 1.7 95.1 ± 1.9 0.91 ± 0.01

ResNet 88.0 ± 3.5 95.7 ± 0.9 0.91 ± 0.02
VGGNet 86.9 ± 0.6 91.4 ± 2.4 0.89 ± 0.01

Second Stage Classification (ccRCC vs. nccRCC) Performance (Mean ± SD ≈)

Method Acc% ccRCC/40 nccRCC/30

RC-CAD (Proposed) 89.6 ± 5.0 35 ± 2 28 ± 3
Kunapuli [27] 60.6 ± 2.7 28 ± 1 15 ± 1
Oberai [37] 84.3 ± 3.1 34 ± 1 25 ± 2

Lee [32]

AlexNet 71.7 ± 1.9 31 ± 2 19 ± 2
GoogleNet 68.0 ± 1.5 32 ± 1 15 ± 1

ResNet 70.3 ± 2.5 32 ± 0 17 ± 2
VGGNet 72.6 ± 2.3 33 ± 1 18 ± 1

Hyperparameters: MLP-ANN (optimization function: trainlm, max epochs = 500, hidden layers: hl1 = 50 nodes,
hl2 = 25 nodes, goal = 0, max validation failure = 6, min gradient = 10−7, training gain (μ): initial μ = 0.001,
μ decrease factor = 0.1, μ increase factor = 10, max μ = 1e10).

5. Discussion

The developed RC-CAD system demonstrated high diagnostic performance in terms
of accuracy, sensitivity, specificity, and DSC in discrimination between benign (AML) and
malignant (RCC) and in classification of the RCC subtype into ccRCC or nccRCC. This early
and precise identification of the malignancy status of a given renal tumor and its associated
subtype can enable clinicians to provide the appropriate early intervention/treatment plan
and improve the outcomes. CE-CT was utilized as it is an imaging modality with the
ability to provide different aspects of features, including but not limited to, morphological
features, textural features, and functional features. The integration of these features is
effective in determining the malignancy status of a given renal tumor when combined with
a powerful machine learning classifier such as the MLP-ANN.

The grade of malignancy of a given renal tumor largely specifies the morphology of
the tumor. Typically, malignant tumors demonstrate a more complex morphology than
benign ones. Therefore, morphological features based on using spherical harmonics were
utilized to capture possible surface complexity differences between malignant and benign
renal tumors, as well as differences between different subtypes of malignancy.

First- and second-order textural features have been widely utilized to identify a given renal
tumor status as malignant or benign, as well as to describe the malignancy subtype [26,27,29,
31,32,38]. These features capture all possible textural homogeneity/heterogeneity across renal
tumors with different diagnoses. In line with these studies, the extracted textural features
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provided high diagnostic performance in discriminating malignant ccRCC and nccRCC
from benign (AML) renal tumors.

Additionally, functionality was utilized in identifying the malignancy status of a given
renal tumor. The slopes of wash-in and wash-out can capture the existing differences in the
enhancement characteristics [51,52]. In this study, the results obtained by the functionality
metrics demonstrated the efficacy of such features in discriminating between benign (AML)
and malignant (RCC) and identifying the malignancy subtype as ccRCC or nccRCC.

Although individual features have provided a reasonable diagnostic performance,
they are not sufficient to rule out surgical intervention in (what may turn out to be) benign
lesions. Therefore, the integration process of these features is critical to enhance the
diagnostic accuracy to the point of clinical utility. The integration process produced a
reliable and accurate RC-CAD system with an enhanced diagnostic performance in both
classification stages as documented in Tables 3–5.

This study has some limitations: (i) benign tumors only included AMLs and did
not include any ONCs; (ii) the datasets in this study were all collected from the same
geographical area, and thus, we did not account for population diversity; (iii) demographics
such as age and sex were not included in our analysis; (iv) differentiation between paRCC
and chrRCC was not performed due to the limited number of subjects; and (v) the RC-CAD
system in its current form still requires expert knowledge to segment the renal tumor
manually before the handcrafted features are extracted. Despite these limitations, the
RC-CAD system demonstrated the efficacy and feasibility of integrating various types
of features to account for different aspects, making the developed RC-CAD a reliable
noninvasive diagnostic tool.

6. Conclusions and Future Work

The developed RC-CAD system demonstrated a high classification sensitivity of
95.29% ± 2.03%, a specificity of 99.86% ± 0.43%, an ad DSC of 0.98 ± 0.01 in differentiating
benign AML from malignant RCC renal tumors. In addition, the RC-CAD achieved an
overall classification accuracy of 89.57% ± 5.03% in distinguishing ccRCC from nccRCC
to provide the proper management plan. Integrating accurate morphological features
with functional features and multiple first-order and second-order textural features was
adequate to significantly enhance the diagnostic capabilities. Future work will obtain data
from a larger cohort spanning different geographical areas to test the RC-CAD system’s
generalizability. In addition, new types of renal tumors including oncocytomas and malig-
nant lymphomas will be included to expand the subclassification abilities of the RC-CAD
system. This greater amount of data will necessitate a fully automated segmentation
approach to be incorporated into the system, as manual segmentation will become too
burdensome. Furthermore, fully automated extraction of diagnostic image features might
be achieved using state-of-the-art deep learning approaches (e.g., convolutional neural
networks and stacked auto-encoders).
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Appendix A

In this Appendix, we detail the mathematical formulas used to extract the textural features:

Basic notation:

• μ: mean;
• n: total number of voxels in the object;
• vi: gray-level value of Voxel i;
• σ2: variance;
• σ: standard deviation;
• Ng: the normalized grey levels;
• p: the normalized histogram counts;
• ε: an initial random small number;
• Ng: grey-levels (normalized 0–255);
• GN : the GLCM (normalized 0–1);
• x̄, σx(i): the row margins (mean and standard deviation);
• ȳ, σy(i): the column margins (mean and standard deviation).

Table A1. Texture features formulas.

Feature Formula

First-Order

Mean (μ) 1
n

n

∑
i=1

vi =
v1 + v2 + · · ·+ vn

n
(A1)

Variance (σ2) ∑n
i=1(vi − μ)2

n
(A2)

Entropy (Ent) −
Ng

∑
i=1

p(i) log2
(

p(i) + ε
)

(A3)

Skewness (Skew) 1
n

n

∑
i=1

(
vi − μ

σ

)3

(A4)

Kurtosis (Kurt) 1
n

n

∑
i=1

(
vi − μ

σ

)4

(A5)
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Table A1. Cont.

Feature Formula

Second-Order

Contrast
Ng

∑
i=0

Ng

∑
j=0

(i − j)2GN(i, j) (A6)

Dissimilarity
Ng

∑
i=0

Ng

∑
j=0

|i − j|GN(i, j) (A7)

Homogeneity
Ng

∑
i=0

Ng

∑
j=0

GN(i, j)
1 + (i − j)2 (A8)

ASM
Ng

∑
i=0

Ng

∑
j=0

(
GN(i, j)

)2 (A9)

Energy
√

ASM (A10)

Correlation ∑
Ng
i=0 ∑

Ng
j=0 GN(i, j)ij − x̄ȳ

σx(i)σy(j)
(A11)
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Abstract: Affective computing is a field of study that integrates human affects and emotions with
artificial intelligence into systems or devices. A system or device with affective computing is beneficial
for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion
recognition systems are an important technology that enables affective computing. Currently, there
are a lot of ways to build an emotion recognition system using various techniques and algorithms.
This review paper focuses on emotion recognition research that adopted electrocardiograms (ECGs)
as a unimodal approach as well as part of a multimodal approach for emotion recognition systems.
Critical observations of data collection, pre-processing, feature extraction, feature selection and
dimensionality reduction, classification, and validation are conducted. This paper also highlights
the architectures with accuracy of above 90%. The available ECG-inclusive affective databases
are also reviewed, and a popularity analysis is presented. Additionally, the benefit of emotion
recognition systems towards healthcare systems is also reviewed here. Based on the literature
reviewed, a thorough discussion on the subject matter and future works is suggested and concluded.
The findings presented here are beneficial for prospective researchers to look into the summary of
previous works conducted in the field of ECG-based emotion recognition systems, and for identifying
gaps in the area, as well as in developing and designing future applications of emotion recognition
systems, especially in improving healthcare.

Keywords: electrocardiogram (ECG); affective computing; emotion recognition system; healthcare

1. Introduction

Research interest in affective computing via physiological modalities has been pop-
ularized by the accelerated development of technological solutions, particularly within
the healthcare industry. The field of affective computing originated from a paper written
by Rosalind Picard in 1995, discussing neurological studies of human emotions and the
possibility for computers to mimic them by expression recognition [1]. Affective computing
is a multidisciplinary study that revolves around computer science, psychology, cognition,
and physiology [2].

The significance of emotions in natural human interaction was demonstrated by
Ekman et al. [3] from the premise “If B perceives A’s facial expression of emotion, B’s
behavior toward A may change, and A’s noticing this may influence or determine A’s
experience of emotion”. Meanwhile, in a book by Reeves et al. [4], the authors claimed
that humans treated computers as if they are just another living being too. From both
arguments, it can be deduced that if computer systems are capable of discerning and
responding to human affects, then the interactional gap between people and machines
will be as naturalistic as talking to a friend and improve the human–computer interaction.

Sensors 2021, 21, 5015. https://doi.org/10.3390/s21155015 https://www.mdpi.com/journal/sensors
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Adopting emotion recognition systems should be considered as a footstep towards instilling
empathy, sympathy, and compassion into artificially intelligent machinery.

Emotion recognition systems have a lot of prospective applications, spanning health-
care, entertainment, e-learning, marketing, human monitoring, and security. Accord-
ing to [5], there were three major applications of emotion recognition systems specifically
using ECG signals:

• Firstly, monitoring human emotions during certain tasks and assessing the behavioral
response in critical situations. For example, in [6], the emotion recognition system
focuses on studying a driver’s performance during a race.

• Next, clinical application in monitoring patients’ psychological condition for relevant
drug prescriptions or treatment. In [7], emotion recognition is implemented in health-
care settings to promote relaxation and reduce stress. Three emotional services are
provided in the design framework, which are relaxation, amusement, and excitement
services.

• Finally, emotion recognition can be used for marketing. Emotion recognition can be
utilized for website optimization [8], where the system can be designed to collect
information on which adverts attract the most attention, which can allow catering
appropriate contents according to audience demography.

The physiological approach towards emotion recognition has become a better alter-
native to facial expressions, gestures, and vocal traits. Machine vision-based emotion
recognition systems are prone to fake emotions and can be manipulated easily [9–11].
This is why many studies focused on physiological signals, including the multimodal
approach, by combining different physiological signals from biosensors such as an ECG,
an electroencephalogram (EEG), an electromyogram (EMG), electrodermal activity (EDA)
or galvanic skin response (GSR), a photoplethysmogram (PPG) or blood volume pressure
(BVP), or a respiratory inductive plethysmograph (RIP). Although the multimodal emo-
tion recognition approach commonly performed better, the unimodal approach has the
advantages of a lower processing time and simpler data collection [12].

The brain and heart are connected via the autonomic nervous system (ANS), in which
both indirectly influence each other’s behavior [13]. The connection of the sympathetic
nervous system (SNS) and parasympathetic nervous system (PNS) is part of the ANS.
Thus, emotional experience does cause some changes in the heart rhythm, and this can be
detected through ECG readings. The purpose of this review is to sum up the literature to
date that has reported the adoption of ECG as an input of emotion recognition systems.
This paper also discusses ECG features such as the heart rate (HR), as well as heart rate
variability (HRV), and their relationship with the autonomic innervation of the heart.

The next sections discuss the review methodology, followed by the theoretical background
of the autonomic innervation of the heart, electrocardiograms, various emotional models, and
emotion elicitation and emotion evaluation techniques. ECG-inclusive datasets are reviewed
and analyzed in Section 4. Section 5 discusses the methodology of developing an emotion
recognition system from the pre-processing of ECG signals, feature extraction, feature selection
and dimensionality reduction, classification, and validation. Section 6 focuses on the discussion
of the summarized literature. The applications of emotion recognition systems in healthcare
are reviewed in Section 7, and the discussion of the reviews is presented in Section 8. The last
section concludes the work.

2. Review Methodology

The journals and articles reviewed in this work underwent a thorough selection
process. Initially, keywords for the search criteria were identified. Studies associated
with “emotion recognition”, “ECG”, and “healthcare” were searched throughout different
academic databases. Table 1 shows the publisher database and number of studies reviewed
for ECG-based emotion recognition, and healthcare applications of emotion recognition
systems. Here, IEEE Xplore was the database with the most papers reviewed.
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Table 1. Number of papers reviewed from the respective databases.

Publisher Database
ECG and Emotion

Recognition
Healthcare Application

IEEE Xplore 26 9

Science Direct: Elsevier 4 1

Nature: Scientific
Reports/Data 4 0

ACM DL 3 1

Springer Link 3 2

MDPI 2 0

IOP Science 2 1

J-Stage 1 0

Springer Nature 1 0

IOS Press 1 0

Wiley Online Library 1 0

Fuji Technology Press Ltd. 1 0

IJEECS 1 0

Frontiers 1 0

Total 51 14

The exclusion criteria after the first reading included the removal of duplicated publi-
cations, contextual irrelevancies, and non-English papers. The challenge in collecting the
articles for review was the status of the article, that is, whether it is open access or included
in our institutions’ subscription or not.

In total, for ECG-based emotion recognition, 51 papers were reviewed, and the distri-
bution according to the year the papers were published is shown in Figure 1. The trend
shows that the number of works increases by year, and this reflects the growing interest
of researchers in this field. The overview also shows the number of ECG-based emotion
recognition studies conducted with unimodal and multimodal approaches.

Figure 1. Overview of the years selected studies were published.

3. Theoretical Background

The contents covered here were cited from textbooks, academic journals, conference
papers, and other sources with contextual benefits.

3.1. Autonomic Innervation of The Heart

The centers of the ANS’s control over the heart rhythm are located at the medulla
oblongata [14]. Without any external factor, both centers provide an infinitesimal amount
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of stimulation to the cardiac muscle and cause it to have an autonomic tune. However,
upon excitation, the cardioaccelerator releases the neurotransmitter norepinephrine and
causes the HR to increase drastically. This process occurs throughout the SNS, as well as
at the sinoatrial (SA) node, and is commonly known as the “fight or flight” response [15].
As for the decrease in the HR, the cardioinhibitory centers release the neurotransmitter
acetylcholine (Ach) to the PNS. Metaphorically, this activation can be referred to as the “rest
and digest” operation [15]. SNS and PNS stimulation flows through the cardiac plexus,
cervical ganglia, and superior thoracic ganglia to the SA and atrioventricular (AV) nodes,
with the nerves’ fibers reaching the atria and ventricles. Figure 2 shows the connection of
the vagus nerve (PNS) and sympathetic cardiac nerves (SNS) in a simple model.

Figure 2. The ANS connection between the brain and heart [16].

The physiological interrelation between the heart and brain communication influences
certain characteristic changes when it comes to emotion. The ANS’s influence on emo-
tional changes regulates various other body parameters [17]. According to the HeartMath
Institute, the dynamic, continuous, and bidirectional communication of both organs affects
one’s perception, emotion, intuition, and general health [13]. Hence, detecting the cardiac
rhythm for emotion recognition purposes based on autonomic innervation is necessary in
healthcare as a preventive measure towards negative emotions such as stress [18].

3.2. Electrocardiogram (ECG)

An ECG measures the electrical activity of the heart in different phases and perspec-
tives based on the situation and configuration [19]. The signal acquired provides a graphical
depiction of the deflection and wave series produced by each cardiac cycle, as shown in
Figure 3. The main purpose of an ECG in clinics is to detect pathological cardiac conditions
such as arrhythmia, heart disease, and epilepsy [20].

A normal ECG signal should have three segmented waves in a single cycle [19].
The first wave materializes from the atrial depolarization, and it is called the P wave.
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The second wave is the QRS complex, where it contains the highest amplitude caused by
ventricular depolarization. The interval distance between R peaks is where the inter-beat in-
terval (IBI) is usually calculated for HR detection [21]. Additionally, to extract HRV features
from ECG signals, QRS detection is essential to sort out the RR intervals [22]. After a few
milliseconds of plateau, a T wave appears because of ventricular repolarization [23], and
the cycle repeats.

According to Rattanyu [24], and Bexton et al. [25], ECGs are one of the most widely
used biosensors in emotion recognition because of their quality, and the information on
human emotions contained in the signals. Various studies have used ECGs as a single
modality for emotion recognition. Theekshana et al. [26] stated that there are four prime
reasons that ECGs alone are sufficient for an emotion recognition system. Firstly, ECG sig-
nals capture the heart activity, and ANS stimulation towards each emotion causes rhythmic
changes in the heart [25]. Secondly, an ECG can be extracted using a less intrusive, mobile,
and wearable device [27]. Thirdly, an ECG is a versatile biosensor that can collect data from
different parts of the body: the chest or the limbs, as shown in Figure 4. Lastly, ECG signals
have a higher amplitude among other biosignals [24].

Figure 3. ECG cycle in a healthy and normal heart [28].

Figure 4. Possible electrode placements for ECG recordings [19]: (a) electrode placement for limbs
lead configuration; (b) electrode placement for chest lead configuration [29].
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3.3. Emotion Models

Emotion is a subjective and conscious mental experience accompanied by particular
biological responses or changes [30]. Experts from different backgrounds have tried to
uncover the universal definition of emotion; however, none of them have come to an
agreement in establishing a single emotional model [15]. Despite this, the two most widely
accepted and used emotional models are discrete categories and the affective dimension [1].
In addition, this paper also discusses another commonly used emotional model, the binary
emotional model.

3.3.1. Discrete Emotional Model (DEM)

The DEM categorizes emotions into standard terms such as joy, fear, anger, disgust,
sad, funny, and neutral [31]. This emotional model is standardized and shared across
languages and cultures [32]. Cicero and Graver [33] named 4 basic categories, while
Ekman [34] summarized 6, and Izard [35,36] suggested 10 basic emotions. Although
the number of emotion classes in the DEM varies, there are similarities between them.
Among the emotion labels, the most common are happiness, sadness, and anger [20,37–41].
The reason for the three of them being selected the most is because of the prominent arousal
level that can be easily detected compared to more relaxed emotions [22].

3.3.2. Affective Dimensional Model (ADM)

The ADM, which is also known as the continuous dimension model, is a range of
two-dimensional planes of valence and arousal. One researcher preferred to add another
plane of dominance into the model [42]. The ADM was developed by Russell [43] and
has been adopted widely by researchers from different backgrounds. Figure 5 shows the
illustration of valence, arousal, and dominance on a positive and negative scale. Valence is
the feeling of pleasantness, either being appetitive or aversive, while arousal is the intensity
of the feeling being experienced [44]. The dominance scale represents the authority to be in
control, ranging from submissive to feeling empowered.

Figure 5. The graphical scheme provided to subjects to understand the ADM scales [45].

The versatility of the ADM compared to the DEM is demonstrated in Figure 6.
Based on the valence and arousal scale, the categories of emotions can be segmented
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depending on the degree of intensity. High valence–high arousal (HVHA) is mapped to
excitation, while high valence–low arousal (HVLA) is mapped to feeling calm, or relaxation.
Low valence–high arousal (LVHA) is considered as anger and feeling distressed, while low
valence–low arousal (LVLA) is related to sadness and feeling depressed. The middle of the
scale is considered as a neutral state.

Figure 6. The mapping function between the ADM and DEM [46].

3.3.3. Binary Emotional Model

The binary emotional model consists of positive and negative emotional states (Pos/Neg) [47].
The purpose of this model is to simply generalize between which emotions are bad and which
emotions are good. Negative emotions may cause mental stress to the bearer and the people around
them. It is unhealthy to be exposed to prolonged negative emotions as it affects the physiological
state of a person. Depression, anxiety, and bipolar disorder are known effects of emotional and
mental stress [48,49]. Moreover, by simplifying the emotional model to two classes, a targeted
application of an emotion recognition system can be built with less complexity. A higher accuracy
of training and testing models can also be expected. Figure 7 shows the emotional stress model
proposed by [39]. Instead of valence, the author used a pleasantness scale to describe the region
of potential mental stressors. Any emotions categorized under negative valence such as sadness,
anger, fear, and disgust are potential stress factors that may lead to complications. Thus, the binary
emotional model is another important classification model for affective computing studies.
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Figure 7. Pos/Neg as a model that identifies between good (no stress) and bad (stress) emotions.

3.4. Emotion Elicitation

Inducing basic emotions for data collection in an experiment requires certain guide-
lines and standard operating procedures. There are five common elicitation techniques
which are audio visual, imagery, music, memory recall, and the situational procedure [50].
The less common approaches are naturalistic conversations or debates [51], driving [52],
video games [53], and virtual reality [54].

Audio visual techniques can be segmented film clips for targeted emotions, or videos
with the same purpose [31,45,55–59]. The length of the videos varies, as does the length
of the recorded physiological signals. Imagery is the act of reading vignettes [50] and
experiencing deep emotions through contemplation [60], but in addition to that, pictorial
images such as the International Affective Picture System (IAPS) [61] have been used
widely too. Music listening is another popular way to activate emotions through the lyrics,
melody, and tempo variations [62]. The renowned dataset for affective audio stimulation is
the International Affective Digitized Sounds system (IADS) [63]. Memory recall involves
remembrance of personal experiences to reactivate the essence of emotions circa that
moment [64]. The situational procedure necessitates fabricating a social environment that
elicits the targeted emotion.

As it was described in [50], the most effective way to induce basic emotions is through
audio visuals. Imagery is effective for happiness, surprise, fear, and anger. Music is
only effective for happiness, sadness, and fear. Memory recall is recommended to induce
happiness, anger, disgust, sadness, and fear, but not surprise. Finally, the situational
procedure is a good approach for happiness, anger, fear, and surprise.

3.5. Emotion Evaluation

Emotion evaluation is an annotation perspective for emotion labeling on the data col-
lected. The most common approach is through a first-person perspective or self-assessment.
In this way, the subject personally labels their emotions on a Self-Assessment Manikin
(SAM) [65]. The questionnaire varies depending on which emotional models are used.
Usually, there will be a pictorial description of emotions and the intensity scale to ease the
labeling process, as shown in Figure 5. The problem with internal annotation is that the
subject might feel discomfort and insecure in sharing their true conscious and unconscious
experiences towards the stimuli [15]. This indirectly reduces the reliability of the reported
emotional experience.

Another perspective for emotion annotation is implicit assessment or external eval-
uation. This can be conducted through a second-person perspective and third-person
perspective. The second-person perspective is someone who watches the subject experi-
ence the stimuli in real time and labels what they think the subject feels [51]. Meanwhile,
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third-person perspectives are external, conducted by watching the recordings of the sub-
ject’s facial expression and body gestures, and then only annotating the guesses on what
emotions the subject feels. Both methods have a disadvantage of bias, and they can easily
be deceived [15]. Their perception often depends on personality, cultural bias, and environ-
mental attributes.

4. ECG-Inclusive Affective Datasets

Affective datasets that have been collected using various physiological modalities
are available in academic archives. Although they are not standardized, there are still
commonalities between them. Since this review paper is only interested in ECG-based
emotion recognition systems, the datasets enlisted are ECG-inclusive modalities. The focus
is on the summary of the stimulation used, the data size, the modalities included, the ECG
device used, the ECG configuration, emotional annotations, the model, and perspectives.
Among the datasets with ECG signals are the following:

1. AMIGOS [55]: This stands for A dataset for Multimodal research of affect, personality
traits, and mood in Individuals and GrOupS. The data were collected from 40 subjects
watching videos, with 16 samples each. Biosignals included are ECG, EEG, and GSR.
The ECG device used was a Shimmer, at a 256 Hz sampling frequency. The ECG
lead configurations used were right arm left leg (RA-LL), and left arm left leg (LA-
LL). The emotion annotation labels were from a self-assessment, and third-person
perspectives with a 3D ADM.

2. ASCERTAIN [56]: This stands for a multimodal databASe for impliCit pERrsonaliTy
and Affect recognitIoN using commercial physiological sensors. The data were col-
lected from 58 subjects watching 36 video clips. The physiological signals used
were ECG, EEG, and GSR. For ECG, the sampling rate was 256 Hz, with two un-
specified lead configurations. The emotion annotation perspective was only from
self-assessment, and the model used was the ADM on a scale of valence and arousal.

3. AuBT [66]: This stands for Augsburg Biosignal Toolbox by the University of Augs-
burg. It contains a MATLAB GUI for emotion recognition purposes, together with a
data corpus recorded from ECG, EMG, skin conductance (SC), and respiration (RSP).
The data were from a single subject, with 100 samples collected within the span of
25 days while listening to music of the subject’s choice. The ECG signal sampling
rate was 256 Hz, with only one lead configuration. The emotions were labeled by
self-assessment using the DEM. The four classes of emotions are joy, anger, sadness,
and pleasure.

4. CASE [67]: This stands for the Continuously Annotated Signals of Emotion. The data
were collected from 30 subjects in real time while watching various videos. The physi-
ological modalities included are ECG, BVP, EMG, and GSR (EDA). The ECG device
used was from Thought Technology, and the configuration setup had three leads,
1 kHz. The annotation was by self-assessment using the ADM.

5. CLAS [68]: This stands for Cognitive Load, Affect and Stress Recognition. The data
were collected from 62 subjects, with 32 samples each. The stimuli were separated
equally between video clips and IAPS pictures. The biosignals included are ECG,
PPG, and EDA. The ECG device used was the one-lead Shimmer3, with a right arm
left arm configuration. The sampling rate was 256 Hz. Self-annotation of the valence
and arousal ADM was performed by the subjects.

6. DECAF [57]: This stands for a multimodal dataset for decoding user physiological
responses to affective multimedia content. The data were collected from 30 subjects
with 76 samples. Here, 40 of the 76 samples were from music videos at a 1 min cap,
while the others were from watching movie clips. The biosignals included are ECG,
EMG, magnetoencephalogram (MEG), and electrooculogram (EOG). The sampling
rate for the ECG was 1 kHz, and it was downsampled to 256 Hz. A one-lead configu-
ration was used for this setup. The annotation was from a first-person perspective,
and the ADM with a 3D scale was implemented.
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7. DREAMER [58]: This dataset contains data collected from 23 participants, with
18 samples each. The stimuli used were video clips ranging from 1 to 3 min, with the
focus on the ECG and EEG modalities. The ECG device used was a low-cost, wireless,
portable, and wearable off-the-shelf device from Shimmer. The sampling rate was
256 Hz, with two-lead and three-lead configurations. Self-annotation of the subjects
was conducted using a valence, arousal, and dominance ADM.

8. DSDRWDT [52]: This stands for Detecting Stress During Real-World Driving Tasks.
The data were collected from 24 subjects while they were driving in a real-world
condition. The biosignals included are ECG, EMG, SC, and RSP. The ECG device used
was a FlexComp, with a 496 Hz sampling rate. The lead used was right arm left leg
(RA-LL). The drivers labeled their stress levels through three stages: low, medium,
and high. The emotional model considered was the Pos/Neg category model.

9. EMDC [69]: This emotion-specific multilevel dichotomous classification dataset con-
tains signals collected from 3 subjects, with 360 samples of music listening. The phys-
iological modalities included are ECG, EMG, SC, and RSP. The ECG device used
was a three-lead Procomp2 Infiniti, at a 256 Hz sampling frequency. The affective
annotations were from self-perspective with a 2D ADM.

10. K-EmoCon [51]: This dataset contains data collected from 32 subjects in real time
from a naturalistic conversation (paired debates on social issues) to induce emotions.
The physiological modalities included are ECG, EEG, BVP, EDA, and skin temperature
(SKT). For the ECG signal, a Polar H7 was used, at a 1 Hz sampling rate. The only
feature extracted was the HR. This paper claims to be the first publicly available
dataset on emotion recognition that has a multi-perspective annotation from self-
assessment, second person and third person. The ADM with valence and arousal
scales was implemented.

11. MANHOB-HCI [59]: Data were collected from 27 subjects, with 20 samples, using
ECG, EEG, GSR, EDA, RSP, and SKT. The ECG device used was a Biosemi Active II,
with a three-lead configuration. The sampling rate was 1024 Hz and was downsam-
pled to 256 Hz. Based on the emotional videos watched, the subjects self-reported
their affective state with a 3D ADM.

12. MPED [31]: This stands for Multi-Modal Physiological Emotion Database. The data
were collected from 23 subjects, with 28 samples, watching video clips less than 5 min
each. The biosgnals included are ECG, EEG, GSR, and RSP. The Biopac System with
three-lead configurations and a 250 Hz sampling frequency was used for the ECG
signal acquisition. The annotation perspective was from the first-person view using
seven classes of the DEM: joy, funny, anger, fear, disgust, sad, and neutral.

13. SWELL [70]: This dataset is also known as SWELL knowledge work (SWELL-KW),
and it is a new multimodal dataset for research on stress and user modeling. The data
were collected from 25 subjects performing tasks such as writing, presenting, reading,
and searching to elicit stress. The physiological signals recorded were ECG and SC.
The ECG was recorded through a Mobi device (TMSi), with the electrodes placed in
a triangular configuration on the chest. The sampling rate was 2048 Hz, with three
leads attached. The assessment was conducted by the subjects through labeling two
emotional models, which were the ADM and Pos/Neg.

14. WESAD [71]: This stands for Wearable Stress and Affect Detection. The data were
collected from 15 subjects watching video clips and provided with public speaking
and mental arithmetic tasks. The biosignals included are ECG, BVP, EDA, EMG, RSP,
and temperature (TEMP). The ECG signal was acquired from a RespiBAN Professional
using a three-lead configuration. The sampling rate was 700 Hz. The subject self-
annotated their emotions using a three-class Pos/Neg model. Amusement, neutral,
and stress were the classification categories implemented.

All of these ECG-inclusive datasets are summarized in Table 2. The stimulus used
to induce the emotions during data collection, the data size, available modalities, details
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of the settings of ECG collection, the emotion annotations, the model, and perspectives
are tabulated.

Dataset Popularity Analysis

Even though multiple datasets have been proposed and made available for others to use,
not all datasets have been adopted by other researchers. Hence, based on the summarized
literature from this review, the number of times a dataset has been adopted and cited in other
studies (excluding self-citation) was calculated and is plotted in Figure 8. The most popular
dataset being used for emotion recognition studies using ECG, as observed here, is AuBT, with
six adoptions. Although the database was published in 2005, the citations observed here came
from 2016 onwards. The popularity of the AuBT dataset is followed by AMIGOS, with four
adoptions from 2018 to 2020. Third place goes to DREAMER, with two adoptions in 2020
and 2019. SWELL was published in 2014, but the adoption of the dataset is only found in
two papers from 2020. The other three mentions are DECAF, MANHOB-HCI, and WESAD.
All three have one adoption and citation in other research studies. Other datasets such as
ASCERTAIN, CASE, and CLASS are not found in any other studies by far. Many of the works
reviewed used their own collected data.
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Figure 8. The number of times datasets were applied in different research studies found in the
summarized literature.

5. Development of Emotion Recognition Systems

There are several steps in developing emotion recognition systems. This work focuses
on the development of emotion recognition systems using machine learning techniques.
The first step is pre-processing, which is to clean the signal from unwanted noises. Next is
feature extraction using various techniques. The usage of feature selection as well as feature
reduction to find the relevant emotion-related features is optional and can be included after
feature extraction. The last step is classification and validation techniques using machine
learning algorithms. The common adopted pipeline of emotion recognition models is
presented in Figure 9.

Figure 9. General methods for an ECG-based emotion recognition system using machine learning.

5.1. Pre-Processing

An ECG signal is considered as a high-sensitivity physiological signal with a low
recording voltage between 0.5 and 5 mV [72]. Generally, the signal is susceptible to noise
and corruption due to various internal and external factors depending on the method of
application. The main sources of ECG noise are power line interference, muscle movements,
electrode–skin contact, motion artifacts, baseline wander, electronic and electromagnetic
device interference, external electrical system interference, internal high-frequency noise,
and respiration or bowel sounds. The common frequency for muscle movements is 5–50 Hz,
0.12–0.5 Hz (at 8–30 beats per minute) for respiratory, 50/60 Hz on AC electrical systems,
and >10 Hz on other electrical and electronic devices [73]. Although there is a wide variety
of ECG filters, the applications depend on specific needs to denoise and reduce the amount
of information complexity towards a desired level.

The multiple-configuration Butterworth filter is the most widely used filter based
on the summarized papers. In [47,74], a low-pass Butterworth filter with a 60 Hz cut-off
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frequency was applied to remove a higher background noise of ECG signals. A 0.05–100 Hz
Butterworth bandpass filter was used in [69] to remove noise, while a 49–51 Hz band-stop
Butterworth filter was used in [75] for power line interference at 50 Hz. According to [72],
although the bandpass filter may remove most of the stated noises, solely depending on it
is discouraged as the result might not be the best. A fourth-order Butterworth filter with
a 100 Hz cut-off frequency [76] and a sixth-order Butterworth filter with a 45 Hz cut-off
frequency [40] were used to remove high-frequency noise and powerline interference.
The lowest order of the Butterworth filter works best in the time domain, while in the
frequency domain, a higher order is better.

In removing a high-frequency interference, [75] applied a 1–60 Hz bandpass filter,
while [77] used a 5–15 Hz bandpass filter. In [24], an interpolation filter was utilized
to remove signals of 30 Hz and below. A notch filter or a band-stop filter was applied
in [20,78] at 50 Hz. A second-order infinite impulse response (IIR) notch filter was used to
eliminate powerline noise and motion artifacts in [47]. A fourth-order notch filter at 50 Hz
was used in [76] to eliminate power line interference, as suggested by [79].

The most common frequencies in ECG signals that should be preserved for further
processing and feature extraction are 0.67–5 Hz (at 40–300 bpm) for detecting the HR and
P wave. The QRS complex can be detected within 10 to 50 Hz, and the T wave at 1–7 Hz.
A high-frequency potential may also be considered at 100–500 Hz [73]. To determine
which filter is best to be used, the frequency setting and calibration pulse should always be
informed first so that the ECG signal can be interpreted accurately.

5.2. Feature Extraction

ECG feature extraction has different approaches depending on the way raw signal
calculations can be manipulated into meaningful information. This section begins with the
most basic ECG signal processing through PQRST detection and the extraction of statistical
features. Next, feature extraction for the HR and within beat (WIB) features is explained.
The third part summarizes HRV and IBI as the most used features from ECG modalities to
detect human emotions through ANS activity within the heart. The last part summarizes
other feature extraction techniques used throughout the literature reviewed.

5.2.1. PQRST Detection and Statistical Features

The most basic features to be extracted from ECG signals are the PQRST points’ allo-
cations. Between the P wave, QRS complex and T wave, the QRS complex was considered
important in defining the HR and HRV through IBI calculation [55,80]. The Pan–Tompkins
QRS detection algorithm [81] is considered as the most common technique to find the R
peak location [58,67,69]. In [39,40], the QRS complex was derived by applying a nonlinear
transformation on the first derivative (Gaussian first-order differentiator) of the filtered
ECG signal [82,83]. Continuous wavelet transforms (CWT) are applied to detect a precise
R location and then the QS, P, and T waves [84]. Finally, in [83], a built-in R peak detection
was embedded in Acknowkedge3.8.2 application software, and there is no need for the
researcher to manually extract the features.

Based on PQRST detection, individual statistical features can also be extracted [58,66,85,86].
The statistical features extracted include mean, median (med), standard deviation (std) and
quartile deviation, minimum (min), maximum (max), and range (max-min) of individual P, Q, R,
S, and T. The authors of [84] extracted only the amplitude of P, R, and S, before proceeding to
analyzing the other features.

5.2.2. HR and WIB Features

HR is measured in beats per minute (bpm). Considering that one cycle or one beat
can be measured between two successive R peaks, the HR can be derived simply through
averaging the overall signals collected through a period. The HR is proven to show distinct
feature changes [87] and has been used in various ECG-based affective studies [6,24,39,51,
53,55–57,67,71,75,78,85,88]. The benefits of HR over other features are the simplicity of the
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calculation and not requiring a highly accurate measurement. Even during an intensive
exercise, the measurement of the HR is still reliable.

WIB features were proposed by [24], which calculate the statistical values of ECG
intervals. Mean, med, max, min, and standard deviation are calculated from PR, ST,
and QRS intervals [26]. Instead, in [58,66,85,86], PQ, QS, and ST intervals were used to
calculate the statistical features stated, with an addition to the range. QRS morphologies
were extracted in [89] based on clinical application. The morphology features are qrsWBR
(width between R peaks and the next Q), qrsWRE (width between S and R peaks), qrsABR
(difference between amplitude of R peaks and the next Q), qrsARE (difference between
amplitude of R peaks and the consequential S), and qrsMOR (the shape of the QRS interval).

5.2.3. HRV and IBI Features

HRV measures specific changes between heart beats in the time domain. The time
between beats is measured in milliseconds (ms) and is called an RR interval or IBI. The vari-
ation in IBI values contributes to the readings of HRV. HRV features are claimed to be
one of the most used methods in ECG-based emotion recognition systems [69,90]. HRV is
also known to have distinct changes in emotion variations [87] and used as an indication
of stress and mental effort in healthy adults [69]. Moreover, HRV is the most precise
non-invasive physiological technique in measuring the activity of the ANS throughout the
body. The widely available and affordable consumer-grade ECG devices that can record a
significantly good signal are sufficient for HRV feature extraction.

Out of the 51 studies summarized, 31 of them used HRV, with a slight common
variation. However, in general, there are three domains of HRV feature analysis: time
domain, frequency domain, and time–frequency domain. A detailed explanation of each
domain is presented below:

• Time domain [26,91,92] (Temporal [15]): This measures the amount of variability in
IBI, where the expression comes in the form of a natural logarithm (Ln) of original units,
or the original units themselves, for a more normally distributed formation. There are
short-term indices for recordings around minutes in length, and long-term indices
which usually record over a period of 24 h. The first feature matrix is the standard
deviation of the normal-to-normal interval (SDNN). This feature is represented in the
unit of milliseconds (ms) for a standard short-term recording of 5 min [93], and 60 to
240 s for ultra-short term recordings [94,95]. SDNN changes also correlate with SNS
and PNS activity in the heart. Next, the standard deviation of RR peaks (SDRR) is
very similar to the previous case, but it includes false and abnormal beats measured at
R peaks. NN50 and pNN50 are the number of adjacent normal-to-normal intervals
and percentage of them that are more than 50 ms. These features are known to
accommodate PNS activity in the heart [96]. Other variations are NN20 and pNN20,
respectively. Next, the root mean square of successive differences (RMSSD) is an index
of IBI variance in the HR. Finally, the HRV Triangular Index (TriInd) feature is usually
combined with RMSSD to detect pathological cardiac complications, and triangular
interpolation of a normal-to-normal interval histogram (TINN) is used as a histogram
baseline for a normal-to-normal interval.

• Frequency domain [26,91,92] (Spectral [15]): This measures the amount of power at
various frequencies using fast Fourier transformation (FFT). The amplitude of FFT
can then be derived into a power spectral density (PSD). In spectrogram analysis,
there is a range of feature levels available such as ultra-low frequency (ULF), very-low
frequency (VLF), low frequency (LF) and high frequency (HF), as shown in Figure 10.
However, in the emotion recognition system, ULF and VLF are not utilized as both
need at least 24 h of ECG recording, which is not practical for emotion recognition.
VLF, LF, and HF bands have a window range from 0.0033 to 0.04 Hz, 0.04 to 0.15 Hz,
and 0.15 to 0.40 Hz. All three correlate with SNS and PNS activity changes. In fact,
a low HF power reflects negative emotions such as anxiety, worrying, stress, and panic.
Based on the bands, there are also variations of the normalized LF and HF, the LF/HF
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ratio, and the total spectral power. Other statistical features that have been extracted
from the frequency bands are spectral centroids, spread, kurtosis, skewness, slope,
variation, decrease, roll-on/off, and total energy.

• Nonlinear domain [15,91] (Geometrical [15,26]): This measures the nonlinearity of
time series of the unpredictability of the HRV complexity mechanism. The features are
extracted from Poincare geometric plots and allow a refined pattern detection through
a scatter plot. The parameters are the area of the total HRV eclipse (S), each point, the
standard deviation from both axes (SD1), the standard deviation of each point from
both axes plus the RR interval (SD2), and SD1/SD2. The feature variation includes
SD12, Area0, Area1, Area2, Area3, and Area4.

Figure 10. Power spectral density (PSD) features [97].

5.2.4. Empirical Mode Decomposition, Wavelet Transform, and Fourier Transform

Empirical mode decomposition (EMD), also known as the Hilbert–Huang transform
(HHT), is a technique to transform signals into parts called intrinsic mode functions
(IMF) [98]. This technique is suitable for nonlinear and nonstationary signals such as those
from an ECG. With the IMF characteristic, the instantaneous frequency and amplitude of
the signal can be defined. Moreover, the HHT also preserves the characteristic of frequency
changes as the lengths of original signal and IMF are the same. The application of EMD
for ECG feature extraction techniques to emotion recognition systems is seen in a few
papers such as [21,26,54,76,99,100]. In [54], 35 features were extracted from IMF1 and IMF2.
The features consist of statistical features such as mean, max, standard deviation, variance,
skewness, kurtosis, and others.

The wavelet transform is a technique for multiresolution analysis [101] and divided
into two forms. The continuous wavelet transform (CWT) has the capability of extracting
features from the signal with the determination of extremum points and inflection points,
while the discrete wavelet transform (DWT) can extract statistical and stochastic charac-
teristics, and the energy spectrum. In general, the wavelet transform decomposes data
into different frequency and time scales using a mathematical transformation function.
The computing process involves dilation and translation of functions, or multiscale refine-
ment of signals. The wavelet transform is also known to be able to solve difficult problems
that Fourier transforms are not capable of [102]. In [84,101], the CWT is used to perform
the feature extraction on ECG signals, while [89,103] applied the DWT in their framework
process.

The Fourier transform is another technique for decomposing functions that are de-
pendent on the time of space into functions that are dependent on the temporal or spatial
frequency. The two common Fourier transforms in emotion recognition studies are the
discrete Fourier transform (DFT) and the FFT. They are almost identical methods, with
the FFT being a more efficient function, where the computation performs faster than the
DFT. Again, in [76], the authors combined EMD and the DFT as IMF alone does not contain
much information to provide any distinctive features. Another adoption of the DFT is also
found in [26], where the application of feature extraction is paired with EMD and other
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methods. Finally, application of the FFT is only seen in one paper [69], where the features
were derived from a partitioned coefficient within the frequency range into overlapping
sub-bands with the same bandwidth. From that, the sub-band spectral entropy (SSE) is
computed to identify the disorganization or uncertainty in a random variable. This helps
the pattern recognition by scaling the intensity of a classifier’s confidence.

5.2.5. Others

There are some independent feature extraction techniques based on ECG signals used
for emotion recognition systems. Various novel approaches have been proposed to perform
the task with the aim of extracting useful feature information that is relevant to the ANS
activity of the heart. The prospective approach has been taken, from the mathematical
process derivation function to pictorial plotting and statistical feature analysis.

Detrended fluctuation analysis (DFA) and detrended cross-correlation analysis (DCCA)
were applied in [104]. Features from the multifractal spectra were also extracted in that
paper. DFA is categorized under nonlinear feature analysis, and the work in [105] also
applied this method along with Poincare plot feature extraction from HRV.

In [20], Coiflets wavelets (Coif5) at level 14, the discrete cosine transform (DCT),
and Daubechies wavelet (db4) at level 8 were applied before using matching pursuit
coefficients for feature extraction. The features extracted were statistical such as mean,
variance, standard deviation, minimum, and maximum.

Instead of using the numerical values of ECG signals to extract the features, a graphical
plot and image pattern recognition were applied in [47]. The methods used were the local
binary pattern (LBP) and the local ternary pattern (LTP). The LBP is widely used in
computer vision and image processing research, particularly in facial recognition. The LTP
is the modification of the LBP by changing it from a binary operation of 1-0 to three
operations of -1-0-1. The operation depends on the frame length and frame shift to extract
the features.

Another method that has been reported is feature extraction through the Nonlinear
Autoregressive Integrative (NARI) Point-Process Model [106]. The analysis of heartbeat
dynamics started from detecting RR peaks, and following the Wiener–Voterra representa-
tion, a specific point process model was created for instantaneous identification up to the
third order. The features are extracted from Lyapunov exponents as well as instantaneous
spectra, and spectra. This evaluation is also known to be in the realm of high-order statistics
(HOS).

A nonlinear approach based on Hurst was proposed in [40] by using rescaled statistics
(RRS) and finite variance scaling (FVS). The new Hurst features are combined into HOS
to be classified into six basic emotional states. The value of Hurst can also be obtained
by EMD, the wavelet transform, and finite variance scaling. Before applying the feature
extraction procedure, the QRS complex is extracted for further computation of RRS and
FVS. In this process, six features are extracted from each sample in the study.

Other ECG feature extraction methods found in the reviewed works are the multi-
variant correlation method and spectrograms. In [107], the authors applied a linear multi-
variate approach for their feature function analysis. Meanwhile, in [108], the author
extracted the features using deep learning by converting time series data to frequency
domain-based images. Based on the images, only the 0–5 Hz range was converted into a
spectrogram, and the data were fed into a VGG-16 network. Finally, 4096 features were
extracted and studied.

5.3. Feature Selection and Dimensionality Reduction

Extracted features do not promise fully relevant correlations with physiological
changes in emotion regulation. Feature selection is a method to optimize the classification
architecture by only picking the best feature combinations and eliminating noninformative
features. This can also reduce the computational cost of the classification in the later step.
In [26], recursive feature elimination, the chi-square test, the P test, random forest feature
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selection (RF FS), extra tree feature selection, and random support vector machine feature
selection were used. Moreover, swarm intelligence is also common in the feature selection
process. The author of [74] applied the genetic algorithm, while ant colony optimiza-
tion was used in [104]. Binary particle swarm optimization (BPSO) and hybrid particle
swarm optimization (HPSO) have also been applied for feature selection [84]. The wrapper
method and the Tabu search algorithm are found in [77] and [103]. In [109], the author
used Kullback–Leibler divergence as a feature selection. Other common techniques are
sequential forward selection (SFS) and sequential backward selection (SBS), which have
been applied in [86,87,110].

Dimensionality reduction is a technique to reduce the number of features by trans-
forming a higher dimension feature matrix into a lower dimension without losing the
necessary information. The two most used techniques were principal component analysis
(PCA) and linear discriminant analysis (LDA). The transformation of PCA is unsupervised,
while LDA is supervised. The applications of PCA were viewed in [20,55,67,85,89,108,111].
LDA, also known as Fisher’s linear discriminant analysis, was used in [20,24,53,87] as a
dimension reduction procedure.

The applications of feature selection and dimensionality reduction techniques stated
are reported to be beneficial in terms of improving the training and testing accuracy for
emotion recognition systems. Moreover, the time taken to perform the classification is
reduced significantly as less data need to be processed at a time. Finally, the chance to
overfit the trained model is reduced, as the noisy data are eliminated from the final data
fed to the classifier.

5.4. Classification

Classification techniques are divided into two main categories which are machine
learning and deep learning. Commonly, if deep learning is adopted in physiological-based
emotion recognition, there are no feature extraction and feature selection steps. If the
deep learning architecture has a convolutional layer, it might somehow be considered as a
dimensionality reduction stage.

Machine learning methods are divided into three learning categories which are super-
vised learning, unsupervised learning, and hybrid learning. In affective computing, the
majority of the research adopted supervised learning through emotion labels such as ADM,
DEM, and Pos/Neg through SAM. However, there is one work that used unsupervised
learning, which is [112]. The ECG signals were unlabeled, and the convolutional neural
networks (CNN) were trained to find any signal transformation for emotional patterns.
Then, the weights were passed on to the labeled data for testing. The accuracy shows a
significantly better result than most of the supervised learning techniques.

A classifier that has been frequently adopted and performed the best in emotion
recognition systems is the support vector machine (SVM) [15]. From 24 out of the 51 studies
summarized here (presented in the following section), SVM was adopted as either the
only classifier or one of the machine learning algorithms to be compared. SVM kernels are
simply the methods or behavior of making the hyperplane decision boundaries work in
certain manners. In [89], SVM constantly performed better than random forest through
every ratio of generated emotional data in the training set.

Although SVM is popular, it is not always the best classifier, as reported in sev-
eral works. Other well-performing classifiers used are k-nearest neighbour (KNN) and
naïve Bayes (NB). KNN was reported to perform better than SVM in [39,77]. Mean-
while, [56] showed that NB performed better than SVM in both valence and arousal
classification using a single ECG modality. Classifiers that were also reviewed are decision
tree (DT), random forest (RF), AdaBoost (AB), gradient boost (GB), quadratic classifier
(QDA), and LDA. For less known classifiers such as extra tree, regression tree, and en-
semble bag tree, their performance was reported to be considerably good in [26] when
compared to RF and GB.
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Neural network-based deep learning classifiers come in different forms and config-
urations. Based on the literature, there are a lot of neural network (NN) infrastructures
such as 1-NN, deep convolution neural network (DCNN), probabilistic neural network
(PNN), backpropagation neural network (BPNN), radial basis function neural network
(RBFNN), multilayer perceptron (MLP), and extreme learning machine. Extreme learning
machines alone were shown to improve the training accuracy of many databases [108].
DCNN also showed classification accuracy of the AMIGOS dataset in [113] for valence
and arousal. The best accuracy was shown in [20] using PNN to classify five-class and
three-class DEMs. However, the study was subjected to a credibility request as the result
might be biased by overfitting.

5.5. Validation

Validation is a crucial step in building a machine learning model, especially when
dealing with a subjective application such as emotion recognition. This step is designed to
see the overall performance of the trained models when it comes to new data. The partition-
ing between training and testing datasets is to ensure the model can perform a validation
step by imitating real-world scenarios outside of the experiment setup [15]. The generaliza-
tion ability of validation allows the model to increase variability and reduce overfitting.
The most common validation techniques are called cross-validation (CV) with different
versions of approaches.

Non-exhaustive cross-validation of k-CV is a resampling procedure conducted with
k number of folds to reshuffle and train the limited data sample, with 5 and 10 being
the standard number of k when it comes to the number of folds in k-CV. When k is
bigger than that, the subjected models are considered biased. The 5-fold CV was practiced
in [54,74], while a rare 15-fold CV was only conducted in [54]. Moreover, 10-fold CV is the
most widely practiced cross-validation technique, with 12 papers in total [6,26,39,47,53–
55,88,99,112,114,115].

Exhaustive cross-validation techniques have two main variations. The first is leave-
one-out cross-validation (LOOCV), where the models are tested and validated from end
to end without leaving one participant or subject as a final validation. This method takes
more time than leave-one-subject/participant-out cross-validation (LOSOCV/LpO CV).
The main advantage of exhaustive CV over non-exhaustive CV is the lower bias as it
trains the possible validation combination across all datasets. However, considering a
large amount of computational work, the validation process takes a significantly longer
time to complete. LOOCV was applied in [55,56,68,69,77,106,109,116], while LOSOCV was
adopted in [71,105,110].

6. Review of ECG-Based Emotion Recognition Systems

The 51 reviewed works are summarized in Tables 3 and 4. Table 3 summarizes
31 studies on combinations of unimodal and multimodal ECG-based affective research that
reported on ECG standalone results. Meanwhile, Table 4 summarizes 20 affective research
studies that included ECG as one of their physiological modalities but did not mention
the classification accuracy of using solely ECG as the input. In this section, the works that
achieved more than 90% accuracy are highlighted.
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In Table 3, there are seven works that reported more than 90% accuracy in classifying
emotions based on varying emotional models. Firstly, Sarkar and Etemad [112] performed
a self-supervised emotion recognition study using four datasets which are AMIGOS,
DREAMER, WESAD, and SWELL. Based on the raw ECG signals from each dataset, the
neural network learned high-level abstract representations, and the weight was transferred
to an emotion recognition network. The results show an improved performance compared
to fully supervised learning. Although AMIGOS and DREAMER did not manage to pass
90% and above accuracy, WESAD and SWELL were claimed to be successfully classified,
with accuracy above 90%. With 96.9% accuracy, the author managed to classify WESAD
with the Pos/Neg Model. Moreover, with 97.3%, 96.7%, and 93.3%, the author managed to
classify SWELL on a model based on a binary scale of valence, arousal, and stress.

In a study conducted by Zhang et al. [104], the data were labeled according to a DEM
with four classes of emotions of happy, sad, pleasant, and angry. The overall accuracy
based on the ECG unimodal approach was reported to be 92%. The individual accuracies
were 97%, 92%, 91%, and 88% for angry, sad, happy, and pleasant. The best classification
results among three classifiers were achieved using KNN from two sets of extracted
features. The first feature set consisted of the time and frequency domains, with statistical
characteristics of ECG signals, while the second set of features was correlation features.
The correlation features were inclusive of the autocorrelation feature parameter, cross-
correlation feature, and multifractal feature parameters. The feature selection used was the
max–min ant system, which is a derivation of ant colony optimization.

Goshvarpour et al. [20] conducted an emotion recognition study based on ECG and
GSR collected from 11 subjects that listen to music as an affective stimulation method.
The result analysis was taken from the perspective of performance comparison between
ECG and GSR unimodal approaches. Based on the matching pursuit method, three dic-
tionaries were applied for feature extraction on the raw ECG signals, which were Coiflets
wavelets (Coif5) at level 14, the discrete cosine transform (DCT), and Daubechies wavelet
(db4) at level 8. Three feature selection methods were compared, and PCA was considered
as the best one for the application of the study as the recognition rate was constantly 100%
for subject-dependent and subject-independent scenarios across the ADM as well as the
DEM. The classification was conducted using PNN with a 0.01 sigma value. By far, this
paper reports the highest claimed accuracy for a unimodal ECG-based emotion recognition
system.

The work by Hovsepian et al. [117], for ECG classification of binary stress and non-
stress (Pos/Neg), reported 89% and 95% accuracy, respectively. The classifier used was
SVM with RBF kernels trained using HR, HRV, and non-HRV features. The raw ECG
signals were filtered and normalized before being extracted. Validation was also conducted
between subjects as more than twenty subjects participated in the study.

In a study by Selvaraj et al. [40], six classes of emotions from the ECG unimodal
approach were successfully classified with a maximum accuracy of 92.87%. The experiment
was conducted on sixty subjects by inducing happiness, sadness, fear, disgust, surprise,
and neutral emotions. The features that were extracted from ECG signals were nonlinear
features or Hurst features. The features were derived from RRS and FVS. They also
proposed a novel Hurst feature by merging RRS and FVS with HOS. The dataset was
separated with a ratio of 70:30 for training and testing datasets. Four classifiers were
considered: Bayesian classifier, regression tree, KNN, and fuzzy KNN, where the last
classifier performed the best.

Xun and Zheng [86] also managed to obtain 92% accuracy in classifying joy and
pleasure from the AuBT dataset. They only utilized the ECG signals from the database to
perform the study. The ECG features were extracted using AuBT toolboxes, which provided
a combination of HR and HRV features. A total of 81 features were extracted, but only 5
final features were selected using a combination of analysis of variance (ANOVA), SFS,
and SBS. The final selected features were R_range, ecgRampl-std, ecgHrv-max, ecgHrv-range,
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and ecgHrvDistr-range. The classification was conducted using SVM, LDA, and Fisher’s
linear discriminant analysis with SVM as the best methods.

Guo [102] performed a comparison study between BPNN and RBFNN in classifying
emotions using the AuBT dataset. The accuracy result for BPNN was 87.5%, while for
RBFNN, it was 91.6%. The ECG features extracted were from the multiscale wavelet
decomposition method for the extraction of the maximum value of wavelet coefficients
and the standard deviation. The study highlighted that wavelet coefficients that are treated
as eigenvectors are able to effectively characterize ECG signals.

Meanwhile, in Table 4, there are seven works that reported more than 90% accuracy in
classifying emotions based on varying emotional models and multiple modalities inclusive
of ECG. Lee and Yoo [109] collected multimodal physiological signals from ECG, EDA, and
SKT from 15 subjects. The highest classification accuracy was found using NN at 92.5%,
while 85.6% and 81.2% were found using QDA and LDA. The study also showed that a
higher accuracy is expected by applying feature engineering through multimodal feature
extraction and feature selection. The features extracted from ECG signals are time domain
HRV features. The feature selection algorithm used was Kullback–Leibler divergence.
EDA features were selected more frequently than the others, but as for ECG features,
RMSSD, NN50, SDNN, and LF/HF were among the selected features in subject-dependent
scenarios. The affective model used was Pos/Neg as the collected samples were based on
fear as the negative label, and normal as neutral.

In [100], Gong et al. managed to classify joy and anger with 100% accuracy, while
pleasure and sadness were classified at 92% and 88%. The study was conducted using the
AuBT database and utilized a multimodal approach. The ECG, EMG, SC, and RSP were
extracted using the ensemble empirical mode decomposition (EEMD) method, and the
classifier used was C4.5 DT.

The authors of [115] focused on the combination of ECG and EEG for the application
of an emotion recognition interface for interactive contents. The feature extracted from the
ECG signals was HRV, and the classifiers tested were MLP, SVM, and a Bayesian network.
By adopting 10-fold cross-validation, the best classifier reported was the Bayesian network,
with 98.06% accuracy in recognizing six emotions from the DEM. Collected from 30 subjects,
the emotions were amusement, fear, sadness, joy, anger, and disgust.

Kim and Andre [69] collected ECG, EMG, SC, and RSP signals from three subjects
and performed a feature-based multiclass classification. The ECG features extracted were
based on the HRV time, frequency, and nonlinear domains. Using a novel technique called
emotion-specific multilevel dichotomous classification (EMDC), the authors managed to
obtain a 95% average accuracy for subject-dependent and 70% for subject-independent
scenarios. Among 110 combined extracted features, the best emotion-relevant feature
from ECG was SD2 from the HRV Poincare plot for valence, arousal, and four classes of
valence/arousal.

The study by Wagner et al. [85] adopted the AuBT multimodal physiological signal
approach for emotion recognition. The ECG features extracted were HR statistical values.
A few feature selection and classification techniques were tested to assess the recognition
performance. With 92.05% accuracy, the four classes of emotion were classified using the
linear discriminant function (LDF), and the features were selected using SFS. The same
configuration obtained 96.59% accuracy on classifying arousal. However, for valence, the
highest accuracy achieved was 88.64% using MLP and the combination of Fisher and SFS.

Healey and Picard [52] performed emotion recognition through detecting stress in
a real-world driving scenario. A total of 24 drivers were tested through different traffic
conditions in the greater Boston area while continuously providing feedback on their stress
level. ECG, EMG, SC, and RSP sensors were attached to their body, and the data were
recorded. The ECG features extracted were from the HRV power spectrum and sympatho-
vagal balance ratio. The Fisher projection matrix and linear discriminant were used to
determine the accuracy of the Pos/Neg emotional model. High, medium, and low stress
recognition accuracies were 97.4%, 94.7%, and 100%, respectively.
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Lastly, Haag et al. [78] took a multimodal approach towards emotion recognition by
incorporating ECG, EMG, EDA, ST, RSP, and BVP. The ECG features extracted were HR,
HRV, and IBI. Using NN, the study managed to classify arousal with 96.58% accuracy, and
valence with 89.93% accuracy.

7. Application of Emotion Recognition System in Healthcare

A lot of treatments are available for physical illness, but it is not the same for psy-
chological illness. Emotional health is important for the wellbeing of one’s mental state.
A negative emotional state may cause social and physical problems if left undiagnosed and
untreated. For instance, prolonged exposure to stress or depression may lead someone
to withdraw from a healthy relationship with the people around them and being aggres-
sive, which could be dangerous for him/herself and the people around them. Moreover,
negative emotions may also cause physical problems such as headaches, stomach upset,
and muscle ache. An emotion recognition system can be utilized to improve the healthcare
sector, especially in addressing metal health issues.

7.1. Emotion Recognition Application in Healthcare Utilizing ECG

The authors of [7,18] proposed a new healthcare system that focuses on emotional
wellbeing. The system consists of physiological sensors (ECG and EEG) to measure and
detect emotions. Based on that, the system provides necessary services such as relaxation,
amusement, and excitement. These three emotional services are selected to balance out
negative emotions detected from the subject with strong positive states. The relaxation
service consists of a guided deep breathing exercise proven to benefit stress management.
The exercise came with virtual objects in augmented reality and musical assistance for
a calming effect. The system utilizes augmented reality as an output service channel,
thus providing amusement and excitement services to the user interaction with the virtual
objects. The interaction is enabled by Kinect’s gesture detection.

A healthy workplace environment using a novel mood recognition solution that is
able to identify eight different DEM emotions in every two-hour interval was proposed
in [105]. The employees were provided with a wearable physiological device (ECG, PPG,
and TEMP) along with a complimentary smartphone application called “HealthyOffice”.
The configuration setup was conducted to facilitate a periodical self-reporting towards the
current emotional state in a structured manner. The objective of constantly monitoring
employees’ emotions in the workplace is to optimize the overall mental health of the
organisation by eliminating anxiety, stress, and depression in the working environment.
Thus, higher productivity is expected, and the output revenue can be significantly mea-
sured. A similar study of emotion healthcare application in the workplace environment
was also conducted in [77], with a slightly different approach. This study used ECG, EDA,
and TEMP as the physiological models. Rather than identifying the spectrum of basic
emotions, the work only focused on stress and non-stress binary emotional classification.

A clinical application of emotion recognition systems was presented by [117]. The study
utilized ECG and respiration sensors to detect stress symptoms in the patients. The targeted
application of the work was towards patients who suffer migraine, addiction (substance or
smoking), and stress-related disorders. The benefit of monitoring the patients’ emotional
stress condition is to ensure that a negative tendency is not triggered. Daily stress manage-
ment can reduce severe addictive behavior and refrain from triggering migraine. The work
also proposed a combination of physiological signals and other data such as visual exposure,
social interactions, geoexposures, light and sound exposures, and digital trails to deter-
mine which parameters influence stress triggers. In [119], a home healthcare system using
wearable physiological sensors that have an emotion recognition function was designed.
The targeted groups for the application of the system were elderly and sub-healthy people.
HR, TEMP, and SC were monitored at the wrist of the wearer in real time. The data were
broadcast wirelessly to the family doctor or health practitioner who is responsible for the
subject. An alert system was also embedded in the design to send a text message and notify
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the doctor, in case of a risky situation. The healthcare system can detect the states of joy,
anger, and sadness.

The cardiac defense response (CDR) is a specific field of study that is closely related to
psychophysiological reactivity towards an intense stimulation. CDR serves as a protective
function of the fight or flight response in case of dangerous situations [120]. However,
when exposed to it for a long period of time, anxiety, stress, depression, and other mental
disorders might arise. The author of [121] proposed a novel integrated system using ECG
signals to detect fear in real time. Since fear is the emotional response when a person is in
danger, the system was designed to detect a prolonged CDR. In healthcare, this system is
important for monitoring stress and early prevention of mental disorders.

7.2. General Healthcare Application of Emotion Recogntion Systems

The application of emotion recognition in military healthcare was studied in [122].
Since armed forces are constantly exposed to a highly stressful scenario and environment,
many of them tend to develop psychiatric conditions such as depression, post-traumatic
stress disorder (PTSD), and suicidal thoughts. To prevent dispatching emotionally unstable
personnel into a risky mission, the work proposed the usage of emotion recognition
screening to assess the mental health status of the subject. The system also analyzed the
reaction towards stressful emotions of the subjects. However, further development is still
needed for any practical application.

Next, an emotion recognition system was applied in [123] to improve the patient
e-healthcare system in a so-called smart city. Medical doctors have difficulties in detecting
and controlling the degree of pain experienced by their patients, especially for patients
who cannot express it verbally such as babies. Thus, the study proposed a remote patient
monitoring system that employs an automatic emotion detection architecture. The system is
capable of achieving a more personalized pain detection index through emotion monitoring.
With a proper analysis provided, the result of this system manages to obtain an accuracy of
approximately 90% using SVM as the classifier.

Faiyaz et al. [124] proposed a novel e-healthcare support system with emotion recog-
nition using fuzzy logic. The framework designed is suitable in the context of a real-life
healthcare environment. Monitoring patients’ emotions through the e-health system influ-
ences their satisfaction, wellbeing, and physical health. With the emotional feedback from
their customers, healthcare providers can improve the quality of their services. The way of
treating with empathy can be instilled in medical practitioners when they are aware of the
affective state of their patients. This system is beneficial to both parties and improves the
overall standards of the healthcare industry.

A fairly recent study was conducted in detecting the emotional state of patients during
the spread of the virus SARS-COV-2, where face masks are mandatory [125]. A facial
emotion recognition study was conducted with masked and unmasked versions of data.
The unmasked faces in the database were modified digitally to add an artificial blue surgical
mask over the face of the subjects. The system was designed to encourage pleasantness
in doctor–patient interaction. However, with face masks being worn, inter-professional
communication in healthcare is being upheld by the adoption of emotion recognition
systems.

Another study that used computer vision to detect emotions in a healthcare center
was presented in [126]. A multimodal visualization analysis was conducted on the facial
expression of patients monitored using a monitoring camera at different intervals. The data
were transmitted using the Internet of Things (IoT) and processed at the analysis center.
If the system detected an abnormal expression, it would alert the physician in charge to
check up on the patient.

Mental disorders and depression are serious illnesses that reduce the quality of life
of individuals and the people around them. Early diagnosis of these psychiatric diseases
can be conducted using an emotion recognition system, as proposed in [127]. The psy-
chiatric patient-centric pervasive (P-cube) platform was designed to connect with the
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subject’s smartphone or laptop to collect data for emotion recognition. Utilizing speech
data recorded from the headset, the system can provide the therapist with deeper affective
insights into a subject’s mental state. Six basic emotions are detected using the system:
anger, boredom, desperation, disgust, happiness, and pride.

Finally, ref. [128] proposed a speech signal-based emotion recognition system to
analyze and detect compounded emotions. Prolonged anger, fear, and sadness are com-
pounded with anxiety, where the person is prone to develop a more serious mental and
physical health condition in the future. Compounded emotions might also drive a person
to use substances, and, in the worst case, to commit suicide. The study designed a neural
network-based autoencoder to extract suprasegmental features in voices and detect the
early symptoms of anxiety disorder.

8. Discussion

8.1. Summary of the Review

The objective of this work was to perform a comprehensive review on emotion recog-
nition systems that adopt ECG signals, and on their applications in healthcare. From
the research reviewed, it is shown that with a combination of good pre-processing tech-
niques, feature extraction and selection methods, and classification algorithms, human
emotions can be recognized by machines with a medium to good accuracy. Even though
the research on affective computing has been around for more than a decade, a standard
universal emotional model has still not been achieved. Emotional models such as the ADM,
DEM, and Pos/Neg are still ambiguous, particularly in the number of classes for the DEM.
There are three-class, four-class, and even five-class labels for the DEM, which somehow
raise the question of the purpose of recognizing each emotion. However, with the valence
and arousal scale in the ADM, and the stress and non-stress binarization of Pos/Neg, the
targeted application of emotion recognition systems is more focused and simpler.

The other angle reviewed here is how extracted ECG features are relevant to the ANS
activity in the heart. Our eyes cannot visibly capture any characteristic changes in the raw
ECG signal; however, the feature extraction techniques are sensitive enough to extract the
informative features of ECG. Additionally, feature selection and dimensionality reduction
allow only the most relevant features to be adopted to recognize the specific emotion, while
features that are unnecessary are eliminated.

The classification and validation steps are the most important parts in emotion recogni-
tion systems. Different classifiers use different learning approaches towards the data being
trained. Even though the most used machine learning algorithm for emotion recognition
systems is SVM, it is not necessarily the best approach. As it was previously discussed,
there are few studies that managed to outperform SVM’s performance with other machine
learning models. In addition, the reason most research on emotion recognition used ma-
chine learning instead of deep learning is because of the scarcity of the data available.
As it was summarized, in the available databases, the number of subjects and samples
are less compared to medical databases that deal with cardiac disease. Nonetheless, deep
learning has been considered and has shown a promising performance. With more data,
deep learning is a good direction for this area. However, collecting a large database to
perform a subject-dependent and subject-independent analysis requires a lot of time and
cost. Thus, it is important for researchers to properly decide the pipeline of their research
and consider validation techniques in order to increase variability.

Finally, application of emotion recognition systems in healthcare focusing on mental
health was reviewed in Section 6. Emotion recognition systems are able to help in assessing
the mental state of an individual. The output of the system can then be used as an input
for a system that responds to the emotion to provide comfort and regulate the emotion so
that a positive emotion is experienced by the individual.
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8.2. Research Challanges

Among the studies reviewed, the challenge for ECG-based emotion recognition sys-
tems is the lack of affective databases with a large number of samples taken from subjects
with different backgrounds. Current affective databases are limited by an age group bias,
where only university students participated in the data collection processes. Moreover, one
of the regional experiments conducted caused the database used to have a homogenous
locality sample from people with the same ethnic backgrounds.

The next challenge comes from the perspective of annotation, as well as unstandard-
ized emotional models and scales. Since emotions are subjective experiences defined
through different perspectives, the inexactness may cause classification fallacies. If the
emotion experienced by a subject contradicts the perceived emotions by a second- or
third-person perspective, this might cause a huge mess in the system. When dealing
with insufficient datasets, researchers tend to combine datasets to increase the sample
size. The unstandardized emotional models and scales cause a huge challenge in adopting
different affective datasets in one study.

The last challenge is the applicability of emotion recognition systems designed for
real-world situations, especially in healthcare. The majority of the studies summarized are
not available for actual use because of the complexity of the design. The whole purpose of
academic research is to promote intelligent solutions to issues or problems faced in real life.
However, since the studies are not repeatable or are difficult to replicate, other researchers
have difficulties in improving the steps taken from previous works. In order to make
emotion recognition systems common in the healthcare industry, the models proposed
have to be simple, efficient, and reliable, in addition to being tested vigorously.

8.3. Future Works

Further research should be conducted on emotion recognition systems based on ECG
signals for healthcare purposes. Primarily, the relationship of different age groups, eth-
nicities, and personalities towards emotion stimuli and responses should be investigated.
The bigger the sample size with a heterogenous background, the better the classification
approach, and thus a universal system can be built. Next, the perspective of intercompati-
bility between one dataset and another should be reviewed if the same methodologies are
to be applied to compensate the training and testing accuracy and promote the generaliz-
ability of the developed system. The research of emotion recognition should be closer to a
real-life scenario, where the computer can learn to eliminate more outside noise, instead of
working in a controlled environment. By applying this approach, the system should be
robust and versatile for further application and commercialization. By deploying emotion
recognition systems for healthcare usage, the architecture built must be reliable in dealing
with different scenarios. Finally, various other possible real-world use cases of emotion
recognition systems which allow personalization in real time should be explored.

9. Conclusions

This review has shown that emotion recognition systems are an essential subject
in healthcare, and the application of them is possible via ECG as a unimodal or multi-
modal approach. The growing trend of research related to emotion recognition systems
is a heathy step towards the maturity of this field. Future endeavours of incorporating
emotional health in technological development will contribute to more responsible and
sustainable innovations.
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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder that targets the central nervous
system (CNS). Statistics show that more than five million people in America face this disease. Several
factors hinder diagnosis at an early stage, in particular, the divergence of 10–15 years between the
onset of the underlying neuropathological changes and patients becoming symptomatic. This study
surveyed patients with mild cognitive impairment (MCI), who were at risk of conversion to AD,
with a local/regional-based computer-aided diagnosis system. The described system allowed for
visualization of the disorder’s effect on cerebral cortical regions individually. The CAD system
consists of four steps: (1) preprocess the scans and extract the cortex, (2) reconstruct the cortex
and extract shape-based features, (3) fuse the extracted features, and (4) perform two levels of
diagnosis: cortical region-based followed by global. The experimental results showed an encouraging
performance of the proposed system when compared with related work, with a maximum accuracy
of 86.30%, specificity 88.33%, and sensitivity 84.88%. Behavioral and cognitive correlations identified
brain regions involved in language, executive function/cognition, and memory in MCI subjects,
which regions are also involved in the neuropathology of AD.

Keywords: Alzheimer’s disease; personalized diagnosis; mild cognitive impairment; computer-aided
diagnosis; sMRI

1. Introduction

Alzheimer’s disease (AD) is considered the best-known neurodegenerative conditions
targeting the central nervous system (CNS). Elderly people make up the preponderance of
the sufferers of AD. However, younger people may be affected by early-onset AD [1]. Sta-
tistically speaking, disease risk increases with age among the elderly population, with 42%
of those diagnosed with AD being 85 years or older, while only 6% of diagnosed cases are
between 70 and 74 years old [2].

The characteristics of AD can be broadly grouped into clinical and anatomical fea-
tures [3]. Features in either category vary from one patient to another. Clinically, AD
patients show progressive deficits in cognition and memory in addition to disturbances in
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215



Sensors 2021, 21, 5416

thought, perception, and behavior. Pathologically, patients incur a neuronal loss, granulo-
vacuolar degeneration, and the formation of the two definitive diagnostic markers of AD:
neurofibrillary tangles and neuritic plaques [4]. Up-regulated expression of the amyloid-β
precursor protein (APP) is followed by a cascade of processing involving BACE1, PSEN1,
PSEN2, and APH1, resulting in production of amyloid-β peptide, including its pathogenic
species Aβ42. The Aβ42 conformations fuse into oligomers containing up to 100 units
of Aβ42, and form neurotoxic protofibrils. Aβ42 oligomers itself leads to synaptic loss,
neurotoxicity, and neuronal death. Aβ42 oligomers, under the influence of ApoE4, can
undergo aggregation and formation of Aβ seniles plaques in affected brain regions [5].

As a neurodegenerative condition, AD is progressive. The severity of affliction is
typically divided into three phases, beginning with a mild phase, then proceeding to mod-
erate phase, and ending with severe phase [6]. The emergence of the disease’s pathological
features 10–15 years before being clinically discovered hinders the early diagnosis of the
disease. Furthermore, the subject-dependent influence of AD between its sufferers adds
another obstacle to diagnosing the disease in its early stage [4].

Various tests of a patient’s mental and physical state can assist in AD diagnosis,
including urinalysis, blood panels, and neurological, neuropsychological, psychiatric
examinations. The patient’s medical history, as well as brain imaging in various modalities,
can also inform the diagnosis [1]. Regarding brain imaging, these technologies play a
notable role in identifying the disease, specifically speaking in the pre-clinical and MCI
phases [7]. Further information about the impact of brain imaging in this research area
can be found in the study presented by Johnson et al. [8]. Additionally, a scientific work
presented by Jack et al. [9] aimed to illustrate the function of each of the brain biomarkers
along the cascade of AD. Relying on the study findings, for the earliest signs of the disease,
positron emission tomography (PET) amyloid imaging, as well as cerebrospinal fluid
(CSF) levels of amyloid beta (Aβ42), reveal evidence of the underlying Aβ pathology.
CSF levels of tau protein, structural magnetic resonance imaging (sMRI), 2-[18F] fluoro-
2-deoxy-d-glucose (FDG-PET), and the cognitive and clinical symptoms can help follow
patients as pathology accumulates with disease progression. sMRI discloses the structural
abnormalities while FDG-PET or CSF-tau reveal neuronal injury and dysfunction.

Previous scientific research has attempted, through several methodologies, to different
groups defined by cognitive status (normal control (NC), MCI, or AD) using neuroimaging
data. For instance, a computer-assisted diagnostic (CAD) system was presented in [10]
to diagnose AD at its earliest phase using independent component analysis (ICA) as well
as support vector machines (SVM) for the feature extraction and the classification pur-
poses, respectively. Additionally, a CAD system using Gaussian discriminant analysis
was presented in [11] to screen the disease’s phases where the features of the entorhinal
cortex showed significant discriminatory power between both the normal group (NC) and
abnormal group (MCI + AD). Additionally, the study could achieve an improvement re-
garding the classification performance through defining two separate spaces of the decision,
for both hemispheres of the brain (left and right hemispheres), following by combining
their obtained result. Beheshti et al. [12] used feature ranking in addition to genetic algo-
rithms (GA) to propose a CAD system that addressed differentiating between NC, stable
MCI (sMCI), progressive MCI (pMCI), as well as AD groups. The pMCI group comprises
subjects who progressed clinically to the overt AD where their neuropsychological tests
have a poorer performance than the NC group.

On the other hand, the sMCI, who either remains in the stable stage or may improve,
shows no or marginal neuropsychological changes [13,14]. Zhang et al. [15] addressed the
three-way classification problem between the NC, MCI, and AD groups. In this system,
the principle analysis is used for feature detection, while the kernel support vector machine
decision tree (kSVM-DT) was used for the classification purpose. Then, Zhang et al. [16]
used the idea behind the eigenbrains along with the machine learning for building their
CAD system. Therefore, Welch’s t-test was used to find significant eigenbrain while the
prediction task was accomplished using SVM with the implementation of different kernels.
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Tong et al. [17] exploited the multiple instance learning (MIL) method to present a system
aimed to diagnose both AD and MCI phases. In this system, the extracted features were
in the form of local intensity patches. The MIL method was applied to address the case
when some patches may not characterize the morphological association with AD because
of the variable influence of the disease on these patches. Finally, Westman et al. [18] used
orthogonal partial least squares to latent structures (OPLS) analysis to discriminate between
the groups of AD through combining local and global volumetric measures obtained from
MRI scans.

Despite the achievements mentioned above, there are several notes regarding these
achievements that led to making the door still open in front of this research topic, and specif-
ically speaking this AD-related research point (i.e., differentiating between NC and MCI
groups). First, the previously mentioned studies addressed either a diagnosis of whole-
brain findings consistent with impairment or else considered local, brain region-specific
diagnosis while excluding the MCI group. Despite the importance of those researchers’
findings in the diagnosis task, targeting the brain-based regional diagnosis might add
more advantages due to the disease’s subject-dependent influence that could impede the
early diagnosis. Furthermore, the local/regional diagnosis can aid in revealing the disease-
related ambiguity. Secondly, in general, the diagnosis performance when using sMRI in the
AD early stage is fair and still needs more improvements. Due to the literature, the sMRI
scans can be used to follow patients as pathology accumulates with disease progression.
In contrast, at the early stages, the scan might look normal [9,19]. The aim of this paper is
primarily to introduce a system for the local/regional diagnosis, using sMRI technology,
for serving the goal of personalized diagnosis of MCI. Therefore, the proposed system
studies the impact of MCI locally (i.e., in the term of the local brain regions), specifically
speaking its impact on the brain cortical regions. Targeting the cortical regions is due to the
essential role of the medical imaging-based measurement of the cerebral cortex’s shape,
composition, as well as function in the diagnosis of the neurodegenerative conditions and
explicitly speaking in diagnosing AD [20–22]. To support the performed cortical regions
diagnosis, further analysis of the obtained results has been performed to confirm the fitness
of the results with the neurocircuits defined by the National Institute of Mental Health
Research Domain Criteria (RDoC). In addition, the paper offers a global diagnosis where
the results are promising, as evaluated, in addressing the challenging task of differentiating
between the NC and MCI groups primarily through brain structuring features at the early
stage of the disease. This paper is organized as follows. Section 2 explains the used material
as well as the applied methods. Section 3 presents the evaluation results of the proposed
CAD system. Section 4 discusses the obtained findings. In the end, a conclusion of the
proposed study is shown in Section 5.

2. Materials and Methods

2.1. Materials

Data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu, (Last accessed on 1 July 2021)) was used to build the proposed system. ADNI
is considered to be a standard database, which was established in 2003 as a public-private
partnership under the lead of Michael W. Weiner, MD as a Principal Investigator. The aim
behind the ADNI was to evaluate the role of combining serial MRI, PET, or other markers,
along with the clinical and neuropsychological assessments, in measuring the evolution
of MCI as well as AD. All the data on ADNI are provided for both the informational as
well as the review purposes where according to ADNI, the IRB in approved for research
use only. In the proposed work, we used 146 baseline sMRI scans of 60 normal plus
86 mildly cognitively impaired subjects, classified in ADNI as being either sMCI or pMCI.
Table 1 shows the demographic distribution of the used dataset. As reported by ADNI,
the NC participants represent the control subjects who do not show any depression, MCI,
or dementia signs. On the other hand, the MCI subjects are the subjects with subjective
memory concern that is reported by an informant, a clinician, or oneself. Despite this
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reported concern, the daily living activities of the MCI participants are basically preserved.
The subjects neither show any significant impairment levels in other cognitive domains
nor show dementia signs [23]. Please note here that in our paper, we did not focus on
differentiating between the sMCI and the pMCI groups. This is due to our ultimate goal of
presenting a personalized CAD system of either belonging to the NC or the MCI group
without addressing whether the subject will proceed to AD, as in the pMCI group, or will
remain stable, as in the sMCI group.

Table 1. Demographic data relating to baseline sMRI scans selected from ADNI. Note: MMSE is the
Mini Mental State Examination, and CDR is the Clinical Dementia Rating.

60 Normal Subject 86 MCI

Age (Mean ± std) 75.49 ± 4.78 73.98 ± 7.72
Gender

Women 38 33
Men 22 54

MMSE scores 24–30 24–30
CDR 0 0.5

2.2. Methods

This paper aims to present a cortical region-based CAD system to perform the per-
sonalized diagnosis of MCI through the framework illustrated in Figure 1. The system
begins with preprocessing the scans as well as segmenting the cerebral cortex and parcel-
lating by hemisphere. Second, a triangular mesh reconstruction of the cortical surface is
performed using the marching cubes (MC) algorithm. This is followed by the extraction of
shape-based features at each node of the cortical mesh. The cortical region-based features
are then defined through applying the Automated Anatomical Labeling (AAL) atlas to the
reconstructed cortex. Third, a fusion of the obtained features is performed using canonical
correlation analysis (CCA) to produce more representative features. Fourth, a two-stage
diagnostic classifier is constructed, producing cortical region-specific diagnoses that are
combined into a final diagnosis, of the subject’s cognitive status.

Figure 1. The proposed cortical region-based diagnostic system of cognitive impairment using sMRI.
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2.2.1. Preprocessing and Brain Cortex Segmentation

This step serves the cortical regions-based diagnosis goal through standardizing
them to the parcellation atlas space. Using the SPM toolbox, images are resampled and
re-oriented (if necessary), skull-stripped, aligned, and spatially normalized. Skull strip-
ping in this case had already been performed, so we convolved the sMRI scans with
their corresponding brain masks that in turn are provided as part of the ADNI dataset.
Then, the orientation of the atlas template’s space, MNI space, had been matched with
the scans through re-aligning re-orientating, spatial normalize as well as re-slicing the
scans. The data were re-sliced and aligned with the MNI-152 standard template. One
scan, selected as a reference, was rotated and shifted to align as near as possible to the
template, with the line between the anterior and posterior commissures (AC-PC line) of the
template and reference aligning exactly. The rest of the scans in the dataset were registered
to the chosen reference with a rigid body transformation calculated to optimize the mutual
information criterion. The particular choice of reference image is not significant, since
all MRI in the ADNI database have roughly the same spatial orientation. Subsequently,
the algorithm of Ashburner and Friston [24] was used to register each pre-aligned image
precisely with the MNI-152 template using a combination of affine and nonlinear deforma-
tions. Figure 2 shows examples of preprocessed scans overlaid on the atlas template [25].
Following this step, segmentation of the cerebral cortex was performed using the xjview
MATLAB toolbox.

Figure 2. Example of preprocessed and overlaid subjects’ scans with the AAL atlas template
from each studied group where (a) is for a normal subject, while (b) is for a mildly cognitive
impairment subject).

2.2.2. Brain Cortex Reconstruction and Analysis

The shape descriptors to be used later by the algorithm depend upon the accurate
representation of the cortical surface. Therefore, the MC algorithm is initially used for
cortex reconstruction since it is best-known isosurface extraction method and produces
high-resolution results [26,27]. Then, having obtained the triangulated mesh representation
of the cortical surface, several shape features are calculated at each node individually
through Equations (1)–(4) after calculating the principal curvature directions and values.
Algorithm 1 summarizes the steps of the MC algorithm as well as the calculation of the
principal curvature directions and values while Figure 3 illustrates results of cortical surface
reconstruction for both NC and MCI subjects.
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Algorithm 1 The MC algorithm and the calculation of the principal curvature directions
and values.

Input: The dataset of the scalar volumetric
Output: The directions and values of the principle curvature
Steps:

1. Use the volume lattice for defining the cubes (Cl) in which the corner vertices are
defined through the points (P(xi, yj, sk)) of the lattice for the column xi(∀i), yi(∀j)
and the slice Sk(∀n) where n represent the number of the volume slices.

2. Construct, in a sequential form of cube-by-cube manner throughout the rows of
the dataset, a fecetized isosurface. In this procedure and when the value of the
Vi � isovalue (α), mark Vi and keep the remaining ones as unmarked. Conse-
quently, the “active” edges are defined as an edge (Ej) ended with a marked vertex
(Vjm) and an unmarked vertex (Vju). Note: the value of α was calculated through
applying the histogram to the labeled volume, remove the large first max value,
and obtain the value of a middle bar of non-small values as the α value.

3. Use a look-up table to factorize the interacted isosurface of the intersection topolo-
gies in which the linear interpolation is applied for the location estimation of the
intersection between the isosurface-edge through:

I(x, y, s) = Vm(x,y,s) + ρ(Vu(x,y,s) − Vm(x,y,s))

where: ρ = α−Lm
Lu−Lm

, Lm and Lu are the scalars values Vm as well as Vu, respectively.
4. Through the face and vertex lists of the resulting triangulated mesh and to calculate

the principal curvature directions and values, describe the input by XY rather than
XYZ through rotating the input so the current vertex’s normal becomes [−1 0 0].

5. Fit a patch of the least-squares quadratic to the local neighborhood of a vertex
“ f (x, y) = ax2 + by2 + cxy + dx + ey + f ”.

6. Use the hessian-based eigenvectors and eigenvalues to calculate the principal curvature.

Figure 3. Examples of the marching cubes reconstruction output for normal and mildly cognitively
impaired subjects. As shown, although it is not that obvious since it is still the early stage of the
disorder, the brain atrophy starts to take place in the MCI case, where this atrophy defines the
beginning of losing the neurons and the connections that exist between them.

Please note that the sharpness and curvedness features were used as in [28]. Next,
labeling of each of the mesh nodes to its corresponding cortical regions is performed using
the AAL atlas, which defines a total of 76 cortical regions. It is important to note here
that alternative brain parcellation schemes could be used, as in [15,29,30]. In the proposed
system, the AAL atlas was chosen because of its relatively fine granularity. Here, to make
sure of the matching between the labels and the surface, the preprocessing steps of the
proposed framework were first applied to standardize the scans to the geometry of the
atlas template’s space, MNI space. Then, converts MNI coordinate to a description of brain
structure in AAL atlas using a standard list of the MNI space of the parcellation atlas to
label the required brain cortical regions.

CGaussian = λ1λ2 (1)

Cmean =
1
2
(λ1 + λ2) (2)
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Sharpness = (λ1 − λ2)
2 (3)

Curvedness =
√
(λ2

1 + λ2
2)/2 (4)

where λ1 and λ2 denote the principal curvatures. Quantities are estimated at the locus of
each node of the triangulated surface.

Although grey matter volume has a significant impact in the AD research area, where
it is considered to be the most popular cross-sectional quantitative metric [31], the demo-
graphic variability between the subjects can bias results. For this reason, the volume is
used here in conjunction with the previously obtained features to increase the precision of
the results while avoiding this biasing possibility. To calculate the volume: (1) apply the
AAL atlas to the to the preprocessed scans to define the cortical regions of the brain, (2) the
MC algorithm is applied to reconstruct each region separately, (3) calculate the volume for
each of the reconstructed regions separately. By the end of this step, there are a total of five
features calculated for each of the 76 brain cortical regions, and they are now ready for the
next step of fusion.

2.2.3. Shape Feature Fusion

This step aims to fuse the previously extracted features to produce more informative
discriminative features between the tested groups. For this purpose, the CCA-based
technique of feature fusion is used due to its role in finding the associations between
two sets of variables [32]. Obtaining the linear combinations helps in discovering this
association that consequently enlarge the correlation between the two variable sets in the
way that presented in Algorithm 2. Here and due to the number of studied features, five
features, the CCA technique is implemented sequentially working with two features at
a time until ending up with the final fusion-based feature vector for each labeled region.
Note, due to the different scales of the extracted features, before fuse the features using
the CCA technique, each of the features are normalized to be between 0 and 1 using
Equation (5).

normFeat = (oldFeat − oldFeatmin)/(oldFeatmax − oldFeatmin) (5)

Algorithm 2 The algorithm for feature fusion based on CCA technique.

Input: Two matrices of the features, X ∈ Rp×n and Y ∈ Rq×n, of the extracted (p + q)
features for the n samples.
Output: The fused features in the form of matrix.
Steps:

1. Compute the covariance matrix, S, for the two matrices X and Y using:

S =

(
cov(x) cov(x, y)

cov(y, x) cov(y)

)
=

(
Sxx Sxy
Syx Syy

)
where the Sxx ∈ Rp × p and the Syy ∈ Rq × q are within-sets matrices of the covari-
ance of the X as well as the Y, respectively. The Sxy ∈ Rp × q is the matrix of the
between-set covariance while Syx = ST

xy
2. Determine both of the linear combinations X∗ and Y∗ through using CCA to be

able to enlarge the correlations among the matrices X and Y through:

corr(X∗, Y∗) = cov(X∗ ,Y∗)
var(X∗).var(Y∗)

where Wx and Wy represent the matrices of the transformation.
cov(X∗, Y∗) = WT

x SxyWy, var(X∗) = WT
x SxxWx, and var(Y∗) = WT

y SyyWy.
The usage of Lagrange multipliers is to attain the maximization goal by maximizing
cov(X∗, Y∗) with a constrain of var(X∗) = var(Y∗) = 1.
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Algorithm 2 Cont.

3. Determine Wx and Wy by:

(a) Solve the equations of the eigenvalue:

S−1
xx SxyS−1

yy SyxŴx = Δ2Ŵx

where Ŵx and Ŵy are the eigenvectors while Δ2 is the eigenvalues that cor-
responds to either the diagonal matrix or the canonical correlations square.

(b) Determine d that represent the overall non-zero eigenvalues in every afore-
mentioned equation, by d = rank(Sxy(n, p, q)).

(c) Perform a decreasing order-based sorting operation of the previous step
results δ1 ≥ δ2 ≥ ... ≥ δd.

(d) Let the sorted eigenvectors be indicated by Wx and Wy where they con-
sequently represent the non-zero eigenvalues in which X∗ and Y∗ ∈ Rdn

represent the canonical variates.
4. Calculate the sample covariance matrix of the transformed data, S∗, using:

S∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 δ1 0 · · · 0
0 1 · · · 0 0 δ2 · · · 0
...

. . .
...

...
. . .

...
0 0 · · · 1 0 0 · · · δd
δ1 0 · · · 0 1 0 · · · 0
0 δ2 · · · 0 0 1 · · · 0
...

. . .
...

...
. . .

...
0 0 · · · δd 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Concatenate the features-based transformed vectors to obtain the feature fusion
vector through:

Z =

(
X∗
Y∗

)
=

(
WT

x X
WT

y Y

)
=
( Wx 0

0 Wy

)T
(

X
Y

)

2.2.4. Diagnosis

The last step of the proposed system is to use the fused features to train the two diag-
nostic layers: regional and global. For this purpose, a probabilistic SVM (pSVM) support
vector machine (pSVM) is used in the first diagnosis layer, where for each anatomical
region a separate pSVM is trained to produce a probabilistic measure of association of that
particular region’s features with MCI. For this purpose, the fusion feature vector produced
by the CCA technique was used as an input to the pSVM to produce the final probabilistic
regional diagnosis result. Then, a standard SVM is used, in the second layer, where the
probabilistic outputs of the first layer are input to it, and the output is the global diagnosis
of NC or MCI.

3. Results

The system was trained and tested using the 146 baseline scans, previously men-
tioned, downloaded from ADNI. For the evaluation process, three types of experiments
are performed: (1) evaluating the performance of different SVM kernels, (2) comparing the
system’s performance results with several some state-of-the-art methods, and (3) validating
it with related work.

For testing classifier performance, k-fold cross-validation was applied to compare
both the results of the SVM-related kernels, as shown in Figure 4, and our obtained
results against some state-of-the-art methods, as shown in Figure 5. Regarding the k-fold
cross-validation method, K = 4 and K = 10 were used to verify that the proposed system
did not overfit while K = 10 was also used to evaluate the proposed linear-based CAD
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system with some state-of-the-art classifiers. As illustrated in Figure 4, the linear kernel
could, in general, exceeds the overall performance of the other kernels (i.e., polynomial,
and radial basis function (RBF) kernels) with the K = 4, and K = 10. For K = 4, the superior
results of the linear kernel were around 86.3%, 85%, and 87.2% for the accuracy, specificity,
and sensitivity, respectively. For K = 10, these superior results were around 86.3%, 88.33%,
and 84.88% of accuracy, specificity, and sensitivity, respectively. Comparing the obtained
results, at K = 10, with some other state-of-the-art classifiers (i.e., decision tree, ensemble
classifier, and K nearest neighbors (KNN)), Figure 5, also showed that the linear-SVM
generally could achieve better results.

Along with these quantitative performance results, an additional investigation has
been performed to confirm the fitness of the obtained subjects’ cortical regions-based
diagnosis results with the neurocircuits defined by the National Institute of Mental Health
RDoC. Therefore, Table 2 displays the modest correlations between the behavioral and
cognitive data from ADNI and critical brain regions involved in memory and language.
Finally, an illustration of different cortical region-based diagnoses is presented in Figure 6
where the disease’s severity in each cortical region is represented in color.

Figure 4. The results of the k-fold validation method in (%) for different SVM-based kernels
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Figure 5. The comparison evaluation of our linear-based CAD system with some state-of-the-art
classifiers with k-fold = 10.

Table 2. The person correlation for MRI parameters and distinct behavioral tasks in MCI subjects, where: BNTTOTAL: Total
number correct on Boston Naming Test, BNTSPONT: number of spontaneously given correct responses, Partial Score of
BNT, TOTAL11 (ADAS): total score on the 11 item cognitive subscale of the Alzheimer’s Disease Assessment Scale (ADAS),
FAQTOTAL: functional assessment questionnaire total score, CONMCXLA: number of targets hit on ADNI numbers
cancellation task.

Brain Region Behavioral Task ADNI Category r-Value p-Value

Right Angular Gyrus Language BNTTOTAL 0.37 0.001
Right Angular Gyrus Language BNTSPONT 0.36 0.001
Left Angular Gyrus Language BNTTOTAL −0.35 0.002
Left Angular Gyrus Language BNTSPONT −0.37 0.001

Right Middle Cingulum Language BNTTOTAL −0.29 0.010
Right Middle Cingulum Language BNTSPONT −0.31 0.006

Right Inferior Frontal Opercularis Cognitive TOTAL11 (ADAS) −0.32 0.004
Left Parahippocampal Gyrus Adaptive FAQTOTAL −0.30 0.007
Left Parahippocampal Gyrus Visual Spatial CONMCXLA 0.30 0.008

Figure 6. Different examples that show the cortical regions diagnosis for two different normal,
and two different mildly cognitive subjects. Note: (1) the color-bar-based gradient colors represent
the disease’s severity in every studied region separately. (2) The blue arrows show examples of the
cortical regions that show significant difference in the probabilistic diagnosis results between the NC
and MCI subjects.
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4. Discussion

Patients with mild cognitive impairment present with markedly reduced cognitive
abilities when compared with unaffected people of the same age, and taking a level of
education into account, but without meeting the criteria for dementia. One or more
domains of cognition can be influenced by this impairment: memory, executive function,
language, skills of the visuospatial domain, or attention. Regardless of the aforementioned
impairments, the patients still can accomplish their daily tasks, such as occupational or
social functions without confusion [33]. Therefore, MCI is considered to be an intermediate
condition between typically seen age-related changes in cognition and dementia [33,34].
Although it is not guaranteed that all MCI cases proceed to AD, suffering from MCI
increases the risk factor of ending up with AD [34,35].

To date, sMRI is one of the most developed modalities used for differential patho-
logical diagnosis purposes due to its ability to detect the location and severity of atrophy
through showing the detailed description of the soft tissues of the body [36,37]. sMRI
can discriminate between tissue types through capturing proton density or magnetization
properties (using spin-spin (T2) or spin-lattice (T1) relaxation times). Actually, T1-weighted,
as well as T2-weighted images, are used for qualitative assessment that is designed to both
differentiate between the tissues with a different relaxation time of T1/T2, and to evaluate
the macroscopic lesions as well as tissues changes such as in sulci, cysts and ventricles [38].

Regarding AD, sMRI can, in general, reveals atrophy of the cerebral cortex during
the progression of AD. Furthermore, the regions thought to distinguish AD from MCI
and normal controls include MRI parameters of the putative earlier involved MCI regions
(hippocampus, entorhinal cortex, supramarginal gyrus) vs. earlier involved AD regions
(rate of hippocampal atrophy, cingulate cortex, and parietal cortex) [39]. Additionally,
the analysis of sMRI helps in uncovering the relationship between both the elevated risks
for MCI converting to AD and atrophy where this, in turn, assists in anticipating the future
cognitive-based decline in the healthy adults. Additionally, the volumetric-based analysis
using sMRI can aid in detecting crucial changes in the brain regions’ size that in turn,
effectively assist in the diagnosis procedure [40].

According to the literature, the shape, composition, and function of the cerebral cortex
as measured by imaging modalities has a crucial role in diagnosing the neurodegenerative
conditions, especially in AD [20–22]. Depending on imaging variability and due to the
variability of AD effect among its sufferers, the ultimate goal of this paper is to introduce a
cortical region-based diagnosis of MCI. Additionally, the paper aims to improve the overall
performance of the discrimination between the NC and MCI Group, which is known to be
a difficult task, as seen in the related literature.

We introduced a cortical region-based diagnostic system that serves the subject-
dependent (i.e., personalized) diagnosis of MCI. Additionally, we target improving the
diagnostic performance with respect to the related work. To achieve our goals, and because
of the nature of the disease at this early stage, when underlying anatomical changes are
subtle, it was necessary to choose high-resolution methods to accomplish this task. There-
fore, in the proposed system, the MC algorithm was selected due to its role, as mentioned
above in obtaining high-resolution extraction of isosurface results. Then, the shape-based
features were addressed to serve the discrimination goal due to the nature of the disease’s
influence in the brain that could be detected through the sMRI scans. After obtaining these
features and to present a more informative feature vector to the diagnosis step, as well as to
overcome the biased results that can be obtained using the volume feature, a feature reduc-
tion/fusion process was applied. Finally, and based on its powerful role in addressing this
type of problems as well as to serve the personalized diagnosis role, standard SVM and its
variant, pSVM, was applied to provide two layers, regional followed by global diagnosis.

As previously mentioned, the system’s performance has been evaluated from three
different perspectives, which are evaluating the performance of different SVM kernels,
comparing the obtained performance results with several state-of-the-art methods, and val-
idating the system’s performance with related work. Starting with the first evaluation,
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Figure 4 shows a comparison of different SVM-related kernels’ performance (i.e., poly-
nomial, linear, and RBF) using k-fold cross-validation method, with K = 4, and K = 10 to
exclude the possibility of overfitting, As shown in the figure, the linear kernel achieved
superior results while the RBF kernel performed most poorly. The results of the linear-SVM
reflect the power of the extracted features in providing linear separation between the tested
groups. On the other hand, the low results of the nonlinear kernels can be justified as
the result of the small dataset size that led to lower performance results of RBF-based
SVM compared with the polynomial-based one. Additionally, the power of the extracted
features that caused the superior results of the linear-SVM showed, as shown in the results
that the RBF kernel failed to find a proper separating decision boundary between the
studied groups.

Then, again through using the k-fold cross-validation method and specifically speak-
ing K = 10, we compared the performance of the linear-SVM with some well-known meth-
ods (i.e., decision tree, ensemble classifier, and KNN), as presented in Figure 5. Broadly
speaking, the linear-SVM showed better performance against the other methods. This
indicates the proposed work’s ability to deal with this research issue. In general, this
better performance can be justified by several reasons. First, the discriminative power of
the features that results in better classification performance ability of the linear-SVM to
separate between the groups with linear hyperplanes. Second, the performance power of
SVM, in general, to deal with high-dimensional space’s dataset while this is not the case
with other methods. Finally, the efficiency of SVM to deal with a small size of the datasets
while other methods can suffer from under-performance results and/or overfitting.

Additionally, validating our system’s performance against the literature showed the
promise of the proposed work. For instance, in [15] a classification system was built, using
the principal component analysis (PCA) kSVM-DT, and could reach a maximum accuracy
result of 85%, specificity result of 80%, and sensitivity results of 87%. In [18], the OPLS
analysis was used that led to a specificity result of 73% as well as a sensitivity result of
66%. Finally, in [41], an ICA/SVM system was proposed for the classification and could
achieve accuracy, specificity, and sensitivity of 70.19%, 67.49%, and 72.89%, respectively. It
is noteworthy that the results of the systems above have been obtained from those studies
regardless of using different dataset as well as a different number of scans. The idea here is
to validate our work against prior work focusing on the same research area.

The modest correlations between ADNI behavioral and cognitive data and brain
regions (Table 2) critical to AD, involving memory and language, adds further validation
to our approach. (Additional details about the ADNI categories can be found in [42–47].)
Furthermore, a survey of statistically significant correlations between ADNI behavioral and
cognitive data and brain regions suggest that regions linked to specific deficits in language
(15 regions), executive function and cognition (10 regions), adaptive behavior (5 regions),
and memory (3 regions) may point to early neuropathology in classic AD-involved regions
in MCI subjects. Finally, Figure 6 illustrates some cortical regions-based diagnosis results
of different normal as well as mildly cognitive impaired subjects. As shown in the figure,
the system can visualize the disease’s severity in the cortical regions separately. In turn,
this illustration helps the experts to discover any local abnormality and its degree to
consequently direct the treatment plans.

5. Conclusions

Among the neurodegenerative conditions, AD is considered one of the leading dis-
eases that affect the CNS, where its main sufferers are elderly people. The principal goal of
the presented work is to serve the subject-dependent (i.e., personalized) diagnosis of the
MCI, the early phase of AD. This goal is achieved by demonstrating a cortical region-based
CAD system that helps visualize the severity of the disease in different local brain regions.
Because of the difficulty of addressing the classification task between the normal and the
mildly cognitive impaired groups, our system aims to target a more promising performance
than in the literature and some state-of-the-art methods. To achieve this purpose, the sMRI
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has been used where several shape-based features were extracted, and according to the
obtained results, could provide powerful assistance in the targeted task. Comparing our
system with some state-of-the-art methods and validating it with the related work shows
promising results of ours in the studied research area. Therefore, the proposed system
can be treated as an assistant tool that provides a highly performed diagnosis through
focusing on the crucial related brain regions, cortical regions. Focusing on such areas is
vital due to the variable effect of AD in its sufferers that in turn requires presenting different
medical services to the sufferers according to the nature of the disease’s influence and the
degree of this influence in their cortical regions. Besides that, the proposed system can
help analyze the disease and uncover the ambiguity surrounding it by providing a finely
detailed computer-aided diagnosis system that targets the hardly discriminative early stage
of the disease.

For future work, the authors plan to perform further evaluation of the presented
diagnostic system with other datasets, improve the system’s overall performance, and per-
form additional analysis processes involving multimodal imaging to enhance the goals
in this research area. Additionally, the obtained promising results that in turn helped
in proofing the targeted concept of this paper, encourages using the proposed system in
addressing another AD-based discrimination task that is between the sMCI and pMCI
groups, and evaluating the resulting diagnosis performance for further improvements.
Additionally, regarding the surface reconstruction, the authors will try to implement some
other reconstruction methods and compare their results with the MC algorithm.
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The following abbreviations are used in this manuscript:

AD Alzheimer’s disease
CNS central nervous system
APP amyloid-β precursor protein
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BACE1 β secretase 1
PSEN1 presenilin 1
PSEN2 presenilin 2
APH1 anterior pharynxdefective 1
MCI mild cognitive impairment
PET positron emission tomography
CSF cerebrospinal fluid
Aβ42 amyloid beta
sMRI structural magnetic resonance imaging
FDG-PET 2-[18F] fluoro-2-deoxy-d-glucose
NC normal control
CAD computer-assisted diagnostic
ICA independent component analysis
SVM support vector machines
GA genetic algorithms
sMCI stable MCI
pMCI progressive MCI
kSVM-DT kernel support vector machine decision tree
MIL multiple instance learning
OPLS orthogonal partial least squares to latent structures
RDoC research domain criteria
ADNI Alzheimer’s disease neuroimaging initiative
MMSE mini mental state examination
CDR clinical dementia rating
MC marching cubes
AAL automated anatomical labeling
CCA canonical correlation analysis
MNI Montreal Neurological Institute
AC-PC anterior and posterior commissures
pSVM probabilistic support vector machines
BNTTOTAL total number correct on Boston Naming Test
BNTSPONT number of spontaneously given correct responses
ADAS Alzheimer’s Disease Assessment Scale-Cognitive Behavior
FAQTOTAL functional assessment questionnaire total score
CONMCXLA number of targets hit on ADNI numbers cancellation task
RBF radial basis function
KNN K nearest neighbors
PCA principal component analysis
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Abstract: Uveitis is one of the leading causes of severe vision loss that can lead to blindness world-
wide. Clinical records show that early and accurate detection of vitreous inflammation can potentially
reduce the blindness rate. In this paper, a novel framework is proposed for automatic quantification
of the vitreous on optical coherence tomography (OCT) with particular application for use in the
grading of vitreous inflammation. The proposed pipeline consists of two stages, vitreous region
segmentation followed by a neural network classifier. In the first stage, the vitreous region is automat-
ically segmented using a U-net convolutional neural network (U-CNN). For the input of U-CNN, we
utilized three novel image descriptors to account for the visual appearance similarity of the vitreous
region and other tissues. Namely, we developed an adaptive appearance-based approach that utilizes
a prior shape information, which consisted of a labeled dataset of the manually segmented images.
This image descriptor is adaptively updated during segmentation and is integrated with the original
greyscale image and a distance map image descriptor to construct an input fused image for the U-net
segmentation stage. In the second stage, a fully connected neural network (FCNN) is proposed as a
classifier to assess the vitreous inflammation severity. To achieve this task, a novel discriminatory
feature of the segmented vitreous region is extracted. Namely, the signal intensities of the vitreous
are represented by a cumulative distribution function (CDF). The constructed CDFs are then used to
train and test the FCNN classifier for grading (grade from 0 to 3). The performance of the proposed
pipeline is evaluated on a dataset of 200 OCT images. Our segmentation approach documented
a higher performance than related methods, as evidenced by the Dice coefficient of 0.988 ± 0.01
and Hausdorff distance of 0.0003 mm ± 0.001 mm. On the other hand, the FCNN classification is
evidenced by its average accuracy of 86%, which supports the benefits of the proposed pipeline as an
aid for early and objective diagnosis of uvea inflammation.

Keywords: U-NET; deep learning; uveitis grading; OCT segmentation

1. Introduction

In recent years, retinal imaging techniques have been greatly exploited by researchers
to detect diseases that may cause vision loss. Particularly, optical coherence tomogra-
phy (OCT) is a popular noninvasive technique that used for diagnosis and assessment
of several retinal and corneal diseases [1,2]. Here, we are interested in vitreous inflam-
mation diagnostic and grading [3]. Developing an accurate grading system for vitreous
inflammation severity is clinically essential since the vitreous inflammation is considered

Sensors 2021, 21, 5457. https://doi.org/10.3390/s21165457 https://www.mdpi.com/journal/sensors
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an important medical diagnostic sign of uveitis. This paper proposes a fully automated
computer aided diagnostic (CAD) system for grading of vitreous inflammation, based on
extracting discriminatory features from the segmented vitreous regions of OCT images.

Uveitis [4–6] is generally a group of intraocular inflammatory diseases that may affect
the uvea or destroy the eye tissues. It may affect all ages especially 20 to 60 years and
it may last for short time (acute) or long time (chronic). It may be caused by diseases
occurring in the eye or it can be part of an inflammatory diseases affecting other parts of
the body. It may be infectious or autoimmune in origin. Uveitis may be classified more
specifically according to the eye region that is affected by the inflammation into four types:
(1) anterior uveitis, which refers to the inflammation affecting the anterior chamber of
the eye; (2) intermediate uveitis, if the vitreous is affected; (3) posterior uveitis affecting
the back of the eye, retina, and choroid; and (4) panuveitis when all eye major parts are
affected: The vitreous inflammation grading is an important and critical target since its
almost entirely subjective. Vitreal inflammation presents on examination as a haziness
of the vitreous because protein and inflammatory cells leak into the vitreous. There are
generally 6 grades of inflammation (0, 0.5, 1, 2, 3, 4) (but grade 4 cannot be assessed because
it is not possible to get any clear OCT image from it).

In the literature, using deep learning in integration with neural networks can optimize
solutions to several complex problems of classification [7]. machine and deep learning tech-
niques show a potential to perform efficient segmentation of medical structures from OCT
images and/or the classification and grading of OCT images [8–14]. For example, Pelosini
et al. [8] developed a segmentation technique that based on a linear regression model,
which has lower performance in pathological scans as compared to normal scans [15]. The
computer aided diagnostic system of Eltanboly et al. [9] was designed to identify early
signs of diabetic retinopathy; however, preprocessing and complicated computations are
required for the segmentation of retina layers. Rossant et al. [13] succeeded to to segment
the eight retina layers using a hybrid approach incorporating clustering, filtering, and
both random field and active contour models. However, their proposed pipeline failed in
segmentation of blurred images. Yazdanpanah et al. [14] used active contour energy mini-
mization along with shape priors to segment retina layers. Of note, this was a very early
study in the field of spectral-domain optical coherence tomography (SD-OCT), and worked
on scans of rat retina obtained using custom hardware. Also, manual segmentation had to
be initialized by the user. Haggag et al. [16] developed an automatic U-net convolutional
neural network (U-CNN) for segmentation of the vitreous from OCT scans, where the input
OCT images were directly applied to train the U-CNN. Their results showed the potential
of using U-CNN to solve the problem of vitreous segmentation, but this technique has
failed to segment most of severe inflammation images [16]. However, there are still many
challenges to get perfect segmentation or classification in some cases of hardly separable
images [8,9,15,16].

In trying to develop an automatic system for quantitative assessment of vitreous
inflammation, Invernizzi et al. [17] described the inflammatory cells that appear in OCT
scans as a hyper reflective dots. Vitreous haze, which may be indicative of inflammation,
is also detectable by observing the variations in brightness of vitreous. Pearse et al. [18]
developed an automatic technique to quantify the vitreous signal intensity from OCT scans.
However, it has a significant limitation as an automatic system since it depends and needs
manual segmentation. Schlegl et al. [19] utilized the U-CNN to develop a full automated
pipeline to identify and then quantify the intra-retinal cystoid fluid and subretinal fluids.

Many studies used CNN and U-Net to improve OCT segmentation. Cecilia et al. [20]
used a U-Net architecture for delineation of macular edema. This technique has achieved
an acceptable accuracy which is evaluated by Dice metric of 0.91. He et al. [21] examined
the performance of the U-Net architecture relative to a Random Forest-based approach.
Finally, Leyuan et al. [22] identified the OCT layer boundaries by mixing the CNN with a
graph based method.
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To avoid the aforementioned limitations, the proposed CAD system is divided into
two main stages (see Figure 1). The first stage segments the vitreous region using a U-net
convolutional neural network aided with using the fused images as a training and testing
dataset rather than using the original grayscale images directly in training and testing.
The fused images are used as an auxiliary, pre-processing technique. This is followed by a
grading stage that is conducted using a machine learning-based classifier into one of five
grades (0, 0.5, 1, 2 and 3), where 0 refers to normal vitreous and 3 refers to the worst case of
vitreous inflammation. The main contributions of this work are as follows:

• In contrast to [16], where the OCT images were directly applied to train the U-CNN,
the first stage of the proposed CAD system trains the U-CNN model using a fused
image (FI) dataset, which integrates the information of the original image with a
proposed distance map, and a proposed adaptive appearance map (AAP), instead of
the direct original images.

• Compared to previous work, the first stage of the proposed CAD system shows
superior performance in vitreous segmentation from the OCT images in spite of the
great similarity between the vitreous and the background.

• The second stage of the proposed CAD system shows great performance in classifica-
tion accuracy in spite of the great overlap among the extracted features from the OCT
vitreous images.

Figure 1. Illustration of the proposed CAD. The first stage is the segmentation stage depending
on fused image and U-CNN. The second stage is the classifier to predict the grade of vitreous
inflammation severity.

The rest of the paper is organized as follows. Section 2 details the methods used for the
framework itself and for evaluating its accuracy in segmentation as well as classification.
Section 3 discusses the experimental results and its details. Experimental results will show
the potential of the U-CNN training using the proposed FI dataset to significantly improve
the segmentation performance, evidenced by the obtained higher Dice similarity coefficient
(DC) metric and the lower Hausdorff distance (HD). The results of vitreous inflammation
grading using FCNN is also reported. Finally, Section 4 concludes the paper.
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2. Materials and Methods

We developed a CAD system for accurate grading of vitreous inflammation from
OCT images. The proposed pipeline is composed of two main stages. The first stage is to
segment the vitreous region to simplify the processing in the next stage, i.e., grading of
the inflammation severity. In our analysis, the total number of used images is 200 OCT
of five different grades of severity (grades “0” through “3”). The details of each stage are
described in the following subsections.

2.1. Segmentation Stage

The first stage of the CAD system is to extract the vitreous region from the images to
be ready for accurate grading in the next stage. The segmentation stage is composed of
two processes: the construction of a fused image and the application of the U-net CNN.
The details of each are described as follows.

2.1.1. Construction of the Fused Image

Due to the similar visual appearance of the vitreous region and other tissues in the
background, our pipeline extract different image descriptors from the OCT image to guide
the U-CNN segmentation. The extracted image features are integrated with the original
OCT intensity image to construct a three-layer image (called the fused image as shown in
Figure 1) that is then used for CNN training and testing. The first layer of the fused image
consists of the original grayscale OCT image. Since the vitreous region is typically located
in the upper part of a given OCT image, we added in the second layer a distance-based
image descriptor. Namely, the second layer is represented by a distance map for each image
pixel with respect to the center of the image. It is measured from the center to encounter
the possible rotation of incoming images.

In addition to the grayscale values and the distance-based image descriptor, we also
incorporate a learned appearance prior. An adaptive probabilistic map is constructed for
each input image to be segmented, using an atlas database. The atlas consists of grayscale
OCT data sets (with their respective labels) from different subjects. The labeled data were
obtained by manual delineation of the vitreous region by an OCT expert. During the
testing phase, the specific appearance prior, Gi; i = 1, 2, · · · N, of an input grayscale image
is constructed using the visual appearances of both the atlas grayscale images and their
labeled images. A sliding window with a variable width (in our experiment below we
start from 11 × 11 pixels) is centered at each pixel location in turn within the image to be
segmented. The gray level g at each pixel location is noted, and an associated probability
is computed from the atlas at the corresponding location. To effect this, the system first
collects all grayscale values in the interval [g − Δ, g + Δ] within the sliding window across
all atlas OCT, along with their corresponding labels. Here Δ is a tunable threshold value
that can be varied from 5 to 90. Then the probability assigned to the pixel location is P = Nx

Nt
where Nt is the total number of pixels within the given spatial and grayscale bounds, and
Nx is the number of such pixels that are labeled as vitreous. This process is repeated
for all pixel locations in a given image. The whole operation is repeated to compute the
probability map for each test and training OCT image.

2.1.2. U-Net Segmentation

The second stage of our segmentation pipeline is the U-net CNN, shown in Figure 2.
The input to the network is a fused image as constructed above. The U-CNN is composed
of two consecutive paths, The first is a contracting path, similar in structure to image
classification systems where the fused data are reduced in size and distilled into a set of
feature information. The second path is an expansive and up-convolutional network to
increase the spatial dimensions and adds context from the second path. Each consecutive
block in U-CNN consists of a convolution layer followed by ReLU-activation functions and
max pooling process.
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Figure 2. U-CNN structure: The input is a fused image of size 256 × 256 produced as shown
in Figure 1. The segmented output has the same dimensions as the input. Convolution (with a
3 × 3 kernel), max-pooling, up-convolution operations are respectively indicted using the blue, red,
and green arrows. The max-pooling (up-convolution) operation decreases (increases) the spatial
dimensions by a factor of 2. The first path starts with 32 kernels and increases up to 512, where it
decreases from 512 to 1 in the second. Zero-padding is employed at the boundaries. Copied contextual
information afrom the contracting branch are concatenated to the expansive path (dashed arrows).

The architecture of the contracting or down-sampling section, which increases the
number of feature maps, comprises several steps of convolution. Each convolutional block
performs two steps of filtering with 3 × 3 kernels, having unit stride in x and y directions
and ReLU activation functions. Finally, a 2 × 2 max-pooling is applied at the end of each
block. The architecture of the up sampling section is similar to the down sampling section
albeit in reversed order as shown.

A sigmoid layer is used at the network output to generate the probabilistic map.
Finally, the bipolar cross entropy (BCE) loss function is applied to the network output
through training mode, which is computed as

LBCE =
M

∑
i=1

−(Toi log(Poi) + Tbi log(Pbi)) (1)

where Poi, and Pbi, are the predicted probabilities, computed from the U-net, that a given
pixel i should be assigned to the vitreous or background segments, respectively. While, Toi
(Tbi) is the ground truth label, i.e., obtained from manual segmentation map, “1” for the
object and “0” for the other tissues (vice versa for Tbi).

2.2. Grading Stage

Following the segmentation, the cumulative distribution function (CDF) of grayscale
intensities within the segmented region is constructed for each image. These CDF’s are
used as the discriminatory features in our machine learning classifier.

For grading, we used a fully connected neural network to classify the vitreous region
inflammation into one of five grades (0, 0.5, 1,2 and 3). ’0’ represents the normal eye ’3’
is the is most sever. The FCNN consists of an input layer, 5-nodes output layer, and two
hidden layers. The input layer is chosen to be 50 nodes. Each CDF contains 256 points
the last 70 points are truncated because all of them is ones and will not discriminate
between the different severity degrees. The reminder points are 186 which are used as
discriminatory features.
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2.3. Performance Metrics

Among many different metrics of accuracy, we used the Dice Coefficient of similarity
(DC) to measure the accuracy through out the stages of the proposed CAD. Also, we used
the Hausdorff Distance (HD) metric to gauge the proximity of the boundary of segmented
vitreous to its ground truth counterpart. Let G and S denote the sets of pixels labeled as
vitreous in ground truth segmentation and machine segmentation, respectively. The DC
metric is defined as follows [23]

DC =
2 ∗ TP

2 ∗ TP + FN + FP
(2)

where TP is the cardinality of the intersection of S and G, FP = |S−G|, and FN = |G− S|.
Another performance metric is the Hausdorff distance (HD) that measures the dissimilarity
between the boundaries of ground truth and model segmentation. The HD from G to S is
defined as the maximum Euclidean distance d(g, s) between the points g from G and their
closest points s in S:

HDG→S = max
gεG

{min
sεS

{d(g, s)}} (3)

Note the asymmetry, in that HDG→S 
= HDS→G in general. It is easy to define a
symmetric version, bidirectional Hausdorff distance BHDG→S = max{HDG→S, HDS→G}.
In order to reduce sensitivity to noise, a further modification is made, replacing the max
operation in Equation (3) with taking the 95th percentile.

For the inflammation grading stage evaluation, we computed the average accuracy
for all classified grades by the FCNN [24].

AverageAccuracy =
N

∑
i=1

TPi + TNi
TPi + FNi + FPi

(4)

3. Experimental Results and Discussions

3.1. Data Set

The proposed CAD system was applied and tested on 200 OCT images of eyes with
different degrees of uveitis severity (0, 0.5, 1, 2, and 3). Sample of all applied inflamma-
tion grades and their corresponding segmentation are shown in Figure 3. Imaging was
performed with a Spectralis spectral-domain optical coherence tomography (SD-OCT)
machine (Heidelberg, Germany) having 4 micron axial resolution and 6 mm × 6 mm
in-plane resolution. The rasters comprise thirty horizontal B-scans acquired in order from
superior macula to the inferior macula. The entire field of view spans about 20◦ in both the
nasal-temporal and inferior-superior directions, centered on the fovea. Imaging protocol
ensured that at least 3 mm of posterior vitreous was visible. The scans that are used in the
analysis are selected such that the central horizontal B scan passes through the fovea.

These images were identified using patient database from the uveitis service at the
University of Louisville. After the uveitis specialist identified images of patients with
uveitis, the images themselves were de-identified for the purpose of analysis. After that,
two ophthalmologists graded every image, an attending ophthalmologist with subspecialty
expertise and a uveitis fellow (i.e., a fully trained general ophthalmologist who was then
undergoing additional subspecialty training in uveitis). They further set together to provide
one diagnosis.

The dataset is organized such that 20 images were selected randomly to construct the
atlas. The dimensions of the CNN input layer is 256 × 256, so the images are scaled from
its original dimensions of 400 × 474 to 256 × 256 to fit the CNN input dimensions. For
training and testing, the remainder of the OCT images were partitioned into four groups
in order to perform fourfold cross-validation. The accuracy metrics reported are the the
average of fourfold results.
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Figure 3. Sample of different grades and their segmentation results. First column (up–to–down)
represents the grades 0, 0.5, 1, 2 and 3. The second column represents the corresponding segmentation
results, respectively.

3.2. Fused Image Construction

Using original gray level images directly in training U-CNN as in [16] results in high
accuracy in testing mode but for normal eyes or eyes with low or moderate vitreous haze.
But in severe eyes, the vitreous region is very similar to other tissues and hence U-CNN
performance is not acceptable. The results of segmentation have many artifacts in either
vitreous (false positive) or in other tissues (false negative). To overcome this problem, we
propose using the fused images in training and testing rather than the original gray level.
The fused image, as explained in Section 2, consists of three layers, original gray level,
distance map and appearance prior map (AP). To extract the AP map, an atlas is constructed
from 20, randomly selected images that contains all grades of vitreous inflammation. Two
parameters control the construction of the atlas which are sliding window width, and Δ.
Sliding window is selected on average as 11 × 11 pixels.

The choice of the Δ value has greatly affected the segmentation results. To optimize
the value of Δ, many experiments are carried out by different values of Δ. These values
range from 5 up to 90. Each time, a complete dataset is produced, trained and tested
on the proposed U-Net. Dice similarity and HD are computed for the testing set results.
The results are summarized in Figure 4. As shown in the two graphs, it is clear that
Δ = 25 results in the optimal performance. Considering the average of DC or HD in each
experiment, there is no perceptible difference. But considering all the testing set, the
segmentation is performed with almost equal quality at this optimal value of Δ.
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Figure 4. Effect of changing delta on segmentation accuracy evaluated by computing DC and HD
distance for different empirically selected values.

3.3. Overall Segmentation Evaluation

To demonstrate the accuracy of our approach in the segmentation stage, some rep-
resentative results are presented in Figures 5 and 6. As demonstrated in from Figure 5,
it can be readily seen that the segmentation results have very high accuracy (DC = 0.99)
despite the variations in vitreous inflammation degree, which is related to the contrast of
the image. In the first row of Figure 5, the image is clear and the contrast between the object
and non-object regions is easily spreadable. Although, in the second row, the image has
low contrast, the accuracy of the segmentation is nearly the same as that of the first row.

Despite the fact that the selected images in Figure 6 (first row) have low contrast with
high similarity between object and non-object regions, our approach has succeeded to
segment the vitreous region with high accuracy. The DC for these images ranges from
0.961 to 0.978, which is acceptable but lower accuracy compared to the group of images in
Figure 5. However, by visual inspection, the difference between the ground truth (yellow
contour) and our system segmentation (green contour) in the first row of Figure 6 is not
significant because the region in the middle of the retina is completely unclear. So, the
difference between the two contours in the middle region is just a difference between the
interpolation capability of two different techniques trying to predict the unclear region.
The second row in Figure 6 contains the same images in the first row that with contours
resulted from the previous technique. Also, we can confirm that, the high noise in the
presented images proves the high efficiency of the proposed technique. Adaptive shape
model has highly succeeded to reduce the effect of this noise by selecting proper values of
Δ and/or the sliding window size.

To highlight the advantage of the proposed segmentation technique, we compare its
performance with segmentation obtained from the previous technique that only utilizes
OCT grayscale images [16]. Sample of the compared results are demonstrated in Figure 6
and the summary of the accuracy is given in Table 1. Statistical comparison between
the current and previous segmentation methods was carried out using the two-sample
Student’s t-test. The obtained p-values (shown in Table 1) illustrate that there is a statistically
significant difference (p-value ≤ 0.05) of the two methods.
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Figure 5. Sample of high accuracy segmentation. The first row represents grayscale images with high
contrast, and the second row represents low contrast images with higher degree of vitreous inflam-
mation. Green and yellow colors represents the ground truth and the CNN segmented respectively.

Figure 6. Sample of segmented images of our proposed approach (first row) compared with previous
results using only U-Net [16] (second row). The green and yellow colors represents the ground truth
and the CNN-segmented respectively.

3.4. Ablation Study

We added here an ablation study for the first stage, segmentation stage, to confirm
the validation of our proposal. This study is divided into 2 sections. In the first one, the
appearance prior map (AP) is replaced by the gray level in the fused images (FI). That
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is, the FI contains the distance map and 2 layers of gray level. A fixed number of epochs
is maintained in all experiments to justify the results. However about 75% of images is
segmented with acceptable accuracy, there are 25% of images still have errors. Sample
of images for segmentation is added here to show this effect. In Figure 7 there are some
artifacts in the background (FP) due to the similarity of this region in retina with vitreous
region (left image). Also, in right image, there are some artifacts in vitreous (FN). These
types of errors confirm the importance of the added AP layer to discriminate between the
vitreous and the similar tissues in background.

The second section in the ablation study concerns the effect of removing the distance
map from the FI images. The FI images contains the AP map in one layer and 2 layers
contain the gray level. In this experiment, about 80% of testing images are segmented
with acceptable accuracy. On the other hand, 20% have different types of errors. Sample
of results are shown in Figure 8 and in Figure 9 to explain the importance of adding the
distance map in our proposal. It is noted that, for limited number of training epochs (above
20 and less than 35) the results of segmentation are acceptable with average DC = 97 ± 2.1%,
and the errors of segmentation are limited but still exists. Sample is shown in Figure 8. In
trying to improve the accuracy by increasing the number of training epochs, greater errors
appear as shown in Figure 9. It is clear that the AP map as well as the distance map increase
the stability in training phase, which in turn results in ability to attain high accuracy even
in those images of high level of haze.

Figure 7. Segmentation sample when AP map is removed from fused images. There are artifacts in
both retina layers (left image) and vitreous region (right image). These artifacts are removed when
using the FI as described.

Figure 8. Segmentation sample when distance map is removed from fused images. Number of
training epochs is limited. There are some artifacts which are removed when using the FI as described.
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Figure 9. Segmentation sample when distance map is removed from fused images but with greater
number of training epochs. There are large segmentation errors.

Table 1. Segmentation accuracy comparison of the proposed approach and the previous technique
based on U-CNN only [16], using both area and distance-based metrics.

Metrics This Paper Haggag et al. [16] p-Value

DC (%) 98.8 ± 1.03 94.0 ± 13.0 ≤0.0001

HD95 (mm) 0.0003 ± 0.001 0.0360 ± 0.086 ≤0.0001

3.5. Grading Stage

Following the segmentation stage, the cumulative distribution function (CDF) of gray
scale intensity within the segmented region is constructed for each image of the dataset.
The images are categorized into 5 classes according to the vitreous inflammation severity
degree as (0, 0.5, 1, 2, 3) grades. Where ‘0’ represents the normal eyes and ‘3’ represents the
most severe vitreous inflammation eyes as shown in Figure 3.

In classification process, we carried out many trials with different machine learning
techniques to find the most suitable technique for this problem by computing the accuracy
in each experiment. The most superior results were from, one hidden layer, fully connected
neural networks (FCNN) and from support vector machine (SVM). The highest attained
accuracy in SVM trials was 70.1%, and in FCNN trials was 73%. The other techniques
results are limited to 53%. The best choice is to improve either SVM or FCNN.

The proposed improvement for SVM is to use two level classifier. In the first level, the
image is classified as group I or group II: group I has 0 grade, while group II has grades
0.5, 1, 2, and 3. The second stage will discriminate group II into one of the other 4 grades.
This technique has greatly improved the accuracy of grading up to 80%. For FCNN, the
accuracy is greatly improved by using 2 hidden layers instead of one. Many experiments
are carried out with different number of nodes in each layer and the final average accuracy
of 86% is obtained.These results the are summarized in Table 2. Depending on the reported
results, we selected to use the FCNN as the second stage of the proposed CAD system. A
confusion matrix for the testing phase of FCNN results is shown in Figure 10 to clarify the
performance of the FCNN in classification of vitreous inflammation grades.

Table 2. Grading accuracy comparison of the proposed approach compared with two-level classifier.
Here, FCNN and SVM stand for fully connected neural network and support vector machine, respec-
tively.

Metrics FCNN Two-Level SVM Classifier

Accuracy (%) 86.0 ± 1.0 80.0 ± 1.0
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Figure 10. Confusion matrix for the grading details. The classes 1, 2, 3, 4 and 5 correspond to the
grades 0, 0.5, 1, 2 and 3 respectively.

4. Conclusions

This paper has introduced a CAD system for vitreous inflammation automatic grading
using OCT images. The proposed pipeline is based on a deep learning segmentation
approach to extract the vitreous region. Vitreous inflammation severity is assessed by a
Fully connected neural network classifier using the CDF of the uveitis intensity which
computed from the segmented vitreous. The overall diagnostic accuracy of the proposed
pipeline, evaluated using 200 OCT images, supports the benefits of our CAD system as
an aid for early and objective diagnosis of uveitis. The proposed technique has proved
very high accuracy in the segmentation section depending on the proposed fused images
as an input to U-CNN rather than the traditional grey level images. This advantage can
be attributed to the integration of appearance prior and distance map with the grey level
image. By using this technique, the computational cost is greatly decreased in segmentation
process as a result of the great reduction in the number of needed training epochs. One
limitation in the grading stage is the very high similarity between the vitreous appearance
in different inflammation degrees. This similarity has greatly limited the average accuracy
of grading to 86%. In future work, we hope to use more features and to increase the number
of images in the data set to improve this value of accuracy.
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Abstract: A new segmentation technique is introduced for delineating the lung region in 3D com-
puted tomography (CT) images. To accurately model the distribution of Hounsfield scale values
within both chest and lung regions, a new probabilistic model is developed that depends on a linear
combination of Gaussian (LCG). Moreover, we modified the conventional expectation-maximization
(EM) algorithm to be run in a sequential way to estimate both the dominant Gaussian components
(one for the lung region and one for the chest region) and the subdominant Gaussian components,
which are used to refine the final estimated joint density. To estimate the marginal density from
the mixed density, a modified k-means clustering approach is employed to classify the Gaussian
subdominant components to determine which components belong properly to a lung and which com-
ponents belong to a chest. The initial segmentation, based on the LCG-model, is then refined by the
imposition of 3D morphological constraints based on a 3D Markov–Gibbs random field (MGRF) with
analytically estimated potentials. The proposed approach was tested on CT data from 32 coronavirus
disease 2019 (COVID-19) patients. Segmentation quality was quantitatively evaluated using four
metrics: Dice similarity coefficient (DSC), overlap coefficient, 95th-percentile bidirectional Hausdorff distance
(BHD), and absolute lung volume difference (ALVD), and it achieved 95.67±1.83%, 91.76±3.29%, 4.86±5.01,
and 2.93±2.39, respectively. The reported results showed the capability of the proposed approach to
accurately segment healthy lung tissues in addition to pathological lung tissues caused by COVID-19,
outperforming four current, state-of-the-art deep learning-based lung segmentation approaches.

Keywords: computed tomography (CT); lung; chest; segmentation; COVID-19

1. Introduction

Pulmonary diseases are serious public heath threats that may happen after having
inflammation or fluid accumulation in the lung, causing a respiratory failure, such as
coronavirus disease 2019 (COVID-19). The primary reason for COVID-19 death is acute
respiratory distress syndrome (ARDS) [1]. According to Gupta et al. [2], 83.9% of the
COVID-19 patients in their study needed a mechanical ventilation support, of whom
87.95% had ARDS. Therefore, detection and diagnosis of COVID-19 grades is vital to
prioritize patient’s need for ventilator support. The accuracy attainable by computer-
aided diagnostic (CAD) system using lung imaging data for COVID-19 depends on how
accurate the segmentation is. Accurate lung segmentation is a challenging task as different
pathologies affect the appearance of the lung, and if the infected regions are missed during
the segmentation, it will affect the entire task. Therefore, this paper focuses on developing
an automatic system to detect and segment the lungs in chest computed tomography (CT),
which is one of the popular noninvasive clinical modalities used by physicians to diagnose
lung pathologies.
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245



Sensors 2021, 21, 5482

In the last few years, many preliminary studies have been conducted to detect and seg-
ment lung as well as pathological lesions. Some of these studies [3–9] proposed threshold-
based approaches for lung segmentation, which performed well on normal CT scans but
failed in pathological cases, especially severe cases, whereas lungs in the normal CT scan
can be discriminated easily from background due to huge differences in attenuation [10].
Therefore, to overcome this problem, more recent studies employed texture, shapes, deep
learning, or hybrid techniques to accurately segment normal and different lung pathologies.
These studies are briefly discussed below.

In [11–14], authors considered texture analysis, shape analysis, or both of them in
their system to discriminate between objects. A recent study by Oulefki et al. [15] proposed
a system to automatically segment COVID-19 lung infected region by applying a multi-
level entropy-based threshold approach, namely a modified Kapur method. Their system
achieved a sensitivity, specificity, Dice similarity coefficient (DSC), and precision of 73.3%,
99.4%, 71.4%, and 73.9%, respectively. Another study by Korfiatis et al. [16] employed
k-means clustering to partition CT voxels into four classes: lung, muscle, fat, and bone
based on intensity values. After that, the initial lung region was extracted by applying
a filling operation. Finally, a support vector machine (SVM) was used to determine the
final border of the lung based on intensity and wavelet-based descriptors. In [17], authors
proposed a segmentation system by eliminating unwanted regions and segmenting lung
initially using a threshold approach. Moreover, a 3D gray-level co-occurrence matrix
(GLCM) was constructed for a window of size 15 × 15 × 15 centered on each voxel. Then,
predefined features were extracted from the GLCM, and a new image was constructed,
being the product of the entropy and the inverse difference moment of the GLCM. Subse-
quently, the abnormal regions were identified from the constructed image using a threshold
approach. Finally, the later and initial segmentation were merged together to determine
the final segmentation. Dehmeshki et al. [18] used a genetic algorithm (GA) to construct a
system to identify spherical nodules within CT images. First, the lung was segmented using
adaptive thresholding. Then, the authors utilized a geometric feature, namely, volumetric
shape index (VSI), for the segmented lung as a weighted factor in the fitness function of GA.
VSI of a spherical object is 1, while that of a cylindrical object is 0.75, so the values of fitness
function for nodules were higher than for blood vessels. Convergence criteria of GA to
select the shape as a nodule was a threshold-based. The detection rate of their system was
approximately 90% with a 14.6 false positive per scan. Moreover, Nakagomi [19] presented
a min-cut graph segmentation algorithm based on multiple shapes and prior information
of neighbors structure to detect and segment lung infected by pleural effusion. In [20],
authors presented a lung segmentation system for different lung pathologies. Their system
first determined two seed points within both lungs using a thresholding approach, then a
fuzzy connectedness (FC) algorithm was used to extract the lung. Furthermore, multiple re-
finement stages based on machine learning classification and neighboring anatomy-guided
learning mechanisms were included in their system to detect pathological regions during
FC segmentation. A recent study by Houssein et al. [21] developed a segmentation system
that employed a heuristic method, called manta ray foraging optimization (MRFO), based
on an opposition-based learning (OBL), using Otsu’s method as a fitness function, to get
the best threshold values using COVID-19 CT images. More information about texture-
and shape-based lung segmentation can be found in [22].

Recently, deep learning approaches have been employed to segment normal as well
as pathological lung caused by COVID-19. For example, Saood et al. [23] investigated two
deep learning approaches to semantically segment infected/non-infected lung using CT
images. These included SegNet [24] and U-Net [25] networks. The author employed these
networks for binary and multi-class classification. They conducted multiple experiments
with different hyperparameters. The best reported results for the binary (multi-class) clas-
sification gave accuracy of 95.4±2.9% (90.7±6%) and 94.9±4.3% (90.8±6.5%) using SegNet
and U-Net, respectively. A similar study [26] proposed a segmentation system using
a convolution neural network (CNN). Their network employed feature variation block
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to enhance the efficiency of feature representation as well as progressive atrous spatial
pyramid pooling to deal with appearance and shape differences caused by sophisticated
infection. The DSC (sensitivity, specificity) of their system was 72.6% (75.1%, 72.6%) and
98.7% (98.6%, 99%) for COVID-19 infections and normal lung CT images, respectively.
A multi-task deep learning-based system was implemented by Amyar et al. [27]. This study
included reconstruction for better feature representation; segmentation to extract lesion
regions; and classification to categorize the scan into normal, COVID-19, and other diseases.
Their system employed encoder-decoder architecture based on U-Net network which used
a common encoder for the three tasks. The best reported DSC of their segmentation task
was 88%. Recent study by Fan et al. [28] developed a binary and multi-class segmentation
system using CT chest images, called Inf-Net. This system was mainly based on a deep
learning. Moreover, to compensate the limited number of labeled images, they included a
random sampling-based semi-supervised learning, namely, Semi-Inf-Net. Their system
employed edge attention as well as reverse attention to improve the feature representation
by modeling lung boundaries. In addition, high-level features were exploited by their
network and combined by a parallel partial decoder. The performance of their infection
segmentation system achieved a DSC of 68.2% and 73.9%, sensitivity of 69.2% and 72.5%,
and specificity of 94.3% and 96% using Inf-Net and Semi-Inf-Net, respectively. A similar
study [29] proposed an automatic deep learning-based multi-class segmentation system of
COVID-19 using CT chest images. The latter exploited aggregated residual transformations
in addition to soft attention mechanism to better represent the features and to increase
the system’s ability to distinguish between different COVID-19 lesions. The reported DSC
(accuracy, precision) of their system was 94% (89%, 95%) and 83% (79%, 82%) with and
without data augmentation, respectively. Another study [30] proposed a semi-supervised
deep learning-based segmentation system, called FSS-2019-nCov, to detect lesion infec-
tion in COVID-19 patients. The latter was based on encoder–decoder architecture with
Res2Net [31] encoder backbone. In the proposed encoder–decoder architecture, the au-
thors used a context enrichment module, namely, smoothed atrous convolution block
and the multi-scale pyramid pooling block, to overcome any debilitation occurred in the
represented knowledge generated in the encoder phase. This system was consisted of
three modules: conditioner path, adaptive interaction module, and segmentation path.
Conditioner path was responsible to learn feature maps from support sets which contain
CT slice and its ground-truth. Subsequently, these feature maps were transmitted to the
segmentation path using adaptive interaction module which was responsible for detecting
lesion in the CT slice. The performance of their system achieved a DSC of 79.8%, sensitivity
of 80.3%, and specificity of 98.6%. In [32], the authors employed V-Net [33] to segment lung
in COVID-19 CT images that was refined by a shape deformation module. A similar study
by Li et al. [34] employed U-Net to segment lung on CT images. Then, they proposed a deep
learning network, called COVNet, with a ResNet-50 [35] backbone to detect COVID-19
lesions. A recent study [36] developed a deep learning-based segmentation system, called
LungINFseg, to detect COVID-19 lesions in CT images. This system was built on the basis
of encoder–decoder architecture. The authors employed a 2D discrete wavelet transform
(DWT) with four Haar filters and a receptive field aware (RFA) module in the encoder
phase, which were able to change the size of receptive field, to capture more relevant
features related to infected regions. Their system achieved a DSC and intersection over
union (IoU) score of 80.34% and 68.77%, respectively. Other studies have also employed
deep learning as a segmentation system with varying accuracy as reported in [36–43].

Segmentation techniques for CT data using deep learning method consider the current,
state-of-the-art approaches. However, they have some drawbacks in practical applications,
such as the need for huge databases to learn the different pathology of the lung regions
which makes the training of such network is very high computational [44]. Moreover, seg-
mentation approaches based on deformable models, which optimize a trade-off between
smoothness of the deformable boundary and homogeneity of the region inside the bound-
ary, suffer from high computational complexity and limited capabilities when the desired
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boundary has concavities or encompasses a region that is naturally inhomogeneous, such
as infected lung regions. To overcome the aforementioned limitations, we are proposing
an unsupervised lung segmentation approach that is based on modeling the first-order
appearance model of CT data by using a probabilistic model based on a linear combination
of Gaussian (LCG) that estimates dominant components, corresponding to lung and chest
regions, as well as subdominant components. Subsequently, these subdominant compo-
nents are clustered to one of the dominant components for marginal density estimation.
This model can capture the variability in the Hounsfield distributions that may come from
changing the screening protocols and severity of lung infections. Finally, we refine the
lung segmentation by applying 3D morphological constraints based on the Markov–Gibbs
random field (MGRF) model with analytical parameter estimations.

2. Methods

A fully automated segmentation framework is presented to extract both healthy lung
tissues as well as pathological lung tissues that may be caused by COVID-19. The major
steps of the framework, depicted in Figure 1, are as follows: (i) preprocessing 3D chest CT
scans to identify background voxels; (ii) modeling the gray-level distribution of the CT
data as a Gaussian mixture model with parameters estimated using a novel, sequential,
expectation-maximization (EM)-based approach; (iii) preliminary segmentation of the lung
region based on the use of a Bayes classifier; and (iv) refining the segmentation using a
three-dimensional, rotation- and translation-invariant MGRF to impose morphological
constraint. Below, we will describe the details of each step.

Figure 1. Schematic illustration of the pipeline of the proposed segmentation system using CT images.

2.1. First-Order Visual Appearance Model

The ultimate goal is accurate labeling of voxels as belonging to lung tissue or back-
ground, where accuracy is defined as close agreement with “ground-truth” lung region
delineated by a radiologist. The main challenge in modeling the distribution of the ra-
diodensities (in Hounsfield units) of lung and chest tissues, i.e., the relative frequency
histogram of CT voxel values, is dependent upon slice thickness and the severity of lung
infection as shown in Figure 2.

248



Sensors 2021, 21, 5482
T

h
ic

k
-S

e
ct

io
n

T
h

in
-S

e
ct

io
n

(a) (b) (c)

Figure 2. An illustrative example of variability of CT appearance (distribution of radiodensities) for (a) healthy/mild, (b)
moderate, and (c) severe COVID-19 infections.

To address this challenge, we will assume that the first-order visual appearance model
of the CT data (H) can be modeled with linear combination of Gaussian distributions
with K ≥ 2 components [45]. The first two components, called the dominant modes,
corresponding to the lung region (k = 1) and the chest region exterior to the lungs (k = 2).
The remaining Gaussian components k = 3, . . . , K are called subdominant modes. Thus,
the proposed probabilistic model is

p(h) = w1 ϕ(h; θ1) + w2 ϕ(h; θ2) +
K

∑
k=3

wk ϕ(h; θk), (1)

where the wk > 0 are mixing weights, and ϕ is a Gaussian density with parameters θk =
(μk, σk). In order for p(h) to be a density function, the weights must satisfy the constraint

K

∑
k=1

wk = 1. (2)

Given the number K of Gaussian components, the 3K parameters of Equation (1),
including mixing weights W and means and variances Θ, are estimated by maximizing the
log-likelihood of the empirical data

L(W, Θ) =
H

∑
h=0

n(h) log p(h; W, Θ), (3)

where n(h) is the histogram of the CT data, whose voxel values range from 0 to H. The cor-
responding relative frequency histogram is denoted f (h) = n(h)/N, N being the total
number of voxels. To maximize the likelihood in Equation (3), we employ an iterative block
relaxation process as follows.

Let τ indicate an iteration such that (W[τ], Θ[τ]) are the parameter estimates on that
iteration, and

p[τ](h) = p(h; W[τ], Θ[τ]) =
K

∑
k=1

w[τ]
k ϕ(h; θ

[τ]
k ) (4)
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is the proposed probabilistic model for the CT data. The conditional weights are estimated
as follows:

π[τ](k|h) = w[τ]
k ϕ(h; θ

[τ]
k )

p[τ](h)
; (5)

This conditional probability specifies the relative contributions of voxel value h to each com-
ponent at step τ. Using these variables, Equation (3) can be written in the equivalent form:

L(W[τ], Θ[τ]) =
H

∑
h=0

n(h) log

[
K

∑
k=1

π[τ](k|h)ϕ(h; θ
[τ]
k )

]
(6)

From given starting values at τ = 0, the block relaxation scheme converges to a local
maximum of the likelihood function in Equation (6) through iteration of the following
two steps:

1. E-step [τ + 1]: estimate W[τ+1], Θ[τ+1], which maximize L(W, Θ) under the fixed
conditional weights of Equation (5) at step τ.

2. M-step [τ + 1]: recalculate weights, which maximize L holding parameters W[τ+1]

and Θ[τ+1] fixed.

The process is repeated until the changes of all the parameters become small.
The E-step maximizes the likelihood function of Equation (6) subject to the constraints

Equation (2). The solution for the weights is

w[τ+1]
k =

H

∑
h=0

f (h)π[τ](k|h) (7)

Then, parameters of each Gaussian component are found using the ordinary (uncon-
strained) maximum likelihood estimates:

μ
[τ+1]
k = 1

w[τ+1]
k

H
∑

h=0
h · f (h)π[τ](k|h)

(σ
[τ+1]
k )2 = 1

w[τ+1]
k

H
∑

h=0

(
h − μ

[τ+1]
k

)2 · f (h)π[τ](k|h)
(8)

We will follow Algorithm 1 to illustrate the steps for estimating the parameters of the
proposed probabilistic model. The final estimated density will consist of the two dominant
Gaussian components and K − 2 subdominant Gaussian components. Jensen–Shannon
divergence (JSD) [46] is employed in this algorithm to measure the similarity between
empirical density and mixed density for use as convergence criteria to determine the
number of Gaussian components. The latter is a symmetric version of a Kullback–Leibler
divergence [47].
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Algorithm 1: Estimation of the proposed probabilistic model parameters
input :A test 3D CT image.
output :Estimated mixed density model p(h) (Equation 1).
1. Use the block relaxation algorithm to estimate mixing weights, means, and vari-
ances for the two-component Gaussian mixture model representing the lung and
chest regions.

2. for K ← 3, 4, . . . , Kmax do

1. Add one subdominant component to the model.
2. Holding μk fixed only for dominant modes, update the other model

parameters by block relaxation.
3. Calculate the Jensen–Shannon divergence [46], JSD(f(h)||p(h)) =

KL( f (h)||M)+KL(p(h)||M)
2 . Here, M = f (h)+p(h)

2 and KL(p(h)||M) =

∑
h

p(h)× log2
p(h)
M is the Kullback–Leibler divergence [47].

end
3. Select the K yielding the lowest value of JSD.

Estimation of the marginal density: The K − 2 subdominant components of the final
estimated model p(h) need to be partitioned among the two dominant modes. Each
subordinate component is associated with one dominant component in order to minimize
the expected misclassification rate. This is accomplished using the proposed Algorithm 2.

Algorithm 2: The proposed clustering algorithm

input : Estimated mixed density model p(h) (Equation 1).
output :Marginal density function for lung pl(h) and for chest pc(h).
pl(h) = w1 ϕ(h; θ1);
(μl , σl) = (μ1, σ1);
(μgl , σgl) = (μ1, σ1);
pc(h) = w2 ϕ(h; θ2);
(μc, σc) = (μ2, σ2);
(μgc, σgc) = (μ2, σ2);
M = {μ3, . . . , μK};
while M is not empty do

dl = min
k∈M

|μk−μl |
σl

;

dc = min
k∈M

|μk−μc |
σc

;

if dl < dc then

k̂ = argmin
k∈M

|μk−μl |
σl

;

pl(h) = pl(h) + wk̂ ϕ(h; θk̂);
μgl = μgl ∪ μk̂;
μl = mean(μgl);

else

k̂ = argmin
k∈M

|μk−μc |
σc

;

pc(h) = pc(h) + wk̂ ϕ(h; θk̂);
μgc = μgc ∪ μk̂;
μc = mean(μgc);

end

M = M − {
μk̂
}

end
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2.2. MGRF-Based Morphological Constraints

To get a consistent segmentation of the lung region, we applied rotation invariant
spatial constraints by using a generic Markov–Gibbs model of region maps [45]. The model,
which incorporates voxel–voxel interaction effects as shown in Figure 3, has, in general,
an arbitrary interaction structure and corresponding Gibbs potentials. For simplicity, we
restrict the interaction neighborhood system (N) to the nearest 9 neighbors in the above CT
slice and 9 neighbors in the below CT-slice.

Figure 3. Illustration of the 3D MGRF-Based morphological constraints on the anatomical segmenta-
tion. The middle column shows the selected slice, and its upper and lower slices; the left column
shows the selected pixel and its neighbors at the upper slice while the right column shows the
selected pixel and its neighbors at the lower slice.

To model the interactions between the CT voxels, we will assume all the interactions as
the same within each region. To estimate this interaction in analytical way, let V : X × X →
{Veq, Vne} denote a bi-valued Gibbs potential describing pairwise interactions, where

V(x, χ) =

{
Veq x = χ
Vne x 
= χ

(9)

Then, the Gibbs probability distribution (GPD) of region maps on the 3D lattice R is as
follows [45]:

P(m) ∝ exp

⎛⎝ ∑
(i,j,z)∈R

∑
(ξ,η,ζ)∈N

V(mi,j,z, mi+ξ,j+η,z+ζ)

⎞⎠ (10)

By modifying the derivation scheme in [45] to fit our model, the following first
approximation of the maximum likelihood estimator (MLE) of the potential values for a
given map m is obtained:

Veq =
X2

X − 1

(
f ′(m)− 1

X

)
Vne =

X2

X − 1

(
f ′′(m)− 1 +

1
X

) (11)

where f ′(m) and f ′′(m) denote the relative frequency of the equal and non-equal pairs
of the labels in all the equivalent voxels pairs {((i, j, z), (i + ξ, j + η, z + ζ)) : (i, j, z) ∈ R ;
(i + ξ, j + η, z + ζ) ∈ R; (ξ, η, ζ) ∈ N}, respectively.
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2.3. Joint MGRF Model and Lung Segmentation Algorithm

In order to integrate the first-order appearance model with the spatial probabilistic
model that describes the morphological/anatomical constrains, we will assume that the CT
data (g) consisting of visual appearance model and its spatial map (m, data labels) follow
the following two-level MGRF model:

P(g, m) = P(m)P(g|m) (12)

Here, P(m) is an unconditional distribution of maps that is modeled by MGRF proba-
bilistic model that is demonstrated in Equation (10). P(g|m) is a conditional distribution of
gray levels for a given labeling. The Bayesian maximum a posteriori estimation (MAP) of
the labeling, given the image g, m∗ = argmax

m
L(g, m) maximizes the log-likelihood,

L(g, m) = log P(g|m) + log P(m). (13)

In order to summarize the proposed segmentation system, the basic steps are demon-
strated in Algorithm 3.

Algorithm 3: Lung Extraction Algorithm
input :A test 3D CT image.
output :Final 3D lung segmentation.
1. 1st Order Density Estimation: Estimate the marginal density function for

lung (pl(h)) and marginal density function for chest (pc(h)).
2. Initial Segmentation/Labeling: Use Bayes classifier to delineate the initial

lung region by using the marginal estimated densities.
3. Estimation of Gibbs Potentials: Applying Equation (11) on the initial seg-

mentation to estimate the Gibbs potentials.
4. Refine Segmentation: Use iterative conditional mode (ICM) algorithm [45]

to find the map that maximize the likelihood of joint MGRF model shown in
Equation (13).

3. Evaluation Metrics

This section describes the metrics used to gauge the performance of our proposed
system: Dice similarity coefficient (DSC), overlap coefficient, and absolute lung volume difference
(ALVD). Each of these quantifies in some way either the agreement or dissimilarity between
the segmentation algorithm result and the corresponding ground-truth segmentation. More
detailed explanation is presented in Sections 3.1–3.3, respectively. Furthermore, a fourth
metric, the 95th-percentile bidirectional Hausdorff distance (BHD) (Section 3.4), is employed to
quantify the accuracy of the boundary of the segmented region relative to ground-truth.

3.1. Dice Similarity Coefficient (DSC)

Dice similarity coefficient (DSC) is one of the most common similarity metric to
measure the similarity between two different areas. This metric is used to evaluate the result
of the proposed system by estimating the similarity between the black-white segmented
lung (L) and the ground-truth (G), i.e., the percentage of common region (i.e., the green
part) in both images as shown in Figure 4a. The range of this metric is between 0 and 1,
as 0 and 1 mean dissimilar and similar, respectively. It is computed as follows:

DSC =
2 × n(L

⋂
G)

n(L) + n(G)
(14)

where n(L
⋂

G) is the cardinality of white pixels in the intersection between the segmented
lung (L) and the ground-truth (G), while n(L) and n(G) are the cardinality of the white
pixels in the segmentation (L) and the ground-truth (G), respectively.
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(a) (b) (c) (d)

Figure 4. Illustration of the evaluation metrics: (a) DSC, (b) HD, (c) overlap coefficient, and (d) ALVD. Note that TP, TN, FP,
and FN are true positive (correct lung pixel), true negative (correct background pixel), false positive (incorrect lung pixel),
and false negative (incorrect background pixel).

3.2. Overlap Coefficient

Overlap coefficient is used in our assessment pipeline to measure the similarity be-
tween the predicted object and its ground-truth by computing the overlap percentage
between them, see Figure 4c. The overlap coefficient of identical objects gives 1, while it
gives 0 for heterogeneous one. The latter is estimated as follows:

overlap =
n(L

⋂
G)

n(L
⋃

G)
(15)

where n(L
⋃

G) is the cardinality of white pixels in the union between the segmented lung
(L) and the ground-truth (G).

3.3. Absolute Lung Volume Difference (ALVD)

Another metric used to assess our work is absolute lung volume difference (ALVD).
ALVD computes the similarity between two images by measuring the differences between
the ground-truth (G) and the black-white segmented lung (L) (Figure 4d). The ALVD of
similar objects gives 0. This metric is defined as

ALVD =
|n(G)− n(L)|

n(G)
(16)

where |n(G)− n(L)| is the absolute difference between the cardinality of white pixels in
the ground-truth (G) and segmentation (L).

3.4. Bidirectional Hausdorff Distance (BHD)

This section describes the last metric called bidirectional Hausdorff distance (BHD),
which is used to evaluate our proposed system in addition to the previous three metrics.
BHD is the bidirectional estimation of Hausdorff distance (HD) between the black-white
segmented lung (L) and the ground-truth (G), and vice versa. HD is the maximum Eu-
clidean distance between the points in the border of the black-white segmented lung (L)
and its closest point in the border of the ground-truth (G), as visualized in Figure 4b, which
is computed as follows [48,49]:

HD(L, G) = max
l∈L

{min
g∈G

{d(l, g)}} (17)

where l and g are sets of the points border in the L and G, respectively, and d(g, l) is the
Euclidean distance between the two points.

As, BHD(L, G) is estimated as

BHD(L, G) = max{HD(L, G), HD(G, L)} (18)
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In this paper, the 95th-percentile BHD is used to evaluate our proposed system.
Instead of getting the maximum Euclidean distance between L and G, 95th-percentile of all
computed distances is selected to overcome the outliers.

4. Experimental Results

The segmentation framework described above was applied to the problem of seg-
menting lung with pathological tissue in COVID-19 patients. The proposed segmentation
system is evaluated and tested on 32 CT chest volume with different severity of COVID-19
infections, selected from 249 CT volume in COVID-19 [50]. Four of them had healthy/mild
COVID-19 infections whose image size ranges from 512 × 512 × 51 to 512 × 512 × 125,
while 17 patients of size 512 × 512 × 36–607 who had moderate infections as well as 11 CT
chest volume of size 512 × 512 × 44–577 had severe COVID-19 infections. To compare our
framework with other approaches that depend on a training dataset, we select another
34 3D CT chest volume (i.e., 3713 images in total) from the same dataset to use them as a
training. Table 1 summarized the dataset characteristics used in our experimental results.
The data are graded according to the radiology protocol in [51]. To obtain more accurate
segmentation, we included morphological/anatomical constraints based on the use of a
rotation invariant MGRF model.

Table 1. Dataset characteristics.

Class Resolution #Slices #Patients Total

Training

Healthy/Mild

512 × 512

43–54 2

34Moderate 35–397 20

Severe 46–321 12

Testing

Healthy/Mild 51–125 4

32Moderate 36–607 17

Severe 44–577 11

To demonstrate step by step how our proposed approach works, Figure 5b shows
empirical density for the 3D CT chest volume (Figure 5a), and the two Gaussian mixtures
approximating its dominant modes are presented in Figure 5c. Furthermore, Figure 5c
demonstrates the JSD between the empirical density and the two estimated dominant
Gaussian components. Figure 5d shows the changes of JSD and the best-estimated number
of Gaussian components that are demonstrated in Figure 5e. Figure 5f demonstrated
the classification of the subdominant Gaussian components based on the use of the pro-
posed clustering algorithm (Algorithm 2). Figure 5g,h demonstrates the final marginal
densities for lung and chest as well as the final estimated mixed density. Figures 6 and 7
demonstrate the ability of the proposed probabilistic model to handle the variability in the
empirical density that it may occur due to the severity of infections or the variability of the
scanning protocol.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. An illustrative example of the proposed system: (a) CT chest volume, (b) empirical density, (c) two dominants
Gaussian components, (d) JSD between empirical density and mixed density, (e) two dominant and K − 2 subdominant
Gaussian components, (f) proposed cluster algorithm, (g) marginal density for lung and chest, and (h) final mixed density
for all components. Note that JSD stands for Jensen–Shannon divergence.
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Figure 6. An illustrative example of the proposed appearance model estimated from Thick-Section CT appearance model
for (a) healthy/mild, (b) moderate, and (c) severe COVID-19 infected lung. Note that first, second, and third rows represent
empirical, marginal, and mixed densities, respectively.

To highlight the promise of including the rotation invariant MGRF-based morphologi-
cal/anatomical constraints with the adaptive first-order appearance model, the system’s
performance is evaluated before and after inclusion, as demonstrated in Table 2. As shown
in the table, the proposed segmentation is enhanced after including MGRF-based morpho-
logical/anatomical constraints, particularly in severe cases where the DSC is significantly
increased from 82.51±13.13% to 95.15±1.91%. To more prove the attainable enhancement of
the system, Figure 8 presents three examples of the proposed system before and after the
inclusion for healthy/mild, moderate, and severe COVID-19 infected lung. As shown in the
figure, the developed system outperforms the proposed appearance model alone (i.e., LCG)
for three examples, whereas the proposed system shows its ability to segment a severe
COVID-19 infection with 94.55% DSC compared to the proposed appearance model which
gives 76.49% DSC. Moreover, Figure 9 presents the proposed segmentation for a severe
lung COVID-19 infection at different cross-sections (i.e., 2D axial, coronal, and saggital) to
visually show the efficiency of the proposed system. Overall, the proposed system achieves
a DSC, overlap, BHD, and ALVD of 95.67±1.83%, 91.76±3.29%, 4.86±5.01, and 2.93±2.39,
respectively. Finally, to prove the robustness of the proposed segmentation approach,
deep learning approaches are adopted as a comparison: DeepLabv3+ [52] using ResNet-50
network as a backbone, Inf-Net [28] with backbone ResNet-50 network, U-Net [25], and 3D
U-Net [53]. The results are reported in Table 3. As demonstrated in the table, the 3D U-Net
approach gives a worst performance of 66.08±35.99% DSC, 58.30±34.81% overlap, 44.44±48.60
BHD, and 66.77±133.01 ALVD, while the proposed segmentation approach gives the best
performance compared to these deep learning approaches. Moreover, to visually demon-
strate the capability of the proposed system, three different examples of healthy/mild,
moderate, and severe lung COVID-19 infections are segmented using these approaches,
as presented in Figure 10. As demonstrated in the figure, the proposed approach segments
the three examples better than the other four approaches. Moreover, the U-Net approach
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has a DSC close to the proposed approach. However, there are some parts that segment
incorrectly as demonstrated in the figures, e.g., classifying part of trachea or chest as lung.
Therefore, the proposed system is much better due to its segmentation being closer to the
ground-truth. Therefore, it is highly recommended to use our approach to segment the
lung infected by COVID-19 as it shows better performance than the state-of-the-art deep
learning approaches. In addition, it is unsupervised technique, thus it will not suffer from
the underfitting and overfitting problems.
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Figure 7. An illustrative example of the proposed appearance model estimated from Thin-Section CT appearance model for
(a) healthy/mild, (b) moderate, and (c) severe COVID-19 infected lung. Note that first, second, and third rows represent
empirical, marginal, and mixed densities, respectively.

Table 2. Quantitative evaluation of the proposed segmentation system before and after applying
rotation invariant Markov–Gibbs random field (MGRF). Note that LCG, DSC, BHD, and ALVD stand
for linear combination of Gaussian, Dice similarity coefficient, 95th-percentile bidirectional Hausdorff
distance, and absolute lung volume difference, respectively.

DSC Overlap BHD ALVD

LCG-model

Healthy/Mild 96.37±0.47% 92.99±0.88% 11.32±4.59 3.58±2.06

Moderate 92.57±4.64% 86.47±7.61% 9.59±5.30 7.31±7.39

Severe 82.51±13.13% 71.98±17.26% 13.77±7.20 23.16±19.29

Overall 89.59±9.76% 82.31±13.72% 11.24±6.08 12.29±14.63

Final System

Healthy/Mild 97.53±0.56% 95.18±1.06% 2.41±1.12 1.72±1.09

Moderate 95.54±1.91% 91.53±3.41% 4.25±3.73 3.48±2.59

Severe 95.19±1.66% 90.87±3.01% 6.70±6.97 2.52±2.32

Overall 95.67±1.83% 91.76±3.29% 4.86±5.01 2.93±2.39
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Figure 8. An illustrative example of the proposed segmentation for (a) healthy/mild, (b) moderate, and (c) severe COVID-19
infected lung. Note that red border (green border or yellow region) refers to ground-truth (segmentation).

Table 3. Quantitative evaluation of the proposed segmentation system compared with other deep
learning approaches. Note that DSC, BHD, and ALVD stand for Dice similarity coefficient, 95th-
percentile bidirectional Hausdorff distance, and absolute lung volume difference, respectively.

DSC Overlap BHD ALVD

DeepLabv3+ [52]

Healthy/Mild 80.32±32.97% 74.93±37.81% 23.58±40.93 116.36±220.88

Moderate 95.15±1.52% 90.79±2.75% 8.85±21.37 7.32±3.68

Severe 93.80±2.47% 88.41±4.29% 27.01±46.72 8.78±4.24

Overall 92.88±11.49% 88.07±13.22% 16.79±34.17 21.41±77.87
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Table 3. Cont.

DSC Overlap BHD ALVD

U-Net [25]

Healthy/Mild 93.47±7.46% 88.39±12.36% 25.68±15.60 5.46±6.00

Moderate 95.09±2.02% 90.71±3.62% 19.04±35.58 3.61±3.36

Severe 91.68±5.07% 84.99±8.30% 44.81±73.04 9.41±7.24

Overall 93.77±4.30% 88.56±7.16% 28.49±50.08 5.76±5.80

Inf-Net [28]

Healthy/Mild 89.77±10.41% 82.56±15.81% 17.41±27.32 14.41±9.32

Moderate 92.73±1.64% 86.49±2.85% 13.40±25.32 13.43±3.29

Severe 90.20±4.56% 82.42±7.06% 36.03±38.77 14.91±5.65

Overall 91.54±4.52% 84.67±6.99% 21.44±31.40 14.00±4.96

3D U-Net [53]

Healthy/Mild 78.11±35.98% 72.80±39.39% 29.41±41.91 140.67±276.19

Moderate 68.46±35.82% 60.58±33.85% 42.04±51.53 33.91±35.35

Severe 55.72±37.95% 46.95±35.31% 55.25±50.43 93.15±158.26

Overall 66.08±35.99% 58.30±34.81% 44.44±48.60 66.77±133.01

Our System

Healthy/Mild 97.53±0.56% 95.18±1.06% 2.41±1.12 1.72±1.09

Moderate 95.54±1.91% 91.53±3.41% 4.25±3.73 3.48±2.59

Severe 95.19±1.66% 90.87±3.01% 6.70±6.97 2.52±2.32

Overall 95.67±1.83% 91.76±3.29% 4.86±5.01 2.93±2.39

(a) (b) (c)

Figure 9. An illustrative example of the proposed segmentation (second and third rows) for a severe COVID-19 infected
lung at (a) 2D axial, (b) coronal, and (c) sagittal cross sections of an original image (first row). Note that red border (green
border or yellow region) refers to ground-truth (segmentation).
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Figure 10. An illustrative example of the proposed segmentation compared to other deep learning approaches for (a)
healthy/mild, (b) moderate, and (c) severe COVID-19 infected lung. Note that red border (green border or yellow region)
refers to ground-truth (segmentation).
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5. Discussion and Conclusions

Experiments demonstrate that the proposed framework is promising and achieved
high accuracy, with identification of the first-order appearance model followed by 3D mor-
phological constraints based on analytical estimation MGRF parameters producing good
results when segmenting the COVID-19 infected lung region from CT images. Quantitative
metrics of accuracy including the DSC, overlap coefficient, 95th-percentile BHD, and the
ALVD metrics all show consistent performance on our sample data set of 32 subjects,
outperforming current, state-of-the-art deep learning-based lung segmentation approaches.
The results herein demonstrate the ability of the developed system to segment lung on a CT
image, whose DSC is improved from 89.59±9.76% to 95.67±1.83% when 3D morphological
MGRF-based constraints are included in the system pipeline. However, the accuracy of the
proposed segmentation system will get affected if the lung is significantly damaged or filled
with water, or the appearance of the lung is closed to the chest. Thus, separation based on
appearance model will be very challenging task. Therefore, we plan to add some shape
model approach in our system to overcome these problems. Moreover, a future extension
of this work would integrate the proposed segmentation approach into a computer-aided
diagnostic system to assess pulmonary function and risk of mortality in COVID-19 patients,
which is the ultimate goal of our research group. Furthermore, the morphological con-
straints could be made to support large-scale inhomogeneity of the kind seen in severe lung
infection. This will be accomplished by expanding the neighborhood system to include
larger cliques so that the MGRF model incorporates higher order interaction effects.
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Abstract: Autism spectrum disorder (ASD) is a neurodegenerative disorder characterized by lingual
and social disabilities. The autism diagnostic observation schedule is the current gold standard
for ASD diagnosis. Developing objective computer aided technologies for ASD diagnosis with
the utilization of brain imaging modalities and machine learning is one of main tracks in current
studies to understand autism. Task-based fMRI demonstrates the functional activation in the brain
by measuring blood oxygen level-dependent (BOLD) variations in response to certain tasks. It
is believed to hold discriminant features for autism. A novel computer aided diagnosis (CAD)
framework is proposed to classify 50 ASD and 50 typically developed toddlers with the adoption
of CNN deep networks. The CAD system includes both local and global diagnosis in a response
to speech task. Spatial dimensionality reduction with region of interest selection and clustering
has been utilized. In addition, the proposed framework performs discriminant feature extraction
with continuous wavelet transform. Local diagnosis on cingulate gyri, superior temporal gyrus,
primary auditory cortex and angular gyrus achieves accuracies ranging between 71% and 80% with a
four-fold cross validation technique. The fused global diagnosis achieves an accuracy of 86% with
82% sensitivity, 92% specificity. A brain map indicating ASD severity level for each brain area is
created, which contributes to personalized diagnosis and treatment plans.

Keywords: autism; ASD; computer-aided diagnosis; deep learning; CNN; CWT

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects social
communication ability. ASD also causes language impairment and repetitive behaviors [1].
Individuals with ASD show different severity levels associated with each symptom [2].
The common ASD diagnostic standard utilizes history and expert clinical judgment together
with behavioral modules of the autism diagnostic observation schedule (ADOS) [3,4].
Autism is diagnosed with the arising noticeable symptoms which start at the age of three
to five years [5]. It is crucial to intervene and diagnose ASD early to allow for better
assessment and treatment.

ASD can be diagnosed at the age of 12 months old, especially with the emergence of
imaging diagnostic tools that employ brain imaging modalities such as structural (sMRI),
functional (fMRI), and diffusion (DTI) magnetic resonance imaging [6]. Combining these
scans to view the structure of the brain together with the brain functional activity during
rest and performance of certain tasks constitute an early biomarker for ASD [7].

Resting state and task-based fMRI are types of fMRI scans that are adopted to manifest
functional activity. Task-based fMRI measures evoked blood oxygen level-dependent
(BOLD) signals during the performance of different tasks [8] such as auditory tasks, lan-
guage tasks, visual processing tasks, motor tasks, and social tasks [9].

Sensors 2021, 21, 5822. https://doi.org/10.3390/s21175822 https://www.mdpi.com/journal/sensors
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To investigate autistic brain abnormal functional response to speech compared to typi-
cally developed (TD) peers, several studies were performed [10]. Studies in [11–13] played
an audio of a simple bedtime story and examined the sleep fMRI response. These studies
included 40 autistic toddlers and 40 TD toddlers with ages that range from 12 to 48 months.
Autistic toddlers showed abnormal laterality and hypoactivation in the left anterior por-
tion of the superior temporal cortex (aSTG). On the other hand, TD toddlers exhibited
the normal dominant activation of the left hemisphere aSTG. They also suggested early
intervention and treatment as they demonstrated that as the age increases, lateralization
abnormality increases.

Several studies up to 2013 that were reviewed in [14] concluded the involvement of
atypical lateralization with language impairment. Individuals with ASD exhibited attenua-
tion in the left hemisphere activation. Also, anomalous lateralization in the functional areas
responsible for prelinguistics and language, specifically the fronto-temporal regions, were
present. One of the reviewed studies [15] revealed atypical lateralization starts at an early
age. Lower lateralization was present in high risk ASD infants, while higher lateralization
was present in low risk peers. A review in [16] concluded similar results.

A meta-analysis of fMRI studies until 2013 was presented in [10]. Increased activation
in the right precentral gyrus and decreased left activation were revealed in ASD individuals
who performed language and auditory tasks, which contradicts the normal activation in
TD individuals. Moreover, fMRI scans in TD individuals showed higher activation in the
bilateral superior temporal gyri (STG) and left cingulate gyrus than ASD peers.

Literature on task-based fMRI analysis for ASD concludes fundamental differences in
activation in ASD compared to TD individuals. These findings support the employment
of task-based fMRI for early ASD diagnosis [17]. Machine learning (ML) has made it
possible to develop intelligent and automated systems for several pattern recognition
applications. The emergence of noninvasive or minimally invasive medical screening
devices created massive informative data structures that allowed for the exploitation of
ML for automated diagnosis. A research in [18] proposed a pipeline based on task fMRI
scans for predicting treatment of social responsiveness scale outcome. They applied the
general linear model (GLM) for brain feature extraction. Feature selection techniques were
performed following feature extraction. For classification, they employed the random forest
(RF) classifier. Twenty ASD children (5.90 ± 1.07 years) were included in the study. A recent
study in [19] performed both local and global diagnosis for ASD toddlers. Brain areas
parcellated with the Brainnetome atlas (BNT) were analyzed with a stacked nonnegativity
constraint auto-encoder. The study included 30 ASD against 30 TD and classified between
two groups with an accuracy of 75.8%. Another recent study graded the severity of autism
into three groups [20,21]. GLM analysis for low individual level analysis, to extract features,
and high group level analysis, to infer statistical differences between groups and validation,
were applied. They utilized different approaches to extract features from GLM analyzed
whole brain areas. Among the several classifier architectures they tested, Random Forest
performed best with 78% accuracy. In [22], they enhanced their framework by performing
a two stage classifier, included more data (92 mild, 32 moderate, and 33 severely autistic)
and performed more validation techniques. Accuracies ranged between 70% and 83%.

ML and deep learning, which is a subset of ML that involves deep networks, have
played a very important rule in many neuroscience applications. Convolutional neural
network (CNN) is one of the most powerful DL network architectures. CNNs are deeply
adopted in Brain-Computer Interfaces (BCI) as well as classification of EEG signals [23–25].

Recently, CNNs have been widely utilized for ASD diagnosis and analysis with
fMRI [26]. Jinlong Hu et al. [27] adopted a multi-channel 2D CNN model to classify FMRI
dataset of 995 subjects in a motor experiment. They proved that CNNs achieve good
performance with high dimensional data, in comparison with other classifiers, mostly
when the dataset is large as in their case. A study in [28] investigated the employment
of spatial and temporal features of task-based fMRI. To capture the spatial information,
they developed a 3D convolutional neural networks on two-channel images of mean and
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standard deviation that were created by the sliding window, which captures the temporal
statistics. This framework achieved an 8.5% increase in the mean F-scores.

FMRI scans constitute 4D data of a brain 3D volume consisting of 1D time-dependent
BOLD signals. Several signal processing techniques can be optimized to analyze these
BOLD signals. Wavelet transform are considered one of the efficient time signal process-
ing techniques for resolving time-series. Applications of the wavelet transform include
compression, high resolution time, and frequency analysis and denoising [29]. It has also
been utilized for fMRI analysis as an alternative to conventional GLMs. PS Lessa et al. [30]
concluded that Wavelet correlation analysis achieves higher statistical power in comparison
to GLMs. Moreover, wavelet transforms contribute to the achievement of efficient brain
disorder diagnosis, such as ADHD, autism and Alzheimer diagnosis, when applied on
fMRI feature processing. In an approach to diagnose ADHD, García et al. [31] performed
continuous wavelet transform (CWT) to create scalograms of BOLD signals.

Most previous fMRI experiments were applied on adults [32,33], however, our pro-
posed study includes toddlers/infants from 12 to 40 months old. The aim of our study is to
develop an early autism computer aided local and global detection tool. Spatial dimension-
ality reduction with region of interest (ROI) selection and clustering have been performed
to reduce the 4D fMRI data to a reduced number of BOLD signals. In order to provide
a detailed frequency and scale representation, we have applied CWT on selected BOLD
signals. CWT creates scalogram images that are used as input images to multi-channel
2D-CNNs for each area. Finally, brain maps that indicate level of ASD severity for each
ROI is provided for each subject. The proposed framework works towards determining the
neuro-circuits with abnormalities as well as creating personalized diagnosis and treatment
plans that handles the specific case of each individual. Moreover, CWT achieved better
results compared to other feature extraction and generation techniques.

2. Materials

2.1. fMRI Data Collection

This study includes subjects from “Biomarkers of Autism at 12 Months: From Brain
Overgrowth to Genes” dataset. This dataset was collected between August 2007 and
June 2014 and is provided by the national database for autism research (NDAR: http:
//ndar.nih.gov (accessed on 22 May 2019)) [11,34,35]. The dataset included 639 subjects
that were tracked every 12 months roughly starting at 12 months and until they are
40 months old.

We have chosen some substantial criteria in selecting subjects for our study such that
included subjects must have ADOS toddler module, sMRI (T1) and (T2), and response to
speech task fMRI (T2*). Intensive validation on each report and scan has been conducted.
Visual validation is performed for all sMRI scans to exclude inaccurate or corrupted ones.
FMRI scans have been validated to have 154 volumes and visually validated to have
no clear artifacts. One hundred subjects (50 ASD 50 TD) with ages ranging between
12–40 months old, are included in this study. Information about each subject , such as IDs
and final diagnosis, as well as the extracted BOLD signals of this dataset are available in
Supplementary Materials 1 and 2, respectively.

2.2. Response to Speech Experiment

The experiment that was used while task-based fMRI scans were acquired is a response
to speech experiment. An audio record of a narrator telling a story was played during
natural sleep. The audio consists of three different types of records, simple forward speech,
complex forward speech, and backward speech. Such records alternate with silence periods
and are repeated during a 6 min and 20 s span.

3. Methods

In this study, local and global ASD diagnosis have been developed. Figure 1 demon-
strates the adopted framework. First, fMRI scans are preprocessed using FMRI expert anal-
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ysis tool (FEAT) [36] developed in fMRI’s software library (FSL) [37]. Brain parcellation is
based on Harvard-Oxford probabilistic atlas https://identifiers.org/neurovault.collection:
262. (accessed on 11 April 2019) The Detailed explanation of preprocessing steps is provided
in [20].

Figure 1. The proposed framework for local and global classification. First, 4D fMRI data are
preprocessed with FSL. Brain extraction and parcellation to Harvard-Oxford probabilistic atlas
are also performed. Second, spacial and temporal feature reduction and extraction techniques
are performed. Finally, local classification models on each ROI are developed to provide a global
classification decision.

3.1. Spatial Dimensionality Reduction

Applying neural networks on raw data without feature engineering is feasible when
the raw data are easily separable. However, identifying autism biomarkers in task fMRI
is a complex problem as autism follows a wide spectrum and is not easily separable.
Moreover, fMRI raw data is a high dimensional data of 4D. CNN performance decreases
when data dimensionality is high and input data size is small as in medical applications.
Hence, it is crucial to reduce dimensionality. A comparison of fMRI feature extraction
and reduction approaches have been presented in [38], proving higher ASD classification
results. The following steps have been proposed for feature reduction:

• ROI selection: Based on literature of the response to speech experiment for toddlers,
specific brain areas related to language circuits are activated. These areas include
cingulate gyri (CG), superior temporal gyrus (STG), primary auditory cortex (PAC)
and angular gyrus (AG) for both hemispheres. In this study, the most significantly
activated brain areas are selected.

• Clustering: Each brain includes several commonly activated voxels, which are con-
sidered redundant data. Therefore, grouping similar BOLD signals in each area and
extracting a single value for each group is efficient and can extensively enhance clas-
sification performance. Hence, each brain area’s BOLD signals have been clustered
with kmeans. Different number of clusters have been tested to achieve higher val-
idation accuracies.Two methods to represent the signals of each cluster have been
tested: averaging BOLD signals, or extracting the BOLD signal closest to the center of
that cluster.

The advantage of the previous reduction approaches is that the brain structure is
maintained. Each brain area is represented by a number of features. This technique allows
for local analysis and obtaining brain maps.

3.2. Continuous Wavelet Transform

CWT is a technique used to represent a signal by convolving wavelets, that vary
continuously in transition and scale, with the original signal. The result presents a power
spectrum of the signal as in Figure 2. The CWT of a signal x(t) at scale a (a > 0) and
translation b is calculated by:

Xw(a, b) =
1

|a|1/2

∞∫
−∞

x(t)ψ∗
(

t − b
a

)
dt (1)
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where ψ is the mother wavelet which is a continuous function in both the time domain and
the frequency domain and the ∗ represents operation of complex conjugate. The mother
wavelet is the source that generates daughter wavelets which are the translated and scaled
versions of the mother wavelet. After extracting BOLD signals from clusters, the CWT
is applied to produce scalograms that provide a detailed representation on these BOLD
signals. The scalogram images are then rescaled to 64 × 64 and fed to multichannel 2D-
CNNs for each area. In task-based fMRI experiments, quantifying the change in the
BOLD signal across time is significantly important. As mentioned before, CWT scalograms
hold information about both frequency and time in an image, and therefore, satisfy this
requirement. Applying 2D CNN filters can extract trainable numerical weighted values
from these images, during the training phase. During testing phase, these values are
compared to classify each entry.

Figure 2. (A) A CWT scalogram example with 64 scales of a BOLD signal of 153 time points. (B) The
resized version of size: 64 × 64.

3.3. 2D CNN Classification

CNN is a deep learning architecture gaining prominence in the analysis of images,
including medical image data. CNN may be characterized by the dimensionality of their
convolutional kernels, which in practice is typically between one and four, inclusive. Higher
kernel dimensions incur a computational bottleneck, especially when paired with large
input sizes, e.g., a 4D CNN that processes fMRI volumetric time series. We have developed
a more tractable 2D CNN model four our framework. As a deep neural network, the CNN
comprises a number of layers, including convolutional layers based on the aforementioned
kernels, pooling layers for reducing the size of the activation map, and fully connected (FC)
layers for higher order feature representations.

We have extensively tested several model hyper-parameters, as explained in detail in
the experimental results. Our CNN model performs three successive passes of convolution
and size reduction as shown in Table 1 (which is developed by the model summary method
provided by Keras library). These are followed by FC layers (Dense), the final (output)
layer having a softmax activation function for purposes of classification. As explained
earlier, each brain area is represented with CWT power spectrum images. A separate
CNN classifier is developed and tuned for better performance for each brain area. Global
classification is obtained with majority voting by all areas, as shown in Figure 3.
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Table 1. CNN network summary.

Layer Output Shape Param #

2Dconv (None, 62, 62, 15) 1635
Max_pooling2D (None, 31, 31, 15) 0

2Dconv_1 (None, 29, 29, 15) 2040
Max_pooling2D_1 (None, 14, 14, 15) 0

2Dconv_2 (None, 12, 12, 15) 2040
max_pooling2D_2 (None, 6, 6, 15) 0

Flatten (None, 540) 0
Dense (None, 10) 5410

Dense_1 (None, 2) 22

Total parameters: 11,147 Trainable parameters: 11,147

Figure 3. The local and global classification pipeline. A multi-channel 2D CNN local model is
developed for each area, fed with corresponding CWT scalograms. The final global classification
decision is fused using majority voting approach.

4. Experimental Results

The incorporated dataset includes 100 subjects (50 ASD and 50 TD). Performance
evaluation has been conducted for local CNN model. The whole framework integration is
performed using python. The CNN classification model is implemented with Keras library.
Several parameters at each step on the proposed spatial dimensionality reduction and
classification pipeline are evaluated. The 4-fold average classification accuracy with random
shuffling is the score to be optimized. For clustering, 3 clusters provide discriminant
average BOLD signals for each area. In the CWT stage, 32, 64 and 128 number of scales
have been evaluated. best performance is obtained by 64 scales. Some wavelets have been
tested such as: Mexican Hat, Gaussian Derivative and Morlets. Best results are obtained
with Morlets.

A grid search method to determine classification parameters has been applied: num-
ber of filter (5, 10, 15), CNN kernal sizes (3, 5, 7), epchs (5:70 in order of 5), batch sizes (1,
32, 64, 100) learning rates (0.1, 0.001, 0.0001), optimizers (‘SGD’, ‘Adagrad’, ‘RMSprop’,
‘Adadelta’, ‘Adamax’, ‘Adam’, ‘Nadam’), network activations (‘softplus’, ‘softmax’, ‘soft-
sign’, ‘tanh’, ‘relu’, ‘sigmoid’, ‘linear’, ‘hard_sigmoid’), and finally, kernal weight ini-
tializers (‘uniform’, ‘normal’, ‘lecun_uniform’, ‘zero’, ‘glorot_uniform’, ‘glorot_normal’,
‘he_uniform’, ‘he_normal’). The parameters that achieved best results are represented
in Table 2. 15 kernels, each with the size of 3 × 3, achieve better results. According to
these parameters, the output shape and parameter columns in Table 1 are determined.
The number of parameters is the number of trainable network weights at each stage. Only
the convolutional and Dense layers contain trainable weights. The maxpooling layers
(with size 2 × 2) only calculate the maximum without including a bias parameter. More
explanation about how the model layer sizes are determined is provided in [39].
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Table 2. CNN and CWT parameters.

Kernels
Kernel
Size

Learning
Rate

Batch
Size

Optimizer
Network
Activation

Kernel
Initializer

Wavelet Scales
Time Course
Normalization

15 3 0.01 32 Adamax Relu Lecun_uniform Morlet 64 Percent signal
change

4.1. Local Classification

Each local CNN classifier is fed with CWT scalogram images extracted from both
hemisphere and the inferior and posterior division, if present. Hence, each classifier has
different number of extracted signals for it’s input. Table 3 demonstrates the classification
accuracy, sensitivity, specificity, and area under the curve (AUC) for the STG, CG, AG, and
PAC areas. The AUC is an effective measure of sensitivity and specificity for assessing
inherent validity of the proposed system. Higher AUC means that the proposed system
is accurate in differentiating ASD with TD subjects. This implies both sensitivity and
specificity are maximum and errors (false positive and false negative) are minimum.

The confusion matrix of each area is demonstrated in Figure 4. As can be noted,
high percentages are concentrated in the diagonal of each matrix (True positive and True
negative) and ranges around the corresponding total accuracy. Therefore, each matrix is
balanced. Moreover, receiver operating characteristic (ROC) curves are plotted in Figure 5.
After developing local 2D-CNN models, brain maps for each subject are created to represent
the level of autism severity for each brain area.

Figure 4. The confusion matrix for each ROI local classifier represented in percentage (number) for
each row.
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Figure 5. ROC curves and AUC for STG, CG, AG, and PAC selected areas.

Table 3. Accuracy, sensitivity, specificity, AUC of selected ROIs.

Classifier Accuracy Sensitivity Specificity AUC

STG 0.742 0.74 0.77 0.76
AG 0.80 0.78 0.83 0.77
CG 0.72 0.74 0.71 0.67

PAC 0.71 0.72 0.77 0.71

4.2. Global Classification

The global classification accuracy is obtained by fusing the decision from each local
classifier with majority voting. The achieved accuracy is 86% (sensitivity 82%, specificity
92%). The confusion matrix is demonstrated in Figure 6. Same notes can be concluded from
the confusion matrix. We have also tested a global 2D-CNN classifier that is trained with
the scalogram images of all areas at once. This step is performed as a validation step and
to highlight the advantage of classification that is based on local classifiers . The obtained
accuracy is 82%. Figure 7 plots the ROC of the classifier.

The accuracy is close to the global accuracy of 86% which proves the stability of the
system. The inferred reason for less accuracy can be related to the fact that higher number
of input features (and hence higher number of parameters) introduced in the CNN network
achieves lower accuracy. Therefore in this validation model, the increased number of
channels increases the number of parameters and hence, leads to lower performance.

Figure 6. The confusion matrix for the global classifier represented in percentage (number) for
each row.
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Figure 7. ROC curve and AUC for the global classifier.

The proposed framework achieves higher accuracies compared to other previous work
performed on task-based fMRI scans of the same experiment, as presented in Table 4. A
direct comparison between our research and other literature of other tasks would not be
objective as other researches incorporate different data sets and task-based fMRI experi-
ments. As a comparison with our previous approaches in [19,20,38], we can note that the
accuracy of the proposed classification that is based on local classifiers is higher. The reason
is believed to be the better learning of CNN local networks that have lower number of
parameters. Majority voting reflects the advantage of building the decision based on the
most affected brain areas, rather than all included areas.

Table 4. A comparison of the proposed CAD system with other GLM-based methods.

Method Data Source No. of Subjects Modeling of BOLD Classifier Validation Accuracy

[38] NDAR 100 (50 ASD, 50 TD) DWT 2D CNN 4-fold 78%
[19] NDAR 60 (30 ASD, 30 TD) GLM SNCAE 4-fold 76%
[20] NDAR 39 (13 Mild, 13 Moderate, 13 Severe) GLM RF 10-fold 72%

proposed NDAR 100 (50 ASD, 50 TD) CWT multi-channel 2D CNN 4-fold 86%

4.3. Brain Maps

According to literature, not every brain area is affected by the same degree for each
individual. Therefore, we obtain individual brain maps that explain the level of autism
for each area. After the implementation and training of local classifiers, each subject’s
local brain area data is tested for each corresponding trained network. The resulted
probabilities are represented in a brain map as demonstrated in Figure 8. As an example,
the probabilities obtained for the first individual are: (STG: 0.037, AG: 0.36, CG: 0.31,
PAC: 0.072). According to majority voting, the four areas has high probabilities for autism
(p > 0.5), hence, this individual is TD. For the other individual, the obtained probabilities
are: (STG: 0.77, AG: 0.97, CG: 0.61, PAC: 0.99). According to majority voting, the four areas
has low probabilities for autism (p <= 0.5), hence, this individual is TD. Some individuals
might have autistic areas and non autistic ones, as mentioned before. An example for the
probability distribution (STG: 0.43, AG: 0.8, CG: 0.61, PAC: 0.99). Three areas are autistic
(p > 0.5) and one area is non autistic (p < 0.5). Therefore, this subject is classified as autistic.

Figure 8 also demonstrates a 3D view. The viewing tool is FSLeyes through FSL.
As can be noted, the grade of autism are higher (red colors) of ASD subjects, with variable
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grade on each area. The grade of autism for TD subjects is lower (yellow colors) with
different grades.

Figure 8. Coronal, sagital and axial 2D views and a 3D view of both ASD and TD example. Brain
areas for the ASD individual are more severely distributed (red highlights) than TD peer (more
yellow highlight distribution).

5. Conclusions and Future Work

In this paper, a novel CNN Deep learning based ASD local and global diagnosis
system is introduced. The proposed system utilized task-based fMRI to achieve this goal.
According to the response to speech experiment, hypoactivation of the bilateral superior
temporal gyrus, bilateral primary auditory cortex, cingulate gyrus and angular gyrus are
exhibited in ASD toddlers. Whereas, TD peers exhibited typical lateralized activation.
Based on these results, local spatial and temporal features are extracted from each ROI
separately. CWT is performed to extract scalogram images, from the extracted BOLD
signals from spatially reduced clusters, that hold frequency specifications. A local CNN
classifier is utilized for each area. Experimental results are reported for all activated brain
areas. Accuracies range between 71% and 80%. Global classification is obtained from local
results. Achieved accuracy is 86% (with 82% sensitivity and 92% specificity). Finally, local
individual brain maps are created for each subject that indicate level of ASD severity.

Future work will include the application of the same approaches on rest-state fMRI
of same dataset. Hence, a detailed report for each subject will be obtained for connected
brain networks during rest and activated brain areas during task activities. Global decision
will be more accurate and will consider all functional aspects of the brain. Researchers are
encouraged to collect more data from different geographical sites. A protocol for generic
experimental design is recommended to enable researchers to validate their work with
other datasets. More validation steps will be performed, leading to a robust ASD diagnosis
system. In addition, our future work will include genomic data (which is available in
the collected data set used in this paper) to correlate affected brain areas with specific
genome sequences to help in early ASD detection. Finally, local classification results will
be investigated to identify malfunctioned neuro-circuits involved with ASD.
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Abstract: Accurately classifying the innate immune players is essential to comprehensively and
quantitatively evaluate the interactions between the innate and the adaptive immune systems.
In addition, accurate classification enables the development of models to predict behavior and
to improve prospects for therapeutic manipulation of inflammatory diseases and cancer. Rapid
development in technologies that provide an accurate definition of the type of cell in action, allows
the field of innate immunity to the lead in therapy developments. This article presents a novel
immunophenotyping technique using electrical characterization to differentiate between the two
most important cell types of the innate immune system: dendritic cells (DCs) and macrophages
(MACs). The electrical characterization is based on capacitance measurements, which is a reliable
marker for cell surface area and hence cell size. We differentiated THP-1 cells into DCs and MACs
in vitro and conducted electrical measurements on the three cell types. The results showed average
capacitance readings of 0.83 μF, 0.93 μF, and 1.01 μF for THP-1, DCs, and MACs, respectively. This
corresponds to increasing cell size since capacitance is directly proportional to area. The results
were verified with image processing. Image processing was used for verification because unlike
conventional techniques, especially flow cytometry, it avoids cross referencing and by-passes the
limitation of a lack of specificity of markers used to detect the different cell types.

Keywords: dendritic cells; electrical characterization; image processing; immune system; macrophages

1. Introduction

Dendritic cells (DCs) and macrophages (MACs) are members of the mononuclear
phagocyte system that perform multiple functions during an immune response [1]. Al-
though both DCs and MACs are antigen-presenting cells, they differ in their functions.
DCs are specialized in surveillance and the detection of pathogens and, as their name
suggests, have elongated structures arising from their body called dendrites [2]. These
dendrites increase the surface area of the DCs compared to the cell’s volume [1,3,4]. On
the other hand, MACs are mainly involved in the phagocytosis of microbial substances,
pathogens, and even cancer cells [5]. MACs also play a significant role in regulating the
immune system by releasing cytokines for anti-inflammation [6]. DCs and MACs have been
regarded as clearly distinct in terms of cellular function although they occupy overlapping
anatomical structures in many body tissues and systems [4]. DCs are stronger in processing
antigens and presenting them to the adaptive immune system [7], while MACs are strong
in migration to the site at which the pathogen resides and in phagocytosis [8]. DCs and
MACs are the key players of the innate immune system as they are the link between the
innate and adaptive immune systems [9]. The antigen is captured and processed by these
cells and presented to the cells of the adaptive immune system, specifically, the T cells, at
specific immunological locations.

In practice, the process of differentiating between DCs and MACs in vitro is not
straightforward [10]. It has heavily relied on cell-surface markers thought to be solely
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present on one cell type and not on the other [1]. However, growing evidence suggests that
many cell surface markers previously used to differentiate between these two cell types
overlap [4]. This further complicates our understanding of the mononuclear phagocyte
system and confirms the need for a more reliable system to distinguish between these
two key immune cell types. Scientists have been using conventional techniques like
western blot [11], flow cytometry (FACs) [12], immunohistochemistry [13], and PCR [14] to
differentiate between DCs and MACs. Although these techniques are efficient, they are
time and money-consuming and also require highly trained technicians. Flow cytometry,
the most common technique used in classifying immune cells, depends on detecting cell
surface markers present in one cell type and not the other. However, growing evidence
suggests that when it is used to compare between DCs and MACs, the markers overlap
and display a lack of specificity in comparing the cells, as presented in Figure 1.

 

Figure 1. Overlapping of cell surface markers between MACs and DCs. DCs and MACs share the
same surface markers CD11c, CD11b, MHCII, CD68.

Electrical characterization is widely used for the detection and accurate characteriza-
tion of biological samples [15–17]. The last few years have witnessed a substantial growth in
new electrical techniques that allow for the detailed study of cells, their characteristics, and
functions [15,18,19]. Scientists have focused on studying the cells’ electrical properties due
to their relevance in cell activity [17]. These electrical properties are very important because
they give insights into the changing biochemical and biophysical properties of the cell that
control their interaction with other cells and their interaction with the environment [15].

Over the years, many studies have been conducted to extract biological data from
electrical measurements [20]. Useful examples are the resting and membrane potential
from the nervous system and the ECG of the heart. Electrical characterization has even
expanded to study single cells, viruses, DNA, and even blood samples [18].

Electrical and electrochemical methods have been used widely in several biological
applications. Electrical measurements have been used in three different important bio-
logical areas: (1) Detection of a disease: measuring the changes in dielectric properties
to detect blood in urine samples (hematuria) without the use of inaccurate conventional
techniques [21]; (2) characterizing healthy and cancerous cells in different tissue types [22];
and (3) using a label-free tracking method to study the development and progress of living
cells in real-time. An example where this was used was to detect the life cycle of budding
yeast. The capacitance–voltage dependency was exploited to detect changes in the cell
cycle progression [23].
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Coupled with electrical characterization is image processing. This has become a
vital tool in biological applications for quantifying the phenotypic differences between
various cell populations [24]. Screening biological samples has given scientists a deeper
insight into the biological systems and their diverse processes such as gene expression,
protein modification or interaction, signal transduction, and irregular RNA interference
and mutations.

Traditionally, visual analysis is used for image processing. Cells are classified by
measurements of cell shape, movement, and protein expression performed manually.
This is conducted by suspending cells in a suitable medium, staining them with dye,
then analyzing them under a microscope [25]. The manual approach is, however, time-
consuming, subjective, and may require a large number of technicians working on the data.
Nowadays, image processing is done almost automatically by large processing machines
that can deal with high volumes of images, making it faster, more accurate, reliable, and
less subjective [26]. Images are visualized as still images, videos, and more recently, 3D
and 4D volumetric images. The acquired images can be enhanced by using different
fluorescent technologies. The most basic type of analysis is morphological analysis, which
does not only refer to metrics of the phenotypical shapes, but also the intensities, the spatial
relationships, the staining patterns, and even migration and movement [27].

Automated imaging starts with the principle of extracting the physical parameters of
the sample such as the area, density, and morphological properties [28]. Consequently, the
data obtained from these images allow the mathematical modeling of biological kinetics
and the studying of biochemical signaling networks [29]. The main imaging techniques
used for cellular studies are fluorescent microscopy, multiphoton microscopy, atomic and
electron microscopy [28]. The fluorescent microscope is mainly used for the visualization
of sub-cellular structures and their compartmentalization [30]. It works by capturing the
emissions of the excited biological samples using fluorophores. Multiphoton microscopy
follows the same principle, but is mainly used for living samples and can image at a deeper
scale in comparison to fluorescent microscopy [31]. These techniques have the advantage
of high specific identification, but the limitation of photo-bleaching. On the other hand,
atomic force microscopy uses Hooke’s law (principle in physics that explains that the force
used to compress or extend a spring is proportional to the same distance [32] to acquire
the image from the sample [33]). The image is a representation of the forces between the
sample and the tip of the probe that scans its surface, and the forces measured vary between
chemical, magnetic, electrostatic, and mechanical contact forces. The advantage of this
technique is that the sample does not require any special treatment, however, mechanical
forces can damage the sample. The last technique, electron microscopy, uses an electron
beam to image the object and magnifies it using electromagnetic fields [34]. It provides high
resolution but sample preparation takes a long time and cannot be done on living samples.

The data obtained from the image acquisition techniques are processed in software
to provide quantitative results [24]. The analysis of the results depends on the advances
of the algorithms and processing of the software used. In general, the applications of
these software include analyzing the stained tissues, gels, and obtaining the physical and
morphological data of the sample [35]. After capturing the sample with the microscope, the
software initiates the segmentation process, where the object is located and the boundaries
are drawn along the object [36]. The main goal of this process is to simplify the image
for quantification. Phenotype quantification is the critical step that follows, the software
manages to quantify the image and obtain data such as sample size, distances between
the objects, spatial distributions, and in the case of live imaging, tracking the sample
movement [2,4]. Phenotypes and data collected from experiments conducted by scientists
have also been collected and categorized in shared databases [27]. These databases provide
an avenue for users to browse and inquire about experiments and for other scientists to
develop more efficient analysis software. Additional experiments like western bot, FACs,
and PCR along with the imaging data provide scientists with a better understanding of the
biological data.
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In this paper, we propose a new, easy, and efficient method to classify immune cells
using electrical characterization techniques. The method allows for full differentiation
between DCs and MACs. We believe that distinguishing between these cells using electrical
characterization supported by image processing will ensure better classification of the
innate immune cells during their steady state and inflammatory conditions in different
tissues while playing different roles.

2. Methods

Two classification approaches are used to distinguish between the different innate
immune cells: image processing and electrical characterization. The two approaches are
illustrated in Figure 2. Cell differentiation by electrochemical characterization is based on
the capacitance values, which are derived from current and voltage readings of cell samples.
On the other hand, cell differentiation using image processing is based on analyzing the
area, cell count, and morphology of visual data to distinguish the innate immune cells
based on their size and morphological differences.

Figure 2. The two approaches for innate immune cell differentiation.

It should be noted that the markers used to specify each type of immune cell are not
specific for one type of cell and this leads to the huge drawback of cross-referencing.

Table 1 summarizes the markers used and the specificity for each marker [31,37–40].

Table 1. Markers used for immune cells and their specifications.

Marker Specificity Ref.

CD83 Marker for mature DCs and very weak for THP-1 [31]

CD197 Receptor for T-cells, B cells, Natural killer cells and DCs [37]

HLA-DR Recognizes T cells, DCs, MACs, and B cells [38]

CD1c Subset of B cells and DCs [39]

CD11c For monocytes, MACs, DCs, Natural killer cells, T and B cells [40]

Both experiments began with biological differentiation of cells and their preparation
in suspensions. THP-1 was first cultured in RPMI-1640 media, then differentiated into
DCs and MACs. Human monocytic THP-1 cell line (ATCC, Manassas, VA, USA) [41] were
cultured in RPMI-1640 media supplemented with 10% fetal bovine serum (FBS), 1% sodium
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pyruvate, 0.01% of mercaptoethanol, and 1% penicillin/streptomycin at 37 ◦C, 5% CO2,
and 95% humidity.

Next, cell differentiation was carried out based on the protocol by Berges et al.,
using the activators specified [42]. For the DCs, THP-1 cells were harvested by cen-
trifugation, then resuspended in culture medium supplemented with 10% FBS at a con-
centration of 2 × 105 cells/mL and transferred to a final volume of 20 mL into 200-mL
tissue culture flasks. To induce differentiation, rhIL-4 (200 ng = 3000 IU/mL), rhGM-
CSF (100 ng/mL = 1500 IU/mL), rhTNF-α (20 ng/mL = 2000 IU/mL), and 200 ng/mL
ionomycin were added to the FBS- free media.

For the macrophages, the differentiating and activation protocols of THP-1-derived
MACs were adapted and modified from Genin et al. [43]. THP-1 cells were terminally dif-
ferentiated into uncommitted MACs (MPMA) with 300 nM phorbol 12-myristate 13-acetate
(PMA; Sigma-Aldrich, Darmstadt, Germany) in RPMI 1640 media without the FBS supple-
ment. After six hours, differentiating media were removed. The cells were then washed
with phosphate-buffered saline (PBS) and rested for 24 h in RPMI 1640 without FBS sup-
plement and PMA. Afterward, cells were activated for 48 h into pro-inflammatory MACs
(MLPS/IFNγ) by adding 10 pg/mL lipopolysaccharide (LPS; Sigma, St. Louis, MO, USA)
and 20 ng/mL IFNγ (Biolegend, San Diego, CA, USA), or into anti-inflammatory MACs
(MIL-4/IL-13) with 20 ng/mL interleukin 4 (IL-4; Biolegend, USA) and 20 ng/mL interleukin
13 (IL-13; Biolegend, USA).

2.1. Flow Cytometry

To validate the differentiation of monocytes, fluorescent surface markers were eval-
uated using flow cytometry, based on their surface self-antigens. Cultured cells were
washed, suspended at 3 × 104 in 200 μL cold FACS solution (DPBS; Gibco-Invitrogen, San
Diego, CA, USA) and incubated with FITC- or PE-conjugated monoclonal antibodies or
appropriate isotypic controls for 30 min. Cells were then washed twice and resuspended
in 300 μL of cold FACS solution. Stained cells were analyzed with (BD Accuri C6 plus).
Cell debris was excluded from the analysis by setting a gate on forward and side scatter
that included only cells that were viable. Results were processed using FlowJo Software
(version 7).

2.2. Image Acquisition and Processing

The image processing method consists of analyzing the cells based on visual data
supported by their morphological and structural differences. Images were captured using
an Olympus Fluorescent Microscope and quantified using ImageJ software (National
Institute of Health, Gaithersburg, MD, USA) [44]. The software was used to obtain the ratio
of THP-1 to DCs, THP-1 to MACs, and the average area of the three types of cells. ImageJ
software segments the images, recognizes the cells, differentiates between the different
types of cells, and automatically calculates the area.

2.3. Electrochemical Measurement

For the electrochemical approach, measurements were performed using the μSTAT
400 potentiostat (Metrohm DropSens, Oviedo, Spain) [45]. This was a portable BiPotentio-
stat/Galvanostat with maximum measurable current and potential of ±40 mA and ±4 V,
respectively. It can be used for voltammetric, amperometric, or potentiometric measure-
ments. It has connectors that allow for connection to screen printed or coaxial electrodes
and can be used with a one- or two-working electrode configuration. It connects to a PC
via USB or Bluetooth.

All measurements were carried out at room temperature. The electrochemical mea-
surements were controlled using Dropview software. Prior to the experiments, two opti-
mizations were performed: (1) identify the optimum step potential (Estep) and scan rate
(Srate); and (2) determine the best electrode option between the chip and coaxial cable.
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2.3.1. System Optimization for Estep and Srate

To find the optimum of Srate, the voltage was swept from −0.9 V to 0.9 V while Estep
was kept constant at 0.002 V and the Srate was varied from 0.004 V/s to 2 V/s. An optimum
Srate of 0.004 V/s was selected, which allowed for accurate data (this value of Srate limits
the non-Faradic current and therefore background noise, which affects the sensitivity of the
voltammetry system [46]), sufficient current flow, and absence of time-dependent charging
and discharging effects. This value gave the highest capacitance resolution, which can aid
with distinguishing between cells.

Second, both Estep and Srate values were varied simultaneously from 0.009 V to 0.01 V
and from 0.009 V/s to 2 V/s, respectively. It was found that corresponding low values
did not allow for proper current flow and high values of Srate did not allow for sufficient
charge of the sample. Additionally, equal values of Estep and Srate did not provide the
correct shape for the cyclic voltammogram. Hence, from the experiments, the optimum
values of Estep and Srate were selected as 0.002 V and 0.04 V/s, respectively.

2.3.2. System Optimization for Electrode Selection

The screen printed electrode was tested for its performance. It comprised three
electrodes: a working electrode, reference electrode and counter electrode. The sample was
applied to all electrodes and then the electrode was connected to the DropSens machine
via a port with silver contacts. It was found that although the screen printed electrode is
low cost, disposable, and can give results for low volumes, current flow in the samples
experienced interference, and as a result, not all cells were charged. Instead, a coaxial
cable was used. The coaxial cable is easy to clean between trials and most importantly,
guarantees equal current flow throughout the sample.

Using the coaxial cable, the DropSens machine was configured for two electrode
measurements with one electrode used as the working electrode and the other electrode
used as the reference/counter electrode. The cable is an open ended coaxial adaptor with
inner and outer conductor electrode dimensions of 2 mm and 5 mm, respectively, and a
length of 7 mm, which allows for a sample volume of 500 μL. Both electrodes are made
from Nickel. The coaxial cable was secured to ensure stability during measurements. The
electrolyte used was the RPMI full media supplemented with 10% FBS.

2.3.3. Measurement Procedure

Once optimization was completed, cyclic voltammetry measurements were performed
between 0.9 V to −0.9 V, Estep of 0.002 V and Srate of 0.04 s per step using the coaxial
cable. Cells were prepared using RPMI full media supplemented with 10% FBS. After the
activation process, cells were centrifuged and prepared at different dilutions from 10 to
105 per 500 μL. This was carried out by first counting the cells using a hemocytometer, then
diluting them to the necessary concentrations. Data were extracted directly from drop view
using the cyclic voltammetry technique. The results exported were current vs. voltage.

After extracting the current vs. voltage data, the capacitance of the biological cells
was determined using MATLAB code based on the fact that the capacitive current is
proportional to the rate of change of the potential with the constant of proportionality
equal to the capacitance, as shown in Equation (1).

i(t) = C
dv(t)

dt
(1)

where Q(t) is the time-dependent charge; C is the capacitance in farads; and V(t) is the
time dependent voltage in volts.

2.4. Statistical Analysis

All measurements were performed at least three times, and the results represent
the mean ± standard deviation. A two-tailed Student’s t-test with a significance level of
0.05 was also performed.
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3. Results and Discussion

The main goal of this work was to find a way to identify immune cells without the
drawback of cross-referencing. For flow cytometry, cells were selected by a gating process.
Debris were excluded and only stained cells were selected. The results are plotted in the
histogram shown in Figure 3. Cell surface markers for CD83, CD197, HLA-DR, CD1c, and
CD11c expression on THP-1 cells and the differentiated DCs and MACs were analyzed.
Two sample t tests were performed with a p-value of 0.05. The p-values are tabulated in the
Appendix A in Table A1.

Figure 3. Average mean fluorescent intensity of different cell markers for THP-1, DCs, and MACs with S.E.M bars obtained
for three measurements. Cultured cells were washed, suspended at 3 × 104 in 200 μL cold FACS solution (DPBS; Gibco-
Invitrogen) and incubated with FITC- or PE-conjugated monoclonal antibodies or appropriate isotypic controls for 30 min.
Cells were then washed twice and resuspended in 300 μL of cold FACS solution. Stained cells were analyzed with BD
Accuri C6 plus. Cell debris was excluded from the analysis by setting a gate on forward and side scatter that included only
cells that are viable.

To begin with, CD83 represents an important marker that is specific for DCs. However,
our results showed that there is no significant difference between DCs and THP-1 or
MACs, and this is supported by a study undertaken by D. Ferenbach and J. Hughes and
others [4,47]. On the other hand, CD197 expression only showed differences between
MACs against THP-1 and DCs against THP-1. This can be attributed to CD197 being a
marker for antigen presenting cells, however, it cannot classify between the different types
of antigen presenting cells. Regarding HLA-DR marker expression, it presented on all
the three types of immune cells [37,38], hence, we could see no difference with the flow
cytometry results. CD1c is a marker for DCs, this is supported by our results as they can
classify DCs from MACs, but not from THP-1 cells. However, CD11c is a marker for all
three cells [39] and as per our results, there were no differences between these cells, using
this marker. Hence flow cytometry analyzes the data by giving statistical significance to
values but fails to interpret it into biological significance, thus failing to give an identity to
the immune cells [31].

The morphology and structure of the three types of immune cells identified using the
image segmentation approach for electrical characterization are demonstrated in Figure 4.
The THP-1 cells can be easily distinguished from DC by their round structure without
elongations. Once activated, the non-adherent THP-1 cells differentiate to adherent cells
that are morphologically different from their inactive forms. On the other hand, MACs and
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DCs take more space to spread out due to the larger size of the former and the presence of
dendrites in the latter, as shown in Figure 4.

Figure 4. (A) THP-1 Immune cells before differentiation. THP-1 was first cultured in RPMI-1640
media, then differentiated into DCs and MACs. Human monocytic THP-1 cell line (ATCC, Manassas,
VA, USA)35 were cultured in RPMI-1640 media supplemented with 10% fetal bovine serum (FBS),
1% sodium pyruvate, 0.01% of mercaptoethanol, and 1% penicillin/streptomycin at 37 ◦C, 5% CO2,
and 95% humidity. (B) DCs and (C) MACs after differentiation, respectively. DCs were differentiated
based on the Berges et al. protocol. To induce differentiation rhIL-4 (200 ng = 3000 IU/mL) and rhGM-
CSF (100 ng/mL = 1500 IU/mL), rhTNF-α (20 ng/mL = 2000 IU/mL), and 200 ng/mL ionomycin
were added to the FBS-free media. For the macrophages, the differentiating and activation protocols
of THP-1-derived macrophages were adapted and modified from Genin et al. [37]. THP-1 cells were
terminally differentiated into uncommitted macrophages (MPMA) with 300 nM phor-bol 12-myristate
13-acetate (PMA; Sigma-Aldrich, Germany) in RPMI 1640 media without FBS supplement. Afterward,
cells were activated for 48 h into pro-inflammatory macrophages (MLPS/IFNγ) by adding 10 pg/mL
lipopolysaccharide (LPS; Sigma, USA) and 20 ng/mL IFNγ (Biolegend, San Diego, CA, USA), or
into anti-inflammatory macrophages (MIL-4/IL-13) with 20 ng/mL interleukin 4 (IL-4; Bio-legend,
USA) and 20 ng/mL interleukin 13 (IL-13; Biolegend, USA). THP-1 cells have a round shape and are
suspended in the media, DCs are attached and spread their dendrites in the flask. MACs are also
adherent, but without the elongations of the DCs. (D–F) show the selection undertaken in ImageJ
software for the calculation of the area of the THP-1, DCs, and MACs, respectively.

Figure 4D–F shows the detailed selection of immune cells using the software. The
software highlights the morphological differences (it marks the outside border of the cell
yellow). After the selection of each cell, the software automatically calculates the area of
the cell. Results were obtained from three different images to statistically compare the area
of each cell. Figure 5 shows a summary of the results. The averages were obtained for
measurements conducted on 200 cells of each type. The MACs were found to have the
largest area and the THP-1s were the smallest due to their rounded shape. These results
are supported by findings in the literature [48,49].
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Figure 5. The calculated average area of each cell with S.E.M bars. MACs have the largest area,
followed by DCs, and finally THP1 cells.

For electrochemical characterization, the DropSens technology was used to obtain
the I–V curves for the three immune cells. The results are shown in Figure 6 for different
cell concentrations. The current versus time and voltage versus time results are shown in
Figure 7. When the positive voltage is applied, the cell suspensions begin to oxidize near
the working electrode, this results in an increase in anodic current. This occurs until a peak
potential of 0.9 V, wherein a peak anodic current is recorded. After this, a reductive scan is
applied, that is, the applied potential is reduced, causing a re-reduction of the oxidized
suspension. In other words, the reducing potential now results in a cathodic current
(increasingly negative current). At a maximum negative potential of −0.9 V, the maximum
cathodic current is recorded (maximum negative current). Although reduction peaks at
−0.2 V were observed for all experiments, the regions of maximum and minimum potential
were of more interest because the peaks corresponded to the sample concentrations [46].
The peak anodic and cathodic currents had equal magnitude and opposite sign. As
the potential is increased positively again, the oxidation and increasing flow of anodic
current repeats.

 
Figure 6. I–V curve for the three types of cells using drop sense technology. (A) THP1, (B) DCs, (C) MACs. There were no
clear differences between the three graphs. RPMI full media supplemented with 10% FBS was used to dilute the cells. It
was also used as the media. Measurements were conducted using a two nickel electrode configuration, scan range of −0.9 V
to 0.9 V and a scan rate of 0.04 V/s.
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Figure 7. Current versus time and voltage versus time curves for the three types of cells from the drop sense technology.
(A) THP-1, (B) DCs, (C) MACs. RPMI full media supplemented with 10% FBS used to dilute the cells. It was also used as
the media. Measurements were conducted using a two nickel electrode configuration, scan range of −0.9 V to 0.9 V and a
scan rate of 0.04 V/s.

However, since the voltammogram results showed no significant difference within
the three types of cells hence, the capacitance was pursued as a means of identification
and differentiation. Capacitance measurements have been shown to be a reliable marker
for tracking cell surface area and therefore cell size [50]. The graphs of the extracted
capacitance are shown in Figure 8.

 

Figure 8. Capacitance–time curve for the three types of cells before media de-embedding (removing the value of media
from the rest of the samples) (A) THP-1, (B) DCs, (C) MACs. Capacitance values were extracted using MATLAB, based on
the fact that the capacitive current measured is proportional to the rate of change of the applied potential with the constant
of proportionality equal to the capacitance. There is no consistent trend between the concentration and capacitance.

Comparing the three plots, it was noticed that only THP-1 cells displayed the expected
trend of increased capacitance with increasing concentration. Electrochemical sensors
react with the analyte under test to produce an electrical signal proportional to the analyte
concentration [51]. The inconsistency with DCs and MACs was likely due to the lack of a
homogenous suspension as cells might not have fully differentiated. Therefore, to obtain
a better picture of the capacitance data, the value of the media was de-embedded from
the other samples, that is, each concentration value was divided by the corresponding
media value. Additionally, because electronic measurements of conductive solutions are
often affected by ionic effects like electrode polarization that occurs within the Debye
screening length of the solution, de-embedding can mitigate this effect since the elec-
trode polarization is localized and remains constant for a particular ion concentration
and device geometry [52]. Figure 9 displays the data for the three immune cells after the
de-embedding process.
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Figure 9. Capacitance–time curve for the three types of cells after media de-embedding (A) THP-1, (B) DCs, (C) MACs.
De-embedding was performed by diving each of the concentration values in Figure 8 by their corresponding media value.

From the initial capacitance plot (Figure 8), it was seen that the capacitance peaked
at about 29.2 s for all experiments. Therefore, the values of the capacitance for this time
measurement were extracted from the de-embedded data and compared as shown in
Figure 10. As expected for each cell type, there was a general increase in capacitance
with concentration. This is illustrated in Figure 10A. This is attributed to the fact that
an increase in the number of cells results in an increase in total surface area and since
the area is directly proportional to capacitance, an increase in capacitance is observed.
Although a clear distinction between the MACs and DCs can be seen (the MACs have
a larger capacitance and therefore are larger and the DCs have a lower capacitance and
therefore are smaller) to more clearly differentiate between all three cell types and by-pass
the inconsistency at the 105 concentration, the average capacitance for three concentrations
was plotted as shown in Figure 10B. It should be noted that the reason for the discrepancy at
105 was attributed to errors in pipetting or sample preparation. It is therefore recommended
that several concentrations be used for proper validation. Additionally, more accurate
results can be obtained by using polished, well cleaned electrodes and smaller sample
volumes for greater sensitivity.

Figure 10. Capacitance vs. concentration for the three types of cells after the de-embedding process. (A) Capacitance
versus concentration at 29.2 s where maximum capacitance occurs for each of the cell types. (B) Average capacitance for the
three concentrations with S.E.M error bars. MACs had the highest values and DCs had the lowest values, consistent with
the literature.

The results showed that the lowest average value of capacitance was for THP-1
(0.83 μF), followed by DCs (0.93 μF), and finally, the largest capacitance was reported for
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the MACs (1.01 μF). This corresponds to an increasing cell size from THP-1 to DCs to
MACs, consistent with the results reported in Figure 6 and in the literature. Although
from the results the distinction is possible with only the lowest concentration, the authors
recommend the use of the three lowest concentrations used in this paper at a minimum.
These concentration ranges are comparable to those used for flow cytometry, for example,
Bio-Rad recommends concentrations of 105–107 cells/mL [53].

The assay described in this study can be practically functionalized by creating a
compact battery powered and/or directly powered sensing unit and a control unit. The
sensing unit will comprise two electrodes separated by a gap into which the specimen can
be loaded via pipette. When voltage is applied to the electrode, the corresponding resultant
current can be measured by the electrodes. The sensing unit will connect to the control unit
where voltage value and step size can be controlled or swept. Once cyclic voltammetry
measurements are performed, software in the control unit can perform further processing
on the extracted current and voltage data to calculate the capacitance of the sample under
test. The results could then be displayed in the control unit graphical user interface or to a
PC via USB/wirelessly for further processing.
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Appendix A. Supplementary Description of Datasets

Appendix A.1. Supplementary Materials for Flow Cytometry Experiments

For the flow cytometry results, a two-tailed Student´s t-test with a significance level
of 0.05 was also performed. The p values are reported in Table A1. Significance was
determined for p-values p < 0.05.

Table A1. Statistical analysis of the flow cytometry results. p values for two sample t-tests using
unequal variance were determined using a significance level of 0.05.

Marker THP-1 to DC THP-1 to MAC DC to MAC

CD83 0.37 0.04 0.06

CD197 0.04 0.00 0.50

HLA-DR 0.42 0.92 0.40

CD1c 0.21 0.06 0.79

CD11c 0.72 0.04 0.03

Appendix A.2. Supplementary Materials for System Optimization for Estep and Srate

To prepare the system for electrochemical measurements, two optimization steps were
conducted to determine the best values for Srate and Estep. Srate determines the rate of
voltage ramping and Estep defines the difference in voltage between two points at different
distances from the source of energy. First, to find the optimum of Srate, the voltage was
swept from −0.9 V to 0.9 V while Estep was kept constant at 0.002 V and the Srate was varied
from 0.004 V/s to 2 V/s. Results for specific values are shown in Figure A1.
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Figure A1. Electrochemical system optimization results for varying Srate. (A) Estep = 0.002 and Srate = 0.004, (B) Estep = 0.002
and Srate = 0.04; (C) Estep = 0.002 and Srate = 1.

Second, both Estep and Srate values were varied simultaneously from 0.009 V to 0.01 V
and from 0.009 V/s to 2 V/s, respectively. Results for specific values are shown in Figure A2.

 
Figure A2. Electrochemical system optimization results for simultaneous varying of Srate and Erate. (A) Estep = 0.009 and
Srate = 0.009; (B) Estep = 0.1 and Srate = 0.1; (C) Estep = 0.01 and Srate = 2.
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Abstract: The COVID-19 global pandemic has wreaked havoc on every aspect of our lives. More
specifically, healthcare systems were greatly stretched to their limits and beyond. Advances in
artificial intelligence have enabled the implementation of sophisticated applications that can meet
clinical accuracy requirements. In this study, customized and pre-trained deep learning models based
on convolutional neural networks were used to detect pneumonia caused by COVID-19 respiratory
complications. Chest X-ray images from 368 confirmed COVID-19 patients were collected locally. In
addition, data from three publicly available datasets were used. The performance was evaluated in
four ways. First, the public dataset was used for training and testing. Second, data from the local and
public sources were combined and used to train and test the models. Third, the public dataset was
used to train the model and the local data were used for testing only. This approach adds greater
credibility to the detection models and tests their ability to generalize to new data without overfitting
the model to specific samples. Fourth, the combined data were used for training and the local dataset
was used for testing. The results show a high detection accuracy of 98.7% with the combined dataset,
and most models handled new data with an insignificant drop in accuracy.

Keywords: COVID-19; chest X-ray; deep learning; convolutional neural networks; diagnosis

1. Introduction

Coronavirus disease 2019 (COVID-19), which is caused by the SARS-CoV-2 virus, has
wreaked havoc on humanity, especially healthcare systems. For example, recently, the
wave of infections in India has caused a great number of families to seek care at home due
to a lack of intensive care units. Worldwide, millions have succumbed to this pandemic
and many more have suffered long- and short-term health problems. The most common
symptoms of this viral syndrome are fever, dry cough, fatigue, aches and pains, loss of
taste/smell, and breathing problems [1]. Other less common symptoms are also possible
(e.g., diarrhea, conjunctivitis) [2]. Infections are officially confirmed using real-time reverse
transcription polymerase chain reaction (RT-PCR) [3]. However, chest radiographs using
plain chest X-rays (CXRs) and computerized tomography (CT) play an important role
confirming the infection and evaluating the extent of damage incurred to the lungs. CXR
and CT scans are considered major evidence for clinical diagnosis of COVID-19 [4].

Chest X-ray images are one of the most common clinical diagnosis methods. However,
reaching the correct judgement requires specialist knowledge and experience. The strain
on medical staff worldwide incurred by the COVID-19 pandemic, in addition to the already
inadequate number of radiologists per person worldwide [5], necessitates innovative
accessible solutions. Advances in artificial intelligence have enabled the implementation of
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sophisticated applications that can meet clinical accuracy requirements and handle large
volumes of data. Incorporating computer-aided diagnosis tools into the medical hierarchy
has the potential to reduce errors, improve workload conditions, increase reliability, and
replace by enhance the workflow and reduce diagnostic errors by providing radiologists
with references for diagnostics.

The fight against COVID-19 has taken several forms and fronts. Computerized so-
lutions offer contactless alternatives to many aspects of dealing with the pandemic [6].
Some examples include robotic solutions for physical sampling, vital sign monitoring,
and disinfection. Moreover, image recognition and AI are being actively used to identify
confirmed cases not adhering to quarantine protocols. In this work, we propose an auto-
matic diagnosis artificial intelligence (AI) system that is able to identify COVID-19-related
pneumonia from chest X-ray images with high accuracy. One customized convolutional
neural networks model and two pre-trained models (i.e., MobileNets [7] and VGG16 [8])
were incorporated. Moreover, CXR images of confirmed COVID-19 subjects were collected
from a large local hospital and inspected by board-accredited specialists over a period of
6 months. These images were used to enrich the limited number of existing public datasets
and form a larger training/testing group of images in comparison to the related literature.
Importantly, the reported results come from testing the models with this completely foreign
set of images in addition to evaluating the models using the fused aggregate set. This
approach exposed any overfitting of the model to a specific set of CXR images, especially
as some datasets contain multiple images per subject.

2. Background and Related Work

COVID-19 patients who have clinical symptoms are more likely to show abnormal
CXR [9]. The main findings of recent studies suggest that these lung images display
patchy or diffuse reticular–nodular opacities and consolidation, with basal, peripheral,
and bilateral predominance [10]. For example, Figure 1 shows the CXR of a mild case
of lung tissue involvement with right infrahilar reticular–nodular opacity. Moreover,
Figure 2 shows the CXR of a moderate to severe case of lung tissue involvement. This CXR
shows right lower zone lung consolidation and diffuse bilateral airspace reticular–nodular
opacities, which are more prominent on peripheral parts of lower zones. Similarly, Figure 3
shows the CXR of a severe case of lung tissue involvement. This is caused by diffuse
bilateral airspace reticular–nodular opacities that are more prominent on peripheral parts
of the lower zones, and ground glass opacity in both lungs predominant in mid-zones and
lower zones. On the other hand, Figure 4 shows an unremarkable CXR with clear lungs
and acute costophrenic angles (i.e., normal).

Figure 1. CXR of COVID-19 subject showing mild lung tissue involvement.
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Figure 2. CXR of COVID-19 subject showing moderate to severe lung tissue involvement.

Figure 3. CXR of COVID-19 subject showing severe lung tissue involvement.

Figure 4. Normal CXR.

AI, with its machine learning (ML) foundation, has taken great strides toward deploy-
ment in many fields. For example, Vetology AI [11] is a paid service that provides AI-based
radiograph reports. Similarly, the widespread research and usage of AI in medicine have
been observed for many years now [12,13]. AI-based web or mobile applications for auto-
mated diagnosis can greatly aid clinicians in reducing errors, provide remote and cheap
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diagnosis in poor undermanned underequipped areas, and improve the speed and quality
of healthcare [14]. In the context of COVID-19 radiographs, ML methods are feasible to
evaluate CXR images to detect the aforementioned markers of COVID-19 infection and the
adverse effects on the state of the patients’ lungs. This is of special importance considering
the fact that health services were stretched to their limits and sometimes to the brink of
collapse by the pandemic.

Deep learning AI enables the development of end-to-end models that learn and
discover classification patterns and features using multiple processing layers, rendering it
unnecessary to explicitly extract features. The sudden spread of the COVID-19 pandemic
has necessitated the development of innovative ways to cope with the rising healthcare
demands of this outbreak. To this end, many recent models have been proposed for COVID-
19 detection. These methods rely mainly on CXR and CT images as input to the diagnosis
model [15,16]. Hemdan et al. [17] proposed the COVIDX-Net deep learning framework
to classify CXR images as either positive or negative COVID-19 cases. Although they
employed seven deep convolutional neural network models, the best results were 89%
and 91% F1-scores for normal and positive COVID-19, respectively. However, their results
were based on 50 CXR images only, which is a very small dataset to build a reliable deep
learning system.

Several existing out-of-the-box deep learning convolutional neural network algorithms
are available in the literature [18], and they have been widely used in the COVID-19
identification literature with and without modifications [15]. They provide track-proven
image detection and identification capabilities in many disciplines and research problems.
Some of the most commonly used models are: (1) GoogleNet, VGG-16, VGG-19, AlexNet,
and LetNet, which are spatial exploitation-based CNNs. (2) MobileNet, ResNet, Inception-
V3, and Inception-V4, which are depth based CNNs. (3) Other models include DenseNet,
Xception, SqueezeNet, etc. These architectures can be used pre-trained with deep transfer
learning (e.g., Sethy et al. [19]), or customized (e.g., CoroNet [20]).

Rajaraman et al. [21] used iteratively pruned deep learning ensembles to classify
CXRs into normal, COVID-19, or bacterial pneumonia with a 99.01% accuracy. Several
models were tested and the best results were combined using various ensemble strategies
to improve the classification accuracy. However, such methods are mainly suitable for
small numbers of COVID-19 images as the computational overhead of multiple model
calculations is high, and there is no guarantee that they will retain their accuracy with
large datasets [15,22]. Other works for three-class classification using deep learning were
also proposed in this context. The studies by Ucar et al. [23], Rahimzadeh and Attar [24],
Narin et al. [25], and Khobahi et al. [26] classify cases as COVID-19, normal, or pneumonia.
Others replace pneumonia with a generic non-COVID-19 category [27,28], or severe acute
respiratory syndrome (SARS) [29]. Less frequently, studies distinguish between viral and
bacterial pneumonia in a four-class classification [18]. A significant number of studies
conducted binary classification into COVID-19 or non-COVID-19 classes [19,30]. Although
these methods achieved high accuracies (i.e., greater than 89%), the number of COVID-19
images from the total dataset is small. For example, Ucar et al. [23] used 45 COVID-19
images only. Moreover, subsequent testing of the models used a subset of the same dataset,
which may give falsely improved results, especially as same subject may have multiple
CXR images in the dataset.

3. Material and Methods

3.1. Subjects

The selected images were acquired from locally recorded chest X-rays of COVID-19
patients in addition to a publicly available dataset [31]. The combination of two datasets
adds greater credibility to the developed identification models. This is because train-
ing/validation was performed on one set, and the testing was performed on a different
dataset. In addition, it increased the size of the dataset, which is a problem with most of
the related literature.
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The first group of images was obtained locally at King Abdullah University Hospital,
Jordan University of Science and Technology, Irbid, Jordan. The study was approved by
the institutional review board (IRB 91/136/2020) at King Abdullah University Hospital
(KAUH). Written informed consent was sought and obtained from all participants (or
their parents in case of underage subjects) prior to any clinical examinations. The dataset
included 368 subjects (215 male, 153 female) with a mean ± SD age of 63.15 ± 14.8. The
minimum subject age was 31 months and maximum age was 96 years. All subjects had
at least one positive RT-PCR test and were in need of hospital admittance as determined
by the specialists at KAUH. The hospital stay ranged from 5 days to 6 weeks with some
subjects passing away (exact number not available). The CXR images were taken after
at least 3 days of hospital stay to ensure the existence of lung abnormalities, which were
confirmed by the participating specialists. The CXR images were reviewed using the
MicroDicom viewer version 3.8.1 (see https://www.microdicom.com/, accessed on: 28
May 2021), and exported as high-resolution images (i.e., 1850 × 1300 pixels).

The second group of images is publicly available [31], and was produced by the fusion
of three separate datasets: (1) COVID-19 chest X-ray dataset [32]. (2) The Radiological
Society of North America (RSNA) dataset [33]. (3) The U.S. National Library of Medicine
(USNLM) Montgomery County X-ray set [34]. At the time of performing the experiments,
the dataset contained 2295 CXR images (1583 normal and 712 COVID-19), which were used
in this work. However, the dataset is continuously being updated [35].

3.2. Deep Learning Models

Deep learning is the current trend and most prolific AI technique used for classification
problems [15]. It has been used widely and successfully in a range of applications, especially
in the medical field. The next few paragraphs describe the models used in this work.

1. 2D sequential CN CNN models are one class in the deep learning literature. They are
a special class of feedforward neural networks that have been found to be very useful
in analyzing multidimensional data (e.g., images) [18]. However, CNNs conserve
memory relative to multilayer perceptrons by sharing parameters and using sparse
connections. The input images are transformed into a matrix to be processed by the
various CNN elements. The model consists of several alternating layers of convolution
and pooling (see Table 1), as follows:

Convolutional layer

The convolutional layer determines the features of the various patterns in the input.
It consists of a set of dot products (i.e., convolutions) applied to the input matrix. This
step creates an image processing kernel containing a number of filters, which outputs
a feature map (i.e., motifs). The input is divided into small windows called receptive
fields, which are convolved with the kernel using a specific set of weights. In this
work, a 2D convolution layer was used (i.e., using the CONV2D class).

Pooling layer

This down-sampling layer reduces the spatial dimensions of the output volume by
reducing the number of feature maps and network parameters. Moreover, pooling
helps in improving the generalization of the model by reducing overfitting [36]. The
output from this step is a combination of features invariant to translational shifts and
distortions [37].

Dropout

Overfitting is a common problem in neural networks. Hence, dropout is used as a
strategy to introduce regularization within the network, which eventually improves
generalization. It works by randomly ignoring some hidden and visible units. This
has the effect of training the network to handle multiple independent internal repre-
sentations.
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Fully connected layer

This layer accepts the feature map as input and outputs nonlinear transformed output
via an activation function. This is a global operation that works on features from
all stages to produce a nonlinear set of classification features. The rectified linear
unit (ReLU) was used in this step as it helps in overcoming the vanishing gradient
problem [38].

Table 1. Summary of the CNN models used in this work.

Layer Output Shape No. of Parameters

CONV2D-1 (None, 150, 150, 32) 2432
MaxPooling2D-1 (None, 75, 75, 32) 0

Dropout-1 (None, 75, 75, 32) 0
Conv2D-2 (None, 75, 75, 64) 51,264

MaxPooling2D-2 (None, 37, 37, 64) 0
Dropout-2 (None, 37, 37, 64) 0

Flatten (None, 87,616) 0
Dense-1 (None, 256) 22,429,952

Dropout-3 (None, 256) 0
Dense-2 (None, 1) 257

2. Pre-trained models

MobileNets

The MobileNets model [7] is a resource-limited CNN architecture, which was chosen
in this work with an eye on future mobile applications for disease diagnosis. It
uses depth-wise separable convolutions, which significantly reduces the number of
parameters. MobileNets was open-sourced by Google to enable the development of
low-power, small, and low-latency applications for mobile environments.

VGG-16

VGG-16 [8] is a representative of the many models existing in the literature. It has
gone through various refinements to improve its accuracy performance and resources
consumption (e.g., VGG-19). The VGG model is a spatial exploitation CNN with
19 layers, 3 × 3 filters (computationally efficient), 1 × 1 convolution in between the
convolution layers (for regularization), and max-pooling after the convolution layer.
The model is known for its simplicity [18].

3.3. Model Implementation

The models were implemented and evaluated using the Keras [39] high-level appli-
cation program interface (API) of TensorFlow 2 [40]. The experiments were run on a Dell
Precision 5820 Tower (Dell Inc., Round Rock, TX, USA) with Intel Xeon W-2155, 64GB of
RAM (Intel Inc., Santa Clara, CA, USA), and 16GB Nvidia Quadro RTX5000 GPU (Nvidia
Inc., Santa Clara, CA, USA).

4. Results and Discussion

Four different approaches were used to evaluate the three deep learning models. First,
only the public dataset was used to train and test the models. Second, the fused dataset
was used to test and train the models (i.e., the sets were combined together and treated as
one without any distinction). Third, the public dataset was used for training the model
and the locally collected dataset was used for testing. This approach shows the ability
of the model to generalize to new data and avoid overfitting to specific images/subjects.
Fourth, the combined (i.e., fused) dataset was used for training and local dataset for
testing. Table 2 shows the number of training and testing subjects used for each approach.
Note that the local dataset did not include normal CXR images as those are abundantly
available. The confusion matrices resulting from testing were analyzed to produce several
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standard performance measures. These include accuracy, specificity, sensitivity, F1-score,
and precision as defined in Equations (1)–(5).

Table 2. The number of training and testing subjects used for each of the evaluation approaches.

Approach
Training Testing

COVID-19 Normal COVID-19 Normal

Public dataset 545 1266 167 317
Fused dataset 842 1266 238 317

Public dataset for training and local dataset for testing 545 1266 368 317
Fused dataset for training and local dataset for testing 842 1266 368 317

Accuracy =
tp + tn

tp + fn + fp + tn
(1)

Sensitivity =
tp

tp + fn
(2)

Speci f icity =
tn

tn + fp
(3)

F1score =
2 × tp

2 × tp + fp + fn
(4)

Precision =
tp

tp + fp
(5)

where tp: true positive, represents the subjects correctly classified in predefined (positive)
class. fn: false negative, represents the subjects misclassified in the other (negative) class.
fp: false positive, represents the subjects misclassified in predefined (positive) class. tn:
true negative, represents the subjects correctly classified in the other (negative) class.

Figure 5 shows the training and validation loss for the two model training methods.
The 2D CNN model required more epochs to reach the appropriate accuracy improvement,
but the training was smooth with little oscillation. Moreover, the other two models required
very few epochs (e.g., VGG-16 required one epoch with the fused dataset, hence the missing
plot). Figure 6 shows the training and validation accuracy. The figures generally show that
the models are able to properly fit training data and improve with experience. It is clear
that the MobileNets and VGG-16 models achieve superior and high classification accuracy.

The testing dataset (i.e., the locally collected COVID-19 CXR images) is different from
the training dataset.

(a) CNN trained using the public dataset. (b) CNN trained using the fused dataset.

Figure 5. Cont.
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(c) MobileNets trained using the public dataset. (d) MobileNets trained using the fused dataset.

(e) VGG-16 trained using the public dataset.

Figure 5. Training and validation loss for the three architectures trained using the public and the
fused datasets. Note that VGG-16 trained on the fused dataset ended after one epoch only, hence
there is no corresponding figure. The models are able to properly fit training data and improve with
experience (as seen in validation curves).

(a) CNN trained using the public dataset. (b) CNN trained using the fused dataset.

Figure 6. Cont.
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(c) MobileNets trained using the public dataset. (d) MobileNets trained using the fused dataset.

(e) VGG-16 trained using the public dataset.

Figure 6. Training and validation accuracy for the three architectures trained using the public and
the fused datasets. Note that VGG-16 trained on the fused dataset ended after one epoch only, hence
there is no corresponding figure. The models are able to properly fit training data and improve with
experience (as seen in validation curves).

4.1. 2D Sequential CNN

Tables 3 and 4 show the values for the performance evaluation metrics and the
corresponding confusion matrices for the 2D sequential CNN model. The architecture
achieved the best accuracy of 96.1% over all training and testing methods. However, the
accuracy drops sharply to 79% when the testing was carried out using a database (i.e., the
locally collected COVID-19 CXR images) different from the training one (i.e., the public
dataset). This indicates the failure of the model to generalize to new data, and that there
may be subtle or obscure differences between the images from the two datasets. This is
further confirmed by the fact that normal images (see Table 4c), which were taken from
the public dataset, were mostly correctly classified. The source of errors came from false
negative classifications (i.e., type II errors). However, the accuracy improved to 89.3%,
when a separate part of the testing dataset was included in the training. Still, most of the
errors were type II (see Table 4d). This is a model performance mismatch problem of the
custom CNN, which is typically caused by unrepresentative data samples. However, since
the other models were trained on the same data, then this reason could be discounted. The
MobileNets and VGG-16 models were employed using transfer learning, which inherently
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reduces overfitting. Moreover, these models are larger and deeper than the custom CNN,
which due to overparameterization can lead to better generalization performance [41].

Table 3. Performance evaluation metrics for the customized CNN model. Acc.: Accuracy, Sens.: Sensitivity, Spec.: Specificity,
Prec.: Precision.

Dataset Acc. Sens. Spec. F1-Score Prec.

Public dataset 96.1% 92.8% 97.8% 94.2% 95.7%
Fused dataset 93.7% 85.7% 99.7% 92.1% 99.5%

Public dataset for training and local dataset for testing 79% 62.8% 97.8% 76.2% 97.1%
Fused dataset for training and local dataset for testing 89.3% 80.4% 99.7% 89% 99.7%

Table 4. The confusion matrices resulting from the customized CNN model. Positive refers to
confirmed COVID-19 case.

(a) Public Dataset

Predicted diagnosis

Positive Negative

Actual Positive 155 12
Negative 7 310

(b) Fused Public and Local Datsets

Predicted diagnosis

Positive Negative

Actual Positive 204 34
Negative 1 316

(c) Public Dataset for Training and Local Dataset for Testing

Predicted diagnosis

Positive Negative

Actual Positive 231 137
Negative 7 310

(d) Fused Dataset for Training and Local Dataset for Testing

Predicted diagnosis

Positive Negative

Actual Positive 296 72
Negative 1 316

4.2. MobileNets

Tables 5 and 6 show the values for the performance evaluation metrics and the
corresponding confusion matrices for the MobileNets model. It achieved accuracy values
between 97.1% and 98.7%, which shows stability when faced with new data, and the ability
to generalize. Errors, although few, were caused by misclassifying COVID-19 CXR images
as normal. However, the type I errors increased slightly (Table 6c).

Table 5. Performance evaluation metrics for the customized MobileNets model. Acc.: Accuracy, Sens.: Sensitivity, Spec.:
Specificity, Prec.: Precision.

Dataset Acc. Sens. Spec. F1-Score Prec.

Public dataset 98.3% 98.2% 98.4% 97.6% 97%
Fused dataset 97.1% 92.8% 99.4% 95.7% 98.7%

Public dataset for training and local dataset for testing 98% 97.6% 98.4% 98.1% 98.6%
Fused dataset for training and local dataset for testing 98.7% 98.1% 99.4% 98.8% 99.4%
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Table 6. The confusion matrices resulting from the customized MobileNets model. Positive refers to
confirmed COVID-19 case.

(a) Public Dataset

Predicted diagnosis

Positive Negative

Actual Positive 164 3
Negative 5 312

(b) Fused Public and Local Datsets

Predicted diagnosis

Positive Negative

Actual Positive 155 12
Negative 2 315

(c) Public Dataset for Training and Local Dataset for Testing

Predicted diagnosis

Positive Negative

Actual Positive 359 9
Negative 5 312

(d) Fused Dataset for Training and Local Dataset for Testing

Predicted diagnosis

Positive Negative

Actual Positive 361 7
Negative 2 315

4.3. VGG-16

Tables 7 and 8 show the values for the performance evaluation metrics and the
corresponding confusion matrices for the VGG-16 model. The model achieved the best
accuracy over all models (i.e., 99%) when the fused dataset was used for training and the
local dataset was used for testing, which indicates its ability to capture various properties
from different sets. However, it fell behind MobileNets slightly when the training dataset
(i.e., the public dataset) was different from the testing dataset. Moreover, the model
achieved the highest accuracy (98.7%) with the fused dataset for both training and testing.
However, MobileNets achieved slightly higher accuracy when trained and tested with the
public dataset alone. Such slight performance differences when the dataset is augmented
with data from other sources may need further investigation. The confusion matrices show
that, for VGG-16, the majority of errors are type I over all evaluation methods, which is
different from the CNN or MobileNets errors (i.e., type II). Improving VGG-16’s handling
of normal images should cut the error rate significantly.

Table 7. Performance evaluation metrics for the customized VGG-16 model. Acc.: Accuracy, Sens.: Sensitivity, Spec.:
Specificity, Prec.: Precision.

Dataset Acc. Sens. Spec. F1-Score Prec.

Public dataset 97.1% 98.2% 96.5% 95.9% 93.7%
Fused dataset 98.7% 99.2% 98.4% 98.5% 97.9%

Public dataset for training and local dataset for testing 97.2% 97.8% 96.5% 97.4% 97%
Fused dataset for training and local dataset for testing 99% 99.5% 98.4% 99.1% 98.7%
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Table 8. The confusion matrices resulting from the customized VGG-16 model. Positive refers to
confirmed COVID-19 case.

(a) Public Dataset

Predicted diagnosis

Positive Negative

Actual Positive 164 3
Negative 11 306

(b) Fused Public and Local Datsets

Predicted diagnosis

Positive Negative

Actual Positive 236 2
Negative 5 312

(c) Public Dataset for Training and Local Dataset for Testing

Predicted diagnosis

Positive Negative

Actual Positive 360 8
Negative 11 306

(d) Fused Dataset for Training and Local Dataset for Testing

Predicted diagnosis

Positive Negative

Actual Positive 366 2
Negative 5 312

4.4. Comparison to Related Work

Table 9 shows a performance comparison of deep learning studies in binary classi-
fication using CXR images. Some studies did not report the accuracy as their datasets
were largely imbalanced. Although most related studies reported high accuracy values,
a common theme among them is the lack of a significant number of COVID-19 cases for
this type of classification model. For example, Narin et al. [25] mention that the excess
number of normal images resulted in higher accuracy in all of those models. This is useless
considering the fact that very few differences exist among normal images of lungs across
different subjects. Similarly, Hemdan et al. [17] stated the limited number of COVID-19
X-ray images as the main problem in their work. Moreover, the dataset that we included
in this work contains only one image per subject, unlike other datasets which include
more images than subjects. In addition, special consideration was paid to the type of cases
included in the dataset, because the effect of COVID-19 on the lungs does not necessarily
appear immediately with symptoms and it may take a few days.

The literature on deep learning for medical diagnosis in general and COVID-19
classification in particular is vast and expanding. However, large datasets are required to
truly have reliable generalized models. We believe that development of mobile and easy
access applications that capture and store data on the fly will enable better data collection
and improved deep learning models.
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Table 9. Performance comparison of deep learning studies in binary COVID-19 diagnosis (i.e., positive or negative) using
CXR images. Some studies did not report the accuracy as their datasets were largely imbalanced. All websites were last
accessed on 28 May 2021.

Study No. of COVID-19 Images and Database Method Accuracy

Singh et al. [42] 50, https://github.com/ieee8023/covid-chestxray-dataset MADE-based CNN 94.7%
Sahinbas et al. [43] 50, https://github.com/ieee8023/covid-chestxray-dataset VGG16, VGG19, ResNet, DenseNet, InceptionV3 80%

Medhi et al. [44] 150, https://www.kaggle.com/bachrr/covid-chest-xray Deep CNN 93%
Narin et al. [25] 341, https://github.com/ieee8023/covid-chestxray-dataset InceptionV3, ResNet50, ResNet101 96.1%
Sethy et al. [19] 48, https://www.kaggle.com/andrewmvd/convid19-X-rays most available models (e.g., DenseNet, ResNet) 95.3%

Minaee et al. [30] 71, https://github.com/ieee8023/covid-chestxray-dataset ResNet18, ResNet50, SqueezeNet, DenseNet-121 –
Maguolo et al.[45] 144, https://github.com/ieee8023/covid-chestxray-dataset AlexNet –
Hemdan et al. [17] 25, https://github.com/ieee8023/covid-chestxray-dataset VGG19, ResNet, DenseNet, Inception, Xception 90%

This work 712+368, doi.org/10.21227/x2r3-xk48+local 2D CNN, VGG16, MobileNets up to 99%

5. Conclusions

Global disasters bring people together and spur innovations. The current pandemic
and the worldwide negative consequences should present an opportunity to push forward
technological solutions that facilitate everyday life. In this study, we have collected chest X-ray
images from hospitalized COVID-19 patients. These data will enrich the current available
public datasets and enable further refinements to the systems employing them. Moreover,
deep learning artificial intelligence models were designed, trained, and tested using the locally
collected dataset as well as public datasets, both separately and combined. The high accuracy
results present an opportunity to develop mobile and easy access applications that improve
the diagnosis accuracy, reduce the workload on strained health workers, and provide better
healthcare access to undermanned/underequipped areas. Future work will focus on this
avenue as well as development and evaluation of multiclass classification models.
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Abstract: We developed a new mobile ultrasound device for long-term and automated bladder
monitoring without user interaction consisting of 32 transmit and receive electronics as well as a
32-element phased array 3 MHz transducer. The device architecture is based on data digitization and
rapid transfer to a consumer electronics device (e.g., a tablet) for signal reconstruction (e.g., by means
of plane wave compounding algorithms) and further image processing. All reconstruction algorithms
are implemented in the GPU, allowing real-time reconstruction and imaging. The system and the
beamforming algorithms were evaluated with respect to the imaging performance on standard
sonographical phantoms (CIRS multipurpose ultrasound phantom) by analyzing the resolution, the
SNR and the CNR. Furthermore, ML-based segmentation algorithms were developed and assessed
with respect to their ability to reliably segment human bladders with different filling levels. A
corresponding CNN was trained with 253 B-mode data sets and 20 B-mode images were evaluated.
The quantitative and qualitative results of the bladder segmentation are presented and compared to
the ground truth obtained by manual segmentation.

Keywords: POCUS; multichannel system; channel data; bladder monitoring; POUR; machine-
learning; segmentation

1. Introduction

Ultrasound imaging is a frequently used method for postoperative monitoring of
the urinary bladder. Depending on the surgical context, different clinical conditions that
need close monitoring can occur. Post-operative urinary retention (POUR) is a frequent
problem for various reasons (e.g., intravesical blood clotting) that can lead to bladder
overdistension and needs rapid detection and medical intervention. On the other hand,
invasive procedures such as catheterization present significant discomfort for patients and
can lead to infections or even trauma of the urinary tract. In contrast, ultrasound imaging
is fully non-invasive and has already shown its potential for bladder monitoring [1–3].
Accurate bladder volumes can be extracted from 3D ultrasound data; however, reliable
qualitative information about potential bladder overdistension can already be derived from
2D B-mode (brightness mode) ultrasound images.

In order to efficiently prevent POUR and directly initiate therapeutic measures if an
increased amount of urine or blood is detected in the urinary bladder, the bladder should
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be monitored at frequent intervals, which is not possible in a clinical environment where
ultrasound investigations are mostly performed using standard sonography equipment
based on hand-held probes. Accordingly, when defining a tool for ideal postoperative
follow-up and the prevention of related complications in the 24–48 h period after surgery,
different challenges and requirements arise. First, the system must be portable, such that
the mobility of the patient is ensured. Second, the probe must be self-adhesive or pad-like
(in contrast to hand-held probes that require the presence of a sonographer). Third, (image
or signal) data must be automatically analyzed to retrieve diagnostic features that are
relevant for the identification of a potential complication (e.g., a bladder volume above
a defined threshold in the context of POUR monitoring or specific scattering properties
as a result of blood clots in the bladder). In a research context, where the optimal signal
and image processing still needs to be defined, this results in a need for RF or even better
pre-beamformed channel data access. In particular, the third requirement allows the use of
analysis methods beyond pure image-based segmentation and classification. We recently
showed in other applications that machine learning approaches can be applied to raw
radio-frequent ultrasound data prior to image formation for classification tasks with a
high accuracy [4]. Radio-frequent data with a high dynamic range (16-bit amplitude
quantization) and ultrasonic wave phase information at high digitalization rates of up to
50 MHz contain a lot more informational content than scan-converted ultrasound images.
During scan conversion, typically more than 90% of the raw ultrasound wave information
is lost during image formation and cannot be used in image-based processing.

To the best of our knowledge, there are no systems available that fulfil the above
defined requirements. The use of advanced classification approaches is not possible with
classical clinical sonography systems, as they do not provide access to radio frequent
ultrasound data. Ultrasound systems for research applications such as the Vantage Ultra-
sound System (Verasonics, Inc. Redmond, WA, USA), the ULA-OP [5], the systems from
the Technical University of Denmark [6] or the DiPhAS by Fraunhofer IBMT (Sulzbach,
Germany) [7] provide access to this type of data, but are mostly not certified for clinical use,
and more importantly, they are complex, bulky and costly devices. The latest generation
of point of care ultrasound (POCUS) devices, such as the Butterfly iQ or Vscan [8] by GE
has decreased the costs by an order of magnitude when compared to high-end sonography
machines, and can be used in bedside settings due to their miniaturization. However, the
availability of care staff still represents a limiting factor when it comes to frequent moni-
toring postoperatively. Finally, dedicated devices for bladder monitoring such as DFree
(Triple W, Tokyo, Japan) or SENS-U [9] (Novioscan, Nijmegen, The Netherlands) have a
particular focus on incontinence management. These systems directly generate bladder
filling level-related parameters and do not provide access to the underlying ultrasound sig-
nals. Other ultrasound systems optimized for urological applications such as BladderScan
(Verathon, WA, USA) measure the bladder volume, but are based on hand-held probes,
which limits their suitability for continuous monitoring.

In summary, all these devices optimized for the daily clinical routine (or for home-care
settings in the case of DFree or SENS-U) are difficult to utilize in research applications,
where customized signal and image processing algorithms need to be applied to the data.
In particular, machine-learning based approaches have been shown to have tremendous
potential for automated segmentation of ultrasound data [10], and have been reported
in particular for breast imaging [11], coronary arteries [12], and thyroid [13] or different
tumors [14]. In comparison to these applications, where the anatomy is more complex
and the contrast difference is reduced, bladder segmentation represents an ideal use case
for ML-based approaches due to the low echogenity and the resulting high contrast to
surrounding tissue. Multiple ultrasound imaging devices, including mobile ones like
Butterfly iQ+ (Butterfly Network Inc, Guilford, CT, USA), already include automated
bladder segmentation and volume estimation, but the shape of the hand-held transducer
does not allow long-time monitoring as a wearable.
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In light of the somewhat contrary requirements of an ideal urinary bladder mon-
itoring system that also provides full data access, and thereby can be flexibly used in
research applications, we developed a new portable ultrasound system (mobile ultrasound
equipment—MoUsE). Despite being validated in this first application in the context of
bladder monitoring, the MoUsE can also be used as a general-purpose ultrasound research
system since full access to the transmit and receive pipeline is provided.

2. Materials and Methods

2.1. Portable Multichannel Electronics with Research Interface

The MoUsE is a compact ultrasound system integrated into a 3D printed housing
(Figure 1) with dimensions of 184 mm × 123 mm × 33 mm and a total weight of 610 g, thus
ensuring its portability. It is driven by a 12V medical power supply which can be replaced
by lithium-ion battery packs for future fully mobile applications. Detailed specifications
are given in Table 1. All system functionalities, including generation of transmit signals,
amplification and digitization of receive signals, storage and communication (via USB 3.0)
to a PC/tablet controlling the device are implemented on the same main printed circuit
board (PCB). Data management, communication and sequence control are handled in the
integrated ZYNQ-7 FPGA. An on-board low voltage (LV) power supply generates the
required power levels for the logic components.

Table 1. MoUsE system performance and features.

Dimensions 184 mm × 123 mm × 33 mm

Weight 610 g

Power consumption 12 W

Power supply 12 V DC, medical certified power supply, lithium-ion battery packs
for future fully mobile applications

Transmitter 32 channels, Tri-state pulser, max voltage ± 100 V

Receiver

32 channels
Bandwidth: 100 kHz–10 MHz

Gain: up to 44.3 dB
Up to 50 MHz sampling rate with a resolution of 12 Bit per sample

Interface USB 3.0

RAM 8 GBit internal RAM

Imaging Plane wave compounding, custom algorithms can be implemented

Software Clinical type user interface USPilot, SDK for programming system
from 3rd party applications in C#/C++/Matlab

Transducer
specifications

32 elements
Pitch = 500 μm

Centre F\frequency = 3 MHz

A compact high voltage (HV) power supply that generates the ± 100 V of transmit
voltage for each of the octal (8-channel) transmit receive ICs was implemented on a second
PCB mounted on the main PCB. A frequency range of 100 kHz–10 MHz was defined as the
transmit bandwidth.

In principle, transmit signals can be freely defined within the limits of the tri-state
programmable ICs, for instance, using pulse width modulation (PWM); however, only
rectangular bursts with adjustable length and frequency have been implemented in the
software so far. The internal system clock of 160 MHz is used for the definition of the
transmit signals. Receive signals are digitized with up to 50 MSa/s with a resolution of
12 bit and are transferred as pre-beamformed channel data via USB 3.0 to a PC/tablet for
image reconstruction. The receive data can be amplified by up to 44.3 dB with different
linear or customized TGC settings. No analog preprocessing is performed on-board
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beyond bandpass filtering and (optional) data accumulation (corresponding to averaging)
for improvement of the signal to noise ratio (SNR). Interfaces for wireless (IEEE 802.11
b/g/n (1 × 1)) communication and the transfer of pre-beamformed channel data are
foreseen in the hardware design but not yet implemented. The system uses a sleep mode
to switch off the transceiver ICs for stand-by between long-term measurements to reduce
power consumption.

 
Figure 1. MoUsE system overview with close up of 32 element transducer housing (a), transducer
with cable, custom connector PCB and disposable patch (b), MoUsE PCB tested on phantoms prior
to integration (c), and the final system integrated with passive cooling in a 3D printed housing (d).

2.2. Transducer Design and Manufacturing

The MoUsE can be driven with all kinds of 32-element transducers using the given
pinout or via transducer connection adapter. However, in the context of the first application
being used for automated bladder monitoring, a 32-element phased array transducer was
developed. The transducer properties were defined in a sound field simulation study
using the in-house developed sound field simulation software tool SCALP based on point
source synthesis (Figure 2). A pitch of 500 μm with a kerf of 50 μm and element sub-
dicing were chosen as a compromise between sensitivity (profiting from larger element
size) and beam steering capabilities (decreasing with larger element size). To improve the
elevational resolution, a focusing silicon lens was applied to the element of elevational size
of 11.5 mm. The array was manufactured from a soft PZT material (3203 HD), the center
frequency was adjusted to 3 MHz and two matching layers were applied for improved
bandwidth. Connection to the MoUsE electronics was achieved by two 16-core micro-coax
cables directly soldered to the customized connector PCB, which was preferred over a
solution involving a commercial connector for the sake of compactness. The acoustic block
was finally integrated into a 3D printed cylindrical housing of 40 mm in diameter and a
height of 17.5 mm. For long-term monitoring applications, a fixation concept involving an
acoustically transparent adhesive tape could optionally be used.
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Figure 2. Acoustic pressure distribution simulation performed during specification phase of the
MoUsE transducer. (a–c) Plane wave transmission under different angles to investigate the steering
capabilities and the identify potential grating lobes, (d,e) single element elevational sound field
without focusing (d) and with lens focusing to 60 mm (e).

2.3. Beamforming and Software

Image reconstruction is performed in real-time using a GPU (OpenCL, Khronos Group,
Beaverton, OR, USA)-based implementation of plane wave compounding [15] approach in
the in-house developed clinical style user interface USPilot (Figure 3). Other reconstruction
methods can easily be implemented via an SDK. The number of plane wave angles, as well
as the increment can be freely selected by the user. Other transmit parameters such as the
frequency, the burst count or the voltage can be adjusted as well. On the receive side, the
data sampling rate, averaging factor and TGC can be selected.

 

Figure 3. Clinical style user interface USPilot.

The reconstruction can be adjusted in terms of the size and resolution of the recon-
struction grid (lateral and axial pixel/sample count), the speed of sound and apodization.
Furthermore, customized algorithms (e.g., bandpass filtering or alternative beamforming
approaches) can be inserted into the (real-time) reconstruction pipeline. The software
allows the visualization of reconstructed (compounded) B-scan images as well as the
pre-beamformed channel data (in time or frequency) domain, which makes it ideal not
only for clinical research, but also for educational purposes or research on reconstruction
algorithms. In addition to controlling the system via the USPilot, an open programming
interface (C#/C++/Matlab with SDK) is made available, which provides access to the
same transmit, receive and beamforming parameters as in the case of the UI. A custom but
open binary data format (*.orb) is chosen for storage of the pre-beamformed and recon-
structed ultrasound data. Meta-data such as transmit and receive parameters are stored
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with the actual ultrasound data by default and import tools for Matlab/Python/C/C++
are made available.

2.4. ML-Based Segmentation Algorithm

We trained a neural network to segment the bladder into abdominal ultrasound
images and encountered two main challenges when implementing the network. On the
one hand, the limited space and computational resources available at inference time and
on the other hand, the quality of abdominal ultrasound images can be very challenging.
Figure 4 shows an example: in the left sub-figure, a (partially filled) bladder appears mainly
as a dark region in the image since little sound is reflected by the fluid. In addition, the
bladder is only partially imaged and merges seamlessly into the black area outside the
ultrasound fan. This situation is usually the case in corpulent patients. As can be seen in
the upper part of the segment, weak echoes might occur in cases where the side lobes of
the ultrasound beam intersect with the bladder tissue. A very different situation is shown
in the middle sub-figure. Here, the (almost empty) bladder is located in the middle of
the ultrasound fan. Lastly, the right sub-figure depicts a situation where other anatomical
structures, e.g., the pubic bone or the colon, generate a large dark region that might fuse
with the bladder. Please note that the appearance of different anatomical parts can be very
similar in the images.

 

Figure 4. Examples of bladder segmentation (yellow). Red lines in the left sub-image indicate the
borders of the ultrasound fan above which there is no valid information. (a) Partially visible bladder.
(b) Almost empty bladder near the center of the US-fan. (c) Additional dark regions due to pubic
bone shadow or colon.

We started development using a Mask-R-CNN architecture [16,17] to segment the
bladder. However, we found that the model size of approximately 0.5 GByte was way too
large for the intended purpose. A second drawback was that the network tended to overfit
to the data, since only very few images (253) were available for training. We therefore
decided to use a U-Net architecture [18] in a minimal configuration. We set the network up
to compute a 2-class segmentation (bladder, non-bladder). The original ultrasound images
(1056 × 720) were down-sampled to a resolution of 528 × 352 and reduced to a single
color channel. In total, we acquired 253 data sets (each consisting of one B-mode image),
which were acquired from 20 human volunteers as training data for the CNN. For both the
contracting and expanding paths, we used 5 successive blocks. We started with 6 channels
for the first layer and doubled the channel number with each successive layer, resulting in
a total of 96 channels at the bottleneck. For expansion we used up-sampling followed by
convolution. Training was performed using a batch size of 4 with a learning rate of 0.00002.
Using these parameters, the network converged within 400 epochs. The resulting network
was less prone to overfitting than the original attempt. We found however that the amount
of data was still too low. More importantly, we found that the network had issues in
detecting the virtual border of a scan in the image. In particular, if the ultrasound response
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for a partially imaged bladder was very weak, the resulting segment often extended into
the illegal region of the image, i.e., outside the ultrasound fan. Additionally, we often
found cases where other dark regions were segmented as bladder.

To this end, we extended the dataset by re-sampling the images so that one of the fan
sides coincided with one of the image borders. Furthermore, we flipped images and ground
truth on the vertical as well as the horizontal axis. This way we increased the number
of images by a factor of 20. Training the network using the augmented data effectively
prevented overfitting. Furthermore, and probably much more importantly, the network
learned how artifacts and the bladder differ.

For the trained network, we computed an IoU above 0.75 but below 0.9 for all images.
We checked segmentations and ground truth and found, interestingly, that the computed
segmentations were consistently tighter (smaller) than the ground truth provided by
medical experts. The ground truth segmentation was performed by one experienced
urologist using the VIA annotation tool [19]. A second experienced urologist performed
the validation of the ground truth. Consulting with the experts revealed that the network
only segmented the interior of the bladder while the experts partially included the bladder
tissue. This unintended result proved to be beneficial for the application at hand. Since we
want to estimate the bladder volume, including the tissue would lead to a systematic error
that, in particular, depends on the volume itself.

We are working on a further reduction in the network size. The original network size
was 340 MBytes. We were able to reduce its size with various pruning strategies [20] to
under 300 MBytes without significantly sacrificing the quality of the results. This size is still
too large to be run efficiently on a mobile device. Additionally, the inference times need to
be decreased significantly. Currently, the network does inference on the target device at
approximately 6.4 s per frame. Although this would be more than sufficient for a regular
check of the bladder volume, the system would not be able to perform any other tasks in
the meanwhile. In the use-case of regular checks of the bladder volume and content, such
an inference frame rate might still be acceptable for long-time monitoring. The integration
of such a model in the processing pipeline will be implemented by supporting the ONNX
model format with the C# runtime using Microsoft ML.NET in the future.

3. Results

3.1. Characterization of Electronics

The transmit and receive paths of the electronics were characterized with respect to
the bandwidth. First, for the assessment of the transmit bandwidth, an 80 mVpp sinus
signal of varying frequency from a signal generator was digitized by the electronics and
the amplitude of the digitized signal was characterized (Figure 5a). As can be seen, the
input bandwidths significantly decrease below 100 kHz and above 10 MHz. Furthermore,
we evaluated the signal fidelity by generating rectangular bursts of 3 cycles at different
frequencies (Figure 5b,c). The electrical signals were measured on the connector PCB with
an oscilloscope and minor overshooting was observed.

3.2. Transducer Characterization

For the assessment of the transducer performance, echo signals from a steel reflector
generated by excitation of individual transducer elements with a rectangular burst 1 were
evaluated. Figure 6a shows a typical time domain echo signal of one of the transducer
elements with the corresponding spectrum in Figure 6b. Each of the signals was analyzed
with respect to the maximum signal amplitude in order to compare the transmit-receive
sensitivity of the transducer elements. As can be seen in Figure 6c, the element sensitivity
is very homogeneous with a relative standard deviation of only 5.6%.

For all elements, the maximum frequency is around 2.3 MHz with a standard deviation
of 1% (Figure 6d). The center frequency and the −6 dB bandwidth seem to vary more
strongly (Figure 6e,f); however, this is an artifact due to a frequency dip around 3 MHz
just below the −6 dB line in the spectrum (red line in Figure 6b). If we neglect this minor
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dip, the average center frequency of the transducer is 2.9 MHz with a −6 dB bandwidth of
approximately 60%.

Figure 5. Assessment of MoUsE electronics input bandwidth (a) and signal fidelity (b,c) as a function
of frequency.

Figure 6. Analysis of transducer performance by charaterization of pulse-echo data from a steel
reflector. Single element signals in time (a) and frequency (b) domain, where the red line depicts
the −6 dB threshold. Element sensitivity statistics (c), maximum frequency, center frequency and
bandwidth statistics (d–f).

3.3. System Characterization/Standards

In view of using the system on probands in the context of an exploratory clinical
study, the system’s compliance with respect to medical device standards was verified by
certified laboratories. In particular, the acoustic output was characterized according to IEC
60601-2-37, where the maximum pressure, the mechanical and thermal index as well as the
intensity were assessed. All parameters remain well below the threshold for diagnostic
ultrasound (e.g., MI < 0.5 and ISPTA < 5 mW/cm2). Furthermore, the electrical safety was
tested according to IEC 60601-1 and the electromagnetic compatibility (e.g., immunity and
emission) was tested according to IEC 60601-1-2. The system complied with the standards
in both tests.
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3.4. Imaging Performance
3.4.1. Reconstruction Speed

When considering the achievable reconstruction speed and the system frame rate, the
data transfer from the electronics to the PC/tablet, where the GPU-based reconstruction
is implemented, represents a bottleneck, rather than the reconstruction itself. With the
used setup (Surface Pro 7 with Intel Core i7-7660U, 16GB RAM, Intel Iris Plus Graphic
640, Microsoft, Redmond, WA, USA), up to 300 frames of pre-beamformed channel data
could be transferred when a sampling rate of 40 MSa/s and an image depth of 8 cm were
chosen. Both parameters have a direct impact on the number of transferred frames per
second; however, this is not totally linear due to some communication overhead. Since
less time is needed for GPU-reconstruction than for data transfer, plane wave imaging can
be performed with 300 frames/s for the above-described parameters with 23 B-scans per
second and using compounding with 13 angles.

3.4.2. Resolution

The image resolution was characterized using wires with a diameter of 150 μm
in a water tank at different depths. Pre-beamformed channel data were acquired after
transmitting 21 plane waves in an angle range of ± 16◦. Reconstruction was performed
offline in Matlab (The MathWorks, Inc., Natick, MA, USA) with the highest resolution to
allow better assessment of the lateral extent of the point spread function (PSF).

The FWHM (Full Width Half Maximum) was characterized as a function of depth
(wires in distances between 1 cm and 10 cm from the transducer aperture) and as a
function of the number of compounding angles (from 1 to 21). Furthermore, different
beamforming approaches were investigated from conventional delay and sum (DAS) to
coherence beamforming (COH) [21,22] or non-linear filter approaches based on signal
statistics (STD) [23].

The lateral FWHM ranges between 300–800 μm depending on the chosen algorithm
for the targets closest to the aperture and between 1300–2800 μm for those that are 10 cm
away. In all cases, the STD reconstruction significantly improves the lateral resolution
when compared with simple DAS. Furthermore, Figure 7 shows that increasing the number
of compounding angles does not always lead to an improved resolution. In fact, depending
on the depth, an ideal resolution is achieved with 5–10 compounding angles. This can
be explained by trailing wave artifacts, which are not taken into account in the DAS
beamforming.

Figure 7. Lateral PSF of the MoUsE system equipped with our 32-element 3 MHz phased array
probe. (Left) FWHM as a function of plane wave compounding angle count for a constant depth, as
a function of depth for constant plane wave compounding angle count and FWHM obtained with
different reconstruction approaches. (Right) 2D plot of FWHM as a function of angle count and
depth for conventional DAS beamforming.
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3.4.3. Signal to Noise Ratio

The depth-dependent system’s SNR was characterized using data from a CIRS multi-
purpose phantom. One hundred consecutive image acquisitions were performed with the
CIRS phantom in the same position and the reconstructed, compounded and enveloped
filtered data were analyzed (prior to logarithmic compression). Each depth mean values μ
and standard deviation values σ along a central image line in the yellow frame in Figure 8
were used to calculate the depth-dependent SNR as suggested in [24].

SNR(z) = 20·log10(μ(z)/σ(z)) (1)

To achieve the ideal SNR, the data were acquired in a compounding mode with
21 angles in the range of ± 16◦. Conventional delays-and-sum beamforming without
additional contrast-enhancing filter was used to reconstruct the data.

Figure 8. B-mode image acquired with 21 compounding angles used for calculation of the SNR (left).
Depth-dependent SNR of compounded data (right).

3.4.4. Contrast

Assessment of the image contrast was performed by scanning lesions in a standard
ultrasound imaging phantom (CIRS multipurpose phantom Model 040GSE, CIRS, Norfolk,
VA, USA). The contrast ratio (CR) and the contrast to noise ratio (CNR) as defined in [25]
were taken as metrics for quantification of the image contrast behavior:

CR = 20·log10(μlesion/μbck) (2)

CNR =
|μbck − μlesion|√
σbck

2 − σlesion
2

(3)

Plane wave compounding data were acquired with a varying number of angles
between 1 and 21. The metrics were then assessed as a function of the number of com-
pounding angles. For this purpose, the mean values μ and the standard deviation σ inside
defined image regions (red circle: lesion; yellow circle: background in Figure 9a) were
calculated.
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Figure 9. B-mode image of CIRS phantom (a) taken for assessment of CNR and CR by analysis of
lesion (red ROI) and background (yellow ROI). The x-dimension is in the lateral dimension of the
ultrasound array and the z-dimension is in the axial direction (ultrasound propagation direction).
CNR and CR (b,c) are calculated as metrics based on the mean values and standard deviations inside
the ROIs.

3.5. Segmentation

To validate the quality of the trained CNN, ultrasound B-mode images from human
bladders with different filling levels were acquired from four male volunteers with the
MoUsE system. In this first study, 20 data sets (each consisting of one reconstructed B-
mode image) were collected. None of these data sets is included in the 253 data sets used
for training of the CNN. For image acquisition, an ideal position for the probe on the
abdomen was identified based on the real-time feedback of the MoUsE system. Images
of the bladder at different filling levels were then acquired with the probe at this position.
When it comes to the beamforming approach, plane wave compounding with 21 angles
was chosen. Examples of different bladder images can be seen in Figure 10a–d. In a second
step, the images were automatically segmented using the above-described CNN. Examples
of the segmentation for four different data sets are given in Figure 10e–h, where different
situations can be identified. In Figure 10e, the upper part of the bladder, which is closest to
the probe, is not identified as part of the bladder by the CNN. This might be due to clutter
signals in this part of the image. In Figure 10f, the bladder is correctly segmented; however,
an additional surface, which does not correspond to the bladder, was identified as bladder
tissue. Figure 10g represents an ideal case with a high correlation between the ground truth
and the CNN-segmentation. Finally, Figure 10h shows a case where the bladder was not
found by the algorithm due to the really low contrast between the (compressed and almost
empty) bladder and the surrounding tissue, as can be seen in Figure 10d. Examples of the
ground truth segmentation for the cases presented above are given in Figure 10i–l.

For a qualitative analysis of the segmentation quality, the percentage of the bladder
surface that has not been identified as bladder by the CNN was assessed. Furthermore, the
image fraction that was falsely identified as bladder tissue by the algorithm was assessed
as well. Both parameters are expressed in relation to the bladder surface in the ground
truth segmentation. The process of automated analysis is shown in Figure 11. First, the
ground truth data were binarized for easy comparison with the CNN-segmentation, which
provides binarized data by default. By comparing both images, missing bladder tissue
and tissue falsely identified as bladder are identified. Finally, simple pixel counting was
used to quantify the missing and false bladder surface. The analysis shows that only a very
small tissue fraction (corresponding to 1.4% of the bladder surface) was falsely identified
as bladder tissue. On the other side, significant parts of the bladder (median of 33%) were
not recognized as such by the algorithm. As can be seen in Figure 10, this is mostly the
case where clutter artifacts appear, leading to low contrast between bladder tissue and
the background.
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Figure 10. First investigation of the combination of ultrasound B-mode images acquired with the
MoUsE system and the described CNN for automated segmentation of human bladder. (a–d)
Ultrasound B-mode data (plane wave compounding, 21 angles), (e–h) segmentation results from the
CNN, and (i–l) ground truth segmentation (performed manually by an experienced urologist).

Figure 11. Statistical analysis of the accuracy of bladder segmentation and example of one segmen-
tation highlighting the differences between the expert ground truth and the CNN segmentation.
Areas not recognized as bladder by the CNN are marked as “missing bladder”, areas erroneously
segmented as bladder by the CNN are marked as “false bladder”. The relative fractions of “missing”
and “false” bladder in the different segmented data sets are shown as histogram in the right column.

4. Discussion

We developed a new portable low-cost ultrasound research system designed for
continuous bladder imaging and characterized its (hard- and software) components in first
phantom and proband experiments to assess its potential for later use in post-operative
bladder monitoring. With dimensions of 18 × 12 × 3 cm3 and a weight of 610 g, the
system is compact enough for applications where portability is required. The ultrasound
probe was integrated into compact housing (diameter of 40 mm, height of 17.5 mm)
and equipped with a self-adhesive foil, which allows long-term use without manual
probe positioning. The system was designed, manufactured, assembled and tested in the
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ultrasound department of Fraunhofer IBMT. In the design process, the focus was set not
only on the performance but also on cost efficiency and limiting the total material cost
for the electronics to approximately €1000. The system was designed to be as flexible as
possible, and therefore it provides full control to the transmit parameters and full access to
the receive data pipeline, where receive and beamforming parameters can be selected and
custom filters and reconstruction algorithms can be integrated into the real-time pipeline.
Full data access to the receive pipeline and in particular real-time availability of the pre-
beamformed channel data (up to 300 frames/s in our study) is not provided by clinical
sonography systems and makes the system future-proof for other types of applications
such as raw radio-frequent signal processing and ML modeling. On the other hand, most
research systems are not certified for medical use. Accordingly, the combination of low-cost
and the above-described flexibility makes the MoUsE system an ideal tool for research
and educational purposes in ultrasound imaging. In order to ease the transfer of new
ultrasound imaging approaches into clinics, the technical prerequisites such as data access
must be provided and regulatory constraints must be respected as well. For this reason,
we performed various tests according to safety standards for medical devices, such as
electrical safety, electromagnetic compatibility and acoustic safety. Compliance to these
standards was shown and the corresponding test protocols are available; this is of great
value when seeking an ethics clearance for exploratory clinical studies.

In order to cover most of the clinical applications of diagnostic ultrasound, we chose
a frequency range of 100 kHz–10 MHz as the target specification and validated the band-
width in our study. The imaging performance of the MoUsE is mainly dependent on the
transducer that is used. Our phased array probe with 32 elements represents a compromise
between opening angle and sensitivity. A smaller pitch would have been preferred since a
larger opening would have resulted, which is crucial for effective plane wave compounding.
On the other hand, given the demonstrated image depth of more than 10 cm in the standard
CIRS phantom and more than 15 cm in the human abdomen, imaging of the entire bladder
would have been difficult to achieve with a smaller aperture size generating less acoustic
energy output. The comparison of the image metrics obtained with different beamforming
approaches underlines the potential of software-based reconstruction methods, and thereby,
the need to have access to pre-beamformed channel data.

Having high-contrast image data is particularly needed when subsequent image
processing steps are performed for automated analysis of the data, such as in our first
application of bladder segmentation. We demonstrated the general functionality of our
CNN for segmentation in abdominal ultrasound images. However, the analysis showed
that a high contrast is crucial to prevent segmentation artifacts. This is underlined by
the comparison with earlier work on the use of CNNs for bladder segmentation from
ultrasound data [26,27], where a higher correlation between the automatically determined
and the manually segmented bladder volumes was obtained. However, it should be
mentioned, that the cited work was based on the use of high-end clinical ultrasound
devices, which provide higher contrast, and two orthogonal B-mode images were acquired
for obtaining quantitative values for the bladder volume [26]. The assessment of the actual
bladder volume can hardly be achieved with high accuracy using single cross-sectional
B-mode images, and therefore it is beyond the scope of the presented work. However,
the impact of the lower SNR when compared to ultrasound data acquired with high-end
clinical ultrasound machines needs to be closely investigated, particularly since the bladder
cross-sectional surface was systematically underestimated. This was due to clutter signals
occurring at the bladder border that were recognized as background tissue by the CNN.
On the other hand, background tissue was very reliably identified with very few “false
positive” areas (background tissue falsely identified as bladder).

Despite the first proof-of-concept, further investigation is needed to enhance the
performance of the overall approach. In particular, the network size needs to be improved
in order to allow better use on mobile devices with limited computing capabilities. Since
the analysis has shown the importance of SNR for the accurate segmentation and the

321



Sensors 2021, 21, 6481

potential of more sophisticated beamforming approaches for contrast improvement, the
optimization of image CR and CNR will be the focus of our future work. Furthermore, we
will investigate if training the algorithm with more diverse data (different, and in particular,
lower contrast levels) will yield higher accuracy. In summary, in applications such as the
monitoring of POUR, where a significant or even dramatic and thereby potentially harmful
increase in bladder volume can occur, the proposed approach provides sufficient sensitivity.
However, for applications where a precise quantitative assessment of the bladder volume
is needed, further enhancement of the performance is needed and will be investigated
using refined beamforming approaches and improved training of the CNN.

Finally, beyond this first study on bladder monitoring, we will seek to use MoUsE
and its unique combination of device mobility, flexibility and data access in other medical
ultrasound applications. Although the number of transmit/receive channels is currently
limited to 32, a synchronization scheme that combines several MoUsE systems for a
higher total channel count is currently under development. A wireless interface is already
available on the hardware, but is not implemented in software, which is also a work in
progress and would allow easier use in future mobile ultrasound applications. A battery-
powered version of MoUsE is in development as well. The possibility of transferring
existing classification tasks using machine learning on radio-frequent data in addition to
the image-based approach will also be investigated.
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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for
the coronavirus disease (COVID-19) pandemic, is sweeping the world today. This study investigates
the optical detection of SARS-CoV-2, utilizing the antigen-antibody binding interactions utilizing a
light source from a smart phone and a portable spectrophotometer. The proof-of-concept is shown by
detecting soluble preparations of spike protein subunits from SARS-CoV-2, followed by detection
of the actual binding potential of the SARS-CoV-2 proteins with their corresponding antigens. The
measured binding interactions for RBD and NCP proteins with their corresponding antibodies under
different conditions have been measured and analyzed. Based on these observations, a “hump or
spike” in light intensity is observed when a specific molecular interaction takes place between two
proteins. The optical responses could further be analyzed using the principle component analysis
technique to enhance and allows precise detection of the specific target in a multi-protein mixture.

Keywords: COVID-19; NC protein; optical detection; protein–protein interactions; RBD; SARS-CoV-2

1. Introduction

The world is currently facing the COVID-19 pandemic, caused by the appearance of a
novel coronavirus in the human population at the end of 2019 [1]. Within a few months,
this virus had spread to most countries across the world, infecting millions (>21 million as
of 17 August 2020) and causing >770,000 deaths [2]. Rapid detection methods, independent
of lab settings, have been identified as top priorities in promoting epidemic prevention
and control. Currently, the molecular technique of quantitative real time polymerase chain
reaction (qRT PCR) is the gold standard for SARS-CoV-2 detection using samples from
respiratory secretions [3–7]. However, this time-consuming and cumbersome procedure
involves long processing times (days) for results [8]. Several other molecular assays have
been developed to detect SARS-CoV-2, such as enzyme-based assays, such as ELISAs,
and rapid tests that aim to detect either antibodies against the virus or the viral antigen
themselves [4]. Nevertheless, most of these antigen-antibody-based assays have failed
quality control due to their rapid development without proper testing, resulting in either
false negative or false positive detection, due to the long time it takes to develop serum
responses to the viral infection (from days to weeks) [9]. Thus, most of the methods
used so far require skilled manpower, are time consuming if accurate, or not reliable at
all, if fast. On the other hand, biosensor technology provides excellent sensitivity, but it
has its own caveats. For example, some biosensors require metal coating deposited on
the device, thereby raising costs [10], while others suffer from temperature-dependence,
which can be a hindrance for portable biosensors in outdoor conditions [11]. Some require

Sensors 2021, 21, 6596. https://doi.org/10.3390/s21196596 https://www.mdpi.com/journal/sensors
325



Sensors 2021, 21, 6596

expensive reagents and reaction times that are often longer [12]. Mavrikou et al. have used
bioelectric recognition assays along with artificially engineered cells to demonstrate direct
detection of SARS-CoV-2 surface antigens without prior sample processing [13]; however,
they still have to show whether their systems will work in a real-world scenario. Optical,
label-free biosensors have been utilized frequently in biomolecular detection due to their
continuous monitoring abilities, and high sensitivity to local variations, including the
refractive index change [14]. They are capable of detecting interactions between molecules
and their surrounding media [15].

In terms of detection—the most prominent feature of the SARS-CoV-2 virus, like other
coronaviruses, is the spike protein (S) that protrudes out of the virus particle, essentially
like “spikes” as the name suggests. The spike protein forms a trimer that is used by the
virus to enter susceptible cells using the angiotensin-converting enzyme 2 (ACE2) protein
as the cellular receptor [16], the same protein used by the SARS-CoV-1 virus that caused the
first SARS epidemic in 2003 (Figure 1a). The spike protein is cleaved by host proteases into
two subunits: the surface subunit S1 and the transmembrane subunit S2 [17] (Figure 1b).
The surface S1 subunit is used by the virus to interact with the ACE2 protein, using its
receptor-binding domain (RBD) [18]. This allows the virus to attach to the susceptible
cells, while the S2 protein is used for the actual fusion of the virus with the cell membrane,
allowing the virus to be endocytosed and release its genomic RNA cargo, wrapped up
in the nucleocapsid protein (NCP), into the cytoplasm [19,20]. The viral genomic RNA is
immediately used to translate viral proteins that are used for successful virus replication in
the susceptible cells [21]. The spike protein is also one of the most immunogenic proteins
of the virus, towards which most of the neutralizing antibody responses against the virus
are generated in infected individuals, making it an ideal candidate for a vaccine, as well as
a target of drug development [22–24].

Figure 1. Schematic illustration of the SARS-CoV-2 spike protein and ACE2 receptor binding. (a) SARS-CoV-2 binding to
the ACE2 receptor on the host cell surface. (b) Binding of ACE2 and the spike protein along with an illustration of the spike
protein subunits, S1 and S2.

The receptor-binding domain of SARS-CoV-2 is the key region of the S protein that af-
fects the virus spread. Xia et al. have confirmed these observations by showing that even the
fusion capability of the SARS-CoV-2 S2 subunit is better than that of SARS-CoV-1, further
explaining the increased infectivity of the virus compared with other coronaviruses [25,26].
They further show that lipopeptide inhibitors can be developed, which can disrupt such
fusion capability to inhibit the ability of the virus to infect cells [27]. Similarly, Seydoux
et al. have shown the utility of isolating S-specific antibody-producing B-cell clones from
COVID-19 patients [28]. They further demonstrated that the most potent amongst these
antibodies was targeted against the RBD of the S protein, which was able to block the
interaction of the S protein with ACE2 successfully. Yang et al. tested several binding
inhibitor peptides, targeting the virus early attachment stages [29]. Others have observed a
strong correlation between levels of RBD-binding antibodies and SARS-CoV-2 neutralizing
antibodies in patients [22,30–34]. Thus, study of spike protein interaction with the ACE2
receptor can be of importance, for not only virus entry into cells, but also as a means of
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inhibiting virus infection of susceptible cells, development of vaccines, and detection of
virus infection.

In this work, an optical-based time detection method incorporating the smartphone
light source and a portable mini spectrometer for SARS-CoV-2 detection was developed,
based on the ability to measure antigen-antibody binding interactions.

2. Materials and Methods

2.1. Optical Mini-Spectrometers

C11708MA from Hamamatsu/Japan [35] was used to convert the variable attenuation
of light waves as they passed from end-to-end or reflected off substances into signals with
spectral responses, ranging from 640 to 1010 nm. The wavelength reproducibility ranged
between −0.5 and 0.5 nm and had a maximum of 20 nm FWHM spectra, under constant
light conditions. The measurements were conducted with the room lights on. The distances
among the light source, the spectrometer, and the sample holder were adjusted to eliminate
any possible interference and to stabilize the spectrometer performance. Furthermore, the
spectrometer was aligned with the light source and the sample cuvette to achieve a straight
path of light.

2.2. Smart Mobile Phone

The smartphone light source was used as the main light source [36]. The mobile light
emits lights with the spectral range from 380 to 740 nm. The maximum optical power was
emitted at a wavelength of 623 nm. In this work, iPhone 8 was employed, though any
smart phone can be used.

2.3. Nucleocapsid Protein

The SARS-CoV-2 nucleocapsid protein (Sino Biologicals, Cat no. 40588-V08B) [37] and
its corresponding nucleocapsid antibody (Sino Biologicals Cat no. 40588-T62) [37] were
used for the binding affinity experiments. The lyophilized protein was resuspended at a
stock concentration of 0.25 mg/mL, according to the manufacturer’s instructions, in sterile
water. The nucleocapsid rabbit polyclonal antibody was supplied at a stock concentration
of 1 mg/mL.

2.4. The Receptor Binding Domain (RBD)

The receptor binding domain (RBD) of the SARS-CoV-2 spike protein (Sino Biologicals,
Cat No 40592-V05H) [37] was expressed as a recombinant protein with the Fc region
of mouse (mFc) at the C terminus end and its corresponding spike RBD antibody (Sino
Biologicals, cat. no. 40592-T62) [37] was used for the binding affinity experiments. The
RBD protein was prepared in sterile water at a stock concentration of 0.25 mg/mL, as per
the manufacturer’s instruction. The spike RBD rabbit polyclonal antibody was prepared at
a stock concentration of 1 mg/mL and diluted further for analysis.

3. Results and Discussions

3.1. Experimental Design

The experimental setup utilized in this study is shown in Figure 2a, incorporating a
mini spectrometer and a smart mobile phone that was employed as a light source with its
power spectrum depicted in Figure 2b. The measured optical power of the beam exhibited
maximum power at a wavelength of 623 nm [36]. The mini-spectrometer C11708MA
(Hamamatsu/Japan) was used to measure the light intensity as it passed through test
substances with spectral responses ranging from 640 to 1010 nm [35]. The wavelength
reproducibility was between −0.5 and 0.5 nm and a maximum of 20 nm FWHM spectra,
under constant light conditions. The sample under test was placed between the mobile
light source and the mini-spectrometer, as shown in Figure 2a. The measurements were
conducted with the room lights on. The distances among the light source, the spectrometer,
and the sample holder were adjusted to eliminate any possible interference and to stabilize
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the spectrometer performance. Furthermore, the spectrometer was aligned with the light
source and sample cuvette to achieve a straight path of light. Figure 2c illustrates the
incident, reflected, and transmitted light intensities. The light intensities were linked
through the Kirchhoff’s Law of Radiation [38], which correlates the optical absorbance,
transmittance, and reflection, along with the incident wave.

Figure 2. The proposed concept of optical detection and the experimental design: (a) the optical measurement setup
is shown, consisting of a smart phone as a light source and the mini-spectrometer utilized to collect the light waves
passing through the sample kept in the holder. (b) The smart phone power spectra vs. wavelength. (c) Illustration of the
spectrometer detection principle.

This experimental setup was first used to characterize the two spike proteins subunits,
S1 and S2, which are encoded by all coronaviruses and, as mentioned, allow virus entry into
susceptible cells (Figure 1b). Figure 3a shows the optical responses for both proteins along
with their corresponding blank samples. The measured optical intensity changed from
600 to 750 nm, within the light source spectrum measured earlier in Figure 2b. The response
of the blank samples was performed first, followed by the two protein suspensions, the
responses to which were recorded individually as shown in Figure 3a.

Figure 3a reveals that S2 exhibited a higher “back scattering” and/or absorbance
than S1. The response of the two blank samples was quite comparable, showing the
reproducibility of the results. Since the maximum difference between the blank and the
two protein samples was observed at 623 nm, this wavelength was chosen for further
experimentation, which is also the wavelength at which the optical power of the smart
phone is at its maximum.
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Figure 3. Optical measurements of the spike protein subunits S1 and S2: (a) measured responses for spikes proteins S1 and
S2 at the highest concentration individually (S1B and S2B, respectively), along with their corresponding blanks. (b) Time
domain measurements of the microcentrifuge tube, the blank (shown in gray circles) vs. water (red circles) at a wavelength
of 623 nm. (c) Measured optical responses for the mixed protein samples vs. time. Samples S1B and S2B were at 5000 copies
per ml, S2C, S2D, S2E, and S2F are the serial dilutions of S2B at 10-, 100-, 1000- and 10,000-fold, respectively. (d) Relative
change in light intensity per light path vs. loaded mass. All optical responses were measured at 623 nm. Light intensity was
measured as arbitrary units (a.u).

3.2. Optimization of the Sample Reading Conditions

An initial test of this experimental setup revealed that it had one major drawback;
i.e., when samples were loaded into the holder, the angle and position of the microcen-
trifuge tube changed, which affected the results obtained. To ensure that the results were
reproducible, the measurements for the same samples were conducted over different days,
and on each day, the setup was standardized, since the position of the mobile phone,
spectrometer, and samples could vary. To overcome this caveat and have more consistence
measurements without constant standardization, advantage was made of the ability of
the spectrometer to provide light intensity measurements over time. Hence, after placing
the microcentrifuge tube into the holder, the measurement mode started and the corre-
sponding “blank” recorded. Then the sample was added after ~100 ms, while keeping
the measurement mode on. Figure 3b illustrates the corresponding measurement profile
for S1B and S2B individual samples suspended in water over time. Initially, a fluctuation
in the light intensity was observed with time, as each sample was added to the tube, but
then it stabilized with time. As expected, the blank exhibited the maximum measured
light intensity, while the suspended samples showed lower light intensity than the blank
once stabilized.
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3.3. Test of the Spike Proteins Using the Proposed Experimental Set-Up

To test the proof-of-principle, initially a mixing experiment was conducted at a light
wavelength of 623 nm. Towards this end, 250 μL of S1B protein solution was tested at
the same maximum concentration at 5000 copies/mL followed by addition of the same
amount of S2B. Figure 3c shows the light intensity (as arbitrary units, a.u.) with time
as the protein samples were added to the transparent measurement container in a sequen-
tial manner. This was followed by the addition of 250 μL of ten-fold serial dilutions
of the S2 protein at equal time intervals to the S1B + S2B samples. As can be seen
from Figure 3c, with the addition of the S2 protein, the light intensity increased. The
biggest increase was observed with the concentrated S2B sample followed by its ten-
fold dilution samples S2C, S2D, S2E, etc., until S2F addition as a 1:10,000 dilution had no
extra effect on the increase in light intensity, revealing the limit of detection of the as-
say (5000 molecules per mL × 250 μL × 1/10,000 = 125 molecule per mL). These results
reveal that the ratio between the S1 and S2 protein concentration plays an important role in
the light intensity levels measured. The ratio of S1 and S2 in the virus is the same since
both originate from the cleavage of the S protein. However, the S1 subunit is expressed on
the cell surface, while the S2 subunit is embedded in the lipid bilayer of the cell membrane;
therefore, S2 is less available at the cell surface, which should affect light intensity less
than S1, despite equal ratios. Table 1 lists the extracted parameters at specific time points.
The relative change in light intensity per light path length is a constructed parameter that
should correlate with the loaded mass (concentration) of the protein in a suspension.

Table 1. List of measured and extracted parameters.

Sample Description Light Intensity (a.u.)
Length of the Light

Path (mm)
Mass of Protein Tested

(μg)
ΔIr Per Length

(%/mm)

S1B 21,215 0.11111 1 104

S1B + S2F 21,080 0.22222 1.0001 55

S1B + S2E 21,265 0.33333 1.0011 34

S1B + S2D 21,785 0.44444 1.0111 21

S1B + S2C 23,440 0.55556 1.1111 4

S1B + S2B 23,875 0.66667 2.1111 0.8

Figure 3d shows the change in relative light intensity divided by the light path length
vs. the total mass of the tested samples. As shown in Table 1, it reveals that, as the mass
of the protein increased in our experimental system, the intensity of light also increased,
revealing that length of the light path was directly proportional to the amount of protein in
the sample.

Figure 4a,b illustrates the definition of the light intensities and light path length.
The smart mobile integrated light source emits a light intensity (I0) that is the maximum
intensity that can be measured in this experimental setup. The blank intensity (Ib) is the
measured intensity that goes through the empty container responsible for holding the
sample, such as the microcentrifuge tube. The instantaneous measured intensity (I) is the
recorded light when it passes through the sample. This amount of light intensity strongly
depends on the buffer in which the sample is solubilized/dissolved in, its composition, the
light path length, the kind of the suspended analytes, and its size in the buffer. The light
path length depends on the loaded amount of suspension inside the container. The path
length varies from zero up to the container length (L). For a sample with a specific volume
(V), the corresponding path length is equal to the volume over the cross-sectional area of
the container (A). Equation (1) expresses the relationship between the relative change in
light intensity per light path length and loaded mass (m), as follows:

m = mi + m f e−α(ΔI/l) (1)
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where mi, m f , and l are the initial mass of the buffer, the mass of the final suspension
composite, and the light path length, respectively. α is the decay factor, unique for each
control buffer. Its unit is in mm and could be correlated with the material absorptivity. ΔI
is the relative change in light intensity expressed as follows:

ΔI = (1 − I/Ib)× 100% (2)

where I and Ib are the instantaneous measured light intensity of the suspension and the
corresponding blank, respectively. Figure 4c shows the relationship between mass and the
relative change per length after fitting the measured points with the exponential function.
As can be seen, with more sample volume, the path length increases and light intensity
decreases; hence, the relative change decreases dramatically.

Figure 4. Illustration of light intensity and its path length: (a) the blank representation, and (b) light path length of the
sample. L and A are the length and cross-sectional area of container, l is the light path length. I0, Ib, and I are the incident,
blank, and instantaneous sample intensities, respectively. (c) Loaded mass vs. relative change in light intensity per light-path
length. The measured points were fitted with exponential function expressed by Equation (1) with the following parameters:
mi = 1.003μ ± 2.68n, mf = 2.163μ ± 34.7n, and α-factor is 1.28435 ± 0.030. The other fitting model accuracy parameters are
reduced Chi-Sqr, R-Square (COD), Adj. R-Square are 28.8 atto, 1 and 1, respectively, which indicates the best possible fit.

3.4. Test of Binding Interactions between Spike and ACE2 Using the Optical Assay

After successful demonstration that our set-up could detect spike proteins in solution
using light, we asked if light intensity could be used to characterize the binding interactions
of the spike protein with the viral receptor ACE2. Towards this end, two different variants
of the S1 subunit of the spike protein, S1X and S1Y, were tested (one form that could bind
ACE2 with a much stronger affinity than the other one), along with a non-specific control
protein—bovine serum albumin (BSA)—that should not bind to ACE2. These proteins
were selected to demonstrate the detection of the binding process with ACE2 over time.
The measurement process started with the blank, and after 200 s, 250 μL of ACE2 protein
suspension was tested (Figure 5a). This process was repeated for S1X, S1Y, and BSA, and
their responses to light were measured individually in the same manner as ACE2. The
corresponding individual profiles of ACE2, S1X, S1Y, and BSA are depicted in Figure 5a,
which showed a straight constant line over time. Next, each protein was mixed with the
ACE2 separately to detect any possible binding effect. The measurements started with first
loading the ACE2 in the blank container, then after 200 ms, the test protein was added
to the ACE2 in solution. The responses of the various protein mixtures were read over a
period of 15 min and are shown in Figure 5b.

331



Sensors 2021, 21, 6596

Figure 5. Optical detection of binding interactions between ACE2 and other proteins. (a) Measured light intensities over
time for individual assessment of ACE2, S1X, S1Y, and BSA. (b) The measured mixed light intensities vs. time for ACE2
mixed with S1X, S1Y, or BSA. (c) The measured ACE2–S1X interaction profile for an extended time period.

Figure 5b shows the corresponding slopes that represent the change of the light
intensities over time. The ACE2 + BSA and ACE2 + S1Y responses exhibited almost
constant lines, suggesting highly reduced or lack of any interaction as observed when the
proteins were tested individually Figure 5a. However, the ACE2 + S1X profile showed a
linear straight line with the maximum-recorded slope. The corresponding light intensity
line increased over time, suggesting an interaction between the SIX protein and the ACE2
receptor. We interpret this to mean that there was no protein–protein interaction if the
slope of the line was zero; otherwise, protein–protein interaction occurred. Based on these
observations, our results suggest that the S1X protein exhibits stronger interactions with
ACE2, while BSA and S1Y had weaker interactions with ACE2. These observations are
confirmed by the fact that S1X has a higher affinity for ACE2 (2 μg/mL S1X can bind
1.5–15 ng/mL ACE2), while S1Y reportedly has a much lower affinity (2 μg/mL S1B binds
0.5–8.7 ng/mL ACE2), as tested in enzyme-linked immunosorbent assays (ELISA) by the
company that synthesized these proteins [39].

To explore the interaction and binding characteristics between ACE2 and S1X in
more detail, the measurement time between the two proteins was extended over one
hour, the results of which are plotted in Figure 5c. As can be seen, a nice “hump” was
observed as an increase in arbitrary units (a.u.) with time that was not observed in the
other protein mixtures tested, which we feel is indicative of the binding reaction between
the two proteins.

3.5. Validation of the Optical Assay Using Known Antigen/Antibody Pairs

Next, we wanted to confirm our observations by using our optical system to detect
protein–protein interactions using proteins that are well known to interact with each other.
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This was addressed by testing the molecular interactions between an antigen and an
antibody, which is similar to the interaction between the spike protein and its receptor.
Towards this end, two proteins were tested along with their specific antibodies: the first
protein was the receptor-binding domain (RBD) of SARS-CoV-2 spike protein and its
antibody and the other was the nucleocapsid protein (NCP) of SARS-CoV-2 and its antibody.
Similar to the procedure described earlier, the two proteins were tested individually in our
optical assay followed by addition of their corresponding antibodies that were mixed and
then tested for their interactions.

Figure 6a shows the binding between RBD and its antibody. Upon the addition of
the antibody, as observed earlier, an “interaction peak” was recorded (circled in the blue
color). Similarly, Figure 6b shows the binding between NCP and its antibody. However, in
this case, we realized that the binding effect occurred at specific antibody concentrations;
thus, when the antibody was added first, no interaction peak was observed. Therefore,
we added more concentrated antibody and upon its addition, the interaction peak was
observed. The addition of more antibody did not allow detection of further interaction
peaks, revealing that the protein–protein interaction took place at a specific concentration,
and once the interaction had taken place, no further interaction took place. For a virus-
based suspension, it is therefore suggested to use a fixed antibody concentration and
serially dilute the virus suspension to conduct the binding measurements. Certainly, at a
specific virus concentration, binding effect will appear in the form of an optical response.

Figure 6c,d illustrates the corresponding optical responses for the NC protein and its
corresponding antibody, when they were mixed inside (Figure 6c) or outside (Figure 6d)
the microcentrifuge tube, respectively. Inside mixing means that the protein was added
to the tube and the antibody was added after 10 s, while in the outside mixing scenario,
both the protein and antibody were mixed prior to being loaded in the tube for optical
measurements. As can be seen, the binding response could be detected in each case in
the form of appearance of the hump. However, this “hump” was a lot more pronounced
when the protein and the antibody were mixed prior to testing than when they were added
sequentially. This is good news for the real-life scenario, where in a patient sample, the
antibody should be already bound to the viral or bacterial antigen at the time of detection.

3.6. Test of the Optical Detection Assay Using a Solid Support

The nitrocellulose membrane is a popular matrix that is frequently used due to its
high protein-binding affinity with a pore size of 0.25–0.45 μm in paper-based diagnostics.
Protein molecules usually bind to the nitrocellulose membranes through hydrophobic inter-
actions [40]. Due to the ease of their handling, cheap cost, and the presence of hydrophobic
interactions between them and the suspended proteins, we tested whether the binding
between the SARS-CoV-2 spike protein and antibody could be detected optically when
both were added to each other on the nitrocellulose membrane. Using the experimental
setup detailed in Figure 2a, the optical responses for nitrocellulose membrane, nitrocellu-
lose membrane and spike protein alone, nitrocellulose membrane and antibody against
spike protein alone, and nitrocellulose membrane spike protein–antibody were measured.
Figure 7a shows that both the antibody alone and spike protein alone exhibited higher light
intensity than the nitrocellulose membrane alone with almost a straight line with a constant
slope over a time period of 10 s. The on-paper measured optical responses exhibited
fluctuations as in the samples measured using microcentrifuge tubes. This implies that
these fluctuations are not due to any interactions; rather, they are due to the spectrometer
conversion process [41].
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Figure 6. Optical detection of the binding affinities between: (a) the receptor-binding domain (RBD) of the spike protein
with its antibody (AB), and (b) the nucleocapsid protein (NCP) and its antibody. The antibody was added again to NCP
since no binding interaction was observed the first time. To confirm the result, the antibody was added a third time, but this
time once again, the binding interaction was not apparent. (c) NCP binding with the antibody after mixing inside, and
(d) NCP binding with the antibody after mixing outside. The interaction peak is circled.

Figure 7. Test of protein–protein interaction measurements on solid support: (a) optical responses on nitrocellulose
membrane (NM) alone, nitrocellulose membrane and spike protein (NM + P), and nitrocellulose membrane and antibody to
spike protein (NM + AB) alone. (b) Optical responses to spike protein–antibody binding on the nitrocellulose membrane.
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Figure 7b summaries the interaction measurements, which start with the membrane
alone. After 20 s, the antibody suspension was loaded on the membrane and measurements
were conducted up to 100 s. Next, the spike protein sample was loaded and measurements
were continued up to 500 s. As revealed from Figure 7b, the interaction peak clearly
appeared as circled in blue. It is worth noting that the membrane size, shape, and charge
of biomolecules, pH, and viscosity of the control buffer, as well as the composition influ-
ences the corresponding optical response and binding interactions and must be carefully
standardized [42].

3.7. Role of Electric Current in Disrupting Protein-Protein Interactions

Finally, we studied the effect of direct current (DC biasing) on the ability of two
proteins to bind specifically. This was achieved by subjecting the NC protein solution to
DC voltage bias, as depicted in Figure 8a. An applied bias should result in an induction of
current across the suspension. If this current is high enough, it should have the potential to
destroy the protein physiology and functionality, resulting in the loss of specific protein-
protein interactions. To test this hypothesis, the NC protein solution was loaded in an
electroporation cuvette (rather than a microcentrifuge tube) that incorporates two electrodes
with a volume of 0.5 mL and a separation distance of 0.4 cm. This should result in a
breakdown electric field of 7.5 V/cm. At this field onwards, the binding between the protein
and the antibody should be affected. Above this field, the sample should be incapacitated
for binding. Figure 8a reveals that the optical response decays slowly with the application
of DC bias. At 3 volts DC bias, the optical response decays with a considerable step, and
increasing the DC bias further should burn the suspension and destroy it.

Figure 8. Opto-electrical measurements: (a) Measured NC protein optical response versus time at
different DC bias voltages. (b) Binding measurements between NC protein and its corresponding
antibody after subjected the solution to an electric field.

The breakdown field depends on the electrical characteristics of both the buffer and
the analyte such as proteins, viruses, etc. To explore this further, the suspension of protein
was subjected to 3 V for 1 min and then the antibody to NC was added to the NC protein
solution. The corresponding measured response is shown in Figure 8b. The measured
response was observed to be noisy and did not show a clear binding effect when compared
with Figure 6c that reported the optical response for the same protein and antibody without
the application of DC bias. It is worth mentioning that it may be possible to create a
corresponding vaccine for a disease by subjecting the target viral protein to DC bias
which will affect its function and destroy its physiology (denature it) and communicability
(binding interactions). Furthermore, the proposed optical detection in time domain can
also be used for monitoring and detecting the efficiency of vaccine process development.
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4. Discussion

This study establishes the proof-of-principle that optical methods can be used to
detect specific SARS-CoV-2 spike proteins or their subunits (S, S1, and S2) as well as their
interactions with the ACE2 receptor in solution, whenever present (Figures 3 and 5). The
principle was further validated by testing specific protein–protein interactions by testing
two viral protein–antibody pairs (RBD and NC proteins with their specific antibodies) and
testing them either in solution (Figure 6) or on a solid matrix (Figure 7). Finally, it was
shown that application of a weak current into the system could lead to the disruption of
NC protein–antibody interactions, which could be optically detected (Figure 8). In other
words, our technique could be used not only to detect specific SARS-CoV-2 spike protein–
receptor interactions, but also result in destruction of protein interactions important for
virus replication; thus, inhibiting rate of infection. The proposed detection method can
be performed within minutes, without the need to biochemically label the proteins. This
system can be used to develop novel optical-based detection tests for any virus in a specific
and sensitive manner, as long as one specific protein partner is available in the solution or
on a solid support that can interact specifically with a specific viral protein. For instance, in
the case of SARS-CoV-2, one could use either an antibody to the spike protein or the ACE2
protein to determine whether a particular patient sample may have the virus.

Figure 1c shows the spikes distribution suspended in a sample. As illustrated, the
spike proteins are randomly distributed and exhibit Brownian motion by default [43].
The same scenario applies to the distribution of ACE2 as illustrated in Figure 1d [44]. If
specific binding occurs between the spike proteins and ACE2, as represented by Figure 1e,
their binding distribution should still exhibit random Brownian motion. Nevertheless,
the SARS-CoV-2 spike protein binds with human ACE2 protein with a specific binding
energy that has been measured and is estimated to be nearly −58.55 ± 8.75 kmol−1 [45,46].
A conformational change occurs in the ACE2 receptor protein after binding with spike
protein fragment [46]. Ov et al. showed that the refraction index changes due to the binding
interactions after the virus-antibody incubation process [47]. To detect binding of living
cells and viruses with potential drugs, they proposed a novel label-free real time approach,
incorporating long-range surface waves on a one-dimensional photonic crystal surface
along with microfluidic channel technology [48].

The photoelectric effect theory combines kinetic energy, binding energy, and photon
energy all three of which are correlated through the theoretical physics fundamentals and
principles [44]. Hence, if the generated photon energy due to the binding interactions is suf-
ficient, it could give rise to light intensity at a specific wavelength. Wang et al. discussed the
enhancement of receptor binding of SARS-CoV-2 through networks of hydrogen-bonding
and hydrophobic interactions [46]. They provided explanations to better understand the
structural and energetic details responsible for protein–protein interactions between the
host receptor ACE2 and SARS-CoV-2. Their simulations reveal that both electrostatic
complementarity and hydrophobic interactions are critical to enhance receptor binding
and escape antibody recognition by the RBD of SARS-CoV-2. Ortega et al. conducted an in
silico analysis to study the role of changes in SARS-CoV-2 spike protein during interaction
with the ACE2 receptor. They concluded that the binding energy generated during the
SARS-CoV-2 spike and ACE2 interactions can be reduced due to mutations in the sequence
of the spike protein [18]. Dahal et al. demonstrated that binding probability increases with
antibody concentration and the stability of protein [48].

Based on these observations, we believe that a “hump or spike” in light intensity is
observed when a specific molecular interaction takes place between two proteins. This is
mainly due to the physiochemical properties of the proteins that relate to binding affinity
in the contact surface area, which incorporates the association/dissociation process [39].

As revealed from the corresponding binding measured light intensity profiles, they
exhibit Gaussian-like peaks. Wang et al. demonstrated in their study that the molecular
binding at the single molecule level displays such a peak [40]. Interestingly, Kozono et al.
monitored the real-time Brownian motion and fitted it with Gaussian function [41]. The
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fitting parameters of the distributions can provide many features of the binding interac-
tions [42]. This could provide a quantitative signature or characterization of a specific
antigen binding to a specific antibody, such as intrinsic specificity and binding rate. It
is also proven that the probability of the binding free energy to be Gaussian distributed
near the mean and exponential-like distributed in the tail [43]. Figure 9 shows the binding
interaction over the corresponding time intervals for RBD and NCP proteins with their
corresponding antibodies under different conditions, as described in Figure 6. Similar
interaction peaks were observed in each case, except they varied in the time of appearance
and extent of light intensity. The time slot denoted by (i) represents the time just before
the interaction occurs. As the interaction starts, the corresponding optical profile ascends
incrementally as indicated by (ii) due to the increase in binding events, releasing more
photons energy. The peak pointed by (iii) occurs at the maximum event of binding between
antigens and their antibodies. The height of the peaks indicates stronger interactions and
vice versa. The profile then descends until the end as the binding events become less,
and no further interactions occur at the end, as illustrated by (iv). The distance in time
to maximum peak reflects the speed of the binding interactions; thus, the earlier the peak
appears, the faster the binding interaction takes place. As can be seen in Figure 9, the speed
of NC protein binding to its antibody took place between 100 and 1000 s, irrespective of
the dilution of the proteins.

Figure 9. Optical profiles for normalized interactions vs. binding time under different conditions for
RBD and NCP. (a) NCP with its antibody at the maximum concentration of 22 μg per mL; (b) RBD
with its antibody; (c) NCP with its antibody at a 1:10 dilution; (d) NCP with its antibody at 1:10 with
outside mixing.

Next, we analyzed the interaction profiles of these samples further by fitting them
to Gaussian function. Table 2 lists their corresponding fitting parameters. The most
important parameters are the width and the maximum peak amplitude. Base and center
parameters represent the offset level and the maximum peak location, respectively. These
two parameters provide minor information and could be set to fixed values, such as zero
in all profiles. The multiplication of the maximum amplitude with its corresponding width
can be utilized as an indicator to describe the speed of interaction. This “indicator” is listed
in Table 2, last row. Accordingly, NCP2 exhibited the fastest binding, while NCP3 exhibited
the slowest binding with the arrangement from fast to slow being as follows: NCP2, NCP1,
RBD, and NCP3.
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Table 2. Fitting parameters for interaction profiles depicted in Figure 9.

Fitting Parameters NCP3 RBD NCP2 NCP1

Base 1.43 1.29 1.03 0.83

Center 302 996 181 380

Width 130 252 68 194

Amplitude 0.13 0.04 0.06 0.05

Indicator 16.9 10.08 4.08 9.7

Practical Applications of the Proposed Technique

The optical approach presented in this study can be easily turned into a functional
working system to detect SARS-CoV-2 or any other viral or bacterial pathogen against
which an antibody is available that can detect it sensitively. Currently, there are several
available handheld portable spectrophotometers, which are compact and lightweight, and
equipped with wireless communication system for data transmission. The data can be
received by the smart phone through Bluetooth or Wi-Fi technologies equipped with a
mobile app designed to process the received optical profiles over time. The collected optical
profiles vs. time can then be processed immediately using the smart phone processor
and computational resources. The results can be displayed on the same smart phone
immediately as well. The antibody could be coated on flexible strips and kept inside packs
with medium. These strips can be used directly for loading the nasal swab in-position
within a fabricated holder using 3D printing technology. The 3D printed holder can be
designed to integrate the portable sensor and the smart phone as well. The concept of
strips can be further used to detect different specimens taken from blood, breath, urine,
nasal swabs, stool, etc. For example, the subject can breathe, exhale, or sniff into a device
with a probe coated with antibodies. If binding occurs, the integrated device should be able
to pick up the interaction, confirming that the patient is infected with the virus to which
the antibodies are directed against.

The current methodology provides a rapid, reproducible, and accurate detection
mechanism that can be used to create home-based COVID-19 detection tests that can be
used by anyone. The authors envision that such tests would not require any laboratory
setting, and could be performed using test strips coated with antibodies without prior
sample processing. Interestingly, our approach does not require any electrode patterning,
which makes it the best fit for massive production and high-volume use. It can be adapted
as a point-of-care testing platform with high-throughput to be used in schools, airports,
malls and public services places as well. The cost per test is expected to be less than one
dollar, which will make it competitive with current market price. The detection platform
can be easily equipped with standard electronic data transmission systems to transmit
and process data in place and share it with family, doctors, and hospitals over wireless
transmission. Furthermore, the platform can be deployed in high-risk areas with ease-of-
use and clear steps to load the specimen and easy to understand instructions to operate.

Furthermore, when compared with other detection concepts and methodologies, the
presented approach can distinguish between influenza and coronaviruses. ACE2 binds
directly to the viral spike protein, while ACE2 plays an important role in acute lung injury
induced by influenza viruses [49], which can be correlated with disease severity [50]. Hence,
the proposed methodology can be used in reverse where the spike protein can be used for
ACE2 detection.

5. Conclusions

In summary, this study provides proof-of-principle for an optical-based, quick, simple,
and sensitive screening technology for the detection of SARS-CoV-2. It is based on the
principle that when light passes through a sample, interactions between the photons and
sample occurs within a specific range of wavelengths. The current approach utilizes a
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smartphone light source and a portable mini-spectrophotometer to convert the variations
in light intensity into measured signal. The optical responses could further be analyzed
using the principle component analysis technique to enhance and allow precise detection
of the specific target in a multi-protein mixture. This approach can be further developed to
accommodate mass screening that should provide fast and accurate positive or negative
test results.
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Abstract: Prostate cancer is a significant cause of morbidity and mortality in the USA. In this paper, we
develop a computer-aided diagnostic (CAD) system for automated grade groups (GG) classification
using digitized prostate biopsy specimens (PBSs). Our CAD system aims to firstly classify the Gleason
pattern (GP), and then identifies the Gleason score (GS) and GG. The GP classification pipeline is
based on a pyramidal deep learning system that utilizes three convolution neural networks (CNN) to
produce both patch- and pixel-wise classifications. The analysis starts with sequential preprocessing
steps that include a histogram equalization step to adjust intensity values, followed by a PBSs’ edge
enhancement. The digitized PBSs are then divided into overlapping patches with the three sizes:
100 × 100 (CNNS), 150 × 150 (CNNM), and 200 × 200 (CNNL), pixels, and 75% overlap. Those
three sizes of patches represent the three pyramidal levels. This pyramidal technique allows us to
extract rich information, such as that the larger patches give more global information, while the
small patches provide local details. After that, the patch-wise technique assigns each overlapped
patch a label as GP categories (1 to 5). Then, the majority voting is the core approach for getting the
pixel-wise classification that is used to get a single label for each overlapped pixel. The results after
applying those techniques are three images of the same size as the original, and each pixel has a
single label. We utilized the majority voting technique again on those three images to obtain only one.
The proposed framework is trained, validated, and tested on 608 whole slide images (WSIs) of the
digitized PBSs. The overall diagnostic accuracy is evaluated using several metrics: precision, recall,
F1-score, accuracy, macro-averaged, and weighted-averaged. The (CNNL) has the best accuracy
results for patch classification among the three CNNs, and its classification accuracy is 0.76. The
macro-averaged and weighted-average metrics are found to be around 0.70–0.77. For GG, our CAD
results are about 80% for precision, and between 60% to 80% for recall and F1-score, respectively.
Also, it is around 94% for accuracy and NPV. To highlight our CAD systems’ results, we used the
standard ResNet50 and VGG-16 to compare our CNN’s patch-wise classification results. As well, we
compared the GG’s results with that of the previous work.

Keywords: deep learning; classification; grade groups; CAD system; prostate cancer

1. Introduction

The most recent statistics from the American Cancer Society showed that prostate
cancer (PC) is the most prevalent type of cancer with 248,530 (26%) cases, and it is also the
second leading cause of cancer-related death with 34,130 (26%) [1] among men. Prostate
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tumors are like many other cancers in that the initial stage does not cause death or pain.
By time the tumor is recognized, it has advanced to high grade with increase mortality [1].
The pathological evaluation of prostate biopsies determines the best treatment method
of PC [2]. One of the methods used to characterize the heterogeneous tumor growth
patterns is the Gleason grading system, which observes in a biopsy regarding their degree
of discrimination or the Gleason pattern (GP).

The GP practically ranges from GP1 through GP5. The GP1 (stroma) and GP2 (benign)
represent the nonepithelium tissue. While GP3, GP4, and GP5 represent the epithelium
tissue. GP3 indicates moderately differentiated glands compared with that of GP5, which
represents poorly differentiated cells [3,4]. Many factors contribute to determining the stage
of PC, like the prostate-specific antigen (PSA) level. However, the primary factor is the
Gleason score (GS). The GS is the grading system used to determine PC’s aggressiveness
depending on the two most frequent GP observed in the biopsy [5]. Typically, the GS
ranges from 6 to 10, where 6 illustrates low-grade cancer, i.e., the cancer is likely to grow
slowly, and 10 represents high-grade, i.e., the cancer is expected to spread more rapidly.

The GS grading system is often divided into only three categories, 6, 7, and 8–10 [5].
This classification is rather coarse. For example, GS7 could indicate that the most cells are
GP3, followed by GP4, or that most cells are GP4, followed by GP3; however, the latter
case has a much worse prognosis. Similarly, GS9 or GS10 has a worse prognosis than
GS8 despite often being grouped together. Eventually, the 2014 International Society of
Urological Pathology (ISUP) developed a simple grading system for PC: grade groups (GG)
system, based on the visual assessment of cell differentiation and GP predominance [6], see
Figure 1. The GG ranges from GG1 to GG5, with higher GG indicating greater clinical risk.
Table 1 shows the relation between the Gleason grading (GP and GS) and the GG system,
besides the shape of cell tissues for GP and the GG’s risk level.

Table 1. Grading systems for a prostate biopsy specimen are the Gleason grading system, the Gleason pattern (GP) and
Gleason score (GS), as well as the grade groups (GP) system.

Shape of Cell Tissues GP Risk Level GS GG

stroma (connective tissue, non-epithelium tissue) GP1 - - -

healthy (benign) epithelium GP2 - - -

moderately differentiated
Distinctly infiltration of cells

form glands at margins
GP3

Low GP3 + GP3 = GS6 GG1

Favorable GP3 + GP4 = GS7 GG2

moderately and Poorly differentiated
Irregular messes of

neoplastic cells with few glands GP4

Unfavorable GP4 + GP3 = GS7 GG3

High
GP4 + GP4 = GS8
GP3 + GP5 = GS8
GP5 + GP3 = GS8

GG4

Poorly differentiated
Lack of or occasional glands,

sheets of cells
GP5 High

GP4 + GP5 = GS9
GP5 + GP4 = GS9

GP5 + GP5 = GS10
GG5

Figure 1. Examples of GP labels.

The discordance in GG diagnosis by different pathologists using the same biopsy is be-
tween 30–50% [3,7,8]. Agreement is greater among pathologists with urologic subspecialty
training and high experience than among pathologists in general [9]. Accurate diagnosis of
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prostate biopsy specimens helps physicians to make essential treatment decisions [9,10].
Due to expert subspecialists’ availability, the development of an automated system for
assessing prostate biopsy specimens with expert-level performance could improve prostate
biopsy’s clinical utility.

In recent years, extensive research work was developed to diagnose the tumorous
lesions for many organs, especially the prostate [11–14]. Deep learning (DL) combined
with histopathology and radiology imaging, particularly magnetic resonance imaging
(MRI), plays an essential role in grading the prostate’s cancerous tissues [4,15–17]. For
histopathology, Arvaniti et al. [18] developed a DL approach to identify automated Gleason
grading of prostate cancer tissue microarrays with Hematoxylin and Eosin (H&E) staining.
This model’s advantages were that it was trained by a dataset of about 641 patients and
tested on an independent cohort of 245 patients annotated by two pathologists. Cohen’s
quadratic kappa statistic was used to the interannotator agreements between the model and
each pathologist. The authors reported the results for the GP and GS. However, they did
not mention the final classification of the GG that is considered the simple grading system
for PC. Also, Bulten et al. [19] introduced automated grading prostate biopsies using a DL
system. They focus on classifying the GP for the prostate biopsies, and then identifying the
GS depending on the GP predominance. Their DL approach was developed using 5834
biopsies from 1243 patients. The authors did not report the overall accuracy of the GP
classification; they reported only the final results for the GG. Similarly, Nagpal et al. [4]
used a DL approach to improve GS for whole-slide images of prostatectomies. The system
was developed using 112 million pathologist-annotated image patches from 1226 slides
and tested on an independent validation dataset of 331 slides. The author considered the
GG4 with GG5 as one class and did not report the individual results for both of them. The
view tissue for the GG5 is very similar to the GG4, and it is considered the big challenge to
differentiate between them.

According to the previous studies, the general technique to classify the GG, (see e.g.,
the work in [19]) is that the DL systems are developed to segment digitized prostate biopsy
specimens (PBSs) into regions according to GP, after which the GG is identified depending
on the GS and GP grade and its predominance. However, no study reported the overall
accuracy of the GP segmentation. They reported only the final results for the GG. Our
work develops a DL-based computer-aided diagnostic (CAD) system for reading digitized
PBSs sections and dealing with GP as a classification problem, not as a segmentation task
using patch- and pixel-wise classification methodology. This is the first time this ideas was
applied, to the best of our knowledge. Finally, GP labels are used to determine the GS and
GG, and their performance is comparable to expert subspecialists.

The rest of the paper is structured as follows. Section 2 describes in details the
proposed DL pipeline. The performance metrics used for evaluation and the details of
experimental results are given in Section 3. The limitation and highlights for our pipeline
are discussed in Section 4. Finally, Section 5 concludes the work.

2. Methods

This work’s primary objective is to develop a CAD system for accurate GG diagnosis of
PBSs. The proposed overall CAD system performs GP classification, as well as identifies the
GS and GG. The GP classification pipeline consists of three stages: a DL system consisting
of fusion three convolution neural networks (CNN); namely, a pyramidal CNN. Also, a
patch and pixel-wise classification that divided the original image into patches and labeled
them according to GP, the majority voting techniques is used in this step to merge the
patches images into the original size, see Figure 2. Finally, identifying the GS and GG
depends on the classification of the GP.
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Figure 2. The proposed pipeline for our CAD system.

2.1. Deep Learning System

The CNN plays an essential role in many fields of medical image analysis, especially
in the segmentation [12,20,21], and classification [22,23]. Our DL system has a pyramidal
architecture containing three CNNs, see Figure 2. The overall framework for our DL
system is depicted in Figure 3 , which shows the training and testing phases for for
patch-wise classification. For the training model, the preprocessing step is applied to
prepare the input data for the CNN. The preprocessing includes histogram equalization
followed by edge enhancement [24,25]. The edge enhancement is applied to make the
edges visible prominently by increasing the contrast of the pixels around the specific edges.
The convolution matrix, namely, mask or kernel, is utilized to enhance the edges [24,25].
Figure 4 shows the effect of applying edge enhancement and histogram equalization on the
original prostate patch. After that, the PBSs images are divided into overlapping patches
with three different sizes: 100 × 100, 150 × 150, and 200 × 200 pixels, see Figure 2. The
overlap between successive patches is 75%. The generation of overlapped patches provides
different image viewpoints that enhance the DL framework’s training and validation. We
select for training those patches with no more than 30% of their area labeled as background
in the ground truth. Each patch is assigned a single label, being the ground truth GP of
most pixels in the patch. If the winning label matches the value of the center of the given
patch, then this patch is selected for training. Otherwise, we remove it from the CNN
training. Algorithm 1 presents all details about the preprocessing step.

The pyramidal CNN is composed of three CNNs, and each one has a different patch
size, as shown in Figure 2. We designed the three CNNs such that they have the same
architecture but with different sizes. The prominent architecture of any DL-CNN base
consists of input layers, hidden layers, and an output layer [26]. Our CNN’s input layer is
fed with the patches from the first step (preprocessing) for our proposed framework. The
small CNN (CNNS) is fed with 100 × 100 patches, the medium CNN (CNNM) is fed with
150 × 150 patches, and the large CNN (CNNL) is provided with 200 × 200 patches. The
core of CNN is the hidden layers that contain the number of CNN parameters and weights.
The architecture of the hidden layers of our CNN is represented by a series of convolution
layers (CLs) intervened by max-pooling layers (MPLs) and dropout layer, followed by two
fully connected layers (FCls). Finally, there is a soft-max layer to give the probability for
the five classes.

In the CL, the image is convolved with kernels (multiple kernels in each layer) to
extract prominent features that describe the object of interest in the input patch; these
features are called feature maps. Therefore, each CL results in a volume of feature maps.
In our implementation, we use kernels of size 3 × 3. In MPLs, the spatial dimensions are
reduced by a factor of two. Benefits are twofold: firstly, keeping only the most prominent
features, discarding those less essential, and secondly, reducing computational cost and
training time. In our implementation, the stride is equal to one for all layers.
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Algorithm 1: Preprocessing step of developing input data for a convolution
neural network (CNN). Value of N is 100, 150, or 200.

Input: Prostate biopsy specimens digitized.
Output: Classified selected patches into Gleason pattern labels .
1. Apply the histogram equalization and edge enhancement on the PBSs.
2. Divide the PBSs into overlapping patches, with size N × N pixels

and 75% overlapping.
3. Selecting appropriate patches for training

• Calculate the majority voting for the pathological patch, WL ← Winning
Label.

• Estimate two variables for corresponding label path, RB←ratio of
Background and CV ←Center value.

• If (WL == CV)&(RB ≤ 0.3)
Select the patch

Else
Remove the patch

Figure 3. Proposed pipeline for patch-wise classification, while PBSs is prostate biopsy specimens
and Gleason pattern labels (GP).
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Figure 4. Example for applying prepossessing step on original patch: histogram equalization and
edge enhancement.

The CNN contains four convolution layers, and the number of CLs filters is 16, 32, 64,
and 128. The dropout layers weight 0.1, 0.1, 0.3, 0.3. The number of units for the FCLs is
64 and 512, respectively. The training seeks to minimize the cross-entropy loss between
the predicted probabilities and the ground truth labels. The dropouts layers follow FCLs
to minimize network overfitting, and the dropout rate is set to 0.15 for both layers. The
total and trainable parameters for CNNS, CNNM, and CNNL, are 264,421, 534,757, and
952,549, respectively, and there are no nontrainable parameters for all of them. The labeled
patches are used to train the proposed CNN. During the training, the CNN uses iterative
optimization to learn its weights to maximize the number of correctly classified samples
during prediction.

Our DL model has numerous parameters. Therefore, we utilized a hyper-parameter
tuning with a random search (RS) technique that helps to reduce overfitting and improves
our model’s performance. Our system’s accuracy is assessed by performing training,
validation, and testing for the patches. The curves for the accuracy and loss of training the
CNNL, the best accuracy among three CNN, are presented in Figure 5. Also, the validation
(accuracy and loss) curves are shown in Figure 5. By increasing the number of epochs, the
validation accuracy rises until it reaches around 0.78, and the validation loss decreases
until it gets around 0.7.

Figure 5. Training loss and accuracy as well as validation loss and accuracy in dataset for our
proposed CNNM.
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2.2. Patch- and Pixel-Wise Classification

The goal for the patch-wise technique is to label all patches generated from the
digitized PBS. We apply the patch-wise classification for all three CNNs individually
during the test to assign each overlapped patch a label from one to five as GP categories.
After that, a pixel-wise classification is applied to obtain three images of the same size as
the original. The pixel-wise technique utilizes the output from the patch-wise classification,
labeled patches generated from the three CNNs, to give all pixels that contain this patch
the same label. Most of the pixels appear in several batches due to overlapped batches.
Therefore, overlapped pixels have multiple labels depending on their position in the image.
The majority voting is the core approach for the pixel-wise classification to get a single
label for each overlapped pixel. The two techniques, patch- and pixel-wise, are used on the
output of the three CNNs. The results after applying those techniques are three images of
the same size as the original (each pixel has three labels); then, we applied majority voting
again on those three images to obtain the final pixel-based classification.

2.3. Grade Groups System

The identification of the GG label is considered our goal in this work. Each digitized
PBSs has labels between 1–5 according to its GP. We utilize Table 1 that demonstrates the
relation between three measurements (GP, GS, and GG) to generate the GS from GP. Thus,
identifying the GG from GS.

3. Results

The proposed framework is trained, validated, and tested on 416, 96, and 96, respec-
tively, with whole slide images (WSIs) of the digitized PBSs from the Radboud Univer-
sity Medical Center, USA, and it was analyzed by the University of Louisville Hospital,
USA [19,27]. A semiautomatic labeling technique was utilized to circumvent the need for
full manual annotation by pathologists. Expert pathologists defined the GP, GS, and GG
for all WSIs, and the digitized PBSs are divided into overlapping patches for patch and
pixel-wise classification according to the GP ground truth. Our CAD software is primarily
implemented in Python and Matlab programming environments. The experimental results
were also performed on a Dell Precision workstation with an Intel Xeon eight-core CPU
running at 3.31 GHz and 128 GB RAM.

The total number of patches for each CNNS, CNNM, and CNNL are around 5.8, 3.6,
and 1.7 million, respectively. Those patches belong to 608 (416, 96, and 96) of the WSIs of
the digitized PBS. The WSIs, 608, are separated into training, validation, and testing before
generating the patches that means the model doesn’t see the validation or testing patches.
We face a big challenge to train our model with a balanced dataset because the occurrence
of the GP1 is very high with around 60% of the PBS, and the other four types (GP2, GP3,
GP4, GP5) have almost 40%. Therefore, we utilized all batches generated from the four GP
(GP2, GP3, GP4, GP5) during our training and randomly selected the number of patches
from the GP1 that made the number of patches very close. The CNNS, CNNM, and CNNL
were trained with around 130, 45, and 25,000 patches, respectively, for each group.

Our goal for this automated system is to identify the GG. Therefore, there are many
steps, and each one has its results before reaching our target. We show first the accuracy
for each CNN, pyramidal CNN, especially the patch-wise classification, see Tables 2 and 3.
After that, we demonstrate the system’s accuracy for the GG. More details are presented in
the following two subsections.
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Table 2. Patch-wise classification accuracy for our proposed CNNS and CNNL using precision, recall, F1-score, accuracy,
macro-averaged, and weighted-averaged.

CNNS CNNM CNNL

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Class 1 0.86 0.97 0.91 0.92 0.97 0.94 0.96 0.94 0.95

Class2 0.74 0.79 0.76 0.77 0.80 0.78 0.81 0.82 0.81

Class3 0.66 0.63 0.76 0.68 0.62 0.65 0.75 0.68 0.71

Class4 0.66 0.44 0.52 0.63 0.55 0.59 0.64 0.66 0.65

Class5 0.53 0.66 0.59 0.46 0.63 0.53 0.42 0.53 0.47

Accuracy 0.70 0.70 0.70 0.73 0.73 0.73 0.76 0.76 0.76

Macro-averaged 0.68 0.70 0.69 0.69 0.71 0.70 0.72 0.73 0.72

Weighted-average 0.70 0.70 0.70 0.73 0.73 0.72 0.77 0.76 0.76

Table 3. Patch-wise classification accuracy for our proposed CNNL and VGG-16 network using precision, recall, F1-score,
accuracy, macro-averaged, and weighted-averaged.

CNNL VGG-16 ResNet50

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Class1 0.96 0.94 0.95 0.87 0.82 0.85 0.94 0.93 0.94

Class2 0.81 0.82 0.81 0.76 0.56 0.64 0.74 0.93 0.82

Class3 0.75 0.68 0.71 0.65 0.58 0.62 0.75 0.65 0.70

Class4 0.64 0.66 0.65 0.51 0.63 0.56 0.72 0.54 0.61

Class5 0.42 0.53 0.47 0.35 0.59 0.44 0.58 0.76 0.66

Accuracy 0.76 0.76 0.76 0.65 0.65 0.65 0.75 0.75 0.75

Macro-averaged 0.72 0.73 0.72 0.63 0.64 0.62 0.75 0.76 0.75

Weighted-average 0.77 0.76 0.76 0.68 0.65 0.65 0.77 0.76 0.76

3.1. Patch-Wise Classification for Each CNN

The overall diagnostic classification accuracy is evaluated using the accuracy metrics
precision, recall, F1-score, accuracy, macro-averaged, and weighted-averaged [28,29]. The
F1-score is computed by the formula:

F1-score =
2 × (precision × recall)
(precision + recall)

(1)

The overall accuracy is the proportion of correctly classified samples out of all the samples;
then, it must be equal for all metrics: precision, recall, F1-score. To summarize, the following
always holds for the micro-F1.

micro-F1 = micro-precision = micro-recall = accuracy (2)

since for the micro-averaging case, they are also equal to their harmonic mean; in other
words, the micro-F1 case. The macro-average is also calculated for each metric and com-
puted as simple arithmetic means of our per-class. The weighted average is the weighted
of each class by the number of samples from that class.

The patch-wise classification results for our proposed pyramidal CNN are reported in
Tables 2 and 3. For CNNS, CNNM, and CNNL, the classification accuracy is in the range
0.70–0.76. The macro-averaged and weighted-average metrics are found to be around
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0.68–0.77. To highlight the advantages of using our DL (CNN), the accuracy of our pipeline
is compared against standard ResNet50, and VGG-16 [22,30]. The input patches are resized
into 224 × 224 pixels to fit with the image input size of the ResNet50 and VGG-16. The
F1-score of VGG-16 is in the range of 0.58–0.70. In addition, the macro-averaged and
weighted-average metrics are both found to be 0.63. The accuracy of our CNNL is high
compared with that of the VGG-16 (0.65) and almost the same with that of ResNet50 (0.75),
see Table 3. Besides the high accuracy for our CNN, there are two reasons for creating this
CNN. Firstly, the computational cost for the RestNet50 and VGG-16 is high compared with
that of our CNN. The number of parameters for ResNet50 and VGG-16 is almost 23 and
27 million, respectively, and our CNN is approximately one million. The second reason
is that our pyramidal CNN needs a flexible size for the CNN, and a standard CNN like
ResNet50 is a fixed-size that is 224 × 224.

3.2. Grade Group Results

After applying the patch- and pixel-wise classification for each CNN, we merge the
CNN outputs to obtain the production of the digitized PBS as the exact size of the original
one. The new digitized PBS defines the results for GP from our automated system. We
identify the GS and GG, the goal of our pipeline, using the fundamental converting that
presents in the Table 1. Figure 6 shows the GG examples for our automated system results,
which compare the reference standard and the predicted GG from our system using the
distribution of GG.

The overall GG diagnostic accuracy is summarized in Table 4, which presents the
accuracy metrics precision, recall, F1-score, accuracy, and negative predictive value (NPV).
Also, the confusion matrices for the grade groups results are shown in Figure 7. To validate
our CAD system’s results and demonstrate its value, we compared our results with the
pathologists’ estimated results, and previous work[19]. Firstly, the discordance for diagnos-
ing the GG from the same biopsy is between 30% and 50% for various pathologists [3,7,8].
Therefore, our CAD system’s accuracy compared with that of pathologists’ estimated
results is acceptable because our results are about 80% for precision, between 60–80% for
recall and F1-score, and around 94% for accuracy and NPV. Secondly, the average accuracy
and NPV for our automated CAD system to identify GG are 0.8767 and 0.9167, respectively,
while the previous work [19] has 0.8500 and 0.9100, respectively. The obtained results show
that our results compared with that of previous work are higher than two percent for an
average of accuracy and almost the same for the NPV.

Table 4. Grade groups classification of our CAD system using precision, recall, F1-score, accuracy,
and negative predictive value (NPV).

Precision Recall F1-Score Accuracy NPV Cases

Benign 0.75 0.75 0.76 0.92 0.95 8

GG1 0.71 0.71 0.71 0.92 0.95 7

GG2 0.75 0.50 0.60 0.92 0.93 6

GG3 0.71 0.45 0.56 0.84 0.86 11

GG4 0.23 0.50 0.32 0.80 0.92 6

GG5 0.73 0.67 0.70 0.86 0.89 12
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Figure 6. Examples of GG results from our system. In zoomed regions, system’s GP prediction is
shown as an overlay on tissue; B (benign).

Figure 7. Confusion matrices on grade groups.

4. Discussion

The treatment for prostate cancer over the years improved for men with low-risk
diseases. Notably, for patients with localized prostate cancer, active surveillance is safer
compared with radical prostatectomy, as verified by many trials [31]. According to the
American Society of Clinical Oncology, the GG and GP grading are considered the decision-
maker according to the guideline of the American Society of Clinical Oncology [32]. The
consults were recommended to enhance the consistency and quality of care due to the
interobserver variability for the Gleason system [32,33]. Therefore, our automated CAD
system could be a valuable decision support tool for patients’ GG with localized disease
and give significant downstream treatment implications.
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For that purpose, we developed an automated DL architecture for classifying the GG
of digitized PBS. The ground truth of our datasets was performed using many experienced
urologic subspecialists. They have around 25 years of experience with diverse backgrounds,
and accessed several histologic sections and immunohistochemically stained sections for
every specimen. The overall accuracy for our CAD system showed a similar rate compared
with that of general pathologists, which is 70%. According to [34,35], the DL system
can be used to alert pathologists of what might be missed. Otherwise, defining small
tissue regions depends on a pathologist’s judgment that leads to overrule of false-positive
categorizations. Therefore, our DL-CAD system has benefits for bolstering the selection of
treatment modalities, especially for patients with localized disease.

Developing a framework with high accuracy is our ultimate goal in which DL, patch-,
and pixel-wise classification were performed. The accuracy of the diagnostic results for
the proposed framework using pyramidal CNN presents that CNNL had higher accuracy
than that of CNNS and CNNM, see Tables 2 and 3 and Figure 5 , which show the valida-
tion curves for the CNNL. The comparison between the best CNN against the standard
ResNet50 and VGG-16 [22,30], shown in Table 3, emphasizes the benefits of using the
hyper-parameter tuning and the RS technique. Besides, using the new idea to identify the
problem as classification one, not a segmentation, developed high accuracy.

The proposed CAD system can be helpful in healthcare systems in several ways,
such as decreasing the consultation-associated costs, enhancing grading consistency, and
reducing treatment-related morbidity for men with low-risk diseases. The performance
metrics for GG estimation are higher for G1 and G2 grades compared with that of G3, G4,
G5. Therefore, our automated system could be accurately classifying low-risk cases that
are eligible for more conservative management.

The GG classification plays an essential role in prostate cancer treatment [31,36]. Still,
it is not a straightforward task to the extent that there is no match the results between the
subspecialists and the general pathologists’ for the GG classification. The subspecialists’
grading is more concordant than the general pathologists’ grading [37]. However, due to
the difficulty of GG and inherent subjectivity, there is discordance between subspecialists.
Therefore, it is critical to enhance the risk stratification for prostate cancer by overcoming
those disagreements. Developing a system with high precision that human graders and
predict clinical risk is our priority. Machine learning, especially DL, models could distin-
guish novel histoprognostic signals that the human eye can not discover [38,39], as well as
assistance in stratifying patient risk like existing molecular tests [40].

Despite the promising results, our automated DL system has some limitations. Firstly,
our DL model was trained and tested from a single institution. Therefore, using an external
test dataset for the different centers and WSI with various staining protocols should further
enhance the robustness of our automated system. Secondly, our DL models, as well the
pathologists who made the ground truth labeling, treated each biopsy as an independent
sample. In clinical practice, multiple biopsies are sampled from various regions of the
prostate. Therefore, an update to our model could take multiple biopsies into account
and give a grade group prediction at the patient level. Finally, our study concentrated on
the grading of acinar adenocarcinoma in prostate biopsies. However, prostate biopsies
can contain other tumor types and foreign tissue, such as colon glands. The biopsies
could also include additional prognostic information, such as the detection of intraductal
carcinoma [41].

5. Conclusions

This paper introduced a Deep Learning-based CAD system to classify the grade
groups (GG) system using digitized prostate biopsy specimens (PBSs) using pyramidal
CNN, with patch- and pixel-wise classifications. The proposed pipeline results highlight
our system’s potential to classify all five GG of the PBSs in comparison with that of other
standard CNNs. The agreement between our CAD system and pathologists is comparable
to inter-rater reliability among pathologists. In future work, because the digitized PBSs do
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not have the same direction, adding a new preprocessing step to overcome this challenge
will fit our results. This processing rotates the overlapped patches with angles 45 and 90,
and flipping them will enhance our pyramidal CNN accuracy. In addition, to highlight our
model, we will try to test our model with a dataset from another institution.
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Abstract: Several studies have shown the importance of proper chewing and the effect of chewing
speed on the human health in terms of caloric intake and even cognitive functions. This study aims at
designing algorithms for determining the chew count from video recordings of subjects consuming
food items. A novel algorithm based on image and signal processing techniques has been developed
to continuously capture the area of interest from the video clips, determine facial landmarks, generate
the chewing signal, and process the signal with two methods: low pass filter, and discrete wavelet
decomposition. Peak detection was used to determine the chew count from the output of the
processed chewing signal. The system was tested using recordings from 100 subjects at three different
chewing speeds (i.e., slow, normal, and fast) without any constraints on gender, skin color, facial hair,
or ambience. The low pass filter algorithm achieved the best mean absolute percentage error of 6.48%,
7.76%, and 8.38% for the slow, normal, and fast chewing speeds, respectively. The performance was
also evaluated using the Bland-Altman plot, which showed that most of the points lie within the
lines of agreement. However, the algorithm needs improvement for faster chewing, but it surpasses
the performance of the relevant literature. This research provides a reliable and accurate method for
determining the chew count. The proposed methods facilitate the study of the chewing behavior
in natural settings without any cumbersome hardware that may affect the results. This work can
facilitate research into chewing behavior while using smart devices.

Keywords: chewing; smart devices; discrete wavelet decomposition; low pass filter; number of chews

1. Introduction

Chewing (i.e., mastication) is the action of crushing and grounding food by the teeth.
It is an important process that represents the first step of digestion by which the surface
area of the food is increased to allow for easy swallowing and efficient breakdown by
enzymes. Healthy nutrition is affected by several factors related to chewing, including;
food intake, chewing behavior, chewing time, chewing speed and the bolus size.

Monitoring and study of the chewing process is important. Abnormal chewing
behavior could be an indication of some ailments (e.g., anorexia, tooth decay, etc.), which
may reduce the chewing speed or the bolus size. Moreover, people suffering from binge
eating disorder tend to consume large amounts of food in a short time and are subject
to greater risk of high blood pressure and cardiovascular diseases [1]. In addition, some
researchers attempted to establish calibrated model for the caloric intake based on the
number of bites and chew count [2]. Thus, there is a need to establish automated portable
methods for the correct determination of the chew count [3]. Also, eating while using
mobile handheld devices is becoming common with children. This phenomenon has a
great effect on eating habits, which in turn influence the health of individuals (e.g., obesity
and overweight). Recent research suggests that children who use electronics for longer
hours or eat while using those devices have higher Body Mass Index (BMI) [4].

Manually counting chews by trained clinicians and the effort involved in studies
enlisting even small number of subjects is large considering the number of chews per
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minute. The process is tedious, time consuming, and error prone. The objective of this
paper is to automatically determine the chew count from video recordings of subject
munching on food while using camera-equipped electronic devices. This research develops
a method to automatically count the number of chews appearing in the video recording.
The results from this work can facilitate greater research in chewing behavior and its
relationship with human health. The contributions of this paper are as follows:

• We record chewing video data from 100 subjects at three speeds (slow, normal,
and fast).

• We use image processing techniques to isolate and extract the videos of the subject’s
face away from artifacts.

• We extract signals corresponding to the various movements during the chewing action.
• We propose two algorithms to count the number of chews automatically based on

Discrete Wavelet Decomposition and low pass filters.
• We achieve a low mean percentage error in automatically counting the number

of chews.

The remainder of this paper is organized as follows: In Section 2 we provide a
background into the chewing process and its health ramifications, and the related literature
in automatic chew counting. Section 3 describes in detail the data collection process and
the proposed methods for determining the chew count. Performance evaluation metrics
and the corresponding results are reported in Section 4. This is followed by a discussion
in Section 5 of the advantages and limitations of the reported work. The conclusion and
future work are presented in Section 6.

2. Background and Related Work

Chewing is the process of grinding a large piece of food between the teeth to convert
the food to small bolus that could be swallowed [5,6]. Recently, chewing behavior is
considered one factor associated with increased risk of diseases such as obesity and diabetes,
which may result from abnormal chewing behavior or from eating disorders [7]. Changes
to chewing behavior may be attributed to social and economic factors that may affect
food intake and food selection. For example, consuming food while driving or during
the usage of smart devices may lead to fast food intake and a reduction in mealtime [7].
In the next subsection, we discuss the importance of investigating chewing behavior. Such
literature signifies the importance and real-life applications of the automated count of
chews. After that, we analyze the related works and their shortcomings.

2.1. Chewing and Health

The relationship between chewing behavior and various health aspects is continuously
being investigated in the literature. [8] showed that eating slowly might reduce the risks
of overweight and underweight in Japanese preschoolers. This was corroborated by the
results of [9], wherein obese subjects had lower number of chews per gram of food in
comparison to a subject having normal weight. In this regard, relevant literature has shown
that increasing the chew count by 150–200% may reduce the food mass intake by up to
15% [10]. Similarly, other studies have shown that prolonged chewing before swallowing
may lead to lower caloric intake [11,12].

Chewing has also been found to be beneficial to brain functions. Chen et al. [13]
showed that chewing is an effective activity for maintaining the part of the nervous systems
responsible for spatial memory and learning (i.e., the hippocampus). Preserving the
hippocampus can reduce brain deterioration with age. Chuhuaicura et al. [14] supported
the hypothesis of the correlation between mastication and cognitive protection, and they
identified seven areas in the brain prefrontal cortex that could be affected by increasing
the mastication [15]. In general, mastication plays as a protection factor from cognitive
deterioration and neurodegenerative diseases [13,15,16].
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2.2. Automatic Chew Counting

Traditional methods used for determining the chew count were either manual or
automatic (i.e., using pervasive hardware) [17]. Manual methods are inherently tedious,
prone to errors, and un-scalable to large number of subjects. They rely on inspecting
visual recordings or direct viewing of subjects. For example, Moraru et al. [18] used visual
observation to collect chewing count data from 34 subjects. Other studies [2,12] used
similar approach.

Automated methods employ a range of devices that vary in sophistication and cost.
Some studies used Electromyography (EMG) to record the chew count of a small number
of subjects (i.e., less than 10), which is understood given that special electrodes, EMG
device, and professional help are required to perform the recording [19–21]. In another
study, piezoelectric and printed strain sensors were used in characterizing the chewing
behavior of five subjects [22]. However, their approach relied on the subjects to report
their own chewing behavior via a push button. Such an approach may be biased as the
subjects positively influenced the quality of the input signal (i.e., the chewing behavior was
unnatural). Nonetheless, the reported mean absolute error was 8% even with such input.
Similarly, Fontana et al. [2] employed the same input method. They used the annotated
data to train an artificial neural networks model (ANN) and their research achieved a mean
absolute error of 15.01%. Amft et al. [23] proposed counting chews using sound analysis of
audio recordings of the chewing process. However, such a method differs among subjects
and may be prone to ambient and other types of noise especially if the subject is using
an electronic device (e.g., playing multimedia) while eating. Nonetheless, noise-resilient
algorithms for chewing detection were proposed by Bedri et al. [24] using a combination of
acoustic, optical, and inertial sensors. They achieved an accuracy of 93% and an F1-score of
80.1% in unconstrained free living evaluation. Similarly, Papapanagiotou et al. [25] used
convolutional neural networks to achieve a 98% accuracy and F1-score of 88.3%. Recently,
Hossain et al. [26] used a similar approach to detect faces, which they followed by transfer
learning using AlexNet to classify images as bite or not, and used affine optical flow to
detection rotational movement in the detect faces. They reported a mean accuracy of
88.9 ± 7.4% for chew count. However, deep learning algorithms are known to be slow and
consume significant resources.

In general, hardware-based methods may cause discomfort to child subjects and incur
high cost in large-scale experiments. Additionally, remote or at a distance studies may not
be possible if special procedures are required to fit the hardware. Cadavid et al. [27] used
an active appearance model (AAM) to detect chewing events from captured images of the
subject’s face. They noticed that the AMM parameters displayed periodic variations in
response to the chewing behavior, which were different from other facial activities (e.g.,
talking). Thus, spectral analysis was used to derive features for a support vector machine
classification model. The dimensionality of the features was reduced using principle
component analysis in order to reduce the system overhead. However, their approach
requires extensive space and computational overhead [28]. They achieved an accuracy
of 93%, but that was accomplished using leave one subject out validation, which is not
recommended for their small dataset (i.e., 37 subjects) [29].

3. Material and Methods

3.1. Ethical Approvals

The current study was approved by the institutional review board (IRB No. 29/11/2018)
at King Abdullah University Hospital (KAUH) and the Deanship of Scientific Research at
Jordan University of Science and Technology in Jordan.

3.2. Procedure

Written informed consent was sought and provided prior to the study commencement.
For underage subjects, their parents filled the consent form, which needed to be signed
if they voluntarily accepted their child’s participation. The research assistants received
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intensive training by the lead investigators on the data collection process, as well as the
data entry. The information package included an information sheet describing the study
purpose and procedure in details, the consent form (including consent to publication of
images), and a parental/self-reporting questionnaire that contains demographics and other
relevant information.

3.3. Participants

The current study enrolled 100 randomly selected subjects. A total of 375 information
packages were randomly distributed prior to data collection. Of those, 275 (73.3%) recip-
ients refused to participate. The subjects included a mix of children and adults, with an
age range of 6–76 years (mean = 19.72, standard deviation = 11.03). Fifty-six of the subjects
were children and 44 were adults, and 58 were males. There were no restrictions regarding
skin color, facial hair, hairstyle, head cover, or wearing glasses (medical or otherwise).

3.4. Data Collection

A Huawei Y7 Prime 2018 smartphone main camera was used for video recording. It is
a 13 MP camera with 1080p@30fps resolution. The subjects were asked to face the camera
and eat a crunchy food sample (e.g., cucumber). Each subject recorded three one-minute
clips corresponding to three speeds (i.e., slow, normal, and fast). There was no specific
environment for the dataset collection, and no additional constrains were set during video
recording. Videos were recorded in a variety of setups (i.e., outdoors, indoors in a room,
and in public places) and with different light intensities.

Objective reference is required as a gold standard for performance evaluation. To this
end, three annotators were trained by the principle investigators to count the number of
chews in video recordings, and the training videos were not included in the dataset. Each
annotator worked independently from all others and recorded the number of chews in
each of the 300 video clips (i.e., 100 subjects with 3 recordings each). The annotators were
allowed to pause and rewind the videos for accurate counting.

Upon completing the annotation, the reliability of the process was verified using
Intra-class correlation coefficient (ICC) [30]. Table 1 shows the ICC values for all annotators
as well as pair wise comparisons among them. The lowest value in the table is 0.83 between
annotators 2 and 3, which is considered an excellent value [31].

Table 1. Annotator ICC values for the three chewing speeds.

Annotator\Chewing Speed Fast Medium Slow

All 0.91 0.94 0.96

1 & 2 0.88 0.90 0.92

2 & 3 0.83 0.90 0.95

1 & 3 0.90 0.94 0.95

3.5. Determining the Chew Count

Figure 1 shows the general steps taken to count the number of chews. Given a video
recording of the subject while eating, the algorithm works by first extracting individual
frames as separate images. In each image, the face of the subject is identified using the
Viola-Jones algorithm [32] (Section 3.5.1). However, not all of the face is of interest to chew
counting, only a few landmarks, which are indicators of mastication, are important. Thus,
the Kasemi and Sullivan landmark detector [33] was employed to detect facial landmarks
(Section 3.5.2). The Euclidean distance between a reference point and each of the identified
facial landmarks is measured and the average is calculated. Since chewing involves jaw
motion, there is a need to treat successive Euclidean distance averages as time series data
generated using the mean Euclidean distance from each video frame, which results in the
chewing signal (Section 3.5.3). After that, filtering techniques employing LPF or DWD
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retrain the relevant frequencies (Section 3.5.4). Finally, a peak counting determines the
number of chews excluding biting peaks (Section 3.5.5). In the next few subsections, we
will go through each one of the steps in detail. These steps were implemented using Matlab
2020a software.

Figure 1. The general steps to count the number of chews from the input video clip.

3.5.1. Face Detection

The first step in the algorithm aims to detect the face of the subject. To this end,
the Viola-Jones face detector was employed. The algorithm was chosen because it is fast
and has high detection accuracy [32]. It works in the following steps:

1. The image is converted to gray scale, which reduces the overhead. However, once the
face is detected, the location is marked in the colored image.

2. The image is scanned to search for intensity differences that may represent facial
features. This is done using boxes called Haar rectangles [34].These boxes are moved
so that every tile in the image is covered. Figure 2 shows a set of three Haar features
(HFs); two-rectangle, three-rectangle, and four-rectangle. These features represent
regions with different shades in an image. For example, the eyebrows will appear
darker in comparison to the surrounding skin. Similarly, the top of the nose may seem
brighter than the sides.

3. Each box is represented by a matrix of values corresponding to the pixel color in-
tensities in that box. The darker the pixel the closer the corresponding value to 1.
A Feature is generated by the difference between the sum of pixel values in the dark
region and the sum of pixel values in the light region.

4. The previous calculations can cause high computational overhead because of the large
number of pixels. Therefore, the process is adjusted to use an integral image (i.e.,
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a summed-area table). Each value, l(x, y), in the integral image is the summation of all
pixel values that lie above and to the left of (x, y) in the original image inclusively, see
Equation (1). Figure 3 shows an example matrix representing the original image and
the corresponding integral image. Using the integral image, calculating the intensities
of any rectangular area of any size in the original image requires four values only.
Moreover, the integral image is calculated with a single pass over all pixels. This
method greatly improves the efficiency of calculating the Haar feature rectangles.

5. Scanning the image using the rectangular boxes will generate a set of intensity values,
which form the input to the classification process. The output of this step indicates
whether or not a feature is likely to be part of the face. The Viola-Jones algorithm
uses adaptive boosting (AdaBoost), which employs a weak learner constraint to
select few features out of thousands of possible features. The algorithm training
dataset contained 4960 annotated facial images as well as 9544 other images without
faces [32].

6. Cascaded or ensemble classification. This step further refines the classification process
by attempting to discard the background regions by increasing the complexity of
classifiers in cascade. The collective effect of the weak classifiers selects the best
combination of features and their associated weights.

l(x, y) = ∑
x′≤x,y′≤y

v(x′, y′), (1)

where v(x′, y′) is the value of the pixel at (x′, y′).

Figure 2. Haar rectangular features.

3.5.2. Facial Landmarks Detection

The Viola-Jones algorithm generates a bounding box around the face of the subject.
However, the face as a whole is not useful by itself for chew counting. Thus, Kasemi
and Sullivan landmark detector [33] was employed to identify key facial features and
their location on the face. The facial landmark detector estimates the position of the facial
landmarks using an ensemble of regression trees (ERT) based on sparse pixel set intensities,
which are used as an input to the regressors. The pixel intensities are selected using a
gradient boosting algorithm and a prior probability of the distance between pairs of input
pixels. The face image is transformed into an initial shape and the features are extracted to
update the current shape vector. This procedure is repeated several times until convergence
is reached. After that, intensities of the sparse pixels are indexed on the initial shape. Each
regressor estimates the current shape from an initial shape estimation to solve the problem

362



Sensors 2021, 21, 6806

of face alignment. The initial shape can be selected by the mean shape of the centered and
scaled face image.

Figure 3. The intensities in the original image (left) and the corresponding integral image (right).
Calculating the intensity of the shaded box requires only four indices in the integral image regardless
of the number of pixels in the box.

This procedure results in a 192 × 2 vector representing the (x, y) coordinates of
192 points on the subject’s face. However, such number of facial points is excessive,
redundant, and consumes large space and processing power. The determination of the
facial landmarks forms the basis for the identification of the chewing motion. Several
useful observations were drawn from analyzing the chewing process, as follows:

1. The lower lip moves up and down during crushing the bolus in between the upper
and lower jaws. Furthermore, the lower lip moves slightly to the left and right during
the bolus motion in the mouth, but the motion of the lower lip decreases when the
subject swallows. Moreover, the lower lip motion is undiscernible when the chewing
speed is too slow and when the food texture is neither solid nor crispy. In addition,
the separation between the two lips increases when the subject is taking a bite.

2. The upper lip motion is unbeneficial for counting chews as it is undiscernible across
video frames. This mainly due to its connection to the immobile maxilla.

3. The corner points on the edge of the mouth move in an oval trajectory, which could
be a result of smiling or other facial expressions. Thus, they were ignored.

Careful inspection of the chewing process revealed that most of the points responding
to the chewing operation are located in the chin and jawline regions. Therefore, only
11 points in the chin and jawline were used, see Figure 4. They displayed consistency and
a stable chewing pattern during chewing regardless of the speed. Moreover, the motion
is immune to facial expressions (e.g., smiling). In addition, the points are visible during
food intake. Thus, the motion of the jawline points was used for counting purposes. These
points move in three ways, as follows:

1. Up and down during for crushing/chewing the food.
2. Sideways during bolus motion across the mouth sides.
3. A large downward movement for every food bite.
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Figure 4. Facial landmark detection showing the 11 jaw and 15 mouth landmarks. Only the 11 jaw
landmarks were used in counting chews.

3.5.3. Generation of the Chewing Signal

We define the up down mandible motion as one chew. To measure this motion,
a reference point was required with the constraint that it is unaffected by the chewing
motion, random movement, and may not be hidden during chewing. To this end, the upper
left corner of the face bounding box was chosen as a reference for all movements. This
box tracks the face throughout the recording and represents a fixed reference frame for
the jawline points. The Euclidean distance (ED) was measured for each frame between
every jawline point (x, y) and the reference point (u, v), and the average was taken for the
11 points, see Equation (2).

ED =
1

11

p=11

∑
p=1

√
(x − u)2 + (y − v)2 (2)

Figure 5 shows an example of the ED as measured between the reference point and
the jawline points used for counting chews. The ED values measured throughout the
duration of the chewing clip form a signal that represents the chewing pattern, see Figure 6.
The labelled peaks in Figure 6 represent the subject taking a bite and they were discounted
from the total chew count. Moreover, the signal inherently contains some noise due to the
subject’s movement and swallowing. For example, the sideways movement of the head.
Therefore, signal processing techniques were required to correctly identify the patterns
resulting from the actual chewing.

Figure 5. The Euclidean distance between chin/jaw landmarks and the upper left corner of the
face rectangle.
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Figure 6. The chewing signal and five biting peaks.

3.5.4. Chewing Signal Processing

As previously stated, the chewing signal carries some noise due to the subject’s
movement, mandible motion, and other artefacts (e.g., variations in the head bounding
box). We experiment with two signal processing methods to improve the signal usefulness,
as follows:

• Low pass filter (LPF): a LPF was designed with a cut-off frequency of 1 Hz and a
sampling rate of 30 Hz [35]. It is a linear phase minimum order finite impulse response
filter. The measured frequencies in the collected dataset ranged between 0.4 and 2.3 Hz
for all chewing speeds. However, some of these frequencies resulted from variations
in the mandible motion before the completion of one chew. Thus, the frequencies
that are not representing actual chewing were removed. This was accomplished by
assigning a proper passband frequency. Several passband frequencies and sampling
rates were tested, and a 1 Hz passband frequency and 50 Hz sampling rate achieved
the best results. Figure 7 shows the original signal with many fake peaks caused by
noise. Whereas Figure 8 shows the smoothing of the signal and the elimination of
most of these peaks after LPF application.

• Discrete wavelet decomposition (DWD): DWD is a discrete version of the continuous
wavelet transform [36]. It retains the important features and reduces the computational
complexity in comparison to the continuous wavelet transform [37]. In DWD, the sig-
nal is decomposed using low and high pass filters into approximation (A) and detail
(D) coefficients, respectively. Further reduction to the frequency was achieved by ap-
plying the same procedure to the resulting approximation coefficients. A Daubechies
mother wavelet with tab equal 4 was used, which achieve the best smoothing effect
while retaining the important features. The sampling rate in the chewing signal was
30 Hz and the chewing signal frequency was 0–16 Hz, because of the noise in the
signal that comes from the unwanted movements and from the fast chewing speed
videos. Thus, three levels of decomposition were required to reach the closest fre-
quency of chewing (i.e., 1–2 Hz) for normal speed, see Figure 9. This corresponds to 1
to 2 chews per second. The frequency resolution can be increased/decreased to match
the chewing speed and the associated chewing signal frequency, see Figure 10.

Figure 7. A chewing signal with many fake peaks caused by noise.
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Figure 8. The same signal in Figure 7 after low pass filtration.

Figure 9. Three-level discrete wavelet decomposition.

Figure 10. Four-level DWD of the signal in Figure 7.

3.5.5. Counting Chews

The output from either one of the two signal processing techniques (i.e., LPF and
DWS) forms the basis for determining the number of chews. A peak detection algorithm
was employed to detect the chewing markers. The algorithm works by finding every local
maximum in the signal that is larger than the adjacent two neighboring points, where every
peak represents one chew. The Minimum-Peak-Height (MPH) parameter for peak detection
was set for LPF to half the average of all peak heights (PH), see Equation (3). For DWD
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and slow chewing videos, the MPH was set to half the average of PH see Equation (4).
Equations (5) and (6) show the values of the MPH for the DWD processing of the normal
and fast chewing speeds.

The MPH was set differently for the three chewing speed signals because it was
observed that the mandible movement changes in response to different chewing speeds.
The highest displacement occurred in the slow chewing speed signals. Thus, the chewing
peaks were high in comparison to false peaks (i.e., noise). On the other hand, the mandible
displacement was small in the fast chewing speed signals, so more of the peaks need
to be counted. Figure 11 shows the application of the peak counting algorithm on the
LPF-processed signal, and Figure 12 shows the results from the DWD output.

MPHLPF =
1
2
× 1

n

n

∑
i=0

PH (3)

MPHDWD_slow =
1
2
× 1

n

n

∑
i=0

PH (4)

MPHDWD_normal =
1
3
× 1

n

n

∑
i=0

PH (5)

MPHDWD_ f ast =
1
4
× 1

n

n

∑
i=0

PH (6)

Figure 11. LPF output for counting chewing peaks in the processed signal.

Figure 12. DWD output for counting chewing peaks in the processed signal.

4. Results and Evaluation

4.1. Complexity Analysis

As presented earlier, the proposed work relies on software-based methods as opposed
to hardware solutions (i.e., dedicated sensors). Sensing and counting hardware maybe
invasive but it provides less computationally intensive option. However, the approach used
in this paper is based upon well-established practical methods with linear time complexity.
The Viola-Jones face detector runs in linear time O(N), where N is the number of pixels in
the image. The calculations are done within a small region of interest in the integral image.
Moreover, the Haar features are computed in constant time [38]. The next step is facial
landmark detection, which uses the Kazemi and Sullivan [33]. Both this and the Viola-Jones
algorithms are considered real-time algorithms with low complexity and high speed [39].
The third step computes the average Euclidean distance for 11 chin/jaw landmarks in each
frame. At a frame rate of 30 fps, this computation is negligible. Next, the chewing signal
is filtered using either LPF or DWD, with the later having linear time complexity [40].
The last step is counting peaks, which inspects the elements before and after each possible
peak. Thus, it requires linear number of steps.
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4.2. Performance Evaluation Metrics

The performance of the proposed methods was evaluated in terms of the absolute
error (AE), mean absolute percentage error (MAPE), and root mean squared error (RMSE).
Each one of these metrics provides a different insight into the accuracy of the counting
algorithm. RMSE tends to penalize large errors. On the other hand, AE and MAPE are
easier to interpret. In addition, MAPE allows comparisons between varying chewing
counts as the error is relative to the gold standard. Equations (7)–(9) to show the formulas
for calculating these metrics.

AE = |Actualcount − Measuredcount| (7)

MAPE =
1
n

n

∑
1

|Actualcount − Measuredcount|
Actualcount

× 100% (8)

RMSE =

√
1
n

n

∑
1
(Actualcount − Measuredcount)2 (9)

The Bland-Altman plot was used to measure the agreement between the proposed
algorithms and the actual chew count as determine by each annotator. This is a graphical
method that plots the difference between the calculated values and the gold standard values
against the average of the two methods. Any two methods can be used interchangeably
used if 95% of the data points are located within the limits of agreement, which are defined
as the mean ±1.96 × SD [41].

4.3. Results

Table 2 shows the AE for the two signal processing methods. The average AE is lowest
for the slow chewing speed for both LPF and DWD, although LP slightly outperforms DWD
with an AE of 5.42 ± 4.61. Moreover, the error is higher for faster speeds. The same trend
appears in Tables 3 and 4 for MAPE and RMSE respectively. Again, LPF achieved superior
performance for normal chewing with 7.76% and 7.93 for MAPE and RMSE, respectively.

Figure 13 show the Bland-Altman plot for the agreement between the proposed
algorithm and the average of the three annotators (i.e., the gold standard) using LPF or
DWD. The figures show that most of the points are within the lines of agreement. However,
the algorithm needs improvement for faster chewing. Nonetheless, our method can be
used interchangeably with the manual measuring techniques but provides the advantages
of automated measurement and reliable results. This serves as an evidence of the accuracy
and efficacy of the proposed approach.

Table 2. Performance comparison between LPF and DWD in terms of AE. SD stands for standard de-
viation.

Chewing Speed
LPF DWD

AEavg AEavg ±SD AEavg AEavg ±SD

Slow 5.42 0 4.61 5.72 0 4.8

Normal 7.47 0 6.85 7.45 0 6.85

Fast 9.84 0 9.55 10.32 0 10.42
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Table 3. Performance comparison between LPF and DWD in terms of MAPE.

Chewing Speed MAPE (LPF) MAPE (DWD)

Slow 6.48% 9.09%

Normal 7.76% 7.03%

Fast 8.38% 8.31%

Table 4. Performance comparison between LPF and DWD in terms of RMSE.

Chewing Speed RMSE (LPF) RMSE (DWD)

Slow 5.56 7.64

Normal 7.93 7.09

Fast 13.03 13.43

(a) Slow and LPF. (b) Slow and DWD.

(c) Normal and LPF. (d) Normal and DWD.

(e) Fast and LPF. (f) Fast and DWD.
Figure 13. Bland-Altman plots for the chewing counts at the three speeds with LPF and DWD pro-
cessing.

Table 5 shows a comparison to the related literature in terms of best average error,
the counting method, and the number of subjects recruited by the researchers. The evalu-
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ation of the proposed approach in this paper is based on the largest number of subjects
and achieved the least average error. Almost all of these approaches rely on dedicated
hardware or signals extracted from this hardware. On the other hand, our work uses input
from camera-equipped smart devices. Moreover, the number of subject recruited in most
studies is small, which may result in overfitting of the proposed methods to the specific
chewing pattern. Additionally, these studies did not test for different chewing speeds
although multiple food types were used to record chewing cycles.

Table 5. Performance comparison to the related literature.

Study Avg Error ± SD
Counting
Method

No. of
Subjects

Farooq and Sazonov [3]
10.40% ± 7.03%

Peak detection in
manually
annotated
segments

30

15.01%± 11.06% Counting in ANN
classified epochs 30

Farooq and Sazonov [22]
8.09% ± 7.16% Piezoelectric

strain sensor 5

8.26% ± 7.51% Piezoelectric
strain sensor 5

Farooq and Sazonov [42] 9.66% ± 6.28%
Linear regression
of piezoelectric
sensor signal

10

Bedri et al. [24] F1-score = 90.9% Acoustic sensor 10

Cadavid et al. [27] Avg agreement =
93%

SVM classification
of AMM spectral

features
37

Taniguchi et al. [43] Precision = 0.958 Earphone sensor 6

Wang et al. [44] 12.2%
Triaxial

accelerometer on
the temporalis

4

Hossain et al. [26] Mean accuracy
88.9% ±7.4%

Deep learning
and affine optical

flow
28

This paper

5.42% ± 4.61
(slow) 7.47% ±
6.85 (normal)
9.84% ± 9.55

(fast)

Image processing
of chewing videos 100

5. Discussion

The work in this paper presents a method for the automatic counting of chewing from
video recordings. The results from both the LPF and DWD approaches suggest that the
proposed method can be used as an objective and accurate chewing counter. In comparison
to the literature, the method was tested on a reasonably large number of subjects and
chewing speeds.

In both signal processing techniques, the algorithm was used to estimate chew counts
in manually annotated chewing clips and was able to achieve a best AE, MAPE, and RMS
of 5.42 ± 4.61, 6.48%, and 5.56, respectively. However, this was achieved for slow chewing
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speeds. The same values for the normal chewing were 7.47 ± 6.85, 7.76%, and 7.93, respec-
tively. Moreover, given that the human counting accuracy is typically 5.7% ± 11.2% [3],
our results present an excellent objective and automated methodology for accurate chew
counting. In addition, the results in Figure 11 show that the difference between the mea-
sured and annotated values to fall in the region over the mean, which may be explained by
the tendency of the annotator to underestimate the chew count [3].

This study has several limitations. First, we did not experiment with different food
types (e.g., hard, crunchy, crispy, tough, chewy, etc.). Second, the gold standard depends on
the annotators, who-although trained- are subject to mistakes and underestimation [3]. It
would have been more accurate to equip the participants with piezoelectric sensors, which
could capture the chewing count more accurately. Third, the length of the videos clips was
one minute, which was enough time to finish the piece of food provided to the subjects.
Fourth, the collected data did not include videos with different out of plane rotation (i.e.,
pose) or in plane rotation (i.e., orientation) as a normal chewing posture was assumed.
However, the Viola-Jones algorithm can detect faces that are tilted by ±15 degrees in plane
and ±45 degrees out of plane [45]. Finally, we did not perform fine-grained annotation of
the chewing clips, but this can be accomplished in future works. Annotating individual
chews in the videos would allow elaborate technical analysis and the development of
feature-based and artificial intelligence-based counting methods.

Nonetheless, the proposed approach has several merits. First, no extra hardware is
required for the deployment and usability of the counting algorithm. Once the system is
installed, researchers who are interested in studying the chewing behavior of subjects (e.g.,
children) can use it easily. It can be used in natural everyday settings (e.g., subjects are
using their smartphone or any camera-equipped smart device). Second, the study used
a reasonably large number of subjects and investigated a wide range of chewing speeds.
In comparison, the number of subjects in the relevant literature was less than 50 [33,35].
Third, the accuracy of the model surpasses relevant literature without requiring extra
hardware or intensive computation [3,19–21]. Finally, the algorithm displayed robustness
against different subject ages, skin colors, facial hair, or gender.

6. Conclusions

Chewing is an important process in the digestive system with much research dedi-
cated to studying the effects of chew speed, chewing rate, and bolus size on the human
health (e.g., BMI). In addition, it has been found that chewing speed is associated with
cognitive functions.

Recent proliferation of mobile smart devices, which are equipped with cameras and
strong processing power, facilitated the development of many applications from a wide
range of disciplines. Another aspect to consider is the health impacts of these devices,
which are being used during everyday activities including eating. Thus, the work in this
paper allows for the monitoring of the chewing behavior to enable researchers to further
study human dietary habits while using smart devices.

In this research, an algorithm was developed to count the number of chews from eating
video recordings. The input is processed using two well-known and established methods
(i.e., LPF and DWD) followed by a peak counting algorithm. Performance evaluation
results greatly improved on the existing literature. Moreover, the system allows for the
natural measurement without the need for expensive or uncomfortable hardware. We
expect this work to enable further studies into eating and weight disorders, especially those
connected to smart devices.
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The following abbreviations are used in this manuscript:

BMI Body Mass Index
EMG Electromyography
ANN Artificial neural networks
AMM Active appearance model
IRB Institutional review board
KAUH King Abdullah University Hospital
ICC Intra-class correlation coefficient
HF Haar feature
ERT ensemble of regression trees
ED Euclidean distance
LPF Low pass filter
DWD Discrete wavelet decomposition
MPH Minimum-Peak-Height
PH Peak heights
AE Absolute error
MAPE Mean absolute percentage error
RMSE Root mean squared error
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Abstract: Cardiovascular diseases (CVDs) have shown a huge impact on the number of deaths in
the world. Thus, common carotid artery (CCA) segmentation and intima-media thickness (IMT)
measurements have been significantly implemented to perform early diagnosis of CVDs by analyzing
IMT features. Using computer vision algorithms on CCA images is not widely used for this type
of diagnosis, due to the complexity and the lack of dataset to do it. The advancement of deep
learning techniques has made accurate early diagnosis from images possible. In this paper, a deep-
learning-based approach is proposed to apply semantic segmentation for intima-media complex
(IMC) and to calculate the cIMT measurement. In order to overcome the lack of large-scale datasets,
an encoder-decoder-based model is proposed using multi-image inputs that can help achieve good
learning for the model using different features. The obtained results were evaluated using different
image segmentation metrics which demonstrate the effectiveness of the proposed architecture. In
addition, IMT thickness is computed, and the experiment showed that the proposed model is robust
and fully automated compared to the state-of-the-art work.

Keywords: carotid intima-media thickness; IMT; CCA; segmentation; deep learning; encoder-
decoder model

1. Introduction

The heart is an essential organ in the body, where its main job is to push the blood all
around the human body. Furthermore, it is the main and central part of the cardiovascular
system, which contains the blood vessels that form the blood circulation [1]. Moreover,
cardiovascular diseases (CVDs) play a great role in the worldwide death toll, and this
highlights the importance of early diagnosis of such disease. According to World Health
Organization (WHO), CVD is the first cause of death in the world, taking 17.9 million lives
each year [2].

According to the authors in [3], CVD is an abnormal illness that affects the heart and
the blood vessels. With that being said, the authors in [4] highlighted that in their study
of the worldwide deaths that were caused by CVDs, almost half of the deaths (48.5%)
were associated with coronary heart disease, while strokes only took part in 20.8% of the
population tested and the rest is for other diseases. Hence, it indicates the importance of
preventing the progression of coronary heart disease.

In addition, some of the risk factors of CVDs could be due to high blood pressure
or high cholesterol. As a result, a buildup of inflammatory cells known as plaques in the
artery wall, resulting in blood limitation to the heart and lower oxygen intake, can be one of
the main causes of such disease. This phenomenon is known as atherosclerosis. As a result,
early detection of this condition could aid in reducing the advancement of atherosclerosis
as well as heart failure. In Figure 1, the plaque buildup is usually seen in the common
carotid artery (CCA) and the internal carotid artery (ICA).
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Figure 1. (a) Health artery, (b) formation of plaques in CCA, (c) atherosclerosis.

The carotid artery, which is made up of two blood vessels and has numerous com-
ponents, including the internal, exterior, and common parts, is one approach to discover
plaques in the arterial wall. Plaques can form in the interior segment of the carotid artery
as well as the common blood vessels. Hence, plaques thicken the walls of these vessels,
which is quantified as intima-media thickness (IMT). Thus, the difference between the
lumen-initima (LI) and media adventitia (MA) walls can be measured to determine cIMT
as a risk marker for early detection of heart disease [5]. Referring to a review done in [6],
cIMT measures have shown to be able to predict CVD events independently of other risk
variables; in fact, according to a study published in [7], it is a stronger predictor of strokes
than other vascular disorders.

The carotid IMT test is a method of detecting IMT and diagnosing atherosclerosis
that is carried out in clinics using an ultrasound instrument and is mostly performed
by doctors. When the ultrasound image is obtained, the physician segments the IMT
measurements manually. Another option is semi-automatic detection and segmentation,
in which a physician locates the area of interest followed by automated segmentation of
the artery walls. Furthermore, fully automated systems can detect and calculate cIMT
without the need for a physician’s intervention. This highlights one challenge: systems
must be accurate in their calculations in order to provide a reasonable evaluation of the
IMT measurement. When a fully automated model is implemented, it eliminates the need
for physicians. Hence, it encourages the employment of portable devices.

Furthermore, detecting IMC and measuring it have proven difficult in some cases,
where locating the artery walls and determining its boundaries can vary depending on the
quality of the B-mode ultrasound images. Furthermore, ground truth points generated by
physicians may contain some errors due to differences in inter and intra-observer readings.

Using deep learning techniques to diagnose such disease can be beneficial in many
ways, namely, it can be deployed in portable devices, hence, help patients in self-diagnosing
themselves. Additionally, it can reduce the load on doctors that might be examining and
diagnosing each patient including the ones with no risks. Many applications have been
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conducted for cIMT segmentation and identification using deep learning and machine
learning techniques, however, the accuracy of the cIMT estimation is arguable.

In this paper, we focus more on evaluating the encoder-decoder model on IMC segmen-
tation along with finding the best hyper-parameters for the model. This is mainly done using
encoder-decoder networks that aim to compress the data to a latent representation and decode
it using another decoder network to decompress the image, where latent representation
commonly contains the features of the image. Additionally, we train and test the model
using the encoder-decoder architecture as well as a dataset from [8] with pre-processing and
post-processing techniques. The main aim of this research is to perform segmentation of
B-mode ultrasound images using deep learning encoder-decoder architecture.

In this work, the main purpose is to develop a system that is able to segment the IMT
in the arterial walls using deep learning models. Thus, deep learning models, specifically
encoder-decoder models are investigated. The main contributions of the research are
summarized as the following,

• Provide a comprehensive review of convolutional autoencoder (CAE) applications as
well as IMT segmentation applications.

• Develop a convolutional autoencoder model for carotid intima-media complex (IMC)
segmentation and IMT measurement on B-mode ultrasound images.

• Evaluate the effectiveness of CAEs in variation with hyper-parameters.
• Find an optimal architecture for CAEs by comparing the effectiveness of models with

state-of-the-art methods.

In addition, we focus on main research questions to be able to evaluate the outcome
of our solution, such as, how does the encoder-decoder model improve carotid IMT
segmentation as well as how is it unique from previous solutions. Finally, we examine if
the encoder-decoder model is able to be effective with the data augmentation on the given
dataset with a limited number of images.

The sections for the rest of the paper are divided as follows; in Section 2, we highlight
the recent work applied for carotid IMT segmentation and classification, including the
encoder-decoder applications as well. Then, in Section 3, we propose our solution and
present the model architecture for the deep learning model along with the data preparation
process. Whereas, in Section 4, we present the experimental setup along with the evaluation
metrics and the results of the model. After that, in Section 5, the results are discussed and
the main challenges are pointed out. Finally, we conclude and explain the future work in
Section 6.

2. Related Work

This section introduces the previous methods done for carotid IMT segmentation,
as well as medical applications using encoder-decoder models [9], where there is a con-
siderable amount of literature on carotid artery IMT segmentation using deep learning,
machine learning, and contour techniques. The sections are structured as follows; the
encoder-decoder applications in the medical field are introduced briefly. Then, the segmen-
tation techniques for cIMT are tackled, followed by identification of the shortcomings of
the current literature that has been implemented regarding this work.

2.1. Medical Encoder-Decoder Applications

Currently, encoder-decoder models are growing in the medical imaging field, as they
consist of many types including merged techniques such as stacked autoencoders (SAE),
stacked denoising autoencoders (SDAE), stacked sparse autoencoders (SSAE), and convo-
lutional variational autoencoders (CVAE). Many studies have been published on CVAE
including medical applications to predict post-trauma health outcomes [10]. Another study
was done by the authors of [11], which included using CVAE to automatically detect plant
diseases, as well, the authors in [12] developed CVAE based system for electrocardiographic
imaging (ECGI).
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Several studies have been conducted for encoder-decoder models in medical appli-
cations namely, mortality risk prediction [13], as well as chest radiology improvement
using denoising autoencoders [14]. Regarding image segmentation in the medical field,
encoder-decoder models show a huge impact on the accuracy of applications comparing
to other models. Thus, the authors of [15] claimed that their application for 3D image
segmentation using CT scans shows improvement in results.

2.2. Carotid IMT Segmentation Applications

Many attempts have been made regarding carotid IMT segmentation and classification,
however, only a few show competitive results given the fact that IMT segmentation is
the most sensitive step as the thickness measurements depend on the accuracy of the
IMT segmentation. The authors of [16] use support vector machines in order to train and
segment the carotid IMT. In their method, they used 49 ultrasound images and divided
them into two sets with 50% for training and the rest for testing. Their method provided
93% accuracy, and as for the IMT measurement, they found it to be 0.66 mm.

One of the first attempts for carotid segmentation was done by Loizou et al. (2013) [17],
where they implemented a semi-automated snake-based segmentation system proper for
complete CCA segmentation. Their method concentrated on estimating IMT measure-
ments by manually defining the carotid plaque and diameter and then applying the snake
algorithm to get the measurements. The dataset that was used for this algorithm was
300 2D ultrasound images. Their method did not result in a significant difference from the
state-of-the-art, as it was limited to only manual readings.

Furthermore, the authors of [18] attempted to implement a fully automated segmen-
tation system using adaptive snake’s contour as well as level set segmentation. When
comparing both techniques together the authors found out that the snake’s contour method
outperformed the level set segmentation. Another technique was developed by the authors
of [19] that also does not depend on AI, their method included bulb edge detection and
then segmental IMT measures are applied according to the detected edge. Their dataset
consisted of 649 images that have between moderate and heavy lighting. They got a
significantly low error in calculating the IMT measurement which is around 0.0106 mm
and precision of merit that equals 98.23%.

Another technique was built by the authors of [20] that avoided the implementation
of deep learning for IMT segmentation. The authors illustrated that they used wind-driven
optimization technique for carotid IMT segmentation, as they focused on developing a fully
automated region of interest (ROI) extraction as well as they used for intima-media complex
a threshold-based method. Their results included an IMT measurement of 0.69 mm as they
claimed that their method outperformed other work in the literature.

Experiments on IMT segmentation were not limited to non-AI only, where authors
in [21] implemented a screening tool that integrates a two-stage artificial intelligence
model for IMT and carotid plaque measurements, which consists of a CNN and fully
convolutional network (FCN). The system goes through two deep learning models, as the
first divides the CCA from the ultrasound images into two categories the rectangular wall
and non-wall patches. Then, the region of interest is analyzed and fed to the second stage,
where they identify some features to calculate the carotid IMT and the plaque total as well.
Furthermore, their dataset consisted of 250 images, whereas their results while using the
proposed AI model showed an error of IMT measurement that equals 0.0935 mm.

As investigations of IMT segmentation went on with deep learning and machine
learning, the authors of [22] proposed a method for segmentation using CNN. Therefore,
the researchers applied an algorithm that finds the ROI using the CNN architecture which
includes eight layers. Moreover, they trained the network using 220 left and right CCA
images for ROI localization. After that, the intima-media complex area is extracted in order
to measure the IMT. The mean difference for IMT measurement is found to be 0.08 mm,
where they had an accuracy of 89.99% for the CNN network.
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Another research group [23] investigated IMT segmentation in video interpretation of
IMT measurement using CNN. They performed CNN using six layers, and they claimed
that they were able to achieve a low error rate in their measurements as they got a result of
2.1 mm error with only one failure for testing subjects. Furthermore, another technique was
used by Joseph and Sivaprakasam (2020) [24], where they used double line echo patterns
coming from the B-mode and A-mode ultrasound images to identify both arterial walls.
Their method showed an error of IMT measurement that equals 0.18 mm.

Another combined method was implemented by researchers in [25], where they used
deep learning for IMT measurement for patients with diabetes. Their method includes
two stages, the first is the CNN network that is used for segmentation and the other is
machine learning-based regression. Therefore, their output was the borders of the lumen
intima and the media-adventitia which is used to calculate the carotid IMT. In their work,
they used a dataset of 396 B-mode ultrasound images, as they got the result of the error for
cIMT measurement to be around 0.126 mm. Researchers claimed that their method was
20% improved compared to other non-deep learning methods.

One more deep learning method was discussed by researchers in [26], where they
used CNN with multiple hidden layers for image classification. They were able to test the
network using 501 ultrasound images dataset and achieve an accuracy of 89.1% for IMT
classification. The other method was developed by the authors of [27], where they used
four classification algorithms for IMT measurement, the algorithms consisted of SVM with
linear kernel, SVM with radial basis kernel, AdaBoost, and random forest. They evaluated
their method using a dataset that consisted of 29 images, and they concluded that the best
results were for the integrated random forest method which results in 80.4% sensitivity
and 96.5% specificity.

One study has been made regarding IMT measurements using autoencoders and
this was done by the authors of [28], their method included ROI prediction and then
lumen-intima interface (LII) and media-adventitia interface (MAI) walls predictions in the
predicted ROI, as their dataset consisted of 67 images. The authors claimed that they used
extreme learning machines (ELM) along with autoencoders in order to distinguish which
block is included in the ROI and which is not. Whereas the LII and MAI recognition was
done using pixel classification. Moreover, they evaluated their IMC segmentation by using
accuracy, specificity, sensitivity, and Matthews correlation coefficient (MCC). Their results
used sensitivity and specificity for evaluating ROI prediction, on the other hand, accuracy
and MCC were used LII and MAI. The final results were a mean IMT measurement of
0.625 ± 0.1673 mm, with an accuracy for LII of 99.30% and for MAI of 98.8%, and the MCC
for LII and MAI was 98.03% and 97.05%, respectively.

Given the above methods, one research used autoencoders for IMT measurement
which is the one done in [28]. Their findings were done using machine learning and autoen-
coders for ROI localization only, where they used another technique for IMT segmentation
and recognition. Moreover, some limitations were identified, such as the fact that using
semi-automated systems could lower the feature of having a portable system, also some
methods used clinical instruments that are not portable. Furthermore, when compare to
non-AI methods, we observe that errors found can be lower and accuracy can be enhanced
further when using AI methods. To illustrate more, we conclude that work done in [25]
has a lower error calculated in IMT measurement (0.126 mm) than the one in [24], which
is 0.18 mm. Therefore, in our research, we focus on implementing a solution that is fully
automated and supports portability along with taking into account segmentation metrics.

One more thing to point out is that Table 1 shows the different applications that have
been done for IMT predictions including AI and non-AI techniques. However, comparing
these applications together may not be fair since each application uses a different set of
datasets, and the percentage of the dataset for training that was used is not the same.
With that being said, we can make relative comparisons where we can point out the
outcomes of each application given their architecture or method used. Thus, in this work,
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we did not compare our results quantitatively with the provided literature since different
datasets are used. Instead, a comparison is only done with applications [8].

Table 1. Literature summary of cIMT segmentation applications.

Method Dataset
Size

Techniques Metrics Error in IMT
(mm)

[16] (2018) 49 SVM the correlation co-
efficient R, accu-
racy

0.01

[17] (2013) 300 snake’s segmenta-
tion

Wilcoxon-sum test 0.01

[18] (2012) 100 snake’s contour,
level set segmenta-
tion

Wilcoxon-sum test IMT SC: 0.12, LS:
0.09

[19] (2017) D1: 172,
D2: 649

bulb edge detec-
tion

precision accuracy,
sensitivity, speci-
ficity

0.01603 ± 0.0031

[20] (2018) D1: 100,
D2: 25

wind driven
optimization
technique

The correlation co-
efficient R

-

[21] (2020) 250 CNN, FCN correlation coef-
ficient, Polyline
distance metric
(PDM),accuracy

0.0935 ± 0.0637

[22] (2018) 220 CNN accuracy 0.08

[23] (2016) 92 videos CNN - 2.1

[24] (2020) 40 dignal processing accuracy of RF
frame sequqences
with different SNR

0.18

[25] (2018) 396 FCN, CNN, regres-
sion

PDM, Precision of
Merit (PoM)

0.126 ± 0.134

[26] (2019) 501 CNN precision, recall,
f1score, support

-

[27] (2017) 29 SVM specificity, sensi-
tivity, dice coeffi-
cient

-

[28] (2016) 67 ELM autoencoder accuracy, speci-
ficity, sensitivity,
Matthews correla-
tion coefficient

0.1673

3. Proposed Method

Carotid artery detection and segmentation can be one of the important solutions for
healthcare using medical imaging techniques. The lack of labeled large-scale datasets is
one of the challenges that can be faced for this task. In the case of the carotid artery, one
dataset was found with no labeling. Due to the fact that segmentation of regions of a
medical image is very helpful for doctors to diagnose, a pre-processing technique on the
original dataset is used to prepare this dataset for segmentation purposes. Then, using the
proposed deep-learning-based model the carotid artery is segmented. To remove the false
segmented pixels in the images a post-processing technique is applied using morphological
operation. In this section, each step is described in detail.
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3.1. Data Preparation

The dataset used for this paper is a dataset in [8]. It contains 100 carotid IMT B-Mode
ultrasound images with their ground truth points determined by two clinical experts.
In their work, Loizou et al. [8] highlighted that images were taken from 42 female and
58 male symptomatic patients aged between 26 and 95, where they produced longitudinal
ultrasound images.

The images were obtained from the ATL HDI–3000 scanner (Advanced Technology
Laboratories, Seattle, WA, USA), and were logarithmically compressed to produce images
with 768 × 576 pixels resolution and 256 grey levels. The scanner has a multi-element
ultrasound scan head with an operating frequency range of 4–7 MHz, an acoustic aperture
of 10 × 8 mm, and a transmission focal range of 0.8–11 cm, with 64 elements fine pitch
high-resolution, and 38 mm broadband array. Furthermore, the bicubic method was used
to resize digital images to a standard pixel density of 16.66 pixels/mm.

Figure 2 illustrates three sample images from the dataset that we work within this
paper. Given that the ultrasound image is all that is required, the frames in the samples
that included patient information were removed as part of the pre-processing step.

Figure 2. Three sample images from the dataset [8].

Similarly, the authors of [8] identified the IMT measurements from both experts with
a number of techniques. They used speckle reduction, as well as normalization as pre-
processing steps. In this research, we focus only on normalized images, hence, only IMT
measurements for normalized images are used. Table 2 shows the expert’s measurements
for IMT in the case of normalized 100 images.

Table 2. Ground truth measurements for IMT in mm.

Time 0 Time 12 Time 0 Time 12 Time 0 Time 12 Time 0 Time 12

Expert Mean
(Std)

Mean
(Std)

Min
(Std)

Min
(Std)

Max
(Std)

Max
(Std)

Median
(Std)

Median
(Std)

1 0.68
(0.17)

0.68
(0.17)

0.52
(0.15)

0.52
(0.15)

0.85
(0.21)

0.85
(0.21)

0.66
(0.18)

0.66
(0.18)

2 0.61
(0.17)

0.57
(0.13)

0.54
(0.14)

0.47
(0.14)

0.7 (0.2) 0.66
(0.14)

0.61
(0.17)

0.61
(0.14)

The experts readings included two time periods one at time 0 months and the other
at time 12 months. According to others in [8], this was done to test the intra-observer
variability for the same expert. This means that the experts highlighted the carotid walls
two times in different period of time for the same image in order to assess observer errors.

3.1.1. Pre-Processing

First of all, we took the raw images and removed the frames that were not of interest.
After that, images were normalized and taken to be processed using Sobel and Prewitt
gradient methods that are available built-in functions in MATLAB. We have examined them
with other filters like the canny filter, however, given that it is an edge detector, the IMT
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region was identified as small, disconnected circles. Thus, it was not retrieving the features
accurately. Then, we experimented with gradient images and found that they were able to
distinguish the IMT region properly. Both methods produced gradient magnitude as well
as gradient direction. For this implementation, we stored only the normalized gradient
direction for both methods. After trying other filters, the gradient directional images were
found to be the most accurate shows the cIMT more clearly than the rest of the images.

As for the ground truth points, we converted the points to binary images in order to
input them as labels in the deep learning model, as well as to compare them with predicted
images in the testing phase. In Figure 3, the original image along with the gradient images
and the produced ground truth image are shown. Additionally, in order to train the model
with data augmentation, the newly generated ground truth mask images were produced
using lines that connects the ground truth manual points given in the dataset without using
a threshold.

Figure 3. The pre-processing phase.

3.1.2. Data Augmentation

Data augmentation is mainly used when we have a small dataset and would like to
increase the number of images in a given dataset [29]. Thus, it provides small operations
that can give the ability to rotate, flip, shift, zoom, or translate a given image without
changing its content. Hence, we keep the final image as the original image features.
Moreover, in order to do data augmentation, we need to have binary mask images since
we are changing the display of an image, then the given mask should go through the
same process.

In this stage, we use special features to implement augmentation namely, rotation,
width and height shift, and zoom. Table 3 shows the values used for the augmentation.
The augmentation was done using ImageDataGenerator library in python, where it was
used to augment both image and its binary mask.

Table 3. Data augmentation parameters.

Feature Value

Rotation 10

Width shift 0.2

Height shift 0.2

Zoom 0.2

3.2. Encoder-Decoder Architecture

The introduction of deep learning techniques, such as convolutional neural networks,
improved the image segmentation task in terms of the quality and quantity of segmented
parts in an image. From the famous architecture that used CNNs layers for images segmen-
tation, we can find SegNet [30] and U-Net [31] which are encoder-decoder-based models
that achieved good results in semantic segmentation. Both architectures are capable of
binary and multi-class segmentation, where binary image segmentation is much easier
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than colored image segmentation. Thus, we were inspired by the SegNet architecture to
implement the proposed model for segmenting the carotid artery from ultrasound images.
The proposed architecture used two inputs instead of the model’s single input as used by
U-Net and SegNet. A model’s multiple input can assist in the extraction of useful informa-
tion while allowing for multi-feature learning. The proposed model includes two encoders
for feature extraction, a fusion layer, a decoder with upsampling, and convolutional layers
to produce the final results.

Each encoder is implemented based on VGG-19 [32] backbone as SegNet, which is a
series of (conv+BN+PReLU) layers with pooling layers and batch normalization (BN) [33].
The two encoders are merged by concatenating the feature maps of each encoder output.
Like SegNet and U-Net, the proposed decoder employs blocks of upsampling (unpooling)
and convolutional layers (upsampling+Conv+BN+PReLU). The encoder part’s feature
maps are converted into the final label by the decoder, which takes into account spatial
restoration. The same structure used in the encoder is also used for the decoder by
replacing the pooling layers with upsampling layers. Hence, the final architecture is shown
in Figure 4. For the loss function, the SoftMax function is used to calculate the loss function:

loss =
1
N

N

∑
N=1

k

∑
i=1

yi
jlog(

exp(pi
j)

∑k
l=1 exp(pl

j)
) (1)

where N is the number of pixels in the input image, k is the number of classes and, for a
specified pixel i; yi denotes its label and the prediction vector.

Figure 4. The model architecture used for the research solution.

For this paper, we use two components namely, the Sobel gradient direction image
and Prewitt gradient direction image as inputs of the model. Additionally, these images
went through pre-processing steps which are discussed in Section 3.1.1.

In the case of the segmentation process, it was mainly done by using 80% of the final
dataset and converting it to both Sobel gradient and Prewitt gradient. These images were
fed to the encoder-decoder architecture described in Figure 4. During the training phase,
we trained the model multiple times in order to get the best performance and tune the
hyper-parameters for better accuracy. Finally, the training was done using 50 epochs along
with 10 steps per epoch, which means it increases the data augmentation for each epoch
10 times.
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Furthermore, post-processing techniques were applied since the final segmented
image had some noise that needed to be reduced and specific regions of interest (ROI)
needed to be highlighted. For that, we used morphological opening, which removes
any small noise in the image and can detect discontinued blobs. Additionally, we used
morphological closing in order to avoid having a discontinued segmentation of the carotid
artery IMT. The shape for the morphological operations was a rectangular shape with
different sizes each time. Firstly, morphological close is applied with a size of [(2 ,30] in
order to close the gaps between discontinued IMT. Then, morphological open with a size
of [2 ,30] is applied to remove small noises from the image. Finally, morphological close is
applied with a size of [3 ,30].

4. Experimental Results

This section tackles the setup and evaluation metrics that lead to the given results as
well as an analysis of the produced results.

4.1. Experimental Setup

In order to implement the architecture and train it using the model described in
Section 3.2, we use python programming language. We built and trained the model on
NVIDIA GeForce GPU using Python. The implementation was done using Windows
10 operating system and the framework was done on Anaconda. Python version 2.7 was
used for the training process. Keras and Tensorflow software packages were used to model
and evaluate the results.

4.2. Evaluation Metrics

The evaluation of the deep learning model performance computed in the testing phase
was based on the segmentation metrics [34,35]. These metrics are defined as follows:

• Precision: This calculates how close the values are to each other and how close they
are to the true values.

• Recall: Also known as sensitivity. This is the ratio of the correct results by the overall
correct data.

• F1 Measure: This is calculated using both precision and recall, where it gives an
overall overview of the performance of the system.

F1 Measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(2)

• Sorensen Dice Coefficient: This calculates the similarity of two samples and is mainly
used to validate image segmentation algorithms. It is also more about the percentage
of overlap between two images.

Dice =
2 ∗ TP

2 ∗ TP + FP + FN
(3)

• Jaccard Index: This is the percentage of similarity for two images. It is similar to the
Dice index, however, the Jaccard index takes into account true positive only once,
while in the Dice Coefficient it does it twice.

Jaccard Index =
TP

TP + FP + FN
(4)

We focus mainly about the F1 measure, Dice coefficient, and the Jaccard index in
this work, as they mainly evaluate the similarity and the efficiency of the model and
segmentation algorithm.
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4.3. Evaluation

During the implementation of the deep learning model, we did extensive training as
we ran the experiments various times with different numbers of epochs. This included
changing the batch size as well as experimenting with the input images along with the
pre-processing techniques.

Firstly, the training was done on the Prewitt and Sobel images as inputs with batch
sizes equal to 32 and 8 as well as we included data augmentation in this phase. As a result,
it was clear that the 32 batch size was not segmenting only the desired part and 8 batch
size was more accurate. Thus, we trained the model using 8 batch size and augmentation
in the second phase. Furthermore, we examined with changing input images as Prewitt
and Sobel, and in the other experiment we made the inputs as the original image and Sobel
image. However, the two gradient images were giving more accurate results. The first
results were done using the architecture without batch normalization layers. We examined
then the batch normalization layers on the final results and it gave preferable results than
the outputs previously examined.

Similarly, Table 4 illustrates the trials that were done and how the parameters were
changed. The last two trials included the batch normalization layer, which had the higher
percentages in the final results explained in Table 5. In addition, in Table 6 the performance
of each trial is provided.

Table 4. Experimental trials for hyper-parameter tuning.

Trial Input 1 Input 2 Batch Size Epochs Steps/Epoch
Learning

Rate
Augmentation

1 Prewitt Sobel 32 50 - 0.0001 No
2 Prewitt Sobel 8 50 - 0.0001 No
3 Prewitt Sobel 8 15 5 0.0001 Yes
4 Original Sobel 8 5 50 0.0001 Yes
5 Prewitt Sobel 8 7 80 0.00001 Yes
6 Prewitt Sobel 8 50 10 0.00001 Yes

Table 5. Evaluation of the experimental trials.

Trial Input 1 Input 2 Batch Size F1 Measure
Jaccard
Index

Dice Coeffi-
cient

1 Prewitt Sobel 32 - 50.77% 36.93%
2 Prewitt Sobel 8 64.92% 45.65% 60.44%
3 Prewitt Sobel 8 70.77% 45.43% 60.51%
4 Original Sobel 8 67.63% 46.64% 61.31%
5 Prewitt Sobel 8 73.63% 52.29% 66.07%
6 Prewitt Sobel 8 79.92% 60.24% 74.23%

After tuning the hyper-parameters and decreasing the learning rate we were able to
get the results shown in Figure 5.

In addition, the results show better similarity with the ground truth with little ex-
tension of the line. During the testing phase, we evaluate the model using three metrics
discussed in Section 4.2. The results of the metrics are shown in Table 6.

According to the Jaccard index and the Dice coefficient, they show a similarity of the
tested data with the binary masks. The highest percentage is the F1 measure, where it gives
an overview of the performance of the system.

The results showed that the system has somewhat good performance, however, it
can be further enhanced, where pre-processing or post-processing techniques need to be
further enhanced. Results might not give the best accuracy due to the fact that the dataset
is not very clean, as it was hard to work with.
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Figure 5. The results of five images for the final training.

Table 6. Improved model architecture results.

Metric Proposed Model

F1 Measure 79.92%
Precision 81.18%

Recall 82.06%
Dice Coefficient 74.23%

Jaccard Index 60.24%

Moreover, we performed pixel calculations to get the thickness of the predicted IMT
measurement. The calculations were made by calculating the distance from the upper
boundary to the lower boundary. It was done using MATLAB functions bwdist(), as it
calculates the vertical distance of a binary object. Additionally, the local max value was
taken and then the mean value was calculated for all tested images to get the thickness
as 2.989 pixels. Furthermore, converting pixels to mm we get 0.54 mm as the mean
IMT measurement.

In comparison to the work done in [8], as well as the ground truth, Table 7 illustrates
the error found in both the dataset and the proposed method compared to the ground
truth. As explained before in Table 2, the ground truth IMT has been determined by two
experts at a certain time. We observed from the table that the minimum IMT measurement
in the proposed solution is smaller than the ground truth. This is due to some predictions
where the IMT was not clear in the image, thus, the model was only able to distinguish a
small part of the IMT. Furthermore, the median value of the proposed model is close to the
reading for Expert 2 than the one in [8]. Regarding the max value, the proposed model was
also able to achieve a similar thickness as Expert 2. With that being pointed out, the dataset
was used in [8] had a semi-automated model, comparing our model to theirs, our results
were better given the automation.
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Table 7. Comparison of the results.

Expert 1 Expert 2 Snake’s Segmentation [8] Proposed Solution

Normalized mean IMT
measurement(mm) (std) at time 0,12: 0.6 8 (0.17) at time 0,12: 0.6 1 (0.17),

0.5 7 (0.13) 0.6 7 (0.13) 0.54

Error in mean IMT - -
Expert 1: at time 0,12:
0.01 , Expert 2: at time
0,12: 0.06,0.1

Expert 1: at time 0,12: 0.14,
Expert 2: at time 0,12:
0.07,0.03

Normalized IMT min(std) at time 0,12: 0.5 2 (0.15) at time 0,12: 0.54 (0.14),
0.47 (0.14) 0.51 (0.14) 0.18

Normalized IMT max(std) at time 0,12: 0.8 5 (0.21) at time 0,12: 0.7 (0.2), 0.66
(0.14) 0.86 (0.17) 0.71 (0.13)

Normalized IMT
median(std) at time 0,12: 0.6 6 (0.18) at time 0,12: 0.61 (0.17),

0.61 (0.14) 0.66 (0.12) 0.60 (0.14)

5. Discussion and Challenges

Given the results discussed in Section 4, we were able to achieve a segmented region
for the carotid IMT, which was then used to estimate the thickness. For this paper, we were
able to train and test the images and compare them to the ground truth points.

During the implementation of this solution, many other architectures were investi-
gated, including UNet segmentation using MATLAB. These models were trained using
more than 50 epochs with no good results. Therefore, the encoder-decoder architecture
was able to produce segmented output which achieved a good performance. The results of
this model look promising and are good for future expansion.

One of the main challenges faced in this research is finding a good segmented and
annotated dataset. We faced many issues to get a dataset and we were able to receive the
dataset that we worked on. Moreover, the dataset was not clean enough to be processed,
hence, it was time consuming to work on these images, where in some cases the IMT was
not very clear. Thus, the output for these images from the model are discontinued parts of
sections around the IMT. Additionally, the dataset has no recent studies, which makes it
hard to compare between results.

According to the research questions described in Section 1, we can conclude now that
the model was able to segment IMC fairly well. However, due to the lack of variety of
images in the given dataset, it is not clear if the model can improve IMT segmentation. Thus,
further research needs to be done regarding the dataset. Moving to the second question,
the model chosen has not been used before for IMT segmentation and it has shown good
results for this dataset and it is open for further improvements. We also observed from
the trials and experimentation that 8 batch output with augmentation showed better
segmentation than the one without augmentation. Hence, the data augmentation was
effective on the dataset along with the encoder-decoder model.

In general, after comparing with the results found in [8], we identify that the proposed
method is robust and fast and is fully automated compared to their semi-automated
snake segmentation.

6. Conclusions and Future Direction

In conclusion, CVDs take millions of lives on a yearly basis, which means it is im-
portant to provide people with ways for early diagnosis of such a disease. Many imple-
mentations were done for such a problem using computer vision techniques for B-mode
ultrasound images. In addition, we looked at recent work on carotid intima-media thick-
ness segmentation and encoder-decoder applications. In this research, we investigated a
deep learning model, specifically a convolutional autoencoder with two inputs for two
encoders, and identified the optimum hyper-parameters and architecture that produced
results that were similar to the dataset’s provided ground truth. We trained the encoder-
decoder architecture using 10 steps per epoch and 50 epochs and 80% of the dataset. We
were able to obtain results of 79.92%, 74.23%, and 60.24% for the F1 Measure, Dice co-
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efficient, and Jaccard index, respectively. We also calculated the IMT thickness, which
was 0.54 mm. The model showed good performance with the lowest error of 0.03 mm,
compared to the ground truth data.

Further enhancement could be done by experimenting with the optimized model
along with other ultrasound B-mode carotid datasets, this would give an overview of
the generality of such system and the performance given other images. Furthermore,
we could experiment with different modern filters to input with the model and evaluate
the performance. Our proposed system is highly recommended to be used along with
a portable device that acquires ultrasound images and processes them in order to give
patients the ability to early diagnose themselves.
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Abstract: Rotary left ventricular assist devices (LVAD) have emerged as a long-term treatment option
for patients with advanced heart failure. LVADs need to maintain sufficient physiological perfusion
while avoiding left ventricular myocardial damage due to suction at the LVAD inlet. To achieve these
objectives, a control algorithm that utilizes a calculated suction index from measured pump flow
(SIMPF) is proposed. This algorithm maintained a reference, user-defined SIMPF value, and was
evaluated using an in silico model of the human circulatory system coupled to an axial or mixed flow
LVAD with 5–10% uniformly distributed measurement noise added to flow sensors. Efficacy of the
SIMPF algorithm was compared to a constant pump speed control strategy currently used clinically,
and control algorithms proposed in the literature including differential pump speed control, left
ventricular end-diastolic pressure control, mean aortic pressure control, and differential pressure
control during (1) rest and exercise states; (2) rapid, eight-fold augmentation of pulmonary vascular
resistance for (1); and (3) rapid change in physiologic states between rest and exercise. Maintaining
SIMPF simultaneously provided sufficient physiological perfusion and avoided ventricular suction.
Performance of the SIMPF algorithm was superior to the compared control strategies for both types
of LVAD, demonstrating pump independence of the SIMPF algorithm.

Keywords: left ventricular assist devices; sensor-based control; pump independent; suction index;
physiological perfusion; suction prevention

1. Introduction

Heart failure (HF) is a highly prevalent disease and a leading cause of mortality in
the world, with approximately 2% of adults suffering from HF worldwide [1]. The most
effective treatment for advanced HF is heart transplantation [2], but due to the limited
number of available donor hearts, only a few thousand patients in the world receive heart
transplantation every year, with more than 20% of waitlisted patients perishing before a
donor heart becomes available [3]. Rotary left ventricular assist devices (LVAD), surgically
implantable mechanical blood pumps, have been increasingly utilized as a long-term
treatment for advanced HF patients. The pump inlet is attached to the apex of the left
ventricle (LV) and the pump outlet is anastomosed to the aorta. The LVAD pumps blood
from the LV to the aorta, alleviating the workload of the native heart, thereby serving as
a bridge to transplantation or destination therapy [4,5]. Rotary LVADs have effectively
replaced pulsatile LVADs since rotary LVADs are mechanically simpler, smaller, lighter
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weight, and have higher operating efficiencies. Additionally, rotary LVADs are more
durable, showing improved survival rates compared to pulsatile LVADs [6,7].

LVADs must generate sufficient physiological perfusion as insufficient pump flow
rates can lead to hypoperfusion, pulmonary edema, and volume overload of the native LV.
Simultaneously, LVADs must also avoid suction due to over pumping, which can result
in severe LV decompression and/or LVAD inflow obstruction. Suction events can trigger
pump flow stoppage, LV collapse, myocardial damage, or induce myocardial arrhythmias,
each of which may lead to potentially life-threatening events or death [8]. Pulsatile LVADs
have low risk of LV suction due to phasic filling, which results in a higher preload sen-
sitivity. In contrast, suction occurs commonly during the rotary LVAD support due to
its lower preload sensitivity [9,10]. For example, 15 out of 19 patients with rotary LVAD
support experienced suction events with 13 suction events per 1000 min of support [11].
Patients with rotary LVADs are also prone to suction during Valsalva maneuver, coughing,
hypovolemia, and transient reduction in cardiac return [12]. Therefore, avoiding LV suction
while providing adequate pump-augmented cardiac output (CO) during various levels of
activity is critical for patients on LVAD support.

Suction detection algorithms based on a variety of pump signals for rotary LVADs
have been proposed [13–16], however, these algorithms only detect suction events after they
have occurred, which results in myocardial damage. Many physiological control strategies
have also been developed that aim to reduce LV suction events [17–22], but some of these
require the measurement of ventricular pressure and/or volume, which require sensors
that are in contact with blood, and thus susceptible to thrombosis or failure, while others
may not be able to generate sufficient perfusion during varying physiological conditions.
Our group and others have developed sensorless algorithms [23–26] with model-based
parameter estimation strategies. However, the performance of these algorithms may be
adversely affected by changes in blood viscosity, friction forces, and device inertia [27].
Recently, non-model-based, sensorless control algorithms have been proposed [27,28], but
the performance of the differential pump speed (ΔRPM) controller may be degraded by
increased levels of measurement noise or with rapidly changing ventricular contractili-
ties. Furthermore, obtaining the suction index (SI) from the pump speed (PS) cannot be
pump-independent. Constant parameter-based control strategies by maintaining constant
pump speed (CPS), LV end-diastolic pressure (LVEDP), mean aortic pressure (MAoP), and
pressure head (ΔP) across the LVAD have also been proposed in the literature [29–31].
While these control algorithms can be effective in a limited set of conditions, they may not
be adequate with changing physiologic demand conditions.

In this paper, a new pump-independent, flow sensor based control algorithm is
proposed. In contrast to pressure and volume sensors, ultrasonic flow sensors are implanted
outside the pump outflow graft and do not come in contact with blood. Flow sensors
have been clinically implanted in patients with the HeartAssist 5 LVAD [32]. In this
manuscript, we utilize the measured pump flow (PF) signal (e.g., SIMPF control) with 5%
and 10% normally distributed noise added to the original signal. The feasibility of the
control algorithm to sense the adequate level of perfusion and avoid suction was tested
for two different types of rotary LVADs to test for pump independence. Performance of
the proposed SIMPF control strategy was evaluated in silico under different simulated
conditions and compared to other control algorithms that are clinically used or previously
reported in the literature.

2. Methods

2.1. Modeling of the Biventricular Cardiovascular System

In this study, a validated and published model of a biventricular cardiovascular
system was used to develop the SIMPF control algorithm. The lumped parameter model
has previously been used for testing control algorithms, timing algorithms, and fault
detection algorithms with different types of LVADs [27,33,34]. Four valves and twelve
lumped parameter blocks constitute the model [28]. Amongst these blocks, nonlinear active
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elements include the left and right atrium and ventricles because their values of compliance
were time-varying, and the other blocks had time-invariant compliance values. Each block
was represented using the differential equation that described the rate of change of volume
(V) as a function of resistance (R), and compliance (C), as follows:

dVn

dt
= Fin

n − Fout
n (1)

dVn

dt
=

Vn−1

Cn−1Rn−1
− Vn

Cn

(
1

Rn−1
+

1
Rn

)
+

Vn+1

Cn+1Rn
(2)

where in block n, dVn/dt is the rate of volumetric change; Fin is blood flowing into the
block n; and Fout is blood flowing out of the block n. A model of a rotary LVAD, which was
an axial flow pump (AFP) or Deltastream mixed flow pump (DP2), was incorporated into
this circulatory system model.

2.2. The Rotary LVAD Model

The model of the axial flow rotary LVAD is described by the following two ordinary
differential equations:

J
dω

dt
=

3
2

KB I − Bω − a0ω3 − a1Fpω2 (3)

dVn

dt
=

Vn−1

Cn−1Rn−1
− Vn

Cn

(
1

Rn−1
+

1
Rn

)
+

Vn+1

Cn+1Rn
(4)

where the various model parameters (J, ω, KB, I, B, a0, a1, Fp, b0, b1, and b2) in Equations (3)
and (4) and their associated values can be found in [35,36]. ω is the LVAD pump speed, the
pump current (control variable) is represented by I, and Fp is the LVAD pump flow.

A mixed flow LVAD (DP2) model was also simulated in this study to demonstrate the
pump independence of the SIMPF control algorithm. The model of DP2 was developed by
Petrou et al. [37]:

dω

dt
=

1
J(ω)

(
kT I − g1(ω) + g2ω − g3ω2 − g4Fpω

)
(5)

dFp

dt
= − 1

F

(
−ΔP + f1ω2 − f2FP − f3F2

p

)
(6)

The various model parameters (J(ω), kT, g1(ω), g2, g3, g4, f1, f2, f3) in Equations (5) and
(6) and their associated values can be found in [37]. Either AFP or DP2 was incorporated
into the biventricular cardiovascular model to remove volume from the LV and to add
volume to the aorta.

2.3. SIMPF Control Strategy

The SIMPF control strategy was developed to keep a single fixed setpoint and provide
adequate COs for the circulatory system under varying physiological conditions, while
preventing LV suction. In order to achieve this proposed control algorithm, the real-time
SI was extracted with a sampling rate of 100 Hz and a moving window of 5 s [12,14]. The
window was recalculated every 0.1 s:

SI =
max

[
d(PF)

dt

]
− min

[
d(PF)

dt

]
max(PF)

(7)

In this study, PF was measured using the flow sensor including 5% and 10% uniformly
distributed measurement noise, and the implementation of the SIMPF control strategy
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depended on a gain scheduled PI controller. The following control law was used to update
the pump current:

I = KP(SI − SIr) + KI

∫ t

0
(SI − SIr)dt (8)

where the SI setpoint is represented by SIr, and the proportional and integral coefficients
are represented by KP and KI, respectively. These parameters can be determined a priori [38]
and were unchanged during all test conditions in both pumps. In this study, the controller
of AFP used 9, 0.07, and 0.014 for SIr, KP, and KI, respectively, while the controller of DP2
set 5, 0.15, and 0.03 for SIr, KP, and KI, respectively. Figure 1 shows the schematic of the
proposed SIMPF control strategy and the related flowchart, respectively.

 

(a) 

(b) 

Figure 1. (a) Diagrammatic drawing of the proposed suction-index based measured pump flow
(SIMPF) control algorithm. The measured pump flow (PF) signals were used to calculate suction
index (SI) and fed to the PI controller with the reference SI (SIr) for axial flow pump (AFP) and
Deltastream mixed flow pump (DP2), respectively, which were surgically implanted from the left
ventricular to the aorta. (b) Flowchart of the proposed SI control method.
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2.4. Comparison with the Other Control Strategies

The SIMPF control strategy was compared to previously reported control strategies.
(1) sensorless ΔRPM control that kept the actual ΔRPM above a fixed setpoint, ΔRPMr.
The actual ΔRPM was obtained using the difference between the maximum and minimum
PS as described in [27]. The reference ΔRPMr was set to 800 RPM for AFP to satisfy the
physiological demands during rest (PF was 5 L/min), and KP and KI were 0.00025 and
0.00005, respectively. For DP2, ΔRPMr was set to 150 RPM, KP and KI were 0.0004 and
0.00008, respectively. (2) Maintain a CPS [28]. The setpoint of PS was 10,452 RPM selected
for AFP to provide sufficient physiological perfusion at rest, and KP and KI were 0.003
and 0.0006, respectively. In addition, the PS setpoint was 4338 RPM, and KP and KI were
0.006 and 0.0012 for DP2, respectively. This sensorless control method was regarded as
CPS control, the current clinical standard. (3) Control the average ΔP from the LV to
aorta across an LVAD, ΔP control. ΔP can be estimated using pump speed measurements
with 2% noise, an extended Kalman filter (EKF) [39,40], and a second order polynomial
Golay–Savitsky (GS) filter [41,42], which was established with a 17-point moving window.
Low and high frequencies could be filtered with the GS filter by holding the maximum
and minimum values [29]. The reference value of ΔP was set to 87 mmHg to meet the
physiological perfusion of 5 L/min at rest, and KP and KI were 0.008 and 0.0016 for AFP
and DP2, respectively. (4) Maintain a constant MAoP [30]. MAoP can be measured using a
pressure sensor (sensor-based MAoP control). The reference MAoP was set as 100 mmHg
to reach a total output of 5 L/min under rest condition. KP and KI were set to 0.007 and
0.0014, respectively, for both pumps. (5) Maintain an average LVEDP [31]. LVEDP can
be measured using pressure sensors. The setpoint of LVEDP was 6.6 mmHg to match PF
of 5 L/min under rest with KP = 0.045 and KI = 0.009 for both pumps. This sensor-based
control method is referred to as the LVEDP control.

2.5. Simulation Description and Data Analysis

Several conditions were considered to quantify the overall performance of all the
control algorithms: (1) rest and exercise; (2) rapid pulmonary vascular resistance (PVR)
increase by eight-fold during rest and exercise; (3) rapid change in physiologic condition
from rest to exercise and exercise to rest. Noise was included to simulate a uniformly
distributed random variable up to ±5 to 10% of actual PF signals [27]. The simulated
heart rates were 80 bpm during rest and 120 bpm during exercise. All the initial pump
parameters were zero, approximating a realistic pump start condition.

MATLAB (MathWorks, Natick, MA, USA) was used for simulation, data reduction,
and analysis including the calculation of PS, PF, CO, AoP, LVEDP, and left ventricular
volume (LVV). The mean values in this simulation were calculated based on the final
20 cardiac cycles after the simulation reached a steady state. Instantaneous values of LV
pressure less than 1 mmHg were considered to be a suction event [3,17,43].

3. Results

3.1. The Proposed SIMPF Control Algorithm

Figure 2 shows the extracted SI from the measured pump flow signals for both axial
and mixed flow pumps, respectively. The extracted SI was initially high at low LVAD
flow rates and reduced gradually to 9 ± 0.5 and 5 ± 0.3, which were close to the SIr
setpoints for AFP and DP2, respectively, while PF, PS, and control variable increased. The
proposed SIMPF control algorithm provided sufficient physiologic perfusion and avoided
suction during various conditions (Tables 1 and 2). For AFP, the SIMPF control algorithm
generated flow rates of 5 L/min and 8.2 L/min at rest and exercise (Table 1), respectively.
Figures 3a–c and 4a–c demonstrate that the SIMPF control strategy successfully avoided
LV suction under conditions when the PVR increased 8-fold and during step change from
exercise to rest for AFP. The simulated results of DP2 were similar to AFP during almost
all test conditions (Figures 5a–c and 6a–c). In addition, at rest, the root mean square
errors (RMSE) of the measured values of pump flow rate were 2.4 mL/s (5% noise) and
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4.8 mL/s (10% noise) for AFP, and 2.4 mL/s (5% noise) and 4.8 mL/s (10% noise) for DP2,
respectively. At exercise, RMSE of the measured values of pump flow rate were 3.9 mL/s
(5% noise) and 7.9 mL/s (10% noise) for AFP, and 3.8 mL/s (5% noise) and 7.9 mL/s (10%
noise) for DP2, respectively.

Table 1. Performance comparison among the proposed SIMPF control strategy and other control
algorithms during various test conditions with AFP.

CO
(L/min)

AoP
(mmHg)

Min LVP
(mmHg)

LVV
(mL)

Mean PS
(RPM)

Suction

Healthy heart without LVAD support
Rest 5.0 122/80 2.7 43/106 N/A No

Exercise 8.6 121/74 2.8 42/114 N/A No

HF without LVAD support
Rest 3.8 97/63 15.5 181/229 N/A No

Exercise 6.8 95/58 15.4 178/234 N/A No

HF with AFP support at rest
SIMPF control 1 4.9 102/97 4.7 54/82 10,365 No
SIMPF control 2 5.0 103/98 4.4 49/77 10,441 No
ΔRPM control 5.1 104/101 3.3 35/62 10,717 No

CPS control 5.0 103/97 4.4 49/78 10,448 No
ΔP control 5.0 103/97 4.4 50/78 10,447 No

MAoP control 5.0 103/99 4.1 46/74 10,506 No
LVEDP control 5.0 103/98 4.4 49/77 10,449 No

HF with AFP support at exercise
SIMPF control 1 8.1 94/89 6.7 75/106 10,505 No
SIMPF control 2 8.2 95/91 6.1 68/98 10,653 No
ΔRPM control 8.5 97/94 4.8 51/80 11,000 No

CPS control 8.1 94/88 7.0 79/109 10,450 No
ΔP control 8.7 99/96 3.5 36/64 11,276 No

MAoP control 9.0 101/99 2.2 20/47 11,590 No
LVEDP control 8.5 98/94 4.5 48/77 11,037 No

HF with AFP support during 8-fold increase in PVR at rest
SIMPF control 1 4.3 90/85 1.2 46/68 9712 No
SIMPF control 2 4.3 90/86 1.1 42/64 9800 No
ΔRPM control 4.4 90/87 0.8 37/58 9900 IS

CPS control 4.6 94/92 0.5 14/29 10,448 IS
ΔP control 4.6 93/91 0.6 17/34 10,355 IS

MAoP control 5.0 100/100 −1.8 −2/−1 11,065 CS
LVEDP control 4.2 89/84 2.3 54/77 9547 No

HF with AFP support during 8-fold increase in PVR at exercise
SIMPF control 1 7.1 83/78 2.7 65/90 9867 No
SIMPF control 2 7.2 84/79 2.3 58/83 10,013 No
ΔRPM control 7.3 85/81 1.4 51/75 10,176 No

CPS control 7.5 86/83 2.2 38/60 10,450 No
ΔP control 8.1 92/90 0.5 13/26 11,149 IS

MAoP control 8.9 100/100 −5.1 −13/−7 11,950 CS
LVEDP control 7.3 84/80 1.7 53/77 10,125 No

1 With 5% noise. 2 With 10% noise.
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Figure 2. Measured pump flow signals were used to calculate SI, whose values gradually decreased
and finally approached the setpoints of 9 for AFP (a) and 5 for DP2 (b), respectively.

Table 2. Performance comparison among the proposed SIMPF control strategy and other control
algorithms during various test conditions with DP2.

CO
(L/min)

AoP
(mmHg)

Min LVP
(mmHg)

LVV
(mL)

Mean PS
(RPM)

Suction

Healthy heart without LVAD support
Rest 5.0 122/80 2.7 43/106 N/A No

Exercise 8.6 121/74 2.8 42/114 N/A No

HF without LVAD support
Rest 3.8 97/63 15.5 181/229 N/A No

Exercise 6.8 95/58 15.4 178/234 N/A No

HF with DP2 support at rest
SIMPF control 1 5.0 102/98 4.2 50/76 4337 No
SIMPF control 2 5.0 103/100 3.0 38/63 4419 No
ΔRPM control 5.1 104/101 3.2 35/60 4385 No

CPS control 5.0 102/98 4.5 51/77 4336 No
ΔP control 5.0 101/98 4.6 53/78 4326 No

MAoP control 5.0 102/99 4.2 47/74 4363 No
LVEDP control 5.0 102/98 4.5 51/77 4339 No

HF with DP2 support at exercise
SIMPF control 1 8.0 92/89 7.4 85/112 4856 No
SIMPF control 2 8.3 94/92 5.8 66/93 5023 No
ΔRPM control 8.1 92/90 6.9 78/105 4957 No

CPS control 7.3 84/80 12.0 142/169 4337 No
ΔP control 8.7 98/96 3.8 40/67 5268 No

MAoP control 9.0 101/100 2.3 21/47 5453 No
LVEDP control 8.5 96/94 4.6 50/77 5173 No

HF with DP2 support during 8-fold increase in PVR at rest
SIMPF control 1 4.3 89/86 1.0 41/62 4048 No
SIMPF control 2 4.4 91/88 0.5 32/51 4104 IS
ΔRPM control 4.4 90/87 −0.4 36/56 4067 IS

CPS control 4.7 95/93 0.3 11/24 4336 CS
ΔP control 4.6 93/91 0.6 18/34 4243 IS

MAoP control 5.0 100/100 −1.8 −3/−1 4566 CS
LVEDP control 4.2 88/84 2.4 56/77 3911 No

HF with DP2 support during 8-fold increase in PVR at exercise
SIMPF control 1 7.1 81/78 3.0 70/92 4462 No
SIMPF control 2 7.3 83/81 2.0 54/76 4616 No
ΔRPM control 6.9 79/76 1.5 82/105 4340 No

CPS control 6.9 79/76 5.9 83/106 4337 No
ΔP control 8.1 91/90 0.5 15/28 5101 IS

MAoP control 8.9 100/100 −5.1 −13/−8 5572 CS
LVEDP control 7.3 83/81 1.5 55/77 4604 No

1 With 5% noise. 2 With 10% noise.

397



Sensors 2021, 21, 6890

Figure 3. Comparison of performance among six control strategies at rest when the PVR increase eight times for AFP.
The increase in PVR started when t = 300 s. (a−c) SIMPF control with 5% noise. (d−f) ΔRPM control. (g−i) CPS control.
(j−l) ΔP control. (m−o) MAoP control. (p−r) LVEDP control. SIMPF and LVEDP control did not cause any LV suction.
ΔRPM, CPS, and ΔP control induced intermittent suction. MAoP control induced constant suction.
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Figure 4. Comparison of performance among six control strategies under step change from exercise to rest for AFP.
The transition started when t = 300 s. (a−c) SIMPF control with 5% noise. (d−f) ΔRPM control. (g−i) CPS control.
(j−l) ΔP control. (m−o) MAoP control. (p−r) LVEDP control. Intermittent suction events were found for the MAoP
control algorithm.
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Figure 5. Comparison of performance among six control strategies at rest when the PVR increase eight times for DP2.
The increase in PVR started when t = 300 s. (a−c) SIMPF control with 5% noise. (d−f) ΔRPM control. (g−i) CPS control.
(j−l) ΔP control. (m−o) MAoP control. (p−r) LVEDP control. SIMPF and LVEDP control did not cause any LV suction.
ΔRPM and ΔP control induced intermittent suction. CPS and MAoP control induced constant suction.
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Figure 6. Comparison of performance among six control strategies under step change from exercise to rest for DP2. The
transition started when t = 300 s. (a−c) SIMPF control with 5% noise. (d−f) ΔRPM control. (g−i) CPS control. (j−l) ΔP
control. (m−o) MAoP control. (p−r) LVEDP control. Intermittent suction events were found for the ΔRPM and MAoP
control algorithms.

401



Sensors 2021, 21, 6890

3.2. ΔRPM Control Algorithm

The ΔRPM control algorithm successfully generated sufficient cardiac outputs and
avoided LV suction events during rest and exercise conditions for both pumps (Tables 1 and 2).
However, as shown in Figures 3d–f and 5d–f, an intermittent LV suction event occurred
when the PVR was increased under rest, since the instantaneous LV pressure decreased to
less than 1 mmHg. Meanwhile, no LV suction was found under exercise when the PVR was
increased. The control algorithm could function effectively during the rapid step change
from rest to exercise (no figures shown) and exercise to rest (Figure 4d–f) for AFP. However,
for DP2, there was a serious intermittent LV suction event (~100 s), causing the minimum
LVP to be −7.1 mmHg during the rapid transition from exercise to rest (Figure 6d–f).

3.3. CPS Control Algorithm

The CPS control strategy did not induce LV suction events without a change in PVR
and provided adequate physiological perfusion during the rest condition (5.0 L/min) for
both pumps. However, during exercise, the increase in pump flow was lower than that
using any other control algorithm, especially for DP2 (Tables 1 and 2). Figure 3g–i also
shows that this control algorithm caused intermittent LV suction at rest with AFP when the
PVR was octupled compared to the normal activities of the patients. It caused constant
suction with DP2, as shown in Figure 5g–i. Furthermore, the CPS control strategy did not
trigger LV suction events during rapid condition change from rest to exercise (no figure
shown) and exercise to rest (Figures 4g–i and 6g–i) and for both pumps.

3.4. ΔP Control Algorithm

Maintaining a fixed ΔP from LV to the aorta across AFP or DP2 provided physiological
demands of 5.0 L/min and 8.7 L/min during rest and exercise conditions, respectively
(Tables 1 and 2). However, intermittent suction events were observed at rest and during
exercise with a rapid 8-fold increase in PVR (Figures 3j–l and 5j–i). No suction events were
found during transitions between rest and exercise conditions.

3.5. MAoP Control Algorithm

For both pumps, the MAoP control algorithm guaranteed adequate end-organ perfu-
sion at rest (5.0 L/min) and exercise (9.0 L/min) (Tables 1 and 2). However, MAoP control
failed to adapt to sufficient end-organ perfusion under rest (Figures 3m–o and 5m–o) and
exercise states when the PVR increased eight times, because the onset of constant suction
was observed as the minimum value of LVP was negative. The controller also caused inter-
mittent suction cases during the transition from exercise to rest (Figures 4m–o and 6m–o).

3.6. LVEDP Control Algorithm

The LVEDP control strategy increased the pump flow rate from 5.0 L/min to 8.5 L/min
for both pumps when the physiologic condition changed from rest to exercise
(Tables 1 and 2). No suction events were observed during all the tested conditions
(Figure 3p–r, Figure 4p–r, Figures 5p–r and 6p–r).

In summary, based on all the simulation results, the proposed control algorithm is
pump-independent and outperformed other control strategies for both axial and mixed
flow pumps by avoiding suction and providing physiologic levels of perfusion.

4. Discussion

The computer simulation results demonstrated the feasibility and performance of
the proposed SIMPF control strategy to autonomously regulate pump flow rates. The
human circulatory system has highly non-linear dynamics including flow discontinuities
due to the presence of valves, and highly variable physiological perfusion needs. Similarly,
the LVAD pump dynamics are non-linear and depend on the design of the pump. LVAD
support to the circulatory system has several requirements and constraints, which makes
the design of a control algorithm highly challenging: (1) LVADs have low preload and
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afterload sensitivity; (2) appropriate amounts of flow to meet varying cardiac demand
must be maintained for the functional capacity of patients; and (3) over-pumping and
suction need to be avoided even during the rapid reduction in preload (e.g., Valsalva).
The proposed SIMPF algorithm adequately met the conflicting demands of maintaining
perfusion demand and avoided LV suction events under various simulated conditions.
Notably, the SIMPF control algorithm was effective at avoiding suction even when PVR
was increased resulting in a drastic reduction in preload. Similarly, quick step transitions
between exercise and rest were also simulated to produce conditions that are conducive
to causing suction events. The proposed SIMPF control algorithm measured pump flow
with 5–10 percent uniformly distributed noise added to the PF signals, which were used
to extract SI. Up to 10% noise was used as this is the maximum error for ultrasonic flow
probes used clinically.

Axial flow and mixed flow pumps are two different types of pumps. Axial pumps
are based on the Archimedes screw, where the flow of the liquid is along the axis of the
impeller. Mixed flow is a centrifugal flow pump with a mixed flow impeller. In the
DP2 pump, the fluid experiences both radial acceleration and lift, and exits the impeller
nearly perpendicular to the axial direction. There are differences in pump dynamics
between the axial flow pump and DP2 pump, and different sensitivities between the
two devices to the pressure head (HQ curves). However, the proposed SIMPF algorithm
was able to achieve similar results using both AFP and DP2, demonstrating the pump-
independence of the proposed control method. The SI values between the two pumps
were notably different, as expected due to their intrinsic differences causing differences in
pump flow used to extract SI, and also because pump types are affected differently by the
contractility of the native heart. The SIMPF algorithm requires the direct measurement of
flow. Measuring LVEDP using pressure sensors can provide similar performance compared
to the SIMPF control strategy. However, pressure measurements are prone to failure
and long-term drift due to contact with blood. A sensor drift of even 2–3 mmHg can
cause significant performance degradation and suction with the LVEDP control algorithm.
Unlike pressure sensors, ultrasonic flow probes have been successfully used for long
term LVAD flow measurements. When mounted on the outflow graft of an LVAD, the
performance of ultrasonic flow probes is not significantly affected by tissue ingrowth.
Unfortunately, flow probe measurement noise is unavoidable, and control algorithm
performance degrades with increasing measurement noise. However, even with 10%
noise, the algorithm prevented suction and provided physiologic perfusion. The chosen
measurement noise levels (5–10%) were based on the levels reported for ultrasound flow
probes. The performance of the control algorithm can be further improved by periodic
calibration of the flow probe.

The SIMPF algorithm requires some level of native LV function to generate the vari-
ation in flow rate for SI. This native ventricular contractility is always present clinically.
If ventricular asystole occurs, it would also result in the loss of right ventricular function
and lead to mortality, even in the presence of adequate LVAD support. During exercise, an
increase in preload due to venous return will increase native ventricular contractility due to
the Frank–Starling mechanism. This increase in contractility will increase SI, which in turn
will result in increased LVAD flow to meet the perfusion demand. Similarly, a reduction
in LV contractility caused by reduced physiological demand would generate lower pump
flow rates to prevent LV suction. A 5 s moving window was used in this study to minimize
oscillations in SI values due to varying heart rates that are independent of physiological
conditions. A shorter moving window will increase the speed of response, but may be
more sensitive to noise and transient events.

The performance of the proposed SIMPF control strategy was superior compared
to previously proposed control algorithms. It provided physiologically relevant cardiac
outputs that were similar to other algorithms proposed in the literature, but was better at
avoiding suction compared to the other sensor-based and sensorless control algorithms,
especially when elevated PVR occurred briefly during the Valsalva maneuver or coughing.
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Rapid and sustained PVR increase by eight-fold during rest and exercise does not occur in
nature. This was done to demonstrate the robustness of the controller to avoid suction even
under non-physiologic, extreme conditions. Furthermore, sensor based control algorithms
are usually model-based and predict pressure heads and flows. They usually require a
priori knowledge of the blood viscosity or can be erroneous in the case of inflow or outflow
kinking or thrombus formation in the blood pump. While incorporating a flow sensor
increases complexity, an actual measurement of flow obviates the need for estimation
and improves the performance of the controller under inflow/outflow graft kinks or
thrombus formation that occurs in patients implanted with LVAD. The flow probes that
were previously implanted with DeBakey/Heart Assist 5 LVADs underwent rigorous
durability testing prior to approval by the Food and Drug Administration and no flow
probe failures have been reported during LVAD implants.

In this study, the in silico computer simulation model provided a meaningful initial
step for early tested hypotheses, but it cannot replace mock flow loop studies, animal test-
ing, and clinical trials. For instance, it cannot fully replicate the complex in vivo dynamics
including tissue remodeling, autonomous regulation, and neurohumoral responses. The
lumped parameter human circulatory system model has several inherent limitations due
to assumptions of ideal heart valves, Newtonian blood, and ignores the effects of gravity
and inertia. However, the in silico model demonstrated the feasibility control algorithms
despite these limitations. Pre-clinical in vitro and in vivo experiments will be used to
validate the SIMPF control algorithm.

5. Conclusions

A new flow sensor-based SIMPF control strategy was developed for rotary LVADs to
provide adequate cardiac output and prevent LV suction. This proposed control strategy
implemented the control objective using an effective SI extracted from the measured
pump flow signal. Two different types of rotary LVADs were incorporated to quantify
the performance of the SIMPF strategy, showing promising results. This algorithm is
pump-independent and can be incorporated into existing LVAD control systems.
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Abstract: Atrial fibrillation (AF) is a type of cardiac arrhythmia affecting millions of people every
year. This disease increases the likelihood of strokes, heart failure, and even death. While dedicated
medical-grade electrocardiogram (ECG) devices can enable gold-standard analysis, these devices
are expensive and require clinical settings. Recent advances in the capabilities of general-purpose
smartphones and wearable technology equipped with photoplethysmography (PPG) sensors increase
diagnostic accessibility for most populations. This work aims to develop a single model that can
generalize AF classification across the modalities of ECG and PPG with a unified knowledge repre-
sentation. This is enabled by approximating the transformation of signals obtained from low-cost
wearable PPG sensors in terms of Pulse Rate Variability (PRV) to temporal Heart Rate Variability
(HRV) features extracted from medical-grade ECG. This paper proposes a one-dimensional deep
convolutional neural network that uses HRV-derived features for classifying 30-s heart rhythms as
normal sinus rhythm or atrial fibrillation from both ECG and PPG-based sensors. The model is trained
with three MIT-BIH ECG databases and is assessed on a dataset of unseen PPG signals acquired from
wrist-worn wearable devices through transfer learning. The model achieved the aggregate binary
classification performance measures of accuracy: 95.50%, sensitivity: 94.50%, and specificity: 96.00%
across a five-fold cross-validation strategy on the ECG datasets. It also achieved 95.10% accuracy,
94.60% sensitivity, 95.20% specificity on an unseen PPG dataset. The results show considerable
promise towards seamless adaptation of gold-standard ECG trained models for non-ambulatory AF
detection with consumer wearable devices through HRV-based knowledge transfer.

Keywords: biomedical informatics; cardiovascular disease; deep learning; ECG; heart rate variability;
machine learning; PPG; smartphones; smart wearables

1. Introduction

Cardiovascular diseases (CVD) are the leading cause of death worldwide, with the
World Health Organization (WHO) in 2016 estimated 17.9 million deaths annually [1].
CVD is a group of conditions that affect the heart’s rhythm mechanical function, and
electrical activity [2]. This is associated with an increased likelihood of strokes and heart
failure. Timely detection through regular monitoring of CVD is necessary to improve
the treatment process for heart conditions and lower the risk of mortality [3]. Cardiac
arrhythmia is categorized under CVD and is characterized by the disordered electrical
activity of the heart. An arrhythmia can manifest as irregularly rapid heart rhythms
(tachycardia) or anomalous slow heart rhythms (bradycardia). AF is one of the most
common types of cardiac arrhythmia. In this work, the focus is on the classification
of (i) normal sinus rhythm (NSR), and (ii) atrial fibrillation (AF). Goldberger et al. [4]
defines NSR as a rhythm with normal (1:1) atrioventricular conduction and a normal PR
interval (the interval between atrial depolarization and ventricular depolarization) at a
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heart rate between 60 and 100 beats/min, although normal heart rates may vary between
individuals. The work reported in [5] defines AF as an arrhythmia with uncoordinated
atrial activation and characteristics of irregular beat-to-beat intervals, absence of repeating
P waves (indicates atrial depolarization), and irregular atrial activity.

The common technique for the clinical diagnosis of cardiac arrhythmia is based on
the electrocardiogram (ECG). The ECG is a test that uses skin level electrodes with built-in
sensors to measure the heart’s electrical activity and identify abnormal heart rhythms
and additional pathological conditions [6]. However, despite the multi-faceted diagnostic
nature of ECG, most dedicated ECG devices available currently are expensive and are
typically used within clinical or limited ambulatory settings [7]. While wearable ECG
devices are emerging commercially, individuals gravitate towards smart wearables that
can serve general functions and are not only intended for health monitoring. Off-the-
shelf smartphones and wearable devices that use photoplethysmography (PPG) sensors
can serve as an affordable alternative to existing ECG devices, albeit as a supplementary
approach for screening and not for conclusive diagnosis. PPG sensors are optical light
sensors that record blood volume variations at sensitive peripheral sites of the human
body, such as fingertips, wrist, and earlobes [8]. Moreover, PPG sensors are currently used
extensively by fitness tracking applications to estimate the physiological events of heart rate
and heart rate variability (HRV) [9]. PPG signals differ morphologically from ECG signals
but exhibit similar characteristics as the HRV. This is termed as pulse rate variability (PRV).
The advantages of PPG sensor-based consumer devices for cardiac arrhythmia monitoring
are that they are relatively less obtrusive than their ECG counterparts. Their ubiquitous
nature facilitates higher adoption by the general population. Despite these advantages,
PPG recordings are more susceptible to noise saturation and variations in signal quality
caused by user movement and skin tones [10].

The data features extracted from ECG and PPG heart signals to develop learning
algorithms can be categorized as temporal or morphological [11]. Temporal features are
the time-domain metrics such as the time between heartbeats. Many deep learning works
in this area pursue the development of morphology-based models using the PPG segments
or corresponding images to leverage the robustness and have generally superior perfor-
mance in classification problems. However, there are significant challenges in developing
PPG-based analytical models due to the limited public availability of universally reviewed
benchmark databases, as opposed to the abundant ECG signals databases. Moreover, signal
quality and noise saturation can corrupt the performance of the developed models. The
manual annotation process for creating labeled datasets is complex and has the consistency
issue of interrater variability [3]. Interrater variability arises when multiple expert annota-
tors are involved in labeling heart rhythms manually. Different labels are assigned to the
same data instance due to differences in their specific experiences. In practice, it is difficult
to reach an agreement across multiple experts if the data are not ideally preprocessed and
motion artifacts are not eliminated. This is the case with the PPG signal annotation efforts
in most of the literature. Moreover, most developed algorithms in the literature are only
applicable in controlled clinical settings, which hinders early prognosis accessibility to the
general population.

Although there are inherent morphological differences between ECG and PPG-based
signals, the studies reported in [12,13] have exhibited a high degree of correlation between
the signals, especially their corresponding temporal HRV features. HRV measures the
variation in terms of time between consecutive instantaneous heartbeats, measured through
the ECG [9].

The PRV and HRV parameters, derived from ECG and PPG, respectively, exhibit
similar properties under certain conditions. The properties have higher levels of agree-
ment/equivalence when the PPG signals are not excessively situated with motion artifacts.
Various predictive and detection models have been implemented using different HRV met-
rics with standard statistical and machine learning approaches [14–19]. However, there are
considerably fewer deep learning-based models oriented towards usage in smartphones
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and wearable devices. Deep learning has recently emerged as an effective methodology
for cardiac classification tasks [20]. The experiments reported in [21–24] have achieved
successful ECG signal classification using ECG databases by implementing convolutional
neural networks. However, the existing approaches are designed for use in controlled
hospital settings.

This research addresses the scarcity of publicly available PPG datasets, limited repro-
ducible approaches in the existing literature, and varying sensor specifications. This work
proposes implementing a deep learning approach that utilizes the knowledge transfer
paradigm for cross-domain generalizability by training a model on ECG databases and
adapting the developed model for PPG signals-based AF classification. The commonal-
ity in the distribution of temporal features derived from HRV (ECG) and PRV (PPG) is
leveraged as input features to implement a one-dimensional convolutional neural network
for classifying NSR and AF rhythms. The motivation for this approach is to introduce
generalizable deep learning models that can mitigate the challenges associated with purely
PPG- based analytical models and facilitate close to real-time AF detection.

The contributions of this work are as follows:

• The incorporation of the state-of-the-art methods for ECG and PPG signal processing
and HRV feature extraction from short length signals;

• The development of a deep learning model trained on HRV features derived from
on gold standard ECG for classification of AF with PRV derived from PPG features
through transfer learning;

• The evaluation of the developed model performance on three ECG datasets and a PPG
dataset composed of wrist-worn wearable signals which achieved competitive results
when compared to the recent literature;

• The implementation of a cloud-based platform and the evaluation of the developed
model performance on PPG signals acquired from live subjects via smartphones.

This paper is organized as follows: Section 2 introduces the background of the concepts
used in the analysis of this work, Section 3 details the proposed approach, Section 4 presents
the obtained results of the model, Section 5 discusses the results, and is followed by the
conclusion and future work in Section 6.

2. Background

2.1. Heart Activity Measures

The entire sequence of a single heartbeat, beginning with the initial atrial excitation
and concluding with the exit from the ventricular chambers, is called PQRST and is shown
in Figure 1. An electrical impulse travels through the heart during each heartbeat, causing
the heart muscles to pump blood. After a flat line driven by the impulse traveling to the
bottom heart chambers, the right and left atria (upper heart chambers) create the first
wave, called P wave. The right and left ventricles (bottom chambers) make the next wave
called the QRS complex, and the final T wave indicates the repolarization of the ventricles.
The QRS complex is the peak shown in Figure 1. Variations in parameters obtained from
ECG and PPG, such as the duration and rate of heartbeats, can help detect abnormal heart
activity [6].

PPG is an optical light-based technique to measure the volumetric change of the heart.
As the heart contracts, blood pressure in the left ventricle (bottom chambers) increases.
This is reflected by an increased pressurized pulse of blood into the capillaries and arteries
of the body, indicated by discoloration of the skin. An LED light measures the difference
in the amount of light reflected from sensitive areas, where the arteries are close to the
skin, such as fingertips or earlobes, which is then used to measure an individual’s heart
rate [25]. A typical waveform of the PPG signal and its characteristic parameters are shown
in Figure 2, which are the systolic peak, pulse with and diastolic peak, and dicrotic notch.
Smartphones and wearable devices are generally accurate in acquiring PPG signals when
the user is at rest, but potential inaccuracies are introduced because of motion artifacts and
diverse skin tones. Motion artifacts typically occur due to misplacement of sensors such
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that it does not make sufficient contact with the measurement site. Various skin tones affect
the reflective properties of the optical light differently and therefore affect the accurate
assessing of the changes in blood volume under the skin [26].

Figure 1. Single heartbeat sample with the QRS complex [4].

Figure 2. PPG waveform characteristics [3].

PPG has two peaks corresponding to the blood volume changes in the microvascular
bed of tissue around the physical measurement site of the fingertips, earlobes, wrists, etc.
Systolic peak is caused by the direct pressure wave traveling from the left ventricle to
the body periphery (heart contraction). The diastolic peak reflects the pressure wave by
arteries in the lower body (heart relaxation). The pulse width correlates with systemic
vascular resistance, and the dicrotic notch reflects a transient increase in aortic pressure [27].
Although PPG is an indirect way to record the heart’s activity, it has a high correlation with
ECG signals. Its portability and relatively inexpensiveness make it a valuable alternative
method to monitor cardiac activity [8].

2.2. Heartrate Variability

The HRV phenomenon is controlled by the Autonomous Nervous System (ANS) and
is a direct result of the behavior of the primitive part: the parasympathetic nervous system.
The brain processes information in the hypothalamus region, and the ANS sends signals
to the rest of the body to either stimulate or relax different functions. Auto-responses
from the ANS are elicited in the event of stress, fragmented sleep, unhealthy diets and
other chemical or neural factors affecting a person’s resting state. HRV is a non-invasive
way to identify ANS imbalances, as when the nervous system is behaving unusually, the
variation in the heartbeats is relatively more erratic. A higher HRV score generally indicates
better cardiovascular fitness and resilience to stress. In comparison, a lower HRV score is
associated with an increased risk of cardiovascular health and mental health concerns [9].
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The primary feature used in HRV calculations is the time between each successive
heartbeats, or the time between successive normal or abnormal QRS complexes/peaks in
milliseconds, defined as the R-R peak interval. Estimation of the R-R interval involves
first detecting the QRS complexes/peaks and subtracting the observed times of successive
peaks. It should be noted that a distinction is made between R-R intervals, and the typically
synonymous N-N interval, as the latter only accounts for normal-normal beats, while the
former accounts for normal-normal, normal-abnormal, or abnormal-abnormal cases.

PRV is used to measure the similar inter-beat variation property with PPG signals,
and this denotes the pulse-to-pulse variation in time. PRV quantifies approximately the
same behavior as the intervals between successive R peaks or QRS complex observed in
ECG with the systolic peak-to-systolic peak or diastolic peak-to-diastolic peak intervals.

Malik et al. [28] observed the potential of HRV in assessing the role of ANS fluctuations
in normal healthy individuals and those with diseases. Relevant measures were selected
from the previous research and used as HRV features for the scope of this work.

This work primarily uses the formulas shown by Equations (1) and (2) to calculate
Root Mean Square of Successive Differences between the R-R intervals (rMSSD) [28] and
Standard Deviation of RR intervals (SDRR) [28]:

rMSSD =

√
∑N−1

i=1 (RRi − RRi+1)
2

N − 1
(1)

From Equation (1), N is the number of R-R intervals and RRi is the location of the ith
QRS complex/peak observed at a time in milliseconds.

SDRR =

√√√√ 1
N − 1

∗
N

∑
j=1

(RRj − RR)2 (2)

From Equation (2), N is the number of R-R intervals, RRj is the location of the jth QRS
complex/peak observed at a time in milliseconds.

The features of rMSSD and SDRR respectively reflect the number of fluctuations in
heart rhythms and the degree of variation between heart beats. Hence, both are vital
features to consider when aiming to predict the cardiovascular state. Various cardiac
conditions were detected using short-term HRV features, with rMSSD, SDRR, and pRR50
being the most useful in predicting changes in parasympathetic activity and even being
a possible indicator of cardiac mortality [29]. Additional HRV features are also included
in Table 1 and used in this work. Those additional features include the coefficient of
variation in R-R intervals (CVRR) and coefficient of variation in the differences of successive
R-R intervals (CVSD), as they are features that improve the classification of CVD [30].
Researchers recorded PPG signals from the fingertips of subjects extracted PRV features,
such as rMSSD, SDRR, and pRR50, compared them with the same features obtained from
ECG to validate the accuracy, and found that the average error rate was less than 6% [30].
Another study used wearables to compare the time domain features (rMSSD, SDRR) of
HRV extracted from ECG and PRV extracted from PPG signals and found that PPG signals
can be used as an alternative source for HRV measurement [31]. The features used in this
work are presented in Table 1.
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Table 1. A summary of the HRV feature characteristics used in this work.

Feature Domain Description

R-R
interval Time Times between each successive heartbeat, measured from one

normal or abnormal R peak/QRS to the next in milliseconds.

rMSSD Time Square root of the mean of the sum of the squares between adjacent
R-R intervals.

SDRR Time Standard deviation of R-R intervals in milliseconds.
meanRR Time Average value of the R-R interval in milliseconds.
CVRR Time Coefficient of variation in R-R intervals.
CVSD Time Coefficient of variation between successive R-R interval differences.
medianRR Time Median value in R-R intervals in milliseconds.
madRR Time Median value of R-R interval deviation in milliseconds.
mcvRR Time Median value of the coefficient of variation.

RR20 Time Number of pairs of adjacent R-R intervals differing by more than
20 milliseconds.

pRR20 Time Count of RR20 over a total number of R-R intervals.

RR50 Time Number of pairs of adjacent R-R intervals differing by more than
50 milliseconds.

pRR50 Time Count of RR50 over the total number of R-R intervals.

This relationship can be utilized to monitor individuals’ cardiovascular health with
off-the-shelf sensors for classifications and early detection of diseases. The commonality
between the behavior of the HRV and PRV parameters can be utilized to enable generalized
detection of AF across two different modalities: ECG and PPG. The model is trained on
HRV features derived from ECG signals within the three ambulatory datasets. The model is
tested and finetuned on PRV features derived from PPG signals within the wearable dataset.

For verification of the created dataset and its respective HRV values for different R-R
interval measures, it was compared to the short-term normative values reported in [32],
and the reference ranges for HRV from ECG recordings [33]. The HRV features of NN
intervals, rMSSD, and SDRR were the most reported along with their normative ranges,
and it is shown in Table 2. This comparison ensured that the extracted PRV features for
real-time samples from the low-cost PPG sensors from wearables were within reasonable
bounds of the ground truth cases and should remain valid for this experimentation.

Table 2. HRV Reference Ranges.

Feature Range Mean ± SD

RR interval (ms) 785–1160 926 ± 90
rMSSD (ms) 19–75 42 ± 15
SDRR (ms) 32–93 50 ± 16

3. Proposed Approach

The proposed approach has three main stages after the initial acquisition of datasets,
as shown in Figure 3. The first stage involves preprocessing the signals in terms of filtering,
peak detection, and feature extraction. The second involves the one-dimensional convolu-
tional neural network (CNN) model development for binary classification between NSR
and AF with temporal HRV features, and trained with the ECG datasets. The third stage
involves model evaluation. The model evaluation is done on both the holdout testing on a
subset from the ECG datasets and out-of-sample cross-domain testing instances from the
PPG datasets. Each stage is detailed in the following subsections.
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Figure 3. High-level view of the proposed approach.

3.1. ECG Datasets

NSR and AF rhythms are collected from three datasets [34]: MIT-BIH Normal Si-
nus Rhythm (NSR-DB), MIT-BIH Atrial Fibrillation (AF-DB), and MIT-BIH Arrhythmia
(ARR-DB).

Using ambulatory ECG recorders, each record was acquired from patients referred to
the Arrhythmia Laboratory at the Beth Israel Deaconess Medical Center, Massachusetts
Institute of Technology. They are accessible via the Physiobank repository, a digital archive
of well-characterized biomedical signals created by the United States National Institutes of
Health for use by the research community [35].

AF-DB consists of 23 two-channel ECG recordings (sampled at 250 Hz), from subjects
with paroxysmal atrial fibrillation, atrial flutter, AV junctional rhythm, and normal rhythms,
with a typical recording bandwidth of approximately 0.1 to 40 Hz. NSR-DB consists of
18 two-channel ECG recordings (sampled at 128 Hz) from subjects with no significant
arrhythmia or heart abnormalities. ARR-DB consists of 48 records, each containing two-
channel ambulatory ECG signals of 30-min duration. Lead 1 channel ECG signals, which
record the right ventricle and right atrium, are used in this work.

The signals in AF-DB have rhythm annotations indicating NSR and AF. Meanwhile, the
signals in NSR-DB and ARR-DB have heartbeat annotations as well, in addition to rhythm
annotations for AF and NSR. The annotations are provided in terms of a distinct beginning
and end label pertaining to particular regions of the signals. The heartbeats in NSR-DB
and ARR-DB follow the recommended standards of the Association for the Advancement
of Medical Instrumentation [36]. Hence, the annotations/labels for each heartbeat in the
NSR-DB and ARR-DB fall into multiple categories [37]. The beat superclasses and their
corresponding beat annotations of interest in this work are N: (N, L, R, B) and S: A, a, J,
S, j, e, n. While the primary focus is on heart rhythm classification, specific samples in
the dataset are considered on a heartbeat segment basis for incorporating cases of atrial
premature complexes (APC) [38]. The rationale for incorporating heart rhythms with high
saturation levels of anomalous heartbeats is to contribute stochasticity (diversity) to the
AF class. The expectation is that the dataset consisting of contiguous AF rhythms and AF
rhythms interspersed with normal and other types of beats will allow for the eventual
detection of varying anomalous rhythms that differ considerably from the purely NSR
training samples [39,40].

3.2. PPG Dataset

The privately held UMass PPG database (UMass-DB) [41] collected by the University
of Massachusetts Medical School was used for further testing to discover the strengths and
weaknesses of the model. The authors of [42] granted access to this dataset and consists of
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37 subjects, with 10 having AF. The PPG signals were recorded at a sampling frequency
of 128 Hz from the Simband, smart wristwatch provided by Samsung, which has 8 PPG
sensors, a triaxial accelerometer, an ECG lead, and a temperature sensor [42].

Figure 4 presents the typical characteristic heart rate rhythm samples from both
datasets reflecting NSR and AF, respectively, across the ECG and PPG modalities. As
observed from Figure 4a,c,e, NSR instance is a normal heart rhythm that maintains a steady
rate with no irregularities. From Figure 4b,d,f, the AF instance is a sustained unsteady
heart rhythm with rapid fluctuations.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. Sample 30-s heart rhythm instances represented as raw amplitude (y-axis) against time (x-axis) from ECG datasets;
(a) NSR ECG from AF-DB (Patient 4015); (b) AF ECG from AF-DB (Patient 4043); (c) NSR ECG from ARR-DB (Patient 100);
(d) AF ECG from ARR-DB (Patient 222) and PPG dataset; (e) NSR PPG (Patient 4002); (f) AF PPG (Patient 4012).

3.3. Preprocessing

Initially, the signals with rhythm annotations of NSR and AF from AF-DB, ARR-
DB, and NSR-DB were divided into 30-s samples with no-overlapping windows. The
segmented 30-s signals retained the respective label of NSR or AF as multiple 30-s samples
can be obtained from a single longer signal with the same annotation. In the case of ARR-
DB, all signals with annotations corresponding to non-atrial complications, such as paced
rhythms, ventricular bigeminy, trigeminy, tachycardia, were ignored.

Most AF contiguous data samples originated from the AF-DB, with approximately
3.6% being from the ARR-DB dataset. From the NSR database, 15% of the total NSR rhythm
records were arbitrarily selected. Most NSR data originated from NSR-DB, followed by
ARR-DB while AF-DB contributed only 5% of the total NSR samples. All the signals
accounted for had the highest resolution in terms of QRS complex certainty.

In addition, signals with ARR-DB were examined further in terms of heartbeat satura-
tion to determine the presence of excessive supraventricular activity, which is associated
with an increased risk of developing atrial fibrillation [43]. The examined signals were
annotated with APC, supraventricular tachyarrhythmia (SVTA), atrial couplets, or atrial

414



Sensors 2021, 21, 7233

flutter. As per AAMI standards, all considered heartbeats in the 30-s window derived
from these signals belonged to the class N or S. The beats denoted by S can be referred to
as supraventricular ectopic beats or premature beats. Although ectopic beats are mostly
harmless, recent studies have shown that frequent repetitions of supraventricular ectopic
behavior can indicate the presence of potential atrial abnormalities [44].

The criteria for judging the label of a 30-s rhythm are based on the saturation level of
class S beats. If zero S beats are present, then it is ignored, and if over 50% of the beats are
S with an annotation of a, J, A, S, j, e, or n, it is treated as an AF rhythm. The passage from
heartbeat types to heart rhythms is not necessarily direct. Thus, this rule is to ensure that
only segments consisting of non-isolated beats are treated as AF samples.

Individuals in real scenarios may not always exhibit signs of sustained arrhythmia. It is
possible for a fluctuating pattern between normal rhythms, where relatively shorter (<30 s)
intermittent periods of abnormal heart behavior associated with AF can be observed,
and thereby contributing to AF risk stratification. Excessive ectopic activity can cause
palpitations, light-headedness, and increased awareness of heartbeats [45]. For instance,
patient 232 does not have any AF rhythm annotations, but has frequent ectopic runs. The
cardiologists’ notes associated with the annotated record of patient 232 report the presence
of sick sinus syndrome, which is an abnormality in the right atrium of the heart. To address
this case of potential variability in patients and boost the robustness in classification
performance of the developed model, instances that are not solely NSR but anomalous to a
considerable degree were treated as an AF class instance.

As per the findings of [27,46], a second-order Butterworth filter was applied with
the bandpass frequencies of 8Hz–20Hz for removing baseline drift, motion artifacts and
minimizing other ECG features such as the P and T waves. The signals of the MIT-BIH
Arrhythmia, MIT-BIH NSR, and MIT-BIH AF databases have sampling rates of 360 Hz,
128 Hz, 250 Hz, respectively. Fast Fourier (FFT) resampling is applied to down-sample
the signals to 50 Hz, as the signals from the three MIT-BIH databases have different
original sampling rates. It, therefore, must have the same frequency before any further
processing. The method reported in [46] achieves the highest signal-to-noise ratio and
optimal QRS complex detection on the MIT-BIH databases instead of techniques such as
the Pan Tompkins algorithm [47], and the former method is utilized to produce a list of the
peaks necessary to derive the time-domain HRV features.

PPG signal filtering was conducted with a 3rd order Butterworth filter with 0.5 Hz
and 8 Hz cutoffs to remove powerline interference, motion artifacts, and other saturated
noise [48]. The UMass dataset signals were down-sampled from 128 Hz to 50 Hz using FFT
resampling, similar to the approach executed in [42]. Systolic peak detection in the PPG
signals utilized the algorithm outlined in [49], where two event-related moving averages
with an offset threshold empirically yielded higher accuracy than the alternative techniques
of Billauer [50], Li [48], and Zong [51].

The decision for down-sampling all signals to 50 Hz, instead of up-sampling any
acquired signals to 128 Hz is based on two key factors. Firstly, most PPG based devices
do not have a high sampling rate (~128 Hz), and vary from 60 Hz to 100 Hz based on
the quality of the sensor and the battery levels of the device the sensor is embedded
in. However, the minimum sampling frequency required is 50 Hz to derive reasonably
accurate HRV and PRV parameters with a low margin of error from ECG and PPG signals,
respectively [52,53]. Secondly, the computational overhead is reduced without a significant
effect on the signal acquisition or processing aspects, which can extend the deployment of
the proposed model in this work to resource-constrained wearable devices.

It is to be noted that the systolic peak detection algorithm for PPG signals proposed
in [48] is a modified variant of the QRS peak detection algorithm for MIT-BIH database
ECG signals proposed in [46]. This work performed filtering as per the recommended
cutoff frequencies before applying the algorithm, as mentioned previously in this section.
The general description of the algorithm reported in [46,48] is as follows:
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(i) Consider a filtered signal S[n], consisting of a sequence of n samples over a sampling
period T = 30 s, as input to either the ECG variant of the algorithm or the PPG variant
of the algorithm;

(ii) Detect R peaks in the ECG signals and systolic peaks in the PPG signals through a
combination of potential block generation and thresholding;

(iii) Preprocess PPG systolic peak detection (step skipped for ECG R peak detection in
the squaring phase), where large differences resulting from the systolic peak are
emphasized, while the small differences caused by the diastolic peak, dicrotic notch,
and saturated noise are suppressed;

(iv) In the potential block generation phase, regions of the signal S[n] where peaks are
likely to occur are demarcated in terms of the onset and offset points by two moving
averages MApeak and MAbeat;

(v) MApeak estimates the possible regions of R peak or systolic peak amplitude and
MAbeat represents the amplitude in regions of a full heartbeat (RR peak, or systolic
peak-to-systolic peak);

(vi) The window size W1 of the MApeak is selected based on a healthy adult’s average
duration of a QRS complex (100 milliseconds) or systolic peak (111 milliseconds)
depending on the signal modality. The window size W2 for the MAbeat is selected
based on the average duration of one full heartbeat (525 ms) or systolic peak (667 ms)
in a healthy adult [49]. The defined windows W1 and W2 bound the lower limit TH1
and upper limits of the generated blocks, respectively;

(vii) The specific windowed regions where the amplitude values of MApeak are greater
than MAbeat, are selected as blocks of interest;

(viii) As a signal S[n] can be saturated with noise and motion artifacts during acquisition,
the thresholding phase eliminates blocks that are likely to hinder accurate peak
detection. The threshold α specifies the anticipated width of a block, and any detected
QRS complex or systolic peaks with width less than this threshold is rejected. An
optional parameter β can be added to the threshold to consider minor deviations in
peak width and either tighten or loosen the constraints on a rejected block;

(ix) The output of the algorithm is a list of peak locations and their corresponding times
in milliseconds.

After performing the peak detection algorithm summarized in Algorithm 1, a list of
peak locations and their occurrence times enables the estimation of RR intervals or systolic
peak-to-systolic peak intervals. From the intervals, the time-domain HRV and PRV features
are derived in terms of their statistical characteristics as described in Table 1.

Algorithm 1. Pseudocode of peak detection algorithm and feature detection for dataset D.

FOR xi in D (ECG or PPG data instance from dataset, where i = {0 . . . size(D))
Filtered signal S[n] = BandpassFilter(xi)
Let peaklist = {} (Peak amplitudes)
Let timelist = {} (Peak times)
Let BlocksO f Interest = {}
Let yi = {}
Set W1 = Average ECG or PPG peak duration
Set W2 = Average ECG or PPG beat duration
Set MApeak = MovingAverage(S[n], W1)
Set MAbeat = MovingAverage(S[n], W2)
Set threshold α = W1 + β

FOR n = 1 to length(MApeak)
IF MApeak[n] > MAbeat[n] THEN

BlocksO f Interest[n] = 1
ELSE

BlocksO f Interest[n] = 0
END IF

END FOR
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FOR j = 0 to length(BlocksOfInterest)
IF width(BlocksO f Interest[j]) ≥ α THEN

peaklist[j] = max(BlockOfInterest[j])
timelist[j] = time(BlockOfInterest[j])
ELSE;

reject block
END IF

END FOR

{rMSSD, . . . , pRR50} = Calculate HRV/PRV (peaklist, timelist)
Transformed data instance yi = {rMSSD, . . . , pRR50 }
Save yi to updated dataset D
END FOR

Finally, Z-score normalization is performed on the derived features. All ECG and PPG
datasets signal instances are fixed with zero mean (μ = 0), and unit standard deviation
(σ = 1.) This step mitigates amplitude scaling issues, offset effects, and reduces drastic
variability in the signal values. Table 3 presents total data samples of NSR and AF classes
after pre-processing.

Table 3. Total data Samples of NSR and AF classes after preprocessing.

Dataset NSR AF

ARR-DB(ECG) 2365 190

NSR-DB (ECG) 7736

AF-DB (ECG) 83 5060

Total (ECG) 10,184 5250

UMass-DB (PPG) 192 54

3.4. Model Development

The model developed in this work is a one-dimensional 12-layer CNN for the clas-
sification of NSR and AF. The proposed architecture for the CNN is depicted in Figure 5,
outlining the input tier, model tier, and output tier. The model receives temporal HRV
features extracted from ECG signals as input, propagates them through the neural network,
and outputs a single output indicating whether the input instance belongs to NSR or AF
class. A detailed summary of the CNN properties and parameters is listed in Table 4. The
configuration of the layers and their respective parameters reported were attained after
hyperparameter tuning through GridSearch.

A single model is selected after training and evaluation. It is trained and tested
using the HRV features derived from ECG, and finetuned to classify AF with PRV features
derived from PPG. Due to the inherent similarities between the statistical properties of
HRV and PRV, this approximation makes it possible for a unified AF representation across
two wearable modalities.

There are three types of layers within a CNN: convolutional, pooling, and fully
connected layers. An instantiated convolutional layer detects local conjunctions of features
from a preceding layer which can be either an input layer or another convolutional layer.
The convolutional layer merges semantically similar input features into a single learned
representation. It is to be noted that features in the context of the neural network imply
semantic similarities or overarching patterns detected across the provided inputs (a unified
vector of HRV features). Receptive fields in each convolutional layer focus on different
aspects of the derived features to create their internal representation of the inputs. The
property of shared weights ensures that general features common to all data samples are
learned once and shared with the other convolutional layers in the network. Subsampling
reduces the dimensionality of the data to identify the most significant features. This can
be related to size (spatial) or time sequence (temporal). A set of weighted vectors known
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as a filter/kernel outputs feature maps based on local receptive fields at each layer. These
feature maps usually hold general characteristic information inferred from input feature
data samples at a particular layer by the neural network [54].

 

Figure 5. Architecture for the proposed CNN model.

Table 4. Summary of properties for the proposed CNN model.

Layers Type No. of Kernels Kernel Size Parameters

0—1 Conv1D 256 3 Activation = ReLU,
Strides = 1

1–2 BatchNormalization – – –

2–3 Conv1D 128 3 Activation = ReLU,
Strides = 1

3–4 BatchNormalization – – -

4–5 Conv1D 64 3 Activation = ReLU,
Strides = 1

5–6 BatchNormalization – – –

6–7 Conv1D 32 3 Activation = ReLU,
Strides = 1

7–8 BatchNormalization – – –

8–9 Dropout – – Rate = 0.2

9–10 MaxPooling1D – – Pooling Size = 2

– Flatten – – –

10–11 Dense 8 – Activation = ReLU

11–12 Dense 1 – Activation = Sigmoid

Each layer of the proposed CNN architecture and the components of activation and
regularization presented in Figure 5 are described as follows:
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1. Convolutional Layer (Conv1D): In this layer, a convolution operation using Equa-
tion (3) is performed by sliding the filter/kernel over the input features to obtain a
feature map as the output.

cm =
N−1

∑
n=0

fnkm−n (3)

From Equation (3), k, c, f, and N denote the inputs, filter/kernel, the output feature
map, and the number of elements in input k, respectively. In the CNN model devel-
oped for this work, there are four convolutional layers with 256, 128, 64 and 32 filters,
respectively. The filter dimensions used in this layer are 5 × 5, which yielded the
best result.

2. Fully Connected Layer (FC): This layer compiles the results obtained from the preced-
ing convolution and pooling layers to estimate an output classification label using
Equation (4) [55]:

xi = ∑
j

wjiyj + bi (4)

From Equation (4), w and b denote weights and biases, respectively. Here, y is the
output from a previous layer j and x is the output of the current layer i. In the
CNN model developed in this work, there are two fully connected layers, with 8 and
1 neurons, respectively.

3. Pooling Layer (MaxPooling1D): In this layer, the maxpooling operation is a type of
spatial sub-sampling method that decreases the size of the feature maps derived by
the convolutional layers. This is performed to retain only the features contributing
significantly to the internal knowledge representation of the CNN, which is learned
through the training process. In the CNN model developed for this work, there is
1 pooling layer, with 32 filters after the final convolutional layer and the following
dropout layer. The filter dimensions of the pooling size used in this layer are 2 × 2.

4. Activation Functions: This determines the firing threshold of neurons in the hidden
layer based on the weighted sum of input and biases.

• Rectified Linear Unit (ReLU) [56]: This is the activation function that is used in
all three convolutional layers of the network. The Rectified Linear Unit produces
0, as an output x < 0, and then produces a linear output with slope 1, when
x > 0. It introduces non-linearity and mitigates the vanishing gradient problem,
which is where the lower layers of the network train slowly as the gradient of
optimization decreases exponentially. This leads to sparse neuron activation,
more straightforward output, and makes computations easier while preserving
the significant receptive fields of the convolution layers.

• Sigmoid [57]: An activation function used in the second fully connected layer,
with 1 neuron. Sigmoid activation functions are monotonic and differentiable.
Their mathematical property maps real number values to the [0, 1] range to
render the output as a probability, given the particular set of transformed input
HRV features. In this work, the binary classification output of 0 indicates that an
instance belongs to the NSR class, and 1 means that it belongs to the AF class.

5. Regularization [58]: This is a technique to prevent overfitting. Overfitting limits
the ability of the model to predict new data, which means the network has learned
only the specific features of the training set, like memorization, and cannot perform
generalization on similar data. To mitigate this, the following two methods were used
after all four convolutional layers.

• Batch Normalization (BN) [59]: This technique reduces the covariance shift,
meaning that minor features differences that do not contribute heavily to the
overall model performance will not be considered with high priority. Therefore,
minor changes between the ranges of training data, validation data, or unseen
data will not affect the classification performance and allow each layer to be
more independent about certain input features.
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• Dropout (DP) [60]: This technique randomly drops neurons and their connections
to prevent neurons from co-adapting. This makes each neuron more responsible
for capturing the overall data representation and contributing to the final output.
The dropout rate, which reflects the percentage of random neurons to be dropped,
was set to 0.2.

3.5. Training and Testing

The CNN model is trained with the back-propagation algorithm [54] with a mini-
batch of 16. According to [61], taking a subset of the entire data for each epoch improved
generalization performance and had a smaller memory footprint. An epoch is the number
of times the training set passes through a neural network completing a feed-forward and
back-propagation phase. In this work, the total number of epochs was 50. The Adaptive
Moment Estimation (ADAM) [62] optimizer was used for effective training convergence.

From the dataset, 80% was randomly divided for training and validation, and 20%
was used as the test set. The Stratified k-fold cross-validation strategy was implemented
with k = 5 [63]. In each fold, the training and validation subset is randomly divided into
5 equal parts, where with cross-validation, each data instance is used for both training and
validation. Stratified k-fold cross-validation ensures that the class distribution in each of
the five equal parts remains consistent across iterations to address potential biases. This
was conducted to observe the generalizability and variability of the developed model to
reflect its performance with new data. The 20% testing subset serves as the holdout data
that the model has not been trained/validated with.

4. Results

This section describes the environment setting, reports the achieved diagnostic perfor-
mance measures of the proposed convolutional model neural network on the ECG training
data and unseen PPG data. To assess the implementation feasibility of the developed
model, it was interfaced with a smartphone application and integrated within a health
monitoring context.

4.1. Implementation Environment

The proposed CNN algorithm was implemented on a workstation with Windows OS,
an Intel Kabylake 2.80GHz processor (i7-7700HQ), and 16 GB of RAM. The time required
for training and testing the CNN model with 50 epochs was approximately 4420.67 s. The
deep learning platform employed in this work was Keras [64], a high-level neural networks
framework with a Tensorflow backend [65]. The Waveform-Database Package (WFDB)
published by Physionet was used to directly access the MIT-BIH Arrhythmia dataset [35],
consisting of heart rhythm samples and their respective annotations. The Sklearn module
was used for data preprocessing and normalization operations [66]. Neurokit (NK), a
toolbox for statistics and neurophysiological signal processing, was used to extract the
ECG and PPG time-series features [67].

4.2. Model Evaluation on ECG Datasets

The diagnostic performance measures of accuracy, sensitivity, specificity, F1-score,
and AUC are evaluated on a holdout test set in each of the five folds. Accuracy is the
proportion of true outputs with respect to all data instances. Sensitivity is the model’s
ability to classify data instances belonging to a certain class correctly. Specificity is the
model’s ability to correctly distinguish data instances that do not belong to specific classes.
F1-score is the harmonic mean between precision (ratio of correctly distinguished positives
over all predicted positive) and recall (sensitivity), and the area under the curve (AUC)
measures the quality of binary classification outputs in terms of sensitivity against false
positive rate. To develop high-fidelity biomedical models as the proposed approach, high
sensitivity and specificity are vital. They gauge the model’s ability to correctly detect
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patients with a certain cardiac arrhythmia and correctly detect patients without cardiac
arrythmia [68].

To calculate the measures as in Equation (5), the model classification outputs must be
quantified in terms of True Positives (TP), False Positives (FP), False Negatives (FN) and
True Negatives (TN) [69].

Accuracy = TPNSR+TNNSR
TPNSR+TNNSR+FPNSR+FNNSR

Sensitivity = TPNSR
TPNSR+FNNSR

Speci f icity = TNNSR
TNNSR+FPNSR

F1Score = TPNSR
TPNSR+(0.5∗(FPNSR+FNNSR))

(5)

Let Yi
j be the data instances where i is the true class, j is the predicted class, and

i, j ∈ {NSR, AF}. Consider the class AF signifying atrial fibrillation rhythms, and then, its
outputs are defined as follows:

• TPAF = YAF
AF , denotes data instances correctly classified as AF;

• FPAF = YNSR
AF , denotes data instances incorrectly classified as AF;

• FNAF = YAF
NSR, denotes data instances incorrectly classified as non-AF classes;

• TNAF = Yij, denotes i, j 
= AF, denotes data instances correctly classified as non-
AF classes.

The aggregated scores across all 5 folds are summarized in Table 5, and exhibit a
high AF classification performance. The true positive (TPAF) rate is 96.90%, and the true
negative TNAF rate is 95.13%.

Table 5. Aggregated classification metrics across five-folds expressed as mean and standard deviation.

Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%) AUC (%)

95.50 ± 0.2 94.50 ± 1.8 96.00 ± 0.7 93.36 ± 0.4 95.3 ± 0.5

4.3. Model Evaluation on PPG Dataset

While evaluating the model on the PPG dataset, two scenarios are considered. In the
first scenario, the weights of the pre-trained model were not updated through transfer
learning. In the second scenario, the model was finetuned by retraining the PPG signals.

In the first scenario, the model correctly classified 170 out of 192 samples of NSR, and
42 out of 54 samples as AF. The true positive (TPAF) rate is 77.80%, and the true negative
(TNAF) rate is 88.54%. The measures reported in Table 6 serves as an initial benchmark
test to gauge the performance of the ECG HRV trained on PPG data that have not been
encountered during training or validation by the CNN model.

Table 6. Performance measures of the ECG-trained model on the complete UMass-DB PPG signals
before transfer learning.

Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%) AUC (%)

86.00 77.80 88.54 72.00 83.16

In the second scenario, the learned weights of the model are updated by using 75% of
UMass-DB for (60%) training and (15%) validation, with 25% for holdout testing, following
the Stratified k-fold cross-validation with k = 4. By employing this approach, the intention
is to adapt the weights of the pre-trained CNN model with 75% of the PPG data instances,
test its performance on the remaining 25% of the untrained PPG data instances. This
was applied four separate times, such that every instance is used for training, validation,
and testing independently without data leakage between the training/validation and the
testing sets. The aggregated testing performance is reported in Table 7, where the model
makes predictions on all instances fairly.
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Table 7. Performance measures of the ECG-trained model on UMass-DB PPG signals after transfer
learning folds expressed as mean and standard deviation.

Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%) AUC (%)

95.10 ± 2.9 94.6 ± 2.4 95.20 ± 6.5 89.34 ± 1.8 94.9 ± 4.10

After retraining, the average true positive (TPAF) rate is 94.33% and the average true
negative TNAF rate is 95.20%.

This performance is considerably high as the model classifies instances from a different
input modality (PPG), when it was trained using only ECG signals. A marginal increase
in performance is observed when transfer learning is implemented. Type I and type II
errors were also observed, at a lower degree, resulting in AF false positives and AF false
negatives, as shown by the results in Tables 6 and 7. This indicates that the boundaries
between the NSR and AF to a certain extent are not clearly distinct in both the ECG and
PPG recordings. Factors, such as PPG sensor specifications, reliability, and quality, may
contribute to the decreased classification measures compared to the training performance.
It is to be noted that both the ECG training samples and the PPG samples were resampled
using FFT at 50 Hz, 100 Hz, 128 Hz, 250 Hz and 360 Hz, corresponding to the different
sampling rates of the original dataset recordings to see the differences in the achieved
results. The conducted empirical experiments found that 50 Hz for all recordings yielded
relatively similar performance when classifying PPG signals as ~128 Hz (the minimum
sampling rate across all datasets).

4.4. Implementation and Testing

In addition to the validation conducted in Section 4.3, a prototype implementation was
further developed and tested on live human subjects. The developed model was integrated
within a health monitoring platform to test and ascertain its real-world performance. A
smartphone application was designed to acquire PPG recordings, interface with the model,
and retrieve predictions of AF from human subjects.

The system that implements the proposed CNN model presented in this work was
realized by following the three-tier architecture for modularity, scalability, and testing. The
model was deployed via a Python Flask [70] server with a Google Firestore [71] database
on the same workstation. Figure 6 presents the smartphone application collecting the input
from the sensor, i.e., raw PPG heart rhythm values and sending an HTTP POST request to
the REST API server containing the recorded heart rhythm values. The smartphone appli-
cation receives a response from the server (end-to-end response time ≈ 1.25 s) indicating
whether the recording was NSR or AF.

 

Figure 6. Implementation Architecture.

The PPG signals from most variations of optical sensors available in general-purpose
smartphones and wearable devices can be used in the classification of AF after applying
the techniques of filtering, down-sampling, peak detection, PRV extraction as outlined
in Section 3.3. The specifications of the particular sensor used in this implementation are
listed in Table 8 and have a maximum frequency of 100.0 Hz. The sensor type is 65,572 and
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is manufactured by MAXIM. The heart rate monitor LED measures the magnitude of the
red light reflected from an individual’s blood vessels at the measurement location, in the
range of 0–350,000 (unitless). It operates on a 3.0 V to 5.5 V single supply voltage, with
dimensions of 2.9 mm × 4.3 mm × 1.4 mm, and is integrated into portable or wearable
devices. The devices used in the experiments were the Samsung S9, Samsung Note 8, and
Samsung Note 9. M. Elgendi et al. [72] used Samsung 9th generation smartphones, the
same ones used in this work.

Table 8. Sensor specifications for the smartphones used in this experiment.

Name Vendor Range Voltage (V) Type

HRMLED RED MAXIM 0–350,000 3.0 V–5.5 V 65,572

The prototype implementation was successfully verified on the human subjects with
the complete flow from signal acquisition to live AF classification following the same
preprocessing techniques for filtering and resampling used for the UMass-DB PPG signals.

The human subjects were classified into healthy human subjects with no reported
medical conditions, while the other was a heart patient from the Welcare Hospital Ernaku-
lam, India. To record the heart rhythm, the subject is required to position their fingertip
on the smartphone’s heart rate sensor. Upon the detection of the PPG input signal, the
smartphone application initiates the PPG value acquisition process. The healthy subject
continues to hold their fingertip in place for 30 s, and then, the signal is transmitted to
the server. The model classified one of the short length heart rhythms obtained at rest as
NSR, as shown in Figure 7a. The heart patients’ vitals are supervised through a bedside
monitor by the doctor. Upon detecting an oncoming abnormality on the monitor, the
patient is asked to place their finger on the smartphone and record a PPG signal. The result
is shown in Figure 7b. The classification is saved in the cloud database under a specific
entry for each subject, and the REST API server processes and responds to each acquired
signal. This allows subjects and doctors to access historical records of the subject heart
activity regularly.

 
(a) (b) 

Figure 7. Cardiac arrythmia classifications presented on a smartphone application by the model using live PPG readings
from the fingertip smartphone sensor; (a) presents NSR Classification; (b) presents AF Classification.
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The healthy subject underwent a Treadmill Stress Test in the clinical laboratory to
observe the similarity in heartbeats and peak formations between an ECG and the PPG
peak detection algorithm used in this work. The Treadmill Stress Test uses medical-grade
multi-lead ECG to capture heart activity to measure cardiovascular health. A reference
ECG signal was simultaneously collected to validate the PPG signal obtained from the
smartphone sensors for the same 30 s. The resulting waveforms are shown in Figure 8a,b.
Both Figure 8a,b estimate the same BPM, indicating potential consistency in the number of
detected peaks.

 

(a) (b) 

Figure 8. Measured ECG vs. estimated PPG BPM comparison. (a) Reference ECG-measured BPM; (b) PPG-derived BPM by
peak detection algorithm.

5. Discussion

This study explored the efficiency of using convolutional neural networks to classify
short-length heart rhythms using the concept of HRV-derived features to generalize AF
representation across both the ECG and PPG modality. In this paper, the proposed model
is compared and contrasted with similar works in the literature. The primary contributions
of this research are highlighted in the following subsections.

5.1. Comparison with Existing Works

Table 9 presents recent advances in the literature for short-length cardiac arrhythmia
detection using one or more HRV features with applicability in portable devices.

Zhou et al. [17] employed a modified version of the Shannon entropy algorithm
for AF detection by constructing symbolic sequences and probability distributions using
ECG-based R-R intervals from the MIT AF database. This statistical approach was one
of the first studies to discuss the possibility of deploying such approaches in portable
devices. Islam et al. [73] presented a rhythm-based heartbeat normalization technique
for improved ECG-based AF detection by measuring irregularities in a specified window
of heartbeats. The datasets used for training and testing were the MIT-BIH AF database
and MIT-BIH Arrhythmia, respectively. Cui et al. [18] proposed a similarity analysis and
ensemble scheme that maps R-R intervals to binary symbolic sequences and compares
the rank-frequencies to quantify the differences between AF and NSR using the ECG-
based MIT-BIH AF database. Shashikumar et al. [74] presented one of the first and few
works proposing cross-domain generalizability of cardiac arrhythmia models and used
Bidirectional Recurrent Neural Network for AF detection from a single lead ECG. The
researchers collected the ECG dataset from the University of Virginia Heart Station, United
States, for training and collected the PPG dataset from the Emory Hospital and Grady
Memorial Hospital, Atlanta, United States, for testing. They reported high classification
performance for the cross-domain application using spectral features and R-R time series
features with wavelet decomposition. Bashar et al. [75] utilized support vector machines

424



Sensors 2021, 21, 7233

on 30-s-long PPG signals for AF and NSR detection. They trained and tested on a custom-
made PPG dataset and addressed noise saturation by using Butterworth filters. Tarniceriu
et al. [76] implemented Markov models to detect AF and NSR by using R-R intervals as
features and collected a dataset with a custom wearable prototype. Aliamiri et al. [77]
employed an end-end deep learning PPG-based AF detection system that filters poor
quality signals. They developed a convolution-recurrent hybrid model using waveform
features on a custom-made PPG dataset that could effectively distinguish between AF and
NSR. Tison et al. [78] conducted one of the first large-scale studies for passive AF detection
using PPG-enabled smartwatches in collaboration with the University of California, San
Francisco and Cardiogram. Cardiogram is an Apple watch application used to obtain heart
rate data. The researchers used these collected data to implement a deep neural network
with heuristic pretraining and R-R intervals as a feature set. Fallet et al. [79] utilized
decision trees with waveform features and RR-intervals to classify AF and ventricular
arrhythmia in 10-s-long PPG signals. The researchers created a PPG signal dataset from
Lausanne University Hospital Switzerland and used a custom wearable prototype to test
their results. Kwon et al. [80] employed a 1D CNN to process 30-s-long PPG signals to
classify AF and NSR with a custom-made dataset.

Table 9. A comparison of recent works developed for CVD detection with machine learning and portable devices.

Author (Year) Features Approach Modality Accuracy (%) Sensitivity (%) Specificity (%)

This work Temporal HRV Convolutional
Neural Networks

ECG; PPG ECG = 95.50 ECG = 94.50 ECG = 96.00
PPG = 95.10 PPG = 94.60 PPG = 95.20

Zhou et al. [17]
(2015) R-R intervals Shannon Entropy ECG 97.89 97.37 98.44

Cui et al. [18] (2017) R-R intervals Ensemble Model ECG 97.78 97.04 96.97

Shashikumar et al.
[74] (2018)

R-R Intervals and
waveform features

Bidirectional
Recurrent Neural

Networks
ECG; PPG ECG = 94.00

PPG = 95.00 - ECG = 95.00
PPG = 100.00

Bashar et al. [75]
(2018)

R-R intervals and
waveform features

Support Vector
Machines PPG 91.16 - -

Tarniceriu et al. [76]
(2018) R-R Intervals Markov Model PPG - 98.45 99.13

Aliamiri et al. [77]
(2018) Waveform features

Convolutional
Recurrent Neural

Networks
PPG 98.19 - -

Tison et al. [78]
(2018) R-R Intervals Neural Network PPG - 98.00 90.20

Fallet et al. [79]
(2019)

R-R intervals and
waveform features Decision Trees PPG 95.00 92.90 96.20

Kwon et al. [80]
(2019) R-R intervals Convolutional

Neural Network PPG 97.58 99.32 95.85

The performance measures obtained in this work are competitive with the works
reported previously. The existing research has achieved successful results in the domain,
however, has a few limitations that the proposed approach in this paper addresses. Firstly,
the PPG datasets are not gold-standard and are not publicly accessible to reproducible and
further testing. In this work, the reputed MIT-BIH datasets are utilized for implementing
a cross-domain generalizable model. The input features of HRV captures a holistic rep-
resentation of cardiac activity, as they are the most consistent medium of commonality
between ECG and the PRV aspect of PPG signals. Secondly, existing models trained on
ECG signals cannot be applied to predict PPG directly due to the differences in their mor-
phology. In most of the works, ECG-based models can only work with portable devices
having ECG sensors, and the PPG based-models require custom wearable prototypes
or hospital settings, except in [78]. Thirdly, the developed models are not trained with
multiple datasets or assessed on unseen data, lowering the likelihood of being applicable
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in non-ambulatory settings. Lastly, this work provides a supplementary approach, wherein
the time-domain HRV representations are extracted from larger public datasets instead of
raw signals, which extends the applicability to both ECG and PPG derived from clinical
devices or consumer wearables.

5.2. Research Impact

This work presents a generalizable approach that has the potential for sensor agnostic
CVD classification. The model is trained on data acquired from the source ECG modality
and finetuned by updating the learned parameters using data from the target PPG modality.
There were 15,434 instances from the ECG datasets of both NSR and AF for training the
model, while there were only 192 total instances from the PPG dataset. Through the
development of models with large cohorts of data in the related domain of ECG and the use
of transfer learning, the issue of limited, gold-standard data accessibility from consumer
wearable devices can be resolved. This can enable healthcare providers to leverage such
devices in conjunction with cardiac arrhythmia classification models for non-ambulatory
cardiovascular prognosis in the general population.

Smart healthcare platforms are holistic systems that enable disease prevention, moni-
toring, diagnosis, and treatment and connect patients with medical professionals. These
are significant risk factors for the progression of CVD in patients. Repeated detection of
any cardiovascular impairments as indicated by the AF in this work can prompt a clinical
checkup, thereby allowing for early treatment and outcome improvement. A systematic
survey by Majumder et al. [81] of 11 smartphone cardiac monitoring applications showed
that the majority of them used simple, static heart rate threshold-based risk stratification.
Furthermore, the existing solutions were not designed to be part of a monitoring system
that can interface with clinicians but rather limited to the device only within the scope
of the testing setting. Kakria et al. [82] proposed a real-time cardiac health monitoring
system with a patient and doctor portal for effective monitoring using a custom Bluetooth
wearable device and smartphone. However, medical alerts sent to patients and users lacked
specificity, as any heartbeat above or below a threshold is flagged as abnormal. Moreover,
there were no considerations for noise saturation or adaptability to signals other than PPG.
In resource-constrained settings such as inexpensive fitness bands, extracting only the
features necessary instead of complete raw signal samples can prove to be more efficient,
as demonstrated in this work.

A possible limitation stems from the fact that there appears to be an overlap between
the samples of each class. This could be due to the differences in resting heart rates across
individuals, general fitness levels, and the influence of underlying health conditions. A
direct approach to boost the model’s performance is to incorporate additional real ECG
samples from more reputable datasets. Finally, spectral and non-linear HRV measures [83]
can be added to the feature space to capture more robust representations of each class.

6. Conclusions

This work proposed a design and implementation of an explainable deep learning
1D-CNN model for use in smart healthcare systems with general-purpose devices such
as smart wearables and smartphones. The 1D-CNN model classifies the NSR and AF
from short length ECG or PPG signals using HRV features as inputs with the MIT-BIH
ECG datasets.

The 1D-CNN model achieved overall classification performances with accuracy of
95.50%, sensitivity: 94.50%, specificity: 96.00%, F1-score: 93.40%, and AUC: 95.30% across
a five-fold cross-validation approach. In comparison to other works in the literature, these
performance measures are highly competitive and can be integrated into mobile health
monitoring platforms with general-purpose devices. Thereby, the proposed approach
is one of the first works to develop a cross-domain generalizable ECG-based model for
deployment in smartphones and wearable devices.
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Furthermore, the proposed methodology removes noise and motion artifacts from
commercial PPG-sensors within a framework for health monitoring, thereby making early
detection systems accessible for the general public. This approach brings to the forefront
the applicability of ECG databases to enable machine learning to transform the PPG sensor
readings from commercial devices. This can mitigate the issues of developing classification
models that can only be used in controlled settings as well as increase the types of cardiac
arrhythmia that can be observed from general-purpose devices and eliminate difficulties
associated with creating custom PPG datasets for each study.

Subsequent research directions involve conducting a longitudinal study for exhaus-
tive testing with users to attain additional empirical evidence supporting the real-world
applicability of this approach, benchmarking the model against further gold-standard
datasets, and extending the scope of the health monitoring framework.
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Abstract: Non-contact physiological measurements have been under investigation for many years,
and among these measurements is non-contact spirometry, which could provide acute and chronic
pulmonary disease monitoring and diagnosis. This work presents a feasibility study for non-contact
spirometry measurements using a mobile thermal imaging system. Thermal images were acquired
from 19 subjects for measuring the respiration rate and the volume of inhaled and exhaled air.
A mobile application was built to measure the respiration rate and export the respiration signal
to a personal computer. The mobile application acquired thermal video images at a rate of nine
frames/second and the OpenCV library was used for localization of the area of interest (nose and
mouth). Artificial intelligence regressors were used to predict the inhalation and exhalation air
volume. Several regressors were tested and four of them showed excellent performance: random
forest, adaptive boosting, gradient boosting, and decision trees. The latter showed the best regression
results, with an R-square value of 0.9998 and a mean square error of 0.0023. The results of this study
showed that non-contact spirometry based on a thermal imaging system is feasible and provides all
the basic measurements that the conventional spirometers support.

Keywords: thermal camera; non-contact spirometry; artificial intelligence regression; respiration
signal; respiration rate mobile application

1. Introduction

Pulmonary diseases such as asthma, chronic obstructive pulmonary disease (COPD),
pneumonia, bronchitis, pleural effusion, and lung fibrosis affect tens of millions of people
all over the world [1]. The monitoring of respiratory function is of great importance in
diagnosing these diseases. One of the most widely used methods of diagnosing and
assessing the progression of respiratory diseases is spirometry. In conventional spirometry,
the patient wears a mouthpiece for breathing and puts on a nose clip. The patient is
instructed to breathe in a certain procedure so that several parameters can be measured
during the breathing protocol. The patient is instructed to inhale and exhale into the
spirometer mouthpiece at a certain breathing rate and force, then the spirometer calculates
the breathing rate and the volumes of inhaled and exhaled air during the measurement
procedure. As an example of using the spirometer in clinical procedures to diagnose
obstructed airways, the ratio of the forced expiratory volume in one second (FEV1) to
the forced vital capacity (FVC) (i.e., FEV1/FVC) is measured, where FEV1 represents the
maximum amount of air the subject can exhale in 1 s and FVC represents the greatest
volume of air the subject can exhale after a deep inhale [2]. A low FEV1/FVC value means
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that the amount of air that the airways can quickly exhale out of the lungs is reduced, which
indicates that the airways are obstructed [3,4], while an increase in the FEV1/FVC value
results in a restrictive condition that affects the ability to inhale. According to the American
thoracic society, an FEV1/FVC value of 0.7 or above is considered normal for adults, while
a value of 0.85 or above is considered normal for children aged 5 to 18 years [5].

The current techniques that are used for spirometry can be classified into two cate-
gories: contact spirometry and non-contact spirometry. Contact spirometry is the traditional
and the most common method in clinical practice. This conventional way of performing
spirometry can be uncomfortable for patients, since it requires them to keep the spirometer
in their mouth for up to 30 min. Moreover, after each patient use, the spirometry mouth-
piece is subjected to a sterilization procedure to prevent any cross-infection among the
patients. There have been several techniques developed for non-contact spirometry. Most
of these techniques depend on body movement detection [6,7], photoplethysmography
(PPG) [8], and imaging techniques. Droitcour et al. [6] and Mostov et al. [9] used Doppler
radar to measure the movement of the body due to heart and respiration signals. For this,
they used a high-quality CMOS Doppler radar sensor and verified their results against
standard heart and respiration devices. An image-based system was used by Lin et al. [10],
where they developed a method based on harmonic analysis of body motion to detect
changes in the respiration rate pattern. The second category of non-contact spirometry
techniques is based on signal analysis of the PPG signals. In this category, the change in
blood volume in the blood vessels is measured by observing changes in light absorption.
The measured PPG signal is normally modulated by the respiratory signal (activity) due
to movement of the chest cavity during blood flow. These techniques that are based on
the analysis of PPG signals are normally based on signal processing techniques and can
provide only frequency information about respiration without any information about
the changes in the lung volume. Madhav et al. [8] used a modified method of principal
component analysis (PCA) to separate the heart activity from the respiration activity. The
recorded PPG signal was acquired by a pulse oximeter. Another study depending on
ambient light for the recording of the PPG signal was performed by Verkruysse et al. [11].
They used harmonic analysis for extraction of the different components of the PPG signal
including the respiration activity. Al-Naji et al. [12] used an ultrasonic PING sensor and
PIC18F45 microcontroller to monitor the normal and abnormal breathing activity of the
subjects continuously and instantaneously at different distances. The third category of
non-contact spirometry techniques is based on thermal imaging, where measurement of
the respiration activity is performed through monitoring the changes in the air temperature
during inhalation and exhalation [13,14]. Murthy and Pavlidias used a highly sensitive
imaging system in their measurements [14]. They used a statistical model of the recorded
image to extract respiratory breathing information. Another study by Murphy et al. [15]
evaluated the airflow rate using a thermal imaging system.

Most of the non-contact techniques mentioned in the literature do not provide com-
plete respiratory values as the conventional method does, such as the volume of air inhaled
and exhaled during the measurement protocols [6,8–10,14,16,17]. Moreover, most times,
they require sophisticated techniques, a special setup, and special hardware, while conven-
tional spirometry is considered simple and cheap, with the only disadvantage of requiring
direct contact with the patient, which could produce cross-infection and discomfort. There-
fore, any non-contact spirometry system should address these issues. This present work
provides a feasibility study of using a mobile thermal camera to replace the conventional
spirometer for measurements of the respiration rate and the volume of inhaled and exhaled
air in and out of the lungs. The purpose of this study was to build a simple non-contact res-
piratory measurement system using a mobile thermal camera. The targeted measurements
included the respiration rate and the volume of inhaled and exhaled air based on artificial
intelligence (AI) regressors.
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2. Materials and Methods

The complete structure of the proposed study is shown in Figure 1. A mobile phone,
with a thermal camera connected to it, was used to acquire thermal images from the face
of the subject using a mobile application that was built specifically for this purpose. The
mobile application extracts the respiration signal and exports it to a back-end server for
further spirometry analysis of the inhaled and exhaled air volumes, which was performed
based on the AI regression approach. The spirometry measurements were carried out using
a conventional spirometer.

 

Figure 1. Graphical abstract of the proposed work.

2.1. Thermal Image Acquisition System

The thermal image acquisition system consisted of a mobile phone (Samsung S6)
with an Android platform and a FLIR I thermal camera [18]. The camera produced
images with thermal resolution of 160 × 120 pixels with a pixel size of 12 microns. Its
accuracy was around 3 ◦C or ±5% of difference between the ambient and the scene
temperature. Both still and video thermal images could be recorded, with video images
recorded at a rate of 9 frames per second. A special application that used the FLIR I
software development kit (SDK) (available at https://developer.ir.com/mobile/ironesdk/,
accessed on 10 October 2021) was built for image acquisition. Moreover, the application
used the OpenCV android SDK library for image processing. The image acquisition rate
was fully controlled by the FLIR I SDK, with a static value of 9 frames per second. The
application detected the region of interest (the area under the nose or the mouth) initially
using a regular camera image and calculated the average temperature in that region. The
application also specified the duration of the recording; a default duration of 20 s was used
initially. The recorded signal of temperature versus time was displayed by the application
and transmitted to a PC for further spirometry measurements.
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2.2. Respiration Rate Measurement

The mobile application that was built for this study was used for two purposes: the
first one was to record and transmit the respiration signal vs. time to a PC for further
measurements, and the second one is was calculate the respiration rate from the recorded
signal by finding the number of peaks (local maxima) in that signal divided by the duration
of the recording. The mobile application indicated whether the respiration rate was normal
(15–24 breaths/min) or abnormal. The flow chart of the mobile application is shown in
Figure 2.

 
Figure 2. Mobile application workflow diagram.

2.3. Spirometry Measurements

The spirometry measurement approach adopted in this work was an artificial intelli-
gence system based on regression trees. The system’s plan of operation is shown in Figure 3.
To be able to build such a system, a conventional spirometer was used to provide data
about the change in lung volume during measurements. These measurements provided
the ground truth for the training and testing of the AI system. The spirometer used in
this study was a Contec SP80 healthcare portable medical patient spirometer (shown in
Figure 4) [19]. Data were acquired from different subjects, where each time, the change in
lung volume during the respiration protocol was recorded.
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Simultanously capture thermal images and 

respiratory voulme data using Contec SP80 

spirometer 

Formulate a predictive model using the decision 

trees regression AI technique to estimate the 

breathing volume from thermal data 

Build an app that measures spirometery 

measurments such as FEV1, FVC, and FEV1/FVC 

ratio. Diagnosis is also included in the app 

Figure 3. Plan of the spirometry measurement system.

 

Figure 4. SP80B spirometer, Contec Medical Systems.

2.3.1. Subject

The measurements used in this study were taken from 18 subjects. The age of the
subjects ranged from 16 to 28 years, with an average age of 22.5. The subjects’ mass was
in the range of 54 to 90 kg, with an average value of 67.5 kg, while their height was in the
range of 159 to 188 cm, with an average value of 167 cm.

2.3.2. Regression Models

The recorded signals of temperature versus time were used to build a regression
model to predict the value of the change in volume during the respiration protocol. Several
regression tree models were tested for this work. The workflow of the proposed model is
shown in Figure 5.
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Figure 5. General workflow for the regression procedure.

− Decision Trees Regressor

Decision trees (DT) were first introduced by Breiman et al. in 1984 [20]. This method
is widely used due to its simplicity and efficiency. The learner uses a decision tree as a
predictive model for the output. The decision tree is constructed based on the recorded
signal, which is considered as a feature vector (observation) for training and testing the trees.
It basically splits the training dataset into smaller and smaller subsets, while simultaneously
developing the corresponding decision tree in an incremental manner. The DT normally
works as a top-down scheme, where each observation is used to measure the output based
on a certain measure such as Gini impurity, information gain, and variance reduction.
To predict a particular data point, the algorithm runs through the complete decision tree
by answering “true/false” questions at every node, until arriving at the leaf node which
represents the outcome. Most importantly, the same procedure is iterated multiple times
to increase the accuracy of prediction. The major advantage of DT is the simplicity and
the ability to handle numeric variables (regression), while the major disadvantage is the
sensitivity to noise in the observations, which may cause a large variation in the decision
trees and hence increase the error in the predictions [21].

− Random Forest Regressor

The random forest classifier and regressor was first introduced by Breiman in 2001
and has been subjected to several improvements since then [20,22]. The random forest is
a supervised machine learning technique that deploys multiple trees running in parallel
during the training stage with no interaction among the trees. The outputs of all trees
are aggregated to calculate the final output of the random forest regressor. If the vector
x contains N features such that x = [x1, x2, . . . , xN], these features are used to predict
the output for a given input feature. The vector X in this study represents the thermal
respiration signal recorded during the measurement protocol. The signal is used to build
a predictive model to predict the value of the respiration volume. If the true measured
volume is V, then the predicted volume is Ṽ.

This algorithm works in the following steps: firstly, it selects uncorrelated and random
sub-samples from the training dataset and builds up a separate decision tree for each
sub-sample. Next, to predict a particular data point, it extracts a prediction result from
every decision tree. Lastly, it applies a vote procedure to all available prediction results and
declares the prediction result with the greatest number of votes as the final predication. In
random forests regression, the voting is the average prediction of each tree; Ṽi is the output
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for of an individual tree i. If there are M trees in the random forests regressor, then the final
output of the is calculated as:

Ṽ =
1
M

M

∑
i=1

Ṽi

Some of the advantages of the random forest regressor include its efficiency in han-
dling large databases, its accuracy in performing classification and regression, and its
accuracy in the case of missing data points. The main weakness of the random forest
regressor is overfitting in the presence of noisy training data.

− Gradient and Adaptive Boosting Regressors

Boosting classifiers and regressors start the learning process using weak classifiers
and regressors such as decision trees. They modify these weak learners to make them
strong learners by trying to improve the initial model. In boosting techniques, multiple
individual models are trained in a sequential way, while every successive model keeps
on learning from mistakes of its predecessor model. There are several techniques for
this procedure, with the most common ones being gradient boosting (GB) and adaptive
boosting (AdaBoost) [21,23]. In the gradient boosting technique, several models (decision
trees) are trained either in an additive or sequential manner. The learner tries to identify the
weaknesses of the weak model using the gradients of the loss functions; the performance
measure of the regressor used in this work was the mean square error. The different
models are updated on the basis of the gradient of the loss function, and weak learners
are improved. The gradient boosting regressor works as follows: firstly, it trains a decision
tree with an original training dataset and extracts predictions from the trained decision
tree. It then computes the residual error of the trained decision tree and stores its value as
a variable Y. To keep on learning from previous mistakes, the next stage will utilize the
calculated residual error of each stage. It repeats the same procedure for a prespecified
number of trees to train the model. To predict a particular data point, it simply adds up the
prediction results of all trees. In the adaptive boosting technique, the learner identifies the
weak classifier (trees) using the cost function, modifies them to enhance their performance,
and builds a second regression model based on these analyses. The process continues until
an accurate model is completed or a certain number of models has been reached. Similar to
the gradient boosting technique, firstly, it trains a simple decision tree with the original
training dataset. It computes the weighted error rate (number of false predictions out of
total predictions) for the decision tree. It then calculates the weight of the decision tree in
the ensemble and updates the weights of all misclassified data points (wrong predictions).
Lastly, it repeats the same procedure for a prespecified number of trees to train the model.
To predict a particular data point, the adaptive boosting algorithm multiplies the tree’s
weight by the tree’s prediction and adds up all the trees. Consequently, the tree with the
highest weighting will be the most significant influencer of the final prediction.

2.3.3. Performance Measures

The performance of the different regressors was evaluated based on four different
measures: the coefficient of determination or R-squared (R2), the mean square error (MSE),
the root means square error (RMSE), and the mean absolute error (MAE). These per-
formance measures were calculated during the regression procedure based on 10-fold
cross-validation.

The R-squared value is a statistical measure of how close the predicted data using the
regression model are to the true measured value of the spirometer, based on the sum of
squared errors [24,25]. It is given by:

R2 = 1 − SSres

SStotal
(1)
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where SStotal and SSres are given by:

SStotal =
n

∑
i=1

(yi − y) (2)

SSres =
n

∑
i=1

(yi − ŷi) (3)

where yi is the volume measured using the spirometer (the ground truth), y is the average
value of the measured values, ŷi is the predicted regression model volume, and n is the
number of signals tested (sample size).

The MSE is a measure of the average error between the measured and the predicted
values and is given by:

MSE =
1
n

n

∑
i=1

(yi − ŷi) (4)

The RMSE is the square root of mean square error and is given by:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi) (5)

The MAE is a measure of the absolute error between the measured and the predicted
volumes. It is given by:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (6)

3. Results

The complete proposed system was implemented using a mobile application with
the functionality illustrated in Figure 6. The system can provide two types of measure-
ments: the first one is the respiration rate and the second one is the respiration volume
measurement, which depends on the measurement protocol. Three volume measurements
were programmed in the app: the normal respiration volume (tidal volume), the functional
reserve capacity (FVC) or deep breathing, and the FEV1/FVC ratio.

3.1. Respiration Signal and Respiration Rate Measurements

This module was implemented as a mobile app with a workflow described in Figure 2.
The application was programmed using Java programming language in the environment
of the Android studio. Thermal image acquisition was performed using the mobile thermal
camera software development kit, and facial recognition and the area of interest were
implemented using the OpenCV image processing library. Figure 7 shows the interface of
the mobile application with the respiration rate measurement and the respiration signal.
The two measurements were recorded at a distance of around 20 cm from the subject’s
face with a duration of 20 s as a default value. The recording was carried out at room
temperature (23 ◦C).

The recorded respiration signal was exported to a back-end server for further measure-
ments. Figure 8 shows an example of these recordings at three different respiration rates.

438



Sensors 2021, 21, 7574

 

Figure 6. Mobile application functionality of the proposed system.

Figure 7. The interface of the mobile application for respiration rate measurements.
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Figure 8. Respiration signal recorded at different rates: (a) normal breathing rate, (b) low breathing rate, and (c) high
breathing rate.

To explore the effect of the camera distance from the subject’s head, four respiration
signals were recorded at 10 cm, 30 cm, 60 cm, and 100 cm, as shown in Figure 9.

Figure 9. Respiration signals recorded at 10 cm, 30 cm, 60 cm, and 100 cm.

3.2. Spirometry Measurement System

The spirometry measurement system was completely performed in the Python 3.7
programming environment. The package Scikit-learn 0.24.1 was used for this purpose [25].
The four regression models mentioned earlier were considered. The regression testing and
training were carried out using a 10-fold cross-validation technique. The performance of
the regression of four techniques is listed in Table 1. The performance measures indicated
that the decision trees, along with the gradient boosting regression methods, had better
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performance in comparison with the other two methods, with slightly superior performance
for the decision trees.

Table 1. Summary of the regression methods used.

Performance Measure/
Regression Method

Random
Forest

Gradient
Boosting

Adaptive
Boosting

Decision
Trees

R-square 0.9409 0.9948 0.9558 0.9998

Mean absolute error 0.1886 0.0532 0.1724 0.0023

Mean squared error 0.0670 0.0049 0.0423 0.0002

Root mean squared error 0.2484 0.0687 0.2054 0.0088

Testing of the proposed methods was carried out using a 10-fold cross-validation
procedure. Figure 10 shows the agreement between the predicted change in volume of
the method in comparison with the measured spirometer value. A perfect agreement is
indicated by a line of a slope of 1. The performance of the decision trees method is evident
in Figure 8c and the performance measures in Table 1.

Figure 10. Results of the 10-fold cross-validation testing procedure: (a) random forests regressor, (b) gradient boost regressor,
(c) decision trees regressor, and (d) adaptive boosting regressor.

3.3. Spirometry System Testing

The complete proposed system was tested for volume measurements with several
breathing volumes and compared with the reading provided by the conventional spirome-
ter. The first test was performed on a normal subject with a normal breathing rhythm. As
shown in Figure 11, a breathing volume of 0.55 L was recorded using the mobile spirometer
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application, while the conventional spirometer recorded a breathing volume of 0.59 L.
Another breathing test was performed to measure the FVC of a normal subject. The pro-
posed system showed a measured volume of 3.01 L, which was exactly the same volume
measured by the conventional spirometer. The measurements are shown in Figure 12.

  
(a) (b) 

Figure 11. Measured normal breathing volume (tidal volume) (a) using the mobile application with
a thermal camera and (b) using the conventional spirometer.

Figure 12. FVC test measurement: (a) mobile app reading; (b) conventional spirometer reading.

The last measurement test was the FEV1/FVC ratio. The FVC was measured as
mentioned previously, while the FEV1 was measured based on the change in respiration
volume with time (1 s). Figure 13 shows the FEV1/FVC measurement using both the
mobile app and the Contec spirometer.
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(a) (b) 

Figure 13. FEV1/FVC measurement (a) using the mobile app and (b) using the Contec spirometer.

4. Discussion

This work presents a feasibility study for respiratory measurements using a mobile
thermal camera. The measurements were made by a first-generation FLIR I mobile thermal
camera. Although there are more advanced thermal cameras now, due to the need for
temperature monitoring because of the COVID-19 pandemic, the camera provided good
results for respiration rate measurements at a close distance. The FLIR I is a very basic
first-generation mobile thermal camera with low resolution compared with other advanced
cameras. The camera provides the highest possible accuracy by automatically calibrating
itself according to the scene temperature by calculating the emissivity of the objects, the
reflected temperature, and the distance; it then returns the actual temperature of the object.
The accuracy of the recorded temperature was reported in the literature to be around
3 ◦C [26]. The effect of the measurement accuracy was minimized in this study for two
reasons: first, we measured the average temperature of the area of interest and not pixel
by pixel temperature, which resulted in reducing errors in the measured temperature.
The second reason is that the measured signal represents the change in temperature and
not the actual temperature, which cancels the effect of errors that may appear during the
calibration of the camera.

In the current study, the distance was around 20 cm; greater distances resulted in
degradation of the signal quality, as shown in Figure 6. Therefore, higher-quality cameras
may result in a better respiration signal and thus better measurements at higher distances.
One of the most promising applications of respiratory rate measurements is sleep apnea
(cessation of breathing). The mobile thermal camera, along with the mobile application,
could provide a non-contact and hassle-free system to detect apnea during sleep, as the
current clinical apnea monitoring system requires wiring to the patient’s body.

The FLIR I thermal camera has an image acquisition rate of nine frames per second;
therefore, the average temperature has a sampling rate of 9 Hz. The respiration rate varies
with age and the maximum breathing rate can reach up to 55 breaths per minutes in
neonates [27]. This means that the maximum breathing frequency is 1.1 Hz and therefore,
the current image acquisition rate of the FLIR I is enough to provide a faithful representation
of the respiration waveform. At the same time, higher imaging rates would provide a
better representation of the respiration signal and hence better performance.

The change in the lung volume (spirometry) measurement was performed using an
AI approach based on different regression models. The decision trees regressor showed
excellent performance in predicting the change in volume due to respiration, with a mean
R-square value of 0.9998 and a mean square error of 0.0023, as listed in Table 1. Moreover,

443



Sensors 2021, 21, 7574

the AI system was built (training and testing) using a range of volumes (0.2 L to 3.5 L),
which makes it appropriate for a wide range of subjects and ages. Several studies have
adopted a non-contact approach for respiration measurements [8,28,29]. Brieva et al. [30]
estimated the respiratory rate using a Hermite magnification technique and a convolutional
neural network (CNN). Their contactless system monitored the subjects’ chest movements
with and without an ROI (region of interest), and they evaluated the performance of their
methods using the mean average error. With and without an ROI, the respiratory rate
was estimated with a mean average error of 1.83 ± 1.61% and 3.28 ± 3.33%, respectively.
Liu et al. [31] proposed an imaging-based approach to determine spirometry parameters
such as FEV1, FVC, and PEF. They captured images of the subjects’ faces and shoulders
during inspiration and expiration using a webcam. Their method showed fair perfor-
mance, with a root mean square error of 0.27, 0.18, and 0.56 and an average error of 8.5%,
6.9%, and 7.7% for FEV1, FVC, and PEF, respectively. However, using infrared thermog-
raphy, Pereira et al. [32] estimated the breathing rate with a mean absolute error of 0.33,
0.55, and 0.96 bpm (breaths per minute). One of the most recent studies is the study by
Schoun et al. [28]. They used an in-vitro benchtop thermal imaging setup to acquire simu-
lated measurements. They used a recurrent network model (AI) to predict the respiration
signal, and from the predicted signal, they made respiration measurements. Using RMSE,
their LSTM neural network predicted the expiratory volume from human tests with an
average error of 10.61%. However, in this study, the change in volume due to respiration
was predicted directly using AI regression models.

5. Conclusions and Future Work

The current study presents a successful approach for respiratory measurements of
the respiration rate and volume change. It could provide a means for a non-contact,
continuous, and accurate method for the monitoring of chronic and acute pulmonary
diseases. However, more steps forward are still needed to improve the quality of the
thermal signal measurements by using a more advanced thermal camera and probably
more advanced image processing techniques for detection of the area of interest in the
face. Advanced thermal cameras can provide better signal quality at longer distances and,
at the same time, better image quality. Moreover, an increase in the image acquisition
rate should significantly improve the proposed system. This study could also be further
developed to be used for simultaneous multiple subject monitoring and measurements,
especially with the current COVID-19 pandemic. This study could also be tested in a
clinical setup with diseases such as asthma, chronic obstructive pulmonary disease (COPD),
and pneumonia. Moreover, this study could be performed against different temperature
background temperatures to check the reliability of the measurements in a neutral thermal
zone. This will require a special setup that can produce different thermal background
temperatures.

Author Contributions: Conceptualization, L.F.; methodology, L.F., K.L. and N.K.; software, N.K.,
M.E., A.A. and N.A.H.; validation, L.F.; formal analysis, L.F. and N.K.; investigation, L.F., M.E., A.A.
and N.A.H.; resources, L.F. and N.K.; writing—original draft preparation, L.F.; writing—review and
editing, M.E. and K.L.; visualization, L.F. and N.K.; supervision, L.F.; project administration, L.F.;
funding acquisition, L.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Abu Dhabi University research office.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of Abu Dhabi University
(File Number: CoE-21-06-019, 27 June 2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Acknowledgments: The authors would like to thank Eng. Tasnim Basmaji for her help and support
during the entire period of the project.

Conflicts of Interest: The authors declare no conflict of interest.

444



Sensors 2021, 21, 7574

References

1. Athanazio, R. Airway disease: Similarities and differences between asthma, COPD and bronchiectasis. Clinics 2012, 67, 1335–1343.
[CrossRef]

2. Ponce, M.C.; Sharma, S. Pulmonary Function Tests; Springer: Berlin/Heidelberg, Germany, 2021; pp. 11–20.
3. Mannino, D.M.; Buist, A.S.; Vollmer, W.M. Chronic obstructive pulmonary disease in the older adult: What defines abnormal

lung function? Thorax 2007, 62, 237–241. [CrossRef] [PubMed]
4. Güder, G.; Brenner, S.; Angermann, C.E.; Ertl, G.; Held, M.; Sachs, A.P.; Lammers, J.W.; Zanen, P.; Hoes, A.W.; Störk, S.; et al.

GOLD or lower limit of normal definition? A comparison with expert-based diagnosis of chronic obstructive pulmonary disease
in a prospective cohort-study. Respir. Res. 2012, 13, 13. [CrossRef] [PubMed]

5. Thomas, E.T.; Guppy, M.; Straus, S.E.; Bell, K.J.L.; Glasziou, P. Rate of normal lung function decline in ageing adults: A systematic
review of prospective cohort studies. BMJ Open 2019, 9, e028150. [CrossRef]

6. Droitcour, A.D.; Boric-Lubecke, O.; Kovacs, G.T.A. Signal-to-Noise Ratio in Doppler Radar System for Heart and Respiratory
Rate Measurements. IEEE Trans. Microw. Theory Tech. 2009, 57, 2498–2507. [CrossRef]

7. Shao, D.; Yang, Y.; Liu, C.; Tsow, F.; Yu, H.; Tao, N. Noncontact Monitoring Breathing Pattern, Exhalation Flow Rate and Pulse
Transit Time. IEEE Trans. Biomed. Eng. 2014, 61, 2760–2767. [CrossRef]

8. Madhav, K.V.; Ram, M.R.; Krishna, E.H.; Komalla, N.R.; Reddy, K.A. Robust Extraction of Respiratory Activity from PPG Signals
Using Modified MSPCA. IEEE Trans. Instrum. Meas. 2013, 62, 1094–1106. [CrossRef]

9. Mostov, K.; Liptsen, E.; Boutchko, R. Medical applications of shortwave FM radar: Remote monitoring of cardiac and respiratory
motion. Med. Phys. 2010, 37, 1332–1338. [CrossRef] [PubMed]

10. Lin, K.; Chen, D.; Tsai, W. Image-Based Motion-Tolerant Remote Respiratory Rate Evaluation. IEEE Sens. J. 2016, 16, 3263–3271.
[CrossRef]

11. Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote plethysmographic imaging using ambient light. Opt. Express 2008, 16,
21434–21445. [CrossRef]

12. Al-Naji, A.; Al-Askery, A.J.; Gharghan, S.K.; Chahl, J. A system for monitoring breathing activity using an ultrasonic radar
detection with low power consumption. J. Sens. Actuator Netw. 2019, 8, 32. [CrossRef]

13. Huang, Y.P.; Young, M.S.; Tai, C.C. Noninvasive respiratory monitoring system based on the piezoceramic transducer’s pyroelec-
tric effect. Rev. Sci. Instrum. 2008, 79, 35103. [CrossRef]

14. Murthy, R.; Pavlidis, I. Noncontact measurement of breathing function. IEEE Eng. Med. Biol. Mag. 2006, 25, 57–67. [CrossRef]
[PubMed]

15. Murthy, J.N.; Van Jaarsveld, J.; Fei, J.; Pavlidis, I.; Harrykissoon, R.I.; Lucke, J.F.; Faiz, S.; Castriotta, R.J. Thermal Infrared Imaging:
A Novel Method to Monitor Airflow During Polysomnography. Sleep 2009, 32, 1521–1527. [CrossRef] [PubMed]

16. Drummond, G.B.; Duffy, N.D. A video-based optical system for rapid measurements of chest wall movement. Physiol. Meas. 2001,
22, 489–503. [CrossRef]

17. Chon, K.H.; Dash, S.; Ju, K. Estimation of Respiratory Rate From Photoplethysmogram Data Using Time–Frequency Spectral
Estimation. IEEE Trans. Biomed. Eng. 2009, 56, 2054–2063. [CrossRef]

18. Teledyne FLIR. Available online: https://www.flir.com/products/flir-one-pro/ (accessed on 25 October 2021).
19. Contec Medical. Available online: https://contecmed.eu/products/sp80b-bluetooth-digital-spirometer-lung-function-breathing-

pulmonary-diagnostic?_pos=1&_sid=28dfd9d6c&_ss=r (accessed on 24 October 2021).
20. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984.
21. Hastie, J.F.T. Robert Tibshirani. In The Elements of Statistical Learning; CRC Press: Boca Raton, FL, USA, 2009.
22. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
23. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
24. Devore, J.L. Probability and Statistics for Engineering and the Sciences, 8th ed.; Cengage Learning: Boston, MA, USA, 2011.
25. Scikit-Learn, Machine learning in Python. Available online: https://scikit-learn.org/stable/ (accessed on 25 October 2021).
26. Fraiwan, L.; AlKhodari, M.; Ninan, J.; Mustafa, B.; Saleh, A.; Ghazal, M. Diabetic foot ulcer mobile detection system using smart

phone thermal camera: A feasibility study. Biomed. Eng. Online 2017, 16, 117. [CrossRef] [PubMed]
27. Al-Naji, A.A.; Chahl, J. Detection of Cardiopulmonary Activity and Related Abnormal Events Using Microsoft Kinect Sensor.

Sensors 2018, 18, 920. [CrossRef]
28. Schoun, B.; Transue, S.; Halbower, A.C.; Choi, M.-H. Non-contact tidal volume measurement through thin medium thermal

imaging. Smart Health 2018, 9–10, 37–49. [CrossRef]
29. L-Khalidi, F.Q.A.; Saatchi, R.; Burke, D.; Elphick, H. Facial tracking method for noncontact respiration rate monitoring. In

Proceedings of the 2010 7th International Symposium on Communication Systems, Networks Digital Signal Processing (CSNDSP
2010), Newcastle Upon Tyne, UK, 21–23 July 2010; pp. 751–754. [CrossRef]

30. Brieva, J.; Ponce, H. A Contactless Respiratory Rate Estimation Method Using a Hermite Magnification Technique and Convolu-
tional Neural Networks. Appl. Sci. 2020, 10, 607. [CrossRef]

31. Liu, C.; Liu, C.; Yang, Y.; Tsow, F.; Shao, D.; Tao, N. Noncontact spirometry with a webcam. J. Biomed. Opt. 2021, 22, 57002.
[CrossRef] [PubMed]

32. Pereira, C.B.; Yu, X.; Czaplik, M.; Blazek, V.; Leonhardt, S. Remote monitoring of breathing dynamics using infrared thermography.
Biomed. Opt. Express 2015, 6, 1373–1384. [CrossRef] [PubMed]

445





sensors

Article

Brain Strategy Algorithm for Multiple Object Tracking Based
on Merging Semantic Attributes and Appearance Features

Mai S. Diab 1,2,*, Mostafa A. Elhosseini 3,4, Mohamed S. El-Sayed 1 and Hesham A. Ali 3,5

Citation: Diab, M.S.; Elhosseini, M.A.;

El-Sayed, M.S.; Ali, H.A. Brain

Strategy Algorithm for Multiple

Object Tracking Based on Merging

Semantic Attributes and Appearance

Features. Sensors 2021, 21, 7604.

https://doi.org/10.3390/s21227604

Academic Editors: Ayman El-baz,

Guruprasad A. Giridharan, Ahmed

Shalaby, Ali H. Mahmoud and

Mohammed Ghazal

Received: 8 October 2021

Accepted: 11 November 2021

Published: 16 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Computer & Artificial Intelligence, Benha University, Benha 13511, Egypt;
ms4elsayed@fci.bu.edu.eg

2 Intoolab Ltd., London WC2H 9JQ, UK
3 Computers Engineering and Control System, Faculty of Engineering, Mansoura University,

Mansoura 35516, Egypt; melhosseini@mans.edu.eg (M.A.E.); h_arafat_ali@mans.edu.eg (H.A.A.)
4 College of Computer Science and Engineering in Yanbu, Taibah University, Madinah 46421, Saudi Arabia
5 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 35511, Egypt
* Correspondence: may.mossoua@fci.bu.edu.eg

Abstract: The human brain can effortlessly perform vision processes using the visual system, which
helps solve multi-object tracking (MOT) problems. However, few algorithms simulate human
strategies for solving MOT. Therefore, devising a method that simulates human activity in vision
has become a good choice for improving MOT results, especially occlusion. Eight brain strategies
have been studied from a cognitive perspective and imitated to build a novel algorithm. Two of
these strategies gave our algorithm novel and outstanding results, rescuing saccades and stimulus
attributes. First, rescue saccades were imitated by detecting the occlusion state in each frame,
representing the critical situation that the human brain saccades toward. Then, stimulus attributes
were mimicked by using semantic attributes to reidentify the person in these occlusion states. Our
algorithm favourably performs on the MOT17 dataset compared to state-of-the-art trackers. In
addition, we created a new dataset of 40,000 images, 190,000 annotations and 4 classes to train the
detection model to detect occlusion and semantic attributes. The experimental results demonstrate
that our new dataset achieves an outstanding performance on the scaled YOLOv4 detection model
by achieving a 0.89 mAP 0.5.

Keywords: multiple object tracking; data association; dataset; deep learning; semantic attribute

1. Introduction

Object tracking is of great interest to researchers because of its numerous computer
vision applications such as robot navigation, self-driving, and smart surveillance. It
attempts to give a unique ID for every object throughout all frames. However, many
fundamental challenges abound regarding the development of a robust object tracking
model. These include unpredictable changes in the background and the appearance of
objects, full or partial occlusion, and data association. Over the years, researchers have
developed robust algorithms to address these challenges. Their methods, however, have not
solved one of the main problems in MOT, which is occlusion. Moreover, their algorithms
have not reached human brain performance because not many have studied how the
human brain deals with such challenges.

The human brain can identify both stationary and dynamic objects. Moreover, it can
effortlessly perform vision processes, including activity recognition, image compression,
and motion analysis. Therefore, we believe that the uncertainty in the tracking problem
could be solved by developing an object tracking algorithm that can mimic the human
brain. Merging researchers’ efforts in the neuroscientific community who have studied the
approaches used by the human brain to track objects in real-time and researchers’ attempts
in the computer vision community are needed to improve MOT models. This is what we
have achieved in this paper.
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In neuropsychology, the cognitive function of recognising people includes simulta-
neous routes of information and multiple processing stages. Models of these multiple
processing stages have been provided from neuropsychological data obtained from case
reports. According to research on young adults [1], humans can simultaneously recognise
objects and extract meaning from what they see in the first half-second—but what part
of the brain is responsible for this? Researchers in neuroscience have used advanced
techniques to identify the brain areas that are involved in object tracking, for instance,
magnetoencephalography (MEG), whole-brain functional magnetic resonance imaging
(fMRI), and electrocorticography (ECoG) [2,3]. It has been found that this ability involves
continuous activity within the anteromedial temporal cortex through the ventral temporal
cortex [3]. While visual input is processed through this pathway, it has been found that it is
transformed into an initial semantic representation (plants, animals) [4]. This happens in
the inferior temporal cortex, before specific semantic representation emerges (rose, cat) in
the anteromedial temporal cortex. Another conclusion drawn by [4] is that people recog-
nition includes many attributes, such as the perception of faces, whole bodies, emotional
expressions, clothes, gait, and individual marks. In other words, with these biological
processors, humans can transform object representations or visual inputs into a format
that is easily understood and extractable, regardless of the viewing conditions; this is the
semantic attribute. In our algorithm, we aimed to design a tracker that mimics the working
principle of the brain to enhance the performance of computer vision state-of-the-art al-
gorithms. Our tracker is motivated by contemporary cognitive psychology. It combines
an appearance feature vector (inspired from computer vision algorithms) and a semantic
attribute (inspired by cognitive psychology) to represent the object. The appearance feature
vector is used to track targets with no occlusion, while the semantic attributes are used to
prevent incorrect tracking of an occluded object.

This research proposes novel brain-based MOT algorithms based on eight human
brain concepts. Our approach, which resolves the frame-by-frame association problem, is
novel; it combines appearance feature vectors and several semantic attributes (trousers,
shirts, men, and women) to recognise objects. The main contributions are three-fold:

• We introduced a new dataset, PGC (Pedestrians’ Gender and Clothes Attributes),
including a total of 40,000 images with more than 190,000 annotations for four classes
(trousers, shirts, men, and women). We intend to ensure that the datasets are available
and accessible to the public so that other researchers can benefit from our dataset and
continue from where we ended. The reasons behind introducing our dataset as a main
contribution are explained in Section 3.

• After evaluating our dataset by comparing it with an open dataset with the same classes
using the same detection model, the results show that our PGC dataset facilitates the
learning of robust class detectors with much a better generalisation performance.

• We introduced and evaluated a novel MOT algorithm that mimics the human brain,
addresses occlusion problems, and improves the state-of-the-art performance on
standard benchmark datasets.

The remainder of this paper is organised as follows: the next section explores various
previous brain-inspired MOT algorithms. Section 3 presents the proposed method in detail.
A quantitative evaluation for our algorithm (Merging Semantic Attributes and Appearance
Feature MSA-AF), compared to five state-of-the-art algorithms, has been introduced in
Section 4. Section 5 shows our algorithm’s limitations, while Section 6 presents what went
wrong in our dataset. Section 7 concludes.

2. Related Work

Multiple object tracking has long been a widespread topic in computer vision, with
a large number of publications. Over the last few years, researchers have put forward
several brain-inspired tracking algorithms. However, these algorithms can only adopt
one of the key cognitive effects used by the human brain, such as memory and attention,
instead of imitating the entire process [5,6]. Other algorithms have integrated powerful
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tools that mimic the human nervous system to tackle the occlusion problem, such as
deep neural networks (DNNs) [7], artificial neural networks (ANNs) [8], recurrent neural
networks (RNNs) [9], and convolutional neural networks (CNNs) [10]. These networks can
simulate the processes used by the human brain to identify, store, or process information.
However, according to the research findings of [11], ANNs are fundamentally different
from biological neural networks (BNNs) in many ways. For instance, cortical neurons in
BNN and artificial neurons in ANN communicate to each other differently. BNN’s neurons
are organised in a goal-driven manner, unlike ANN’s neurons. Additionally, training is not
needed in BNNs, unlike ANNs, in which the weight of the neural connections needs to be
trained to obtain better results.

The question that emerges here is how can we judge the degree to which a model
agrees with biological outcomes? Despite no definite answer to this question in the litera-
ture, we will try to find answers using findings from the cognitive neuroscience of MOT
and what these computer vision trackers have introduced in their models.

Researchers in cognitive science and neuroscience have executed many studies to ex-
amine the cognitive mechanism behind MOT. According to their outcomes, MOT tasks
focus on visual attention in early cognitive processing, while in later cognitive processing,
visual short-term and working memory have been used [12]. Thus, we categorised the
computer vision algorithms that imitate brain functions in their designs into two cate-
gories: memory-based algorithms and attention-based algorithms. We will cite a few MOT
algorithms based on visual attention and short and long memory without being exhaustive.

Visual attention helps humans analyse complex scenes promptly and dedicate their
limited cognitive and perceptual resources to the most relevant subsets of sensory data.
Some human brain-inspired algorithms that achieved high accuracy predicted what part
humans will attend to in an unobserved image. One of the best models for predicting
fixation over images and videos is the decision theoretical model [13], which has shown
promising results on the PASCAL 2006 dataset using the discriminant saliency model for
visual recognition. This model has explained basic behavioural data that other models
have explored less. In computer vision, attention is a convenient method for recognising
targets by discriminating them from each other and the background. In [14], dual matching
attention networks (DMAN) with a temporal and spatial attention mechanism strategy is
proposed to allow the model to focus on matching similarity between each part of a pair
of images.

The temporal attention network aims to investigate different observations in the
trajectory by allocating different degrees of attention to them. The spatial attention module
allows the network to focus on the matching patterns. Unlike [14], in which their attention
model relies on only two aspects, [15] the temporal attention network focuses on four
attention aspects to track the target. Two of these attention aspects are common with [14],
which are temporal and spatial attention. The other two are layer-wise and channel-wise
attention. However, the limitation of [15] is that their algorithm needs offline training
to support feature selection in online tracking. Even though attention helps to tackle
challenges such as background variability and variable target appearance, it suffers from
occlusion due to its adaptability to variation. When a target is gradually occluded by an
occluder, the algorithm misses the target because it tends to acknowledge it as a change
in target appearance. Memory could be used to handle the occlusion by retaining the
appearance information from the targets. [16] implement their network with long short-
term memory (LSTM) units that improve their algorithm’s performance.

Visual memory is an essential cognitive mechanism that the human brain uses to deal
with partial and full occlusion and to overcome variable target appearances. Makovski
and Jiang [17] proved in their studies that the reason behind the observer’s recovery from
any errors during tracking was the storing of surface properties inside the visual working
memory. In [12], they propose a general theoretical framework for viewing human memory.
They divide the memory model into three stages: the sensory register, the short-term store,
and the long-term store. Many researchers in computer vision have used this theory to
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introduce brain-memory-inspired MOT [18,19]. In [18], they established a memory model
to handle the main challenges in MOT by using the human brain three-stage memory
theory [12]. Using this model, they proposed a template updating modelling algorithm
that can remember and forget the target’s appearance. Their experimental results are
promising for tackling sudden changes in appearance and occlusion. In [19], they are
inspired by the same three-stage memory model. However, the three-stage memory model
in this work aimed to find the right match between the appearance and the object by
integrating the model into a multiagent coevolutionary process. Each agent can forget and
remember the object’s appearance via its own experience through its memory system. Other
researchers have used different strategies employing long short-term memory (LSTM)
instead, such as [20–22]. Ref [20], introduced an algorithm based on deep reinforcement
learning followed by the LSTM unit. Their track-by-detection algorithm detects the object
and then applies an association model to solve the tracking problem. LSTM is used in the
data association stage to address changes in appearance and occlusion. The experimental
results of [20] show that their tracker is successful in handling scale changes, occlusion,
and appearance similarity most of the time. However, their tracker faced some failures in
some cases. For example, when the brightness of the environment changes, the detector
fails to detect the object, leading to the tracker’s failure.

All algorithms introduced in this section are based only on attention or memory
modules, added to their algorithm to imitate the human visual role. Although attention is
undoubtedly involved in feature extraction and memory is involved in retaining extracted
information, they are rarely used together in the same algorithm. In MSA-AF, we used not
only both modules, but also six other strategies inspired by the human brain. We introduced
the advantages and limitations of both models, memory and attention, in Table 1.

Table 1. Human brain-inspired algorithms.

Type of Brain Inspiration Contributions Advantages and Limitations

Visual attention
Gao et al. [13] Most attention-based algorithms can handle variability in

background and object appearance. However, this adaptation
makes these algorithms suffer from occlusion.

Zhu et al. [14]
Chen et al. [15]

Visual memory

Qi et al. [18]
Memory-based algorithms can successfully handle occlusion and
data association, but they need to formulate vital parameters to

decide what to remember and what to forget.

Wang et al. [19]
Jiang et al. [20]
Kim et al. [21]

Wang et al. [22]

3. Proposed Algorithm

In this section, our tracking algorithm has been presented, which uses the outcomes
from the neuroscience researchers’ community to imitate the human brain. What is critical
in our work is to translate these biological findings into a computer vision algorithm. Both
the neuroscience and computer vision communities share a general framework that focuses
on the importance of memory, attention, and motion prediction to handle the MOT problem.
To the best of our knowledge, no algorithms use all eight of the human brain strategies
introduced in Table 2 as their building blocks. In contrast, our work was inspired by eight
main findings from neuroscience research as building blocks to build MSA-AF. Table 2
shows these modules and how they inspired our algorithm. Integrating the eight modules
together is undoubtedly ambitious, leading to improvements in the state-of-the-art MOT
algorithms. However, strategies 4 and 8 from Table 2 played the most critical role in the
final association stage, as discussed in more detail later on in this section.
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Table 2. Eight human brain strategies behind our algorithm.

Eight Human Brain Strategies to Handle Object Tracking How MSA-AF Simulated These Strategies

1
Tracking in the human brain is a two-stage process; the first
stage is for location processing, while the second stage is for

identity processing [2].

MSA-AF is a tracking-by-detection algorithm. The
first stage is detection (location process), then

association (identifying process).

2 Experimental results by [23] suggest that the human brain
uses motion prediction to handle the tracking problem.

MSA-AF used Kalman to predict the next position
of the object.

3 Neural representation is needed to achieve particular goals in
scenes, e.g., recognition [1].

MSA-AF used pre-trained CNN to compute the
Bbox appearance descriptor in [24].

4
Neural representations reflect stimulus attributes in low-level

visual areas and perceptual outcomes in high-level visual
areas [4].

MSA-AF used semantic attributes (man, woman,
shirt, trouser).

5
Experimental results by [17] conclude that the observer’s
recovery from any errors during tracking was by storing

surface properties in the visual working memory.

MSA-AF used the long-memory theory to save all
information about each target and retrieve it when
it is more needed, usually when the object is in an

occlusion state.

6
The brain provides more attentional resources when objects
are in a crowded scene, with a higher chance of being lost

when target switching conditions happen [25].

Using (4), MSA-AF can decide if any object is in an
occlusion situation or not. If yes, MSA-AF gives
more attention to this object by using semantic

information.

7 The human brain uses optimised features to discriminate
targets better and retrieve them faster and more efficiently [2].

MSA-AF uses appearance information to
discriminate the object.

8

When the possibility of confusing targets increases, it is
suggested that human subjects benefit from rescue saccades

(saccades toward targets that are in a critical situation) to
avoid incorrect associations [26,27].

Final association decision at MSA-AF, Section 3
imitates this concept.

The basic flow chart of the tracking algorithm we implemented in this work is illus-
trated in Figure 1. Our focus was on handling the existing challenges facing state-of-the-art
algorithms, the most important of which was occlusion. The first building block in our
algorithm is detection, which takes a frame and gives us the bounding boxes (Bbox) of the
four classes (man, woman, shirt, trouser) inside the image. Then, the second block will take
the Bbox from the previous frame, apply the Kalman filter [26] to predict their new position
in the current frame, and then apply the cosine metric learning method for learning a
feature space to associate the detection with the objects. The last three building blocks
distinguish MSA-AF from any other MOT in the field of computer vision, which is similar
to how human logic works to solve a tracking problem. This occurred by transferring
the information in the image into semantic information that is saved in the memory for
retrieval when it is needed. This brings us to the last building block, which uses the saved
semantic information to decide whether occlusion is happening or not and how to deal
with it. The rest of this section will introduce the logic behind each building block and
how all are connected to imitate the human brain and improve the performance of recent
MOT algorithms.
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Figure 1. Overview of MSA-AF starting from the detection step, which feeds into the first association step. The final
association step will be used in cases of occlusion. Track 1 to Track n represents the model of the object that has been tracked
in the previous frames. A class could be 0, 1, 2, or 3, representing man, woman, shirt, and trousers. Bbox has x,y,h,w of
the object’s bounding box, in which (x,y) represents the centre point, h is the height, and w is the width. The occlusion
state is a binary number: ‘1’ if the object is in an occlusion state and ‘0’ if not. Occluded with has the ID of the object
that was occluded. Age is the number of frames in which the object is successfully tracked. Finally, Semantic information
includes much information that will be described in detail in Section 3. The original image is taken from the MOTChalleng
dataset [28].

3.1. Detection

Without exaggerating, we can say that the detection step is essential for any tracking-
by-detection algorithm such as ours. Missing, false, or non-accurate detection will lead
to poor MOT performance; consequently, more time is spent on this stage to secure a
good foundation for our algorithm. Some algorithms assume that they have the detections
needed to focus on the tracking step, such as in [24]. Three crucial questions need to be
answered to deal with the detection step successfully: What classes do we need to detect?
What is the detection model that will be used? Do we have a good dataset for the training?
All these questions will be answered in this section. Figure 2 depicts the different phases
used to ensure a reliable output from the detection stage.

 
Figure 2. Steps that have been used to assert a high-performance detection model. Each phase included all options that we
used for the comparison in order to get the best detection results.

452



Sensors 2021, 21, 7604

3.1.1. Classes

In any MOT algorithm that deals with people, the person is the class that needs to
be detected. In MSA-AF, as we imitate the human brain, we use a different approach.
Biological evidence shows that the human brain transforms the visual input into an initial
and then a specific semantic attribute [4]. We employ the person reidentification approach
used in multi-camera networks to find a semantic attribute representing a person. This
approach identifies the best attributes for recognising a person and helps an operator to
track, search, and locate the target object. For example, in the Van Koppen and Lochun [29]
survey, over 1313 human descriptions were collected from individuals who witnessed
a robbery incident. They found that of the 43 categories identified, only 30% of the
eyewitnesses accurately described all nine categories. The categories included skin colour,
hair type, height, gender, appearance (which includes race), accent, hair colour, build,
and age.

Similarly, Sporer [30] examined 139 descriptions provided by 100 witnesses. He
discovered that of all the descriptions, 31% mentioned clothing information, 29.6% detailed
facial features, 22% contained information on movement features and physical attributes
(height, race, and age), and 5% included personality information. After considering the
findings of these two studies, we selected clothes (trousers and shirt) and gender (man and
women) as our semantic attributes. We will reserve the term semantic information units to
refer to the trouser, shirt, man, woman semantic attributes.

3.1.2. Dataset

The training dataset can be defined as the initial data used to develop the machine
learning model. A high-quality training dataset, without a doubt, is the critical item for
any machine learning system. Most performance detection models can be rendered useless
without high-quality and quantity training datasets.

After deciding what classes we needed to detect, we searched for a dataset to train the
detection model with the same classes. However, we could not find any dataset with shirt,
trouser, man, and woman classes that could benefit our algorithm. Thus, we built the PGC
dataset not only to serve our algorithm, but also to benefit other researchers.

Uniqueness: We argue that there is no existing state of the art dataset like the PGC
dataset. Existing datasets either have the person as a single class, such as MSCOCO [31], or
recognise pedestrian attributes, such as PETA [32]. MSCOCO, like most detection datasets,
has many different classes (81)—one of them representing a person, without any classes
representing any details about the person. In contrast, like all pedestrian attribute datasets,
the PETA dataset works on a set of images that show only one person and annotate a set
of binary attributes to this person. Lable (upperBodyBlack, lowerBodyGrey, hairBlack,
footwearWhite, lowerBodyCasual, lowerBodyJeans, personalLess30, personalMale) is one
example of annotation in the PETA dataset. As we can see, this gives information about
the person rather than where these attributes are in the image. On the other hand, PGC has
four classes that represent attributes used by the human brain to identify a person, with
the location of each attribute inside the image. Add to that the uniqueness of the PGC in
the process of acquiring, annotating, and testing that will be discussed later in this section.

Usage: The PGC dataset can serve many fields in computer vision. For instance,
pedestrian reidentification, detection and tracking research. Moreover, PGC can be inte-
grated with different types of clothes instead of only shirts and trousers to serve fashion
research. High-quality training data is a daunting task, so the quality and quantity could
be compromised to speed up the procedure. In contrast, we prioritise quality over speed
throughout the collection the annotation stages of this study.

At the data collection level, diversity is the main factor that leads to high-quality data.
Representation bias is one of 23 types of bias introduced by [33] that could lead to unfairness
in machine learning. For instance, [34] remark that some datasets such as IJB-A [35], which
compiled 79.6% lighter-skinned faces with just 4.4% of images from dark-skinned female
faces, show bias. Algorithms that rely on these datasets suffer from bad performance, due
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to the representation bias in the training data. Therefore, we considered diversity and
quantity when collecting 30,000 images from the web and 10,000 from the PETA [32] dataset.
To ensure that the PGC dataset includes all scenarios in the real world, we searched for
specific events and a specific group of people; dark-skinned, light-skinned, man, woman,
Asian, man or woman with headcover, Arab, old, and young people are examples of a
diverse group of people we searched to include in our dataset. Another critical factor in our
search is the scene’s background, such as indoor, outdoor, night, or morning. The position
of the person is a consistently underestimated factor in any pedestrian dataset. Therefore,
it is essential for the training dataset to have all possible body positions such as standing,
sitting, walking, running, side-view, back-view, front-view, high camera angle, entire body,
and upper body part. Additionally, a wide range of image resolutions in any dataset makes
the model robust to any movement in the camera or even to poor resolution images. Finally,
we were eager to include images with occlusion as much as possible, which helped us
handle the occlusion in the tracking step. Although applying a diversity search in the PGC
dataset did slow the collection process, its outcome is outstanding, as shown in Section 4.
The image collection in Figure 3 has been taken from the output of the scaled YOLOv4
detection model on our dataset. It is a random selection taken by the detection model for
testing. As we can see, it shows the diversity of our dataset.

Figure 3. Images sample taken randomly from our dataset by Scaled Yolov4 to use in the training step; we did not choose
any of them. These images prove the diversity of the PGC dataset, and it contains women, men, Arab women, Asian women,
Black men, crowded scene, a single person scene, bluer scene, indoor scene, outdoor scene, back view, and front view.

Data annotation is the most critical and time-consuming step in the detection process.
Two main factors are needed to achieve high-quality annotations: annotation tools and
rules to guide the annotation procedure. We have used the Roboflow [16] tool to annotate
our dataset. Using Roboflow made the process of annotation easier and faster. While the an-
notation tools speed up the process, the annotation rules increases its quality. Appendix A
shows the annotation process and regulations that have been applied to our dataset. The
main rule that needs to be known is that shirt class does not mean only shirts, but any
clothes on the upper body such as a coat, jacket, sweater, or T-shirt. Same with the trousers,
which could be shorts, leggings, jeans. Although this could be a limitation to our dataset, it
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would be possible for any researcher to change the labels on the shirts annotation to any
other clothes they aim to investigate in their work. Including a wide range of clothes in
one class has benefited our tracking algorithm.

Regarding dataset size, the most common question for researchers is how many
images are needed to train the model? There is no magical equation regarding the dataset
size that could tell us how many images are needed to train a detection model. However, it
is a common understanding that having more training data leads to better performance.
We discovered how much training data we needed by building the detection model at first
with 10,000 images and checked how it performed. Then we increased it by another 10,000
until we reached our target performance. We stopped collecting data after 40,000 images,
as that is when the model performance reached our desired performance.

To sum up, in the field of computer vision, and especially object detection, a good
quality dataset is the core of any successful model, which make a good quality dataset
a contribution that aims to improve the model performance. However, the scope of the
time needed to organize, annotate, and clean the dataset still tends to be underestimated.
Five remarkable criteria that show how PGC dataset contributes to the state of the art
are introduced next: (1) the PGC dataset is unique—no other dataset in object detection
or object tracking works using pedestrian attributes such as man, woman (using all of
the body, not only faces), shirt and trouser. All known datasets, such as MSCOCO and
PASCAL, works on the whole person as a single entity. (2) Rich annotation: almost all
images have at least three classes out of four. (3) Large size: not only the number of images
matters but also the number of annotations per class; our dataset has 190,000 annotations
in 40,000 images for only four classes. Figure 4 shows the number of annotations for each
class. (4) High diversity: we spent a lot of time introducing deliberately selected images;
Figure 3 is proof of our dataset diversity. (5) Balance between classes: Figure 4 shows how
PGC dataset classes were balanced, in which men and women were represented equally,
with 34,163 women and 35,252 men.

Figure 4. PGC class annotation balance.

3.1.3. Detection Model

Recent advances in methods for object detection are one of the main factors responsible
for the success of MSA-AF. Tracking-by-detection algorithms such as ours rely on the
quality of the detection model. Therefore, we searched for a detection model that achieves
high performance at a reasonable speed. Deep neural network-based detection [36–39]
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showed a high performance compared to state-of-the-art detection algorithms. Region-
based convolutional neural network (R-CNN)-based detection algorithms use the region to
recognise the object inside the image. These algorithms do not look at all images, but only
at the parts with a higher chance of containing the object. Unlike R-CNN-based detection
algorithms, the YOLO family take the entire image in one run and predict the bounding
boxes, as well as the class probability for these boxes. The YOLO family is commonly used
for real-time detection, as it can process 45 frames per second.

This method was first described in 2015 [38], and many versions have been released
since then, up until the latest version, published in November 2020 [40]. Not all versions of
YOLO are published in a paper, such as YOLOv5; neither do they all have the same authors.
Figure 5 summarises the performance and the timeline of all these versions; to conclude,
we choose two of these versions for comparison, and finally choose just one of them. The
results of our experiment in Section 4 between YOLOv5 and scaled YOLOv4 [41] shows
that scaled YOLOv4 showed promising results for our dataset. Thus, scaled YOLOv4 was
used as the detection model in MSA-AF.

 

Figure 5. Timeline and performance comparison between members of the YOLO family.

3.2. First Association Stage

The main target of this stage is to decide whether the detection, which is the output
from the scaled Yolov4, is associated with an existing track from previous frames or not. If
the tracks did not associate with any detections, they would be added to the unassociated
tracks list—the same with detections that did not associate with any existing tracks, which
would be added to the unassociated detections list. While the first association stage deals
with associated tracks and detection, both unassociated tracks and detections will be solved
during the next stage—the final association stage.

Firstly, we need to predict the new position of the tracks in the current frame using
the Kalman filter, and then build association cost metrics that will be used to solve the first
stage of association between the detections and the predicted tracks. The output of this
stage will guide the next step, where the final association decision will be made.

Prediction is an essential step that the human brain uses to track an object [25]. The
Kalman filter has been used to predict the new position in many MOT algorithms due to
its simplicity, versatility, and effectiveness. The complete mathematical derivations and
formulation of the Kalman filter are beyond the scope of our paper. What we need to
acknowledge is the dynamic model of target motion that the Kalman filter will use. The
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constant velocity model is suited for use in our framework as people hardly ever leave a
constant velocity. In this model, we assume that the velocity is constant during the tracking
so that we can predict the new position of the target easily using the Bbox location and the
velocity information.

In the first association stage, the association cost metric has been used to decide
which list from the three lists mentioned earlier the tracks and detections belong to. We
know from cognitive study findings that the human brain uses all available information,
such as appearance information, to discriminate an object [2]. Consequently, we decided
to use appearance information to discriminate targets from each other rather than to
discriminate them from backgrounds. CDA-DDAL [42] and DeepSort [24] learned the
appearance features from the PETA reidentification task; we used the association metric
from Deep sort [24]. Wojke et al. [24] used the person reidentification task to increase
discrimination by applying the deep feature extractor from a wide residual network (WRN).
The primary motive behind using the deep appearance description from Wojk et al. is
that their network obtained a competitive performance for online tracks in real-time
speed. Although appearance information can represent and discriminate the objects
effectively, alone it is not enough. Adding spatial information is essential for forming a
robust association cost metric. The Mahalanobis distance (1) between the predicted Kalman
state of the tracks and the detection measure KD(i,j) will represent the spatial information,
while the cosine distance (2) between the appearance information of the tracks and the
detections AD(i,j) will represent the appearance information. Equation (3) shows this
combination, which we believe would be representative enough at this stage.

KD(i, j) =

(
dj − μi

)T

Si
(
dj − μi

) (1)

where KD(i, j) represent the Mahalanobis distance of detections Bbox dj from ith tracks
with mean μi. The covariance matrix is S.

AD(i, j) = min
{

1 − rT
j r(i)k

∣∣∣r(i)k ∈ Ri

}
(2)

where AD(i, j) is the smallest cosine distance between the jth detections and ith tracks,
and rT

j represents the appearance distributor of detections dj, while r(i)k is the appearance
descriptor of the last k associations, which is sets at 100 [24].

Ai,j = λKD(i, j) + (1 − λ)AD(i, j) (3)

Ai,j represents the association cost metric which combines the appearance and spatial
representation of the object, while λ allows us to control the impact of each metric on the
overall cost metrics.

Solving the association problem by using the Hungarian algorithm on the association
cost metrics is the last step in this stage, generating three lists—the first list includes all
detections and tracks associated with each other. The second list will consist of the tracks
that did not associate with any detections in the current frame. The third list includes the
detections that did not match with any tracks. In [24], they deleted the tracks in the second
list if they exceeded a certain age and created a new track for all detections in the third list.
However, not all unassociated tracks exiting from the scene are deleted; they could be in a
long-occlusion. Moreover, not all unassociated detections are new tracks; they could be
long-term occluded tracks reappearing in the scene. This was the reason for introducing
the last decision stage, which solved all these questions using the attributes.

3.3. Final Association Stage

Semantic attributes have been used in many detection algorithms [43]. However, they
have never been used to solve occlusion in MOT algorithms, to the best of our knowledge.
Additionally, semantic attributes play a significant role in the human brain by discrimi-
nating targets during tracking [3]. We used these semantic attributes in MSA-AF during
the final association decision for those two reasons: not only to detect the presence of
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occlusion but also to solve the occlusion problem. E. Jefferies [44] raised an essential ques-
tion regarding the organisation of semantic attributes: how is semantic information linked
together in our brain to generate a unitary experience of a person? In neuropsychology,
there are two principles regarding the organisation of semantic information: semantic hub
and distributed only. In the semantic hub model, the access to knowledge occurs through
a semantic hub, which causes an inability to link any semantic information if damage
occurs to the central hub [45]. On the other hand, the distributed-only model suggests
that different types of semantic information interact directly without central hub [46]. We
combined both models to benefit our algorithm as follows: The central hub will be the
person track, which will contain all semantic, appearance, and spatial information, with
direct access to all other semantic attributes (man, woman, shirt, trouser). At the same time,
direct interactions between semantic attributes are necessary in case of any disappearance
of these attributes. Figure 6 shows the relationship between these attributes and the central
hub. The direct interactions between the four semantic attributes are the key step in this
stage. In other words, how can we decide which shirt belongs to which person? In a normal
situation where no occlusion occurs, bounding box overlap could be enough to make that
decision. However, in the occlusion situation, more than one shirt could overlap with the
same person. For this reason, we introduced a metric called intersection over attribute
(IOA); this attribute here could be a shirt or trouser. Most MOT algorithm use intersection
over union (IOU), which only indicates the overlap between Bboxes but does not give any
information about occlusion.

IOA =
Area of Overlap
Area of Attribute

(4)

 
Figure 6. A combination of distributed-only and semantic hub for controlling the relationship
between attributes.

IOA not only tells us which attributes belong to which person but can also be used
to identify if the person is in an occlusion state or not. The ratio of the overlap between
a person and an attribute (shirt or trouser), and the attribute area IOA, would be close to
one if all of the attribute’s bounding box is inside the person’s bounding box. In this case,
the shirt will be linked to that person as their shirt (see Figure 7a). In the occlusion state,
the IOA will be less than 0.9 and more than 0.4, meaning that the person overlapped with
parts of these attributes. An example of the three stages of occlusion that define the final
decision is shown in Figure 7.
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Figure 7. Four images taken from our detection outputs to demonstrate the occlusion phases. The original image is taken
from the MOTChalleng dataset [28]. Before occlusion state (a), in occlusion state (b,c), and after occlusion state (d).

The skeleton outline for using IOA in the final association decision is detailed in
Algorithms 1–3. In the three algorithms, Tr refers to track IDs from the Associated_Man_list
and the Associated_Woman_list, and Sh refers to the shirt IDs from the associated_shirt_list.
At the same time, Sh.Track_bbox refers to the Bbox of the person that a shirt belongs to and
the Tr.Shirt_bbox refers to the Bbox of the shirt belong to the person. Tr.Shirt_age counts
how many frames the shirt of this person has been tracked in, Sh.Tracks_age counts how
many frames the person linked to this shirt has been tracked in, and Sh.Occlusion_age
counts how many frames the shirt was occluded in. Tr.Occlusion_status indicates if the
person is in an occlusion situation or not, while Sh.Occlusion_status shows if the shirt is
in an occlusion situation or not, and Sh.Occluded_with gives the ID of the person that
occluded with that shirt. Finally, time_since_update gives the number of frames in which
the person did not update.

Algorithm 1 Associated tracks and detection list

Input: List of associated tracks and detections
Output: Detecting occlusion state and save semantic attribute
1 For Tr in Associated_Man _Woman_list
2 For Sh in Associated_Shirt_list
3 IOA = Intersection_over_ShirtArea(Tr,Sh)
4 If IOA > 0.9
5 If Tr.Shirt_id = Shirt_id and Sh.Track_id = Track_id
6 update Sh.Track_bbox & Tr.Shirt_bbox
7 Tr.Shirt_age = + 1
8 Sh.Track_age = + 1
9 Else
10 Tr.Occlusion_status = true
11 Sh.Occlusion_status = true
12 Sh.Occluded_with = Tr.id
13 else
14 If IOA > 0.4
15 Tr.Occlusion_status = true
16 Sh.Occlusion_status = true
17 Sh.Occluded_with = Tr.id
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Algorithm 2 Unassociated tracks list

Input: List of unassociated tracks
Output: Updated model
1 For Tr in unmatched_Person
2 If Tr.Occlusion_status == true
3 Tr.Occlusion_age = + 1
4 time_since_update = + 1
5 If Tr.Shirt_id in matches_Shirt
6 update Tr.Shirt_bbox
7 Sh.Track_age = 0
8 Sh.Track_Occlusion_age = + 1
9 Shirt_age = + 1
10 Else
11 Tr.Occlusion_age = + 1
12 time_since_update = + 1
13 Else
14 time_since_update = + 1

Algorithm 3 Unassociated detections list

Input: List of unassociated detections
Output: Retrieve the obj ID after appearing from occlusion
1 For Det in unmatched_detection_person
2 For Sh in matches_Shirt
3 IOS = Intersection_over_ShirtArea (Det,Sh)
4 If IOS > 0.9
5 If Tr.Occlusion_age (Sh.Track_id) > 1
6 Tr.Occlusion_age (Sh.Track_id) = 0
7 Tr.age = 1
8 Track.update (Sh.Track_id.kf, Det)
9 Sh.Track.bbox = Det.bbox
10 Assosiated = True
11 If Tr.time_since_updated > 0
12 Tr.time_since_updated = 0
13 Tr.age = 1
14 Track.update (Sh.Track_id.kf, Det)
15 Sh.Track.bbox = Det.bbox
16 Assosiated = True
17 If Assosiated = False
18 initiate_track (Det (Det_idx],classes (Det_idx].item())

Each algorithm from the three has a different input list: associated tracks and detec-
tions list, unassociated tracks list, and unassociated detections list. We will work on each
list separately to collect as much information as possible to feed to the main hub, which is
the person, then take a suitable final decision depending on this information. The algorithm
for each list will be repeated for the trousers too. As we can see from Algorithm 1, IOA
has been calculated in line 3 to define whether a shirt belongs to that track or not, then
this information was added to the person track. Moreover, the occlusion state will also be
detected in line 9.

Algorithm 2 deals with tracks that disappeared in the current frame; this could be
occlusion or a detection step problem. In Section 3, we introduced our scheme to ensure a
high-quality output from the detection stage. However, what if the detection model fails to
detect an object for a few frames or detects the object inaccurately? How will our algorithm
solve such a problem? In this case, we need to know the reason for the disappearance to
make the right decision. To that end, the information that we collected in Algorithm 1 was
used, plus the age of the track, to decide whether we needed to forget this track, delete it,
or keep it until it appears again. This step is what distinguishes MSA-AF. The knowledge
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of the occlusion state of the track will make us not rush to delete these tracks, even if the
age exceeds the threshold age, as in line 3.

Even if the tracks are not in an occlusion state, they could disappear because of the
detection problem. Therefore, we keep updating the tracks state for several frames to keep
identifying the tracks when the detector model detects them again. We will keep track of
the shirt and the trousers that belong to this person (line 6) if they are still detected, which
is the case in Figure 7c.

Algorithm 3 includes the final decision concerning whether any unassociated detection
is a new person, to create a new track; a person coming out of full or partial occlusion; or if
that detection was a track missed due to a detection problem. Line 4 in Algorithm 3 finds
the IOA between the unassociated person and the shirts in the associated detection, to see
if they belong to that person or not.

4. Experiment Results

In this section, the results of our tracking algorithm and dataset will be introduced.
Moreover, the comparison between the detection model we used and the nearest compet-
itive model was presented, to prove that the model we used gives the best MT (mostly
tracker metric).

4.1. Performance Metrics

Detection models are usually tested using precision, recall, and mAP at 0.5 or 0.5–0.95.
Precision is the positive prediction value (of all the positive predictions, how many are true
positive predictions). The recall metric is the true positive rate (of all the actual positives,
how many are true positive predictions). These are then plotted to get a PR (precision-recall)
curve; the area under the PR curve is called average precision (AP). Now we have AP per
class; mAP is the averaged AP over all the object categories. Therefore, all detection models
seek a high mAP value.

Regarding tracking performance metrics, defining the metrics that can say if MSA-AF
solved the tracking problem in videos better than state-of-the-art algorithms is a challenge
by itself. MOTChallenege [28] uses many metrics to evaluate the benchmark performance
of MOT algorithms. We have used eight of these metrics to evaluate our algorithm. Multiple
objects tracking accuracies (MOTA) [47] measure three errors: identity switches, missed
targets, and false positives. In contrast, multiple objects tracking precision (MOTP) [47]
measures the misalignment between the predicted Bbox and the annotated Bboxes. ID
F1 [48] combines ID precision and ID recall by measuring the correctly identified and
computed detection ratio and the ground truth average number. Ground truth trajectories
covered by track trajectory for more than 80% of their life span were measured as the most
tracked target (MT). In contrast, mostly lost (ML) measures the ground truth trajectory,
covered for less than 20% of its life span by the track trajectory. Rcll is the ratio of correctly
identified detections to the total number of ground truth boxes, and Prcn is the ratio of true
positive TPs to the addition of true positives and false negatives. Finally, the FAF is the
average number of false alarms per frame.

4.2. Detection Performance

Any detection algorithm’s output depends on two main factors: the dataset and the
detection model. Here, we will take each factor and show how it affected the overall
performance of our MOT algorithm.

4.2.1. Dataset

The PGC dataset can be used in visual surveillance research on pedestrian detection,
tracking, fashion projects, and reidentification. The key challenge of evaluating our dataset
on the detection model is that we cannot know how it will perform until we test the model
on new data that the model was not trained on. Therefore, we divided our dataset into a
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training set and a validation set. Then, the loss function for the two sets was evaluated, as
shown in Figure 8; the smaller the loss, the better the classification performance.

 
Figure 8. Our dataset loss plots for the training and validation sets.

Based on this diagram, it is clear that our model does not show any signs of overfitting.
First, as the validation loss plot decreases, so does the training loss plot, while there is a
small gap between the two. Second, there is no infliction point on the validation loss plot,
which indicates that the training process did not receive sufficient experience with the data.
Thus, the model still fits well.

In order to avoid overfitting, which resulted from the search for the perfect fit, the
training ended at 300 epochs, based on early stopping.

Compared with the training set, the validation set had a smaller loss. Along with the
early stopping criteria, YOLO uses a regularization approach to help regularize the model.

It could be a surprise that the loss of the validation set is less than that of the training
set. The reason behind this is that the regularization loss did not add to the validation loss,
but only to the training loss. YOLO uses a regularization method—batch normalization—
after its convolutional layers to help regularize the model, which improves the mAP
by 2%.

After proving that our dataset was not biased and did not overfit the model, we started
to search how can we compare the PGC dataset to another dataset. Looking for how the
most famous dataset in the field of object detection compared their datasets with others
and imitating that was the best fit for our work. The extensive dataset, MSCOCO [31],
has played an essential role in boosting object detection and tracking research—especially
in person detection—by including more than 700,000 instances of the person category.
Another dataset widely used in detection models is the Pascal VOC 2012 dataset, which
has 17,118 images across 20 object classes with 13,168 person annotations [49]. Although
MSCOCO has way more person instances in their dataset than PASCAL, PASCAL outper-
forms MSCOCO in 6 categories out of 20, including the person category. MSCOCO’s results
confirm that the annotation number could not be the main or the only factor differentiating
the dataset. MSCOCO compared their dataset performance to the PASCAL VOC 12 dataset
performance by using both datasets to train the same detection model; then, they used the
performance differences of the model across the two datasets for comparison. The way
MSCOCO compares their dataset has been used to examine our dataset and demonstrate
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its high quality. We have used scaled YOLOv4 as the detection model for measuring PGC
dataset performance, for reasons given in Section 3.

The challenge in this evaluation was finding a dataset with the same classes we used
(man, woman, shirt, trouser). As we mentioned previously, all known datasets have worked
on persons as single entities, without any semantic attributes. The only option we had for
evaluating our dataset was to collect the same amount of images, 40,000, with the same
classes from the Open Images DatasetV6 [50]. Then, we trained scaled YOLOv4 using both
datasets and compared their performance. However, Images DatasetV6 had only 23,000
images with our four classes. Therefore, we compared 23,000 images from our dataset
with 23,000 from Image DatasetV6 to have a fair comparison. Figure 9 shows how PGC
dataset classes are more balanced than Open Images Dataset V6 classes. Figure 10 shows
the success of our dataset in outperforming every single metric—even the training time, as
discussed next. Using the clarification at the performance metrics subsection, the higher
the precision, recall, and mAP, the higher the model’s performance. Our dataset gains
higher precision, recall, and mAP. The mAP value of our dataset at 0.5 and 0.5–0.95 proves
how rich, reliable, and robust our dataset is. The PGC dataset performs equally well in the
four classes, unlike most big datasets that outperform in one class more than others; this
is due to the balance. Figure 11 demonstrates the performance of the four classes in the
YOLOv5 model.

Figure 9. Comparison of class representation between the PGC dataset and open v6.
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Figure 10. Four evaluation metrics, mAP 0.5–0.95 (a), mAP 0.5 (b), Recall (c), and Precision (d), that have been used to
measure the performance of the PGC dataset and open dataset v6, after being used to train scaled YOLOv4. TensorBoard
was used to create these graphics.
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Figure 11. The performance metrics Precision, Recall, f1, and Precision-Recall of the four classes when the PGC dataset had
been used to train YOLOv5. The YOLOv5 model was used to create these graphics.

Table 3 shows a comparison between the PGC dataset and the Open Images Dataset
V6 across performance metrics, plus the training time. We used an intel core i7 computer
with 64GB Ram and NIVIDA GeForce RTX2070 to train the detection models.

Table 3. Dataset Performance comparison with open image datasetv6 on scaled yolov4.

Training Time mAP 0.5 mAP 0.5–0.95 Precision Recall

Open Images Dataset V6 3 d 5 h 11 min 0.4999 0.3983 0.2079 0.7867

PGC Dataset (ours) 3 d 1 h 27 min 0.8924 0.6862 0.5487 0.9321

4.2.2. Detection Model

Scaled YOLOv4, YOLOv5l, YOLOv5m, and YOLOv5s have been tested using the
PGC dataset, in order to choose one of them for use in our MOT Algorithm. The reason
behind using these four models is introduced in detail in Section 3. Although the training
time of scaled YOLOv4 is much longer than the training time of the YOLOv5 family, the
outstanding performance of scaled YOLOv4 on the PGC dataset is worth the long training
time. While scaled YOLOv4 took 3 d 1 h 27 min 6 s to train 300 epochs, YLOLv5l took 1 h
23 min 12 s, YOLOv5m took 55 min 24 s, and YOLOv5s took 34 min 19 s. Figure 12 shows
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the performance of the four models using two metrics: mAP 0.5 and mAP 0.5–0.95. As a
result of this comparison, scaled YOLOv4 with 0.8924 mAP was chosen as the detection
model for MSA-AF.

Figure 12. Performance of the four models, Scaled YOLOv4, YOLOv5l, YOLOv5s, and YOLOv5m using two metrics, mAP
0.5 (a) and mAP 0.5–0.95 (b). TensorBoard was used to create these graphics.

4.3. Tracking Performance

We tested MSA-AF on MOT17 and MOT20 challenges. Each challenge had several
videos with zoomed-in and zoomed-out scenes. However, all videos in the MOT20 dataset
had a crowded scene, unlike MOT17.

To evaluate the performance of our algorithm, we compared our results with five other
MOT algorithms. LPC_MOT [51] introduced a proposal-based MOT learnable framework,
while MPNTrack [52] used deep learning for feature extraction and association. GNN-
Match [53] used graph convolutional neural networks (GCNN) on top of convolutional-
based features for object association. At the same time, Tracktor++v2 [54] takes advantage
of a detector’s regression head to perform temporal realignment of the object’s Bbox. The
concepts of SORT17 [55] have been used in MSA-AF, which use Kalman filtering in the
image space and the Hungarian method on the association metric to solve the associa-
tion problem. Table 4 illustrates the comparison between the performance of these five
algorithms and ours on the MOT17 dataset. As shown in Table 4, our algorithm achieved
state-of-the-art results, especially in MOTP, ML, and FAF. We attribute this performance
to our dataset, which provides high-quality detections to the first and final association
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decision. Moreover, our final association decision model decreased the number of lost
tracks, leading our algorithm to have the lowest ML.

Table 4. Performance comparison with five state-of-the-art algorithms on MOT17.

MOT17 ↑MOTA ↑IDF1 ↑MOTP ↑MT ↓ML ↑Rcll ↑Prcn ↓FAF

LPC_MOT [51] 59 66.8 78 29.9 33.9 63.3 93.9 1.3

MPNTrack [52] 58.8 61.7 78.6 28.8 33.5 62.1 95.3 1

GNNMatch [53] 57.3 56.3 78.6 24.4 33.4 60.1 96 0.8

Tracktor++v2 [54] 53.5 52.3 78 19.5 36.6 56 96.3 0.7

SORT17 [55] 43.1 39.8 77.8 12.5 42.3 49.0 90.7 1.6

MSA-AF (Ours) 44.4 37.1 80.1 13 30.25 50.6 89.55 0.7

On the other hand, Table 5 compares the same algorithms, using the same evaluation
metrics but on a more challenging dataset, to MOT20. All MOT20 videos have a crowded
scene, and the pedestrians are too far from the camera, as shown in Figure 13. Using the
MOT20 dataset makes the job of our algorithm much harder, because it relies on detecting
semantic attributes, which could be a challenge in most MOT20 videos. However, MSA-AF
did surprisingly well in the MOT20 dataset. Although the performance of MSA-AF on the
MOT20 dataset is not as good as on MOT17, it still has the best MT and ML. These results
prove that the robustness of our final association stage is high.

Table 5. Performance comparison with five state-of-the-art algorithms on MOT20.

MOT20 ↑MOTA ↑IDF1 ↑MOTP ↑MT ↓ML ↑Rcll ↑Prcn ↓FAF

LPC_MOT [51] 56.3 62.5 79.7 34.1 25.2 58.8 96.3 2.6

MPNTrack [52] 57.6 59.1 79 38.2 22.5 61.1 94.9 3.8

GNNMatch [53] 54.5 49 79.4 32.8 25.5 56.8 96.9 2.1

Tracktor++v2 [54] 52.6 52.7 79.9 29.4 26.7 54.3 97.6 1.5

SORT17 [55] 42.7 45.1 78.5 16.7 26.2 48.8 90.2 6.1

MSA-AF (Ours) 45.3 36.4 77.6 40 19 54.8 86.8 4.36

 
Figure 13. A sample from the MOT20-04 video [28].
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It is worth mentioning here why we believe that MSA-AF is competitive with the
results of the other algorithm. First, as shown in Table 4, MSA-AF dominated at MOTP, ML,
and FAF metrics. Second, although the other five algorithms that we compared MSA-AF
with from MOTChallenge use given detection as an input instead of detecting the object,
it exceeds SORT17 [55] MOTA result. Furthermore, the proposed algorithm is capable of
yielding solutions, which could be the start to a new pathway in the field of object tracking.

5. Limitations of the Study

This paper addressed only four semantic attributes, which could increase in future
work by relabeling the shirts and trousers to include more clothes types. For instance,
trousers can be relabelled to ‘jeans, shorts, leggings, or sweatpants’, and shirts can be
relabelled to ‘blouse, T-shirt, crop top, blazer, jacket, or hoodie’. Thus, pedestrian attribute
detection algorithms would benefit from our dataset as much as object detection algorithms.
Moreover, it could be a start to fashion-based detection. Additionally, MSA-AF did not
give the same performance in videos with zoomed-out scenes, where people’s appearance
is rarely informative. This could be handled by adding more images to our dataset with a
zoomed-out scene. Finally, as our algorithm is a tracking-by-detection algorithm, tracking
performance relies on the detector’s output. Although our dataset increased the overall
detector performance, failing to detect an object is still an issue. When the detector fails to
detect an object, the tracker fails to track it, which increases false negatives. On the other
hand, the five algorithms we compared our results with use a publicly provided detection
set from MotChallenge as their input. This caused low MOTA and IDF1 in our algorithm
compared to their algorithms.

6. What Went Wrong

After training scaled YOLOv4 on our dataset, we found some confusion between the
shirts and the man and woman class. In other words, many man-classed objects were
detected as man and shirt simultaneously, which confused our algorithm. When we looked
back to the PGC dataset annotation, in some cases such as occlusion or a person raising their
hand, the shirt Bbox included faces, confusing the detection model and making it think that
any person could be shirt too (see Appendix A). We went back to the 40,000 images in our
dataset to handle this problem and resized the shirt Bbox, so that no faces were included
inside it. After that, we retrained scaled YOLOv4, which solved the problem.

7. Conclusions

This paper has presented a novel MOT algorithm that imitates the human brain in
eight different areas, and a new dataset of 40,000 images and more than 190,000 annotations
to serve the computer vision community. Opening the doors to more human brain-inspired
algorithms that would change the way in which the tracking problem has previously been
solved is one of the goals of this paper. In addition, there are encouraging directions for
future annotations on the PGC dataset that would benefit a wide range of researchers.
Finally, we presented our results on challenging videos from the MOTChallenge benchmark,
where we measured the quantitative performance of MSA-AF compared to five of the most
recent state-of-the-art trackers. These results show our algorithm’s impact on creating a
stable tracker by decreasing the ML metric and increasing the MOTP at the same time.
Moreover, our dataset gained 0.89 mAP compared to the 0.49 mAP from open image
dataset v6.
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Appendix A

Using the Roboflow annotation tool, we have drawn a rectangle (Bbox) around all
shirts, trousers, men and women at each image in our dataset and labelled them (shirt,
trouser, man, woman). While annotating our dataset, we needed to implement some rules
onto all the images. These rules helped us to recognise a problem with our MOT algorithm,
when we found that the detection model detects some man and woman-classed objects as
shirts. We added rule 6 to solve this problem.

1. Creating tight bounding boxes without taking any parts from the object.

  
(a) (b) 

Figure A1. (a) how to annotate a trouser without including part of the background, (b) the all shirt
should be included inside the Bbox.

2. Labelling all objects we could see in the image unless the appeared part was too small.

  
(a) (b) 

Figure A2. (a) don’t annotate the trouser if only a small part is shown, (b) Annotate the shirt and
trouser, even if they appeared in the background.

3. Label occluded (hidden partially behind another object), annotating the visible part only.

  
(a) (b) 

Figure A3. (a) shows how to annotate a shirt if part of it was occluded behind another person,
(b) shows more crowded scene and how to annotate occluded objects.
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4. Be careful with the empty Bounding boxes that you may draw by mistake. Always
count the annotated bounding boxes and make sure that there are no extra free boxes.

  
(a) (b) 

Figure A4. In (a) and (b), there is a false positive Bbox in the right corner of the shirt.

5. Shirt class includes any clothes on the upper body (blazer, short dress, T-shirt, blouse);
trouser includes shorts too.

  
(a) (b) 

Figure A5. (a) shorts should be annotated as trouser, (b) class shirt means any clothes in the upper
body part.

6. We added this rule later in the work: Make sure that no shirt or trouser includes any
part from the person’s face as this will cause confusion to the model, and it will label
any Bbox with a face as a shirt.

  
(a) (b) 

Figure A6. In (a) and (b), You can cut part of the shirt if it includes another person’s face.
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Abstract: Autism spectrum disorder (ASD) is a combination of developmental anomalies that causes
social and behavioral impairments, affecting around 2% of US children. Common symptoms include
difficulties in communications, interactions, and behavioral disabilities. The onset of symptoms can
start in early childhood, yet repeated visits to a pediatric specialist are needed before reaching a
diagnosis. Still, this diagnosis is usually subjective, and scores can vary from one specialist to another.
Previous literature suggests differences in brain development, environmental, and/or genetic factors
play a role in developing autism, yet scientists still do not know exactly the pathology of this disorder.
Currently, the gold standard diagnosis of ASD is a set of diagnostic evaluations, such as the Autism
Diagnostic Observation Schedule (ADOS) or Autism Diagnostic Interview–Revised (ADI-R) report.
These gold standard diagnostic instruments are an intensive, lengthy, and subjective process that
involves a set of behavioral and communications tests and clinical history information conducted
by a team of qualified clinicians. Emerging advancements in neuroimaging and machine learning
techniques can provide a fast and objective alternative to conventional repetitive observational
assessments. This paper provides a thorough study of implementing feature engineering tools to find
discriminant insights from brain imaging of white matter connectivity and using a machine learning
framework for an accurate classification of autistic individuals. This work highlights important
findings of impacted brain areas that contribute to an autism diagnosis and presents promising
accuracy results. We verified our proposed framework on a large publicly available DTI dataset
of 225 subjects from the Autism Brain Imaging Data Exchange-II (ABIDE-II) initiative, achieving a
high global balanced accuracy over the 5 sites of up to 99% with 5-fold cross validation. The data
used was slightly unbalanced, including 125 autistic subjects and 100 typically developed (TD) ones.
The achieved balanced accuracy of the proposed technique is the highest in the literature, which
elucidates the importance of feature engineering steps involved in extracting useful knowledge and
the promising potentials of adopting neuroimaging for the diagnosis of autism.

Keywords: autism spectrum disorder (ASD); DTI; neuroimaging; ABIDE-II; diagnosis

1. Introduction

Autism spectrum disorder (ASD), famously known as just autism, is a pervasive
developmental disorder manifested as problems in social interactions and communications,
both verbal and non-verbal [1–3]. While there are no fully known causes of autism etiology,
many hypotheses and theories exist. Regardless of the minutiae, it is believed that autism
is a complex interaction between different genetic and environmental factors [4]. Current
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approved diagnosis techniques require significant clinical experience, assessing different
aspects via a standard testing/scoring system, such as the ADOS [5] or ADI-R [6]. Those
tests are subjective and can be time consuming and challenging, with limited accuracy of
around 80–85% [7]. Furthermore, clinicians may not always agree with the results of those
tests [8]. This is our main motivation for developing a neuroimaging-based alternative
that can provide a non-subjective evaluation that may help clinicians reach a faster, more
reliable diagnosis. Previous neurobiological studies investigated connections between ASD
and underlying structure, trying to describe brain abnormalities associated with autism
traits. Since the emergence of MRI, plenty of studies appeared to investigate connections
between ASD and underlying brain features, either shape and volume features using
structural MRI [9], or white matter (WM) diffusivity [10] anomalies using DTI, while others
performed correlations of ASD with either task-based or resting-state functionality [11]
using functional MRI (fMRI). In this paper, we will introduce our DTI-based algorithm for
assessing ASD with the help of the ABIDE-II dataset.

DTI has been gaining rising popularity through the past couple of decades, especially
for brain related disorders, as it provides a non-invasive way of characterizing the con-
nective tracts inside the brain between different areas. It quantifies the diffusion patterns
inside the white matter (WM). White matter mainly consists of axons of neurons (nerve
fibers), and with the human brain containing hundreds of billions of neurons, the structure
of WM is truly complex. The WM represents the axonal fibers carrying neural signals
between various brain regions and between the brain and spinal cord through the brain-
stem. The organization of such a complex network contains a wealth of information; still,
the current resolution for conventional MRI technologies cannot capture such small details,
which are typically less than a micrometer to only few micrometers. Nevertheless, DTI
provides diffusion measures that gives information about the tractography of the brain.

DTI’s most used parameters [12] include fractional anisotropy (FA), mean diffusivity
(MD), and sometimes also “radial” and “axial” diffusivities. These parameters actually de-
scribe the diffusion of water inside the brain, and since water diffusion is restricted outside
of fiber tracts, this translates into indirect information regarding the micro-structure and
connectivity of WM [13]. Additionally, some derived features are also used to characterize
other diffusion measures in WM tracts, such as tensor trace, skewness, rotational invari-
ance, and many others [14]. Abounding previous literature has noted WM abnormalities
associated with autism, often as differences in WM micro-architecture across some local
brain areas. For instance, differences in FA values were reported by Wolff et al. [15] between
ASD and typically developed (TD) infants. Using DTI, Barnea et al. [11] compared WM
structure of ASD to normal TD, accounting for IQ, age and gender. They reported reduced
FA in areas affiliated with social cognition in ASD, but found no difference for MD values.
The role of MD values was identified by Alexander et al. [10], as they reported reduced
FA values backed by an overall increase in MD across the corpus callosum for ASD vs.
non-ASD individuals. Lee et al. [16] also reported higher MD values accompanied with
reduced FA in autistic subjects, as well as higher radial diffusivity. In [17], a sample of
38 infants from the Infant Brain Imaging Study (IBIS) were used for the diagnosis of autism
using spherical harmonics. Another study of ASD children [18] found, again, significantly
lower FA in ASD subjects and correspondingly greater MD in frontal lobe WM. A separate
study of 45 autistic subjects and 30 TDs manifested diagnostic potential when the authors
split ASD to language impaired and non-language impaired groups based on FA and MD,
achieving an accuracy of up to 80% [19].

Aside from classical analysis studies, plenty of studies have employed ML techniques
for ASD classification. The whole ABIDE-I f-MRI dataset was tested with a refined deep
learning model that was introduced by Heinsfeld et al. [20] that exceeded the previous
state-of-the-art performance, achieving 70% accuracy. Khosla [21] presented another deep
learning algorithm using a volumetric convolutional neural network that fits non-linear
predictive models on 3D resting state fMRI (rs-fMRI) input and recorded a classification
accuracy of up to 73% on ABIDE-I rs-fMRI data. In [22], the authors proposed framework
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exploiting features from both structural MRI (sMRI) and fMRI applied on 185 subjects from
the National Database for Autism Research (NDAR), achieving 81% accuracy fusing both
modalities. While most of those works relied on sMRI and/or fMRI, the focus of our paper is
using DTI. DTI micro-architectural features were incorporated in another large recent study
on 263 NDAR subjects for the diagnosis of autism, achieving accuracy of up to 73% [23]. Up
to now, most of the published work regarding autism classification used ABIDE-I, and very
few studies used newer ABIDE-II data [21,24–26]. One study used one site of ABIDE-II only
(San Diego State University cohort), and employed both fMRI and DTI imaging modalities
using connectome features, accomplishing an accuracy of 72% [27]. We emphasize that the
need to use more than one modality implicates added cost and scanning time. Another key
contribution of this work is finding a best-fit dimensionality reduction technique. Having
a very large feature space (p) with limited sample space, or subjects, in our case (n), is
commonly known as the curse of dimensionality [28], which causes increased complexity
of the models that easily results in overfitting, with less learning captured by the model.
This phenomenon is very common with MRI imaging and medical data, where we have
piles of data fields for a few number of patients, and sometimes is not handled correctly.
The standard way to handle those data is by exploiting some sort of feature reduction
algorithms such as linear discriminant analysis (LDA) [29], principal component analysis
(PCA) [30], or auto-encoders [20]. The common shortcoming is that they usually do not
keep the interpretation of the original feature in the new feature space, making it hard to
explain clinical connections for any classification decision, and thus, making it less attractive
for a practical medical use. The feature reduction method needs to help clinicians make an
informative decision and aid in understanding the pathological abnormalities of the brain
of autistic subjects. Our work investigates the recursive feature elimination (RFE) technique,
which recursively eliminates the least contributing features for classification, ending with
a best subset. We extensively carried out plethora of experiments to reach a near-optimal
configuration that led to the best classification, as validated on our dataset.

Despite the numerous studies of autism-related changes in white matter integrity,
the objective of this work is to implement a comprehensive ML-CAD system that, be-
sides its ability to classify ASD vs. TD subjects, identifies brain areas correlated with autism,
and was validated on a big, publicly available dataset using DTI data. The proposed al-
gorithm employed a thorough feature selection using recursive feature elimination with
cross-validation (RFE-CV) using four different kernels (SVM with linear kernel (LSVM),
random forest (RF), and logistic regression (LR), either with a l1-norm (LR1), or LR with
l2-norm (LR2)), and performed hyper-parameter optimization on eight different classifi-
cation techniques. The best candidate configurations were validated using random splits
of different k-folds’ cross-validation to identify the global ML model alongside the global
imaging bio-markers associated with ASD. Our main motivation behind this work is to
present a reliable system that can help physicians better understand individuals with autism,
allowing earlier and more personalized treatment plans. The rest of this paper is organized
as follows: Section 2 presents the details of the pipeline of the proposed algorithm, while
the experimental results are introduced in Section 3 for the ABIDE-II diffusion MRI data.
Finally, Section 4 provides a discussion and the conclusions of the paper.

2. Methodology

A visualization of the pipeline of the whole framework is presented in Figure 1.
It starts with pre-processing of each subject’s input volumes, and is then followed by
DTI parameter calculations, feature extraction and mapping to a WM atlas to get local
features. This is followed by using two different feature representations, to be used in
feature selection and classification steps. The following subsections provide details of these
multi-stage processes until reaching a final diagnosis.
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Figure 1. (a) Pipeline of the DTI-diagnosis algorithm. (b) Usage of the new derived feature represen-
tation F̂ and feature selection before classification.

2.1. Data Used

This work utilized DTI data from the Autism Brain Imaging Data Exchange (ABIDE)-II
dataset. ABIDE-II is a recent publicly available dataset that aggregates MRI data (sMRI,
fMRI, and DTI) for autism studies across different multiple sites. ABIDE-II contains data
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from around 19 sites for more than 1000 subjects; half of them are autistic individuals.
Working on a publicly available dataset facilitates replicating results and increases the reli-
ability of our findings. ABIDE-II is considered a large dataset, which increases the power
of our study. We selected datasets that involved DTI data, which included 6 datasets,
namely: Barrow Neurological Institute (BNI), NYU Langone Medical Center 1 (NYU1),
NYU Langone Medical Center sample 2 (NYU2), San Diego State University (SDSU), Insti-
tut Pasteur and Robert Debré Hospital (IP), and Trinity Centre for Health Sciences (TCD).
IP DTI data bvals (diffusion gradient strength per volume values) and bvecs (diffusion
gradient directions per volume values) were missing a value, so we excluded it, and used
the remaining five sites. Those 5 sites originally had 284 subjects with DTI imaging data,
and ended with 225 subjects of them after cleaning the data, on which we applied the steps
of our pipeline, as we will elaborate on in the next subsections.

2.2. Pre-Processing
2.2.1. Input Image Preparation

After deciding which sites to work on, we downloaded their available data, which
came organized as folders labeled by subject ID containing imaging data. We located
subjects that had DTI data, copying the relevant image nii files along with bvals and bvecs
to the working directory to be pre-processed.

2.2.2. Skull Stripping

The goal of the skull stripping step is to remove non-brain tissues (e.g., skull, scalp,
dura, . . . ) from the image volumes, extracting only the brain. This automated process
was implemented using the brain extraction tool (BET) algorithm [31] from FSL tools,
generating the binary masks and using default parameters with a fractional intensity
threshold of 0.25.

2.2.3. Eddy Current Correction

Eddy currents are induced currents due to gradient fields in the x, y, z directions
that result in visible image artifacts that usually blur the boundaries between gray and
white matter. Diffusion-weighted imaging is usually affected by this phenomenon, and an
eddy current correction step is commonly implemented. For this purpose, we used the
eddy current correction tool ‘eddy’ available through FSL [32] to correct for both common
artifacts, including adjusting for induced currents and also for subject movement during
the scan, across sections.

2.3. Feature Calculation

After having the diffusion-weighted volumes cleaned of non-brain tissues and com-
mon artifacts, we run DTI calculations to get the DTI diffusion tensor, its eigenvalues,
and other metrics. For each voxel, diffusion can be represented by a 3 by 3 tensor, which
describes the diffusion pattern at each point in 3D space. From this tensor, a more common
metric, namely eigenvalues, is used to represent the magnitude of diffusion along 3 major
perpendicular directions of its eigenvectors. The largest eigenvalue, λ1, along with its
eigenvector, v1, represent the magnitude and direction of the primary direction of diffusion
(along the fiber tract), while the other two represent radial diffusion perpendicular to
the main one [33]. Other derived metrics, such as fractional anisotropy, mean diffusiv-
ity, skewness, and many others are commonly used to represent other characteristics of
the diffusion. In our work, we included the following 6 metrics to describe our white
matter micro-architecture:

1. Fractional anisotropy (FA): Measures the degree of anisotropy of the diffusion, with zero
representing completely isotropic diffusion, and one representing a directional diffu-
sion [33];

2. Mean diffusivity (MD): Average magnitude of diffusion at each point, independent of
the direction. MD = 1

3 ∑3
i=1 λi;
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3. Axial diffusivity (AD): Magnitude of diffusion along the major axis; AD = λ1;
4. & 5. Radial diffusivities: Magnitude of diffusion along the two perpendicular axes to

AD: RDs = [λ2, λ3];
6. Tensor skewness: A higher order moment of diffusion, revealing more information

not captured by lower order ones. [14];
TSkew = 1

3 ∑3
i=1(λi − MD)3.

For the first five features, the dtifit tool, part of the FSL package, was used to calculate
the diffusion tensors along with eigenvalues, eigenvectors, FA, and MD. Tensor skewness
(Tskew) was calculated using Matlab 2021a, as it was not provided through the previous
tool. At this point, each subject is represented by six volumes, each comprising hundreds
of thousands of raw voxel values.

Data Cleaning

In the previous parts of the pipeline, some subjects failed during volume size val-
idation, BET and DTI calculations, or regional feature extraction, either with an error
in the prepossessing or yielding a non-complete brain, identified by having more zero
values, or “blanks”, than it should. Excluding those subject from further processing,
we ended up with 225 subjects that will be used for the rest of this work. Subject IDs
along with age, label, IQ, and gender for all subjects used in this study are provided as a
Supplemental Material, Table S3.

2.4. Atlas-Based Segmentation

Having each subject represented by its six volumes per voxel feature, now we need to
assign those features to local brain areas. For this purpose, the white matter atlas ICBM-
DTI-81, defined by Johns Hopkins University [34], is used. The JHU ICBM-DTI-81 WM
atlas uses ICBM coordinates and defines 48 white matter areas. Those areas were originally
hand-segmented from the average of diffusion MRI tensors of different 81 subjects. To locate
local anatomical regions in each subject space, we implemented an atlas-based segmentation
approach, where we preformed atlas registration for area localization. Registration from the
atlas space to subject’s space was performed in two iterations: a rigid transformation then
an affine transformation. The objective of the rigid registration in the first iteration is just
to find an initial alignment, not changing the size or shape, that will be used for next step.
Then, an affine transformation is found to improve upon the initial estimation by providing
a higher degree of freedom for a more generic linear transformation that enables the object’s
size and shape to be adjusted. This two-step registration task was implemented using DTI-TK
software [35] using normalized mutual information measures with a 4 mm × 4 mm × 4 mm
sampling distance and 1% tolerance. DTI-TK also enables interoperability with FSL software
used in preprocessing. The found transformation was then applied to atlas labels, hence
providing WM areas mask at each subject space. Those masks were used to define local
features for those 48 areas. This segmentation technique provides a fast automated solution,
enabling easy application to new subjects or datasets, with less error.

2.5. Feature Representation

At this point, each subject is represented by six features per 48 areas. Each of those
features are per-voxel raw features, and their length, in tens of thousands, varies between
areas. The first step is to convert those raw features into a better representation with
the goal of reducing the number while keeping the most important aspects capturing
underlying information. For this purpose, we replaced per-voxel features of each area
with three summary statistics of underlying distribution, namely, the mean (μ), standard
deviation (σ), and skewness (sk), where μ aims to the capture central tendency, σ captures
the dispersion of values around this mean, and sk aims to measure the asymmetry of the
data around this mean. At the end of this step, our feature matrix F, for each subject i, can
be represented as a 48 by 18 matrix, as follows:
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Fi =

⎡⎢⎢⎢⎣
μFA1 σFA1 skFA1 · · · skTskew1
μFA2 σFA2 skFA2 · · · skTskew2

...
...

...
. . .

...
μFA48 σFA48 skFA48 · · · skTskew48

⎤⎥⎥⎥⎦
where Fi is the feature matrix for subject i using the first feature representation described
above. Each element in this matrix is a summary statistic (baseline: μ/σ/sk) for one of the
six features (subscript: FA/MD/Tskew) for an area from 1 to 48 (sub-subscript index).

2.5.1. Feature Engineering

Instead of directly using per-area summary statistics features, we developed an
enhanced representation that captures latent relative relationships between brain ar-
eas. We calculated Pearson correlation coefficient between each pair of brain areas l, m,
and use this correlation matrix as our feature matrix. Therefore, for each subject i,
ρl,m = corr(Fi(l, :), Fi(m, :)). Although this step increased the number of features per
subject slightly [from 48 × 18 = 864 to (48 × 47/2) = 1128], it helped in boosting the perfor-
mance of the classification, as we will see in the results. This novel representation, using
interactions, is considered a key contribution that helped in improving the performance.
The new second feature matrix F2_i for subject i is now represented by:

F2_i =

⎡⎢⎢⎢⎣
ρ1,1 ρ1,2 · · · ρ1,48
ρ2,1 ρ2,2 · · · ρ2,48

...
...

. . .
...

ρ48,1 ρ48,2 · · · ρ48,48

⎤⎥⎥⎥⎦
where each element in this matrix ρi,j is a correlation between the summary statistics vectors
of the two areas i, j. We highlight that only the upper triangle (U) of this new feature matrix
(or lower L, because of symmetry) is used in subsequent steps, as the rest is redundant
because of symmetry. Serializing those 1128 features, we can represent the final feature
matrix for all 225 subjects as F̂ with size 225 × 1128, where each row is the concatenated
calculated correlations for one subject. Figure 1b illustrates those steps. In addition to the
data matrix, we have another column vector y denoting the labels of each subject, whether
ASD (yi = 1) or TD (yi = 0).

y =
[
y1, y2, y3, · · · , y225

]
2.5.2. Feature Reduction: RFE-CV

The feature space (1128 correlations) is quite large relative to our sample size (225 subjects).
As we discussed earlier, the number of features relative to the number of subjects needs
to be reduced, keeping the most informative features. While many feature reduction
techniques, such as linear discriminant analysis, principal component analysis, or autoen-
coders, can perform this task, they transform the feature space into a new one that does
not preserve the meanings of the original features. Building classification systems based on
those new ambiguous features would sophisticate the ability to understand any clinical
reasoning of classification results, hence making it less beneficial and reasonable to physi-
cians in generating an informative decision or understanding the underlying pathological
abnormalities of an autistic brain. We employed the recursive feature elimination (RFE)
technique, where only a subset of features is selected. RFE is a feature selection algorithm
based on feature ranking with recursive feature elimination. The principle behind RFE is
fitting a classification model, ranking the features by the model’s scoring, then eliminating
the weakest features recursively to find the optimal number of features to be selected. Cross
validation is used with RFE (RFE-CV), where data is split into k-folds, features are scored
based on different data subsets, and then the best scoring across the k-folds is selected.
The target optimization scoring metric (whether accuracy, balanced accuracy, f 1, weighted
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f 1, precision, recall, . . . ) can be specified, and here, we used balanced accuracy with
k = 10 folds for optimization. The algorithm then finds the optimal n significant features to
be selected that maximizes the average classification performance according to the target
metric [36,37]. To find the best architecture of RFE-CV that best fits our problem, we tested
four types of RFE-CV classifiers as kernels, namely linear SVM (LSVM), random forest (RF),
logistic regression (LR) with l1-norm (LR1), and LR with l2-norm (LR2), on the two feature
representations we have (original summary statistics Fi of 225 × 864 and correlations F2_i
of 225 × 1128). Thus, we obtained estimates using four different models, each selecting
features according to its classifier independently, and providing average cross-validated
scores for 10-folds; then we evaluated the performance of eight models to select which
model to use for further processing.

2.6. Classification

After having n selected features for each of 8 models representing the top prominent
features for distinguishing autistic brains, we set up a system of machine learning classifiers.
We tested eight different classifier types, and performed hyper-parameter optimization
for each one to end up with best parameter classifier model in terms of accuracy. We
included both linear and non-linear classifiers to test both types of relationships between
the two classes. The set of used classifiers are: (1) linear SVM (LSVM), (2) logistic regression
(LR), (3) passive aggressive classifier (PAGG), (4) SVM with radial-basis kernel (RBF-SVM),
(5) Gaussian naive Bayes (GNB), (6) random forest (RF), (7) XGboost (XGB), and (8) neural
networks (NN). Classifiers 1–3 are linear classifiers, while the rest are non-linear. Classifiers
6 and 7 are ensemble-based classifiers, and for NN we included both shallow and deep
configurations in our hyper-parameter search. For hyper-parameter optimization, after we
selected only n features according to the previous RFE-CV step, we tested a set of different
parameters with different ranges for each classifier. For this purpose, the input data is split
into five folds to determine the best performance according to the average across those
five folds. Therefore, for each classifier, using the selected features only, the following
steps were performed: (i) split data into five folds, use four for training and one for testing
each time, and for each parameters configuration, store the performance of the classifier
for each fold; (ii) The balanced accuracy scoring is used to decide the best configuration;
(iii) The best performing classifier is selected, and the hyper parameters along with its
maximum average cross-validated score, and also standard deviation over folds, are
highlighted. Table 1 shows the set of used hyper-parameters in the search associated with
each classifier and their ranges. Algorithm 1 illustrates a step-by-step guide of the full
implemented algorithm, and Figure 1 summarizes a graphical illustration of the pipeline
of the entire system.

Table 1. Used hyper-parameter values in a cross-validated grid search. Names between parentheses are parameter names
in the ML package.

Classifier Hyper-Parameter Range/ Values

(1) LSVM

Regularization (C) 0.1, 1, 5, 10

Loss function (loss) L1, L2

Penalization strategy (penalty) squared_hinge, hinge

(2) LR

Penalization strategy (penalty) L1, L2 elastic

Regularization (C) 0.1, 1, 5, 10

Solver algorithm (solver) newton-cg, lbfgs, liblinear, sag, saga

(3) PassiveAgressive
Regularization (C) 0.1, 1, 5, 10

N idle iteration before stop (n_iter_no_change) 1, 5, 10

(4) Nonlinear-SVM

Regularization (C) 0.1, 1, 5, 10

Kernel used (kernel) rbf, poly, sigmoid

Polynomial kernel degree (degree) 2–6

Kernel coefficient (gamma) scale, auto

Independent term in kernel function (coef0) 0.0, 0.01, 0.1, 1, 5, 10, 50, 100
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Table 1. Cont.

Classifier Hyper-Parameter Range/ Values

(5) GNB Default parameters priors = None, var_smoothing = 1 × 10−9

(6) RF

Number of features to consider when looking for the best split (max_features) auto, sqrt, log2

Number of trees in the forest (n_estimators) 50, 100, 200, 500, 1000

Function to measure the quality of a split (criterion) gini, entropy

Bootstrap samples when building trees (bootstrap) True, False

Min # of samples required to split an internal node (min_samples) 1, 2, 5, 10

(7) XGB

Which booster to use (booster) gbtree, gblinear, dart

Learning rate (learning_rate) 0.001, 0.01, 0.1, 0.3, 0.5, 1

Min loss reduction required to make a further partition on a leaf node (gamma) 0, 0.1, 0.5, 1, 1.5, 2, 5, 20, 50, 100

Min sum of instance weight needed in a child (min_child_weight) 0.1,0.5, 1, 5, 10

Subsample ratio of columns when constructing each tree (colsample_bytree) 0.6, 0.8, 1.0

L2 regularization term on weights (lambda) 0, 0.001, 0.5, 1, 10

L1 regularization term on weights (alpha) 0, 0.001, 0.5, 1, 10

(8) NN

Hidden layer sizes (hidden_layer_sizes) (150,100,50,), (100,50,25,), (100,)

Activation function (activation) tanh, relu, logistic

Solver used for weight optimization (solver) lbfgs, sgd, adam

L2 regularization penalty (alpha) 0.0001,0.001,0.01, 0.05, 0.1, 0.5

Initial learning rate (learning_rate) constant, adaptive

Exponential decay rate for estimates of first moment vector in adam (beta_1) 0, 0.001, 0.01, 0.1, 0.3, 0.5, 0.9

Exponential decay rate for estimates of second moment vector in adam (beta_2) 0, 0.001, 0.01, 0.1, 0.3, 0.5, 0.9

Algorithm 1 Diffusion tensor autism diagnosis algorithm.

1: ∀ subject’s data files: (NII+bval+bvec) :
2: 1. Check for errors, check bval and bvec files.
3: 2. run pre-processing modules:
4: (i) Run skull stripping using brain extraction tool (BET).
5: (ii) Run FSL’s eddy current correction tool.
6: (iii) Register the DTI IIT Human Brain Atlas to each subject space using DTI-TK tool, save

transformations.
7: (iv) Recheck for any generated errors or deformations.
8: 3. Feature Calculations:
9: (i) Use FSL to calculate DTI tensor, scale units, calculate RDs, AD, FA, MD, Tskew volumes.

10: (ii) Apply resulted transformation on the JHU atlas labels to generate masks.
11: (iv) Use registered masks to extract each feature for each WM region.
12: (v) Calculate summary statistics (μ, σ, Sk) for each area for each feature (λ1,λ2,λ3,FA,MD,

Tskew), rank feature values across the different 48 brain areas, get a concatenated feature vector
(3*6). Create feature matrix F to be used as a first variant of the input data matrix X.

13: (vi) Calculate correlations between feature vectors of each two areas to create feature
matrix F2.

14: (vii) From F2: remove redundant correlations (L and diagonal) and concatenate U to
create F̂ to be used as a second variant of the input data matrix X.

15: 4. RFECV feature selection: for each feature representation, and for each RFE-CV kernel:
16: (i) Split input data X, labels y into k folds. Each time use one fold as Xtest, ytest, rest as Xtrain,

ytrain.
17: (ii) Train the classifier using each Xtrain, ytrain.
18: (iii) Get the balanced accuracy score of the trained classifier using Xtest, ytest.
19: (iv) Calculate the cross-validated score and sort features based on importance.
20: (v) Remove the least important features from X matrices, and repeat the steps from (i) to (v)

until only one feature exists.
21: (vi) Determine the n features that provided the best cross-validated score along with its

hyper-parameters to be used for each of the kernels.
22: 5. Classification:
23: ∀ classifier, for each configuration of hyper-parameters:
24: (i) Split reduced Xselect, with n selected features, into k folds, along with y.
25: (ii) Calculate the cross-validated score for each hyper-parameter’s configuration.
26: (iii) Determine best hyper-parameter configuration in terms of score for each classifier.
27: (iii) Find the best classifier/parameters, along with its used n features.
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3. Results

As discussed in the data subsection, the ABIDE-II dataset [38] was used for the testing
and validation of the above-mentioned methodology. ABIDE-II [38] provides hundreds of
subjects’ brain imaging data (structural MRI, functional MRI, and DTI) to enhance research
in autism spectrum disorder (ASD). DTI data used are only from the following five sites:
IP, NYU1, NYU2, TCD, and SDSU. Diffusion-weighted MRI (dwMRI) scans for a total of
225 subjects were used: 125 ASDs and 100 TDs, with age ranges between 5.128 years and
46.6 years.

The four types of RFE-CV kernels (LSVM, LR1, LR2, and RF) were used to select
features from the two different representations (summary statistics F, and correlations F̂),
and those features were used to train and test eight types of classifiers (LSVM, LR, PAGG,
RBFSVM, GNB, RF, XGB, and NN). The hyper-parameter optimization step was carried
out for each combination of [feature-RFECV kernel-classifier], using a grid search over
the list of hyper-parameters on Table 1 with five-fold cross validation with the help of the
GridSearchCV scikit learn toolkit. The aim of this search was to identify the best RFE-CV
kernel in terms of accuracy, to be used for the final classification/validation stage. Based
on the results of those 64 sets of combinations, we identified which setting best suits our
data, then we investigated it with more validations, changing the splits and varying the
number of folds.

Tables S1 and S2 in the Supplementary Materials show the full details of this round of
experiments for both feature representations: summary statistics F and correlations F̂, re-
spectively. We notice that both LR1 and LR2 kernels almost failed to provide representative
features in terms of accuracy results (accuracy ~60%). While the RF kernel provided us with
moderate results (mostly above 70%), LSVM was the one we were searching for, achieving
accuracies of up to 99% with F̂ features. More importantly, we highlight that using our
novel feature representation F̂, we were able to achieve this high boost in classification
results. To show which types of features were more representative, we show the histogram
of the occurrence of each type of summary statistics appearing in selected features from
F with LSVM RFE-CV used in Figure 2. The figure illustrates the efficacy of adding SK
feature which appeared as important as the common FA metric, and points out coice of
skewness as a relevant summary statistic.

(a) (b)

Figure 2. Histogram of types of selected summary statistic features. (a) for the occurances of each
feature type, (b) for summary statistics occurrences.

Following these results, we will only use the LSVM RFE-CV kernel with F̂ representa-
tion (correlations) for further investigations, as it shows better performance. We will fix the
hyper-parameters of the eight classifiers to the ones we previously found on the first set of
experiments (Table 2), and randomly re-split different settings of k-fold cross validation,
with k = [2, 4, 5, 10], to test whether the achieved performance is highly dependent on
the split and/or the subjects of previous experiment and see the effect of changing the
proportion of train/test on the results.
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Table 2. The fixed hyper-parameters found to optimize performance on the set of tested classifiers.

lSVM {‘penalty’: ‘l2’, ‘loss’: ‘hinge’, ‘C’: 1}

pagg {‘n_iter_no_change’: 5, ‘C’: 0.1}

LR {‘solver’: ‘newton-cg’, ‘penalty’: ‘none’, ‘C’: 0.1}

XGB
{‘reg_lambda’: 0.001, ‘reg_alpha’: 0, ‘min_child_weight’: 10, ‘learning_rate’: 1,
‘gamma’: 0.1, ‘colsample_bytree’: 0.6, ‘booster’: ‘gblinear’}

GNB defaults

SVC {‘kernel’: ‘poly’, ‘gamma’: ‘scale’, ‘degree’: 3, ‘coef0’: 5, ‘C’: 0.1}

Rf
{n_estimators’: 50, ‘min_samples_split’: 2, ‘min_samples_leaf’: 0.1,
’max_features’: ‘sqrt’, ‘criterion’: ‘entropy’, ‘bootstrap’: False}

nn
{‘solver’: ‘adam’, ‘learning_rate’: ‘adaptive’, ‘hidden_layer_sizes’: (100,),
‘beta_2’: 0.5, ‘beta_1’: 0.5, ‘alpha’: 0.0001, ‘activation’: ‘logistic’}

Table 3 shows the final diagnostic accuracies of our proposed framework using our
novel feature representation with the help of RFE-CV with the LSVM kernel, and Table 4
shows the area under the curve for each of the classifiers across different k-folds. Without a
new optimization, using the same settings, and on new sets of random splits, our innovative
algorithm was still able to provide up to 99% accuracy, which clearly manifested the
strength of the presented algorithm.

Table 3. Mean accuracy ± standard deviation across the k-folds, with k = 2, 4, 5, 10.

k = 2 k = 4 k = 5 k = 10

LSVM 0.92 ± 0.018 0.991 ± 0.015 0.999 ± 0.002 0.999 ± 0.002
pagg 0.893 ± 0.018 0.951 ± 0.037 0.96 ± 0.026 0.982 ± 0.03
LR 0.902 ± 0.0 0.964 ± 0.018 0.978 ± 0.02 0.991 ± 0.018

XGB 0.556 ± 0.011 0.604 ± 0.021 0.591 ± 0.041 0.609 ± 0.119
GNB 0.644 ± 0.025 0.618 ± 0.079 0.613 ± 0.08 0.684 ± 0.133

RBF-SVM 0.511 ± 0.038 0.529 ± 0.021 0.573 ± 0.022 0.582 ± 0.076
RF 0.609 ± 0.02 0.591 ± 0.04 0.591 ± 0.05 0.596 ± 0.054
NN 0.871 ± 0.004 0.969 ± 0.019 0.973 ± 0.026 0.964 ± 0.034

Table 4. Calculated area under the curve for each classifier across the k-folds, with k = 2, 4, 5, 10.

k = 2 k = 4 k = 5 k = 10

LSVM 0.919 0.991 0.999 0.999
pagg 0.891 0.948 0.959 0.982
LR 0.9 0.962 0.977 0.991

XGB 0.543 0.593 0.583 0.606
GNB 0.644 0.618 0.608 0.683

RBF-SVM 0.509 0.529 0.565 0.575
RF 0.571 0.549 0.548 0.552
NN 0.873 0.969 0.975 0.963

Figure3 illustrates the importance of the top selected features by our RFE-CV LSVM
kernel. The bars in blue on the left indicate high negative correlation importance with
our positive class (autism), while the ones in dark orange on the right indicates a positive
importance coefficient. The longer the bars, the higher the coefficient, indicating more
importance for features of this brain-area pair. Table 5 lists the name of the top twelve feature-
pairs as ranked by our selection algorithm for easier identification. We can see that most of
those brain areas already appear in the literature as correlating with the ASD phenotype.
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We already see some areas appear more than once in the top 12 pairs; we will discuss the
importance of the highlighted brain areas more in the following section, Discussion.

Figure 3. Sorted coefficient of importance for the top 50 selected features of the area pairs correlations.

Table 5. Top 12 WM brain area pairs which feature correlations were highly ranked through RFE-CV
selection. L or R at the end stands for the left or right hemispheres, respectively.

Retrolenticular Part of Internal Capsule L & Fornix Cres/ Stria Terminalis
Anterior Limb of Internal Capsule L & Uncinate Fasciculus R

Body of Corpus Callosum & Tapetum L
Corticospinal Tract R & Posterior Corona Radiata R

Posterior Limb of Internal Capsule R & Retrolenticular Part Of Internal Capsule R
External Capsule R & Tapetum L

Middle Cerebellar Peduncle & Inferior Cerebellar Peduncle R
Anterior Limb of Internal Capsule R & Tapetum R

Middle Cerebellar Peduncle & Cingulum Cingulate Gyrus L
Anterior Limb of Internal Capsule R & Fornix Cres /StriaTerminalis R

Inferior Cerebellar Peduncle R & Retrolenticular Part Of Internal Capsule R
Cingulum Hippocampus L & Superior Fronto-occipital Fasciculus R

4. Discussion and Conclusions

The proposed technique adopted in this study introduced a novel feature represen-
tation applied to a large number of subjects obtained from a publicly available dataset.
We performed extensive experimentation to validate the results introduced through this
paper, as well as paved the path for developing new frameworks that may benefit from
our novel algorithm. In addition to the achieved promising results, in terms of high cross-
validated balanced accuracy, we introduced the notion of interaction between brain areas’
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micro-connectivity and its viability of reaching a better classification of autism. More
importantly, we identified the brain-area pairs that mostly contributed to reaching the
final decision. We highlight that those identified brain areas in Table 5 align with the
corpus of findings from previous literature studying autism impairments. The uncinate
fasciculus (uc) is a fiber pathway through the external capsule (ec) which links the ventral
frontal cortex, in particular Brodmann areas 11 and 47, with the temporal pole, and dif-
ferences in it were revealed in [39,40]. On the other hand, the middle cerebellar peduncle
(mcp) carries signals from the cerebral cortex and subcortical regions, via the pontine
nuclei, into the cerebellar cortex. The internal capsule (ic) microstructure was found to
undergo an atypical developmental trajectory in autistic patients, manifested as increased
connectivity from childhood to adulthood [41]. All parts cited in this study of the ic are
involved in autism [41–45], and DTI changes have been correlated with autistic behaviors,
including inattention, self injury, repetitive behaviors, and social deficits. In general, all
white matter tracts identified here (Table 5, Figure 3) connect cortical (sensory motor cor-
tex, frontal/occipital lobes, cingulate) and subcortical regions (thalamus, hippocampus,
cerebellum), thereby contributing to deficits (inattention, self injury, repetitive behaviors,
motor, social, memory, emotional regulation, and sensory impairments) found in autistic
individuals [41–43]. Shukla et al. [45] identified reduced FA and increased RD in the ic
and corpus callosum (cc) in children with autism. They also spotted increased MD in
anterior and posterior limbs of ic. Significant differences in the AD of the stria terminalis
(st) was reported by Yamagata et al. [46] between ASD and TD individuals. Reduced FA
and increased RD of st was also reported in [40], and higher AD of st in TD children was
noted in [43]. Differences in middle, inferior, and superior cerebellar peduncles [45,47–49]
and the corpus callosum [43,45,47,50] were also reported in those previous studies.

The tapetum WM is part of the splenium fibers around the cc, providing connectivity
between the temporal lobe, and was found to play a role in different mental disorders [51].
Reduced FA, increased RD, and decreased AD of the tapetum has been reported in ASD.
Abnormalities in the corticospinal tract, corona radiata, external capsule, cingulum cingu-
late cyrus, cingulum hippocampus, and superior fronto-occipital fasciculus were noted
in previous studies [13,23,40,42,44,49,52–56]. We stress that our findings are for brain re-
gions’ interactions with others, following the idea of disrupted connectivity introduced by
Vasa et al., and work normally when done in functional MRI experiments. In [57], Vasa et al.
reviewed some of the current structural and functional connectivity ASD data to examine
the “disrupted connectivity” theory. They identified and highlighted many confounding
factors in the literature that could have affected this conclusion.

In conclusion, the classification framework presented accomplishes many objectives.
It provides a high state of the art balanced accuracy on a public dataset, and interpretability,
not only in providing a ASD/TD diagnosis, but also in identifying what areas contributes to
such a classification. Those spotted brain areas can be reported early with the framework’s
diagnosis to the physician, who can now make better informed decisions. We believe
that this is an important aspect that would lead to a better understanding of the brain
abnormalities associated with autism. The system we present is also scalable: adding more
subjects that can be preprocessed and feature calculated independently, and fusion of an
extra modality, such as structural MRI features or resting state functional MRI for the same
subject, can be easily integrated. On the other hand, we stress that the robust results were
obtained and validated using only five ABIDE-II sites, and adding more datasets should
guarantee generalizability of our proposed framework, which can be a good direction for
future work. Moreover, more sophisticated medical interpretation is needed not only to
map those affected brain areas to TD vs. ASD, but also to correlate them with ADOS or
similar scores, allowing more distinction per scored module. This may need integration
with other imaging modalities such as sMRI or fMRI to incorporate different aspects (shape
and functionality) to our classification framework, progressing towards an integrated
system for autism assessment and providing better interpretation and understanding of
underlying personalized diagnosis.
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Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
s21248171/s1, Table S1: contains accuracy results for F representation, for different RFE-CV kernels.
Table S2: contains accuracy results for F̂ representation, for different RFE-CV kernels. Table S3:
subjects’ demographics: subject IDs, along with age, label, IQ, and gender, and also the summary of
those demographics for each group.
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Abstract: Lung or heart sound classification is challenging due to the complex nature of audio data,
its dynamic properties of time, and frequency domains. It is also very difficult to detect lung or
heart conditions with small amounts of data or unbalanced and high noise in data. Furthermore,
the quality of data is a considerable pitfall for improving the performance of deep learning. In this
paper, we propose a novel feature-based fusion network called FDC-FS for classifying heart and lung
sounds. The FDC-FS framework aims to effectively transfer learning from three different deep neural
network models built from audio datasets. The innovation of the proposed transfer learning relies on
the transformation from audio data to image vectors and from three specific models to one fused
model that would be more suitable for deep learning. We used two publicly available datasets for
this study, i.e., lung sound data from ICHBI 2017 challenge and heart challenge data. We applied
data augmentation techniques, such as noise distortion, pitch shift, and time stretching, dealing with
some data issues in these datasets. Importantly, we extracted three unique features from the audio
samples, i.e., Spectrogram, MFCC, and Chromagram. Finally, we built a fusion of three optimal
convolutional neural network models by feeding the image feature vectors transformed from audio
features. We confirmed the superiority of the proposed fusion model compared to the state-of-the-art
works. The highest accuracy we achieved with FDC-FS is 99.1% with Spectrogram-based lung sound
classification while 97% for Spectrogram and Chromagram based heart sound classification.

Keywords: lung sound detection; heart sound detection; convolutional neural network; model fusion;
multi-features

1. Introduction

Cardiovascular and respiratory disease are the top two global causes of death accord-
ing to World Health Organization [1]. Furthermore, the Centers for Disease Control and
Prevention reported heart disease is the leading cause of death (one in every four deaths)
for adults in the United States. In particular, there is an increased risk of severe COVID-
19 infection of that individual with certain medical conditions, such as heart diseases or
chronic obstructive pulmonary disease (COPD) [2].

The expenses of health care have been rapidly increased in the United States [3]. Due to
the rapid surge of medical care costs, many people cannot afford health care and may have
proper medical treatment. A physician can diagnose using a standard clinical stethoscope
by hearing sounds from the human body. An auscultatory method has been applied widely
by physicians to examine lung sounds associated with different respiratory symptoms.
The auscultatory process has been the easiest way to diagnose patients with respiratory
diseases, such as pneumonia, asthma, and bronchiectasis [4]. However, the sound quality
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is quite a noise or too weak to hear, sometimes due to the complexity of the sound patterns
and characteristics. Thus, the manual process takes much time and effort for a physician
to detect the condition using a stethoscope accurately [5]. For example, wheezing sounds
could not accurately be identified in a series of the pulmonary disease sounds [6].

Similarly, the physicians use cardiac auscultation to evaluate cardiac functions and
detect diseases [7]. However, it is a difficult task to manage this method manually at present.
A signal produced by these heart sounds is recorded and is known as Phonocardiography
(PCG). These signals are highly potent for detecting various heart diseases and are not
costly, unlike the electrocardiogram (ECG) signals identified through machines. However,
it takes much time to analyze the signals. Hence, deep learning analytic may play an
essential role in interpreting the sound signals where corrective measures can be made for
physicians’ diseases.

There have been significant recent advances in deep learning and the potential of the
deep learning model for various medical applications. Recently, there has been increas-
ing attention for the classification of human body sounds for clinical conditions in the
medical domain [8–10]. Advanced technologies are essential to achieving the improve-
ment of lifestyle and health care. Some of these applications are ambient assisted living
systems [11,12], fall detection [13], voice disorders [14], and heart condition detection [15].
These systems are useful in the early detection of different types of disease through human
body sounds, which ultimately improves healthcare. More specifically, an extensive investi-
gation in a partnership among researchers, health care providers, and patients is integral to
bringing precise and customized treatment strategies in taking care of various diseases.

Recently, an electronic stethoscope, similar to the design of standard clinical stetho-
scopes, was designed to enhance the quality of body sounds through filtering or amplifica-
tion and then extract features from the sounds for the automatic diagnosis of heart or lung
conditions using deep learning algorithms. If a deep learning-based diagnosis of heart or
lung disease can increase precision and productivity, we can reduce healthcare costs and
improve healthcare quality. Moreover, deep learning is a branch derived from machine
learning. It allows the computational models, which consist of several layers of processing
used to learn the data representations over multiple levels of abstractions. It has attracted a
lot of attention due to its high performance in classification. These learning techniques are
among the fastest-growing fields at present in the area of audio classification [16]. Some
studies reported that the deep learning models outperform humans due to the ability to
filter the noise and intensive learning ability [17,18].

The human body sounds for classification are too complicated to understand the
hidden patterns of data. The image-based sound classification was introduced to effectively
captures the diverse patterns in the dataset [19–21]. As image-based sound classification
was introduced, more diverse fusion approaches were also introduced to improve the
performance of classification. These methods include the modality-based fusion [22],
feature level fusion [23], network-level fusion [24,25] and methodology-based fusion [26].
Among various fusion techniques for sound classification, the most popular are those based
on features and multi-modality. However, not much work has been conducted on the
general fusion approach, such as network-level fusion using multi-features, which can
apply to more diverse datasets or applications.

This paper proposes a novel convolutional neural network model-based fusion called
“Fusion-based Disease Classification (FDC)”. The model architecture is shown in Figure 1.
Our contribution to this paper can be summarized as follows:

• We designed a feature-based fusion model (FDC-FS) transferred from the three feature-
based convolutional neural network models to classify lung and heart disease.

• We found that it is more effective to classify heart or lung diseases with images
transformed from three different sound features, i.e., Spectrogram, MFCC, and Chro-
magram (shown in Figures 2 and 3).
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• The three types of data augmentation, such as Noise, Pitch-Shift, and Time-Stretch,
have been effectively applied to the audio dataset for optimal deep learning training
and testing performance.

• A comprehensive experimental results with the lung and heart sound datasets con-
firmed the superiority of the proposed FDC model over the state-of-the-art methods.

Figure 1. Fusion-Based Disease Classification Architecture.

Figure 2. Lung Sound Features: (1) Wav (2) Spectrogram (3) MFCC (4) Chromagram.

The remainder of the paper is organized as follows: Section 2 describes the related
work on different deep learning models and lung and heart disease classification techniques.
Section 4 discusses the methodology of the proposed model, FDC-FS. Section 4 describes
the results and evaluation of the classification model. Section 5 discusses the state-of-the-art
comparison for both lung and heart datasets. Finally, Section 6 presents the conclusion and
future work.
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Figure 3. Heart Sound Features: (1) Wav (2) Spectrogram (3) MFCC (4) Chromagram.

2. Related Work

2.1. Lung Disease Classification

Rocha et al. [27] developed classification models for the diagnosis of chest conditions
using a stethoscope for the environmental sounds. First, they created a database of lung
sounds, which consisted of 920 samples for different categories (i.e., COPD, Healthy,
etc.). The second task of the challenge was to extract the features and classify the sounds
according to the nature of sound (Wheezes, Crackles, or both). Finally, they conducted
feasibility studies on machine learning algorithms, such as support vector machine (SVM)
and artificial neural networks (ANN) using features, such as MFCC, spectral features,
energy, entropy, and wavelet coefficients. However, they have not overcome the data issues.
Unlike this study, we extracted multiple image features from the same datasets, improved
the data issues using data augmentation techniques, and obtained better results.

Several data augmentation techniques were applied to classify lung diseases using
sounds [28–31]. Dalal et al. [32] explored four machine learning approaches for lung sound
classification using lung dataset [33]. This study used data augmentation and extracted
Spectrogram, MFCC, and LBP features using multiple machine learning algorithms, such
as Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Gaussian Mixture Model
(GMM), and Convolutional Neural Network (CNN). Among these models, CNN outper-
formed all other classifiers with an accuracy of approximately 97%. However, their machine
use was very high, applying almost 1 million or more epochs. On the contrary, we achieved
higher accuracy than the study, with very low machine use and only 100 epochs with low
parameter consumption.

The review in [34] mentioned several feature extraction and classification techniques
for obstructive pulmonary diseases such as COPD and asthma. The process involves
several traditional and deep learning classification techniques, such as K-Nearest Neighbor
(KNN), Artificial Neural Network (ANN), Deep Neural Network (DNN), and Convolu-
tional Neural Network (CNN) and feature extraction through signals such as Fast Fourier
Transform (FFT), Short Time Fourier Transform (STFT), Spectrogram, and wavelet trans-
form. For example, the best accuracy for CNN was approximately 95%.

Hai et al. [35] proposed a novel solution for lung sound classification using a publicly
available dataset. The dataset was divided into three categories such as wheezes, crackles,
and normal sounds. They proposed a detection method using optimized S-transformed
(OST) and deep residual networks (ResNets). They performed preprocessing on the au-
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dio samples using OST for rescaling the features for ResNets and used a visual-based
approach. Their experimental results showed the best multi-classification model with
accuracy (98.7%).

Fateh et al. [36] proposed a pre-trained CNN model to extract deep features using the
ICBHI challenge dataset. The dataset consists of crackles, wheezes, normal, and wheezes
plus crackles categories. First, they used the visual approach with spectrogram images
generated from lung sounds by extracting the features. Then, they used the deep features as
the input of the Linear Discriminant Analysis (LDA) classifier using the Random Subspace
Ensembles (RSE) method. As a result, their model improved the classification accuracy
from 5% compared to the existing methods.

Demir et al. [37] proposed two approaches using CNN for the classification of lung
diseases using the ICBHI lung sound dataset. The dataset consists of 4 classes with
6898 recordings. First, they converted the lung sounds to spectrogram images using the
Short Time Fourier transform (STFT) method. Their first approach is classifying with
the SVM based on the features extracted from a pre-trained CNN model. Then, the pre-
trained CNN model was fined tuned using the transfer learning method for spectrogram
images. The best accuracy for the proposed first and second methods are 65.5% and
63.09%, respectively.

Samiul et al. [38] proposed a lightweight CNN model for detecting respiratory diseases
through lung sounds. They designed a hybrid scalogram-based approach using the ICBHI
2017 lung sound dataset by using the empirical mode decomposition (EMD) and the
continuous wavelet transform (CWT). As a result, the three-class chronic and the six-class
pathological classification accuracy were 98.2% and 98.72%, respectively, with 3M trainable
parameters. However, we achieved a better accuracy with lower trainable parameters.

Elmar et al. [39] presented an approach for multi-channel lung sound classification
using spectral, temporal, and spatial information. They proposed a convolutional recurrent
neural network (CRNN) using spectrogram features to classify lung sounds collected from
16 channel recording devices. Their CRNN model obtained an F1-score of 92% for the
binary classification.

Luay et al. [40] proposed homogeneous ensemble learning methods to perform multi-
class classification of respiratory diseases. They also used the ICBHI challenge dataset,
including 1176 recordings and 308 clinically obtained lung sounds. They used entropy
features for machine learning models such as SVM, KNN, and Decision Tree. Among these
three models, SVM received the best average accuracy of 98.20%.

2.2. Heart Disease Classification

Potes et al. [41] proposed a feature-based ensemble technique for the classification of
normal vs. abnormal heart sounds. First, they extracted 124 time-frequency features such
as MFCC from the phonocardiogram (PCG) signals. Then, they used the combination of
AdaBoost classifier and CNN classifier to classify the heart sounds. The overall accuracy
achieved was 86%. Zhang et al. [42] proposed a method for heart sound classification using
a convolutional neural network (CNN). The spectrogram features were extracted from the
cycles of sound signals for different positions of pre-trained CNN, and the classification
model was based on a support vector machine (SVM). They reported the precision of 77%
and 71% for the two datasets with 4 and 3 classes, respectively.

Bozkurt et al. [43] focused on segmentation and time-frequency components for
the CNN-based designs. The Mel-spectrogram and MFCC features were extracted from
heart sound data using the PhysioNet dataset [44]. They also performed the data aug-
mentation by changing the sampling rate with a random value in range. The overall
accuracy achieved was 81.50%. Shu et al. [45] proposed a novel deep WaveNet model
for the classification of heart sounds. They used the dataset, composed of five categories
with the 1000 PCG recordings, and obtained the overall highest training accuracy of 97%.
Muqing et al. [46] proposed a combined model with a convolutional neural network (CNN)
and recurrent neural network (RNN) based on the MFCC features for heart sound classifi-
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cation. Their results for the heart sound classification with pathological or non-pathological
categories showed the accuracy of 98% with the PhysioNet database.

The authors [47] evaluated the challenges and future directions in the application of
supervised learning to cardiovascular beats analysis in order to provide a critical guidance
for future research. Despite substantial advancements in this domain, there are still con-
straints due to a lack of available datasets, inadequate learning, and a paucity of effective
algorithms. Our study’s major objective is to increase the validity of heart sound recogni-
tion. The present investigation included an in-depth analysis and evaluation of recent deep
learning methods, with a concentration on the convolutional neural network (CNN) and
recurrent neural network (RNN) techniques that have evolved progressively over the last
several years.

Acharya et al. [48] proposed Convolutional Neural Network having nine layers for
the classification of heart heartbeat signals, such as non-ectopic, supraventricular ectopic,
ventricular ectopic, fusion, and unknown beats. Oh et al. [49] developed hybrid models,
i.e., multiple layers of CNN and max-pooling and LSTM as the end layer, to extract the
temporal information from the features from the ECG dataset and classify arrhythmia from
ECG segments. Rajpurkar et al. [50] developed a 34-layer CNN model for the diagnosis
of heart diseases such as arrhythmia with the ECG data, recorded with a single lead heart
monitor. However, some issues arise in deep learning modeling with the data, including
the limited amount of data for heart conditions, low quality with noise, and significant data
variations. We also faced similar problems and addressed them in our work.

3. Methodology

We discuss the overall design goals for the FDC network (shown in Figure 1). The mod-
eling process of FDC includes five stages. First, we apply data augmentation techniques
onto the audio data to handle the data issues and improve heart and lung condition de-
tection accuracy. Second, we extract the three types of unique and dominant features
inherent from the audio data, i.e., Spectrogram, Mel-frequency cepstral coefficient (MFCC),
and Chromagram. Third, we convert the extracted features in the form of the images
and generate the feature vectors of the audio images in a color format. Fourth, we feed
the image feature vector into the especially designed three convolutional neural network
models (FDA-1, FDA-2, FDA-3). Finally, The fusion network model (FDA-FS) fuses these
three models to optimize the learning performance for the heart and lung sound datasets.

3.1. Rationale of Design

The rationales of the FDC framework design are as follows: First, it is to enable the
effective selection of features from the heart and lung sound data, which are highly noise
and unbalanced. Several discrepancies existed in the datasets’ sources. We did not, however,
cut or change the audio input; rather, we extracted the most salient qualities or patterns
from the complete dataset. Second, it can transform the audio features into consistent and
reliable forms, i.e., audio images. FDC supports a multi-modality capability of audio and
image in feature extraction, modeling, and inferencing. Third, it is to design the three
different network models to effectively learn unique and dominant features. Finally, it is
to transfer learning by fusing the three network models into one model to improve the
learning performance in lung and heart condition detection.

The differences between the samples of the signals (audio) and images of the same
signals are significant, although they are from the same sources. Thus, different modeling
techniques are needed to support the multi-modality. For example, if one is talking in a
visual context, it means that sound is transparent while the image is considered as non-
transparent (opaque) [51]. The pixel formation shows that whatever is the position of
an object belongs to the same category. However, audio cannot quickly identify where it
belongs due to its observed frequency in spectrogram features. The audio spectrogram
depends on the magnitude of the frequency. Therefore, it is not easy to process the object
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or its combination in a sequence manner, and it is challenging to identify the simultaneous
sounds represented in the spectrogram features.

When a neural network uses images for classification, it considers the sharing weights
available from the images in two dimensions, i.e., the X and Y-axis. Thus, the image will
carry the same information if it is stretched or repositioned regardless of the position and
presence. However, in audio, the two-dimensional data represents the frequency and time.
Therefore, if the audio is moved horizontally or vertically, the meaning of the audio can
changes. Furthermore, even the spatial features of the sound can change if we increase
or decrease the pitch. Therefore, the intentionally introduced invariance can change the
meaning, and the neural network will not perform well as it should perform on the trained
and augmented data.

In the image format, the extracted pixels can assume that the image belongs to the
same class, while in audio, this is not true. Audio is composed of periodic sounds that are
composed of frequency and harmonics. The harmonics are spaced apart from each other
according to their nature. The combination of these harmonics usually determines the
sound’s timbre. Suppose we assume from the physical point of view. In that case, the audio
played to the audience will examine the type of sound only, while images typically contain
a lot of parallel static information. The image classification depends on image features,
such as brightness and resolution, among other features.

The design of the fusion-based FDC framework can be justified in terms of the classifi-
cation effectiveness in terms of three perspectives: (1) Extracting features from the complex
audio data of the time and frequent by transformation from audio to images. (2) Designing
three specific deep neural networks to optimize their learning performance depending on
their unique and dominant features. (3) Optimizing the learning performance through a
fusion model by combining the three different models.

3.2. Data Augmentation

Deep learning relies on a large amount of data for more accurate classification. There-
fore, we used several augmentation techniques for better classification, out of which we
selected the best three methods, including background noise, time stretching, and pitch
shifting. We designed these techniques to address the problems in the lung and heart
audio classification.

We examined a range of alternative data augmentation techniques. Using a heuristic
approach to produce the ideal output, we investigated and validated the augmentation.
The experiments attempted to multiply the original file’s size tenfold and determined the
highest degree of performance. We required a consistent level of research across all models
and data, which is why the initial data set was tenfold augmented.

3.2.1. Noise Distortion

We considered adding random noise to the audio samples to avoid overfitting during
training. In this type, noise clips were randomly sampled [52] to be linearly mixed with the
input signal represented as y′. α is used to describe random weights along with specific
factors that are denoted by U as shown in Equation (1).

Random − Weights : α ∼U [0.001, 0.005]
Input − Signal : y′ ← (1 − α) · y + α · ynoise

(1)

3.2.2. Time Stretching

Scaling the audio data horizontally by some stretching factor such as a_st > 0 helps
in increasing the size of the data for efficient classification. We applied time stretch (st)
on the audio samples, which were later converted to images. It is to check if the meaning
of the data remains the same as image data does not lose the information but changing
the position of audio or slowing down the position as we generate the Spectrograms. We
considered four different types of time stretch factor n ∈ {0.5, 0.7, 1.2, 1.5}.
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3.2.3. Pitch Shifting

In this data augmentation technique, the audio samples’ pitch is either decreased or
increased by four values (semitones) [53]. We assume that with the pitch shifting factor as,
the artificial training data generated is Naug times larger than the original lung or heart
sound data. The duration of audio samples is kept constant, like the actual audio samples,
i.e., 10–90 s. For our experimentation, the value changed in semitones were in the interval
[−as, as] for each signal. Factors of pitch shift are n ∈ {−3.5,−2.5, 2.5, 3.5} semitones.

3.3. Feature Extraction

We used the two datasets, i.e., lung and heart sound (for six categories for each in the
lung dataset and the heart dataset). These datasets consist of sound clips that vary from 10 s
to 90 s. However, to incorporate the consistent data in making a more accurate prediction
model, we used the sliding window technique to make each clip of 3 s. The window size (i.e.,
3 s) for optimal learning was chosen using a heuristic based on the distribution of signals
from a small subset of the PCG input. Utilizing the spectrogram, MFCC, and chromagram
approaches, we retrieved audio characteristics from the given input. Metadata describing
the location of heart sounds or signal synchronization, as well as other insights, enabled the
effective extraction of the different properties gained by these extraction strategies on the
three-second PCG segments. The feature vectors of the extracted features for these three
types are converted as JPG images in the dimension of [128 × 128] using the CV2 image
and NumPy libraries.

3.3.1. Spectrogram Generation

We used the spectrogram to generate a visual representation of a signal in the time-
frequency domain. These are generated by the application of the short-time Fourier trans-
form (STFT) [54]. According to the theorem, a single Fourier analysis may not see a
nonstationary signal’s spectrum variation. The Fourier transform can be used to determine
the frequency and sequence of signals and their changes over time. Hence, the spectrogram
considers the stationary signal by computing the Fourier transform of the segmented signal
into slices. The spectrogram can be calculated as:

STFT f
x(t, f ) =

∫ ∞

∞
[x(t)w(t − τ)e−j2π f tdt (2)

where x(t) is the time-domain signal, τ is the time localization of STFT, and w(t − τ) is
a window function to cut and filter the signal. The length of the window function must
be selected and adjusted according to the signal’s length because it affects the time and
frequency resolution [55]. The window size was determined using a heuristic based on
the distribution of signals from a small subset of the input. To do this, we considered all
possible window sizes and other criteria for selecting audio features in STFT. It should be
noted, however, that the input data included just three seconds of each PCG signal. As a
result, the maximum permissible window size was 3. The spectrogram was converted into
a grayscale image, and the image will be used to generate a feature vector that will be feed
for deep learning.

The scaling process is applied to the spectrogram to expand the values range between
0 and 255 because the range of the spectrogram is usually comprehensive. The method of
scaling is done in a linear manner, which can be expressed as follows:

S(m, n) =
|Spec(m, n)|
max|Spec| × 255 (3)

where Spec(m, n) is the value of the spectrogram and S(m, n) is the expanded value from
a spectrogram.
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3.3.2. Mel-Frequency Cepstral Coefficient

The Mel-frequency Cepstral Coefficient (MFCC) coefficients are a set of discrete co-
sine transform (DCT) derived from a type of cepstral representation of the audio clip.
The frequency warping allows a better representation of sound by containing the difference
between the cepstrum and the Mel-frequency cepstrum. It computed through logarithmic
spectrum scale after it was transformed to the Mel scale [56] calculated as:

mel( f ) = 2595 log10

(
1 +

f
700

)
(4)

For the input signal y(n), an N-point discrete Fourier transformation (DFT) is given as:

Y(k) =
M

∑
n=1

y(n) · e
(−j2πnk

M

)
(5)

MFCCs are commonly derived as follows: first, we obtain the spectrum by taking the
Fourier to transform to a signal. Second, we map the spectrum onto the Mel scale and
then take a log-based transform of the Mel-frequency scaled spectrums. Finally, we take
the discrete cosine transform of the Mel-log-frequency scaled spectrums and amplitude
the spectrum.

3.3.3. Chromagram

Chromagram features or Chromagram are Pitch Class Profile whose pitches can be
meaningfully categorized. The Chromagram technology was applied to generate a robust
set of acoustic features by capturing harmonic and melodic characteristics of music in a
signal whose pitches can be classified in the categories of lung or heart sounds. Since the
heart and lung sounds have subtle differences in pitch, Chromagram has features that make
it a good source of lung and heart sound classification.

3.4. Classification Model
3.4.1. Overview of the FDC Model

Convolutional neural network (CNN) has been recognized as a popular and powerful
deep neural network model in audio and image classification applications. We developed
a fusion model based on CNN-based architecture for heart and lung disease classification.
Our model is a 2D CNN model composed of the input layer, convolutional 2D layer,
max-pooling layer, and fully connected layers. The invention is a fusion model, FDC-FS,
by combining multi-featured models, including FDC-1, FDC-2, and FDC-3. The fusion
was conducted on their final layer to append all model parameters. The three models
FDC-1, FDC-2, FDC-3, were trained concurrently and independently. After completing
the single model development process, we combined the models to generate the FDC-FS
fusion model. The general hyper-parameters are shown in Table 1. The detailed description
of each model in given in Sections 3.4.2–3.4.5. These four models’ (FDC-1, FDC-2, FDC-3,
FDC-FS) accuracy was summarized in Section 4.

There are two essential components in the design of multi-feature models with CNNs.
(1) the feature extractor collected features (Spectrogram, MFCC, and Chromagram) from the
audio signals and transformed the features into images to generate visual feature vectors.
(2) Each model (FDC-1, FDC-2, FDC-3) was uniquely designed to optimize learning for the
specific features (Spectrogram, MFCC, and Chromagram), respectively, which is composed
of multiple convolutional and pooling layers, activation, and fully connected layers with
several hidden units. Finally, the fusion model was built by composing the features from
these three models. After the models were trained, the visual feature vectors of the input
signals were classified by the models into their appropriate categories.
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Table 1. FDC Model Hyper-parameters.

Model. Batch Size # of Layers # of Hidden Layers # of Epochs Dropout

Original Data

FDC-1 64 3 2 50 0.5
FDC-2 64 2 2 50 0.5
FDC-3 64 8 1 50 0.5

FDC-FS 64 13 3 50 0.5

Augmented Data

FDC-1 128 3 2 30 0.5
FDC-2 128 2 2 30 0.5
FDC-3 128 8 1 30 0.5

FDC-FS 128 13 3 30 0.5

The mathematical form of the convolutional layers is given in Equations (6) and (7)

[xl
i,j,k = ∑

a
∑
b

∑
c

w(l−1, f )
i,j,k y(l−1)

i+a,j+b,k+c + bias f ] (6)

[yl
i,j,k = σ(x(l)i,j,k)] (7)

The output layer is represented by yl
i,j,k where as the 3-dimensional input tensor is

denoted by i, j, k. The weights for the filters are denoted by w(l)
i,j,k and σ(x(l)i,j,k) describes the

sigmoid function for linear activation. The fully connected is the final layer represented by
Equations (8) and (9).

[x(l)i ∑
j

wl−1
i,j yl−1

j + biasl−1
j ] (8)

[yl
i,j,k = σ(xl

i,j,k)] (9)

Our fusion model FDC-FS is composed of three different models, such as FDC-1,
FDC-2, and FDC-3. They consist of the convolutional layers enclosed by the max pool layer,
followed by fully connected layers, including dropout, batch Normalization, rectified linear
units (ReLU), and LeakyReLU. During the extraction of features, we used the window size
and hop size of 23 ms. As the sound clips vary between 3 and 5 s, that is why we kept the
extraction to 3 s to make every bit of the sound clip usable. In addition, we reshaped the
input taken from the sound clips to X ∈ R128×128 shape. Further, we sent these reshaped
features to the classifier to predict heart or lung diseases.

3.4.2. FDC-1 Model

The FDC-1 model is designed for the classification based on the image feature vector
of the three audio features (Spectrogram, MFCC, and Chromagram) for the given datasets,
using convolutional neural network architecture with a total of five layers. Among the
five layers, 3 are convolutional layers, and 2 are dense layers. We considered rectified
linear units (ReLU) as the activation function between layers, a max-pooling is also applied,
and we also used dropout in different layers to avoid overfitting. The total number of
trainable parameters based on the five layers of architecture is 241,174 (0.24 M). The hyper-
parameters are shown in Table 2.

The first layers of the FDC-1 model consist of 24 filters with a 5 × 5 receptive field.
The layer is also followed by a (4 × 2) strided max-pooling function. The activation function
used in this layer is rectified linear units (ReLU). The second layer of FDC-1 is composed
of 48 filters with 5 × 5 receptive files. It is followed by 4 × 2 strided Max Pooling and
ReLU activation. The padding for these layers is kept as “valid”. The third layer of FDC-1
consists of 48 filters with 5 × 5 receptive fields. The layers have “valid” padding, which
is followed by the ReLU activation function. After the activation, the output is flattened,
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and the dropout of factor “0.5” is applied to avoid overfitting the output from layer to layer.
The fourth layer is the first dense layer which is also called the hidden layer. It consists of
64 hidden units followed by ReLU activation and dropout rate of 0.5 to avoid overfitting
the output result to the next layer. The fifth layer is a final dense layer that consists of
output units. The output units are always equal to the number of classes used in the dataset.
The last layer is followed by the “Softmax” activation function.

Table 2. FDC-1 Model Hyper-parameters.

Layer (Type) Output Shape Param #

Conv2D (None, 124, 124, 24) 624

MaxPooling2D (None, 31, 62, 24) 0

Activation (None, 31, 62, 24) 0

Conv2D (None, 27, 58, 48) 28,848

MaxPooling2D (None, 6, 29, 48) 0

Activation (None, 6, 29, 48) 0

Conv2D (None, 2, 25, 48) 57,648

Activation (None, 2, 25, 48) 0

Flatten (None, 2400) 0

DropOut (None, 2400) 0

Dense (None, 64) 153,664

Activation (None, 64) 0

DropOut (None, 64) 0

Dense (None, 6) 650

Activation (None, 6) 0

Total Parameters: 241,174

Trainable Parameters: 241,174

Non-Trainable Parameters: 0

3.4.3. FDC-2 Model

The FDC-2 model is designed for classification based on the image feature vector of the
three audio features (Spectrogram, MFCC, and Chromagram) for the given datasets. It is
based on a convolutional neural network architecture consisting of 4 layers, including two
convolutional layers, two hidden layers, and an L2 regularizer on the first layers to reduce
likelihood and bias among the inputs. In addition, this model consists of Max Pooling to
reduce unwanted features for training, dropout to avoid overfitting, ReLU, and Softmax
activation. Feature vector flattening is also considered to convert 2-dimensional features to
1-dimensional features. The total number of trainable parameters based on the four layers
of architecture is 879,430 (0.87 M). The overall hyper-parameters are shown in Table 3.

In the first layers of FDC-2, the layers take 32 filters with 3 × 3 receptive files. The first
layers also consist of the L2 regularizer norm with the value of “0.0005”. Then, Strided Max
Pooling of 4 × 2 follows it. Finally, ReLU is used as an activation function. FDC-2 takes
48 filters with 3 × 3 receptive filed and “valid” padding in the second layer. It is pursued
by the ReLU activation function and Max Pooling of 4 × 2. After all the operations above,
the 2-Dimensional input is flattened to 1-Dimensional and passed on to the hidden layers,
i.e., dense layers. A dropout follows the flatten with a rate of 0.5 to avoid overfitting the
input. The third layer is the first hidden (dense) layer of FDC-2 with hidden units of 64,
followed by ReLU activation and dropout with a rate of 0.5. The fourth layer is a dense
layer consisting of the output units, which is equal to the number of classes available in the
dataset. The final activation function is Softmax.
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Table 3. FDC-2 Model Hyper parameters.

Layer (Type) Output Shape Param #

Conv2D (None, 126, 126, 32) 320

Activation (None, 126, 126, 32) 0

MaxPooling2D (None, 31, 63, 32) 0

Conv2D (None, 29, 61, 64) 18,496

Activation (None, 29, 61, 64) 0

MaxPooling2D (None, 7, 30, 64) 0

Flatten (None, 13,440) 0

Dropout (None, 13,440) 0

Dense (None, 64) 860,224

Activation (None, 64) 0

Dropout (None, 64) 0

Dense (None, 6) 650

Activation (None, 6) 0

Total Parameters: 879,430

Trainable Parameters: 879,430

Non-Trainable Parameters: 0

3.4.4. FDC-3 Model

The FDC-3 model is designed for the classification based on the image feature vector
of the three audio features (Spectrogram, MFCC, and Chromagram) for the given datasets,

focused more on in-depth training and eventually reducing the number of trainable
parameters. This model is composed of 8 convolutional layers and one dense layer. The lay-
ers consist of padding, ReLU, softmax activation, Max Pooling, Global Average Pooling,
Batch Normalization, and dropout. The Batch Normalization is used to train the model
intensely, and in return, it standardizes the input in a layer for each mini-batch. Hence, it
has a perfect effect on the learning process, reducing the number of trainable parameters.
The total number of trainable parameters based on the nine-layer architecture given below
is 362,214 (0.36 M). FDC-3 hyper-parameters are shown in Table 4 in details.

The first and second layers of FDC-3 have 32 filters with 3 × 3 receptive fields and
some padding and ReLU as activation function. Both layers also consist of 2 × 2 strided
Max Pooling. Batch Normalization follows both layers to perform deep training and reduce
the trainable parameters. However, the second layer is following by a dropout of 0.25 to
overfitting the input to the next layer. The third-to-sixth layers of FDC-3 are the same as
the first and second layers, but the third-to-sixth layers take 64 filters with 3 × 3 receptive
fields. They use the same strided max-pooling, padding, activation, dropout, and Batch
Normalization for deep training. The seventh and eighth layers of FDC-3 take 128 filters
with 3 × 3 receptive files, followed by the same padding and ReLU activation function.
Batch Normalization follows the activation function in both layers. However, the eighth
layer is followed by the dropout of rate 0.25. Finally, the last convolutional layer is also
followed by Global Average Pooling before the input is ready for output classification.
The ninth layer is the final and only the dense layer in this architecture, consisting of output
units equal to the number of classes in the dataset.
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Table 4. FDC-3 Model Hyper-Parameters.

Layer (Type) Output Shape Param #

Conv2D (None, 128, 128, 32) 320

BatchNormalization (None, 128, 128, 32) 128

Conv2D (None, 126, 126, 32) 9248

BatchNormalization (None, 126, 126, 32) 128

MaxPooling2D (None, 63, 63, 32) 0

Dropout (None, 63, 63, 32) 0

Conv2D (None, 63, 63, 32) 18,496

BatchNormalization (None, 63, 63, 32) 256

Conv2D (None, 61, 61, 64) 36,928

BatchNormalization (None, 61, 61, 64) 256

MaxPooling2D (None, 31, 31, 64) 0

Dropout (None, 31, 31, 64) 0

Conv2D (None, 31, 31, 64) 36,928

BatchNormalization (None, 31, 31, 64) 256

Conv2D (None, 29, 29, 64) 36,928

BatchNormalization (None, 29, 29, 64) 256

MaxPooling2D (None, 15, 15, 64) 0

Dropout (None, 15, 15, 64) 0

Conv2D (None, 15, 15, 64) 73,856

BatchNormalization (None, 15, 15, 64) 512

Conv2D (None, 13, 13, 128) 147,584

BatchNormalization (None, 13, 13, 128) 512

MaxPooling2D (None, 7, 7, 128) 0

Dropout (None, 7, 7, 128) 0

GlobalAveragePooling (None, 128) 0

Dense (None, 6) 1290

Activation (None, 6) 0

Total Parameters: 363,366

Trainable Parameters: 362,214

Non-Trainable Parameters: 1152

3.4.5. FDC-FS Model

The FDC-FS model is a fusion model resulting from transfer learning from all three
models (FDC-1, FDC-2, FDC-3). Its architecture is composed of the softmax activation and
dense layers consisting of the output units equal to the number of classes in the dataset
at the last layer. Therefore, FDC-FS is composed of 13 convolutional layers and 3 dense
layers model, more specifically three convolutional layers from FDC-1, two convolutional
layers from FDC-2, eight convolutional layers from FDC-3, one dense layer from FDC-1,
and one dense layer from FDC-2, and a final dense layer of an output unit. The FDC-FS’s
total trainable parameters for six classes are 1,482,806 (1.4 M). Table 5 shows the hyper-
parameters of the final convolutional architecture, which is a fusion of our novel three
architectures shown in Figure 4.
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Figure 4. Overall FDC-FS Architecture Composed of FDC-1, FDC-2, and FDC-3.

Table 5. FDC-FS Model Hyper-Parameters.

Layer (Type) Output Shape Param #

Input (None, 128, 128, 1) 0

Conv2D (None, 128, 128, 32) 320

BatchNormalization (None, 128, 128, 32) 128

Conv2D (None, 126, 126, 32) 9248

BatchNormalization (None, 126, 126, 32) 128

MaxPooling2D (None, 63, 63, 32) 0

DropOut (None, 63, 63, 32) 0

Conv2D (None, 63, 63, 64) 18,496

BatchNormalization (None, 63, 63, 64) 256

Conv2D (None, 61, 61, 64) 36,928

BatchNormalization (None, 61, 61, 64) 256

MaxPooling2D (None, 31, 31, 64) 0

DropOut (None, 31, 31, 64) 0

Conv2D (None, 124, 124, 24) 624

Conv2D (None, 31, 31, 64) 36,928

MaxPooling2D (None, 31, 62, 24) 0

BatchNormalization (None, 31, 31, 64) 256

Activation (None, 31, 62, 24) 0

Conv2D (None, 126, 126, 32) 320

Conv2D (None, 29, 29, 64) 36,928

Conv2D (None, 27, 58, 48) 28,848

Activation (None, 126, 126, 32) 0
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Table 5. Cont.

Layer (Type) Output Shape Param #

BatchNormalization (None, 29, 29, 64) 256

MaxPooling2D (None, 6, 29, 48) 0

MaxPooling2D (None, 31, 63, 32) 0

MaxPooling2D (None, 15, 15, 64) 0

Activation (None, 6, 29, 48) 0

Conv2D (None, 29, 61, 64) 18,496

DropOut (None, 15, 15, 64) 0

Conv2D (None, 2, 25, 48) 57,648

Activation (None, 29, 61, 64) 0

Conv2D (None, 15, 15, 128) 73,856

Activation (None, 2, 25, 48) 0

MaxPooling2D (None, 7, 30, 64) 0

BatchNormalization (None, 15, 15, 128) 512

Flatten (None, 2400) 0

Flatten (None, 13,440) 0

Conv2D (None, 13, 13, 128) 147,584

DropOut (None, 2400) 0

DropOut (None, 13,440) 0

BatchNormalization (None, 13, 13, 128) 512

Dense (None, 64) 153,664

Dense None, 64) 860,224

MaxPooling2D (None, 7,7, 128) 0

Activation (None, 64) 0

Activation (None, 64) 0

DropOut (None, 7, 7, 128) 0

DropOut None, 64) 0

DropOut None, 64) 0

GlobalAveragePoolinh2D (None, 128) 0

Concatenate (None, 256) 0

Dense (None, 6) 1542

Total Parameters: 1,483,958

Trainable Parameters: 1,482,806

Non-Trainable Parameters: 1152

4. Result and Evaluation

We conducted comprehensive experiments for the FDC models using the lung and
heart sound datasets [27,57]. We now present the results obtained from the experiments
with the three FDC models and the fusion model (FDC-FS) using the original and aug-
mented datasets of the lung and heart datasets. The results includes the accuracy, loss,
and class-wise accuracy for original and augmented datasets. The experimental results
have been obtained as compared to the state-of-the-art methods.
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4.1. Experimental Setup

We conducted most of the experimentations using Google research collaboratory with
12 GB NVIDIA Tesla K80. For the data augmentation and feature extraction, we used the
NVIDIA GeForce ® GTX 1080 Ti, packed with 11 Gbps GDDR5X memory and an 11 GB
frame buffer. The number of epochs was set at 50 while avoiding overfitting, and a batch
size of 64 was considered. However, for the training for the augmented datasets, the epochs
were set at 30 with a 128 batch.

The model training was set to 80% training and 20% testing. From the 80% training
data, we further split it into 80% training and 20% validation (64% training, 16% validation,
20% testing). This is to note here that testing data are not a subset of training data. After the
data were split, the testing data was never seen by the previous model. We reported
classification accuracies for training and testing. The class-wise accuracy was also reported
for four different models (FDA-1, 2, 3 & FS), two types of data (original and augmented),
and for two different datasets (lung and heart sound). We observed that FDC-FS performed
the best compared to others.

4.2. Dataset

Heart Sound Dataset: The heart dataset consists of 656 audio recordings for different
heart classes such as Extrastole, Murmur, Noisy Murmur, Noisy Normal, Normal, Unlabeled test.
The author of the dataset [57] made this dataset public for two challenges, using an iPhone
app and a digital stethoscope. The initial dataset has both clean and noisy data without
any data synthesis. To increase the accuracy of the data, data augmentation techniques
were added to the initial heard sound samples. After applying the data augmentation to
the initial data, the total number of files increased to 7216 as shown in Table 6.

Lung Sound Dataset: The research team from Greece and Portugal created the lung
dataset [27]. There are 920 annotated recordings, ranging from 10 s to 90 s (the total of
5.5 h), obtained from 126 patients using a digital stethoscope. Unfortunately, the complete
dataset was not released. Therefore, the publicly available dataset used for lung sound
classification modeling is mainly limited in data amount and sound quality. To overcome
the data issues, we applied two approaches to balance the dataset: (1) The “Synthetic
Minority Oversampling Technique (SMOTE)” replicates the same sample several times to
balance the dataset with other classes. Most of the state-of-the-art research use SMOTE in
their works. The second approach is to consider weighted average as our testing accuracy
for the models. We further applied data augmentation techniques to generate synthesized
data. Table 7 shows the amount of the original and augmented data. We removed the
Asthma category having only a single recording from the dataset. The number of the original
recordings was 919 for six categories (Bronchiectasis, COPD, Health, LRTI, Pneumonia, URTI)
while the number of augmented recordings are 10,109.

Figure 5 shows the t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization
for heart and lung sound dataset. It can be seen that the Lung dataset is very dispersed,
and classes are mixed up with each other.

Table 6. Heart Sound Dataset: Original and Augmented Data.

ID Category Ori. Data Aug. Data

1 Extra Systole 46 506
2 Normal 200 2200
3 Noisy Normal 120 1320
4 Murmur 66 726
5 Noisy Murmur 29 319
6 Unlabelled Test 195 2145

Total 656 7216
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Table 7. Lung Sound Dataset: Original and Augmented Data.

ID Category Ori. Data Aug. Data

1 Bronchiectasis 29 319
2 COPD 785 8635
3 Health 35 385
4 LRTI 2 22
5 Pneumonia 37 407
6 URTI 31 341

Total 919 10,109

Figure 5. t-SNE Visualization: Heart Sound Dataset and Lung Sound Dataset.

4.3. Classification Results and Evaluations

Results on Original Lung Dataset: Based on the setup explained above, we obtained
the accuracy performance for the four models (FDC-1, FDC-2, FDC-3, and FDC-FS). FDC-FS
model obtains the highest accuracy model in all three feature cases. Specifically, the highest
accuracy is achieved by Spectrogram 97%, while MFCC reported accuracy of 91% and Chro-
magram reported accuracy of 95%. Table 8 offers the accuracy of the lung original dataset. The
classification results for the original lung dataset are shown in Figure 6. Class-wise accuracy
for all models based on the original lung dataset is shown further on in this paper.

Figure 6. Accuracy for Lung/Heart Condition Detection (Original Dataset).

Results on Original Heart Dataset: Our experimental results are based on 50 epochs
and 64 batch sizes and the categorical cross-entropy for the data validation. The average
times taken for training the model were from 7 s to 1 min for the FDC models. Table 8 offers
the accuracy of the heart original dataset. The classification results for the original heart
dataset are shown in Figure 6. During the training and testing, we observed that FDC-FS
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performed the best compared to all others; specifically, we obtained the highest accuracy
of 93% for MFCC. For the individual feature-model evaluation, the highest accuracy of
Spectrogram was 85% with FDC-1; for MFCC, it was 91% with FDC-2. Chromagram was
the accuracy of 89% with FDC-1 and FDC-2.

Table 8. Lung & Heart Condition Detection with Original Data (Testing Average Accuracy).

Lung Sound Classification Heart Sound Classification

Features FDC-1 FDC-2 FDC-3 FDC-FS FDC-1 FDC-2 FDC-3 FDC-FS

Spectrogram 91% 87% 84% 97% 85% 81% 73.5% 89%

MFCC 90% 93% 83% 91% 89% 91% 89% 93%

Chromagram 86% 83% 89% 95% 89% 89% 84% 92%

Results on Augmented Lung Dataset: We achieved very impressive accuracy from
the experiments with the augmented lung dataset that outperformed all state-of-the-art
research. The highest accuracy was conducted by the FDC-FS model, which is the fusion of
FDC-1, FDC-2, and FDC-FS. The weighted accuracy for the FDC-FS model for Spectrogram
is 99.1%, the accuracy of 99% for MFCC, and 98.4% for Chromagram. Notably, it has been
improved approximately 2%, 8%, 3% in Spectrogram, MFCC, and Chromagram, compared
to the accuracy performance with the original data. The results for the augmented lung
dataset are shown in Table 9 and Figure 7. The learning and validation graphs for learning
and loss are shown in Figure 8.

Figure 7. Accuracy for Lung/Heart Condition Detection (Augmented Dataset).

Figure 8. Lung Condition Classification (Accuracy vs. Loss): The Fusion Network Model (FDC-FS)
was Evaluated with Three Features: (a) Spectrogram, (b) MFCC, (c) Chromagram.
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Table 9. Lung & Heart Condition Detection with Original Data (Testing Average Accuracy).

Lung Sound Classification Heart Sound Classification

Features FDC-1 FDC-2 FDC-3 FDC-FS FDC-1 FDC-2 FDC-3 FDC-FS

Spectrogram 99% 98.6% 98.3% 99.1% 93% 92% 95.5% 97%

MFCC 99.3% 98% 98.2% 99% 95% 93% 96% 96%

Chromagram 97% 97% 95% 98.4% 94% 93% 95% 97%

Results on the Augmented Heart Dataset: For the augmented heart data experiments,
we observed that FDC-2 obtained the shortest training time of 42 s for MFCC, and FDC-FS
took the longest time of 4 min and 11 s for Chromagram. The FDC-FS model obtained
the highest accuracy of 97% with Spectrogram and Chromagram and 96% with MFCC.
From the individual model evaluation, FDC-3 obtained the highest accuracy of 96% with
MFCC. It is because the FDC-3 model is bigger/deeper compared to the other two models.
The learning graphs of the heart dataset for the FDC-FS model are shown in Figure 9.
The overall performance of the models is given in Table 9.

Figure 9. Heart Condition Classification (Accuracy vs. Loss): The Fusion Network Model (FDC-FS)
was Evaluated with Three Features: (a) Spectrogram, (b) MFCC, (c) Chromagram.

Results on Class-wise Accuracy for Lung and Heart Datasets: Class-wise accuracy
for all models based on the augmented lung dataset is also shown in Figure 10 and Table 10.
We obtained the highest class-wise accuracy for the COPD category based on the Spectro-
gram and MFCC features. For the class-wise accuracy, the highest accuracy is reported by
the FDC-FS model as shown in Figure 11 and Table 11. The heart data were unbalanced
but showed consistent data patterns and characteristics among categories. Thus, as the
average accuracy and weighted average accuracy were similar, we constantly reported the
weighted accuracy strategy. As the heart data are similar to the musical dataset, MFCC
and Chromagram performed better than Spectrogram. On the other hand, Spectrogram
performed very well in FDC-FS for both the heart and lung datasets. Our results are very
competitive even with the state-of-the-art approaches, even with a small and reduced
number of measurements.
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Figure 10. Class Wise Accuracy for Lung Condition Detection.
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Figure 11. Class Wise Accuracy for Heart Condition Detection.
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Table 10. Class Wise Accuracy for Lung Condition Detection.

Model Feature Class Bronchiectasis COPD Healthy LRTI Pneumonia URTI W. AVG

FDC-1

Spec.
Ori. 92% 100% 67% 87% 87% 97% 91%

Aug. 81 % 100 % 94 % 86 % 100 % 88 % 99%

MFCC
Ori. 100% 89% 100% 76% 95% 88% 90%

Aug. 91 % 100 % 95 % 100 % 94 % 91 % 99.3%

Chroma
Ori. 79% 83% 100% 74% 86% 93% 86%

Aug. 84 % 100 % 71 % 100 % 81 % 77 % 97%

FDC-2

Spec.
Ori. 73% 78% 62% 92% 84% 95% 87%

Aug. 91 % 99 % 86 % 100 % 100 % 98 % 98.6%

MFCC
Ori. 78% 88% 100% 71% 100% 96% 93%

Aug. 81% 100% 88% 94% 92% 77% 98%

Chroma
Ori. 100 % 80 % 40% 75% 94% 80% 83%

Aug. 85 % 100 % 80 % 75 % 88 % 77 % 97%

FDC-3

Spec.
Ori. 86% 64% 100% 79% 100% 83% 84%

Aug. 94 % 99 % 100 % 100 % 100 % 90 % 98.3%

MFCC
Ori. 67% 85% 60% 77% 95% 79% 83%

Aug. 69 % 100 % 59 % 50 % 77 % 74 % 98.2%

Chroma
Ori. 86% 87% 80% 88% 98% 79% 89%

Aug. 78 % 97 % 78 % 100 % 82 % 70 % 95%

FDC-FS

Spec.
Ori. 100% 100% 100% 99% 94% 93% 97%

Aug. 95 % 100 % 90 % 100 % 100 % 96 % 99.1%

MFCC
Ori. 75% 82% 67% 87% 100% 92% 91%

Aug. 92 % 100 % 96 % 80 % 93 % 100 % 99%

Chroma
Ori. 100% 100% 100% 97% 96% 89% 95%

Aug. 90 % 100 % 88 % 100 % 89 % 91 % 98.4%

Table 11. Class Wise Accuracy for Heart Condition Detection.

Model Feature Class Extrastole Murmur Noisy Murmur Noisy Normal Normal Unlabeled W. AVG

FDC-1

Spec.
Ori. 69% 89% 50% 97% 85% 79% 85%

Aug. 94% 88% 87% 93% 95% 95% 93%

MFCC
Ori. 83% 79% 83% 75% 98% 87% 89%

Aug. 99% 93% 96% 96% 98% 90% 95%

Chroma
Ori. 100% 67% 78% 100% 97% 92% 89%

Aug. 95% 94% 95% 93% 99% 89% 94%

FDC-2

Spec.
Ori. 75% 55% 75% 90% 89% 76% 81%

Aug. 93% 91% 89% 94% 93% 91% 92%

MFCC
Ori. 75% 69% 67% 92% 100% 93% 91%

Aug. 93% 91% 77% 96% 96% 90% 93%

Chroma
Ori. 88 % 71 % 86% 78% 93% 92% 89%

Aug. 91% 90% 83% 96% 95% 90% 93%

FDC-3

Spec.
Ori. 82% 70% 75% 81% 70% 68% 73%

Aug. 97% 96% 100% 99% 96% 98% 92%

MFCC
Ori. 67% 62% 88% 96% 98% 82% 89%

Aug. 95% 96% 100% 96% 97% 95% 96%

Chroma
Ori. 88% 100% 75% 66% 84% 89% 84%

Aug. 97% 96% 96% 97% 100% 96% 95%

FDC-FS

Spec.
Ori. 94% 78% 100% 97% 83% 84% 89%

Aug. 99% 87% 96% 95% 96% 94% 97%

MFCC
Ori. 67% 82% 100% 92% 96% 95% 93%

Aug. 97% 94% 96% 97% 98% 92% 96%

Chroma
Ori. 67% 100% 100% 88% 92% 98% 92%

Aug. 94% 98% 98% 96% 96% 91% 97%
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5. Comparison with State-of-the-Art Research

For the comparative evaluation of our frameworks, we considered the state-of-the-art
research published in reputed journals and conferences between 2018 and 2021, commonly
used benchmark datasets from the ICBHI [27] and the heart challenge [57]. First, we
conducted a comparative evaluation of the proposed framework (FDC) with different
lung sound classification approaches [32,35–38,40]. Second, we conducted a comparative
evaluation of the proposed framework (FDC) with different heart sound classification
approaches [41–43,45,46,58–60].

5.1. Lung Sound Classification

A comprehensive evaluation of the lung sound classification models has been con-
ducted regarding feature selection and representation, network architecture design, ac-
curacy, and the number of trainable parameters on the lung and heart sound datasets.
The best state-of-the-art approach for lung classification that has obtained the highest
accuracy of 98.20% is by [60]. However, they have mixed the ICHBI dataset with their own
recorded sounds from a local hospital, and another factor is that they are using shallow
learning models. Ref. [38] proposed methodology obtained 98.70% accuracy, their number
of trainable parameters was 3.8 M. To train their model, they needed more computational
power and time. Similarly, ref. [35] used different features using the ResNet-50 model,
which is a massive model with over 23 M trainable parameters. It can be seen from Table 12
that our model has shallow trainable parameters, i.e., 1.48 M, which is the lowest as com-
pared to all state-of-the-art research. Thus, it requires very minimum resources (we mainly
used CoLab for training and testing) and low epochs of only 50 for training our models.
The accuracy performance is also slightly better than other approaches. FDC model also
achieved the highest accuracy of approximately 99.1%. The overall comparison of our
model performance for the lung sound classification with state-of-the-art research is shown
in Table 12.

Table 12. State-of-the-art Lung Classification Models.

Work Method Network Class# Data Para# Aug Feature Results

Dalal
(2018) [32] Ensemble SVM, KNN,

GMM, CNN 7 R.A.L.E data NA � MFCC, LBP ACC: 95.56%

Hai
(2019) [35] NA ResNet50 3 489 +23 M Sp ACC: 98.79%

Fatih
(2020) [36] Ensemble CNN 4 920 NA

Sp Images,
Deep

Features
ACC: 71.15%

Demir
(2020) [37] NA CNN, SVM 4 6898 138 M Sp ACC: 65.9%

Demir (2020)
[37]

Transfer
learning CNN, SVM 4 6898 138 M Sp Images ACC: 63.09%

Samiul
(2020) [38] NA CNN 6 917 3.8 M � Hybrid

Scalogram 98.70%

Luay
(2021) [40] Ensemble SVM, KNN,

DT, KNN 6 308/1176 NA Entropy
features ACC: 98.20%

FDC-FS
(Ours) Fusion DCNN 6

Original
(Aug-

mented): 919
(10,109)

1.48 M � SP, MFCC,
CH ACC: 99.1%

5.2. Heart Sound Classification

Similarly, we conducted a comprehensive evaluation of the heart sound classification
models. Based on the number of parameters for FDC-1, the total trainable parameters
are 0.24 M, and we obtained an accuracy of 93%. In contrast, for FDC-3, we received an
accuracy of 96%, and the total parameters are 0.36 M. After applying the fusion technique,
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the parameters increased to 1.48 M with an accuracy of 97%. However, our accuracy for
the fused model is near that of the state-of-the-art (approximately 98%). Still, some works
did not report the trainable parameters of their proposed models [46]. Furthermore, they
used the dataset with additional samples equally balanced. Therefore, it can be assumed
that their trainable parameters may slightly be higher due to their network architecture of
paralleling recurrent convolutional neural network (CNN), i.e., input shape, the number
of layers, max-pooling, strides, the output classification size, etc. However, our accuracy
is comparable to Shuvo et al. [38], whose accuracy is 97% with a model with 0.32 M
trainable parameters. The overall comparison of our model performance for the heart
sound classification with state-of-the-art research is shown in Table 13.

Table 13. State-of-the-art Heart Classification Models.

Work Method Network Class# Data Para# Aug Features Results

Potes
(2016) [41] Ensemble CNN 2

Normal
(Abnormal):
2575 (665)

NA MFCC ACC: 85%

Zhang
(2017) [42] NA CNN+SVM 3/4 Heart

sounds 1 & 2 NA SP Precision:
77%/71%

Bozkurt
(2018) [43] NA CNN 4

PhysioNet:
Abnormal
(Normal)

NA � MFCC,
Mel-SP ACC: 81.50%

Wu
(2019) [58] Ensemble CNN 2

Normal
(Abnormal):
2575 (665)

61 M Sp, Mel-SP,
MFCC ACC: 86%

Shu
(2020) [45] NA WaveNet 5 1000 0.32 M Multiple

features
Training

ACC: 97%

Xiao
(2020) [59] Transition 1D CNN 4 PhysioNet:

3153 0.19M
Raw signal
w/t band

filter
ACC: 93%

Muqing
(2020) [46] Concat. CRNN,

PRCNN 4 PhysioNet:
3240 NA MFCC ACC: 98%

Koike
(2020) [61] Pre-train. PANN 2 PhysioNet: 80.7M NA Log-Mel UAR: 89.7%

Mehmat
(2021) [60] NA 1D CNN 4 PhysioNet NA LBP+LTP ACC: 91%

FDC-FS
(Ours) Fusion DCNN 6

Original
(Aug-

mented): 656
(7216)

1.48 M � SP, MFCC,
CH ACC: 97%

5.3. Discussion

Our proposed framework demonstrated superior performance compared to the state-
of-the-art research both in lung and heart sound classification. We summarize the primary
reasons had such good performance in lung or heart condition detection and why it
consistently achieves such high performance. (i) Selection of compelling audio features to
maximize the characteristics of lung or heart sounds. (ii) Application of data augmentation
techniques effectively to overcome the audio data issues such as the low quality and
unbalanced datasets. (iii) Transformation of the selected audio features (Spectrogram,
MFCC, and Chromagram) to visual feature vectors to maximize the learning performance
from deep learning. (iv) Design three unique deep neural network models (FDC-1, FDC-2,
FDC-3) to discover new image patterns of audio features involved in a specific disease in
lung or heart domains. (v) The fusion model (FDC-FS) is based on the transfer learning from
the three different models (FDC-1, FDC-2, FDC-3) from three unique features (Spectrogram,
MFCC, and Chromagram) in the lung or heart sound domains.

The limitations of the proposed framework are (i) The proposed framework performs
well in two domain lung and heart sound domains; however, there is a lack of generalization.
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Nevertheless, we will investigate well enough to offer scientific evidence to explain why
some models or specific features are better than others. (ii) We will develop suitable
pattern mining methods and practices for automatic network design according to the given
datasets. (iii) We will incorporate more effective transfer learning or subsequent knowledge
distillation through the fusion networks that might be further optimized for the excellent
balance between conciseness (fusion) and detail (specific features). (iv) We will improve
pre-processing or data augmentation methods to help to overcome the data issues (noise
and data imbalance), which are common in medical research, resulting in poor performance
and sometimes bias in network design and parameter estimates. (v) We maintained the
size of the floating window constant to maximize model efficiency. However, we can take
into account the size of the floating window and then compare the output of each model.

Time is critical for our inquiry, as time-frequency images may vary between subjects
due to subject-specific features and heart rate variability. As previously stated, a spec-
trogram is a graphical representation of a time-frequency domain signal. The signal’s
frequency and sequence, as well as its temporal variations, were determined using Short
Time Fourier transform (STFT). Using STFT, we were able to construct characteristics that
could be used to discriminate across conditions but were unaffected by subject variance.
Rather of concentrating exclusively on individual differences, we sought to discover broad
characteristics that may help in correct categorization. Temporal elements are decreased
when the medium changes from audio to video. By and large, our technique achieved
exceptional results for a variety of reasons, including the successful extraction of audio
features, their transfer to visuals, and the novel design of a deep neural network for the
visual representation of heart and lung disorders.

6. Conclusions

In this paper, we developed the feature-based fusion network FDC-FS for the heart
and lung disease classification. We used the two publicly available sound datasets with
different numbers of samples and class imbalance ratios for this study. In addition, we
performed our experimentation with the original dataset to compare our results with the
current state-of-the-art research. The experimental results confirmed the superiority of
FDC-FS that is a fusion network by combines the three unique models, i.e., FDC-1, FDC-
2, and FDC-3, built with the images of specific audio features of Spectrogram, MFCC,
and Chromagram. The accuracy reported for the lung dataset is 97% for Spectrogram, 91%
for MFCC, and 95% for Chromagram. In contrast, for the heart data, the accuracy reported
is 89% for Spectrogram, 93% for MFCC, and 92% for Chromagram.

We further improved the results by applying the data augmentation techniques to the
audio clips rather than the images. We used three types of audio augmentation techniques,
i.e., noise, pitch shifting, and time stretching, carefully selecting the ranges of values. As a
result, the accuracy reported for the augmented lung dataset is 99.1% for Spectrogram, 99%
for MFCC, and 98.4% for Chromagram. For the heart dataset, the reported accuracy is based
on the accuracy of the dataset% augmentation is 97% for Spectrogram, 96% for MFCC,
and 97% for Chromagram. We will further apply the proposed models and techniques
to more various datasets. Moreover, we will take our research toward the multi-tasks
classification by combining lung and heart models. Finally, we will extend the work for
interpretable deep learning and explainable AI by providing evidence of unique patterns
discovered for specific conditions.
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Abstract: Prostate cancer, which is also known as prostatic adenocarcinoma, is an unconstrained
growth of epithelial cells in the prostate and has become one of the leading causes of cancer-related
death worldwide. The survival of patients with prostate cancer relies on detection at an early, treat-
able stage. In this paper, we introduce a new comprehensive framework to precisely differentiate
between malignant and benign prostate cancer. This framework proposes a noninvasive computer-
aided diagnosis system that integrates two imaging modalities of MR (diffusion-weighted (DW) and
T2-weighted (T2W)). For the first time, it utilizes the combination of functional features represented by
apparent diffusion coefficient (ADC) maps estimated from DW-MRI for the whole prostate in combi-
nation with texture features with its first- and second-order representations, extracted from T2W-MRIs
of the whole prostate, and shape features represented by spherical harmonics constructed for the le-
sion inside the prostate and integrated with PSA screening results. The dataset presented in the paper
includes 80 biopsy confirmed patients, with a mean age of 65.7 years (43 benign prostatic hyperplasia,
37 prostatic carcinomas). Experiments were conducted using different well-known machine learning
approaches including support vector machines (SVM), random forests (RF), decision trees (DT), and
linear discriminant analysis (LDA) classification models to study the impact of different feature sets
that lead to better identification of prostatic adenocarcinoma. Using a leave-one-out cross-validation
approach, the diagnostic results obtained using the SVM classification model along with the combined
feature set after applying feature selection (88.75% accuracy, 81.08% sensitivity, 95.35% specificity,
and 0.8821 AUC) indicated that the system’s performance, after integrating and reducing different
types of feature sets, obtained an enhanced diagnostic performance compared with each individual
feature set and other machine learning classifiers. In addition, the developed diagnostic system
provided consistent diagnostic performance using 10-fold and 5-fold cross-validation approaches,
which confirms the reliability, generalization ability, and robustness of the developed system.

Keywords: prostate cancer; MRI; texture analysis; shape features; functional features; computer-aided
diagnosis; PSA

1. Introduction

In the United States (US), as well as worldwide, prostate cancer (PCa) is one of the
most common male malignancies, and the second most common cancer type in the US
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with a death rate of about 2.4% among male patients [1,2]. It is considered a serious disease
because of the danger of its metastasis into other parts of the body, such as the bladder,
bones, and rectum. By 2030, it is expected that there will be up to 1.7 M PCa patients
worldwide, with nearly half a million corresponding deaths each year [3]. Fortunately,
early detection of PCa leads to better treatment and a lower mortality rate. Throughout
this paper, PCa refers specifically to prostatic adenocarcinoma, the pathological subtype
responsible for 99% of prostate malignancies.

Multiple screening and diagnostic tests are used to search for symptoms of prostate
cancer including prostate-specific antigen (PSA) blood test [4], digital rectal examination
(DRE) [5], needle biopsy [6], and magnetic resonance imaging (MRI) [7]. All these methods
have recognized shortcomings. For instance, because PSA levels are measured in the
blood, situations such as inflamed prostate can produce a high PSA value and may lead
to treatments that are not needed [8,9]. In the DRE test, the physician checks the prostate
manually to feel the surface of the prostate for regions of hardness. This approach can only
identify peripheral zone tumors and cannot identify transitional zone and central zone
tumors, or tumor regions that are too small to be felt [3,8]. Transrectal ultrasound (TRUS)
guided biopsy [8] is the gold standard diagnostic technique, where the doctor takes a set
of small tissue samples from the prostate to investigate under a microscope for cancerous
cells. However, it is a painful and expensive procedure, and has adverse effects, such as
bleeding and infection [8,10].

Over the past decade, prostate MRI has come to be widely used for cancer detection,
especially to discover and locate intraprostatic lesions [11,12]. As a result, large numbers
of MR examinations need to be processed. There is general consensus that the MRI
submodalities best suited for examination of PCa include T2 weighted (T2W), dynamic
contrast-enhanced (DCE), and diffusion-weighted (DW). T2W is the most common type
of MRI that employs the transverse magnetization time T2 to create a grayscale image of
the scanned area of the body [13]. The idea behind DW-MRI is that it generates images
with contrast that reflects differences in the microscopic movement of water molecules
within tissues [14]. It can distinguish between benign and suspicious prostatic lesions
according to apparent diffusion coefficient (ADC) values from the signal intensity in
images obtained using different b-values [7]. Several studies employed apparent diffusion
coefficient (ADC) maps, which are quantitative maps calculated from DW-MRI, for PCa
diagnosis [3,7,12]. Moreover, the acquisition of DW images does not involve injecting a
human with a contrast agent, unlike DCE-MRI [15]. DW- and T2W-MRI have acquired
popularity as non-invasive imaging techniques for detecting prostate cancer and may
overcome many of the flaws of other methods [9]. It is worth mentioning that a few
studies have tried to advanced modeling using intra-voxel incoherent motion (IVIM) MR
imaging for PCa diagnosis [16]. IVIM emerged as a different approach for obtaining of
perfusion information. Significant limitations of the IVIM analysis include the influence
of the b-values used in the measurements and lack of standardization of calculation of
IVIM parameters.

Over the last two decades, computer-aided diagnosis (CAD) has become a key tech-
nology in healthcare with the potential to enhance diagnosis and detection of diseases and
then improvements in treatment [17–19]. Incorporating artificial intelligence (AI) into CAD
systems can help clinicians avoid subjective decisions and reducing reading time. A typical
AI-based CAD system takes MR images, locates the prostate, detects tumors within the
prostate, and then classifies which of those tumors are likely to be malignant [11]. In recent
years, abundant research studies on CAD systems were published employing a variety of AI
techniques [12,13,15,17–19]. CAD systems employing AI can be largely classified into hand-
crafted feature-based CAD and deep learning-based CAD. Our proposed framework falls
under the category of handcrafted feature-based CAD. Handcrafted feature-based CAD has
attained more popularity in texture classification than deep learning-based techniques [20],
owing to the fact that texture data tend to occupy much higher dimensional manifolds
compared to object recognition data. Furthermore, deep learning techniques require a huge
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number of images for training models. Many of the effective CAD systems created for PCa
use a group of handcrafted features that were applied for medical and non-medical images.

2. Related Works

There are many works of prostate cancer CAD systems in the literature. CADs that
rely on handcrafted features have become popular in the medical image analysis field. For
example, the work in [19] employed only 215 texture features extracted from T2W-MRI
images and combines the prediction results of 11 classifiers. A noteworthy contribution was
the work on many different texture features. This implies that their work investigates many
features that have not been used before in common CAD systems. This work is limited
in several aspects. For one, it examines the peripheral zone only. It also used the default
parameter setting for each classifier. Moreover, only voxels within the malignant areas
that are observable in T2W-MR images were considered cancerous voxels, this implies that
voxels in the cancerous areas, which did not appear in T2W, were deemed normal. In [17],
the authors introduced a CAD system based on texture, spatial, and intensity features
extracted from DW (b = 2000 s/mm2), ADC, and T2W images on 244 patients. The total
number of features was 17. They applied random forest (RF) classifier and compared
their model to previous CAD models based on support vector machine (SVM) assessed
on the same test data. However, their model has some limitations in that they use high
b-value of 2000 s/mm2, where many institutes may not have the equipment to acquire such
images. In addition, they used an endorectal coil MRI (ERC) when ERC is not available in
all institutions.

A new voxel-based classification CAD system was proposed in [21], where each
voxel in the prostate gland will be classified as normal or cancerous by the means of four
modalities of MRI. Their goal was to produce a probabilistic map of cancer location in the
prostate. They extracted a set of texture, intensity, edge, and anatomical features. These
features were further decreased to provide a group of significant features that accurately
detect malignancies. The random forest was chosen as their base classifier. However, this
study is limited in that authors used a small cohort of patients (only 17 patients). Another
machine learning (ML) framework was introduced in [22], where authors tested seven
different classifiers to identify the classification model that most correctly differentiates
between high-risk prostate cancer patients and low-risk patients. They used 55 texture
features for both ADC and T2W images on 121 patients.

Recently, authors in [9] created a model based on auto-fixed segmentation through
identical VOIs automatically generated a spherical VOI with the center of the lesion image
for quantifying the phenotype of clinically significant (CS) peripheral zone lesions. They
used two different datasets and extracted 92 quantitative radiomics features. They showed
that adding DCE-MR imaging features enhanced the AUC value from 0.81 to 0.87. This
model has a limitation that is only applicable to peripheral zone lesions. In addition, many
institutions are reluctant in applying contrast agent to the patients. Other researchers,
such as those in [23], developed a predictive ML model based on manual segmentation
of T2 images on 191 patients. They extracted 367 radiomic features including the features
suggested by the radiologist. Moreover, they applied the maximum relevance minimum re-
dundancy technique to elect a subset of correlated features. Four classifiers were applied to
evaluate the model and the model was compared with radiologist assessments. The model
is concerned with two tasks: (1) normal vs. cancerous prostate lesion and (2) clinically
significant prostate cancer vs. clinically insignificant prostate cancer.

In recent years, the breakthrough of deep learning in the field of image processing has
radically altered prostate cancer detection and grading using MRI images [24,25]. In the
literature, different related attempts on PCa were published [13,26–29]. The prostate CAD
in [13] deployed a fully automatic mono-parametric MRI malignant PCa identification
and localization system, where authors proposed a new 3D sliding window technique,
that preserved the 2D domain complexity while utilizing 3D information. Although there
are available four different modalities in their public dataset, the authors used only the
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T2W sequence on 19 patients. A first attempt to produce probability maps for prostate
cancer detection by applying deep learning was introduced in [26]. The authors enhanced
the holistically nested edge detection (HED) deep CNN. The main advantage of their
work was in collecting their dataset from six institutions worldwide. One limitation of the
study, however, was that the selected patient cohorts comprised high and intermediate
risk patients only. In the same context, the authors of [27] introduced another model that
also utilized CNN to evaluate predefined regions on prostate MRI. Lesions were manually
segmented by a radiologist. They used three independent cohorts to reduce overfitting for
the neural network. A four-class CNN was trained using the fastai library. They utilized
Cohen’s kappa to measure the agreement of the model with the radiologist and found a
rather low agreement (kappa = 0.40) between the model-driven and radiologist scoring.

Recently, the authors of [28] introduced a new classification framework, which was
trained using patient-level labels only applied for two datasets. Features extracted by
employing seven 3D ResNet CNN architectures from DW images, T2W images, and ADC
maps. Then, a two-level SVM classifier scheme was applied to integrate the selected feature
vectors and normalized clinical features to obtain a final result of classification. However,
there was a big difference in performance evaluation between radiologist and their CAD.
Another recent study [29], proposed a Retina U-Net detection framework to locate the
lesions and expected their most likely Gleason grade. They worked on both the lesion
level and the patient level on two different datasets. On the lesion level, they reported
a sensitivity of 100%, specificity of 79% and an AUC of 0.96 on the first dataset and a
sensitivity of 100%, specificity of 80% and an AUC of 0.96 on the second dataset. However,
at the patient level, they found a noticeably reduced performance on the first dataset
(AUC = 0.87, sensitivity = 100%, and specificity = 37.5%) and on the second dataset as well
(AUC = 0.91, sensitivity = 100%, and specificity = 76.2%). However, their model has two
limitations. First, it needs additional validation to evaluate histological results of targeted
biopsies to the lesions detected by the model. Second, the authors successfully trained their
model on two different datasets, but it still performed differently with each of them. This
shows that CAD for prostate MRI is a very challenging area of study. Table 1 reports a brief
recapitulation of the reviewed CAD studies.

Table 1. A brief comparison between previous prostate MRI CAD studies.

Reference Year
Type of

Approach
Features Type Classes

Images
Sequences

No. of Patients
Involved

Accuracy Result

[17] 2017

Handcrafted
features-based

CAD

Spatial, intensity,
and texture

Benign, Gleason 6,
Gleason 7, Gleason 8,
Gleason 9, Gleason 10

B2000, ADC,
and T2W 224

SVM model achieved an AUC
value of 0.86, while Random

Forest achieved an AUC of 0.93

[19] 2016 Texture Malignant or benign T2W 45 It has a value of 0.93 AUC

[21] 2017
Texture, intensity,

edge, and
anatomical

Voxel-based
classification

DWI, T2W, DCE,
and MRSI 17

Classification performance
of an average AUC of

0.836 ± 0.083 is achieved

[22] 2019 Texture High risk patients
and low risk patients T2WI and ADC 121

Quadratic kernel based SVM
is the best model with

an accuracy of 0.92

[9] 2020 Texture
and intensity

Benign and/or cs
PCa vs. non-cs PCa

B50, b400, b800,
b1400, T2WI,

DCE, and ADC
206 It has an average

AUC value of 0.838

[23] 2020 Shape, texture, and
statistical texture

Normal vs. cancerous
prostate lesion and
clinically significant

PCa vs. clinically
insignificant PCa

ADC and T2WI 191

AUC value for normal vs.
cancerous classification
is 0.889, while the AUC

value for clinically
significant PCa vs. clinically

insignificant PCa is 0.844

[13] 2019 Deep learning-based CAD Produces a voxel
probability map T2WI 19

The model attained an AUC
value of 0.995, a recall of 0.928,

and an accuracy of 0.894.
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Table 1. Cont.

Reference Year
Type of

Approach
Features Type Classes

Images
Sequences

No. of Patients
Involved

Accuracy Result

[26] 2018

Deep learning-based CAD

Produces probability
maps to detect
prostate cancer

T2WI, ADC, and
high b-value

(b1500 for cases
imaged without
ERC insertion,

and b-2000 with
ERC insertion)

186

The model attained an average
AUC value of 0.94 in the
peripheral zone and an

average AUC value of 0.92
in transition zone.

[27] 2020

Gives a PI-RADS
score to a lesion

detected and
segmented by
a radiologist

T2WI, T1WI,
ADC, and

(b1500 or b2000)
687 Kappa = 0.40, sensitivity = 0.89,

and specificity = 0.73.

[28] 2021
Probability that

patient has
prostate cancer

T2WI, b200,
ADC in the first
dataset, T2WI,

ADC in the
second dataset

249 patients in
the 1st dataset and

282 patients in
the 2nd dataset

AUC value for the first
dataset was 0.79, and for the

second dataset was 0.86.

[29] 2021

Predicting the
Gleason grade group

and classifying
benign vs. csPCa

T1WI and T2WI

490 cases for
training and 75
cases for testing
from 2 different

datasets

On the lesion level, AUC of
0.96 for both the first and

second datasets. On the patient
level, AUC of 0.87 and 0.91,

for the first and second
datasets, respectively.

To overcome the drawbacks of the aforementioned studies, we developed a new
comprehensive framework (shown in Figure 1) for early identification of prostatic ade-
nocarcinoma. The developed CAD system has the following main contributions: (i) it
calculates functional features represented using cumulative distribution functions (CDFs)
of 3D apparent diffusion coefficients (ADCs), estimated from segmented DW-MR images
of the whole prostate. The proposed framework employs DW-MRI data gathered at nine
different b-values (b = 0, 100, 200, 300, 400, 500, 600, 700, and 1400 s/mm2); thus, it is not
sensitive to a specific choice of b-value and accounts for blood perfusion and water diffu-
sion at both low and high b-values. (ii) The system extracts first and second order textural
features that best describe the malignancy status of the prostate by applying novel rotation
invariant techniques. (iii) It estimates best discriminating shape features by applying novel
spherical harmonics analysis. (iv) Lastly, it integrates of functional, textural, shape features
from two modalities of MRI (DW and T2W) with clinical biomarker (PSA) to produce a
new comprehensive CAD system for the early identification of prostatic adenocarcinoma.

Figure 1. The proposed framework for early detection of prostatic adenocarcinoma.
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3. Material and Methods

The steps of the proposed framework are fully illustrated below and depicted in
Figure 1.

3.1. Patient Population

A total of 92 patients, who were evaluated for prostate cancer, had undergone T2W-
MR and DW-MR imaging at Urology and Nephrology Center, Mansoura University,
Egypt, in the period between 2019 and 2021, were included. Inclusion criteria were:
(a) high PSA (>4 ng/mL), (b) prostatic adenocarcinoma, and (c) physically and clini-
cally fit for biopsy. Exclusion criteria were: (a) claustrophobia, (b) metallic implants
and cardiac pace marker not suitable for MRI, or (c) abnormal coagulation. Twelve pa-
tients who had prostatitis and/or refused to participate in the study were then excluded.
At the end, we were left with 80 patients with a mean age of 65.7 years, 43 diagnosed
with benign prostatic hyperplasia, 37 with prostatic carcinomas). MRI imaging was
performed on a 3T scanner (Ingenia, Philips Medical Systems, Best, Holland) with the
following settings: number of signals averaging (NSA) = 4, flip angle = 90◦, echo time
(TE) = 88 ms, fasting imaging mode = echo planner imaging (EPI), and repetition time
(TR) = 4734 ms, fat suppression = spectral attenuated inversion recovery (SPAIR), folder-
over-suppression = over sampling. Our study was approved by the IRB (Code Number:
R.21.04.1289), and all experiments were carried out according to the related rules and
instructions, and all patients submitted informed consent to create the original dataset.
An experienced radiologist with more than 10 years of hands-on-experience performed
the manual segmentation of the prostate and all detected lesions using the Photoshop
software tool.

3.2. Extracting Features

Extracting discriminative features from an area of interest is a fundamental characteris-
tic of an efficient CAD system [8,30]. Common features for medical images include texture,
topological, color, morphological, intensity, and various features [18,31,32]. Designing an
efficient image feature set has a vital role in an accurate CAD system. In this framework,
we extracted 266 image feature descriptors for the segmented regions of interest (ROIs) of
lesion and prostate, and their extraction was primarily motivated by functional, textural,
and morphological points of view. This implies that each voxel can be represented in a
266-dimensional feature space.

3.2.1. Functional Features

Relying on the observations that the ADC measures the degree of molecular mobility
and that tumors limit water motion because of the low permittivity of their cell membranes
in comparison with the healthy tissue, a high-grade tumor has a smaller ADC value
than a low-grade tumor, and a malignant tumor has a smaller ADC value than a benign
one [33,34]. Hence, ADC maps could be used as discriminative functional features to
enhance the diagnostic performance of PCa. To generate each ADC map, two DW-MR
images are required; the first image is acquired at the baseline (b0), whereas the other image
is acquired at a higher b-value. It is calculated at the voxel level as follows:

ADC(x, y, z) =
ln s0(x,y,z)

sn(x,y,z)

bn − b0
(1)

where s0 and sn are the signal intensity acquired at the baseline (b = 0) and a higher b-value
bn ∈ {100, 200, 300, 400, 500, 600, 700, 1400} s/mm2, for the voxel at position x, y, z. Then,
ADC maps were calculated at eight different b-values for all cases. Yet applying the voxel-
wise ADCs of the whole prostate volume as discriminatory features faces two challenges.
The main challenge is the data truncation or zero padding for small or bigger prostate
volumes, because of the variable size of input data. The other challenge is that the needed
training time to classify large data volumes is very high. We avoided these challenges
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through constructing the cumulative distribution functions (CDFs) of the 3D ADC maps
at different b-values for each case. The smallest and largest ADCs are estimated for all
datasets. After that, the ADCs are split into one hundred steps, so that all ADC values
are maintained as coherent with a unified size without missing any information. Finally,
CDFs of the 3D ADC map at different b-values are created and employed as discriminative
features. Figure 2 shows the different steps to extract the functional features and Figure 3
shows an illustration for the estimated CDF of two cases (benign and malignant).

Figure 2. Calculations of voxel-wise apparent diffusion coefficients (ADC) for PCa and the cumulative
distribution functions (CDFs) at different b-values from b100 to b1400.

Figure 3. CDFs of ADC values for a benign case (solid) vs. a malignant case (dotted) for ADC maps
obtained using different b-values from b100 to b1400. Note that region index indicates the different
regions where the ADC values within the same range falls into.

3.2.2. Texture Features

Texture analysis (TA) is a significant field of study in medical imaging applications.
TA has been utilized in the diagnosis of a variety of cancers [31,35–37]. There is no precise
definition of TA, however, it can be described as the analysis of the spatial distribution of
patterns that gives the visual appearance of roughness, randomness, smoothness, fluency,
etc. [36]. It has been proven that MR images have various textural patterns that are often
invisible to the human eye. Accordingly, texture analysis methods were utilized in our
framework on the segmented region of interests (ROIs) of the whole prostate gland to
precisely extract first and second order texture features that best characterize the homo-
geneity and heterogeneity between benign and malignant carcinomas. Usage of such
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extensive texture features depends on the fact that malignant carcinoma usually has high
textural heterogeneity when compared to benign carcinoma. Figure 4 shows an illustrative
example to compare benign cases and different grades of malignant cases in terms of
texture differences.

 
Figure 4. Illustrative examples of prostatic texture differences showing high gray level heterogeneity
in four different malignant cases (first row) and low gray level heterogeneity in four different benign
cases (second row).

Statistical TA methods can be largely classified into first-order and second-order
texture features, based on the manner the gray levels are distributed over the pixels
as follows.

First-order texture features: These texture features investigate the frequency distri-
bution in the ROI through a histogram. Specifically, mean, median, variance, standard
deviation, kurtosis, skewness, entropy, CDFs (N = 10), descriptive (mean, variance, Nobs,
kurtosis), the number of points in each bin, size of bins, lower limit, bin width, cumulative
frequency, and the gray level percentiles were calculated; from the 10th to the 100th per-
centiles with a step of 10%. A total of 36 first-order textural features were calculated. These
features do not depend on the pixel’s location nor on the gray levels of other pixels in its
immediate neighborhood (Figure 5).

 

Figure 5. First-order textural features extraction.

524



Sensors 2022, 22, 1848

Second-order texture features: These features depend on the probability that a pair
of gray levels are selected at random distances and directions over the whole image [37].
In our framework, we used the gray level co-occurrence matrix (GLCM) [38] and gray level
run length matrix (GLRLM) [39] as follows:

GLCM is based on computing how many times pairs of pixels with similar values
and in a specified spatial relationship happen in a prostate object. The process starts with
identifying the range of the original gray level of the prostate object and tumor object and
normalizing these gray values to be in the range of 0 to 255 bringing on a GLCM matrix
with a dimension of 256 × 256. After that, all possible pair combinations are specified to
constitute the GLCM columns and rows. Finally, the value of each element within the matrix
is estimated by determining the differences between each voxel and its neighbors. The
neighborhood block is defined by a distance and an angle (the next voxel with the specified
angle). Our neighborhood block has a distance of 1 in the Z-Plane (between different layers)
and 1 in the XY plane (within the same layer). We worked with angles of zero, π

2 , π
4 , and

3π
4 . Thus, each voxel in our 3D object has a total of 26 neighbors (8 in the same layer, 9 in

the upper layer and 9 in the lower layer). After creating the GLCM, it is normalized to have
a sum of one to have the ability to extract the texture features depending on it. After each
stage, a number of representative texture features (N = 6), specifically; contrast, correlation,
angular second moment (ASM), dissimilarity, homogeneity, and energy were extracted as a
summary of the GLCM (Figure 6).

Figure 6. Second-order GLCM textural features extraction, where the central voxel of interest is
shown in blue and the 26-neighbors are shown in red. The spatial relationship in the neighborhood
block is obtained at different angles of zero, π

2 , π
4 , and 3π

4 .

GLRLM can be expressed as a set of pixels in a specific orientation having the same
intensity value [40]. The number of such pixels specifies the length of the gray level run.
GLRLM is a two-dimensional matrix, where each item p(i,j|θ) represents the number of
elements (j) having an intensity (i). The normalized gray level matrix in our system has
256 rows with different numbers of columns between our objects. Herein, we searched for
groups of sequential horizontal voxels in the XY plane and searched for vertical groups of
voxels in the Z plane. Next, we estimated 16 features of the GLRLM, specifically: gray level
non-uniformity, gray level non-uniformity normalized, high gray level run emphasis, gray
level variance, long run emphasis, long run high gray level emphasis, long run low gray
level emphasis, low gray level run emphasis, run length non-uniformity, run entropy, run
length non-uniformity normalized, run variance, run percentage, short run emphasis, short
run low gray level emphasis, and short run high gray level emphasis (Figure 7).
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Figure 7. Second-order GLRLM textural features extraction, where the central voxel of interest is
shown in blue and the 26-neighbors are shown in red. The spatial relationship is investigated to
detect groups of sequential horizontal or vertical voxels with the same gray level.

3.2.3. Shape Features

For prostate cancer diagnosis and classification using T2W images, radiologists and
researchers agree that morphological features are significant [23,41,42]. In the proposed
framework, a number of shape features (morphological features) were also calculated to
depict the morphology of the tumor candidate region. Shape features are extracted by
capturing the structural information for the segmented region of interest of the lesion. The
motivation for using shape features in our framework is based on the hypothesis that benign
lesion has a less complex shape and a smaller growth rate than the malignant lesion. Figure 8
shows an illustrative example to compare between benign cases and malignant cases in
terms of shape differences. In our work, we utilized the spectral spherical harmonics (SH)
analysis [43] for extracting shape features for PCa diagnosis. A random point inside the
region, or precisely in the interior of its convex kernel, was chosen to be the origin point
(0, 0, 0). In this coordinate system, the surface of the region can be deemed a function
of the polar and azimuth angle, f (θ, ϕ), which can be expressed as a linear set of base
functions Yτβ specified in the unit sphere. The modeling of spherical harmonics constructs
a triangulated mesh approximating the surface of the lesion, afterwards maps it to the unit
sphere by employing the attraction–repulsion technique [44].

Figure 8. Visualization 3D shape differences between four malignant cases in the first row, and four
benign cases in the second row.
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Each cycle (α) of the attraction–repulsion approach operates as follows. Assume that
Cα,i represents the coordinates of the node on the unit sphere corresponding to mesh
vertex i at the beginning of cycle α. Let dα,ji = Cα,j − Cα,i represent the vector from node i
to node j; then, the Euclidean distance between nodes i and j is dα,ji =

∣∣∣∣dα,ji
∣∣∣∣. Assume that

Ji represents the index group of neighbors of vertex i in the triangulated mesh. Next, the
attraction step updates the node’s locations to maintain it in the center with its neighbors
according to Equation (2).

C′
α+1,i = Cα,i + CA,1 ∑

jεJi

(
dα,ji d2

α,ji + CA,2
dα,ji

dα,ji

)
(2)

where CA,1 and CA,2 are parameters which specify the strength of the attractive force,
j = 1, 2, 3, . . . , J − 1, J, and i = 1, 2, 3, . . . , I − 1, I. After that, the repulsion step enlarges
the spherical mesh to hinder it from deteriorating according to Equation (3).

C′′
α+1,i = C′

α+1,i +
CR
2I

I

∑
j=1;j 
=i

dα,ji

d2
α,ji

(3)

where CR is a repulsion parameter that determines the shift incurred due to each other
surface node and maintains a balance between the processing time and the accuracy. A small
value of CR (e.g., 0.3 ≤ CR ≥ 0.7) maintains a higher accuracy at the cost of increasing
processing time. After that, the nodes are projected back onto the unit sphere through
giving them the unit norm, and these are their coordinates at the start of the subsequent
cycle according to Equation (4).

Cα+1,i =
C′′

α+1,i

‖ C′′
α+1,i ‖

(4)

In the final cycle, α f , of the attraction–repulsion approach, the surface of the lesion is in
a one-to-one correspondence with the unit sphere. Every point Ci = (xi, yi, zi) of the initial
mesh has been mapped to a corresponding point Cα f ,i = (sin θi cos ϕi, sin θi sin ϕi, cos θi)

with polar angle θi ∈ [0, π] and azimuth angle ϕi ∈ [0, 2π]. At this time, it is possibly to
represent the lesion by a spherical harmonics series (Yτβ). Generating SH series is through
solving an equation of isotropic heat for the surface that is considered a function on the
unit sphere. The Yτβ of degree τ with order β is identified according to Equation (5).

Yτβ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cτβ G|β|

τ cos θ sin(|β|ϕ) −τ ≤ β ≥ −1
cτβ√

2
G|β|

τ cos θ β = 0

cτβ G|β|
τ cos θ cos(|β|ϕ) 1 ≤ β ≥ τ

(5)

where cτβ is the spherical harmonics factor and G|β|
τ represents the relevant Legendre

polynomial of degree τ with order β. Benign lesions are described by a lower-order
integration of spherical harmonic series, since their shapes are homogenous and less
complex, whilst malignant lesions are described by a higher-order integration of spherical
harmonic series since their shapes are heterogeneous and more complex. Subsequently, the
overall number of markers measuring the shape complexity of the identified lesions is the
number of the spherical harmonics. In our framework, a total number of 85 is sufficient to
properly rebuild any lesion shape. Figure 9 shows the reconstruction errors differences at
different harmonics between a malignant and a benign case.

3.3. Feature Integration and Selection

After functional and texture feature extraction from whole prostate gland, and shape
feature extraction from lesion part, the features were integrated with the PSA clinical
biomarker to produce a combined feature set (FS5) to be used for precise identification of
prostatic adenocarcinoma.
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Figure 9. Reconstruction errors differences at different spherical harmonics (SH 01, 10, 50, 70, 85)
between a malignant case and a benign case.

A feature selection method generally aims to select the best features subset for cor-
rectly classifying objects to different classes in the dataset. Hence, an effective selection
method of relevant and redundant features for PCa classification is required to increase
classification accuracy, precision, and to minimize complexity. Many feature selection
techniques have been developed in the domain of ML. They can be generally categorized
into three approaches: filter, wrapper, and embedded [45–49]. A wrapper approach is
applied in this framework. Generally, the wrapper-based feature selection approach uses
learning procedures to determine which features are beneficial. It follows a greedy search
strategy through the space of possible markers. In this study, we performed a bi-directional
stepwise procedure [50] to find the optimal set of markers while taking into consideration
the dependencies between features.

A bi-directional stepwise procedure is a combination of forward selection and back-
ward elimination. As with forward selection, the procedure starts with no features and
adds features using a pre-specified criterion. After adding each new feature, remove any
features that no longer provide an improvement in the model fit (like backward selection).
We applied the bi-directional algorithm with two thresholds of significance (0.05 and 0.1)
on the combined feature sets (FS5) to obtain FS6 and FS7, respectively. A summary of the
different feature sets is shown in Table 2.

Table 2. Details of the extracted feature sets. Let ST denote the significance threshold.

Feature Set No. Representation Number of Extracted Features

FS1 Functional features for whole prostate 122
FS2 Texture features for whole prostate 58
FS3 Shape features for lesion only 85
FS4 Prostatic-specific antigen (PSA) 1
FS5 Combined features (FS1 + FS2 + FS3 + FS4) 266
FS6 Selected features of FS5 with ST = 0.05 101

FS7-Proposed Selected features of FS5 with ST = 0.1 162
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3.4. Cancer Classification

Following feature extraction and feature selection, our framework proceeds with a
classification stage to classify the input images as either benign tumors or malignant tumors.
In the training stage, we used four different machine learning classifiers to attain the best
possible results (e.g., support vector machine (SVM) [51], random forest (RF) [52], the
C4.5 decision tree algorithm (DT) [53] and linear discriminant analysis (LDA) [54]). We
chose these classifiers because of their popularity and strength in CAD systems. SVM is
a kernel-based learner that is robust regarding the sparsity of data. RF has been highly
successful as a general-purpose classifier and is considered as an ensemble of decision trees.
DT is fairly robust in the presence of noise and most effective in CAD systems. On the other
hand, we used the LDA classifier that permits the fast processing of data samples.

To better highlight the advantage of the feature integration process, we first assessed
the performance of each feature set separately. Then, the individual feature sets are com-
bined using a concatenation way, and utilized the aforementioned classifiers to get the final
diagnosis. It should be noted that, for each classifier, a grid search algorithm was used
to search for the optimal parameters, with the classification accuracy as the improvement
criterion, for each of the classifier techniques being tested. In the Section 4, more details
about the performance of feature integration will be provided.

3.5. Performance Evaluation

The new framework was tested on the datasets mentioned in Section 3.1. Performance
evaluation of the new framework was performed using four accuracy metrics: (I) specificity,
(II) sensitivity, (III) accuracy, and (IV) AUC. More details about these metrics can be found
in Figure 10. For assessing the performance of the proposed framework, K-fold cross-
validation was implemented for numerical evaluation. Three validation procedures were
implemented: 5-fold, 10-fold, and leave-one-out cross validation. In order to mitigate
accuracy variations, all the experiments were executed 10 times and the mean and stan-
dard deviation for the accuracy, sensitivity, specificity, and AUC were calculated for each
feature set.

Figure 10. Performance metrics for evaluation of the proposed framework.

To investigate the added value of our framework, the developed CAD system was also
compared to the clinical diagnosis made by an expert radiologist (10 years of experience
in prostate MRI) for each patient on the basis of the Prostate Imaging Reporting and
Data System (PIRADS) version 2 [55]. PIRADS can be used as a decision support system
for targeting suspicious lesions. A radiologist scores each suspicious lesion on a scale
from 1 to 5. Table 3 shows the scores that compose the PIRADS score system and their
meaning in terms of the risk of the cancer being clinically significant. The radiologist was
blinded to the respective PSA levels and pathological classification of tumors. PIRADS
uses a dominant MRI sequence, including T2W, DWI, and ADC images.
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Table 3. PIRADS scores.

PIRADS Score Definition

1 Most probably benign (normal)
2 Probably benign tumor

3 Intermediate (the presence of clinically significant cancer is
equivocal)

4 Probably malignant tumor
5 Most probably malignant tumor

4. Experimental Results

In order to validate and better highlight the effectiveness of the proposed framework,
we first evaluated the proposed CAD system using each individual feature set (descrip-
tions of each feature set are shown in Table 2). Furthermore, we evaluated the proposed
CAD system using the combined features after applying feature selection, resulting in a
notably improved classification performance. All the seven feature sets were evaluated
and compared their performance using SVM, RF, DT, and LDA classifiers. For the purpose
of applying the grid search algorithm, we created models for various combinations of
parameters, assess the model for each combination and saved the results. We considered
the best sets of parameters for each classifier as follows: For SVM we choose the gaussian
kernel function for FS2, FS4, and FS6, linear kernel for FS1, and polynomial kernel of
order 2 for other feature sets. For RF we set the number of learning cycles to 30. For DT we
used Gini diversity index as the split criterion, and the number of splits varied according
to feature set (10 for FS1, FS5, FS6, and FS7, 1 for FS2 and FS4, and 4 for FS3). For LDA,
the Discriminant type was assumed to be diagLinear for FS1 and FS2 and Linear to other
feature sets.

Tables 4–7 present the classification performance using SVM, RF, DT, or LDA classifier,
respectively, under the three validation schemas. Overall, the obtained results showed that
the performance based on feature set FS7 is much better than all other individual feature
sets and this highlights the advantage of the features integration and selection process in
the proposed framework. It also showed that using a significance threshold = 0.1 provides
better results than using a significance threshold = 0.05. In the three validation schemas,
the SVM classifier outperformed all other classifiers. Since SVM demonstrated the best
diagnostic capabilities, it was selected for the proposed framework. SVM is also well-
known for its great regularization capabilities preventing overfitting. In terms of assessing
the individual feature sets, the best results were achieved reassuringly by the functional
features (FS1) and this for almost all classifiers. As shown in Table 5, functional features
achieved the best classification performance for all experiments running in 5-fold cross
validation with 86.67% ± 1.56% of accuracy, 76.58% ± 1.27% of sensitivity, 95.35% ± 2.68%
of specificity, and 0.8603% ± 0.0152% of AUC. The second-ranking performance was
achieved by texture features (FS2). PSA alone attained the lowest performance.

It can be noted from comparing the performance metrics of the four classifiers for
the different validation schemas, that we can find that there is a low variance between
the results in the same classifier and this is a good indicator of a good fit model of ML.
It should be pointed out that the implementation of k-fold cross-validation was guaranteed
to achieve a balanced reduction of variance and bias in classifier performance estimation.
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Table 4. Comparison of experimental results of classification accuracy (%), sensitivity (%), specificity
(%), and AUC (in terms of mean ± standard deviation) using the proposed SVM classification model,
where  indicates 1.0 × 10−5.

Feature Set Validation Accuracy Sensitivity Specificity AUC

FS1
5-fold 81.81 ± 2.13 71.17 ± 3.6 90.96 ± 3.18 0.8106 ± 0.0215
10-fold 83.75 ± 2.00 72.59 ± 2.25 93.35 ± 2.89 0.8297 ± 0.0197

Leave-one-out 82.50 ±  67.57 ±  95.35 ±  0.8146 ±  

FS2
5-fold 75.83 ± 1.72 61.26 ± 2.01 88.37 ± 3 0.7482 ± 0.0166

10-fold 74.82 ± 2.26 61.39 ± 3.45 86.38± 2.3 0.7389 ± 0.0231
Leave-one-out 77.50 ±  64.86 ±  88.37 ±  0.7662 ±  

FS3
5-fold 74.28 ± 1.87 81.46 ± 2.25 68.11 ± 2.97 0.7479 ± 0.0183

10-fold 74.58 ± 2.00 80.63 ± 3.63 69.38 ± 2.48 0.75 ± 0.0206
Leave-one-out 77.50 ±  86.49 ±  69.77 ±  0.7813 ±  

FS4
5-fold 72.50 ±  51.35 ±  90.70 ±  0.7102 ±  
10-fold 72.50 ±  51.35 ±  90.70 ±  0.7102 ±  

Leave-one-out 72.50 ±  51.35 ±  90.70 ±  0.7102 ±  

FS5
5-fold 84.37 ± 2.01 75.23 ± 4.25 92.25 ± 2.57 0.8373 ± 0.021
10-fold 84.50 ± 1.27 76.49 ± 2.72 91.39 ± 2.56 0.8394 ± 0.0127

Leave-one-out 87.50 ±  81.08 ±  93.02 ±  0.8705 ±  

FS6
5-fold 85.42 ± 0.93 73.87 ± 1.28 95.35 ± 1.34 0.8461 ± 0.0092

10-fold 85.94 ± 0.83 74.33 ± 1.36 95.93 ± 1.00 0.8513 ± 0.0084
Leave-one-out 86.25 ±  75.68 ±  95.35 ±  0.8551 ±  

FS7

5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103
10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155

Leave-one-out 88.75 ±  81.08 ±  95.35 ±  0.8821 ±  

Table 5. Comparison of experimental results of classification accuracy (%), sensitivity (%), specificity
(%), and AUC (in terms of mean ± standard deviation) using a RF classification model, where

 indicates 1.0 × 10−5.

Feature Set Validation Accuracy Sensitivity Specificity AUC

FS1
5-fold 86.67 ± 1.56 76.58 ± 1.27 95.35 ± 2.68 0.8603 ± 0.0152
10-fold 86.09 ± 1.59 77.03 ± 1.35 93.9 ± 2.31 0.8546 ± 0.0154

Leave-one-out 85.78 ± 1.24 76.35 ± 1.79 93.9 ± 2.83 0.8512 ± 0.0115

FS2
5-fold 76.25 ± 2.28 63.97 ± 4.03 86.82 ± 2.89 0.7539 ± 0.0234

10-fold 76.67 ± 1.38 65.76 ± 4.03 86.05 ± 2.68 0.7591 ± 0.0148
Leave-one-out 76.75 ± 1.00 65.4 ± 2.02 86.51 ± 3.08 0.7596 ± 0.0087

FS3
5-fold 73.25 ± 0.61 75.68 ± 1.71 71.16 ± 1.14 0.7342 ± 0.0065

10-fold 72.68 ± 1.45 75.68 ± 1.45 70.1 ± 1.94 0.7289 ± 0.0153
Leave-one-out 72.50 ±  75.68 ±  69.77 ±  0.7272 ±  

FS4
5-fold 73.75 ±  51.35 ±  93.02 ±  0.7219 ±  
10-fold 73.57 ± 0.44 50.96 ± 0.94 93.02 ±  0.72 ± 0.0047

Leave-one-out 73.75 ±  51.35 ±  93.02 ±  0.7219 ±  

FS5
5-fold 84.82 ± 1.82 77.22 ± 1.97 91.36 ± 2.05 0.8429 ± 0.0182

10-fold 87.32 ± 1.56 79.54 ± 1.97 94.02 ± 1.69 0.8678 ± 0.0157
Leave-one-out 86.13 ± 1.42 77.30 ± 1.32 93.72 ± 2.09 0.8551 ± 0.0138

FS6
5-fold 83.75 ± 0.95 75.29 ± 1.73 91.03 ± 2.30 0.8316 ± 0.0089

10-fold 84.58 ± 1.56 76.58 ± 3.12 91.47 ± 1.09 0.8402 ± 0.0165
Leave-one-out 86.38 ± 1.42 78.65 ± 2.24 93.02 ± 1.80 0.8584 ± 0.0144

FS7
5-fold 84.86 ± 1.5 77.78 ± 2.47 90.96 ± 2.31 0.8437 ± 0.015
10-fold 85.63 ± 1.53 77.67 ± 1.31 92.73 ± 2.44 0.8505 ± 0.0147

Leave-one-out 86.25 ± 1.48 77.30 ± 1.32 93.95 ± 2.59 0.8564 ± 0.0141
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Table 6. Comparison of experimental results of classification accuracy (%), sensitivity (%), specificity
(%), and AUC (in terms of mean ± standard deviation) using a DT classification model, where

 indicates 1.0 × 10−5.

Feature Set Validation Accuracy Sensitivity Specificity AUC

FS1
5-fold 75.45 ± 2.86 76.35 ± 4.22 84.71 ± 6.62 0.7553 ± 0.0266
10-fold 75.50 ± 1.27 77.30 ± 1.32 73.95 ± 1.74 0.7563 ± 0.0125

Leave-one-out 77.50 ±  72.97 ±  81.40 ±  0.7718 ±  

FS2
5-fold 70.63 ± 1.88 53.60 ± 4.25 85.27 ± 4.58 0.6944 ± 0.0182

10-fold 71.00 ± 0.94 54.59 ± 3.15 85.12 ± 3.78 0.6978 ± 0.0082
Leave-one-out 70.00 ±  45.95 ±  90.70 ±  0.6832 ±  

FS3
5-fold 66.79 ± 1.13 61.78 ± 4.88 71.10 ± 3.90 0.6644 ± 0.0122

10-fold 65.00 ± 2.85 62.16 ± 2.96 67.44 ± 3.89 0.6480 ± 0.0280
Leave-one-out 66.25 ±  70.27 ±  62.79 ±  0.6653 ±  

FS4
5-fold 66.88 ± 3.59 61.71 ± 2.88 71.32 ± 5.48 0.6652 ± 0.0347

10-fold 67.50 ± 1.12 58.38 ± 2.76 75.35 ± 1.86 0.6686 ± 0.0117
Leave-one-out 65.00 ±  56.76 ±  72.09 ±  0.6442 ±  

FS5
5-fold 78.44 ± 2.32 79.39 ± 3.56 77.62 ± 4.93 0.7851 ± 0.0221

10-fold 80.25 ± 3.10 79.46 ± 2.16 80.93 ± 5.58 0.8019 ± 0.0293
Leave-one-out 82.50 ±  83.78 ±  81.40 ±  0.8259 ±  

FS6
5-fold 79.84 ± 3.09 76.01 ± 4.95 83.14 ± 4.15 0.7958 ± 0.0312

10-fold 79.82 ± 1.82 79.92 ± 4.30 79.73 ± 3.67 0.7983 ± 0.0185
Leave-one-out 83.75 ±  83.78 ±  83.72 ±  0.8375 ±  

FS7
5-fold 81.46 ± 1.97 77.93 ± 2.88 84.50 ± 3.72 0.8121 ± 0.019
10-fold 80.36 ± 1.10 80.31 ± 2.78 80.40 ± 2.44 0.8035 ± 0.0112

Leave-one-out 83.75 ±  83.78 ±  83.72 ±  0.8375 ±  

Table 7. Comparison of experimental results of classification accuracy (%), sensitivity (%), specificity
(%), and AUC (in terms of mean ± standard deviation) using an LDA classification model, where

 indicates 1.0 × 10−5.

Feature Set Validation Accuracy Sensitivity Specificity AUC

FS1
5-fold 79.38 ± 0.88 72.97 ±  84.88 ± 1.64 0.7893 ± 0.0082
10-fold 79.75± 0.94 72.97 ±  85.58 ± 1.74 0.7928 ± 0.0087

Leave-one-out 80.00 ±  72.97 ±  86.05 ±  0.7951 ±  

FS2
5-fold 73.03 ± 1.13 58.69 ± 1.89 85.38 ± 1.05 0.7203 ± 0.0116

10-fold 72.92 ± 0.59 59.01 ± 1.86 84.89 ± 1.17 0.7195 ± 0.0064
Leave-one-out 71.25 ±  56.76 ±  83.72 ±  0.7024 ±  

FS3
5-fold 72.29 ± 0.86 74.33 ± 1.36 70.54 ± 2.19 0.7243 ± 0.0078

10-fold 71.50 ± 1.22 74.6 ± 1.33 68.84 ± 1.86 0.7172 ± 0.0119
Leave-one-out 72.50 ±  75.68 ±  69.77 ±  0.7272 ±  

FS4
5-fold 73.13 ± 0.88 50 ± 1.91 93.02 ±  0.7151 ± 0.0095

10-fold 73.39 ± 0.56 50.58 ± 1.22 93.02 ±  0.718 ± 0.0061
Leave-one-out 73.75 ±  51.35 ±  93.02 ±  0.7219 ±  

FS5
5-fold 81.56 ± 0.54 73.99 ± 1.31 88.08 ± 0.77 0.8103 ± 0.0057

10-fold 81.75 ± 0.83 74.87 ± 1.24 87.67 ± 1.06 0.8127 ± 0.0083
Leave-one-out 82.50 ±  75.68 ±  88.37 ±  0.8202 ±  

FS6
5-fold 82.92 ± 0.59 73.42 ± 1.01 91.09 ± 0.86 0.8226 ± 0.0059

10-fold 82.32 ± 0.8 72.97 ± 2.04 90.37 ± 0.82 0.8167 ± 0.0087
Leave-one-out 82.50 ±  72.97 ±  90.70 ±  0.8184 ±  

FS7
5-fold 83.00 ± 0.93 75.68 ±  89.30 ± 1.54 0.8249 ± 0.0077

10-fold 82.29 ± 0.47 75.68 ±  87.98 ± 0.87 0.8183 ± 0.0043
Leave-one-out 82.50 ±  75.68 ±  88.37 ±  0.8202 ±  
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To highlight the advantages of the proposed feature set (FS7), we provided a sum-
mary of comparison between the different classifiers using the three validation schemas
applied on FS7 only in Table 8. From this table, the best results were achieved for FS7 by
the SVM classifier using leave-one-out cross validation with 88.57% ± 0.00% of accuracy,
81.08% ± 0.00% of sensitivity, 95.35% ± 0.00% of specificity, and 0.8821 ± 0.00 of AUC.
The second highest performance results were also achieved for FS7 by the RF classifier
using leave-one-out cross validation with 86.25% ± 1.48% of accuracy and 93.95% ± 2.59%
of specificity, and 0.8564 ± 0.0141 of AUC, while the DT achieved the highest sensi-
tivity of 83.78% ± 0.00%. This suggests that using SVM classifier for classification is a
promising one.

Table 8. Comparison of experimental results of classification accuracy (%), sensitivity (%), specificity
(%), and AUC (in terms of mean ± standard deviation) using the different classifiers for only our
proposed feature set (FS7), where  indicates 1.0 × 10−5.

Classifier Validation Accuracy Sensitivity Specificity AUC

SVM
5-fold 85.18 ± 1.04 78.38 ± 1.44 91.03 ± 1.49 0.8471 ± 0.0103
10-fold 87.63 ± 1.53 80.27 ± 2.11 93.95 ± 1.54 0.8711 ± 0.0155

Leave-one-out 88.75 ±  81.08 ±  95.35 ±  0.8821 ±  

RF
5-fold 84.86 ± 1.5 77.78 ± 2.47 90.96 ± 2.31 0.8437 ± 0.015
10-fold 85.63 ± 1.53 77.67 ± 1.31 92.73 ± 2.44 0.8505 ± 0.0147

Leave-one-out 86.25 ± 1.48 77.3 ± 1.32 93.95 ± 2.59 0.8564 ± 0.0141

DT
5-fold 81.46 ± 1.97 77.93 ± 2.88 84.50 ± 3.72 0.8121 ± 0.019
10-fold 80.36 ± 1.1 80.31 ± 2.78 80.40 ± 2.44 0.8035 ± 0.0112

Leave-one-out 83.75 ±  83.78 ±  83.72 ±  0.8375 ±  

LDA
5-fold 83.00 ± 0.93 75.68 ±  89.3 0± 1.54 0.8249 ± 0.0077
10-fold 82.29 ± 0.47 75.68 ±  87.98 ± 0.87 0.8183 ± 0.0043

Leave-one-out 82.50 ±  75.68 ±  88.37 ±  0.8202 ±  

In a clinical setting, the AUC value is grouped into three grades: (1) acceptable when
the score ranges from 0.7 to 0.8, (2) excellent when the score ranges from 0.8 to 0.9, and
(3) outstanding when the score is over 0.9 [21,49]. In this regard, the proposed framework
upgrades the CAD system from an acceptable grade to an excellent grade using the pro-
posed feature set (FS7). The AUC reached in leave-one-out cross validation using SVM
classifier was an average of 0.88 with FS7, while it was an average of 0.87 with FS5. This
confirms that the results provided here constitute strong evidence to support the proposed
feature integration hypothesis and feature selection method.

The receiver operating characteristics (ROC) curves for SVM using leave-one-out cross
validation for all feature sets and the proposed FS7 using the three validation schemas in all
classifiers are visualized in Figure 11. ROC shows the trade-off between true positive rate
(sensitivity) and false negative rate (1—specificity). As shown in this figure, the ROC area of
the proposed FS7 is the maximum when compared to other feature sets and this highlights
the advantages of using the proposed feature set (FS7) over other feature sets. Furthermore,
the functional features demonstrated a potential in identifying the malignancy status of a
given prostate tumor. Moreover, SVM classifier is optimal in comparison to other classifiers
evidenced by the highest AUC, as shown in Figure 11.

The PIRADS v2 scores resulted in the correct classification of 47 of 51 lesions (17 benign
prostatic hyperplasia cases and 30 prostatic carcinomas cases). The four lesions that were
not detected were benign lesions. The counts of PIRADS 3 were 29 from 80 cases that were
undecided and this is considered high, more specifically the number of PIRADS 3 was 22
for benign prostatic hyperplasia cases and 6 for prostatic carcinomas. For a fair comparison,
we can say that PIRADS missed 33 cases and there is a large degree of subjectivity. It is
worth mentioning that there were no cases given a score of PIRADS 1 by the radiologist as
PIRADS 1 lesions were generally not biopsied and therefore are only partially included in
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this study. These results stress the need for our CAD system to distinguish these equivocal
lesions further into insignificant and significant tumors and to be more objective.

 
(a) (b) 

 
(c) (d) 

Figure 11. ROC curves of (a) SVM comparing various feature sets using leave-one-out cross validation,
(b) different classifiers comparison using FS7 along with leave-one-out cross validation, (c) different
classifiers comparison using FS7 along with 5-fold cross validation, and (d) comparison of classifiers
using FS7 along with 10-fold cross validation.

5. Discussion

With a high mortality rate, prostate cancer is considered as one of the worldwide
leading cancerous causes of death. Precisely detecting prostate cancer at early stages could
enhance the survival opportunities of the patients.

In this study, we introduce a new comprehensive framework to precisely differentiate
between malignant and benign prostate cancer. The classification results of the developed
CAD system that combined different imaging markers and clinical biomarkers showed
high accuracy, sensitivity, specificity, and AUC. These results revealed the feasibility and
efficacy of the developed CAD system to non-invasively identify prostatic adenocarcinoma
at an early stage. Classification results attained using individual features (functional or
texture or shape or PSA) had lower accuracy, sensitivity, specificity, and AUC compared to
using combined features. Validation schema experiments further reinforce the reliability of
our accuracy findings.
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It is worth noting that this high diagnostic accuracy of the developed CAD system
is obtained by SVM classifier due to its ability to handle non-planar class boundaries
in an efficient and stable manner by using kernels [51]. Throughout this study, we have
extracted functional features from the whole prostate ROI, textural feature from the whole
prostate ROI, and shape features from the lesion ROI only. This can be justified in part by
the fact that the prostate gland as a whole is more informative in terms of functionality
analysis to study the motion of water molecules quantified by 3D ADCs and in terms of
texture analysis by providing a larger area to study the spatial relationship between the
neighboring voxels using various first and second order texture features. On the other
hand, lesion ROI is more informative in terms of the lesion shape, size, and complexity of
the surface.

Most of the clinical research calculates the ADC at a few select b-values [9,14,17,26,27],
typically one of the lower b-values and one of the higher b-values along with the base-
line (b = 0). This study utilized nine different b-values to accurately differentiate between
malignant and benign cases.

There are several other studies that designed to extract different features from DW
MRI and T2 MRI that check the existence of PCa [9,17,21,23,42]. Few have investigated
using clinical features for PCa detection [56]. To the best of our knowledge, there is no
work in the literature that was conducted a fusion of texture, functional, shape imaging
features and clinical features for PCa detection. This implies that our study could be a
base for further studies using a combination of imagery and clinical MRI derived features
to discriminate between benign and malignant PCa. A direct comparison between our
study and other literature would not be objective as the other studies incorporate different
data sets and variations in imaging protocols. However, our results are in line with the
findings of other studies [9,17,21,23], showing that the combination of different features
attained higher classification results than using textural features or morphological features
alone. Moreover, our developed CAD system achieved AUC of 0.882, an improvement
over the study done of Lemaitre et al. [21] that produced an AUC of 0.838, despite using
more imaging modalities than used our study. Additionally, our performance is greater
than the study done by Bleker et al. [9], as they attained an AUC of 0.838, in spite of using
greater sample size in their study (206 patients).

Adding this superiority of the developed system (compared to the literature) to
our experimental findings (Tables 4–8), reflect the accuracy of our methodology and the
potential clinical utility of these provided approaches when used with MR imaging in
computer-aided diagnosis of prostate cancers.

6. Conclusions

In this study, a new CAD system for the precise identification of prostate cancer in
multiple modalities of MRI is presented. The paper depicts the complete design of the
proposed framework to assess the potential role of integrating functional, textural, shape
features combined with PSA and provides a detailed diagnostic performance analysis. The
proposed framework achieved a high classification accuracy of 88.75%, a sensitivity of
81.08%, a specificity of 95.35%, an AUC of 0.8821, in differentiating benign tumor from
malignant tumor using SVM along with the selected features set (FS7) outperforming
the diagnostic abilities of individual and combined feature sets and other well-known
ML classification models (e.g., LDA, RF, and DT). We have also included three validation
schemas (5-fold, 10-fold, and leave-one-out cross validation). These results highlight the
advantage of integrating clinical biomarker with DW-MRI and T2W-MRI for prostate cancer
diagnosis.

Our framework is not devoid of limitations. Firstly, it needs manual lesion segmenta-
tion, that supposes that the tumor can be discovered and segmented accurately. Secondly,
we studied DW-MRI and T2W-MRI acquired from one hospital and using only one type
of scanner. The focus of the future work will be on validating our framework on a large
dataset to verify the robustness of the proposed system. Further research is also needed to
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investigate whether we can reduce the number of b-values that are not informative enough.
In addition, we plan to investigate the potential capabilities of the IVIM model in early and
precise identification of prostatic adenocarcinoma. Moreover, a deep learning-based CAD
will be established for the fully automated extraction of imagery features.
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Abstract: This study aims to introduce a resistance training protocol (6 repetitions × 70% of 1 max-
imum repetition (1RM), followed by 6 repetitions × 50% of 1RM within the same set) specifically
designed for postmenopausal women with osteopenia/osteoporosis and monitor the effect of the pro-
tocol on bone mineral density (BMD) in the lumbar spine, assessed by dual-energy X-ray absorptiom-
etry (DEXA). The subjects included in the study were 29 postmenopausal women (56.5 ± 2.8 years)
with osteopenia or osteoporosis; they were separated into two groups: the experimental group
(n = 15), in which the subjects participated in the strength training protocol for a period of 6 months;
and the control group (n = 14), in which the subjects did not take part in any physical activity. BMD in
the lumbar spine was measured by DEXA. The measurements were performed at the beginning and
end of the study. A statistically significant increase (Δ% = 1.82%) in BMD was observed at the end of
the study for the exercise group (0.778 ± 0.042 at baseline vs. 0.792 ± 0.046 after 6 months, p = 0.018,
95% CI [−0.025, −0.003]); while an increase was observed for the control group (Δ% = 0.14%), the
difference was not statistically significant (0.762 ± 0.057 at baseline vs. 0.763 ± 0.059, p = 0.85, 95% CI
[−0.013, 0.011]). In conclusion, our strength training protocol seems to be effective in increasing BMD
among women with osteopenia/osteoporosis and represents an affordable strategy for preventing
future bone loss.

Keywords: osteoporosis; strength training; osteopenia; bone mass; DEXA

1. Introduction

The introduction of the bone mass assessment method using dual-energy X-ray absorp-
tiometry (DEXA) measurement is an important step for clinical trials aimed at assessing
bone density. DEXA has certain advantages, such as increased accuracy and the low radia-
tion dose to which the subject is exposed. DEXA investigation can measure bone mass for
the spine, hip, and forearm, thereby helping in the diagnosis of osteopenia or osteoporosis.
DEXA is a non-invasive diagnostic technique used to determine bone density and it is a
reference method in this domain [1].

The combination of bone density and bone quality (obtained from bone mass assess-
ment) mainly reflects bone strength. When talking about bone quality, several variables are
considered, such as structural changes, the relationship between osteolysis and osteogen-
esis, collagen structure, possible bone damage (e.g., fractures or microfractures), and the
level of bone mineralisation. Osteoporosis can be the result of lack of calcium, as well as
other minerals in bones, and these deficiencies can make bone weaker, more fragile, and
more prone to injuries and fractures, even following minor trauma [2,3]. Osteoporosis can
be classified according to the causative factor; however, in the case of primary osteoporosis,
it affects about 80% of women and about 60% of men. Primary osteoporosis includes
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idiopathic osteoporosis (i.e., the cause of osteoporosis is unknown), Type I osteoporosis
(which is caused by a lack of oestrogen, a common condition in postmenopausal women),
and Type II (degenerative) osteoporosis. Osteoporosis caused by oestrogen deficiency
is characterised by loss of bone density, which may be accompanied by fractures in the
femoral neck, lumbar spine, and distal radius. Oestrogen plays a protective role in the bone
system, and when women enter the postmenopausal period and oestrogen levels drop
significantly, osteolysis becomes more pronounced compared with osteogenesis because
the lack of oestrogen tends to cause an imbalance between osteogenesis and osteolysis (in
favour of osteolysis), making bones more fragile. In other words, osteoclasts (the bone cells
responsible for osteolysis) become more active than osteoblasts (the bone cells responsible
for osteogenesis). Loss of cortical and trabecular bone, as well as proximal fractures of the
humerus and tibia, femoral neck, and pelvis, are specific to Type II osteoporosis. Oestrogen
plays a critical role in regulating several factors that are responsible for osteogenesis, such as
RANKL (nuclear activator receptor kappa-B ligand factor) in osteoblasts, IL-1, IL-6, TNF-α,
and M-CSF. Oestrogen also stimulates osteoprotegerin activity in osteoblasts, an action
that results in the apoptosis of osteoclasts and prevents the apoptosis of osteocytes (bone
cells). When oestrogen levels decrease (as in the case of menopause), the rate of osteolysis
increases and the rate of osteogenesis decreases, which leads to a decrease in bone mass.
To improve mobility, bone strength, and physical function, and to prevent fractures (as a
consequence of falls), resistance training should be practiced along with balance exercises
and weight-bearing activities [4]. Resistance exercises seem to be effective even amongst
older women when it comes to bone mass [5], with recommended intensities between 70%
and 80% of one maximum repetition (1RM), performed two to three times a week being
an affordable and efficient solution for increasing bone mass amongst postmenopausal
women [6,7].

This study aims to evaluate the influence of a resistance training protocol for lum-
bar spine bone mineral density (BMD) amongst women with postmenopausal osteope-
nia/osteoporosis assessed by DEXA.

2. Materials and Methods

Twenty-nine non-smoking women with postmenopausal osteopenia/osteoporosis, a
body mass index (BMI) of ≤25, and no physical exercise contraindications were included
in the study. The subjects had not participated in any exercise program in the last 3 months,
and all of them were sedentary people (less than 60 min of exercise per week). BMD was
measured using DEXA analysis (Hologic Horizon, Santa Clara, CA, USA) and radiological
examination (see Figures 1 and 2). Skeletal BMD can be measured using DEXA, which
is considered by some authors to be one of the most effective methods of diagnosing
osteoporosis or osteopenia [8]. Currently, DEXA is the standard reference for diagnosing
osteoporosis [9,10]. It is a precise evaluation method that involves exposing the areas to
be evaluated to a small amount of X-rays and allows the areas of interest to be objectively
measured. In this method, the two X-rays are absorbed differently in the bone, and the
BMD is calculated in g/cm2 using simultaneous equations. Among the results offered by
DEXA investigation is some information on bone mineral content (BMC) given in g, area
measured in cm3, and BMD given in g/cm2 [11]. The measurement was compared with
two reference values: one for young adults (30 years, which gives a T-score) and one for
people of the same age as the evaluated person (which gives a Z score) [12]. DEXA has
certain strengths, such as not exposing the patient to a high dose of radiation (1–6 μSv)
and having a short time scan (1–2 min). Following the DEXA investigation, the software
recorded the values obtained and displayed them on the screen. The T-score obtained by
the subject being examined refers to her bone mass, taking as reference an individual of
the same gender with peak bone mass. A classification was established depending on the
score obtained: normal bone mass density (score between −1 and 0 or higher), osteopenia
(between −1.1 and −2.4), and osteoporosis (a score of −2.5 or less). The Z score obtained
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refers to the BMD of the scanned subject compared with a subject of the same age and
weight (see Figure 2).

 

Figure 1. Radiological image of the subjects included in the study (X-ray of the lumbar spine). (Left

side) an image in the frontal plane; (right side) an image in the sagittal plane (profile). Using radiog-
raphy as an auxiliary method provides information on the height of the vertebrae, the intervertebral
spaces, and on other possible associated problems that could be contraindications for participating in
the training protocol.

 

Figure 2. Measurement of BMD for the subjects included in the study. The results are displayed
planimetrically, relating the BMC to the surface being evaluated (g/cm2). This also gives us a
total T-score expressing whether the person has normal BMD (T-score between −1 and 0 or above),
osteopenia (T-score between −1.1 and −2.4), or osteoporosis (T-score of −2.5 or less). The results in
the image show us that the subject has osteopenia (but is extremely close to osteoporosis).

541



Sensors 2022, 22, 1904

Medical investigations (DEXA and radiographs) were conducted by a technician
and the radiographs was interpreted by a specialist. The T-score provided information on
whether the subject could be included in the study (the condition being that the subjects had
osteopenia or osteoporosis), and the lumbar spine BMD was the quantitative information
we used to make pre- and post-test comparisons. Tables 1 and 2 and Figure 2 present
information on BMD in each vertebra, but the last and the most important result is the
total BMD, which is the reference result. With the help of radiography, we used visual
information about the body and height of the vertebrae, the presence or absence of vertebral
fractures, and the height of the intervertebral spaces. We could also observe if the subject
had a history of other pathologies that would be a contraindication to performing the
training protocol. Different from the DEXA investigation, which was made at the beginning
and at the end of the study, the X-ray was used only at the beginning of the study to rule
out the possibility of other pathologies in the lumbar area that could prevent the subjects
from participating in the program.

Table 1. Baseline characteristics of the participants.

Exercise (n = 15) Control (n = 14) p (Between Groups)

Age (years) 56.2 ± 3.2 56.8 ± 2.3 0.77
Weight (kg) 65.8 ± 7.4 63.2 ± 7.5 0.36
Height (cm) 161 ± 6.3 157.6 ± 4.7 0.12

BMI 25.4 ± 2.6 25.4 ± 2.1 0.99
BMD L1 0.754 ± 0.057 0.750 ± 0.072 0.87
BMD L2 0.780 ± 0.050 0.764 ± 0.067 0.46
BMD L3 0.785 ± 0.054 0.786 ± 0.064 0.97
BMD L4 0.789 ± 0.058 0.750 ± 0.070 0.11

BMD TOTAL 0.778 ± 0.042 0.762 ± 0.057 0.39
Note: results are represented as mean and standard deviation (±); BMI = body mass index; BMD = bone mineral
density (g/cm2).

Table 2. Intra-group and inter-group comparison after 6 months.

Exercise (n = 15) Control (n = 14)

Pre Post p (Intra-Group) Pre Post p (Intra-Group) p (Inter-Groups)

Weight (kg) 65.8 ± 7.4 64.5 ± 7.4 0.008 * 63.2 ± 7.5 63.9 ± 7.6 0.065 0.85
Height (cm) 161 ± 6.3 160.8 ± 6.3 0.082 157.6 ± 4.7 157.5 ± 4.6 0.17 0.12

BMI 25.4 ± 2.6 24.9 ± 2.4 0.017 * 25.4 ± 2.1 25.7 ± 2.1 0.062 0.37
BMD L1 0.754 ± 0.057 0.777 ± 0.055 0.079 0.750 ± 0.072 0.743 ± 0.061 0.26 0.12
BMD L2 0.780 ± 0.050 0.791 ± 0.061 0.24 0.764 ± 0.067 0.777 ± 0.067 0.11 0.55
BMD L3 0.785 ± 0.054 0.805 ± 0.057 0.053 0.786 ± 0.064 0.776 ± 0.066 0.38 0.21
BMD L4 0.789 ± 0.058 0.794 ± 0.057 0.65 0.750 ± 0.070 0.755 ± 0.073 0.62 0.12

BMD TOTAL 0.778 ± 0.042 0.792 ± 0.046 0.018 * 0.762 ± 0.057 0.763 ± 0.059 0.85 0.15

* Statistical significance.

The study involved women with osteopenia/postmenopausal osteoporosis who were
separated into two groups, as shown in Figure 3. The exercise group was formed by
volunteer women; the control group was formed by women who did not want to participate
in the training protocol. All the subjects received the same treatment (0.5 μg of alfacalcidol
daily). The subjects gave their written consent to the use of the data obtained and the study
was conducted according to the guidelines of the Declaration of Helsinki. The flowchart of
patient registration is shown in Figure 3.

The training protocol was designed by two physical therapists and two sports training
specialists. The training program lasted 6 months; the duration of each training session was
about 60 min and took place in the gym of Stefan cel Mare University of Suceava. Exercises
included in the training protocol (seated hip abduction, seated machine dip, seated back
extension, standing hip flexion, standing hip extension, seated hip adduction, horizontal
leg press, prone hamstring curls, seated knee extension, and bicep curls) were performed
on the machines. Only bodyweight squats were not performed on the machine. The first six
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exercises were performed in the first training session of the week and the other five exercises
were performed in the second training session of the week. All exercises were performed
in two sets of 12 repetitions (6 repetitions with an intensity of 70% of 1RM, followed by
6 repetitions with an intensity of 50% of 1RM). The only exception was bodyweight squats,
where no extra weights were used to avoid overloading the lower limb joints. The pause
between sets was 90 s. The subjects had two weeks to familiarise themselves with the
exercises and learn the correct execution technique. Three days before the start of the
training protocol, the subjects were tested for 1RM for each exercise, such that we could
determine the 70% and 50% of 1RM. The 1RM represents the weight with which the subject
can perform only one repetition. This test was repeated every 4 weeks, such that the future
estimates of 70% and 50% could be made according to the new maximum repetition (1RM).
The strength exercises were performed with an intensity of 40% of 1RM in the first two
weeks with 12–15 repetitions per series, followed by 50% of 1RM in the third week. Starting
in the fourth week, we switched to a method involving six repetitions with an intensity of
50% of 1RM followed by six repetitions with an intensity of 70% of 1RM within the same
set. Given that fractures of the wrist, vertebral body, and femoral neck are the fractures
that warn of the presence of osteoporosis, the exercises proposed in this protocol focused
muscle groups that are involved in the movement of wrist, spine, and hip joints. Seated
hip abduction targets the gluteus medius and gluteus minimus muscles. Standing hip
flexion targets the iliopsoas and quadriceps femoris muscles (more precisely, rectus femoris
muscles). The psoas major muscle originates in the adjacent margins of the bodies of the
vertebrae (T12–L5) and intervening intervertebral disc, such that its contraction acts on
the vertebral bodies. Standing hip extension is an exercise that strengthens the gluteus
maximus muscle. Seated hip adduction mainly targets the adductor magnus, adductor
longus, and adductor brevis muscles. Prone hamstring curls target the biceps femoris,
semitendinosus, and semimembranosus muscles. Horizontal leg press targets the gluteus
maximus, quadriceps femoris, and triceps surae muscles. Seated knee extension involves
an isolated movement of the knee joint with excellent effect on the quadriceps femoris
muscle. Seated machine dips stimulate the muscles of the upper limbs, shoulder, and
thorax (pectoralis major, anterior deltoid, and triceps brachii). Bicep curls strengthen the
muscles of the front of the arm and forearm (especially the biceps brachii, brachialis, and
brachioradialis). Seated back extension exercises strengthen the back muscles. The muscles
that are involved in this movement are the erectores spinae (iliocostalis, longissimus, and
spinalis), aided by the quadratus lumborum and latissimus dorsi. With age, especially
in women with osteopenia/osteoporosis, thoracic curvature (kyphosis) increases due to
vertebral deformities. Thus, we selected the above exercise because it strengthens the back
extensors to maintain a correct posture.

SPSS version 26 was used for statistical analysis. To determine the statistical signifi-
cance, a paired sample t test was applied for within-group comparisons and an independent
sample t test was applied for between-group comparisons. The Mann–Whitney U test was
applied to the variable ‘age’ to determine if there existed significant differences between
the two groups. A p value < 0.05 was considered statistically significant. The equation used
for the paired sample t test is

t =
XD

SD/
√

n
(1)

• XD = mean difference between the two groups (control and exercise groups for each
variable: BMDL1, BMDL2, BMDL3, BMDL4 and BMDtotal); SD = standard deviation of
the difference scores; and n = number of subjects. The equation for SD calculation is

SD=

√
∑x 2 − (∑x)2/n

n − 1
(2)
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The equation used for the independent sample t test is

ttest =
Mx – My√

(∑ X2−(∑ X)2/Nx)+(∑ Y2−(∑ Y)2/Ny)∗
(

1
Nx +

1
Nxy

)
Nx+Ny−2

(3)

• Mx = mean score for exercise group; My = mean score for control group; ∑ X2 = sum
of the squared X (control group) scores; (∑ X)2 = sum of the X (control group) scores
squared; ∑ Y2 = sum of the squared Y (exercise group) scores; (∑ Y)2 = sum of
the Y (exercise group) scores squared; Nx = number of control group subjects; and
Ny = number of exercise group subjects.

Figure 3. Flow diagram of study participants.

3. Results

The baseline characteristics of the participants are shown in Table 1. For the exercise
group, the weight of the subjects showed a significant decrease (Δ% = −1.93%) at the end
of the study (64.5 ± 7.9 vs. 65.8 ± 7.4, t(14) = 3.11, p = 0.008, 95% CI [0.39, 2.14]). Within the
control group, the weight of the subjects increased (Δ% = 1.13%) after 6 months (M = 63.9,
SD = 7.6) compared with the initial results (M = 63.2, SD = 7.5, t(13) = −2.02, p = 0.065,
95% CI [0.05, −2.02]). Although a difference existed between the two groups, the statistical
analysis showed that it was not statistically significant (t(27) = 0.21, p = 0.84, 95% CI [−5.31,
6.52]). The height of the subjects who participated in the weight training program decreased
(Δ% = −0.12) after 6 months (160.8 ± 6.3 vs. 161.0 ± 6.3, t(14) = 1.87, p = 0.082, 95% CI
[−0.03, 0.43]). No significant differences (Δ% = −0.09) were observed at the end of the
study in the control group (M = 157.5, SD = 4.6) compared with the initial test (M = 157.6,
SD = 4.7, t(13) = 1.47, p = 0.17, 95% CI [−0.07, 0.35]). The intergroup differences were not
statistically significant (t(27) = 1.60, p = 0.12, 95% CI [−0.93, 7.53]).

BMI decreased (Δ% = −1.79) within the exercise group at the end of the study
(24.9 ± 2.4 vs. 25.4 ± 2.6, t(14) = 2.71, p = 0.017, 95% CI [0.10, 0.81]); within the control
group, there was an increase by 1.27% at the end of the study (M = 25.7, SD = 2.1) compared
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with the baseline (M = 25.4, SD = 2.1, t(13) = −2.04, p = 0.062, 95% CI [−0.66, 0.02]), but the
differences were insignificant at the end of the study between the two groups (t(27) = −0.90,
p = 0.37, 95% CI [−2.48, 0.96]; see Figure 4 and Table 2).

Figure 4. Lumbar spine BMD (g/cm2)—initial and baseline results; Ex = exercise group; C = control
group. The symbol (*) indicates intra-group difference (p < 0.05).

BMD showed an increase (Δ% = 3.01%) at the L1 lumbar spine after 6 months
(M = 0.777, SD = 0.055) compared with the baseline (M = 0.754, SD = 0.057), but the differ-
ence was not statistically significant (t(14) = −1.90, p = 0.079, 95% CI [−0.048, 0.003]). For
the same area, the subjects who did not participate in the weight training program showed
a decrease (Δ% = −1.01%) after 6 months compared with the initial results (0.743 ± 0.061
vs. 0.750 ± 0.072, t(13) = 1.17, p = 0.26, 95% CI [−0.006, 0.022]). Although there existed a
difference between the groups, the difference was not statistically significant (t(27) = 1.59,
p = 0.12, 95% CI [−0.010, 0.078]).

At the L2 level, BMD showed an increase (Δ% = 1.44%) within the exercise group
after 6 months (0.791 ± 0.061 vs. 0.780 ± 0.050), but the increase was not statistically
significant (t(14) = −1.24, p = 0.24, 95% CI [−0.031, 0.008]). Within the control group, an
increase (Δ% = 1.70%) was also observed at the end of the research compared with the
baseline (t(13) = −1.74, p = 0.11, 95% CI [−0.029, 0.003]). Between the two groups, the
difference was not statistically significant at the end of the study (t(27) = 0.61, p = 0.55,
95% CI [−0.034, 0.063]). At the end of the study, the exercise group showed an increase
(Δ% = 2.55%) at the L3 level, but the increase was not statistically significant (0.805 ± 0.057
vs. 0.785 ± 0.054, t(14) = −2.11, p = 0.053, 95% CI [−0.040, 0.000]). At the same level, the
control group showed a decrease in bone mass at the end of the study (Δ% = −1.29%)
compared with the initial results (0.776 ± 0.066 vs. 0.786 ± 0.064, t(13) = 0.91, p = 0.38,
95% CI [−0.014, 0.034]). However, the difference was insignificant between the two groups
(t(27) = 1.28, p = 0.21, 95% CI [−0.018, 0.076]). Both groups registered an extremely close in-
crease in value at the level of the L4 lumbar spine (exercise group: Δ% = 0.68%, t(14) = −0.47,
p = 0.65 and 95% CI [−0.030, 0.019]; control group: Δ% = 0.69%, t(13) = −0.51, p = 0.62,
95% CI [−0.027, 0.017]), but the difference not being statistically significant between the
two groups (t(27) = 1.63, p = 0.12, 95% CI [−0.010, 0.089]). Total lumbar spine BMD showed
a statistically significantly increase (Δ% = 1.82%) in the exercise group after 6 months
(0.792 ± 0.046 vs. 0.778 ± 0.042, t(14) = −2.68, p = 0.018, 95% CI [−0.025, −0.003]). The
control group also showed an improvement (Δ% = 0.14%) after 6 months (M = 0.763,
SD = 0.059) compared with the initial results (M = 0.762, SD = 0.057), but the difference
was not statistically significant (t(13) = −0.20, p = 0.85, 95% CI [−0.013, 0.011]). Although
the experimental group showed a higher increase compared with the control group, the
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difference was not statistically significant at the end of the study (t(27) = 1.49, p = 0.15,
95% CI [−0.011, 0.069]).

4. Discussion

Radiological evaluation is still used in the diagnosis of osteoporosis, although it
records at a low sensitivity. The changes that we can observe on the radiograph are
represented by osteopenia, fractures, and the consequences of these deformities. Thus, a
decrease of the vertebrae height is a consequence of the fractures, a particularly important
aspect in the diagnosis of osteoporosis. In the case of radiographic investigations, for a
person’s bones to show osteopenic signs, they have to lose about 20–30% of their bone
mass, which is a fairly high percentage [13]. Therefore, this condition is a limitation of
radiographic investigations. Some features of the osteoporotic bone, visible on radiographic
investigations, are represented by the thinning of the cortical bone and deformities of
the spine vertebrae [14,15]. However, one study found that hand radiographs are not
as accurate compared with DEXA (dual X-ray) measurements [16]. The diagnosis of
osteopenia or osteoporosis using radiographic imaging is not highly accurate because it is
influenced by the position of the patient’s body during the investigation. The diagnosis
depends on the level of training and experience of the doctor who interprets the X-ray.
Identifying people at increased risk of a fracture within a year or two of the assessment
data (imminent risk of fracture) is a new concept that can be useful in selecting people to
receive immediate treatment and a program of fall prevention [17].

DEXA investigation is used to measure the BMC of the human skeleton or certain
areas considered vulnerable to fracture (hip, spine, and forearm). DEXA can help determine
the strength and strength of bone, which are influenced by bone size. The best anatomical
area to measure BMD is at the hip joint (hip).

The BMD resulting from this investigation is closely related to the thickness of the
bone trabeculae, but also to their number. Cortical bone thickness and bone section area are
also related to BMD, these parameters being in turn subject to hormonal influences, lifestyle,
physical activity, hereditary antecedents, and constituting factors that interfere with the
evaluation and interpretation of DEXA. The areas of interest used in this technique are at
the hip joint and at the lumbar spine (L1–L4). Investigation of the hip joint is preferred in
patients, especially after the age of 65 when other degenerative diseases progress and may
interfere with the bone mass present in the spine. Other areas of interest are represented
by the middle and distal radius. According to the National Osteoporosis Foundation,
the indications for DEXA investigation are: (a) women aged 65 and over and men aged
70 and over; (b) postmenopausal women and men ≥50 years of age with other risk factors
involved; (c) postmenopausal women and men ≥50 years of age who have suffered a
fracture at or after the age of 50; and (d) adults who suffer from rheumatoid arthritis or who
use medications, such as glucocorticoids, and who have low bone mass or bone loss [18,19].
This routine investigation is not recommended for premenopausal woman. DEXA has some
limitations, although it is a quick and an inexpensive method of diagnosing osteoporosis.
This technology cannot produce 3D images and cannot distinguish between cortical and
trabecular bones [20]. During the DEXA investigation, the operator may be exposed to a
low dose of radiation [20–22].

The effect of resistance training on BMD depends on the duration of the program, the
intensities used, and the treatment followed.

A study conducted in 2013 on 21 women with osteopenia/osteoporosis reported
positive results for the experimental group (61.9 ± 5.0 years; n = 10) compared with the
group control (66.7 ± 7.4 years; n = 11) at the end of 12 weeks of weight training, with the
program performed three times a week. The program started with two warm-up series of
8–12 repetitions with an intensity of 50% of 1RM, followed by four series of 3–5 repetitions
with an intensity of 85–90% of 1RM, with the rest between the series being 2–3 min. At the
level of the experimental group, BMC registered a significant increase in the lumbar spine
(Δ% = 2.9, p = 0.012) [23]. The intensities used in this study were extremely high (85–90%);
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in our case, we used lower intensities to avoid the risk of injury. Given that overloading the
joints by using extremely heavy weights can increase the risk of bone cartilage damage, our
decision to use lower intensities is understandable. Although the improvement observed
in that study is more obvious, with an increase 1% higher compared with our work, the
subjects underwent a treatment based on Vitamin D and calcium; however, the dosage
is unspecified, which can explain greater increase in BMD. In 2009, a 12-month study of
59 women with postmenopausal osteoporosis/osteopenia assessed the effect of resistance
exercise on BMD in the femur and lumbar spine. The experimental group (57.5 ± 5.1 years)
participated in a training program (divided in four stages), with the exercises performed
in a closed kinematic chain. The exercises were divided into four stages; each stage lasted
months and the number of repetitions progressively increased from 10 repetitions (in the
first month) to 12 repetitions (the second month) to 15 (in the third month), with 1 min rest
between sets and exercises. The control group (56.6 ± 4.6 years) did not participate in any
exercise program during the 12 months and no group received drug treatment during the
study. At the end of the 12 months, the experimental group recorded an increase (Δ% = 1.17)
in BMD compared with the initial results in the lumbar spine (0.845 ± 0.09 vs. 0.855 ± 0.09,
p = 0.22), whereas the control group recorded a statistically significant decrease in BMD
in the lumbar spine (Δ% = −2.26, p = 0.019). The changes (post-test–pre-test) regarding
the BMD (g/cm2) at the level of the lumbar spine were significantly different between the
experimental group (0.010 ± 0.043) and the control group (−0.018 ± 0.039, p < 0.013) [24].
In the case of our implemented protocol, higher increases in lumbar spine BMD were
observed compared with the study mentioned above (+1.17% vs. +1.82% in our case). We
specify that the duration of the program used by Matos et al. was twice as long as ours, but
the subjects did not receive Vitamin D treatment. Moreover, only weights of 1, 2, 3, and
4 kg were used, but the intensities used are not mentioned, meaning that we cannot make a
comparison regarding this factor.

A one-year study conducted in 2013 separated the participants (postmenopausal
women) into three groups: a control group (52 ± 3.4 years), a group participating in the
resistance training (51.4 ± 2.7 years), and a group involved in a water exercise program
(54.5 ± 3.3 years). BMD was assessed before the study and at its end. The resistance
training program was performed three times a week, with a number of repetitions between
10–15 for each exercise. All the subjects underwent a hormone-based treatment, and at
the end of the study, the group that followed the resistance training program recorded an
increase in the lumbar spine L2–L4 of 16.40% (p < 0.05). Between the control group and
the group participating in the resistance training program, the differences were significant
in the lumbar spine (1283 ± 0.169 vs. 1070 ± 0.030, p < 0.001) [25]. Although increases
in BMD are more evident in this study, the subjects in the group participating in strength
training had been on a hormone-based treatment for 3 years (3.0 ± 1.7 years). The subjects
of this study already registered a high BMD (because none of the subjects in the group who
participated in the strength exercise program had osteopenia or osteoporosis; all of them
had normal BMD).

Basat et al. conducted a 6-month study and compared the effects of training programs
on BMD in postmenopausal women. In this study, one group participated in a resistance
training program (55.9 ± 4.9 years; n = 11), one group participated in a program of exercises
involving movements with high impact on bone-jumping (55.6 ± 2.9 years; n = 12), and a
control group (56.2 ± 4.0 years; n = 12) did not exercise throughout the study; all groups
received treatment with Vitamin D (800 IU) and calcium (1200 mg) daily. The training
programs were conducted three times a week with 60 min session durations; after 15 min
of warm-up, the subjects performed the isometric training program lasting 45–60 min, in
which they performed one series of 10 repetitions for each exercise. At the end of the study,
the group that participated in the resistance exercise program had an increase in BMD
in the lumbar spine L1–L4 (Δ% = 1.3) compared with a decrease in BMD observed in the
control group (Δ% = −2.5). Between the two groups, the differences were significant at the
end of the study in the lumbar spine (p = 0.032) [26]. However, in this study, the subjects
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also underwent calcium-based treatment (and not just Vitamin D-based treatment, as in
our case). The increase in lumbar spine BMD in our study is higher (+1.82%) compared to
the increase (+1.3%) observed in the study conducted by Basat et al., although the duration
of the intervention program was identical (6 months).

Exercise programs that do not involve weight training may also be effective in increas-
ing BMD. Angin et al. showed significant differences after 6 months of practicing tai chi
exercises compared with initial results on the BMD in the lumbar spine L2–L4 (0.673 ± 0.09
vs. 0.714 ± 0.09, p = 0.002), recording an increase of 0.04 ± 0.06 g/cm2, which is a 6.1%
increase in BMD. However, in this study, the subjects were treated with bisphosphonates,
which was also a criterion for including the subjects in the study [27].

5. Conclusions

This study shows the effect that our strength training protocol has on postmenopausal
women with osteopenia or osteoporosis. Therefore, alternating loads of 70% of 1RM with
loads of 50% of 1RM within the same set and performing the exercise protocol twice a
week may lead to an increase in lumbar spine BMD for postmenopausal women with
osteopenia/osteoporosis.

The method is also safe because the intensities do not exceed 70% of 1RM. Comparing
the costs of drugs for treating osteopenia or osteoporosis with the costs involved in adopting
such a training program indicates that this proposed method is an affordable strategy for
the prevention of osteopenia or osteoporosis. In the future, we aim to evaluate the BMD
and body composition of subjects (using bioimpedance devices) included in such a strength
training protocol, as well as use specific dynamometers to measure muscle strength in order
to assess to what extent muscle strength and muscle mass influence BMD for women with
osteopenia or osteoporosis. We also want to evaluate the effect that this strength training
protocol has on BMD in the hip, and its relationship to fat mass and lean mass for women
with postmenopausal osteopenia/osteoporosis.
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Abstract: Diabetic retinopathy (DR) refers to the ophthalmological complications of diabetes mellitus.
It is primarily a disease of the retinal vasculature that can lead to vision loss. Optical coherence
tomography angiography (OCTA) demonstrates the ability to detect the changes in the retinal vascular
system, which can help in the early detection of DR. In this paper, we describe a novel framework
that can detect DR from OCTA based on capturing the appearance and morphological markers of
the retinal vascular system. This new framework consists of the following main steps: (1) extracting
retinal vascular system from OCTA images based on using joint Markov-Gibbs Random Field (MGRF)
model to model the appearance of OCTA images and (2) estimating the distance map inside the
extracted vascular system to be used as imaging markers that describe the morphology of the retinal
vascular (RV) system. The OCTA images, extracted vascular system, and the RV-estimated distance
map is then composed into a three-dimensional matrix to be used as an input to a convolutional
neural network (CNN). The main motivation for using this data representation is that it combines
the low-level data as well as high-level processed data to allow the CNN to capture significant
features to increase its ability to distinguish DR from the normal retina. This has been applied on
multi-scale levels to include the original full dimension images as well as sub-images extracted
from the original OCTA images. The proposed approach was tested on in-vivo data using about
91 patients, which were qualitatively graded by retinal experts. In addition, it was quantitatively
validated using datasets based on three metrics: sensitivity, specificity, and overall accuracy. Results
showed the capability of the proposed approach, outperforming the current deep learning as well as
features-based detecting DR approaches.

Keywords: diabetic retinopathy (DR); optical coherence tomography angiography (OCTA); convolutional
neural networks (CNN); image encryption; security analysis

1. Introduction

Diabetic retinopathy (DR) is among several retinal diseases that represent major public
health threats, which can lead to vision loss [1,2]. Diabetes mellitus is a metabolic disease
characterized by hyperglycemia, and diabetic retinopathy is one of the cardinal late-stage
organic manifestations of the disease. Persistent hyperglycemia causes microvascular dam-
age in the retina through a number of mechanisms, leading to pericyte loss, endothelial
damage, and ultimately capillary permeability and/or dropout. As a result, the eye devel-
ops vascularanomalies, such as neovascularization on the surface of retina in the advanced
form of the disease, called proliferative diabetic retinopathy (PDR); however, these new
vessels are incompetent and tend to haemorrhage or scar [3]. Although there are no vision
alterations in the early stages of DR, it eventually leads to vision loss [4,5]. As a result, early
detection and treatment of DR can delay or prevent diabetic-related blindness [6].
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In the International Clinical Diabetic Retinopathy Disease Severity Scale, DR is classi-
fied as either proliferative (PDR) or non-proliferative (NPDR). The non-proliferative DR
(NPDR) kind is divided into categories: (a) mild NPDR, in which there is no alteration in
vision and the retina has fewer microaneurysms; (b) moderate NPDR, which has more mi-
croaneurysms than mild NPDR but is less severe than Severe NPDR; and (c) severe NPDR,
in which patients have obvious intraretinal microvascular abnormalities (IRMA), confirmed
venous bleeding in two or more quadrants, and multiple intraretinal haemorrhages in all
four quadrants. Many blood vessels are blocked in severe NDPR, which induces abnormal
growth factor production. In proliferative DR (PDR), patients with vitreous/preretinal
and neovascularization disease are at high risk of irreversible blindness without sufficient
treatment, hence its designation as advanced disease [7].

The algorithms for diagnosis are dependent on the retinal medical imaging techniques,
that can be categorized as non-invasive or invasive image techniques. Indocyanine green
angiography (ICGA) and fluorescein angiography (FA) are invasive methods that require
10–30 min of imaging and intravenous dye administration. They show dynamic imaging
of blood flow through retinal vessels in 2D images [8,9]. Non-invasive approaches, on
the other hand, include OCT angiography (OCTA) and optical coherence tomography
(OCT) [10,11]. OCTA is a technique that is used to acquire angiographic information non-
invasively without the need to use dye [12]. In most cases, to correctly portray vessels
through different segmented parts of the eye, OCTA uses the backscatter of laser light
from the surface of moving red blood cells, and that may be more accurate in detecting
microvascular changes in retinal disorders than standard FA [13].

Several studies in the literature have investigated using FA to diagnose diseases in the
posterior segment of the eye [12]. Despite that, FA has some limitations, such as its inability
to visualize different levels of major capillary networks separately. This is because FA is
unable to differentiate deep capillary plexus (DCP) from superficial capillary plexus (SCP).
Additionally, it is hard to use FA in obtaining enhanced images of perifoveal capillaries
because it has a challenge in focusing images when macular edema is present [10]. Moreover,
FA is an invasive, time-consuming and relatively expensive modality, which makes it not
ideal for regular use in clinical settings. Fluorescein dye is known to be safe; however, its
side effects include nausea, allergic reactions and anaphylaxis in some rare cases [14].

Artificial intelligence (AI) consists of a set of branches, including the machine learning
(ML) branch, where based on frequent exposure to labelled datasets, algorithms learn to
classify data, such as medical images. Medical imaging offers a plethora of applications for
ML, and the area has recently flourished in ophthalmology, with a retinal imaging focus.
Image analysis and diagnosis, on the other hand, are not the most important aspects of
machine learning in medicine. These methods can be used to analyze a variety of data types,
including clinical data and demographic. This paper’s goal was to utilize ML techniques
and OCTA image data to build a computer-aided diagnostic (CAD) that automates DR
diagnosis. The following are the most important contributions of this work:

• We propose a novel CNN model for OCTA scans, for tissue classification by exploiting
multiple contrasts of OCTA.

• The method is based on a combination of three channels between gray, binary, and
distance map to enhance the DL system ability to to capture both appearance and
morphological markers of the retinal vascular system.

• Our system employs multi-scale levels to include the original full dimension images as
well as sub-images extracted from the original OCTA images. This allow the CNN to
capture significant features and increases its ability to distinguish DR from the normal
retina.

• Evaluation has been conducted using in-vivo data and has been compared with
DL-based methods as well as hand-crafted based approaches.

This paper is structured as follows: In Section 2, a general overview of existing
OCTA classification is discussed followed by details of the proposed OCTA classification
system in Section 3. In Section 4, experimental results for the proposed OCTA model are
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presented including classification performance metrics. Finally, the concluding remarks
and suggested future works are given is Section 5.

2. Related Work

Computerized image analysis of retinal images is a hot topic in the scientific commu-
nity. Many strategies for automatically classifying the severity of DR have been presented.
Deep learning (DL) is a class of ML techniques which allows computational models made
up of different processing layers to learn to represent data. DL has proven its superiority in
providing a huge workforce and financial resources, and achieving high accuracy in many
areas compared to traditional methods [15–18]. Through its strong diagnostic performance
in detecting various pathological conditions, deep learning has been applied, mainly fun-
dus images and to the examination of major eye diseases such as DR, age-related macular
degeneration and glaucoma, which either depend on well-established guidelines or require
long-term follow-up [19–25]. The convolutional neural network (CNN) has become the
most extensively used technique for retinal images in particular and image classification
problems in general. Most prior research used color fundus images to segment retinal blood
vessels because there were few studies on OCTA image processing, OCTA being a relatively
new modality. Heisler et al. [26] for example, used single data types to build the component
of neural networks, which were fine-tuned using pretrained DenseNet, ResNet50, and
VGG19 architectures. They studied the role of ensemble deep learning in classifying DR
from OCTA images and co-registered OCT images of the retinal layers. For the stacking and
majority soft voting approaches, ensemble networks built with the four fine-tuned VGG19
architectures obtained accuracies about 0.90 and 0.92, respectively. This research supports
CNN’s ability to accurately diagnose DR in OCTA, but it does have several drawbacks, as
using ensemble learning methods, for example, considerably increases the computational
cost because it necessitates the training of several networks.

Eladawi et al. [27] developed a CAD system for DR diagnosis utilizing OCTA that
includes retinal vessel (RV) segmentation, image–derived markers, and an SVM-based
classification. Based on a stochastic approach, the system describes the appearance of blood
vessels at different levels (“deep” and “superficial”) for diabetic and normal cases using
a joint Markov-Gibbs random field (MGRF) model. Based on the biomarkers extracted
from OCTA scans, their approach can diagnose various pathologies of choroid and retina.
The image without the GGMRF and RDHE models has an AUC of 56.71%, a VVD of
58.33%, and a DSC of 54.56. While AUC was 96.18 percent, VVD was 7.95% and DSC
was 96.04% for the image with enhancing stage. Le et al. [28] employed a deep-learning
CNN architecture and VGG16 for automated OCTA classification using transfer learning.
For training and cross-validation, a dataset of 131 images (75 DR, 24 diabetic without
DR [non-DR], and 32 healthy) was employed. With the last nine layers retrained, the
CNN architecture produced the greatest results. The retrained classifier’s cross-validation
specificity, sensitivity, and accuracy for distinguishing between DR, non-DR, and healthy
eyes were 90.82%, 83.7%, and 87.27%, respectively. The CNN can provide a prediction, but
a physician will have no idea how the CNN arrived at that prediction. Thus, the lack of
interpretability is one of this study’s flaws.

Nagasato et al. [29] utilized SVM and DL with a radial basis function kernel to
create a nonperfusion area (NPA) automatic detection of retinal vein occlusion (RVO) in
OCTA images. They examined the diagnostic ability of the seven ophthalmologists, SVM,
and DNN (average required time, specificity and sensitivity). For discriminating NPA
from normal OCTA images with RVO-OCTA images using the DNN, the mean specificity,
sensitivity and AUC were 97.3%, 93.7%, and 98.6%, respectively. Average time to produce
a diagnosis was 176.9 s. However, the study had some drawbacks, the 3 × 3 mm scan
area was insufficient to detect the full NPA associated with RVO. Furthermore, they solely
compared OCTA images between RVO and normal eyes, excluding the other diseases of
the retina. Alam et al. [30] developed a DL-based framework for automated artery-vein
(AV) classification in OCTA. On the test data, the AV-Net had an average accuracy of about
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86.75 percent (86.71% for artery and 86.80% for vein), an F1-score of 82.81% and a mean
IOU of 70.72 %. Because there are substantial areas of misclassification, such as at vessel
cross points, this study suffers from some limitations. Díaz et al. [31] utilized a variety of
morphological operators to select the FAZ candidates on the images of OCTA projection
using FOVs two types. The method uses a combination of image processing algorithms to
first identify the region in which the FAZ is located, then extract its precise contour. The
proposed approach obtained an accuracy (Jaccard index) for diabetic OCTA images about
0.93 (0.83) and for healthy participants about 0.93 (0.82). Patients lacking various important
illnesses that impact retinal vascularity are one of the drawbacks of design the research that
include image datasets.

Kim et al. [32] used wide-field swept source OCTA (SS-OCTA) to construct the useful-
ness of semiautomated diagnostic for microvascular parameters for rating the DR severity
with a perspectives variety. This study categorized 235 diabetic eyes into five categories:
proliferative DR (PDR), severe NPDR, moderate NPDR, mild non-proliferative retinopathy
(NPDR), and diabetes with no retinopathy (no-DR). The capillary NPA, vessel density (VD),
and FAZ metrics were all measured. For grading severe NPDR from PDR, moderate from
severe NPDR, mild from moderate NPDR, and no-DR, the NPA cutoff values were 21.4%
(AUC: 0.90), 9.3% (AUC: 0.94), 4.7% (AUC: 0.94), and 3.7 percent (AUC: 0.91), respectively.
The fundamental disadvantage of this study is that projection artefacts induced by bleeding
or vitreous opacity might obscure normal microvasculature, resulting shadowing of the
NPA. Ong et al. [33] developed a strategy based on the length of DCP skeletonized vessels.
The deep capillary plexus (DCP), middle (MCP), and superficial (SCP) segments of OCTA
slabs were segmented and thresholded using a new approach depending on DCP skele-
tonized vessel length. After adjusting for imaging quality and age, the adjusted flow index
(AFI), parafoveal VD, and FAZ area from the vascular length density (VLD) of the SCP, as
well as all three capillary layers, were compared between each DR severity category. The
results showed that the values of AUC were moderate (0.731-–0.752), with specificity rang-
ing from 57.1% to 64.3% and sensitivity ranging from 83.3% to 88.9%. One of the study’s
drawbacks is the large racial differences between study groups as well as its insufficient
powering for the DCP, which may have reduced the ability to resolve real variations in DCP
parameters across groups. Alibhai et al. [34] proposed a semiautomatic, custom software
method for eye scans with various degrees of DR or without DR for quantifying regions of
nonperfusion capillary for OCTA classification. In eyes with proliferative DR, the mean
percentage of nonperfused region was 8.5% (with 95% confidence interval CI: 5.0–14.3),
in nonproliferative DR eyes, 2.1 percent (95 percent CI: 1.2–3.7), and in eyes without DR
was 0.1 percent (with 95 percent CI: 0.0–0.4). The limitation of this study was that the
sample size was modest, with only a few individuals having NPDR severe or moderate,
necessitating that all eyes with NPDR be combined for statistical analysis purposes.

In summary, various algorithms and techniques have been developed and introduced
for OCTA classification. Most of the previous techniques in the literature, however, have
some limitations, such as: (1) Current discriminative methods suffer from insufficient
features that can represent the OCTA problem, leading to lower accuracies. (2) Current
generative methods suffer from the computationally expensive registration tasks. In addi-
tion, the built atlas may not represent well the image population. (3) Current deep learning
methods suffer from the computationally expensive cost for training the CNN layers. In
addition, the selection of the best number of layers and the best number of neurons per
each layer is still an open research problem.

According to current surveys of DR works and the above literature survey, practically
all examinations of retinal blood vessels are conducted using fundus imaging, a technique
that lacks depth information. Furthermore, generality present DR-CAD systems begin with
a threshold-based segmentation method, that may limit the diagnostic system’s specificity
and sensitivity due to the error of segmentation. Furthermore, most of the published
studies concentrated on examining retinal layers in OCTA images without taking into
consideration in the retinal vascular system changes. Finally, several present DR-CAD
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systems make decisions based on widely extracted features, that may not be sensitive
enough to detect DR early on.

To address the aforementioned problems, we present a comprehensive DR-CAD
system that relies its diagnosis on newly derived features from the retinal blood vessels’
spatial structure and appearance. This improvement allows us to collect more imaging
features of the retina, which improves classification accuracy and reduces noise. On the
same cohort dataset, the overall framework was evaluated and compared to comparable
studies.

3. The Proposed Classification Systems

A non-invasive, automated, early DR classification system from OCTA images is
developed, and Figure 1 summarizes the proposed system’s essential steps. The proposed
pipeline is composed of four parallel analysis phases. Essentially, we propose a multi-scale
framework at which the OCTA images are analyzed at different scales. DR affects the
width of vessels, thus it is in our best interest to present this for the network, because it is
a direct feature correlated to DR disease. The input to the system contains three sources
of information from which a multi-layer input image is constructed as an input to the
classification system: the original superficial OCTA images, the original greyscale image, a
binary map of its segmented retinal vasculature (RV) network and a distance map of blood
vessels. The purpose of the segmented RV and its distance map is to introduce some sort
of network’s attention as indicated by the reviewer to help improving the performance.
Furthermore, we have used multi-scaled input (different input size) to help the network
extract more local features from the greyscale channel. The retinal blood vessel structure is
segmented using our previously developed segmentation approach [27].

Figure 1. A schematic diagram of deep learning-based optical coherence tomography angiography
pipeline.

From the combined images, multiscale inputs are constructed as inputs for different
phases in the pipeline. Namely; the first phase provides a more global retinal features using
full-sized images (i.e., 1024 × 1024) that is fed to a deep fully CNN. Smaller-sized images
are used in the other phases for more local features extractions. Particularly, the full-sized
OCTA image is split into equally-sized four quarters (i.e., 512 × 512 each) in the second
phase, and into sixteen equally-sized parts (i.e., 256 × 256 each) in the third one. The last
phase of our system is dedicated to extracting deep features around the fovea as a 512 × 512
window centered around the fovea is extracted and used to train and test another CNN.
Individual CNN outputs are combined, and a soft voting method is utilized to combine the
prediction scores of the individual networks for obtaining the final diagnosis.
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3.1. RV Segmentation

The input to the CNN is a 3-channel image in which the second channel contains
the binary map of the RV. As a result, for diabetic and normal instances, our pipeline
first segments blood vessels in the deep and superficial compartments. Preprocessing,
i.e. contrast enhancement and noise reduction, is first applied to the OCTA scans. This
is achieved by using the RDHE algorithm [35] to ensure that the image’s grey levels are
regularly distributed by altering each pixel’s intensity (grayscale) value based on the values
of nearby pixels. After that, the generalized Gauss-Markov random field (GGMRF) model
is used to reduce noise while preserving image detail [27]. Second, the vasculature was
segmented from background using a combined Markov-Gibbs random field (MGRF) model.
This combines a probabilistic “prior appearance” model of OCTA with spatial interaction
(smoothness) and intensity distribution of different image segments. To overcome the
poor contrast blood vessels and certain other retinal or choroidal tissue, the 1st-order
intensity model, in addition to the higher order MGRF is employed to consider spatial
information. Lastly, we enhanced the segmentation by applying a 2D connectivity filter to
extract connected regions. Figure 2b,e shows two example RV Binary Map images with
inadvertent contrast changes in various image regions.

(a) (b) (c)

(d) (e) (f)

Figure 2. OCTA image example input data for DR and NDR: (a,d) the original superficial OCTA,
(b,e) a binary map of the retinal vessels (RV), and (c,f) distance map of OCTA images.

In addition to the grayscale values and the RV binary maps, we also incorporate a
distance-map-based image descriptor as the third channel of the input image to be analyzed.
Namely, a signed distance map for the points of an object-background, or binary image, and
is represented by the zero-level set , Bt = {p : p ∈ R; Φ(p, t) = 0}, of higher-dimensional
function, Φ(p, t), on the lattice R, as follows:

Φ(p, t) =

⎧⎨⎩
d(p, Bt) if p in the interior of Bt,

0 if p ∈ Bt, and
−d(p, Bt) if p exterior to Bt

where d(p, Bt) = minb∈Bt‖p − b‖ is the distance from the point p to the surface Bt, as
shown in Figure 2c,f.
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3.2. Multilevel Image Generation

The second stage of our proposed pipeline is generation of multi-scale images i.e.,
512 × 512, and 256 × 256, shown in Figures 3 and 4. The main idea behind this is that
with smaller size will (1) avoid the inclusion of redundant surrounding vessel pixels and
(2) emphasis local features and thus enhance the CNN learning process. According to
previous research, the foveal region and FAZ are affected by various retinal diseases [36].
Thus, the area around the fovea includes features that can discriminate between normal
and diseased subjects. To benefit from this and provide more accurate diagnosis, a more
focused image around the center of the original image that includes the fovea is extracted,
cropped (zone with size 512 × 512), and used as another level for diagnosis. Figure 5 shows
cropping of the fovea in a diabetic patient versus a healthy control.

(a) (b)

(c) (d)
Figure 3. The four parts of OCTA image with equal size (512 × 512): (a) upper left, (b) upper right,
(c) lower left, and (d) lower right quarter.

Figure 4. Normal OCTA image splitting for 16 equal size (256 × 256) sub-images.
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(a) (b)
Figure 5. OCTA fovea zone with size (512 × 512); (a) DR, and (b) NDR.

3.3. Deep Learning Classifier

Our CNN architectures in Figure 6 were built using a succession of convolutional blocks,
each of which had two convolutional layers followed by a max-pooling layer. Subsequent
to these was a pair of fully connected layers and finally a soft-max output layer. The convo-
lutional layers extract low-level feature maps comprising the trainable kernels’ responses
to the input objects. Because we employed a filter group, each convolutional layer created
a large number of feature maps. Filters with a size of 33, a stride of 1, and rectified linear
unit (ReLU) activation functions were used in our design. In max-pooling layers, the feature
maps spatial dimensions were lowered by a factor of two. The most significant features were
maintained in the max-pooling layers, while the less important ones were removed. Addi-
tionally, max-pooling layers lowered computational cost and training time. In max-pooling
layers, we used a stride of 2. In total, each CNN had four max-pooling layers and eight con-
volutional layers. For the four-way classification, the two fully connected layers had twelve
and four neurons, respectively. The soft-max output layer translates the fully connected
layer’s activation into class membership probabilities. The input patch is labeled with the
class corresponding to the output neuron with the greatest probability. Our CNN model,
with a total of 63,095,922 trainable parameters, is summarized in Table 1. Training used a
0.3 dropout rate and 0.001 learning rate. To find the optimal set of hyper-parameters, such
as the number of layers, the nodes number in each layer (range: 10–100), L2 regularisation
(range: 103–106), sparseness control parameters (range: 1–20), and the sparsity parameter
(range: 0.05–0.9), grid search algorithm was used with the reconstruction error as the metric
to optimise. The same principles can be applied to different patch sizes as well. Each CNN
was trained by minimizing cross-entropy loss between ground truth labels and predicted
class probabilities. The following is the definition of cross-entropy loss:

LBCE = −
2Nb−1

∑
i=0

yo,i log Po,i (1)

where N is the number of classes, yo,i is a binary indicator (0 or 1) which indicates the
correct classification that observation o belongs to class i. The probability that observation
o belongs to class i is given by Po,i. In the convolutional and fully connected layers, a drop
out with a rate of 0.2 was utilized to avoid network overfitting.

The usage of these architectures has two significant advantages, as we have shown in
this paper. First, fine-tuning the network’s weights using the newly labeled images and pre-
trained deep CNNs could result in enhanced performance metrics and a potential reduction
in training resources such as memory, compute operations, and time. Second, even in a
training from scratch scheme, the improved architecture and design of these CNNs may
ensure greater performance ratios. For grading, we used a multi-level classification for
classifying the inflammation of vitreous region into two classes (DR, NDR).

With the image’s distribution, the entire data set was separated randomly into two
groups: training set and testing set, in addition to using the validation set to keep track
of training process epochs. Table 1 shows the number of epochs that outperformed the in
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terms of accuracy in DR and NDR classes with the validation set. After the selection of the
hyper-parameters, the proposed system was trained and tested using 91 cases of 55 DR and
36 NDR using a five-fold cross validation. The data sets are divided into 80% for training
and 20% for testing. Throughout all the multi-level experiments, the test sets were identical.

Figure 6. Schematic diagram of the proposed CNN with multi-input with size 1024 × 1024 that
shows the design and the layers.

Table 1. Summary of our proposed system parameters setting for input size 1024 × 1024.

Layer Depth kernel Stride Spatial Size Param.

Input 3 - - 1024 × 1024 × 3 0

1. Conv 16 3 × 3 1 × 1 1022 × 1022 × 16 432

2. Max-pool 16 2 × 2 2 × 2 511 × 511 × 16 0

3. Conv 32 3 × 3 1 × 1 509 × 509 × 32 4608

4. Max-pool 32 2 × 2 2 × 2 254 × 254 × 32 0

5. Conv 64 3 × 3 1 × 1 252 × 252 × 64 18,432

6. Max-pool 64 2 × 2 2 × 2 126 × 126 × 9 0

7. Conv 128 3 × 3 1 × 1 124 × 124 × 128 73,728

8. Max-pool 128 2 × 2 2 × 2 62 × 62 × 128 0

9. Concat 1 - - 492,032 × 1 0

10. Full 1 - - 128 × 1 62,980,096

11. Full 1 - - 128 × 1 16,384

12. Softmax 1 - - 128 × 1 0

Batch Size 32

Learning Rate 0.001

Optimizer Adam

No. of Epochs 50

Total Parameters 63,095,922

Trainable Parameters 63,094,930

Non-Trainable Parameters 992
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4. Experimental Results

The OCTA scans were collected using a ZEISS AngioPlex OCT angiography machine.
The AngioPlex OCT produces five different blood vessel maps. The deep and superficial
retinal maps with pixels size of 1024 × 1024 were used to test our proposed CAD system.
The images were captured on sections of 512 × 512 and are centered on the fovea. Every
image was classified as to DR severity by a board-certified ophthalmologist. We considered
two categories, DR and normal or non-DR (NDR).

We used a data augmentation method by using systematically transformed images
to augment the class size because of the limited number of data sets. The transformations
employed often have to keep the original image’s classification. Each image in the batch
could be transformed by operations of random combination in DR and NDR groups in each
iteration: (a) horizontal and vertical flips in the case of a random combination of flips and
normal images, (b) random small rotations by 90, 180, and 270 degrees, which inherently
augment the size of class. In all the network sizes, we used data augmentation during
training. Experiments have been conducted utilizing an Intel Core i5-2400 machine running
Windows 10 with 4 GB RAM, 160 GB HDD and a Python programming environment.

Many performance indicators were used to assess the system, such as sensitivity
(Sens), accuracy (Acc), specificity (Spec), and F1-score. The number of images with DR that
were correctly recognized are the number of true positives (TP), divided by the total of TP
and false negatives (FP), or images wrongly classified as normal, is represent the sensitivity
(recall, or true positive rate). As a result, the sensitivity indicates the percentage of correctly
diagnosed DR cases by the system. On the other hand, the normal cases number that is
correctly detected or the number of true negatives (TN) and false positives (FP), i.e., images
mistakenly classified as DR, divided by the total number of TN and FP are represent the
specificity. As a result, specificity is a proportion indicating the percentage of normal cases
correctly diagnosed. Precision is the number of correctly predicted positive class values
divided by the total number of positive predictions. Finally, the weighted average of recall
and precision is the F1-Score. As a result, the F1-score takes into account both FP and FN.
F1 is frequently more useful than accuracy, even though it is not as intuitive as accuracy,
especially if the class distribution is unequal. When the cost of FP and FN are similar,
accuracy works best. If the cost difference between FP and FN is significant, it is best to
consider recall and precision [37,38].

The results of individual CNN and their fusion are summarized in Table 2. The
overall accuracies of DR classification on our dataset for different levels, i.e., 1024 × 1024,
512 × 512, 256 × 256, Fovea (512 × 512), and overall fusion are 72.2%, 83.3%, 88.8%, 88.8%
and 94.4%, respectively. The CNN system of fused multi-input outperforms all independent
CNN systems in terms of diagnostic accuracy, as shown in Table 2. The results show that
employing a smaller number of CNN layers can improve the accuracy of diagnostic, and
that is a benefit of the proposed approach over previous CNN techniques. During model
training (i.e., 1024 × 1024), Figure 7 shows loss curves and training vs accuracy of the
validation. Overall, the results showed that the validation accuracy can achieve 100%
with small loss after a few epochs, implying that multi-input CNNs can improve the CAD
system’s diagnostic accuracy.

Table 2. The ACC(%), Sen(%), Spec(%), and F1-score(%) for the proposed DR classifier with multiple
size. ACC = accuracy, Sen = sensitivity, and Spec = specificity

Phases Acc(%) Sen(%) Spec(%) F1-Score(%)

1024 × 1024 72.2 75.0 66.6 78.3

512 × 512 83.3 83.3 83.3 86.9

256 × 256 88.8 90.9 85.7 90.9

Fovea (512 × 512) 88.8 84.6 100 91.6

Fusion 94.4 91.7 100 95.6
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(a) (b)

Figure 7. Progression of training and validation set accuracy (a) and loss (b) during network training.

In addition to accuracy metrics, Figure 8 shows the confusion matrices of the classifi-
cation results at different input levels. DR cases are easy to distinguish at all input image
levels, even though most NDR images are correctly identified. Furthermore, the classifica-
tion accuracy for NDR and DR is greater when using fovea images, which demonstrates the
advantage of a wider visual degree of the retinal range. The original fovea images achieved
an accuracy with 88.8% while the images with 1024, 512 and 256 achieved 72.2%, 83.3% and
88.8%, respectively. Since our dataset is not balanced with respect to class size, balanced
accuracy is calculated as a weighted kappa. Further, Figure 9 visualises the proposed
network attention maps using the visualization model proposed in [39]. The figure clearly
shows the difference between the OCTA classes, i.e., DR and DR.

(a) (b)

(c) (d)
Figure 8. The grading details confusion matrix. The grades DR and NDR respectively correspond
to the classes 1 and 2. (a) Phase 1: 1025 × 1024; (b) Phase 2: 512 × 512; (c) Phase 3: 256 × 256; and
(d) Phase 4: Fovea. Please note that the green and dark-red colored-numbers represent the percentage
of correctly and incorrectly classified instances, respectively.
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Figure 9. Network attention maps showing the difference between the DR and NDR cases, in the
first and second row, respectively.

We also used the receiver operating characteristic (ROC) curve to assess the whole
system’s accuracy in comparison to the classification threshold setting. This step is neces-
sary to ensure that the used classifier is reliable. The ROC curves for the utilized classifiers
at various image levels, as well as their fusion, are shown in Figure 10. The area under a
classifier’s respective curve is commonly used to assess its quality (a.k.a. area under the
curve or AUC). The classifier is better when AUC is closer to unity. As shown in Figure 10,
the AUCs were 70.83%, 83.33%, 88.31%, 92.3%, and 95.83% for the 1024 × 1024, 512 × 512,
256 × 256, Fovea, and total fusion between all classifiers, respectively.

Figure 10. The ROC curves of the proposed CNN classifier for the model cross-validation in all
image sizes.

To highlight the advantage of the multi-scale pipeline, comparisons with handcrafted-
based ML models, in addition to comparisons with other state-of-the-art CNN approaches
for diagnosis of DR have been performed. The results are summarized in in Table 3. As can
be seen, our approach achieved an accuracy value of 94.4 compared to 72, 61, 81, 90, 93,
90, 90, 89, and 89 obtained with AlexNet, ResNet 18, random forest (RF), classification tree,
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K-nearest neighborhood (KNN), support vector machine (SVM Linear), SVM (Polynomial),
and SVM (RBF) respectively. In addition, it achieved a sensitivity of 91.7, a specificity of
100, and an AUC of 95.83.

Table 3. The proposed DR classification system comparative performance and other related works.
Using the ACC (%), Sens (%), Spec (%), and AUC (%).

Tested Systems ACC (%) Sens (%) Spec (%) AUC (%)

AlexNet 72 80 62 71

ResNet 18 61 70 50 60

RF 81 83 78 87

Classification tree 90 96 78 87

KNN 93 94 91 93

SVM (Linear) 90 96 78 87

SVM (Polynomial) 90 89 91 90

SVM (RBF) 89 96 74 85

Proposed system 94.4 91.7 100 95.83

Furthermore, the other state-of-the-art CNN approaches, the methods introduced by
Le et al. [28], Alam et al. [30], and Ong et al. [33], tested on their respective dataset, are used
for comparison. The proposed CAD system has the best diagnostic performance, according
to the comparative results. It is worth noting that, in comparison to the other models, our
system has a comparatively low number of layers. It achieved a 94.4(%) overall accuracy,
compared with 87.27, 86.75, and 75.2, as shown in Table 4.

Table 4. Comparisons with the previous works for DR diagnosis.

Study Data Set Size
Validation
(Train:Test)

Technique ACC

Le et al. [28] 131 (80%:20%) VGG16 87.27%

Alam et al. [30] 50 (80%:20%) AV-Net 86.75%

Ong et al. [33] 117 - DCP VLD-based 75.2%

Proposed model 91 (80%:20%) Shallow CNN 94.4%

5. Conclusions and Suggested Future Work

We proposed a novel CAD algorithm to differentiate between DR and NDR. A frame-
work that can detect DR from OCTA based on capturing the appearance and morphological
markers of the retinal vascular system. The proposed system’s main contributions are the
use of a CNN multi-input that can recognize texture patterns from each input separately.
Our CNN model captures significant features to increase its ability to distinguish DR from
the normal retina. The proposed approach was tested on in vivo data using 91 patients,
which were qualitatively graded by retinal experts. We compared our system’s classification
accuracy to that of other deep learning and machine learning methodologies. Our system’s
results outperform those produced by competing algorithms. The ultimate goal of our
research is to integrate a variety of data types (e.g., OCTA, OCTA, FA, and Funds images),
demographic data and standard clinical markers, in order to build a more comprehensive
diagnostic system that automates DR grading and diagnosis.

Author Contributions: I.Y., F.K., M.G., H.S.S. and A.E.-B.: conceptualization and formal analysis.
I.Y., F.K., H.A. and A.E.-B.: methodology. I.Y. and H.A.: Software development. I.Y., F.K., H.A. and
A.E.-B. validation and visualization. I.Y. and F.K.: Initial draft. M.G., H.S.S. and A.E.-B.: Resources,
data collection, and data curation. I.Y., F.K., H.A., M.G., H.S.S. and A.E.-B.: review and editing. H.S.S.
and A.E.-B.: Project Administration. H.S.S. and A.E.-B.: Project Directors. All authors have read and
agreed to the published version of the manuscript.

563



Sensors 2022, 22, 2342

Funding: This work is supported, in part, by ASPIRE Award for Research Excellence 2019 under the
Advanced Technology Research Council—ASPIRE.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of the University of
Louisville (IRB #18.0010).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data could be made available upon a reasonable request to the corre-
sponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, W.; Lo, A.C. Diabetic retinopathy: Pathophysiology and treatments. Int. J. Mol. Sci. 2018, 19, 1816. [CrossRef] [PubMed]
2. Romero-Aroca, P.; Baget-Bernaldiz, M.; Pareja-Rios, A.; Lopez-Galvez, M.; Navarro-Gil, R.; Verges, R. Diabetic macular edema

pathophysiology: Vasogenic versus inflammatory. J. Diabetes Res. 2016, 2016. [CrossRef]
3. Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005, 54, 1615–1625. [CrossRef]

[PubMed]
4. Bek, T. Diameter changes of retinal vessels in diabetic retinopathy. Curr. Diabetes Rep. 2017, 17, 1–7. [CrossRef] [PubMed]
5. Stewart, M.W. Pathophysiology of diabetic retinopathy. Diabet. Retin. 2010, 2013, 343560.
6. Kern, T.S.; Antonetti, D.A.; Smith, L.E. Pathophysiology of diabetic retinopathy: Contribution and limitations of laboratory

research. Ophthalmic Res. 2019, 62, 196–202. [CrossRef]
7. Wong, T.Y.; Sun, J.; Kawasaki, R.; Ruamviboonsuk, P.; Gupta, N.; Lansingh, V.C.; Maia, M.; Mathenge, W.; Moreker, S.; Muqit,

M.M.; et al. Guidelines on diabetic eye care: The international council of ophthalmology recommendations for screening,
follow-up, referral, and treatment based on resource settings. Ophthalmology 2018, 125, 1608–1622. [CrossRef]

8. Windisch, R.; Windisch, B.K.; Cruess, A.F. Use of fluorescein and indocyanine green angiography in polypoidal choroidal
vasculopathy patients following photodynamic therapy. Can. J. Ophthalmol. 2008, 43, 678–682. [CrossRef]

9. Teussink, M.M.; Breukink, M.B.; van Grinsven, M.J.; Hoyng, C.B.; Klevering, B.J.; Boon, C.J.; de Jong, E.K.; Theelen, T. OCT
angiography compared to fluorescein and indocyanine green angiography in chronic central serous chorioretinopathy. Investig.
Ophthalmol. Vis. Sci. 2015, 56, 5229–5237. [CrossRef] [PubMed]

10. De Carlo, T.E.; Romano, A.; Waheed, N.K.; Duker, J.S. A review of optical coherence tomography angiography (OCTA). Int. J.
Retin. Vitr. 2015, 1, 5. [CrossRef]

11. Tey, K.Y.; Teo, K.; Tan, A.C.; Devarajan, K.; Tan, B.; Tan, J.; Schmetterer, L.; Ang, M. Optical coherence tomography angiography
in diabetic retinopathy: A review of current applications. Eye Vis. 2019, 6, 1–10. [CrossRef] [PubMed]

12. Witmer, M.T.; Parlitsis, G.; Patel, S.; Kiss, S. Comparison of ultra-widefield fluorescein angiography with the Heidelberg
Spectralis® noncontact ultra-widefield module versus the Optos® Optomap®. Clin. Ophthalmol. 2013, 7, 389. [CrossRef]

13. Abdelsalam, M.M. Effective blood vessels reconstruction methodology for early detection and classification of diabetic retinopathy
using OCTA images by artificial neural network. Inform. Med. Unlocked 2020, 20, 100390. [CrossRef]

14. Spaide, R.F.; Klancnik, J.M.; Cooney, M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence
tomography angiography. JAMA Ophthalmol. 2015, 133, 45–50. [CrossRef] [PubMed]

15. Wang, Z.; Keane, P.A.; Chiang, M.; Cheung, C.Y.; Wong, T.Y.; Ting, D.S.W. Artificial intelligence and deep learning in ophthalmol-
ogy. Artif. Intell. Med. 2020, 20, 3469–3473._200-1. [CrossRef]

16. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
17. Sheikh, H.R.; Sabir, M.F.; Bovik, A.C. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE

Trans. Image Process. 2006, 15, 3440–3451. [CrossRef]
18. Lakhani, P.; Sundaram, B. Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using

convolutional neural networks. Radiology 2017, 284, 574–582. [CrossRef]
19. Ran, A.R.; Cheung, C.Y.; Wang, X.; Chen, H.; Luo, L.Y.; Chan, P.P.; Wong, M.O.; Chang, R.T.; Mannil, S.S.; Young, A.L.; et al.

Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: A retrospective training and
validation deep-learning analysis. Lancet Digit. Health 2019, 1, e172–e182. [CrossRef]

20. Balyen, L.; Peto, T. Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology. Asia-Pac. J.
Ophthalmol. 2019, 8, 264–272.

21. Ting, D.S.W.; Cheung, C.Y.L.; Lim, G.; Tan, G.S.W.; Quang, N.D.; Gan, A.; Hamzah, H.; Garcia-Franco, R.; San Yeo, I.Y.; Lee, S.Y.;
et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal
images from multiethnic populations with diabetes. JAMA 2017, 318, 2211–2223. [CrossRef] [PubMed]

22. Keenan, T.D.; Dharssi, S.; Peng, Y.; Chen, Q.; Agrón, E.; Wong, W.T.; Lu, Z.; Chew, E.Y. A deep learning approach for automated
detection of geographic atrophy from color fundus photographs. Ophthalmology 2019, 126, 1533–1540. [CrossRef] [PubMed]

564



Sensors 2022, 22, 2342

23. Milea, D.; Najjar, R.P.; Jiang, Z.; Ting, D.; Vasseneix, C.; Xu, X.; Aghsaei Fard, M.; Fonseca, P.; Vanikieti, K.; Lagrèze, W.A.; et al.
Artificial intelligence to detect papilledema from ocular fundus photographs. N. Engl. J. Med. 2020, 382, 1687–1695. [CrossRef]
[PubMed]

24. Owais, M.; Arsalan, M.; Choi, J.; Park, K.R. Effective diagnosis and treatment through content-based medical image retrieval
(CBMIR) by using artificial intelligence. J. Clin. Med. 2019, 8, 462. [CrossRef]

25. Shen, C.; Yan, S.; Du, M.; Zhao, H.; Shao, L.; Hu, Y. Assessment of capillary dropout in the superficial retinal capillary plexus by
optical coherence tomography angiography in the early stage of diabetic retinopathy. BMC Ophthalmol. 2018, 18, 1–6. [CrossRef]

26. Heisler, M.; Karst, S.; Lo, J.; Mammo, Z.; Yu, T.; Warner, S.; Maberley, D.; Beg, M.F.; Navajas, E.V.; Sarunic, M.V. Ensemble deep
learning for diabetic retinopathy detection using optical coherence tomography angiography. Transl. Vis. Sci. Technol. 2020, 9, 20.
[CrossRef]

27. Eladawi, N.; Elmogy, M.; Helmy, O.; Aboelfetouh, A.; Riad, A.; Sandhu, H.; Schaal, S.; El-Baz, A. Automatic blood vessels
segmentation based on different retinal maps from OCTA scans. Comput. Biol. Med. 2017, 89, 150–161. [CrossRef]

28. Le, D.; Alam, M.; Yao, C.K.; Lim, J.I.; Hsieh, Y.T.; Chan, R.V.; Toslak, D.; Yao, X. Transfer learning for automated OCTA detection
of diabetic retinopathy. Transl. Vis. Sci. Technol. 2020, 9, 35. [CrossRef]

29. Nagasato, D.; Tabuchi, H.; Masumoto, H.; Enno, H.; Ishitobi, N.; Kameoka, M.; Niki, M.; Mitamura, Y. Automated detection of a
nonperfusion area caused by retinal vein occlusion in optical coherence tomography angiography images using deep learning.
PLoS ONE 2019, 14, e0223965. [CrossRef]

30. Alam, M.; Le, D.; Son, T.; Lim, J.I.; Yao, X. AV-Net: Deep learning for fully automated artery-vein classification in optical coherence
tomography angiography. Biomed. Opt. Express 2020, 11, 5249–5257. [CrossRef]

31. Díaz, M.; Novo, J.; Cutrín, P.; Gómez-Ulla, F.; Penedo, M.G.; Ortega, M. Automatic segmentation of the foveal avascular zone in
ophthalmological OCT-A images. PLoS ONE 2019, 14, e0212364. [CrossRef]

32. Kim, K.; You, J.I.; Park, J.R.; Kim, E.S.; Oh, W.Y.; Yu, S.Y. Quantification of retinal microvascular parameters by severity of diabetic
retinopathy using wide-field swept-source optical coherence tomography angiography. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021,
259, 2103–2111. [CrossRef]

33. Ong, J.X.; Kwan, C.C.; Cicinelli, M.V.; Fawzi, A.A. Superficial capillary perfusion on optical coherence tomography angiography
differentiates moderate and severe nonproliferative diabetic retinopathy. PLoS ONE 2020, 15, e0240064.

34. Alibhai, A.Y.; De Pretto, L.R.; Moult, E.M.; Or, C.; Arya, M.; McGowan, M.; Carrasco-Zevallos, O.; Lee, B.; Chen, S.; Baumal, C.R.;
et al. Quantification of retinal capillary nonperfusion in diabetics using wide-field optical coherence tomography angiography.
Retina 2020, 40, 412–420. [CrossRef] [PubMed]

35. Iwanami, T.; Goto, T.; Hirano, S.; Sakurai, M. An adaptive contrast enhancement using regional dynamic histogram equalization.
In Proceedings of the 2012 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 12–15 January
2012; pp. 719–722.

36. Kim, D.Y.; Fingler, J.; Zawadzki, R.J.; Park, S.S.; Morse, L.S.; Schwartz, D.M.; Fraser, S.E.; Werner, J.S. Noninvasive imaging of
the foveal avascular zone with high-speed, phase-variance optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2012,
53, 85–92. [CrossRef] [PubMed]

37. Joshi, R. Accuracy, precision, recall & f1 score: Interpretation of performance measures. Retr. April 2016, 1, 2016.
38. Das, H.; Pattnaik, P.K.; Rautaray, S.S.; Li, K.C. Progress in Computing, Analytics and Networking: Proceedings of ICCAN 2019; Springer:

Berlin/Heidelberg, Germany, 2020; Volume 1119.
39. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks

via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

565





Citation: AlSaeed, D.; Omar, S.F.

Brain MRI Analysis for Alzheimer’s

Disease Diagnosis Using CNN-Based

Feature Extraction and Machine

Learning. Sensors 2022, 22, 2911.

https://doi.org/10.3390/s22082911

Academic Editors: Guruprasad

A. Giridharan, Ali H. Mahmoud,

Ahmed Shalaby, Ayman El-baz and

Mohammed Ghazal

Received: 6 February 2022

Accepted: 1 April 2022

Published: 11 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Brain MRI Analysis for Alzheimer’s Disease Diagnosis Using
CNN-Based Feature Extraction and Machine Learning

Duaa AlSaeed * and Samar Fouad Omar

College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
samar.fouad.omar@gmail.com
* Correspondence: dalsaeed@ksu.edu.sa

Abstract: Alzheimer’s disease is the most common form of dementia and the fifth-leading cause of
death among people over the age of 65. In addition, based on official records, cases of death from
Alzheimer’s disease have increased significantly. Hence, early diagnosis of Alzheimer’s disease
can increase patients’ survival rates. Machine learning methods on magnetic resonance imaging
have been used in the diagnosis of Alzheimer’s disease to accelerate the diagnosis process and
assist physicians. However, in conventional machine learning techniques, using handcrafted feature
extraction methods on MRI images is complicated, requiring the involvement of an expert user.
Therefore, implementing deep learning as an automatic feature extraction method could minimize the
need for feature extraction and automate the process. In this study, we propose a pre-trained CNN
deep learning model ResNet50 as an automatic feature extraction method for diagnosing Alzheimer’s
disease using MRI images. Then, the performance of a CNN with conventional Softmax, SVM, and
RF evaluated using different metric measures such as accuracy. The result showed that our model
outperformed other state-of-the-art models by achieving the higher accuracy, with an accuracy range
of 85.7% to 99% for models with MRI ADNI dataset.

Keywords: Alzheimer’s disease; deep learning; convolutional neural network (CNN); MRI; brain imaging

1. Introduction

The brain is one of the most significant and complex organs in the human body. It has
several vital functions, such as idea formation, problem-solving, thinking, decision-making,
imagination, and memory. Memory can save and retrieve information or experiences.
Our physical memory stores the whole record of our lives and plays an essential role in
defining our character and identity. Memory loss caused by dementia and the inability
to recognize our environment are terrifying experiences. Alzheimer’s disease (AD) is the
most common form of dementia. Becoming older increases people’s fears of developing
Alzheimer’s. Alzheimer’s disease gradually kills brain cells and, as a result of that, patients
end up disconnecting from everything around them and losing loving memories, childhood
memories, the ability to recognize their family members, and even the ability to follow
simple instructions. They also lose the ability to swallow, cough, and breathe in advanced
stages. Approximately 50 million people worldwide are affected by dementia, and the
cost of providing health and social care for them is equivalent to the world’s 18th largest
economy [1]. In addition, the annual number of new cases of AD and other dementias
is projected to triple by 2050, reaching 152 million cases, which means one new case of
dementia every 3 seconds. Diagnosis of AD is complicated by its overlapping symptoms
with normal ageing or vascular dementia (VD) [2,3]. Early and accurate diagnosis of
AD plays an essential role in prevention, treatment, and patient care through tracking its
development. The focus of several research projects is to detect Alzheimer’s disease using
brain imaging, including MRI. It can measure the size and number of cells in the brain.
Also, it can show the parietal atrophy for AD cases [4].
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Images play an essential role in many scientific fields. In addition, medical imaging
has become a powerful tool to understand brain functions. Brain imaging/neuroimaging,
such as magnetic resonance imaging (MRI), has been used in the medical diagnosis of brain
conditions to enable visualization of the structure and functionality of the brain. Physicians
evaluate AD signs and symptoms, as well as perform several tests to diagnose AD dementia.
Doctors may order additional laboratory tests, brain imaging tests, or memory testing for
patients. These tests can help doctors make diagnoses by ruling out other conditions that
cause similar symptoms. MRI can detect brain abnormalities associated with mild cognitive
impairment (MCI) and can be used to predict which MCI patients will develop AD in the
future. They will be looking in MRI images for any abnormalities, such as a decrease in the
size of different areas of the brain (mainly affecting the temporal and parietal lobes).

With the evolution of technology and the growth of data generated by brain-imaging
techniques, machine learning (ML) and deep learning (DL) are becoming increasingly
crucial for extracting accurate and relevant information and making accurate predictions of
AD from brain-imaging data.

Several machine-learning methods have been applied for the classification of AD, and
the results of the models show good performance. In general, the conventional learning-
based methods consist of three stages: 1—the predetermination of the regions of interest
(ROIs) of the brain, 2—features selection from the ROIs, and 3—the classification models
are built and evaluated. The main issue with conventional learning-based methods is the
process of features engineering (i.e., manual selection and extraction), which has a great
influence on the performance of the model. Compared with traditional ML methods, DL
has become a revolutionizing methodology in recent decades [5]. Instead of extracting
the features manually and in a separate process from the classifier, DL has automated the
process without the engagement of human experts for feature extraction because it can learn
directly from images through the neural networks. Recently, convolutional neural networks
(CNNs) have achieved very high accuracy and precision on image classifications [5].

Based on the excellent performance of DL and convolutional neural network methods
in various image classification tasks, this paper aims at evaluating CNN-based MRI feature
extraction for the automatic classification of Alzheimer’s diseases. CNN-based models are
developed as a DL method to diagnose Alzheimer’s diseases on MRI images with three
different classifiers (Softmax, SVM, and RF) and the model’s performance was compared
between fully connected layers. The research objectives are to answer the following research
questions. (1) Is the pre-train DL CNN approach ResNet50 used in this study useful for the
classification of Alzheimer’s diseases in MRI brain images? (2) Which classifier used with
pre-trained CNN will give us better classification performance: Softmax, SVM, or RF?

The rest of this paper is organized as follows: Section 2 reviews the previous studies
of AD diagnosis and classification, Section 3 presents the methodology, describing how to
build and evaluate the proposed CNN model, Section 4 provides the experimental and
evaluation results, and, finally, Section 5 concludes the paper and discusses future work.

2. Related Work

Several studies have proposed AD diagnosis and detection systems that utilize a
variety of classification techniques. This section contains a review of recent studies that
used conventional ML and DL approaches in AD diagnosis and detection systems.

Some of the previous studies on Alzheimer’s disease diagnosis have applied conven-
tional machine-learning techniques. They are focused on developing models to analyze the
anatomical or structural brain images such as MRI and brain functionality to detect any
defect or disorders. In addition, it considered segmentation tasks as classification issues
and heavily depended on manually designed features and feature representations as to
the voxel, region, or patch-based methods. It required several expert segmented images to
train classification models, and that takes a longer time.

Liu et al. (2016) [6] proposed an inherent structure-based multiview learning (ISML)
method for AD/MCI classification. The proposed method consists of three stages: (1) mul-
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tiview feature extraction using multiple templates and using gray matter (GM) tissues
as tissue-segmented brain image for feature extraction, (2) subclass clustering-based fea-
ture selection through using voxel selection that improving the power of features, and (3)
using SVM-based ensemble classification. They evaluated the efficiency of the proposed
method on the MRI baseline dataset consisting of 549 subjects (70 AD and 30 Normal
Control—NC) provided by the ADNI (http://adni.loni.usc.edu/, accessed on 5 February
2022) database [7]. The experiment result shows that the proposed ISML method obtains
an accuracy of 93.83% and specificity of 95.69%, and sensitivity of 92.78% for AD vs. NC.

In another study, Krashenyi et al. (2016) [8] proposed an AD classification approach
based on fuzzy logic. Their classification technique is based on multimodal data PET and
MRI data. The dataset consists of 70 AD, 111 MCI, and 68 NC subjects provided by the
ADNI database. The proposed approach consists of three stages: (1) image pre-processing,
including MRI/PET normalization and MRI data segmented into white matter (WM) and
grey matter (GM), then they used a voxel selection procedure to reduce low-activated
voxels; (2) feature selection is based on ROI, and then they apply t-test as statistical tests for
feature ranking and selection to reduce the number of ROI; and (3) do a fuzzy classification
using the c-means algorithm. The classification performance of the proposed approach has
been used under the receiver operating characteristic (AUC), while the regions with the
highest AUC area should be defined in the PET and MRI images as the optimal number of
regions. The highest classification performance achieved with a combination of features
(7 MRI and 35 PET) is AUC = 94.01%. The experiment result shows that the proposed
approach obtains 89.59% accuracy, 92.2% specificity, and 93.27% sensitivity for AD vs. NC.

Lazli et al. (2018) [9] proposed an AD computer-aided diagnosis (CAD) system to
distinguish between AD cases and normal control cases and evaluate the tissue volume
of MRI and PET images. The proposed approach consists of two processes: segmentation
and classification. First, they used fuzzy possibilistic tissue segmentation as a hybrid of the
fuzzy c-means (FCM) and a possibilistic c-means (PCM) segmentation processes. Then in
the classification process, they used SVM classifiers with different types of kernels (linear,
polynomial, and RBF) to decide the final diagnosis (AD or NC). The proposed approach
was tested on MRI and PET images that consisted of 45 AD subjects and 50 healthy subjects
provided by the ADNI database. The classification performance of the proposed approach
has been evaluated with the leave-one-out cross-validation method. The experiment
showed that the proposed solution obtains better accuracy, sensitivity, and specificity
compared to the other three approaches, FCM, PCM, and VAF [10] (Voxels-As-Features),
and achieved a higher accuracy rate of 75% for MRI and 73% for PET images.

The similar work by Thulasi N P and Varghese (2018) [11] proposed a diagnosis system
of Alzheimer’s disease based on image processing techniques and SVM classifiers. The
proposed approach was trained and tested on a small MRI scanning dataset consisting of
100 subjects (70 AD and 30 NC) provided by the ADNI database. The proposed solution
consisted of two phases: feature extraction/selection and classification. In the first phase,
the authors used speeded-up robust features (SURF) to extract the key points of the cor-
responding MRI images, then the gray level co-occurrence matrix (GLCM) was used for
feature extraction. In the classification phase, they used the support vector machines (SVM)
to classify MRI images to AD or normal controls.

Recently, many improvements have been observed in the research field of AD diag-
noses/classification using DL techniques. In opposition to conventional ML methods, DL
methods are able to extract/select special features automatically from a raw dataset with
higher performance results achieved. Liu et al. (2015) [12] studied Alzheimer’s disease
classification using multi-modality data MRI and PET scans from the ADNI dataset. They
proposed a novel diagnostic framework to aid AD diagnosis by using DL architecture. To
extract complementary information from multimodal neuroimaging data (MRI and PET),
their framework uses a stacked auto-encoder SAE and a zero-mask strategy for data fusion.
It also uses a Softmax logistic regressor as a classifier. The results show that based on MRI
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and PET ADNI, this framework outperformed with 91.4% accuracy. However, when PET
data is not available and MRI is the only input, this percentage reduces to 82.6%.

Korolev et al. (2017) [13] apply two different 3D CNN approaches (3D-VGGNet and
3D-ResNet) with Softmax nonlinearity for classification. They use the ADNI dataset of 3D
structural MRI brain scans. The result shows that the accuracy of AD/CN classification
reaches 79% for Voxnet and 80% for ResNet. In addition, their algorithms are simpler to
implement and do not need the manual extraction step.

In recent evidence, Gunawardena et al. (2017) [14] proposed a simple, convolutional
neural network for AD pre-detection. Their study consists of two experiments that use MRI
scans provided by ADNI. First, they use the SVM classifier as the most common detection
method. This decision is based on their assumption that a successful AD detection method
can be successfully applied to AD pre-detection. The SVM classifier obtains 84.41% accuracy,
95.3% sensitivity, and 71.4% specificity in the first experiment. For the second experiment,
they utilized the proposed CNN model. They tested the CNN model with different datasets
and different image segmentation methods through the six evaluation processes. The best
image segmentation method was extended ROI without detecting edges, which obtained
the best and highest accuracy rate (96%), with 96% sensitivity and 98% specificity.

Lan Lin et al. (2018) [15] proposed a new classification method that automatically
differentiates patients with AD from HC based on MRI data. The feature was extracted
from the pre-trained convolutional neural network (CNN) using AlexNet, as well as feature
selection based on principal component analysis (PCA) and sequential feature selection
(SFS). While they adopt a support vector machine (SVM) to evaluate the classification
accuracy, the results show that a high classification accuracy for AD/CN classification
reaches 90%.

Another related work is found in the study elaborated by Bäckström et al. (2018) [16].
Their work was focused on proposing a novel and effective three-dimensional convolu-
tional network (3D ConvNet) architecture to achieve high performance for the detection of
AD. The proposed 3D ConvNet consisted of five convolutional layers for feature extraction,
followed by three fully connected layers for AD/NC classification. In addition, the study
focused on the impact of the following factors on the performance of AD classification:
hyper-parameter selection, pre-processing, data partitioning, and dataset size. They ob-
tained a dataset from ADNI consisting of 430 subjects (199 AD and 141 NC). MRI scans
were randomly partitioned into three subsets, with 60% in the training set, 20% in the
validation set, and 20% in the test set. The results showed that the proposed method
achieved a 98.74% accuracy rate for detecting AD vs. CN.

On the other hand, Huanhuan et al. (2019) [5] proposed an ensemble learning method
for the early diagnosis of AD by using convolutional neural networks (ConvNets) as a DL
technique based on MRI scans. They obtained a dataset consisting of 615 MRI images that
were split into 179 AD, 254 MCI, and 182 NC in NifTI format from ADNI. They resized
the MRI images to 224 × 224 and grouped them into WM and GM. Only 20 slices were
selected as the data from GM and WM and sent to the DL model ConvNet for training. To
enhance the classification process, the researchers used ensemble learning methods after
the convolutional operations. They selected ResNet50, NASNet, and MobileNet as the
combined base classifiers for the early diagnosis of AD. The results show that the proposed
method obtained accuracy rates of 98.59 % for AD vs. NC, 97.65% for AD vs. MCI, and
88.37% for MCI vs. NC.

The study by Rallabandi et al. (2020) [17] proposed a model for early diagnosis and
classification of AD and MCI from elderly cognitive normal, as well as the prediction and
diagnosis of early and late MCI individuals. The dataset consists of 1167 whole-brain
magnetic resonance imaging subjects, 371 NC, 328 early MCI, 169 late MCI, and 284 AD,
provided by the ADNI database. They used FreeSurfer analysis for each individual scan
to extract 68 features of the cortical thickness and utilized these features for building the
model. They further tested scans using various machine learning methods (non-linear
SVM (RBF kernel), naive Bayesian, K-nearest neighborhood, random forest, decision tree,
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and linear SVM). The non-linear SVM classifier with radial basis function showed the
highest specificity, sensitivity, F-score, Matthew’s correlation coefficient, and kappa-statistic,
receiver operating characteristic area under the curve (ROC AUC), as well as 75% accuracy
in classifying all four groups using 10-fold cross-validation.

Table 1 below summarizes the reviewed studies and shows a comparison between them
based on (1) dataset (dataset name, image modality, and size of the dataset that was used),
(2) methodology (feature selection and classifier), and (3) performance evaluation results.

Table 1. Summary and comparison of the selected recent research.

References
Dataset Methodology

Evaluation Result
Name Modality Size Feature Selection Classifier

Liu et al. (2016) [6] ADNI MRI 549 subjects
70 AD
30 NC

Multiview learning using
GM

SVM AD vs. NC.
Accuracy: 93.83%
specificity: 95.69%
sensitivity: 92.78%

Krashenyi et al. (2016) [8] ADNI MRI
PET

249 subjects
70 AD
111 MCI
68 NC

ROI + statistical tests (t test) fuzzy logic using:
c-means algorithm

AD vs. NC
Accuracy: 89.59%
specificity: 92.2%
sensitivity: 93.27%
AUC= 94.01%.

Lazli et al. (2018) [9] ADNI MRI
PET

95 subjects
45 AD
50 NC

Fuzzy-Possibilistic Tissue
Segmentation

SVM (Linear,
Polynomial, and
RBF)

AD vs. NC
Accuracy: 75% (for MRI), 73% (for
PET)

Thulasi N P and Varghese
(2018) [11]

ADNI MRI 100 subjects
70 AD
30 NC

Speeded Up Robust
Features (SURF)
Gray Level Co-Occurrence
Matrix (GLCM)

SVM -

Liu et al. (2015) [12] ADNI MRI
PET

758 MRIsubjects
180 AD
160 cMCI
214 ncMCI
204 NC
331 subject Both MR & PET
data
85 AD
67 cMCI
102 ncMCI
77 NC

stacked auto-encoder SAE Softmax logistic
regressor

AD vs. NC
Accuracy: 91.40%
specificity: 90.42%
sensitivity: 92.32%
MCI vs. NC.
Accuracy: 82.10%
specificity: 92.32%
sensitivity: 60.00%

Korolev et al. (2017) [13] ADNI MRI 231 Subjects
50 AD
43 LMCI
77 EMCI
61 NC

3D CNN
(VoxCNN & ResNet)

Softmax AD vs. NC
Accuracy:
79% VoxCNN
80% ResNet
AUC:
88% VoxCNN
87% ResNet

Gunawardena et al. (2017)
[14]

ADNI MRI D1: 36 subjects (AD 7, MCI
14, NC 15) > 1615 2D images
generated
D2: 36 subjects (AD 9, MCI
16, NC 11) > 1743 2D images
generated from 3D

CNN SVM The best classification accuracy (96%)
with (Extended ROI without detecting
edges) among the other segmentation
methods

Lan Lin et al. (2018) [15] ADNI MRI 422 subjects
105 AD
123 MCI
194 NC

CNN (AlexNet) SVM AD vs. NC
Accuracy: 90%
specificity: 91%
sensitivity: 87%
AD vs. MCI
Accuracy: 81%
specificity: 88%
sensitivity: 70%
MCI vs. NC
Accuracy: 72%
specificity: 74%
sensitivity: 69%

Bäckström et al. (2018) [16] ADNI MRI 340 subjects
199 AD
141 NC
1198 MRI Scans

3D ConvNet Softmax AD vs. NC
Accuracy: 98%

Huanhuan et al. (2019) [5] ADNI MRI 615 subjects
179 AD
254 MCI
182 NC

ConvNet ResNet50,
NASNet, and
MobileNet

AD vs. NC
Accuracy: 98.59%
AD vs. MCI
Accuracy: 97.65%
MCI vs. NC
Accuracy: 88.37

Rallabandi et al. (2020) [17] ADNI MRI 1167 subjects 371 NC
328 EMCI,
169 LMCI
284 AD

FreeSurfer Non-linear SVM
(RBF kernel)
Naive Bayesian
K-Nearest
Neighborhod
Random Forest
Decision Tree
Linear SVM

non-linear SVM classifier showed the
highest result in classifying all four
groups
77% specificity
75% sensitivity
72% F-score
71% Matthew’s correlation coefficient
69% kappa-statistic
76% (ROC AUC)
75% accuracy

Considering the above, to the best of our knowledge no study has focused on evaluat-
ing CNN-based MRI feature extraction using different classifiers. Thus, the aim of this paper
is to analyze CNN-based MRI feature extraction for automatic classification of patients
with Alzheimer’s disease using pretrained CNN ResNet-50 with SVM, RF, and Softmax.

3. Materials and Methods

The main aim of this paper is to investigate and enhance the classification perfor-
mance of MRI images for the early diagnosis of AD through DL and CNN. Thus, this

571



Sensors 2022, 22, 2911

paper proposes to build and evaluate a disease diagnosis approach based on a CNN DL
technique based on MRI feature extraction for the automatic classification of AD using
three different classifiers, SVM, RF, and Softmax. Figure 1 shows the general structure of
the proposed approach.

Figure 1. The general structure of the proposed approach.

In this work, we will start by building and validating a CNN model for feature
extraction and classification. The validated model will then be used in experiments to
evaluate the model through analyzing the features extracted by CNN (ResNet) from the
fully connected layer. Three of the most well-known conventional ML classifiers will be
applied (SVM, RF, and Softmax) for each set of features and for evaluating the results, where
SVM and RF are the most common classification techniques used for AD classification
based on our literature review. To build an AD diagnosis approach, the methodology
goes through the following stages: first, the MRI data collection stage. In the second
stage, the image pre-processing, we resized each MRI image to a suitable size for the CNN
model. After that, we employed the pre-trained convolution neural networks ResNet50
to extract MRI image features and utilize them in the following classification stage in the
feature’s extraction stage. We use three different classifiers, SoftMax, SVM, and RF, in the
classification stage. Finally, we looked at the different results, analyzed the efficiency and
the effectiveness of each approach using the evaluation metrics, and compared our results
with recent studies results. Figure 2 illustrates the detailed steps of the solution.

Figure 2. The detailed steps of the proposed solution.
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3.1. MRI Dataset

This study will use two public datasets, the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [7] and Minimal Interval Resonance Imaging in Alzheimer’s Disease
(MIRIAD) [18]. The ADNI [7] was launched in 2003 by the National Institute of Biomedical
Imaging and Bioengineering as a non-profit organization led by principal investigator
Michael W. Weiner, MD. The initial goal of ADNI is to evaluate the progression of early
Alzheimer’s disease. The ADNI-1 Dataset consists of 1.5 T T1-weighted MRI images with
128 sagittal slices, typically 256 × 256 matrices with a voxel size of approximately 1.33 mm
× 1 mm × 1 mm). The dataset is encompassing 741 subjects divided into Alzheimer’s
disease (AD) and normal control (NC). This dataset consists of 314 AD scans and 427 NC [7].
The MIRIAD dataset is a publicity available scan database of MRI brain scans consisting
of 46 Alzheimer’s patients and 23 normal control cases. Many scans were collected from
each participant at intervals between 2 weeks and 2 years, and the study was designed
to examine the feasibility of using MRI scans as an outcome measure for clinical trials of
Alzheimer’s therapies. It includes a total of 708 scans. Three-dimensional T1-weighted
images were acquired with an IR-FSPGR (inversion recovery prepared fast spoiled gradient
recalled) sequence, field of view 24 cm, 256 × 256 matrix, 124 1.5 mm coronal partitions,
TR 15 ms, TE 5.4 ms, flip angle 15◦, and TI 650 ms [18]. In both datasets, images from AD
patients did not specify AD degrees. In our experiments, multiple images from one patient
are treated independently, as if for different patients.

The data format is NIFTI and the file extension is (.nii). MRI data provide details of
the brain and visualize the anatomy in all three planes: axial, sagittal, and coronal (see
Figure 3 below). Figure 4 shows a comparison between a healthy brain (NC brain) and an
AD brain of axial planes [18].

 
Figure 3. MRI Imaging Planes.

Figure 4. Normal brain vs. brain affected with Alzheimer’s.

3.2. Data Pre-Processing

The pre-processing phase of the MRI datasets aims to transform the data into a more
optimal representation to match the pre-trained CNN’s input size requirements. First,
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we extracted the brain from MRI 3D images by removing the skull from the image and
eliminating noise for improving the model performance. Then, applying the smoothing
technique of MRI is often used to reduce noise within an image and produce a less pixelated
image. We have smoothed our MRI images with a 4 mm FWHM Gaussian filter, while
FWHM is the width of the kernel. Moreover, the ResNet architecture uses input images
224 × 224 pixels in size, meaning that each input MRI image in our CNN model resized to
224 × 224 pixels before being fed into the model.

3.3. CNN Model

The architecture of the proposed pre-trained CNN model (ResNet-50 [19]) consists of
five Conv blocks stages, pooling layers, and the fully connected (FC) layer. Convolutional
and pooling layers are used for feature extraction, while the fully connected layers are used
for the image classification stage. Feature extraction in CNN uses local connections for
local features detected and pooling for merging similar local features to be one feature.
Meanwhile, FC layers are used to compute the output for each input MRI image. In
addition, for optimizing the classification task, the FC layers can be replaced by other
classifiers, such as SVM or RF.

After the data collection and image pre-processing stage, the dataset is divided into
three sets: training, validation, and a testing set. Since we have small datasets, we used
the data augmentation technique, which helps to increase the number of samples in our
training dataset and this has expanded the number of images to 741 for ADNI [7] and 708 for
MIRIAD [18]. The training set (a labeled dataset) trains the CNN model on a particular task,
such as feature extraction, where the CNN model will generate MRI features vectors from
the fully connected layer. After that, the features vectors are entered into three different
classifiers. The validation set provides an impartial evaluation of a model fit on the training
dataset while tuning the model. The test set was used to evaluate the ResNet50-Softmax,
ResNet50-SVM, and ResNet50-RF model approaches.

We apply a pre-trained CNN called ResNet-50 using Tensorflow [20] and Keras [21]
applications to the MRI images instead of training a CNN from scratch, which requires a
huge dataset. In addition, this helps to avoid the overfitting problem caused by the small
dataset. We selected the ResNet-50 model because it is arguably the most groundbreaking
work in the computer vision/DL community in the last 5 years. ResNet makes it possible
to train hundreds of layers that go deeper and deeper and still achieve good performance.
It won the 2015 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) and it
outperformed all prior competitors and won the challenge by reducing the top-five error to
3.57%. Our study used ResNet-50 with three classifiers, Softmax, SVM, and RF, to determine
which one performs better with the ResNet-50 model.

In the following paragraphs, there will be a brief description of the methodology CNN
model of each set of layers.

3.3.1. Convolutional Layer

The convolutional layer is the essential part and the core building block of the DL
CNN. It is responsible for the feature extraction process, while its output sets of 2D matrices
are called feature maps. Each convolutional layer consists of a fixed number of filters that
act as feature detectors and extract the features by convolving the input image with these
filters. The size of the filters is chosen in ResNet50 (7 × 7), (1 × 1), and (3 × 3). During the
training process, each filter acquires the ability to detect the analyzed images’ low-level
features, such as colors, edges, blobs, and corners.

3.3.2. Pooling Layer

The pooling layers [22] are places after the convolutional layers (Conv). The sub-
sampling layer is responsible for decreasing the size of the feature maps that produce the
convolutional layers. Max pooling is the most popular pooling operation that reduces
the feature maps by reducing the small region in the image with the maximum value in
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the region. The max-pooling process is based on the partition of the images into sets of
2 × 2 non-overlapping regions. The maximum value from every region is taken. The 2 × 2
pooling layer reduces the size of the feature map by four times.

The process of max pooling is performed to avoid overfitting by providing an abstract
of the image representation regions. In addition, it minimizes the computational cost by
decreasing the number of parameters. Furthermore, the average pooling layer is another
type of pooling. This layer acts as max pooling, but it calculates 2 × 2 rectangles’ averages
to create a subsampled image instead of taking the maximum value.

3.3.3. Batch Normalization Layer

The batch normalization layer [23] is used to normalize the convolution layer’s output
by setting the batch’s mean to 0 and the variance to 1. This technique speeds up the training
process, using higher learning rates. Moreover, it prevents the gradients of the model
from vanishing during backpropagation. In addition, DL models with batch normalization
layers are more robust against improper weights initialization.

3.3.4. Dropout Layer

The dropout layer [24] is used to avoid overfitting phenomena. This technique is based
on a mechanism where, during the training, neurons are randomly removed. The dropout
rate parameter controls the number of removed neurons, which decides the likelihood of
neuron removal. The neurons are removed only during the training process.

3.3.5. Fully Connected Layer

The fully connecting layer is the last layer in the ResNet50 network. It acts as a classi-
fier, and its function is to connect the layers in the network and give the final result of the
classification. Usually, it is followed by the final layer with a normalized exponential func-
tion (Softmax). This layer has been modified to fine-tune the ResNet50 for the classification
of Alzheimer’s disease.

3.4. MRI Image Classification

The FC layers of CNN can be replaced by other classifiers, for example, based on
logistic regression or SVMs, which are optimized for the task of classification. In this project,
we will evaluate CNN with Softmax, SVM, and RF classifier.

3.4.1. Softmax Classification Layer

In general, in the last layer of CNN architecture is the Softmax function used to classify
the labeled data and calculate the probability of each ground-truth label of outputs between
0 and 1, and output values converted to perceptible values. The formula of the Softmax
function is given by the following equation [25]:

f (x)i =
ezj

∑N
n=1 ezk

f or j = 1, . . . . . . , N, (1)

where N is denoted as the dimension of random values (x), which are converted to the
meaningful values between 0 and 1 by the Softmax function f (x).

3.4.2. SVM Classification

We will replace the final FC layers by SVM classifier with a number of splits (folds
number = 10 and seed = 7). SVMs are often used for binary image classification, AD vs. NC,
and they have achieved noteworthy results in real-life problems. In addition, using the RBF
kernel, the SVM classifier generates a nonlinear classifier that can map the original dataset
to the higher dimensional space by generating linear data. This is shown in the equation
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below, where input vectors are shown by x and y, the squared Euclidean distance between
x and y vectors is shown by ||x − y||2, and the kernel parameter is shown by σ2 [25]:

k(x, y) = exp

(
−||x − y||2

2σ2

)
, (2)

3.4.3. Random Forest

Random forest (RF) is a technique for reducing the variance of an estimated prediction
function. RF is a substantial modification of bagging that builds a large collection of
de-correlated trees and then averages them. The essential idea in bagging is to average
many noisy but approximately unbiased models and reduce the variance. Trees are ideal
candidates for bagging since they can capture complex interactions [26]. It can be used for
classification and regression. When used for classification, a random forest obtains a class
vote from each tree and then classifies using a majority vote. When used for regression, the
predictions from each tree at target point x are simply averaged. In our study, we used RF
for classification with number estimator = 20 while the default = 100 and it can be change
from 1–100 after trying several values 20 gives us the best result.

On many problems, random forests’ performances are much like boosting, and they are
simpler to train and tune. Consequently, random forests are popular, and are implemented
in a variety of packages [26].

3.5. Performance Evaluation Metrics

The most important performance indicator (accuracy, ACC) of the AD diagnosis is
used to measure the ResNet50-Softmax, ResNet-SVM, and ResNet-RF performance models.
In addition, sensitivity (SEN) and specificity (SPE) are performance indicators. The true
positives (TP) refer to the classifier’s positive tuples that were correctly labeled. Let TP
be the number of true positives. The false positives (FP) are the negative tuples that were
incorrectly labeled as positive. Let FP be the number of false positives. The true negative
(TN) are the negative tuples that the classifier correctly labeled. Let TN be the number of
true negatives. The false negatives (FN) are the positive tuples that were mislabeled as
negative. Let FN be the number of false negatives.

• Accuracy (ACC): the percentage of the number of records classified correctly versus
the total records shown in the equation below:

ACC = (TP + TN)/(TP + TN + FP + FN), (3)

• Sensitivity (SEN)/Recall shows the percentage of the number of records identified
correctly over the total number of AD subjects, as shown in the equation below:

SEN = TP/(TP + FN), (4)

• Specificity (SPE): the percentage of the number of records. Normal control is divided
by the total number of normal nodes, as shown in the equation below:

SPE = TP/(TP + FP), (5)

• Fmeasure: a measure of a test’s accuracy:

Fmeasure = 2 ∗ (precision ∗ recall)
(precision + recall)

(6)

4. Experiments and Results

This section describes the conducted experiment and its setup, followed by our ex-
periment’s results. We will first give a brief description of the experiment’s setup, which
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includes software and hardware settings, followed by the results of model training and
validation. The third subsection is related to the obtained results when applying the CNN
model for feature extraction with the three classifiers (Softmax, SVM, and RF). Finally, we
will compare the obtained results in the proposed approach with those of other methods.

4.1. Experimental Setup

The experiments were conducted using the Google Colaboratory Pro [27] platform
(Colab Pro) as a Python development environment. It is a cloud service provided by Google
that allows users to write and execute Python codes in a hosted GPU. We used DL Python
libraries TensorFlow [20], Keras [21], Scikit-learn [21], Numpy [21], and OpenCV [28]
for developing the proposed solution. In addition, we used Nibabel [29], Nilearn [30],
and DeepBrain [31] as Python libraries for neuroimaging data (MRI) analysis. This study
employed an ADNI [7] dataset with the NIFTI format of MRI scans and focused on coronal
plane visualization of brain anatomy. A coronal plane is an x-z plane perpendicular to the
ground, which (in humans) separates the anterior from the posterior. Studies show that
using the coronal plane is more effective [32].

The dataset consists of 741 subjects [AD:427 and, NC: 314]. As a pre-processing stage,
for ResNet-50 we needed to resize all MRI images to 224 × 224 and convert them to RGB.

4.2. The Results of Model Training and Validation

In our study, the dataset was randomly partitioning into 75:15:10, 75% for the training,
15% for validation, and 10% for testing. Table 2 below shows the details of the dataset.

Table 2. Datasets details.

Data Set Size Training (75%) Validation (15%)
Testing
(10%)

ADNI [7] 741 [AD:427,
NC:314] 555 111 75

MIRIAD [18] 708 [AD:466,
NC:243] 530 105 73

The proposed CNN model structure is the same as that of the ResNet50 model, with
some modifications that were made to avoid overfitting and enhancing the model per-
formance. After the last convolution layer and after each fully connected layer, a batch
normalization layer was added to normalize the output. One dropout layer was added
before the classifier and after the last fully connected layer to avoid overfitting phenomena,
while the dropout rate was set to 0.5. The ResNet-50 network was trained using the stochas-
tic gradient descent (SGD) optimizer with the learning rate to 0.0004 and momentum to 0.9.
The batch size was set to 10 for training and validation sets, while batch size equals sample
number in the testing set. We set epoch to 100, while it is a hyperparameter predefined
before training a model.

We evaluated the model based on the accuracy and categorical cross-entropy (loss)
of classification AD and normal MRI images. Loss functions are intended to compute the
quantity that a model should seek to minimize during training. Figure 5 shows the per-
formance of the proposed pretrained CNN model ResNet-50 from training and validation
for the ADNI and MIRIAD datasets. Top graphs show loss vs. epochs; meanwhile, down
graphs show accuracy vs. epochs; red from training and orange from validation results,
while epochs equal 100.
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Figure 5. Training and validation performance of ResNet50-Softmax.

4.3. Classification Result Evaluation or Performance Analysis

To answer our first and second research questions, different experiments were con-
ducted using three different classifiers (Softmax, SVM, and RF). Thus, in our experiments,
we evaluated the proposed model’s classification performance using Softmax, SVM, and
RF classifiers with the ADNI [7] dataset and MIRIAD [18] dataset.

The experiment aims at determining the most accurate approach for the AD diagnostic
pre-train model ResNet50. First, we apply transfer learning on ResNet50 using Softmax in
the classifier layer. After that, the proposed approaches (ResNet50-Softmax, ResNet50-SVM,
and ResNet50-RF) were tested on the ADNI and MIRIAD datasets. Results showed that the
model with the Softmax classifier outperforms SVM and RF in all performance measures.
Table 3 below shows the accuracy, specificity, sensitivity, and F-measure of each classifier
on both datasets.

Table 3. Performance of the three classifiers in the proposed model.

Dataset
Classifier
Used with
ResNet50

Accuracy Specificity Sensitivity F-Measure

ADNI [7]
Softmax 99% 98% 99% 98%

SVM 92% 91% 87% 89%
RF 85.7% 88% 79% 84%

MIRIAD [18]
Softmax 96% 95% 96% 97%

SVM 90% 91% 87% 87%
RF 84.8% 84% 73% 79%

Since Softmax has the best results over the other classifiers (RF and SVM) for both
datasets, we will investigate more in evaluating this classifier’s performance in terms
of individual classes [AD and NC]. Figure 6 below shows the confusion matrix for the
Softmax classifier on the ADNI and MIRIAD datasets. Tables 4 and 5 show the classification
performance results of Softmax in precision, recall, f1-measure, and support, where support
represents the number of samples.
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Figure 6. Confusion matrix obtained on the test dataset with Resnet50-Softmax.

Table 4. Resnet50-Softmax experiment results with the ADNI dataset.

Precision Recall F1-Score Support

NC 98% 100% 99% 43
AD 100% 97% 98% 32

Accuracy 99% 75
Macro avg 99% 98% 99% 75

Weighted avg 99% 99% 99% 75

Table 5. Resnet50-Softmax experiment results with the MIRIAD dataset.

Precision Recall F1-Score Support

NC 92% 96% 94% 25
AD 98% 96% 97% 48

Accuracy 96% 73
Macro avg 95% 96% 95% 73

Weighted avg 96% 96% 96% 73

From Figure 6 and Tables 4 and 5, it can be clearly observed that the proposed AD diag-
nosis model has been shown to be effective, with a favorable AD classification rate (96.875%)
and a low false alarm of 3.125% for the ADNI dataset, and with an AD classification rate
(95.83%) with a low false alarm of 4.16% for the MIRIAD dataset.

Results also show that the performance is consistent in the three classifiers. This
is demonstrated by the accuracy achieved by the Softmax classifiers being the highest.
Likewise, SVM comes as the second-best classifier, and RF comes third. This shows that
performance of the proposed model is not affected by the dataset.

4.4. Comparison with the State-of-the-Art Models

As shown in the previous sections, the proposed model has shown promising results
on the ADNI [7] and MIRIAD [18] datasets with three different classifiers, with accuracy,
specificity, sensitivity, and F-measure. It gave good results, answering our first research
question about the effectiveness of the proposed model needs and evaluating its classifica-
tion performance compared to other approaches in the literature to assess its effectiveness.
To achieve that, we need to compare its performance against some of the state-of-the-art
approaches discussed in our literature review. The approaches in the related work section
were tested on the MRI of the ADNI [7] dataset. We compared the obtained results on
ADNI with our proposed method in all three approaches (ResNet-50 + Softmax, ResNet-50
+ SVM, and ResNet-50 + RF). Table 6 shows the results of our proposed model on the
ADNI dataset in comparison to the results obtained by other approaches. From the results,
it can be clearly seen that the proposed ResNet50-Softmax approach achieved very high
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performance of 99%, close to the approach result proposed by Huanhuan et al. [5], which
combines three pre-trained models, including ResNet50, and achieves 98.59%. In addition,
the proposed approach using different techniques such as MRI image smoothing, add batch
normalization, and dropout layers that improve the network performance, compared with
the ResNet50-Softmax approach proposed by Korolev et al. [13], is one of the proposed
approaches using the same pre-train model ResNet50 without add batch normalization, or
dropout and achieves only 80%. On the other hand, ResNet50 + SVM obtains a good result
compared with [6,9,13,16]; it achieves 92% accuracy. In addition, ResNet + RF outperform
three approaches that are the fuzzy-possibilistic tissue segmentation + SVM approach [9],
VoxCNN + Softmax, and ResNet50 + Softmax proposed by [13]. Figure 7 below represents
the results in the flow chart.

Table 6. Comparison of our test performance with eight existing state-of-the-art methods.

Models Used Approach Accuracy Specificity Sensitivity

Liu et al. (2016) [6] Multiview learning using GM
+ SVM 93.83% 95.69% 92.78%

Lazli et al. (2018) [9] Fuzzy-Possibilistic Tissue
Segmentation + SVM 73% - -

Liu et al. (2015) [12] stacked auto-encoder SAE +
Softmax 91.40 90.42% 92.32%

Korolev et al. (2017) [13] VoxCNN + Softmax 79% - -
ResNet + Softmax 80% - -

Lan Lin et al. (2018) [15] AlexNet + SVM 90% 91% 87%
Bäckström et al. (2018) [16] 3D ConvNet + Softmax 96%

Huanhuan et al. (2019) [5] ResNet50, NASNet, and
MobileNet + Softmax 98.59 - -

Rallabandi et al. (2020) [17] Non-linear SVM (RBF kernel) 75% 79% 75%

Proposed model
ADNI [7]

ResNet50 + Softmax 99% 98% 99%
ResNet50 + SVM 92% 91% 87%
ResNet50 + RF 85.7% 88% 79%

Figure 7. Comparison between our approaches and eight state-of-the-art approaches.

5. Conclusions

To conclude, in this paper an Alzheimer’s disease classification model was developed
for MRI. The pre-trained convolution neural network (CNN) architecture ResNet-50 was
applied for an AD diagnoses system with different approaches (ResNet50 + Softmax,
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ResNet50 + SVM, and ResNet50 + RF). First, we evaluated the performance for transfer
learning from pre-trained CNN ResNet-50 for the classification task using Softmax. After
that, we evaluated the performance for ResNet-50 for extracting features and using a
support vector machine (SVM) and random forest (RF) for the classification task. This study
was conducted on the ADNI MRI and MIRIAD datasets. The results show an accuracy of
99% for ResNet + Sofmax, 92% for ResNet50+SVM, and 85.7% for ResNet50 + RF with the
ADNI dataset, while the results of the MIRIAD dataset showed accuracy of 96% for ResNet
+ Sofmax, 90% for ResNet50 + SVM, and 84.4% for ResNet50 + RF. We compared our model
with the state-of-the-art models using the ADNI dataset and the results show that our model
ResNet50 + Softmax achieved a higher accuracy than most of the state-of-the-art models.
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Abstract: A growing number of individuals and organizations are turning to machine learning
(ML) and deep learning (DL) to analyze massive amounts of data and produce actionable insights.
Predicting the early stages of serious illnesses using ML-based schemes, including cancer, kidney
failure, and heart attacks, is becoming increasingly common in medical practice. Cervical cancer is
one of the most frequent diseases among women, and early diagnosis could be a possible solution for
preventing this cancer. Thus, this study presents an astute way to predict cervical cancer with ML
algorithms. Research dataset, data pre-processing, predictive model selection (PMS), and pseudo-code
are the four phases of the proposed research technique. The PMS section reports experiments with
a range of classic machine learning methods, including decision tree (DT), logistic regression (LR),
support vector machine (SVM), K-nearest neighbors algorithm (KNN), adaptive boosting, gradient
boosting, random forest, and XGBoost. In terms of cervical cancer prediction, the highest classification
score of 100% is achieved with random forest (RF), decision tree (DT), adaptive boosting, and gradient
boosting algorithms. In contrast, 99% accuracy has been found with SVM. The computational
complexity of classic machine learning techniques is computed to assess the efficacy of the models. In
addition, 132 Saudi Arabian volunteers were polled as part of this study to learn their thoughts about
computer-assisted cervical cancer prediction, to focus attention on the human papillomavirus (HPV).

Keywords: machine learning (ML); cervical cancer; human papillomavirus (HPV); gradient boosting;
support vector machine (SVM)

1. Introduction

Human life is plagued with difficulties because it is difficult to predict when problems
arise. In general, women usually experience several difficulties in their lifetime. One of the
most critical ailments they may face is cervical cancer, which causes many problems [1].
The elevated mortality age of uterine cancer is due to women’s lack of knowledge about the
importance of early detection [2]. Cervical cancer is a dangerous cancer, which threatens
women’s health worldwide, and its early signs are relatively difficult to detect [3]. It is
responsible for damaging deep tissues of the cervix and can gradually reach other areas of
the human body, such as the lungs, liver, and vagina, which can increase the difficulties
involved [4]. However, while cervical cancer is a slow-growing malignancy, precancerous
advances have made early detection, prevention, and therapy possible. Cervical cancer has
been reduced in most nations over past decades as detection technologies have improved.
This year, 4290 people are predicted to die from cervical cancer [5]. The fatality rate has
dropped by roughly half since the mid-1970s, thanks in part to enhanced screening, which
has resulted in the early identification of cervical cancer. The death rate has reduced from
over 4% per year in 1996–2003 to less than 1% in 2009–2018 [6]. The pre-invasive stages
of cervical cancer of the uterus last for a long time. Screening tests can provide successful
treatment of precancerous-stage lesions, so that cancer can be prevented. Nonetheless, it has
been determined that the death rate in underdeveloped nations is exceptionally high, since
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they do not benefit from state-provided preventive strategies, such as free immunization
programs and national assessment programs.

When the cervix’s human papillomavirus (HPV) infection is left untreated, cervical
cancer develops [7]. Because it causes neoplastic development, the human papillomavirus
(HPV) is the most common infectious agent in cervical cancer. The improper proliferation
of cervical cancer cells and the multiplication of abnormal cells as a result of a malignant
phase is referred to as neoplastic progression [8]. The healthcare industry regularly gen-
erates massive amounts of data that can be used to extract information for forecasting
future sickness based on a patient’s treatment history and health data. Furthermore, these
areas can be enhanced by leveraging crucial data in healthcare. Machine learning helps
individuals process vast amounts of complex medical data in healthcare and then analyze
it for therapeutic insights. Doctors can then use this information to provide medical care.
As a result, patient satisfaction can be improved when machine learning (ML) is employed
in healthcare.

Cervical cancer is one of the most common malignancies among women worldwide.
Recently, many studies have been conducted on cervical cancer using modern techniques
that provide prediction in the early stage. Using machine learning has contributed to
early prediction [9]. Therefore, the most important causes of this disease among female
populations are lack of awareness, lack of access to resources and medical centers, and
the expense of undergoing regular examination in some countries [10]. Machine learning
has improved the performance of analyses and the generation of accurate patient data.
One researcher [11] employed text mining, machine learning, and econometric tools to
determine which core and enhanced quality attributes and emotions are more relevant in
forecasting clients’ satisfaction in different service scenarios. Their paper presents find-
ings related to health product marketing and services, and proposes an automated and
machine-learning-based technique for generating insights. It also aids healthcare/health
product e-commerce managers improve the design and execution of e-commerce services.
Moreover, the importance of continuous quality improvement in the performance of ma-
chine learning algorithms from a health care management and management information
technologies point of view is demonstrated in this paper by describing different kinds of
machine learning algorithms and analyzing healthcare data utilizing machine learning
algorithms [12]. This study identified algorithms that are better suited for the categorization
of negative and positive cervical cancer for clinical use. Cervical cancer can be diagnosed
with the help of such algorithms. Deep learning has shown a significant impact on health
and medical imaging, which helps evaluate the diagnostic accuracy of deep learning (DL)
algorithms in identifying pathologies in medical imaging [13].

The objectives of this study are as follows:

• To analyze and classify cervical cancer using machine learning algorithms that will
help doctors accurately diagnose the cancer.

• To identify the correlations between the parameters that are likely to be responsible
for cervical cancer.

• To conduct a survey that identifies women’s concerns about cervical cancer, and
provides a message to the readers as well as the research community.

Section 2 provides a literature review, Section 3 describes the research methodology,
and Section 4 includes the results and discussion.

2. Literature Review

This section provides the literature selection criteria (LSC) and the papers that have
been collected to review the literature from all the databases. The literature selection
criteria (LSC) section shows how we selected related papers based on the selection criteria,
after collecting the articles from the databases. Looking at papers published between
2010 and November 2020, this research has explored several electronic databases, such as
Institute of Electrical and Electronics Engineers (IEEE) Xplore, PubMed, National Center
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for Biotechnology Information (NCBI), Springer, Google Scholar, and Elsevier. Based on
the selected articles, the literature review is provided in detail below.

Literature Selection Criteria

The advantage of selection criteria is that it is possible to work according to a plan,
especially when downloading the papers. According to the time duration set, articles can
be searched, and fake journals can be skipped. In terms of search criteria, the research paper
must be a conference paper or journal article, and it must use a machine-learning-based
model or program intended solely for cervical cancer prediction. In addition, the following
conditions must be met:

• Purposes must be included in the research paper.
• The time frame being surveyed is from 2010 to 30 November 2021. It is important to

analyse the previous studies’ insights
• We do not include any research work that has not yet been printed, or is not peer reviewed.

In [14], the authors conducted a survey-based study on cervical cancer detection,
including performance analysis to determine the accuracy of various distinctive types of
architecture in an artificial neural network (ANN), where the ANN was used for identifying
cancerous, normal, and abnormal cells. The authors of [15] used cervigram images to
illustrate a method of screening cervical cancer with the oriented local histogram technique
(OLHT), which can increase edges, and the dual-tree complex wavelet transform (DT-
CWT), which can help achieve multi-resolution images. Using a UCI data repository and
six machine learning (ML) classifiers, ref. [16] proposed a model that can predict the exact
level of cervix infection. Data pre-processing was carried out with physician verification
to extract some features and to perform validation. To complete the study, 10-fold cross-
validation is utilized to assess the performance of the suggested model. Another key
study was published in [16], which used machine learning classifiers (SVM, QUEST, C&R
tree, and MLP). The investigation examined distinct metrics such as accuracy, sensitivity,
specificity, and area under the curve (AUC). The QUEST parameters were 95.55%, 90.48%,
100%, and 95.20%, respectively. This research proposed a federated learning method for
machinery malfunction diagnostics to address the data island problem. Each participant’s
model training is implemented on a local level, and a self-supervised learning scheme is
provided to improve learning performance [17].

Five different machine learning algorithms are used by [18], including random forest,
KNN, C5.0, SVM, and RPart. After finishing the training and evaluating the performance
of all of the classifiers (C5.0, RF, RPART, SVM, and KNN), the best options in terms of
accuracy were investigated, showing values of 97%, 96.9%, 96%, 88%, and 88%. Machine
learning (ML) algorithms such as decision tree, random forest, and logistic regression were
used in conjunction with the voting model. In [19], cervical cancer was detected using
a dataset containing four target parameters (biopsy, cytology, Schiller, and Hinselmann),
as well as 32 risk factors, collected from the University of California (UCI). Machine
learning (ML) algorithms were applied, including the the decision tree and decision jungle
approaches. The study observed that the decision tree algorithm showed a higher value
(98.5%). In another study using the Microsoft Azure ML tool, an appropriate data mining
technique was developed from the boosted decision tree, decision forest, and decision
jungle algorithms to detect cervical cancer [20]. The models’ performances were measured
in terms of accuracy, area under the receiver operating characteristic (AUROC) curve,
specificity, and sensitivity, with 10-fold cross-validation applied to the outputs to improve
the decision tree algorithm’s performance, reaching a value of 97.8% on the AUROC curve.
The authors of [21] presented a survey-based study on cervical cancer prevention from the
perspective of women in Bug, IRI, and Mayuge in Eastern Uganda, using a questionnaire to
collect data from 900 women aged 25 to 49 years. After measuring and scoring the women’s
knowledge and statements about cervical cancer treatment, the data was analyzed using
Stata 12.0 software. After doing bivariate and multivariate analysis, the authors discovered
that 794 women, or roughly 88.2%, had heard of the condition. A majority of 557 women
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(70.2%) acquired their information from the radio, while a minority of 120 women (15.1%)
got their information from health care organizations.

The authors of [22] analyzed various machine learning approaches used from 2006
to 2017 to diagnose cervical cancer. In this research, a comparison was made using exist-
ing relevant works based on cervical cancer medical data, to determine the benefits and
drawbacks of different approaches. Most studies had used unbalanced medical image
datasets. The survey also mentioned employing deep learning to predict cervical cancer.
Furthermore, the goal of [23] was to see how well the Cox proportional hazard regression
model and the deep learning neural network model predicted survival in cervical cancer
patients. A dataset from the University of California, Irvine, was used in the study [23],
which included age, number of pregnancies, contraceptive use, smoking habits, and chrono-
logical records of sexually transmitted infections (STDs). The study’s essential purpose was
to use Hinslemann screening methods to predict cervical cancer. With 10-fold validation, a
data mining strategy was used with the boosted decision tree, decision forest, and decision
jungle approaches. Moreover, on the AUROC (area under receiver operating characteristic)
curve, the boosted decision tree method achieved a forecast precision of 98%. The best
example of using electronic health record (EHR) data to predict cervical cancer is [24]. Four
machine learning classifiers were used to predict cancer. The random forest algorithm
produced the best results, with an AUC (area under the curve) of 0.97 one day before
diagnosis, up from 0.70 a year before diagnosis. The primary purpose of [25] was to create
a method that can anticipate the early effects of radiation on bone metastases in cervical
cancer patients. The researchers employed class imbalance learning (CIL) in data mining
to tackle the challenge of an imbalanced dataset. To deal with the issue of imbalanced
data categorization, many models, such as ant-miner, RIPPER, Ridor, PART, ADTree, C4.5,
ELM, and weighted ELM, with the synthetic minority over-sampling approach (SMOTE)
were used. The study aimed to assist in the early detection of cervical cancer. The study
showed the use of machine learning in defining a data validation mechanism to improve
the performance of cervical cancer prediction. The study also suggested genetic assistance
as an optional strategy to enhance the validity of the prediction. Additionally, [26] has
presented a method based on machine learning approaches for identifying cardiac disease.
Classification algorithms were used to construct the system. The model suggested a con-
ditional mutual information feature selection method to overcome the feature selection
problem. Feature selection methods are utilized to improve classification accuracy and
shorten the time it takes to develop a classification system.

Furthermore, the fundamental purpose of [27] was to examine how big data analytics
and machine-learning-based approaches may be used for diabetes. The results demonstrate
that the proposed machine-learning-based system might score as high as 86% on the
diagnostic accuracy of DL. Health specialists and other stakeholders collaborated to create
classification models that would assist in diabetes prediction and the design of prevention
measures. Based on the findings, the authors review the literature on machine models
and propose an intelligent framework for diabetes prediction. Anther study has been
conducted [28] where a methodology for heart disease was developed using the UCI
repository dataset and healthcare monitors to estimate the public’s risk of heart disease.
In addition, classification algorithms were employed to classify patient data to detect
cardiac disease, such as doosted decision tree and decision forest. The classification was
performed using data from the benchmark dataset during the training phase. At the testing
stage, accurate patient data was used to determine whether illness existed. The results
demonstrate that the proposed model based on machine learning could score as high as 92%
on the diagnostic accuracy of DL. Comparative analysis of existing research are provided
in Table 1.
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Table 1. Comparative analysis of existing research.

Source Used Dataset Classifiers Evaluation Matrix Findings

[14] UCL-858 patients and
36 attributes ROC-AUC ML method Cervical cancer diagnosis

[15] Patient demographics N/A Neural network Applied Cox
proportional techniques

[16] UCL repository ROC-AUC Decision tree Hinslemann screening methods
[17] EHRs AUC Random forest Traditional approaches
[18] N/A G-mean and F-measure ADTree Handling the data imbalance

[19] Dataset collected from the
University of California (UCI)

Using four target parameters:
biopsy, cytology, Schiller, and

Hinselmann, as well as
32 risk factors

Machine learning (ML)
algorithms are applied, such
as decision tree and decision

jungle approaches.

Decision tree algorithm shows a
higher value of 98.5%.

[20] Data mining technique (AUROC) The Microsoft Azure ML tool
Decision tree algorithm, a higher

value range of 97.8% on the
AUROC curve.

[21]

A survey-based study on
cervical cancer to collect data
from 900 women aged 25 to

49 years

N/A Using Stata 12.0 software.

A majority of 557 women (70.2%)
acquired their information from

the radio, while a minority of
120 women (15.1%) got their

information from health
care organizations.

[22] Unbalanced medical
image dataset

Assisted in determining
cervical cancer, and benefits

and drawbacks of
different approaches

Machine learning approaches
Employing deep learning to
predict cervical cancer with

high probability.

[23] A dataset from the University
of California, Irvine

Used Hinslemann screening
methods to forecast

cervical cancer
Deep-learning neural network

Boosted decision tree, decision
forest, and decision
jungle approaches.

[24] Electronic health record
(EHR) data

Four machine
learning classifiers Random forest algorithm

The boosted decision tree
method produced a precise

forecast of 98%.

[25]
Data radiation on bone
metastases in cervical

cancer patients

Ant-miner, RIPPER, Ridor,
PART, ADTree, C4.5, ELM, and

Weighted ELM
Class imbalance learning (CIL)

Suggested genetic assistance as
an optional strategy to enhance
the validity of the prediction.

[26] N/A Classification algorithms are
used to construct the system

Method based on machine
learning approaches

Utilized to improve classification
accuracy and shorten the time it

takes to develop a
classification system.

[27] Data related to diabetes Health specialists and other
stakeholders collaborate

Big data analytics and
machine-learning-based
approaches may be used

for diabetes.

Machine learning-based system
might score as high as 86% on
the diagnostic accuracy Of DL.

[28] UCI repository dataset Classify patient data to detect
cardiac disease

Boosted decision tree,
decision forest

Score as high as 92% on the
diagnostic accuracy of DL.

Based on the above review, it can be stated that several traditional algorithms have
been used to predict cervical cancer; still, the models do not achieve a satisfactory level,
because the selection of important features is the most crucial part of machine learning, and
the authors have not specified how the chosen features were selected. In addition, just using
traditional deep learning algorithms does not indicate that a model is suitable for practical
implementation in the healthcare sector; rather, model customization is required to remove
the overfitting and make it faster for a clinical application. Nonetheless, this research has
come up with an effective solution. Various state-of-the-art techniques are used in this study
to take this research to a satisfactory level and assist doctors in diagnosing cervical disease.

3. Methodology

The proposed research methodology is classified into several segments: research
dataset, data preprocessing, predictive model selection (PMS), and training method. Figure 1
depicts an architectural diagram of the proposed research; by looking at Figure 1, it can
be clearly observed that the architectural diagram has been separated into four phases,
because the model presented in this research performs some essential tasks in each stage.
Details on research data collection are described in the Research Dataset section. The Data
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Preprocessing section mentions how to remove noise from the dataset and make it useful
for feeding in machine learning. The type of predictive model selected to predict cervical
cancer in this research is shown in the PMS portion. The requisites for model training
are shown in the Training Methods section. Finally, we design the platform to provide an
overall pipeline of cervical cancer prediction using the Python programming language. This
research implements an algorithm that is better suited for the categorization of negative and
positive cervical cancer diagnoses for clinical use. Cervical cancer can be diagnosed with
the help of algorithms including decision tree, logistic regression, support vector machine
(SVM), K-nearest neighbours (KNN), adaptive boosting, dradient boosting, random forest,
and XGBoost. The sequence and consequences are presented in the following sections.

Figure 1. Proposed research model for classifying cervical cancer.

The proposed ML-based model is depicted in Figure 1. The training data will be fed
to the system at the beginning of the model training. Then, ML algorithms are adopted.
After that, model input data and new input data are applied to the scheme to train the
architecture properly. Finally, prediction is performed on the newly accumulated data.

3.1. Research Dataset

The UCI repository contributed to the dataset “Cervical Cancer Risk Factors for
Biopsy” [29]. The collection contains information about 858 people’s activities, demograph-
ics, and medical history. Multiple missing values occur in this dataset for hospital patients
as a result of several patients declining to answer questions due to privacy concerns [30].
The collection has 858 instances, each with 32 properties. The dataset includes 32 variables
and the histories of 858 female patients [30]. The dataset includes 32 variables and the
histories of 858 female patients, including factors such as age, IUD, smokes, STDs, and so
on. The research dataset’s attributes are provided in Table 2.

3.2. Data Preprocessing

Data preprocessing is divided into three sections, which are as follows: data cleaning,
data transformation, and data reduction. Data preprocessing is critical since it directly
impacts project success. Data impurity occurs when attributes or attribute values contain
noise or outliers, and redundant or missing data [30]. We have removed the missing values
and outliers from this dataset. The data transformation stage is kept in place to change
the data into suitable forms for the mining process. This research combines normalization,
attribute selection, discretization, and concept hierarchy generation. When dealing with a

588



Sensors 2022, 22, 4132

huge amount of data, analysis becomes more difficult when the data dimension is large.
The data reduction approach is employed in this research to overcome this. It seeks to
improve storage efficiency, while lowering the cost of data storage and processing. We have
applied the dimension reduction technique because it is another useful technique that can
be used to mitigate overfitting in machine learning models. For that, we have applied the
principal component analysis (PCA) technique.

Table 2. Attributes of the research dataset.

No. Attribute Type

1 Age Int
2 Number of sexual partners Int
3 First sexual intercourse Int
4 Number of pregnancies Int
5 Smokes Bool
6 Smokes (years) Bool
7 Smokes (pack/year) Bool
8 Hormonal contraceptives Bool
9 Hormonal contraceptives (years) Int
10 IUD Bool
11 IUD (years) Int
12 STDs Bool
13 STDs (number) Int
14 STDs: condylomatosis Bool
15 STDs: cervical condylomatosis Bool
16 STDs: vaginal condylomatosis Bool
17 STDs: vulvo-perineal condylomatosis Bool
18 STDs: syphilis Bool
19 STDs: pelvic inflammatory Bool
20 STDs: genital herpes Bool
21 STDs: molluscum contagiosum Bool
22 STDs: AIDS Bool
23 STDs: HIV Bool
24 STDs: hepatitis B Bool
25 STDs: HPV Bool
26 STDs: number of diagnoses Int
27 STDs: time since first diagnosis Int
28 STDs: time since last diagnosis Int
29 Dx: cancer Bool
30 Dx: CIN Bool
31 Dx: HPV Bool
32 Dx Bool

3.3. Predictive Model Selection (PMS)

Several machine learning classification algorithms have been used in the PMS, namely
support vector machine (SVM), decision tree classifier (DTC), random forest (RF), logistic
regression (LR), gradient boosting (GB), XGBoost, adaptive boosting (AB), and K-nearest
neighbor (KNN). This section has highlighted some of the algorithms that have achieved a
satisfactory level of accuracy on the adopted research dataset. Thus, we have illustrated
the theoretical interpretation of these algorithms in the following subsections.

3.3.1. Decision Tree (Dt)

Both classification and regression problems can be solved with the classification and
regression tree or CART algorithm, which is also called the DT. The DT looks a lot like
the branches of a tree, which is why the word ‘tree’ is included in its name. The decision
tree starts from the ‘root node’ just as the tree starts from the root. From the root node, the
branches of this tree spread through different decision conditions; such nodes are called
decision nodes (and called leaf nodes after making a final decision).
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3.3.2. Random Forest (Rf)

Ensemble learning enhances model performance by using multiple learners. RF is
also a kind of ensemble learning. Following the RF bagging method reduces the chances
of results being affected by outliers. This works well for both categorical and continuous
data. Datasets do not need to be scaled, and the higher the number of learners, the more
computational resources are required for complex models. In this algorithm, the decision is
made by voting. Such an algorithm is called ensemble learning. Random forests are made
up of many trees or shrubs. Just as there are many trees in the forest, random forests also
have many decision trees. The decision that most trees make is considered the final decision.

3.3.3. Adaptive Boosting (AB)

The adaptive boosting technique creates a powerful learner by combining the knowl-
edge of a number of weak learners. In this scenario, every single weak learner utilizes the
exact same input, often known as a training set. Every initial input or piece of training data
is given the same amount of importance. The responsibility for correcting the incorrect
predictions made by the first weak learner is passed on to the next weak learner, who is
given greater weight on the predictions made by the first weak learner and is turned over
to the next weak learner. As a result, the errors that the second weak learner made in
its predictions are passed on to the following weak learner in the same fashion, but with
increased weight. The same process is continued until the number of inaccurate forecasts
is reduced to a manageable level. In the end, a powerful learner is developed via the
combined efforts of all the weak learners. In this way, the amount of inaccuracy in the
forecast is reduced.

3.3.4. Support Vector Machine (SVM)

The support vector machine algorithm can be used for classification and regression
problems. However, SVMs are quite popular for relatively complex types of small or
medium classification datasets. In this algorithm, data points are separated by a hyperplane,
and the kernel determines what the hyperplane will look like. If we plot multiple variables
in a normal scatter plot, in many cases, that plot cannot separate two or more data classes.
The kernel of an SVM is a significant element, which can convert lower-dimensional data
into higher-dimensional space, and thus differentiate between types [31]. The following
equations are used in the case of SVM (1) and (2) [32]:

→
w·→x + b = 0 (1)

In this case, w is the (possibly normalized) average vector to the hyperplane. These
two specific hyperplanes bound the “margin” in the region or area, and the maximum
hyperplane lies halfway between them. These hyperplanes can be defined by equations
using a normalized or standardized dataset.

Plus − plane =
→
w·→x + b = 0

Minus − plane =
→
w·→x − b = 0

Therefore, the width or the margin of the two hyperplanes for data classification can
be written as follows:

width =

→
W

abs(
→
W)

(2)

3.4. Radial Basis Function (RBF) Kernel Support Vector Machine (SVM)

The support vector machine (SVM) performs well on linear and nonlinear data. This
method of classifying nonlinear data includes the radial base function. Putting data in the
function space relies heavily on the kernel function [33]. When plotting many variables
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in a typical scatter plot, it is often impossible to distinguish between various sets of data.
An SVM’s kernel is a technique for transforming lower-dimensional input into higher-
dimensional space and identifying different classes. In addition, the radial basis function is
a nonlinear function. The support vector machine’s most popular feature is its ability to
classify objects automatically. Infinite-dimensional space can be mapped to any input with
this kernel.

K(x1, x2) = exp

(
−|x1 − x2|2

2σ2

)
(3)

After utilizing Equation (1), we can obtain the following:

f (X) = ∑N
i αiyik(Xi, X) + b (4)

By applying Equation (3) in (4), we get a new function, where N represents the
trained data.

f (X) = ∑N
i αiyiexp

(
−|x1 − x2|2

2σ2

)
+ b (5)

Gradient Boosting

The gradient boosting algorithm also follows the sequential ensemble learning method.
Through loss optimization, weak learners gradually become better than previous weak
learners. For example, the second weak learner is better than the first, the third weak
learner is better than the second, and so on. As the weak learner periodicity increases, the
amount of error in the model decreases, and the model becomes a stronger learner. The
gradient boosting algorithm works relatively well for regression-type problems [34].

The difference between gradient boosting and adaptive boosting is that in adaptive
boosting, error is gradually reduced by updating the weight of the wrong predictive
samples. In gradient boosting, the loss function is optimized, and each loss is optimized [35].
The amount of error also decreases. To optimize this loss function, each weak learner
changes its alternative weak learner model, so that the next weak learner is better than the
previous one. Gradient boosting consists of three components: weak learner, loss function
optimization, and additive model. The following Equations (6)–(11) show the working
procedure of the gradient boosting algorithm mathematically [36]:

1. “Reconfigure the function estimate with a constant value”

f̂ (x) = f̂0, f̂0 = γ, γ ∈ R, f̂0 = argmin
γ

∑n
i=1 L(yi, γ) (6)

2. “For each iteration “t = 1, . . . ,T”:”

Compute pseudo − residuals rt, rit = −
[

∂L(yi , f (xi))
∂ f (xi)

]
f (x)= f̂ (x)

for i = 1, . . . , n

(7)

Include the latest function gt (x) (it can be any model, but here we are applying decision
trees) as regression on pseudo-residuals.

{(xi, rit)}i=1,...,n (8)

“Determine optimal coefficient “ρ_t” at “g_t (x)” about the initial loss function”

ρt = arg
ρ

min ∑n
i=1 L

(
yi, f̂ (xi) + ρ·gt(xi, θ)

)
(9)
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“Improve current approximation”

f̂ (x)where f̂t(x) = ρt·gt(x)
f̂ (x) ← f̂ (x) + f̂t(x) = ∑t

i=0 f̂i(x)
(10)

3. The ultimate GBM model will be the addition of the elementary constant and the
entire following function update:

f̂ (x) = ∑T
i=0 f̂ (x) (11)

4. Result Analysis

This section is categorized into four parts: empirical consequence report (ECP), ex-
ploratory cervical data analysis (ECDA), computational complexity analysis (CCA), com-
parative analysis, and survey data analysis (SDA).

4.1. Empirical Consequence Report (ECP)

The accuracy of predictions from the classification algorithms is estimated by applying
a classification report. The report demonstrates the precision, recall, and f1 score of the key
classification metrics on a per-class basis. By using true positive (TP), false positive (FP), true
negative (TN), and false negative (FN), the metrics are computed [37]. Table 3 demonstrates
the classification reports of the several traditional machine learning algorithms where the
precision, recall, and F1 scores are denoted by “P”, “R”, and “F1”. Precision is the ratio of
the model’s correct positive estimates to the total (correct and incorrect) positive estimates;
recall is the ratio of being able to predict positive as positive; and F1 is the weighted average
of precision and recall (this score considers both false positives and false negatives). A
classification report has been included in the table, where 0 means negative class and 1
means positive class.

Table 3. Classification report of the machine learning algorithms for classifying cervical cancer.

Algorithm
For the Case of “0” For the Case of “1”

Purpose P R F1 P R F1 Accuracy Score

Logistic Regression

Cervical cancer prediction

0.98 1.00 0.99 1.00 0.77 0.87 0.98
SVM 0.99 1.00 1.00 1.00 0.92 0.96 0.99
Random Forest 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Decision Tree 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Adaptive Boosting 1.00 1.00 1.00 1.00 1.00 1.00 1.00
KNN 0.95 1.00 0.97 1.00 0.31 0.47 0.95

To obtain the classification report [38], the following Equations (12)–(15) are used.
P: The relationship between the accurate positive estimate generated by the model

and the overall (correct and inaccurate) positive estimate. It is articulated as:

P =
TP

TP + FN
(12)

Recall/sensitivity: Positivity is represented by the ratio of accurate to inaccurate
predictions. It is written in mathematical notation as follows:

F2 = 2· TP
TP + FN

(13)
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F1: This is the harmonic mean of precision and recall, and it provides a more accurate
estimate of the amount of misclassification cases than the accuracy metric. It can be
expressed numerically as:

F2 =
Precision·Recall

Precision + Recall
(14)

Accuracy: It is the measure of all the instances correctly predicted. It is given as:

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

The mean squared error (MSE), mean absolute error (MAE), root mean squared error
(RMSE), and R-squared (R2) are frequently used to measure a model’s effectiveness in terms
of regression analysis. The accuracy of gradient boosting and XGBoost is obtained with the
performance metrics, as shown in Table 3. The MAE illustrates the commonality of clearly
distinguishing between specific and predicted values within the dataset. Similarly, the MAE
shows the traditional square difference between main and anticipated standards. The RMSE
also computes the standard deviation of the residuals. Finally, the R-squared (R2) represents
the fraction of variation inside the variable quantity defined by the regression toward
the mean model [38]. We have interpreted different algorithms with the corresponding
evaluation matrices. From the finding in Table 3, the highest classification scores have
been achieved with random forest (RF), decision tree (DT), and adaptive boosting. In
contrast, XGBoost provides a higher level of regularization for the gradient boosting
algorithm. Advanced regularization (L1 and L2) is utilized in XGBoost to increase model
generalization. In terms of performance, XGBoost is superior to the gradient boosting
algorithm. Its training is quite fast, and it may be dispersed across numerous clusters if
necessary. Because we need to determine the distinction between a classification model,
XGBoost, and gradient boosting, we have separated these models into a separate table
(Table 4) to survey the accuracy measurements of each of them, and found the highest
accuracy of 100 with gradient boosting.

Table 4. Accuracy measurement of gradient boosting and XGradient boosting.

Algorithm MAE MSE RMSE Accuracy R2

Gradient Boosting 7.330935195811098 × 10−165 0.0 0.0 1.00 1.00
XGBoost 0.04847228 0.021919228 0.14805144 0.68628035 0.68628035

4.2. Exploratory Cervical Data Analysis (ECDA)

Figure 2 shows the correlation graph. Correlation describes how two or more variables
are connected [39]. These variables may be input data features used to forecast our target
variable. Correlation is a mathematical method used to evaluate how one variable moves
or shifts in relation to another. It informs us about the intensity of the relationship between
the two variables. It is a bivariate analysis measure that defines the relationship between
various variables [39]. Moreover, finding the correlation is significant in cervical analysis
because essential factors can be identified by finding the relationship between each variable.
Two characteristics (variables) may be positively correlated with one another.

In the same way, two features (variables) can be negatively correlated with one another.
This implies that as the value of one variable rises, the other variable(s) falls. On the other
hand, if one variable’s value increases or decreases, but the value of the other variable(s)
does not, this indicates no correlation. The correlations are illustrated in Figure 2.

Figures 3 and 4 visualize the count measurement regarding the number of pregnancies,
the number of sexual partners, and age, and a comparison between biopsy and number
of pregnancies. The cervix is the uterus’s lower, narrowest portion. It creates a canal that
leads to the vaginal opening. Cervical biopsies can be performed in a variety of ways. As
shown in Figure 4, it is evident that a relationship between biopsy and pregnancy exists,
but occasionally fluctuates.
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Figure 2. Correlations between different variables of cervical cancer.

 

Figure 3. Count measurement in terms of the number of pregnancies, number of sexual partners, and age.
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Figure 4. Visualization of comparison between biopsy and number of pregnancies.

4.3. Computational Complexity Analysis (CCA)

Machine learning computational complexity is a quantitative examination of the
possibilities for effective computer learning [40]. It is focused on successful and general
learning algorithms and works within recently deployed machine inference models based
on computational complexity theory. We conducted a complexity analysis of various classic
algorithms because these types of algorithms have previously been utilized to identify
cervical cancer. Researchers confront numerous challenges regarding algorithm selection,
so determining the computational complexity before creating a model is critical. Table 5
shows a short summary of different algorithms, indicating the complexity analysis of
regression, dataset training, and prediction.

Table 5. Computational complexity of machine learning algorithms.

Algorithm Classification/Regression Training Prediction

Decision Tree C + R O
(
n2 p

)
O(p)

Random Forest C + R O
(
n2 pntrees

)
O(pntrees)

Gradient Boosting (ntrees) C + R O(npntrees) O(pntrees)

SVM (Kernel) C + R O
(
n2 p + n3) O(nsv p)

k-Nearest Neighbours C + R - O(np)

4.4. Validation

This research has applied cross-validation, which is a method that examines the
research model to achieve better residuals [41]. The problem with validation is that it does
not indicate how good data will be when it is used to make new estimates for a new result.
The better solution to this problem is not applying the entire dataset when we run data
training, which requires removing some of the data before training starts. Then, when we
finish training with the data, we can use the data removed in the assessment to show how
the model fits on “new” data. We have applied five-fold cross validation, and we did a
resampling method that uses different portions of the data to test and train a model on
various iterations. This model achieved satisfactory performance, and as the data size is
not large, we aim to apply these validation indicators in the next phase as our research is
still ongoing.

4.5. Survey Data Analysis (SDA)

Another part of our research is conducting survey data analysis. To determine how
many people are aware of cervical cancer, we have completed survey questionnaires based
on the aim of this research. In this research, a stratified sampling technique has been
used; stratified sampling is a similar or homogenous group-based sampling method [42].
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Our priority for this survey was to analyze the number of women who are less aware of
cervical cancer. It is certainly true that many women often feel too shy to talk about the
mentioned diseases with their parents, so in this research, we have highlighted this issue,
so that essential steps can be taken to raise awareness. In addition, the core biopsy test is
significant, and many are not familiar with this test. This was the primary reason for taking
a survey and analyzing the data. All members of the same group usually have the same
characteristics; such groups are called strata. Table 6 shows some major survey questions
(number of responses: N = 132; 94.69% answered all questions correctly).

Table 6. Some major survey questions for investigating cervical cancer.

Some Major Survey Questions that Match Survey Goal
Response N = 132

Yes/Agree No/Disagree Maybe/No Idea

Have you done a biopsy test or any other cervical cancer
(uterus)-related test before? 68% 26% 6%

Is everyone in your family aware of cervical cancer? 76% 20% 4%

Do you agree with the statement that the rate of being
affected by this cancer is becoming higher than before? 73% 10% 17%

Do you know about human papillomavirus (HPV)? 62% 31% 7%

Does living in a city or urban area affect how conscious
people are of this cancer? 71% 21% 8%

Have you had a biopsy or any other cervical cancer
(uterus)-related test before? 54% 35% 11%

Figure 5 illustrates the number of responses in terms of awareness of human papillo-
mavirus (HPV). By looking at Figure 5, it can be clearly seen that 31% of the participants are
not aware of HPV, while 62% are aware of the virus. Only 7% of respondents were unsure.

Figure 5. Number of responses regarding the awareness of human papillomavirus (HPV).

In addition, Figure 6 compares the responses in terms of whether or not the rate of
being affected by cervical cancer is becoming higher than before. It is noticeable that 73%
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of participants agreed with this statement, while 17% disagreed. A minority of participants
(around 10%) were unsure.

Figure 6. Survey responses regarding whether or not the rate of being affected by cervical cancer is
becoming higher than before.

Figures 7 and 8 compare the proportions of biopsy tests and awareness levels in rural
vs. urban areas. A total of 132 responses were recorded during the survey. Of these, 26% of
all participants had not yet undergone a biopsy test, while 6% of participants were unsure.
According to the survey, those who live in cities are more aware (71%) than those in rural
areas (21%). Another 8% of participants said both are equivalently aware of cervical cancer.

Figure 7. Total percentage of individuals who have undergone a biopsy test or another cervical cancer
(uterus)-related test before.
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Figure 8. The awareness level in rural and urban areas regarding cervical cancer.

5. Discussion

Based on the findings of this research, it can be stated that the objectives of this paper
have been achieved. Its research methodology was enriched with a set of algorithms
including decision tree (DT), logistic regression (LR), support vector machine (SVM),
K-nearest neighbors (KNN), adaptive boosting, gradient boosting, random forest (RF),
and XGBoost. The research has reached a satisfactory result for both predictions and
classification. This investigation also observed that the DT and RF algorithms were used in
conjunction with the Microsoft Azure machine learning (ML) method to achieve a proper
data mining technique for predicting cervical cancer. The study has further noticed that the
performances of the traditional algorithms used in previous research are comparatively low.
It is important to use data scaling, conduct missing value removal, and select a suitable
algorithm in the case of disease analysis and prediction. Still, previous research has not
shown the details of this pipeline. It is a matter of great concern that this work has not
been accomplished much in previous research using gradient boosting algorithms. Since
the gradient boosting algorithm also follows the sequential ensemble learning method, the
wave learners gradually get better than their previous wave learners through this method
of loss optimization.

It is essential to point out that the researchers did not restrict their effort to simply
developing the model; rather, they also validated and evaluated the model’s performance.
Several validation strategies, including ROC-AUC, confusion matrix, and cross-validation,
were applied by the researchers, and the researchers found that the efficacy with respect
to cervical cancer is adequate. In addition, the current research investigated the most
important predictors and the algorithms that are most frequently utilized for the purpose
of cervical cancer prediction. During the preprocessing phase, some aspects of the patients’
samples, such as the length of time they drank alcohol and their HIV and HSV2 infection
status, revealed that factors whose samples had undergone modest variations could not be
considered accurate predictors. Fewer predictors may need to be analyzed in subsequent
studies because of the potential importance of a given characteristic for the community or
the patient’s social status. This may make it easier to conduct the research more quickly.
However, with the help of this machine learning model, women have the opportunity to
benefit from knowing more about cervical cancer and what effect it has on the human
body. This study will focus on women in order to identify which symptoms or parameters
are important for identifying for cervical cancer, as well as the causes and effects of these
symptoms and parameters.
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This study has further performed a survey with 132 participants in Saudi Arabia to
explore cervical cancer awareness, focusing on the human papillomavirus (HPV). This data
is mainly gathered to identify individuals’ thoughts and comments regarding HPV and
cervical cancer. By conducting survey-based data analysis, the study has evaluated and
rated the women’s awareness and behaviors regardings cervical cancer care. It is notable
that the authors did not address why HPV is responsible for cervical cancer; also, the
survey did not show how much women knew about the biopsy test.

While working with the proposed models and algorithms, a number of limitations
have been observed. First of all, the DT algorithm is very unstable, which means that a
slight change in the data will significantly change the layout of the best decision tree. It is
insufficiently reliable. With similar data, several other predictors perform better. Second,
this study faced massive problems while dealing with the dataset, because numerous data
have been enumerated and interpreted in the data pre-processing stage. The model will
provide an optimum result only if a considerable number of data-processing techniques
have been adopted. Third, the survey data have been preserved to apply machine learning
to conduct sentiment analysis regarding cervical cancer, but in this study, the researchers
could not accommodate different data-processing techniques to apply the ML models.

6. Conclusions

Early detection increases the likelihood of successful treatment in the pre-cancer and
cancer stages. Being aware of any signs and symptoms of cervical cancer can also aid in
avoiding diagnostic delays. This research has focused on cervical cancer using conventional
machine learning (ML) principles and several traditional machine learning algorithms,
such as decision tree (DT), logistic regression (LR), support vector machine (SVM), and
K-nearest neighbors (KNN). In terms of cervical cancer prediction, the highest classification
score of 100% has been achieved with the random forest (RF), decision tree (DT), adaptive
boosting, and gradient boosting algorithms. In contrast, 99% accuracy has been found with
SVM. The results of these algorithms are applied to identify the most relevant predictors.
We have received satisfactory accuracy compared to the support vector machine algorithm.
The findings of this study revealed that the SVM model could be used to find the most
important predictors. As the number of essential predictors for analysis decreases, the
computational cost of the proposed model decreases. The disease can be predicated more
accurately with the use of machine learning. Furthermore, boosting patients’ personal
health and socio-cultural status can lead to cervical cancer prevention.

In addition, this research conducted a survey in Saudi Arabia, with 250 participants, to
learn their thoughts in response to the investigation of cervical cancer; risk factors have also
been identified through some data analyses. In the future, this research will experiment
with many datasets, analyze various deep learning algorithms and their computational
complexity, and show a pipeline that can extract more important insights through statistical
analysis in further research.
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Abstract: Skin cancer (melanoma and non-melanoma) is one of the most common cancer types and
leads to hundreds of thousands of yearly deaths worldwide. It manifests itself through abnormal
growth of skin cells. Early diagnosis drastically increases the chances of recovery. Moreover, it may
render surgical, radiographic, or chemical therapies unnecessary or lessen their overall usage. Thus,
healthcare costs can be reduced. The process of diagnosing skin cancer starts with dermoscopy,
which inspects the general shape, size, and color characteristics of skin lesions, and suspected lesions
undergo further sampling and lab tests for confirmation. Image-based diagnosis has undergone
great advances recently due to the rise of deep learning artificial intelligence. The work in this paper
examines the applicability of raw deep transfer learning in classifying images of skin lesions into
seven possible categories. Using the HAM1000 dataset of dermoscopy images, a system that accepts
these images as input without explicit feature extraction or preprocessing was developed using
13 deep transfer learning models. Extensive evaluation revealed the advantages and shortcomings
of such a method. Although some cancer types were correctly classified with high accuracy, the
imbalance of the dataset, the small number of images in some categories, and the large number of
classes reduced the best overall accuracy to 82.9%.

Keywords: deep learning; skin lesions; skin cancer; melanoma; image classification

1. Introduction

Skin cancer is considered one of the most dangerous types of cancer in the world [1,2],
and the number of deaths is increasing daily as a result of this disease [3,4]. Moreover, it
is one of the fastest spreading types of cancer [5]. However, treatment is possible if it is
detected in its early stages [6]. According to recent statistics, it was reported that 20% of
skin cancer reached a point where survival is not possible due to the disease progression [7].
Worldwide, approximately 50,000 people die each year from skin cancer [7,8], which
represents 0.7 of the death rate due to cancer [8]. The estimated cost of treatment is
approximately USD 30 million, which is prohibitive for treatment [5].

Doctors use multiple methods to detect skin cancer [9]. Visual detection is the initial
way to identify the possibility of the disease [10,11]. The American Center for the Study
of Dermatology developed a guide for the possible shape of melanoma, which is called
ABCD (asymmetry, border, color, diameter) [2,12,13] and is used by doctors for initial
screening of the disease. If a suspected skin lesion is found, the doctor takes a biopsy of the
visible lesion on the skin [14], and examines it microscopically for a benign or malignant
diagnosis and the type of skin cancer [15]. Dermoscopy is a technique that doctors use to
diagnose skin cancer [16]. It involves taking bright pictures of the shape of the skin lesion,
which comes in the form of dark spots [17]. However, this method faces many difficulties,
the most important of which is the inability to determine the nature of the lesion due to
the surrounding conditions such as the presence of hair, blood vessels, correct lighting,
inability to take the correct shape of the spot, and the similarity of the shape of the spots
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among cancerous and non-cancerous diseases [18,19]. Moreover, some people may ignore
skin lesions due to poverty, lack of access to proper healthcare, or misdiagnosis. Given
an image of a skin lesion, the goal of this work to easily and automatically classify this
image into benign or possible cancer. Such a system can be deployed as an easy-to-use
smartphone application.

The contributions of this paper are as follows:

1. Develop an artificial intelligence-based screening system for skin cancer (melanoma
and non-melanoma) using dermoscopic images of the skin lesions as input. Such a
system can aid in clinical screening tests, reduce errors, and improve early diagnosis;

2. Implement transfer learning of 13 deep convolutional neural networks models for the
classification of skin lesion images into seven categories, including melanoma, benign
keratosis-like lesions, and five other non-melanoma cancers;

3. Evaluate classification performance using common relevant metrics for all models. In
addition, the training behavior and time requirements were also included.

The remainder of this paper is organized as follows: the related work is discussed
in Section 2, the dataset, deep learning models, and performance evaluation metrics and
setup are explained in detail in Section 3, Section 4 presents the performance evaluation
results along with a comparison to the related literature and discussion of the models, and
we conclude in Section 5.

2. Related Work

Recent advances in artificial intelligence (AI) during the past decade and specifically in
the field of deep learning and convolutional neural networks (CNNs) have opened the door
for the development of reliable screening and diagnosis image-based medical systems [20].
The research landscape has recently witnessed a shift from image segmentation (i.e., separa-
tion of relevant areas in the image) and feature extraction toward automated classification
using deep learning. The literature in the context of skin cancer detection/screening fol-
lowed a similar trajectory with the traditional approach of image processing to remove
irrelevant artifacts (e.g., hair) being overcome by using sophisticated deep learning artificial
intelligence. Such recent techniques do not require explicit feature extraction and are
generally immune to noise factors that affect images (e.g., light intensity, color, translation,
reflection, etc.) [21]. However, they tend to be computationally intensive [22].

Li et al. [1] proposed digital hair removal (DHS) to filter the hair out of the skin lesion
image, and analyzed the effect of hair removal using intra-structural similarity (Intra-SSIM).
In another study, Liu et al. [23] developed a new method using deep learning to segment
lesion images according to regions of interest (ROI). They used a new mid-level feature
representation, where pre-trained neural networks (e.g., ResNet and DenseNet) were used
to extract information from the ROI. Similarly, Pour and Seker [24] used convolutional
neural networks for the segmentation of lesions and dermoscopic features. They used the
CIELAB color space in addition to RGB color channels instead of excessive augmentation
or using a pertained model. Almansi et al. [25] proposed a new segmentation methodology
using full-resolution convolutional networks (FrCN). They worked on the image without
pre/post-processing, and their results showed that the proposed method (FrCN) yielded
better results than the other deep learning segmentation approaches. Dash et al. [26] pro-
posed a new segmentation method based on a deep fully convolutional network comprised
of 29 layers. Xie et al. [27] proposed the segmentation of dermoscopy images based on
a convolutional neural network with an attention mechanism, which can preserve edge
details. Serte and Demirel [28] proposed a novel Gabor wavelet-based deep learning model
for the classification of melanoma and seborrheic keratosis. This model builds on an en-
semble of seven Gabor wavelet-based CNN models. Furthermore, their model fuses the
Gabor wavelet-based model and an image-based CNN model. The performance evaluation
results showed that an ensemble of the image and Gabor wavelet-based models outper-
formed the individual separate image and Gabor wavelet-based models. This ensemble
also outperformed the group of only Gabor wavelet-based CNN models.
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Deep transfer learning has been widely deployed in the medical imaging literature
for powerful, automatic, and internal (i.e., implicit) feature extraction. In this regard,
Manzo et al. [29] employed a three-step approach for melanoma detection. In the first
step, the images are converted into the proper size and the dataset is balanced. After that,
deep transfer learning is used for feature extraction. These features feed an ensemble of
traditional classification algorithms, including support-vector machine (SVM), logistic label
propagation (LLP), and k-nearest neighbors (KNN). Jain et al. [30] compared six different
transfer learning networks for multiclass lesion classification. However, their reported
results relied upon increasing the size of the dataset by augmentation. Augmentation
is typically used to introduce changes into the input images without duplication. Thus,
making several augmented copies of the same image in the dataset will result in biased
results that do not represent the actual performance [21].

3. Materials and Methods

Figure 1 shows the steps used to develop the skin cancer classification system using
images of skin lesions. The methods used in this work do not need any feature extraction,
nor does it perform any segmentation (i.e., separation of lesions from the rest of the image).
All of these are automatically handled by the complexities of the deep learning model
layers and operations. The next few subsections explain each part in detail.

Figure 1. A graphical abstract of the general steps used in this paper.

3.1. Dataset

This work uses the dataset called HAM1000 (Human Against Machine) [2], which
is comprised of 10,015 dermatoscopic images of the most common skin cancers. The im-
ages are divided into seven categories: 327 actinic keratosis and intraepithelial carcinoma
(AKIEC), 514 basal cell carcinoma (BCC), 1099 benign keratosis-like lesions (BLS), 115 der-
matofibroma (DF), 1113 melanoma (Mel), 6705 melanocytic nevi (NV), and 142 vascular
lesions (VASC). Two augmentation operations were applied: random x-y scaling in the
range (0.9, 1.1), and random x-y translation in the pixel range (−30, 30).

3.2. Deep Learning Models

Transfer learning has been found to be extremely effective in many image-based
medical applications [31]. It replaces ad hoc deep convolutional neural network (CNN)
designs with pre-trained, well-designed, and extensively-tested models. The initial layers
of such models are trained to detect generic image features such as color, contrast, etc. On
the other hand, later layers toward the output need to be customized and retrained on
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specific task-related features. Such methodology has proved its worth in a wide range
of studies [20,22,32]. In this paper, 13 deep learning models were customized, retrained,
evaluated individually, and compared on their ability to classify skin lesions into the
seven aforementioned categories in the HAM1000 dataset. These were: SqueezeNet [33],
GoogLeNet [34], Inceptionv3 [35], DenseNet-201 [36], MobileNetv2, ResNet18, Rest-
Net50, ResNet101, Xception [37], Inception-ResNet, ShuffleNet [38], DarkNet-53 [39],
and EfficientNet-b0 [40]. These models require input images to be of a certain size. More
specifically, these models require the input to be of size 224 × 224 × 3, 227 × 227 × 3,
256 × 256 × 3, 299 × 299 × 3, or 331 × 331× 3. However, all of them were pre-trained
using ImageNet [41].

3.3. Performance Evaluation Metrics and Setup

The performance was evaluated using five metrics [42]: accuracy, precision, recall,
specificity, and F1 score. The accuracy measures the ratio of true positive plus true negatives
for all the images. Precision measures the ratio of true positives to all elements identified
as positives (including false positives). Recall (i.e., sensitivity) measures the ratio of true
positives to all relevant elements (i.e., the actual positives). Specificity (i.e., selectivity)
measures the ratio of true negatives to all images that are actually negative, and the F1
score is the harmonic mean of the recall and precision and expresses the accuracy of
classification in unbalanced datasets. The five measures are defined in Equations (1)–(5).
The reported results refer to the mean overall value when each separate class is considered
as the positive case.

The model parameters were commonly set for all models as follows: minimum
batch size = 16 (higher values are more computationally efficient but require significantly
more memory), maximum number of epochs = 10 (no need to do further training if the
loss/validation curve flattens out after a certain number of epochs with no improvement),
initial learning rate = 0.0003, and the network solver = stochastic gradient descent with
momentum (SGDM). Three strategies for data splitting into training and validation were
used (i.e., 70/30, 80/20, and 90/10), which will measure the models’ improvement if more
input images were available and their ability to generalize without overfitting the input
images. Input images were augmented to increase their variety by using standard image
processing operations as follows: random axis translation (i.e., image movement over the x
and y axes) = (−30, 30), and random scaling using the range (0.9, 1.1).

The implementation and evaluation of the models was conducted using MATLAB
R2021a software running on an HP OMEN 30L desktop GT13 with 64 GB RAM, an NVIDIA
GeForce RTX 3080 GPU, an Intel Core i7-10700K CPU @ 3.80 GHz, and a 1TB SSD.

Accuracy =
TP + TN

P + N
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Speci f icity =
TN

TN + FP
(4)

F1 = 2 × Recall × Precision
Recall + Precision

(5)

where TP represents the number of correctly classified images, FP represents the number
of wrongly classified images as another class, FN indicates the number of images missed
by the classifier, P indicates the number of all images considered as the positive class, and
N is the number of all images other than the positive class.
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4. Results and Discussion

The related work in the literature has already established that high performance is
achievable in binary (i.e., benign vs. melanoma) or ternary (i.e., benign vs. melanoma
vs. non-melanoma) classification of skin lesion images. The goal of the experiments was
to evaluate the ability of transfer learning of the deep convolutional network models to
correctly classify skin lesion images into one of the seven aforementioned categories in
the dataset. Moreover, the training was repeated for 10 times to account for variability in
the random data split of images into training and validation, and the mean values were
reported. In addition, due to the high computational cost of deep learning models, the
training and validation times were also included in the results.

Table 1 shows the mean overall performance metrics over 10 runs of each of the 13 deep
learning models and using 70% of the data for training. All models achieved comparable
accuracy values, with Resnet101 performing the best with 76.7%. The sample confusion
matrix with row and column summaries in Figure 2 provides further insight into the results.
First, due to the imbalanced number of images in each class and with smaller-sized classes
achieving lower accuracies, the F1 score numbers are lower than the accuracy values. The
NV class with the largest number of images achieved the highest precision (92.5%; see the
NV column summary) and highest recall (82.5%; see the NV row summary). In comparison,
the melanoma class was detected with 71% sensitivity (i.e., recall) but 43.1% precision.
However, the other classes show less precision/recall variation.

Figure 3 shows a sample training/validation progress curve for Resnet101 and a
70/30 data split. This figure shows two possible observations: first, the model is unable
to achieve consistently reduced loss and produce high testing accuracy, even when the
number of epochs is increased (not reported here), and second, due to the small number of
images in most classes (deep learning requires large datasets [43]), there is an obvious gap
between the validation vs testing performance (i.e., overfitting or inability to generalize to
the validation data).

Table 2 shows the mean overall performance metrics over 10 runs of each of the
13 deep learning models using 80% of the data for training. The 10% increase in the size
of the training set did not have a significant effect on the performance metrics, with the
best F1 score being 66.1% (DenseNet201 model). The confusion matrix in Figure 4 shows
that a major source for errors was the misclassification of NV images as melanoma. Most
classes achieved relatively high precision but low recall. Moreover, the same training and
overfitting trends appear in Figure 5.

Table 1. The mean overall Accuracy, F-score, Precision, Recall, and Specificity for each deep learning
model and 70/30 data split.

Model F1 Score Precision Recall Specificity Accuracy

SqueezeNet 51.2% 63.1% 49.6% 93.8% 71.7%
GoogLeNet 55.4% 63.2% 53.4% 94.3% 74.0%
Inceptionv3 61.5% 65.5% 60.7% 94.5% 74.2%

DenseNet201 64.8% 70.9% 62.7% 94.7% 75.8%
MobileNetv2 61.0% 67.2% 58.4% 94.1% 75.6%

Resnet101 64.3% 67.6% 63.8% 95.0% 76.7%
Resnet50 63.4% 68.5% 62.4% 94.7% 74.4%
Resnet18 59.3% 64.7% 57.8% 94.6% 75.3%
Xception 60.9% 66.5% 59.2% 94.7% 75.4%
Inception-
ResNet-v2 61.4% 65.3% 60.8% 94.4% 75.5%

ShuffleNet 60.6% 64.9% 58.7% 93.5% 74.6%
DarkNet-53 61.9% 66.8% 61.9% 94.5% 71.6%

EfficientNetb0 57.6% 70.3% 53.7% 94.1% 73.8%
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Figure 2. Sample confusion matrix for Resnet101 model and 70/30 data split.

Figure 3. Sample training/validation progress curve for Resnet101 and 70/30 data split.

608



Sensors 2022, 22, 4963

Table 2. The mean overall accuracy, F-score, precision, recall, and specificity for each deep learning
model and an 80/20 data split.

Model F1 Score Precision Recall Specificity Accuracy

SqueezeNet 52.6% 64.0% 50.8% 93.4% 68.0%
GoogLeNet 56.2% 70.0% 53.8% 93.4% 68.5%
Inceptionv3 61.1% 64.2% 62.6% 94.0% 68.8%

DenseNet201 66.1% 74.7% 63.3% 94.3% 73.5%
MobileNetv2 61.5% 65.9% 60.2% 93.9% 73.0%

Resnet101 62.3% 69.0% 62.2% 94.2% 70.2%
Resnet50 63.2% 71.7% 61.8% 93.9% 67.7%
Resnet18 62.2% 64.7% 63.2% 93.8% 69.6%
Xception 56.1% 61.3% 55.9% 94.0% 70.2%
Inception-
ResNet-v2 58.5% 63.9% 59.7% 93.8% 67.4%

ShuffleNet 61.2% 70.2% 57.8% 93.3% 70.0%
DarkNet-53 61.4% 70.7% 58.5% 93.6% 70.2%

EfficientNetb0 56.0% 69.8% 52.6% 93.6% 72.2%

Figure 4. Sample confusion matrix for DenseNet201 model and 80/20 data split.

A further 10% increase in training data made the percentage of testing images 90%
of the dataset. Table 3 shows the mean overall performance metrics over 10 runs of each
of the 13 deep learning models. Three of the models (i.e., DenseNet201, DarkNet53, and
ResNet101) achieved an accuracy above 80% with a corresponding F1 score of 74.4% for
DenseNet201. The table shows steady improvement for most models with a larger set of
training data over all metrics, except for the small model SqueezeNet. Generally, deep
learning models, unlike traditional machine learning, benefit from larger datasets [44],
which may be the reason for improved performance. The sample confusion matrix for
DarkNet-53 in Figure 6 shows considerably better performance in terms of entries with
one or fewer false misclassifications. However, the training/validation progress curve in
Figure 7 still shows signs of overfitting.
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Figure 5. Sample training/validation progress curve for DenseNet201 and 80/20 data split.

Although an increased size of the training dataset showed signs of promise, much
is still desired to reach a reliable diagnosis system that surpasses screening requirements.
However, some of the results were affected by the small number of images in each class.
For example, in Figure 6, the class DF had 11 images, VASC had 14 images, and AKIEC
had 32 images. Such numbers are extremely low for an effective deep learning model, and
single errors will have a profound effect on overall performance indices.

Table 3. The mean overall accuracy, F-score, precision, recall, and specificity for each deep learning
model and 90/10 data split.

Model F1 Score Precision Recall Specificity Accuracy

SqueezeNet 52.7% 67.1% 48.0% 92.7% 75.0%
GoogLeNet 54.5% 64.2% 53.1% 94.5% 73.4%
Inceptionv3 67.9% 69.9% 70.1% 95.3% 79.3%

DenseNet201 74.4% 78.5% 73.6% 96.0% 82.9%
MobileNetv2 63.5% 68.8% 63.4% 94.8% 74.9%

Resnet101 71.7% 71.1% 74.5% 96.3% 81.2%
Resnet50 67.8% 72.6% 68.3% 95.5% 77.8%
Resnet18 67.9% 72.3% 68.3% 95.1% 79.0%
Xception 59.5% 65.0% 58.5% 94.4% 72.1%
Inception-
ResNet-v2 64.4% 66.6% 66.8% 94.8% 73.9%

ShuffleNet 65.8% 74.0% 61.8% 94.3% 79.0%
DarkNet-53 66.3% 70.0% 66.1% 95.1% 80.8%

EfficientNetb0 61.3% 73.4% 57.0% 94.7% 76.7%
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Figure 6. Sample confusion matrix for DarkNet-53 model and 90/10 data split.

Figure 7. Sample training/validation progress curve for DarkNet-53 and 90/10 data split.

To assess the computational cost of training the deep learning models, the time re-
quired for each model was reported for each strategy of data split; see Table 4. In general,
the required time increases linearly in less than 10% increments with each increase in the
size of the training dataset. SqueezeNet is the fastest model, but DarkNet-53 is the best
model that combines classification prowess with speed of training, followed by Resnet101.
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Table 4. The mean training and validation times for all algorithms and data split strategies. All times
are in seconds.

Data Split
70/30 80/20 90/10

Model

SqueezeNet 377.0 400.4 422.6
GoogLeNet 726.8 795 855.0
Inceptionv3 2182.9 2419.9 2655.2

DenseNet201 7190.8 7884.7 8686.6
MobileNetv2 3266.3 3678.5 4028.5

Resnet101 2196.5 2449.5 2682.7
Resnet50 992.2 1100.0 1192.9
Resnet18 413.6 439.9 470.0
Xception 9076.2 10,111.1 11,094.8

Inception-ResNet-v2 6698.0 7495.4 8254.3
ShuffleNet 2386.9 2641.0 2916.0
DarkNet-53 1761 1974.6 2126.3

EfficientNet-b0 5432.4 6028.4 6737.5

A comparison to the related literature is shown in Table 5. Although the referenced
studies achieve high performance values, they tackle a far easier problem in classifying
fewer number of classes (two or three). Moreover, some of these studies require explicit
feature extraction, which is not needed by deep transfer learning. Others, including
Pezhman Pour and Seker [24] and Lie et al. [1], do not address the classification problem
directly but rather on processing techniques for lesion segmentation (i.e., separation of
lesion from other artifacts in the image) and hair removal from lesion images, respectively.

Table 5. A summary of the latest literature in automatic skin lesion classification.

Study Objective Dataset Approach Performance

Li et al. (2020) [23]
Two-class classification:

melanoma and seborrheic
keratosis

600 images
Mid-level features and

segmentation according
to ROI

Area under the
receiver-operating

characteristic curve,
ResNet (89.00%),

DenseNet (88.85%),
Fusion(90.67%)

Pezhman Pour and Seker [24] Lesion segmentation 3879 images Dermoscopic feature
segmentation using CNN

2% and 7% improvement
in Jaccard index and

sensitivity, respectively

Al-masni et al. [25]
Three-class classification:
melanoma, benign, and

seborrheic keratosis
2950 images Segmentation using FrCN

Segmentation accuracy of
95.62% (clinical benign

cases), 90.78%
(melanoma, and 91.29%

(seborrheic keratosis)

Dash et al.[26]
Three-class classification:

moderate, severe, and
very severe

6267 images
Segmentation using

modified U-Net
architecture

93.03% Dice coefficient,
94.8% accuracy, 89.6%
sensitivity, and 97.60%

specificity

Xie et al. [27]
Segmentation into two
semantic classes: lesion

and background
1479 images

Segmentation of
dermoscopy images

preserving edge details

Jaccard indices of 0.783,
0.858, and 0.857

Serte et al. [28]
Two-class classification:

melanoma and seborrheic
keratosis

2000 images

Gabor wavelet-based
deep learning model for

melanoma and seborrheic
keratosis

Average area under the
receiver-operating

characteristic curve, 91%

Li et al. [1]
Optimal hair removal
(reduce over/under

removal)

1751 dermoscopic images
with hair occlusion

Digital hair removal from
images of skin lesion

using CNN

Accuracy (99.08%),
Specificity (99.85%), F1

score (94.43%), precision
(99.09%), sensitivity

(95.74%)

This work Seven-class classification 10015 dermoscopic
images

Deep transfer learning of
a CNN Accuracy (82.9%)
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Special Cases

Further investigation of the classification performance and training behavior was
conducted in order to shed light on shortcomings, as follows:

• Maximum number of epochs. Increasing the number of epochs will require more
training time and may achieve better performance if the model has more room to learn,
especially in large datasets. However, an exaggerated value for this hyper-parameter
may lead to overfitting. Three models were retrained with a maximum number of
epochs = 50. These were: Resnet101 with a 70/30 data split, DenseNet201 with an
80/20 data split, and DarkNet-53 with a 90/10 data split. In comparison to the values
in Tables 1–3, the F1 score for Resnet101 improved slightly to 67.2% (was 64.3%),
DenseNet201 performed a little worse with an F1-score of 63.7%, down from 66.1% in
Table 2 (i.e., the model started to overfit the training data), and Darknet-53 improved
to an F1-score of 83.1%. The other performance metrics showed similar trends to the
F1 score. Figures 8–10 show the corresponding confusion matrices;

• Classifying a lesser number of skin cancer types. Since the dataset is highly imbalanced
with some classes having a significantly smaller number of images in the dataset (e.g.,
115 DF and 142 VASC), it is worthwhile to explore several subsets of the classification
problem as follows:

– Eliminate the DF and VASC classes and perform 5-class classification. The same
three models and corresponding data split as in the previous case with a maxi-
mum number of epochs = 10 were used. Surprisingly, in comparison to Tables 1–3,
the F1 score displayed very small change (Resnet101: 64.8%, DenseNet201:
65.2%, and DarkNet-53: 67.1%), which was similar to the trend in the other
performance metrics;

– Eliminate the BCC (514 images), AKIEC (327 images), DF, and VASC classes and
perform 3-class classification. The Resnet101 (70/30 data split), DenseNet201
(80/20 data split), and DarkNet-53 (90/10) were used with a maximum number
of epochs =10. An easier classification problem has resulted in an improved F1
score for Resnet101 and DarkNet-53 of 71.1% and 72.8%, respectively. However,
DenseNet201 performed worse at 62.3%, probably due to overfitting;

– Using the same setup as above, perform pair-wise 2-class classification on the
three classes, NV, MEL, and BKL. For the MEL vs. BKL classification, the F1
score of Resnet101 = 80.6%, DenseNet = 73.44%, and DarkNet201 = 83.7%. For
the NV vs. MEL classification, all models performed badly. The F1 score for
Resnet101 = 58.8%, DenseNet201 = 55.13%, and DarkNet-53 = 63.4%. Although
the two classes have a good number of images, it seems like the similarities
between the two types are too difficult to spot. Moreover, the lack of proper
image cropping (i.e., elimination of useless parts of the images and keeping the
lesion) contributed to this factor as it consumes a significant part of the image
representation, especially that these algorithms require a scaled-down copy of
the input, as mentioned in Section 3. The last pair-wise classification problem is
NV vs. BKL, for which Resnet 101 achieved an F1 score = 72.8% (93% accuracy),
DenseNet201 reported a 71.8% F1 score and 91.9% accuracy, and DarkNet-53
managed a 70.0% F1 score and 89.9% accuracy.

Surprisingly, lowering the number of classes did not result in improved performance
in general. Although deep transfer learning has been effective in many medical and image-
based applications, it seems like its application in this scenario requires more investigation
and probably larger datasets.
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Figure 8. Sample confusion matrix for Resnet101 model, 70/30 data split and 50 epochs of training.

Figure 9. Sample confusion matrix for DenseNet201 model, 80/20 data split and 50 epochs of training.
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Figure 10. Sample confusion matrix for DarkNet-53 model, 90/10 data split and 50 epochs of training.

5. Conclusions

Skin cancer in both melanoma and non-melanoma types is common and leads to many
yearly deaths worldwide. Early diagnosis has been show to drastically reduce therapy time,
cost, and suffering from the prolonged traditional treatment methods (e.g., chemotherapy).
However, accurate screening/diagnosis requires specialist knowledge of the different types
of cancers and how they appear in the form of skin lesions. Some people may ignore
such lesions due to ignorance, indifference, cost, or doctor appointment scheduling delays.
Recently, the field of deep learning and artificial intelligence has opened the door for the
development of reliable image-based medical systems for screening and diagnosis. In
this paper, we have used a well-known dermoscopy dataset of seven common types of
cancerous skin lesions, utilized recent advances in the design of deep convolutional neural
networks, and applied deep transfer learning to the application of screening/diagnosing
skin lesion images. Such an approach has the capability to achieve high accuracies that
reduce the burden on specialists. Moreover, it can be easily implemented and used in
real-life applications due to the elimination of explicit feature extraction or manual image
processing. Future work will focus on improving the balance of the dataset by collecting
specific dermoscopy images of underrepresented skin lesion types and making those
publicly available in the research domain.
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Abbreviations

The following abbreviations are used in this manuscript:

ABCD Asymmetry, border, color, diameter
AI Artificial intelligence
CNN Convolutional neural networks
DHS Digital hair removal
Intra-SSIM Intra-structural similarity
ROI Regions of interest
CIELAB International Commission on Illumination Lightness A, B
RGB Red, green, blue
FrCN Full-resolution convolutional networks
SVM Support-vector machine
LLP Logistic label propagation
KNN K-nearest neighbors
HAM Human against machine
AKIEC Actinic keratoses and intraepithelial carcinoma
BCC Basal cell carcinoma
BLS Benign keratosis-like lesions
DF Dermatofibroma
Mel Melanoma
NV Melanocytic nevi
VASC Vascular lesions
TP True positive
TN True negative
FN False negative
FP False positive
N Negatives
P Positives
SGDM Stochastic gradient descent with momentum
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Abstract: Diabetic Retinopathy is one of the main causes of vision loss, and in its initial stages,
it presents with fundus lesions, such as microaneurysms, hard exudates, hemorrhages, and soft
exudates. Computational models capable of detecting these lesions can help in the early diagnosis of
the disease and prevent the manifestation of more severe forms of lesions, helping in screening and
defining the best form of treatment. However, the detection of these lesions through computerized
systems is a challenge due to numerous factors, such as the characteristics of size and shape of the
lesions, noise and the contrast of images available in the public datasets of Diabetic Retinopathy,
the number of labeled examples of these lesions available in the datasets and the difficulty of
deep learning algorithms in detecting very small objects in digital images. Thus, to overcome
these problems, this work proposes a new approach based on image processing techniques, data
augmentation, transfer learning, and deep neural networks to assist in the medical diagnosis of
fundus lesions. The proposed approach was trained, adjusted, and tested using the public DDR
and IDRiD Diabetic Retinopathy datasets and implemented in the PyTorch framework based on the
YOLOv5 model. The proposed approach reached in the DDR dataset an mAP of 0.2630 for the IoU
limit of 0.5 and F1-score of 0.3485 in the validation stage, and an mAP of 0.1540 for the IoU limit of
0.5 and F1-score of 0.2521, in the test stage. The results obtained in the experiments demonstrate
that the proposed approach presented superior results to works with the same purpose found in
the literature.

Keywords: Diabetic Retinopathy; fundus images; lesions detection; deep learning; YOLO

1. Introduction

Vision is one of the most essential and complex senses; through it, it is possible to
see and interact with the world around us. Vision is based on the absorption of light
by the photoreceptor cells of the eye [1]. Unfortunately, various diseases can harm the
eyes. Thus, taking care of this organ is essential to prevent or even reduce the severity
of these diseases. Furthermore, eye health is associated with a better quality of life, so it
is necessary to maintain a healthy vision. The human retina is the most complex of eye
tissues, having a highly organized structure. The retina receives the visual image produced
by the eye’s optical system and converts the light energy into an electrical signal, which,
after initial processing, is transmitted through the optic nerve to the visual cortex [2]. It is
a thin, semitransparent, multi-layered layer of nervous tissue that lines the inside of the
posterior two-thirds of the eyeball wall. It is sensitive to light and can be compared to a
film in a photographic camera, being like a screen to project the images seen, which retains
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the images, translating to the brain through the electrical impulses sent by the optic nerve
to the brain [3].

In patients with diabetes, the retina can be affected by the pathology known as Diabetic
Retinopathy (DR) [2,4], which occurs when abnormal material is deposited on the blood
vessel walls of the retina, which is the known region as the fundus of the eye, causing
narrowing and sometimes blockage of the blood vessel, in addition to weakening of the
vessel wall and the appearance of fundus lesions [3]. In the United States, between 40 and
45% for people with diabetes have retinopathy. Type 1 diabetics develop a severe form
of retinopathy within 20 years in about 60 to 75% cases, even with reasonable diabetes
control. In patients with diabetes type 2, generally older, the most frequent retinopathy
is non-proliferative [2]. The early stages of DR can be clinically asymptomatic, and if the
disease is detected in advanced stages, the treatment can become difficult [5].

Depending on the presence of clinical features, researchers classify DR as Mild Non-
Proliferative Diabetic Retinopathy (NPDR); moderate NPDR; severe NPDR; Proliferative
Diabetic Retinopathy (PDR); and Diabetic Macular Edema (DME) [6–9]. DR is usually
identified through ophthalmologic examinations that aim to identify retinal lesions, includ-
ing hard exudate (EX), soft exudate (SE), microaneurysms (MA), and hemorrhages (HE).
Microaneurysms are small lesions in the form of small circular red dots that appear on the
retina, in saccular shape, caused by a leak from vascular weakness at a certain point and
represent the first signs of DR [10,11]. According to the International Council of Ophthal-
mology [12], microaneurysms are red, isolated spherical dots of varying sizes, which may
reflect an abortive attempt to form a new vessel or maybe a weakness of the capillary vessel
wall due to loss of normal structural integrity. On the other hand, hemorrhages can occur in
the pre-retinal layer, retina, or vitreous and may have a different appearance depending on
where they occur [13]. Hard exudates are lipoproteins and other proteins that leak through
abnormal retinal vessels [6], being irregularly shaped yellow lesions [10], and may also have
a whitish-yellow color, with a shiny appearance and well-defined margins [7], appearing
in different dispositions: isolated, in clusters, in confluent trails or a partial or complete
ring [13]. Soft exudates are retinal microinfarcts resulting from diabetes, hypertension,
retinal vein occlusion, papilledema, collagen diseases, anemia, and leukemia [13], having
the form of spots and having a pale appearance, usually in greyish-white tones, and with
blurred and irregular edges.

Detection of retinal lesions associated with DR in the early stages is essential for pre-
venting more severe forms of this disease that can cause irreversible vision loss. However,
screening patients in the early stages of DR remains challenging as this eye disease is asymp-
tomatic and progresses at a very high rate [14]. Another challenge is the availability of
adequate numbers of specialized professionals and infrastructure, especially in developing
regions [15], which cannot meet the growing demand due to the increase in diabetes cases
in the last two decades [16]. While conventional approaches to identifying DR are effective,
their resource demands are high. The level of experience of the health professional who
will care for patients and the equipment needed to perform the tests are often insufficient
in regions where the rate of diabetes in the local population is high; thus, the detection of
DR is more necessary.

Due to these limitations, the severity of DR, and also the impact of this disease on
health and quality of life over the people, it is opportune to propose the creation or opti-
mization of procedures, approaches, and computational tools capable of providing fast and
accurate support for medical diagnosis, with minimal human intervention. In the literature,
approaches based on deep learning have been presented to classify, segment, and detect
retinal lesions associated with DR. These works aim to assist in diagnosing DR through
deep neural networks, such as [17–21]. However, although these works have achieved
promising results, detecting retinal lesions has presented limited results. The limitations are
due to the complexities of retinal fundus images (low contrast, irregular lighting, blurred
lesion boundaries, shape, and size) and the few examples of the lesions, which cause
problems in feature extraction and training approaches based on deep neural networks.
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In this context, this work aims to present a state-of-the-art approach based on a
pre-trained deep neural network model that, through image pre-processing and data
augmentation techniques, can detect fundus lesions and assist in the medical diagnosis and
treatment of Diabetic Retinopathy.

The contributions of this work concerning the state-of-the-art can be summarized
as follows: (i) presentation of a convolutional neural network structure based on YOLO
version 4 and 5 architectures to improve fundus lesions detection and performing real-time
inferences on low-cost GPUs; (ii) implementation of a pre-processing block to reduce outliers
and improve enhancement, to provide a more efficient extraction of features from retinal
lesions; and, (iii) method for partial cropping of the black background of the fundus images
in order to minimize the generation of false positives pixels and the creation of blocks (tiles)
to increasing the receptive field of the input images and minimizing the loss of information
caused by the reduction of the images used at the entrance of the network, especially in the
case of small lesions, such as in the case of microaneurysms.

The article is structured as follows. Section 2 describes related works. Section 3
presents the materials and methods used for this work. Section 4 will describe the results
obtained through the proposed approach. Section 5 presents the discussions about the
results obtained in this work. Finally, in Section 6 we will describe the final considerations.

2. Related Work

Li et al. [17] presented a new Diabetic Retinopathy dataset titled Dataset for Diabetic
Retinopathy (DDR) and evaluated state-of-the-art deep learning models for classification,
segmentation, and detection of lesions associated with Diabetic Retinopathy. To evaluate
these methods in clinical situations, 13,673 fundus images were collected from 9598 patients.
These images were divided into six classes and evaluated by seven specialists to identify
the stage of Diabetic Retinopathy. In addition, the authors selected 757 images with
Diabetic Retinopathy to annotate the fundus lesions: Microaneurysms, Hemorrhages, Hard
Exudates, and Soft Exudates.

The authors used the DDR dataset to evaluate ten deep learning models, including five
classification models, two segmentation models, and three detection models. Experimental
results demonstrate that research must improve the model performance for microlesion
recognition to apply deep learning models to clinical practice. To perform the classification
of DR, the authors used the models VGG-16 [22], ResNet-18 [23], GoogLeNet [24], DenseNet-
121 [25] and SE-BN-Inception [26]. To perform the segmentation of DR lesions, the authors
used the HED [27] and DeepLab-v3+ [28] models, while they used the SSD [29] and
YOLO [30] models for the detection single-stage. The authors evaluated the models with the
metrics mean Average Precision and the mean Intersection over Union (mIoU) [31], obtained
in the set of validation and testing of the DDR dataset. Although the authors obtained
an accuracy of 0.8284 in Accuracy with the SE-BN-Inception model for the classification
of Diabetic Retinopathy, the detection and segmentation models performed poorly in
detecting fundus lesions.

The work by Porwal et al. [18] presents results of deep learning models used for
segmentation, classification, and detection of fundus lesions during the IDRiD: Diabetic
Retinopathy—Segmentation and Grading Challenge. The main contribution was the availability
of the set of public images of Diabetic Retinopathy called IDRiD. Most of the teams partici-
pating in the challenge explored the U-Net architecture for segmenting (microaneurysms,
hemorrhages, hard exudates, and soft exudates) [32]. The U-Net architecture is an extended
version of the fully convolutional networks (FCN), providing more precise segmentation,
even in small training sets [33]. In the classification challenge, they categorized the fundus
images according to the severity level of DR and Diabetic Macular Edema. The team that
achieved the best results presented a method based on a ResNet [23] architecture and Deep
Layer Aggregation (DLA) [34]. Finally, the detection challenge aimed to obtain the location
of the Optical Disc and the Fovea. The winning team presented a method based on the
Mask R-CNN model to locate and segment the Optical Disc and Fovea simultaneously.
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First, the authors pre-processed the fundus images to a fixed size to use them as neural
network input. Then, they performed a scan on the image to generate the region proposals.
Then, the authors classified proposals into different classes and created a binary mask for
each object. Next, they used a ResNet-50 architecture to extract features from the images and
a Feature Pyramid Network (FPN) to generate feature maps at different scales and extract
regions of interest from the images. A Region Proposal Network (RPN) then traverses the
feature maps and locates regions that contain objects. Finally, architectural branches are
employed to obtain the label, mask, and bounding box for each region of interest. Transfer
learning technique was applied to train the model. The authors started with a learning rate
of 0.001 and a momentum of 0.9. They trained the network with 20 epochs. In the Optical
Disc and Fovea segmentation and detection task, the team that obtained the best result in
the test dataset achieved a Jaccard coefficient equal to 0.9338.

Mateen et al. [19] proposed a pre-trained framework based on a convolutional neural
network to detect exudates in fundus images through transfer learning. In the proposed
structure, the authors combined three pre-trained network architectures to perform the fu-
sion of features since, according to the authors, different architectures could capture various
features. The three models used to compose the framework proposed by the authors are
Inception-v3 [35], VGG-19 [22] and ResNet-50 [23]. In addition, the collected features are
treated as input in the fully connected layers to perform further actions, such as classifica-
tion, performed through the Softmax function. When using the e-Ophtha dataset, the highest
accuracy obtained individually by the Inception-v3, ResNet-50, and VGG-19 architectures
was 93.67%, 97.80%, and 95.80%, respectively, while the approach proposed by the authors
reached a classification accuracy of 98.43%. Moreover, using the DIARETDB1 dataset,
the highest accuracy obtained individually by the Inception-v3, ResNet-50, and VGG-19
architectures was 93.57%, 97.90% and 95.50%, respectively, while the approach proposed
by the authors reached a classification accuracy of 98.91%

The work by Alyoubi et al. [20] presented a DR diagnostic system that classifies
fundus images into five stages (no DR, mild DR, moderate DR, severe DR, and proliferative
DR) and the location of lesions on the retinal surface. The system is composed of two
models based on deep learning. The first model used is a CNN512, in which the images
are used to classify in one of the five stages of DR. The public datasets DDR and Kaggle
APTOS 2019 [36] were used. The second model was a YOLOv3 [37], adopted to detect
DR lesions. Finally, both proposed frameworks, CNN512 and YOLOv3, were combined to
classify DR images and locate DR lesions. The data balancing of the data sets used when
performing the training of the models was not performed. In classifying the type of DR,
the CNN512 model achieved an accuracy of 88.6% and 84.1% in the DDR and APTOS
Kaggle 2019 public datasets, respectively, while the YOLOv3 model, adopted to detect the
DR lesions, obtained a mAP of 0.216 in the detection of lesions in the DDR dataset.

The main limitation of the work was not performing the balancing in the retinal image
datasets to perform the training of the models, which may have generated a bias in the
detection of lesions. For example, there are lesions with a significantly higher number
of examples concerning the others, as in the case of hard exudates. This imbalance in
the training of models can make the deep neural network tend to classify objects in the
majority classes, causing the model to have its generalization ability impaired. In future
work, the authors claim that it is necessary to balance the number of examples in the data
sets to train the models and conduct experiments with the YOLOv4 and YOLOv5 models
to verify the performance of these models in the detection of fundus lesions.

The work by Dai et al. [21] presented a deep learning system, called DeepDR, to detect
early and late stages of Diabetic Retinopathy using 466,247 fundus images of 121,342 patients
with diabetes. The DeepDR system architecture had three subnetworks: an image quality
assessment subnetwork, the subnet for lesion recognition, and the subnet for DR classi-
fication. These subnets were developed based on a ResNet [23] architecture and a Mask
R-CNN [38] architecture, responsible for performing the detection of lesions in 2 stages:
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a preliminary stage, in which regions of interest (RoI) are selected and then, in a second
stage, check for the presence of lesions in the regions verified in the previous step [39–41].

First, the authors used 466,247 images to train the image quality assessment subnet to
check for quality problems in terms of artifacts in the retinal images. After this analysis,
415,139 images were used to train the DR classification subnet to classify the images:
no DR, mild nonproliferative DR, moderate nonproliferative DR, severe nonproliferative
DR, or proliferative DR. The subnetwork for detecting and segmenting the lesions was
trained using 10,280 images with annotations of retinal lesions: microaneurysms, soft
exudates, hard exudates, and hemorrhages. For microaneurysms, the value obtained from
IoU (Intersection Over Union) [42,43] was not presented. For soft exudates, hard exudates,
and hemorrhages, IoU of 0.941, 0.954, and 0.967 were obtained.

The study had limitations. The first one was using only a private DR dataset to train the
deep learning models, making it difficult to reproduce the results obtained by the authors
using the same method. In the validation step, the authors used the Kaggle eyePACS [44]
public DR dataset only. The second limitation is that the subnet that detects the lesions
was tested only on the local validation dataset due to the lack of lesion annotations in the
public dataset that the authors used. Therefore, in future work, the authors claim that
further validation through public datasets is necessary to assess the proposed deep learning
system’s performance in classifying DR and detecting fundus lesions.

The works in the literature applied deep neural networks to identify DR, but the deep
learning models presented limitations. The work by Porwal et al. [18] showed results in
detecting only the fovea and the optical disc, while the work by Mateen et al. [19] only
exudates. The work by Li et al. [17] showed promising results in the classification of DR but
limited results in the detection of fundus lesions. The work by Alyoubi et al. [20] showed
promising results in detecting lesions but did not balance the datasets used, which possibly
impacted the results presented. The work proposed by Dai et al. [21] used a private dataset
for training and validating the model responsible for detecting lesions, which makes a
fair comparison and validation with the models we propose impossible. Furthermore,
the model used by Dai et al. [21] is based on a model that performs the detection of objects
in 2 stages, unlike the conception of our work, which performs the Single-Stage detection
after pre-processing and augmentation of image data. A summarized comparison between
related works is presented in Table 1.

Table 1. Comparison between related work that use deep learning to classify, segment and detect
objects in diabetic retinopathy images.

Ref. Dataset # Images
# of Images with

Lesions Annotated
Data

Augmentation
Unbalanced

Data
Model

Performance
Measure

Limitations

MA HE EX SE

[18] IDRiD 516 81 80 81 40 Applied Yes Mask R-CNN IoU = 0.9338 EX, MA, SE e HE
not detected

[17]
DDR 12,522 570 601 486 239

Not applied Yes SSD, YOLO mAP = 0.0059
mAP = 0.0035

Low performance in detecting
MA and SE

[20] Applied Yes YOLOv3 mAP = 0.216 Imbalance of data used in training

[19] DIARETDB1 89 80 54 48 36 Applied Yes CNN Accuracy = 98.91% MA e HE not detected

[21] Private dataset 666,383 - - - - Not applied Yes Mask R-CNN

AUC = 0.954
AUC = 0.901
AUC = 0.941
AUC = 0.967

The dataset with fundus images
used for training is private

Validation of detection of lesions
performed only in images from the

private dataset

Definitions in Table 1: MA, microaneurysms; HE, hemorrhages; EX, hard exudates; SE, soft exudates; IDRiD,
Indian Diabetic Retinopathy Image Dataset; DDR, Dataset for Diabetic Retinopathy; DIARETDB1, Standard
Diabetic Retinopathy Database Calibration level 1; Mask R-CNN, Mask Regions with Convolutional Neural
Network features; SSD, Detector MultiBox Single Shot; YOLO, You Only Look Once; YOLOv3, You Only Look
Once version 3; CNN, Convolutional Neural Network; IoU, Intersection Over Union; mAP, mean Average
Precision; AUC, Area Under The Curve.

623



Sensors 2022, 22, 6441

3. Materials and Methods

The pipeline of the proposed approach is presented in the form of a block diagram in
Figure 1. The proposed approach was based on the YOLOv5 [45–51] deep neural network
model and implemented through the open-source machine learning library PyTorch (https:
//pytorch.org, accessed on 25 August 2022). The model was trained with 8000 epochs
and 32 batches per epoch, with a learning rate of 0.01 and a momentum rate of 0.937.
The size of the bounding box anchors was adaptively calculated [52], through a genetic
algorithm, which optimizes the anchors after a scan performed by the unsupervised K-
means algorithm [53] before the step of training.

DATA AUGMENTATIONPRE-PROCESSING

PRE-TRAINING

FUNDUS IMAGE

DETECTED LESIONS

MEDIAN FILTER

INPUT BACKBONE NECK HEAD

RGB to LAB

CLAHE

LAB to RGB

BILATERAL 
FILTER

CROPPING

TILLING

MOSAIC

COPY-PASTE

MIXUP

GEOMETRIC 
TRANSFORMATIONS

NEURAL NETWORK ARCHITECTURE

Figure 1. Block diagram of the proposed approach. First, the images are passed to the Pre-processing
block for noise filtering, contrast improvement, partial elimination of the black background of the
images, and creation of tiles. Then, the pre-processed images are transferred to the Data Augmentation
block, where sub-images are artificially created that will be used in the neural network input layer for
training the proposed approach, which will be carried out after a pre-stage step training the network
with the weights fitted to the Common Objects in Context (COCO) dataset.

An anchor set more adjusted improves detection accuracy and speed [54]. Anchors are
the initial sizes (width, height) of bounding boxes that will be adjusted to the size closest to
the object to be detected using some neural network output (final feature maps). In this
way, the network will not predict the final size of the object but only adjust the size of the
anchor closest to the object’s size. For this reason, YOLO is regarded as a method that treats
object detection as a regression problem, in which a single neural network predicts the
bounding boxes and class occurrence probabilities directly on the complete image being
evaluated. Moreover, as all detection is performed in one network (Single-Stage), the neural
network model can be directly optimized end-to-end [30].

In the proposed approach, detection is performed in the final layers and at three
scales, as proposed in the YOLOv3 [37] model, allowing learning objects in different sizes,
the scales being: 19 × 19, specialized in object detection of large size; 38 × 38, which spe-
cializes in detecting medium-sized objects; and, 76 × 76, which specializes in detecting
small objects. Each of these outputs or detection “heads” has a separate set of anchor scales.
In YOLOv3, 9 anchor sizes are used, with 3 anchors per detection head. After detection,
the confidence percentage was reached for each identified lesion. To carry out the experi-
ments a Core i7-7700K 8 × 4.6 GHz device, 32 GB of RAM and an NVIDIA Titan Xp GPU
with 12 GB of VRAM were used.

YOLOv5 is a single-stage detection model capable of detecting objects without a
preliminary step, as in the case of two-stage detectors, which use a preliminary stage where
regions of importance are then classified to check if objects have been detected in those
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areas. The advantage of a single-stage detector is the speed at which it can make real-time
inferences. Furthermore, another feature of this model type is the possibility of working on
edge devices and with low-cost hardware, whose training can be performed with just one
GPU [55]. Therefore, we intend to present an approach that achieves greater precision than
approaches with the same purpose presented in the literature. Next, we methodologically
detail each step that makes up the pipeline of the proposed approach.

3.1. Dataset

The DDR image dataset was used in this work, which has 757 images labeled in JPEG
format with variable sizes. Second [17] to capture these images 45 TRC NW48, Nikon
D5200, and Canon CR 2 cameras were used. In addition, the lesions contained in these
fundus images contain annotations (Ground Truth), as illustrated in Figure 2.

Figure 2. Representation of fundus image with the lesions annotated: Microaneurysms, Hemorrhages,
Soft Exudates, and Hard Exudates.

Table 2 presents attributes of the DDR dataset, such as the number of images, the reso-
lution of the images, the type of annotations, the number of images with annotations for
MA, HE, EX, and SE, and the total amount of annotations by lesion type before the data
augmentation step.

Table 2. Number of annotated images for Microaneurysms, Hemorrhages, Hard Exudates, and Soft
Exudates and the total amount of annotations by lesion type in the Dataset for Diabetic Retinopathy
(DDR) before the data augmentation step.

# Images Resolution MA HE EX SE
Notes of Lesions

at Pixel
Multiple
Experts

12,522 Variable

# of images with lesion annotations

Yes Yes
570 601 486 239

# of lesion annotations

10,388 13,093 23,713 1558
Definitions in the Table 2: MA, microaneurysms; HE, hemorrhages; EX, hard exudates; SE, soft exudates.

Data were collected using single-view images. The bounding box annotations were
generated automatically from the pixel level annotations of the lesions [17]. Although the
DDR dataset is of good quality, training the deep neural network of the proposed approach
has challenges, such as the small number of annotated fundus lesions and the variability in
size and shape of these lesions. Another factor that generates problems in training deep
learning models to detect retinal lesions is the reduced size of some types of lesions, as in
the case of microaneurysms. Data augmentation was performed to circumvent problems
related to the sub-sampling of the data set due to the small number of examples by creating
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artificial images derived from the original images and annotations of the fundus lesions.
This data augmentation and the other techniques applied to overcome the challenges
mentioned above will be discussed in the following sections.

3.2. Pre-Processing and Image Preparation

The use of a pre-processing block aims to (i) improve the quality of images through
the elimination of periodic or random patterns through the application of filters and
(ii) increase the image enhancement to improve and accentuate the characteristics of the
lesions that will be used for training the deep neural network. The treatment of the images
aims at (i) filtering noise generated during the capture of fundus images, (ii) correcting
lighting deformities, and (iii) improving the contrast and enhancement of the images [56].

For image smoothing, the median filter of size 5 × 5 was used. The median filter
is non-linear and very effective in removing impulsive noise (irregular pulses of large
amplitudes), such as Salt & Pepper [57,58] noise. Moreover, the contrast-limited histogram
adaptive equalization technique (CLAHE) [20,59] was used to enhance the images. This
technique was initially developed for low contrast image enhancement and is an evolution
of the histogram equalization method [60], and has been used as part of pre-processing
pipelines to improve image quality. medical images [61]. However, before applying the
CLAHE algorithm to the fundus images of the dataset, it was necessary to define the most
suitable color space to perform the image enhancement (i.e., RGB, HSV, or LAB).

The background suppression was performed as the last step in the pre-processing and
image preparation stage. As the works by El abbadi and Hammod [62] and Alyoubi et al. [20],
a pre-processing step for partial cropping of the black background of the retinal images
was performed, as illustrated in the Supplementary Materials. According to El abbadi and
Hammod [62], the importance of removing the black background from the retinal image
is related to the generation of false positives during the detection of lesions, especially at
the retina border, where there is a similarity of the retinal border with the blood vessels.
Furthermore, in the case of fundus images, only the pixels of the retina have significant
information; the rest is considered the background. Therefore, it is essential to locate the
area of interest and remove unwanted features related to the image’s background.

Details about the median filter, CLAHE, and the suppression of the useless retinal
background are presented in the Supplementary Materials attached to this article. It is
important to note that this additional document presents images where these pre-processing
methods are tested and where the used measures are clearly presented and discussed.

Pre-processing techniques were explored to improve the performance of the proposed
approach, especially in detecting microlesions for better smoothing and enhancement of
the fundus images. In addition, the black background that caused the generation of false
positives was partially removed, and the Tilling of the original images was applied to
use the resulting image blocks in the training of the deep neural network. Finally, a Data
Augmentation step was applied after pre-processing the fundus images, as we will explain
in the next section.

3.3. Data Augmentation

In the proposed approach, a data augmentation was performed from the images and
labeled lesions available in the DDR dataset. Then, for each training batch, the model
was configured to pass the images through a data loader that creates the artificial images
while they are accessed. The data loader did the following types of augmentations: Mosaic,
MixUp, Copy-Paste and Geometric Transformations.

This technique works in real-time, i.e., on-the-fly [63,64], and new examples are not
generated in advance (before training). Thus, at each training performed, a random number
of artificially created examples are generated and passed on for training the neural network.
Each data augmentation technique is applied to all images in the batch, except the Mix-
Up, which was set to randomly apply to 50% of the images in the batch. Details on the
methods applied in the data augmentation block of the fundus images are presented in the
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Supplementary Materials attached to this article. It is important to note that this additional
document discusses the methods used and the images with the results obtained in this step.

After performing the data increase, we also had to deal with the problem related to data
imbalance. Models based on deep learning generally try to minimize the number of errors
when classifying new data. Therefore, the cost of different errors must be equal. However,
the costs of different errors are often unequal in real-world applications. For example,
in the area of medical diagnosis, the cost of misdiagnosing a sick patient as healthy (False
Negative) can be much higher than accidentally diagnosing a healthy person as sick (False
Positive) since the former type of error can result in the loss of a life [65].

There are cases in which data imbalance causes biases in the training of models,
including generating uncertainties about the results obtained [66,67]. In the case of eye
fundus lesions, an imbalance in the number of examples of different fundus lesions was
verified, as shown in Table 2. This imbalance can become even more significant after the
application of the data increase step since the number of new examples created after this
step is random, and it is impossible to accurately predict the number of new examples
generated for each lesion.

To balance the number of examples of each lesion, during training the method
Threshold-Moving [68–70] was used through the parameter image-weights, in which the
samples of training set images are weighted by their mean Average Precision (mAP) inverse
of the previous epoch test. Unlike uniformly sampling the images during training, as in
conventional training, sampling during training is based on the weighted images based on
the result obtained by a certain evaluation metric calculated in the test of the previous epoch.
of training. This method moves the decision boundary so that minority class examples can
easily predict correctly [71,72].

The Threshold-Moving method was used to minimize the imbalance of the dataset and
reduce the possibility of biases during the classification due to the presence of classes with a
significantly larger number of examples. Due to the need for many examples to obtain more
accurate results, we chose not to use the subsampling technique of the majority classes.
Likewise, the oversampling of minority classes was also discarded because the number
of examples of these classes to equate them to the majority classes would not reflect the
natural incidence of fundus lesions.

Our approach used a method to minimize the imbalance problem in the number of
examples of lesions to avoid possible overfitting of the model associated with misclassifi-
cation of lesions in the majority class. After the step of increasing and balancing the data,
our method was trained to perform the detection of fundus lesions. The next section will
discuss the architecture of the deep neural network used in our proposed approach.

3.4. Deep Neural Network Architecture

After the pre-processing and data augmentation steps described above, the image set
of the DDR dataset was split into a training set (50%), validation set (20%), and test set
(30%), the same proportion performed in the work by Li et al. [17]. The images of one set
are not present in the others to avoid bias during the evaluation of the proposed approach.
A validation step to fine-tune the hyperparameters of the architecture and a test step to
assess the generalization capability of the neural network was used. In addition, the public
Diabetic Retinopathy dataset IDRiD [18] was also used to validate our proposed approach.

In our approach, we used the architecture of the YOLOv5 [20,45–50,53,73] model
as a basis. This model currently has four versions: s (small), m (medium), l (large) and x
(extra-large). Each version has different features. Before choosing the YOLOv5 s as the
base architecture for our proposed approach, different versions of YOLOv5 have been
tried. The quantities of depth (depth) and scale (width) multipliers of convolutional cores of
the adopted model are 0.33 and 0.50, respectively. According to Iyer et al. [74], YOLOv5s
achieves precision equivalent to YOLOv3 (https://pjreddie.com/darknet/yolo/, accessed
on 25 August 2022), but with superior performance in performing real-time inferences at a
lower computational cost.
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The YOLOv5 s was used because it achieved the best results in detecting fundus
lesions and at a lower computational cost compared to other versions. The explanation
for the shorter version of YOLOv5 to have obtained the best results lies in the fact that the
fundus microlesions present a gradient dissipation problem when training the versions
of YOLOv5 with greater depth and number of parameters. Thus, using a model with a
smaller number of parameters allowed us to use fewer hardware resources, thus enabling
the detection of fundus lesions through low-cost GPUs without impacting the precision of
the proposed approach. The deep neural network structure used in our approach has a total
of 283 layers, 7.2 million parameters, and 17.1 GFLOPs. According to Yu et al. [75], GFLOPs
represent the 1 billion worth of FLOPs (floating-point math operations). Another advantage
of using the YOLOv5 model as the basis of this approach is the possibility of integration
and portability with different types of projects, including mobile devices. This feature is
associated with the fact that this model has been implemented natively in PyTorch.

The network Backbone was used as a pre-trained feature extractor on an image classi-
fication dataset, useful for detecting objects in the last layers of the network. The Backbone
used in the experiments is composed of a CSP-Darknet-53. The convolutional neural
network Darknet-53 was initially used as Backbone of the YOLOv3 [37] model, replacing
its predecessor Darknet-19 [30], as it includes the use of residual connections as well as
more layers since it has 53 depth layers [37]. Furthermore, its architecture is built by
consecutive layers of convolution 3 × 3 and 1 × 1 followed by a jump connection, which
helps activations propagate through deeper layers without gradient dissipation.

The CSP proposed by Wang et al. [76] can be applied in different architectures, such
as ResNet [23], ResNeXt [77], DenseNet [25], YOLOv4 [55] and YOLOv5 [45,46] as it not
only produces a reduction in computational cost and memory usage of these networks but
also brings benefits such as improved inference speed and increased precision. These goals
are achieved by partitioning the base layer feature map into two parts. Then, the parts are
merged through a hierarchy of crossed stages, whose main idea is to make the gradient
propagate through different network paths.

The block diagram of the neural network architecture that composes the proposed
approach, responsible for detecting fundus lesions, is illustrated in Figure 3. As shown in,
the network architecture is based on the structure of YOLOv5 version small [45,46,74] and
is divided into three main blocks: Backbone, Neck and Head. The network input layer size
is 640 × 640 × 3, where the first two values correspond to the height and width in pixels,
and the third value corresponds to the number of channels in the input image. The DDR
dataset makes the bounding box annotations of fundus lesions available for deep neural
network training. These bounding boxes were used to calculate the initial anchor sizes.
In the architectures of the YOLO family, we usually configure the sizes of the initial anchors
before training the model.

In training the proposed approach, we produced bounding boxes with predictions
based on the lengths of the initial anchors. Then a comparison of the bounding box of the
detected object is performed with the bounding box of the object annotated (Ground Truth).
Then we used the result of this comparison to update the neural network weights during the
training stage. Therefore, defining the initial size of the anchors is essential, especially when
training the neural network on objects with sizes different from the standard dimensions
of anchors, which are typically calculated based on objects from datasets such as COCO,
for example. The YOLOv5 model repository has a function that performs the adaptive
calculation of the anchors, in which, when training the neural network, it is possible to
enable the “auto-anchor” option so that the best values for the docking boxes automatically.
This function was used before training the proposed approach to ensure that the anchors
were adjusted according to the sizes of fundus lesions present in the dataset used in
the experiment.
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Figure 3. The neural network architecture block diagram composes the proposed approach for
detecting fundus lesions. The structure is divided into three main blocks: Backbone, Neck and Head.
The Backbone block consists of a Focus module, four Conv modules, four CSP modules (C3), and an
SPP module. The Neck block consists of four Conv modules and four CSP modules (C3). The network
input receives images of size 640 × 640 × 3, and the output is composed of three detection heads: the
P3 layer, responsible for detecting small objects; layer P4, responsible for detecting medium objects;
and, finally, the P5 layer, responsible for detecting large objects. CSP (C3), Cross Stage Partial Network
C3; SPP, Spatial Pyramid Pooling; Conv, Convolution module; Concat, concatenation; Conv2d, 2D
convolution layer.

The Backbone structure of the neural network starts with the Focus module, responsible
for performing a slicing operation. In the case of the neural network structure of the pro-
posed approach, when we insert an image of size 640× 640× 3 in the module Focus, a slicing
operation is performed on this image to generate a map of size features 304 × 304 × 64.
Still in Backbone, the modules Conv are composed of a 2d convolution, followed by a batch
normalization. The batch normalization reduces the number of training cycles needed to
train deep networks, providing a regularization and reducing generalization error [78].
After batch normalization, the activation function Sigmoid Linear Unit (SiLU) [79], derived
from the function Rectified Linear (ReLU) [80] is applied.

In network architecture, the CSP module (C3) is used both in the Backbone and in the
Neck of the network. These CSPs were used to connect the front and back layers of the
network, aiming to improve the model inference speed without compromising its precision.
Also, they allow better integration of different parts that make up the neural network,
in addition to a reduction in the size of the model [45]. These C3 modules have in their
structure three Conv modules and a Bottleneck [23] module. The module Bottleneck consists
of two Conv modules followed by an addition operation (add), responsible for adding
tensors without expanding the image dimension.

The Backbone of the proposed approach is composed of four CSP modules (C3). Af-
ter Bottleneck module, each C3 module, there is a concatenation module (Concat) so that
the features that were divided at the beginning of the C3 block are regrouped, expanding
the dimensions of the tensors. The flow and constitution of the various modules that
make up the Backbone were illustrated in Figure 3. Another Backbone component of the
proposed approach is the SPP module (Spatial Pyramid Pooling) [81]. With SPP, it is possible
to introduce multiple variable-scale pools concatenated to form a 1 dimension vector for the
FC layer. As in He et al. [81], the MaxPool method was used with groupings of size equal
to 1 × 1, 5 × 5, 9 × 9 and 13 × 13, followed by the Concat operation to concatenate feature
maps at different scales.
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The Backbone structure is responsible for extracting feature maps of different sizes
from the input image through multiple convolutions and clusters [82]. The Neck structure,
in turn, is responsible for merging these feature maps obtained from different levels of the
architecture to obtain more contextual information and reduce problems related to informa-
tion loss during the process of extracting features from the images [45]. In the process of
merging the feature maps from the Backbone, the Feature Pyramid Network (FPN) [83] and
the PAN (Path Aggregation Network) [84] are used as illustrated in Figure 4. The structure of
the FPN itself can be extensive, as the spatial information may need to be propagated to
hundreds of layers. In this context, an FPN in conjunction with a PAN was used. The PAN
structure follows an additional upward path than the downward path taken by the FPN,
helping to shorten this path by using lateral connections as a shortcut.

Figure 4. FPN+PAN structure used in the Neck of the neural network architecture of the proposed
approach. FPN has a Top-Down structure and lateral connections that enable it to build feature maps
with high-level semantic meaning, which are used to detect objects at different scales. The PAN
architecture conveys strong localization features from the lower-feature maps to the upper-feature
maps (Bottom-up). The two structures combined to reinforce the ability to merge characteristics of
the Neck structure. The detection of lesions is performed in layers P3, P4 and P5 of the FPN+PAN
structure, having outputs with sizes of 80 × 80 × 255, 40 × 40 × 255 and 20 × 20 × 255, respectively.
FPN, Feature Pyramid Network; PAN, Path Aggregation Network.

In the structure of Neck four CSP modules (C3) were used, as illustrated in Figure 3.
These C3 modules were adopted to strengthen the ability to integrate the characteristics
extracted from the lesions during the propagation of this information in the neural network.
In Figure 4 it is possible to observe that the detection of lesions is performed in layers P3
(small objects), P4 (medium objects) and P5 (large objects), with sizes of 80 × 80 × 255,
40 × 40 × 255 and 20 × 20 × 255, respectively.

Finally, the Head part of the neural network is responsible for making the dense
prediction (final prediction). This part is composed of a vector that contains the predicted
bounding box (central coordinates, height, width), the confidence score of the prediction,
and the label of the class to which the detected object belongs. The prediction mechanism
used in the Head of the deep neural network architecture of the proposed approach is
equivalent to the one used in YOLOv3 [37]. A bounding box predicts each object, and in
case several bounding boxes are detected for the same object, then we apply the NMS
technique, which allows us to discard bounding boxes with an IoU below a predefined
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threshold as shown in Table 3. The Head structure used in our approach is composed of
3 layers responsible for performing the detection of fundus lesions, each of these layers
dividing the image into grid cells of sizes 20 × 20 × 255, 40 × 40 × 255 and 80 × 80 × 255,
as illustrated in Figures 3 and 4. The smaller the size of feature maps, the larger the image
area to which each grid unit in the feature map corresponds, indicating that it is suitable for
detecting large objects from feature maps of size 20 × 20 × 255. In contrast, feature maps of
size 80 × 80 × 255 are better suited for detecting small objects.

Table 3. Hyperparameters adjusted during the validation step using the Dataset for Diabetic Retinopa-
thy (DDR).

Parameters Value

Batch Size 32

Number of Epochs 8000

Learning Rate 0.01

Momentum 0.937

Activation Function SiLU

Optimizer SGD and Adam

Weight Decay 0.0005

Dropout 10%

Threshold IoU NMS 0.45

Confidence Limit 0.25

Size of initial anchors
(COCO)

(10, 13), (16, 30), (33, 23)—P3
(30, 61), (62, 45), (59, 119)—P4

(116, 90), (156, 198), (373, 326)—P5

Adjusted anchor size
(3, 3), (4, 4), (7, 7)—P3

(10, 10), ( 15, 15), (23, 28)—P4
(33, 24), (44, 49), (185, 124)—P5

Early Stopping Patience value = 100
Definitions in Table 3: SiLU, Sigmoid Linear Unit; SGD, Stochastic Gradient Descent; IoU NMS, Intersection Over
Union Non-max Suppression; COCO, Common Objects in Context.

The final loss function used in the proposed approach is calculated based on the
confidence score (Objectness), the classification score (Class Probability) and the bounding box
regression score (Bounding Box Regression), according to Equation (1). Objectness determines
whether there are objects in the grid cell, Class Probability determines which category objects
that are in a grid cell belong to, and Bounding Box Regression is just calculated when the
box predicted contains objects. In this case, the Bounding Box Regression calculation is
performed by comparing the predicted box with the box associated with the Ground Truth
of the detected object.

Loss = LObjectness + LClassProbability + LBoundingBoxRegression (1)

To calculate the confidence score loss (objecteness) and classification score (class proba-
bility) functions, the Binary Cross-Entropy with the PyTorch Logits function [85] was used.
To calculate the loss function referring to the bounding box regression, the loss function
Generalized Intersection over Union (GIoU) [86–88] was used.

In the post-processing of the detection of fundus lesions, it was necessary to perform
the screening and removal of duplicated bounding boxes representing the same object.
The NMS technique was used for that, which keeps the bounding box detected with a
higher precision index. Therefore, the NMS method used is based on the obtained IoU
values (IoU_nms), in which a threshold of 0.45 [48] was set for the training step.

631



Sensors 2022, 22, 6441

3.5. Pre-Training

Transfer learning is a method employed in the area of machine learning that consists
of reusing information learned in a given task as a starting point for the solution of a new
task [89]. This method is often used when it is not possible to obtain a large-scale dataset
with labeled objects to solve a particular Computer Vision task [90]. In this context, as the
public DR datasets do not contain a large number of labeled lesions, in addition to a data
augmentation step, the proposed approach has a pre-training step. In this step, the Transfer
Learning with pre-trained weights on the COCO [91] followed by the Fine-Tuning dataset
from the last layers of the neural network were applied. To fine-tune the proposed approach,
we kept the weights of the first layers and changed only the weights of the last layers of the
neural network.

COCO provides a large dataset with labeled images for object detection tasks. The neu-
ral network output of the proposed approach was modified to suit the problem of detecting
fundus lesions, preserving the knowledge (weights) of the initial layers. The reuse of
information from these initial layers is essential to obtain the most basic characteristics of
fundus lesions, such as contours, edges, etc. In addition, pre-training enabled a reduction
in computational cost and training time of the proposed approach. The method adopted to
carry out the transfer of learning was based on the work proposed by Franke et al. [92] and
consists of the four steps presented below:

1. The initial layers of the architecture of the proposed approach, focused on detecting
the most fundamental characteristics of objects, were pre-trained with the weights of
the COCO dataset, composed of 80 categories.

2. The last three layers (out of a total of 283) that make up the Head of the architecture of
the proposed approach are cut and replaced by new layers.

3. The new layers added are adjusted by training the neural network on the DR dataset,
while the weights of the initial layers are frozen.

4. After fine-tuning the Head layers of the architecture, the entire neural network is
unfrozen and retrained so that minor adjustments to the weights are performed across
the entire network.

The fine-tuning of the neural network aimed to optimize the proposed approach to
achieve more accurate results. So, hyperparameters, such as batch size, number of epochs,
and learning rate, were adjusted. According to Franke et al. [92], the optimization of hyper-
parameters aims to find a set of values that produces an ideal model in which a predefined
loss function is minimized. As in work proposed by Franke et al. [92], the methodology
adopted to fine-tune the proposed approach consisted of the following steps:

1. For each adjustment performed, a hyperparameter value is varied, and the proposed
approach is retrained, keeping the other hyperparameter values constant.

2. The effect of this change is analyzed through the performance evaluation of the
proposed approach with the metrics Average Precision (AP) and mean Average Precision
(mAP), which will be presented and discussed in the next section of this article.

3. If there is an improvement in the metric values, the hyperparameter value is further
adjusted (increased or decreased) until the local maximum is reached.

4. The exact process is carried out for the other hyperparameters until an optimal set
of values is obtained that produces the maximum results of AP and mAP for the
detection of the investigated fundus lesions.

After performing these steps using the validation dataset from the DDR, the ideal fit
for hyperparameters was found, as shown in Table 3. With the hyperparameter values
adequately adjusted, the next step was to evaluate the proposed approach in the test set of
the dataset used in the experiments. In the next section, the metrics used to evaluate the
performance of the proposed approach will be presented and discussed.
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3.6. Performance Metrics

Typically, these models are evaluated by their performance on a dataset’s valida-
tion/test set, measured using different metrics. The metrics adopted to evaluate a model
must follow the type of task being investigated so that it is possible to adequately and
quantitatively compare the performance of this model. For example, quantitative evalua-
tion is performed for object detection tasks in images by estimating overlapping regions
between detected images and annotating bounding boxes of objects in original images
(Ground Truth).

Metrics typically used to evaluate problems involving object detection and segmen-
tation of instances in images are the Intersection over Union (IoU) [31,86], the Average
Precision (AP ) [38,55,93,94] and the mean Average Precision (mAP) [30,31,37,40]. The IoU,
also identified by the similarity coefficient of Jaccard [42,43] is a statistic to estimate the
similarity between two sets of samples. The Intersection over Union is obtained by the
ratio between the Area of Overlap and the Area of Union of the predicted bounding boxes
and the Ground Truth bounding boxes.

The Average Precision corresponds to the Area Under the Curve (AUC) of Precision × Recall,
also called the PR [95] curve. With the Precision and Recall values, it is possible to plot a
graph, where the y axis is the Precision and the x axis is the Recall. Recall, and Precision
are then calculated for each class by applying the formulas for each image, as shown in
Equations (2) and (3), respectively:

Recall =
TP

TP + FN
=

Objects detected correctly
All Ground Truth objects

(2)

Precision =
TP

TP + FP
=

Objects detected correctly
All objects detected

(3)

Precision and Recall are useful measures to assess the efficiency of a model in predicting
classes when they are unbalanced. The Precision×Recall (PR curve) presents the trade-off
between Precision and Recall for different thresholds. The PR curve is an important tool for
analyzing the results of a predictor. The PR curve is an important tool for analyzing the
results of a predictor.

The same approach used in the COCO [96] challenge were used to perform the AP
calculation, a range of threshold values of IoU, calculate the average of the AP for each
IoU, and then obtain a final average of AP. Another critical aspect of calculating the AP in
the COCO challenge is that 101 recovery points are used in the PR [96] curve.

Another way to evaluate models that perform object detection is through mAP, a met-
ric widely used to evaluate deep learning models [30,31,37,40]. Its main feature is the ability
to compare different models, contrasting precision with recall. The definition of the mAP
metric for object detection was first formalized in the PASCAL VOC challenge. To calculate
mAP, just average the Average Precision calculated for all object classes [95], as shown in
Equation (4). Although it is not simple to quantify and interpret the results of a model,
mAP is a metric that helps evaluate deep learning models that perform object detection.

mAP =
1
N

N

∑
i=1

APi (4)

4. Experiments and Results

The performance evaluation of the proposed approach experiments was performed
using the public DDR Diabetic Retinopathy dataset. To avoid biasing the results, divided
the data set into training, validation, and test sets in a proportion of 50%, 20%, and 30%,
respectively. The architecture was implemented and trained based on the YOLOv5 model.
First, we perform transfer learning based on the pre-trained weights in the COCO dataset,
then fine-tune the detection layers of the architecture, and finally, we retrain the entire
neural network.
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During the training of the proposed approach was used the regularization method
Early Stopping [97]. With this technique, it was not necessary to statically define the number
of epochs necessary for training the proposed approach since the classification precision
is calculated in the validation data at the end of each epoch. When the precision stops
improving, the training is finished. Therefore, with the use of Early Stopping, it was possible
to avoid problems such as underfitting, in which the neural network cannot extract enough
features from the images during training due to an insufficient number of epochs; and,
overfitting, where the neural network overfits the training data due to an excessive amount
of epochs [98]. To do so, a parameter was defined to terminate training if the classification
precision has not improved during the last 100 epochs, as shown in Table 3.

In addition to the Early Stopping method, the Dropout [99] technique was used to help
regularize the proposed approach. This technique is widely used to regularize the training
of deep neural networks [100]. Dropout helps to regularize the model [101], without modi-
fying the cost function. Also, with the use of Dropout some hidden neurons of the neural
network are randomly and temporarily turned off without changing the input and output
neurons. Therefore, this technique causes some neurons not to function according to a
certain probability during training.

Dropout helps regularization because it reduces complex co-adaptations of neurons,
causing some neurons to be forced to learn features that a priori would be learned by other
neurons in the architecture. In short, the main idea is to drop units (neurons) randomly
(along with their connections) from the neural network during training, preventing the
units from adapting too much to the data [99], reducing the possibility of problems related
to overfitting of the neural network after data augmentation, for example. The parameter
defined in the proposed approach for using Dropout is shown in Table 3.

The proposed approach was evaluated with the AP and mAP metrics to compare
the results. These metrics are often used to measure the precision of deep learning algo-
rithms that perform object detection [29,37]. The proposed approach was compared with
related approaches found in the literature, including, SSD [17], YOLO [17], YOLOv3 [20],
YOLOv4 [59] and YOLOv5 (unmodified) as shown in Table 4. After the experiments carried
out during the validation step of the proposed approach in the DDR dataset using the
Stochastic Gradient Descent (SGD) optimizer, the best result was obtained using the Tilling
method, with a mAP of 0.2490 (indicated in bold font) and values of AP with a limit of IoU
of 0.5 equal to 0.2290, 0.3280, 0.1050 and 0.3330, for Hard Exudates (EX), Soft Exudates (SE),
Microaneurysms (MA) and Hemorrhages (HE), respectively, as shown in Table 4.

To investigate the results of our proposed approach, the PR curve instead of the ROC
curve (Receiver Operating Characteristic) [102] was chosen to be analyzed. It is important to
observe that the ROC curve is not recommended for situations where the dataset presents
an imbalance in the number of examples among the investigated classes. In these cases,
the ROC curve usually presents a very high AUC due to the predictor correctly classifying
the class with the highest number of examples (majority class) [103,104].

Precision and Recall were used to evaluate the results obtained, which are performance
metrics commonly used to evaluate image classification and information retrieval systems.
Generally speaking, Precision and Recall are not discussed in isolation, and some issues may
require a higher Recall over Precision, or vice versa, depending on the importance given to
false positives versus false negatives. In classification problems involving medical images,
for example, what is generally desired is to minimize the incidence of false negatives;
therefore, a high Recall becomes more important than a high Precision since a false negative
can imply a wrong medical diagnosis and, therefore, patient risks.
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Table 4. Results obtained by the proposed approach with SGD optimizer compared to works related
to the metrics AP and mAP for the limit of Intersection over Union of 0.5 in the validation set of the
Dataset for Diabetic Retinopathy (DDR).

Models
AP

mAP
EX SE MA HE

SSD [17] 0 0.0227 0 0.0007 0.0059

YOLO [17] 0.0039 0 0 0.0101 0.0035

YOLOv3+SGD [20] - - - - 0.1100

YOLOv3+SGD+Dropout [20] - - - - 0.1710

YOLOv4 [59] 0.0370 0.1493 0.0193 0.0849 0.0716

YOLOv5 (unmodified) 0.0306 0.2500 0.0047 0.1300 0.1040

Proposed Approach+SGD without Tilling 0.1490 0.4060 0.0454 0.2780 0.2200

Proposed Approach+SGD with Tilling 0.2290 0.3280 0.1050 0.3330 0.2490

Definitions in Table 4: AP, Average Precision; EX, hard exudates; SE, soft exudates; MA, microaneurysms; HE,
hemorrhages; mAP, mean Average Precision; SSD, Single Shot MultiBox Detector; YOLO, You Only Look Once;
YOLOv3, You Only Look Once version 3; YOLOv4, You Only Look Once version 4; YOLOv5, You Only Look
Once version 5; SGD, Stochastic Gradient Descent.

Figure 5 presents the graph referring to the PR curve with a limit of IoU of 0.5 obtained
during the validation stage using the proposed approach with the SGD optimizer and
Tilling in the DDR dataset. The AP values obtained by the fundus lesions are plotted on the
graph, according to the results presented in Table 4, whose mean Average Precision value
obtained by all the classes corresponds to 0.249.

Figure 5. Graph with Precision×Recall curve with a limit of Intersection over Union of 0.5 obtained
during the validation step of the proposed approach with Stochastic Gradient Descent (SGD) opti-
mizer and Tilling in the Dataset for Diabetic Retinopathy (DDR). EX, hard exudates; HE, hemorrhages;
SE, soft exudates; MA, microaneurysms; mAP, mean Average Precision.

The x axis of the PR curve represents Recall while the y axis represents Precision. This
curve mainly focuses on the performance of positive classes, which is critical when dealing
with unbalanced classes. Thus, in the PR space, the goal is to be in the upper right corner
(1, 1), meaning that the predictor classified all positives as positive (Recall = 1) and that
everything that was classified as positive is true positive (Precision = 1).
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It is possible to verify, based on the analysis of the PR curve graph, that the proposed
approach found greater difficulty in predicting Microaneurysms (MA) (red curve) followed
by Hard Exudates (EX) (cyan curve), with the best results obtained with the prediction
of Soft Exudates (SE) (green curve) and Hemorrhages (HE) (orange curve), respectively.
The low precision obtained in the detection of MA is mainly related to the size of these
microlesions and the gradient dissipation of these objects when the neural network is
trained, causing a high rate of errors. This fact can be noted in the confusion matrix (as
shown in Figure 6), with 79% of background FN and 38% of background FP, second only to
hard exudates, with 40%. The fact that the proposed approach has achieved better results
in predicting SE is associated with the morphological characteristics of these lesions since
they generally have larger sizes than other lesions.

Figure 6. Confusion matrix obtained by the proposed approach with the Stochastic Gradient Descent
(SGD) optimizer and Tilling during the validation step on the Dataset for Diabetic Retinopathy (DDR).
EX, hard exudates; HE, hemorrhages; SE, soft exudates; MA, microaneurysms; FN, False Negative;
FP, False Positive.

The confusion matrix is a table containing data from experiments with the proposed
approach. Based on these data, it was possible to summarize the information related to
the performance of the proposed approach and compare it with the results obtained with
similar works in state-of-the-art. Figure 6 presents the confusion matrix obtained by the
proposed approach with the SGD optimizer and Tilling during the validation step on the
DDR dataset. It should be noted that the confusion matrix resulting from the detection
of objects presents different characteristics when compared to problems that only involve
the classification of objects in images since most model errors are associated with the
background class and not with the other classes. In addition, the results presented in the
confusion matrix will vary according to the defined confidence limit.

When detecting objects, it is common for information regarding false positives (FP)
and false negatives (FN) to be presented in the confusion matrix (background). In this sense,
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the confidence limit established for detecting objects present in these images will directly
impact the results obtained from background FP and background FN.

Therefore, the last row of the confusion matrix refers to Ground Truth objects that were
not detected by the approach (background FN) and therefore considered as background.
The last column of the confusion matrix is the detections performed by the approach that
does not have any corresponding label in the Ground Truth (background FP), that is, the image
background detected as a lesion.

A confidence limit is applied to filter the bounding boxes of a possible object to elimi-
nate bounding boxes with low confidence scores through a Non-Maximum Suppression
algorithm, which disregards detected objects with IoU less than the defined threshold.
Thus, if a high confidence limit is defined, such as 0.90, there will be little confusion between
the classes and low background FP results, but there will be a marked elimination of correctly
detected fundus lesions (although with a low confidence limit), but with a confidence limit
lower than 0.90. On the other hand, if a confidence limit of 0.25 is defined, there will be
a more significant generation of background FP and background FN since it increases the
probability of the model detecting the background as a lesion and vice versa.

Therefore, as the confidence limit tends to 1, the fund FPs will tend to 0. The results
presented in the confusion matrix were calculated using a fixed confidence limit of 0.25,
which is in line with the default inference configuration contained in the detect.py file of
the proposed approach. In summary, with lower confidence limits, the results of mAP will
be improved but will also produce a more significant amount of background FP that will
appear in the confusion matrix, while if you increase the confidence limit, there will be a
decrease in background FP in the confusion matrix, however, with a loss in mAP since more
lesions are lost.

Cells with darker shades of blue indicate a greater number of samples. The confusion
matrix presents the hits in the prediction of fundus lesions on the main diagonal, while the
values off the main diagonal correspond to prediction errors. It is possible to verify that the
highest incidence of background FN occurred in Microaneurysms (with 79%), followed by
Hard Exudates (with 69%), Soft Exudates (with 68%), and Hemorrhages (with 58%). As for
FP background errors, the highest incidence occurred in Hard Exudates (with 40%), followed
by Microaneurysms (with 38%), Hemorrhages (with 19%), and Soft Exudates (with 3%).
Also, it can be seen that 9% of Hemorrhages were incorrectly detected as Microanerysms, 2%
of Soft Exudates were incorrectly detected as Hard Exudates, and 3% of Microaneurysms
were incorrectly detected as Hemorrhages.

Thus, the results presented in the confusion matrix cannot be directly compared with
the results of AP presented in this work, because the values are associated with the area
under the PR curve, as shown in Figure 5. A good mAP produced by a low confidence
limit, for example, will necessarily contain thousands of FPs, pushed to the lower right
corner of the PR curve, with trends from Recall to 1 and Precision to 0, as shown in Figure 5.

During the test stage of the proposed approach in the DDR dataset using the SGD opti-
mizer, the best result obtained reached a mAP of 0.1430 (indicated in bold font) and values
of AP with a limit of IoU of 0.5 equal to 0.2100, 0.1380, 0.0530 and 0.1710, for Hard Exu-
dates (EX), Soft Exudates (SE), Microaneurysms (MA) and Hemorrhages (HE), respectively,
as presented in Table 5. Furthermore, both results obtained by the proposed approach,
with and without the use of Tilling, achieved superior results to related works, which also
detected fundus lesions in images from the test set of the DDR dataset.

Experiments were carried out during the validation stage of the proposed approach
in the DDR dataset using the Adam optimizer, in which the best result was obtained
using the Tilling method, with a mAP of 0.2630, and AP amounts with a IoU limit of 0.5
equal to 0.2240, 0.3650, 0.1110 and 0.3520, for Hard Exudates (EX), Soft Exudates (SE),
Microaneurysms (MA) and Hemorrhages (HE), respectively, as shown in Table 6.
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Table 5. Results obtained by the proposed approach with SGD optimizer compared to works related
to the metrics AP and mAP for the limit of Intersection over Union of 0.5 in the test set of the Dataset
for Diabetic Retinopathy (DDR).

Models
AP

mAP
EX SE MA HE

SSD [17] 0.0002 0 0.0001 0.0056 0.0015

YOLO [17] 0.0012 0 0 0.0109 0.0030

YOLOv5 (unmodified) 0.0342 0.1000 0.0028 0.0590 0.0511

Proposed Approach+SGD without Tilling 0.1430 0.2040 0.0280 0.1480 0.1310

Proposed Approach+SGD with Tilling 0.2100 0.1380 0.0530 0.1710 0.1430

Definitions in Table 5: AP, Average Precision; EX, hard exudates; SE, soft exudates; MA, microaneurysms; HE,
hemorrhages; mAP, mean Average Precision; SSD, Single Shot MultiBox Detector; YOLO, You Only Look Once;
YOLOv5, You Only Look Once version 5; SGD, Stochastic Gradient Descent.

Table 6. Results obtained by the proposed approach with Adam optimizer compared to works related
to the metrics AP and mAP for the Intersection over Union limit of 0.5 in the validation set of the
Dataset for Diabetic Retinopathy (DDR).

Models
AP

mAP
EX SE MA HE

SSD [17] 0 0.0227 0 0.0007 0.0059

YOLO [17] 0.0039 0 0 0.0101 0.0035

YOLOv3+Adam+Dropout [20] - - - - 0.2160

Proposed Approach+Adam without Tilling 0.1640 0.4020 0.0610 0.3290 0.2390

Proposed Approach+Adam with Tilling 0.2240 0.3650 0.1110 0.3520 0.2630

Definitions in Table 6: AP, Average Precision; EX, hard exudates; SE, soft exudates; MA, microaneurysms; HE,
hemorrhages; mAP, mean Average Precision; SSD, Single Shot MultiBox Detector; YOLO, You Only Look Once;
YOLOv3, You Only Look Once version 3.

The use of the Adam optimizer resulted in a higher mAP than the result obtained
by the proposed approach with the SGD optimizer, presented in Table 4. The proposed
approach presented results superior to all works with the same purpose found in the
literature. Figure 7 presents the graph of the PR curve with a limit of IoU of 0.5 obtained
during the validation step using the proposed approach with the optimizer Adam and
Tilling in the DDR dataset. The AP values obtained by the fundus lesions are plotted on the
graph, according to the results presented in Table 6, whose mean Average Precision value
obtained for all classes corresponds to 0.2630 (indicated in bold font). Analyzing the PR
curve, it appears that using the Adam optimizer, the proposed approach presented similar
results to those obtained using the SGD optimizer, i.e., there was a high rate of errors in
detecting Microaneurysms (MA) (curve in red).

The best results were achieved in the prediction of Soft Exudates (SE) (curve in green
color) and Hemorrhages (HE) (curve in orange color), respectively. It is possible to verify
in the confusion matrix (as shown in Figure 8) the high rate of background FN (89%) and
high rate of background FP (34%) of microaneurysms. The rate of background FP of hard
exudates also stands out from the other classes of lesions, reaching 44%. The reasons that
led to the high rates of FN and FP, both in detecting microaneurysms and hard exudates,
have already been discussed.
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Figure 7. Graph of the Precision×Recall curve with a limit of Intersection over Union of 0.5 obtained
during the validation step of the proposed approach with Adam optimizer and Tilling in the Dataset
for Diabetic Retinopathy (DDR). EX, hard exudates; HE, hemorrhages; SE, soft exudates; MA,
microaneurysms; mAP, mean Average Precision.

Figure 8. Confusion matrix obtained by the proposed approach with the Adam optimizer and Tilling
during the validation step on the Dataset for Diabetic Retinopathy (DDR). EX, hard exudates; HE,
hemorrhages; SE, soft exudates; MA, microaneurysms; FN, False Negative; FP, False Positive.
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Figure 8 presents the confusion matrix obtained by the proposed approach with the
Adam optimizer and Tilling during the validation step on the DDR dataset. It is possible
to verify that the highest incidence of background FN occurred in Microaneurysms (with
80%), followed by Hard Exudates (with 67%), Soft Exudates (with 63%), and Hemorrhages
(with 58%). As for FP background errors, the highest incidence occurred in Hard Exudates
(with 44%), followed by Microaneurysms (with 34%), Hemorrhages (with 17%), and Soft
Exudates (with 5%). Also, it can be seen that 10% of Hemorrhages were incorrectly detected
as Microaneurysms, 2% of Soft Exudates were incorrectly detected as Hard Exudates,
and 2% of Microaneurysms were incorrectly detected as Hemorrhages.

Figure 9 presents a batch with fundus images from the DDR dataset along with anno-
tations (Ground Truth) of the fundus lesions after the preprocessing steps and augmentation
of data that were used to validate the proposed approach using Adam optimizer and Tilling.
Figure 10 shows the detections of fundus lesions performed on the same batch of fundus
images described above.

Figure 9. Batch example with fundus images of the Dataset for Diabetic Retinopathy (DDR) along
with annotations (Ground Truth) of the fundus lesions after the pre-processing and data augmentation
steps that were used to validate the proposed approach. MA, microaneurysms; HE, hemorrhages; SE,
soft exudates.

The proposed approach was able to satisfactorily detect fundus lesions, such as the
microaneurysm located in the image “007-3038-100_3.jpg”, or the hemorrhage and soft
exudate in the image “007-6127-300_1.jpg”, or the microaneurysm and soft exudate in
the image “007-6121-300_3.jpg”, and microaneurysms in the image “007-6121-300_1.jpg”.
However, there were cases in which the proposed approach failed to detect the lesions
or detected them wrongly, as in the case of one of the microaneurysms not located in the
image “007-3045-100_3.jpg”, the hemorrhage in the image “007 -6127-300_3.jpg”, and two
microaneurysms from image “007-3045-100_1.jpg”.
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Figure 10. Batch with fundus images from the Dataset for Diabetic Retinopathy (DDR) with fundus
lesions detected by the proposed approach during the validation step. MA, microaneurysms; HE,
hemorrhages; SE, soft exudates; EX, hard exudates.

Even so, there were also situations where the proposed approach detected objects
in the “007-3045-100_3.jpg” image as hard exudates, even though there were no anno-
tations of these lesions in the Ground Truth of the DDR dataset. As this image presents
microaneurysms in the same sector as the localized hard exudates, it is possible that these
exudates were correctly detected, even though they were not originally located in the
dataset. However, there is no way to confirm this information since only by verifying the
absence of luminescence in these lesions, confirmed by image angiography (not available
in the dataset), would it be possible to be sure about the diagnosis. In any case, based on
the lesions detected and the generalization capacity verified after the predictions made on
unknown images a priori, the proposed approach proved to be an essential tool to aid in
medical diagnosis.

During the test stage of the proposed approach in the DDR dataset using the Adam
optimizer, the best result obtained reached a mAP of 0.1540 (indicated in bold font) and
values of AP with a limit of IoU of 0.5 equal to 0.2210, 0.1570, 0.0553 and 0.1840, for Hard
Exudates (EX), Soft Exudates (SE), Microaneurysms (MA) and Hemorrhages (HE), respec-
tively, as shown in Table 7. As in the validation set, the proposed approach (with and
without the use of Tilling) obtained better results than the related works tested in the test
set of the DDR dataset.

It is possible to verify that the optimization method that presented the best results was
Adam. Thus, we can conclude that this optimizer has excellent potential for application in
problems involving the detection of fundus lesions. However, in future works, we intend
to conduct experiments with other optimization methods in state-of-the-art using different
variations of hyperparameters.
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Table 7. Results obtained by the proposed approach with Adam optimizer compared to works related
to the AP and mAP metrics for the Intersection over Union limit of 0.5 in the test set of the DDR
(Dataset for Diabetic Retinopathy).

Models
AP

mAP
EX SE MA HE

SSD [17] 0.0002 0 0.0001 0.0056 0.0015

YOLO [17] 0.0012 0 0 0.0109 0.0030

Proposed Approach+Adam without Tilling 0.1540 0.2110 0.0296 0.1590 0.1380

Proposed Approach+Adam with Tilling 0.2210 0.1570 0.0553 0.1840 0.1540

Definitions in Table 7: AP, Average Precision; EX, hard exudates; SE, soft exudates; MA, microaneurysms; HE,
hemorrhages; mAP, mean Average Precision; SSD, Single Shot MultiBox Detector; YOLO, You Only Look Once.

The results obtained with the metrics are presented below: Precision, which considers,
among all the positive classifications made by the model, how many are correct; the Recall,
which assumes, among all situations of the positive class as expected value, how many are
correct; and, the F1-score, which calculates the harmonic mean between Precision and Recall.

The best results achieved by the approach proposed in the DDR dataset were obtained
using the Adam optimizer and the Tilling method, according to the F1-score metric obtained
in the Validation and Testing stages, with values of 0.3485 (indicated in bold font) and
0.2521 (indicated in bold font), respectively, as shown in Table 8.

Table 8. Results obtained with the metrics: Precision, Recall and F1-score with the Stochastic Gradient
Descent (SGD) and Adam optimizers during the validation and testing steps using the Dataset for
Diabetic Retinopathy (DDR).

Models
Precision
Validation

Recall
Validation

F1-Score
Validation

Precision
Test

Recall
Test

F1-Score
Test

Proposed Approach+SGD
without Tilling 0.4533 0.2233 0.2992 0.3270 0.1540 0.2094

Proposed Approach+Adam
without Tilling 0.4618 0.2484 0.3231 0.3060 0.1710 0.2194

Proposed Approach+SGD
com Tilling 0.4775 0.2653 0.3411 0.3390 0.1820 0.2368

Proposed Approach+Adam
with Tilling 0.4462 0.2859 0.3485 0.3410 0.2000 0.2521

The mean inference time to detect fundus lesions per image in the DDR dataset in the
Validation and Testing steps of the proposed approach is presented in Table 9. The approach
proposed without Tilling had the lowest average inference time per image with the Adam
optimizer, with 14.1 ms, while with Tilling the lowest average inference time per image
was achieved with the SGD optimizer, with 4.6 ms (indicated in bold font). However,
the highlight is the inference time of the proposed approach using Tilling, which was
around 3 times faster than the inference time of the proposed approach applied to the
images without performing from Tilling. Therefore, in addition to increasing the precision of
the proposed approach in detecting fundus lesions, the Tilling method made the prediction
process faster.
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Table 9. Mean inference time to detect fundus lesions per image in the Dataset for Diabetic Retinopa-
thy (DDR) in the Validation and Testing stages of the proposed approach.

Models
Inference Time (ms)

Validation
Inference Time (ms)

Test

Proposed Approach+SGD without Tilling 15.7 13.0

Proposed Approach+Adam without Tilling 14.1 21.1

Proposed Approach+SGD with Tilling 4.6 5.9

Proposed Approach+Adam with Tilling 5.5 7.5
Definitions in Table 9: ms, millisecond; SGD, Stochastic Gradient Descent.

To assess the precision of the proposed approach in different public DR datasets, we
also performed experiments with the Diabetic Retinopathy image set IDRiD [18]. During the
validation step on the IDRiD dataset, the best result obtained by the proposed approach was
using the SGD optimizer with the Tilling method, with a mAP of 0.3280 (indicated in bold
font) and values of AP with a limit of IoU of 0.5 equal to 0.2630, 0.5340, 0.2170 and 0.2980,
for Hard Exudates (EX), Soft Exudates (SE), Microaneurysms (MA) and Hemorrhages (HE),
respectively, as shown in Table 10.

Table 10. Results obtained by the proposed approach with Tilling and the SGD and Adam optimizers
with the metrics AP and mAP for the Intersection over Union limit of 0.5 in the validation set of the
Indian Diabetic Retinopathy Image Dataset (IDRiD).

Models
AP

mAP
EX SE MA HE

Proposed Approach+SGD without Tilling 0.1030 0.2940 0.0601 0.2460 0.1760

Proposed Approach+Adam without Tilling 0.1040 0.1810 0.0723 0.1350 0.1230

Proposed Approach+SGD with Tilling 0.2630 0.5340 0.2170 0.2980 0.3280

Proposed Approach+Adam with Tilling 0.2670 0.2740 0.2100 0.3200 0.2680
Definitions in Table 10: AP, Average Precision; EX, hard exudates; SE, soft exudates; MA, microaneurysms; HE,
hemorrhages; mAP, mean Average Precision; SGD, Stochastic Gradient Descent.

The best result of mAP obtained by the proposed approach during the validation
using the IDRiD dataset surpassed the results obtained in the DDR dataset, thus attesting
to the generalization capacity of the method adopted by the proposed approach for the
detection of fundus lesions.

In the test stage of the proposed approach using the IDRiD dataset, the best result
was obtained with the Adam optimizer and the use of Tilling, reaching a mAP of 0.2950
(indicated in bold font), and values of AP with a limit of IoU of 0.5 equal to 0.2530, 0.4090,
0.2210 and 0.2970, for Hard Exudates (EX), Soft Exudates (SE), Microaneurysms (MA)
and Hemorrhages (HE), respectively, as shown in Table 11. The results obtained by the
proposed approach in the test set of the IDRiD dataset were superior to those obtained in
the test set of the DDR dataset.

Figure 11a corresponds to the fundus image “007-3711-200.jpg” from the test set of the
DDR dataset, along with the annotations (Ground Truth) of fundus lesions; Figure 11b is the
segmentation mask of hard exudates; Figure 11c is the hemorrhage segmentation mask;
and, Figure 11d is the segmentation mask of microaneurysms. It is important to note that
there is no presence of soft exudates in this fundus image.
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Table 11. Results obtained by the proposed approach with Tilling and the SGD and Adam optimizers
with the metrics AP and mAP for the Intersection over Union threshold of 0.5 in the test set of the
Indian Diabetic Retinopathy Image Dataset (IDRiD).

Models
AP

mAP
EX SE MA HE

Proposed Approach+SGD without Tilling 0.1260 0.3000 0.0787 0.2630 0.1920

Proposed Approach+Adam without Tilling 0.0993 0.2640 0.0661 0.1380 0.1420

Proposed Approach+SGD with Tilling 0.2390 0.3940 0.2010 0.2890 0.2810

Proposed Approach+Adam with Tilling 0.2530 0.4090 0.2210 0.2970 0.2950

Definitions in Table 11: AP, Average Precision; EX, hard exudates; SE, soft exudates; MA, microaneurysms;
HE, hemorrhages; mAP, mean Average Precision; SGD, Stochastic Gradient Descent.

Figure 11. Example of fundus image of the dataset accompanied by the segmentation masks of the
lesions present in the image. In (a), the fundus image “007-3711-200.jpg” of the test set from the
Dataset for Diabetic Retinopathy (DDR), along with annotations (Ground Truth) of the fundus lesions;
(b) segmentation mask of hard exudates; (c) hemorrhage segmentation mask; and (d) microaneurysm
segmentation masks.

Figure 12 demonstrates the detection of fundus lesions performed by the proposed
approach and the percentage of confidence obtained in each object located in the fundus
image “007-3711-200.jpg” of the set test of the DDR dataset. This retinal image has a
darker background, a recurrent feature in several fundus images of the investigated public
datasets, which frequently causes problems in detecting lesions (mainly microaneurysms
and hemorrhages). In addition, this feature generates high rates of errors during classi-
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fication, in which a lesion is erroneously considered as background (background FN) or,
conversely, where the background is erroneously considered as a lesion (background FP).
For these cases, the image processing techniques applied in the pre-processing block of
the proposed approach play an important role, as they aim to minimize these problems by
reducing noise and improving the contrast of these images, for example.

Figure 12. Detection of fundus lesions performed by the proposed approach and the percentage of
confidence obtained in each object located in the fundus image “007-3711-200.jpg” of the test set of the
Dataset for Diabetic Retinopathy (DDR). EX, hard exudates; HE, hemorrhages; MA, microaneurysms.

Another aspect that can also be seen in this fundus image is the identified microlesions,
as in the case of microaneurysms. These are extremely small lesions that end up making
them challenging to detect. For these cases, the importance of, for example, the application
of the Tilling method (pre-processing block of the proposed approach), the application
of geometric transformations (data enhancement block of the proposed approach) and
the architectural characteristics of the neural network of the proposed approach, such
as the use of CSPs integrating Backbone and Neck, which aim to minimize problems of
gradient dissipation of these microlesions during neural network training. Even so, with all
these characteristics observed in this fundus image that make it challenging to identify
the lesions, it is possible to verify that the proposed approach accurately performed the
detection of most fundus lesions, localizing hard exudates (EX), hemorrhages (HE) and
microaneurysms (MA) present in the image.

Figure 13 shows the detection of fundus lesions in the “007-3892-200.jpg” image of the
test set of the DDR dataset. With a higher level of detail, it is possible to observe the different
morphological aspects of some identified lesions, such as hard exudates and Hemorrhages
(that often produce classification errors due to similarities with microaneurysms). How
shown the results presented in the confusion matrices of the experiments (Figures 6 and 8).
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Figure 13. Detection of fundus lesions in the “007-3892-200.jpg” image of the test set of the Dataset for
Diabetic Retinopathy (DDR). It is possible to observe different morphological aspects of the identified
lesions, as in the case of hard exudates in the image’s central region and distributed in other regions
of the retina, or hemorrhages, which, like the hard exudates detected. Also, they assume different
shapes and sizes, in addition to being able to manifest themselves in different regions of the retina.
EX, hard exudates; HE, hemorrhages.

5. Discussion

The works proposed by Alyoubi et al. [20] and Dai et al. [21] presented results in
the validation set. Unlike these works, the same methodology as the work proposed
by Li et al. [17] was adopted, which evaluated the proposed approach through the analysis
of the results obtained both in the validation stage and in the test stage using the public
dataset of DDR Diabetic Retinopathy. This method was adopted to avoid the evaluation
of the proposed approach being carried out only in the validation set since this evalu-
ation could give a false impression that the proposed approach is accurate in detecting
fundus lesions.

Evaluating the approach on a validation set (where the neural network model is fitted)
and then on a test set (where the data is not known a priori) allowed the generalization
capability of the proposed approach to be properly verified, without the risk of biases
produced by possible overfitting of the model during the validation. To validate the
predictive capacity of the proposed approach regarding the detection of fundus lesions, we
also evaluated it in the IDRiD dataset, in which we achieved results equivalent to those
obtained in the DDR dataset.

The work by Dai et al. [21] was not compared with the proposed approach, as the
authors used a 2-stage architecture while we used a single-stage architecture. The authors
did not present the results of AP or mAP, unlike other works with a similar purpose found
in the literature, which makes an adequate comparison impossible. In addition, the authors
used a private DR dataset to train the deep learning models, which makes it difficult to
reproducible the results obtained using the same method.

In the work proposed by Li et al. [17], the best results obtained regarding the detection
of fundus lesions in the DDR dataset, using a Single-Stage model, was 0.0059 of mAP in
the validation step with SSD and 0.0030 in the test step with YOLO. Santos et al. [59], using
the DDR dataset, obtained a mAP of 0.0716 with the YOLOv4 model in the validation
step. In work presented by Alyoubi et al. [20], the best result obtained by the authors in
the validation step with the DDR dataset was a mAP of 0.1710, using the YOLOv3 model.
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The approach based on the YOLOv5 model proposed in this work, obtained a mAP of
0.2630 in the validation step and 0.1540 in the test step, both in DDR dataset.

With a confidence limit set at 0.25, the lesions were identified with their respective
confidence percentages. The experimental results showed that the proposed approach
obtained greater precision than similar works found in the literature. Another aspect
observed during the experiments is that the proposed approach obtained greater precision
in detecting Soft Exudates, Hemorrhages, and Hard Exudates, and, in contrast, a lower
precision in detecting Microaneurysms was reached.

The detection of these lesions through computerized systems is a challenge due
to numerous factors, among which: are the characteristics of size and shape of these
lesions; noise and image contrast available in public DR datasets; the number of annotated
examples of these lesions available in public DR datasets; and, the difficulty of deep learning
algorithms in detecting very small objects. These problems were reported in the literature
and observed during the experiments performed. Thus, a new image processing-based
approach techniques and a state-of-the-art Single-Stage deep neural network architecture
were proposed to overcome some of these problems to detect lesions in fundus images.

For the problem related to the shape and size of objects, in which very small lesions
such as microaneurysms are more challenging to detect, techniques were applied to increase
the receptive field of these lesions, such as partial Cropping of the black background of the
images, and the Tilling of the input images for training the neural network. Also, a data
augmentation technique based on the Scale geometric transformation was applied. In this
case, a 50% zoom is randomly performed on the input images so that new images are
artificially created for training. Thus, the neural network can extract more features, making
it more efficient in detecting microlesions. A pre-processing block was developed in which
we first filter the images to remove outliers from capturing these images and then apply the
contrast-limited adaptive histogram equalization method to increase the local contrast of
fundus images and improve lesion enhancement.

A block responsible for data augmentation was developed to minimize the problem of
the small number of lesion examples noted in the public DR datasets. In this block, different
state-of-the-art methods were applied, such as Mosaic, MixUp, Copy-Paste and geometric
transformations (flipping, scaling, perspective, translation and shearing). The purpose of this
step was to artificially create a greater number of example images with annotated lesions
for training the proposed approach, to allow the deep neural network to extract a greater
amount of lesion characteristics and, consequently, to increase the generalization capacity
of the proposed approach.

In comparison to similar works found in the literature, it is essential to highlight the
contributions of the proposed approach related to the structure of the deep neural network
used, such as the use of CSP modules (C3) in the Backbone and Neck of the architecture,
which minimized gradient dissipation problems, caused by the number of dense layers.
In addition, through these modules, there was an improvement in inference speed and
precision in lesion detection, as well as a reduction in computational cost and memory usage.
Another innovation in the proposed approach’s structure was using the SiLU activation
function throughout the neural network to simplify the architecture and reduce the number
of hyperparameters. The Threshold-Moving method was applied during neural network
training so that the image samples were weighed using a precision metric to minimize
the imbalance in the number of examples of the different classes of lesions investigated
and avoid classification biases in significant classes. Finally, the adjustments and tests
were performed on the proposed approach through different public datasets on Diabetic
Retinopathy. These datasets were split into Training, Validation, and Testing to evaluate
the proposed approach according to the results of the different performance metrics.

The main limitation of our proposed approach focuses on identifying some lesions,
as in the case of hard exudates, which have characteristics similar to drusen other than
ocular signs caused by DR, for example. For this reason, the proposed approach made
classification errors considering these drusen as hard exudates. Thus, a public dataset,
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with a broader range of eye signals, with lesions labeled and with a reasonable number of
examples, associated or not with Diabetic Retinopathy, could support the training of deep
learning models and the distinction more accurate of these different types of eye signals.

Another limitation observed during the experiments is associated with detecting
microaneurysms. Although the results are better than similar works found in the literature,
they are still low due to the size of these microlesions and have gradient dissipation
problems. In this sense, we aimed to increase the detection accuracy of these microlesions
by exploring architectures that perform the detection in two stages. Furthermore, we intend
to explore different strategies, namely: (1) augmenting data to increase the number of
examples of these microlesions; (2) improving the process of creating tiles from fundus
images to provide the neural network images with the highest possible level of detail for
extracting features from fundus lesions.

6. Conclusions

This article presented a new approach to fundus lesion detection using image process-
ing techniques and a deep neural network based on a state-of-the-art YOLO architecture.
Two public datasets of Diabetic Retinopathy images were used to train and evaluate the
proposed approach’s precision: DDR and IDRiD. Only the images with annotated lesions
in the datasets were used to perform the training and evaluation of the proposed approach.
These datasets were partitioned into training, validation, and testing sets in a ratio of
50:20:30, respectively. The best results were achieved in the DDR dataset using the Adam
optimizer and the Tilling method, reaching in the validation stage the mAP of 0.2630 for
the limit of IoU of 0.5 and F1-score of 0.3485, and in the test step the mAP of 0.1540 for
the limit of IoU of 0.5 and F1-score of 0.2521. The results obtained in the experiments
demonstrate that the proposed approach presented results superior to equivalent works
found in the literature.

The deep neural network architecture was implemented based on the YOLOv5 frame-
work and the framework PyTorch, reaching 22.4% in the validation stage Average Precision
for Hard Exudates, 36.5% for Soft Exudates, 11.1% for Microaneurysms, and 35.2% for
Hemorrhages, in the DDR dataset. Different state-of-the-art image processing and data
augmentation techniques were explored, such as CLAHE, Tilling, Mosaic, Copy-Paste and
MixUp. In this way, it was possible to increase the precision of the proposed approach
in detecting fundus lesions because, with the help of these techniques, the deep neural
network architecture extracted a greater and more representative amount of characteristics
of the lesions investigated during the training stage.

The experiments achieved state-of-the-art results, surpassing related works found in
the literature with similar purpose and application and demonstrating that the detection
of fundus lesions can be performed effectively through a deep learning-based approach.
Furthermore, for the problem related to the size of objects, in which very small lesions are
more difficult to detect, techniques were applied to increase the receptive field of these
lesions, such as partial Cropping of the black background of the images and Tilling of the
input images for training the neural network. However, the results presented in this work
indicate that detecting microlesions such as microaneurysms in fundus images remains
challenging for future research.

In future work, we intend to explore state-of-the-art architectures that perform instance
segmentation to investigate and compare the trade-off between the precision and inference
speed of these architectures with the approach proposed in this work. Furthermore, we
intend to explore new data augmentation strategies and structures for the Backbone, Neck
and Head of the deep neural network architecture implemented in the proposed approach,
as well as to carry out experiments with other sets of public data on Diabetic Retinopathy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22176441/s1, Supplementary Materials: Pre-Processing, Image
Preparation, and Data Augmentation in Details. References [105–161] are cited in Supplementary
Materials File.
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