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Preface

Sensors used to diagnose, monitor or treat diseases in the medical domain are known as medical
sensors. There are several types of medical sensors that can be utilized for various applications,
such as temperature probes, force sensors, pressure sensors, oximeters, electrocardiogram sensors
that measure the electrical activity of the heart, heart rate sensors, electroencephalogram sensors that
measure the electrical activity of the brain, electromyogram sensors that record electrical activity
produced by skeletal muscles, and respiration rate sensors that count how many times the chest
rises in a minute. The output of these sensors used to be interpreted by humans, which was
time consuming and tedious; however, such interpretations became easy with advances in artificial
intelligence (AI) techniques and the integration of the sensor outputs into computer-aided diagnostic
(CAD) systems.

This reprint highlights several studies that present state-of-the-art AI approaches used to
diagnose different diseases and disorders based on the data collected from different medical
sensors. This works towards developing comprehensive and automated computer-aided diagnosis
by focusing on the different machine learning algorithms that can be used for this purpose as well as

novel applications in the medical field.

Ayman El-Baz, Guruprasad A. Giridharan, Ahmed Shalaby, Ali H. Mahmoud, and
Mohammed Ghazal
Editors
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1. Introduction

Sensors used to diagnose, monitor or treat diseases in the medical domain are known
as medical sensors. There are several types of medical sensors that can be utilized for
various applications, such as temperature probes; force sensors; pressure sensors; oxime-
ters; electrocardiogram sensors which measure the electrical activity of the heart; heart
rate sensors; electroencephalogram sensors, which measure the electrical activity of the
brain; electromyogram sensors that record electrical activity produced by skeletal muscles;
and respiration-rate sensors that count how many times the chest rises in a minute. The
output of these sensors used to be interpreted by humans, which was time consuming
and tedious; however, interpretation became easy with the advance in artificial intelligence
(AI) techniques and the integration of the sensor outputs into computer-aided diagnostic
(CAD) systems.

This Special Issue has accepted 34 papers that present some of the state-of-the-art Al
approaches used to diagnose different diseases and disorders based on the data collected
from different medical sensors. This contributes towards achieving our goal, which is to
develop comprehensive and automated computer-aided diagnosis tools by focusing on the
different machine learning algorithms that can be used for this purpose as well as novel
applications in the medical field.

2. Overview of Contribution

Fraiwan and Faouri [1] used deep transfer learning for the automatic detection and
classification of skin cancer. Al Mudawi and Alazeb [2] presented an astute way to predict
cervical cancer with machine learning (ML) algorithms. AlSaeed and Omar [3] proposed a
pre-trained convolutional neural network (CNN) deep learning model (ResNet50) as an
automatic feature extraction method for diagnosing Alzheimer’s disease from magnetic
resonance imaging (MRI). Yasser et al. [4] described a novel framework that can detect
diabetic retinopathy (DR) from optical coherence tomography angiography (OCTA) based
on capturing the appearance and morphological markers of the retinal vascular system.
Holubiac et al. [5] discussed the effect of a strength-training protocol on bone mineral
density for postmenopausal women with osteopenia/osteoporosis assessed by dual-energy
X-ray absorptiometry (DEXA). Ayyad et al. [6] proposed a new framework for the precise
identification of prostatic adenocarcinoma from two imaging modalities.

Tariq et al. [7] proposed a novel feature-based fusion network called FDC-ES for
classifying heart and lung sounds. ElNakieb et al. [8] provided a thorough study of
implementing feature engineering tools to find discriminant insights from brain imaging
of white-matter connectivity and using a machine learning framework for the accurate
classification of autistic individuals. Diab et al. [9] presented a brain strategy algorithm for
multiple-object tracking based on merging semantic attributes and appearance features.
Fraiwan et al. [10] presented a non-contact spirometry using a mobile thermal camera and

Sensors 2022, 22, 8052. https:/ /doi.org/10.3390 /522208052
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Al regression. Ramesh et al. [11] proposed the design and implementation of an explainable
deep learning 1D-CNN model for use in smart healthcare systems with general-purpose
devices such as smart wearables and smartphones. Liang et al. [12] developed a new flow
sensor-based suction index from a measured pump flow (SIMPF) control strategy for rotary
left ventricular assist devices (LVADs) to provide adequate cardiac output and prevent left
ventricle (LV) suction.

Al-Mohannadi et al. [13] proposed a deep-learning-based approach to apply semantic
segmentation for the intima-media complex (IMC) and to calculate the cIMT measurement.
Alshboul and Fraiwan [14] developed an algorithm to count the number of chews in eating
video recordings using discrete wavelet decomposition and low pass filtration. Hammouda
et al. [15] introduced a deep learning-based CAD system to classify the grade groups (GG)
system using digitized prostate biopsy specimens (PBSs) using pyramidal CNN, with
patch- and pixel-wise classifications. Ahmad et al. [16] provided proof-of-principle for
an optical-based, quick, simple, and sensitive screening technology for the detection of
SARS-CoV-2, utilizing antigen-antibody binding interactions. Fournelle et al. [17] devel-
oped a new mobile ultrasound device for long-term and automated bladder monitoring
without user interaction consisting of 32 transmit and receive electronic components as
well as a 32-element, phased array, 3 MHz transducer. Khasawneh et al. [18] customized
and pre-trained deep learning models based on convolutional neural networks were used
to detect pneumonia caused by COVID-19 respiratory complications. Al Ahmad et al. [19]
presented a novel immunophenotyping technique using electrical characterization to differ-
entiate between the following two most important cell types of the innate immune system:
dendritic cells (DCs) and macrophages (MACs).

Haweel et al. [20] proposed a novel CAD framework to classify 50 autism spectrum
disorder (ASD) and 50 typically developed toddlers with the adoption of CNN deep net-
works. The CAD system includes both local and global diagnosis in a response to speech
task. Sharafeldeen et al. [21] presented a new segmentation technique for delineating the
lung region in 3D computed tomography (CT) images. To accurately model the distribu-
tion of Hounsfield scale values within both chest and lung regions, a new probabilistic
model is developed that depends on a linear combination of Gaussians (LCG). Haggag
et al. [22] proposed a novel framework for the automatic quantification of the vitreous on
optical coherence tomography (OCT) with application for use in the grading of vitreous
inflammation. The proposed pipeline consists of two stages, vitreous region segmentation
followed by a neural network classifier. In the first stage, the vitreous region is automatically
segmented using a U-net CNN (U-CNN). El-Gamal et al. [23] developed a personalized,
cortical region-based CAD system that helps visualize the severity of Alzheimer’s disease
(AD) in different local brain regions. Shehata et al. [24] developed a comprehensive CAD
system for the early assessment of renal cancer tumors. The CAD system identifies and
integrates the optimal discriminating morphological, textural, and functional features that
best describe the malignancy status of a given renal tumor. Alwateer et al. [25] introduced
a novel approach for processing healthcare data and predicting useful information with
minimum computational cost, using a hybrid algorithm that consists of two phases.

Wagner et al. [26] compared a medical-grade electrocardiography (ECG) system with
an ECG sensor of the low-cost DiY (Do-it-Yourself) hardware toolkit BITalino. Their results
showed that the BITalino system can be considered as an equivalent recording device for
stationary ECG recordings in psychophysiological experiments. Naglah et al. [27] proposed
a novel multimodal MRI-based CAD system that differentiates malignant from benign
thyroid nodules, based on a novel CNN-based texture learning architecture. Alyoubi
et al. [28] proposed a screening system for DR fundus image classification and lesions
Localization to help ophthalmologists determine the patients’ DR stage. Abdelmaksoud
etal. [29] developed a CAD system that detects and identifies prostate cancer from diffusion-
weighted imaging (DWI). The identification of prostate cancer was achieved using two
previously trained CNN models (AlexNet and VGGNet) that were fed with the estimated
ADC maps of the segmented prostate regions. Jo et al. [30] introduced a novel customized
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optical imaging system for human conjunctiva with deep learning-based segmentation and
motion correction. The image segmentation process was performed by the Attention-UNet
structure to achieve high-performance segmentation results in conjunctiva images with
motion blur.

Dghim et al. [31] evaluated two different strategies of the automatic detection and
recognition of Nosema cells from microscopic images and achieved the identification of a
robust and successful methodology for automated identification and recognition of Nosema
cells versus the other existing objects in the same microscopic images. Hasnul et al. [32]
presented a review on emotion recognition research that adopted electrocardiograms as
a unimodal approach as well as part of a multimodal approach for emotion-recognition
systems. Ayyad et al. [33] presented a literature review of the use of histopathology images
and its challenges in detecting prostate cancer, studying different steps of the histopathology
image analysis methodology. Santos et al. [34] proposed a new approach based on image-
processing techniques, data augmentation, transfer learning, and deep neural networks to
assist in the medical diagnosis of fundus lesions.

We express our heartfelt thanks to all the authors for their contributions. We also thank
the reviewers for volunteering their time to provide insightful comments and criticism on
the submissions. Finally, we appreciate the support of the Editorial Board and Editorial
Office of MDPI Sensors for making this Special Issue possible.
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Abstract: Prostate cancer is one of the most identified cancers and second most prevalent among
cancer-related deaths of men worldwide. Early diagnosis and treatment are substantial to stop or
handle the increase and spread of cancer cells in the body. Histopathological image diagnosis is a
gold standard for detecting prostate cancer as it has different visual characteristics but interpreting
those type of images needs a high level of expertise and takes too much time. One of the ways to
accelerate such an analysis is by employing artificial intelligence (AI) through the use of computer-
aided diagnosis (CAD) systems. The recent developments in artificial intelligence along with its
sub-fields of conventional machine learning and deep learning provide new insights to clinicians
and researchers, and an abundance of research is presented specifically for histopathology images
tailored for prostate cancer. However, there is a lack of comprehensive surveys that focus on prostate
cancer using histopathology images. In this paper, we provide a very comprehensive review of
most, if not all, studies that handled the prostate cancer diagnosis using histopathological images.
The survey begins with an overview of histopathological image preparation and its challenges.
We also briefly review the computing techniques that are commonly applied in image processing,
segmentation, feature selection, and classification that can help in detecting prostate malignancies in
histopathological images.

Keywords: prostate cancer; image processing; histopathology images; digital image analysis; compu-
tational pathology; artificial intelligence

1. Introduction

Prostate cancer is one of the most common cancers all over the world and considered
the second cause of cancer deaths in several countries [1,2]. Nearly one in seven men will be
identified to have prostate cancer throughout his life [3,4]. In recent times, statistics show
the number of new patients only identified in the United States for 2021 with prostate cancer
is nearly 248,530 and the number of deaths is nearly 34,130 [5], so prostate cancer represents
a serious healthcare problem in the United States as in many countries. Most tumors do
not induce serious clinical symptoms, hence early detection, and localization of prostate
cancer at a curable stage is significant for making a medical decision in men with prostate
cancer [6].

Because of the lack of progress in the medical field, prostate cancer is increasing as
one of the most endemic diseases in the world. The large developments in computing
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technologies and hardware abilities offer the capability of using computing to tackle issues
in many areas. The medical domain is one such area where nowadays a judicious use of
technology can assist in improving people’s health and to help in tasks including diagnosis.
Medical imaging techniques such as computed tomography (CT), X-rays, magnetic reso-
nance imaging (MRI) and ultrasound imaging (sonography) are great models of computing
applications reliant on images, some examples of medical images are displayed in Figure 1.
In addition to all of these types of images, histopathology images (HI) are another type of
medical image that considered a golden standard to detect cancer and we will focus on it in
this survey. HI can be obtained by tissue microscopy from biopsies that help pathologists
analyze the characteristics of tissues in a cell basis and study cancer growth [7]. In recent
years, many studies have been conducted to capture the entire slide with a scanner and
save it as a digital image [8]. The word histopathology derives from the Greek histos (web
[in this case, of tissue]), pathos (suffering or disease), and logos (study) [9].

Figure 1. Different Types of Medical Images (I) MRI image of prostate, (II) CT image of prostate, (III) X-Ray image of
prostate pelvic area, (IV) Histopathological image of prostate tissue, and (V) Ultrasound for prostate biopsy.

In recent years, computer-aided diagnosis (CAD) has become the main player in radi-
ological detection, diagnosis, and management of diseases [8,10]. Nowadays, computer-
aided diagnosis has become a factor of common clinical diagnosis procedures for cancer
detection through the use of histopathological images at medical centers and consequently
it has become one of the most major topics in histopathological imaging and diagnosis
process [11]. There is a substantial requirement for CAD systems to reduce human errors.
Human errors happen because of many reasons including lack of expertise or errors caused
from image overlapping, blurring, noise, and weak edge detection. Furthermore, observa-
tion of the cells specifically composed of visualizing tiny structures, functions, composition,
cellular distribution, and cellular morphology across the tissue, which assists pathologists
to make a decision of whether the cells are normal and cancerous [11]. This manual process
is very time-consuming, difficult, requires a great deal of experience, and leads to variability
in diagnosis. Therefore, CAD is a good choice for pathologists for the development in
the improvement of histopathological image precision, segmentation of tumor parts, and
classification of disease [11]. The literature shows a plethora of CAD systems applied to
histopathological images.

In general, artificial intelligence (AI) has shown a significant growth in medical health
applications and in histopathology imagery provides a breeding ground for the expansion
of CAD systems [12]. Al and CAD systems will continue to grow among researchers and
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clinicians to constitute a prognostic set of tools to enable them to detect patients that are
susceptible to a specific disease and provide accurate, cheap, and fast technologies [12,13].
Al is an umbrella term encompassing both traditional machine learning (ML), and deep
learning (DL). The research we consider in our study is largely categorized as ML-based
techniques and DL-based techniques. Conventional machine learning techniques applied
in HI analysis typically involve several preprocessing steps, including feature selection,
image segmentation and classification. ML techniques have been reviewed extensively
in the literature, for instance in [2,14-22]. In the last decade, researchers have turned
their focus towards the development of new deep learning techniques as they outperform
conventional machine learning techniques in diverse fields and not only HI image analysis.
To date, many of these ML techniques have been supplanted by DL, and an abundance of
work has evaluated the use of deep learning techniques on HI of prostate cancer [23-33].
Moreover, studies that employ an ensemble of DL techniques and ML techniques gave
better results [34]. Table 1 summarizes reviewed papers on prostate cancer detection and
diagnosis. One of the main constraints in conventional ML techniques is their training with
a limited number of features, which has been overcome in DL techniques where hundreds
to thousands of features can be selected from digital images for classification; however,
this process requires significant amount of training time [35]. Some of these problems are
solved in ensemble techniques as the feature extraction stage is done using pretrained deep

networks and samples classified using conventional ML classifiers [35].

Table 1. A brief comparison between previous studies that proposed techniques for prostate histopathology images.

Reference Study Aim Year Strength Weakness Num.ber of
Patients
Automated . . The algorithm able to
classification using They mt.egrated various feature discover only the critical
2] 2016 descriptors, different color . . 50
AdaBoost-based o regions on the digital
. channels, and classifiers. R
Ensemble Learning slides
A novel technique of The technique can detect individual
labeling in. div? dual malignant gland units without It applied on a small
[14] lands asgmali nant or 2013 relying on the neighboring number of radical 8
%eni was r%) osed histology and/or the spatial extent ~ prostatectomy patients
sn prop ’ of the cancer.
They incorporate low-, high-level They focused on a
Methodology for knowledge, and structural smaller cohort of cancer
[15] automated gland and 2008 . . . . 44
nuclei segmentation constraints imposed via domain images and the dataset
knowledge. is private
The method failed in the
images with the
[16] gg&z;?gnﬁﬁ 2017 This method texture- and gland cribriform pattern. 10
se mentat%on structure-based methods They validated data
& using 2-fold cross
validation
An added advantage of performing
multistage segmentation using
. sample entropy values is that one
Se, ml\é[r?tlztilt?;ilggsin could easily separate epithelial It requires identifyin;
[17] 5 & 2020 nuclei from the stroma nuclei in 4 ying 25
Sample Entropy sample entropy features

Texture Analysis

standard H&E stained images

without using any additional

immunohistochemical (IHC)
markers.
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Table 1. Cont.

Reference Study Aim Year Strength Weakness Num.ber of
Patients
A new approach to . tt utlhges the dlfferenfclal Classification
identify prostate information embedded in the erformance is tested
[18] ¥ prost 2014 intensity characteristics of H&E perto 20
cancer areas in . . . using only KNN
images to quickly classify areas of .
complex . algorithm
the prostate tissue
They focused only on
Ensemble based They addressed the possibility of ~ texture feature selection
[19] system for feature 2011 missing tumor regions through the and not used a voting 14
selection and use of tile-based probabilities and ~ schema for the ensemble
classification heat maps. classifier to enhance the
probability scores
A novel fully Thefif;s E&Zﬁ Sty ts(gear?ltfrf’;et?szltls e Their system trained
[20] automated CAD 2006 o y iy 6
svstem analyse histopathology across using only 3 images
Y multiple scales
It was evaluated based
. . . . on its impact on the
[21] A neaw T(:;lziflass 2018 It obtained ir;};ﬁ;):ed grading performance of the 213
PP ensemble framework
only
A bag-of-words The drawbacks of scale-invariant MOTQ features n(?eded to
. . . be integrated with their
approach to classify feature transform descriptor is feature extraction
[22] images using 2016 overcome by the SURF descriptors rocess to enhance 75
SpeededUp Robust causing an enhanced output P accuracy of the
Features (SURF) accuracy ey ol
classification
An automatic method
for segmentation and
classification The maximal accuracy,
23] (Integration of Salp 2019 Less time complexit sensitivity, and 20
Swarm Optimization P y specificity does not
Algorithm and Rider exceed 90%
Optimization
Algorithm)
A new region-based Theztiﬁrjl;fzve
convolutional neural The model achieved a detection infornlia tion with which
[24] network framework 2018 accuracy 99.07% with an average to perform a more 40
for multi-task area under the curve of 0.998 [op .
rediction rigorous patient-level
P stratification.
An approach to nuclei It enforces higher-order consistency
[25] segmentation using a 2019 and captures better results when The model trained on n
conditional generative compared to conventional CNN small annotated patches
adversarial network models.
. The model is trained on
A simple, fast, and parameter-free
Deep neural network . dure is d a small number of
algorithm for postprocessing procedure is done to images and has been
[26] & 2019 get the final segmented nuclei as 30

segmentation of
individual nuclei

one 1000 x 1000 image can be
segmented in less than 5 s.

tested on the images that
may have different
appearances
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Table 1. Cont.

Reference Study Aim Year Strength Weakness Num.ber of
Patients
Two novel approaches
(combination of 4 They apply for the first time on The hand-dnven
types of feature learning approach
- prostate segmented glands,
descriptors, advanced . ? employs SVM, where
[27] . . 2019 deep-learning algorithms . . 35
machine-learning o selecting the suitable
i modifying the popular VGG19 .
classifiers) to neural network kernel function could be
automatically identify ’ tricky
prostate cancer
Automated Gleason The study showed promising The model trained on
[28] grading via deep 2018 results especially for cases with small mini patches at 886
learning heterogeneous Gleason patterns each iteration
The system was built
A deep learnin upon three pretrained
b e 5 The system outperformed 10 out of ~ preprocessing modules,
[29] system using the 2019 - . - 1243
U-Net 15 pathologists each of which still
required pixel-wise
annotations.
Predlctl.ng Gleason It is quite effective, even without
Score Using OverFeat . - .
[30] Trained Deen CNN as 2016 from-scratch training on WSI tiles. Small size of patches 213
P Processing time is low
feature extractor
The system is not constrained to Some detection errors
CNN to idiomatically H&E stained images and could
[31] . . 2016 . . happen at the 254
identify the features easily be applied to - .
immunohistochemistry boundaries of the tissue
DL model to detect
CIiTr:’-ig\Ibeiizdr oen The model demonstrated its strong ~ The availability of fully
[32] architecture fn d 2020 ability in prediction as accuracy digitalized cohorts 400
high-quality annotated attained 98% represents a bottleneck
training dataset
A novel benchmark
was designed for
Icr:)erérilsual:;g iﬂcei Average processing time is less The network validated
[33] parig 2021 &P & v on 3-fold 470
performances of compared to other architectures 1
different CNN models cross-validation method
with the proposed
PROMETEO
Novel features that
. include .Spatl.a l. The system tackled the
inter-nuclei statistics . S
and intra-nuclei inter-observer variability in lack examples of the
[34] 2018 prostate grading and can lead to a 56

properties for
discriminating
high-grade prostate
cancer patterns

consensus-based training that
improves both classification

highest grades of disease

Many surveys have been published in recent years reviewing histopathological image
analysis covering its history, and detailed information of general artificial intelligence
techniques [7,8,12,31,36—42]; the main limitation is the lack of comprehensive surveys of
histopathological image analysis that focus on prostate cancer [1,43,44]. Accordingly, in this
survey we present more prostate histopathology from an image analysis point of view. The
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main goal of this survey is providing readers a comprehensive overview of the state-of-the-
art in terms of image analysis and artificial intelligence techniques i.e., machine learning,
and deep learning being tailored specifically for histopathology images in prostate cancer,
and its challenges specific to histopathology images analysis, and the future scope. This
survey mentions 113 related works, comprising 63 papers that concentrate on prostate
cancer. Figure 2 depicts a statistical distribution of studies used in this survey.

(I) Number of Publication (IT) Type of Publisher (IIT) Publisher

m2021 m2020 w2019 m Journal m Conference m |[EEE m Elsevier mSpringer

2018 m<2018

m Workshop m other Nature m Other

Figure 2. Statistical distribution of studies used in this survey. (I) Number of studies per year; (II) Type of Publisher, where
other denotes a preprint or URL; (III) Publisher, where other includes MDPI, Frontiers, AVES, etc.

The selection methodology of our survey was conducted using the well-known aca-
demic search engines including IEEE Xplore, Google Scholar, Science Direct, Springer,
ACM Digital Library, and ResearchGate. We have employed the following criteria: (I) The
paper must be highly related to the research area; (II) papers published in highly rank
journals and conferences of relevant domain, such as Scientific Reports, Expert Systems with
Applications, IEEE Transactions on Medical Imaging, Neurocomputing, Journal of Pathology
Informatics, etc. and conferences, such as the International Symposium on Biomedical
Imaging, IEEE International Symposium on Biomedical Imaging, International Conference
on Machine Vision, etc. (IIT) Top cited papers are preferred. (IV) Papers that were published
within the last 5 years, although we also include papers published before that time if the
paper is of high quality. Meanwhile, we ignored many papers that have inadequate criteria
including low-quality papers, non-English written papers, and white papers.

This survey is organized as follows: Section 2 introduces a background of histopathol-
ogy images, their preparation, and challenges. Section 3 focuses on the whole histopathol-
ogy image analysis methodology and highlights the various methods used for this method-
ology. Finally, we provide some concluding remarks and present some future possibilities
in Section 4.

2. Histopathology Images Background

Histopathology is a significant branch of biology that covers the investigation of the
cell anatomy and tissues of organisms at a microscopic level by a histopathologist [45].
Histopathological images are very influential for the final decision procedure of effective
therapeutics; these images are essential to investigate the status of a certain biological
structure and to diagnose diseases like cancer [39,45]. Digital histopathology represents a
significant evolution in modern medicine [46]. It often uses machine vision techniques as a
basis. Nevertheless, because of the special properties of digital histopathology images and
their processing tasks, specific processing approaches are usually needed. In this survey,

10
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we describe the application of histopathology image analysis employing machine learning
and deep learning techniques.

Uropathologists use different screening methods to determine the various tumor
histology in the prostate in a good quality. Typical tissue of prostate incorporates glands
and stroma. The gland is the basic anatomical structural unit of the prostate. The stroma
is the fibromuscular tissue around glands [14]. Each gland unit consists of a lumen and
rows of epithelial layers surrounding the lumen. The stroma keeps the gland units together.
When cancer is in high-grade, stroma and lumen are both replaced by epithelial cells [24].
Once the slides are stained using a hematoxylin and eosin (H&E) solution, the nuclei
become dark blue and the epithelial layer and stroma become several shades of purple
to pink [14].

To date, one of the most effective ways to measure aggressiveness of prostate cancer is
using the Gleason grading system [24,43,47]. The Gleason grading system is completely
founded on architectural arrangements of prostatic carcinoma, and a substantial parameter
to a therapeutic final decision. Gleason grading has five grade groups from grade 1 (G1) to
grade 5 (G5), with a grade of G1 refers to tissue with a maximum grade of resemblance to
normal tissue and outstanding prognosis, and a grade of G5 refers to poorly differentiated
tissue and the worst prediction [24,29]. Artificial intelligence has the ability to improve the
quality of Gleason grading. Abundant automated Gleason grading systems were proposed
and have led to increased consistency [28-30,34,48-51].

Histopathology images can be acquired by using specialized cameras with a micro-
scope wherein an automated computerized approach can be carried out [9]. To study
various architecture and constituent of tissues under a microscope, the biopsy specimen
is embedded in wax and dyed with one or more stains. Staining procedures are used by
pathologists for cellular components separation for structural in addition to component
visualization of tissue for diagnosis [38]. Stages of the preparation process of the tissue
slides are as presented in Figure 3. It consists of five operations, and each of them can affect
the quality of the final image [38,45]. (I) Fixation: Samples of biological tissues are fixed
with chemical fixation. There are many ways of fixation, but the commonly applied way in
the biomedical field is fixation with formaldehyde or glutaraldehyde solution to protect the
cells [51]. This is a critical step in tissue preparation and aims to prevent tissue autolysis
and putrefaction; (II) Processing: Tissue processing is a crucial step and involves two
main processes: dehydration and clearing. Dehydration is used to extract water from the
gross tissue and substitute it with a certain concentration of alcohol which solidifies it [52].
This process helps incise superfine sections of the specimen. Clearing consists of removing
the dehydrator with a material that will be the solvent in both the embedding paraffin
and the dehydrating agent; (III) Tissue Embedding: Thus is the process wherein tissues
are carefully positioned in a medium such as wax [51], so when solidified, it will provide
enough external support to allow very thin sectioning. This process is essential as the
proper tissue orientation is necessary for precise microscopic evaluation; (IV) Sectioning:
this process is required to generate superfine slices of tissue samples sufficient such that
the details of the microstructure characterization of the cells can be obviously noticed using
microscopy methods. After that, carry the superfine slices of sample onto a clean glass
slide [38]; (V) Staining: The final step in preparing tissue for light microscopy is to stain it
and mount it on the slide. Staining increases contrast to the tissue and, also highlights some
specific features which would otherwise be practically invisible in the microscope [38].
There are many types of stain but the most common type of staining for histology is H & E.
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Figure 3. Illustrative figure showing the different preparation steps of histology slides.

2.1. Diagnostic Challenges Using Histopathological Iimages

Automated prostate cancer diagnosis using histopathology images is deemed to offer
great promise for advanced cancer therapy, however, it is not a simple task, as several
open scientific challenges have to be overcome before the CAD system of histopathology
images can become part of the routine healthcare diagnostic pipeline. These challenges
occur because of the numerous technical and computational variabilities and artifacts
incurred due to differences in slide preparation and because of the complicated structure
of the tumor tissues architecture [41]. Image analysis techniques are substantially reliant
on the quality of the digital slide images. In the following paragraphs, we will discuss the
different challenges of histopathology image analysis and computational techniques to
deal with them.

2.1.1. Extremely Large Image Size

These days, one of the growing challenges is how to handle the extremely large size
of histopathology image datasets [53]. Whenever images, for example, cars, humans,
or animals are classified using artificial intelligence techniques, small images such as
512 x 512 pixels are usually applied as an input [54,55]. Large-sized images usually have
to be rescaled into a smaller size, which is adequate for differentiation, as increasing the
size of the input image will result in increased computational complexity, thus making the
analysis process more challenging and time-consuming. On the contrary, histopathology
images contain as many as hundreds of thousands to millions of pixels, which is generally
laborious to analyze as is. Nevertheless, rescaling the whole image to a lower dimension
such as 512 x 512 may cause loss of information at the cellular level, which leads to a
marked drop of the identification accuracy. Thus, the whole histopathology image is often
divided into partial regions of about 1024 x 1024 pixels called patches, where each patch
is examined apart, such as detecting region-of-interests [56]. Thus, many studies such
as [16,24-27,48,57,58] presented in this survey, especially those dealing with deep learning
applied patching technique to overcome the extremely large histopathological images.

2.1.2. Insufficient Labeled Images

Perhaps the biggest challenge in analyzing histopathological images is that only a
limited number of training set data is available. As healthcare image datasets often have a
considerably lower size than a natural view of images, this causes direct application of many
conventional artificial intelligence techniques not suitable for medical image datasets [53].
One of the important keys of success of DL in common image recognition tasks is the
abundance of training data. Label information at a pixel level or a patch level is essential in
histopathology image tasks such as diagnosis. Label information could be collected easily
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in common image processing from the internet and it is also possible to use crowdsourced
labeling since the human brain is able to identify objects and perform labelling work while
ignoring artifacts [59]. Nevertheless, only highly qualified pathologists can manually
label histopathological images properly, and this process at the regional level in a large
histopathology image needs a long time and is tedious. Therefore, the paramount limitation
in designing high-quality histopathology image analysis techniques lies in the paucity of
freely public annotated datasets [24,60]. Many researchers have attempted to alleviate
such a problem of insufficient amount labeled images. Most of these solutions fall under
one of the following categories: (I) increasing the number of labeled data, such in [25,30],
(IT) predicting the labels of test images or self-taught learning, such as applying transfer
learning [24,61], or (III) utilizing of weak label or unlabeled data [62].

2.1.3. Artifacts and Color Variation

Another major challenge is the presence of artifacts and color variation [8,11,36,59,63,64].
Histopathology images are captured through several stages as previously mentioned. At
each stage, unwanted anomalies that are unassociated with the underlying biological
factors, could be represented by differences in specimen preparation, staining, and even
scanning with equipment from different vendors. For instance, when specimen sections are
placed onto the slides, they may be folded and rumpled; dust may besmear the slides during
scanning process; loss of microscope focus leads to blurred regions, noise, and shadows;
and occasionally tissue regions are marked by color markers or chromatic aberrations [8,41].
Learning without considering these artifacts, as shown in Figure 4, may deteriorate the
performance of decision support algorithms. When digital images are produced, the slides
should be uniformly illuminated by the light source. Tissue autofluorescence differences in
microscopic setup, staining protocol, and organ size could generate irregular lighting across
the tissue samples. Additionally, the scanner’s sensitivity varies for different wavelengths
of the light spectrum [41]. Large variations in light are considered an important factor for
the precise prostate cancer diagnosis. These variations need to be handled earlier before
employing image processing techniques [63,64].

chromatic specimen
aberrations region segments folded

Figure 4. Examples of possible artifacts in histopathological images, where (I) contains chromatic aberrations and blurred

regions; (II) contains noise, and (III) contains specimen segments folded and blurred regions.

To tackle these problems, many different techniques have been designed, includ-
ing conversion to grayscale [65,66], color normalization [67,68], and color augmenta-
tion [69]. One of the simplest methods is the conversion of colored histopathology images
to grayscale, however, it disregards the significant information concerning the color repre-
sentation used by pathologists since the beginning. On the contrary, the color normalization
method attempts to adapt the color values of images on a pixel-by-pixel basis so that the
color distribution of the source image matches a reference image. Color separation and
stain normalization were applied on the histopathology images for the first time in [70].
Afterwards several distinct color and stain normalization techniques have been used as a
preprocessing step in several techniques for histopathological image analysis.
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2.1.4. Multi-Level Magnification Led to Multi-Level Information

Magnification is the phenomenon of enlarging the proportion of biological structures
that are apparent under the microscope based on different objective lenses [39]. Tradi-
tional microscopes have a standard set of objectives with 2X, 8X, 40X, 200X, and 400X
power [39]. Tissues generally consist of cells and fibers, where each tissue shows specific
cellular features. Information concerning cell shapes is taken accurately under a high
power objective and images are more deterministic and informative to predict disease
outcome, but structural information such as a glandular structure that are made of many
cells are better taken under a lower magnification, so that images cover a wider field of
view. Because malignant tissues exhibit both cellular and structural abnormalities, each
of the images captured at different magnifications could provide significant information.
Even in Al, researchers employing image datasets with different levels of magnifications,
such as in [71,72]. As already pointed out, it is challenging to process the images at its
original resolution directly, images are usually rescaled to adapt different magnifications
and configured to be input for processing. Regarding diagnosis, the most informative mag-
nification remains a subject of controversy, whereas efficiency enhancement is sometimes
attained by entering both low and high magnification images simultaneously as input,
probably depending on the applied Al technique or type of disease. Moreover, the status of
histopathological images does not need to be determined by the cells, images with different
levels of magnification are adopted to learn distinctive features [71].

As depicted in Figure 5, histopathological images with multiple levels of magnification
can depict various types of information. When the histopathological images are with low
magnification, cells will be difficult to detect, while the high magnification image shows
more fine-grained details.

8X 40X  High magnification

Figure 5. Illustrative figure showing the different levels of magnification (starting from 2x up to more than 40x) that might

be applied on histopathological images.

3. Histopathology Image Analysis Methodology

Digitized histopathology is a current direction that makes huge numbers of images
available for automated analysis. It enables visualization and interpretation of pathology
cells and tissue samples in a great resolution images and with the assistance of software
tools [36,37]. This opens a new era to design image analysis techniques that assist clinicians
and promote their image descriptions (e.g., grading, staging) with the purpose of image
features quantification. In that respect, the computer-aided diagnosis of histological image
analysis is a newly challenging domain for biomedical image analysis. CAD can be defined
as detecting cancer within the examined tissue using computer software [60,73,74], which
is the main mission of the pathologist [8]. The combination of conventional diagnosis
techniques with computational Al techniques provides a good possibility to decrease the
workload of pathologists while preserving performance. There is a need for a precise
CAD system that minimizes reading interpretation times, lowers necessary experience
in anatomic pathology, and provides a consistent risk evaluation of cancer existence in
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prostate histopathology images without additional burden to pathologists. Such a CAD
system would automatically find out suspected lesions in prostate histopathology images
to assist screen for prostate cancer in large patient populations. A typical CAD system for
detecting prostate cancer receives raw histopathological images, preprocesses them, and
produces a particular diagnostic result [10].

Over the last two decades, numerous research papers on CAD systems were published.
Automated systems for digital histopathological imaging can maintain reproducibility
and consistency using suitable image processing techniques [41]. In fact, there are many
research perspectives for CAD systems applied in the histopathological domain, including:
(I) cancer detection in the given tissue, (II) automatic grading to correctly quantify the
level of the malignancy, which can offer more insights into disease characterization, (III)
cell/nuclei/gland segmentation that discovers and separates these regions from images,
and (IV) multi-class classification for the different subtypes of a specific type of cancer.

CAD systems can be broadly subdivided into two groups. The first uses handcrafted
features and relies on conventional machine learning techniques, while the second uses
deep learning techniques. For this reason, we will discuss these two groups separately in
Sections 3.2 and 3.3, below. Figure 6 displays the process model for handcrafted features
based on machine learning techniques versus deep learning techniques of histopathological
image analysis. The process model of the two groups of analysis passes through a number
of stages that highlight specific structures in the image analysis methodology. There are two
common components that are shared by the process model, which are image acquisition
and image preprocessing.

[ Conventional Machine Learning

\
isiti Pre-processin Tumor Extracted Classification &
Image ACquSlthn - & Segmentation ~ Features (training/testing) Final
at sTextrs Prediction
«Morphological
+Topological
e and

System Evaluation

==
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e O O
Public or Private Enh O O O
L Dataset ) U . O

Input Layer
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Figure 6. An illustrative block diagram of a typical prostate CAD System starting from the image acquisition until obtaining
the final diagnosis.

3.1. Image Acquisition

In the first phase, histopathology images can be acquired from a public dataset or a
private dataset. The choice of a dataset is a dominant factor to establish for any experimental
setup. One of the main challenges when dealing with prostate histopathology images is
the lack of representative public image datasets annotated by multiple pathologists with
high quality. Most research dealing with prostate histopathology images work with private
datasets. As shown in Table 2, we provide list of the publicly available datasets [75-79].
It is noted that PANDA challenge [78] provides the largest public histopathology image
dataset in prostate cancer.
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Table 2. Details of publicly available datasets containing prostate histopathology images.

Dataset URL Magnification Year Dataset Size Num'ber of
Patients
Annotated dataset [75] 40x 2017 4 images for training and 2 for validation 6
comprises a total of 28 3 Tesla T1-weighted,
Prostate Fused-MRI- 761 20x Last modified T2-weighted, Diffusion weighted and Dynamic 28
Pathology 2021 Contrast Enhanced prostate MRI along with
accompanying digitized histopathology images
. Last modified It includes includes 368 digitized prostate
TCGA-PRAD project [77] 40x 2020 pathology slides 14
Prostate cANcer . -
e Mol g e oy
(PANDA) Challenge P / P
PESO dataset 1791 10x 2019 It consists of 62 case for the training set and 40 case 102

for the testing set

Guassian
Smoothing
Filter

3.2. Image Preprocessing

Preprocessing is a basic stage of most automated CAD systems [35]. In the preprocess-
ing stage, raw data are processed to normalize the image or to transform the image to a
domain where cancer can be easily diagnosed [10]. Preprocessing can enhance histopathol-
ogy images and ameliorate the interpretability for human viewers since the acquired
images contain different types of noises or artifacts and may not have adequate contrast or
illumination due to the scanning [36,46]. It is necessary that the acquired images be of good
quality to generate the intended result [40]. Appropriate image pre-processing methods
could compensate for these differences between images. Various existing preprocessing
methods are commonly used to boost the results of the analysis process can be grouped as

illustrated in the following subsections and summarized in Figure 7.

Image Preprocessing

Mean Filter
Median Filter
Adaptive Mean
Filter
Adaptive
Median Filter

Hxstqgra}n g Reflection
Equalization

Translation
Rotation

Scaling

Cropping

Figure 7. Taxonomy of different image preprocessing methods.

16



Sensors 2021, 21, 2586

3.2.1. Filtering

There are various methods for enhancing images. The basic and simple methods
can be classified as filtering. Filtering is used to eradicate unwanted variation (noise)
from images. There are different noise eliminating filters used for removing undesirable
information from images, i.e., mean filters, median filters, adaptive mean filters, adaptive
median filters, and Gaussian smoothing filters. The mean filter is the simplest linear
filter [80]. It eliminates the noise, blur images, and reduces sharp edges [81]. Similarly, the
median filter has also been employed to eliminate noise from histopathology images [40].
The median filter is a nonlinear digital filtering method. It is commonly used in digital
image processing because under certain conditions, it maintains edges whilst removing
noise [82]. Adaptive filtering is used to remove noise from images without degradation.
It involves a tradeoff between smoothing efficiency, preservation of discontinuities, and
the generation of artifacts. Gaussian filtering is a smoothing filter method. It has been
applied for smoothing the images, to overcome the variations in staining, as well to reduce
noise [40]. The Gaussian filter is a very good filter for removing noise expressed in a normal
distribution [80].

3.2.2. Color Normalization Techniques

In histopathology CAD systems, color normalization plays a significant role because
the perception of information in images could negatively affected by color and concen-
tration differences [83,84]. Two issues have made the color normalization process a chal-
lenging task [83]: (I) the presence of diagnostically significant but visually subtle details
in color images. (II) the heterogeneous nature of tissue composition. Among the image
preprocessing techniques, color normalization was the most common. In the last two
decades, many color normalization techniques to histopathology image analysis have
been proposed. In [85], authors developed a reliable color-based segmentation approach
for histological structures that applied image gradients estimated in the LUV color space
instead of RGB color space to handle matters relating to stain variability. Another approach
presented in [84], founded on using of nine common color filters selected for histology
H & E stained slides. The authors conducted two experiments, and results showed that
pathologists became more sensitive to the color of the image than before. While in [86],
a new color correction technique is proposed and developed in the linear RGB color space.
This technique can easily be integrated to the slide scanning process. The technique is also
handy in the sense that the data needed for color correction are extracted from the color
calibration slide wherein nine reference color patches embedded on the glass slide, and the
spectral properties of these patches are known beforehand.

3.2.3. Histogram Equalization

The histogram of an image is a mathematical graph representing frequencies of
occurrence of distinct color intensities in that image. It summarizes the image with respect
to quality, contrast, and brightness [40]. Histogram equalization of the image is a popular
and simple ways for enhancing image contrast to normalize the distribution of probability
of occurrence of intensities in the image and used for removing color variations due
to illumination conditions and staining process [40]. There are many previous works
published in histogram equalization. In [87], the authors tried to overcome the problem of
changing the brightness of an image when applying traditional histogram equalization.
They introduced a novel extension of bi-histogram equalization technique. It effectively
separates the objects from the background. Another novel method for histopathology
images was introduced in [88], is a fully automated stain normalization technique to
minimize batch effects and thus help improving analysis of digitalized pathology images.
Among the different histogram techniques, one paper applied multi-objective histogram
equalization by using particle swarm optimization (PSO) [89]. The proposed technique
works by segmenting the histogram of the image into two sub-images. Then, a number
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of optimized constraints are employed. PSO used to explore the optimal constraints.
This technique preserves the brightness of the image while enhancing the contrast.

3.2.4. Data Augmentation

In the artificial intelligence domain, the model efficiency always enhances with the
amount of the training data that has been used. Data augmentation (DA) is a strategy used
to artificially enlarge the size of the training data without introducing labeling costs [90-94].
DA has already been used in many domains, including image processing and audio classifi-
cation. The most common means of data augmentation in image analysis include reflection,
translation, rotation, scaling, and cropping [90]. Applying conventional data augmentation
methods is one popular way to increase both the number and diversity of images in small
datasets. Nevertheless, it is not always used in all problems. A significant amount of DA
techniques on specific problem-dependent are proposed can also be applied to expand
small datasets. One of the powerful and common methods used in data augmentation is
generative adversarial networks (GANs) [91]. GANs are based on competition between two
neural networks. GANs consist of a discriminator and a generator, two neural networks
trained as adversaries, therefore its name is adversarial. Over the past years, there have
been many attempts in exploring the use of GANs in generating synthetic data for data
augmentation given limited or imbalanced datasets. One variant of GANs is proposed
in [92]. It is used to enhance generalizability in CT segmentation tasks. Another variant
of GANs used in histopathology images proposed in [93]. But applying these techniques
always require a relatively high effort. Moreover, there exist lots of excellent studies for
data augmentation. In [94], the authors proposed a novel technique capable of augmenting
histopathology images and distributing the variance between patients through image
blending using the Gaussian-Laplacian pyramid. This technique produces new training
images composed of half images of different patients. This method tries to prevent that a
model learns color representations of patients, which related but to the staining process.
Some studies aim to enhance the overfitting problem caused by the lack of samples by
employing different data augmentation techniques. For example, in [26] authors used five
DA techniques (rotation, flipping, shifting, rescaling, and random elastic transformation).
Experimental results showed the effectiveness of applying different DA methods in the
nuclei segmentation task.

3.3. Traditional Machine Learning Techniques

Machine learning (ML) is an automated learning process of machines to categorize
and recognize different data such as text, images, and videos. ML employs algorithmic
techniques to analyze, learn, and make decisions from the input data [95]. ML has been
widely employed in many applications, including image processing, specifically in our
study in histopathological image analysis. Traditional machine learning techniques typ-
ically involve several steps to deal with histopathology images including segmentation,
feature extraction, and classification, as represented in Figure 6. Each step is described in
the following subsections.

3.3.1. Image Segmentation

Segmentation process is one of the main research efforts in histopathology image anal-
ysis. It is the process of separating objects in an image that are of interest to the developed
application by using various methods [40]. It can make anatomical structures like glands,
nuclei and so on more obvious for a subsequent automatic or manual image classifica-
tion [7]. The various morphological features of these structures like size, shape, extent,
and color intensity, are also important factors for existence of prostate cancer. To analyse
all these indicators, images need to be segmented first [38]. Prostate segmentation is a
challenging process. It is difficult to determine the boundary between the prostate and the
surrounding tissues. Even for experienced pathologists, the interobserver variability of
manual prostate segmentation is large [10]. A precise prostate cancer segmentation may
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help effectively in guiding radiation therapy and biopsy therapy as well as its application
in diagnosis [10].

Many researchers have applied various segmentation techniques in their research,
which can be broadly classified into classical techniques and machine learning techniques,
as represented in Figure 8. However, there is no general segmentation technique proven to
be effective for all kind of images. In [23], the segmentation task in prostate cancer is carried
out using the color space transformation and thresholding techniques. This process aids to
form the gland region, which is subjected to feature extraction by applying multiple-kernel
scale-invariant feature transform method. In [15], authors presented a new automatic
nuclei and gland segmentation technique for prostate histopathology which incorporates
an integration of high-level, low-level, and domain-specific information. The segmentation
technique is utilized for three different applications: (I) classifying intermediate grades
of prostate cancer, (I) identifying cancer from normal regions, and (III) discriminating
Bloom-Richardson high-grade cancer from low-grade cancer. In [16], authors proposed
an automated technique for gland segmentation in prostate cancer using histopathology
images using machine learning and image processing methods. This technique outperforms
structure and texture-based techniques. However, this technique fails in the images with
the cribriform pattern, resulting in inaccurate segmentation. Another study [96] tried to
overcome the necessary condition of the conventional thresholding segmentation method
to give accurate results, where the nuclei must have a wide range of intensities to be easy
differentiated from the background. Their adaptive thresholding technique passes through
four different stages: (I) detecting the nuclei, (IT) optimizing the primary contours through
a rough texture segmentation, (IIl) optimizing the convergence, and finally (IV) splitting
the overlapping segmentation masks.
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Figure 8. Image segmentation taxonomy compromising different techniques that are used to segment histopathological images.

Other methods such as [17] used two-stage segmentation. Firstly, the mean-shift (MS)
algorithm is used to perform the coarse segmentation to split the tissue constituents in four
parts. After that, wavelet filters are used to perform fine segmentation of glandular tissue.
Although, there exists other studies that segment each individual cell. for example, an early
study [97], where authors focused on dynamic segmentation of live cells for the purpose of
quantification of different modalities. Their technique can identify the cell boundary no
matter how many times it is used in the system.
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There exist few studies that focus on utilizing cell nucleus and blue mucin. In [98],
authors depend in their segmentation on the structure of glands to separate them from the
background by analyzing the color space of histopathology image. Another segmentation
technique, proposed in [99], combined the similarity of morphological characteristics re-
lated to the appearance of lumen components. It operated in three stages: (I) classification
of pixels, (II) extraction of inner gland boundary, and finally (III) complete gland construc-
tion. The performance of the abovementioned techniques is constrained by the size and
the characteristics of labelled datasets and the variation needed in the images to model the
distribution of relevant tissue features.

3.3.2. Feature Selection

Feature selection refers to eliciting the best feature subset that can accurately label
images from a dataset as belonging to one or more classes [100,101]. This has now been
a significant domain to researchers with new advancements in histopathological image
analysis. Just a few applications produce their data already in a form that classifiers can
construe and do not need a feature selection process. However, histopathology images
require representing characteristics of the tumor cells or tissues in a quantitative way [7,41].
The extracted features should be identifiable and distinct to an extent to be able to automat-
ically classify normal and malignant tissues and to grade them correspondingly [41]. In HI,
selecting which distinctive features will be feeding the classifier is more essential than pick-
ing the classifier itself, and when feature selection is applied, classification accuracy will be
improved as many features are selected from all features [10]. Selecting distinctive features
from targets of interest is a challenging task in an effective CAD system. Common features
for HI comprise size, shape, histogram, texture, intensity, and multiple features. Feature
descriptors to be selected in HI can be categorized into four groups: texture-based features,
topological-based features, morphological-based features, color-based features, and other
features [38,39,45,46]. Table 3 provides a brief view for the feature extraction publications
suggested in HI of prostate cancer. The following paragraphs detail the different features
selection procedures that have been employed for classifying histological images.

Table 3. Summary of publications focused on feature selection of prostate histopathology images.

Features Type Reference Year Accuracy Result
[56] 2011 The AUC value is 0.91 for the first database and 0.96 for the second database.
The proposed method outperforms the classic SVM-RFE in accuracy and reducing
Texture [102] 2015 redundancy.
[103] 2018 The proposed method attained a classification accuracy around 99%.
[13] 2011 The model attainted an average accuracy 90%.
Topological [50] 2011 The test classification results have an average of 96.76%
[49] 2017 The developed way achieved 93.0% training accuracy and 97.6% testing accuracy, for the
tested cases.
[15] 2007 Average accuracy for prostate cancer classification was 92.48%
Morphological [104] 2011 The system achieved 0.55 under the precision recall curve measure
[58] 2019 The prediction model resulted an average accuracy of 90.2%
[98] 2012 The proposed method attained an average of 86% accuracy in classifying a tissue pattern
Color into different classes.
[105] 2006 They achieved accuracy of 91.3%
e algorithm achieved an average o o an o of classification accuracy.
[106] 2012 The algorith hieved ge of 86% and 93% of classificati y.
Color & Texture [107] 2012 Classification accuracies are 97.6%, 96.6% and 87.3% when differentiating Gleason 4
versus Gleason 3, Gleason 5 versus Gleason 3, and Gleason 5 versus Gleason 4.
SVM classifier applied to test the accuracy of the extracted features and achieved about
Topological & [48] 2007 93% when differentiating among Gleason grade 3 and stroma, 92.4% among epithelium
Morphofogicgal & Texture and stroma, and 76.9% among Gleason 4 and 3.
[27] 2019 The proposed model using hand-crafted features achieved an average accuracy of 94.6%.
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Texture-based features are related to the spatial distribution of repetitive intensities
inside the tissue [9]. Examination texture features of each tissue components gives a
valuable discriminative information in the diagnosis and grading systems of prostate
cancer. In [56], authors applied a quantitative texture feature selection, for example,
gland density, gland size, and gland circularity, and evaluated the accuracy of these
features in discriminating normal from cancer glands using the ROC curve. The model
achieved an average of 0.94 of AUC. In [102], a new method was proposed to overcome
redundancy among features and that considered one of the most important reasons for
weakness of SVM-RFE. The main purpose of their proposed feature selection method is
to merge the SVMRFE with filter measure to extract the least features and enhance the
classification accuracy of the model. Another work [103] focused on a type of texture-based
features, called local binary pattern (LBP), and introduced a new modified version called
multispectral multiscale LBP (MMLBP). This algorithm varies from the standard LBP in
which it takes into consideration the joint information within spectral and spatial directions
of the image. MMLBP attained a classification accuracy of around 99%.

Topological-based features enable characterization of cellular structure in histopathol-
ogy images. These features apply the theories of algebraic topology and this is especially
beneficial to the segmentation task [13,39]. In [13], 50 topological-based features were
selected for designing a new data fusion algorithm in prostate histopathology images,
incorporating 25 nearest-neighbor and 25 graph-based features. A pioneering effort on the
use of topological features for automated scoring of prostate cancer using histopathological
images was done in [50], where the authors introduced a new class of topological features
that make use of network cycle structure. Another work [49] selected a set of visually
significative features for the purpose of differentiation between different grades in prostate
cancer using topological-based features. It based on computing the shortest path from the
nuclei to their closest luminal spaces.

Morphological-based features give information about shape, color, structure, and
size of the cells in HI [39]. Morphological features are useful to provide details for form
and structure of abnormal cells of prostate cancer [9]. Many studies showed the viability
of this type of features to help characterization of the histopathological prostate images.
In [15], they presented a new automatic gland and nuclei segmentation system for prostate
histopathology images and utilize an accurate extraction of various morphological features.
In [104], the authors presented a content-based image retrieval system that takes advantage
of a novel set of morphological attributes called explicit shape descriptors that properly
depict the similarity between the morphology of objects of interest. A recent study [58],
proposed a new machine learning classification method to classify Gleason grade groups
of histopathology images for prostate cancer using new proposed morphological features.

Color-based features provide information of the grey level or color of pixels provided
in the region of interest. Feature selection based on this type of features utilizes different
color spaces. In [98], authors introduced a novel technique for grading prostate malignancy
using digitized histopathological specimens of the prostate tissue. The color space that
represents the tissue image is the Lab color space. The Lab color space is preferable than
RGB since it is designed to approximate the color perception in human visual system. Also,
in [14] classification is based on the lab color space. In [105], authors presented a wavelet-
based color feature selection technique utilizing CIELAB color space. They compared
CIELAB in their experiments with many color spaces e.g., RGB, KLT and HSV. CIELAB
attained the highest accuracy.

However, most of the research that focus on feature selection apply a combination
of different types of feature selection to improve the performance. The work presented
in [106] introduced a new content-based microscopic image. The authors applied a hybrid
color and texture feature selection method. They used RGB and HSV color spaces for color-
based feature selection and for each image, an overall of 80 texture features were selected.
The performance of the retrieval system was evaluated for various histopathology image
types and the best retrieval performance was obtained for prostate images. In [107], the
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authors proposed an integrated feature set that combines color and morphological features
to design new CAD system to automatic grade prostatic carcinoma biopsy images. Another
CAD system was introduced in [50] to automatic grade of prostate cancer. The research
used a total of 102 topological-based, morphological-based, and texture-based selected
features from each tissue patch so that quantifying the arrangement of glandular and
nuclei structures within histopathological images of prostate cancer tissues. Another
recent research in [27], provided an automatic system able to accurately detect specific
areas susceptible to be cancerous through presenting a novel method, a combination of
topological-based, morphological-based, and texture-based feature selection for addressing
the hand-crafted feature selection stage.

3.3.3. Classification

Classification is one of the important data analysis domains, which focuses on assign-
ing a sample to one of a set of classes, based on its features [108,109]. For histopathological
images, choosing the appropriate classifier is very significant to cope with huge, high vi-
sual complexity datasets. After segmentation and feature selection, the selected optimal
classifier is applied to classify images for detecting malignancy in HI. In this step, a cell
or tissue is assigned to one of the classes and then it can also be classified for malignancy
level e.g., grading of tumor or type of the tumor [38]. Machine learning classifiers operate
in two modes: learning mode and classification mode. In the learning mode, the selected
features from annotated histopathological images are used to train the classifier. After-
wards, the classifier is used in classification mode on cases without knowledge of true
annotation [10,41]. The different selected features from HI are used to classify the new
images as normal or malignant. Constructing automated classifier systems of histopatho-
logical images is a challenge task in machine learning as histopathological images do
not hold the same morphologic structure of macroscopic images such as human faces,
trucks, text, or animals [94]. Numerous classification methods have been developed for
histopathological images employing machine learning algorithms like k-nearest neighbors
(KNN), support vector machine (SVM), logistic regression method, random forests (RF),
decision trees, fuzzy systems, etc. The details regarding the developed classifiers dealt
with classifying histopathological prostate images have been summarized in Table 4.

Table 4. Summary of publications focused on Prostate histopathology image classification.

Classifier Reference Year AUC Accuracy Specificity Sensitivity
NN [66] 2003 - 0917 - f
[18] 2014 - 076 - -
[48] 2007 - 0.876 - -
[14] 2013 0.75 - 0.83 0.81
0.98 + 0.011 for 0.95 = 0.02 for 0.95 + 0.03 for 0.94 + 0.01 for
artefacts versus £ . artefacts versus artefacts versus
SVM glands arte alds ;ersus glands glands
o3l 2019 0.92 + 0.04 for glands 0.87 £ 0.07 for 0.80 + 0.06 for
beni 0.88 £ 0.07 for benign . . N
emgn versus versus athOlO iCal bemgn versus bel’\lgn versus
pathological P g pathological pathological
0.655 (one-shot
classification)
58] 2019 . 0.92 (Binary . B
classification)
Bag-of-Words [22] 2016 - 0.901 0.905 0.79
MLA [21] 2018 - 0.883 0.94 0.876
Boosting Cascade [20] 2006 - 0.88 - -
SVM and Random Forest [19] 2011 0.95 - 0.91 0.89
Fuzzy Set Theory + Genetic [110] 2013 0.824 - 0.95714 0.7097
Algorithm
Adaboost 2 2016 - 0.978 - f
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KNN is one of the simplest, versatile, and efficient methods used for image classifi-
cation [99]. For instance, the authors in [66] applied KNN to classify HI into four grades
of cancer ranked from 2 to 5. They used different K, e.g., 1, 3, 5, 7 and compared the
results. With K = 1, achieved the highest performance of classification. Another work [18]
applied a KNN classifier with K = 3 to develop an analytical framework to differentiate
between stroma and glands in histopathological images of radical prostatectomies and to
differentiate different Gleason grades. The proposed framework can be used firstly before
quantifying and stratifying anatomic tissue structures.

In theory, a support vector machine (SVM) algorithm could obtain a high performance
because it can maximize the margin between normal and cancerous training samples [10].
There exist many works that make use of SVM classifiers in prostate cancer histopatho-
logical images [13-15,48,58,103,106,107]. In [14], a novel methodology was proposed for
labelling individual glands as normal or cancerous. They applied SVM classifier. SVM is
trained by a linear kernel function to filter out the non-nuclei objects. In [13], the authors
addressed the classification stage using a hand-crafted method that make use of two widely
known classifiers. Specifically, they optimized SVM classifier and used a quadratic kernel
to handle the multi-class classification from a nonlinear method. They achieved promising
results. In [58], the authors developed an automated grading system for histopathological
images of prostate cancer using SVM. After several experiments to compare between SVM
and multilayer perceptron classification method (MLP), they reached to that SVM attained
better results than MLP. Another study introduced a new system for quantitative and
automated grading of prostate biopsy samples [48]. This work used a SVM classifier to
differentiate between four categories of tissue patterns and they used cross-validation to
get the best parameters for the classifier.

Inspired by the bag-of-words (BoW) model extensively used in natural language
processing, the authors in [22] developed a new CAD system for prostate cancer using
speeded-up robust features (SURF). In [21], a new method named multi-level learning
architecture (MLA) is proposed. It depends on the divide-and-conquer algorithm by
assigning each binary task into two different subtasks e.g., (strong and weak).

Multi-classifier systems or ensemble-based combine accuracies of different similar
classifiers for improving the predictions for a problem [7,36]. Early research [20] employed a
modified version of the popular ensemble classifier AdaBoost. To the best of our knowledge,
their research is the first attempt at automatically analyzing prostatic adenocarcinoma
across multiple scales. Some researchers tried to propose a classification technique to work
in multiclass problems. In [19], another ensemble method (SVM plus random forests) was
used to adapt to various imaging modalities, image features, and histological decisions.
They employed statistical analysis using the Friedman test to rank the results of classifiers
on datasets. To the best of our knowledge [110] is the only example that applied a fuzzy
system to HI of prostate cancer, where the authors designed membership functions of
the fuzzy system by using a genetic algorithm. In [2], the authors presented an adaptive
boosting algorithm to support automated Gleason grading of prostate adenocarcinoma
(PRCA). They prepared a pool of classifiers (SVM with linear and radial basis function kernels,
adaptive boosting algorithm, decision tree, RE, linear discriminant analysis (DA) and quadratic
DA). Results of all classifiers were combined using an adaptive boosting classifier.

3.4. Deep Learning-Based Techniques

Recently, adoption of deep learning (DL) techniques in biomedical imaging has had
a positive impact on a broad range of tasks including automatic analysis of histopathol-
ogy images [34,36]. DL creates new clinical tools that outperform the aforementioned
classical machine learning techniques with handcrafted features in terms of accuracy, ob-
jectivity, consistency, and reproducibility. It also provides new insights to clinicians and
researchers [59]. DL techniques are currently the most frequently studied in prostate cancer
histopathology imaging and studies [28,34] have proven that DL models can accurately
detect cancer in histopathological images. DL techniques takes original digital images as
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input, with a minimum preprocessing, and have the benefit of learning features instead
of the conventional selection of handcrafted features, which may be not sufficient or not
accurate [34]. Deep learning techniques learn salient features from data, so a large number
of input images is of great value to the training process. Deep learning cannot be regarded
as a singular technique; it can nearly be considered as adaptation of multi-layer artificial
neural networks to a large variety of challenges, from natural language processing, fraud
detection to computer vision [31]. Neural networks consist mainly of an input layer, a
number of hidden layers, and an output layer, where each layer is composed of neurons.
The input layer firstly takes input data, then the hidden layers execute some mathematical
computations on those input data [111]. The output values of the network are predicated
on the adjustment of internal weights [36]. These weights are computed by the network
through iterative forward or backward propagation of the training data and error back-
propagation respectively [36]. This process takes less effort to code than the conventional
machine learning.

The main obstacle of any deep learning technique is its need for a substantial training
set. Fortunately, histopathology images contain a great deal of information at small scales.
Accordingly, a single slide can produce considerable amount of training patches [34].
Patches generate the effect of extracting portions of an image with the same structure but
relate to images belonging to different classes [7]. Patches are commonly square portions
having dimensionality that ranges from 32 x 32 pixels to 10,000 x 10,000 pixels [59].
Another obstacle of deep learning is the inadequacy of interpreting features and this may
slow the development of CAD systems [34]. In the last decade, neural network architectures
like convolution neural network (CNN), fully convolutional network (FCN), deep neural
networks (DNN), and generative adversarial networks (GAN) are attracting the attention
from the research community because of its recently impressed results on large datasets. A
considerable amount of effort is done on prostate cancer histopathological images using
the different neural networks.

A particular neural network subtype, convolutional neural network; has made sound
advancements in image processing [31,112]. Convolutional networks have the ability to
identify visual patterns with less processing and is persistent in existence of variations and
distortions in pattern [36]. The basic CNN structure is comprised of convolutional, pooling,
activation, classification, and fully connected layers [36,90]. The Histopathology imagery
domain is rapidly adjusting this architecture to enhance a wide range of challenges. In [31],
authors investigated the general applicability of CNN for increasing the performance of
prostate and breast cancer detection in histopathology images. They used fully connected
CNN to get cancer maps for each pixel and make segmentation in the whole slide images.
Results proved that DL has great potential for increasing the performance of detecting
malignancies in H & E images as AUC ranges from 0.88 to 0.99. As far as we know,
researchers in [54] were the first to use images of the entire prostate gland as an input
to the network, instead of using image patches or regions with gland information. They
designed a new CNN architecture that comprises feature selection stage, characterized by
the compound of four convolutional blocks, and the classification phase compound of two
fully connected layers.

Various papers have applied CNN to automatic Gleason grading to perform better
than systems that use conventional machine learning methods. The first attempt to apply
convolutional networks to Gleason score grading prediction is [30], where the authors
applied a pre-trained CNN. The classification stage in CNN was excluded and replaced
with RF and SVM algorithms to classify the feature vectors selected from the network.
In [28], the authors trained different variants of CNN as Gleason score annotator and
utilized the prediction of the model to assign patients into low, medium, and high levels
of risk, attaining pathology stratification results at expert level. Their experiments shown
improved efficacy regarding the applicability of CNN reaching more reproducible and
consistent prostate cancer grading, specifically for cases with heterogeneous Gleason
patterns. Recently, a fully automated grading system using the U-Net was proposed in [29],
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where the authors adopted the conventional U-Net architecture, however after several
experiments, they made the network deeper to be composed of six levels as they added
additional skip connections within each layer block. Their model attained a high agreement
with pathologists.

Aside from CNN, many authors have tried to utilize different techniques in histopathol-
ogy imagery in prostate cancer, for example, the authors in [23] proposed a new deep learn-
ing technique that combines the multi-model neural network, ride NN and optimization
algorithm, Salp—Rider algorithm (SRA), generating the new technique SSA-RideNN. The
experiments showed that SSA-RideNN attained a maximal accuracy, specificity, and sensi-
tivity.

Since the comparison of different techniques is difficult, some studies like [34] tried
to compare different classifiers and deep learning algorithm for automatic grading of
prostate cancer in HI on their new CAD system. Specifically, they have evaluated the
performance of SVM, random forest with several number of trees, logistic regression, and
linear discriminant analysis, and they also estimated the performance of a convolutional
neural network (CNN) on the same training and testing subsets. They used Cohen’s kappa
coefficient to evaluate the performance. The highest value attained is 0.52 by logistic
regression, while 0.37 is attained by using CNN. More recently, the authors in [113] tried
to compare different architectures of CNN—EfficientNet, DenseNet, and U-Net—on two
datasets of prostate cancer HI. Experiments were performed on three-fold cross-validation
and U-Net attained the best results.

Some researchers have studied on the use of DL techniques for automated segmenta-
tion of prostate cancer on histopathology images. In [25], the authors tried to overcome the
struggles of CNN to distinguish overlapping segmentation instances. The study presented
a new nuclei segmentation technique that utilized the conditional generative adversarial
network (cGAN). Their proposed technique enforces a higher consistency when compared
with traditional CNN architectures. In [26], the authors proposed a new nuclei boundary
(NB) segmentation technique using CNN. The technique was proved to be efficient and
faster than other traditional techniques, as one image of dimension 1000 x 1000 pixel can
be segmented in less than five seconds. It works in the following way: firstly, the images are
normalized into the same color space. Secondly, images are split into overlapping patches
to tackle the extremely large image challenge. Thirdly, they proposed a new nucleus
segmentation technique to identify nuclei and boundaries on each patch. Finally, the pre-
dictions of all the patches are combined to get the final prediction result of the whole image.
Driven by the success of region-based CNN (RCNN) and its extensions, authors in [24]
applied RCNN for detection epithelial cells employing grading network head (GNH). They
applied a ResNet in their network for feature selection. Then, they employed GNH for
detecting the class. They added a branch that produces an epithelial cell score using GNH.
Since the proposed network was inspired by Mask RCNN, it was named Path R-CNN.
The details regarding deep learning methods for prostate histopathology images have been
summarized in Table 5.
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4. Conclusions and Future Perspectives

More than 28% of cancers in men arise in the prostate gland, causing prostate can-
cer, and detection of this type has a high priority in cancer research. Histopathology
images may enhance the early diagnosis and treatment of prostate cancer patients through
providing functional and morphological data about the prostate. Histology is nothing
but examining the stained sample on the slide glass under a microscope. In this survey,
we presented a literature review of the use of histopathology images and its challenges.
We studied different steps of histopathology image analysis methodology. This automatic
process assists pathologists and clinicians in diagnosis and lowers the time spent for exam-
ining large number of tissues. The survey revealed a greater utilization of deep learning
techniques and a constant use of conventional machine learning techniques. It also revealed
that the histopathology image analysis is a topic of increasing interest. Our findings reveal
that there is still room for improvement as CAD systems of histology images composed
of complicated combination of image processing, feature selection, image segmentation,
and classification stage. Moreover, the image processing techniques mentioned in this sur-
vey is not applicable for prostate histopathology image analysis only, but also applicable in
many image analysis domains. This research is an attempt to summarize the most common
and recent developments in prostate cancer CAD systems using histopathology images
and to give an outline on the performance and efficacy of different techniques.

The domain of histopathology image processing of prostate cancer detection is very
vast. According to the challenges to this type of images and disease characteristics, research
in this domain is still being unlocked and many opportunities and future perspectives
remain to study and analyze including: (I) the ability of enhanced interaction with images
from various scanners and across pathologies, in addition to the development of new
techniques that can learn from unlabeled or weakly labeled data; (II) allowing online
consultations; (IIT) providing accessible histopathology analysis services in remote areas
with limited pathology assist; (IV) developing of new data fusion techniques for integrating
radiologic and histologic measurements for improved disease diagnosis with the function-
ality of real-time image processing and finally (V) applications and computerized software
for histopathological image processing techniques may be incorporated into microscopes
with small size chips. It is therefore expected from those opportunities and future perspec-
tive that we are standing at the threshold of an era that will transform the personalized
diagnosis into better diagnostic systems to decrease the workload of pathologists.
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Abstract: The use of image processing tools, machine learning, and deep learning approaches has
become very useful and robust in recent years. This paper introduces the detection of the Nosema
disease, which is considered to be one of the most economically significant diseases today. This work
shows a solution for recognizing and identifying Nosema cells between the other existing objects in
the microscopic image. Two main strategies are examined. The first strategy uses image processing
tools to extract the most valuable information and features from the dataset of microscopic images.
Then, machine learning methods are applied, such as a neural network (ANN) and support vector
machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores
deep learning and transfers learning. Several approaches were examined, including a convolutional
neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and
VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema
images from the other object images. The best accuracy was reached by the VGG-16 pre-trained
neural network with 96.25%.

Keywords: image processing; Nosema disease; machine learning; deep learning; image; disease detection

1. Introduction

Several deadly diseases endanger honeybees. Possibly one of the best known is
Nosema. Nosema, which is also called Nosemiasis or Nosemosi [1], is caused by two
species of microsporidia, Nosema apis (N. apis) and Nosema ceraena (N. ceraena) [2]. Several
works were published regarding the impact of Nosema disease on commerce, society and
food, as shown in [3,4], and the disease is currently of one the major economic importance
worldwide [5]. The health of the two species of bees is a particular interest of biologists,
not only because of their significant role in the economy and food production but also
because of the vital role they give in the pollination of agricultural and horticultural crops.
Many biological descriptions of its DNA and its behavior can be found in literature, for
example in [6,7]. Furthermore, several recent works try to treat this disease using a chemical
simulation, as presented in [8,9].

Furthermore, from a computer science point of view, honeybees are of significant
interest. Several works were, for example, involved in bees and controlling their behav-
ior [10]. The study presented monitoring the behavior of bees to help people associated
with beekeeping to manage their honey colonies and discover the bee disturbance caused
by a pathogen, Colony Collapse Disorder (CCD) or colony health assessment. In [11],
many tools of image analysis were explored to study the honeybee auto grooming behavior.
Chemical and gas sensors were used for measurement. Destructor infestations are applied
inside the honeybee colony to detect disease. The study was based on measurements of the
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atmosphere of six beehives using six types of solid-state gas sensors during a 12-h exper-
iment [12]. Regarding the image processing of Nosema disease part, there are currently
two major works. In [13], the authors used the Scale Invariant Feature Transform to extract
features from cell images. It is a technique that transforms image data into scale-invariant
coordinates relative to local features. A segmentation technique and a support vector
machine algorithm were then applied to microscopic processed images to automatically
classify N. apis and N. ceranae microsporidia. In [14], the authors used the image processing
techniques to extract the most valuable features from Nosema microscopic images and
apply an Artificial Neural Network (ANN) for the recognition, which was statistically
evaluated using the cross-validation technique. The last two works used image processing
tools for feature extraction and Support Vector Machine (SVM) and ANN for classification.
Today the traditional tools of machine learning like ANN, Convolutional Neural Network
(CNN), and SVM are frequently used in human disease detection [15], especially in medical
image classification of Heart diseases [16], Alzheimer disease [17] and Thorax diseases [18].
Deep learning approaches were used in [19] for semantic images segmentation. This work
used the Atrous convolutional Neural Network for segmentation and some pre-trained NN
for validation like PASCAL-Context, PASCAL-Person-Part and CityscapesDeep. In [20], a
method using a 2D overlapping ellipse was implemented using the tools of image process-
ing and applied to the problem of segmenting potentially overlapping cells in fluorescence
microscopy images. Deep learning is an end-to-end machine learning process that trains
feature extraction together with the classification itself. Instead of organizing statistics to
run through predefined equations, deep learning uses multiple layers of processing data
and setting fundamental parameters on knowledge records, and it trains the computer to
analyze and recognize data. Deep learning approaches are widely applied in the analy-
sis of microscopic images in many fields: human microbiota [21], material sciences [22],
microorganism detection [23], cellular image processing [24] and many other important
works in this field. Deep learning techniques have accelerated with transfer learning the
ability to recognize and classify several diseases. The objective of this paper is to validate
this hypothesis.

All the methods of Nosema detection and recognition presented by the biologists in
the literature were either molecular detections or genetic descriptions. This paper evaluates
two different strategies for automatic identification of the Nosema cell disease based on
the microscopic images. First, images of Nosema cells and the existing objects have been
cropped from the principal microscopic images. Using these images, the first dataset has
been built. Then, the obtained images were processed again and several different features
have been extracted. These features were used to create a second dataset. The obtained
databases were used for the evaluation recognition of the Nosema cells. The first approach
uses a model, which uses the extracted features by an ANN and an SVM. The second
approach uses the deep learning and transfer learning methods: first, CNN, and then
pre-trained networks AlexNet, VGG-16 and VGG-19. The tools of transfer learning used by
authors reached notable results as this is the first time they have been used for the purpose
of Nosema cell recognition.

The main innovation of this paper is the evaluation of two different strategies of
automatic detection and recognition Nosema cells from microscopic images and identi-
fication of the robust and successful approach as a robust methodology for automated
identifying and recognizing Nosema cells versus the other existing objects in the same
microscopic images.

The rest of the paper is organized as follow: Section 2 describes the dataset preparation.
In Section 3 is described dataset, segmentation, features extraction, ANN training, the use
of SVM, CNN, the use of Alex Net, VGG-16 and VGG-19. The experiments are described
in Section 4. Section 5 discusses the obtained results. Finally, the paper is concluded.
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2. Materials: Preparation of The Dataset

For the experiment, Nosema microscopic images were used. So far, it is not known
whether these images contain a sufficient amount of information for accurate detection
and recognition of the disease cells. It was only known that the important information
was diffused all over the image and behind the majority of unimportant data. The used
images in this work are 400 RGB images, encoded with JPEG and with a resolution of
2272 x 1704 pixels. Each sample was labelled by one of the 7 classes, according to the
severity of the disease or the number of disease cells present in the microscopic image.
From these 400 RGB images, a set of sub-images have been extracted. To do that, each
microscopic image was divided into many smaller images forming subdivisions of the
existing and clear objects. This first phase was done manually due to the low quality
of input images by cropping the object of interest (i.e., cells). All the existing objects in
the microscopic images were extracted as sub-images and labelled whether they stand
for: Nosema(N) and not Nosema cells (n-N), see Figure 1. The area chosen was as small
as possible, where an isolated and clear microscopic cell is located. Then, in the second
automatic phase, the selected objects are processed to prepare them for the segmentation
process (see Figure 1).

n-N : non Nosema

Figure 1. Example of extraction of Nosema cells and other existing objects in a part of one microscopic
image.

Based on the steps described above, a dataset containing 2000 sample images in total
was created. It consists of 1000 Nosema cells samples and 1000 images, which are not
Nosema cells, i.e., any other existing objects in the microscopic images. Table 1 below
shows information about the extracted sub-images for dataset construction.

Table 1. Dataset of extracted sub-images.

Images Number Color Type Resolution
Nosema sub-images 1000 RGB JPEG 229 x 161
Non-Nosema sub-images 1000 RGB JPEG 450 x 257

The microscopic sub-images were examined using two strategies:

e  The first strategy is based on an image processing approach, where features were
extracted manually.

e The second set of strategies is based on the use of the whole sub-image and the
deep learning.

Figure 2 shows strategies covered in the paper.
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Figure 2. Implemented Strategies for Nosema Recognition.

3. Methods

In the scope of this study, two different strategies were implemented. All the methods
are shown according to both of the strategies. The methods are working on the dataset of
sub-images (2000 images).

3.1. Strategy 1: Nosema Cells Recognition with Image Processing and Machine Learning

This subsection is divided into two parts. The first part describes how the features
were extracted and prepared for the training of a model. The second part shows the
proposed classification systems.

3.1.1. Preprocessing for Feature Extraction

A preprocessing stage is necessary before extraction of the features. The initial point
is an RGB image. The first step is to convert the image from RGB to a grayscale image.
The second step consists of binarization of the image by the thresholding using the Otsu
method [25]. In the third step, the flood-fill operation was used on background pixels of
the input binary image to fill the object hole from its specific locations and then to ignore
all smaller existing objects in the image of the desired object. As the final step, the object
perimeter is enhanced using the dilatation method [26]. So, the desired shape of the object
is obtained by calculating the difference between the two images, before and after perimeter
enhancement. The result of the final step is a shape image, which was extracted from the
sub-image of the dataset (see Figure 3).

Nosema Cell Preprocessing

No-Nosema Cell Preprocessing

Figure 3. Shape results of two examples before and after preprocessing. The first sample is Nosema
and the second is non Nosema object.

From the shape image, in total 9 features were extracted. They describe the structure
of the Nosema cell and consist of 6 geometric and 3 statistic features. Furthermore, from the
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extracted sub-images, 6 texture features and 4 Gray Level Co-occurrence Matrices (GLCM)
color features were calculated.

Geometric Features Extraction

The geometric features describe basic characteristics of geometric form. They are
also the most significant for us because, after several experiments, the best results were
achieved using them. These parameters were used and defined in [14] respectively:

e  The size/the perimeter: given that the shape of the Nosema cell is similar to an ellipse
form and the other objects have different rounds shapes, perimeter formula of an
ellipse adopted have been adopted in this study. This calculation is based on 2 and b
variables where a is the semi-major axis and b is the semi-minor axis. Perimeter P is
given by the following equation:

P = my\/2-(a2 +b)? 1)
e  Area A is given by the following formula:
A= mab 2)

e  Relation R is the dividing quotient of the height (H) and width (W) of the shape.

R= H/W ®)
e  The equivalent diameter (D), which is the diameter of the circle with the same area of
the object,
A
D=,/4x P 4)

e The solidity (S): it is the portion of the area of the convex region contained in the object,

A
S= ——— (5)
convex area
e  The eccentricity (E): it is the relation between the distance of the focus of the ellipse
and the length of the principal axis. Let f = 1 — § in which a is the semi-major axis
and b is the semi-minor axis of the ellipse.

E=/fx2-f) ®)

Statistic Features Extraction

The remaining features 7, 8 and 9 were calculated using the polar coordinates of the
object, in particular, the polar coordinates of a Cartesian point (X, y). Let us say that a
point M is at such a distance (r) and such a direction (f) of the point of origin (o) of the
reference point. It is a projection or a one-dimensional representation of the boundary. This
is found by computing the distances from the centroid (center of “mass”) of the object
to the boundary as a function of angles in any chosen increment. The resulting set of
distances, when properly scaled, was the vector needed as distances of the angle to the
boundary pixel.

After that, a value for these distances is truncated, which are the nearest integers to a
value to calculate the last three respective parameters.

o  The standard deviation of these distances have been calculated and which is the
feature number 7, the standard deviation is a measure of variability, or what the range
of values is, it normalizes the elements of N along the first array dimension whose
size does not equal to 1; where P can be a vector or a matrix and in this case is a vector
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of the radius values of polar coordinates of the studied object, and E is its mean. It is
given by Equation (7):

z

Std.deviation (o) = Y (Pi—Ei) @)

-
Il
-

e The Variance 02 is the mean of the squared distances between a value and the mean
of those values: it normalizes Y by n — 1 if n > 1, where 7 is the sample size or pixels
shape number. This is an unbiased estimator of the variance of the population from
which x is drawn, as long as x consists of independent, distributed distances. Forn =1,
Y is normalized by n with y is the average of all x values. In this case, the variance is
calculated as the normalized distances between the centroid and every single pixel in
the object shape.

2o =2+ o= )’ + (=)t (o — ) ®)

n

e  The Variance derivate is the derivate that calculates the difference and the approximate
derivative of the variance (X), for a vector X, is [X(2) — X(1) X(3) — X(2) ... X(n) — X(n—1)].
It is given by the following equation:

F(@) = =n2[a—m) 2+ (= p)P + (o =g+t (=] )

Features Extraction: Texture and GLCM

The next step consists of the use of the RGB object image to extract more information
about texture and color. Nevertheless, before that, it is needed to separate the object from
its background in the image; to do that: individual Hue (V), saturation (S) and Value (V)
channels have been extracted after converting the image from RGB to HSV color spice
image, then authors look for the vivid color by thresholding the V mask, after that, authors
set the H and S masks to 0 and the V mask to 1 and concatenate the three new HSV channels.
Finally, the authors convert back the image to RGB color image to have the object without
it’s background, as shown in Figure 4:

Nosema cell extraction from background .
No Nosema cell extraction from background .

Figure 4. Example of a Nosema cell and non-Nosema object extraction from its backgrounds.

Nosema

No-Nosema Cell

The number of texture parameters is 6 and they are the measurement of the entropy
of RGB and HSV channels; it can be defined as a logarithmic measurement of the number
of states with a significant probability of being occupied. The input intensity images are
the blue, red, green and yellow channels. Furthermore, the Hue and saturation masks’
randomness is calculated. The value/lightness channel was dropped since it does not give
any extra information. Suppose ; is the set of pixels with the color/channel i of the image

38



Sensors 2021, 21, 68

and p(x;) is its probability. The 6 entropy parameters are calculated by the same equation
10 above:

N
E(x;) = ) P(x;)-loga(p(xi)). (10)
i=1
As mentioned before, the Nosema cells look to be more yellow inside, that is the way
a Grey Level Co-occurrence Matrix was applied to the yellow mask to extract more texture
information about this color. The GLCM is very widely used as a statistical method of
extracting a textural feature from images. It was used in several works of feature extraction,
like in features skin extraction [27] or plant disease feature extraction [28]. GLCM is widely
used to extract useful information from medical images, that is why GLCM is developed
to overcome the limitations of the available extracted features and to be more accurate as
indicated in [29], a novel strategy to compute the GLCM called HaraliCU can offload the
computations into the Graphics Processing Units (GPU) cores, thus allowing to drastically
reduce the running time required by the execution on Central Processing Units (CPUs).
In [30], a developed method called CHASM exploits the HaraliCU method mentioned
previously, a GPU-enabled approach, capable of overcoming the issues of existing tools by
effectively computing the feature maps for high-resolution images with their full dynamics
of grayscale levels, and CUDA-SOM, a GPU-based implementation of the SOMs for the
identification of clusters of pixels in the image. The general rule in the statistical texture
calculator says that these are calculated from the statistical distribution of combinations
of intensities observed at specified positions relative to each other in the image. Based on
the number of pixels in each combination, statistics are categorized into first-order, second-
order, and higher-order statistics. The GLCM is a method of extracting the second-order
statistical texture characteristics. Third-order and higher-order textures are theoretically
possible but not commonly implemented due to computation time demands and difficulty
to interpret them [31]. The GLCM is considered a greyscale image I defined in Z. The grey
level co-occurrence matrix is defined to be a square matrix G4 of size N where, N is the
total number of grey levels in the image. The (i, j) th entry of G4 represents the number of
times a pixel X with intensity value 7 is separated from a pixel Y with intensity value j at
a particular distance k in a particular direction d. Where the distance k is a non-negative
integer and the direction d is specified by d = (dy, da, d3, ... dn), where d; € {0, k, —k}
Vi=1,2,3,...,n[32]. Four features were extracted from the Haralick GLCM applied to
the image of the yellow channel: contrast, correlation, energy, and homogeneity, the most
significant features given by the GLCM.

Ng—1 Ng Ng
Contrast = Z n?- {Z E p(i,]’)} 11)
n=0 i=1j=1

Correlation measures the linear dependency of grey levels of neighboring pixels:

) 1 S e
Correlation = (i) : Zl:;(l —ui)-(j = pj)-Pij - (12)

It is also called Angular Second Moment (ASM), and it is of high value when two
neighbor pixels are very similar:

Ng—1Ng—1 )
Energy = Y ). p(i,)) (13)
i=0  j=0

Homogeneity is high when a local grey level is uniform:

Homogeneity =YY "P(i,})- ! (14)

i g 1+(i7].)2.
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Segmentation Diagram Block and Recognition

The automatic approach of this part of work is to study the existing objects in the
microscopic images of Nosema disease; to study both Nosema cells and other types of
cells present in microscopic images, the desired objects are detected, useful features are
extracted (geometric, texture and statistic features) by an automatic segmentation method,
and the result is a vector of 19 features. Then, a multilayer Neural Network system is used
as a classifier, the set of features in order to recognize the Nosema disease cells vs. the other
objects in the images.

Once the features of the different object were extracted, the feature dataset is generated:
it consists of 19 features for 2000 objects, i.e., a 38,000 value divided equally between two
kind of objects: one for the calculated features of the objects of interest (Nosema cells), and
the other for other existed object in the microscopic images. This part of the work was
significantly computationally demanding since the extraction of 2000 sub-images as well
as the calculation of 19 features for each image cost many days of computations, using a
CPU, in particular, PcCom Basic Elite Pro Intel Core i7-9700/8GB/240SSD.

In this part of the paper, neural networks were used for the automatic detection of
Nosema diseases in honeybees. The neural networks proved their quality in many real-
world applications as well as for classification tasks. Usually, a neural network is made
up of two parts which constitute the set of learning functionalities used to train the NN
model, while a set of testing functionality is used to verify the correctness of the trained
NN model. The appropriate network design should be configured, including network
type, learning method and with one or two hidden layers. In the learning phase, the
connection weights were always updated until they reached the defined iteration number
or the acceptable error. Therefore, the ability of the ANN model to respond accurately
was ensured by using the mean squared error (MSE) criterion to emphasize the validity of
the model between input and network output. Furthermore, the network calculates the
outputs and automatically adjusts the weights to reduce errors and recognize the objects.

For the experiment, the dataset was divided into a learning part of the model and
another part for testing and validation. During the proposed approach, two types of exper-
iments were conducted: in the first one, the model was tested with only the 15 geometric,
statistic and texture features without counting the yellow color features calculated with
the GLCM. The second experiment was implemented by concatenating all the 19 features.
Furthermore, these two experiments were done to prove the strong presence of yellow
color in the cell of Nosema. The experiments were done by applying different precision
of the data division between data for training and the data for testing. The experiment
was conducted with several different neural network architectures—in particular, it has
experimented with the number of neurons in the hidden layer. Each test was repeated
at least 30 times to obtain the optimal value of success recognition accuracy. First of all,
the program was tested with a number of neurons equal to the number of input features
extracted from the images (15 or 19) in which the weight is added randomly, and after that,
the number of neurons was increased in the hidden layer by 50 in every new experiment
(see Table 2).

3.1.2. The Use of Support Vector Machine: SVM

Support vector machines SVM is a supervised learning algorithm used for classifica-
tion and regression problems [33]. To ensure that SVM will give the optimal result, the
parameters of the classifier were optimized. The optimized options have been the cost
“C”, also called error term or regularization parameter and the kernel trick function, which
calculates the dot product of two vectors in the space of very large characteristics. Different
kernel functions can be specified for the decision function and the radial basis function
(RBF) is commonly used, especially for nonlinear hyperplanes. RBF kernel for the SVM has
been chosen, which is in the following form:

K(X1,X2) = Exponfnt(—Y'HleXsz) (15)
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where || X;_ X»|| is the Euclidean distance between X; and X,, and y: gamma is used only
for RBF kernel. The non-regularization of the values of “y” and “C” will cause overfitting
or an underfitting of the model. The SVM has been configured with C=3 and y =5 x 1075
as the architecture with the best result. In this case, the SVM model will classify two classes
corresponding to Nosema cells and non-Nosema cells (or other objects).

Figure 5 shows the diagram block of the processing model for ANN and SVM classifi-
cation systems for the first implemented strategy.

Training Mode
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Figure 5. The Segmentation Diagram Block of the first strategy in Nosema detection: The Training Mode consists of the part
of dataset construction, features extraction, and their fusion to be trained with ANN and SVM. The Testing Mode consists of
data preparation for testing the model and decision making.

3.2. Strategy 2: Nosema Cells Recognition Using Deep Learning Approaches
3.2.1. Nosema Recognition with the Implemented CNN

A convolutional neural network CNN is a network architecture for deep learning
which learns directly from data. They are used to classify images or to predict continuous
data. In the scope of this paper, a new CNN network was designed, but before entering
them into the network, input data and the predictors have been normalized were normal-
ized. Furthermore, batch normalization layers should be used to normalize the outputs of
each convolutional and fully connected layer. The architecture of a CNN should contain
input layers that define the size and type of input data, the middle layers which contain
the main layers of learning and computation, and an output layer that defines the size and
type of output data. The experiment is described in detail in Table 3 and its description is
in the Experimental Methodology and Result section.

3.2.2. The Use of Transfer Learning

Another approach to work in Deep Learning is using a pre-trained Deep Neural
Network. For the first approach, the advantage is its structure; a model of an already
existing Deep Neural Network is used by applying a few simple changes. In the latter case,
a limited data set is used and knowledge is transferred from this model to a new task. It
is also said to transfer the learned characteristics of a pre-trained CNN to a new problem
with a limited data set. Transfer learning involves forming a CNN with available labelled
source data (called a source learner) and then extracting the inner layers that represent a
generic representation of mid-level entities to a target CNN learner. An adaptation layer
is added to the target CNN learner to correct for any different conditional distributions
between the source and target domains. The experiments are performed on the object
image classification, where the average precision is measured as a measure of performance.
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The first experiment was performed using the Pascal VOC 2007 dataset as the target and
ImageNet 2012 as the source. The second experiment was performed using the Pascal VOC
2012 dataset as the target and ImageNet 2012 as the source. The tests have successfully
demonstrated the ability to transfer information from one CNN learner to another [34].

The main advantage of transfer learning is that it does not need a lot of data to give a
good accuracy (and this is true in most cases). Transfer learning has proven to be a solution
to many real problems. Some of them are; for example [35], the transfer learning techniques
were used to improve the global climate by classifying aerosol dust particles. In [36], and
in using transfer learning tools, an approach has been proposed to be able to identify
low-income areas in developing countries that are important for disaster relief efforts.
In [37], transfer learning is used to improve disease prediction. In [38], transfer learning
was used to improve the problem of facial recognition using the face image information of
a source group to improve the learning of a classifier for a target group. In [39] transfer
learning was applied to the field of biology. Therefore, the following concept was applied
for the analysis of Nosema disease.

Nosema Recognition with Alexnet Classifier

Several architectures were examined, and AlexNet was one of them. AlexNet is one
of the first pre-trained Neural Networks; it is trained using a large image dataset called
ImageNet, which in turn contains more than millions of images and 22 thousand visual
categories. AlexNet is trained on more than a million images and can classify images into
1000 object categories. This paper used the pre-trained weights of the AlexNet network,
which contains 25 layers. Then, the network was fine-tuned for the classification problem
by replacing the last three layers of AlexNet pre-trained model with a fully connected layer
(layer number 23), a softmax layer (layer number 24) and a classification output layer (layer
number 25). The new model was fine-tuned using 2000 input cell images for two classes:
Nosema class and Non Nosema Class. Since AlexNet requires exactly 227 x 227 RGB
input images, the images were automatically resized to this dimension during the data
augmentation. The augmentation of the data helps prevent the network from overfitting
and helps its better generalization capabilities. Furthermore, the data were split into two
parts, one for training and the other for validation of results. Each experiment and its
results are shown in Table 7, Section 4.

Nosema Recognition VGG-16 and VGG-19 Classifiers

VGG-16 and VGG-19 are another pre-trained neural network models. They are again
pre-trained using ImageNet dataset. These two models were chosen because they learned a
good representation of low-level characteristics such as space, edges, color, lighting, texture
and shapes; and these characteristics are very useful for knowledge transfer and act as
a feature extractor for new images. Since the images in this work belong to completely
different categories from the source dataset, but the pre-trained model should still be
able to extract relevant features from these images based on transfer learning principles.
These pre-trained models—VGG-16 and VGG-19 were transferred again for classification
of images of Nosema cells against images of other objects.

VGG-16 pre-trained network contains 41 layers and VGG-19 contains 47 layers. The
last three layers of VGG-16 and the number of layers 45 and 47 for VGG-19 were replaced
with fully connected layers and trained with 1000 Nosema images and 1000 non-Nosema
images. The network expects 224 x 224 RGB or grayscale input images, so the input images
were resized. The dataset was split into learning and validation parts regarding different
average of data division. Figure 6 shows the used model for modification of the pre-trained
transfer learning models used in this paper.
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Figure 6. Modifying Transfer Learning Models for This Proposal.

4. Experimental Methodology and Results

For the statistical evaluation, the 10-fold cross-validation strategy was followed be-
tween 10% and 90%. Accuracy is used as a quality measure here. The experiments have
been designed for machine learning approaches (SVM and ANN), transfer learning ap-
proaches (AlexNet, VGG-16 and VGG-19), and deep learning method with CNN.

The first experiment was done for ANN and SVM. For ANN, just a single hidden
layer was used and only the number of neurons in the hidden layer was adjusted, using
15 or 19 neurons for the input layer and 1 neuron for the output layer (see Table 2).

Table 2. Results for experiments with ANN and SVM.

Number of Features Classifier Accuracy Observation
15 Feat ANN 79.00% For 1400 neurons in the hidden layer
catures SVM 81.00% Using kernel RBF
19F. ANN 83.20% For 1400 neurons in the hidden layer
eatures SVM 83.50% Using kernel RBF

The next experiment used the deep learning method, in particular deep CNN classifier.
The architecture of CNN had 3 convolutional blocks, which have been stacked with 3 x 3
filters followed by a 2 x 2 subsampling layer (max_pooling). In this way, increasing
the number of filters increases the depth of the network, and a kind of cone is formed
with increasingly reduced but more relevant characteristics. It should be noted that in
convolutional layers, padding is used to ensure that the height and width of the output
feature maps match the inputs. Finally, each layer will use the ReLU activation function.
Additionally, dropout layers have been added that implement regularization. The dropout
technique is a simple technique that will randomly remove nodes from the network and
has the effect of regularization as the remaining nodes must adapt to compensate for
the slack of the removed nodes and a layer of batch normalization. Batch normalization
(batch_normalization) is a technique designed to automatically standardize inputs to a
layer in a deep learning neural network and has the effect of speeding up the process of
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training a neural network and, in some cases, improving the performance of the model.
Once the above has been commented on, in Table 3, the architecture used for an 80 x 80
input image with three RGB channels is shown. The accuracy reached 92.50%.

Table 3. CNN architecture for an 80 x 80 input image.

Layer Type Output Shape Number of Parameters
conv2d (Conv2D) (None, 80, 80, 32) 896
batch_normalization (BatchNo) (None, 80, 80, 32) 128
conv2d_1 (Conv2D) (None, 80, 80, 32) 9248
batch_normalization_1 (Batch) (None, 80, 80, 32) 128
max_pooling2d (MaxPooling2D) (None, 80, 80, 32) 0
dropout (Dropout) (None, 80, 80, 32) 0
conv2d_2 (Conv2D) (None, 80, 80, 64) 18,496
batch_normalization_2 (Batch) (None, 40, 40, 64) 256
conv2d_3 (Conv2D) (None, 40, 40, 64) 36,928
batch_normalization_3 (Batch) (None, 40, 40, 64) 256
max_pooling2d_1 (MaxPooling2) (None, 40, 40, 64) 0
dropout_1 (Dropout) (None, 40, 40, 64) 0

Finally, the last experiment was for transfer learning approaches. AlexNet is known
for its simplicity, but in the case of this experiment, it does not give an encouraging result.
SGDM was the default and chosen optimizer for AlexNet. AlexNet does not require many
options to work well, and the default training options were reserved. Sixty-four is the
size of mini-bach and the initial learning rate was chosen as 0.001. The maximum number
of epochs is fixed to 20; this chosen training options made the experiment faster (see
Table 4). Table 5 describes the four cross-validation folders experiments and given accuracy
by each one. As is shown in Table 5, the third experiments in which the data were split
between 70% for training and 30% for test and validation, give the best accuracy (87.48%)
by 6 epochs number.

Table 4. Experimental training parameters for AlexNet, VGG-16 and VGG-19.

Model Parameters Setting Values

Learning algorithm Sgdm

Initial Learning Rate 0.001
AlexNet Mini-batchsize 64
Maximum epochs 0

Learning algorithm Adam

Initial Learning rate 0.0004
Mini-batch size 10
VGG-16 and VGG-19 Maximum epochs 25
Validation Frequency 3

Validation Information Test-Images

Table 5. Cross-validation and simulation results for Alex-Net classifier.

Experiment (Trained Data, the Rest for Validation) Accuracy Epochs Number
0.5 84.58% 6
0.6 83.98% 6
0.7 86.98% 6
0.8 85.28% 6

Only the last three layers of VGG-16 and VGG19 were modified to make them fit
the target domain. The fully connected layer (FC) in both models has been changed to a
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new FC layer with an output size of 2 according to the 2 classes, which were needed to
classify. Adam was the chosen optimizer, given his good learning rate and the specific
adaptive nature of the learning rate parameters. For Adam, the initial learning rate was
chosen as 0.0004; a small valor is a good option to increase the training time. The size of the
mini-batch was fixed at 10. The validation information of the model is that given in the test.
Thus, a learning factor of 10 is defined. The maximum number of epochs was fixed to 25
but during the simulation process, the number was variable according to the experiments
carried out, but it was initialized in the first experiment to 6. Finally, a validation frequency
set to 3. The trained options of the experiment are listed in Table 4.

Detailed results for VGG-16 and VGG-19 neural networks are shown in Table 4, and
while the best simulation accuracy is given by VGG-16, Figure 7 describes the followed
steps using VGG16 to identify the Nosema and Figure 8 shows the best accuracy. Three
experiments have been implemented, but only those that gave good results with a similar
number of epochs for the two pre-trained networks have been described in Table 6. The
data was split between training and validation, the experiments were conducted 30 times,
following a 10-fold cross-validation process. The three last experiments gave the best
accuracy; the first one took 70% of data for training and the 30% were for validation and
the best accuracy was given by 6 epochs number. In the second experiment, 80% were
placed for training, and the rest were for validation, the experiment was repeated several
times with increasing the number of epochs and as Table 6 shows, the best accuracy given
by VGG-16 is 96.25% with 20 epochs, and for VGG-19, the highest accuracy is 93.50% with
25 epochs, and in the third experiment presented in the result section, the data were divided
between 90% for training and 10% for testing, and the results made an accuracy fall.

Table 6. Cross-validation and simulation results for VGG-16 and VGG-19 classifiers.

Accuracy
Experiments Epochs
VGG-16 VGG-19

0.7 6 76.29% 71.95%

6 92.50% 93.00%

08 12 94.50% 82.00%

20 96.25% 92.32%

25 93.00% 93.50%

0.9 6 88.00% 77.00%

Sub-images
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Figure 7. The steps followed for the recognition of Nosema cells using VGG 16 Model.
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Figure 8. The Accuracy (blue curve) and loss (orange curve) results given by VGG-16 simulation: 96.25% of success accuracy

with 20 epochs.

Table 7 summarizes the main results of the different experiments. The best result is
reached using VGG-16 with accuracy of 96.25%, and the lowest accuracy is given by ANN
(83.20%). Those results will be discussed in the next section.

Table 7. A summary of best results given by the 6 used tools for Nosema classification.

ANN SVM CNN AlexNet VGG-16 VGG-19
83.20% 83.50% 92.5% 87.48% 96.25% 93.00%

5. Discussion

This section discusses in detail the behavior and features of each experiment and it
discusses compromise between accuracy and the robustness of the proposed methods was
included. Besides, a comparison vs. the most representative publication on this topic (see
Table 8), with comparison vs. a previous work [14], authors increased the dataset from 185
to 2000 images and the extracted features number from 9 to 19, and those features for the
Nosema cell are related to several aspects of the image cell: geometric shape, statistical
characteristics, texture and color features given by GLCM. Two strategies were followed to
recognize Nosema; while only one was followed (ANN) in [14]; the first strategy consists
of the use of calculated characteristics by an ANN and an SVM and the second is based on
sub-images extracted from treated microscopic images using an implemented CNN and
the tools of transfer Learning. ANN used in [14] gave a success rate of 91.1% in Nosema
recognition. SVM also was used in [13] to classify the two types of Nosema and other
objects. The experiments reached relative and accurate values.
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Table 8. Results from other references for Nosema recognition.

Reference Data Size Method Accuracy
[14] 185 images (1655 extracted features) ANN 91.10%
This work 2000 images ANN 83.20%
This work 2000 images SVM 83.50%
This work 2000 images CNN 92.50%
This work 2000 images AlexNet 87.48%
This work 2000 images VGG-16 96.25%
This work 2000 images VGG-19 93.50%

From Tables 2-6, it can be concluded that whether it is the largest dataset or the
smallest dataset, the level of learning of the network with transfer learning models is
obviously better than the traditional models, especially ANNSs are examined in this study
and SVM which brought near results. Furthermore, one notes a clear rate of convergence
of the transfer model VGG-16 and VGG-19 at the level of the provided results. In addition,
these transfer models are a bit faster than ANN and SVM, at least in this case. CNN has
demonstrated its effectiveness in this problem of recognizing or classifying Nosema cells
as a deep learning model. CNN was almost comparable to VGG-19. On the other hand,
it should be said that the training options for the ANNSs, as well as the transfer learning
algorithms, make a difference in the results.

In front of AlexNet, the VGG-16, VGG-19 and CNN have proven their strong effec-
tiveness in this work in the classification of patterns, cells and objects.

For the features extraction part, several different features from the sub-images were
evaluated: geometric, statistic, texture and GLCM features extracted from the yellow
channel. This experiment used a large database, the results given by the ANN as well as
by the SVM good since it is the first time. The quality of the microscopic images used in
this work did not always help to extract clear and sharp objects. By calculating the results
with a different number of features (15 and 19), the importance of the data extracted by the
GLCM in the resulting amelioration was approved.

6. Conclusions

In order to identify Nosema cells, this experiment examined two strategies of classifi-
cation: the traditional ones and the deep learning classifiers. Different experiments were
implemented for both strategies, despite the noisy quality of the microscopic images used.
The best accuracy for the recognition or classification of Nosema is reached by VGG-16,
96.25%, which is compared to state of the art is the most accurate methodology in this area
so far.

The innovation of this proposal is to analyze and find the better option for this
identification, checking different strategies to implement an automatic identification of
Nosema cell, as was shown after experiments, and with good and robust accuracy. It was
reached with VGG-16 architecture.

After reviewing the state-of-the-art material, it can be concluded that only a few
automatic approaches have been introduced so far. Because of this, we contribute with a
variety of explored classification methods and their accuracies. In particular, we would
emphasize the difference between shallow ANNs with handcrafted features and end-to-
end learning using the deep learning approach using CNN together with several transfer
learning architectures.
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Abstract: The quantification of blood flow velocity in the human conjunctiva is clinically essential
for assessing microvascular hemodynamics. Since the conjunctival microvessel is imaged in several
seconds, eye motion during image acquisition causes motion artifacts limiting the accuracy of
image segmentation performance and measurement of the blood flow velocity. In this paper, we
introduce a novel customized optical imaging system for human conjunctiva with deep learning-
based segmentation and motion correction. The image segmentation process is performed by the
Attention-UNet structure to achieve high-performance segmentation results in conjunctiva images
with motion blur. Motion correction processes with two steps—registration and template matching—
are used to correct for large displacements and fine movements. The image displacement values
decrease to 4-7 um during registration (first step) and less than 1 um during template matching
(second step). With the corrected images, the blood flow velocity is calculated for selected vessels
considering temporal signal variances and vessel lengths. These methods for resolving motion
artifacts contribute insights into studies quantifying the hemodynamics of the conjunctiva, as well as
other tissues.

Keywords: blood flow velocity quantification; conjunctival microvessel; deep learning; image
processing; motion correction; optical imaging system; vessel segmentation

1. Introduction

The conjunctiva is a translucent and highly vascularized membrane covering the
sclera of the human eye. These properties enable the conjunctiva to be the only tissue ob-
serving red blood cell (RBC) shift that can be utilized for measuring the blood flow velocity
directly from the surface. Quantitative analysis of the blood flow velocity has been used to
estimate the progression of eye diseases, including diabetic retinopathy [1] and dry eye
syndrome [2-4]. The diabetic retinopathy patients group had slower blood flow velocities
in the conjunctiva than the control group [1]. In the case of dry eye syndrome, the normal
group had slow blood flow velocities in the conjunctiva [2—4]. Moreover, patients with
unilateral ischemic stroke [5] and high cardiovascular disease risk [6] tend to have slower
conjunctival blood flow velocities. These studies demonstrated that quantifying the con-
junctival blood flow velocity can contribute to evaluate not only ophthalmic diseases but,
also, systemic diseases in critical organs, especially the brain and cardiovascular system.

Conventional methods for quantifying the conjunctival blood flow velocity use func-
tional slit-lamp biomicroscopy [7], a noninvasive optical imaging system (EyeFlow) [8], and
orthogonal polarization spectral imaging [9]. These methods can be disturbed by motion
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artifacts inherited from the image acquisition process due to eye movements. The motion
artifacts cause two distinct problems: (1) image displacement and (2) low-quality images.

First, the image displacement problem causes the vessel to be misaligned from the
central point. Registration was performed by calculating the difference of the correlation
coefficients from the reference frame [10-12]. In another method, the sharpness index
of each image was measured by calculating pixel-to-pixel intensity variance, eliminating
the inadequate frames below the threshold value [13]. These two methods can compen-
sate for rapid eye movements but have difficulty correcting for fibrillation or respiratory
eye movements.

Second, the segmentation, which is the essential step for quantifying the microcir-
culation, remains challenging for low-quality images of blurry structures and uneven
light illumination by subject motions. Various segmentation methods [7,10,14,15] were
applied to the conjunctiva images with motion artifacts. The Frangi filter [10,14] is the
most commonly used segmentation algorithm and exploits multiscale information from
the eigenvalues of the Hessian matrix. The supervised method [16], which uses the Ga-
bor wavelet filter and the Gaussian mixture model (GMM) classifier, was suggested for
conjunctiva vessel segmentation [7,15]. These two segmentation methods are efficient in
identifying vessels but lack of the ability to identify low-quality vessels.

We solved the image displacement and low-quality image problems caused by motion
artifacts by proposing a custom-built optical system with a two-step calibration method
and a deep learning-based segmentation model. The custom-built optical system was
optimized to acquire human bulbar conjunctival images. The two-step calibration method
was motivated by the fact that image displacements can result from sudden eye movements
and respiratory movements. The first step, registration, corrects the sudden eye move-
ments. The second step, template matching, eliminates the respiratory movements. Since
deep learning-based segmentation is effective with low-quality conjunctival images [17], a
custom-built Attention-UNet model was constructed to extract accurate conjunctiva vascu-
lar information. The blood flow velocity was measured by generating a spatial-temporal
analysis (STA) image from the corrected image sequence and vascular features. With this
configured system, we can acquire a conjunctival vascular image set with minimal motion
and accurately quantify conjunctival blood flow velocity.

2. Materials and Methods
2.1. Process of Quantifying Blood Flow Velocity

Quantification of the blood flow velocity is performed by the six steps shown in
Figure 1. After acquiring image frames for 3 s with 25 fps, image processing, including
image registration, feature extraction, and motion correction, provides motion-free image
sequences for measuring the blood flow velocity through tracking the position of red blood
cells. Detailed explanations of imaging acquisition, registration, and deep learning-based
image segmentation and quantification are shown in following sections.

Image registration ® Deep learning vessel segmentatlon

(removing blurred frames) .

Template

1

g
]
i

centerline

Figure 1. The summary of experimental phase in this study.
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2.2. Image Acquisition

The schematic of a customized optical imaging system is depicted in Figure 2. The
conjunctival imaging system uses a green LED with a central wavelength of 525 nm and
a spectral bandwidth of 5 nm, because hemoglobin and deoxyhemoglobin have high
extinction coefficients at a wavelength of 530 nm. Accordingly, the image contrast between
the blood vessels and the white sclera can be improved. We illuminate the uniform light
using a diffuser (ED1-C50-MD, Thorlabs Inc., Newton, NJ, USA) forward to the LED. The
power of the LED at the eye pupil is 300 puW/cm?, which is 0.3 times the laser safety
standards (ANSI) limits under the condition of 10-min exposure [18].

 Diffus I_LED lightsource

Objective lens

Human conjunctiva =

(G

Fixation t:
ixation target Lincar stage

7~

Figure 2. Custom-built optical imaging system for human bulbar conjunctiva.

The diffusely reflected light from the conjunctiva transmits to the complementary
metal oxide semiconductor (CMOS) sensor-based camera (UI-3080CP Rev.2, IDS Inc.,
Obersulm, Germany) with an imaging sensor size of 8.473 mm x 7.086 mm to acquire
a maximum resolution of 2456 x 2054 pixels. The pixel size on the camera sensor is
3.45 um x 3.45 um. The frame rate is set at 20 fps but is enhanced to 25 fps by binning the
image size to 2208 x 1848 pixels for a more continuous blood flow assessment. The video
data are recorded for approximately 3 s with 25 fps.

The magnification of the system is designed to achieve RBC flow imaging. An RBC
with an average diameter of 7.5 um [19] should be imaged by at least 2 pixels on the camera
sensor to distinguish the individual RBC particles [20]. Moreover, the magnification
for the reliable quantification of RBC flow velocity requires 4 to 5 pixels imaged per
RBC [21], corresponding to 2x in our system. To achieve this magnification, we use a
high-magnification zoom lens (MVL6 x 12Z, Thorlabs Inc., Newton, NJ, USA) with an
adjustable magnification between 0.7 x and 6 x. An extension tube (MVL20A, Thorlabs
Inc., Newton, NJ, USA) with 2x magnification is connected for additional magnification,
for a total range of 1.832x to 7.5x. An optimized magnification is set at 3.798 x for a field
of view of 2.00 mm x 1.68 mm, thereby sampling each RBC with 8.26 pixels.

2.3. Image Registration

Image registration is the process of eliminating the blurred frames caused by rapid eye
motion or blinking. Image sequences are first examined with an image contrast index that
can determine the quality of the images. To obtain the contrast index, we apply the Sobel
edge algorithm [22,23], a method of quantitatively measuring the contrast of an image [24].
The contrast index is calculated with the Equation (1).

N M
Contrast Index = (Z ) Ixy> /(M-N) (1)

y=1x=1
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where M, N are the dimensions of the image, x, y are the pixel indices of each axis, and Ly
is the image pixel intensity. The overall image contrast is estimated by the average value of
the edge intensity. The blurred frames with low-contrast indices are resolved by extracting
only frames with a contrast index greater than 95% of the maximum value. A template
frame is then designated based on the highest contrast index. The rest of the consecutive
frames are automatically aligned to the template frame using the Image]J plugin called
motion corrector [25]. This algorithm corrects the image translation by maximizing the
overlapping region between two images, thereby eliminating the significant displacement
caused by rapid eye motions.

2.4. Deep Learning Vessel Segmentation
2.4.1. Dataset

A conjunctival vessel dataset and a high-resolution fundus (HRF) dataset are used
to train and evaluate the deep learning model [26]. The HRF dataset has been estab-
lished by the research team at the Friedrich-Alexander Universitdt and used to test the
effectiveness of the deep learning-based segmentation algorithm [26]. The conjunctival
vessel data are collected from the conjunctiva of five healthy human subjects (five males,
age = 27 + 1) with the custom-built imaging system. This dataset contains 15 conjunctiva
images with a size of 2208 x 1848 pixels. The conjunctiva images used for network learning
are randomly selected in the frames extracted from image sequences without motion-
blurred images. The HRF dataset comprises 45 color fundus images, equally distributed
into three subsets (healthy, diabetic retinopathy, and glaucoma). Each image in the HRF
dataset is 3304 x 2236 pixels. Both datasets have annotated vessel structures in the form of
binary images.

2.4.2. Image Preprocessing and Preparation

Preprocessing enhances the contrast of the vessel in the image and removes uneven
illuminations that occurred in the image acquisition step. We apply three preprocessing
steps. In the first step, we crop the HRF images from the center point to the same size as the
conjunctival images and resize both to 1104 x 924 pixels (0.5x). Figure 3a,e illustrates the
raw data of the conjunctival image and resized HRF image. In the second step, we extract
the green channel from the HRF images. The green channel has a higher contrast and lower
background noise than the other channels. Finally, contrast-limited adaptive histogram
equalization (CLAHE) [27] is applied in the green channel of the HRF in Figure 3f and
conjunctival images in Figure 3b to enhance the contrast of the images. After preprocessing,
two datasets are combined into a single dataset to enhance the generalization ability of
the model.

A convolutional neural network (CNN) requires large amounts of training data to
prevent overfitting of the network and improve the generalization ability. To train the
dataset, we exploit a patch-wise strategy [17,28-30] and data augmentation. The patch-wise
strategy is used to learn a small amount of data efficiently and overcome the memory
limitations caused by high-image resolution. This strategy randomly extracts patches in
the range of 64 to 128 pixels. The patch sizes from 65 x 65 pixels to 128 x 128 pixels are
resized to 64 x 64-pixel patches. After resizing the extracted patches, overlapped regions
of the conjunctiva in each different-sized patch are recognized as different regions in the
network model.

A total of 300,000 patches are obtained by sampling 5000 patches from each image.
Figure 3c,g are examples of patch-wise extractions. Figure 3d,h are the corresponding
ground-truth images of the patches (Figure 3c,g) for the supervised learning of the convo-
lutional neural network.
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(M)

Figure 3. Preparation steps of the conjunctival dataset and the HRF dataset. The conjunctival data preparation step: (a) raw

data of the conjunctival image, (b) CLAHE-adopted image, (c) conjunctiva patches, and (d) corresponding ground-truth
of (¢). The HRF data preparation step: (e) resized HRF image, (f) CLAHE-adopted image, (g) HRF patches, and the
(h) corresponding ground-truth of (g).

Data augmentation is applied to extract the patches with additional vascular features
to improve the CNN generalization ability. We applied data augmentations such as geo-
metrical distortions (rotation, shearing, and transformation) and motion blur. Geometrical
distortions can increase the representation of the patches. Motion blur is used to learn the
deformed vessel based on the movements that occurred in the image acquisition step. The
patches are normalized to the zero mean and unit variance before the training process to
reduce the effect of the large intensity variance.

2.4.3. Network Architecture

The Attention-UNet architecture [31] is adopted to learn the vascular features. We
customize the Attention-UNet to optimize our datasets. The details of the architecture
are described in Figure 4. The architecture is based on a layered CNN, consisting of an
encoder—decoder structure with three stages and an attention mechanism.

1
g/

Tnput image Patches saxuxn 64x64x32  Predictions Reconstruction
J

8X8x64
16X16%64

Encod%ng part Decodinlg part

I Max-pooling [ U i Cy ion layer [l Softmax @ Attention gate § Gating signal

Figure 4. Customized Attention-UNet architecture.

The encoder gradually reduces the spatial dimension of the input to learn a low-
resolution feature map. Each stage of the encoder consists of two convolution layers and
one max-pooling layer. At the end of the encoder stage, a bottom layer exists without
max-pooling. Whenever the stage progresses to the next stage, the filter size of the convo-
lution layer doubles, and the dimensions of the input are halved. Each convolution layer
comprises a 3 x 3 convolution filter with a stride of 1, batch normalization, and a rectified
linear unit (ReLU).
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The decoder enables precise localization by merging the low-resolution features from
the previous layer and high-resolution features from the encoder of the same stage. When
the low-resolution features are transported, the upsampling process, which is implemented
by transposing a convolution kernel (kernel size = 3 x 3, stride = 2), reconstructs the
salient features from the input. Before the encoder transfers the features, an attention
gate is used to suppress the irrelevant background of the input and highlight the relevant
foreground features. At the end of the 3-stage decoding, the last convolutional kernel
(kernel size =1 x 1) and SoftMax activation function are used for mapping the feature
vector and classify the vessel.

2.4.4. Model Training and Testing

The deep learning model using Keras is trained and validated on a CPU (Xeon(R)
silver 4112, Intel Corporation, Santa Clara, CA, USA) and a GPU (Quadro P4000, Nvidia
Corporation, Santa Clara, CA, USA) operated by Ubuntu (16.04 LTS, Canonical Ltd,
London, UK).

In the training process, the complete set of augmented patches is split into 240,000
for training the network and 60,000 for validation. The training process has 150 epochs
with the strategy of reducing the learning rate on the plateau. A validation set is used to
evaluate the performance of the model in each epoch. If the performance of the model in
the validation set does not change in 15 epochs, the strategy will reduce the learning rate by
1/10. The training of the model is progressed by an adaptive moment estimation (Adam)
optimizer (initial learning rate = 0.00005) and the Dice coefficient [32] as the loss function.

In conjunctival images, blood vessel information occupies a small portion of the entire
image compared to the background region. Therefore, the Dice coefficient is used to solve
the class imbalance problem. The Dice coefficient is defined in the Equation (2):

25N pi-ai

Dice Coef ficient = —————+—
I p? + X0 g2

@

where p; is predicted segmentation map, and g; is the binary ground-truth image. N
denotes the number of pixels in each image, and i is the position of the pixel in the image.

In the test phase, the CNN infers the test image, excluding the training dataset. The
test image is generated by averaging 30 frames to distinguish the obscure vessel from the
registered conjunctival images. By inferencing the test data using the optimal model for
validation, a reference segmentation map is acquired.

2.5. Morphological Feature Extraction

The vessel length and diameter are measured from segmented conjunctival vessel
images. Distinguishing the connected vessel segments is necessary to extract these morpho-
logical vessel features. The centerline and intersection points of the vessels are required to
separate individual vessel segments. The centerline is obtained by a skeleton image using
the pixel-wise thinning algorithm [33,34], a method of performing an iterative process until
it remains one pixel wide in the segmented vessels. Skeleton segments lower than 20 pixels
are removed, because these segments are not recognized as a connected vascular network.
The intersection points at bifurcation and crossover are determined by the number of
neighbors, a convolution result with a 3 x 3 unity kernel for each pixel of the centerline.
The bifurcation points correspond to three in the convolution result, and the crossovers
have a result greater than three. By removing these two points, each vessel segment is
separated and given identification. We measure the vessel length and the diameter from
the identified vessel segment. The length of the vessel is obtained by counting each pixel of
the skeletonized vessel along its centerline. Moreover, the vessel diameters are measured
in Euclidean distance by calculating the perpendicular distance from the centerline to the
nearest background of the binary segmented vessels.
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2.6. Template Matching for Motion Correction

The template matching algorithm is used for correcting the fine movements in image
sequences caused by respiratory movement. First, the template image is assigned by
selecting a template vessel considering the morphological features, including the vessel
length and diameter. The template vessel must be contained in all frames and distinguished
from other blood vessels. Equation (3) is applied to each vessel segment to select a vessel
of the template image with a long length and large diameter.

N(L,D) =wq-L+wy-D 3)

N(L, D) is the function for selecting the template vessel, wy, w, are the weight factors,
L is the length of the vessel segment, and D is the diameter of the vessel. The vessel length
and diameter are normalized to equalize the scales of each parameter. The vessel segment
with the highest value of the function is determined as the template vessel.

We generate the template image by cropping the selected template vessel to the
minimum bounding box. The template-matching algorithm based on the assigned tem-
plate image is applied to the target frames, and this algorithm is implemented with the
cvMatchTemplate function in the OpenCV library [35]. This function calculates the normal-
ized correlation coefficient R(x, y) at each pixel to search the most similar region with the
template image, as shown in the Equation (4):
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R(x,y) =

where T is the template image, I is a source image to find a match with the template image,
x,y is the pixel location of the source image, and x’, ' indicates the pixel location of the
template image. After finding the most similar region to the template image with the source
images, the displacement value is obtained from the center point of the source image. We
shift the source images as much as the displacement value, thereby successfully correcting
the fine movements.

2.7. Blood Flow Velocity Measurements

Several blood vessels can be observed in motion-corrected conjunctival images, but a
RBC shift is not detectable in all blood vessels. Measuring the blood flow velocity requires
distinguishing the blood vessels capable of detecting the RBC shift. Generally, vessels with
measurable blood flow have high temporal variance in the centerline due to the RBC shifts.
Moreover, vessels with longer lengths are more conducive to measuring the blood flow
velocity, because the movements of RBC can be observed continuously for a long duration.
Considering the temporal variance and vessel length, an index of observability is defined
as shown in the Equation (5):

Observability Index = a-0y + B-L )

where g, f is the weighting factor, 0; is the temporal variance, and L is the length of the
vessel segments. Vessels with a high index are considered to be capable of measuring the
blood flow velocity. We choose 15 vessel segments with the highest observability index to
analyze the blood flow velocity.

The blood flow velocity is measured by tracking the RBC movements in the selected
vessels centerline, as depicted in Figure 5a. Tracking is performed using the spatial—-
temporal analysis (STA) method, which demonstrates an alteration of the pixel intensity of
the centerline due to the RBC movements. Figure 5b displays an example of an alteration in
the pixel intensity of the vessel centerlines as a function of time. We generate the STA image
by stacking the centerlines to each column, as depicted in Figure 5c. Frames corresponding
to 3.7 s are stacked to form 70 columns. Consequently, the flow of the RBC cluster forms
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lines consistent with the yellow line in Figure 5¢, with the slope on the STA image. The
blood flow velocities are measured by calculating the average values of the slopes.

() () 0.338f

RBC
cluster

Length(mm)

— T 0 Time(s) 3.7

Figure 5. (a) The RBC cluster shifts over time in the vessel centerline. (b) Pixel intensity of the vessel
centerline changes due to the RBC cluster shift. (c) Spatial-temporal analysis (STA) image generated
by the pixel intensity from the vessel centerline as stacking at each column. The x and y axes indicate
the frame time and vessel length, respectively. The yellow line shown in the STA image displays the
slope, indicating the blood flow velocity.

3. Results
3.1. Segmentation

We identified blurry, low-contrast conjunctival vessels by constructing a dataset mixed
with conjunctiva images and HREF to train the custom-built Attention-UNet model. The
segmentation map was obtained using model prediction on the averaged image. Figure 6
illustrates the results of the model prediction. The conjunctival image of Figure 6a is
unseen data obtained from healthy subjects. Figure 6b,e h are additional processed images
to show the unseen data of Figure 6a,d,g for readers. Figure 6c results from the model
prediction in Figure 6a. Each box with a color boundary in Figure 6a—c represents regions
of interest for the low-contrast, blurry vessels. These results demonstrate that Attention-
UNet trained with mixed datasets is accurate for low-contrast vascular structures without
additional postprocessing.

3.2. Motion Correction

To evaluate the performance of the motion correction processes, we compare the
displacement values of 70 frames of the conjunctival microvessels. Figure 7 illustrates
the horizontal and vertical axial displacement values of the source images from the first
frame. In the uncorrected case (black line), the intense axial motions of the frames are
visible. After the correction process, the axial motions are noticeably reduced (red and blue
lines). For the horizontal axis depicted in Figure 7a, the mean axial displacement decreased
to 2.69 um from 16.84 um after the first registration process. After the second process of
motion correction, it decreased to 0.9 pm. For the vertical axis depicted in Figure 7b, it
also decreased to 0.81 um from 14 um. Consequently, most of the displacement values
decreased, except for the movements smaller than 1 pm.
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(f)'
Y

)
Figure 6. (a) Averaged conjunctival image. (b) Brightness and contrast-adjusted (a) by Image J
(set display range: 25-115). (c) Attention-UNet segmentation results. (d,g) Cropped images from

the low-contrast, blurry areas of (a). (e,h) Cropped images from (b). (f,i) Corresponding to the
prediction results of (d,g). Brightness and contrast-adjusted images (b,e,h) were placed to provide
easier visibility for the reader.
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Figure 7. Comparison of the displacement values between uncorrected (black line) and motion-
corrected (red and blue lines) image sequence. Red line indicates the displacement values after
the first registration step, and the blue line represents after the second motion correction step.
(a) Horizontal displacement values. (b) Vertical displacement values.

Furthermore, we compared before and after the motion correction of the spatial—
temporal analysis (STA) images, which are crucial to quantifying the blood flow veloc-
ity. The red line in Figure 8a displays a target vessel to analyze the blood flow velocity.
Figure 8b illustrates an STA image before motion correction. In this STA image, the slope
required to calculate the blood flow velocity cannot be verified because of the motion
artifacts. In contrast, the clear edges of the slope displayed by the yellow line in Figure 8c

59



Sensors 2021, 21, 3224

are observed in the STA image after motion correction. Finally, the blood flow velocity
obtained from the average values of the yellow slopes is 0.338 mm/s.

0.338 0.338

Length (mm)
Length (mm)

0 me (s) g 0 Time (s) 3.7

Figure 8. (a) Vessel used to generate the STA image (red line). (b) STA image before motion
correction. (c) STA image after motion correction. Yellow lines represent slopes, which indicate blood
flow velocity.

Table 1 illustrates the characteristics of conjunctival microvessels, including diameter,
length, and blood flow velocity. These characteristics are measured in the selected vessel
segments with the highest observability indices. Starting with V1, 10 blood vessels with a
high observability index are sequentially arranged. The minimum and Table 1 illustrate
the characteristics of the conjunctival microvessels, including diameter, length, and blood
flow velocity. These characteristics are measured in the selected vessel segments with the
highest observability indices. Starting with V1, 10 blood vessels with a high observability
index are sequentially arranged. The minimum and maximum blood vessel diameters are
8.172 and 15.62 um. The blood flow velocity ranges between 0.078 and 0.338 mm /s, similar
to the values in a previous study, were measured with other equipment [36].

Table 1. Diameter, length, and blood flow velocity of conjunctival microvessels.

Vessel Diameter (um) Length (mm) Blood Flow Velocity (mm/s)
A\t 13.158 0.414 0.086
V2 15.282 0.356 0.097
V3 8.172 0.338 0.338
V4 9.878 0.330 0.090
V5 10.170 0.318 0.270
Vo6 8.682 0.220 0.141
V7 9.574 0.250 0.078
V8 15.422 0.246 0.137
V9 15.620 0.128 0.114
V10 9.934 0.214 0.153

4. Discussion

In this paper, we introduced a system that can accurately quantify the conjunctival
blood flow velocity by overcoming motion artifacts. First, Attention-UNet was imple-
mented to precisely segment the low-quality vessel images. The Attention-UNet trained
with a retinal dataset was used to segment conjunctival vessels with low-contrast, blurry
structures [17]. This study inferred that Attention-UNet has a high generalization ability to
learn the vascular structure.

Second, we conducted a two-step correction process to solve the problem of changing
local information. Fine movements are critical to high magnification imaging to track red
blood cells (RBC) for measuring the blood flow. Although we corrected a large motion
through the registration process, 4-7 um of the displacement remained. An additional
correction process was essential to obtain an accurate blood flow velocity by tracking RBC
particles of approximately 7.5 um in diameter [19]. Therefore, we implemented an addi-
tional motion correction algorithm, template matching, by considering the vessel features,
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including diameter and length. The displacements of the conjunctival microvasculature
images are reduced to the order of 1 um while minimizing the frame loss.

We construct a custom-built optical system to image the human conjunctiva and
acquire the conjunctival images from five healthy subjects. Conjunctival datasets have a
risk of overfitting due to a lack of images, which we avoided by adding a retinal dataset
with a similar domain to the conjunctival images. The high-resolution fundus (HRF) dataset
was selected as an additional dataset because of the vessel size similar to our conjunctival
image. The model trained by the mixed dataset achieved more accurate segmentation
results than the conjunctival dataset only.

Furthermore, our motion correction process can produce insights in observing blood
flow velocity for an extended period by correcting their fine control movements. When the
human eye gazes at a fixed object, the dwelling time ranges from 90 to 900 ms [37]. After
the dwelling time, the fixated eyes start vibrating. Due to eye movements caused by the
short dwelling time, conjunctival hemodynamics were observed for only 0.3 s in a previous
study [10].

However, the velocity pulse period (VPP), which is the time varying the blood flow
velocity, due to the cardiac impulse is 940 ms [38], longer than the dwelling time. Con-
sequently, it is necessary to observe the blood flow velocity for a more extended period
than the VPP. Since we compensate for the motion above the VPP, the blood flow velocity
is quantified above three seconds through the STA image. We created an opportunity for
quantifying the long-term blood flow assessment, limited by a dwelling time shorter than
the cardiac cycle time.

A limitation in the current configuration is that it can be difficult to compensate for the
motion blur caused by movements that are faster than the frame rates. This type of image
can be blurred, even if the location is not changed. One way to mitigate this problem is to
reduce the exposure time and increase the frame rate. However, such an approach would
inevitably decrease the contrast of the image. We overcame this limitation by comparing
the contrast index assigned during registration, thereby removing the blurred frames with
low-contrast values.

This study adopted several capabilities, including image registration, deep learning
vessel segmentation, and template matching for motion correction, to quantify the microcir-
culation of the human conjunctiva. Using these methods, we acquired a blood flow velocity
of 0.078 to 0.338 mm/s in the conjunctiva vessels. Although we could not perfectly control
the factors affecting the blood flow velocity, we could confirm that our results partially
corresponded to a previous study measuring the conjunctiva blood flow range as 0.19 to
0.33 mm/s [36].

As further works, our image processing method could provide blood flow velocity
in the retina, wrists, lips, and fingernails. In addition, when significant correlations of
conjunctival hemodynamics with cardiovascular diseases, as well as diabetes, are demon-
strated, the developed imaging system and processing method can be used as one of the
methods providing pre-diagnostic factors for systemic diseases [1,39].

5. Conclusions

We demonstrate a system that resolves motion artifacts to quantify the conjunctival
blood flow velocity. Deep learning-based segmentation and motion correction techniques
are used to solve the motion artifacts during image acquisition. We evaluated the sys-
tem performance by analyzing conjunctival images from five healthy volunteers. The
system segment low-contrast vessels reduced the image displacement to less than 1 to
2 pm. Pathways of red blood cells could be tracked free from the motion artifacts, resulting
in quantifying the blood flow velocity. The range of quantifying the conjunctival blood
flow velocity is 0.078~0.338 mm/s in a healthy subject. This conjunctival imaging instru-
ment is applicable for imaging subjects with limited forward-looking capabilities or an
unsteady fixation.
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Abstract: Background and Objective: The use of computer-aided detection (CAD) systems can help
radiologists make objective decisions and reduce the dependence on invasive techniques. In this
study, a CAD system that detects and identifies prostate cancer from diffusion-weighted imaging
(DWI) is developed. Methods: The proposed system first uses non-negative matrix factorization
(NMEF) to integrate three different types of features for the accurate segmentation of prostate regions.
Then, discriminatory features in the form of apparent diffusion coefficient (ADC) volumes are
estimated from the segmented regions. The ADC maps that constitute these volumes are labeled by a
radiologist to identify the ADC maps with malignant or benign tumors. Finally, transfer learning
is used to fine-tune two different previously-trained convolutional neural network (CNN) models
(AlexNet and VGGNet) for detecting and identifying prostate cancer. Results: Multiple experiments
were conducted to evaluate the accuracy of different CNN models using DWI datasets acquired at
nine distinct b-values that included both high and low b-values. The average accuracy of AlexNet
at the nine b-values was 89.2 4= 1.5% with average sensitivity and specificity of 87.5 4= 2.3% and
90.9 £ 1.9%. These results improved with the use of the deeper CNN model (VGGNet). The average
accuracy of VGGNet was 91.2 + 1.3% with sensitivity and specificity of 91.7 4= 1.7% and 90.1 & 2.8%.
Conclusions: The results of the conducted experiments emphasize the feasibility and accuracy of the
developed system and the improvement of this accuracy using the deeper CNN.

Keywords: prostate cancer; transfer learning; ALexNet; VGGNet; ADC maps

1. Introduction

Prostate cancer is a major health problem, especially in western countries. For example,
this disease is the second leading cause of mortality among males in the United States [1].
In 2020, the number of new prostate cancer cases and the number of deaths caused by
prostate cancer among Americans are expected to be 191,930 and 33,330, respectively [1].
Currently, the definitive technique of diagnosing prostate cancer is transrectal ultrasound
(TRUS)-guided biopsy. However, biopsy is an invasive procedure that can miss up to 30%
of cancers [2]. In order to minimize the errors of detecting prostate cancer by TRUS-guided
biopsy, many alternatives, such as magnetic resonance imaging (MRI)-guided biopsy, have
been investigated [3].

Recently, MRI has evolved in its capabilities of detecting prostate cancer in addition
to its use in guiding biopsies for better accuracy. Multiple MRI sequences, which include
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T2-weighted MRI, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced
MRI (DCE-MRI), are used in various clinical tasks, such as active surveillance, localization,
and determining the stage of prostate cancer [4,5]. However, detecting and localizing
prostate cancer from MRI data is a challenging task. As large volumes of MRI data,
from different protocols and sometimes from different scanners, have to be analyzed, these
variations can lead to inter-observer differences. Computer-aided detection (CAD) systems
can help physicians make objective and fast decisions. These systems can also enhance the
quantitative evaluation of prostate cancer.

Developing MRI-based CAD systems for identifying prostate cancer has become
a subject of active research [6]. For instance, Viswanath et al. [7] examined the perfor-
mance of multiple classical classifiers and their bagging and boosting ensembles using
a multi-institutional T2-weighed MRI dataset of 85 subjects. These classifiers were fed
with radiomic features and their performance was evaluated using the receiver operating
characteristic (ROC) curve. The highest average area under the curve (AUC) was obtained
by the boosted quadratic discriminant analysis. Riccardo et al. [8] found that the accuracy
of targeted biopsy improved by 13.2% in case of combining physician analysis of multipara-
metric MRI with CAD results. Rampun et al. [9] compared the accuracy of eleven classifiers
using a T2-weighed MRI dataset of 45 subjects. Their system employed feature selection on
a feature space of size 215 to select the best discriminating features. The highest resulting
accuracy was 85.5%. More detailed and profound literature review can be found in the
recent survey by Gao et al. [10].

Although existing systems have achieved satisfactory results, these systems base their
diagnosis on handcrafted features that are validated on small datasets. The good empirical
design of these handcrafted features determines their accuracy. An alternative approach
for handcrafted features is to learn the discriminating features automatically.

Deep learning structures, especially convolutional neural networks (CNN), are able
to automatically learn multiple levels of features from data in a hierarchical manner [11].
These structures have achieved accurate results in multiple computer vision tasks [12-16]
as well as lesions detection tasks [17]. Ishioka et al. [18], developed a prostate cancer
CAD algorithm that aimed to reduce the variation in the interpretation of T2-weighted
MRI. They used histogram smoothing to convert the 12-bit intensity data from the original
T2-weighted MR images into 8-bit images. These images were normalized and subjected to
data augmentation to increase the employed training data. The detection of prostate cancer
was obtained using a CNN architecture that combined both U-net and ResNet50. Their
algorithm resulted in an AUC of 0.65. Mehrtash et al. [19] evaluated the performance of
CNN with different MRI modalities. The highest performance achieved by their system
in terms of AUC was 0.8. This performance was achieved by including zonal information
of tumors with DWI and DCE-MRI. Yang et al. [20] proposed a system for detecting and
localizing the presence of prostate cancer from T2-weighted MRI and apparent diffusion
coefficient (ADC) images. Their system used an individual CNN for each of the used two
modalities to produce a response map indicating the malignancy likelihood of each pixel.
An average pooling is performed before the last convolutional layer of each CNN to obtain
a feature vector. The feature vectors from each modality are concatenated and used as
input into a support vector machine (SVM). A sensitivity of 46% and 97% was achieved
at 0.1 and 10 false positives per normal case. Le et al. [21] integrated a similarity cost
function with the CNN cost function to better fuse ADCs with T2-weighted MRI. The au-
thors investigated multiple data augmentation techniques, multiple CNN architectures,
and multiple fusion schemes to find out the combination that can lead to the best accuracy.
The final differentiation between malignant and benign tissues was based on the integration
between the results of CNN and the results of handcrafted features using an SVM classifier.
An accuracy of 91.5% was achieved. Wang et al. [22] found that optimizing the steps of
prostate segmentation, multi-modal registration and cancer localization in a joint manner
can reduce the computation burdens of optimizing each step individually. Moreover, this
joint optimization improves the accuracy by reducing the accumulation of errors over
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the different steps. Song et al. [23] developed a patch-based CNN system for differenti-
ating between malignant and benign prostate lesions from multiparametric MRI. Their
proposed CNN model consisted of three blocks of layers before the final fully-connected
(FC) layers. Each block consisted of three convolutional layers followed by a dropout layer
and a max-pooling layer. Their model resulted in sensitivity and specificity of 87% and
90.6%, respectively. Hosseinzadeh et al. [24] developed 2D-UNet model to produce maps
of prostate zones. In their system, the inclusion of zonal information improved the average
sensitivity at three different false positives by 5%.

Schelb et al. [25] used a dataset of two modalities (T2-weighted MRI and DWI) to train
a U-Net classifier. Their system showed that the performance of a U-Net classifier is similar
to the clinical assessment. Xu et al. [26] developed a system to detect prostate lesions using
a residual network. Their system resulted in an accuracy of 93%. Yuan et al. [27] developed
a system for classifying prostate cancer from three MRI modalities. Their systems employed
three CNNs. Each CNN was fed with a different modality to learn discriminative features.
Their system resulted in an accuracy of 86.9%. Chen et al. [28] tuned two pre-trained CNNs,
namely, InceptionV3 and VGG-16, using PROSTATEX challenge dataset. An AUC of 0.83
was obtained using VGG-16. Abbasi et al. [29] tuned a pre-trained CNN model(GoogLeNet)
using a prostate cancer MRI dataset. They compared GoogLeNet with other classifiers, such
as, decision tree and SVM. They found that GoogLeNet outperformed these conventional
classifiers. A recent survey by Wildeboer et al. [30] listed more than 80 CAD systems for
diagnosing prostate cancer. In this survey, the different CAD systems were categorized
according to the employed imaging modalities and the employed classifiers.

Training deep architectures with huge numbers of parameters from scratch requires
large amounts of data. Typically, the amount of data in the medical domain is small when
compared to that of natural images used in conventional computer vision applications.
Training deep architectures with small amounts of data can lead to overfitting, which means
the network can correctly classify the data used for training but is not able to correctly
classify new data (i.e., the network does not generalize well). Moreover, if the amount of
medical data is sufficient, annotating this data by multiple experts to prepare it for training
can be an impeding factor. In order to overcome these limitations, this work modifies
previously-trained CNNs and fine-tunes them for detecting and identifying prostate cancer.
The process of fine-tuning such deep networks can be done with small datasets.

The main contribution of this work does not depend on which deep learning network
is used; the main contribution is representing the input data in a different form (ADC
maps) to be more separable to achieve acceptable accuracy, no matter which deep learning
network is used. To prove this point, AlexNet, which is a deep learning network that has
only five convolutional layers, is used in the beginning. AlexNet achieved an average
accuracy of 89.2 £+ 1.5% at the nine b-values. For further validation, VGGNet, which has
more layers that increase its learning ability, is then used. VGGNet achieved an average
accuracy of 91.2 & 1.3% at the nine b-values. The ADC maps used in the proposed system
are calculated at both low and high b-values. This enables the proposed system to capture
both blood perfusion and water diffusion for an accurate diagnosis of prostate cancer.
The b-value is a measure of the degree of diffusion weighting employed to generate
diffusion-weighted images. It is a parameter that relies on the timing and strength of the
used gradient pulses. The details of this process are discussed in the following sections.

2. Methods and Materials

The DWI datasets used in this work were collected from 37 subjects (16 benign and
21 malignant) using two distinct scanners (1.5 Tesla (T) scanner and 3T scanner) at nine dis-
tinct b-values (100, 200, ..., 800, 1000 s/ mmz). The acquisition parameters of the 1.5 T scan-
ner in axial plane were: TE = 84.6 ms, TR = 8000 ms, Bandwidth = 142.86 kHz, FOV = 34 cm,
slice thickness = 3 mm, inter-slice gap = 0 mm, voxel size = 1.25 x 1.25 x 3.00 mm?3. The 3T
DW images were acquired in the transverse plane. The acquisition parameters of the sec-
ond 3T scanner were: TR = 4300—4800 ms, TE = 75-88 ms, acquisition matrix = 128 x 126,
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reconstruction matrix = 256 x 256, FOV = 20 cm. The scanning was done using full-echo
and full-k-space. However, a SENSE acceleration factor of 2 was used, thus skipping over
every-other line in k-space. Excitation and read-out were spectral fat-suppressed, standard
2D multi-slice 90-180 spin-echo Stejskal-Tanner DWI, with single-shot echo-planar-imaging
read-out. A single diffusion encoding direction of [1,1,1] was used (i.e., X,Y,Z gradient
channels were on simultaneously) to obtain minimal TE at the maximum b-value. Each
b-value was averaged 7 times. Big delta = 47 ms and little delta = 15 ms. All the cases
involved in this study performed MRI when there was a clinical suspicion of malignancy.
The final diagnosis of the cases was established by biopsy that was carried out after MRI.
Therefore, the ground truth of diagnosis of all subjects was based on the results of the
biopsy. From the malignant cases, 234 slices were labelled manually by a radiologist as
having malignant tumors. The analysis and labeling of all the cases were performed in a
slice-wise manner. A similar number, 236, of DW slices from benign cases were chosen to
create a balanced dataset of malignant and benign slices. These slices represent all the DW
slices of 13 benign cases in addition to 5 slices from the remaining 3 benign cases. The ADC
maps of the DWI datasets were calculated, as will be explained in the following subsection.
The corresponding 470 ADC maps of the labelled DW slices were used to train and test the
performance of the developed model, as explained in the following sections.

Figure 1 shows the general framework of the developed CAD system for detecting and
identifying prostate cancer, which incorporates three main steps: prostate segmentation,
identifying discriminatory features, and identifying slices with prostate cancer. Prostate
segmentation integrates three types of features using non-negative matrix factorization
(NMF) to guide the evolution of a level set model. These features are shape-priors of
prostates, intensities of voxels and spatial features of neighboring voxels. The effect of
incorporating each of these features into the accuracy of the used segmentation approach
is explained in detail in [31]. Appearance, shape and spatial information were extracted
for each voxel. NMF was used to reduce and make the combined features more separable.
Curvature and Euclidean distances between the reduced features (test subject) to the
centroids of NMF classes (calculated from training subjects) were used to estimate the
voxel-wise guiding force of the level set. If the voxel belongs to the prostate, the level
set grows. Otherwise, the level set shrinks. More details about the used segmentation
approach can be found in [31]. The second step was identifying discriminatory features,
which can discriminate malignant from benign cases. In this study, ADC volumes of the
segmented prostates were estimated and used for this purpose. By nature, the prostate is a
small organ compared to other organs. To be sure that the proposed model would capture
the features that discriminate between malignant tumors and benign tumors, the ADC
features were calculated only from the prostate region. This ensured that the system
learned the features related only to prostate cancer. The first two processing steps of the
proposed framework are illustrated for two different cases (one benign and one malignant)
in Figure 2.
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Figure 1. Overall workflow of the proposed model showing the DWI input data at nine b-values and
its three basic steps, which are prostate segmentation, calculation of ADC maps as discriminating
features, and the identification of slices with tumor using previously-trained CNN models.

68



Sensors 2021, 21, 3664

Level-set based
Segmentation

Original DWI Input

Benign Subject

Malignant Subject

ADC Maps

b=100 b=200

b=400 b=500

b=700 b=800

b=100 b=200

J el
b=400 b=500

b=700 b=800

b=300

b=600

b=900

b=300

b=600

b=900

Figure 2. Illustration of the first two processing steps of the proposed framework on two different

cases (one benign and one malignant).

The 2D cross sections that constitute these ADC volumes were extracted and used as
input to the employed CNN-based model. This process is shown in Figure 3. The final
step was identifying slices with tumors using a previously-trained CNN model. In the
following subsections, the details of estimating the ADC maps and the use of these maps
to fine-tune CNN models for identifying prostate cancer are presented.

2D slices
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3D Input Volume Prostate tissue
-
-

Figure 3. Illustration of slice-wise analysis of ADC volumes.
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2.1. Identifying Discriminatory Features

Currently, DWI is one of the promising modalities utilized for the identification
of prostate cancer. DWI is a functional MRI modality similar to DCE-MRI. However,
what distinguishes DWTI is its fast acquisition time, as there are no contrast agents used.
The problem with contrast agents is the potential harm they cause to patients who have
kidney disorders. DWI depends on the differences in the motion of water molecules inside
the body to create images. DW images visualize and quantify this microscopic motion [32].
The molecules” motion is random, and there is a positive correlation between the level of
randomness and the loss in the signal, which is given by [33]:

Sd ~ e*bXADC, (1)
where b is a parameter that relies on the timing and strength of the used gradient pulses,
and ADC is a measure of the magnitude of water molecules’ diffusion within the tissues.
The utilization of gradient pulses gives rise to enhanced diffusion sensitivity compared to
the steady state gradients [34].

The intensities of pixels in a slice acquired at a specific b-value (S;) are equal to the
intensities of the congruent pixels of the baseline slice (b = 0 s/mm?) lowered by the signal
loss defined in Equation (1). These intensities are given by:

Sp = S x e IXADC, )

There is a negative relationship between the cellular density of a tissue region and its
ADC values, as regions with dense cells restrict the mobility of water molecules. Since the
quality of DWT is low, a large number of researchers choose to utilize the quantitative ADC
maps computed from DWI to identify prostate cancer. The reason for the discriminating
capabilities of ADCs is that malignant prostate tissues have smaller ADC values than
healthy or benign tissues. The following equation shows that two DW images are required
to calculate an ADC map:

lnSb1 — l?lSO
R —

The first image is collected at a specific b-value (b; > 0 s/mm?) while the second is
collected at by (b =0 s/mm?). Another justification for employing ADC maps in this study
is that the calculation of ADC maps is not sensitive to the used magnetic field strength [35].
This is suitable for the DWI datasets used in this study, as they were collected by two
scanners that have different magnetic field strengths. Moreover, integrating handcrafted
features with the automatically-learned features by CNNs can improve accuracy [36].
Since each ADC map represents the difference between two DW images, these maps are
themselves images. Therefore, they can be used as input to the CNN model instead of the
DW images. As these maps have better discriminating capabilities, their use improves the
accuracy of the system.

ADC = 3

2.2. Identification of Prostate Cancer

In this study, two different CNN models were used for prostate cancer identification.
There are multiple advantages of using CNN over traditional neural networks. First, CNNs
typically contain a larger number of layers than traditional neural networks. Augmenting
the number of layers allows CNN to learn high levels of abstraction as the first layers learn
primitive components while end layers use these learned primitive features to form the
high-level features. The process of learning the features is done automatically by CNNs.
Second, CNN takes both 2D images and 3D volumes directly as inputs without the need
to convert these inputs into vectors, as in the case of neural networks. This preserves
the inputs’ spatial information. Third, the network connections and hence the network
parameters of CNN’s are fewer than the network connections in similar traditional neural
networks. This reduction simplifies and expedites the training process of CNNs [37,38].
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In this work, DW slices that contained tumors were labeled by a radiologist. The ADC
maps that correspond to these labeled DW slices were divided into two groups. The first
group contained ADC maps with malignant tumors, and the second group contained
ADC maps from benign subjects. The number of ADC maps in the benign group was
236, and the number of ADC maps in the malignant group was 234. These ADC maps
were used to train and evaluate two different previously-trained CNN models, which are
AlexNet [39] and VGGNet [40].

ALexNet expects an input image of size 227 x 227 x 3, whereas the size of an input
image for VGGNet was 224 x 224 x 3. The sizes of the calculated ADC maps were the
same as the sizes of the corresponding DW images, which were 256 x 256 for the 1.5T
images and 144 x 144 for the 3T images. To make these ADC maps suitable as inputs for
the employed CNN models, the ADC maps of the larger sizes were center cropped, while
the ADC maps of smaller sizes were zero padded. Then, each of these ADC maps was
concatenated along the depth dimension to generate a three-channel image, which was the
expected input to each of the employed CNN models.

Since the number of ADC maps is considered small for training and evaluating a CNN
model from scratch, as training such deep structures from scratch with a small dataset leads
to overfitting, a transfer learning model was adopted in this study. The idea of transfer
learning is to modify a network that is trained to solve a certain problem and use it to solve
anew problem in a different domain. The training of the original network is typically done
with millions of images from the original domain. The advantage of transfer learning is
that the adoption of this previously-trained network to solve a new problem requires far
fewer images from the new domain. This is done by replacing the last few layers, including
the output layer of the original network, with new layers appropriate to the new problem.
In this work, the original output layer of either AlexNet or VGGNet, which assigns its
input image to one of 1000 categories, was replaced with an output layer that classified its
input ADC maps into either benign or malignant (Figure 4).
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Figure 4. Illustration of the two different CNNs used in this study, (a) ALexNet, and (b) VGGNet.

The introduction and success of AlexNet have revolutionized the use of CNNss for
multiple classification tasks. AlexNet is a CNN that contains five convolutional layers and
three FC layers (Figure 4a). The network depth has a remarkable influence on its accuracy
as the accuracy of AlexNet drops by 2% in the case of removing any of the five convolution
layers. Rectified linear units (ReLUs) [41] are employed as activation functions by AlexNet.
There are two main advantages of using ReLUs. First, ReLUs are saturation-free even in
case of unnormalized inputs. Second, the training time of CNNs with ReLUs is shorter than
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the training time of CNNs with saturating activations (e.g., sigmoid). AlexNet is trained
with a large dataset of natural images (ImageNet). This dataset contains more than one
million images that belong to one thousand categories. To reduce the classification error,
AlexNet employs overlapping pooling and response normalization [39]. AlexNet employs
dropout [42] and data augmentation to overcome the overfitting issue. Two different forms
of data augmentation were used: intensity alteration and transformations (translations and
horizontal reflections) [39].

VGGNet is another deep CNN that is trained using ImageNet dataset. The main goal
of developing VGGNet is to evaluate the effect of the network depth on the accuracies of
CNN . To achieve this goal, the developers examined five different network architectures
with different depths, while the other parameters are fixed for a fair comparison. The
input image is processed by a sequence of convolution layers, max-pooling layers [43], FC
layers, and a softmax layer. VGGNet uses ReLU non-linearity activation. The number of
convolutional layers of the different architectures ranges from 8 to 16 layers. The numbers
of pooling layers and FC layers are 5 and 3, respectively. These numbers do not differ across
the different architectures. The pooling layers follow some, but not all, of the convolutional
layers. The convolution layers use kernels of small fixed receptive fields of 3 x 3 to lower
the number of parameters. The pooling layers use fixed windows of 2 x 2 and a stride of 2.
The number of filters of the first convolutional layer is 64. When a pooling layer is used,
the number of filters of the following convolutional layer is doubled until the number of
kernels reaches 512 [40].

In this work, the deepest architecture was used. This architecture has 19 layers with
weights (16 convolutional layers and 3 FC layers) (Figure 4b). This architecture has 144 mil-
lion parameters. This large number of parameters increases the training time of VGGNet,
especially when compared with other CNNs with smaller numbers of parameters, such as
AlexNet (60 million parameters) and GoogLeNet (4 million parameters). However, the per-
formance of VGGNet in many transfer learning tasks is better than GoogLeNet [44]. Both
AlexNet and VGGNet were optimized using stochastic gradient descent with momentum
and the loss function was cross entropy. The other training parameters were the following:
number of epochs = 50, learning rate = 0.0001, momentum = 0.9, mini-batch-size = 10, L,
regularization = 0.0001. The basic architecture and configuration parameters of both the
original and the fine-tuned AlexNet and VGGNet are summarized in Table 1.

Table 1. Basic architecture and configuration parameters of both AlexNet and VGGNet, where Conv.
means convolutional, FC means fully-connected, SGDM means stochastic gradient descent with
momentum, and cross entr. means cross entropy.

AlexNet VGGNet
Original Fine-Tuned Original Fine-Tuned
No. of training images >1 million 329-423 >1 million 329-423
Size of input images 227 x 227 227 x 227 224 x 224 224 x 224
No. of output categories 1000 2 1000 2
No. of Conv. layers 5 5 16 16
FC layers 3 3 3 3
Optimizer SGDM SGDM SGDM SGDM
Loss function cross entr. cross entr. cross entr. cross entr.

3. Results

Multiple experiments were conducted to test the performance of the developed system
and to compare its performance with other modern machine-learning classifiers. In the first
experiment, 70% of the ADC maps of both the malignant and benign cases at each b-value
were used for fine-tuning an AlexNet-based model. The other 30%, which represent 71
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ADC maps from benign cases and 70 ADC maps with malignant tumors, were employed
to evaluate the accuracy of the tuned model. The ADC slices used for training were from
different patients to the ADC slices used for testing to avoid any correlation that could exist
between ADC slices of the same patient. The results of this experiment at each b-value are
shown in Table 2.

Table 2. Performance of AlexNet at 9 b-values using 141 ADC maps.

Sensitivity

b-Value Accuracy% (Recall)% Specificity % Precision%
100 s/mm? 86.52 84.29 88.73 88.06
200 s/mm? 90.07 85.71 94.37 93.75
300 s/mm? 88.65 85.71 91.55 90.91
400 s/mm? 88.65 88.57 88.73 91.18
500 s/mm? 91.49 91.43 91.55 91.43
600 s/mm? 89.36 88.57 90.14 89.86
700 s/mm? 87.94 85.71 90.14 89.55
800 s/mm? 90.07 90.00 90.14 90.00
1000 s/ mm? 90.07 87.14 92.96 92.06

In a similar experiment, 80% of the ADC maps were used for tuning an AlexNet-based
model. The remaining 20% or 94 ADC maps were used to evaluate the accuracy of the
tuned model. The reason behind this 80:20 division of the dataset was to satisfy the Pareto
principle. The results of this experiment are reported in Table 3.

Table 3. Performance of AlexNet at 9 b-values using 94 randomly chosen ADC maps.

b-Value Accuracy% S(EI;SC{:III‘;T)ZY Specificity % Precision%
100 s/mm? 87.23 87.23 87.23 87.23
200 s/mm? 90.43 89.36 91.49 91.30
300 s/mm? 89.36 89.36 89.36 89.36
400 s/mm? 89.36 91.49 87.23 87.76
500 s/mm? 90.43 91.49 89.36 89.58
600 s/mm? 91.49 89.36 93.62 93.33
700 s/mm? 88.33 89.36 87.23 87.50
800 s/mm? 91.49 93.62 89.36 89.80
1000 s/mm? 89.36 93.62 85.11 86.27

Similarly, in another experiment, 70% of the ADC maps of both the benign and
malignant cases at each b-value were randomly chosen for tuning an AlexNet-based model.
The other 30% of the ADC maps were used to evaluate the accuracy of the tuned model.
Since the ADC maps used for evaluating the accuracy of the system at each b-value were
chosen randomly, this experiment was repeated 10 times at each b-value. To ensure the
stability of the reported results, the mean accuracy of the 10 experiments conducted at each
b-value, in addition to the mean sensitivity and the mean specificity, are listed in Table 4.
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Table 4. Average Performance of AlexNet at 9 b-values using 141 randomly chosen ADC maps and
repeating the experiment 10 times.

b-Value Accuracy% Sensitivity% Specificity %
100 s/mm? 87.52 + 0.01 89.14 + 0.04 85.92 + 0.04
200 s/mm? 89.29 + 0.01 88.71 £+ 0.04 89.86 + 0.03
300 s/mm? 89.57 + 0.02 89.00 + 0.03 90.14 + 0.03
400 s/mm? 89.57 £ 0.02 89.71 + 0.03 89.44 + 0.04
500 s/mm? 89.22 + 0.03 88.29 £ 0.04 90.14 + 0.04
600 s/mm? 88.01 + 0.03 88.00 £ 0.07 88.03 & 0.05
700 s/mm? 89.72 + 0.02 89.29 £ 0.04 90.14 + 0.03
800 s/mm? 89.63 + 0.03 88.57 £ 0.05 90.70 £ 0.03
1000 s/mm? 90.43 £ 0.02 90.86 + 0.04 90.00 + 0.04

In another experiment, 10-fold cross validation was applied using the 470 ADC maps.
Each fold contained 47 ADC maps. Nine folds were used for training whereas the remaining
fold was used for testing the system. This operation was repeated 10 times with the change
of the testing fold each time. The performance of the 10-fold cross validation using AlexNet
at the different b-values is reported in Table 5.

Table 5. 10-fold cross validation of AlexNet at 9 b-values.

b-Value 100 200 300 400 500 600 700 800 1000

1st fold 93.62 8723 93.62  93.62 91.49 89.36 91.49 91.49 87.23
2nd fold 7872 8298 7872 8298 87.23 82.98 85.11 80.85 78.72
3rd fold 9149 9574 9149 89.36 93.62 93.62 95.74 93.62 91.49
4th fold 9574 9787 9787  93.62 93.62 95.74 97.87 97.87 91.49
5th fold 8723 89.36 9149 9149 89.36 93.62 87.23 91.49 91.49
6th fold 85.11  80.85 8298  82.98 87.23 80.85 85.11 87.23 89.36
7th fold 9149 93.62 8936 97.87 95.74 93.62 93.62 95.74 93.62
8th fold 89.36  87.23 8723  89.36 89.36 89.36 87.23 89.36 89.36
9th fold 93.62 9149 9149  93.62 91.49 93.62 89.36 91.49 91.49
10th fold 8298 8511 8511 87.23 87.23 85.11 87.23 87.23 85.11
Average% 8894 89.15 8894  90.21 90.64 89.79 90.00 90.64 88.94

In order to evaluate the effect of the depth of the used CNNs on the resulting accuracy,
an experiment was conducted. In this experiment, 70% of the ADC maps were used for
tuning a deeper CNN (VGGNet), while the remaining 30% were used to evaluate the trained
model. VGGNet has 16 convolutional layers in comparison to five convolutional layers in
AlexNet. The performance using VGGNet is listed in Table 6. As can be noticed, the use of
the deeper network improves the accuracy at all b-values except for b-value = 500 s/mm?.
The highest improvement in the accuracy is at b-value = 600 s/ mm?. The use of VGGNet
leads to an average improvement of 1.97% in the accuracy.

The time required for training VGGNet model is much longer than the time required
for training the AlexNet model. For example, the time required for fine-tuning AlexNet
in the first experiment was 5 min and 25 s, whereas the time required for fine-tuning the
deeper CNN (VGGNet) in the similar experiment was about 97 min. The proposed models
were developed using MATLAB 2017b. The training of the proposed model was performed
using a workstation with a graphics processing unit (GPU) of type NVIDIA Quadro K1200.

In a similar experiment, 80% of the ADC maps were used for tuning a VGGNet-based
model. The remaining 20% or 94 ADC maps were used to evaluate the accuracy of the
tuned model. The results of this experiment are reported in Table 7.
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Table 6. Performance of VGGNet at 9 b-values using 141 randomly chosen ADC maps.

Sensitivity

b-Value Accuracy% (Recall)% Specificity% Precision%
100 s/mm? 90.07 88.57 91.55 91.18
200 s/mm? 92.20 92.86 91.55 91.55
300 s/mm? 90.07 90.00 90.14 90.00
400 s/mm? 90.07 90.00 90.14 90.00
500 s/mm? 90.78 91.43 90.14 90.14
600 s/mm? 93.62 92.86 94.37 94.20
700 s/mm? 90.07 92.86 87.32 97.84
800 s/mm? 92.20 92.86 91.55 91.55
1000 s/mm? 91.49 92.86 90.14 90.28

Table 7. Performance of VGGNet at 9 b-values using 94 randomly chosen ADC maps.

o Sensitivity i o s o
b-Value Accuracy% (Recall)% Specificity % Precision%
100 s/mm? 91.49 87.23 95.74 95.35
200 s/mm? 90.43 89.36 91.49 91.30
300 s/mm? 91.49 91.49 91.49 91.49
400 s/mm? 90.43 87.23 93.62 93.18
500 s/mm? 92.55 89.36 95.74 95.45
600 s/mm? 94.68 91.49 97.87 97.73
700 s/mm? 90.43 87.23 93.62 93.18
800 s/mm? 92.55 89.36 95.74 95.45
1000 s/mm? 92.55 93.62 91.49 91.67

In another experiment, 10-fold cross validation is applied using VGGNet at the differ-
ent b-values. The results of this experiment are reported in Table 8.

Table 8. 10-fold cross validation of VGGNet at 9 b-values.

b-Value 100 200 300 400 500 600 700 800 1000

1st fold 8511 9149 8936 9149 95.74 95.74 95.74 95.74 95.74
2nd fold 8298 89.36 89.36 87.23 89.36 89.36 89.36 91.49 87.23
3rd fold 89.36 9149 8511  93.62 91.49 91.49 95.74 97.87 91.49
4th fold 93.62 9149 8936  93.62 97.87 97.87 97.87 93.62 97.87
5th fold 89.36  93.62 93.62  89.36 89.36 91.49 89.36 91.49 87.23
6th fold 89.36  80.85 87.23  87.23 82.98 85.11 89.36 89.36 82.98
7th fold 80.85 9149 9149 9574 97.87 97.87 93.62 95.74 95.74
8th fold 8723 9787 93.62 91.49 97.87 87.23 89.36 93.62 85.11
9th fold 93.62 9574 9787  97.87 97.87 95.74 93.62 95.74 93.62
10th fold 7872  80.85 89.36 8298 85.11 85.11 80.85 85.11 87.23
Average%  87.02 9043 90.64  91.06 92.55 91.70 91.49 92.98 90.43

In order to show the merits of CNNs over classical machine-learning classifiers,
the performance of CNN is compared to the performance of SVM with both linear and
quadratic kernels. The models of SVMs were trained using 70% of the ADC maps and
evaluated using the remaining 30% of the ADC maps. The inputs to the SVMs were the
same as the inputs to the CNNs. The inputs to the SVMs were the ADC maps (raw data).
In order to be used as input to the SVMs, each ADC map has to be transformed into a
vector. This vector represents a row in the data matrix used to train the SVM. The results of
these SVMs are reported in Table 9. The high performance of the CNN models highlights
the importance of the inputs’ spatial information that is preserved in the case of CNNs.
However, the inputs’ spatial information is lost in the case of conventional models such
as SVMs.
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Table 9. Performance of SVMs with linear kernel (lin. ker.) and quadratic kernel (quad. ker.) at
9 b-values using 141 randomly chosen ADC maps, where Acc. means accuracy, Sen. means sensitivity,
and Spec. means specificity.

SVM with Lin. Ker. SVM with Quad. Ker.
b-Value Acc. % Sen. % Spec. % Acc. % Sen. % Spec. %
100 s/mm? 75.18 65.71 84.51 78.01 7143 84.51
200 s/mm? 75.89 72.86 78.87 78.72 78.57 78.87
300 s/mm? 73.05 58.57 87.32 82.27 77.14 87.32
400 s/mm? 68.79 75.71 61.97 80.85 88.57 73.24
500 s/mm? 79.43 82.86 76.06 82.27 81.43 83.10
600 s/mm? 73.76 68.57 78.87 80.14 77.14 83.10
700 s/mm? 68.79 71.43 66.20 80.14 80.00 80.28
800 s/mm? 71.63 74.29 69.01 81.56 87.14 76.06
1000 s/mm? 73.76 70.00 77.46 81.56 82.86 80.28

The ROC curves of two CNN models (AlexNet and VGGNet) and two variants of
SVMs with linear and quadratic kernels are shown in Figure 5. Since the ROC curves of
each of these classifiers at the distinct b-values have similar shapes, the ROC curves at only
five b-values are displayed to simplify the figures.

VGGNet !\"IexNet
—-=-b100 =-=-b100
——b300 ——b300
b500 b500
......... b700 cereeeen D700
b1000 b1000
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
(a) ROC curve of VGGNet (b) ROC curve of AlexNet
SVM 1 SVM Quadratic

0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1

(c) ROC curve of support vector machine (SVM) with (d) ROC curve of SVM with quadratic kernel
linear kernel

Figure 5. ROC curves at five b-values(100, 300, 500, 700, and 1000 s/ mm?) of four different classifiers:
(a) VGGNet, (b) AlexNet, (c) SVM with linear kernel, and (d) SVM with quadratic kernel. As these
figures show, CNN-based models (VGGNet and AlexNet) result in higher AUCs than the two variants
of SVMs with linear and quadratic kernels at the distinct b-values.

An experiment was conducted to compare the performance of the proposed approach
to one of the state-of-the-art CNNs, which is GoogLeNet [45]. This CNN was the winner
of the ImageNet challenge in 2014. This deep network consists of 22 layers. However,
the number of its parameters is reduced dramatically due to the use of the Inception module
and the removal of the FC layers. The resulting performance of GoogLeNet is listed in
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Table 10. The performance results of GoogLeNet are close to the results of both AlexNet
and VGGNet. These results boosts the feasibility of the transfer learning in diagnosing
prostate cancer.

Table 10. Performance of GoogLeNet at 9 b-values using 141 ADC maps.

b-Value Accuracy% Sensitivity% Specificity %
100 s/mm? 85.82 85.71 85.92
200 s/mm? 90.78 85.71 95.77
300 s/mm? 87.23 85.71 88.73
400 s/mm? 87.23 82.86 91.55
500 s/mm? 87.94 90.00 85.92
600 s/mm? 88.65 88.57 88.73
700 s/mm? 90.07 91.43 88.73
800 s/mm? 88.65 85.71 91.55
1000 s/mm? 89.36 90.00 88.73

4. Discussion

In this study, a transfer learning model is adopted to detect and identify prostate
cancer. When the employed CNN models were originally trained using natural images,
they used conventional techniques such as, data augmentation and dropout in order to
reduce the effect of overfitting. The combination of both conventional overfitting handling
techniques and transfer learning can minimize the effect of overfitting.

The proposed system starts with segmentation to limit the region-of-interest (ROI) to
the prostate region only. In this system, prostate segmentation is performed using level set
due to its capability to provide continuous segmented object. However, any segmentation
approach can be integrated with the proposed system, as long as, it provides a continuous
segmented object. For example, Comelli et al. [46], presented a fast deep learning network,
namely efficient neural network (ENet), for prostate segmentation from T2-weighted MRI.
ENet is initially used for image segmentation tasks in self-driving cars where hardware
availability is limited and the accuracy is critical for user safety. In this study [46], ENet is
trained using a dataset of 85 subjects and results in a dice similarity coefficient of 90.89%.

Several studies suggested that the use of DWI acquired at higher b-values are prefer-
able for accurate detection and diagnosis of prostate cancer [47-51]. This study shows
that the use of ADC maps calculated at lower b-values results in an accuracy close to the
accuracy of the ADC maps calculated at higher b-values. There is a slight accuracy increase
for the ADC maps calculated at higher b-values. This accuracy increase is more obvious in
the case of using a less-deeper CNN (AlexNet). One of the advantages of using ADC maps
is that they are insensitive to the magnetic field strengths of the used scanners (1.5T or
3T) [35]. The ADC maps used in this study were calculated from DWI acquired with 1.5T
and 3T scanners at nine b-values. The results show that the dependence on ADC maps can
also mitigate the differences in the accuracy between higher and lower b-values, especially
in the case of using deeper CNN models.

The developed approach performs slice-wise analysis. However, the proposed frame-
work is generic and can perform both slice-wise analysis and prostate-zonal analysis based
on how the model is trained. Since the system shows good performance in slice-wise
analysis, the authors did not investigate it on zonal analysis. Investigating the performance
of the system in prostate-zonal analysis is a good potential for future work.

According to the literature, a sensitivity and a positive predictive value of 80% and
87%, have been reported for men with high prostate-specific antigen (PSA) values using
positron emission tomography/computed tomography (PET/CT) [52,53].

According to Sun et al. [54], the performance of deep learning networks increases
logarithmically based on the size of the training data. One way to improve the performance
in the case of limited data is to conduct multiple experiments and choose the best results.
In this work, to obtain the best performance, 10-fold cross validation was used to obtain
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almost the same performance, no matter which fold was used for training and which fold
was used for testing.

The use of two different CNN models in this work shows that the depth of the CNN
model positively affects the performance of the system. However, much longer processing
times are required to train the deeper architectures. The results of this study show that
the use of a deeper CNN (VGGNet) increases the accuracy of prostate cancer detection
more than the less-deep CNN (AlexNet). However, this accuracy is still far from perfect.
Examining the effect of using much deeper CNN models, such as ResNet [55], can be
a potential future work. Moreover, in this system, prostate cancer identification from
DWTI acquired at nine b-values was investigated. This investigation can be extended by
performing a statistical analysis of the used b-values to select the best minimal combination
of b-values that lead to the best accuracy. Choosing a minimal combination of b-values will
reduce both the acquisition time of DWI and the computational complexities. Another area
of potential future work could be the use of artificial intelligence optimization techniques
on a combination of imaging markers and clinical markers (such as PSA) to optimize
prostate cancer management.

5. Conclusions

In conclusion, this paper presents a CAD system for prostate cancer detection and iden-
tification from DWI. The identification of prostate cancer is achieved using two previously-
trained CNN models (AlexNet and VGGNet) that are fed with the estimated ADC maps
of the segmented prostate regions. The conducted experiments show that the use of
previously-trained CNN models for detecting prostate cancer is feasible. These previously-
trained CNN models learn the discriminatory features automatically. The results section
shows that CNN models outperform conventional models. The accuracy of conventional
models depends on the good design of the used handcrafted features.
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Abstract: Diabetic retinopathy (DR) is a disease resulting from diabetes complications, causing
non-reversible damage to retina blood vessels. DR is a leading cause of blindness if not detected
early. The currently available DR treatments are limited to stopping or delaying the deterioration of
sight, highlighting the importance of regular scanning using high-efficiency computer-based systems
to diagnose cases early. The current work presented fully automatic diagnosis systems that exceed
manual techniques to avoid misdiagnosis, reducing time, effort and cost. The proposed system
classifies DR images into five stages—no-DR, mild, moderate, severe and proliferative DR—as well
as localizing the affected lesions on retain surface. The system comprises two deep learning-based
models. The first model (CNN512) used the whole image as an input to the CNN model to classify it
into one of the five DR stages. It achieved an accuracy of 88.6% and 84.1% on the DDR and the APTOS
Kaggle 2019 public datasets, respectively, compared to the state-of-the-art results. Simultaneously,
the second model used an adopted YOLOv3 model to detect and localize the DR lesions, achieving
a 0.216 mAP in lesion localization on the DDR dataset, which improves the current state-of-the-art
results. Finally, both of the proposed structures, CNN512 and YOLOV3, were fused to classify DR
images and localize DR lesions, obtaining an accuracy of 89% with 89% sensitivity, 97.3 specificity
and that exceeds the current state-of-the-art results.

Keywords: computer-aided diagnosis; convolutional neural networks; deep learning; diabetic
retinopathy; diabetic retinopathy classification; diabetic retinopathy lesions localization; YOLO

1. Introduction

Diabetic retinopathy (DR) is a common diabetes complication that occurs when the
retina’s blood vessels are damaged due to high blood sugar levels, resulting in swelling
and leaking of the vessels [1]. In an advanced DR stage, the vision may be lost completely.
The percentage of blindness worldwide resulting from DR is 2.6% [2]. Therefore, diabetes
patients need regular screening of the retina to detect DR early, manage its progression and
avoid the risk of blindness.

The leaking blood and fluids appear as spots, called lesions, in the fundus retina
image. Lesions can be recognised as either red lesions or bright lesions. Red lesions involve
microaneurysms (MA) and haemorrhage (HM), while bright lesions involve soft and hard
exudates (EX) as shown in Figure 1. The small dark red dots are called MA and the larger
spots are called HM. Hard EX appears as bright yellow spots, while soft EX, also called
cotton wool, appears as yellowish-white and fluffy spots caused by nerve fiber damage [3].
The five DR stages depend on the types and numbers of lesions on the retina image, as
shown in Table 1. Samples of the various DR stages (no DR, mild DR, moderate DR, severe
DR, and proliferative DR) are shown in Figure 2.
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Microaneurysms

Hemorrhage

Hard exudates

s

Soft exudates

Figure 1. The different types of DR lesions.

(e)

Figure 2. The DR stages: (a) No DR (b) Mild, (c) Moderate, (d) Severe, (e) Proliferative DR.

Table 1. The DR stages depending on lesions classification [4].

DR Severity Level Lesions
No DR No lesions.
Mild DR MA only.
Moderate DR More than just MA but less than severe DR.
Any of the following:
3 more than 20 intraretinal HM in each of 4 quadrants; definite venous
evere DR L . . . .
beading in 2+ quadrants; Prominent intraretinal microvascular
abnormalities in 1+ quadrant and no signs of proliferative DR.
Proliferative DR One or more of the following:

neovascularization, pre-retinal HM.

The manual diagnosis of DR by ophthalmologists is time-consuming, requires con-
siderable effort, and is prone to disease misdiagnosis. Therefore, using a computer-aided
diagnosis system can avoid misdiagnosis and reduce overall cost, time and effort. During
the last decade, deep learning (DL) approach has emerged and been adopted in many
fields, including medical image analysis. DL can identify features accurately from input
data for classification or segmentation and typically outperforms all traditional image
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analysis techniques. DL techniques does not need to extract the hand-crafted features while
it requires extensive data for training [5]. In contrast, machine learning techniques require
extraction of the hand-crafted features, but they do not need extensive data for training. In
DR detection, the machine learning techniques need to extract the vessel firstly, as in [6,7].
Then, extract DR lesions’ features for classification as in [8]. DL applications include the
segmentation, classification, retrieval, detection and registration of the images [9]. Convo-
lutional Neural Network (CNN) is a type of DL method that is a widely used [9], highly
effective and successful method for image analysis [10,11].

There has been a considerable number of efforts to automate DR image classification
using DL to help ophthalmologists detect the disease in its early stages. However, most
of these efforts focused only on detecting DR instead of detecting various DR stages.
Moreover, there have been limited efforts to classify and localize all the DR lesions types,
which is very helpful in practice, as ophthalmologists can evaluate DR severity and monitor
its progression based on the appearance of these lesions. For these reasons, we propose a
fully automated screening system using CNN to detect the DR five stages and localize all
DR lesion types simultaneously. The proposed system helps ophthalmologists mimic their
DR diagnosis method, which localizes DR lesions, identifying its type and determining
the DR exact stage. The current study investigates three CNN-based models to classify
the DR images into stages. The first model was designed using transfer learning by fine-
tuning EfficientNetB0 [12]. The other two models, CNN512 and CNN229, were designed,
tuned and trained from scratch. For DR lesions localization and classification, a tuned
YOLOV3 [13] model was used. To achieve the best DR stages classification result, the image
classification model and the DR lesions localization model were fused. We investigate
many CNN structures to classify and localize DR images’ lesions until it reaches the best
combination of a CNN and YOLOV3 structure to present a fully automatic DR grading and
localization system. The present study’s main contribution is the promising new design
and fusion of two models to construct the proposed screening system. The first structure
is the CNN512, a CNN designed, tuned and trained from scratch to classify each image
according to one of the DR stages. While the second is a modified YOLOV3 to localize its
DR lesions simultaneously. The proposed system shows a promising result.

As far as we know, YOLOvV3 has been used in the detection of the red lesion as in [14].
The novelty of the current work is considered the first research used YOLOV3 to detect the
different DR lesions.

This paper is structured as follows: Section 2 briefly analyses deep learning based
related works on DR stages and lesions detecting, while Section 3 presents the materials
and proposed methods. Section 4 describes the experiments and results. The discussion
and conclusion are presented in Sections 5 and 6, respectively.

2. Related Works

CNN has been used widely in the classification and localisation of retinal fundus
images. The DR detection works using DL can be categorized into three main categories:
binary DR classification, multi-level DR classification and hybrid classification. In the
following sections, we will summarise the recent efforts in DR classification in these three
categories. A comparison between the related works is presented in Table 2.

2.1. Binary Classification

This section looks at the studies that have classified DR images into two categories.
Pires et al. [15] proposed a custom CNN to detect referable DR images and non-referable
DR images. Their CNN were trained on the Kaggle [16] and achieved an AUC of 98.2% on
the Messidor-2 [17]. Jiang et al. [18] created a new dataset to classify DR images to referable
DR or not using three pretrained CNNs; Inception-Resnet-V2 [19], Inception V3 [20] and
Resnet152 [21]. These CNNs were combined using the Adaboost algorithm. They obtained
an AUC of 0.946. Liu et al. [22] created a weighted paths CNN called WP-CNN to classify
referable DR images in a private dataset. They reported an accuracy (ACC) of 94.23%.
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Das et al. [23] proposed two independent CNN to classify the images into normal or DR
images. Their CNNs obtained an ACC of 98.7% on the DIARETDBI dataset. Although
the previous studies achieved good results in detecting DR, they did not take the five DR
stages and the various lesions into account. The main drawback of the binary classification
method is that it only classifies the DR images into two categories, without considering the
five DR stages. The identification of the exact DR stages is essential in selecting a suitable
treatment process and preventing retina deterioration.

Table 2. Comparison between the related works that used DL to classify DR Images.

Detect Performance Measure
Ref. Number of Classes . Dataset
Lesion AUC ACC SEN SP
Messidor-2, 98.2%
(151 2 No DR2 98% . . .
[22] 2 No private dataset, STARE 03%2531 9: 025 410/0 90.94% 95.74%
[18] 2 No private dataset 0.946 88.21% 85.57% 90.85%
[23] 2 No private dataset - 98.7% 0.996 98.2%
[24] 5 No Kaggle - 63.23% - -
[25] 5 No Kaggle 0.978 95.6% 86.4% 97.4%
[26] 4 No Messidor - 98.15% 98.94% 97.87%
[27] 4 No private dataset - 96.5% 98.1% 98.9%
[28] 5 No IDRiD - 90.07% - -
[29] 4 No Messidor - 96.35 92.35 97.45
[30] 5 No IDRiD - 65.1% - -
[31] 5 No APTOS 2019 - 0.77 - -
0.8408
[32] 5 No Messidor, DDR, Kaggle - 0.8569 - -
0.8668
[33] 5 No APTOS 2019 - 83.09 88.24 87
[34] 5 No APTOS 2019 - 82.54 83 -
private dataset, 0.955, 0.984,

(351 3 No EYEPACS 0.955 . . .
[36] 2 Red lesion only Messidor 0.912 - 0.94 -
[37] 5 Yes DDR - 0.8284 - -

. rivate dataset, - 92.95 99.39% 99.93%
(381 5 Red lesion only : Messidor 0.972 - 92.59%  96.20%

2.2. Multi-Level Classification

This section reviews the works that have classified DR images into various stages.
Wang et al. [24] examined the performance of three pre-trained CNNs in the Kaggle
dataset [16] to classify all the stages of the DR images. The three CNN architectures
used were InceptionNet V3 [20], AlexNet [39] and VGG16 [40]. The best average ACC of
63.23% was obtained by InceptionNet V3. The work of [25] transferred learning pre-trained
AlexNet [39], VggNet [40], GoogleNet [41] and ResNet [21] to detect the different DR stages
in the Kaggle dataset [16]. Their results showed that VggNet achieved the higher ACC,
with a value of 95.68%. Mobeen-ur-Rehman et al. [26] proposed a simple CNN to detect the
DR stages of the Messidor dataset [17]. Their CNN obtained an excellent ACC of 98.15%.
Zhang et al. [27] proposed a method to detect the DR stages of their private dataset. They
fine-tuned InceptionV3 [20] , ResNet50 [42], Xception [43], InceptionResNetV2 [19], and
DenseNets [44] and then combined the strongest CNNs. This method obtained an ACC
of 96.5%. Harangi et al. [28] classified the DR stages by integrating hand-crafted features
and AlexNet [39]. They used the Kaggle dataset [16] for training and the IDRiD [45]
dataset for testing. This method achieved an ACC of 90.07%. Shanthi and Sabeenian [29]
used Alexnet [39] to classify the DR stages of the Messidor dataset [17]. Their ACC was
96.35%. Li et al. [30] used ResNet50 [21] with attention modules to classify the stages in the
IDRiD dataset [45], resulting in a 65.1% joint ACC. Dekhil et al. [31] transferred learning
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VGG16 [40] to classify the DR stages in the APTOS 2019 Kaggle dataset [46], and they
achieved an ACC of 77%. He et al. [32] proposed a CABNet network to classify DR images
into stages, achieving an ACC of 85.69% in the DDR [37]. Kassani et al. [33] modified
Xception model [43] to classify the DR stages in the APTOS 2019 Kaggle dataset [46],
resulting in a 83.09% ACC. Bodapati et al. [34] proposed a composite network with gated
attention to classify DR images into stages, achieving an ACC of 82.54% in the APTOS
2019 Kaggle dataset [46]. Hsieh et al. [35] trained the modified Inception-v4 [19] and
the modified ResNet [21] to detect any DR, proliferative DR and referable DR in their
private dataset and the EYEPACS dataset. They obtained an AUC of 0.955, 0.984 and 0.955,
respectively in detecting any DR, proliferative DR and referable DR.

These previous studies demonstrated that CNN is effective in classifying DR images.
However, localising DR lesions with DR image classification is more efficient for ophthal-
mologists at diagnosis. Moreover, Alyoubi et al. [47] reported that most of the studies,
almost 70%, classified the fundus images using binary classifiers such as DR or non-DR,
while only 27% classified the input to one or more stages, as shown in Figure 3.

Studies detected
DR stages
27%

Studies did not
detect DR stages
73%

Figure 3. The ratio of studies that classified the DR stages [47].

2.3. Hybrid Classification

This section presents the studies that classified DR images and localised lesions at
the same time. Zago et al. [36] used VGG16 [40] to detect red lesion patches of the DR
images, and then they classified the image to DR or no-DR based on the detected red
lesions. Their best results were achieved in the Messidor dataset [17] with an AUC of
0.912. Li et al. [37] created a dataset called the DDR to classify images into five DR stages
and to localise lesions. For the stages classification, they achieved the best ACC of 82.84%
using SE-BN-Inception [48], while for localisation, they achieved a mAP of 9.2 using Faster
RCNN [49]. Wang et al. [38] used two modified RFCN [50] to detect the stages of DR
and localise the MA and HM. Then the results from the two RFCN were merged. In their
private dataset, this method achieved a mAP of 92.15 in localizing, while in classification,
they achieved a 92.95% ACC.

Many studies, such as those by W. Alyoubi et al. [47] and T. Li et al. [51], show that
the main limitation of the DR classification systems is that only a limited number of the
studies detected and localized the types of DR lesions on the fundus image, as shown in
Figure 4. Furthermore, there are limited studies that detected the DR stages, grading and
lesions together. Lesions localization with high accuracy helps with grading the cases and
the patients’ follow-up, which is considered a critical requirement for DR patients.
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Only Red lesions

All Kind of lesions

12%

No lesions
detected
70%

Figure 4. The ratio of studies that classified the DR lesions [47].

3. Materials and Methods

This section presents the datasets and the preprocessing methods used in the current

work. Moreover, it explains the two proposed methods, shown in Figure 5, to classify the
DR stages and localise the DR lesions types. The first method, called the Image-Based
Method, utilises the whole preprocessed RGB retina images as an input for the CNN, while
the second method, called Lesion localization method, is based on the lesions detection in
order to classify the images into the five DR stages.

[ Proposed DR Detection Methods ]
]

Image Based Method Lesion Localization Method

Images prepressing

Images prepressing Patches Extraction

CNN512

YOLOv3 CNN299
CNN299
| i

EfficientNetB0

Classification

Lesions Lesions
- c
:
Classification Classification and ane
L Localization
Models fusion

KNN
2
Classification Classification

DR
Classification

Figure 5. Block diagram of the different proposed models for DR images classification and localization.

3.1. Datasets

Two publicly available fundus retina datasets were used in this work: the DDR [37]

and Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 Kaggle [46]. Table 3 shows
more details about these datasets.

The DDR dataset [37] consists of 13673 fundus images acquired at a 45° field of view
(FOV). Among these, there are 1151 ungradable images, 6266 normal images, and
6256 DR images. There are 757 images annotated by providing a bounding box for
lesions (MA, HM, hard EX, and soft EX) to locate all DR lesion types. The dataset has
different image sizes, classified to five DR stages and split into train, valid, and test
images. The distribution of the dataset is imbalanced in that the normal images are
more than the DR images. The annotated lesions distribution is shown in Table 4.
The APTOS 2019 Kaggle dataset [46] consists of 3662 retina images with different
image sizes. Only the ground truths of the training images are publicly available. The
dataset is classified into five DR stages. In addition, 1805 of the images are normal
and 1857 are DR images. The distribution of the dataset is imbalanced, with most of
the images normal.
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Table 3. The DR datasets details.

DDR Lesions

DDR Annotated APTOS 2019 Kaggle
Training 10,019 images 606 images 2929 images
Testing 2503 images 149 images 733 images
No DR 6266 images - 1805 images
Mild 630 images 99 images 370 images
Moderate 4477 images 548 images 999 images
Severe 236 images 34 images 193 images
Proliferative 913 images 74 images 295 images

Image Size Different image size Different image size Different image size
Total 12,522 images 755 images 3662 images

Table 4. The annotated lesions distribution in the DDR dataset.

Hard EX Soft EX

MA Number HM Number Number Number Total

Training 7824 11,196 21,739 944 41,703
Testing 2556 1342 1920 349 6167
Total 10,380 12,538 23,659 1293 47,870

3.2. Preprocessing

Image preprocessing is important for improving the quality of retinal images, since images

with low quality can reduce the network’s performance [25] and it is necessary to ensure that all
the images are consistent and that the features of the images are enhanced [52,53]. The applied
preprocessing methods, shown in Figure 6, are as follows. The result of the preprocessing
step is shown in Figure 7.

Image Enhancement: Two methods were used to enhance the images, the enhance
luminosity method [54] and Contrast Limited Adaptive Histogram Equalization
(CLAHE). CLAHE [55] is successful in enhancing the contrast of the fundus im-
ages [56] and improving the low contrast of medical images [57]. CLAHE is applied
to the L channel of the retina images that have a higher contrast [44], with tile size
8 x 8 and Clip Limit 5.0.

Image Noise Removal: The CLAHE method can cause some noise in the images [54]
and, to remove this noise, we applied the Gaussian filter, as represented in
Equation (1).

—(r—)? | —(y—py)?

Go(x,y) = Ae % 2 )

where 1 is the mean, A is the amplitude and ¢ is the standard deviation of each of the
variables x and y.

Image Cropping: The images were cropped to eliminate the unnecessary black pixels
around the retina. Thus, the bounding box lesion positions in the annotation files
were changed. To fix that, we automated changing the bounding box position of each
image based on the number of removed pixels around the retina.

Colour Normalisation: The retina images were captured from patients of different age,
and various ethnicity [58], at different levels of lighting in the fundus image. These
conditions have an effect on the value of pixel intensity of each image and create
unnecessary variation in the image [58]. To overcome this, the retina images were
normalised by normalising each channel of RGB images. For the normalization, we
subtract the mean, and after that, divide the variance of the images [25], as shown in
Equation (2).
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(x—u)

- @
where x is training RGB retina images, u is the mean of the RGB retina training images
and s is the standard deviation of the training RGB retina images.

e Online data augmentation was adopted to enlarge the training dataset and to improve
the generalisation and performance of the CNN. The images were augmented by
performing rotation, flipping, shearing, and translation, as well as randomly dark-
ening and brightening them, as shown in Figure 8. The augmentation parameters
are presented in Table 5. Finally, the images were resized into a fixed size that varied
according to the CNN used.

e Extract Lesions Patches: Some preprocessing methods were applied for Lesion local-
ization Method to extract the lesion patches from each image for the CNN training.
First, we cropped the annotated bounding box of each lesion and then padded it by
zero if its size was less than (65 x 65); otherwise, we resized the patch to (65 x 65) to
standardise the size of the patches.

Enhancing —W
Color Normalizing ~—— Cropping

y

Data Augmenting

Figure 6. The retina images preprocessing methods.

(a)

Figure 7. Sample images of the (a) original image and (b) the preprocessing image.

Figure 8. Sample of an image augmentation: (a) original image, (b) flipped image, (c) rotated image,
(d) sheared image, (e) translated image and (f) brightened image.
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In addition to the above preprocessing methods, we noticed that some of the image
annotation files contained duplicate lesions. Thus, we automated the removal of the
duplicate lesions in the annotation file as in Algorithm 1. Moreover, the bounding box of
each lesion was enlarged by 10 pixels around each lesion to make the lesions clearer for
learning. The chosen number was suitable for the resolution used.

Table 5. Data augmentation parameters.

Transformation Type Description
Rotation Rotate the image randomly between (—35°, 35°).
Flipping Horizontal and vertical flip for the images.
Shearing Randomly Shear images with angle between —15° and 15°.
Translation Randomly with shift between —10% and 10% of pixels.

Randomly darken the image and brighten. The values less than 1.0
Brightness range the image darken whereas values larger than 1.0 brighten the image.

The used values (0.25, 1.25).

Algorithm 1: Automate detecting and removing duplicate lesions.

Input :The annotation file of an image.
Ouput: The annotation file of an image without lesions duplication.
box: contain the position values (xmin, xmax, ymin and ymax) of a lesion.
Declare list Box-list.
for each box in annotation file do
Boxes = [xmin, xmax, ymin, ymax]
if boxes in Box-list then
| remove box
else
| append boxes to Box-list
end
end

3.3. Image Based Method

This method takes the whole image as input to the CNN. The CNN architecture
involves four main layers: convolution layers (CONV), pooling layers, fully connected
layers (FC) and classification layer. The CONV layer role is to extract the features of the
images by convolving different filters, while the pooling layer reduce the dimensions of the
feature maps [59]. The FC layers are a compact feature to describe the whole input image.
The Batch Normalisation layer role is to normalise the inputs of a layer during training to
increase the training speed and regularise the CNN. We proposed two simple custom CNN
models with different image sizes to classify the DR images. Moreover, EfficientNetB0 [12]
was fine-tuned to classify the DR images.

3.3.1. Designed CNN Model

We started designing the proposed CNN as similar CNN from related works like [26].
Then, we increased the input layer size to consider the MA lesion and the number of
CNN layers were increased gradually to improve the CNN performance. We adjusted the
hyperparameter as in Section 4. After many attempts with many CNNs architectures as
described in Section 4.3, we improved the DR classification using the proposed CNN.

The first proposed CNN (CNN299) contains one Zero Padding layer with a value
of 2, four CONV layers, four Max Pooling layers, six Batch Normalization layers, two
FC layers and one SoftMax layer for classification. The second proposed CNN (CNN512)
contains one Zero Padding layer with a value of 2, six CONV layers, each followed by Max
Pooling layers, eight Batch Normalization layers, two FC layers and one SoftMax layer for
classification. The used input size of the CNNs was chosen to be suitable to the available
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computation power and it was not too small in order to avoid losing small lesions. The
input image size was 299 x 299 x 3 for CNN299 and 512 x 512 x 3 for CNN512. The
number of parameters of the CNN299 was 28,412,981 and for the CNN512 was 8,211,613.
The CNN299 and CNN512 architectures are shown in Figure 9 and Table 6 and 7.

299*299*3 image
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Figure 9. The proposed custom CNN architectures: (a) CNN299 and (b) CNN512.

Table 6. The proposed CNN299 layers detail.

Layer Operator Layer Details

Input Layer Zero Padding layer Padding (2,2)

Layer 1 2D CONV layer Kernel number = 32, kernel size =3
Layer 2 Batch Normalization layer -

Layer 3 Relu layer -

Layer 4 Max Pooling layer Pooling size (2,2)

Layer 5 2D CONV layer Kernel number = 64, kernel size = 3
Layer 6 Batch Normalization layer -

Layer 7 Relu layer -

Layer 8 Max Pooling layer Pooling size (2,2)

Layer 9 2D CONV layer Kernel number = 96, kernel size = 3
Layer 10 Batch Normalization layer -

Layer 11 Relu layer -

Layer 12 Max Pooling layer Pooling size (2,2)
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Table 6. Cont.

Layer Operator Layer Details

Layer 13 2D CONV layer Kernel number = 96, kernel size = 3
Layer 14 Batch Normalization layer -

Layer 15 Relu layer -

Layer 16 Max Pooling layer Pooling size (2,2)

Layer 17 Flatten layer -

Layer 18 FC layer Neurons number = 1000
Layer 19 Batch Normalization layer -

Layer 20 Relu layer -

Layer 21 FC layer Neurons number = 500
Layer 22 Batch Normalization layer -

Layer 23 Relu layer -

Layer 24 FC layer With SoftMax activation

Table 7. The proposed CNN512 layers detail.

Layer Operator Layer Details

Input Layer Zero Padding layer Padding (2,2)

Layer 1 2D CONV layer Kernel number = 32, kernel size =3
Layer 2 Batch Normalization layer -

Layer 3 Relu layer -

Layer 4 Max Pooling layer Pooling size (2,2)

Layer 5 2D CONV layer Kernel number = 64, kernel size = 3
Layer 6 Batch Normalization layer -

Layer 7 Relu layer -

Layer 8 Max Pooling layer Pooling size (2,2)

Layer 9 2D CONV layer Kernel number = 96, kernel size = 3
Layer 10 Batch Normalization layer -

Layer 11 Relu layer -

Layer 12 Max Pooling layer Pooling size (2,2)

Layer 13 2D CONV layer Kernel number = 96, kernel size =3
Layer 14 Batch Normalization layer -

Layer 15 Relu layer -

Layer 16 Max Pooling layer Pooling size (2,2)

Layer 17 2D CONV layer Kernel number = 128, kernel size = 3
Layer 18 Batch Normalization layer -

Layer 19 Relu layer -

Layer 20 Max Pooling layer Pooling size (2,2)

Layer 21 2D CONV layer Kernel number = 200, kernel size = 3
Layer 22 Batch Normalization layer -

Layer 23 Relu layer -

Layer 24 Max Pooling layer Pooling size (2,2)

Layer 25 Flatten layer -

Layer 26 FC layer Neurons number = 1000

Layer 27 Batch Normalization layer -

Layer 28 Relu layer -

Layer 29 FC layer Neurons number = 500

Layer 30 Batch Normalization layer -

Layer 31 Relu layer -

Layer 32 FC layer With SoftMax activation

3.3.2. Using Transfer Learning

Transfer learning is a well-known machine learning technique in which a pre-trained
neural network is used to solve a problem similar to what the network was initially de-
signed and trained to solve. Transfer learning is a commonly used technique with deep
learning as it can overcome many problems associated with deep neural networks. Using
transfer learning can reduce the training time and tuning efforts for many hyperparame-
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ters [60]. It transfers the knowledge from a pretrained network that was trained on large
training data to a target network in which limited training data are available [11]. There
are two deep transfer learning strategies: feature extraction of pretrained models and
fine-tuning the pretrained models [10]. EfficientNet is a pretrained network [12]. It is a
recently proposed model and has achieved state-of-the-art results on the ImageNet dataset.
EfficientNetB0 [12] was fine-tuned by initialising its weights with ImageNet weights and
re-training all of its layers with the used retina datasets. The top layers of EfficientNetBO
were removed and replaced by new layers which are the Global Average Pooling (GAP)
layer, two FC layers and SoftMax layer, as shown in Figure 10. At FC layers, we added
Dropout with a rate of 0.5 in all used CNNs to overcome an overfitting problem.

GAP
|
FC
|
EFC
l
SoftMax

224%224*3

EfficientNetB0 feature extraction
Figure 10. Transfer learning EfficientNetB0.

3.4. Lesion Localization Method

The current work proposed two methods for the lesions localization: fine-tuning
YOLOV3 [13] and cropping the images into small and fixed-size patches. YOLOV3 is a
publicly available object detector model that predicts object bounding box (localise) and
predict its class. YOLOV3 predicts objects from the whole image at three different outputs
with three different scales in order to predict the object boxes. YOLOvV3 contains 53 CONV
layers formed in a network called Darknet-53 [13].

In the first method, all the YOLOv3 [13] layers were fine-tuned and re-trained using
the preprocessed images of the DDR dataset, with an input size of 416 x 416 pixels to
localise and classify all the DR lesions types. One dropout after layer 79 was added to
improve the performance of YOLOv3. The second method to localise lesions is based on
cropping the preprocessing images of the size 600 x 600 into 65 x 65 patches and then
feeding them to CNN299 to classify them into different lesions types, as shown in Figure 11.
The annotated lesions files were used to extract the lesion patches and then preprocess
them. After that, these preprocessed patches were used to train the CNN299 from scratch
to classify the various DR lesions of the DDR dataset. For detecting the non-lesions patches,
we extracted patches from the non-DR images. Figure 11 illustrates the steps of the Lesion
Localization method.

Moreover, the performance of classifying the images into DR stages based on the
detected number of lesions types from Lesion localization Method was investigated by
training three machine learning methods. Three different classifiers were tested to classify
the DR stage according to the existence of various DR lesions. These classifiers were the
k-nearest neighbors (KNN) [61], artificial neural networks (ANN) and the support vector
machine (SVM). The ANN used contains three FC layers, with each FC followed by Batch
Normalization layers. The last layer was the SoftMax layer for classification. The classifi-
cation performance of localization method was compared with the Image Based Method.
Finally, the robust classification method was fused with a strong localization method.
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Figure 11. The proposed Lesion Localization method to detect DR stages and locate lesions for
(a) train and (b) test images.

4. Experiments and Results
4.1. Configuration

The proposed system was implemented using the Python language and Keras frame-
work [62] built on top of TensorFlow. All experiments were performed on two GPU
resources: NVIDIA Tesla K20 GPU with 5 GB memory and NVIDIA GeForce 930 mx with
2 GB memory. The datasets were split into 80% for training and 20% for testing.

Deep learning network hyperparameters are variables that pre-select by a human de-
signer or tuned via optimizing hyperparameters methods [63]. These methods involve random
search [64], grid search [65], and gradient-based optimization [66]. We utilized manual hyper-
parameters tuning to speed up the process of tuning hyperparameters. The hyperparameter
configuration of the used CNN models and YOLOv3 are shown in Tables 8 and 9, respectively.

Table 8. The hyperparameter configuration of CNNs.

Configuration Values
Optimizer SGD
Momentum 0.9

1 x 10~} in custom CNNs

Max Learning rate 1 x 10~2 in EfficientNetB0

Base Learning rate 1x 1074
Mode triangular
Class weight auto
Dropout 0.5
Augmentation 20 times

Table 9. The YOLOV3 hyperparameter configuration.

Configuration Values
Optimizer SGD and Adam
Momentum 0.9
Learning rate 1x 1073
Anchors number 9
Augmentation 5 times
Input size (416,416,3)
CNN model Darknet53
Object threshold 0.45

NMS threshold 0.45
Dropout 0.5
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4.2. Performance Metrics

The metrics used to evaluate the performance of CNNs are accuracy (ACC), specificity
(SP), sensitivity (SEN), Receiver Operating Characteristic (ROC) curve, Area Under the ROC
Curve (AUC), positive predictive value (PPV) (also called Precision), Negative predictive
value (NPV) and Disc similarity coefficient (DSC). ACC is the percentage of accurately
classified images. SP is the percentage of images accurately classified as normal images,
while SEN is the percentage of images accurately classified as DR images. The ratio between
SEN and SP is graphically illustrated in the ROC curve and the value computed by ROC
AUC. PPV is the percentage of DR images accurately classified as DR images while NPV
is the percentage of normal images accurately classified as normal. The metrics used to
evaluate the performance of YOLOV3 is Average precision (AP). The mean AP (mAP) is
the average of the AP for each class. Each measurement is illustrated as follows.

sp= % ©

SEN = % 4)
ACC= TN +(Y;1\?I i 17-:11\)[)+ FP) ©)
PPV = % ©6)

NPV = (TNT%N) @)

AP =Y (R4 — Ry—1)P, 8)

where false positive (FP) refers to the non-DR images that are classified as DR, while false
negative (FN) means the DR images that are classified as non-DR. True positive (TP) refers
to the DR images that are classified as DR and true negative (TN) is the non-DR images
that are classified as non-DR. R, and P, are the recall and the precision at the n threshold.

4.3. Image Based Method Results

Regarding the Image-Based Method, three CNN architectures were built for detecting
the five DR stages: two custom CNNs, with different input sizes that were trained from
scratch, and one fine-tuned EfficientNetB0. The CNNs were trained and tested on the DDR
and the Kaggle APTOS 2019 datasets independently.

In the experiments, the stochastic gradient descent (SGD) algorithm with the Nesterov
Momentum was adopted. Moreover, Cyclical Learning Rates [67] with Learning rate
range [1 x 1074,1 x 10~!] and [1 x 107#, 1 x 10~2] were used for the custom CNNs and
EfficientNetB0, respectively. The dropout at FC layers of the CNNs was implemented
to reduce the overfitting and improve the CNNs’ performance. The distribution of all
datasets’ classes was imbalanced and, to fix that, the class weight parameter was set to
“auto”. The experiments showed that the CNN512 with the input size of 512 had a better
performance than the other CNNs in both datasets. From Tables 10 and 11, we found that
the CNN512 with dropout achieved the highest ACC of 0.841 and 0.886 in the APTOS
2019 and the DDR datasets, respectively. The experiments also showed that the enhanced
images luminosity method did not improve the classification accuracy when applied to the
APTOS 2019 dataset with the CNN299 model, as shown in Table 11. Tables 12 and 13 show
the classification results of each DR stage from the APTOS 2019 and the DDR datasets,
respectively. The ROC curves and confusion matrixes of the best proposed model results
are shown in Figure 12.
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Figure 12. The ROC curves of the (a) APTOS 2019 and (b) the DDR datasets on CNN512.
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Table 10. Comparison between the proposed models and the state-of-the-art models on the DDR dataset.

Model Image Size ACC SEN SP AUC
Tao Li et al. [37] 224 0.828 - - -
Along He et al. [32] 512 0.856 - - -
CNN299 299 0.800 - - -
CNN299 + dropout 299 0.833 - - -
CNN512 512 0.858 0.858 0.963 0.975
CNN512 + dropout 512 0.886 0.886 0.971 0.979
EfficientNetB0O 224 0.823 - - -
EfficientNetB0 + dropout 224 0.822 - - -
Models fusion 512 0.890 0.890 0.973 0.970

Table 11. Comparison between the proposed models and the state of-art models on the APTOS

2019 dataset.
Model Image Size ACC SEN spP AUC
Omar Dekhil et al. [31] 224 0.77 - - -
kassani et al. [33] 600 83.09 88.2 87.0 -
Bodapati et al. [34] - 82.54 83 - -
CNN299 299 0.821 - - -
CNN299 + dropout 299 0.832 - - -
1CNN29? + dropout + enhance 299 0.832 B B B
uminosity
CNN512 512 0.834 0.834 0957 097
CNNS512 + dropout 512 0.841 0.841 0960  0.973
EfficientNetBO 224 0.823 - - -
EfficientNetBO + dropout 224 0.822 - - -
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Table 12. The performance measures of the DR stages using CNN512 for the APTOS 2019 dataset.

Stage SEN SP PPV NPV
No DR 0.978 0.991 0.991 0.979
Mild DR 0.730 0.959 0.667 0.969
Moderate DR 0.860 0.897 0.758 0.945
Severe DR 0 100 0 0.947
Proliferative DR 0.644 0.954 0.550 0.968

Table 13. The performance measures of the DR stages using CNN512 for the DDR dataset.

Stage SEN SP PPV NPV
No DR 0.998 0.904 0.912 0.997
Mild DR 0.246 0.993 0.660 0.961
Moderate DR 0.886 0.919 0.859 0.935
Severe DR 0.340 0.998 0.762 0.988
Proliferative DR 0.703 0.993 0.901 0.977

4.4. Lesion Localization Method Results

YOLOV3 is trained on the DDR dataset to locate all DR lesions types and draws a
bounding box around each lesion. YOLOV3 is trained using 608 images and tested using
149 images with 9 anchors. In the experiments, all YOLOv3 layers were retrained on the
DDR dataset with a SGD optimizer, 0.9 momentum and fixed 1 x 10~3 learning rate. It
was observed through the experiments that YOLOv3 with the learning rate 1 x 1073 and
one dropout after layer 79 had a better performance on the valid DDR dataset. YOLOV3
achieved the highest mAP of 0.216 at localising the DR lesions of the valid set when one
dropout and the Adam optimizer were used, as shown in Table 14.

On the other hand, the KNN method obtained the best results for classifying the DR
lesions into various DR stages, as in Table 15. The detected lesions by YOLOv3 and CNN299
were fed to the KNN or ANN to classify them into the different DR stages. When YOLOv3
and CNN299 did not detect any lesions, the image was classified as no DR stage. From
Table 16, we found that the detected lesions from YOLOv3 with SGD and then classified by
the KNN achieved the highest ACC of 0.712 in the valid set of the DDR dataset.

Table 14. Results of YOLOv3 on the DDR Dataset.

Model mAP
YOLOV3 + SGD 0.110
YOLOvV3 + SGD+ dropout 0.171
YOLOvV3 + Adam optimizer + dropout 0.216

Table 15. The DR stages classification training results using machine learning.

Model ACC
KNN 0.985
ANN 0.893
SVM 0.872

Table 16. The results of DR stages classification using Lesion localization Method on the DDR dataset.

Valid Images
Model Number ACC SEN  SP AUC
CNN299 + KNN 250 images 0.62 0.62 0.90 0.762
YOLOV3 + SGD+ dropout + KNN 250 images 0712  0.712 0928  0.820
YOLOV3 + Adam+ dropout + KNN 250 images 0.552 0552 0.888  0.720
YOLOV3 + SGD+ dropout + KNN 2503 images 0.528 0.528 0.882  0.705
YOLOvV3 + ADAM+ dropout +ANN 2503 images 0481 0481 0.870 0.789
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4.5. Comparison against State-of-the-Art Methods

Compared to the state of-the-art methods on the DDR and the APTOS 2019 datasets, our
CNNB512 achieved high results. Our CNN512 on the DDR dataset achieved a 0.886 ACC, while
in the works of [32,37] achieved 0.828 and 0.856 ACC, respectively. In the APTOS 2019 dataset,
our CNN512 achieved a 0.841 ACC, which is better than the works of [31,33,34]. The results of
the CNNSs in both datasets are shown in Tables 10 and 11, respectively.

When compared to the results achieved by YOLOvV3 on the DDR dataset with the
state-of-the-art methods, YOLOV3 obtained better results. Table 17 shows that YOLOv3
achieved a better mAP on a valid set than the work of [37] that used Faster RCNN.

Table 17. Comparison between the YOLOv3 model and the state of-art models on the DDR dataset.

Model mAP
Tao li et al. [37] 0.092
YOLOV3 + Adam optimizer + dropout 0.216

4.6. Models Fusion

From the experiments, we found that the proposed CNN512 achieved the best DR
stages classification results on the DDR dataset unlike the classification based on the
detected DR lesions. Also, YOLOvV3 classified and localised lesions on the retina with
the best results. Thus, for classifying the retina images to the DR stages and localising
DR lesions at the same time with the best results, CNN512 and YOLOv3 were fused.
The classification predictions from the CNN512 model and YOLOv3 model with ANN
were combined using average voting to fuse models. Average voting takes the average
probabilities predicted from the two models as the final prediction result. When compared
the results achieved by fused models on the DDR dataset with the state-of-the-art methods,
the fused models obtained a 0.890 ACC exceeds the state-of-the-art results as shown in
Table 10. Sample images visualization of lesions localising and stages classifying for the
ground truth images and predicted images by the fused models are shown in Figure 13.
The ROC curves and confusion matrixes of the fused models are shown in Figure 14. The
average inference time for the fused models is 6.36 s using NVIDIA Tesla K20 GPU.

DR stages : Moderate DR

foderate DR

(a) (b)

Figure 13. Sample of the DDR images visualization for: (a) the ground truth images annotation,
(b) predicted images by fused model.
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Figure 14. The confusion matrixes and ROC curves of the DDR dataset on fused models.

5. Discussion

Diabetic retinopathy (DR) is one of the most severe diabetes complications, causing
non-reversible damage to retina blood vessels. Regular scanning using high-efficiency
computer-based systems to diagnose cases early will help diabetes patients to stop or
delay the deterioration of sight. This study proposed a DR screening system using the
deep learning technique. The proposed screening system provides classification and DR
lesions localization for DR images to help ophthalmologists diagnose the patients’” DR
stage. The experimental results demonstrated that our custom CNN512 model achieved
state-of-the-art classification results on the used two datasets.

Furthermore, the fine-tuned YOLOv3 model obtained state-of-the-art localization
results on the DDR dataset. CNN512 model and the fine-tuned YOLOvV3 model were
integrated to classify the DR images into stages and localize all lesion types. As we notice
from the results, all of the models are slightly high with the DDR dataset rather than the
APTOS dataset, which might result from the larger DDR training set. If a close look is taken
on Tables 12 and 13, it will be noticed that the sensitivity for mild and severe DR is lower
than other stages; this resulted from the imbalance of the used datasets. For example, the
mild class on DDR is less than 5% of the total dataset size; also, the severe stage image size
is less than 2% of the DDR dataset. This limits the system performance for both mild and
severe classes” diagnoses, and it is reflected on PPV value even when we used the data
augmentation technique to increase the data size. We inferred that, as the input image’s size
increased, the model’s accuracy increased but this is limited with the available computing
power. Some of the misclassified lesions in the images were examined and we found that
spots detected on the retina by YOLOv3 were not in the ground truth lesions. The missed
labeling of used images affected the results that the model obtained. Figure 15 shows
samples of the incorrectly labeled lesions from the DDR dataset.

Recently, a new trend has appeared in DR which is developing a system that attempts
to predict the development and change in DR over time as in [68,69]. In [68], they predicted
future DR image using vessel and lesion information, achieving a 0.74 F1-score. In contrast,
in [69], they evaluated the changes in DR using optimization algorithm and Support Vector
Machines, obtaining a 95.23% ACC.
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Actual lesions Predicted lesions

Figure 15. Samples of the miss labeled lesions from the DDR dataset compared to the predicted
lesions by YOLOV3.

In the future, we could improve the localization of the lesions by creating a custom
object detection model and by improving the performance classification of the CNN512
by adding more layers. Testing and tuning the system on more balanced datasets might
improve its performance. In addition, we aim to adopt YOLOv4 and YOLOVS5 to detect
all DR lesions to obtain their benefits, such as ACC and speed. The current work opens
the pathway to building a complete automatic follow-up system for DR. DR is a lifelong
disease with a prolonged potential phase, so patients follow-up regularly will prevent
patients’ blindness and delay sight deterioration. Table 18 Comparing the performance of
the proposed models in term of accuracy.

Table 18. The performance comparison among all of the models.

Model  EfficientNetB0 CNN299 + Dropout  CNN512 + Dropout  maodel
+ Dropout
Dataset  APTOS  DDR  APTOS  DDR _ APTOS  DDR DDR
ACC 0.822 0.822 0.832 0.833 0.841 0.886 0.890

6. Conclusions

The prevalence of diabetes is increasing worldwide, and the complication of DR is
also increasing. This disorder is threatening diabetes patients’ vision if DR is detected in
the last stages. Therefore, the detection and treatment of DR in its early stages is essential
to decrease the risk of blindness. The manual diagnosis process of DR with the increasing
suffering from DR became not sufficiently effective. Therefore, automating DR’s diagnosis
using computer-aided screening systems (CASS) saves effort, time, and cost.

Additionally, the most critical point for using CASS is to avoid the negative impact
of losing eyesight. Recently, the deep learning (DL) method has achieved superior perfor-
mance in classification and segmentation. The current work provides an effective complete
automated screening system to help in DR diagnosis. The quality and balance of the
datasets used to build a DR screening system are very critical. In the future, we aim to
combine multiple datasets to achieve the balance of the dataset.
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Abstract: Early detection of thyroid nodules can greatly contribute to the prediction of cancer
burdening and the steering of personalized management. We propose a novel multimodal MRI-
based computer-aided diagnosis (CAD) system that differentiates malignant from benign thyroid
nodules. The proposed CAD is based on a novel convolutional neural network (CNN)-based texture
learning architecture. The main contribution of our system is three-fold. Firstly, our system is the first
of its kind to combine T2-weighted MRI and apparent diffusion coefficient (ADC) maps using a CNN
to model thyroid cancer. Secondly, it learns independent texture features for each input, giving it
more advanced capabilities to simultaneously extract complex texture patterns from both modalities.
Finally, the proposed system uses multiple channels for each input to combine multiple scans
collected into the deep learning process using different values of the configurable diffusion gradient
coefficient. Accordingly, the proposed system would enable the learning of more advanced radiomics
with an additional advantage of visualizing the texture patterns after learning. We evaluated the
proposed system using data collected from a cohort of 49 patients with pathologically proven thyroid
nodules. The accuracy of the proposed system has also been compared against recent CNN models
as well as multiple machine learning (ML) frameworks that use hand-crafted features. Our system
achieved the highest performance among all compared methods with a diagnostic accuracy of 0.87,
specificity of 0.97, and sensitivity of 0.69. The results suggest that texture features extracted using
deep learning can contribute to the protocols of cancer diagnosis and treatment and can lead to the

advancement of precision medicine.

Keywords: thyroid; cancer; CNN; MRI; DWI; radiomics

1. Introduction

In the United States, approximately 52,890 new cases of thyroid cancer and about
2180 deaths were estimated in 2020 according to the American Cancer Society’s most
recent statistics [1]. The prevalence of thyroid nodules is approximately 5% in women
and 1% in men [2]. Among the cases of thyroid nodules, 7-15% evolve into malignant
tumors (cancerous tissue), and this rate depends on age, sex, radiation exposure history,
family history, and other factors [2]. Malignant tumors can be classified into three major
categories: Differentiated thyroid cancer (DTC), medullary thyroid cancer, and anaplastic
thyroid cancer. DTC has the biggest share of thyroid cancer, with a share of more than 90%.
DTC includes two main subcategories: papillary thyroid carcinoma (PTC) and follicular
thyroid carcinoma (FTC). PTC accounts for more than 80% of all thyroid cancers [2].
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The diagnostic criteria of thyroid nodules involve different procedures that include
physical examination, blood test, ultrasound (US) imaging, magnetic resonance imaging
(MRI), and a biopsy procedure. The detection of smaller nodules becomes easier over
time due to the current advances in US and MRI. However, cancer diagnosis and early
stratification of nodules is still challenging and mainly performed using biopsy [2]. Al-
though biopsy, either fine-needle aspiration or surgical excision of the nodule, is still the
definitive way of clinical evaluation, this invasive procedure is costly and may introduce a
false negative error depending on the biopsy technique and the size of the nodule being
aspirated [3-6].

Non-invasive-based approaches have been proposed by several researchers to pro-
vide accurate detection and stratification of thyroid cancer [7-10]. These methods utilize
different types of medical images. The type of imaging technology used as an input to
artificial intelligence (Al) algorithms can affects the accuracy of the desired computer-aided
diagnosis (CAD) system. US imaging is currently used as a first-line evaluation of sus-
pected thyroid nodules [2], and specific features of thyroid nodules in US imaging can
be associated with higher risk of malignancy. However, the appearance of those features
in US images is operator-dependent, and also multiple features need to be considered
simultaneously during the evaluation in order to provide sufficient malignancy diagnostic
power [2]. These factors cause various limitations in Al-based systems that use US images
for thyroid nodule classification [7-9]. Compared to US, MR imaging modalities have
also been used in the literature recently. For instance, T1-weighted MRI and T2-weighted
MRI were used in a recent study to perform thyroid nodule classification [10]. Some MRI
modalities can help distinguish between different substances in the tissue. For example, fats
appear bright in T1-weighted MRI images [11], while fluids appear bright in T2-weighted
MRI images. Studying T2-weighted MRI images can help in the modeling of fluid patterns
in the tissue [12]. Over and above that, diffusion-weighted MRI (DWI) can model the
diffusivity of fluids in the tissue by measuring constraints of fluid diffusion in different
directions [13,14]. Therefore, DWI can model the dynamics of fluids in the tissue, and these
dynamics can be presented by computing the apparent diffusion coefficient (ADC).

The cell proliferation process associated with malignant thyroid nodules can have a
significant effect on the patterns and the dynamics of the extracellular matrix (ECM) in the
thyroid tissue. Studies suggest that statistical analysis between ADC value and T2-weighted
images, and therefore can differentiate between malignant and benign nodules [15-17].
Thus, in the preliminary analysis of our work, we examined if the intensity variations
between malignant and benign groups are significantly different or not, see Figure 1. To
achieve this, we employed a statistical analysis test to determine the differences between
the two groups as observed in each of the T2-weighted images and the ADC maps (three
different gradient coefficients were used to generate the ADC maps). Our analysis showed
significant heterogeneity in intensity variance between T2-weighted images and ADC
maps, which suggests that feeding the T2-weighted images and the ADC maps each to a
separate input branch of the CNN would enables learning of independent textures in each
branch and therefore this would enhance the accuracy of our system.

Inspired by our preliminary statistical analysis results, our initial exploratory work [18],
and other studies [15-17], we propose a novel CNN-based CAD system that integrate T2-
weighted images and ADC maps using a multi-input CNN network for thyroid nodules
detection and classification, see Figure 2. Our work is in contrast to one recent study
that proposed a CNN-based system using multimodel MRI but does not include ADC
maps [10]. ADC maps can be considered as an indication of cell density in tissues [19] and
therefore can be used to search for cancer biomarkers, which usually involve high rates of
cell proliferation. Similar to a recent study [20] that uses multiparametric MRI radiomics
for prediction, we use a CNN-based structure instead of hand-crafted features—namely, we
utilize a process of independent convolutions for ADC and DWI before fusing them using
the dense fully connected layer. This process increases the possibility to detect deep texture
patterns from each modality without loosing the capability for automatic searching for
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visual features, provided by the CNN. Our system integrates multiple ADC maps obtained
from different gradient coefficients (a configurable parameter in the MRI scanner) for each
sample. Then, the combination of all inputs is fed to our CNN model as a multichannel
3D input in order to achieve enhanced learning of texture features, thus providing a more
accurate diagnosis.

Thyroid Nodules

Intensity Level (Normalized)

N
v
S

N
=1
S

-
7]
S

=
o
3

o
S

=)

High Fi

~—— Malignant
—— Benign

~
=)

—— Malignant
—— Benign

Y
S

o
=)

N
S

w
=)

]

N
5]

Level of Variability (Normalized)

oy
o

o

T2 ADC500  ADC1000 ADC1500

ADC500 ADC1000  ADC1500

|

Sharpening Filter r

Figure 1. Illustrative diagram of the preliminary statistical study performed on our dataset. A high-pass Laplacian spacial
filter was applied to the images to estimate intensity variation at the pixel level. Following that, statistical analysis was
performed to calculate the mean difference between malignant and benign nodules.
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Figure 2. Schematic diagram that represents the training pipeline for the proposed system. MRI data were collected from
human subject cohort. ADC maps were computed in order to prepare the two inputs for the CNN. The objective of the
proposed system was to learn the texture patterns in DWI images and correlate them with pathological finding.

2. Materials and Methods
2.1. Study Participants and Data Collection

Data were collected in this study from 49 patients with pathologically proven thyroid
nodules. The age range is 25 to 70 years. Imaging of the thyroid gland was performed at
Mansoura University, Egypt with a 1.5 T Ingenia MR scanner (Philips Medical Systems,
Best, Netherlands) using a head /neck circular polarization surface coil. All participants
were fully informed about the aims of the study and provided their informed consent.
The inclusion criteria for the study were untreated patients with thyroid nodules whose
malignancy status was unclear from ultrasound examination. Patients underwent thyroid
core biopsy or surgery after MR imaging. Histopathologic diagnoses were provided by an
experienced cytologist or pathologist. In total, there are 17 malignant nodules in 17 patients
and 40 benign nodules in 32 patients included in our study.

DWI volumes that employ a multislice, single-shot, spin-echo, echo-planar imaging
sequence with TR = 10,000 ms, TE = 108 ms, and 125 kHz bandwidth were extracted. Axial
diffusion-weighted slices over the region of interest were 5 mm thick with an inter-slice
gap of 1 mm, 25 cm or 30 cm FOV, and 256 x 256 acquisition matrix. For DWI, a diffusion
gradient was applied during scanning with b-values of b = 500 s/ mm?, b = 1000 s/mm?,
and b = 1500 s/mm?. T2-weighted images are extracted using b-value of b = 0 s/mm?.
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2.2. ADC Map Calculation and Nodule Segmentation

Multiple steps were applied to the collected MR images in order to prepare the dataset
to be used by the training model, see Figure 2. Nodule segmentation was performed
manually in our study. An experienced radiologist segmented each nodule as it appeared
in each T2-weighted slice (b = 0 s/mm?) and in each DWI slice. Diffusion-weighted
MRI scans were taken in the same session and using the same resolution, number of
slices, and inter-slice gap. Therefore, no registration was applied to align the different
b-values. We have future plans to implement an automated segmentation algorithm for
nodule extraction. The produced manual segmentation was stored in the form of binary
images. The binary image produced from DWI slice with b = 0 s/mm? was re-used
during processing phases on the corresponding slice at all other b-values, and also was
re-used for the corresponding slice at ADC500, ADC1000, and ADC1500. We extracted
each nodule in both T2-weighted images and ADC maps using a square-bounding box.
We regularized the spatial domain by resizing extracted box into unified 48 x 48 x 20
volumes by adding zero-padding channels. We then normalized the voxel-intensity in that
volume to be in 0-1 range. Each segmented nodule was provided for the network model
on a black background and padding. Apparent diffusion coefficients (ADC maps) were
calculated at each non-zero b-value (500, 1000, and 1500) by combining the diffusion images
at the corresponding b-value with the image at b = 0 s/mm?, and then we substituted, at
the voxel level, this into the Stejskal-Tanner equation [21]. The generated images of this
process are referred to as ADC500, ADC1000, and ADC1500. Since diffusion-weighted
MRI (DW-MRI) as an absolute value usually does not reflect direct biological activity, the
relative differences between DW-MRI at different b-values were used instead (i.e., ADC) to
model the diffusivity in the tissue. Usually, a b-value of 0 is taken as reference, and which
is why we computed three ADC values that correspond to 3 b-values of 500, 1000, and 1500
referenced to a b-value of 0.

2.3. Proposed Learning Model: Multi-Input CNN

To build our diagnostic system, we propose a novel multi-input deep-learning net-
work. Our architecture follows the feed-forward convolutional neural network (CNN)
structure. Our implementation uses the Keras package in Python, and the parameters
used in our training model are summarized in Table 1. The proposed architecture, shown
in Figure 3, consists of two identical branches in the structure. The advantages of our
network compared with others is that the generated kernels are governed by the fusion of
T2-weighted images and ADC maps of the training samples during the forward propaga-
tion and backward propagation of our neural network. Additionally, a1 x 1 x 1 3Dconv
layer was added to the proposed design in order to perform compression for the features
maps. The advantage of this addition is that the number of weights that needs to be learned
during the training phase is extremely minmized, thus ensuring fast learning and diagnosis.
For the analysis, each of the base images and the ADC maps was fed to the respective
branch. The convolution layers were constructed from 3 x 3 x 3 3Dconv (with 32 filters and
3 x 3 x 3 kernel size), 1 x 1 x 1 3Dconv (with 16 filters and 1 x 1 x 1 kernel size), pooling
block (2 x 2 x 1 pool size, maximum value pooling). Each branch had two convolution
blocks before being concatenated into the dense fully connected layers (2 layers). Those lay-
ers were one hidden layer of 10 neurons with ReLU activation function [22] and one output
layer of 1 neuron with sigmoid activation function [23]. The total number of parameters in
our proposed network is 127,829 parameters.

The condition of unbalanced classes during the training phase was handled by con-
figuring the weights in the mean-square error (MSE) loss function we used in the back
propagation of the network. The ratio of the weight of malignant class to the weight of
benign class was set to 16/32 when leaving out one malignant sample for testing, and
the same ratio was set to 17/31 when leaving-out one benign sample for testing. The loss
function used is given in Equation (1), where N is the number of training samples, y is the
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output of the neural network observed during forward propagation, y; is the label of the
sample, and w; is the weight of each training sample.

D
Loss = Z w;(y — i) (1)
N =

We used Adam stochastic to update the parameters of the network during learning [24].
The learning rate and other parameters of the optimizer were tuned and kept constant
during our evaluation. Additionally, we used the ratio of 1 to 3 of the samples as validation
data during the learning phase.

Table 1. Summary of the network parameters used during model training.

Parameter Value
Kernel Size 3x3x3
Number of Convolution Kernels 32
Number of 1 x 1 Kernels 16
Fully Connected Layers 2
Convolutional Layers 2
Activation ReLU
Pooling Size 2x2x2
Pooling MaxPooling
Number of Epochs 100
Input Shape 48 x 48 x 20

Input: 3D Nodule

Input 1: T2 Volume 48x48x20x1

Input 2: ADC Volumes 48x48x20x3

-aa |l O

Cross Validation
LOSO Cross-Validation

Convolution Layers

Resolution: 22 x 22 x 6 )
Resolution: 9 x 9 x 2

= 1 Fully-Connected Softmax
===

1} Layers Layer

n Subjects

I}
]
0

Class-Balancing
lTesling

e

3x3x3 1x1x1 2X2x2

3x3x3 2x2x2
1x1x%1 conv conv 1 R
conv + (CNN Validation
conv ., conv b

Training

a b

Figure 3. (a) Schematic diagram of the proposed CAD system that shows the design and the layers of the multi-input 3D
CNN deep-learning framework. (b) Illustrative diagram that shows the cross-validation criteria used in our processing.

2.4. Other Learning Models

In order to perform bench-marking for our system, we compared its performance
with other methods. We first compared the results with ML methods that use hand-
crafted features, and then we compared the results with two state-of-the-art CNN models.
Regarding the first comparison, the used hand-crafted features can be classified into three
groups: shape features, statistical features, and hand-crafted texture patterns features.
Starting with the shape features, we used nodule size (in voxels), convex hull ratio (defined
as the ratio between the nodule size and the convex hull size), bounding rectangle ratio
(defined as the ratio between the nodule size and the bounding rectangle size), and spherical
harmonics of 3D contour encapsulating the nodules. We estimated the spherical harmonics
inspired by [25] by the use of infinite set of harmonic functions defined on a spherical
representation. They arise from solving the angular portion of Laplace’s equation in
spherical coordinates using separation of variables. The degree of the spherical harmonics
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can define the level of non-homogeneity of the surface, and we can map this to the ability
to differentiate between malignant and benign nodules.

For the statistical features, we calculated the histogram of each image, and then in
each histogram we summarized their statistical profile using 5 features (mean, standard
deviation, entropy, skewness, kurtosis). This type of features is designed to summarize
the whole image by presenting it using certain values. The overall appearance of thyroid
nodule can reflect the first impression by experienced radiologists while examining the
MRI scan. Finally, for the hand-crafted texture patterns we built a filter-bank of 9 filters to
evaluate intensity variations between neighbor voxels. The used filter-bank is designed to
capture edges in 4 orientations, lines in 4 orientations, and the point response (all-directions
variability). The four orientations are horizontal, vertical and 2 diagonal orientations.

All features from the three hand-crafted features groups were evaluated for malig-
nancy detection capability using four different classifiers: decision tree (DT) [26], random
forest (RF) [27], Naive Bayes (NB) [28] and support vector machine (SVM) [29]. The classi-
fication models used in the benchmark were optimized to ensure appropriate comparison.
In DT, min sample split was examined. In RF, number of estimators and maximum depth
were examined. In SVM, C parameter is examined to tune the soft margin.

In addition to traditional ML methods, we compared our methods accuracy against
other CNN-based methods. For bench marking purpose, we used two state-of-the-art CNN
models for detection; AlexNet [30] and ResNet18 [31]. AlexNet is chosen as it is the first
deep learning computer vision to be recognized as a classification-winner of ILSVRC [32]
back in 2012. ResNet is chosen because it is the first ILSVRC winner that overachieve human
accuracy in classification under different appearance conditions [33]. For both methods, we
used Keras implementations in Python with the default configuration. AlexNet and ResNet
were applied to the combined T2-ADC input in the form of multiple input channels.

2.5. Evaluation Criteria

The evaluation criteria of our system use a leave-one-out cross-validation. We kept
the common network configuration fixed for our reported results, including the ablation
study, as well as when compared with other techniques. The proposed system evaluation
is based on four classification metrics: accuracy, precision, recall, and dice coefficient.

Additionally, further evaluation of the system robustness has been conducted using
the the receiver operating characteristics (ROC) analysis curve. The ROC curve is a plot
between the false positive rate and the true positive rate when we adjust the decision
threshold. Figure 4c shows ROCs of the proposed multi-input CNN framework compared
to the other frameworks discussed in this section. The area under the curve (AUC) of the
voting between two CNNs gives slightly higher value, but our system achieved the best
AUC compared with all other methods.

For the purpose of this analysis, the slice at which each thyroid nodule appears with
biggest size was extracted and processed as a 2D image for each of T2-weighted image and
ADC maps. Local intensity variations were modeled by high-pass filtering using a 3 x 3
Laplacian filter invariant to 45° rotations [34]. Tumor pixels were grouped into benign
and malignant groups (35,625 and 15,764 pixels, respectively). Supported by the high
number of samples, a Welch two-sample t-test was applied to determine difference the
mean between groups. A statistical package in R was used to generate the results.
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Figure 4. (a) Training versus validation accuracy curves with the number of epochs during network training. (b) Training

versus validation loss curves with the number of epochs during network training. (c) Receiver operating characteristic

curves (ROCs) of the proposed multi-input CNN framework compared to other methods. AUC is the area under the
curve.”DT”—Decision Tree. “RF”—random forest; “NB”—Naive Bayes; “SVM”—support vector machine.

2.6. Nodule Texture Visualization

Achieved kernels applied to each of the T2-weighted images and the ADC maps were
extracted from CNN network after the last epoch of training cycles. The extracted kernels
are converted from the 3D to 2D form by averaging the 3 depth channels. The kernels were
then clustered using hierarchical agglomerative clustering [35,36]. Silhouette score was
used for evaluating the fit of the estimated clusters [37]. The Sklearn package in Python
was used for both clustering processing and evaluation.

3. Experimental Results

The overall proposed framework is depicted in Figure 3. In this section, we present
our results, which include: (1) preliminary statistical analysis, (2) the performance of the
proposed CAD system compared to other machine learning models that use hand-crafted
features, (3) the performance of the proposed CAD system compared to state-of-the-art
CNN models, and (4) the results obtained of analyzing the texture patterns after learning.

3.1. Significant Differences in T2 and ADC Local Intensity Variations between Malignant and
Benign Groups

The results of analyzing local intensity variations in each of the T2-weighted images
and the ADC maps show that there is a significant difference in the mean of those variations
between benign and malignant groups. Table 2 presents the results obtained from the
Welch two-sample t-test that shows a significant difference with p < 0.05. Table 2 also
presents the achieved t value and the 95% confidence interval (CI). The CI values are
normalized with respect to the standard deviation (SD) of the benign group. By observing
the sign of CI, the malignant group has higher mean observed in T2-weighted images
while the benign group has a higher mean in ADC maps. This result suggests that having
convolution filters of T2-weighted images that are independent from those of ADC maps
enables conducting enhanced texture-learning process. Convolution filters map the conv
kernels in our proposed CNN architecture.
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Table 2. Statistical analysis results for the Welch t-test on the pixel-level intensity variations between
the malignant and benign groups.

Welch Two-Sample t-Test

MRI Parameter CI Amean t 4
T2 —4% to —1% —2.28 0.023
ADC500 5% to 9% 7.87 <0.001
ADC1000 26% to 34% 14.87 <0.001
ADC1500 4% to 8% 6.12 <0.001

3.2. Comparison with ML Methods That Use Hand-Crafted Features

The results are summarized in Table 3. As can be seen, the proposed multi-input CNN
system outperform all compared classifiers. Our proposed CAD system achieved the best
performance when compared to machine learning models that are based on hand-crafted
features. Our system achieved an AUC of 0.85 compared to 0.59 when using linear support
vector machine (SVM) classifier, see Figure 4c. Additionally, it achieved an accuracy,
sensitivity, and specificity of 0.87, 0.69, and 0.97, respectively, compared to an 0.77, 0.67 and
0.77 when using random forest (RF) classifier, which achieved the best accuracy among the
pool of classifiers used with hand-crafted features. The results in Table 3 show that using
automatic feature selection by the aid of CNN helps in achieving better diagnostic accuracy.

Table 3. Comparative performance for the proposed multi-input CNN system and machine learning
methods that use hand-crafted features. “DT”—Decision Tree. “RF”—Random Forest; “NB”"—Naive

Bayes; “SVM”—Support Vector Machine.

Evaluation Metrics

Method Accuracy Sensitivity ~ Specificity = Dice Coefficient
DT classifier 0.70 0.66 0.70 0.57
NB classifier 0.76 0.73 0.77 0.63
RF classifier 0.77 0.67 0.77 0.53
SVM classifier 0.56 0.40 0.73 0.48
Proposed Multi-Input CNN 0.87 0.69 0.97 0.79

3.3. Comparison with State-of-the-Art CNNs

In addition to the comparison with the handcrafted-based ML approaches, comparison
against other state of the arts CNN models have been conducted. The comparative results,
shown in Table 4 also showed that the proposed CAD system achieved the best diagnostic
performance. It is worth mentioning that our system has relatively low number of layers
compared to the compared models. It achieved an AUC of 0.85 compared to 0.67 and 0.60
obtained using AlexNet and ResNet 18, respectively. Additionally, it achieved an accuracy
of 0.87, sensitivity of 0.69 and specificity of 0.97. The accuracy, sensitivity and specificity
using AlexNet were 0.61, 0.53, and 0.66, respectively, and those obtained using ResNet18
are 0.49, 1.00 and 0.22, respectively. Results document that using lower number of CNN
layers can achieve better diagnostic accuracy, which is considered an advantage of the
proposed method compare with other CNN-based techniques.

3.4. Texture Features of T2-Weighted Images Are Visually Different Compared to ADC Maps

The convolution kernels (filters) extracted from the CNN after learning were clustered,
see Figure 5a, and the clustering process was repeated for multiple runs each with different
number of target clusters k = 2,4, 5, ...,9. Figure 5b shows the evaluation of the generated
clusters using the Silhouette score. The clusters generated from the T2-weighted kernels
(green curve) achieved better clusters compared to ADC kernels (blue curve). Additionally,
k = 3 achieved the highest score in both T2-weighted and ADC images. Figure 5¢,d show
the visualization of the generated clusters of T2-weighted and ADC kernels, respectively.
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The runs (with the corresponding number of clusters, or k) are represented on the y-axis.
Each row includes the generated clusters of the corresponding run, and the cluster index
inside each run is presented on the x-axis. Each cluster is illustrated by the mean of its
member kernels, and then each mean is normalized from 0 to 1. A gray-scale visualization
of each normalized mean is presented (at each row-column position) using a 3 x 3 board
image in a way that 0-1 is mapped to a white-black gradient.
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Figure 5. Analysis of the patterns extracted from the CNN after training phase. (a) Illustrative diagram of the process
of extracting the kernels from the weights of each layer, and the processing of those kernels using a clustering technique
(hierarchical agglomerative clustering) in order to analyze the patterns found in T2-weighted MRI images and ADC maps.

(b) Evaluation metric of the clustering algorithm by computing Silhouette score while varying the number of clusters in the
clustering algorithm. (c) Visualization of the results of our analysis on the features extracted from T2-weighted images.
(d) Visualization of the results of our analysis on the features extracted from ADC maps. We can notice that the texture

patterns that distinguish between malignant and benign thyroid nodules are having a degree of heterogeneity according to
this visualization.
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Table 4. Comparative performance of the proposed multi-input CNN system with state-of-the-art
CNN-based classification.

Evaluation Metrics

Method Accuracy Sensitivity = Specificity = Dice Coefficient
AlexNet 0.61 0.53 0.66 0.49
ResNet18 0.49 1.00 0.22 0.58
Proposed Multi-Input CNN 0.87 0.69 0.97 0.79

4. Discussion and Conclusions

We proposed a new CAD system to distinguish between malignant and benign thyroid
nodules. The main contributions of the proposed pipeline is the use of multi-input CNN
that can detect texture patterns from each input independently. The first branch of our
CNN models the fluids patterns in the thyroid tissue by learning the texture patterns
in T2-weighted MRI images. The second branch of our CNN models the dynamics of
tissue fluids by learning the texture patterns in ADC maps. We validated our method by
applying leave-one-out cross-validation on multimodal data collected from 49 patients
with pathologically confirmed nodules. We compared the classification accuracy obtained
from our system with other ML and deep learning approaches. Experimental results from
our system surpass results obtained from other models.

To assess the advantage of integrating multiple MRI modalities as separate inputs of
the proposed network, we conducted a preliminary study that shows heterogeneity in the
intensity variation between malignant and benign samples. In this experiment, a Welch
two-sample t-test was used to assess the significant difference in mean variation between
the two groups (Table 2) across all modalities. The difference in mean between the two
groups in T2-weighted images has an opposite sign when compared to the corresponding
difference in ADC maps (Table 2). This also suggests that using independent features in
each input can enable finding more optimal features.

To assess the performance of our system, we compared it to other ML methods that
use hand-crafted features. In the comparison, we used three categories of hand-crafted
features. The first category is based on the statistical profile of image intensity. We evaluated
that statistical profile using five features (mean, standard deviation, entropy, skewness,
kurtosis). This category is designed to summarize the whole image by presenting it using
the profile of each features. The overall appearance of the tumor can reflect the first
impression by the physician while examining the MRI scan. The linear SVM classifier
exhibited the worst performance, which suggests a lack of a linear border between classes.
Results of the NB classifier showed the possibility of having a fairly distinguished statistical
distribution of the hand-crafted features extracted from benign and malignant nodules.
In order to benchmark our system, Figure 4c shows ROCs of the proposed multi-input
CNN framework compared to the other systems under comparison. As demonstrated, the
area under the curve (AUC) of our system is higher compared with all compared methods,
which highlights the higher accuracy of our method. Figure 4a,b show the training versus
validation accuracy and loss curves during the model training. Overall, the results showed
that handcrafted features failed to provide a good modeling of our classification problem,
and this suggests having multi-input CNNs that learn from paired features can enhance
diagnostic accuracy of the CAD system.

To further support our method, an ablation study has been conducted to assess the
accuracy of the proposed method. The study shows that the proposed fusion using multi-
input CNN outperformed single-input frameworks. In that study, a single input CNN with
the same structure was built and evaluated. Four scenarios were evaluated. Scenarios 1
and 2 use T2-weighted images and ADC maps, respectively. Scenario 3 uses a probability
voting scheme between the prediction of scenarios 1 and 2. We used the following equation
to acquire the resultant probability after voting: P, = %(PTzwﬂ,gh s T PaDC). Scenario 4 uses
a single input that combines T2-weighted images and ADC maps in the input channels.
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Results obtained from the four scenarios are shown in Table 5. Using a multi-input CNN
enhances the classification accuracy. The two-CNN voting scenario showed high specificity,
but a low accuracy, sensitivity and dice coefficient compared to the proposed method. This
ablation study suggests that having independent features for each input can enhance the
detection performance of the CAD system.

Table 5. Ablation study results for the proposed system.

Evaluation Metrics

Method Accuracy Sensitivity Specificity Dice Coefficient
Single-Input CNN (T2-Weighted only) 0.76 0.56 0.87 0.62
Single-Input CNN (ADC only) 0.72 0.63 0.77 0.61
Two-CNN voting (base-images + ADC) 0.83 0.63 0.93 0.71
Multi-Input CNN (Proposed Method) 0.87 0.69 0.97 0.79

The main focus of this study is to investigate the ability to extract the texture features
associated with thyroid cancer by combining the texture in two input CNN with two
independent branches. The network was designed to minimize the number of layers in
order to extract the texture patterns that can be linked to the anatomical structure in the
nodules. This optimized architecture also supports fast processing, which can enable
further integration with MRI scanner devices to present the visual features automatically
extracted from MRI images. As a follow-up step in our study to evaluate the heterogeneity
of texture features between MRI modalities, we applied a method to extract and cluster
the learned features for each modality. An illustration is presented in Figure 5a and the
obtained feature visualization in each input is presented in Figure 5¢,d. That visualization
suggests a heterogeneity in texture patterns between MRI modalities and supports the use
of our method for thyroid nodule classification.

Our system yielded promising results. However, there are some limitations that need
to be addressed in order to go forward with further clinical trials. The number of samples
is limited under the scope of our study, and the results can reflect the pattern that exists
in this cohort. Our model needs to be applied to another cohort with a higher number of
subjects in order to assess the homogeneity of texture across cohorts. More samples can be
collected to sufficiently cover the full spectrum of thyroid cancer.

In total, this paper shows that extracting texture patterns using deep learning can im-
prove the diagnostic performance and can help in performing accurate diagnosis of thyroid
cancer. For future work, our experiments can be applied to bigger cohort. Additionally, our
model can be adapted to perform classification of the types of thyroid cancer. It can be also
adapted to perform staging of thyroid cancer. Other modalities can be added to the model
to study the heterogeneity of MRI texture patterns in a more advanced way. Our model can
also be adapted to study the texture patterns of thyroid tissues while using other imaging
techniques such as US. Although, US can provide a limited capability of modeling thyroid
cancer compared to MRI, having a model that combines US and MRI can contribute to
establishing more accurate models to ensure precise and personalized medicine.

Data collection can be also expanded to collect multiple scan from each subject in a
different time points. By doing this, we can study the correlation between DWI patterns
and the patterns of the cell proliferation process, which is associated with thyroid nodules
at different stages of thyroid cancer.
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2

Abstract: Background and Objective: The reliability of low-cost mobile systems for recording Elec-
trocardiographic (ECG) data is mostly unknown, posing questions regarding the quality of the
recorded data and the validity of the extracted physiological parameters. The present study com-
pared the BlTalino toolkit with an established medical-grade ECG system (BrainAmp-ExG). Methods:
Participants underwent simultaneous ECG recordings with the two instruments while watching
pleasant and unpleasant pictures of the “International Affective Picture System” (IAPS). Common
ECG parameters were extracted and compared between the two systems. The Intraclass Correlation
Coefficients (ICCs) and the Bland—Altman Limits of Agreement (LoA) method served as criteria for
measurement agreement. Results: All but one parameter showed an excellent agreement (>80%)
between both devices in the ICC analysis. No criteria for Bland—-Altman LoA and bias were found
in the literature regarding ECG parameters. Conclusion: The results of the ICC and Bland-Altman
methods demonstrate that the BlTalino system can be considered as an equivalent recording device
for stationary ECG recordings in psychophysiological experiments.

Keywords: BlTalino; BrainAmp; ICC; intraclass correlation coefficient; Bland-Altman method

1. Introduction

In psychophysiological research, Electromyography (EMG), Electrocardiography
(ECG), Electrodermal Activity (EDA) and Electroencephalography (EEG) are common
electrophysiological methods to investigate the relationship between human behavior and
its physiological basis [1,2]. Current instruments are usually stationary, and hence the
transmission of the collected data is done by wire, restricting the movement of partici-
pants. This is especially detrimental when using such systems in conditions that usually
would require movement of participants (e.g., during naturalistic behavior or in virtual
reality). Nowadays, there are multiple wearable recording devices on the market. These
wearables are mobile and most of them can transmit ECG data wirelessly. However, not all
wearables provide access to the data while recording, and they are relatively expensive.
Often, proprietary software is necessary for data recording and export for subsequent anal-
yses, adding additional costs and restrictions for the measurement device. Recently, the
BlTalino has been introduced as an inexpensive hardware and software toolkit specifically
designed to deal with the requirements of electrophysiological signal acquisition [3]. The
BlTalino device transmits data wirelessly and provides the opportunity to access the data
while recording.

To ensure that the data recorded with new wearables devices is of sufficient quality
to be used in a research context or for non-scientific applications, new devices have to be
verified before using them in psychophysiological experiments. Regarding the BlTalino,
only one study by Carreiras et al. [4] exists in which the BITalino was compared with an
established ECG system. However, the main focus of that study was to analyze the mor-
phological similarities between individual heartbeat waveforms and the general similarity
between the synchronized time series. Further, the authors used dry electrodes and the
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electrodes were applied to the hand palms or fingers and thus do not represent standard
ECG electrode placement. In addition, Carreiras et al. [4] did not use time or frequency
domain measures to compare the two devices. While time domain parameters such as heart
rate (HR) and heart rate variability (HRV) are established features that can be computed
effectively from the ECG, the use of frequency domain parameters provides additional
insights into the function of the cardiovascular system [5]. Specifically, the power spec-
trum of HRV allows for conclusions regarding the involvement of the parasympathetic
and sympathetic system in cardiovascular responses. The computation of these features,
however, critically depends on the data quality and data processing pipelines, as missing
or artifactual beats impact the frequency domain significantly [6-8]. The present study thus
used both time and frequency domain parameters to compare the two recording systems
and to provide a systematic analyses of ECG parameters.

While the test for concordance of ECG features recorded with two different recording
devices could be done based on non-specific ECG signals, the present study used an
established psychophysiological protocol to evoke specific ECG activity. We used the
“International Affective Picture System” (IAPS) [9] to provoke pronounced differences in
ECG features in different test blocks to increase variability in the recordings for a later,
more conservative, test for similarity. The IAPS allows for presenting different categories of
emotional stimuli (positive, negative and neutral) that are matched regarding their arousal
and dominance and that have been used in a large number of psychophysiological studies
to evoke different affective responses while controlling for the arousal and dominance
associated with a specific affective state [10].

Therefore, the aim of this study was to compare a medical-grade electrocardiography
(ECG) system with an ECG sensor of the low-cost DiY (Do-it-Yourself) hardware toolkit
BlTalino. To evoke clear variation in ECG activity, an experimental protocol inducing
different affective states and associated cardiovascular changes was implemented. Several
established ECG parameters were extracted from both recordings and tested for similarity
between the parameters. Since a statistical test for differences of two or more measures only
provides information about differences between conditions, or, as in our case, between two
measurement devices, the absence of significance in such tests does not provide evidence
for similarity in performance. Correlational measures derived from two different system, in
contrast, explain the strength of the relation between two measures but do not indicate their
agreement [11]. Testing the agreement or similarity between two measures has to be done
using specific statistical approaches that test for the concordance between the measures.
There are several methods to test for the concordance of two or more measure with the
Intraclass Correlation Coefficients (ICCs) and the Bland—-Altman Limits of Agreement (LoA)
method representing the most established and tested methods for continuous data with
two or more groups [12].

The present study demonstrates that it is possible to reliably record research-grade
ECG data with a wearable low-cost device. Reliable data acquisition with a system that
does not require proprietary software and can access the recorded data in real time while
providing wireless data transmission provides new opportunities for future mobile ECG in-
vestigations that do not require expensive laboratory equipment and that allow movement
of participants.

The remainder of the work is organized as follows. Section 2 describes the material
and methods. Section 3 provides an overview of the ICC and LoA statistical methods.
Section 4 summarizes the reliability assessment results. Section 5 presents a discussion and
main limitation of the work. Finally, Section 6 outlines the main conclusions and future
work perspectives.

2. Methods
2.1. Participants

Twenty-four participants were recruited through advertisement at the Technical Uni-
versity of Berlin. Only healthy participants without any history of heart disease or pharma-
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cological treatment of heart conditions were accepted. After the recordings, one participant
reported to take medication that influenced cardiovascular parameters, leading to the
exclusion of this participant. Thus, the final sample consisted of 23 participants (12 women,
11 men) with an age range from 22 to 57 (M = 28.3 years, SD = 8.8 years). Participation
was voluntary and participants received course credit. They were told not to consume
any form of caffeine for 2 h before the experiment and not to drink alcohol on the day of
the experiment. They also got a picture with all electrode positions indicated, so that they
could choose appropriate clothing. All subjects gave their consent before being enrolled
in the study. The study was approved by the Ethical Commission of IT—Instituto de
Telecomunicagdes with the matriculation number TUB-1234567. Participants provided
written informed consent, and the study was conducted in accordance with the Declaration
of Helsinki.

2.1.1. Hardware

The medical-grade ECG module ExG from BrainProducts was used as the standard
ECG system, hereinafter referred to as the BrainAmp-ExG. The BrainAmp-ExG amplifier
is an extension available for simultaneous measurement of EEG and other psychophys-
iological signals such as ECG, EMG and EDA, but it can also be used separately. The
BrainAmp-ExG amplifier has a bandwidth from 0 to 1000 Hz. The BrainAmp system is sep-
arated from the power grid by the use of a power pack. Electrodes from the BrainAmp-ExG
are connected via cables to the amplifier, which is connected to a PC.

As a DiY system, the BITalino version “Plugged BT Kit” was used in the experiment.
It contains a control block and sensors for ECG, EMG and EDA, as well as a photo resistor
(LUX) and an accelerometer (ACC). The BlTalino ECG sensor has a bandwidth between
0.5 and 40 Hz. The electrodes of the BITalino are connected to the BITalino ECG module,
which is connected by cable to the BITalino control block. The data can be sent via stan-
dard Bluetooth to a recording device. The recording device can be an Android tablet or
smartphone, as well as a PC.

2.1.2. Software

To allow for a direct comparison of both ECG recordings, the data of the two different
amplifier systems were synchronized using the Lab Streaming Layer (LSL) (Christian Kothe,
https://github.com/sccn/labstreaminglayer). In Figure 1, the general data acquisition
approach is presented. LSL catches data streams in the network, which can be recorded time
synchronously by the Lab Recorder software (a part of the LSL package). For providing
the data streams to the network, applets were used. The ECG signal from the BrainAmp
system is usually recorded with the BrainAmp-Recorder software. An applet for redirecting
the data stream from the BrainAmp-Recorder to the network already exists and is part of
the LSL package. The applet for the BITalino had to be programmed for this study. The
BlTalino team provided the BITalino Matlab API, which was added as an official Matlab
toolbox [13]. Using that API, the BITalino stream was forwarded to LSL based on the applet
for Matlab (9.2.0.538062 (R2017a)).

When different streams are available in the local network, the Lab Recorder detects
them and records all selected streams. The Lab Recorder saves the data streams to one file
in the open source “extensible data format” (.xdf). XDF is “a general purpose container
format for multi-channel time series data with extensive associated meta information. XDF
is tailored towards biosignal data such as EEG, EMG, EOG, ECG, GSR, MEG ...” [14].
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Figure 1. The left side of the image shows the adopted placement of electrodes. The BITalino leads are depicted in red and
the BrainAmp leads in blue: —, below right clavicular; +, left side of chest midclavicular line beneath last rib; G, below left
clavicular. The right side of the image shows the data acquisition workflow used for recording.

2.1.3. ECG Electrode Placement and Recording

A variation of Einthoven lead II was selected for the experiment, referred to as “al-
ternative leads”. To allow recordings of the ECG signal concurrently with two devices,
electrodes were placed according to the schema presented in Figure 1.

Because ECG is a fast changing signal, a high sampling rate was used. While for the
BrainAmp system it is possible to variably set different filters, the filters on the BITalino
system are fixed. The BlTalino allows data acquisition at sampling rates of 10, 100 and
1000 Hz, and, consequently, a sampling rate of 1000 Hz was selected for both ECG systems,
resulting in one sample per millisecond. In addition, to reduce artifacts in the recordings,
high- and low-pass filters were used according to the options available in the two amplifier
systems. All settings are listed in Table 1.

Table 1. Hardware filtering specifications and settings used in the experiment. * Note that
0.016 Hz = time constant of 10's (f = 5=z, with f the frequency and c a time constant).

BrainAmp BITalino
high-pass filter 0.016 Hz * 0.5Hz
low-pass filter 250 Hz 40 Hz
sampling rate 1000 Hz 1000 Hz

2.2. Materials
Stimuli (IAPS)

The result of this study aimed at establishing whether ECG data recorded with the
BlTalino system are comparable to an established medical-grade ECG system used in
psychophysiological research. To this end, an established psychophysiological paradigm
to evoke affective responses that are associated with changes in heart rate was used.
Brouwer et al. [15] (p. 3) noted in their study that “most perception studies show va-
lence rather than arousal effects, where pleasant stimuli correlate with higher heart rate
acceleration than unpleasant stimuli [16-22]".

We used IAPS pictures to induce two emotional states, pleasant and unpleasant. For
the pleasant conditions, pictures with medium arousal ratings were selected, while, for
the unpleasant condition, pictures with medium to high arousal ratings were chosen. If
the data quality of both the BrainAmp-ExG and the BITalino ECG is comparable, changes
in HR dependent on the emotional picture condition should reveal similar values for
both systems.
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2.3. Procedure

Participants were seated in front of a monitor with a distance of approximately 50 cm
to the screen. They were instructed to sit still for the time of the experimental task, which
took 35 min on average. Stimuli were presented in four blocks (two blocks with pictures
of the unpleasant and 2 blocks with pictures of the pleasant condition), consisting of
60 pictures each (Figure 2A). The order of blocks was counterbalanced across participants.

Each picture was presented for 4 s and stimulus presentations was separated by a
fixation cross with 1 s duration (Figure 2B). After a block of 60 pictures, participants were
asked to rate valence and arousal of the entire block on a 10-point scale from 0 to 9, with
9 indicating the highest arousal or valence, respectively. Before and after two blocks, a
5 min baseline block consisting of a gray fixation cross on black background was added.
To control the potential impact of the picture order, pictures were randomly selected from
the pool of pictures for each condition and blocks with pleasant and unpleasant pictures
were counterbalanced across participants.

After participants were prepared and electrodes were attached, a first baseline block
was used for acclimatization. The second baseline block was introduced in the middle
of the experiment to recover to the resting heart rate before the last two experimental
blocks were presented. After all blocks with picture presentations, a third and final baseline
block followed.

Baseline IAPS IAPS Baseline IAPS IAPS Baseline
valence valence valence valence
A —'— aversive|| arousal {ineutral|| arousal + neutral || arousal |laversive|[ arousal “7
rating rating rating rating
5min  5min ~10 5 5min. ~10s H5min S5min ~10s 5min ~10s 5 min
~

: +E] &

1s 4s 1s 4s

M M o

Figure 2. Block diagram of the experimental protocol and analyses pipeline, depicting the stimuli

blocks (A), the fixation cross and picture presentation (B), and the overall processing pipeline (C).

2.4. Data Analysis
2.4.1. Data Processing

Data processing was done in Matlab version 9.2.0.538062 (R2017a) with the use of
ECG tool, Matlab-based software developed in-house. The ECG tool offers the option to
load .xdf-files. As a result of LSL, both signals were combined with markers in an .xdf-file.
Streaming the BITalino data to LSL, after receiving them via Bluetooth from the BITalino
devices, had never been tested before. Therefore, visual inspection was done by plotting
both signals of one participant in one graph. The overall processing pipeline is depicted in
Figure 2C. Due to temporal incongruity of both graphs, alignment was done before data
processing. To this end, R-peaks were identified and exported with the corresponding
timestamp for each participant. A window of 201 ms (100 before the R-peak and 100 after
the R-peak) was searched to find the timestamp of the corresponding R-peak of the other
system. This comparison resulted in differences with a mean difference per participant
varying from 19 to 28 ms. The signals were re-synchronized using the mean difference for
each participant.

After alignment, the signals from both devices were filtered with a third-order high-
pass Butterworth filter at 1 Hz and a third-order low-pass filter at 40 Hz. Then, artifacts
were manually identified and subsequently interpolated. For automated R-peak detection
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and to avoid false positives as far as possible, the allowed number of beats per minute
(bpm) was set to range between 40 and 125 bpm. After automated R-peak detection,
false R-peaks were marked and rejected and, in the case of missing peaks, the data were
interpolated based on the mean peak interval 5 periods before the missing R-peak.

2.4.2. Dependent Variables

According to the Task Force of the European Society of Cardiology and others [23],
we computed selected heart rate variability measurements that can be used for short-
term analysis. The aim of the study was to determine whether the BITalino can be used
in psychophysiological experiments and, as such, measures were selected which were
used in previous experiments. According to Gramann and Schandry [24], the number of
heartbeats per minute (designated as heart rate (HR)) is still the most common indicator
in psychophysiology to measure cardiovascular events. Heart rate changes accompany
almost every change of physical and mental load.

In addition to heart rate measures, measures of heart rate variability were used. For
short-term HRV time domain measures, the ref. [23] recommends using RMSSD as an
estimate of the short-term components of HRV, which is often used in psychophysiological
research. Brouwer et al. [15] also used RMSSD as an estimate for HRV in their study.

In the frequency domain, the ref. [23] recommends three main spectral components
for short-term analyses: the very low-frequency (VLF), the low-frequency (LF) and the
high-frequency (HF) components. According to the [23] “the distribution of the power and
the central frequency of LF and HF are not fixed but may vary in relation to changes in
automatic modulations of the heart period ...”. The LF component reflects parasympathetic
innervation, whereas HF reflects sympathetic and parasympathetic innervation. In addition
to this, the ratio between LF and HF (LF/HF) is an indicator of ANS balance. We did not
analyze the VLF component as it is not as well defined as the other parameters according
to the [23]. In this study, LF, HF and LF/HF ratio were used to investigate whether both
systems recorded comparable signals in the experiment.

We expected to see increased HR in blocks with pleasant stimuli as compared to
unpleasant stimuli while no directed hypothesis were put forward regarding HRV due to
inconsistent results in the literature [16-22,25-28]. While these results would confirm the
general validity of our experimental manipulation, the main research question concerned
the comparability of the features as measured with the two different ECG systems.

A summary of all measures used in this study can be seen in Table 2.

Table 2. Dependent variables.

HR Measures HR Heart Rate [bpm]
root mean
time domain RMSSD  square of [ms]
successive differences
HRYV measures LF low frequency
frequency domain ~ HF high frequency [ms?]

LF/HF ratio between LF and HF

3. Statistical Methods

To investigate whether the BlTalino system allows for recordings of comparable
quality as the established ECG recordings with the BrainAmp system, two methods were
used: the Intraclass Correlation Coefficient (ICC) and Bland—Altman Limits of Agreement
(LoA) method.

3.1. Intraclass Correlation Coefficient (ICC)

According to Miiller and Biittner [29] (p. 2465), ICCs are used in medicine to “assess
agreement of quantitative measurements in the sense of consistency and conformity”. The
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ICC ranges, similar to other correlation coefficients, from 0.00 to 1.00 and is presented in
this work as a percentage.

ICCs above 80% are usually regarded as indicating good to excellent reliability,
whereas an ICC between 0.6 and 0.8 (60% and 80%) may be taken to represent substantial
reliability [30]. Portney and Watkins [31] indicated that clinical measurements should show
reliability of at least 90%. In addition to the ICC, the lower 95% confidence interval (lower
CI) of the ICC can be calculated. Lee et al. [32] reported that an agreement sufficient for
the interchangeable use of two methods is suggested only when a lower CI value of >75%
is observed.

In this study, the ICC form for two-way mixed-effects using single measurements
was used to investigate the absolute agreement defined by McGraw and Wong [33]. This
approach is mathematically identical to ICC (2,1), as defined by Shrout and Fleiss [34].

3.2. Bland—Altman Limits of Agreement (Loa) Method

“The limits of agreement (LoA) method (Altman and Bland [35]; Bland and Altman [11])
for assessing the agreement between two methods of medical measurement is widely
used (Bland and Altman [36], Ryan and Woodall [37])” [38] (p. 571).The Bland—-Altman
method obtains “the differences between measurements by the two methods for each
individual” [38] (p. 571) and calculates “the mean and standard deviation” [38] (p. 571).
In [38], the authors proposed methods for analyzing repeated data. The LoA were calcu-
lated according to the formulas presented in [38].

4. Results
4.1. Descriptive Results

The HR and HRV parameters in the time and frequency domain revealed only min-
imal differences in all selected parameters between the two recording devices (Table 3).
Moreover, the extracted parameters from both systems during the baseline and the IPAS
conditions showed only small differences overall. During blocks with unpleasant stimuli,
the heart was lowest for unpleasant followed by pleasant and lastly the baseline blocks.
For the RMSSD measures, the lowest HRV was observed during pleasant blocks, followed
by unpleasant and baseline blocks. A similar pattern was observed for the ratio LF/HF.

Table 3. Descriptive results.

BITalino BrainAmp BITalino BrainAmp
Mean Mean SD SD
HR
Fixation Cross 73.065 73.025 10.190 10.205
Pleasant 72.624 72.625 10.274 10.276
Unpleasant 71.515 71.504 9.379 9.381
RMSSD
Fixation Cross 0.045 0.045 0.025 0.025
Pleasant 0.043 0.043 0.025 0.025
Unpleasant 0.044 0.044 0.023 0.022
ratio LF/HF
Fixation Cross 3.109 2.973 3.970 3.797
Pleasant 2.993 2.988 4.220 4.204
Unpleasant 3.081 3.078 4.889 4.875
4.2. ANOVA

A 2 x 3 analysis of variance with two levels of the factor “device” (BrainAmp, BITal-
ino) and three levels of the factor “condition” (Baseline (Fixation Cross), pleasant IAPS,
unpleasant IAPS) was calculated for all dependent variables. For this analysis, the first
fixation block was excluded as it was for acclimatization. Thus, the mean for the factor
condition was built of two blocks each. There was a significant main effect of the factor
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“condition” for HR (F (1.486, 32.685) = 4.694, p = 0.025), as shown in Table 4. For RMSSD,
LE, HF and LF/HF ratio, the main effect of condition was not significant and there was no
interaction effect for “condition x device” for any dependent variable.

Table 4. Results of 2 x 3 ANOVA for the factor “condition” all dependent variables.

Dependent Variable Main Factor “Condition”
HR F(1.486,32.685) = 4.694 * p=0.025*
RMSSD F(2,44) = 0.567 p =0.571
HRV LF F(1.200,26.408) = 6.204 * p=015%
HRV HF F(1,44) = 0.127 p = 0.881
HRV LF/HF F(1.454,31.997) = 0.910 * p=0.384*

* Greenhouse-Geisser corrected.

A post hoc pairwise comparison with Bonferroni correction was done for heart rate
with an alpha value of 0.05. None of the pairwise comparisons was significant.

4.3. Intraclass Correlation Coefficient

The ICCs and the lower Cls were calculated for all dependent variables over all blocks
and, in addition, for each block separately. To gain good to excellent agreement of both
devices, the ICC should be higher than 90% for clinical measurements [31] and the lower
CI should be higher than 75% for the interchangeable use of two methods [32]. The ICC
estimates over all blocks for all dependent variables were over 90% and the lower Cls were
over 75% (Tables 5 and 6). Therefore, all dependent variables met the criterion for good
to excellent agreement. For each block separately, the ICC estimates were over 90% and
the lower CIs were over 75% for all blocks and dependent variables, except for the LE/HF
ratio in the second fixation cross (Block 4) (Tables 5 and 6).

Table 5. ICC in percent for each block and dependent variable.

Overall B1 B2 B3 B4 B5 Bé6 B7
Fix 1 P1 ur1 Fix 2 P2 UP2 Fix 3
HR 100.0% 100.0% 100.0% 100.0% 99.9% 100.0% 100.0% 100.0%
RMSSD 99.6% 99.9% 100.0% 100.0% 97.4% 99.8% 100.0% 100.0%
HRV LF 100.0% 100.0% 100.0% 100.0% 99.9% 100.0% 100.0% 100.0%
HRV HF 99.6% 99.9% 99.8% 100.0% 97.3% 99.9% 100.0% 99.9%
HRV LF/HF 98.8% 100.0% 100.0% 100.0% 83.6% 100.0% 100.0% 99.8%
B1-B7, block number; Fix, fixation cross; P, pleasant IAPS; UP, unpleasant IAPS.
Table 6. Lower CI in percent for each block and dependent variable.
Overall B1 B2 B3 B4 B5 Bé6 B7
Fix 1 P1 ur1 Fix 2 P2 UP2 Fix 3
HR 100.0% 100.0% 100.0% 100.0% 99.8% 100.0% 100.0% 100.0%
RMSSD 99.4% 99.8% 100.0% 100.0% 94.0% 99.6% 100.0% 99.8%
HRV LF 99.9% 99.9% 100.0% 100.0% 99.8% 100.0% 100.0% 100.0%
HRV HF 99.4% 99.8% 100.0% 100.0% 93.8% 99.7% 100.0% 99.9%
HRV LF/HF 98.4% 99.9% 100.0% 100.0% 65.6% 100.0% 100.0% 99.6%

B1-B7, block number; Fix, fixation cross; P, pleasant IAPS; UP, unpleasant IAPS.

4.4. Bland-Altman Method

An assumption for calculating Bland-Altman bias and limits of agreement is that
the difference between both devices are normally distributed. A Shapiro-Wilk test [39]
revealed that the data were not normally distributed. Bland and Altman [40] recommended
a logarithmic transformation of differences in that case, which also revealed non-normal
distribution of the transformed data. Quantile-Quantile plots (Q-Q plots) of the difference
between data of the two devices were made to detect the problem on normality tests. The
Q-Q plot for the difference of low-frequency measures is shown in Figure 3.
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Figure 3. Q-Q plot of differences between the BrainAmp and the BlTalino for LE.

In the Q-Q plot, it can be seen that there were several outliers, which may have
negatively affected the results of the normality test. Therefore, outliers were excluded
and tested again for normality. In some measurements, more than half of the data points
had to be excluded to reach normal distribution. However, this heavy reduction of data
points may distort the results. According to Bland and Altman [40] (p. 139), a non-normal
distribution of the differences values may not be a comparably serious issue for the Bland-
Altman method as compared to other statistical tests. Non-normal distributed differences
will lead to more conservative results than normally distributed differences. For this
reason, the non-normal distributed data were used for Bland—Altman analysis even though
the normality assumption was violated. The results of the Bland—Altman analysis for
non-normal distributed differences are presented in Table 7.

Table 7. Results of Bland—Altman absolute bias and absolute limits of agreement (LoA) for all
dependent variables.

LoA
Measure Bias Lower LoA - Upper LoA Outlier (in %)
HR —0.01990803 —0.33662671 - 0.29681066 4.83%
RMSSD 0.00003761 —0.00439510 - 0.00447032 3.22%
HRV LF —0.00000880 —0.00011612 - 0.00009852 4.83%
HRV HF 0.00000290 —0.00019657 - 0.00020236 4.83%
HRV LF/HF —0.06054003 —1.32977327 - 1.20869321 3.22%

The bias was close to 0 and limits of agreements were quite narrow for all dependent
variables. Different results for low and high frequency were found, which may influence
the result of the LF/HF ratio negatively. Next, percentages of differences lying outside
the LoA were calculated for all dependent variables, as Weippert et al. [41] did in their
analysis. The results are presented in Table 7. The percentage of outliers was lower than 5%
for all measures. Therefore, more than 95% of differences between the two devices were
observed within the limits of agreement. Although the results of Bland-Altmam bias and
limits of agreement were quite different, they revealed the same percentage of differences
lying outside the limits of agreement.

Visual Inspection of Bland—Altman Plots

Bland and Altman [40] suggested “to plot the difference between the measurements
by the two methods for each subject against their mean” (p.140). This kind of plot allows
for investigating possible relationships between the discrepancies and the true value. In
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contrast to R-peak analysis, the extracted parameters in the current study were mean
values built over a period of time (here over one block). Thus, only seven measures by
the two methods were available for each subject. Due to this small amount of measures
per subject, Bland-Altman plots of all subjects were created [41]. Percentage of differences
lying outside the LoA was under 5% for each measure, therefore the y-axes of the plots
were restricted to the LoA.

The results for Heart Rate (HR) show a bias of —0.01991 bpm and LoA were at
+0.31672 bpm. Therefore, the BITalino yields on average 0.01991 bpm higher values than
the BrainAmp-ExG, and the BITalino may yield between +0.31672 bpm compared to the
BrainAmp-ExG. The Bland-Altman plot for HR can be seen in Figure 4.

Due to some extreme data points below 0, the bias was probably shifted away from 0
to negative. The distribution of data points with the bias of —0.01991 bpm showed that the
BrainAmp was consistently higher than the BITalino for most of the data points.

[
+1.96 SD

L L 03363
041 oi-- 7 et el el
40 5 60 70 80 90 100 110
Average of BrainAmp and BITalino (HR [bpm])

Difference BrainAmp - BlTalino (HR [bpm])

Figure 4. Bland—-Altman plot of heart rate. (Some data points outside the LoA are cutoff to offer a
more detailed view of the distribution inside the LoA.)

RMSSD. The bias for RMSSD of the complete dataset was at 0.00004 ms and limits of
agreement were at £0.00443 ms. Thus, the BlTalino yielded on average 0.00004 ms lower
values than the the BrainAmp-ExG, and the BITalino may yield +0.00443 ms compared to
the BrainAmp system. The Bland—-Altman plot for RMSSD can be seen in Figure 5.

The distribution of the data showed that most of the data points were near the bias,
but that there was a tendency for values of the BrainAmp-EXG to be slightly smaller than
the values of the BlTalino. Again, limits of agreement were quite narrow despite some
extreme values (data points below —0.00075 ms and data points above 0.003 ms).

Low and high frequency. The bias for LF was at —0.0088 ms? and limits of agreement
were at £0.10732 ms?. Thus, the BITalino yields on average 0.0088 ms? higher values than
the BrainAmp, and the BITalino may yield 4-0.10732 ms? compared to the BrainAmp.

The bias for HF was at 0.0029 ms? and limits of agreement were at +0.19946 ms? .
Thus, the BITalino yields on average 0.0029 ms? higher values than the BrainAmp, and the
BlTalino may yield +0.199 ms? compared to the BrainAmp.
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Figure 5. Bland-Altman plot of RMSSD. (Some data points outside the LoA are cutoff to offer a more
detailed view of the distribution inside the LoA).

The Bland—Altman plot of high- and low-frequency components of HRV are shown in
Figures 6 and 7. In the Bland—Altman plot of the low-frequency component (Figure 6), it
can be seen that there were several data points above the bias and a few below the bias.
The data points below may have influenced the results of bias and LoA negatively. They
may result from interpolated artifacts, which occurred only in one of the systems.

A similar distribution of differences was found for the high-frequency component of
HRYV (Figure 7). For HF, the bias was positive and most of the data points were below the
bias. For both frequency components, there was an increased variability of small values.
This may indicate that there is less reliability at small values.
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Figure 6. Bland-Altman plot of LF. (Some data points outside the LoA are cutoff to offer a more
detailed view of the distribution inside the LoA.)
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Figure 7. Bland—Altman plot of HF. (Some data points outside the LoA are cutoff to offer a more
detailed view of the distribution inside the LoA.)

LF/HF ratio. The bias for LF/HF was at —0.06054 and limits of agreement were
+1.26923, which was the largest bias and widest LoA of all measures. Therefore, the
Bland—-Altman plot was inspected for LF/HF ratio too (Figure 8).
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Figure 8. Bland-Altman plot of LF/HF ratio. (Some data points out- side the LoA are cutoff to offer
a more detailed view of the distribution inside the LoA.)

Although all the parameters have different measurement scales, differences between
measurement devices should always be close to 0. Therefore, a comparison of limits
of agreement between measurements can be done. For the LF/HF ratio, the limits of
agreement were 6 times larger than for the HF and 11 times larger than for the LF. Due to
the fact that the ratio is built by both components, artifacts may influence the LF/HF ratio
even more than both frequency components separately. One extreme difference of —8 (this
point is not shown in the graph) may be the result of artifact interpolation in one of the
measurements. Both frequency components showed agreement between the measurement
devices. However, these different results may indicate that there is probably no or little
agreement for the ratio of LF and HE.
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5. Discussion
5.1. Overall ICC and Bland—Altman Method

All blocks were used in the overall ICC and Bland-Altman analysis. The results reveal
that all measures show good to excellent agreement with the ICC method when using the
criterion for clinical measurements (ICC > 90%). This result is consistent with the result of
the study by Sandercock et al. [42], who found good to excellent agreement for all measures
(LF, LF(nu), HE, HF(nu), LF:HF, RMSSD, SDNN and Mean R- R) when comparing different
devices. They also used the Bland—Altman method in addition to the ICC.

In contrast to the ICC, Sandercock et al. [42] found no acceptable agreement be-
tween three instruments in the Bland—Altman analysis. They found one acceptable Bland—
Altman result for the high frequency band of the HRV in one condition for two of the
three instruments. They found a bias of —1 ms and a LoA of +264.6 ms. In contrast to
Sandercock et al. [42], the present study analyzed high and low frequency measures of
HRV in ms? and not in ms.

The results of the analyses demonstrate a bias for the high-frequency components of
the HRV with 0.0029 ms? and LoA at +0.19946 ms? . Similar results were found for the
low-frequency component of HRV with a bias of —0.0088 ms? and a LoA of +0.10732 ms?.
Based on the results and comparison with previous studies, it can be concluded that
the low- and high-frequency components of HRV measured with the BITalino and the
BrainAmpp-ExG showed a high level of agreement between the two systems.

In addition, the limits of agreement were more conservative for these non-normally
distributed differences than for normally distributed differences.

5.2. ICC for Each Block

All measures showed a good to excellent agreement in all blocks except the ratio of
LF/HF in the second baseline block (Block 4). The second unpleasant IAPS block (Block 3)
and the second baseline block (Block 4) each contained more than 40 a of artifacts only
in the BrainAmp recordings. However, the LE/HF showed 100% agreement in Block 3
but only 83.6% in Block 4. This might indicate that there was no evidence of artifact
interpolation to influence the result of the ICC. The poor agreement of the LF/HF ratio in
the second baseline block (Block 4) may be the result of movement, as participants had
to sit still already for 15 min when beginning with the fourth block. Due to the fact that
Bland-Altman uses all blocks as repeated measurements, the poor agreement for Block 4
may explain the wider limits of the LF/HF ratio in Bland—Altman analysis.

5.3. Conclusion of Method Comparison

As mentioned above, ICC and Bland—Altman analysis as clinical measurements are
discussed controversially in the literature. Most of the researched studies investigating ECG
comparisons [42,43] used both methods. In the case of Bland-Altman analyses, calculations
depended on the design of the study. In the present study, measures of different blocks
were used as repeated measurements. None of the referenced comparison studies described
which Bland-Altman calculation was used. In addition, criteria for accepting both devices
as interchangeable were not mentioned in these studies. For the ICC method, criteria were
defined and therefore the interpretation of the results shows higher validity as compared
to the Bland—-Altman analysis.

Evaluating both methods and comparing their results, as well as inspecting Bland—
Altman plots, allowed for an objective conclusion about the agreement of measures based
on the two systems. Unfortunately, there are no guidelines for a Bland-Altman plot
inspection. As demonstrated for the heart rate measure, scaling of the y-axis may mislead
the interpretation of the distribution of differences. Furthermore, in the current study,
the differences of all measures were not normally distributed, nor were the logarithmic
transformed differences normally distributed. Nevertheless, Bland—Altman analysis was
computed for the non logarithmic transformed and non-normal distributed data, violating
the assumptions of distribution values bias and LoA.
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ICC showed good to excellent agreement, Bland—Altman bias was small and LoA
were narrow for almost all variables. The bigger bias and LoA for LF/HF may be explained
by the influence of artifacts on one of the devices. If there is a big difference in LF and a
small difference in HF, the ratio will be large and vice versa. However, taking all results,
the data provide good evidence that both instruments showed very good agreement and
can be used in further experiments interchangeably.

5.4. Limitation of Comparison Methods in the Current Study

The study was carried out with a sample composed of healthy participants, spanning
an age range between 22 and 57 years old. To further encompass the variance that studies
in psychophysiology require, future work should be developed focusing on replicating the
current study for other sample profiles. Nevertheless, the critical comparison of the two
systems was a within-subject design that should not be influenced by a restricted sample
profile. The current study is in line with the state-of-the-art, in terms of sample size, and
demonstrates the validity of the low-cost system under analysis for the sample enrolled in
the study.

Integrating the BlTalino stream via LSL required the use of an applet. In the current
study, signals of both systems were not aligned. The validity of synchronously acquired
data was already demonstrated by da Silva et al. [44]. This non-constant difference between
R-peaks of both devices may arise from the working memory load of the Matlab-applet
receiving data from the BITalino and forwarding it as a data stream over the network to
LSL. The applet for receiving and forwarding the signal from the BITalino to LSL may
be implemented in another programming language for future experiments to avoid this
non-constant shift.

Furthermore, the BrainAmp ECG was used in comparison as the standard method.
However, 93.52% of artifacts were found in the signals of the BrainAmp ECG. Different
leads were used for the BrainAmp and the BITalino, because of the different connection
of the leads to the specific system. The BrainAmp leads had been used very often before
this experiment which might may have caused some material degradation and, as a
consequence, worse signal quality as compared to the new BITalino sensors. Therefore,
the BrainAmp-EXG leads had a higher sensitivity to movements and resulting movement
artifacts. In the pretests before the experiments, both devices showed no artifacts and
therefore the same leads were used in the experiment.

6. Conclusions and Future Work

Due to the comparison results of ICC and the Bland—-Altman method, the BITalino
can be considered as an equivalent recording device for stationary ECG recordings in
psychophysiological experiments. The applet to stream the data will be implemented in
another programming language and will be tested for future experiments. A new version
of the BITalino called “(r)evolution” was introduced in the middle of 2017. Cable plugs
were improved (from Molex Sherlock connectors to USB-like UC-E6 connectors); WiFi
and BLE (Bluetooth Low Energy or Bluetooth 4.0) were added as technologies for data
transmission; and new sensors were introduced. The first BITalino used Molex Sherlock
connectors for the electrode leads, which was highly sensitive to cable movement. This
may be fixed with the new UC-E6 plugs. The connectivity for data transmission was
limited to Bluetooth 2.0. With the new version of BITalino, data can also be sent via BLE or
WiFi, which can be advantageous in several use cases. This may fix some of the problems
associated with receiving data from the BITalino in the current study. The improvements
of the new BlTalino (r)evolution and the sensors will be tested in further experiments,
following the procedure of the current study. Overall, the results of the present study
demonstrate good agreement between an inexpensive DiY system and an established
medical grade ECG system. This provides a basis for the BITalino to be used for research in
the lab and due to its portability, potentially mobile ECG system outside the lab.
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Abbreviations

The following abbreviations are used in this manuscript:

ACC accelerometer

ANS autonomic nervous system

API application programming interface
BLE Bluetooth Low Energy /Bluetooth 4.0
Bpm/bpm  beats per minute

CI confidence interval

DiY do-it-yourself

ECG electrocardiography

EDA electrodermal activity

EEG electroencephalography

EMG electromyography

EOG electrooculography

GSR galvanic skin response

HF High Frequency

HF(nu) High Frequency normalized unit

HR Heart Rate

HRV heart rate variability

Hz Hertz

IAPS International Affective Picture System
ICC Intraclass Correlation Coefficient

LF Low Frequency

LF(nu) Low Frequency normalized unit
LF/HF ratio between low frequency and high frequency
LoA Limits of Agreement

LSL Lab Streaming Layer

LUX photo transistor
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MEG magnetoencephalography

Q-Qplot quantile-quantile plot

RMSSD  Root Mean Square of Successive Differences
SDNN Standard deviation of the NN (R-R) intervals

USB Universal Serial Bus
VLF very low frequency
XDF extensible data format
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Abstract: There is a crucial need to process patient’s data immediately to make a sound decision
rapidly; this data has a very large size and excessive features. Recently, many cloud-based IoT health-
care systems are proposed in the literature. However, there are still several challenges associated
with the processing time and overall system efficiency concerning big healthcare data. This paper
introduces a novel approach for processing healthcare data and predicts useful information with the
support of the use of minimum computational cost. The main objective is to accept several types of
data and improve accuracy and reduce the processing time. The proposed approach uses a hybrid
algorithm which will consist of two phases. The first phase aims to minimize the number of features
for big data by using the Whale Optimization Algorithm as a feature selection technique. After
that, the second phase performs real-time data classification by using Naive Bayes Classifier. The
proposed approach is based on fog Computing for better business agility, better security, deeper
insights with privacy, and reduced operation cost. The experimental results demonstrate that the
proposed approach can reduce the number of datasets features, improve the accuracy and reduce the
processing time. Accuracy enhanced by average rate: 3.6% (3.34 for Diabetes, 2.94 for Heart disease,
3.77 for Heart attack prediction, and 4.15 for Sonar). Besides, it enhances the processing speed by
reducing the processing time by an average rate: 8.7% (28.96 for Diabetes, 1.07 for Heart disease,
3.31 for Heart attack prediction, and 1.4 for Sonar).

Keywords: big healthcare data; classification; decision-making; feature selection; whale optimization;
naive bayes

1. Introduction

Recently, many medical devices are equipped with sensors to collect, communicate,
and integrate the massive generated medical data. Modern healthcare systems are based
on emerging technology such as Wireless Sensor Networks (WSN) and the Internet of
Things (IoT). Moreover, there is a widespread deployment for smart mobility initiatives that
increase the development of intelligent healthcare systems. The objective is to maximize
the use of real-time data streaming out of various medical, sensory services. The IoT
generates diverse and complex big healthcare data. This data poses many challenges to
the storage and analysis infrastructure. The convergence of IoT and several fundamental
technologies such as cloud computing has become necessary to address the aforementioned
challenges [1]. As shown in Figure 1, IoT-based healthcare systems may deploy a wide
range of computing technologies such as cloud, edge, and fog computing, as a virtual
resource utilization infrastructure.

Big data has become a slogan for many scientific and technological enterprises, re-
searchers, data analysts, and technical practitioners. Big data can be defined as any large
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and complex data source (gold mine) combined with a combination of old and new data-
management technologies and architecture. Organizations can gather, store, manage,
and manipulate extremely large volumes and a wide variety of data from many sources
at the required speed and the proper time to gain the right insights [2]. Big data offers
the basic functionalities that enable different organizations to manage data rapidly, timely
conducted, and obtain smart decisions to gain the value of big data [3]. Big data is charac-
terized by three V’s (Volume, Velocity, and Variety), according to industrial data analyst
Doug Laney [4]. Three V’s are increased by four more V’s (Variability, Veracity, Validity,
and Volatility) up to seven V’s later, as shown in Figure 2. To cope, the big biomedical data
is characterized by scale, diversity, and complexity. Biomedical data processing consists of
phases that are collecting, processing, and managing data. The main objective is to produce
new information for end-users [5]. There are four steps for big data analysis, defined as
four A’s: Acquisition, Assembly, Analyze, and Action.

=

Computing ]
! &= J

(3) Cloud layer

(2) Fog layer

HEALTH
SENSORS

(1) IoT layer 2u0; of) : -

Figure 1. Modern healthcare systems’ structure.

The main objective of big data architecture is to extract value from a wide range of
data by collecting the raw generated data from various data sources (Acquisition) [2]. Data
collection techniques are used to collect raw data from various data formats. Analyze
means using analytical methods, algorithms, and tools to find new insights and extract
value. Data mining simultaneously helps to generate insight and forecasting patterns and
provides smart query functions, then decisions (Action) must be available [6].

The biomedical domain also joins the era of the development of big data. The big
data contains patient information, essential signals, and others from a wide range of data
sources. Big data technology stores, analyzes, and exploits patient information. However, a
cloud-based IoT healthcare system suffers from challenging problems that are demanding
prompt solutions. The following list surveys some barriers [7] such as:

e  The massive collected data storage;

e  Eliminate privacy and security leakage at a different platform level;

¢ Energy management with continuous monitoring leads to an increase in data volume
and analytical demands;

e Deliver the information at the proper time and in a reliable manner;

e Heterogeneity: the diversity of the connected things;

e  High dynamics: the dynamic global network infrastructure;
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e Quality of Service (QoS) supports both QoS and functional properties concerning a
Service-Level Agreement (SLA).

Data science continues to provide
ever-increasing value for user

A variety of data sources leads
to volume of data is increasing Volume
at a staggering rate.

Volatility One has to prepare for
data volatility

Data streams come in at . e
unmatched speed and Veloclty Va|ldlty Exact analysis for valid

should be allocated within predictions.
an appropriate manner.
Many data formats and WAGULEAY \/SIE(H1AA The quality of captured data

is essential for accurate

varying levels of data r
analysis

completeness.

Inconsistency of the data set can hamper
processes to handle and manage it.

Figure 2. Big data multi-V’s model.

Speed, efficiency, and high computational cost problems can be solved by saving
time and reducing processing costs. We need to reduce the volume of data, and this
can be implemented by reducing the feature of big data being processed. Data volume
minimization can be achieved via the implementation of a Feature Selection (FS) technique.
FS affects performance and offers faster decisions. FS determines the features that should
be employed to improve performance [2].

The metaheuristic algorithms find the optimal settings of the application parameters
and hyperparameters [8]. Metaheuristic algorithms can be categorized into three categories:
evolutionary algorithms (EAs), trajectory-based algorithms, and swarm-based algorithms.
Swarm-based algorithms are intuitive and inspired by nature, humans, and animals.
While working with these algorithms, the researcher should make a compromise between
exploration and exploitation. It turns out that the exploration process is searching far
from the current candidate solution, while the exploitation is searching in the vicinity,
near the current solution. The Whale Optimization Algorithm (WOA) has a low number of
adjustable hyperparameters. The WOA mimics the humpback whale in searching for prey.
The WOA consists of three operators to model the behavior of humpback whales. The WOA
can accomplish data optimization missions by minimizing the number of features with
high performance and making data ready to classify. The data are currently ready to be
categorized, and several classification algorithms are included, including Decision Tree,
Deep Learning (DL), K-Nearest Neighbor (KNN), and Naive Bayes (NB). The NB classifier
is a Bayes theorem-based model of probabilistic machine learning. NB can accomplish data
classification as fast, simple to enforce, and real-time action support.

The main objective of this study is to propose a suitable approach for processing
medical data rapidly in real-time and increasing its accuracy in a form that saves compu-
tational costs. This can be achieved by proposing an Ambient Healthcare approach with
the Hybrid Whale Optimization Algorithm and Naive Bayes Classifier (AHCA-WOANRB)
to perform feature selection on data and then classify it to reduce processing time while
increasing performance.

The remaining of this paper will be as following: Section 2 will discuss related work
and put a spotlight on the pros and cons of every discussed contribution; Section 3 will
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introduce the proposed AHCA-WOANB approach and the way of embedding the hybrid
algorithm; Section 4 will introduce the experimental results that obtained; Finally, Section 5
will introduce the conclusion and future work.

2. Related Work

Medical services expect significant advancements through IoT and cloud computing
integration. This integration introduces new forms of intelligent medical equipment and
applications. The recently developed and introduced medical systems are targeted at
the industry and academia to implement modern healthcare systems. IoT-based health
architecture captures, processes, and analyzes medical data. In this vein, developing
healthcare architectures, feature selection, and data classification has received significant
attention in academia and the industry in the last few years [9]. In the next subsections,
there will be a detailed description of the recent healthcare architecture. The WoA and NB
classifier will also be surveyed.

2.1. Healthcare Architectures

Abawajy et al. [6] suggested a Cloud-based Patient monitoring architecture. There are
three stages to their proposed architecture: collection station, data center, and monitoring
station. Andriopoulou et al. [10] proposed a healthcare service framework based on fog
computing that intermediates between clouds and loT devices and allows for new forms of
computing and services. Their architecture comprises three main layers: data aggregation
fog nodes, information storage, data processing and analysis fog servers, and data storage
clouds. The same study introduced an IoT-based architecture for fog-based healthcare
networks [10]. The design and implementation of the proposed architecture were in three
layers. The first layer is IoT-based devices. The second layer consists of fog, while the third
layer consists of the cloud layer. This architecture reduces cloud service traffic and provides
low delays and immense permanent storage space. The integrated edge, fog, healthcare IoT-
based cloud infrastructure was implemented by Dimosthenis et al. [11]. Their architecture
consists of three layers for acquiring operation, data storage, and decision-making in
real-time. The three layers are the edge layer that is close to the patients, the fog layer
responsible for storing and processing data, and the cloud infrastructure that stores and
analyzes data extracted from the fog and edge layers. Hassan et al. [9] have developed a
4-layer hybrid architecture named HAAL-NBFA, inspired by a growing interest in the use
of Aml to develop care assistance systems for elderly patients. The HAAL-NBFA used both
local monitoring and cloud-based architectures. The goal was to predict a patient’s health
status from contextual circumstances. They suggested a five-stage cloud classification
model that can deal with broad imbalanced datasets. The Deep Learning Three-Layer
Architecture called HealthFog was proposed by Shreshth Tuli et al. [12]. HealthFog shows
its performance in energy usage, latency, and execution time. QoS attributes are not taken
into account. The comparison of recent health system architectures in the literature is
shown in Table 1.

Table 1. Recent healthcare system architecture.

Architecture No. of Layers Scalability Flexibility Real-Time Support Energy-Efficiency Computational Cost
PPHM [6] Three Layer Scalable Flexible N/A Energy-efficient High

HSDA [10] Three Layers ~ Moderate =~ Moderate  support Moderate Moderate

EFCHioT [11] Three Layers  Scalable Limited support Energy-efficient High

HAAL-NBFA [9] Four Layers  Scalable Limited support Moderate High

HealthFog [12] Three Layers ~ Limited Moderate  support Energy-efficient Low

2.2. Whale Optimization Algorithm

One of the well-known metaheuristic optimization algorithms is the Whale Optimiza-
tion Algorithm (WOA) [13,14]. WOA is considered a Wrapper-based Feature Selection
technique, influenced by nature, proposed by Seyedali Mirjalili et al. [13,14]. The main in-
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spiration for WOA is the actions of humpback whales. Whether by encircling or bubble-net
approaches, they strike the prey. The current optimal location in the surrounding activity is
treated as the prey, and according to Equations (1) and (2), the whale updates its position.

D= |C.X*(t) — X(b) 1

X(t+1) = X*(t) — A.D )

where t refers to the current iteration, X* is the vector that corresponds to the best solution,
and X defines the position vector of the whale. The absolute value is || and . is the
element-wise multiplication. A and C are determined as follows in Equations (3) and (4).

A=2i7—1d 3)

C=27 (4)

where a is linearly decreased from 2 to 0 throughout iterations, and r indicates a random
number in [0, 1].

There are only two ways to simulate bubble-net behavior. The first is to shrink the
enclosing using Equation (3) with a reduced range of A by a. The search agent’s new
position can be defined anywhere between the best possible current position and the
original position. Figure 3 depicts the feasible position from (X,Y) to (X*,Y*) that A
can obtain in a 2D space, as given by Equation (3). The second one is the spiral updating
positions; Equation (5) is used as a logarithmic spiral equation. The movement of humpback
whales around the prey is helix-shaped, which is mimicked using Equation (5).

X(t+1) = D' e cos(2ml) + X*(t) )

Here, D' = ‘)?* () —X (t)’ is the distance from the ith whale to the victim, and B is a

parameter for determining the form of the logarithmic spiral. I denotes a random number
in [—1,1] that determines how close the next location of the whale is to the victim. | = —1
is the nearest location to the victim as shown in Figure 4.

(X-AX, 1) (Af' e X, 7

\ ) .

Keaxlyy | s
ARl
(X-AX, Y'-AY) YA X, Y'-AY)

Figure 3. The WOA shrinking encircling mechanism.
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Figure 4. The spiral updating position.

It is worth remembering that humpback whales will simultaneously swim around the
prey and along spiral-shaped tracks in a shrinking circle. To model this concurrent activity,
the researchers believe that the processes of shrinking or the spiral model for adjusting
the whale’s location are equally probable. Equation (6) defines the mathematical model as
follows.

X*(t)— A.D ifp<05

) - 6
X(t+1) = D .e.cos(2mtl) + X*(t) ifp > 0.5 ©

¥(t+1) = {

Here, p is a random number in [0, 1], which decides when to use the spiral model

or the shrinking encircling method to change the whale position. In addition, humpback

whales will search randomly, depending on the location of each other. The mechanism can
be accomplished as follows:

D = |C.Xoamalt) — (1) @)
X(t+1) = Xpona(t) — AD (8)

where X4 is a random whale (a random position vector) chosen from the current popula-
tion. The WOA algorithm’s pseudo-code is shown in Algorithm 1. The WOA algorithm
randomly chooses X as the optimal way to enhance exploration.

The X* value is chosen in the WOA algorithm for moving randomly selected whales
rather than the best one to boost exploration. Besides Features Selection as a way to process
data, there are other methods, including data classification. Data classification can be done
in more than one form and by using many algorithms that differ in how they classify the
big data.
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Algorithm 1: The WOA

1 Initialize search agents.

2 Evaluate fitness function.

3 it <+ 0

4 X* = the best search agent.
5 while t < MaxIteration do

6 foreach SearchAgent do
7 Update A, C, 1, p, and a.
8 if p > 0.5 then
9 X(t+ 1) = Updating the search agent’s position using the spiral
method (Equation (5)).
10 else
1 if |[A| < 1then
12 X(t+ 1) = Updating the position of the current search agent using
‘ the encircling mechanism (Equation (1)).
13 else if |A| > 1 then
14 Random search agent is selected.
15 X(t+ 1) = Updating the position of the current search agent by
using the prey searching method (Equation (8)).
16 end
17 end
18 end
19 | If there is better solution, update X* = X(t + 1).
20 t=t+1
21 end

22 return X*

2.3. Naive Bayes Algorithm

The Naive Bayes Algorithm (NB) is a Bayes Theorem-based classification technique
with an assumption of independence among predictors. It can be used for spam filters, text
analysis, and medical diagnosis [15]. Naive Bayes is considered one of the best algorithms
with several advantages, such as easy implementation, high speed, and efficiency. NB
requires less training data, is scalable, handles both continuous and discrete data, and is
best suited for text data and fog computing support. The Naive Bayes model is simple to
construct and especially effective for very large datasets. Naive Bayes also provides highly
advanced classification methods as well as simplicity. The theorem of Bayes provides a way
of calculating posterior probability P(c | x) from P(c), P(x), and P(x | ¢). The equation
will be:

P(x | c).P(c)

Plc|x)= Plx)

©)

The equation parameters are:

e P(c| x): the posterior probability of class (c, target) given predictor (x, attributes).
e P(c): the prior probability of class.

e P(x|c): the likelihood which is the probability of the predictor given class.

e P(x): the prior probability of the predictor.

The classification process can easily be described in three simple steps: (i) create
the frequency table from the dataset, (ii) establish a Likelihood table by specifying the
probabilities, and (iii) use the Bayesian equation to measure the post-class probability.
The prediction result is the class with the highest posterior probability. In practice, it
is nearly impossible to obtain a set of completely independent predictors. Assume the
categorical variable in the test data has a category but not in the train data; in this case,
the probability of this category is set to zero, and prediction is impossible.

To summarize, medical data has a very large size and has many features that can
be decreased to make processing faster. There is a need to find a suitable method for
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processing medical data rapidly in real-time and increasing its accuracy in a form that
saves computational cost. Many attempts were spotted on this point, and many solutions
were introduced but with drawbacks in processing time and performance.

3. Methods
3.1. The Ambient Intelligent Healthcare Approach

Data evolves over time in most challenging data analysis applications and must be
analyzed in near real-time. Patterns and relationships in such data frequently evolve over
time, so models built to analyze such data quickly become obsolete. This phenomenon is
known as concept drift in machine learning and data mining. In machine learning and
data mining, concept drift refers to changes in the relationships between input and output
data in the underlying problem over time. There are several approaches to dealing with
concept drift; the most common is ignoring it and assuming that the data does not change.
If you suspect that your dataset may be subject to concept drift, you can use a static model
to detect Concept Drift Detection and a Baseline Performance. This should be your starting
point and benchmark for comparing other methods. Solving the problem of increased
processing time and high computational cost for medical big data systems is crucial. This
can be achieved via (i) proposing an approach for processing various types of medical data,
(i) predicting useful information with minimum computational costs, and (iii) processing
data in real-time. Therefore, a hybrid algorithm that consists of two phases is proposed.
First, a feature selection technique is used to minimize the number of features. Thereafter,
the second phase of the proposed hybridized algorithm is data classification.

As shown in Figure 5, the block structure of the proposed Ambient Healthcare ap-
proach with the Hybrid Whale Optimization Algorithm and the Naive Bayes Classifier
(AHCA-WOANB) consists of three main phases, which are the data collection phase, data
processing phase, and services layer. Based on fog computing, the AHCA-WOANB gains
most of its benefits, including enhanced business agility, improved security, deeper privacy
knowledge, and reduced cost of operation.

The proposed approach phases are working according to specific steps. The first
phase starts collecting data from various sources. Data diversity is concerned at this phase.
For performing the data management process, data are transferred to the second phase.
In the second phase, data are stored, then optimized and classified in a suitable way that
facilitates the third phase to work correctly and introduce perfect services. In the next
sections, there will be a detailed description of the phases of the AHCA-WOANB approach.

3.1.1. The Data Collection Phase

This phase consists of two steps: one for data perceptions and the second one re-
sponsible for transferring collected data to the next phase. The data comes from various
sources such as hospitals, research institutes, wearable devices, and public organizations.
After that, the collected data is transferred to the next phase via a networking medium.

3.1.2. The Data Management Phase

Fog technology is used to provide low latency and real-time communication between
the data management phase and the other phases. To this end, this phase is applied using
Hadoop [16,17], which is an open-source, Java-based software framework. The main
objective of deploying Hadoop is to distribute data stores and applications processing on
large clusters.
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Figure 5. The proposed Ambient Intelligent Healthcare approach.

Hadoop provides massive storage for any kind of data, which is called the Hadoop
Distributed File System (HDFS), and enormous processing power that is accomplished by
Hadoop MapReduce programming, and this processing is easily made based on parallel
computing. These support Hadoop with the ability to handle virtually limitless concurrent
tasks or jobs and make it highly fault-tolerant and deployable on low-cost hardware. All of
this makes it easy to depend on Hadoop as a backbone of any modern big data framework.
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The data management phase consists of two modules that are responsible for data
storage and processing. The first module is data storage, in which data are stored in
the HDFS [16]. HDFS can store and spread massive datasets on hundreds of low-cost
parallel servers. This supports the proposed approach with cost efficiency, flexibility, speed,
and resilience to failure. The second module is data processing and classification, which
uses Hadoop MapReduce [17] programming based on the proposed hybrid algorithm
(WOA for feature selection then NB for classifying) and parallel computing to process
many types of data.

The processing in this phase means optimizing data by using a hybrid algorithm.
This algorithm performs a feature selection on big data that is stored in the HDFS using
WOA, then classifies this optimized data using NB, and this processing is accomplished by
MapReduce programming and parallel computing, as shown in Figure 6.

SR>

Distributed File System (DFS)

EEEE o [.{LJ.J[:J o [EEER

o

[ Feature ion via Whale Optimization Algori @-]

[ Data Classification via NB Algorithm o ]
r.r:: -]
N
- S TN
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Figure 6. The proposed AHCA-WOANB approach data processing steps.

Data optimization and classification, as shown in Figure 7, are performed using
MapReduce programming and parallel computing. This step is executed with the WOA
for optimizing data by reducing the number of features of the currently processed dataset.
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Figure 7. The proposed AHCA-WOANB approach flowchart.

Whales in the classical WOA move within the continuous search space to change their
positions, referred to as continuous space. However, to solve Feature Selection problems,
the solutions are limited to only 0 and 1 values. Therefore, continuous (free position)
solutions must be converted to binary solutions to solve feature selection problems. As a
result, a binary version of WOA is introduced to investigate the Feature Selection problem.
The conversion is carried out by utilizing specific transfer functions, such as the S-shaped
function. As a result, several studies have considered that the FS problem is an optimization
problem; thus, the fitness function for the optimization algorithm has been changed to
classifier accuracy, which the chosen features may maximize.

In this case, the proposed WOA algorithm is used to find the best features in an
adaptive feature space search. This combination is obtained by achieving the highest
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classification accuracy while using the fewest features. The fitness function is depicted in

Equation (10) below and the two proposed versions for evaluating individual whale posi-

tions.

|C — R
IC|

F = ayg(D) + B (10)

where:

e Fdenotes fitness function.

e R: the length of the selected feature subset.

e (: the total feature numbers.

e r(D): classification accuracy of the subset with length R.
e a:argument € [0,1].

e frargument=1-—a.

As a result, the fitness function with the highest classification accuracy will be pro-
duced. Based on the classification error rate and selected features, the equation above can
be converted to a minimization problem. As a result, the obtained minimization problem
can be solved, as shown in Equation (11).

IR|
F:aER(D)-&-ﬁ@ (11)
where Eg (D) is the classification error.

The method entails dividing a dataset into two subsets. The first subset, referred to as
the training dataset 70%, is used to fit the model. The second subset is not used to train
the model; rather, the model is fed the dataset’s input element, and predictions are made
based on the expected values. The second dataset is referred to as the test dataset 30%. The
NB algorithm received the optimized datasets and started its mission to classify them and
prepare for the predicting data stage. This means that while fewer features result in less
computational complexity (both storage and execution), fewer features usually result in
less accurate results due to the absence of useful information. The exception to this is when
there are outliers and irrelevant features.

3.1.3. The Service Phase

The service phase consists of a set of modules: data access, Application Programming
Interface (API), and User Interface (UI) modules. These modules interact with each other
for performing the appropriate decision making. The data access module receives data and
statistics from the processing and classification module then prepares the data to be used
with the API and Ul modules.

4. Simulation and Computer Results

This section evaluates the performance of the proposed AHCA-WOANB approach.
The performance metrics that the system is seeking to improve are:

1. Accuracy: The validity of the predicted data by the system; improving this factor
makes the decision making easier and more convenient.

2. Time: The time that the system will take to classify the data; eliminating this factor
will minimize the cost.

3. Data Variety: The amount of accepted data by the system; this indicates how flexible
the approach is by accepting more forms of data.

4.1. Used Datasets and Physical Meaning

This section explores the common datasets that were obtained from Kaggle [18]. These
datasets will be used to test the approach and produce results. They are also various
types, and the proposed approach will accept them easily, as mentioned in the first phase’s
description. Table 2 summarizes the characteristics of the used datasets.
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Table 2. The characteristics of the used datasets.

Dataset

# Instances # Features Clasisfication Availability

Type

Heart disease UCI

The data set is publicly available on the
Kaggle website https:/ /www.kaggle.
com/ronitf/heart-disease-uci
(accessed on 2 July 2021)

303 14 Multiclass

Pima Indians Diabetes
Database

The data set is publicly available on the
Kaggle website

768 9 Binary class https:/ /www.kaggle.com/uciml/
pima-indians-diabetes-database
(accessed on 2 July 2021)

Heart Attack Prediction

The data set is publicly available on the
Kaggle website https:

294 76 Multiclass / /www.kaggle.com/imnikhilanand/
heart-attack-prediction (accessed on 2
July 2021)

Sonar

The data set is publicly available on the
Kaggle website https:/ /www.kaggle.
com/ypzhangsam/sonaralldata
(accessed on 2 July 2021)

1334 60 Binary class

4.1.1. Diabetes

The dataset comes from the Diabetes and Digestive and Kidney Diseases National
Institute. The dataset’s purpose is to predict based on certain measures contained in the
dataset whether a patient has diabetes or not. The collection of these instances from a large
database has been limited by many constraints. All patients here are women of Pima’s
Indigenous Heritage who are at least 21 years old. The dataset contains multiple variables
of the medical indicator and one variable objective, Outcome. Predictor variables (e.g., the
number, BMI level, insulin level, age, and so on) of pregnancies that the patient has had.

4.1.2. Heart Disease Uci

There are 76 attributes in this database, but recent research refers to the use of a
subset of 14. The only one used by ML researchers to date was the Cleveland database.
The target area applies to the patient’s involvement in heart disease. The integer value
is between 0 (no presence) and 4. This set of data includes age, sex, type of chest pain (4
values), blood pressure, serum cholesterol in mg/dL, fasting blood sugar >120 mg/dL,
electrocardiographic rest results (values, 1.2), achieved maximum heart rate, exercise
inducing angina, exercise-induced ancient peak = ST exercise-induced depression, peak ST
slopes, and the number of major vessels (0-3).

4.1.3. Heart Attack Prediction

The content of the cardiac disease directory is listed in this database. The data collec-
tion consists of various sources, including the Cleveland Clinical Foundation (Cleveland
data) and the University Hospital, Zurich, Switzerland (SWID). Data are available from a
wide variety of sources, including the VA Medical Center, Long Beach, CA (long-beach-
va.data).

4.1.4. Sonar

This data collection includes 60 patterns derived from photos during pregnancy, which
are used to assess fetal biometrics through ultrasound imagery. One such measurement is
the circumference of the fetal head (HC). The HC can be used to estimate the pregnancy

147



Sensors 2021, 21, 4579

and to track fetal development. In a certain cross-section of the fetal head, called the default
plane, HC is calculated. A total of 1334 2D images of the Standard Plane can be used to cal-
culate the HC in the dataset for this challenge. In this challenge, algorithms built to calculate
the fetal head circumference automatically can be compared in 2D ultrasound images.

4.2. Computer Results

This section presents the results that were achieved from testing the hybrid WOA-NB
algorithm. First, we will introduce a comparison between the accuracy and speed of pro-
cessing for every tested dataset using two ways. The first one is by executing classification
only by using NB. The second one is by executing feature selection then classification by
using WOA then NB, and this is the hybrid algorithm mentioned previously. The first-way
results are introduced in Liangxiao et al. [19], which give NB results without other algo-
rithms on multiple datasets. The second-way results will be calculated after executing the
proposed hybrid algorithm. The comparison results will be shown in Table 3. Figures 8-11
depict the original and predicted data shapes for different datasets.

Table 3. Accuracy and speed comparison between NB and WOA-NB.

Classifier Datasets

Algorithm(s) Parameters Diabetes Heart-C Heart-H Sonar

No. of Features 8of8 13 0of 13 13 0f 13 60 of 60
NB Accuracy (%) 77.24 83.04 83.91 85.4

Time (s) 1.3151 0.81224 0.82374 0.87044
No. of Features 40f8 12 0of 13 12 0of 13 52 of 60

WOA and NB Accuracy (%) 79.82 85.48 87.07 88.94
Time (s) 0.93421 0.80358 0.79651 0.85827

Pradictions: mode! 4 (Gaussian Naive Bayes) —
&% .

200 220

Figure 8. The Diabetes original and predicted data.
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Figure 9. The Heart-C original and predicted data.
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Figure 10. The Heart-H original and predicted data.
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Figure 11. The Sonar original and predicted data.

The results show an enhancement in accuracy and time using the proposed approach
over classification with only NB [19]. The enhancement is based on the number of reduced
features after applying the WOA feature selection technique. In the Diabetes dataset, there
are four of eight fewer features, and this enhanced the accuracy by 3.34% and reduced the
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computational time by 28.96%. In the Heart disease UCI dataset, there are 12 of 13 reduced
features, and this enhanced the accuracy by 2.94% and reduced computational time by
1.07%. In the Heart attack prediction dataset, there are 12 of 13 reduced features, and this
enhanced the accuracy by 3.77% and reduced the computational time by 3.31%. There are
52 of 60 fewer features in the Sonar dataset, which enhanced the accuracy by 4.15% and
reduced the computational time by 1.4%. Figures 12 and 13 compare accuracy results and
processing time results calculated from both Jiang [19] and the proposed approach.

Sonar
Heart attack prediction

Heart disease uci

Diabetes

90 85 80 75 70
Accuracy (%)
I Proposed Approach [l Jiang [15] S

Figure 12. Accuracy comparison between NB and the proposed approach.

3
©
. 5 ®
14 12 1 0.8 0.6 0.4 0.2 0
Time (Sec)

W Proposed Approach [l Jiang [15]
Figure 13. Time comparison between and the proposed approach.

The confusion matrix [20] is a performance calculation for a classification problem of
learning machines that can measure the effectiveness of the proposed approach. The output
can be two or more classes, as shown in Figure 14. It is a table of four different expected
and true value combinations.

Actual Values

Positive (1) Negative (0)

Positive (1) TP FP

Negative (0) FN TN

Predicted Values

Figure 14. The confusion matrix.
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There are two classes (Class 1: Positive and Class 2: Negative), and there are many
terms as follows: Positive (P), Negative (N), True Positive (TP), False Negative (FN), True
Negative (TN), and False Positive (FP) as follows:

e Positive (P): Observation is positive (for example: is an apple).

e Negative (N): Observation is not positive (for example: is not an apple).

e True Positive (TP): Observation is positive and is predicted to be positive.

e  False Negative (FN): Observation is positive but is predicted negative.

e True Negative (TN): Observation is negative and is predicted to be negative.
e  False Positive (FP): Observation is negative but is predicted positive.

The Classification Rate or Accuracy can be calculated from Equation (12). Now,
the confusion matrix results of the proposed WOA-NP algorithm are depicted in Table 4.
Precision, as in Equation (13), tells us how many samples were actual positive out of all
positive predicted samples. Recall, Equation (14), tells us how many positive samples were
detected out of all actual positive samples.

Accuracy = (TP 4+ TN)/(TP+ TN + FP + FN) (12)
Precision = (TP)/(TP + FP) (13)
Recall = (TP)/(TP + EN) (14)

Sensitivity represents a positive data points proportion, which is correctly considered
positive to all positive data points and calculated using Equation (15).

TP

TP+ FN (15

Sensitivity =
Specificity is a negative data point proportion that is incorrectly considered positive
to all negative data points. It can be calculated using Equation (16).

TN

FP+TN (16)

Specificity =

The confusion matrix is useful to calculate the Recall, Precision, Specificity, and most

significantly, the Receiver Operating Characteristic (ROC) curve (simply AUC) [21], and

the confusion matrix is also useful for accuracy. The ROC curve is a graphical approach

to demonstrate the difference between a classifier’s true-positive and false-positive rates.

This allows for an approach under the ROC curve (AUC) to determine which classifier is
on average better.

Table 4. The confusion matrix results.

Datasets/Metrics TP FP FN TN Precision =~ Recall Specificity Sensitivity
Diabetes 4730 410 1140 1400 92% 80.57% 77% 81%
Heart disease uci 1120 260 180 1470 81% 86.15% 85% 86%
Heart attack prediction 1660 250 130 900 82% 90% 78% 93%
Sonar 980 130 100 870 88% 91% 87% 91%

AUC is a threshold invariant of classification. It tests the accuracy of model’s predic-
tions regardless of the classification threshold selected. This implies the classifier is the
greater the area under the curve more efficiently. Furthermore, there is a point on the curve
that represents the optimal operating point of the classifier. Figures 15-18 show the ROC
curves for every tested dataset while processing. From these curves, we notice that the area
under every curve is excellent, proving that the AHCA-WOANB approach classification
is efficient.
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Figure 15. The ROC curve: Diabetes.
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Figure 16. The ROC curve: Heart-C.
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Figure 18. The ROC curve: Sonar.

Finally, all of these results lead us to clearly determine that the AHCA-WOANB hybrid
algorithm (WOA for optimization and NB for classification) increases and enhances the
accuracy by the average rate: 3.6% (3.34 for Diabetes, 2.94 for Heart disease UCI, 3.77
for Heart attack prediction, and 4.15 for Sonar) also can enhance the processing speed by
reducing the processing time by the average rate: 8.7% (28.96 for Diabetes, 1.07 for Heart
disease UCI, 3.31 for Heart attack prediction, and 1.4 for Sonar). The rate of these improved
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results, which are based on Datasets’ Characteristics, should be aware that whenever the
optimization step can reduce the number of dataset features, this will improve the accuracy
and reduce the processing time even more than improving them for those datasets that
have less few features.

5. Conclusions

Many healthcare big data needs too much effort to give humanity useful information
that can help develop and enhance this field reasonably with the low computational cost.
Therefore, the AHCA approach with a hybrid algorithm has been proposed to process
various types of medical data. Then it can be easy for us to predict data and introduce useful
information and statics to submit it to several parties that concerned this area. The AHCA-
WOANB approach has two steps of processing. This is to optimize data to make the second
one more efficient, while the second one is responsible for classifying the optimized data.
The proposed algorithm increases and enhances the accuracy by approximately 4%. It
can also enhance the processing speed by reducing the processing time by approximately
9%. (These results are the average of the results for all tested datasets that are based on
characteristics of data and the number of features that have been reduced by the WOA.)

The future mission is to try to support the proposed algorithm by modifying the WOA
parameters set automatically by using a conventional neural network algorithm to get
better results because it optimizes the used data perfectly before it is processed with the NB
algorithm. This will reduce human interactions, so it will reduce human mistakes, reduce
the duration time of processing, and give better accuracy than before.
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Abstract: Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant
renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating mor-
phological, textural, and functional features that best describe the malignancy status of a given renal
tumor. The integrated discriminating features may lead to the development of a novel comprehensive
renal cancer computer-assisted diagnosis (RC-CAD) system with the ability to discriminate between
benign and malignant renal tumors and specify the malignancy subtypes for optimal medical man-
agement. Informed consent was obtained from a total of 140 biopsy-proven patients to participate
in the study (male = 72 and female = 68, age range = 15 to 87 years). There were 70 patients who
had RCC (40 clear cell RCC (ccRCC), 30 nonclear cell RCC (nccRCC)), while the other 70 had benign
angiomyolipoma tumors. Contrast-enhanced computed tomography (CE-CT) images were acquired,
and renal tumors were segmented for all patients to allow the extraction of discriminating imaging
features. The RC-CAD system incorporates the following major steps: (i) applying a new parametric
spherical harmonic technique to estimate the morphological features, (ii) modeling a novel angular
invariant gray-level co-occurrence matrix to estimate the textural features, and (iii) constructing wash-
in/wash-out slopes to estimate the functional features by quantifying enhancement variations across
different CE-CT phases. These features were subsequently combined and processed using a two-stage
multilayer perceptron artificial neural network (MLP-ANN) classifier to classify the renal tumor
as benign or malignant and identify the malignancy subtype as well. Using the combined features
and a leave-one-subject-out cross-validation approach, the developed RC-CAD system achieved a
sensitivity of 95.3% =+ 2.0%, a specificity of 99.9% = 0.4%, and Dice similarity coefficient of 0.98 = 0.01
in differentiating malignant from benign tumors, as well as an overall accuracy of 89.6% = 5.0% in
discriminating ccRCC from nccRCC. The diagnostic abilities of the developed RC-CAD system were
further validated using a randomly stratified 10-fold cross-validation approach. The obtained results
using the proposed MLP-ANN classification model outperformed other machine learning classifiers
(e.g., support vector machine, random forests, relational functional gradient boosting, etc.). Hence,
integrating morphological, textural, and functional features enhances the diagnostic performance,
making the proposal a reliable noninvasive diagnostic tool for renal tumors.

Keywords: renal cell carcinoma; CE-CT; morphology; texture; functionality; RC-CAD
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1. Introduction

Renal cancer is one of the most common malignancies, being the sixth most prevalent
type of cancer among men and the eighth most prevalent among women. For the past
several decades, an increasing number of new patients have been diagnosed with renal
cancer. The year 2020 saw approximately 74,000 diagnoses of renal cancer in the United
States [1,2], and 15,000 patients are expected to have died from renal cancer in that same
time period [1,2]. Roughly two thirds of the time, renal cancer is diagnosed before it
has metastasized, in which case the 5 y survival rate is 93%. Once it has spread to the
lymph nodes or the surrounding abdominal structures (i.e., other organs or tissues), the
5y survival rate falls to 70%. In the worst case of metastasis to distant parts of the body,
the 5 y survival rate is a mere 12% [1,2]. In addition, the National Cancer Institute had an
approximated cost estimate of $5.1 billion for renal cancer care in the United States by the
end of 2020 [3].

Renal cancer is a heterogeneous disease in which the renal cells become malignant
(cancerous) and form tumors called renal masses. These renal masses, if not detected early
and treated promptly, will lead to mortality. The most common, and also the most aggres-
sive, renal cancer is renal cell carcinoma (RCC), accounting for 70% of all cases [4,5]. In turn,
70% of RCC are clear cell renal cell carcinoma (ccRCC), and of the remaining nonclear cell
subtypes (nccRCC), the most prevalent are papillary (paRCC) and chromophobe (chrRCC)
renal cell carcinomas, accounting for 15% and 5% of all RCC, respectively [6]. The World
Health Organization (WHO) taxonomy of RCC [6] has clinical significance because the var-
ious subtypes can have very different prognoses [6-8]. Differential diagnosis of RCC must
look out for the benign tumors angiomyolipoma (AML) and oncocytoma (ONC), which
are easily confused with RCC using conventional diagnostic techniques [9-13]. AMLs with
low fat content are particularly prone to misdiagnosis [14]. Diagnostic error leads to un-
necessary surgical intervention for benign lesions, to the point where 15-20% of surgically
resected “RCC” may actually be AML [15]. Therefore, accurate characterization of such
renal masses at an early stage is crucial to the identification of appropriate intervention
plans and/or treatment courses.

1.1. Current Diagnostic Techniques and Their Limitations

Evidence of renal cancer can be found in complete blood count (CBC) to check for
the number of red blood cells; urine tests to look for blood, bacteria, or cancerous cells in
urine; and blood chemistry tests to quantify renal function by checking the levels of certain
chemicals in the blood. These signs are suggestive at best, and inadequate for diagnosis or
typing of renal cancer. Only biopsy, performed using interventional radiology, can provide
a definite diagnosis of renal cancer, and thus remains the gold standard [1,2]. However,
it can only be used as the last resort due to its high invasiveness, cost, and turnaround
and recovery times (approximately a week). Therefore, the investigation of noninvasive
imaging modalities (e.g., computed tomography (CT), magnetic resonance imaging (MRI),
and ultrasounds) to provide an early, reliable, accurate, cost-effective, and rapid diagnosis
of renal tumors is underway [16-19].

1.2. Related Work

One of the most important diagnostic imaging modalities for the accurate diagnosis
of renal tumors is contrast-enhanced CT (CE-CT) [20,21]. Besides specifying the location,
shape, and size of a tumor, CE-CT can also distinguish RCC from benign lesions with
77-84% accuracy based on their different uptake of the contrast agent [18,22,23]. For this
purpose, texture analysis (TA) is performed on the CE-CT images to extract quantitative
features [24,25]. As a radiomic technique, TA has seen an array of applications in typing,
staging, and grading tumors and even in predicting treatment response and survival
rates [24]. A recent study by Deng et al. [26] utilized TA techniques along with CE-CT to
discriminate malignant from benign renal tumors. Their study included 501 renal tumors
of which 354 were RCCs and 147 were benign lesions. From the portal-venous phase,
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they manually placed a region of interest (ROI) in the largest CE-CT cross-section of the
tumor volume. Then, they extracted four textural features, namely entropy, kurtosis, mean
positive pixel density, and skewness. Utilizing logistic regression, they found that higher
values of entropy were significantly associated with a greater likelihood of malignancy
(p = 0.022). As a diagnostic indicator of RCC, the entropy feature had high specificity
(85.5%), but quite low sensitivity (31.3%) [26].

Another study was conducted by Kunapuli et al. [27] to explore the potential of CE-CT
along with TA to identify malignant renal tumors. Their dataset included images of 100
malignant (70 ccRCC, 20 paRCC, and 10 chrRCC) and 50 benign (20 AML and 30 ONC)
tumors. After segmenting renal tumors manually using image-rendering software, 2D
and 3D TAs were performed on tumor with the largest diameter and the entire tumor
volume, respectively. Fifty-one 2D and 3D textural features were extracted from each of
four different CT phases, yielding a total of two-hundred and four features per subject.
These comprised 8 histogram features (i.e., first-order textural features), 40 s-order textural
features (20 grey-level co-occurrence matrix (GLCM) and 20 grey-level difference matrix
(GLDM)), and 3 spectral features derived from the 2D Fourier transform. Recursive feature
elimination [28] was used to reduce the number of features to 10 per phase, or a total of
40. Their classification algorithm incorporating these features, using relational functional
gradient boosting, had a reported 82% accuracy and an 0.83 area under the curve. The
classifier was developed to discriminate between malignant and benign tumors only, and
the authors did not investigate the subtype classification of malignant RCC [27].

Kocak et al. [29] conducted a study to classify ccRCC renal tumors from nccRCC ones
using CE-CT along with TA. A total of 68 RCCs were included for internal validation
(N =48 ccRCC and N = 20 nccRCC). For external validation purposes, they included
an additional 26 RCC from a public dataset (N = 13 and N = 13 nccRCC). Their study
utilized MaZda image-rendering software [30] to manually segment renal tumors on the
largest/middle cross-section. This was followed by an extraction of 275 textural-related
features from each subject in both the enhanced CT phase and the unenhanced phase. In
addition, a wrapper-based nested cross-validation approach was employed to select the
reproducible features in both phases and to optimize their classification model. Artificial
neural networks (ANNs) were used, and a classification accuracy of 86.7%, a sensitivity of
80%, and a specificity of 89.6% on internal data and an accuracy of 84.6%, a sensitivity of
69.2%, and a specificity of 100% on external data were reported in differentiating ccRCC
from nccRCC. Although their study reported a good overall classification performance
between ccRCC and nccRCC, they were limited by their low sensitivity. In addition, they
reported a very poor diagnostic performance to differentiate chrRCC from paRCC and
from ccRCC. They suggested that CE-CT is more powerful at providing useful textural
features than the unenhanced CT.

A bigger study was performed by Sun et al. [31] to compare between the diagnostic
performance of machine learning approaches and four expert radiologists in differentiating
malignant from benign renal tumors, as well as ccRCC from nccRCC malignant tumors
using CE-CT. Their study included 254 malignant tumors (ccRCC = 190, nccRCC = 64
(chrRCC = 38, paRCC = 26)), 26 AML benign tumors, and 10 ONCs. After performing
manual delineation of the tumor lesions, they used open-source software packages to
extract and analyze textural features and used another open-source software to complete
their analysis. Then, they utilized a support vector machine (SVM) classifier with a radial
basis function along with a 10-fold cross-validation approach to obtain the final diagnosis.
They reported sensitivities of 90%, 86.3%, and 73.4% using SVM compared to 73.7-96.8%,
73.7-96.8%, and 28.1-60.9% obtained by the 4 expert radiologists in differentiating ccRCC
from nccRCC, ccRCC from AML and ONC, and nccRCC from AML and ONC, respectively.
Hence, they concluded that machine learning approaches along with textural features have
potential power, as well as low-variance performance in diagnosing renal tumors.

Lee et al. [32] used TA and CE-CT in their study to differentiate between ccRCC ma-
lignant and AML benign renal tumors. Their study included 80 renal tumors (ccRCC = 41
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and AML = 39). They combined several hand-crafted textural features extracted from a
2D manually annotated central image of the entire mass with automated deep features
extracted by different ImageNet pretrained convolutional neural network (CNN) classifica-
tion models, namely AlexNet [33], VGGNet [34], GoogleNet [35], and ResNet [36]. Then,
they used the combined features to train and test a random forest (RF) classifier. Using
a leave-one-out cross-validation approach, their combined model achieved a diagnostic
accuracy of 76.6% =+ 1.4%, outperforming the individual diagnostic results using either the
hand-crafted features alone or the deep features alone.

Oberai et al. [37] investigated the potential power of CNN along with multiphasic
CE-CT images to differentiate benign from malignant renal masses. Their study included
143 patients (malignant = 97 and benign = 46). After performing manual segmentation
of the whole tumor volume, they selected the largest axial segmented tumor image from
each CE-CT phase to input in the CNN for training and validation. Using an 8-fold cross-
validation approach, they reported an accuracy of 78%, a sensitivity of 70%, and a specificity
of 81%. However, their dataset had an approximately 2:1 class imbalance, which might
contribute to the reduced diagnostic performance. Although their study included different
types of malignant tumors, they did not investigate the subtyping of malignant class.

Zhou et al. [38] conducted a study to distinguish between malignant and benign
renal tumors using CE-CT along with an ImageNet-pretrained InceptionV3 model. This
model was then cross-trained using transfer learning on their own dataset of 192 renal
tumors (malignant: ccRCC = 117 and nccRCC = 17, benign: renal cyst = 50 and AML = 8).
Several image-level models were considered, using whole CT slices, ROIs, and rectangular
subregions of the CT-CT data. Then, during the transfer learning, different number of
layers were frozen, resulting in two-patient level models based on the optimal image-level
models. Using a five-fold cross-validation approach, they reported a 69% accuracy using
the slice dataset, a 97% accuracy using the ROI dataset, and a 93% accuracy using the RBR
dataset. In spite of achieving a high accuracy in differentiating malignant from benign renal
tumors, 50 out of 58 benign cases were renal cysts, which are much easier to distinguish
from RCC compared to AML. In addition, they did not investigate discriminating ccRCC
from nccRCC renal tumors.

Shehata et al. [39] published a recent study to differentiate malignant RCC from benign
AML renal tumors, as well as to identify the malignant RCC subtype using CE-CT. Their
data included 105 biopsy-confirmed cases (ccRCC = 40, nccRCC = 30, and AML = 35). After
performing manual segmentation to delineate the renal tumor, they extracted 22 first- and
second-order textural features, as well as two functional features represented by wash-in
and wash-out slopes. These features were subdivided into four groups. To differentiate
RCC from AML, they obtained four preliminary diagnoses using separate RF classifiers
on each feature group, then used weighted-majority voting to produce the final diagnosis.
They reported a 96% accuracy, a 100% sensitivity, and an 89% specificity. Subsequently, for
cases diagnosed as RCC, they utilized SVM classifiers along with the weighted-majority
voting technique to specify the subtype of malignancy as ccRCC or nccRCC, for which the
reported accuracy was 71.4%. In spite of correctly identifying 70 of 70 RCC cases, their
system was not specific enough. This could be a consequence of the imbalance between
the RCC and AML group sizes. In addition, their technique did not achieve a sufficient
diagnostic performance in malignancy subtyping.

Most of the studies referenced above were pure applications of TA to CE-CT imaging.
That is to say, they did not integrate other features (e.g., morphological and functional) with
two- or three-dimensional textural features to diagnose RCC. Only a few studies addressed
typing of RCC, i.e., discrimination between ccRCC and nccRCC, which is vital information
for deciding the course of treatment from the beginning. To overcome these limitations, we
developed RC-CAD, a two-stage system for comprehensive computer-assisted diagnosis of
renal cancer based on CE-CT imaging. RC-CAD (Figure 1) incorporates 3D morphological
features, first- and second-order 3D textural features, and time-dependent metrics of renal
function (wash-in/-out slopes) to provide a high diagnostic accuracy of cancerous renal
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Renal Tumor Preprocessing Extracting Imaging Features Renal Tumor Classification

tumors. The developed RC-CAD system has the ability to (i) discriminate malignant (RCC)
from benign (AML) renal tumors and (ii) specify the subtype of malignant tumors as
ccRCC vs. nccRCC. To the best of our knowledge, the developed CE-CT-based RC-CAD
system is unique with the ability to integrate 3D morphological features with 3D textural
features and functional features for early discrimination of RCC malignant tumors from
AML benign tumors and determine the subtype of malignancy as ccRcc or nccRCC.

CE-CT Scanner

3D Renal Tumor

Construction Benign @ @ @ @ @ | |

Artificial Neural
Networks

ics (N = 70)

Original

e SHL sHa sHg SH20 SH70

Benign (AML)

l o ccRCC
Output E

Layer
Malignant

Textural Features: 1st and 2nd order (N = 22)

1. A§

et © ContralVoxel © Neighbor Vovel

(00-00)

Functional Features: Wash In/Out Slopes (N = 2)

x

idden Layers

© ©]6--00(0--09

‘Haunsfield Units (HUs)
P
g

nccRCC

TN b o | | Input Layer

Figure 1. The proposed renal cancer computer-assisted diagnosis (RC-CAD) system.

It is worth noting that this paper extends our recent work [39] with the following
substantial modifications: (i) increasing the sample size from 105 (70 RCC vs. 35 AML) to
140 renal tumors (70 RCC vs. 70 AML) to ensure data balancing and to avoid any possible
classification bias towards the majority class, (ii) applying a new parametric spherical
harmonic technique to estimate the morphological features from the segmented renal
tumors to capture the surface complexity/irregularity between different types of renal
tumors, (iii) integrating /concatenating the estimated morphological features with the first-
and second-order textural features and functional features, and (iv) modeling a two-stage
classification using a multilayer perceptron artificial neural network (MLP-ANN) whose
inputs comprise all the aforementioned discriminant features. The first stage decides if
the renal tumor is malignant (RCC) or benign (AML). In the former case, the second stage
identifies the malignancy subtype as ccRCC or nccRCC.

2. Materials

Patients who had undergone renal biopsy for suspected cancer (N = 140) ranged from
15 to 87 years of age (mean = 50.5 years and standard deviation = 13.4 years). There were
72 patients who were males, while the remaining 68 were female. Informed consent was
obtained from the patients themselves or their parents/legal guardians (age < 18 years) to
participate in this study. Biopsy reports confirmed that 70 patients had RCC (40 ccRCC and
30 nccRCC, of which 17 were paRCC and 13 were chrRCC), while the other 70 had benign
AML tumors. Study participants had undergone a multiphase CT examination prior to
biopsy. Imaging was performed with a Brilliance CT 64 multislice scanner (Philips Medical
Systems, Best, The Netherlands). A mechanical injector was used to administer contrast
agent into an antecubital vein with a dose of 120 mL at a rate of 4.0 mL/s. The abdomen
scanning included three main phases: a precontrast phase, a portal-venous phase, and a
delayed-contrast phase acquired at t = 0, t = 80, and t = 300 s, respectively. All images were
acquired using the following parameters: slice thickness = 2.5 mm; pitch = 0.984; rotation
time = 0.75 s.
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3. Methods

The proposed RC-CAD system pipeline (see Figure 1) performs the following steps
to obtain the final diagnosis: (i) constructs 3D models of renal tumors from manually
segmented 2D ROISs, (ii) applies a new parametric spherical harmonic technique to estimate
the morphological features of the tumor boundary, (iii) constructs a rotation-invariant
gray-level co-occurrence matrix (GLCM) to extract the textural features of the tumor
volume, (iv) estimates the wash-in/wash-out slopes inside the 3D region, and (v) performs
two-stage classification using an MLP-ANN whose inputs comprise all aforementioned
discriminant features. The first stage decides if the renal tumor is malignant (RCC) or
benign (AML). These steps are presented in detail next.

3.1. Renal Tumor Preprocessing

To provide a more accurate extraction of morphological, textural, and functional
discriminating imaging features, for each subject, each CT slice intersecting the renal tumor
was accurately and manually segmented by expert radiologists to define the 2D ROL Then,
all 2D ROIs were stacked together to construct the 3D renal tumor object (3D ROI), as
shown in Figure 2.
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Figure 2. Visualization of the segmentation process to obtain 3D renal tumors.

3.2. Extracting Imaging Features

For accurate identification of malignant renal tumors and the associated subtype, all
3D segmented volumes were characterized by their morphological, textural, and functional
features, as described below.

Morphological features: To enhance both the sensitivity and specificity of early renal
cancer diagnosis, morphological features of the tumor are incorporated into the algorithm.
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These features were designed to quantify the complex shape of the tumor boundary. This
was motivated by the hypothesis that rapidly growing, malignant tumors develop more
irregular /complex shapes relative to more slowly growing, benign tumors. Therefore, the
utilization of such shape descriptors would enhance the performance of the automatic
diagnosis. Examples of this phenomenon are illustrated in Figure 3.

Naturally, in order to measure the irregularity of the boundary, we must first construct
an accurate shape model of the tumor. In this paper, we incorporated a state-of-the-art
spectral decomposition in terms of spherical harmonics (SHs) [40] to construct this shape
model. An arbitrary point in the interior of the tumor, or more specifically, the interior of
its convex kernel, was selected as the origin (0,0,0). In this coordinate system, the tumor’s
surface may be considered a function of the polar and azimuthal angle, f(6, ¢), which can
be expressed as a linear combination of basis functions Yz defined on the unit sphere.
Starting with a discrete approximation of the surface, i.e., a triangular mesh, the proposed
algorithm uses an attraction-repulsion technique [41] to map this mesh to the unit sphere.
The mapping fixes the image of each mesh vertex at the unit distance from the origin, while
preserving the mesh topology and maintaining the distance between adjacent vertices as
much as possible.

0068
vesd

Figure 3. Visualizing 3D surface complexity differences between different renal tumors (benign are

Benign

Malignant

shown in blue, while malignant are shown in red).

Each iteration « of the attraction-repulsion works as follows. Let C, ; be the coordinates
of the node on the unit sphere corresponding to mesh vertex i at the beginning of iteration a.
Denote the vector from node i to node j by d, j; = C; — Cy; then, the Euclidean distance
between nodes i and j is dy ji = ||d,ji||- Finally, let J; denote the index set of neighbors of
vertex i in the triangulated mesh. Then, the attraction step updates the position of each
node to keep it centered with respect to its neighbors:

dyji
Chi1i=CaitCan ), d,]ldaﬂJrCAz 1)
le i
j€li o
The quantities C 1 and Cp » are implementation-defined parameters that determine
the strength of the attractive force. The next step, repulsion, inflates the spherical mesh to
prevent it from degenerating (the attraction step by itself would allow nodes to become
arbitrarily close to one another).

Cr & duji
i1 = Cayri+ o7 o7 Y. FII ()
=L Vi

Just as the attraction step, the repulsion step uses an implementation-defined param-
eter Cg to set the strength of the repulsive force. Subsequently, the nodes are projected

163



Sensors 2021, 21, 4928

back onto the sphere by giving them the unit norm, and these are their coordinates at the
beginning of the next iteration, Co1; = C 1 ;/[[Cy, ¢ ;|-

At the terminal iteration a of the attraction-repulsion algorithm, the surface of the renal
tumor is in a one-to-one correspondence with the unit sphere. Each node C; = (x;,y;,z;) of
the original mesh is mapped to a corresponding point C, i = (sin 6; cos ¢, sin 6; sin ¢;, cos 6;)
with polar angle 6; € [0, 7] and azimuthal angle ¢; € [0, 277). Considering these points as
samples of a continuous function f(6, ¢) defining the boundary, the tumor shape may be
estimated by fitting an SH series to the sample nodes, since the SHs form an orthogonal
basis for functions on a sphere. The SH Y74 of degree T and order f is defined as:

cTﬁGlrm cosfsin(|flg) —-T<p< -1
Yip = %G‘Tﬁl cos =0 3)

cTﬁGlrﬁ‘ cosfcos(|Blg) 1<B<T
where ¢ is the SH factor and Glf s the associated Legendre polynomial of degree T and
order B.

In practice, of course, the SH series is truncated by discarding harmonics above
degree N, yielding an Nth order approximation. N = 70 suffices to accurately model the
surface of renal tumors. Finally, the renal tumor object is reconstructed from the SHs of
Equation (3). The first few harmonics describe the rough extent of the tumor, while higher
degree harmonics provide the finer details of its surface. Therefore, benign tumors are
accurately represented by a lower-order SH model, while malignant tumors, with their
more complex morphology, require higher-order SH model to describe their shape.

Figure 4 shows the morphology approximation for three different renal tumors: ma-
lignant ccRCC, malignant nccRCC, and benign AML tumors. A summary of the attraction—
repulsion algorithm is provided below.
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Figure 4. Renal tumors’ reconstruction meshes showing the morphological differences among
malignant ccRCC, malignant nccRCC, and benign AML tumors.

Initialization:

e Triangulate the surface of the tumor.

e Smooth the triangulated mesh with Laplacian filtering.

e Initialize the spherical parameterization with an arbitrary, topology-preserving map
onto the unit sphere.

e Fix values of Ca 1, Cap, Cr, and threshold T.
Attraction-repulsion:

o Fora =0,1,...

- Fori=1,...,1
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+  Calculate C/_ , . using Equation (1)

a+1,i
- Fori=1,...,1
*  Calculate C}, | ; using Equation (2)

* LetCpyqi = C:x/+1,i/||cz,x,+1,i”

- Ifmax; [|Cyy1,; — Cpif| < T Then, letay =« + 1, and Stop.

Textural features: Recently, TA has become a popular research topic, particularly
in the field of medical imaging. New techniques of TA provide different quantitative
patterns/descriptors by combining the grey values of each pixel/voxel in a tumor im-
age/volume. As a result of these abilities, TA has been used in the diagnosis of several
tumors and their related subtypes with encouraging classification abilities [24,25,42—48].
Therefore, in this manuscript, TA techniques were applied on the segmented 3D renal tu-
mor volumes to precisely extract first- and second-order textural features that best describe
the homogeneity /heterogeneity between renal tumors with different diagnoses. The use
of such comprehensive textural features relies on the fact that malignant tumors mostly
show high textural heterogeneity when compared to benign ones. The success of these
findings would enhance the sensitivity and the specificity towards an early identification of
renal cancer tumors. Figure 5 demonstrates the lesion texture differences of two malignant
ccRCC subjects, two malignant nccRCC subjects, and two benign (AML) subjects.

Benign Malignant Malignant

AML ccRCC nccRCC

Figure 5. An illustrative example showing differences in texture between various renal tumor types.

First-order textural features: These textural features include any quantity that can be
derived from the gray-level histogram of the tumor volume. In particular, mean, variance,
standard deviation, entropy, skewness, kurtosis, cumulative distribution functions, and the
grey-level percentiles [49] were extracted.

Figure 6 shows the average normalized histogram curves for all benign subjects (blue)
vs. malignant (red). To construct these curves, the grey-level range was normalized first by
dividing by the maximum grey-level value obtained from all subjects. Then, all histograms
were constructed for all subjects within the new normalized grey-level range from 0 to
255. For each subject, the individual grey-level probability was obtained by dividing the
histogram values by the corresponding number of voxels. Then, all normalized histograms
from a particular group (malignant or benign) were averaged pointwise to obtain the
final curve.
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Figure 6. A visualization of the average normalized histogram curves for all benign subjects (blue)
vs. malignant (red).

Second-order textural features: Since the first-order textural features might not be
sufficient, with their range of values exhibiting significant overlap across classes, especially
between subtypes of malignant tumor, second-order textural features were incorporated
into the system. These features describe the joint distribution of gray values in multiple
voxels that are considered to be neighbors of each other. In particular, the grey-level
co-occurrence matrix (GLCM) [50] was used to capture the heterogeneous appearance of
renal tumors.

To construct the GLCM, we must count the number of times an ordered pair of two
grey values occurs in two neighboring voxels within the renal tumor object. This technique
is continued until all conceivable occurrence frequencies within the grey-level range of
the renal tumor item are found, which covers all possible pairs of neighbors. For this,
we first contrast stretched the renal tumor object’s original grey-level range to fit the
desired span 0-255, yielding a GLCM matrix with a size of 256 x 256. Then, all feasible pair
combinations were identified to construct the GLCM matrix (i.e., neighbors with gray levels
i and j contribute to row i, column j of the GLCM). To define our neighborhoods, we used
a distance criterion that voxels must be separated by < V2 mm, making the calculations
rotation invariant (see Figure 7). The resultant GLCM was then normalized and used
to extracting the following second-order texture features [49,50]: contrast, dissimilarity,
homogeneity, angular second moment (ASM), energy, and correlation.

@ Central Voxel

@ Neighbor Voxel

Figure 7. Visualization of the rotation-invariant neighborhood calculation system used to construct
the grey-level co-occurrence matrix (GLCM). The GLCM can be constructed by counting the oc-
currence frequency of different grey-level pairs in-plane and in adjacent planes accounting for the
26-neighbor voxels (blue) of the central voxel (red).

The definitions of all first- and second-order textural features are provided in Tables 1 and Al
in Appendix A.
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Table 1. Definition of first- and second-order textural features.

Textural Feature

Definition

First-Order

Mean

Variance

Standard deviation
Skewness (Skew)

Kurtosis (Kurt)

The average grey value of voxels within the tumor.

Second central moment of gray values.

Square root of variance.

Asymmetry of the distribution of gray values about the mean. If Skew < 0, that
means the grey level spreads out more to the left of the mean than to the right, and
if Skew > 0, that means the grey level spreads out more to the right of the mean
than to the left. Skew will equal zero in the case of normal distributions.
Measures the tail weight, or tendency to extreme values, of the object grey-level
distribution. The normal distribution has Kurt = 3; distributions with heavier tails
have Kurt > 3; distributions with less weight in the tails have Kurt < 3.

Entropy A measure of randomness of grey values within an input image.

CDFs A distribution function that accumulates voxel-wise grey values from the whole
tumor object with minimum value = 0 and maximum value = 1.

Percentiles Grey values percentiles corresponding to the CDFs (from 10% to 100%)

Second-Order

Contrast Measures the disparity in grey-level values between neighbors.

Dissimilarity Finds to what extent voxels are different from their neighbors.

Homogeneity Expresses the inverse difference moment among neighbors.

Angular second moment (ASM) Determines the gray levels’ local uniformity (orderliness).

Energy The square root of the ASM.

Correlation Determines the grey-level linear dependency in neighborhood blocks.

Functional features: Discriminating RCC from AML, as well as ccRCC from nccRCC
might be achieved using time-dependent characteristics of CE-CT imaging. The most
relevant CE-CT findings for this purpose are generally homogenous and prolonged en-
hancement patterns [51]. The time dependency can be expressed by the slopes of wash-in
and wash-out. Wash-in is described as the rate of increasing attenuation (in HU) from the
precontrast to portal-venous phase. Similarly, wash-out is the rate of decrease in attenua-
tion between the portal-venous and delayed-contrast phase [52]. Higher slopes of wash-in
and wash-out are typically associated with malignancy. Moreover, nccRCC demonstrates
wash-in and wash-out slopes intermediate between those of AML and those of ccRCC [53].
Therefore, we constructed both wash-in and wash-out slopes for all renal tumor subjects
for the classification of the renal tumor status. Examples of wash-in/-out slopes showing
the differences across ccRCC, nccRCC, and AML are shown in Figure 8.
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Figure 8. Example of the wash-in and wash-out slopes construction process for various types of renal
tumors. When compared to nccRCC (green) and AML (blue), ccRCC tumors exhibit higher and faster
wash-in/-out slopes (red).
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3.3. Feature Integration and Renal Tumor Classification

Following the extraction of morphological, textural, and functional features from
all given renal tumors, RC-CAD proceeds with two-stage diagnostic classification. The
first stage aims to differentiate malignant (RCC) from benign (AML) tumors. In the case
of malignancy, the second stage provides the classification of RCC tumors as ¢ccRCC
or nccRCC.

The multilayer perceptron (MLP) artificial neural network (ANN) consists of at least
three layers: an input layer, one or more hidden layers, and an output layer, each with
arbitrarily many activation/processing units, known as nodes/neurons. Each layer is
fully connected to the next layer in sequence. Neurons use nonlinear activation functions
to give the MLP-ANN the capability to divide the feature space into arbitrarily complex
regions. The MLP-ANN mainly utilizes supervised backpropagation learning technique in
the training phase, in which gradient descent methods are utilized to update the connection
weights and additive biases in order to minimize the loss function. To achieve our goal, we
utilized the MLP-ANN in both classification stages to obtain the final diagnosis. Classifier
performance was assessed using five different feature sets (Table 2) as the ANN input in
both stages. Feature Set 1 includes first-order histogram textural features (N = 6; mean,
variance, standard deviation, skewness, kurtosis, and entropy); Feature Set 2 includes
first-order percentile textural features (N = 10; from the 10th to the 100th percentile in
10% point steps); Feature Set 3 includes second-order GLCM textural features (N = 6;
contrast, dissimilarity, homogeneity, ASM, energy, and correlation); Feature Set 4 includes
SH reconstruction error (SHRE) morphological features (N = 70); and Feature Set 5 includes
functional features (N = 2; wash-in slope and wash-out slope). At each classification stage,
the individual feature sets were concatenated to obtain the combined features (N = 94) and
were fed to a MLP-ANN to obtain the final diagnosis.

Table 2. Details of the extracted feature sets used in the two-stage renal tumor classification.

Texture Features

Feature Set 1: First-order (histogram features) 6 features
Feature Set 2: First-order (percentiles) 10 features
Feature Set 3: Second-order (GLCM) 6 features

Shape Features

Feature Set 4: Spherical harmonic reconstruction errors 70 features

Functional Features

Feature Set 5: Wash-in/out slopes 2 features

Combined Features

Feature Sets 1,2, 3,4, and 5 94 features

4. Results

The diagnostic performance of the RC-CAD system on our dataset of 140 renal tumors
was assessed using leave-one-subject-out (LOSO) cross-validation. The system’s diagnostic
capabilities were assessed, evaluated, and compared in both classification stages using
the individual feature sets, as well as the combined features. Each classification process
was repeated 10 times, and the results were tabulated in terms of the mean =+ the standard
deviation to provide a more quantitative expression of the diagnostic performance.

The first stage classification (RCC vs. AML) performance for the RC-CAD system
was first evaluated using individual Feature Sets 1, 2, 3, 4, and 5 (see Table 2) along with
different MLP-ANN classification models. Then, the RC-CAD system was evaluated using
the combined features, resulting in a noticeably enhanced diagnostic performance. A
summary of the first stage performance in terms of the sensitivity, specificity, and Dice
similarity coefficient (DSC) [54,55] is presented in Table 3.
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Table 3. Diagnostic performance results of the first stage classification (RCC vs. AML) using
different individual feature sets along with multilayer perceptron artificial neural network (MLP-
ANN) classification models. The RC-CAD system diagnostic performance using the combined
features outperformed the diagnostic abilities using individual feature sets. Sens: sensitivity, Spec:
specificity, DSC: Dice coefficient of similarity, hl,: size of hidden layer n.

RCC vs. AML Classification Performance (Mean + SD =)

Feature Set Sens% Spec% DSC MLP-ANN
Set 1 941+ 15 979+ 15 0.96 4 0.01 hl; =10 nodes
Set 2 924429 95.1 4+ 3.5 0.94 4 0.02 hl; =10 nodes
Set 3 949 £22 953 £2.5 0.95 £ 0.02 hl; =10 nodes
Set 4 920+24 96.6 £2.0 0.94 £ 0.02 hl; = 10 nodes, hl, = 5 nodes
Set 5 82.7 +4.1 91.7 £ 2.0 0.87 4 0.02 hl; =10 nodes
RC-CAD 95.3 + 2.0 99.9 + 04 0.98 + 0.01 hl; =50 nodes, hl, = 25 nodes

Hyperparameters: MLP-ANN (optimization function: trainlm, max epochs = 500, goal = 0, max validation
failure = 6, min gradient = 1077, training gain (i): initial # = 0.001, u decrease factor = 0.1,  increase factor = 10,
max p = lel?).

The diagnostic performance of the second stage classification (ccRCC vs. nccRCC) of the
RC-CAD system was evaluated using the same LOSO cross-validation approach. As before,
specially tailored MLP-ANN models were used with different feature sets. The best second
stage classifier performance was obtained using the concatenated feature set (Table 4).

Table 4. Results from the second stage classification (ccRCC vs. nccRCC) using individual feature
sets (1, 2, 3, 4, and 5) along with the multilayer perceptron artificial neural network (MLP-ANN)
classification models. The RC-CAD system diagnostic performance using the combined features
outperformed the diagnostic abilities using individual feature sets. Acc: accuracy, hl,: size of hidden

layer n.
ccRCC vs. nccRCC Classification Performance (Mean + SD =)
Feature Set Acc% MLP-ANN Architecture
Set 1 76.8 + 2.6 hl; =10 nodes
Set2 757 £ 3.8 hl; =10 nodes
Set 3 83.3 5.6 hl; =10 nodes
Set4 81.4+5.1 hl; =10 nodes, hl; = 5 nodes
Set5 762 +2.33 hl; =10 nodes
RC-CAD 89.6 + 5.0 hl; =50 nodes, hl, = 25 nodes

Hyperparameters: MLP-ANN (optimization function: trainlm, max epochs = 500, goal = 0, max validation
failure = 6, min gradient = 107, training gain (): initial s = 0.001, u decrease factor = 0.1, y increase factor = 10,
max p = 1e'0).

Figure 9 demonstrates a difficult case presentation for two ccRCC, two nccRCC, and
two AML renal tumors. This figure visualizes the texture differences, wash-in and wash-
out slope differences, and morphological differences between the different types of renal
tumors, which emphasizes the potential power of the integration process of such features
in providing a precise identification of a given renal tumor.

To ensure that our system is not prone to overfitting and to validate the reproducibility
and robustness of RC-CAD, we performed a randomly stratified 10-fold cross-validation
approach in both stages using the combined features. Likewise, the classification process
was repeated 10 times using the same MLP-ANN classification model, and the results are
tabulated in terms of the mean + the standard deviation (Table 5).
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Figure 9. A difficult case presentation showing the textural differences, wash-in and wash-out slope differences, and shape
differences between two ccRCC, two nccRCC, and two AML renal tumors.

Table 5. Diagnostic performance comparison for both classification stages between the developed RC-
CAD system and other classification approaches (e.g., random forest (RF) and support vector machine
(SVM)). Using leave-one-subject-out (LOSO) and a randomly stratified 10-fold cross-validation
approach, the diagnostic abilities of the RC-CAD outperformed the others. Let Sens: sensitivity, Spec:
Specificity, DSC: Dice similarity coefficient, and Acc: Accuracy.

First Stage Classification (RCC vs. AML) Performance (Mean £ SD ~)

Method Validation Sens% Spec% DSC
LOSO 95.3 + 2.0 99.9 + 04 0.98 + 0.01
RC-CAD (Proposed) 10-fold 89.0 + 3.4 91.0 + 2.7 0.90 £ 0.02
RE LOSO 89.0£1.7 92.7 £2.7 0.91 £ 0.02
s 10-fold 884+1.0 90.7 +£ 3.0 0.89 + 0.01
SVM LOSO 82.9 £ 0.0 88.6 + 0.0 0.85 4 0.00
Quad 10-fold 819+22 87.7£25 0.84 £+ 0.02
Second Stage Classification (ccRCC vs. nccRCC) Performance (Mean + SD =)
Method Validation Acc%
LOSO 89.6 = 5.0
RC-CAD (Proposed) 10-fold 78.6 + 5.7
RE LOSO 53.7 £3.7
s 10-fold 51.9 426
LOSO 529 £0.0
SVMauad 10-fold 543 +£30

Hyperparameters: MLP-ANN (optimization function: trainlm, max epochs = 500, hidden layers: hl; = 50 nodes,
hl, = 25 nodes, goal = 0, max validation failure = 6, min gradient = 10~7, training gain (y): initial u = 0.001,
 decrease factor = 0.1, jt increase factor = 10, max p = 1le'’); RF (method: Bag, number of learning cycles = 30);
SVM (kernel function: quadratic, box constraint = 1).

To highlight the advantages of using the MLP-ANN classifier, we compared RC-
CAD with other, well-known machine learning classifiers (e.g., SVMg,,¢ and RF). As
documented in Table 5, the diagnostic performance obtained by the developed RC-CAD
system outperformed all other machine learning classifiers in both classification stages,
which justifies the potential of such MLP-ANN classifiers being utilized for the developed
RC-CAD system. It is worth mentioning that, in each classification stage, a grid search
algorithm was employed to find the optimal set of hyperparameters, with the classification
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accuracy optimization criterion, for each of the classifier techniques being evaluated. The
results of the hyperparameter optimization are appended to Table 5.

For the comparison with RC-CAD, we applied the existing state-of-the-art approach [27]
using a total of 10 textural markers extracted from the portal-venous phase only along with
the gradient boosting classification technique. In addition, we applied the state-of-the-art
deep learning CNN approaches proposed by Lee et al. [32] and Oberai et al. [37] on our
own datasets (first stage: N = 140; second stage: N = 70). To highlight the advantages of
the RC-CAD system, all results are compared in Table 6. The diagnostic performance of
RC-CAD exceeded that of other approaches in both classification stages.

Table 6. Diagnostic performance comparison for both classification stages between the developed
RC-CAD system and the state-of-the-art approaches by [27,32,37]. The diagnostic abilities of the
RC-CAD outperformed all other methods in both classification stages. Let Sens: sensitivity, Spec:
Specificity, DSC: Dice similarity coefficient, and Acc: Accuracy.

First Stage Classification (RCC vs. AML) Performance (Mean + SD =)

Method Sens% Spec% DSC
RC-CAD (Proposed) 95.3 £+ 2.0 99.9 + 0.4 0.98 £ 0.01
Kunapuli [27] 814+ 0.0 95.7 £ 0.0 0.88 + 0.00
Oberai [37] 88.9 £ 1.7 874+ 14 0.91 £+ 0.01
AlexNet 840+ 1.7 93.4+19 0.88 £ 0.02
Lee [32] GoogleNet 883 £ 1.7 951+19 0.91 £ 0.01
ee ResNet 88.0 £3.5 95.7 + 0.9 0.91 £ 0.02
VGGNet 86.9 £ 0.6 91.4+24 0.89 £ 0.01
Second Stage Classification (ccRCC vs. nccRCC) Performance (Mean + SD =)
Method Acc% ccRCC/40 nccRCC/30
RC-CAD (Proposed) 89.6 £+ 5.0 35+2 28 +£3
Kunapuli [27] 60.6 £ 2.7 28+1 15+1
Oberai [37] 843 +£3.1 34+1 25+2
AlexNet 71.7 £ 1.9 3142 19+2
Lee [32] GoogleNet 68.0+ 1.5 32+1 15+1
ResNet 703 £25 32+0 17 +£2
VGGNet 726 +£23 33+1 18+1

Hyperparameters: MLP-ANN (optimization function: trainlm, max epochs = 500, hidden layers: hl; = 50 nodes,
hl, = 25 nodes, goal = 0, max validation failure = 6, min gradient = 1077, training gain (1) initial u = 0.001,
 decrease factor = 0.1, yt increase factor = 10, max p = 1e'?).

5. Discussion

The developed RC-CAD system demonstrated high diagnostic performance in terms
of accuracy, sensitivity, specificity, and DSC in discrimination between benign (AML) and
malignant (RCC) and in classification of the RCC subtype into ccRCC or nccRCC. This early
and precise identification of the malignancy status of a given renal tumor and its associated
subtype can enable clinicians to provide the appropriate early intervention/treatment plan
and improve the outcomes. CE-CT was utilized as it is an imaging modality with the
ability to provide different aspects of features, including but not limited to, morphological
features, textural features, and functional features. The integration of these features is
effective in determining the malignancy status of a given renal tumor when combined with
a powerful machine learning classifier such as the MLP-ANN.

The grade of malignancy of a given renal tumor largely specifies the morphology of
the tumor. Typically, malignant tumors demonstrate a more complex morphology than
benign ones. Therefore, morphological features based on using spherical harmonics were
utilized to capture possible surface complexity differences between malignant and benign
renal tumors, as well as differences between different subtypes of malignancy.

First- and second-order textural features have been widely utilized to identify a given renal
tumor status as malignant or benign, as well as to describe the malignancy subtype [26,27,29,
31,32,38]. These features capture all possible textural homogeneity /heterogeneity across renal
tumors with different diagnoses. In line with these studies, the extracted textural features
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provided high diagnostic performance in discriminating malignant ccRCC and nccRCC
from benign (AML) renal tumors.

Additionally, functionality was utilized in identifying the malignancy status of a given
renal tumor. The slopes of wash-in and wash-out can capture the existing differences in the
enhancement characteristics [51,52]. In this study, the results obtained by the functionality
metrics demonstrated the efficacy of such features in discriminating between benign (AML)
and malignant (RCC) and identifying the malignancy subtype as ccRCC or nccRCC.

Although individual features have provided a reasonable diagnostic performance,
they are not sufficient to rule out surgical intervention in (what may turn out to be) benign
lesions. Therefore, the integration process of these features is critical to enhance the
diagnostic accuracy to the point of clinical utility. The integration process produced a
reliable and accurate RC-CAD system with an enhanced diagnostic performance in both
classification stages as documented in Tables 3-5.

This study has some limitations: (i) benign tumors only included AMLs and did
not include any ONCs; (ii) the datasets in this study were all collected from the same
geographical area, and thus, we did not account for population diversity; (iii) demographics
such as age and sex were not included in our analysis; (iv) differentiation between paRCC
and chrRCC was not performed due to the limited number of subjects; and (v) the RC-CAD
system in its current form still requires expert knowledge to segment the renal tumor
manually before the handcrafted features are extracted. Despite these limitations, the
RC-CAD system demonstrated the efficacy and feasibility of integrating various types
of features to account for different aspects, making the developed RC-CAD a reliable
noninvasive diagnostic tool.

6. Conclusions and Future Work

The developed RC-CAD system demonstrated a high classification sensitivity of
95.29% = 2.03%, a specificity of 99.86% =+ 0.43%, an ad DSC of 0.98 & 0.01 in differentiating
benign AML from malignant RCC renal tumors. In addition, the RC-CAD achieved an
overall classification accuracy of 89.57% =+ 5.03% in distinguishing ccRCC from nccRCC
to provide the proper management plan. Integrating accurate morphological features
with functional features and multiple first-order and second-order textural features was
adequate to significantly enhance the diagnostic capabilities. Future work will obtain data
from a larger cohort spanning different geographical areas to test the RC-CAD system’s
generalizability. In addition, new types of renal tumors including oncocytomas and malig-
nant lymphomas will be included to expand the subclassification abilities of the RC-CAD
system. This greater amount of data will necessitate a fully automated segmentation
approach to be incorporated into the system, as manual segmentation will become too
burdensome. Furthermore, fully automated extraction of diagnostic image features might
be achieved using state-of-the-art deep learning approaches (e.g., convolutional neural
networks and stacked auto-encoders).
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Appendix A
In this Appendix, we detail the mathematical formulas used to extract the textural features:

Basic notation:

®  y:mean;

e n: total number of voxels in the object;

e v;: gray-level value of Voxel i;

e o2 variance;

e  ¢:standard deviation;

. Ng: the normalized grey levels;

e p: the normalized histogram counts;

e ¢ an initial random small number;

* Ny grey-levels (normalized 0-255);

e Gp: the GLCM (normalized 0-1);

e %,0(i): the row margins (mean and standard deviation);
* 7, 0y(i): the column margins (mean and standard deviation).

Table Al. Texture features formulas.

Feature Formula

First-Order

n PP
Mean (i) 1 Y o= U0+ Uy (A1)
n= n
2
Variance () im1 (0 — 1) (A2)
n
Ng
Entropy (Ent) =Y. p(i)log, (p(i) +€) (A3)
iz
1T (o)
Skewness (Skew) 2z ): (A4)
n= o
Kurtosis (Kurt) 1y <v,- —H )4
P G (A5)
n= o
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Table A1. Cont.

Feature Formula

Second-Order

Ng Ng
Contrast Z Z (i—j)%Gn(,j) (A6)
i=0j=0
Dissimilarity Z Z li —j|Gn (i, f) (A7)
i=0j=0
Ne Mg 5
Homogeneity 2 2 _Gnlig) (A8)
i=0j=0 1+ (i—j)2
Ng Ng
ASM Y Y (Gnli)) (A9)
i=0j=0
Energy VASM (A10)
Ny N, N
Correlation LiZo Zj:go Gn (i, j)ij — %7
ax(i)ay (j)

(A11)
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Abstract: Affective computing is a field of study that integrates human affects and emotions with
artificial intelligence into systems or devices. A system or device with affective computing is beneficial
for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion
recognition systems are an important technology that enables affective computing. Currently, there
are a lot of ways to build an emotion recognition system using various techniques and algorithms.
This review paper focuses on emotion recognition research that adopted electrocardiograms (ECGs)
as a unimodal approach as well as part of a multimodal approach for emotion recognition systems.
Critical observations of data collection, pre-processing, feature extraction, feature selection and
dimensionality reduction, classification, and validation are conducted. This paper also highlights
the architectures with accuracy of above 90%. The available ECG-inclusive affective databases
are also reviewed, and a popularity analysis is presented. Additionally, the benefit of emotion
recognition systems towards healthcare systems is also reviewed here. Based on the literature
reviewed, a thorough discussion on the subject matter and future works is suggested and concluded.
The findings presented here are beneficial for prospective researchers to look into the summary of
previous works conducted in the field of ECG-based emotion recognition systems, and for identifying
gaps in the area, as well as in developing and designing future applications of emotion recognition
systems, especially in improving healthcare.

Keywords: electrocardiogram (ECG); affective computing; emotion recognition system; healthcare

1. Introduction

Research interest in affective computing via physiological modalities has been pop-
ularized by the accelerated development of technological solutions, particularly within
the healthcare industry. The field of affective computing originated from a paper written
by Rosalind Picard in 1995, discussing neurological studies of human emotions and the
possibility for computers to mimic them by expression recognition [1]. Affective computing
is a multidisciplinary study that revolves around computer science, psychology, cognition,
and physiology [2].

The significance of emotions in natural human interaction was demonstrated by
Ekman et al. [3] from the premise “If B perceives A’s facial expression of emotion, B’s
behavior toward A may change, and A’s noticing this may influence or determine A’s
experience of emotion”. Meanwhile, in a book by Reeves et al. [4], the authors claimed
that humans treated computers as if they are just another living being too. From both
arguments, it can be deduced that if computer systems are capable of discerning and
responding to human affects, then the interactional gap between people and machines
will be as naturalistic as talking to a friend and improve the human-computer interaction.
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Adopting emotion recognition systems should be considered as a footstep towards instilling
empathy, sympathy, and compassion into artificially intelligent machinery.

Emotion recognition systems have a lot of prospective applications, spanning health-
care, entertainment, e-learning, marketing, human monitoring, and security. Accord-
ing to [5], there were three major applications of emotion recognition systems specifically
using ECG signals:

e  Firstly, monitoring human emotions during certain tasks and assessing the behavioral
response in critical situations. For example, in [6], the emotion recognition system
focuses on studying a driver’s performance during a race.

e  Next, clinical application in monitoring patients” psychological condition for relevant
drug prescriptions or treatment. In [7], emotion recognition is implemented in health-
care settings to promote relaxation and reduce stress. Three emotional services are
provided in the design framework, which are relaxation, amusement, and excitement
services.

e  Finally, emotion recognition can be used for marketing. Emotion recognition can be
utilized for website optimization [8], where the system can be designed to collect
information on which adverts attract the most attention, which can allow catering
appropriate contents according to audience demography.

The physiological approach towards emotion recognition has become a better alter-
native to facial expressions, gestures, and vocal traits. Machine vision-based emotion
recognition systems are prone to fake emotions and can be manipulated easily [9-11].
This is why many studies focused on physiological signals, including the multimodal
approach, by combining different physiological signals from biosensors such as an ECG,
an electroencephalogram (EEG), an electromyogram (EMG), electrodermal activity (EDA)
or galvanic skin response (GSR), a photoplethysmogram (PPG) or blood volume pressure
(BVP), or a respiratory inductive plethysmograph (RIP). Although the multimodal emo-
tion recognition approach commonly performed better, the unimodal approach has the
advantages of a lower processing time and simpler data collection [12].

The brain and heart are connected via the autonomic nervous system (ANS), in which
both indirectly influence each other’s behavior [13]. The connection of the sympathetic
nervous system (SNS) and parasympathetic nervous system (PNS) is part of the ANS.
Thus, emotional experience does cause some changes in the heart rhythm, and this can be
detected through ECG readings. The purpose of this review is to sum up the literature to
date that has reported the adoption of ECG as an input of emotion recognition systems.
This paper also discusses ECG features such as the heart rate (HR), as well as heart rate
variability (HRV), and their relationship with the autonomic innervation of the heart.

The next sections discuss the review methodology, followed by the theoretical background
of the autonomic innervation of the heart, electrocardiograms, various emotional models, and
emotion elicitation and emotion evaluation techniques. ECG-inclusive datasets are reviewed
and analyzed in Section 4. Section 5 discusses the methodology of developing an emotion
recognition system from the pre-processing of ECG signals, feature extraction, feature selection
and dimensionality reduction, classification, and validation. Section 6 focuses on the discussion
of the summarized literature. The applications of emotion recognition systems in healthcare
are reviewed in Section 7, and the discussion of the reviews is presented in Section 8. The last
section concludes the work.

2. Review Methodology

The journals and articles reviewed in this work underwent a thorough selection
process. Initially, keywords for the search criteria were identified. Studies associated
with “emotion recognition”, “ECG”, and “healthcare” were searched throughout different
academic databases. Table 1 shows the publisher database and number of studies reviewed
for ECG-based emotion recognition, and healthcare applications of emotion recognition
systems. Here, IEEE Xplore was the database with the most papers reviewed.
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Table 1. Number of papers reviewed from the respective databases.
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The exclusion criteria after the first reading included the removal of duplicated publi-
cations, contextual irrelevancies, and non-English papers. The challenge in collecting the
articles for review was the status of the article, that is, whether it is open access or included
in our institutions” subscription or not.

In total, for ECG-based emotion recognition, 51 papers were reviewed, and the distri-
bution according to the year the papers were published is shown in Figure 1. The trend
shows that the number of works increases by year, and this reflects the growing interest
of researchers in this field. The overview also shows the number of ECG-based emotion
recognition studies conducted with unimodal and multimodal approaches.

NUMBER OF PAPERS REVIEWED
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Figure 1. Overview of the years selected studies were published.

3. Theoretical Background

The contents covered here were cited from textbooks, academic journals, conference
papers, and other sources with contextual benefits.

3.1. Autonomic Innervation of The Heart

The centers of the ANS'’s control over the heart rhythm are located at the medulla
oblongata [14]. Without any external factor, both centers provide an infinitesimal amount
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of stimulation to the cardiac muscle and cause it to have an autonomic tune. However,
upon excitation, the cardioaccelerator releases the neurotransmitter norepinephrine and
causes the HR to increase drastically. This process occurs throughout the SNS, as well as
at the sinoatrial (SA) node, and is commonly known as the “fight or flight” response [15].
As for the decrease in the HR, the cardioinhibitory centers release the neurotransmitter
acetylcholine (Ach) to the PNS. Metaphorically, this activation can be referred to as the “rest
and digest” operation [15]. SNS and PNS stimulation flows through the cardiac plexus,
cervical ganglia, and superior thoracic ganglia to the SA and atrioventricular (AV) nodes,
with the nerves’ fibers reaching the atria and ventricles. Figure 2 shows the connection of
the vagus nerve (PNS) and sympathetic cardiac nerves (SNS) in a simple model.

decreases heart rate.

ymp cardiac nerves
incroasa heart rate and

forca of contraction

Figure 2. The ANS connection between the brain and heart [16].

The physiological interrelation between the heart and brain communication influences
certain characteristic changes when it comes to emotion. The ANS’s influence on emo-
tional changes regulates various other body parameters [17]. According to the HeartMath
Institute, the dynamic, continuous, and bidirectional communication of both organs affects
one’s perception, emotion, intuition, and general health [13]. Hence, detecting the cardiac
rhythm for emotion recognition purposes based on autonomic innervation is necessary in
healthcare as a preventive measure towards negative emotions such as stress [18].

3.2. Electrocardiogram (ECG)

An ECG measures the electrical activity of the heart in different phases and perspec-
tives based on the situation and configuration [19]. The signal acquired provides a graphical
depiction of the deflection and wave series produced by each cardiac cycle, as shown in
Figure 3. The main purpose of an ECG in clinics is to detect pathological cardiac conditions
such as arrhythmia, heart disease, and epilepsy [20].

A normal ECG signal should have three segmented waves in a single cycle [19].
The first wave materializes from the atrial depolarization, and it is called the P wave.
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The second wave is the QRS complex, where it contains the highest amplitude caused by
ventricular depolarization. The interval distance between R peaks is where the inter-beat in-
terval (IBI) is usually calculated for HR detection [21]. Additionally, to extract HRV features
from ECG signals, QRS detection is essential to sort out the RR intervals [22]. After a few
milliseconds of plateau, a T wave appears because of ventricular repolarization [23], and
the cycle repeats.

According to Rattanyu [24], and Bexton et al. [25], ECGs are one of the most widely
used biosensors in emotion recognition because of their quality, and the information on
human emotions contained in the signals. Various studies have used ECGs as a single
modality for emotion recognition. Theekshana et al. [26] stated that there are four prime
reasons that ECGs alone are sufficient for an emotion recognition system. Firstly, ECG sig-
nals capture the heart activity, and ANS stimulation towards each emotion causes rhythmic
changes in the heart [25]. Secondly, an ECG can be extracted using a less intrusive, mobile,
and wearable device [27]. Thirdly, an ECG is a versatile biosensor that can collect data from
different parts of the body: the chest or the limbs, as shown in Figure 4. Lastly, ECG signals
have a higher amplitude among other biosignals [24].
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Idealized cardiac cycle

Figure 3. ECG cycle in a healthy and normal heart [28].

(b)

Figure 4. Possible electrode placements for ECG recordings [19]: (a) electrode placement for limbs
lead configuration; (b) electrode placement for chest lead configuration [29].
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3.3. Emotion Models

Emotion is a subjective and conscious mental experience accompanied by particular
biological responses or changes [30]. Experts from different backgrounds have tried to
uncover the universal definition of emotion; however, none of them have come to an
agreement in establishing a single emotional model [15]. Despite this, the two most widely
accepted and used emotional models are discrete categories and the affective dimension [1].
In addition, this paper also discusses another commonly used emotional model, the binary
emotional model.

3.3.1. Discrete Emotional Model (DEM)

The DEM categorizes emotions into standard terms such as joy, fear, anger, disgust,
sad, funny, and neutral [31]. This emotional model is standardized and shared across
languages and cultures [32]. Cicero and Graver [33] named 4 basic categories, while
Ekman [34] summarized 6, and Izard [35,36] suggested 10 basic emotions. Although
the number of emotion classes in the DEM varies, there are similarities between them.
Among the emotion labels, the most common are happiness, sadness, and anger [20,37-41].
The reason for the three of them being selected the most is because of the prominent arousal
level that can be easily detected compared to more relaxed emotions [22].

3.3.2. Affective Dimensional Model (ADM)

The ADM, which is also known as the continuous dimension model, is a range of
two-dimensional planes of valence and arousal. One researcher preferred to add another
plane of dominance into the model [42]. The ADM was developed by Russell [43] and
has been adopted widely by researchers from different backgrounds. Figure 5 shows the
illustration of valence, arousal, and dominance on a positive and negative scale. Valence is
the feeling of pleasantness, either being appetitive or aversive, while arousal is the intensity
of the feeling being experienced [44]. The dominance scale represents the authority to be in
control, ranging from submissive to feeling empowered.

S ‘ .

Negative Neutral Positive

TR T
AROUSAL R A

@

Calm Neutral Excited
DOMINANCE e * I
Out of In

Control Neutral Control

R —— +

Figure 5. The graphical scheme provided to subjects to understand the ADM scales [45].

The versatility of the ADM compared to the DEM is demonstrated in Figure 6.
Based on the valence and arousal scale, the categories of emotions can be segmented
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depending on the degree of intensity. High valence-high arousal (HVHA) is mapped to
excitation, while high valence-low arousal (HVLA) is mapped to feeling calm, or relaxation.
Low valence-high arousal (LVHA) is considered as anger and feeling distressed, while low
valence-low arousal (LVLA) is related to sadness and feeling depressed. The middle of the
scale is considered as a neutral state.

LVHA Arousal =
Tense A VHA
Alarmed Aroused
Angry Astonished
Afraid Excited
Annoyed Delighted
Distressed Happy
Frustrated > Valence
Miserable Pleased
Sad Glad
Depressed Content
Bored Satisfied
Droopy Relaxed
Tired Calm
LVLA Sleepy HVLA

Figure 6. The mapping function between the ADM and DEM [46].

3.3.3. Binary Emotional Model

The binary emotional model consists of positive and negative emotional states (Pos/Neg) [47].
The purpose of this model is to simply generalize between which emotions are bad and which
emotions are good. Negative emotions may cause mental stress to the bearer and the people around
them. It is unhealthy to be exposed to prolonged negative emotions as it affects the physiological
state of a person. Depression, anxiety, and bipolar disorder are known effects of emotional and
mental stress [48,49]. Moreover, by simplifying the emotional model to two classes, a targeted
application of an emotion recognition system can be built with less complexity. A higher accuracy
of training and testing models can also be expected. Figure 7 shows the emotional stress model
proposed by [39]. Instead of valence, the author used a pleasantness scale to describe the region
of potential mental stressors. Any emotions categorized under negative valence such as sadness,
anger, fear, and disgust are potential stress factors that may lead to complications. Thus, the binary
emotional model is another important classification model for affective computing studies.
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Figure 7. Pos/Neg as a model that identifies between good (no stress) and bad (stress) emotions.

3.4. Emotion Elicitation

Inducing basic emotions for data collection in an experiment requires certain guide-
lines and standard operating procedures. There are five common elicitation techniques
which are audio visual, imagery, music, memory recall, and the situational procedure [50].
The less common approaches are naturalistic conversations or debates [51], driving [52],
video games [53], and virtual reality [54].

Audio visual techniques can be segmented film clips for targeted emotions, or videos
with the same purpose [31,45,55-59]. The length of the videos varies, as does the length
of the recorded physiological signals. Imagery is the act of reading vignettes [50] and
experiencing deep emotions through contemplation [60], but in addition to that, pictorial
images such as the International Affective Picture System (IAPS) [61] have been used
widely too. Music listening is another popular way to activate emotions through the lyrics,
melody, and tempo variations [62]. The renowned dataset for affective audio stimulation is
the International Affective Digitized Sounds system (IADS) [63]. Memory recall involves
remembrance of personal experiences to reactivate the essence of emotions circa that
moment [64]. The situational procedure necessitates fabricating a social environment that
elicits the targeted emotion.

As it was described in [50], the most effective way to induce basic emotions is through
audio visuals. Imagery is effective for happiness, surprise, fear, and anger. Music is
only effective for happiness, sadness, and fear. Memory recall is recommended to induce
happiness, anger, disgust, sadness, and fear, but not surprise. Finally, the situational
procedure is a good approach for happiness, anger, fear, and surprise.

3.5. Emotion Evaluation

Emotion evaluation is an annotation perspective for emotion labeling on the data col-
lected. The most common approach is through a first-person perspective or self-assessment.
In this way, the subject personally labels their emotions on a Self-Assessment Manikin
(SAM) [65]. The questionnaire varies depending on which emotional models are used.
Usually, there will be a pictorial description of emotions and the intensity scale to ease the
labeling process, as shown in Figure 5. The problem with internal annotation is that the
subject might feel discomfort and insecure in sharing their true conscious and unconscious
experiences towards the stimuli [15]. This indirectly reduces the reliability of the reported
emotional experience.

Another perspective for emotion annotation is implicit assessment or external eval-
uation. This can be conducted through a second-person perspective and third-person
perspective. The second-person perspective is someone who watches the subject experi-
ence the stimuli in real time and labels what they think the subject feels [51]. Meanwhile,
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third-person perspectives are external, conducted by watching the recordings of the sub-
ject’s facial expression and body gestures, and then only annotating the guesses on what
emotions the subject feels. Both methods have a disadvantage of bias, and they can easily
be deceived [15]. Their perception often depends on personality, cultural bias, and environ-
mental attributes.

4. ECG-Inclusive Affective Datasets

Affective datasets that have been collected using various physiological modalities
are available in academic archives. Although they are not standardized, there are still
commonalities between them. Since this review paper is only interested in ECG-based
emotion recognition systems, the datasets enlisted are ECG-inclusive modalities. The focus
is on the summary of the stimulation used, the data size, the modalities included, the ECG
device used, the ECG configuration, emotional annotations, the model, and perspectives.
Among the datasets with ECG signals are the following;:

1.  AMIGOS [55]: This stands for A dataset for Multimodal research of affect, personality
traits, and mood in Individuals and GrOupS. The data were collected from 40 subjects
watching videos, with 16 samples each. Biosignals included are ECG, EEG, and GSR.
The ECG device used was a Shimmer, at a 256 Hz sampling frequency. The ECG
lead configurations used were right arm left leg (RA-LL), and left arm left leg (LA-
LL). The emotion annotation labels were from a self-assessment, and third-person
perspectives with a 3D ADM.

2. ASCERTAIN [56]: This stands for a multimodal databASe for impliCit pERrsonaliTy
and Affect recognitIoN using commercial physiological sensors. The data were col-
lected from 58 subjects watching 36 video clips. The physiological signals used
were ECG, EEG, and GSR. For ECG, the sampling rate was 256 Hz, with two un-
specified lead configurations. The emotion annotation perspective was only from
self-assessment, and the model used was the ADM on a scale of valence and arousal.

3. AuBT [66]: This stands for Augsburg Biosignal Toolbox by the University of Augs-
burg. It contains a MATLAB GUI for emotion recognition purposes, together with a
data corpus recorded from ECG, EMG, skin conductance (SC), and respiration (RSP).
The data were from a single subject, with 100 samples collected within the span of
25 days while listening to music of the subject’s choice. The ECG signal sampling
rate was 256 Hz, with only one lead configuration. The emotions were labeled by
self-assessment using the DEM. The four classes of emotions are joy, anger, sadness,
and pleasure.

4. CASE[67]: This stands for the Continuously Annotated Signals of Emotion. The data
were collected from 30 subjects in real time while watching various videos. The physi-
ological modalities included are ECG, BVP, EMG, and GSR (EDA). The ECG device
used was from Thought Technology, and the configuration setup had three leads,
1 kHz. The annotation was by self-assessment using the ADM.

5. CLAS [68]: This stands for Cognitive Load, Affect and Stress Recognition. The data
were collected from 62 subjects, with 32 samples each. The stimuli were separated
equally between video clips and IAPS pictures. The biosignals included are ECG,
PPG, and EDA. The ECG device used was the one-lead Shimmer3, with a right arm
left arm configuration. The sampling rate was 256 Hz. Self-annotation of the valence
and arousal ADM was performed by the subjects.

6. DECAF [57]: This stands for a multimodal dataset for decoding user physiological
responses to affective multimedia content. The data were collected from 30 subjects
with 76 samples. Here, 40 of the 76 samples were from music videos at a 1 min cap,
while the others were from watching movie clips. The biosignals included are ECG,
EMG, magnetoencephalogram (MEG), and electrooculogram (EOG). The sampling
rate for the ECG was 1 kHz, and it was downsampled to 256 Hz. A one-lead configu-
ration was used for this setup. The annotation was from a first-person perspective,
and the ADM with a 3D scale was implemented.
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10.

11.

12.

13.

14.

DREAMER [58]: This dataset contains data collected from 23 participants, with
18 samples each. The stimuli used were video clips ranging from 1 to 3 min, with the
focus on the ECG and EEG modalities. The ECG device used was a low-cost, wireless,
portable, and wearable off-the-shelf device from Shimmer. The sampling rate was
256 Hz, with two-lead and three-lead configurations. Self-annotation of the subjects
was conducted using a valence, arousal, and dominance ADM.

DSDRWDT [52]: This stands for Detecting Stress During Real-World Driving Tasks.
The data were collected from 24 subjects while they were driving in a real-world
condition. The biosignals included are ECG, EMG, SC, and RSP. The ECG device used
was a FlexComp, with a 496 Hz sampling rate. The lead used was right arm left leg
(RA-LL). The drivers labeled their stress levels through three stages: low, medium,
and high. The emotional model considered was the Pos/Neg category model.
EMDC [69]: This emotion-specific multilevel dichotomous classification dataset con-
tains signals collected from 3 subjects, with 360 samples of music listening. The phys-
iological modalities included are ECG, EMG, SC, and RSP. The ECG device used
was a three-lead Procomp? Infiniti, at a 256 Hz sampling frequency. The affective
annotations were from self-perspective with a 2D ADM.

K-EmoCon [51]: This dataset contains data collected from 32 subjects in real time
from a naturalistic conversation (paired debates on social issues) to induce emotions.
The physiological modalities included are ECG, EEG, BVP, EDA, and skin temperature
(SKT). For the ECG signal, a Polar H7 was used, at a 1 Hz sampling rate. The only
feature extracted was the HR. This paper claims to be the first publicly available
dataset on emotion recognition that has a multi-perspective annotation from self-
assessment, second person and third person. The ADM with valence and arousal
scales was implemented.

MANHOB-HCI [59]: Data were collected from 27 subjects, with 20 samples, using
ECG, EEG, GSR, EDA, RSP, and SKT. The ECG device used was a Biosemi Active II,
with a three-lead configuration. The sampling rate was 1024 Hz and was downsam-
pled to 256 Hz. Based on the emotional videos watched, the subjects self-reported
their affective state with a 3D ADM.

MPED [31]: This stands for Multi-Modal Physiological Emotion Database. The data
were collected from 23 subjects, with 28 samples, watching video clips less than 5 min
each. The biosgnals included are ECG, EEG, GSR, and RSP. The Biopac System with
three-lead configurations and a 250 Hz sampling frequency was used for the ECG
signal acquisition. The annotation perspective was from the first-person view using
seven classes of the DEM: joy, funny, anger, fear, disgust, sad, and neutral.

SWELL [70]: This dataset is also known as SWELL knowledge work (SWELL-KW),
and it is a new multimodal dataset for research on stress and user modeling. The data
were collected from 25 subjects performing tasks such as writing, presenting, reading,
and searching to elicit stress. The physiological signals recorded were ECG and SC.
The ECG was recorded through a Mobi device (TMSi), with the electrodes placed in
a triangular configuration on the chest. The sampling rate was 2048 Hz, with three
leads attached. The assessment was conducted by the subjects through labeling two
emotional models, which were the ADM and Pos/Neg.

WESAD [71]: This stands for Wearable Stress and Affect Detection. The data were
collected from 15 subjects watching video clips and provided with public speaking
and mental arithmetic tasks. The biosignals included are ECG, BVP, EDA, EMG, RSP,
and temperature (TEMP). The ECG signal was acquired from a RespiBAN Professional
using a three-lead configuration. The sampling rate was 700 Hz. The subject self-
annotated their emotions using a three-class Pos/Neg model. Amusement, neutral,
and stress were the classification categories implemented.

All of these ECG-inclusive datasets are summarized in Table 2. The stimulus used

to induce the emotions during data collection, the data size, available modalities, details
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of the settings of ECG collection, the emotion annotations, the model, and perspectives
are tabulated.

Dataset Popularity Analysis

Even though multiple datasets have been proposed and made available for others to use,
not all datasets have been adopted by other researchers. Hence, based on the summarized
literature from this review, the number of times a dataset has been adopted and cited in other
studies (excluding self-citation) was calculated and is plotted in Figure 8. The most popular
dataset being used for emotion recognition studies using ECG, as observed here, is AuBT, with
six adoptions. Although the database was published in 2005, the citations observed here came
from 2016 onwards. The popularity of the AuBT dataset is followed by AMIGOS, with four
adoptions from 2018 to 2020. Third place goes to DREAMER, with two adoptions in 2020
and 2019. SWELL was published in 2014, but the adoption of the dataset is only found in
two papers from 2020. The other three mentions are DECAF, MANHOB-HCI, and WESAD.
All three have one adoption and citation in other research studies. Other datasets such as
ASCERTAIN, CASE, and CLASS are not found in any other studies by far. Many of the works
reviewed used their own collected data.
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Figure 8. The number of times datasets were applied in different research studies found in the

summarized literature.

5. Development of Emotion Recognition Systems

There are several steps in developing emotion recognition systems. This work focuses
on the development of emotion recognition systems using machine learning techniques.
The first step is pre-processing, which is to clean the signal from unwanted noises. Next is
feature extraction using various techniques. The usage of feature selection as well as feature
reduction to find the relevant emotion-related features is optional and can be included after
feature extraction. The last step is classification and validation techniques using machine
learning algorithms. The common adopted pipeline of emotion recognition models is
presented in Figure 9.

Raw > | Signal Processing Feature Extraction
ECG > Filtering & » | Time, frequency & other
Data > Normalisation domains
v v
Dimensionality Feature
Reduction Selection
v v
Validation Classification
Parameters < Machine Learning -
optimization techniques & accuracy

Figure 9. General methods for an ECG-based emotion recognition system using machine learning.

5.1. Pre-Processing

An ECG signal is considered as a high-sensitivity physiological signal with a low
recording voltage between 0.5 and 5 mV [72]. Generally, the signal is susceptible to noise
and corruption due to various internal and external factors depending on the method of
application. The main sources of ECG noise are power line interference, muscle movements,
electrode-skin contact, motion artifacts, baseline wander, electronic and electromagnetic
device interference, external electrical system interference, internal high-frequency noise,
and respiration or bowel sounds. The common frequency for muscle movements is 5-50 Hz,
0.12-0.5 Hz (at 8-30 beats per minute) for respiratory, 50/60 Hz on AC electrical systems,
and >10 Hz on other electrical and electronic devices [73]. Although there is a wide variety
of ECG filters, the applications depend on specific needs to denoise and reduce the amount
of information complexity towards a desired level.

The multiple-configuration Butterworth filter is the most widely used filter based
on the summarized papers. In [47,74], a low-pass Butterworth filter with a 60 Hz cut-off
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frequency was applied to remove a higher background noise of ECG signals. A 0.05-100 Hz
Butterworth bandpass filter was used in [69] to remove noise, while a 49-51 Hz band-stop
Butterworth filter was used in [75] for power line interference at 50 Hz. According to [72],
although the bandpass filter may remove most of the stated noises, solely depending on it
is discouraged as the result might not be the best. A fourth-order Butterworth filter with
a 100 Hz cut-off frequency [76] and a sixth-order Butterworth filter with a 45 Hz cut-off
frequency [40] were used to remove high-frequency noise and powerline interference.
The lowest order of the Butterworth filter works best in the time domain, while in the
frequency domain, a higher order is better.

In removing a high-frequency interference, [75] applied a 1-60 Hz bandpass filter,
while [77] used a 5-15 Hz bandpass filter. In [24], an interpolation filter was utilized
to remove signals of 30 Hz and below. A notch filter or a band-stop filter was applied
in [20,78] at 50 Hz. A second-order infinite impulse response (IIR) notch filter was used to
eliminate powerline noise and motion artifacts in [47]. A fourth-order notch filter at 50 Hz
was used in [76] to eliminate power line interference, as suggested by [79].

The most common frequencies in ECG signals that should be preserved for further
processing and feature extraction are 0.67-5 Hz (at 40-300 bpm) for detecting the HR and
P wave. The QRS complex can be detected within 10 to 50 Hz, and the T wave at 1-7 Hz.
A high-frequency potential may also be considered at 100-500 Hz [73]. To determine
which filter is best to be used, the frequency setting and calibration pulse should always be
informed first so that the ECG signal can be interpreted accurately.

5.2. Feature Extraction

ECG feature extraction has different approaches depending on the way raw signal
calculations can be manipulated into meaningful information. This section begins with the
most basic ECG signal processing through PQRST detection and the extraction of statistical
features. Next, feature extraction for the HR and within beat (WIB) features is explained.
The third part summarizes HRV and IBI as the most used features from ECG modalities to
detect human emotions through ANS activity within the heart. The last part summarizes
other feature extraction techniques used throughout the literature reviewed.

5.2.1. PQRST Detection and Statistical Features

The most basic features to be extracted from ECG signals are the PQRST points” allo-
cations. Between the P wave, QRS complex and T wave, the QRS complex was considered
important in defining the HR and HRV through IBI calculation [55,80]. The Pan-Tompkins
QRS detection algorithm [81] is considered as the most common technique to find the R
peak location [58,67,69]. In [39,40], the QRS complex was derived by applying a nonlinear
transformation on the first derivative (Gaussian first-order differentiator) of the filtered
ECG signal [82,83]. Continuous wavelet transforms (CWT) are applied to detect a precise
R location and then the QS, P, and T waves [84]. Finally, in [83], a built-in R peak detection
was embedded in Acknowkedge3.8.2 application software, and there is no need for the
researcher to manually extract the features.

Based on PQRST detection, individual statistical features can also be extracted [58,66,85,86].
The statistical features extracted include mean, median (med), standard deviation (std) and
quartile deviation, minimum (min), maximum (max), and range (max-min) of individual F, Q, R,
S, and T. The authors of [84] extracted only the amplitude of P, R, and S, before proceeding to
analyzing the other features.

5.2.2. HR and WIB Features

HR is measured in beats per minute (bpm). Considering that one cycle or one beat
can be measured between two successive R peaks, the HR can be derived simply through
averaging the overall signals collected through a period. The HR is proven to show distinct
feature changes [87] and has been used in various ECG-based affective studies [6,24,39,51,
53,55-57,67,71,75,78,85,88]. The benefits of HR over other features are the simplicity of the
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calculation and not requiring a highly accurate measurement. Even during an intensive
exercise, the measurement of the HR is still reliable.

WIB features were proposed by [24], which calculate the statistical values of ECG
intervals. Mean, med, max, min, and standard deviation are calculated from PR, ST,
and QRS intervals [26]. Instead, in [58,66,85,86], PQ, QS, and ST intervals were used to
calculate the statistical features stated, with an addition to the range. QRS morphologies
were extracted in [89] based on clinical application. The morphology features are grsWBR
(width between R peaks and the next Q), grsWRE (width between S and R peaks), grsABR
(difference between amplitude of R peaks and the next Q), grsARE (difference between
amplitude of R peaks and the consequential S), and grsMOR (the shape of the QRS interval).

5.2.3. HRV and IBI Features

HRV measures specific changes between heart beats in the time domain. The time
between beats is measured in milliseconds (ms) and is called an RR interval or IBI. The vari-
ation in IBI values contributes to the readings of HRV. HRV features are claimed to be
one of the most used methods in ECG-based emotion recognition systems [69,90]. HRV is
also known to have distinct changes in emotion variations [87] and used as an indication
of stress and mental effort in healthy adults [69]. Moreover, HRV is the most precise
non-invasive physiological technique in measuring the activity of the ANS throughout the
body. The widely available and affordable consumer-grade ECG devices that can record a
significantly good signal are sufficient for HRV feature extraction.

Out of the 51 studies summarized, 31 of them used HRV, with a slight common
variation. However, in general, there are three domains of HRV feature analysis: time
domain, frequency domain, and time-frequency domain. A detailed explanation of each
domain is presented below:

e  Time domain [26,91,92] (Temporal [15]): This measures the amount of variability in
IBI, where the expression comes in the form of a natural logarithm (Ln) of original units,
or the original units themselves, for a more normally distributed formation. There are
short-term indices for recordings around minutes in length, and long-term indices
which usually record over a period of 24 h. The first feature matrix is the standard
deviation of the normal-to-normal interval (SDNN). This feature is represented in the
unit of milliseconds (ms) for a standard short-term recording of 5 min [93], and 60 to
240 s for ultra-short term recordings [94,95]. SDNN changes also correlate with SNS
and PNS activity in the heart. Next, the standard deviation of RR peaks (SDRR) is
very similar to the previous case, but it includes false and abnormal beats measured at
R peaks. NN50 and pNN50 are the number of adjacent normal-to-normal intervals
and percentage of them that are more than 50 ms. These features are known to
accommodate PNS activity in the heart [96]. Other variations are NN20 and pNN20,
respectively. Next, the root mean square of successive differences (RMSSD) is an index
of IBI variance in the HR. Finally, the HRV Triangular Index (Trilnd) feature is usually
combined with RMSSD to detect pathological cardiac complications, and triangular
interpolation of a normal-to-normal interval histogram (TINN) is used as a histogram
baseline for a normal-to-normal interval.

e  Frequency domain [26,91,92] (Spectral [15]): This measures the amount of power at
various frequencies using fast Fourier transformation (FFT). The amplitude of FFT
can then be derived into a power spectral density (PSD). In spectrogram analysis,
there is a range of feature levels available such as ultra-low frequency (ULF), very-low
frequency (VLF), low frequency (LF) and high frequency (HF), as shown in Figure 10.
However, in the emotion recognition system, ULF and VLF are not utilized as both
need at least 24 h of ECG recording, which is not practical for emotion recognition.
VLE, LF, and HF bands have a window range from 0.0033 to 0.04 Hz, 0.04 to 0.15 Hz,
and 0.15 to 0.40 Hz. All three correlate with SNS and PNS activity changes. In fact,
alow HF power reflects negative emotions such as anxiety, worrying, stress, and panic.
Based on the bands, there are also variations of the normalized LF and HF, the LF/HF
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ratio, and the total spectral power. Other statistical features that have been extracted
from the frequency bands are spectral centroids, spread, kurtosis, skewness, slope,
variation, decrease, roll-on/off, and total energy.

e  Nonlinear domain [15,91] (Geometrical [15,26]): This measures the nonlinearity of
time series of the unpredictability of the HRV complexity mechanism. The features are
extracted from Poincare geometric plots and allow a refined pattern detection through
a scatter plot. The parameters are the area of the total HRV eclipse (S), each point, the
standard deviation from both axes (SD1), the standard deviation of each point from
both axes plus the RR interval (SD2), and SD1/SD2. The feature variation includes
SD12, Area0, Areal, Area2, Area3, and Area4.

1400 '

1200 -

1000 -
800
600
400
200

LF

PSD, ms?/Hz

0.0 0.1 0.2 0.3 0.4 0.5
Frequency, Hz

Figure 10. Power spectral density (PSD) features [97].

5.2.4. Empirical Mode Decomposition, Wavelet Transform, and Fourier Transform

Empirical mode decomposition (EMD), also known as the Hilbert-Huang transform
(HHT), is a technique to transform signals into parts called intrinsic mode functions
(IMF) [98]. This technique is suitable for nonlinear and nonstationary signals such as those
from an ECG. With the IMF characteristic, the instantaneous frequency and amplitude of
the signal can be defined. Moreover, the HHT also preserves the characteristic of frequency
changes as the lengths of original signal and IMF are the same. The application of EMD
for ECG feature extraction techniques to emotion recognition systems is seen in a few
papers such as [21,26,54,76,99,100]. In [54], 35 features were extracted from IMF1 and IMF2.
The features consist of statistical features such as mean, max, standard deviation, variance,
skewness, kurtosis, and others.

The wavelet transform is a technique for multiresolution analysis [101] and divided
into two forms. The continuous wavelet transform (CWT) has the capability of extracting
features from the signal with the determination of extremum points and inflection points,
while the discrete wavelet transform (DWT) can extract statistical and stochastic charac-
teristics, and the energy spectrum. In general, the wavelet transform decomposes data
into different frequency and time scales using a mathematical transformation function.
The computing process involves dilation and translation of functions, or multiscale refine-
ment of signals. The wavelet transform is also known to be able to solve difficult problems
that Fourier transforms are not capable of [102]. In [84,101], the CWT is used to perform
the feature extraction on ECG signals, while [89,103] applied the DWT in their framework
process.

The Fourier transform is another technique for decomposing functions that are de-
pendent on the time of space into functions that are dependent on the temporal or spatial
frequency. The two common Fourier transforms in emotion recognition studies are the
discrete Fourier transform (DFT) and the FFT. They are almost identical methods, with
the FFT being a more efficient function, where the computation performs faster than the
DFT. Again, in [76], the authors combined EMD and the DFT as IMF alone does not contain
much information to provide any distinctive features. Another adoption of the DFT is also
found in [26], where the application of feature extraction is paired with EMD and other
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methods. Finally, application of the FFT is only seen in one paper [69], where the features
were derived from a partitioned coefficient within the frequency range into overlapping
sub-bands with the same bandwidth. From that, the sub-band spectral entropy (SSE) is
computed to identify the disorganization or uncertainty in a random variable. This helps
the pattern recognition by scaling the intensity of a classifier’s confidence.

5.2.5. Others

There are some independent feature extraction techniques based on ECG signals used
for emotion recognition systems. Various novel approaches have been proposed to perform
the task with the aim of extracting useful feature information that is relevant to the ANS
activity of the heart. The prospective approach has been taken, from the mathematical
process derivation function to pictorial plotting and statistical feature analysis.

Detrended fluctuation analysis (DFA) and detrended cross-correlation analysis (DCCA)
were applied in [104]. Features from the multifractal spectra were also extracted in that
paper. DFA is categorized under nonlinear feature analysis, and the work in [105] also
applied this method along with Poincare plot feature extraction from HRV.

In [20], Coiflets wavelets (Coif5) at level 14, the discrete cosine transform (DCT),
and Daubechies wavelet (db4) at level 8 were applied before using matching pursuit
coefficients for feature extraction. The features extracted were statistical such as mean,
variance, standard deviation, minimum, and maximum.

Instead of using the numerical values of ECG signals to extract the features, a graphical
plot and image pattern recognition were applied in [47]. The methods used were the local
binary pattern (LBP) and the local ternary pattern (LTP). The LBP is widely used in
computer vision and image processing research, particularly in facial recognition. The LTP
is the modification of the LBP by changing it from a binary operation of 1-0 to three
operations of -1-0-1. The operation depends on the frame length and frame shift to extract
the features.

Another method that has been reported is feature extraction through the Nonlinear
Autoregressive Integrative (NARI) Point-Process Model [106]. The analysis of heartbeat
dynamics started from detecting RR peaks, and following the Wiener—Voterra representa-
tion, a specific point process model was created for instantaneous identification up to the
third order. The features are extracted from Lyapunov exponents as well as instantaneous
spectra, and spectra. This evaluation is also known to be in the realm of high-order statistics
(HOS).

A nonlinear approach based on Hurst was proposed in [40] by using rescaled statistics
(RRS) and finite variance scaling (FVS). The new Hurst features are combined into HOS
to be classified into six basic emotional states. The value of Hurst can also be obtained
by EMD, the wavelet transform, and finite variance scaling. Before applying the feature
extraction procedure, the QRS complex is extracted for further computation of RRS and
FVS. In this process, six features are extracted from each sample in the study.

Other ECG feature extraction methods found in the reviewed works are the multi-
variant correlation method and spectrograms. In [107], the authors applied a linear multi-
variate approach for their feature function analysis. Meanwhile, in [108], the author
extracted the features using deep learning by converting time series data to frequency
domain-based images. Based on the images, only the 0-5 Hz range was converted into a
spectrogram, and the data were fed into a VGG-16 network. Finally, 4096 features were
extracted and studied.

5.3. Feature Selection and Dimensionality Reduction

Extracted features do not promise fully relevant correlations with physiological
changes in emotion regulation. Feature selection is a method to optimize the classification
architecture by only picking the best feature combinations and eliminating noninformative
features. This can also reduce the computational cost of the classification in the later step.
In [26], recursive feature elimination, the chi-square test, the P test, random forest feature

193



Sensors 2021, 21, 5015

selection (RF FS), extra tree feature selection, and random support vector machine feature
selection were used. Moreover, swarm intelligence is also common in the feature selection
process. The author of [74] applied the genetic algorithm, while ant colony optimiza-
tion was used in [104]. Binary particle swarm optimization (BPSO) and hybrid particle
swarm optimization (HPSO) have also been applied for feature selection [84]. The wrapper
method and the Tabu search algorithm are found in [77] and [103]. In [109], the author
used Kullback-Leibler divergence as a feature selection. Other common techniques are
sequential forward selection (SFS) and sequential backward selection (SBS), which have
been applied in [86,87,110].

Dimensionality reduction is a technique to reduce the number of features by trans-
forming a higher dimension feature matrix into a lower dimension without losing the
necessary information. The two most used techniques were principal component analysis
(PCA) and linear discriminant analysis (LDA). The transformation of PCA is unsupervised,
while LDA is supervised. The applications of PCA were viewed in [20,55,67,85,89,108,111].
LDA, also known as Fisher’s linear discriminant analysis, was used in [20,24,53,87] as a
dimension reduction procedure.

The applications of feature selection and dimensionality reduction techniques stated
are reported to be beneficial in terms of improving the training and testing accuracy for
emotion recognition systems. Moreover, the time taken to perform the classification is
reduced significantly as less data need to be processed at a time. Finally, the chance to
overfit the trained model is reduced, as the noisy data are eliminated from the final data
fed to the classifier.

5.4. Classification

Classification techniques are divided into two main categories which are machine
learning and deep learning. Commonly, if deep learning is adopted in physiological-based
emotion recognition, there are no feature extraction and feature selection steps. If the
deep learning architecture has a convolutional layer, it might somehow be considered as a
dimensionality reduction stage.

Machine learning methods are divided into three learning categories which are super-
vised learning, unsupervised learning, and hybrid learning. In affective computing, the
majority of the research adopted supervised learning through emotion labels such as ADM,
DEM, and Pos/Neg through SAM. However, there is one work that used unsupervised
learning, which is [112]. The ECG signals were unlabeled, and the convolutional neural
networks (CNN) were trained to find any signal transformation for emotional patterns.
Then, the weights were passed on to the labeled data for testing. The accuracy shows a
significantly better result than most of the supervised learning techniques.

A classifier that has been frequently adopted and performed the best in emotion
recognition systems is the support vector machine (SVM) [15]. From 24 out of the 51 studies
summarized here (presented in the following section), SVM was adopted as either the
only classifier or one of the machine learning algorithms to be compared. SVM kernels are
simply the methods or behavior of making the hyperplane decision boundaries work in
certain manners. In [89], SVM constantly performed better than random forest through
every ratio of generated emotional data in the training set.

Although SVM is popular, it is not always the best classifier, as reported in sev-
eral works. Other well-performing classifiers used are k-nearest neighbour (KNN) and
naive Bayes (NB). KNN was reported to perform better than SVM in [39,77]. Mean-
while, [56] showed that NB performed better than SVM in both valence and arousal
classification using a single ECG modality. Classifiers that were also reviewed are decision
tree (DT), random forest (RF), AdaBoost (AB), gradient boost (GB), quadratic classifier
(QDA), and LDA. For less known classifiers such as extra tree, regression tree, and en-
semble bag tree, their performance was reported to be considerably good in [26] when
compared to RF and GB.
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Neural network-based deep learning classifiers come in different forms and config-
urations. Based on the literature, there are a lot of neural network (NN) infrastructures
such as 1-NN, deep convolution neural network (DCNN), probabilistic neural network
(PNN), backpropagation neural network (BPNN), radial basis function neural network
(RBFNN), multilayer perceptron (MLP), and extreme learning machine. Extreme learning
machines alone were shown to improve the training accuracy of many databases [108].
DCNN also showed classification accuracy of the AMIGOS dataset in [113] for valence
and arousal. The best accuracy was shown in [20] using PNN to classify five-class and
three-class DEMs. However, the study was subjected to a credibility request as the result
might be biased by overfitting.

5.5. Validation

Validation is a crucial step in building a machine learning model, especially when
dealing with a subjective application such as emotion recognition. This step is designed to
see the overall performance of the trained models when it comes to new data. The partition-
ing between training and testing datasets is to ensure the model can perform a validation
step by imitating real-world scenarios outside of the experiment setup [15]. The generaliza-
tion ability of validation allows the model to increase variability and reduce overfitting.
The most common validation techniques are called cross-validation (CV) with different
versions of approaches.

Non-exhaustive cross-validation of k-CV is a resampling procedure conducted with
k number of folds to reshuffle and train the limited data sample, with 5 and 10 being
the standard number of k when it comes to the number of folds in k-CV. When k is
bigger than that, the subjected models are considered biased. The 5-fold CV was practiced
in [54,74], while a rare 15-fold CV was only conducted in [54]. Moreover, 10-fold CV is the
most widely practiced cross-validation technique, with 12 papers in total [6,26,39,47,53—
55,88,99,112,114,115].

Exhaustive cross-validation techniques have two main variations. The first is leave-
one-out cross-validation (LOOCV), where the models are tested and validated from end
to end without leaving one participant or subject as a final validation. This method takes
more time than leave-one-subject/participant-out cross-validation (LOSOCV/LpO CV).
The main advantage of exhaustive CV over non-exhaustive CV is the lower bias as it
trains the possible validation combination across all datasets. However, considering a
large amount of computational work, the validation process takes a significantly longer
time to complete. LOOCV was applied in [55,56,68,69,77,106,109,116], while LOSOCV was
adopted in [71,105,110].

6. Review of ECG-Based Emotion Recognition Systems

The 51 reviewed works are summarized in Tables 3 and 4. Table 3 summarizes
31 studies on combinations of unimodal and multimodal ECG-based affective research that
reported on ECG standalone results. Meanwhile, Table 4 summarizes 20 affective research
studies that included ECG as one of their physiological modalities but did not mention
the classification accuracy of using solely ECG as the input. In this section, the works that
achieved more than 90% accuracy are highlighted.
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In Table 3, there are seven works that reported more than 90% accuracy in classifying
emotions based on varying emotional models. Firstly, Sarkar and Etemad [112] performed
a self-supervised emotion recognition study using four datasets which are AMIGOS,
DREAMER, WESAD, and SWELL. Based on the raw ECG signals from each dataset, the
neural network learned high-level abstract representations, and the weight was transferred
to an emotion recognition network. The results show an improved performance compared
to fully supervised learning. Although AMIGOS and DREAMER did not manage to pass
90% and above accuracy, WESAD and SWELL were claimed to be successfully classified,
with accuracy above 90%. With 96.9% accuracy, the author managed to classify WESAD
with the Pos/Neg Model. Moreover, with 97.3%, 96.7%, and 93.3%, the author managed to
classify SWELL on a model based on a binary scale of valence, arousal, and stress.

In a study conducted by Zhang et al. [104], the data were labeled according to a DEM
with four classes of emotions of happy, sad, pleasant, and angry. The overall accuracy
based on the ECG unimodal approach was reported to be 92%. The individual accuracies
were 97%, 92%, 91%, and 88% for angry, sad, happy, and pleasant. The best classification
results among three classifiers were achieved using KNN from two sets of extracted
features. The first feature set consisted of the time and frequency domains, with statistical
characteristics of ECG signals, while the second set of features was correlation features.
The correlation features were inclusive of the autocorrelation feature parameter, cross-
correlation feature, and multifractal feature parameters. The feature selection used was the
max-min ant system, which is a derivation of ant colony optimization.

Goshvarpour et al. [20] conducted an emotion recognition study based on ECG and
GSR collected from 11 subjects that listen to music as an affective stimulation method.
The result analysis was taken from the perspective of performance comparison between
ECG and GSR unimodal approaches. Based on the matching pursuit method, three dic-
tionaries were applied for feature extraction on the raw ECG signals, which were Coiflets
wavelets (Coif5) at level 14, the discrete cosine transform (DCT), and Daubechies wavelet
(db4) at level 8. Three feature selection methods were compared, and PCA was considered
as the best one for the application of the study as the recognition rate was constantly 100%
for subject-dependent and subject-independent scenarios across the ADM as well as the
DEM. The classification was conducted using PNN with a 0.01 sigma value. By far, this
paper reports the highest claimed accuracy for a unimodal ECG-based emotion recognition
system.

The work by Hovsepian et al. [117], for ECG classification of binary stress and non-
stress (Pos/Neg), reported 89% and 95% accuracy, respectively. The classifier used was
SVM with RBF kernels trained using HR, HRV, and non-HRV features. The raw ECG
signals were filtered and normalized before being extracted. Validation was also conducted
between subjects as more than twenty subjects participated in the study.

In a study by Selvaraj et al. [40], six classes of emotions from the ECG unimodal
approach were successfully classified with a maximum accuracy of 92.87%. The experiment
was conducted on sixty subjects by inducing happiness, sadness, fear, disgust, surprise,
and neutral emotions. The features that were extracted from ECG signals were nonlinear
features or Hurst features. The features were derived from RRS and FVS. They also
proposed a novel Hurst feature by merging RRS and FVS with HOS. The dataset was
separated with a ratio of 70:30 for training and testing datasets. Four classifiers were
considered: Bayesian classifier, regression tree, KNN, and fuzzy KNN, where the last
classifier performed the best.

Xun and Zheng [86] also managed to obtain 92% accuracy in classifying joy and
pleasure from the AuBT dataset. They only utilized the ECG signals from the database to
perform the study. The ECG features were extracted using AuBT toolboxes, which provided
a combination of HR and HRYV features. A total of 81 features were extracted, but only 5
final features were selected using a combination of analysis of variance (ANOVA), SFES,
and SBS. The final selected features were R_range, ec¢Rampl-std, ecgHrv-max, ecgHrv-range,
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and ecgHrvDistr-range. The classification was conducted using SVM, LDA, and Fisher’s
linear discriminant analysis with SVM as the best methods.

Guo [102] performed a comparison study between BPNN and RBFNN in classifying
emotions using the AuBT dataset. The accuracy result for BPNN was 87.5%, while for
RBFNN, it was 91.6%. The ECG features extracted were from the multiscale wavelet
decomposition method for the extraction of the maximum value of wavelet coefficients
and the standard deviation. The study highlighted that wavelet coefficients that are treated
as eigenvectors are able to effectively characterize ECG signals.

Meanwhile, in Table 4, there are seven works that reported more than 90% accuracy in
classifying emotions based on varying emotional models and multiple modalities inclusive
of ECG. Lee and Yoo [109] collected multimodal physiological signals from ECG, EDA, and
SKT from 15 subjects. The highest classification accuracy was found using NN at 92.5%,
while 85.6% and 81.2% were found using QDA and LDA. The study also showed that a
higher accuracy is expected by applying feature engineering through multimodal feature
extraction and feature selection. The features extracted from ECG signals are time domain
HRV features. The feature selection algorithm used was Kullback-Leibler divergence.
EDA features were selected more frequently than the others, but as for ECG features,
RMSSD, NN50, SDNN, and LF/HF were among the selected features in subject-dependent
scenarios. The affective model used was Pos/Neg as the collected samples were based on
fear as the negative label, and normal as neutral.

In [100], Gong et al. managed to classify joy and anger with 100% accuracy, while
pleasure and sadness were classified at 92% and 88%. The study was conducted using the
AuBT database and utilized a multimodal approach. The ECG, EMG, SC, and RSP were
extracted using the ensemble empirical mode decomposition (EEMD) method, and the
classifier used was C4.5 DT.

The authors of [115] focused on the combination of ECG and EEG for the application
of an emotion recognition interface for interactive contents. The feature extracted from the
ECG signals was HRV, and the classifiers tested were MLP, SVM, and a Bayesian network.
By adopting 10-fold cross-validation, the best classifier reported was the Bayesian network,
with 98.06% accuracy in recognizing six emotions from the DEM. Collected from 30 subjects,
the emotions were amusement, fear, sadness, joy, anger, and disgust.

Kim and Andre [69] collected ECG, EMG, SC, and RSP signals from three subjects
and performed a feature-based multiclass classification. The ECG features extracted were
based on the HRV time, frequency, and nonlinear domains. Using a novel technique called
emotion-specific multilevel dichotomous classification (EMDC), the authors managed to
obtain a 95% average accuracy for subject-dependent and 70% for subject-independent
scenarios. Among 110 combined extracted features, the best emotion-relevant feature
from ECG was SD2 from the HRV Poincare plot for valence, arousal, and four classes of
valence/arousal.

The study by Wagner et al. [85] adopted the AuBT multimodal physiological signal
approach for emotion recognition. The ECG features extracted were HR statistical values.
A few feature selection and classification techniques were tested to assess the recognition
performance. With 92.05% accuracy, the four classes of emotion were classified using the
linear discriminant function (LDF), and the features were selected using SFS. The same
configuration obtained 96.59% accuracy on classifying arousal. However, for valence, the
highest accuracy achieved was 88.64% using MLP and the combination of Fisher and SFS.

Healey and Picard [52] performed emotion recognition through detecting stress in
a real-world driving scenario. A total of 24 drivers were tested through different traffic
conditions in the greater Boston area while continuously providing feedback on their stress
level. ECG, EMG, SC, and RSP sensors were attached to their body, and the data were
recorded. The ECG features extracted were from the HRV power spectrum and sympatho-
vagal balance ratio. The Fisher projection matrix and linear discriminant were used to
determine the accuracy of the Pos/Neg emotional model. High, medium, and low stress
recognition accuracies were 97.4%, 94.7%, and 100%, respectively.
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Lastly, Haag et al. [78] took a multimodal approach towards emotion recognition by
incorporating ECG, EMG, EDA, ST, RSP, and BVP. The ECG features extracted were HR,
HRYV, and IBI. Using NN, the study managed to classify arousal with 96.58% accuracy, and
valence with 89.93% accuracy.

7. Application of Emotion Recognition System in Healthcare

A lot of treatments are available for physical illness, but it is not the same for psy-
chological illness. Emotional health is important for the wellbeing of one’s mental state.
A negative emotional state may cause social and physical problems if left undiagnosed and
untreated. For instance, prolonged exposure to stress or depression may lead someone
to withdraw from a healthy relationship with the people around them and being aggres-
sive, which could be dangerous for him/herself and the people around them. Moreover,
negative emotions may also cause physical problems such as headaches, stomach upset,
and muscle ache. An emotion recognition system can be utilized to improve the healthcare
sector, especially in addressing metal health issues.

7.1. Emotion Recognition Application in Healthcare Ultilizing ECG

The authors of [7,18] proposed a new healthcare system that focuses on emotional
wellbeing. The system consists of physiological sensors (ECG and EEG) to measure and
detect emotions. Based on that, the system provides necessary services such as relaxation,
amusement, and excitement. These three emotional services are selected to balance out
negative emotions detected from the subject with strong positive states. The relaxation
service consists of a guided deep breathing exercise proven to benefit stress management.
The exercise came with virtual objects in augmented reality and musical assistance for
a calming effect. The system utilizes augmented reality as an output service channel,
thus providing amusement and excitement services to the user interaction with the virtual
objects. The interaction is enabled by Kinect’s gesture detection.

A healthy workplace environment using a novel mood recognition solution that is
able to identify eight different DEM emotions in every two-hour interval was proposed
in [105]. The employees were provided with a wearable physiological device (ECG, PPG,
and TEMP) along with a complimentary smartphone application called “HealthyOffice”.
The configuration setup was conducted to facilitate a periodical self-reporting towards the
current emotional state in a structured manner. The objective of constantly monitoring
employees” emotions in the workplace is to optimize the overall mental health of the
organisation by eliminating anxiety, stress, and depression in the working environment.
Thus, higher productivity is expected, and the output revenue can be significantly mea-
sured. A similar study of emotion healthcare application in the workplace environment
was also conducted in [77], with a slightly different approach. This study used ECG, EDA,
and TEMP as the physiological models. Rather than identifying the spectrum of basic
emotions, the work only focused on stress and non-stress binary emotional classification.

A clinical application of emotion recognition systems was presented by [117]. The study
utilized ECG and respiration sensors to detect stress symptoms in the patients. The targeted
application of the work was towards patients who suffer migraine, addiction (substance or
smoking), and stress-related disorders. The benefit of monitoring the patients” emotional
stress condition is to ensure that a negative tendency is not triggered. Daily stress manage-
ment can reduce severe addictive behavior and refrain from triggering migraine. The work
also proposed a combination of physiological signals and other data such as visual exposure,
social interactions, geoexposures, light and sound exposures, and digital trails to deter-
mine which parameters influence stress triggers. In [119], a home healthcare system using
wearable physiological sensors that have an emotion recognition function was designed.
The targeted groups for the application of the system were elderly and sub-healthy people.
HR, TEMP, and SC were monitored at the wrist of the wearer in real time. The data were
broadcast wirelessly to the family doctor or health practitioner who is responsible for the
subject. An alert system was also embedded in the design to send a text message and notify
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the doctor, in case of a risky situation. The healthcare system can detect the states of joy,
anger, and sadness.

The cardiac defense response (CDR) is a specific field of study that is closely related to
psychophysiological reactivity towards an intense stimulation. CDR serves as a protective
function of the fight or flight response in case of dangerous situations [120]. However,
when exposed to it for a long period of time, anxiety, stress, depression, and other mental
disorders might arise. The author of [121] proposed a novel integrated system using ECG
signals to detect fear in real time. Since fear is the emotional response when a person is in
danger, the system was designed to detect a prolonged CDR. In healthcare, this system is
important for monitoring stress and early prevention of mental disorders.

7.2. General Healthcare Application of Emotion Recogntion Systems

The application of emotion recognition in military healthcare was studied in [122].
Since armed forces are constantly exposed to a highly stressful scenario and environment,
many of them tend to develop psychiatric conditions such as depression, post-traumatic
stress disorder (PTSD), and suicidal thoughts. To prevent dispatching emotionally unstable
personnel into a risky mission, the work proposed the usage of emotion recognition
screening to assess the mental health status of the subject. The system also analyzed the
reaction towards stressful emotions of the subjects. However, further development is still
needed for any practical application.

Next, an emotion recognition system was applied in [123] to improve the patient
e-healthcare system in a so-called smart city. Medical doctors have difficulties in detecting
and controlling the degree of pain experienced by their patients, especially for patients
who cannot express it verbally such as babies. Thus, the study proposed a remote patient
monitoring system that employs an automatic emotion detection architecture. The system is
capable of achieving a more personalized pain detection index through emotion monitoring.
With a proper analysis provided, the result of this system manages to obtain an accuracy of
approximately 90% using SVM as the classifier.

Faiyaz et al. [124] proposed a novel e-healthcare support system with emotion recog-
nition using fuzzy logic. The framework designed is suitable in the context of a real-life
healthcare environment. Monitoring patients” emotions through the e-health system influ-
ences their satisfaction, wellbeing, and physical health. With the emotional feedback from
their customers, healthcare providers can improve the quality of their services. The way of
treating with empathy can be instilled in medical practitioners when they are aware of the
affective state of their patients. This system is beneficial to both parties and improves the
overall standards of the healthcare industry.

A fairly recent study was conducted in detecting the emotional state of patients during
the spread of the virus SARS-COV-2, where face masks are mandatory [125]. A facial
emotion recognition study was conducted with masked and unmasked versions of data.
The unmasked faces in the database were modified digitally to add an artificial blue surgical
mask over the face of the subjects. The system was designed to encourage pleasantness
in doctor—-patient interaction. However, with face masks being worn, inter-professional
communication in healthcare is being upheld by the adoption of emotion recognition
systems.

Another study that used computer vision to detect emotions in a healthcare center
was presented in [126]. A multimodal visualization analysis was conducted on the facial
expression of patients monitored using a monitoring camera at different intervals. The data
were transmitted using the Internet of Things (IoT) and processed at the analysis center.
If the system detected an abnormal expression, it would alert the physician in charge to
check up on the patient.

Mental disorders and depression are serious illnesses that reduce the quality of life
of individuals and the people around them. Early diagnosis of these psychiatric diseases
can be conducted using an emotion recognition system, as proposed in [127]. The psy-
chiatric patient-centric pervasive (P-cube) platform was designed to connect with the
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subject’s smartphone or laptop to collect data for emotion recognition. Utilizing speech
data recorded from the headset, the system can provide the therapist with deeper affective
insights into a subject’s mental state. Six basic emotions are detected using the system:
anger, boredom, desperation, disgust, happiness, and pride.

Finally, ref. [128] proposed a speech signal-based emotion recognition system to
analyze and detect compounded emotions. Prolonged anger, fear, and sadness are com-
pounded with anxiety, where the person is prone to develop a more serious mental and
physical health condition in the future. Compounded emotions might also drive a person
to use substances, and, in the worst case, to commit suicide. The study designed a neural
network-based autoencoder to extract suprasegmental features in voices and detect the
early symptoms of anxiety disorder.

8. Discussion
8.1. Summary of the Review

The objective of this work was to perform a comprehensive review on emotion recog-
nition systems that adopt ECG signals, and on their applications in healthcare. From
the research reviewed, it is shown that with a combination of good pre-processing tech-
niques, feature extraction and selection methods, and classification algorithms, human
emotions can be recognized by machines with a medium to good accuracy. Even though
the research on affective computing has been around for more than a decade, a standard
universal emotional model has still not been achieved. Emotional models such as the ADM,
DEM, and Pos/Neg are still ambiguous, particularly in the number of classes for the DEM.
There are three-class, four-class, and even five-class labels for the DEM, which somehow
raise the question of the purpose of recognizing each emotion. However, with the valence
and arousal scale in the ADM, and the stress and non-stress binarization of Pos/Neg, the
targeted application of emotion recognition systems is more focused and simpler.

The other angle reviewed here is how extracted ECG features are relevant to the ANS
activity in the heart. Our eyes cannot visibly capture any characteristic changes in the raw
ECG signal; however, the feature extraction techniques are sensitive enough to extract the
informative features of ECG. Additionally, feature selection and dimensionality reduction
allow only the most relevant features to be adopted to recognize the specific emotion, while
features that are unnecessary are eliminated.

The classification and validation steps are the most important parts in emotion recogni-
tion systems. Different classifiers use different learning approaches towards the data being
trained. Even though the most used machine learning algorithm for emotion recognition
systems is SVM, it is not necessarily the best approach. As it was previously discussed,
there are few studies that managed to outperform SVM’s performance with other machine
learning models. In addition, the reason most research on emotion recognition used ma-
chine learning instead of deep learning is because of the scarcity of the data available.
As it was summarized, in the available databases, the number of subjects and samples
are less compared to medical databases that deal with cardiac disease. Nonetheless, deep
learning has been considered and has shown a promising performance. With more data,
deep learning is a good direction for this area. However, collecting a large database to
perform a subject-dependent and subject-independent analysis requires a lot of time and
cost. Thus, it is important for researchers to properly decide the pipeline of their research
and consider validation techniques in order to increase variability.

Finally, application of emotion recognition systems in healthcare focusing on mental
health was reviewed in Section 6. Emotion recognition systems are able to help in assessing
the mental state of an individual. The output of the system can then be used as an input
for a system that responds to the emotion to provide comfort and regulate the emotion so
that a positive emotion is experienced by the individual.
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8.2. Research Challanges

Among the studies reviewed, the challenge for ECG-based emotion recognition sys-
tems is the lack of affective databases with a large number of samples taken from subjects
with different backgrounds. Current affective databases are limited by an age group bias,
where only university students participated in the data collection processes. Moreover, one
of the regional experiments conducted caused the database used to have a homogenous
locality sample from people with the same ethnic backgrounds.

The next challenge comes from the perspective of annotation, as well as unstandard-
ized emotional models and scales. Since emotions are subjective experiences defined
through different perspectives, the inexactness may cause classification fallacies. If the
emotion experienced by a subject contradicts the perceived emotions by a second- or
third-person perspective, this might cause a huge mess in the system. When dealing
with insufficient datasets, researchers tend to combine datasets to increase the sample
size. The unstandardized emotional models and scales cause a huge challenge in adopting
different affective datasets in one study.

The last challenge is the applicability of emotion recognition systems designed for
real-world situations, especially in healthcare. The majority of the studies summarized are
not available for actual use because of the complexity of the design. The whole purpose of
academic research is to promote intelligent solutions to issues or problems faced in real life.
However, since the studies are not repeatable or are difficult to replicate, other researchers
have difficulties in improving the steps taken from previous works. In order to make
emotion recognition systems common in the healthcare industry, the models proposed
have to be simple, efficient, and reliable, in addition to being tested vigorously.

8.3. Future Works

Further research should be conducted on emotion recognition systems based on ECG
signals for healthcare purposes. Primarily, the relationship of different age groups, eth-
nicities, and personalities towards emotion stimuli and responses should be investigated.
The bigger the sample size with a heterogenous background, the better the classification
approach, and thus a universal system can be built. Next, the perspective of intercompati-
bility between one dataset and another should be reviewed if the same methodologies are
to be applied to compensate the training and testing accuracy and promote the generaliz-
ability of the developed system. The research of emotion recognition should be closer to a
real-life scenario, where the computer can learn to eliminate more outside noise, instead of
working in a controlled environment. By applying this approach, the system should be
robust and versatile for further application and commercialization. By deploying emotion
recognition systems for healthcare usage, the architecture built must be reliable in dealing
with different scenarios. Finally, various other possible real-world use cases of emotion
recognition systems which allow personalization in real time should be explored.

9. Conclusions

This review has shown that emotion recognition systems are an essential subject
in healthcare, and the application of them is possible via ECG as a unimodal or multi-
modal approach. The growing trend of research related to emotion recognition systems
is a heathy step towards the maturity of this field. Future endeavours of incorporating
emotional health in technological development will contribute to more responsible and
sustainable innovations.
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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder that targets the central nervous
system (CNS). Statistics show that more than five million people in America face this disease. Several
factors hinder diagnosis at an early stage, in particular, the divergence of 10-15 years between the
onset of the underlying neuropathological changes and patients becoming symptomatic. This study
surveyed patients with mild cognitive impairment (MCI), who were at risk of conversion to AD,
with a local/regional-based computer-aided diagnosis system. The described system allowed for
visualization of the disorder’s effect on cerebral cortical regions individually. The CAD system
consists of four steps: (1) preprocess the scans and extract the cortex, (2) reconstruct the cortex
and extract shape-based features, (3) fuse the extracted features, and (4) perform two levels of
diagnosis: cortical region-based followed by global. The experimental results showed an encouraging
performance of the proposed system when compared with related work, with a maximum accuracy
of 86.30%, specificity 88.33%, and sensitivity 84.88%. Behavioral and cognitive correlations identified
brain regions involved in language, executive function/cognition, and memory in MCI subjects,
which regions are also involved in the neuropathology of AD.

Keywords: Alzheimer’s disease; personalized diagnosis; mild cognitive impairment; computer-aided
diagnosis; SMRI

1. Introduction

Alzheimer’s disease (AD) is considered the best-known neurodegenerative conditions
targeting the central nervous system (CNS). Elderly people make up the preponderance of
the sufferers of AD. However, younger people may be affected by early-onset AD [1]. Sta-
tistically speaking, disease risk increases with age among the elderly population, with 42%
of those diagnosed with AD being 85 years or older, while only 6% of diagnosed cases are
between 70 and 74 years old [2].

The characteristics of AD can be broadly grouped into clinical and anatomical fea-
tures [3]. Features in either category vary from one patient to another. Clinically, AD
patients show progressive deficits in cognition and memory in addition to disturbances in
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thought, perception, and behavior. Pathologically, patients incur a neuronal loss, granulo-
vacuolar degeneration, and the formation of the two definitive diagnostic markers of AD:
neurofibrillary tangles and neuritic plaques [4]. Up-regulated expression of the amyloid-$
precursor protein (APP) is followed by a cascade of processing involving BACE1, PSEN1,
PSEN2, and APH]1, resulting in production of amyloid-p peptide, including its pathogenic
species AB42. The AB42 conformations fuse into oligomers containing up to 100 units
of AB42, and form neurotoxic protofibrils. AB42 oligomers itself leads to synaptic loss,
neurotoxicity, and neuronal death. Ap42 oligomers, under the influence of ApoE4, can
undergo aggregation and formation of A seniles plaques in affected brain regions [5].

As a neurodegenerative condition, AD is progressive. The severity of affliction is
typically divided into three phases, beginning with a mild phase, then proceeding to mod-
erate phase, and ending with severe phase [6]. The emergence of the disease’s pathological
features 1015 years before being clinically discovered hinders the early diagnosis of the
disease. Furthermore, the subject-dependent influence of AD between its sufferers adds
another obstacle to diagnosing the disease in its early stage [4].

Various tests of a patient’s mental and physical state can assist in AD diagnosis,
including urinalysis, blood panels, and neurological, neuropsychological, psychiatric
examinations. The patient’s medical history, as well as brain imaging in various modalities,
can also inform the diagnosis [1]. Regarding brain imaging, these technologies play a
notable role in identifying the disease, specifically speaking in the pre-clinical and MCI
phases [7]. Further information about the impact of brain imaging in this research area
can be found in the study presented by Johnson et al. [8]. Additionally, a scientific work
presented by Jack et al. [9] aimed to illustrate the function of each of the brain biomarkers
along the cascade of AD. Relying on the study findings, for the earliest signs of the disease,
positron emission tomography (PET) amyloid imaging, as well as cerebrospinal fluid
(CSF) levels of amyloid beta (AB4p), reveal evidence of the underlying Af pathology.
CSF levels of tau protein, structural magnetic resonance imaging (sMRI), 2-[18F] fluoro-
2-deoxy-d-glucose (FDG-PET), and the cognitive and clinical symptoms can help follow
patients as pathology accumulates with disease progression. sMRI discloses the structural
abnormalities while FDG-PET or CSF-tau reveal neuronal injury and dysfunction.

Previous scientific research has attempted, through several methodologies, to different
groups defined by cognitive status (normal control (NC), MCI, or AD) using neuroimaging
data. For instance, a computer-assisted diagnostic (CAD) system was presented in [10]
to diagnose AD at its earliest phase using independent component analysis (ICA) as well
as support vector machines (SVM) for the feature extraction and the classification pur-
poses, respectively. Additionally, a CAD system using Gaussian discriminant analysis
was presented in [11] to screen the disease’s phases where the features of the entorhinal
cortex showed significant discriminatory power between both the normal group (NC) and
abnormal group (MCI + AD). Additionally, the study could achieve an improvement re-
garding the classification performance through defining two separate spaces of the decision,
for both hemispheres of the brain (left and right hemispheres), following by combining
their obtained result. Beheshti et al. [12] used feature ranking in addition to genetic algo-
rithms (GA) to propose a CAD system that addressed differentiating between NC, stable
MCI (sMCI), progressive MCI (pMCI), as well as AD groups. The pMCI group comprises
subjects who progressed clinically to the overt AD where their neuropsychological tests
have a poorer performance than the NC group.

On the other hand, the sMCI, who either remains in the stable stage or may improve,
shows no or marginal neuropsychological changes [13,14]. Zhang et al. [15] addressed the
three-way classification problem between the NC, MCI, and AD groups. In this system,
the principle analysis is used for feature detection, while the kernel support vector machine
decision tree (kSVM-DT) was used for the classification purpose. Then, Zhang et al. [16]
used the idea behind the eigenbrains along with the machine learning for building their
CAD system. Therefore, Welch'’s t-test was used to find significant eigenbrain while the
prediction task was accomplished using SVM with the implementation of different kernels.
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Tong et al. [17] exploited the multiple instance learning (MIL) method to present a system
aimed to diagnose both AD and MCI phases. In this system, the extracted features were
in the form of local intensity patches. The MIL method was applied to address the case
when some patches may not characterize the morphological association with AD because
of the variable influence of the disease on these patches. Finally, Westman et al. [18] used
orthogonal partial least squares to latent structures (OPLS) analysis to discriminate between
the groups of AD through combining local and global volumetric measures obtained from
MRI scans.

Despite the achievements mentioned above, there are several notes regarding these
achievements that led to making the door still open in front of this research topic, and specif-
ically speaking this AD-related research point (i.e., differentiating between NC and MCI
groups). First, the previously mentioned studies addressed either a diagnosis of whole-
brain findings consistent with impairment or else considered local, brain region-specific
diagnosis while excluding the MCI group. Despite the importance of those researchers’
findings in the diagnosis task, targeting the brain-based regional diagnosis might add
more advantages due to the disease’s subject-dependent influence that could impede the
early diagnosis. Furthermore, the local/regional diagnosis can aid in revealing the disease-
related ambiguity. Secondly, in general, the diagnosis performance when using sMRI in the
AD early stage is fair and still needs more improvements. Due to the literature, the SsMRI
scans can be used to follow patients as pathology accumulates with disease progression.
In contrast, at the early stages, the scan might look normal [9,19]. The aim of this paper is
primarily to introduce a system for the local/regional diagnosis, using sMRI technology,
for serving the goal of personalized diagnosis of MCI. Therefore, the proposed system
studies the impact of MClI locally (i.e., in the term of the local brain regions), specifically
speaking its impact on the brain cortical regions. Targeting the cortical regions is due to the
essential role of the medical imaging-based measurement of the cerebral cortex’s shape,
composition, as well as function in the diagnosis of the neurodegenerative conditions and
explicitly speaking in diagnosing AD [20-22]. To support the performed cortical regions
diagnosis, further analysis of the obtained results has been performed to confirm the fitness
of the results with the neurocircuits defined by the National Institute of Mental Health
Research Domain Criteria (RDoC). In addition, the paper offers a global diagnosis where
the results are promising, as evaluated, in addressing the challenging task of differentiating
between the NC and MCI groups primarily through brain structuring features at the early
stage of the disease. This paper is organized as follows. Section 2 explains the used material
as well as the applied methods. Section 3 presents the evaluation results of the proposed
CAD system. Section 4 discusses the obtained findings. In the end, a conclusion of the
proposed study is shown in Section 5.

2. Materials and Methods
2.1. Materials

Data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu, (Last accessed on 1 July 2021)) was used to build the proposed system. ADNI
is considered to be a standard database, which was established in 2003 as a public-private
partnership under the lead of Michael W. Weiner, MD as a Principal Investigator. The aim
behind the ADNI was to evaluate the role of combining serial MRI, PET, or other markers,
along with the clinical and neuropsychological assessments, in measuring the evolution
of MCI as well as AD. All the data on ADNI are provided for both the informational as
well as the review purposes where according to ADNI, the IRB in approved for research
use only. In the proposed work, we used 146 baseline sSMRI scans of 60 normal plus
86 mildly cognitively impaired subjects, classified in ADNI as being either sMCI or pMCIL.
Table 1 shows the demographic distribution of the used dataset. As reported by ADNI,
the NC participants represent the control subjects who do not show any depression, MCI,
or dementia signs. On the other hand, the MCI subjects are the subjects with subjective
memory concern that is reported by an informant, a clinician, or oneself. Despite this
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reported concern, the daily living activities of the MCI participants are basically preserved.
The subjects neither show any significant impairment levels in other cognitive domains
nor show dementia signs [23]. Please note here that in our paper, we did not focus on
differentiating between the sMCI and the pMCI groups. This is due to our ultimate goal of
presenting a personalized CAD system of either belonging to the NC or the MCI group
without addressing whether the subject will proceed to AD, as in the pMCI group, or will
remain stable, as in the sMCI group.

Table 1. Demographic data relating to baseline sSMRI scans selected from ADNI. Note: MMSE is the
Mini Mental State Examination, and CDR is the Clinical Dementia Rating.

60 Normal Subject 86 MCI

Age (Mean =+ std) 7549 +£4.78 7398 +£7.72
Gender

Women 38 33

Men 22 54
MMSE scores 24-30 24-30
CDR 0 0.5

2.2. Methods

This paper aims to present a cortical region-based CAD system to perform the per-
sonalized diagnosis of MCI through the framework illustrated in Figure 1. The system
begins with preprocessing the scans as well as segmenting the cerebral cortex and parcel-
lating by hemisphere. Second, a triangular mesh reconstruction of the cortical surface is
performed using the marching cubes (MC) algorithm. This is followed by the extraction of
shape-based features at each node of the cortical mesh. The cortical region-based features
are then defined through applying the Automated Anatomical Labeling (AAL) atlas to the
reconstructed cortex. Third, a fusion of the obtained features is performed using canonical
correlation analysis (CCA) to produce more representative features. Fourth, a two-stage
diagnostic classifier is constructed, producing cortical region-specific diagnoses that are
combined into a final diagnosis, of the subject’s cognitive status.

sMRI Scans

-

Preprocessing and Cortex Segmentation { Cortex Analysis J ‘ Diagnosis
. o’
. T Cais Sommsataten I- Cortex reconstruction | Level I:
I- Skull-stripping Local diagnosis
- =
9 SVM,
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1. Gaussian curvature Level 2:
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Figure 1. The proposed cortical region-based diagnostic system of cognitive impairment using sMRL
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2.2.1. Preprocessing and Brain Cortex Segmentation

This step serves the cortical regions-based diagnosis goal through standardizing
them to the parcellation atlas space. Using the SPM toolbox, images are resampled and
re-oriented (if necessary), skull-stripped, aligned, and spatially normalized. Skull strip-
ping in this case had already been performed, so we convolved the sMRI scans with
their corresponding brain masks that in turn are provided as part of the ADNI dataset.
Then, the orientation of the atlas template’s space, MNI space, had been matched with
the scans through re-aligning re-orientating, spatial normalize as well as re-slicing the
scans. The data were re-sliced and aligned with the MNI-152 standard template. One
scan, selected as a reference, was rotated and shifted to align as near as possible to the
template, with the line between the anterior and posterior commissures (AC-PC line) of the
template and reference aligning exactly. The rest of the scans in the dataset were registered
to the chosen reference with a rigid body transformation calculated to optimize the mutual
information criterion. The particular choice of reference image is not significant, since
all MRI in the ADNI database have roughly the same spatial orientation. Subsequently,
the algorithm of Ashburner and Friston [24] was used to register each pre-aligned image
precisely with the MNI-152 template using a combination of affine and nonlinear deforma-
tions. Figure 2 shows examples of preprocessed scans overlaid on the atlas template [25].
Following this step, segmentation of the cerebral cortex was performed using the xjview
MATLARB toolbox.

@) | (b)

Figure 2. Example of preprocessed and overlaid subjects” scans with the AAL atlas template
from each studied group where (a) is for a normal subject, while (b) is for a mildly cognitive
impairment subject).

2.2.2. Brain Cortex Reconstruction and Analysis

The shape descriptors to be used later by the algorithm depend upon the accurate
representation of the cortical surface. Therefore, the MC algorithm is initially used for
cortex reconstruction since it is best-known isosurface extraction method and produces
high-resolution results [26,27]. Then, having obtained the triangulated mesh representation
of the cortical surface, several shape features are calculated at each node individually
through Equations (1)—(4) after calculating the principal curvature directions and values.
Algorithm 1 summarizes the steps of the MC algorithm as well as the calculation of the
principal curvature directions and values while Figure 3 illustrates results of cortical surface
reconstruction for both NC and MCI subjects.
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Algorithm 1 The MC algorithm and the calculation of the principal curvature directions
and values.

Input: The dataset of the scalar volumetric

Output: The directions and values of the principle curvature

Steps:

1. Use the volume lattice for defining the cubes (C;) in which the corner vertices are
defined through the points (P(x;, y;, s¢)) of the lattice for the column x;(V;), y; (V)
and the slice S (V) where n represent the number of the volume slices.

2. Construct, in a sequential form of cube-by-cube manner throughout the rows of
the dataset, a fecetized isosurface. In this procedure and when the value of the
Vi > isovalue (x), mark V; and keep the remaining ones as unmarked. Conse-
quently, the “active” edges are defined as an edge (E;) ended with a marked vertex
(Vym) and an unmarked vertex (V;ju). Note: the value of « was calculated through
applying the histogram to the labeled volume, remove the large first max value,
and obtain the value of a middle bar of non-small values as the a value.

3. Use alook-up table to factorize the interacted isosurface of the intersection topolo-
gies in which the linear interpolation is applied for the location estimation of the
intersection between the isosurface-edge through:

I(x/yls) = Vm(x,y,s) +p(Vu(x,y,s) - Vm(x,y,s))

where: p = ﬁ;LLﬂ,:, , Ly and Ly, are the scalars values V;,; as well as V,,, respectively.

4. Through the face and vertex lists of the resulting triangulated mesh and to calculate
the principal curvature directions and values, describe the input by XY rather than
XYZ through rotating the input so the current vertex’s normal becomes [—1 0 0].

5. Fit a patch of the least-squares quadratic to the local neighborhood of a vertex
“f(x,y) =ax® + by’ +cxy+dx+ey+ f".

6.  Use the hessian-based eigenvectors and eigenvalues to calculate the principal curvature.

NC l ‘ l MCI l

Figure 3. Examples of the marching cubes reconstruction output for normal and mildly cognitively

impaired subjects. As shown, although it is not that obvious since it is still the early stage of the
disorder, the brain atrophy starts to take place in the MCI case, where this atrophy defines the
beginning of losing the neurons and the connections that exist between them.

Please note that the sharpness and curvedness features were used as in [28]. Next,
labeling of each of the mesh nodes to its corresponding cortical regions is performed using
the AAL atlas, which defines a total of 76 cortical regions. It is important to note here
that alternative brain parcellation schemes could be used, as in [15,29,30]. In the proposed
system, the AAL atlas was chosen because of its relatively fine granularity. Here, to make
sure of the matching between the labels and the surface, the preprocessing steps of the
proposed framework were first applied to standardize the scans to the geometry of the
atlas template’s space, MNI space. Then, converts MNI coordinate to a description of brain
structure in AAL atlas using a standard list of the MNI space of the parcellation atlas to
label the required brain cortical regions.

CGaussian = AMA2 €]

1
Cmean = E(/\l + )\2) (2)
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Sharpness = (A; — Ay)? 3)

Curvedness = /(A% + A3)/2 @)

where A1 and A, denote the principal curvatures. Quantities are estimated at the locus of
each node of the triangulated surface.

Although grey matter volume has a significant impact in the AD research area, where
it is considered to be the most popular cross-sectional quantitative metric [31], the demo-
graphic variability between the subjects can bias results. For this reason, the volume is
used here in conjunction with the previously obtained features to increase the precision of
the results while avoiding this biasing possibility. To calculate the volume: (1) apply the
AAL atlas to the to the preprocessed scans to define the cortical regions of the brain, (2) the
MC algorithm is applied to reconstruct each region separately, (3) calculate the volume for
each of the reconstructed regions separately. By the end of this step, there are a total of five
features calculated for each of the 76 brain cortical regions, and they are now ready for the
next step of fusion.

2.2.3. Shape Feature Fusion

This step aims to fuse the previously extracted features to produce more informative
discriminative features between the tested groups. For this purpose, the CCA-based
technique of feature fusion is used due to its role in finding the associations between
two sets of variables [32]. Obtaining the linear combinations helps in discovering this
association that consequently enlarge the correlation between the two variable sets in the
way that presented in Algorithm 2. Here and due to the number of studied features, five
features, the CCA technique is implemented sequentially working with two features at
a time until ending up with the final fusion-based feature vector for each labeled region.
Note, due to the different scales of the extracted features, before fuse the features using
the CCA technique, each of the features are normalized to be between 0 and 1 using
Equation (5).

normFeat = (oldFeat — oldFeat,,;, )/ (oldFeaty,, — oldFeat,,;,) (5)

Algorithm 2 The algorithm for feature fusion based on CCA technique.

Input: Two matrices of the features, X € RP*" and Y € R7*", of the extracted (p + q)
features for the n samples.

Output: The fused features in the form of matrix.

Steps:

1. Compute the covariance matrix, S, for the two matrices X and Y using:

cov(x)  cov(x,y) Sxx Sy
S = =

cov(y,x)  cov(y) Syx Sy
where the Sy, € RP * P and the SW € R1* 9 are within-sets matrices of the covari-
ance of the X as well as the Y, respectively. The Sxy € R? %9 is the matrix of the
between-set covariance while Sy = Szy

2. Determine both of the linear combinations X* and Y* through using CCA to be
able to enlarge the correlations among the matrices X and Y through:

corr(X*,Y*) = %
where W, and Wy represent the matrices of the transformation.
cov(X*,Y*) = WISy Wy, var(X*) = WISy Wy, and var(Y*) = WyTSWWy.
The usage of Lagrange multipliers is to attain the maximization goal by maximizing
cov(X*,Y*) with a constrain of var(X*) = var(Y*) = 1.
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Algorithm 2 Cont.
3. Determine Wy and W), by:

(a) Solve the equations of the eigenvalue:

Six SxySyy SyxWi = AW,y

where W, and Wy are the eigenvectors while A? is the eigenvalues that cor-
responds to either the diagonal matrix or the canonical correlations square.

(b) Determine d that represent the overall non-zero eigenvalues in every afore-
mentioned equation, by d = rank(Sxy(n, p,q))-
() Perform a decreasing order-based sorting operation of the previous step

results 61 > 6 > ... > 6,.

(d) Let the sorted eigenvectors be indicated by Wy and W, where they con-
sequently represent the non-zero eigenvalues in which X* and Y* € R%"
represent the canonical variates.

4. Calculate the sample covariance matrix of the transformed data, S*, using:

1 0 -~ 016 0 - 0
01 - 0|0 & --- 0

S = o 0 --- 110 O o4
146 0 - 0|1 0 0
0 & -~ 00 1 0

L0 0 -~ 6;/0 0 -+ 1|

Concatenate the features-based transformed vectors to obtain the feature fusion
vector through:

= (F)- (R)-CF 40 ()

2.2.4. Diagnosis

The last step of the proposed system is to use the fused features to train the two diag-
nostic layers: regional and global. For this purpose, a probabilistic SVM (pSVM) support
vector machine (pSVM) is used in the first diagnosis layer, where for each anatomical
region a separate pSVM is trained to produce a probabilistic measure of association of that
particular region’s features with MCI. For this purpose, the fusion feature vector produced
by the CCA technique was used as an input to the pSVM to produce the final probabilistic
regional diagnosis result. Then, a standard SVM is used, in the second layer, where the
probabilistic outputs of the first layer are input to it, and the output is the global diagnosis
of NC or MCIL.

3. Results

The system was trained and tested using the 146 baseline scans, previously men-
tioned, downloaded from ADNIL. For the evaluation process, three types of experiments
are performed: (1) evaluating the performance of different SVM kernels, (2) comparing the
system’s performance results with several some state-of-the-art methods, and (3) validating
it with related work.

For testing classifier performance, k-fold cross-validation was applied to compare
both the results of the SVM-related kernels, as shown in Figure 4, and our obtained
results against some state-of-the-art methods, as shown in Figure 5. Regarding the k-fold
cross-validation method, K = 4 and K = 10 were used to verify that the proposed system
did not overfit while K = 10 was also used to evaluate the proposed linear-based CAD
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system with some state-of-the-art classifiers. As illustrated in Figure 4, the linear kernel
could, in general, exceeds the overall performance of the other kernels (i.e., polynomial,
and radial basis function (RBF) kernels) with the K = 4, and K = 10. For K = 4, the superior
results of the linear kernel were around 86.3%, 85%, and 87.2% for the accuracy, specificity,
and sensitivity, respectively. For K = 10, these superior results were around 86.3%, 88.33%,
and 84.88% of accuracy, specificity, and sensitivity, respectively. Comparing the obtained
results, at K = 10, with some other state-of-the-art classifiers (i.e., decision tree, ensemble
classifier, and K nearest neighbors (KNN)), Figure 5, also showed that the linear-SVM
generally could achieve better results.

Along with these quantitative performance results, an additional investigation has
been performed to confirm the fitness of the obtained subjects” cortical regions-based
diagnosis results with the neurocircuits defined by the National Institute of Mental Health
RDoC. Therefore, Table 2 displays the modest correlations between the behavioral and
cognitive data from ADNI and critical brain regions involved in memory and language.
Finally, an illustration of different cortical region-based diagnoses is presented in Figure 6
where the disease’s severity in each cortical region is represented in color.
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Figure 4. The results of the k-fold validation method in (%) for different SVM-based kernels
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Figure 5. The comparison evaluation of our linear-based CAD system with some state-of-the-art
classifiers with k-fold = 10.

Table 2. The person correlation for MRI parameters and distinct behavioral tasks in MCI subjects, where: BNTTOTAL: Total
number correct on Boston Naming Test, BNTSPONT: number of spontaneously given correct responses, Partial Score of
BNT, TOTAL11 (ADAS): total score on the 11 item cognitive subscale of the Alzheimer’s Disease Assessment Scale (ADAS),
FAQTOTAL: functional assessment questionnaire total score, CONMCXLA: number of targets hit on ADNI numbers
cancellation task.

Brain Region Behavioral Task ADNI Category r-Value p-Value
Right Angular Gyrus Language BNTTOTAL 0.37 0.001
Right Angular Gyrus Language BNTSPONT 0.36 0.001
Left Angular Gyrus Language BNTTOTAL —0.35 0.002
Left Angular Gyrus Language BNTSPONT —0.37 0.001
Right Middle Cingulum Language BNTTOTAL —0.29 0.010
Right Middle Cingulum Language BNTSPONT —0.31 0.006
Right Inferior Frontal Opercularis Cognitive TOTAL11 (ADAS) —0.32 0.004
Left Parahippocampal Gyrus Adaptive FAQTOTAL —0.30 0.007
Left Parahippocampal Gyrus Visual Spatial CONMCXLA 0.30 0.008

NC MCI '

PRLE

Subject 1 Subject 2 Subject 1 Subject 2 9

Figure 6. Different examples that show the cortical regions diagnosis for two different normal,
and two different mildly cognitive subjects. Note: (1) the color-bar-based gradient colors represent
the disease’s severity in every studied region separately. (2) The blue arrows show examples of the
cortical regions that show significant difference in the probabilistic diagnosis results between the NC
and MCI subjects.
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4. Discussion

Patients with mild cognitive impairment present with markedly reduced cognitive
abilities when compared with unaffected people of the same age, and taking a level of
education into account, but without meeting the criteria for dementia. One or more
domains of cognition can be influenced by this impairment: memory, executive function,
language, skills of the visuospatial domain, or attention. Regardless of the aforementioned
impairments, the patients still can accomplish their daily tasks, such as occupational or
social functions without confusion [33]. Therefore, MCI is considered to be an intermediate
condition between typically seen age-related changes in cognition and dementia [33,34].
Although it is not guaranteed that all MCI cases proceed to AD, suffering from MCI
increases the risk factor of ending up with AD [34,35].

To date, sMRI is one of the most developed modalities used for differential patho-
logical diagnosis purposes due to its ability to detect the location and severity of atrophy
through showing the detailed description of the soft tissues of the body [36,37]. sMRI
can discriminate between tissue types through capturing proton density or magnetization
properties (using spin-spin (T2) or spin-lattice (T1) relaxation times). Actually, T1-weighted,
as well as T2-weighted images, are used for qualitative assessment that is designed to both
differentiate between the tissues with a different relaxation time of T1/T2, and to evaluate
the macroscopic lesions as well as tissues changes such as in sulci, cysts and ventricles [38].

Regarding AD, sMRI can, in general, reveals atrophy of the cerebral cortex during
the progression of AD. Furthermore, the regions thought to distinguish AD from MCI
and normal controls include MRI parameters of the putative earlier involved MCI regions
(hippocampus, entorhinal cortex, supramarginal gyrus) vs. earlier involved AD regions
(rate of hippocampal atrophy, cingulate cortex, and parietal cortex) [39]. Additionally,
the analysis of SMRI helps in uncovering the relationship between both the elevated risks
for MCI converting to AD and atrophy where this, in turn, assists in anticipating the future
cognitive-based decline in the healthy adults. Additionally, the volumetric-based analysis
using sMRI can aid in detecting crucial changes in the brain regions’ size that in turn,
effectively assist in the diagnosis procedure [40].

According to the literature, the shape, composition, and function of the cerebral cortex
as measured by imaging modalities has a crucial role in diagnosing the neurodegenerative
conditions, especially in AD [20-22]. Depending on imaging variability and due to the
variability of AD effect among its sufferers, the ultimate goal of this paper is to introduce a
cortical region-based diagnosis of MCI. Additionally, the paper aims to improve the overall
performance of the discrimination between the NC and MCI Group, which is known to be
a difficult task, as seen in the related literature.

We introduced a cortical region-based diagnostic system that serves the subject-
dependent (i.e., personalized) diagnosis of MCI. Additionally, we target improving the
diagnostic performance with respect to the related work. To achieve our goals, and because
of the nature of the disease at this early stage, when underlying anatomical changes are
subtle, it was necessary to choose high-resolution methods to accomplish this task. There-
fore, in the proposed system, the MC algorithm was selected due to its role, as mentioned
above in obtaining high-resolution extraction of isosurface results. Then, the shape-based
features were addressed to serve the discrimination goal due to the nature of the disease’s
influence in the brain that could be detected through the sMRI scans. After obtaining these
features and to present a more informative feature vector to the diagnosis step, as well as to
overcome the biased results that can be obtained using the volume feature, a feature reduc-
tion/fusion process was applied. Finally, and based on its powerful role in addressing this
type of problems as well as to serve the personalized diagnosis role, standard SVM and its
variant, pPSVM, was applied to provide two layers, regional followed by global diagnosis.

As previously mentioned, the system’s performance has been evaluated from three
different perspectives, which are evaluating the performance of different SVM kernels,
comparing the obtained performance results with several state-of-the-art methods, and val-
idating the system’s performance with related work. Starting with the first evaluation,
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Figure 4 shows a comparison of different SVM-related kernels” performance (i.e., poly-
nomial, linear, and RBF) using k-fold cross-validation method, with K = 4, and K = 10 to
exclude the possibility of overfitting, As shown in the figure, the linear kernel achieved
superior results while the RBF kernel performed most poorly. The results of the linear-SVM
reflect the power of the extracted features in providing linear separation between the tested
groups. On the other hand, the low results of the nonlinear kernels can be justified as
the result of the small dataset size that led to lower performance results of RBF-based
SVM compared with the polynomial-based one. Additionally, the power of the extracted
features that caused the superior results of the linear-SVM showed, as shown in the results
that the RBF kernel failed to find a proper separating decision boundary between the
studied groups.

Then, again through using the k-fold cross-validation method and specifically speak-
ing K = 10, we compared the performance of the linear-SVM with some well-known meth-
ods (i.e., decision tree, ensemble classifier, and KNN), as presented in Figure 5. Broadly
speaking, the linear-SVM showed better performance against the other methods. This
indicates the proposed work’s ability to deal with this research issue. In general, this
better performance can be justified by several reasons. First, the discriminative power of
the features that results in better classification performance ability of the linear-SVM to
separate between the groups with linear hyperplanes. Second, the performance power of
SVM, in general, to deal with high-dimensional space’s dataset while this is not the case
with other methods. Finally, the efficiency of SVM to deal with a small size of the datasets
while other methods can suffer from under-performance results and/or overfitting.

Additionally, validating our system’s performance against the literature showed the
promise of the proposed work. For instance, in [15] a classification system was built, using
the principal component analysis (PCA) kSVM-DT, and could reach a maximum accuracy
result of 85%, specificity result of 80%, and sensitivity results of 87%. In [18], the OPLS
analysis was used that led to a specificity result of 73% as well as a sensitivity result of
66%. Finally, in [41], an ICA /SVM system was proposed for the classification and could
achieve accuracy, specificity, and sensitivity of 70.19%, 67.49%, and 72.89%, respectively. It
is noteworthy that the results of the systems above have been obtained from those studies
regardless of using different dataset as well as a different number of scans. The idea here is
to validate our work against prior work focusing on the same research area.

The modest correlations between ADNI behavioral and cognitive data and brain
regions (Table 2) critical to AD, involving memory and language, adds further validation
to our approach. (Additional details about the ADNI categories can be found in [42-47].)
Furthermore, a survey of statistically significant correlations between ADNI behavioral and
cognitive data and brain regions suggest that regions linked to specific deficits in language
(15 regions), executive function and cognition (10 regions), adaptive behavior (5 regions),
and memory (3 regions) may point to early neuropathology in classic AD-involved regions
in MCI subjects. Finally, Figure 6 illustrates some cortical regions-based diagnosis results
of different normal as well as mildly cognitive impaired subjects. As shown in the figure,
the system can visualize the disease’s severity in the cortical regions separately. In turn,
this illustration helps the experts to discover any local abnormality and its degree to
consequently direct the treatment plans.

5. Conclusions

Among the neurodegenerative conditions, AD is considered one of the leading dis-
eases that affect the CNS, where its main sufferers are elderly people. The principal goal of
the presented work is to serve the subject-dependent (i.e., personalized) diagnosis of the
MU, the early phase of AD. This goal is achieved by demonstrating a cortical region-based
CAD system that helps visualize the severity of the disease in different local brain regions.
Because of the difficulty of addressing the classification task between the normal and the
mildly cognitive impaired groups, our system aims to target a more promising performance
than in the literature and some state-of-the-art methods. To achieve this purpose, the SMRI
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has been used where several shape-based features were extracted, and according to the
obtained results, could provide powerful assistance in the targeted task. Comparing our
system with some state-of-the-art methods and validating it with the related work shows
promising results of ours in the studied research area. Therefore, the proposed system
can be treated as an assistant tool that provides a highly performed diagnosis through
focusing on the crucial related brain regions, cortical regions. Focusing on such areas is
vital due to the variable effect of AD in its sufferers that in turn requires presenting different
medical services to the sufferers according to the nature of the disease’s influence and the
degree of this influence in their cortical regions. Besides that, the proposed system can
help analyze the disease and uncover the ambiguity surrounding it by providing a finely
detailed computer-aided diagnosis system that targets the hardly discriminative early stage
of the disease.

For future work, the authors plan to perform further evaluation of the presented
diagnostic system with other datasets, improve the system’s overall performance, and per-
form additional analysis processes involving multimodal imaging to enhance the goals
in this research area. Additionally, the obtained promising results that in turn helped
in proofing the targeted concept of this paper, encourages using the proposed system in
addressing another AD-based discrimination task that is between the sMCI and pMCI
groups, and evaluating the resulting diagnosis performance for further improvements.
Additionally, regarding the surface reconstruction, the authors will try to implement some
other reconstruction methods and compare their results with the MC algorithm.
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The following abbreviations are used in this manuscript:

AD Alzheimer’s disease
CNS central nervous system
APP amyloid-p precursor protein
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BACE1 B secretase 1
PSEN1 presenilin 1
PSEN2 presenilin 2
APH1 anterior pharynxdefective 1
MCI mild cognitive impairment
PET positron emission tomography
CSF cerebrospinal fluid
AByy amyloid beta
sMRI structural magnetic resonance imaging
FDG-PET 2-[18F] fluoro-2-deoxy-d-glucose
NC normal control
CAD computer-assisted diagnostic
ICA independent component analysis
SVM support vector machines
GA genetic algorithms
sMCI stable MCI
pMCI progressive MCI
kSVM-DT kernel support vector machine decision tree
MIL multiple instance learning
OPLS orthogonal partial least squares to latent structures
RDoC research domain criteria
ADNI Alzheimer’s disease neuroimaging initiative
MMSE mini mental state examination
CDR clinical dementia rating
MC marching cubes
AAL automated anatomical labeling
CCA canonical correlation analysis
MNI Montreal Neurological Institute
AC-PC anterior and posterior commissures
pPSVM probabilistic support vector machines
BNTTOTAL total number correct on Boston Naming Test
BNTSPONT number of spontaneously given correct responses
ADAS Alzheimer’s Disease Assessment Scale-Cognitive Behavior
FAQTOTAL functional assessment questionnaire total score
CONMCXLA  number of targets hit on ADNI numbers cancellation task
RBF radial basis function
KNN K nearest neighbors
PCA principal component analysis
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Abstract: Uveitis is one of the leading causes of severe vision loss that can lead to blindness world-
wide. Clinical records show that early and accurate detection of vitreous inflammation can potentially
reduce the blindness rate. In this paper, a novel framework is proposed for automatic quantification
of the vitreous on optical coherence tomography (OCT) with particular application for use in the
grading of vitreous inflammation. The proposed pipeline consists of two stages, vitreous region
segmentation followed by a neural network classifier. In the first stage, the vitreous region is automat-
ically segmented using a U-net convolutional neural network (U-CNN). For the input of U-CNN, we
utilized three novel image descriptors to account for the visual appearance similarity of the vitreous
region and other tissues. Namely, we developed an adaptive appearance-based approach that utilizes
a prior shape information, which consisted of a labeled dataset of the manually segmented images.
This image descriptor is adaptively updated during segmentation and is integrated with the original
greyscale image and a distance map image descriptor to construct an input fused image for the U-net
segmentation stage. In the second stage, a fully connected neural network (FCNN) is proposed as a
classifier to assess the vitreous inflammation severity. To achieve this task, a novel discriminatory
feature of the segmented vitreous region is extracted. Namely, the signal intensities of the vitreous
are represented by a cumulative distribution function (CDF). The constructed CDFs are then used to
train and test the FCNN classifier for grading (grade from 0 to 3). The performance of the proposed
pipeline is evaluated on a dataset of 200 OCT images. Our segmentation approach documented
a higher performance than related methods, as evidenced by the Dice coefficient of 0.988 £ 0.01
and Hausdorff distance of 0.0003 mm =+ 0.001 mm. On the other hand, the FCNN classification is
evidenced by its average accuracy of 86%, which supports the benefits of the proposed pipeline as an
aid for early and objective diagnosis of uvea inflammation.

Keywords: U-NET; deep learning; uveitis grading; OCT segmentation

1. Introduction

In recent years, retinal imaging techniques have been greatly exploited by researchers
to detect diseases that may cause vision loss. Particularly, optical coherence tomogra-
phy (OCT) is a popular noninvasive technique that used for diagnosis and assessment
of several retinal and corneal diseases [1,2]. Here, we are interested in vitreous inflam-
mation diagnostic and grading [3]. Developing an accurate grading system for vitreous
inflammation severity is clinically essential since the vitreous inflammation is considered

Sensors 2021, 21, 5457. https:/ /doi.org/10.3390/s21165457

https:/ /www.mdpi.com/journal/sensors
231



Sensors 2021, 21, 5457

an important medical diagnostic sign of uveitis. This paper proposes a fully automated
computer aided diagnostic (CAD) system for grading of vitreous inflammation, based on
extracting discriminatory features from the segmented vitreous regions of OCT images.

Uveitis [4-6] is generally a group of intraocular inflammatory diseases that may affect
the uvea or destroy the eye tissues. It may affect all ages especially 20 to 60 years and
it may last for short time (acute) or long time (chronic). It may be caused by diseases
occurring in the eye or it can be part of an inflammatory diseases affecting other parts of
the body. It may be infectious or autoimmune in origin. Uveitis may be classified more
specifically according to the eye region that is affected by the inflammation into four types:
(1) anterior uveitis, which refers to the inflammation affecting the anterior chamber of
the eye; (2) intermediate uveitis, if the vitreous is affected; (3) posterior uveitis affecting
the back of the eye, retina, and choroid; and (4) panuveitis when all eye major parts are
affected: The vitreous inflammation grading is an important and critical target since its
almost entirely subjective. Vitreal inflammation presents on examination as a haziness
of the vitreous because protein and inflammatory cells leak into the vitreous. There are
generally 6 grades of inflammation (0, 0.5, 1, 2, 3, 4) (but grade 4 cannot be assessed because
it is not possible to get any clear OCT image from it).

In the literature, using deep learning in integration with neural networks can optimize
solutions to several complex problems of classification [7]. machine and deep learning tech-
niques show a potential to perform efficient segmentation of medical structures from OCT
images and/or the classification and grading of OCT images [8-14]. For example, Pelosini
et al. [8] developed a segmentation technique that based on a linear regression model,
which has lower performance in pathological scans as compared to normal scans [15]. The
computer aided diagnostic system of Eltanboly et al. [9] was designed to identify early
signs of diabetic retinopathy; however, preprocessing and complicated computations are
required for the segmentation of retina layers. Rossant et al. [13] succeeded to to segment
the eight retina layers using a hybrid approach incorporating clustering, filtering, and
both random field and active contour models. However, their proposed pipeline failed in
segmentation of blurred images. Yazdanpanah et al. [14] used active contour energy mini-
mization along with shape priors to segment retina layers. Of note, this was a very early
study in the field of spectral-domain optical coherence tomography (SD-OCT), and worked
on scans of rat retina obtained using custom hardware. Also, manual segmentation had to
be initialized by the user. Haggag et al. [16] developed an automatic U-net convolutional
neural network (U-CNN) for segmentation of the vitreous from OCT scans, where the input
OCT images were directly applied to train the U-CNN. Their results showed the potential
of using U-CNN to solve the problem of vitreous segmentation, but this technique has
failed to segment most of severe inflammation images [16]. However, there are still many
challenges to get perfect segmentation or classification in some cases of hardly separable
images [8,9,15,16].

In trying to develop an automatic system for quantitative assessment of vitreous
inflammation, Invernizzi et al. [17] described the inflammatory cells that appear in OCT
scans as a hyper reflective dots. Vitreous haze, which may be indicative of inflammation,
is also detectable by observing the variations in brightness of vitreous. Pearse et al. [18]
developed an automatic technique to quantify the vitreous signal intensity from OCT scans.
However, it has a significant limitation as an automatic system since it depends and needs
manual segmentation. Schlegl et al. [19] utilized the U-CNN to develop a full automated
pipeline to identify and then quantify the intra-retinal cystoid fluid and subretinal fluids.

Many studies used CNN and U-Net to improve OCT segmentation. Cecilia et al. [20]
used a U-Net architecture for delineation of macular edema. This technique has achieved
an acceptable accuracy which is evaluated by Dice metric of 0.91. He et al. [21] examined
the performance of the U-Net architecture relative to a Random Forest-based approach.
Finally, Leyuan et al. [22] identified the OCT layer boundaries by mixing the CNN with a
graph based method.
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To avoid the aforementioned limitations, the proposed CAD system is divided into
two main stages (see Figure 1). The first stage segments the vitreous region using a U-net
convolutional neural network aided with using the fused images as a training and testing
dataset rather than using the original grayscale images directly in training and testing.
The fused images are used as an auxiliary, pre-processing technique. This is followed by a
grading stage that is conducted using a machine learning-based classifier into one of five
grades (0, 0.5, 1, 2 and 3), where 0 refers to normal vitreous and 3 refers to the worst case of
vitreous inflammation. The main contributions of this work are as follows:

e In contrast to [16], where the OCT images were directly applied to train the U-CNN,
the first stage of the proposed CAD system trains the U-CNN model using a fused
image (FI) dataset, which integrates the information of the original image with a
proposed distance map, and a proposed adaptive appearance map (AAP), instead of
the direct original images.

e Compared to previous work, the first stage of the proposed CAD system shows
superior performance in vitreous segmentation from the OCT images in spite of the
great similarity between the vitreous and the background.

e The second stage of the proposed CAD system shows great performance in classifica-
tion accuracy in spite of the great overlap among the extracted features from the OCT
vitreous images.
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Figure 1. Illustration of the proposed CAD. The first stage is the segmentation stage depending
on fused image and U-CNN. The second stage is the classifier to predict the grade of vitreous
inflammation severity.

The rest of the paper is organized as follows. Section 2 details the methods used for the
framework itself and for evaluating its accuracy in segmentation as well as classification.
Section 3 discusses the experimental results and its details. Experimental results will show
the potential of the U-CNN training using the proposed FI dataset to significantly improve
the segmentation performance, evidenced by the obtained higher Dice similarity coefficient
(DC) metric and the lower Hausdorff distance (HD). The results of vitreous inflammation
grading using FCNN is also reported. Finally, Section 4 concludes the paper.
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2. Materials and Methods

We developed a CAD system for accurate grading of vitreous inflammation from
OCT images. The proposed pipeline is composed of two main stages. The first stage is to
segment the vitreous region to simplify the processing in the next stage, i.e., grading of
the inflammation severity. In our analysis, the total number of used images is 200 OCT
of five different grades of severity (grades “0” through “3”). The details of each stage are
described in the following subsections.

2.1. Segmentation Stage

The first stage of the CAD system is to extract the vitreous region from the images to
be ready for accurate grading in the next stage. The segmentation stage is composed of
two processes: the construction of a fused image and the application of the U-net CNN.
The details of each are described as follows.

2.1.1. Construction of the Fused Image

Due to the similar visual appearance of the vitreous region and other tissues in the
background, our pipeline extract different image descriptors from the OCT image to guide
the U-CNN segmentation. The extracted image features are integrated with the original
OCT intensity image to construct a three-layer image (called the fused image as shown in
Figure 1) that is then used for CNN training and testing. The first layer of the fused image
consists of the original grayscale OCT image. Since the vitreous region is typically located
in the upper part of a given OCT image, we added in the second layer a distance-based
image descriptor. Namely, the second layer is represented by a distance map for each image
pixel with respect to the center of the image. It is measured from the center to encounter
the possible rotation of incoming images.

In addition to the grayscale values and the distance-based image descriptor, we also
incorporate a learned appearance prior. An adaptive probabilistic map is constructed for
each input image to be segmented, using an atlas database. The atlas consists of grayscale
OCT data sets (with their respective labels) from different subjects. The labeled data were
obtained by manual delineation of the vitreous region by an OCT expert. During the
testing phase, the specific appearance prior, G;;i = 1,2, - - N, of an input grayscale image
is constructed using the visual appearances of both the atlas grayscale images and their
labeled images. A sliding window with a variable width (in our experiment below we
start from 11 x 11 pixels) is centered at each pixel location in turn within the image to be
segmented. The gray level g at each pixel location is noted, and an associated probability
is computed from the atlas at the corresponding location. To effect this, the system first
collects all grayscale values in the interval [¢ — A, g + A] within the sliding window across
all atlas OCT, along with their corresponding labels. Here A is a tunable threshold value
that can be varied from 5 to 90. Then the probability assigned to the pixel location is P = %:
where N} is the total number of pixels within the given spatial and grayscale bounds, and
Ny is the number of such pixels that are labeled as vitreous. This process is repeated
for all pixel locations in a given image. The whole operation is repeated to compute the
probability map for each test and training OCT image.

2.1.2. U-Net Segmentation

The second stage of our segmentation pipeline is the U-net CNN, shown in Figure 2.
The input to the network is a fused image as constructed above. The U-CNN is composed
of two consecutive paths, The first is a contracting path, similar in structure to image
classification systems where the fused data are reduced in size and distilled into a set of
feature information. The second path is an expansive and up-convolutional network to
increase the spatial dimensions and adds context from the second path. Each consecutive
block in U-CNN consists of a convolution layer followed by ReLU-activation functions and
max pooling process.
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Figure 2. U-CNN structure: The input is a fused image of size 256 x 256 produced as shown
in Figure 1. The segmented output has the same dimensions as the input. Convolution (with a
3 x 3 kernel), max-pooling, up-convolution operations are respectively indicted using the blue, red,
and green arrows. The max-pooling (up-convolution) operation decreases (increases) the spatial
dimensions by a factor of 2. The first path starts with 32 kernels and increases up to 512, where it
decreases from 512 to 1 in the second. Zero-padding is employed at the boundaries. Copied contextual
information afrom the contracting branch are concatenated to the expansive path (dashed arrows).

The architecture of the contracting or down-sampling section, which increases the
number of feature maps, comprises several steps of convolution. Each convolutional block
performs two steps of filtering with 3 x 3 kernels, having unit stride in x and y directions
and ReLU activation functions. Finally, a 2 x 2 max-pooling is applied at the end of each
block. The architecture of the up sampling section is similar to the down sampling section
albeit in reversed order as shown.

A sigmoid layer is used at the network output to generate the probabilistic map.
Finally, the bipolar cross entropy (BCE) loss function is applied to the network output
through training mode, which is computed as

M

Lpce = Y —(Toilog(Poi) + Tyilog(Py)) M
i=1

where P,;, and Py;, are the predicted probabilities, computed from the U-net, that a given
pixel i should be assigned to the vitreous or background segments, respectively. While, T,;
(Tp;) is the ground truth label, i.e., obtained from manual segmentation map, “1” for the
object and “0” for the other tissues (vice versa for Ty;).

2.2. Grading Stage

Following the segmentation, the cumulative distribution function (CDF) of grayscale
intensities within the segmented region is constructed for each image. These CDF’s are
used as the discriminatory features in our machine learning classifier.

For grading, we used a fully connected neural network to classify the vitreous region
inflammation into one of five grades (0, 0.5, 1,2 and 3). ‘0" represents the normal eye "3’
is the is most sever. The FCNN consists of an input layer, 5-nodes output layer, and two
hidden layers. The input layer is chosen to be 50 nodes. Each CDF contains 256 points
the last 70 points are truncated because all of them is ones and will not discriminate
between the different severity degrees. The reminder points are 186 which are used as
discriminatory features.
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2.3. Performance Metrics

Among many different metrics of accuracy, we used the Dice Coefficient of similarity
(DC) to measure the accuracy through out the stages of the proposed CAD. Also, we used
the Hausdorff Distance (HD) metric to gauge the proximity of the boundary of segmented
vitreous to its ground truth counterpart. Let G and S denote the sets of pixels labeled as
vitreous in ground truth segmentation and machine segmentation, respectively. The DC
metric is defined as follows [23]

2xTP

bC= TP ENTEP

@
where TP is the cardinality of the intersection of S and G, FP = |[S — G|,and FN = |G —S]|.
Another performance metric is the Hausdorff distance (HD) that measures the dissimilarity
between the boundaries of ground truth and model segmentation. The HD from G to S is
defined as the maximum Euclidean distance d(g, s) between the points ¢ from G and their
closest points s in S:

seS

HDg s = rggg{min{d(gﬁ)}} ®)

Note the asymmetry, in that HDg_,s # HDg_,g in general. It is easy to define a
symmetric version, bidirectional Hausdorff distance BHDg_,s = max{HDg_,s, HDs_,G }
In order to reduce sensitivity to noise, a further modification is made, replacing the max
operation in Equation (3) with taking the 95th percentile.

For the inflammation grading stage evaluation, we computed the average accuracy
for all classified grades by the FCNN [24].

N
TP+ TN;
AverageAccuracy =) T i+ I 4)
i=1

P, + EN; + FP;

3. Experimental Results and Discussions
3.1. Data Set

The proposed CAD system was applied and tested on 200 OCT images of eyes with
different degrees of uveitis severity (0, 0.5, 1, 2, and 3). Sample of all applied inflamma-
tion grades and their corresponding segmentation are shown in Figure 3. Imaging was
performed with a Spectralis spectral-domain optical coherence tomography (SD-OCT)
machine (Heidelberg, Germany) having 4 micron axial resolution and 6 mm x 6 mm
in-plane resolution. The rasters comprise thirty horizontal B-scans acquired in order from
superior macula to the inferior macula. The entire field of view spans about 20° in both the
nasal-temporal and inferior-superior directions, centered on the fovea. Imaging protocol
ensured that at least 3 mm of posterior vitreous was visible. The scans that are used in the
analysis are selected such that the central horizontal B scan passes through the fovea.

These images were identified using patient database from the uveitis service at the
University of Louisville. After the uveitis specialist identified images of patients with
uveitis, the images themselves were de-identified for the purpose of analysis. After that,
two ophthalmologists graded every image, an attending ophthalmologist with subspecialty
expertise and a uveitis fellow (i.e., a fully trained general ophthalmologist who was then
undergoing additional subspecialty training in uveitis). They further set together to provide
one diagnosis.

The dataset is organized such that 20 images were selected randomly to construct the
atlas. The dimensions of the CNN input layer is 256 x 256, so the images are scaled from
its original dimensions of 400 x 474 to 256 x 256 to fit the CNN input dimensions. For
training and testing, the remainder of the OCT images were partitioned into four groups
in order to perform fourfold cross-validation. The accuracy metrics reported are the the
average of fourfold results.
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Figure 3. Sample of different grades and their segmentation results. First column (up—to-down)
represents the grades 0, 0.5, 1, 2 and 3. The second column represents the corresponding segmentation
results, respectively.

3.2. Fused Image Construction

Using original gray level images directly in training U-CNN as in [16] results in high
accuracy in testing mode but for normal eyes or eyes with low or moderate vitreous haze.
But in severe eyes, the vitreous region is very similar to other tissues and hence U-CNN
performance is not acceptable. The results of segmentation have many artifacts in either
vitreous (false positive) or in other tissues (false negative). To overcome this problem, we
propose using the fused images in training and testing rather than the original gray level.
The fused image, as explained in Section 2, consists of three layers, original gray level,
distance map and appearance prior map (AP). To extract the AP map, an atlas is constructed
from 20, randomly selected images that contains all grades of vitreous inflammation. Two
parameters control the construction of the atlas which are sliding window width, and A.
Sliding window is selected on average as 11 x 11 pixels.

The choice of the A value has greatly affected the segmentation results. To optimize
the value of A, many experiments are carried out by different values of A. These values
range from 5 up to 90. Each time, a complete dataset is produced, trained and tested
on the proposed U-Net. Dice similarity and HD are computed for the testing set results.
The results are summarized in Figure 4. As shown in the two graphs, it is clear that
A = 25 results in the optimal performance. Considering the average of DC or HD in each
experiment, there is no perceptible difference. But considering all the testing set, the
segmentation is performed with almost equal quality at this optimal value of A.
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Figure 4. Effect of changing delta on segmentation accuracy evaluated by computing DC and HD
distance for different empirically selected values.

3.3. Overall Segmentation Evaluation

To demonstrate the accuracy of our approach in the segmentation stage, some rep-
resentative results are presented in Figures 5 and 6. As demonstrated in from Figure 5,
it can be readily seen that the segmentation results have very high accuracy (DC = 0.99)
despite the variations in vitreous inflammation degree, which is related to the contrast of
the image. In the first row of Figure 5, the image is clear and the contrast between the object
and non-object regions is easily spreadable. Although, in the second row, the image has
low contrast, the accuracy of the segmentation is nearly the same as that of the first row.

Despite the fact that the selected images in Figure 6 (first row) have low contrast with
high similarity between object and non-object regions, our approach has succeeded to
segment the vitreous region with high accuracy. The DC for these images ranges from
0.961 to 0.978, which is acceptable but lower accuracy compared to the group of images in
Figure 5. However, by visual inspection, the difference between the ground truth (yellow
contour) and our system segmentation (green contour) in the first row of Figure 6 is not
significant because the region in the middle of the retina is completely unclear. So, the
difference between the two contours in the middle region is just a difference between the
interpolation capability of two different techniques trying to predict the unclear region.
The second row in Figure 6 contains the same images in the first row that with contours
resulted from the previous technique. Also, we can confirm that, the high noise in the
presented images proves the high efficiency of the proposed technique. Adaptive shape
model has highly succeeded to reduce the effect of this noise by selecting proper values of
A and/or the sliding window size.

To highlight the advantage of the proposed segmentation technique, we compare its
performance with segmentation obtained from the previous technique that only utilizes
OCT grayscale images [16]. Sample of the compared results are demonstrated in Figure 6
and the summary of the accuracy is given in Table 1. Statistical comparison between
the current and previous segmentation methods was carried out using the two-sample
Student’s t-test. The obtained p-values (shown in Table 1) illustrate that there is a statistically
significant difference (p-value < 0.05) of the two methods.
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Figure 5. Sample of high accuracy segmentation. The first row represents grayscale images with high
contrast, and the second row represents low contrast images with higher degree of vitreous inflam-
mation. Green and yellow colors represents the ground truth and the CNN segmented respectively.

Figure 6. Sample of segmented images of our proposed approach (first row) compared with previous
results using only U-Net [16] (second row). The green and yellow colors represents the ground truth
and the CNN-segmented respectively.

3.4. Ablation Study

We added here an ablation study for the first stage, segmentation stage, to confirm
the validation of our proposal. This study is divided into 2 sections. In the first one, the
appearance prior map (AP) is replaced by the gray level in the fused images (FI). That
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is, the FI contains the distance map and 2 layers of gray level. A fixed number of epochs
is maintained in all experiments to justify the results. However about 75% of images is
segmented with acceptable accuracy, there are 25% of images still have errors. Sample
of images for segmentation is added here to show this effect. In Figure 7 there are some
artifacts in the background (FP) due to the similarity of this region in retina with vitreous
region (left image). Also, in right image, there are some artifacts in vitreous (FN). These
types of errors confirm the importance of the added AP layer to discriminate between the
vitreous and the similar tissues in background.

The second section in the ablation study concerns the effect of removing the distance
map from the FI images. The FI images contains the AP map in one layer and 2 layers
contain the gray level. In this experiment, about 80% of testing images are segmented
with acceptable accuracy. On the other hand, 20% have different types of errors. Sample
of results are shown in Figure 8 and in Figure 9 to explain the importance of adding the
distance map in our proposal. It is noted that, for limited number of training epochs (above
20 and less than 35) the results of segmentation are acceptable with average DC = 97 £ 2.1%,
and the errors of segmentation are limited but still exists. Sample is shown in Figure 8. In
trying to improve the accuracy by increasing the number of training epochs, greater errors
appear as shown in Figure 9. It is clear that the AP map as well as the distance map increase
the stability in training phase, which in turn results in ability to attain high accuracy even
in those images of high level of haze.

Figure 7. Segmentation sample when AP map is removed from fused images. There are artifacts in
both retina layers (left image) and vitreous region (right image). These artifacts are removed when
using the FI as described.

Figure 8. Segmentation sample when distance map is removed from fused images. Number of
training epochs is limited. There are some artifacts which are removed when using the FI as described.
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Figure 9. Segmentation sample when distance map is removed from fused images but with greater
number of training epochs. There are large segmentation errors.

Table 1. Segmentation accuracy comparison of the proposed approach and the previous technique
based on U-CNN only [16], using both area and distance-based metrics.

Metrics This Paper Haggag et al. [16] p-Value
DC (%) 98.8 +1.03 94.0 +13.0 <0.0001
HDg5 (mm) 0.0003 £ 0.001 0.0360 £ 0.086 <0.0001

3.5. Grading Stage

Following the segmentation stage, the cumulative distribution function (CDF) of gray
scale intensity within the segmented region is constructed for each image of the dataset.
The images are categorized into 5 classes according to the vitreous inflammation severity
degree as (0, 0.5, 1, 2, 3) grades. Where ‘0’ represents the normal eyes and ‘3" represents the
most severe vitreous inflammation eyes as shown in Figure 3.

In classification process, we carried out many trials with different machine learning
techniques to find the most suitable technique for this problem by computing the accuracy
in each experiment. The most superior results were from, one hidden layer, fully connected
neural networks (FCNN) and from support vector machine (SVM). The highest attained
accuracy in SVM trials was 70.1%, and in FCNN trials was 73%. The other techniques
results are limited to 53%. The best choice is to improve either SVM or FCNN.

The proposed improvement for SVM is to use two level classifier. In the first level, the
image is classified as group I or group II: group I has 0 grade, while group II has grades
0.5,1, 2, and 3. The second stage will discriminate group II into one of the other 4 grades.
This technique has greatly improved the accuracy of grading up to 80%. For FCNN, the
accuracy is greatly improved by using 2 hidden layers instead of one. Many experiments
are carried out with different number of nodes in each layer and the final average accuracy
of 86% is obtained.These results the are summarized in Table 2. Depending on the reported
results, we selected to use the FCNN as the second stage of the proposed CAD system. A
confusion matrix for the testing phase of FCNN results is shown in Figure 10 to clarify the
performance of the FCNN in classification of vitreous inflammation grades.

Table 2. Grading accuracy comparison of the proposed approach compared with two-level classifier.
Here, FCNN and SVM stand for fully connected neural network and support vector machine, respec-

tively.
Metrics FCNN Two-Level SVM Classifier
Accuracy (%) 86.0 £ 1.0 80.0 £ 1.0
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Confusion Matrix
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Figure 10. Confusion matrix for the grading details. The classes 1, 2, 3, 4 and 5 correspond to the
grades 0, 0.5, 1, 2 and 3 respectively.

4. Conclusions

This paper has introduced a CAD system for vitreous inflammation automatic grading
using OCT images. The proposed pipeline is based on a deep learning segmentation
approach to extract the vitreous region. Vitreous inflammation severity is assessed by a
Fully connected neural network classifier using the CDF of the uveitis intensity which
computed from the segmented vitreous. The overall diagnostic accuracy of the proposed
pipeline, evaluated using 200 OCT images, supports the benefits of our CAD system as
an aid for early and objective diagnosis of uveitis. The proposed technique has proved
very high accuracy in the segmentation section depending on the proposed fused images
as an input to U-CNN rather than the traditional grey level images. This advantage can
be attributed to the integration of appearance prior and distance map with the grey level
image. By using this technique, the computational cost is greatly decreased in segmentation
process as a result of the great reduction in the number of needed training epochs. One
limitation in the grading stage is the very high similarity between the vitreous appearance
in different inflammation degrees. This similarity has greatly limited the average accuracy
of grading to 86%. In future work, we hope to use more features and to increase the number
of images in the data set to improve this value of accuracy.
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Abstract: A new segmentation technique is introduced for delineating the lung region in 3D com-
puted tomography (CT) images. To accurately model the distribution of Hounsfield scale values
within both chest and lung regions, a new probabilistic model is developed that depends on a linear
combination of Gaussian (LCG). Moreover, we modified the conventional expectation-maximization
(EM) algorithm to be run in a sequential way to estimate both the dominant Gaussian components
(one for the lung region and one for the chest region) and the subdominant Gaussian components,
which are used to refine the final estimated joint density. To estimate the marginal density from
the mixed density, a modified k-means clustering approach is employed to classify the Gaussian
subdominant components to determine which components belong properly to a lung and which com-
ponents belong to a chest. The initial segmentation, based on the LCG-model, is then refined by the
imposition of 3D morphological constraints based on a 3D Markov-Gibbs random field (MGRF) with
analytically estimated potentials. The proposed approach was tested on CT data from 32 coronavirus
disease 2019 (COVID-19) patients. Segmentation quality was quantitatively evaluated using four
metrics: Dice similarity coefficient (DSC), overlap coefficient, 95th-percentile bidirectional Hausdorff distance
(BHD), and absolute lung volume difference (ALVD), and it achieved 95.67 11 3%, 91.761329%, 4.86 1501,
and 2.93.17 39, respectively. The reported results showed the capability of the proposed approach to
accurately segment healthy lung tissues in addition to pathological lung tissues caused by COVID-19,
outperforming four current, state-of-the-art deep learning-based lung segmentation approaches.

Keywords: computed tomography (CT); lung; chest; segmentation; COVID-19

1. Introduction

Pulmonary diseases are serious public heath threats that may happen after having
inflammation or fluid accumulation in the lung, causing a respiratory failure, such as
coronavirus disease 2019 (COVID-19). The primary reason for COVID-19 death is acute
respiratory distress syndrome (ARDS) [1]. According to Gupta et al. [2], 83.9% of the
COVID-19 patients in their study needed a mechanical ventilation support, of whom
87.95% had ARDS. Therefore, detection and diagnosis of COVID-19 grades is vital to
prioritize patient’s need for ventilator support. The accuracy attainable by computer-
aided diagnostic (CAD) system using lung imaging data for COVID-19 depends on how
accurate the segmentation is. Accurate lung segmentation is a challenging task as different
pathologies affect the appearance of the lung, and if the infected regions are missed during
the segmentation, it will affect the entire task. Therefore, this paper focuses on developing
an automatic system to detect and segment the lungs in chest computed tomography (CT),
which is one of the popular noninvasive clinical modalities used by physicians to diagnose
lung pathologies.
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In the last few years, many preliminary studies have been conducted to detect and seg-
ment lung as well as pathological lesions. Some of these studies [3-9] proposed threshold-
based approaches for lung segmentation, which performed well on normal CT scans but
failed in pathological cases, especially severe cases, whereas lungs in the normal CT scan
can be discriminated easily from background due to huge differences in attenuation [10].
Therefore, to overcome this problem, more recent studies employed texture, shapes, deep
learning, or hybrid techniques to accurately segment normal and different lung pathologies.
These studies are briefly discussed below.

In [11-14], authors considered texture analysis, shape analysis, or both of them in
their system to discriminate between objects. A recent study by Oulefki et al. [15] proposed
a system to automatically segment COVID-19 lung infected region by applying a multi-
level entropy-based threshold approach, namely a modified Kapur method. Their system
achieved a sensitivity, specificity, Dice similarity coefficient (DSC), and precision of 73.3%,
99.4%, 71.4%, and 73.9%, respectively. Another study by Korfiatis et al. [16] employed
k-means clustering to partition CT voxels into four classes: lung, muscle, fat, and bone
based on intensity values. After that, the initial lung region was extracted by applying
a filling operation. Finally, a support vector machine (SVM) was used to determine the
final border of the lung based on intensity and wavelet-based descriptors. In [17], authors
proposed a segmentation system by eliminating unwanted regions and segmenting lung
initially using a threshold approach. Moreover, a 3D gray-level co-occurrence matrix
(GLCM) was constructed for a window of size 15 x 15 x 15 centered on each voxel. Then,
predefined features were extracted from the GLCM, and a new image was constructed,
being the product of the entropy and the inverse difference moment of the GLCM. Subse-
quently, the abnormal regions were identified from the constructed image using a threshold
approach. Finally, the later and initial segmentation were merged together to determine
the final segmentation. Dehmeshki et al. [18] used a genetic algorithm (GA) to construct a
system to identify spherical nodules within CT images. First, the lung was segmented using
adaptive thresholding. Then, the authors utilized a geometric feature, namely, volumetric
shape index (VSI), for the segmented lung as a weighted factor in the fitness function of GA.
VSI of a spherical object is 1, while that of a cylindrical object is 0.75, so the values of fitness
function for nodules were higher than for blood vessels. Convergence criteria of GA to
select the shape as a nodule was a threshold-based. The detection rate of their system was
approximately 90% with a 14.6 false positive per scan. Moreover, Nakagomi [19] presented
a min-cut graph segmentation algorithm based on multiple shapes and prior information
of neighbors structure to detect and segment lung infected by pleural effusion. In [20],
authors presented a lung segmentation system for different lung pathologies. Their system
first determined two seed points within both lungs using a thresholding approach, then a
fuzzy connectedness (FC) algorithm was used to extract the lung. Furthermore, multiple re-
finement stages based on machine learning classification and neighboring anatomy-guided
learning mechanisms were included in their system to detect pathological regions during
FC segmentation. A recent study by Houssein et al. [21] developed a segmentation system
that employed a heuristic method, called manta ray foraging optimization (MRFO), based
on an opposition-based learning (OBL), using Otsu’s method as a fitness function, to get
the best threshold values using COVID-19 CT images. More information about texture-
and shape-based lung segmentation can be found in [22].

Recently, deep learning approaches have been employed to segment normal as well
as pathological lung caused by COVID-19. For example, Saood et al. [23] investigated two
deep learning approaches to semantically segment infected /non-infected lung using CT
images. These included SegNet [24] and U-Net [25] networks. The author employed these
networks for binary and multi-class classification. They conducted multiple experiments
with different hyperparameters. The best reported results for the binary (multi-class) clas-
sification gave accuracy of 95.4.459% (90.7+6%) and 94.9 14 3% (90.816.5%) using SegNet
and U-Net, respectively. A similar study [26] proposed a segmentation system using
a convolution neural network (CNN). Their network employed feature variation block
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to enhance the efficiency of feature representation as well as progressive atrous spatial
pyramid pooling to deal with appearance and shape differences caused by sophisticated
infection. The DSC (sensitivity, specificity) of their system was 72.6% (75.1%, 72.6%) and
98.7% (98.6%, 99%) for COVID-19 infections and normal lung CT images, respectively.
A multi-task deep learning-based system was implemented by Amyar et al. [27]. This study
included reconstruction for better feature representation; segmentation to extract lesion
regions; and classification to categorize the scan into normal, COVID-19, and other diseases.
Their system employed encoder-decoder architecture based on U-Net network which used
a common encoder for the three tasks. The best reported DSC of their segmentation task
was 88%. Recent study by Fan et al. [28] developed a binary and multi-class segmentation
system using CT chest images, called Inf-Net. This system was mainly based on a deep
learning. Moreover, to compensate the limited number of labeled images, they included a
random sampling-based semi-supervised learning, namely, Semi-Inf-Net. Their system
employed edge attention as well as reverse attention to improve the feature representation
by modeling lung boundaries. In addition, high-level features were exploited by their
network and combined by a parallel partial decoder. The performance of their infection
segmentation system achieved a DSC of 68.2% and 73.9%, sensitivity of 69.2% and 72.5%,
and specificity of 94.3% and 96% using Inf-Net and Semi-Inf-Net, respectively. A similar
study [29] proposed an automatic deep learning-based multi-class segmentation system of
COVID-19 using CT chest images. The latter exploited aggregated residual transformations
in addition to soft attention mechanism to better represent the features and to increase
the system’s ability to distinguish between different COVID-19 lesions. The reported DSC
(accuracy, precision) of their system was 94% (89%, 95%) and 83% (79%, 82%) with and
without data augmentation, respectively. Another study [30] proposed a semi-supervised
deep learning-based segmentation system, called FSS-2019-nCov, to detect lesion infec-
tion in COVID-19 patients. The latter was based on encoder—decoder architecture with
Res2Net [31] encoder backbone. In the proposed encoder-decoder architecture, the au-
thors used a context enrichment module, namely, smoothed atrous convolution block
and the multi-scale pyramid pooling block, to overcome any debilitation occurred in the
represented knowledge generated in the encoder phase. This system was consisted of
three modules: conditioner path, adaptive interaction module, and segmentation path.
Conditioner path was responsible to learn feature maps from support sets which contain
CT slice and its ground-truth. Subsequently, these feature maps were transmitted to the
segmentation path using adaptive interaction module which was responsible for detecting
lesion in the CT slice. The performance of their system achieved a DSC of 79.8%, sensitivity
of 80.3%, and specificity of 98.6%. In [32], the authors employed V-Net [33] to segment lung
in COVID-19 CT images that was refined by a shape deformation module. A similar study
by Li et al. [34] employed U-Net to segment lung on CT images. Then, they proposed a deep
learning network, called COVNet, with a ResNet-50 [35] backbone to detect COVID-19
lesions. A recent study [36] developed a deep learning-based segmentation system, called
LungINFseg, to detect COVID-19 lesions in CT images. This system was built on the basis
of encoder—decoder architecture. The authors employed a 2D discrete wavelet transform
(DWT) with four Haar filters and a receptive field aware (RFA) module in the encoder
phase, which were able to change the size of receptive field, to capture more relevant
features related to infected regions. Their system achieved a DSC and intersection over
union (IoU) score of 80.34% and 68.77%, respectively. Other studies have also employed
deep learning as a segmentation system with varying accuracy as reported in [36-43].
Segmentation techniques for CT data using deep learning method consider the current,
state-of-the-art approaches. However, they have some drawbacks in practical applications,
such as the need for huge databases to learn the different pathology of the lung regions
which makes the training of such network is very high computational [44]. Moreover, seg-
mentation approaches based on deformable models, which optimize a trade-off between
smoothness of the deformable boundary and homogeneity of the region inside the bound-
ary, suffer from high computational complexity and limited capabilities when the desired
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boundary has concavities or encompasses a region that is naturally inhomogeneous, such
as infected lung regions. To overcome the aforementioned limitations, we are proposing
an unsupervised lung segmentation approach that is based on modeling the first-order
appearance model of CT data by using a probabilistic model based on a linear combination
of Gaussian (LCG) that estimates dominant components, corresponding to lung and chest
regions, as well as subdominant components. Subsequently, these subdominant compo-
nents are clustered to one of the dominant components for marginal density estimation.
This model can capture the variability in the Hounsfield distributions that may come from
changing the screening protocols and severity of lung infections. Finally, we refine the
lung segmentation by applying 3D morphological constraints based on the Markov-Gibbs
random field (MGRF) model with analytical parameter estimations.

2. Methods

A fully automated segmentation framework is presented to extract both healthy lung
tissues as well as pathological lung tissues that may be caused by COVID-19. The major
steps of the framework, depicted in Figure 1, are as follows: (i) preprocessing 3D chest CT
scans to identify background voxels; (i) modeling the gray-level distribution of the CT
data as a Gaussian mixture model with parameters estimated using a novel, sequential,
expectation-maximization (EM)-based approach; (iii) preliminary segmentation of the lung
region based on the use of a Bayes classifier; and (iv) refining the segmentation using a
three-dimensional, rotation- and translation-invariant MGRF to impose morphological
constraint. Below, we will describe the details of each step.
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Figure 1. Schematic illustration of the pipeline of the proposed segmentation system using CT images.

2.1. First-Order Visual Appearance Model

The ultimate goal is accurate labeling of voxels as belonging to lung tissue or back-
ground, where accuracy is defined as close agreement with “ground-truth” lung region
delineated by a radiologist. The main challenge in modeling the distribution of the ra-
diodensities (in Hounsfield units) of lung and chest tissues, i.e., the relative frequency
histogram of CT voxel values, is dependent upon slice thickness and the severity of lung
infection as shown in Figure 2.
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Figure 2. An illustrative example of variability of CT appearance (distribution of radiodensities) for (a) healthy /mild, (b)

moderate, and (c) severe COVID-19 infections.

To address this challenge, we will assume that the first-order visual appearance model
of the CT data (H) can be modeled with linear combination of Gaussian distributions
with K > 2 components [45]. The first two components, called the dominant modes,
corresponding to the lung region (k = 1) and the chest region exterior to the lungs (k = 2).
The remaining Gaussian components k = 3, ..., K are called subdominant modes. Thus,
the proposed probabilistic model is

K
p(h) = wi9(h; 1) + wap(h;02) + Y wi(; 6), €]
k=3

where the wy > 0 are mixing weights, and ¢ is a Gaussian density with parameters 6} =
(#g, 0%). In order for p(h) to be a density function, the weights must satisfy the constraint

K
Y owe=1 )
k=1
Given the number K of Gaussian components, the 3K parameters of Equation (1),
including mixing weights W and means and variances ©, are estimated by maximizing the
log-likelihood of the empirical data

=

LW,0) =) n(h)logp(l;W,0), (3)

0

where n(h) is the histogram of the CT data, whose voxel values range from 0 to H. The cor-
responding relative frequency histogram is denoted f(h) = n(h)/N, N being the total
number of voxels. To maximize the likelihood in Equation (3), we employ an iterative block
relaxation process as follows.

Let T indicate an iteration such that (W™, @[7) are the parameter estimates on that
iteration, and

K
pl(n) = p(; Wi, 017 = Y~ 0l o (1617 @)

k=1
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is the proposed probabilistic model for the CT data. The conditional weights are estimated
as follows: - ol
T
2t iy = G U6 5
(k) = = )
This conditional probability specifies the relative contributions of voxel value & to each com-
ponent at step 7. Using these variables, Equation (3) can be written in the equivalent form:

H K
LW, 0) = Y n(h)log| Y 77 (k|n)@(h;6l7) ©)

h=0 k=1

From given starting values at T = 0, the block relaxation scheme converges to a local
maximum of the likelihood function in Equation (6) through iteration of the following
two steps:

1. E-step [T 4 1]: estimate W™+l @[7+1], which maximize L(W, ®) under the fixed

conditional weights of Equation (5) at step 7.

2. M-step [t + 1]: recalculate weights, which maximize L holding parameters W!
and O fixed.

The process is repeated until the changes of all the parameters become small.
The E-step maximizes the likelihood function of Equation (6) subject to the constraints
Equation (2). The solution for the weights is

T+1]

wy zm I (k|n) 7)

Then, parameters of each Gaussian component are found using the ordinary (uncon-
strained) maximum likelihood estimates:

E

u = )l (k)
(=0 8)

@Ww>ﬁg@um)ﬂmww

We will follow Algorithm 1 to illustrate the steps for estimating the parameters of the
proposed probabilistic model. The final estimated density will consist of the two dominant
Gaussian components and K — 2 subdominant Gaussian components. Jensen-Shannon
divergence (JSD) [46] is employed in this algorithm to measure the similarity between
empirical density and mixed density for use as convergence criteria to determine the
number of Gaussian components. The latter is a symmetric version of a Kullback-Leibler
divergence [47].
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Algorithm 1: Estimation of the proposed probabilistic model parameters

input :A test 3D CT image.

output: Estimated mixed density model p(h) (Equation 1).

1. Use the block relaxation algorithm to estimate mixing weights, means, and vari-
ances for the two-component Gaussian mixture model representing the lung and
chest regions.

2. forK < 3,4,...,Kyax do

end

1.
2.

3.

Add one subdominant component to the model.

Holding py fixed only for dominant modes, update the other model
parameters by block relaxation.

Calculate the Jensen-Shannon divergence [46], JSD(f(h)||p(h)) =
KL(f(h)HM)erKL(P(h)HM)_ Here, M = f(h);r’(h) and KL(p(h)||M)

Y p(h) x log, % is the Kullback-Leibler divergence [47].
h

3. Select the K yielding the lowest value of JSD.

Estimation of the marginal density: The K — 2 subdominant components of the final
estimated model p(h) need to be partitioned among the two dominant modes. Each
subordinate component is associated with one dominant component in order to minimize
the expected misclassification rate. This is accomplished using the proposed Algorithm 2.

Algorithm 2: The proposed clustering algorithm

input : Estimated mixed density model p(h) (Equation 1).
output: Marginal density function for lung p;(h) and for chest p.(h).

pi(h) = wy@(h; 61);
(m,01) = (p1,01);
(g1, 091) = (H1,01);
pe(h) = wa(h;0,);
(He,0c) = (M2, 02);
(ch,Ugc) = (42, 02);
M ={ps,..., px};

end

while M is not empty do
— i el
=iy
— min el
de = in MG

if d; < d. then

k = argmin 7‘}”‘;’4";
keM
pi(h) = pi(h) +wpp(h; 0;);
Mgl = Mgl U Hps
1 = mean(jig);

else

k= argmin 7“”‘;’”‘;
keM
pe(h) = pe(h) +wpg(h; 6;);
Hge = pge U Hps
e = mean(jgc);

end
M=M—{}
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2.2. MGRF-Based Morphological Constraints

To get a consistent segmentation of the lung region, we applied rotation invariant
spatial constraints by using a generic Markov-Gibbs model of region maps [45]. The model,
which incorporates voxel-voxel interaction effects as shown in Figure 3, has, in general,
an arbitrary interaction structure and corresponding Gibbs potentials. For simplicity, we
restrict the interaction neighborhood system (N) to the nearest 9 neighbors in the above CT
slice and 9 neighbors in the below CT-slice.

Figure 3. Illustration of the 3D MGRF-Based morphological constraints on the anatomical segmenta-
tion. The middle column shows the selected slice, and its upper and lower slices; the left column
shows the selected pixel and its neighbors at the upper slice while the right column shows the
selected pixel and its neighbors at the lower slice.

To model the interactions between the CT voxels, we will assume all the interactions as
the same within each region. To estimate this interaction in analytical way, let V : X x X —
{Veq, Vne } denote a bi-valued Gibbs potential describing pairwise interactions, where

v ={ v 1% ©)

Then, the Gibbs probability distribution (GPD) of region maps on the 3D lattice R is as
follows [45]:

P(m) xexp( Y Yo V(mijzmisejiyzig) (10)
(ijz)ER (§1,0)EN

By modifying the derivation scheme in [45] to fit our model, the following first

approximation of the maximum likelihood estimator (MLE) of the potential values for a
given map m is obtained:

Vo= g (1m0 - %)
Vi = 2 (7 1+ 1)

where f'(m) and f”(m) denote the relative frequency of the equal and non-equal pairs
of the labels in all the equivalent voxels pairs {((,],z), (i + &, j+1n,2+)) : (i,j,z) €R;
(i+¢j+nz+Q) €R;(¢1,0) € N}, respectively.

(1)
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2.3. Joint MGRF Model and Lung Segmentation Algorithm

In order to integrate the first-order appearance model with the spatial probabilistic
model that describes the morphological/anatomical constrains, we will assume that the CT
data (g) consisting of visual appearance model and its spatial map (m, data labels) follow
the following two-level MGRF model:

P(gm) = P(m)P(g|m) (12)

Here, P(m) is an unconditional distribution of maps that is modeled by MGRF proba-
bilistic model that is demonstrated in Equation (10). P(g|m) is a conditional distribution of
gray levels for a given labeling. The Bayesian maximum a posteriori estimation (MAP) of
the labeling, given the image g, m* = argmax L(g, m) maximizes the log-likelihood,

m

L(g, m) = log P(g|/m) + log P(m). (13)

In order to summarize the proposed segmentation system, the basic steps are demon-
strated in Algorithm 3.

Algorithm 3: Lung Extraction Algorithm

input :A test 3D CT image.

output:Final 3D lung segmentation.

1. 1% Order Density Estimation: Estimate the marginal density function for
lung (p;(h)) and marginal density function for chest (pc(h)).

2. Initial Segmentation/Labeling: Use Bayes classifier to delineate the initial
lung region by using the marginal estimated densities.

3. Estimation of Gibbs Potentials: Applying Equation (11) on the initial seg-
mentation to estimate the Gibbs potentials.

4. Refine Segmentation: Use iterative conditional mode (ICM) algorithm [45]
to find the map that maximize the likelihood of joint MGRF model shown in
Equation (13).

3. Evaluation Metrics

This section describes the metrics used to gauge the performance of our proposed
system: Dice similarity coefficient (DSC), overlap coefficient, and absolute lung volume difference
(ALVD). Each of these quantifies in some way either the agreement or dissimilarity between
the segmentation algorithm result and the corresponding ground-truth segmentation. More
detailed explanation is presented in Sections 3.1-3.3, respectively. Furthermore, a fourth
metric, the 95th-percentile bidirectional Hausdorff distance (BHD) (Section 3.4), is employed to
quantify the accuracy of the boundary of the segmented region relative to ground-truth.

3.1. Dice Similarity Coefficient (DSC)

Dice similarity coefficient (DSC) is one of the most common similarity metric to
measure the similarity between two different areas. This metric is used to evaluate the result
of the proposed system by estimating the similarity between the black-white segmented
lung (L) and the ground-truth (G), i.e., the percentage of common region (i.e., the green
part) in both images as shown in Figure 4a. The range of this metric is between 0 and 1,
as 0 and 1 mean dissimilar and similar, respectively. It is computed as follows:

2xn(LNG)

PSC=0) +n(G)

(14)

where (LN G) is the cardinality of white pixels in the intersection between the segmented
lung (L) and the ground-truth (G), while n(L) and #n(G) are the cardinality of the white
pixels in the segmentation (L) and the ground-truth (G), respectively.
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Figure 4. Illustration of the evaluation metrics: (a) DSC, (b) HD, (c) overlap coefficient, and (d) ALVD. Note that TP, TN, FP,
and EN are true positive (correct lung pixel), true negative (correct background pixel), false positive (incorrect lung pixel),
and false negative (incorrect background pixel).

3.2. Overlap Coefficient

Overlap coefficient is used in our assessment pipeline to measure the similarity be-
tween the predicted object and its ground-truth by computing the overlap percentage
between them, see Figure 4c. The overlap coefficient of identical objects gives 1, while it
gives 0 for heterogeneous one. The latter is estimated as follows:

n(LNG)
lap = ————+ 1
overlap A(LUG) (15)
where n(LJ G) is the cardinality of white pixels in the union between the segmented lung
(L) and the ground-truth (G).

3.3. Absolute Lung Volume Difference (ALVD)

Another metric used to assess our work is absolute lung volume difference (ALVD).
ALVD computes the similarity between two images by measuring the differences between
the ground-truth (G) and the black-white segmented lung (L) (Figure 4d). The ALVD of
similar objects gives 0. This metric is defined as

—n(L)|

_ n(G)
ALVD = —— © (16)
where |n(G) — n(L)| is the absolute difference between the cardinality of white pixels in
the ground-truth (G) and segmentation (L).

3.4. Bidirectional Hausdorff Distance (BHD)

This section describes the last metric called bidirectional Hausdorff distance (BHD),
which is used to evaluate our proposed system in addition to the previous three metrics.
BHD is the bidirectional estimation of Hausdorff distance (HD) between the black-white
segmented lung (L) and the ground-truth (G), and vice versa. HD is the maximum Eu-
clidean distance between the points in the border of the black-white segmented lung (L)
and its closest point in the border of the ground-truth (G), as visualized in Figure 4b, which
is computed as follows [48,49]:

HD(L,G) = r{leaLx{ggg{d(l,g)}} 17)

where | and g are sets of the points border in the L and G, respectively, and d(g,[) is the
Euclidean distance between the two points.
As, BHD(L, G) is estimated as

BHD(L,G) = max{HD(L,G),HD(G, L)} (18)
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In this paper, the 95th-percentile BHD is used to evaluate our proposed system.
Instead of getting the maximum Euclidean distance between L and G, 95th-percentile of all
computed distances is selected to overcome the outliers.

4. Experimental Results

The segmentation framework described above was applied to the problem of seg-
menting lung with pathological tissue in COVID-19 patients. The proposed segmentation
system is evaluated and tested on 32 CT chest volume with different severity of COVID-19
infections, selected from 249 CT volume in COVID-19 [50]. Four of them had healthy/mild
COVID-19 infections whose image size ranges from 512 x 512 x 51 to 512 x 512 x 125,
while 17 patients of size 512 x 512 x 36-607 who had moderate infections as well as 11 CT
chest volume of size 512 x 512 x 44-577 had severe COVID-19 infections. To compare our
framework with other approaches that depend on a training dataset, we select another
34 3D CT chest volume (i.e., 3713 images in total) from the same dataset to use them as a
training. Table 1 summarized the dataset characteristics used in our experimental results.
The data are graded according to the radiology protocol in [51]. To obtain more accurate
segmentation, we included morphological /anatomical constraints based on the use of a
rotation invariant MGRF model.

Table 1. Dataset characteristics.

Class Resolution #Slices #Patients Total
Healthy/Mild 43-54 2
Training Moderate 35-397 20 34
Severe 46-321 12
Healthy/Mild ~ ° 12 *°12 51-125 4
Testing Moderate 36-607 17 32
Severe 44-577 11

To demonstrate step by step how our proposed approach works, Figure 5b shows
empirical density for the 3D CT chest volume (Figure 5a), and the two Gaussian mixtures
approximating its dominant modes are presented in Figure 5c. Furthermore, Figure 5¢
demonstrates the JSD between the empirical density and the two estimated dominant
Gaussian components. Figure 5d shows the changes of JSD and the best-estimated number
of Gaussian components that are demonstrated in Figure 5e. Figure 5f demonstrated
the classification of the subdominant Gaussian components based on the use of the pro-
posed clustering algorithm (Algorithm 2). Figure 5g,h demonstrates the final marginal
densities for lung and chest as well as the final estimated mixed density. Figures 6 and 7
demonstrate the ability of the proposed probabilistic model to handle the variability in the
empirical density that it may occur due to the severity of infections or the variability of the
scanning protocol.
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Figure 5. An illustrative example of the proposed system: (a) CT chest volume, (b) empirical density, (c) two dominants
Gaussian components, (d) JSD between empirical density and mixed density, (e) two dominant and K — 2 subdominant
Gaussian components, (f) proposed cluster algorithm, (g) marginal density for lung and chest, and (h) final mixed density
for all components. Note that JSD stands for Jensen-Shannon divergence.
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Figure 6. An illustrative example of the proposed appearance model estimated from Thick-Section CT appearance model
for (a) healthy/mild, (b) moderate, and (c) severe COVID-19 infected lung. Note that first, second, and third rows represent

empirical, marginal, and mixed densities, respectively.

To highlight the promise of including the rotation invariant MGRF-based morphologi-
cal/anatomical constraints with the adaptive first-order appearance model, the system’s
performance is evaluated before and after inclusion, as demonstrated in Table 2. As shown
in the table, the proposed segmentation is enhanced after including MGRF-based morpho-
logical /anatomical constraints, particularly in severe cases where the DSC is significantly
increased from 82.51 113 13% to 95.15.1.91%. To more prove the attainable enhancement of
the system, Figure 8 presents three examples of the proposed system before and after the
inclusion for healthy/mild, moderate, and severe COVID-19 infected lung. As shown in the
figure, the developed system outperforms the proposed appearance model alone (i.e., LCG)
for three examples, whereas the proposed system shows its ability to segment a severe
COVID-19 infection with 94.55% DSC compared to the proposed appearance model which
gives 76.49% DSC. Moreover, Figure 9 presents the proposed segmentation for a severe
lung COVID-19 infection at different cross-sections (i.e., 2D axial, coronal, and saggital) to
visually show the efficiency of the proposed system. Overall, the proposed system achieves
a DSC, overlap, BHD, and ALVD of 95'67j:1.830/°r 91.76i3.290/0, 4.86i5‘01, and 2493i2'39,
respectively. Finally, to prove the robustness of the proposed segmentation approach,
deep learning approaches are adopted as a comparison: DeepLabv3+ [52] using ResNet-50
network as a backbone, Inf-Net [28] with backbone ResNet-50 network, U-Net [25], and 3D
U-Net [53]. The results are reported in Table 3. As demonstrated in the table, the 3D U-Net
approach gives a worst performance of 66.08.+3599% DSC, 58.30.134 g1 % overlap, 44.44 143 ¢o
BHD, and 66.77 113301 ALVD, while the proposed segmentation approach gives the best
performance compared to these deep learning approaches. Moreover, to visually demon-
strate the capability of the proposed system, three different examples of healthy/mild,
moderate, and severe lung COVID-19 infections are segmented using these approaches,
as presented in Figure 10. As demonstrated in the figure, the proposed approach segments
the three examples better than the other four approaches. Moreover, the U-Net approach
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has a DSC close to the proposed approach. However, there are some parts that segment
incorrectly as demonstrated in the figures, e.g., classifying part of trachea or chest as lung.
Therefore, the proposed system is much better due to its segmentation being closer to the
ground-truth. Therefore, it is highly recommended to use our approach to segment the
lung infected by COVID-19 as it shows better performance than the state-of-the-art deep
learning approaches. In addition, it is unsupervised technique, thus it will not suffer from
the underfitting and overfitting problems.
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Figure 7. An illustrative example of the proposed appearance model estimated from Thin-Section CT appearance model for
(a) healthy /mild, (b) moderate, and (c) severe COVID-19 infected lung. Note that first, second, and third rows represent
empirical, marginal, and mixed densities, respectively.

Table 2. Quantitative evaluation of the proposed segmentation system before and after applying
rotation invariant Markov—Gibbs random field (MGRF). Note that LCG, DSC, BHD, and ALVD stand
for linear combination of Gaussian, Dice similarity coefficient, 95th-percentile bidirectional Hausdorff

distance, and absolute lung volume difference, respectively.

DSC Overlap BHD ALVD
Healthy/Mild 96.37 +0.47% 92.99.+088% 11.32,4 459 3.58.42.06
Moderate 92.57 14.64% 86.47 17.61% 9.59.4530 7.314739
LCG-model
Severe 82.51i13_13% 71-98i17.26% 13-77i7.20 23.16i19.29
Overall 89.59..9.76% 82.3141372% 11.24 608 12.29 1463
Healthy/Mild 97.5310.56 % 95.18.1.06% 2414112 1.7241.09
. Moderate 95.54.1.91% 91.531341% 4.25.373 3.48.759
Final System
Severe 95.191166% 90.8713.01% 6.7016.97 2.521932
Overall 95.67+1.83% 91.76+3.29% 4.86-501 2931239
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Figure 8. An illustrative example of the proposed segmentation for (a) healthy/mild, (b) moderate, and (c) severe COVID-19

DSC

76.49%

94.55%
(©)

infected lung. Note that red border (green border or yellow region) refers to ground-truth (segmentation).

Table 3. Quantitative evaluation of the proposed segmentation system compared with other deep
learning approaches. Note that DSC, BHD, and ALVD stand for Dice similarity coefficient, 95th-
percentile bidirectional Hausdorff distance, and absolute lung volume difference, respectively.

DSC Overlap BHD ALVD
Healthy/Mild 80.32.432.97% 74.93137.81% 23.58 14003 116.361220.88
DeepLabos+ [52] Moderate 95.15.415% 90.794275% 8.8510137 7.324368
Severe 93.80.2.47% 88.41.1429% 27.0114672 8.78.4404
Owverall 92.88.411.49% 88.07 11320 % 16.7943417 214117787
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Table 3. Cont.

DSC Overlap BHD ALVD
Healthy/Mild 93.47 .7 46% 88.39, 1236% 256841560 54660
LNet [25] Moderate 95.09.2.02% 90.71.45.60% 19.04.435.5 3614336
Severe 91.68.1507% 84.99..530% 448117500 941472
Overall 93.77 14.30% 88.56..7 1% 28.49.450.05 576455
Healthy/Mild 8977 1941% 82,56, 1551% 17412073 144,95
Inf-Net (28] Moderate 92.731164% 86.49.15 5% 13404053 134343
Severe 90.20.1456% 82,4217 05% 36.03.138.77 1491 565
Overall 91.54.45,% 84.67_16.99% 2144451 40 14.004 4 0
Healthy/Mild 78.11495.08% 72.80430 39% 2941401 140.67 1976 10
3D U-Net [53] Moderate 68.46.135.52% 60.58.433.85% 420415 53 339143535
Severe 55.72.3795% 46.95.13531% 55.2515043 93.15, 15826
Overall 66.08135.99% 58.30+34.81% 44.44 4560 66.77 £133.01
Healthy/Mild 97.5310.56% 95.18.11.06% 2414112 1.7241.09
Our System Moderate 95.54.1.91% 91.531341% 4.25.373 3.48.1759
Severe 95.1911.66% 90.87+3.01% 6.70.16.97 2521932
Overall 95.67 +1.83% 91.761329% 4.86.1501 2934239

@)

Figure 9. An illustrative example of the proposed segmentation (second and third rows) for a severe COVID-19 infected
lung at (a) 2D axial, (b) coronal, and (c) sagittal cross sections of an original image (first row). Note that red border (green

border or yellow region) refers to ground-truth (segmentation).
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Figure 10. An illustrative example of the proposed segmentation compared to other deep learning approaches for (a)

healthy/mild, (b) moderate, and (c) severe COVID-19 infected lung. Note that red border (green border or yellow region)
refers to ground-truth (segmentation).
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5. Discussion and Conclusions

Experiments demonstrate that the proposed framework is promising and achieved
high accuracy, with identification of the first-order appearance model followed by 3D mor-
phological constraints based on analytical estimation MGRF parameters producing good
results when segmenting the COVID-19 infected lung region from CT images. Quantitative
metrics of accuracy including the DSC, overlap coefficient, 95th-percentile BHD, and the
ALVD metrics all show consistent performance on our sample data set of 32 subjects,
outperforming current, state-of-the-art deep learning-based lung segmentation approaches.
The results herein demonstrate the ability of the developed system to segment lung ona CT
image, whose DSC is improved from 89.59.19 74% to 95.67 11 83% when 3D morphological
MGREF-based constraints are included in the system pipeline. However, the accuracy of the
proposed segmentation system will get affected if the lung is significantly damaged or filled
with water, or the appearance of the lung is closed to the chest. Thus, separation based on
appearance model will be very challenging task. Therefore, we plan to add some shape
model approach in our system to overcome these problems. Moreover, a future extension
of this work would integrate the proposed segmentation approach into a computer-aided
diagnostic system to assess pulmonary function and risk of mortality in COVID-19 patients,
which is the ultimate goal of our research group. Furthermore, the morphological con-
straints could be made to support large-scale inhomogeneity of the kind seen in severe lung
infection. This will be accomplished by expanding the neighborhood system to include
larger cliques so that the MGRF model incorporates higher order interaction effects.
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Abstract: Autism spectrum disorder (ASD) is a neurodegenerative disorder characterized by lingual
and social disabilities. The autism diagnostic observation schedule is the current gold standard
for ASD diagnosis. Developing objective computer aided technologies for ASD diagnosis with
the utilization of brain imaging modalities and machine learning is one of main tracks in current
studies to understand autism. Task-based fMRI demonstrates the functional activation in the brain
by measuring blood oxygen level-dependent (BOLD) variations in response to certain tasks. It
is believed to hold discriminant features for autism. A novel computer aided diagnosis (CAD)
framework is proposed to classify 50 ASD and 50 typically developed toddlers with the adoption
of CNN deep networks. The CAD system includes both local and global diagnosis in a response
to speech task. Spatial dimensionality reduction with region of interest selection and clustering
has been utilized. In addition, the proposed framework performs discriminant feature extraction
with continuous wavelet transform. Local diagnosis on cingulate gyri, superior temporal gyrus,
primary auditory cortex and angular gyrus achieves accuracies ranging between 71% and 80% with a
four-fold cross validation technique. The fused global diagnosis achieves an accuracy of 86% with
82% sensitivity, 92% specificity. A brain map indicating ASD severity level for each brain area is
created, which contributes to personalized diagnosis and treatment plans.

Keywords: autism; ASD; computer-aided diagnosis; deep learning; CNN; CWT

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects social
communication ability. ASD also causes language impairment and repetitive behaviors [1].
Individuals with ASD show different severity levels associated with each symptom [2].
The common ASD diagnostic standard utilizes history and expert clinical judgment together
with behavioral modules of the autism diagnostic observation schedule (ADOS) [3,4].
Autism is diagnosed with the arising noticeable symptoms which start at the age of three
to five years [5]. It is crucial to intervene and diagnose ASD early to allow for better
assessment and treatment.

ASD can be diagnosed at the age of 12 months old, especially with the emergence of
imaging diagnostic tools that employ brain imaging modalities such as structural (sMRI),
functional (fMRI), and diffusion (DTI) magnetic resonance imaging [6]. Combining these
scans to view the structure of the brain together with the brain functional activity during
rest and performance of certain tasks constitute an early biomarker for ASD [7].

Resting state and task-based fMRI are types of fMRI scans that are adopted to manifest
functional activity. Task-based fMRI measures evoked blood oxygen level-dependent
(BOLD) signals during the performance of different tasks [8] such as auditory tasks, lan-
guage tasks, visual processing tasks, motor tasks, and social tasks [9].
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To investigate autistic brain abnormal functional response to speech compared to typi-
cally developed (TD) peers, several studies were performed [10]. Studies in [11-13] played
an audio of a simple bedtime story and examined the sleep fMRI response. These studies
included 40 autistic toddlers and 40 TD toddlers with ages that range from 12 to 48 months.
Autistic toddlers showed abnormal laterality and hypoactivation in the left anterior por-
tion of the superior temporal cortex (aSTG). On the other hand, TD toddlers exhibited
the normal dominant activation of the left hemisphere aSTG. They also suggested early
intervention and treatment as they demonstrated that as the age increases, lateralization
abnormality increases.

Several studies up to 2013 that were reviewed in [14] concluded the involvement of
atypical lateralization with language impairment. Individuals with ASD exhibited attenua-
tion in the left hemisphere activation. Also, anomalous lateralization in the functional areas
responsible for prelinguistics and language, specifically the fronto-temporal regions, were
present. One of the reviewed studies [15] revealed atypical lateralization starts at an early
age. Lower lateralization was present in high risk ASD infants, while higher lateralization
was present in low risk peers. A review in [16] concluded similar results.

A meta-analysis of fMRI studies until 2013 was presented in [10]. Increased activation
in the right precentral gyrus and decreased left activation were revealed in ASD individuals
who performed language and auditory tasks, which contradicts the normal activation in
TD individuals. Moreover, fMRI scans in TD individuals showed higher activation in the
bilateral superior temporal gyri (STG) and left cingulate gyrus than ASD peers.

Literature on task-based fMRI analysis for ASD concludes fundamental differences in
activation in ASD compared to TD individuals. These findings support the employment
of task-based fMRI for early ASD diagnosis [17]. Machine learning (ML) has made it
possible to develop intelligent and automated systems for several pattern recognition
applications. The emergence of noninvasive or minimally invasive medical screening
devices created massive informative data structures that allowed for the exploitation of
ML for automated diagnosis. A research in [18] proposed a pipeline based on task fMRI
scans for predicting treatment of social responsiveness scale outcome. They applied the
general linear model (GLM) for brain feature extraction. Feature selection techniques were
performed following feature extraction. For classification, they employed the random forest
(RF) classifier. Twenty ASD children (5.90 & 1.07 years) were included in the study. A recent
study in [19] performed both local and global diagnosis for ASD toddlers. Brain areas
parcellated with the Brainnetome atlas (BNT) were analyzed with a stacked nonnegativity
constraint auto-encoder. The study included 30 ASD against 30 TD and classified between
two groups with an accuracy of 75.8%. Another recent study graded the severity of autism
into three groups [20,21]. GLM analysis for low individual level analysis, to extract features,
and high group level analysis, to infer statistical differences between groups and validation,
were applied. They utilized different approaches to extract features from GLM analyzed
whole brain areas. Among the several classifier architectures they tested, Random Forest
performed best with 78% accuracy. In [22], they enhanced their framework by performing
a two stage classifier, included more data (92 mild, 32 moderate, and 33 severely autistic)
and performed more validation techniques. Accuracies ranged between 70% and 83%.

ML and deep learning, which is a subset of ML that involves deep networks, have
played a very important rule in many neuroscience applications. Convolutional neural
network (CNN) is one of the most powerful DL network architectures. CNNs are deeply
adopted in Brain-Computer Interfaces (BCI) as well as classification of EEG signals [23-25].

Recently, CNNs have been widely utilized for ASD diagnosis and analysis with
fMRI [26]. Jinlong Hu et al. [27] adopted a multi-channel 2D CNN model to classify FMRI
dataset of 995 subjects in a motor experiment. They proved that CNNs achieve good
performance with high dimensional data, in comparison with other classifiers, mostly
when the dataset is large as in their case. A study in [28] investigated the employment
of spatial and temporal features of task-based fMRI. To capture the spatial information,
they developed a 3D convolutional neural networks on two-channel images of mean and
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standard deviation that were created by the sliding window, which captures the temporal
statistics. This framework achieved an 8.5% increase in the mean F-scores.

FMRI scans constitute 4D data of a brain 3D volume consisting of 1D time-dependent
BOLD signals. Several signal processing techniques can be optimized to analyze these
BOLD signals. Wavelet transform are considered one of the efficient time signal process-
ing techniques for resolving time-series. Applications of the wavelet transform include
compression, high resolution time, and frequency analysis and denoising [29]. It has also
been utilized for fMRI analysis as an alternative to conventional GLMs. PS Lessa et al. [30]
concluded that Wavelet correlation analysis achieves higher statistical power in comparison
to GLMs. Moreover, wavelet transforms contribute to the achievement of efficient brain
disorder diagnosis, such as ADHD, autism and Alzheimer diagnosis, when applied on
fMRI feature processing. In an approach to diagnose ADHD, Garcia et al. [31] performed
continuous wavelet transform (CWT) to create scalograms of BOLD signals.

Most previous fMRI experiments were applied on adults [32,33], however, our pro-
posed study includes toddlers/infants from 12 to 40 months old. The aim of our study is to
develop an early autism computer aided local and global detection tool. Spatial dimension-
ality reduction with region of interest (ROI) selection and clustering have been performed
to reduce the 4D fMRI data to a reduced number of BOLD signals. In order to provide
a detailed frequency and scale representation, we have applied CWT on selected BOLD
signals. CWT creates scalogram images that are used as input images to multi-channel
2D-CNN:s for each area. Finally, brain maps that indicate level of ASD severity for each
ROl is provided for each subject. The proposed framework works towards determining the
neuro-circuits with abnormalities as well as creating personalized diagnosis and treatment
plans that handles the specific case of each individual. Moreover, CWT achieved better
results compared to other feature extraction and generation techniques.

2. Materials
2.1. fMRI Data Collection

This study includes subjects from “Biomarkers of Autism at 12 Months: From Brain
Overgrowth to Genes” dataset. This dataset was collected between August 2007 and
June 2014 and is provided by the national database for autism research (NDAR: http:
//ndar.nih.gov (accessed on 22 May 2019)) [11,34,35]. The dataset included 639 subjects
that were tracked every 12 months roughly starting at 12 months and until they are
40 months old.

We have chosen some substantial criteria in selecting subjects for our study such that
included subjects must have ADOS toddler module, sMRI (T1) and (T2), and response to
speech task fMRI (T2*). Intensive validation on each report and scan has been conducted.
Visual validation is performed for all sMRI scans to exclude inaccurate or corrupted ones.
FMRI scans have been validated to have 154 volumes and visually validated to have
no clear artifacts. One hundred subjects (50 ASD 50 TD) with ages ranging between
12-40 months old, are included in this study. Information about each subject , such as IDs
and final diagnosis, as well as the extracted BOLD signals of this dataset are available in
Supplementary Materials 1 and 2, respectively.

2.2. Response to Speech Experiment

The experiment that was used while task-based fMRI scans were acquired is a response
to speech experiment. An audio record of a narrator telling a story was played during
natural sleep. The audio consists of three different types of records, simple forward speech,
complex forward speech, and backward speech. Such records alternate with silence periods
and are repeated during a 6 min and 20 s span.

3. Methods

In this study, local and global ASD diagnosis have been developed. Figure 1 demon-
strates the adopted framework. First, fMRI scans are preprocessed using FMRI expert anal-

267



Sensors 2021, 21, 5822

ysis tool (FEAT) [36] developed in fMRI’s software library (FSL) [37]. Brain parcellation is
based on Harvard-Oxford probabilistic atlas https:/ /identifiers.org/neurovault.collection:
262. (accessed on 11 April 2019) The Detailed explanation of preprocessing steps is provided
in [20].
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Figure 1. The proposed framework for local and global classification. First, 4D fMRI data are
preprocessed with FSL. Brain extraction and parcellation to Harvard-Oxford probabilistic atlas
are also performed. Second, spacial and temporal feature reduction and extraction techniques
are performed. Finally, local classification models on each ROI are developed to provide a global
classification decision.

3.1. Spatial Dimensionality Reduction

Applying neural networks on raw data without feature engineering is feasible when
the raw data are easily separable. However, identifying autism biomarkers in task fMRI
is a complex problem as autism follows a wide spectrum and is not easily separable.
Moreover, fMRI raw data is a high dimensional data of 4D. CNN performance decreases
when data dimensionality is high and input data size is small as in medical applications.
Hence, it is crucial to reduce dimensionality. A comparison of fMRI feature extraction
and reduction approaches have been presented in [38], proving higher ASD classification
results. The following steps have been proposed for feature reduction:

* ROl selection: Based on literature of the response to speech experiment for toddlers,
specific brain areas related to language circuits are activated. These areas include
cingulate gyri (CG), superior temporal gyrus (STG), primary auditory cortex (PAC)
and angular gyrus (AG) for both hemispheres. In this study, the most significantly
activated brain areas are selected.

¢ Clustering: Each brain includes several commonly activated voxels, which are con-
sidered redundant data. Therefore, grouping similar BOLD signals in each area and
extracting a single value for each group is efficient and can extensively enhance clas-
sification performance. Hence, each brain area’s BOLD signals have been clustered
with kmeans. Different number of clusters have been tested to achieve higher val-
idation accuracies.Two methods to represent the signals of each cluster have been
tested: averaging BOLD signals, or extracting the BOLD signal closest to the center of
that cluster.

The advantage of the previous reduction approaches is that the brain structure is
maintained. Each brain area is represented by a number of features. This technique allows
for local analysis and obtaining brain maps.

3.2. Continuous Wavelet Transform

CWT is a technique used to represent a signal by convolving wavelets, that vary
continuously in transition and scale, with the original signal. The result presents a power
spectrum of the signal as in Figure 2. The CWT of a signal x(t) at scale a (¢ > 0) and
translation b is calculated by:

a

1 7 -
Xola,h) = 172 / x(t)w*(t )dt M
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where ¢ is the mother wavelet which is a continuous function in both the time domain and
the frequency domain and the * represents operation of complex conjugate. The mother
wavelet is the source that generates daughter wavelets which are the translated and scaled
versions of the mother wavelet. After extracting BOLD signals from clusters, the CWT
is applied to produce scalograms that provide a detailed representation on these BOLD
signals. The scalogram images are then rescaled to 64 x 64 and fed to multichannel 2D-
CNN s for each area. In task-based fMRI experiments, quantifying the change in the
BOLD signal across time is significantly important. As mentioned before, CWT scalograms
hold information about both frequency and time in an image, and therefore, satisfy this
requirement. Applying 2D CNN filters can extract trainable numerical weighted values
from these images, during the training phase. During testing phase, these values are
compared to classify each entry.

60 80

(A)

Figure 2. (A) A CWT scalogram example with 64 scales of a BOLD signal of 153 time points. (B) The
resized version of size: 64 x 64.

3.3. 2D CNN Classification

CNN is a deep learning architecture gaining prominence in the analysis of images,
including medical image data. CNN may be characterized by the dimensionality of their
convolutional kernels, which in practice is typically between one and four, inclusive. Higher
kernel dimensions incur a computational bottleneck, especially when paired with large
input sizes, e.g., a 4D CNN that processes fMRI volumetric time series. We have developed
a more tractable 2D CNN model four our framework. As a deep neural network, the CNN
comprises a number of layers, including convolutional layers based on the aforementioned
kernels, pooling layers for reducing the size of the activation map, and fully connected (FC)
layers for higher order feature representations.

We have extensively tested several model hyper-parameters, as explained in detail in
the experimental results. Our CNN model performs three successive passes of convolution
and size reduction as shown in Table 1 (which is developed by the model summary method
provided by Keras library). These are followed by FC layers (Dense), the final (output)
layer having a softmax activation function for purposes of classification. As explained
earlier, each brain area is represented with CWT power spectrum images. A separate
CNN classifier is developed and tuned for better performance for each brain area. Global
classification is obtained with majority voting by all areas, as shown in Figure 3.
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Table 1. CNN network summary.

Layer Output Shape Param #
2Dconv (None, 62, 62, 15) 1635
Max_pooling2D (None, 31, 31, 15) 0
2Dconv_1 (None, 29, 29, 15) 2040
Max_pooling2D_1 (None, 14, 14, 15) 0
2Dconv_2 (None, 12,12, 15) 2040
max_pooling2D_2 (None, 6, 6, 15) 0
Flatten (None, 540) 0
Dense (None, 10) 5410
Dense_1 (None, 2) 22
Total parameters: 11,147 Trainable parameters: 11,147
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Figure 3. The local and global classification pipeline. A multi-channel 2D CNN local model is
developed for each area, fed with corresponding CWT scalograms. The final global classification
decision is fused using majority voting approach.

4. Experimental Results

The incorporated dataset includes 100 subjects (50 ASD and 50 TD). Performance
evaluation has been conducted for local CNN model. The whole framework integration is
performed using python. The CNN classification model is implemented with Keras library.
Several parameters at each step on the proposed spatial dimensionality reduction and
classification pipeline are evaluated. The 4-fold average classification accuracy with random
shuffling is the score to be optimized. For clustering, 3 clusters provide discriminant
average BOLD signals for each area. In the CWT stage, 32, 64 and 128 number of scales
have been evaluated. best performance is obtained by 64 scales. Some wavelets have been
tested such as: Mexican Hat, Gaussian Derivative and Morlets. Best results are obtained
with Morlets.

A grid search method to determine classification parameters has been applied: num-
ber of filter (5, 10, 15), CNN kernal sizes (3, 5, 7), epchs (5:70 in order of 5), batch sizes (1,
32, 64, 100) learning rates (0.1, 0.001, 0.0001), optimizers (‘SGD’, ‘Adagrad’, '/RMSprop’,
‘Adadelta’, “Adamax’, “Adam’, ‘Nadam’), network activations (‘softplus’, ‘softmax’, ‘soft-
sign’, ‘tanh’, ‘relu’, ‘sigmoid’, ‘linear’, ‘hard_sigmoid’), and finally, kernal weight ini-
tializers (“uniform’, ‘normal’, ‘lecun_uniform’, ‘zero’, ‘glorot_uniform’, ‘glorot_normal’,
‘he_uniform’, ‘he_normal’). The parameters that achieved best results are represented
in Table 2. 15 kernels, each with the size of 3 x 3, achieve better results. According to
these parameters, the output shape and parameter columns in Table 1 are determined.
The number of parameters is the number of trainable network weights at each stage. Only
the convolutional and Dense layers contain trainable weights. The maxpooling layers
(with size 2 x 2) only calculate the maximum without including a bias parameter. More
explanation about how the model layer sizes are determined is provided in [39].
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Table 2. CNN and CWT parameters.

Kernels Kernel Learning Batch Optimizer Network Kernel Wavelet Scales Time Course
Size Rate Size P Activation Initializer Normalization
15 3 0.01 32 Adamax Relu Lecun_uniform  Morlet 64 Percent signal
change

4.1. Local Classification

Each local CNN classifier is fed with CWT scalogram images extracted from both
hemisphere and the inferior and posterior division, if present. Hence, each classifier has
different number of extracted signals for it’s input. Table 3 demonstrates the classification
accuracy, sensitivity, specificity, and area under the curve (AUC) for the STG, CG, AG, and
PAC areas. The AUC is an effective measure of sensitivity and specificity for assessing
inherent validity of the proposed system. Higher AUC means that the proposed system
is accurate in differentiating ASD with TD subjects. This implies both sensitivity and
specificity are maximum and errors (false positive and false negative) are minimum.

The confusion matrix of each area is demonstrated in Figure 4. As can be noted,
high percentages are concentrated in the diagonal of each matrix (True positive and True
negative) and ranges around the corresponding total accuracy. Therefore, each matrix is
balanced. Moreover, receiver operating characteristic (ROC) curves are plotted in Figure 5.
After developing local 2D-CNN models, brain maps for each subject are created to represent
the level of autism severity for each brain area.
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Figure 4. The confusion matrix for each ROI local classifier represented in percentage (number) for
each row.
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Figure 5. ROC curves and AUC for STG, CG, AG, and PAC selected areas.

Table 3. Accuracy, sensitivity, specificity, AUC of selected ROIs.

Classifier Accuracy Sensitivity Specificity AUC
STG 0.742 0.74 0.77 0.76
AG 0.80 0.78 0.83 0.77
CG 0.72 0.74 0.71 0.67
PAC 0.71 0.72 0.77 0.71

4.2. Global Classification

The global classification accuracy is obtained by fusing the decision from each local
classifier with majority voting. The achieved accuracy is 86% (sensitivity 82%, specificity
92%). The confusion matrix is demonstrated in Figure 6. Same notes can be concluded from
the confusion matrix. We have also tested a global 2D-CNN classifier that is trained with
the scalogram images of all areas at once. This step is performed as a validation step and
to highlight the advantage of classification that is based on local classifiers . The obtained
accuracy is 82%. Figure 7 plots the ROC of the classifier.

The accuracy is close to the global accuracy of 86% which proves the stability of the
system. The inferred reason for less accuracy can be related to the fact that higher number
of input features (and hence higher number of parameters) introduced in the CNN network
achieves lower accuracy. Therefore in this validation model, the increased number of
channels increases the number of parameters and hence, leads to lower performance.
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Figure 6. The confusion matrix for the global classifier represented in percentage (number) for
each row.
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Figure 7. ROC curve and AUC for the global classifier.

The proposed framework achieves higher accuracies compared to other previous work
performed on task-based fMRI scans of the same experiment, as presented in Table 4. A
direct comparison between our research and other literature of other tasks would not be
objective as other researches incorporate different data sets and task-based fMRI experi-
ments. As a comparison with our previous approaches in [19,20,38], we can note that the
accuracy of the proposed classification that is based on local classifiers is higher. The reason
is believed to be the better learning of CNN local networks that have lower number of
parameters. Majority voting reflects the advantage of building the decision based on the
most affected brain areas, rather than all included areas.

Table 4. A comparison of the proposed CAD system with other GLM-based methods.

Method  Data Source No. of Subjects Modeling of BOLD Classifier Validation Accuracy
[38] NDAR 100 (50 ASD, 50 TD) DWT 2D CNN 4-fold 78%
[19] NDAR 60 (30 ASD, 30 TD) GLM SNCAE 4-fold 76%
[20] NDAR 39 (13 Mild, 13 Moderate, 13 Severe) GLM RF 10-fold 72%

proposed NDAR 100 (50 ASD, 50 TD) CWT multi-channel 2D CNN 4-fold 86%

4.3. Brain Maps

According to literature, not every brain area is affected by the same degree for each
individual. Therefore, we obtain individual brain maps that explain the level of autism
for each area. After the implementation and training of local classifiers, each subject’s
local brain area data is tested for each corresponding trained network. The resulted
probabilities are represented in a brain map as demonstrated in Figure 8. As an example,
the probabilities obtained for the first individual are: (STG: 0.037, AG: 0.36, CG: 0.31,
PAC: 0.072). According to majority voting, the four areas has high probabilities for autism
(p > 0.5), hence, this individual is TD. For the other individual, the obtained probabilities
are: (STG: 0.77, AG: 0.97, CG: 0.61, PAC: 0.99). According to majority voting, the four areas
has low probabilities for autism (p <= 0.5), hence, this individual is TD. Some individuals
might have autistic areas and non autistic ones, as mentioned before. An example for the
probability distribution (STG: 0.43, AG: 0.8, CG: 0.61, PAC: 0.99). Three areas are autistic
(p > 0.5) and one area is non autistic (p < 0.5). Therefore, this subject is classified as autistic.

Figure 8 also demonstrates a 3D view. The viewing tool is FSLeyes through FSL.
As can be noted, the grade of autism are higher (red colors) of ASD subjects, with variable
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grade on each area. The grade of autism for TD subjects is lower (yellow colors) with
different grades.

Figure 8. Coronal, sagital and axial 2D views and a 3D view of both ASD and TD example. Brain

areas for the ASD individual are more severely distributed (red highlights) than TD peer (more
yellow highlight distribution).

5. Conclusions and Future Work

In this paper, a novel CNN Deep learning based ASD local and global diagnosis
system is introduced. The proposed system utilized task-based fMRI to achieve this goal.
According to the response to speech experiment, hypoactivation of the bilateral superior
temporal gyrus, bilateral primary auditory cortex, cingulate gyrus and angular gyrus are
exhibited in ASD toddlers. Whereas, TD peers exhibited typical lateralized activation.
Based on these results, local spatial and temporal features are extracted from each ROI
separately. CWT is performed to extract scalogram images, from the extracted BOLD
signals from spatially reduced clusters, that hold frequency specifications. A local CNN
classifier is utilized for each area. Experimental results are reported for all activated brain
areas. Accuracies range between 71% and 80%. Global classification is obtained from local
results. Achieved accuracy is 86% (with 82% sensitivity and 92% specificity). Finally, local
individual brain maps are created for each subject that indicate level of ASD severity.

Future work will include the application of the same approaches on rest-state f{MRI
of same dataset. Hence, a detailed report for each subject will be obtained for connected
brain networks during rest and activated brain areas during task activities. Global decision
will be more accurate and will consider all functional aspects of the brain. Researchers are
encouraged to collect more data from different geographical sites. A protocol for generic
experimental design is recommended to enable researchers to validate their work with
other datasets. More validation steps will be performed, leading to a robust ASD diagnosis
system. In addition, our future work will include genomic data (which is available in
the collected data set used in this paper) to correlate affected brain areas with specific
genome sequences to help in early ASD detection. Finally, local classification results will
be investigated to identify malfunctioned neuro-circuits involved with ASD.
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Abstract: Accurately classifying the innate immune players is essential to comprehensively and
quantitatively evaluate the interactions between the innate and the adaptive immune systems.
In addition, accurate classification enables the development of models to predict behavior and
to improve prospects for therapeutic manipulation of inflammatory diseases and cancer. Rapid
development in technologies that provide an accurate definition of the type of cell in action, allows
the field of innate immunity to the lead in therapy developments. This article presents a novel
immunophenotyping technique using electrical characterization to differentiate between the two
most important cell types of the innate immune system: dendritic cells (DCs) and macrophages
(MACs). The electrical characterization is based on capacitance measurements, which is a reliable
marker for cell surface area and hence cell size. We differentiated THP-1 cells into DCs and MACs
in vitro and conducted electrical measurements on the three cell types. The results showed average
capacitance readings of 0.83 puF, 0.93 uF, and 1.01 pF for THP-1, DCs, and MACs, respectively. This
corresponds to increasing cell size since capacitance is directly proportional to area. The results
were verified with image processing. Image processing was used for verification because unlike
conventional techniques, especially flow cytometry, it avoids cross referencing and by-passes the
limitation of a lack of specificity of markers used to detect the different cell types.

Keywords: dendritic cells; electrical characterization; image processing; immune system; macrophages

1. Introduction

Dendritic cells (DCs) and macrophages (MACs) are members of the mononuclear
phagocyte system that perform multiple functions during an immune response [1]. Al-
though both DCs and MACs are antigen-presenting cells, they differ in their functions.
DCs are specialized in surveillance and the detection of pathogens and, as their name
suggests, have elongated structures arising from their body called dendrites [2]. These
dendrites increase the surface area of the DCs compared to the cell’s volume [1,3,4]. On
the other hand, MACs are mainly involved in the phagocytosis of microbial substances,
pathogens, and even cancer cells [5]. MACs also play a significant role in regulating the
immune system by releasing cytokines for anti-inflammation [6]. DCs and MACs have been
regarded as clearly distinct in terms of cellular function although they occupy overlapping
anatomical structures in many body tissues and systems [4]. DCs are stronger in processing
antigens and presenting them to the adaptive immune system [7], while MACs are strong
in migration to the site at which the pathogen resides and in phagocytosis [8]. DCs and
MAC:s are the key players of the innate immune system as they are the link between the
innate and adaptive immune systems [9]. The antigen is captured and processed by these
cells and presented to the cells of the adaptive immune system, specifically, the T cells, at
specific immunological locations.

In practice, the process of differentiating between DCs and MACs in vitro is not
straightforward [10]. It has heavily relied on cell-surface markers thought to be solely
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present on one cell type and not on the other [1]. However, growing evidence suggests that
many cell surface markers previously used to differentiate between these two cell types
overlap [4]. This further complicates our understanding of the mononuclear phagocyte
system and confirms the need for a more reliable system to distinguish between these
two key immune cell types. Scientists have been using conventional techniques like
western blot [11], flow cytometry (FACs) [12], immunohistochemistry [13], and PCR [14] to
differentiate between DCs and MACs. Although these techniques are efficient, they are
time and money-consuming and also require highly trained technicians. Flow cytometry,
the most common technique used in classifying immune cells, depends on detecting cell
surface markers present in one cell type and not the other. However, growing evidence
suggests that when it is used to compare between DCs and MACs, the markers overlap
and display a lack of specificity in comparing the cells, as presented in Figure 1.

Macrophage Dendritic Cell

|¢-
»y
&

=5
b
&

MHCII
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Figure 1. Overlapping of cell surface markers between MACs and DCs. DCs and MACs share the
same surface markers CD11c, CD11b, MHCII, CD68.

Electrical characterization is widely used for the detection and accurate characteriza-
tion of biological samples [15-17]. The last few years have witnessed a substantial growth in
new electrical techniques that allow for the detailed study of cells, their characteristics, and
functions [15,18,19]. Scientists have focused on studying the cells’ electrical properties due
to their relevance in cell activity [17]. These electrical properties are very important because
they give insights into the changing biochemical and biophysical properties of the cell that
control their interaction with other cells and their interaction with the environment [15].

Over the years, many studies have been conducted to extract biological data from
electrical measurements [20]. Useful examples are the resting and membrane potential
from the nervous system and the ECG of the heart. Electrical characterization has even
expanded to study single cells, viruses, DNA, and even blood samples [18].

Electrical and electrochemical methods have been used widely in several biological
applications. Electrical measurements have been used in three different important bio-
logical areas: (1) Detection of a disease: measuring the changes in dielectric properties
to detect blood in urine samples (hematuria) without the use of inaccurate conventional
techniques [21]; (2) characterizing healthy and cancerous cells in different tissue types [22];
and (3) using a label-free tracking method to study the development and progress of living
cells in real-time. An example where this was used was to detect the life cycle of budding
yeast. The capacitance—voltage dependency was exploited to detect changes in the cell
cycle progression [23].
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Coupled with electrical characterization is image processing. This has become a
vital tool in biological applications for quantifying the phenotypic differences between
various cell populations [24]. Screening biological samples has given scientists a deeper
insight into the biological systems and their diverse processes such as gene expression,
protein modification or interaction, signal transduction, and irregular RNA interference
and mutations.

Traditionally, visual analysis is used for image processing. Cells are classified by
measurements of cell shape, movement, and protein expression performed manually.
This is conducted by suspending cells in a suitable medium, staining them with dye,
then analyzing them under a microscope [25]. The manual approach is, however, time-
consuming, subjective, and may require a large number of technicians working on the data.
Nowadays, image processing is done almost automatically by large processing machines
that can deal with high volumes of images, making it faster, more accurate, reliable, and
less subjective [26]. Images are visualized as still images, videos, and more recently, 3D
and 4D volumetric images. The acquired images can be enhanced by using different
fluorescent technologies. The most basic type of analysis is morphological analysis, which
does not only refer to metrics of the phenotypical shapes, but also the intensities, the spatial
relationships, the staining patterns, and even migration and movement [27].

Automated imaging starts with the principle of extracting the physical parameters of
the sample such as the area, density, and morphological properties [28]. Consequently, the
data obtained from these images allow the mathematical modeling of biological kinetics
and the studying of biochemical signaling networks [29]. The main imaging techniques
used for cellular studies are fluorescent microscopy, multiphoton microscopy, atomic and
electron microscopy [28]. The fluorescent microscope is mainly used for the visualization
of sub-cellular structures and their compartmentalization [30]. It works by capturing the
emissions of the excited biological samples using fluorophores. Multiphoton microscopy
follows the same principle, but is mainly used for living samples and can image at a deeper
scale in comparison to fluorescent microscopy [31]. These techniques have the advantage
of high specific identification, but the limitation of photo-bleaching. On the other hand,
atomic force microscopy uses Hooke’s law (principle in physics that explains that the force
used to compress or extend a spring is proportional to the same distance [32] to acquire
the image from the sample [33]). The image is a representation of the forces between the
sample and the tip of the probe that scans its surface, and the forces measured vary between
chemical, magnetic, electrostatic, and mechanical contact forces. The advantage of this
technique is that the sample does not require any special treatment, however, mechanical
forces can damage the sample. The last technique, electron microscopy, uses an electron
beam to image the object and magnifies it using electromagnetic fields [34]. It provides high
resolution but sample preparation takes a long time and cannot be done on living samples.

The data obtained from the image acquisition techniques are processed in software
to provide quantitative results [24]. The analysis of the results depends on the advances
of the algorithms and processing of the software used. In general, the applications of
these software include analyzing the stained tissues, gels, and obtaining the physical and
morphological data of the sample [35]. After capturing the sample with the microscope, the
software initiates the segmentation process, where the object is located and the boundaries
are drawn along the object [36]. The main goal of this process is to simplify the image
for quantification. Phenotype quantification is the critical step that follows, the software
manages to quantify the image and obtain data such as sample size, distances between
the objects, spatial distributions, and in the case of live imaging, tracking the sample
movement [2,4]. Phenotypes and data collected from experiments conducted by scientists
have also been collected and categorized in shared databases [27]. These databases provide
an avenue for users to browse and inquire about experiments and for other scientists to
develop more efficient analysis software. Additional experiments like western bot, FACs,
and PCR along with the imaging data provide scientists with a better understanding of the
biological data.
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In this paper, we propose a new, easy, and efficient method to classify immune cells
using electrical characterization techniques. The method allows for full differentiation
between DCs and MACs. We believe that distinguishing between these cells using electrical
characterization supported by image processing will ensure better classification of the
innate immune cells during their steady state and inflammatory conditions in different
tissues while playing different roles.

2. Methods

Two classification approaches are used to distinguish between the different innate
immune cells: image processing and electrical characterization. The two approaches are
illustrated in Figure 2. Cell differentiation by electrochemical characterization is based on
the capacitance values, which are derived from current and voltage readings of cell samples.
On the other hand, cell differentiation using image processing is based on analyzing the
area, cell count, and morphology of visual data to distinguish the innate immune cells
based on their size and morphological differences.

Suspension
| 1
Electrochemical .
Characterization Image Processing
Area, Count,
Current, Voltage Morphology
Capacitance Size, Morphology

] |

Cell Differentiation

Figure 2. The two approaches for innate immune cell differentiation.

It should be noted that the markers used to specify each type of immune cell are not
specific for one type of cell and this leads to the huge drawback of cross-referencing.
Table 1 summarizes the markers used and the specificity for each marker [31,37-40].

Table 1. Markers used for immune cells and their specifications.

Marker Specificity Ref.
CD83 Marker for mature DCs and very weak for THP-1 [31]
CD197 Receptor for T-cells, B cells, Natural killer cells and DCs [37]
HLA-DR Recognizes T cells, DCs, MACs, and B cells [38]
CDl1c Subset of B cells and DCs [39]
CDl1l1c For monocytes, MACs, DCs, Natural killer cells, T and B cells [40]

Both experiments began with biological differentiation of cells and their preparation
in suspensions. THP-1 was first cultured in RPMI-1640 media, then differentiated into
DCs and MACs. Human monocytic THP-1 cell line (ATCC, Manassas, VA, USA) [41] were
cultured in RPMI-1640 media supplemented with 10% fetal bovine serum (FBS), 1% sodium
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pyruvate, 0.01% of mercaptoethanol, and 1% penicillin/streptomycin at 37 °C, 5% CO,,
and 95% humidity.

Next, cell differentiation was carried out based on the protocol by Berges et al.,
using the activators specified [42]. For the DCs, THP-1 cells were harvested by cen-
trifugation, then resuspended in culture medium supplemented with 10% FBS at a con-
centration of 2 x 10° cells/mL and transferred to a final volume of 20 mL into 200-mL
tissue culture flasks. To induce differentiation, rhIL-4 (200 ng = 3000 IU/mL), rhGM-
CSF (100 ng/mL = 1500 IU/mL), rhTNF-« (20 ng/mL = 2000 IU/mL), and 200 ng/mL
ionomycin were added to the FBS- free media.

For the macrophages, the differentiating and activation protocols of THP-1-derived
MACs were adapted and modified from Genin et al. [43]. THP-1 cells were terminally dif-
ferentiated into uncommitted MACs (MPMA) with 300 nM phorbol 12-myristate 13-acetate
(PMA; Sigma-Aldrich, Darmstadt, Germany) in RPMI 1640 media without the FBS supple-
ment. After six hours, differentiating media were removed. The cells were then washed
with phosphate-buffered saline (PBS) and rested for 24 h in RPMI 1640 without FBS sup-
plement and PMA. Afterward, cells were activated for 48 h into pro-inflammatory MACs
(Mpps/1pny) by adding 10 pg/mL lipopolysaccharide (LPS; Sigma, St. Louis, MO, USA)
and 20 ng/mL IFNYy (Biolegend, San Diego, CA, USA), or into anti-inflammatory MACs
(Mm11-4/11-13) With 20 ng/mL interleukin 4 (IL-4; Biolegend, USA) and 20 ng/mL interleukin
13 (IL-13; Biolegend, USA).

2.1. Flow Cytometry

To validate the differentiation of monocytes, fluorescent surface markers were eval-
uated using flow cytometry, based on their surface self-antigens. Cultured cells were
washed, suspended at 3 x 10* in 200 pL cold FACS solution (DPBS; Gibco-Invitrogen, San
Diego, CA, USA) and incubated with FITC- or PE-conjugated monoclonal antibodies or
appropriate isotypic controls for 30 min. Cells were then washed twice and resuspended
in 300 uL of cold FACS solution. Stained cells were analyzed with (BD Accuri C6 plus).
Cell debris was excluded from the analysis by setting a gate on forward and side scatter
that included only cells that were viable. Results were processed using FlowJo Software
(version 7).

2.2. Image Acquisition and Processing

The image processing method consists of analyzing the cells based on visual data
supported by their morphological and structural differences. Images were captured using
an Olympus Fluorescent Microscope and quantified using Image] software (National
Institute of Health, Gaithersburg, MD, USA) [44]. The software was used to obtain the ratio
of THP-1 to DCs, THP-1 to MACs, and the average area of the three types of cells. Image]
software segments the images, recognizes the cells, differentiates between the different
types of cells, and automatically calculates the area.

2.3. Electrochemical Measurement

For the electrochemical approach, measurements were performed using the uSTAT
400 potentiostat (Metrohm DropSens, Oviedo, Spain) [45]. This was a portable BiPotentio-
stat/Galvanostat with maximum measurable current and potential of 40 mA and +4V,
respectively. It can be used for voltammetric, amperometric, or potentiometric measure-
ments. It has connectors that allow for connection to screen printed or coaxial electrodes
and can be used with a one- or two-working electrode configuration. It connects to a PC
via USB or Bluetooth.

All measurements were carried out at room temperature. The electrochemical mea-
surements were controlled using Dropview software. Prior to the experiments, two opti-
mizations were performed: (1) identify the optimum step potential (Estep) and scan rate
(Srate); and (2) determine the best electrode option between the chip and coaxial cable.
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2.3.1. System Optimization for Egtep and Srate

To find the optimum of Syate, the voltage was swept from —0.9 V to 0.9 V while Egtep
was kept constant at 0.002 V and the Syate was varied from 0.004 V/s to 2 V/s. An optimum
Srate 0f 0.004 V /s was selected, which allowed for accurate data (this value of Sy,te limits
the non-Faradic current and therefore background noise, which affects the sensitivity of the
voltammetry system [46]), sufficient current flow, and absence of time-dependent charging
and discharging effects. This value gave the highest capacitance resolution, which can aid
with distinguishing between cells.

Second, both Egtep and Syate values were varied simultaneously from 0.009 V to 0.01 V
and from 0.009 V/s to 2 V/s, respectively. It was found that corresponding low values
did not allow for proper current flow and high values of Syt did not allow for sufficient
charge of the sample. Additionally, equal values of Egtep and Siate did not provide the
correct shape for the cyclic voltammogram. Hence, from the experiments, the optimum
values of Estep and Sate Were selected as 0.002 V and 0.04 V/s, respectively.

2.3.2. System Optimization for Electrode Selection

The screen printed electrode was tested for its performance. It comprised three
electrodes: a working electrode, reference electrode and counter electrode. The sample was
applied to all electrodes and then the electrode was connected to the DropSens machine
via a port with silver contacts. It was found that although the screen printed electrode is
low cost, disposable, and can give results for low volumes, current flow in the samples
experienced interference, and as a result, not all cells were charged. Instead, a coaxial
cable was used. The coaxial cable is easy to clean between trials and most importantly,
guarantees equal current flow throughout the sample.

Using the coaxial cable, the DropSens machine was configured for two electrode
measurements with one electrode used as the working electrode and the other electrode
used as the reference/counter electrode. The cable is an open ended coaxial adaptor with
inner and outer conductor electrode dimensions of 2 mm and 5 mm, respectively, and a
length of 7 mm, which allows for a sample volume of 500 pL. Both electrodes are made
from Nickel. The coaxial cable was secured to ensure stability during measurements. The
electrolyte used was the RPMI full media supplemented with 10% FBS.

2.3.3. Measurement Procedure

Once optimization was completed, cyclic voltammetry measurements were performed
between 0.9 V to —0.9 V, Egtep of 0.002 V and Syate of 0.04 s per step using the coaxial
cable. Cells were prepared using RPMI full media supplemented with 10% FBS. After the
activation process, cells were centrifuged and prepared at different dilutions from 10 to
10° per 500 pL. This was carried out by first counting the cells using a hemocytometer, then
diluting them to the necessary concentrations. Data were extracted directly from drop view
using the cyclic voltammetry technique. The results exported were current vs. voltage.

After extracting the current vs. voltage data, the capacitance of the biological cells
was determined using MATLAB code based on the fact that the capacitive current is
proportional to the rate of change of the potential with the constant of proportionality
equal to the capacitance, as shown in Equation (1).

do(t)

i(t) = C—

@

where Q(t) is the time-dependent charge; C is the capacitance in farads; and V(t) is the
time dependent voltage in volts.

2.4. Statistical Analysis

All measurements were performed at least three times, and the results represent
the mean =+ standard deviation. A two-tailed Student’s t-test with a significance level of
0.05 was also performed.
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3. Results and Discussion

The main goal of this work was to find a way to identify immune cells without the
drawback of cross-referencing. For flow cytometry, cells were selected by a gating process.
Debris were excluded and only stained cells were selected. The results are plotted in the
histogram shown in Figure 3. Cell surface markers for CD83, CD197, HLA-DR, CDlc, and
CD11c expression on THP-1 cells and the differentiated DCs and MACs were analyzed.
Two sample t tests were performed with a p-value of 0.05. The p-values are tabulated in the
Appendix A in Table Al.

NN

CD83 CD197 HLA-DR

Florescent Markers

STHP-1 @DC BMAC

Figure 3. Average mean fluorescent intensity of different cell markers for THP-1, DCs, and MACs with S.E.M bars obtained
for three measurements. Cultured cells were washed, suspended at 3 x 10% in 200 pL cold FACS solution (DPBS; Gibco-
Invitrogen) and incubated with FITC- or PE-conjugated monoclonal antibodies or appropriate isotypic controls for 30 min.
Cells were then washed twice and resuspended in 300 pL of cold FACS solution. Stained cells were analyzed with BD
Accuri C6 plus. Cell debris was excluded from the analysis by setting a gate on forward and side scatter that included only

cells that are viable.

To begin with, CD83 represents an important marker that is specific for DCs. However,
our results showed that there is no significant difference between DCs and THP-1 or
MAC:s, and this is supported by a study undertaken by D. Ferenbach and J. Hughes and
others [4,47]. On the other hand, CD197 expression only showed differences between
MACs against THP-1 and DCs against THP-1. This can be attributed to CD197 being a
marker for antigen presenting cells, however, it cannot classify between the different types
of antigen presenting cells. Regarding HLA-DR marker expression, it presented on all
the three types of immune cells [37,38], hence, we could see no difference with the flow
cytometry results. CD1c is a marker for DCs, this is supported by our results as they can
classify DCs from MACs, but not from THP-1 cells. However, CD11c is a marker for all
three cells [39] and as per our results, there were no differences between these cells, using
this marker. Hence flow cytometry analyzes the data by giving statistical significance to
values but fails to interpret it into biological significance, thus failing to give an identity to
the immune cells [31].

The morphology and structure of the three types of immune cells identified using the
image segmentation approach for electrical characterization are demonstrated in Figure 4.
The THP-1 cells can be easily distinguished from DC by their round structure without
elongations. Once activated, the non-adherent THP-1 cells differentiate to adherent cells
that are morphologically different from their inactive forms. On the other hand, MACs and
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DCs take more space to spread out due to the larger size of the former and the presence of
dendrites in the latter, as shown in Figure 4.

A B C

Figure 4. (A) THP-1 Immune cells before differentiation. THP-1 was first cultured in RPMI-1640
media, then differentiated into DCs and MACs. Human monocytic THP-1 cell line (ATCC, Manassas,
VA, USA)35 were cultured in RPMI-1640 media supplemented with 10% fetal bovine serum (FBS),
1% sodium pyruvate, 0.01% of mercaptoethanol, and 1% penicillin/streptomycin at 37 °C, 5% CO,,
and 95% humidity. (B) DCs and (C) MACs after differentiation, respectively. DCs were differentiated
based on the Berges et al. protocol. To induce differentiation rhIL-4 (200 ng = 3000 IU/mL) and rhGM-
CSF (100 ng/mL = 1500 IU/mL), thTNF-« (20 ng/mL = 2000 IU/mL), and 200 ng/mL ionomycin
were added to the FBS-free media. For the macrophages, the differentiating and activation protocols
of THP-1-derived macrophages were adapted and modified from Genin et al. [37]. THP-1 cells were
terminally differentiated into uncommitted macrophages (MPMA) with 300 nM phor-bol 12-myristate
13-acetate (PMA; Sigma-Aldrich, Germany) in RPMI 1640 media without FBS supplement. Afterward,
cells were activated for 48 h into pro-inflammatory macrophages (MLPS/IFNY) by adding 10 pg/mL
lipopolysaccharide (LPS; Sigma, USA) and 20 ng/mL IFNYy (Biolegend, San Diego, CA, USA), or
into anti-inflammatory macrophages (MIL-4/1L-13) with 20 ng/mL interleukin 4 (IL-4; Bio-legend,
USA) and 20 ng/mL interleukin 13 (IL-13; Biolegend, USA). THP-1 cells have a round shape and are
suspended in the media, DCs are attached and spread their dendrites in the flask. MACs are also
adherent, but without the elongations of the DCs. (D-F) show the selection undertaken in Image]
software for the calculation of the area of the THP-1, DCs, and MACs, respectively.

Figure 4D-F shows the detailed selection of immune cells using the software. The
software highlights the morphological differences (it marks the outside border of the cell
yellow). After the selection of each cell, the software automatically calculates the area of
the cell. Results were obtained from three different images to statistically compare the area
of each cell. Figure 5 shows a summary of the results. The averages were obtained for
measurements conducted on 200 cells of each type. The MACs were found to have the
largest area and the THP-1s were the smallest due to their rounded shape. These results
are supported by findings in the literature [48,49].
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Figure 5. The calculated average area of each cell with S.E.M bars. MACs have the largest area,
followed by DCs, and finally THP1 cells.

For electrochemical characterization, the DropSens technology was used to obtain
the I-V curves for the three immune cells. The results are shown in Figure 6 for different
cell concentrations. The current versus time and voltage versus time results are shown in
Figure 7. When the positive voltage is applied, the cell suspensions begin to oxidize near
the working electrode, this results in an increase in anodic current. This occurs until a peak
potential of 0.9 V, wherein a peak anodic current is recorded. After this, a reductive scan is
applied, that is, the applied potential is reduced, causing a re-reduction of the oxidized
suspension. In other words, the reducing potential now results in a cathodic current
(increasingly negative current). At a maximum negative potential of —0.9 V, the maximum
cathodic current is recorded (maximum negative current). Although reduction peaks at
—0.2 V were observed for all experiments, the regions of maximum and minimum potential
were of more interest because the peaks corresponded to the sample concentrations [46].
The peak anodic and cathodic currents had equal magnitude and opposite sign. As
the potential is increased positively again, the oxidation and increasing flow of anodic
current repeats.
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Figure 6. I-V curve for the three types of cells using drop sense technology. (A) THP1, (B) DCs, (C) MACs. There were no
clear differences between the three graphs. RPMI full media supplemented with 10% FBS was used to dilute the cells. It
was also used as the media. Measurements were conducted using a two nickel electrode configuration, scan range of —0.9 V
to 0.9 V and a scan rate of 0.04 V/s.
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Figure 7. Current versus time and voltage versus time curves for the three types of cells from the drop sense technology.
(A) THP-1, (B) DCs, (C) MACs. RPMI full media supplemented with 10% FBS used to dilute the cells. It was also used as
the media. Measurements were conducted using a two nickel electrode configuration, scan range of —0.9 Vto 0.9 V and a
scan rate of 0.04 V/s.

However, since the voltammogram results showed no significant difference within
the three types of cells hence, the capacitance was pursued as a means of identification
and differentiation. Capacitance measurements have been shown to be a reliable marker
for tracking cell surface area and therefore cell size [50]. The graphs of the extracted
capacitance are shown in Figure 8.
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Figure 8. Capacitance—time curve for the three types of cells before media de-embedding (removing the value of media
from the rest of the samples) (A) THP-1, (B) DCs, (C) MACs. Capacitance values were extracted using MATLAB, based on
the fact that the capacitive current measured is proportional to the rate of change of the applied potential with the constant
of proportionality equal to the capacitance. There is no consistent trend between the concentration and capacitance.

Comparing the three plots, it was noticed that only THP-1 cells displayed the expected
trend of increased capacitance with increasing concentration. Electrochemical sensors
react with the analyte under test to produce an electrical signal proportional to the analyte
concentration [51]. The inconsistency with DCs and MACs was likely due to the lack of a
homogenous suspension as cells might not have fully differentiated. Therefore, to obtain
a better picture of the capacitance data, the value of the media was de-embedded from
the other samples, that is, each concentration value was divided by the corresponding
media value. Additionally, because electronic measurements of conductive solutions are
often affected by ionic effects like electrode polarization that occurs within the Debye
screening length of the solution, de-embedding can mitigate this effect since the elec-
trode polarization is localized and remains constant for a particular ion concentration
and device geometry [52]. Figure 9 displays the data for the three immune cells after the
de-embedding process.
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Figure 9. Capacitance-time curve for the three types of cells after media de-embedding (A) THP-1, (B) DCs, (C) MACs.
De-embedding was performed by diving each of the concentration values in Figure 8 by their corresponding media value.
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From the initial capacitance plot (Figure 8), it was seen that the capacitance peaked
at about 29.2 s for all experiments. Therefore, the values of the capacitance for this time
measurement were extracted from the de-embedded data and compared as shown in
Figure 10. As expected for each cell type, there was a general increase in capacitance
with concentration. This is illustrated in Figure 10A. This is attributed to the fact that
an increase in the number of cells results in an increase in total surface area and since
the area is directly proportional to capacitance, an increase in capacitance is observed.
Although a clear distinction between the MACs and DCs can be seen (the MACs have
a larger capacitance and therefore are larger and the DCs have a lower capacitance and
therefore are smaller) to more clearly differentiate between all three cell types and by-pass
the inconsistency at the 10° concentration, the average capacitance for three concentrations
was plotted as shown in Figure 10B. It should be noted that the reason for the discrepancy at
10° was attributed to errors in pipetting or sample preparation. It is therefore recommended
that several concentrations be used for proper validation. Additionally, more accurate
results can be obtained by using polished, well cleaned electrodes and smaller sample
volumes for greater sensitivity.
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Figure 10. Capacitance vs. concentration for the three types of cells after the de-embedding process. (A) Capacitance
versus concentration at 29.2 s where maximum capacitance occurs for each of the cell types. (B) Average capacitance for the
three concentrations with S.E.M error bars. MACs had the highest values and DCs had the lowest values, consistent with

the literature.

The results showed that the lowest average value of capacitance was for THP-1
(0.83 uF), followed by DCs (0.93 puF), and finally, the largest capacitance was reported for

287



Sensors 2021, 21, 5886

the MACs (1.01 uF). This corresponds to an increasing cell size from THP-1 to DCs to
MAC:s, consistent with the results reported in Figure 6 and in the literature. Although
from the results the distinction is possible with only the lowest concentration, the authors
recommend the use of the three lowest concentrations used in this paper at a minimum.
These concentration ranges are comparable to those used for flow cytometry, for example,
Bio-Rad recommends concentrations of 10°~107 cells/mL [53].

The assay described in this study can be practically functionalized by creating a
compact battery powered and/or directly powered sensing unit and a control unit. The
sensing unit will comprise two electrodes separated by a gap into which the specimen can
be loaded via pipette. When voltage is applied to the electrode, the corresponding resultant
current can be measured by the electrodes. The sensing unit will connect to the control unit
where voltage value and step size can be controlled or swept. Once cyclic voltammetry
measurements are performed, software in the control unit can perform further processing
on the extracted current and voltage data to calculate the capacitance of the sample under
test. The results could then be displayed in the control unit graphical user interface or to a
PC via USB/wirelessly for further processing.
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Appendix A. Supplementary Description of Datasets
Appendix A.1. Supplementary Materials for Flow Cytometry Experiments

For the flow cytometry results, a two-tailed Student 's f-test with a significance level
of 0.05 was also performed. The p values are reported in Table Al. Significance was
determined for p-values p < 0.05.

Table Al. Statistical analysis of the flow cytometry results. p values for two sample ¢-tests using
unequal variance were determined using a significance level of 0.05.

Marker THP-1 to DC THP-1 to MAC DC to MAC
CD83 0.37 0.04 0.06
CD197 0.04 0.00 0.50

HLA-DR 0.42 0.92 0.40
CDl1c 0.21 0.06 0.79
CDl1l1c 0.72 0.04 0.03

Appendix A.2. Supplementary Materials for System Optimization for Estep and Srate

To prepare the system for electrochemical measurements, two optimization steps were
conducted to determine the best values for Siate and Estep. Srate determines the rate of
voltage ramping and Estep defines the difference in voltage between two points at different
distances from the source of energy. First, to find the optimum of Srate, the voltage was
swept from —0.9 V to 0.9 V while Egtep was kept constant at 0.002 V and the Syate was varied
from 0.004 V/s to 2 V/s. Results for specific values are shown in Figure Al.
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Figure Al. Electrochemical system optimization results for varying Srate. (A) Estep = 0.002 and Sate = 0.004, (B) Estep = 0.002
and Srate = 0.04; (C) Estep = 0.002 and Syate = 1.
Second, both Estep and Spate values were varied simultaneously from 0.009 V to 0.01 V
and from 0.009 V/s to 2 V/s, respectively. Results for specific values are shown in Figure A2.
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Figure A2. Electrochemical system optimization results for simultaneous varying of Syate and Ejate. (A) Estep = 0.009 and
Srate = 0.009; (B) Estep = 0.1 and Srate = 0.1; (C) Estep = 0.01 and Srate = 2.
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Abstract: The COVID-19 global pandemic has wreaked havoc on every aspect of our lives. More
specifically, healthcare systems were greatly stretched to their limits and beyond. Advances in
artificial intelligence have enabled the implementation of sophisticated applications that can meet
clinical accuracy requirements. In this study, customized and pre-trained deep learning models based
on convolutional neural networks were used to detect pneumonia caused by COVID-19 respiratory
complications. Chest X-ray images from 368 confirmed COVID-19 patients were collected locally. In
addition, data from three publicly available datasets were used. The performance was evaluated in
four ways. First, the public dataset was used for training and testing. Second, data from the local and
public sources were combined and used to train and test the models. Third, the public dataset was
used to train the model and the local data were used for testing only. This approach adds greater
credibility to the detection models and tests their ability to generalize to new data without overfitting
the model to specific samples. Fourth, the combined data were used for training and the local dataset
was used for testing. The results show a high detection accuracy of 98.7% with the combined dataset,
and most models handled new data with an insignificant drop in accuracy.

Keywords: COVID-19; chest X-ray; deep learning; convolutional neural networks; diagnosis

1. Introduction

Coronavirus disease 2019 (COVID-19), which is caused by the SARS-CoV-2 virus, has
wreaked havoc on humanity, especially healthcare systems. For example, recently, the
wave of infections in India has caused a great number of families to seek care at home due
to a lack of intensive care units. Worldwide, millions have succumbed to this pandemic
and many more have suffered long- and short-term health problems. The most common
symptoms of this viral syndrome are fever, dry cough, fatigue, aches and pains, loss of
taste/smell, and breathing problems [1]. Other less common symptoms are also possible
(e.g., diarrhea, conjunctivitis) [2]. Infections are officially confirmed using real-time reverse
transcription polymerase chain reaction (RT-PCR) [3]. However, chest radiographs using
plain chest X-rays (CXRs) and computerized tomography (CT) play an important role
confirming the infection and evaluating the extent of damage incurred to the lungs. CXR
and CT scans are considered major evidence for clinical diagnosis of COVID-19 [4].

Chest X-ray images are one of the most common clinical diagnosis methods. However,
reaching the correct judgement requires specialist knowledge and experience. The strain
on medical staff worldwide incurred by the COVID-19 pandemic, in addition to the already
inadequate number of radiologists per person worldwide [5], necessitates innovative
accessible solutions. Advances in artificial intelligence have enabled the implementation of

Sensors 2021, 21, 5940. https:/ /doi.org/10.3390/521175940

https:/ /www.mdpi.com/journal/sensors
293



Sensors 2021, 21, 5940

sophisticated applications that can meet clinical accuracy requirements and handle large
volumes of data. Incorporating computer-aided diagnosis tools into the medical hierarchy
has the potential to reduce errors, improve workload conditions, increase reliability, and
replace by enhance the workflow and reduce diagnostic errors by providing radiologists
with references for diagnostics.

The fight against COVID-19 has taken several forms and fronts. Computerized so-
lutions offer contactless alternatives to many aspects of dealing with the pandemic [6].
Some examples include robotic solutions for physical sampling, vital sign monitoring,
and disinfection. Moreover, image recognition and Al are being actively used to identify
confirmed cases not adhering to quarantine protocols. In this work, we propose an auto-
matic diagnosis artificial intelligence (Al) system that is able to identify COVID-19-related
pneumonia from chest X-ray images with high accuracy. One customized convolutional
neural networks model and two pre-trained models (i.e., MobileNets [7] and VGG16 [8])
were incorporated. Moreover, CXR images of confirmed COVID-19 subjects were collected
from a large local hospital and inspected by board-accredited specialists over a period of
6 months. These images were used to enrich the limited number of existing public datasets
and form a larger training/testing group of images in comparison to the related literature.
Importantly, the reported results come from testing the models with this completely foreign
set of images in addition to evaluating the models using the fused aggregate set. This
approach exposed any overfitting of the model to a specific set of CXR images, especially
as some datasets contain multiple images per subject.

2. Background and Related Work

COVID-19 patients who have clinical symptoms are more likely to show abnormal
CXR [9]. The main findings of recent studies suggest that these lung images display
patchy or diffuse reticular-nodular opacities and consolidation, with basal, peripheral,
and bilateral predominance [10]. For example, Figure 1 shows the CXR of a mild case
of lung tissue involvement with right infrahilar reticular-nodular opacity. Moreover,
Figure 2 shows the CXR of a moderate to severe case of lung tissue involvement. This CXR
shows right lower zone lung consolidation and diffuse bilateral airspace reticular-nodular
opacities, which are more prominent on peripheral parts of lower zones. Similarly, Figure 3
shows the CXR of a severe case of lung tissue involvement. This is caused by diffuse
bilateral airspace reticular-nodular opacities that are more prominent on peripheral parts
of the lower zones, and ground glass opacity in both lungs predominant in mid-zones and
lower zones. On the other hand, Figure 4 shows an unremarkable CXR with clear lungs
and acute costophrenic angles (i.e., normal).

Figure 1. CXR of COVID-19 subject showing mild lung tissue involvement.
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Figure 2. CXR of COVID-19 subject showing moderate to severe lung tissue involvement.

Figure 3. CXR of COVID-19 subject showing severe lung tissue involvement.

Figure 4. Normal CXR.

AlI, with its machine learning (ML) foundation, has taken great strides toward deploy-
ment in many fields. For example, Vetology Al [11] is a paid service that provides Al-based
radiograph reports. Similarly, the widespread research and usage of Al in medicine have
been observed for many years now [12,13]. Al-based web or mobile applications for auto-
mated diagnosis can greatly aid clinicians in reducing errors, provide remote and cheap
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diagnosis in poor undermanned underequipped areas, and improve the speed and quality
of healthcare [14]. In the context of COVID-19 radiographs, ML methods are feasible to
evaluate CXR images to detect the aforementioned markers of COVID-19 infection and the
adverse effects on the state of the patients” lungs. This is of special importance considering
the fact that health services were stretched to their limits and sometimes to the brink of
collapse by the pandemic.

Deep learning Al enables the development of end-to-end models that learn and
discover classification patterns and features using multiple processing layers, rendering it
unnecessary to explicitly extract features. The sudden spread of the COVID-19 pandemic
has necessitated the development of innovative ways to cope with the rising healthcare
demands of this outbreak. To this end, many recent models have been proposed for COVID-
19 detection. These methods rely mainly on CXR and CT images as input to the diagnosis
model [15,16]. Hemdan et al. [17] proposed the COVIDX-Net deep learning framework
to classify CXR images as either positive or negative COVID-19 cases. Although they
employed seven deep convolutional neural network models, the best results were 89%
and 91% F1-scores for normal and positive COVID-19, respectively. However, their results
were based on 50 CXR images only, which is a very small dataset to build a reliable deep
learning system.

Several existing out-of-the-box deep learning convolutional neural network algorithms
are available in the literature [18], and they have been widely used in the COVID-19
identification literature with and without modifications [15]. They provide track-proven
image detection and identification capabilities in many disciplines and research problems.
Some of the most commonly used models are: (1) GoogleNet, VGG-16, VGG-19, AlexNet,
and LetNet, which are spatial exploitation-based CNNs. (2) MobileNet, ResNet, Inception-
V3, and Inception-V4, which are depth based CNNSs. (3) Other models include DenseNet,
Xception, SqueezeNet, etc. These architectures can be used pre-trained with deep transfer
learning (e.g., Sethy et al. [19]), or customized (e.g., CoroNet [20]).

Rajaraman et al. [21] used iteratively pruned deep learning ensembles to classify
CXRs into normal, COVID-19, or bacterial pneumonia with a 99.01% accuracy. Several
models were tested and the best results were combined using various ensemble strategies
to improve the classification accuracy. However, such methods are mainly suitable for
small numbers of COVID-19 images as the computational overhead of multiple model
calculations is high, and there is no guarantee that they will retain their accuracy with
large datasets [15,22]. Other works for three-class classification using deep learning were
also proposed in this context. The studies by Ucar et al. [23], Rahimzadeh and Attar [24],
Narin et al. [25], and Khobahi et al. [26] classify cases as COVID-19, normal, or pneumonia.
Others replace pneumonia with a generic non-COVID-19 category [27,28], or severe acute
respiratory syndrome (SARS) [29]. Less frequently, studies distinguish between viral and
bacterial pneumonia in a four-class classification [18]. A significant number of studies
conducted binary classification into COVID-19 or non-COVID-19 classes [19,30]. Although
these methods achieved high accuracies (i.e., greater than 89%), the number of COVID-19
images from the total dataset is small. For example, Ucar et al. [23] used 45 COVID-19
images only. Moreover, subsequent testing of the models used a subset of the same dataset,
which may give falsely improved results, especially as same subject may have multiple
CXR images in the dataset.

3. Material and Methods
3.1. Subjects

The selected images were acquired from locally recorded chest X-rays of COVID-19
patients in addition to a publicly available dataset [31]. The combination of two datasets
adds greater credibility to the developed identification models. This is because train-
ing/validation was performed on one set, and the testing was performed on a different
dataset. In addition, it increased the size of the dataset, which is a problem with most of
the related literature.
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The first group of images was obtained locally at King Abdullah University Hospital,
Jordan University of Science and Technology, Irbid, Jordan. The study was approved by
the institutional review board (IRB 91/136/2020) at King Abdullah University Hospital
(KAUH). Written informed consent was sought and obtained from all participants (or
their parents in case of underage subjects) prior to any clinical examinations. The dataset
included 368 subjects (215 male, 153 female) with a mean =+ SD age of 63.15 + 14.8. The
minimum subject age was 31 months and maximum age was 96 years. All subjects had
at least one positive RT-PCR test and were in need of hospital admittance as determined
by the specialists at KAUH. The hospital stay ranged from 5 days to 6 weeks with some
subjects passing away (exact number not available). The CXR images were taken after
at least 3 days of hospital stay to ensure the existence of lung abnormalities, which were
confirmed by the participating specialists. The CXR images were reviewed using the
MicroDicom viewer version 3.8.1 (see https:/ /www.microdicom.com/, accessed on: 28
May 2021), and exported as high-resolution images (i.e., 1850 x 1300 pixels).

The second group of images is publicly available [31], and was produced by the fusion
of three separate datasets: (1) COVID-19 chest X-ray dataset [32]. (2) The Radiological
Society of North America (RSNA) dataset [33]. (3) The U.S. National Library of Medicine
(USNLM) Montgomery County X-ray set [34]. At the time of performing the experiments,
the dataset contained 2295 CXR images (1583 normal and 712 COVID-19), which were used
in this work. However, the dataset is continuously being updated [35].

3.2. Deep Learning Models

Deep learning is the current trend and most prolific Al technique used for classification
problems [15]. It has been used widely and successfully in a range of applications, especially
in the medical field. The next few paragraphs describe the models used in this work.

1. 2D sequential CN CNN models are one class in the deep learning literature. They are
a special class of feedforward neural networks that have been found to be very useful
in analyzing multidimensional data (e.g., images) [18]. However, CNNs conserve
memory relative to multilayer perceptrons by sharing parameters and using sparse
connections. The input images are transformed into a matrix to be processed by the
various CNN elements. The model consists of several alternating layers of convolution
and pooling (see Table 1), as follows:

Convolutional layer

The convolutional layer determines the features of the various patterns in the input.
It consists of a set of dot products (i.e., convolutions) applied to the input matrix. This
step creates an image processing kernel containing a number of filters, which outputs
a feature map (i.e., motifs). The input is divided into small windows called receptive
fields, which are convolved with the kernel using a specific set of weights. In this
work, a 2D convolution layer was used (i.e., using the CONV2D class).

Pooling layer

This down-sampling layer reduces the spatial dimensions of the output volume by
reducing the number of feature maps and network parameters. Moreover, pooling
helps in improving the generalization of the model by reducing overfitting [36]. The
output from this step is a combination of features invariant to translational shifts and
distortions [37].

Dropout

Overfitting is a common problem in neural networks. Hence, dropout is used as a
strategy to introduce regularization within the network, which eventually improves
generalization. It works by randomly ignoring some hidden and visible units. This
has the effect of training the network to handle multiple independent internal repre-
sentations.
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Fully connected layer

This layer accepts the feature map as input and outputs nonlinear transformed output
via an activation function. This is a global operation that works on features from
all stages to produce a nonlinear set of classification features. The rectified linear
unit (ReLU) was used in this step as it helps in overcoming the vanishing gradient
problem [38].

Table 1. Summary of the CNN models used in this work.

Layer Output Shape No. of Parameters
CONV2D-1 (None, 150, 150, 32) 2432
MaxPooling2D-1 (None, 75, 75, 32) 0
Dropout-1 (None, 75, 75, 32) 0
Conv2D-2 (None, 75, 75, 64) 51,264
MaxPooling2D-2 (None, 37, 37, 64) 0
Dropout-2 (None, 37, 37, 64) 0
Flatten (None, 87,616) 0
Dense-1 (None, 256) 22,429,952
Dropout-3 (None, 256) 0
Dense-2 (None, 1) 257

2. Pre-trained models

MobileNets

The MobileNets model [7] is a resource-limited CNN architecture, which was chosen
in this work with an eye on future mobile applications for disease diagnosis. It
uses depth-wise separable convolutions, which significantly reduces the number of
parameters. MobileNets was open-sourced by Google to enable the development of
low-power, small, and low-latency applications for mobile environments.

VGG-16

VGG-16 [8] is a representative of the many models existing in the literature. It has
gone through various refinements to improve its accuracy performance and resources
consumption (e.g., VGG-19). The VGG model is a spatial exploitation CNN with
19 layers, 3 x 3 filters (computationally efficient), 1 x 1 convolution in between the
convolution layers (for regularization), and max-pooling after the convolution layer.
The model is known for its simplicity [18].

3.3. Model Implementation

The models were implemented and evaluated using the Keras [39] high-level appli-
cation program interface (API) of TensorFlow 2 [40]. The experiments were run on a Dell
Precision 5820 Tower (Dell Inc., Round Rock, TX, USA) with Intel Xeon W-2155, 64GB of
RAM (Intel Inc., Santa Clara, CA, USA), and 16GB Nvidia Quadro RTX5000 GPU (Nvidia
Inc., Santa Clara, CA, USA).

4. Results and Discussion

Four different approaches were used to evaluate the three deep learning models. First,
only the public dataset was used to train and test the models. Second, the fused dataset
was used to test and train the models (i.e., the sets were combined together and treated as
one without any distinction). Third, the public dataset was used for training the model
and the locally collected dataset was used for testing. This approach shows the ability
of the model to generalize to new data and avoid overfitting to specific images/subjects.
Fourth, the combined (i.e., fused) dataset was used for training and local dataset for
testing. Table 2 shows the number of training and testing subjects used for each approach.
Note that the local dataset did not include normal CXR images as those are abundantly
available. The confusion matrices resulting from testing were analyzed to produce several
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standard performance measures. These include accuracy, specificity, sensitivity, F1-score,
and precision as defined in Equations (1)—-(5).

Table 2. The number of training and testing subjects used for each of the evaluation approaches.

Approach Training Testing
COVID-19 Normal COVID-19 Normal
Public dataset 545 1266 167 317
Fused dataset 842 1266 238 317
Public dataset for training and local dataset for testing 545 1266 368 317
Fused dataset for training and local dataset for testing 842 1266 368 317
ty +t
Accuracy = —F—T" M
tp+ fut+ fp+tu
Sensitivit id )
ensitivity =
tp + f n
Specificity = i 3)
tn + fp
1 2%ty @
score = —————————
2xty+fp+fu
» ty
Precision = (5)

tp+ fp

where t,: true positive, represents the subjects correctly classified in predefined (positive)
class. f;: false negative, represents the subjects misclassified in the other (negative) class.
fp: false positive, represents the subjects misclassified in predefined (positive) class. t:
true negative, represents the subjects correctly classified in the other (negative) class.

Figure 5 shows the training and validation loss for the two model training methods.
The 2D CNN model required more epochs to reach the appropriate accuracy improvement,
but the training was smooth with little oscillation. Moreover, the other two models required
very few epochs (e.g., VGG-16 required one epoch with the fused dataset, hence the missing
plot). Figure 6 shows the training and validation accuracy. The figures generally show that
the models are able to properly fit training data and improve with experience. It is clear
that the MobileNets and VGG-16 models achieve superior and high classification accuracy.

The testing dataset (i.e., the locally collected COVID-19 CXR images) is different from
the training dataset.

Training and validation loss Training and validation loss
—— ftraining —— ftraining

10 validation 10 validation
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06
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(a) CNN trained using the public dataset. (b) CNN trained using the fused dataset.

Figure 5. Cont.
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(c) MobileNets trained using the public dataset. ~ (d) MobileNets trained using the fused dataset.

Training and validation loss

07 = ftraining
~— validation
06

05
04

03

02

01 \
o
000 025 050 075 100 125 150 175 200

epoch
(e) VGG-16 trained using the public dataset.

Figure 5. Training and validation loss for the three architectures trained using the public and the
fused datasets. Note that VGG-16 trained on the fused dataset ended after one epoch only, hence
there is no corresponding figure. The models are able to properly fit training data and improve with
experience (as seen in validation curves).
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(a) CNN trained using the public dataset. (b) CNN trained using the fused dataset.

Figure 6. Cont.
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(d) MobileNets trained using the fused dataset.
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Figure 6. Training and validation accuracy for the three architectures trained using the public and
the fused datasets. Note that VGG-16 trained on the fused dataset ended after one epoch only, hence
there is no corresponding figure. The models are able to properly fit training data and improve with
experience (as seen in validation curves).

4.1. 2D Sequential CNN

Tables 3 and 4 show the values for the performance evaluation metrics and the
corresponding confusion matrices for the 2D sequential CNN model. The architecture
achieved the best accuracy of 96.1% over all training and testing methods. However, the
accuracy drops sharply to 79% when the testing was carried out using a database (i.e., the
locally collected COVID-19 CXR images) different from the training one (i.e., the public
dataset). This indicates the failure of the model to generalize to new data, and that there
may be subtle or obscure differences between the images from the two datasets. This is
further confirmed by the fact that normal images (see Table 4c), which were taken from
the public dataset, were mostly correctly classified. The source of errors came from false
negative classifications (i.e., type II errors). However, the accuracy improved to 89.3%,
when a separate part of the testing dataset was included in the training. Still, most of the
errors were type II (see Table 4d). This is a model performance mismatch problem of the
custom CNN, which is typically caused by unrepresentative data samples. However, since
the other models were trained on the same data, then this reason could be discounted. The
MobileNets and VGG-16 models were employed using transfer learning, which inherently
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reduces overfitting. Moreover, these models are larger and deeper than the custom CNN,
which due to overparameterization can lead to better generalization performance [41].

Table 3. Performance evaluation metrics for the customized CNN model. Acc.: Accuracy, Sens.: Sensitivity, Spec.: Specificity,

Prec.: Precision.

Dataset Acc. Sens. Spec. F1-Score Prec.

Public dataset 96.1% 92.8% 97.8% 94.2% 95.7%

Fused dataset 93.7% 85.7% 99.7% 92.1% 99.5%

Public dataset for training and local dataset for testing 79% 62.8% 97.8% 76.2% 97.1%
Fused dataset for training and local dataset for testing 89.3% 80.4% 99.7% 89% 99.7%

Table 4. The confusion matrices resulting from the customized CNN model. Positive refers to
confirmed COVID-19 case.

(a) Public Dataset

Predicted diagnosis

Positive Negative
Positive 155 12
Actual Negative 7 310
(b) Fused Public and Local Datsets
Predicted diagnosis
Positive Negative
Positive 204 34
Actual Negative 1 316
(c) Public Dataset for Training and Local Dataset for Testing
Predicted diagnosis
Positive Negative
Positive 231 137
Actual Negative 7 310
(d) Fused Dataset for Training and Local Dataset for Testing
Predicted diagnosis
Positive Negative
Positive 296 72
Actual Negative 1 316

4.2. MobileNets

Tables 5 and 6 show the values for the performance evaluation metrics and the
corresponding confusion matrices for the MobileNets model. It achieved accuracy values
between 97.1% and 98.7%, which shows stability when faced with new data, and the ability
to generalize. Errors, although few, were caused by misclassifying COVID-19 CXR images
as normal. However, the type I errors increased slightly (Table 6c¢).

Table 5. Performance evaluation metrics for the customized MobileNets model. Acc.: Accuracy, Sens.: Sensitivity, Spec.:

Specificity, Prec.: Precision.

Dataset Acc. Sens. Spec. F1-Score Prec.

Public dataset 98.3% 98.2% 98.4% 97.6% 97%
Fused dataset 97.1% 92.8% 99.4% 95.7% 98.7%
Public dataset for training and local dataset for testing 98% 97.6% 98.4% 98.1% 98.6%
Fused dataset for training and local dataset for testing 98.7% 98.1% 99.4% 98.8% 99.4%
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Table 6. The confusion matrices resulting from the customized MobileNets model. Positive refers to
confirmed COVID-19 case.

(a) Public Dataset

Predicted diagnosis

Positive Negative
Positive 164 3
Actual Negative 5 312
(b) Fused Public and Local Datsets
Predicted diagnosis
Positive Negative
Positive 155 12
Actual Negative 2 315
(c) Public Dataset for Training and Local Dataset for Testing
Predicted diagnosis
Positive Negative
Positive 359 9
Actual Negative 5 312
(d) Fused Dataset for Training and Local Dataset for Testing
Predicted diagnosis
Positive Negative
Positive 361 7
Actual Negative 2 315
4.3. VGG-16

Tables 7 and 8 show the values for the performance evaluation metrics and the
corresponding confusion matrices for the VGG-16 model. The model achieved the best
accuracy over all models (i.e., 99%) when the fused dataset was used for training and the
local dataset was used for testing, which indicates its ability to capture various properties
from different sets. However, it fell behind MobileNets slightly when the training dataset
(i.e., the public dataset) was different from the testing dataset. Moreover, the model
achieved the highest accuracy (98.7%) with the fused dataset for both training and testing.
However, MobileNets achieved slightly higher accuracy when trained and tested with the
public dataset alone. Such slight performance differences when the dataset is augmented
with data from other sources may need further investigation. The confusion matrices show
that, for VGG-16, the majority of errors are type I over all evaluation methods, which is
different from the CNN or MobileNets errors (i.e., type II). Improving VGG-16’s handling
of normal images should cut the error rate significantly.

Table 7. Performance evaluation metrics for the customized VGG-16 model. Acc.: Accuracy, Sens.: Sensitivity, Spec.:

Specificity, Prec.: Precision.

Dataset Acc. Sens. Spec. F1-Score Prec.
Public dataset 97.1% 98.2% 96.5% 95.9% 93.7%
Fused dataset 98.7% 99.2% 98.4% 98.5% 97.9%
Public dataset for training and local dataset for testing 97.2% 97.8% 96.5% 97.4% 97%
Fused dataset for training and local dataset for testing 99% 99.5% 98.4% 99.1% 98.7%
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Table 8. The confusion matrices resulting from the customized VGG-16 model. Positive refers to
confirmed COVID-19 case.

(a) Public Dataset

Predicted diagnosis

Positive Negative
Positive 164 3
Actual Negative 11 306
(b) Fused Public and Local Datsets
Predicted diagnosis
Positive Negative
Positive 236 2
Actual Negative 5 312
(c) Public Dataset for Training and Local Dataset for Testing
Predicted diagnosis
Positive Negative
Positive 360 8
Actual Negative 11 306
(d) Fused Dataset for Training and Local Dataset for Testing
Predicted diagnosis
Positive Negative
Positive 366 2
Actual Negative 5 312

4.4. Comparison to Related Work

Table 9 shows a performance comparison of deep learning studies in binary classi-
fication using CXR images. Some studies did not report the accuracy as their datasets
were largely imbalanced. Although most related studies reported high accuracy values,
a common theme among them is the lack of a significant number of COVID-19 cases for
this type of classification model. For example, Narin et al. [25] mention that the excess
number of normal images resulted in higher accuracy in all of those models. This is useless
considering the fact that very few differences exist among normal images of lungs across
different subjects. Similarly, Hemdan et al. [17] stated the limited number of COVID-19
X-ray images as the main problem in their work. Moreover, the dataset that we included
in this work contains only one image per subject, unlike other datasets which include
more images than subjects. In addition, special consideration was paid to the type of cases
included in the dataset, because the effect of COVID-19 on the lungs does not necessarily
appear immediately with symptoms and it may take a few days.

The literature on deep learning for medical diagnosis in general and COVID-19
classification in particular is vast and expanding. However, large datasets are required to
truly have reliable generalized models. We believe that development of mobile and easy
access applications that capture and store data on the fly will enable better data collection
and improved deep learning models.
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Table 9. Performance comparison of deep learning studies in binary COVID-19 diagnosis (i.e., positive or negative) using

CXR images. Some studies did not report the accuracy as their datasets were largely imbalanced. All websites were last

accessed on 28 May 2021.
Study No. of COVID-19 Images and Database Method Accuracy
Singh et al. [42] 50, https:/ /github.com/ieee8023/covid-chestxray-dataset MADE-based CNN 94.7%
Sahinbas et al. [43] 50, https://github.com/ieee8023/covid-chestxray-dataset VGG16, VGG19, ResNet, DenseNet, InceptionV3 80%
Medhi et al. [44] 150, https://www.kaggle.com/bachrr/covid-chest-xray Deep CNN 93%
Narin et al. [25] 341, https:/ /github.com/ieee8023/ covid-chestxray-dataset InceptionV3, ResNet50, ResNet101 96.1%
Sethy et al. [19] 48, https:/ /www.kaggle.com/andrewmvd/convid19-X-rays most available models (e.g., DenseNet, ResNet) 95.3%
Minaee et al. [30] 71, https:/ / github.com/ieee8023 / covid-chestxray-dataset ResNet18, ResNet50, SqueezeNet, DenseNet-121 -
Maguolo et al.[45] 144, https:/ / github.com /ieee8023/covid-chestxray-dataset AlexNet -
Hemdan et al. [17] 25, https:/ /github.com/ieee8023 /covid-chestxray-dataset VGG19, ResNet, DenseNet, Inception, Xception 90%
This work 712+368, doi.org/10.21227 /x2r3-xk48+local 2D CNN, VGG16, MobileNets up to 99%

5. Conclusions

Global disasters bring people together and spur innovations. The current pandemic
and the worldwide negative consequences should present an opportunity to push forward
technological solutions that facilitate everyday life. In this study, we have collected chest X-ray
images from hospitalized COVID-19 patients. These data will enrich the current available
public datasets and enable further refinements to the systems employing them. Moreover,
deep learning artificial intelligence models were designed, trained, and tested using the locally
collected dataset as well as public datasets, both separately and combined. The high accuracy
results present an opportunity to develop mobile and easy access applications that improve
the diagnosis accuracy, reduce the workload on strained health workers, and provide better
healthcare access to undermanned/underequipped areas. Future work will focus on this
avenue as well as development and evaluation of multiclass classification models.
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RT-PCR real-time reverse transcription polymerase chain reaction
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Abstract: We developed a new mobile ultrasound device for long-term and automated bladder
monitoring without user interaction consisting of 32 transmit and receive electronics as well as a
32-element phased array 3 MHz transducer. The device architecture is based on data digitization and
rapid transfer to a consumer electronics device (e.g., a tablet) for signal reconstruction (e.g., by means
of plane wave compounding algorithms) and further image processing. All reconstruction algorithms
are implemented in the GPU, allowing real-time reconstruction and imaging. The system and the
beamforming algorithms were evaluated with respect to the imaging performance on standard
sonographical phantoms (CIRS multipurpose ultrasound phantom) by analyzing the resolution, the
SNR and the CNR. Furthermore, ML-based segmentation algorithms were developed and assessed
with respect to their ability to reliably segment human bladders with different filling levels. A
corresponding CNN was trained with 253 B-mode data sets and 20 B-mode images were evaluated.
The quantitative and qualitative results of the bladder segmentation are presented and compared to
the ground truth obtained by manual segmentation.

Keywords: POCUS; multichannel system; channel data; bladder monitoring; POUR; machine-
learning; segmentation

1. Introduction

Ultrasound imaging is a frequently used method for postoperative monitoring of
the urinary bladder. Depending on the surgical context, different clinical conditions that
need close monitoring can occur. Post-operative urinary retention (POUR) is a frequent
problem for various reasons (e.g., intravesical blood clotting) that can lead to bladder
overdistension and needs rapid detection and medical intervention. On the other hand,
invasive procedures such as catheterization present significant discomfort for patients and
can lead to infections or even trauma of the urinary tract. In contrast, ultrasound imaging
is fully non-invasive and has already shown its potential for bladder monitoring [1-3].
Accurate bladder volumes can be extracted from 3D ultrasound data; however, reliable
qualitative information about potential bladder overdistension can already be derived from
2D B-mode (brightness mode) ultrasound images.

In order to efficiently prevent POUR and directly initiate therapeutic measures if an
increased amount of urine or blood is detected in the urinary bladder, the bladder should
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be monitored at frequent intervals, which is not possible in a clinical environment where
ultrasound investigations are mostly performed using standard sonography equipment
based on hand-held probes. Accordingly, when defining a tool for ideal postoperative
follow-up and the prevention of related complications in the 24—48 h period after surgery,
different challenges and requirements arise. First, the system must be portable, such that
the mobility of the patient is ensured. Second, the probe must be self-adhesive or pad-like
(in contrast to hand-held probes that require the presence of a sonographer). Third, (image
or signal) data must be automatically analyzed to retrieve diagnostic features that are
relevant for the identification of a potential complication (e.g., a bladder volume above
a defined threshold in the context of POUR monitoring or specific scattering properties
as a result of blood clots in the bladder). In a research context, where the optimal signal
and image processing still needs to be defined, this results in a need for RF or even better
pre-beamformed channel data access. In particular, the third requirement allows the use of
analysis methods beyond pure image-based segmentation and classification. We recently
showed in other applications that machine learning approaches can be applied to raw
radio-frequent ultrasound data prior to image formation for classification tasks with a
high accuracy [4]. Radio-frequent data with a high dynamic range (16-bit amplitude
quantization) and ultrasonic wave phase information at high digitalization rates of up to
50 MHz contain a lot more informational content than scan-converted ultrasound images.
During scan conversion, typically more than 90% of the raw ultrasound wave information
is lost during image formation and cannot be used in image-based processing.

To the best of our knowledge, there are no systems available that fulfil the above
defined requirements. The use of advanced classification approaches is not possible with
classical clinical sonography systems, as they do not provide access to radio frequent
ultrasound data. Ultrasound systems for research applications such as the Vantage Ultra-
sound System (Verasonics, Inc. Redmond, WA, USA), the ULA-OP [5], the systems from
the Technical University of Denmark [6] or the DiPhAS by Fraunhofer IBMT (Sulzbach,
Germany) [7] provide access to this type of data, but are mostly not certified for clinical use,
and more importantly, they are complex, bulky and costly devices. The latest generation
of point of care ultrasound (POCUS) devices, such as the Butterfly iQ or Vscan [8] by GE
has decreased the costs by an order of magnitude when compared to high-end sonography
machines, and can be used in bedside settings due to their miniaturization. However, the
availability of care staff still represents a limiting factor when it comes to frequent moni-
toring postoperatively. Finally, dedicated devices for bladder monitoring such as DFree
(Triple W, Tokyo, Japan) or SENS-U [9] (Novioscan, Nijmegen, The Netherlands) have a
particular focus on incontinence management. These systems directly generate bladder
filling level-related parameters and do not provide access to the underlying ultrasound sig-
nals. Other ultrasound systems optimized for urological applications such as BladderScan
(Verathon, WA, USA) measure the bladder volume, but are based on hand-held probes,
which limits their suitability for continuous monitoring.

In summary, all these devices optimized for the daily clinical routine (or for home-care
settings in the case of DFree or SENS-U) are difficult to utilize in research applications,
where customized signal and image processing algorithms need to be applied to the data.
In particular, machine-learning based approaches have been shown to have tremendous
potential for automated segmentation of ultrasound data [10], and have been reported
in particular for breast imaging [11], coronary arteries [12], and thyroid [13] or different
tumors [14]. In comparison to these applications, where the anatomy is more complex
and the contrast difference is reduced, bladder segmentation represents an ideal use case
for ML-based approaches due to the low echogenity and the resulting high contrast to
surrounding tissue. Multiple ultrasound imaging devices, including mobile ones like
Butterfly iQ+ (Butterfly Network Inc, Guilford, CT, USA), already include automated
bladder segmentation and volume estimation, but the shape of the hand-held transducer
does not allow long-time monitoring as a wearable.
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In light of the somewhat contrary requirements of an ideal urinary bladder mon-
itoring system that also provides full data access, and thereby can be flexibly used in
research applications, we developed a new portable ultrasound system (mobile ultrasound
equipment—MOoUSsE). Despite being validated in this first application in the context of
bladder monitoring, the MoUSE can also be used as a general-purpose ultrasound research
system since full access to the transmit and receive pipeline is provided.

2. Materials and Methods
2.1. Portable Multichannel Electronics with Research Interface

The MoUSE is a compact ultrasound system integrated into a 3D printed housing
(Figure 1) with dimensions of 184 mm x 123 mm X 33 mm and a total weight of 610 g, thus
ensuring its portability. It is driven by a 12V medical power supply which can be replaced
by lithium-ion battery packs for future fully mobile applications. Detailed specifications
are given in Table 1. All system functionalities, including generation of transmit signals,
amplification and digitization of receive signals, storage and communication (via USB 3.0)
to a PC/tablet controlling the device are implemented on the same main printed circuit
board (PCB). Data management, communication and sequence control are handled in the
integrated ZYNQ-7 FPGA. An on-board low voltage (LV) power supply generates the
required power levels for the logic components.

Table 1. MoUSE system performance and features.

Dimensions 184 mm x 123 mm x 33 mm
Weight 610 g
Power consumption 12W
12 V DC, medical certified power supply, lithium-ion battery packs
Power supply for future fully mobile applications
Transmitter 32 channels, Tri-state pulser, max voltage + 100 V
32 channels
Receiver Bandwidth: 100 kHz-10 MHz
v Gain: up to 44.3 dB
Up to 50 MHz sampling rate with a resolution of 12 Bit per sample
Interface USB 3.0
RAM 8 GBit internal RAM
Imaging Plane wave compounding, custom algorithms can be implemented
Software Clinical type user interface USPilot, SDK for programming system
from 3rd party applications in C#/C++/Matlab
Transducer 32 elements
ot Pitch = 500 um
specifications

Centre F\frequency = 3 MHz

A compact high voltage (HV) power supply that generates the 4= 100 V of transmit
voltage for each of the octal (8-channel) transmit receive ICs was implemented on a second
PCB mounted on the main PCB. A frequency range of 100 kHz-10 MHz was defined as the
transmit bandwidth.

In principle, transmit signals can be freely defined within the limits of the tri-state
programmable ICs, for instance, using pulse width modulation (PWM); however, only
rectangular bursts with adjustable length and frequency have been implemented in the
software so far. The internal system clock of 160 MHz is used for the definition of the
transmit signals. Receive signals are digitized with up to 50 MSa/s with a resolution of
12 bit and are transferred as pre-beamformed channel data via USB 3.0 to a PC/tablet for
image reconstruction. The receive data can be amplified by up to 44.3 dB with different
linear or customized TGC settings. No analog preprocessing is performed on-board
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beyond bandpass filtering and (optional) data accumulation (corresponding to averaging)
for improvement of the signal to noise ratio (SNR). Interfaces for wireless (IEEE 802.11
b/g/n (1 x 1)) communication and the transfer of pre-beamformed channel data are
foreseen in the hardware design but not yet implemented. The system uses a sleep mode
to switch off the transceiver ICs for stand-by between long-term measurements to reduce
power consumption.

(a bl

Figure 1. MoUSE system overview with close up of 32 element transducer housing (a), transducer
with cable, custom connector PCB and disposable patch (b), MoUSE PCB tested on phantoms prior
to integration (c), and the final system integrated with passive cooling in a 3D printed housing (d).

2.2. Transducer Design and Manufacturing

The MoUSE can be driven with all kinds of 32-element transducers using the given
pinout or via transducer connection adapter. However, in the context of the first application
being used for automated bladder monitoring, a 32-element phased array transducer was
developed. The transducer properties were defined in a sound field simulation study
using the in-house developed sound field simulation software tool SCALP based on point
source synthesis (Figure 2). A pitch of 500 pm with a kerf of 50 um and element sub-
dicing were chosen as a compromise between sensitivity (profiting from larger element
size) and beam steering capabilities (decreasing with larger element size). To improve the
elevational resolution, a focusing silicon lens was applied to the element of elevational size
of 11.5 mm. The array was manufactured from a soft PZT material (3203 HD), the center
frequency was adjusted to 3 MHz and two matching layers were applied for improved
bandwidth. Connection to the MoUSE electronics was achieved by two 16-core micro-coax
cables directly soldered to the customized connector PCB, which was preferred over a
solution involving a commercial connector for the sake of compactness. The acoustic block
was finally integrated into a 3D printed cylindrical housing of 40 mm in diameter and a
height of 17.5 mm. For long-term monitoring applications, a fixation concept involving an
acoustically transparent adhesive tape could optionally be used.
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without focusing (d) and with lens focusing to 60 mm (e).

2.3. Beamforming and Software

Image reconstruction is performed in real-time using a GPU (OpenCL, Khronos Group,
Beaverton, OR, USA)-based implementation of plane wave compounding [15] approach in
the in-house developed clinical style user interface USPilot (Figure 3). Other reconstruction
methods can easily be implemented via an SDK. The number of plane wave angles, as well
as the increment can be freely selected by the user. Other transmit parameters such as the
frequency, the burst count or the voltage can be adjusted as well. On the receive side, the
data sampling rate, averaging factor and TGC can be selected.

2 Fraunhofer

Figure 3. Clinical style user interface USPilot.

The reconstruction can be adjusted in terms of the size and resolution of the recon-
struction grid (lateral and axial pixel/sample count), the speed of sound and apodization.
Furthermore, customized algorithms (e.g., bandpass filtering or alternative beamforming
approaches) can be inserted into the (real-time) reconstruction pipeline. The software
allows the visualization of reconstructed (compounded) B-scan images as well as the
pre-beamformed channel data (in time or frequency) domain, which makes it ideal not
only for clinical research, but also for educational purposes or research on reconstruction
algorithms. In addition to controlling the system via the USPilot, an open programming
interface (C#/C++/Matlab with SDK) is made available, which provides access to the
same transmit, receive and beamforming parameters as in the case of the UL A custom but
open binary data format (*.orb) is chosen for storage of the pre-beamformed and recon-
structed ultrasound data. Meta-data such as transmit and receive parameters are stored
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with the actual ultrasound data by default and import tools for Matlab/Python/C/C++
are made available.

2.4. ML-Based Segmentation Algorithm

We trained a neural network to segment the bladder into abdominal ultrasound
images and encountered two main challenges when implementing the network. On the
one hand, the limited space and computational resources available at inference time and
on the other hand, the quality of abdominal ultrasound images can be very challenging.
Figure 4 shows an example: in the left sub-figure, a (partially filled) bladder appears mainly
as a dark region in the image since little sound is reflected by the fluid. In addition, the
bladder is only partially imaged and merges seamlessly into the black area outside the
ultrasound fan. This situation is usually the case in corpulent patients. As can be seen in
the upper part of the segment, weak echoes might occur in cases where the side lobes of
the ultrasound beam intersect with the bladder tissue. A very different situation is shown
in the middle sub-figure. Here, the (almost empty) bladder is located in the middle of
the ultrasound fan. Lastly, the right sub-figure depicts a situation where other anatomical
structures, e.g., the pubic bone or the colon, generate a large dark region that might fuse
with the bladder. Please note that the appearance of different anatomical parts can be very
similar in the images.

Figure 4. Examples of bladder segmentation (yellow). Red lines in the left sub-image indicate the
borders of the ultrasound fan above which there is no valid information. (a) Partially visible bladder.
(b) Almost empty bladder near the center of the US-fan. (c) Additional dark regions due to pubic
bone shadow or colon.

We started development using a Mask-R-CNN architecture [16,17] to segment the
bladder. However, we found that the model size of approximately 0.5 GByte was way too
large for the intended purpose. A second drawback was that the network tended to overfit
to the data, since only very few images (253) were available for training. We therefore
decided to use a U-Net architecture [18] in a minimal configuration. We set the network up
to compute a 2-class segmentation (bladder, non-bladder). The original ultrasound images
(1056 x 720) were down-sampled to a resolution of 528 x 352 and reduced to a single
color channel. In total, we acquired 253 data sets (each consisting of one B-mode image),
which were acquired from 20 human volunteers as training data for the CNN. For both the
contracting and expanding paths, we used 5 successive blocks. We started with 6 channels
for the first layer and doubled the channel number with each successive layer, resulting in
a total of 96 channels at the bottleneck. For expansion we used up-sampling followed by
convolution. Training was performed using a batch size of 4 with a learning rate of 0.00002.
Using these parameters, the network converged within 400 epochs. The resulting network
was less prone to overfitting than the original attempt. We found however that the amount
of data was still too low. More importantly, we found that the network had issues in
detecting the virtual border of a scan in the image. In particular, if the ultrasound response
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for a partially imaged bladder was very weak, the resulting segment often extended into
the illegal region of the image, i.e., outside the ultrasound fan. Additionally, we often
found cases where other dark regions were segmented as bladder.

To this end, we extended the dataset by re-sampling the images so that one of the fan
sides coincided with one of the image borders. Furthermore, we flipped images and ground
truth on the vertical as well as the horizontal axis. This way we increased the number
of images by a factor of 20. Training the network using the augmented data effectively
prevented overfitting. Furthermore, and probably much more importantly, the network
learned how artifacts and the bladder differ.

For the trained network, we computed an IoU above 0.75 but below 0.9 for all images.
We checked segmentations and ground truth and found, interestingly, that the computed
segmentations were consistently tighter (smaller) than the ground truth provided by
medical experts. The ground truth segmentation was performed by one experienced
urologist using the VIA annotation tool [19]. A second experienced urologist performed
the validation of the ground truth. Consulting with the experts revealed that the network
only segmented the interior of the bladder while the experts partially included the bladder
tissue. This unintended result proved to be beneficial for the application at hand. Since we
want to estimate the bladder volume, including the tissue would lead to a systematic error
that, in particular, depends on the volume itself.

We are working on a further reduction in the network size. The original network size
was 340 MBytes. We were able to reduce its size with various pruning strategies [20] to
under 300 MBytes without significantly sacrificing the quality of the results. This size is still
too large to be run efficiently on a mobile device. Additionally, the inference times need to
be decreased significantly. Currently, the network does inference on the target device at
approximately 6.4 s per frame. Although this would be more than sufficient for a regular
check of the bladder volume, the system would not be able to perform any other tasks in
the meanwhile. In the use-case of regular checks of the bladder volume and content, such
an inference frame rate might still be acceptable for long-time monitoring. The integration
of such a model in the processing pipeline will be implemented by supporting the ONNX
model format with the C# runtime using Microsoft ML.NET in the future.

3. Results
3.1. Characterization of Electronics

The transmit and receive paths of the electronics were characterized with respect to
the bandwidth. First, for the assessment of the transmit bandwidth, an 80 mVpp sinus
signal of varying frequency from a signal generator was digitized by the electronics and
the amplitude of the digitized signal was characterized (Figure 5a). As can be seen, the
input bandwidths significantly decrease below 100 kHz and above 10 MHz. Furthermore,
we evaluated the signal fidelity by generating rectangular bursts of 3 cycles at different
frequencies (Figure 5b,c). The electrical signals were measured on the connector PCB with
an oscilloscope and minor overshooting was observed.

3.2. Transducer Characterization

For the assessment of the transducer performance, echo signals from a steel reflector
generated by excitation of individual transducer elements with a rectangular burst 1 were
evaluated. Figure 6a shows a typical time domain echo signal of one of the transducer
elements with the corresponding spectrum in Figure 6b. Each of the signals was analyzed
with respect to the maximum signal amplitude in order to compare the transmit-receive
sensitivity of the transducer elements. As can be seen in Figure 6¢, the element sensitivity
is very homogeneous with a relative standard deviation of only 5.6%.

For all elements, the maximum frequency is around 2.3 MHz with a standard deviation
of 1% (Figure 6d). The center frequency and the —6 dB bandwidth seem to vary more
strongly (Figure 6e,f); however, this is an artifact due to a frequency dip around 3 MHz
just below the —6 dB line in the spectrum (red line in Figure 6b). If we neglect this minor
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dip, the average center frequency of the transducer is 2.9 MHz with a —6 dB bandwidth of

approximately 60%.
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Figure 5. Assessment of MoUSE electronics input bandwidth (a) and signal fidelity (b,c) as a function

of frequency.
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Figure 6. Analysis of transducer performance by charaterization of pulse-echo data from a steel
reflector. Single element signals in time (a) and frequency (b) domain, where the red line depicts
the —6 dB threshold. Element sensitivity statistics (c), maximum frequency, center frequency and
bandwidth statistics (d—f).

3.3. System Characterization/Standards

In view of using the system on probands in the context of an exploratory clinical
study, the system’s compliance with respect to medical device standards was verified by
certified laboratories. In particular, the acoustic output was characterized according to IEC
60601-2-37, where the maximum pressure, the mechanical and thermal index as well as the
intensity were assessed. All parameters remain well below the threshold for diagnostic
ultrasound (e.g., MI < 0.5 and Ispra < 5 mW/cm?). Furthermore, the electrical safety was
tested according to IEC 60601-1 and the electromagnetic compatibility (e.g., immunity and
emission) was tested according to IEC 60601-1-2. The system complied with the standards
in both tests.
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3.4. Imaging Performance
3.4.1. Reconstruction Speed

When considering the achievable reconstruction speed and the system frame rate, the
data transfer from the electronics to the PC/tablet, where the GPU-based reconstruction
is implemented, represents a bottleneck, rather than the reconstruction itself. With the
used setup (Surface Pro 7 with Intel Core i7-7660U, 16GB RAM, Intel Iris Plus Graphic
640, Microsoft, Redmond, WA, USA), up to 300 frames of pre-beamformed channel data
could be transferred when a sampling rate of 40 MSa/s and an image depth of 8 cm were
chosen. Both parameters have a direct impact on the number of transferred frames per
second; however, this is not totally linear due to some communication overhead. Since
less time is needed for GPU-reconstruction than for data transfer, plane wave imaging can
be performed with 300 frames/s for the above-described parameters with 23 B-scans per
second and using compounding with 13 angles.

3.4.2. Resolution

The image resolution was characterized using wires with a diameter of 150 um
in a water tank at different depths. Pre-beamformed channel data were acquired after
transmitting 21 plane waves in an angle range of & 16°. Reconstruction was performed
offline in Matlab (The MathWorks, Inc., Natick, MA, USA) with the highest resolution to
allow better assessment of the lateral extent of the point spread function (PSF).

The FWHM (Full Width Half Maximum) was characterized as a function of depth
(wires in distances between 1 cm and 10 cm from the transducer aperture) and as a
function of the number of compounding angles (from 1 to 21). Furthermore, different
beamforming approaches were investigated from conventional delay and sum (DAS) to
coherence beamforming (COH) [21,22] or non-linear filter approaches based on signal
statistics (STD) [23].

The lateral FWHM ranges between 300-800 um depending on the chosen algorithm
for the targets closest to the aperture and between 1300-2800 um for those that are 10 cm
away. In all cases, the STD reconstruction significantly improves the lateral resolution
when compared with simple DAS. Furthermore, Figure 7 shows that increasing the number
of compounding angles does not always lead to an improved resolution. In fact, depending
on the depth, an ideal resolution is achieved with 5-10 compounding angles. This can
be explained by trailing wave artifacts, which are not taken into account in the DAS
beamforming.
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Figure 7. Lateral PSF of the MoUSE system equipped with our 32-element 3 MHz phased array
probe. (Left) FWHM as a function of plane wave compounding angle count for a constant depth, as
a function of depth for constant plane wave compounding angle count and FWHM obtained with
different reconstruction approaches. (Right) 2D plot of FWHM as a function of angle count and
depth for conventional DAS beamforming.
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3.4.3. Signal to Noise Ratio

The depth-dependent system’s SNR was characterized using data from a CIRS multi-
purpose phantom. One hundred consecutive image acquisitions were performed with the
CIRS phantom in the same position and the reconstructed, compounded and enveloped
filtered data were analyzed (prior to logarithmic compression). Each depth mean values u
and standard deviation values ¢ along a central image line in the yellow frame in Figure 8
were used to calculate the depth-dependent SNR as suggested in [24].

SNR(2) = 20-logro(u(z) /(2)) M

To achieve the ideal SNR, the data were acquired in a compounding mode with
21 angles in the range of 4= 16°. Conventional delays-and-sum beamforming without
additional contrast-enhancing filter was used to reconstruct the data.

SNR for compounding with N= 21
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Figure 8. B-mode image acquired with 21 compounding angles used for calculation of the SNR (left).
Depth-dependent SNR of compounded data (right).

3.4.4. Contrast

Assessment of the image contrast was performed by scanning lesions in a standard
ultrasound imaging phantom (CIRS multipurpose phantom Model 040GSE, CIRS, Norfolk,
VA, USA). The contrast ratio (CR) and the contrast to noise ratio (CNR) as defined in [25]
were taken as metrics for quantification of the image contrast behavior:

CR = Zo'loglo(ﬂlesion/ybck) ()

CNR = Wbck - Vlesion‘ (3)
V chkz - o—lesionz
Plane wave compounding data were acquired with a varying number of angles
between 1 and 21. The metrics were then assessed as a function of the number of com-
pounding angles. For this purpose, the mean values y and the standard deviation ¢ inside
defined image regions (red circle: lesion; yellow circle: background in Figure 9a) were
calculated.
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Figure 9. B-mode image of CIRS phantom (a) taken for assessment of CNR and CR by analysis of
lesion (red ROI) and background (yellow ROI). The x-dimension is in the lateral dimension of the
ultrasound array and the z-dimension is in the axial direction (ultrasound propagation direction).
CNR and CR (b,c) are calculated as metrics based on the mean values and standard deviations inside
the ROIs.

3.5. Segmentation

To validate the quality of the trained CNN, ultrasound B-mode images from human
bladders with different filling levels were acquired from four male volunteers with the
MoUSE system. In this first study, 20 data sets (each consisting of one reconstructed B-
mode image) were collected. None of these data sets is included in the 253 data sets used
for training of the CNN. For image acquisition, an ideal position for the probe on the
abdomen was identified based on the real-time feedback of the MoUSE system. Images
of the bladder at different filling levels were then acquired with the probe at this position.
When it comes to the beamforming approach, plane wave compounding with 21 angles
was chosen. Examples of different bladder images can be seen in Figure 10a—d. In a second
step, the images were automatically segmented using the above-described CNN. Examples
of the segmentation for four different data sets are given in Figure 10e-h, where different
situations can be identified. In Figure 10e, the upper part of the bladder, which is closest to
the probe, is not identified as part of the bladder by the CNN. This might be due to clutter
signals in this part of the image. In Figure 10f, the bladder is correctly segmented; however,
an additional surface, which does not correspond to the bladder, was identified as bladder
tissue. Figure 10g represents an ideal case with a high correlation between the ground truth
and the CNN-segmentation. Finally, Figure 10h shows a case where the bladder was not
found by the algorithm due to the really low contrast between the (compressed and almost
empty) bladder and the surrounding tissue, as can be seen in Figure 10d. Examples of the
ground truth segmentation for the cases presented above are given in Figure 10i-1.

For a qualitative analysis of the segmentation quality, the percentage of the bladder
surface that has not been identified as bladder by the CNN was assessed. Furthermore, the
image fraction that was falsely identified as bladder tissue by the algorithm was assessed
as well. Both parameters are expressed in relation to the bladder surface in the ground
truth segmentation. The process of automated analysis is shown in Figure 11. First, the
ground truth data were binarized for easy comparison with the CNN-segmentation, which
provides binarized data by default. By comparing both images, missing bladder tissue
and tissue falsely identified as bladder are identified. Finally, simple pixel counting was
used to quantify the missing and false bladder surface. The analysis shows that only a very
small tissue fraction (corresponding to 1.4% of the bladder surface) was falsely identified
as bladder tissue. On the other side, significant parts of the bladder (median of 33%) were
not recognized as such by the algorithm. As can be seen in Figure 10, this is mostly the
case where clutter artifacts appear, leading to low contrast between bladder tissue and
the background.
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Figure 10. First investigation of the combination of ultrasound B-mode images acquired with the
MoUSE system and the described CNN for automated segmentation of human bladder. (a-d)
Ultrasound B-mode data (plane wave compounding, 21 angles), (e-h) segmentation results from the
CNN, and (i-1) ground truth segmentation (performed manually by an experienced urologist).
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Figure 11. Statistical analysis of the accuracy of bladder segmentation and example of one segmen-
tation highlighting the differences between the expert ground truth and the CNN segmentation.
Areas not recognized as bladder by the CNN are marked as “missing bladder”, areas erroneously

segmented as bladder by the CNN are marked as “false bladder”. The relative fractions of “missing
and “false” bladder in the different segmented data sets are shown as histogram in the right column.

4, Discussion

We developed a new portable low-cost ultrasound research system designed for
continuous bladder imaging and characterized its (hard- and software) components in first
phantom and proband experiments to assess its potential for later use in post-operative
bladder monitoring. With dimensions of 18 x 12 x 3 cm?® and a weight of 610 g, the
system is compact enough for applications where portability is required. The ultrasound
probe was integrated into compact housing (diameter of 40 mm, height of 17.5 mm)
and equipped with a self-adhesive foil, which allows long-term use without manual
probe positioning. The system was designed, manufactured, assembled and tested in the
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ultrasound department of Fraunhofer IBMT. In the design process, the focus was set not
only on the performance but also on cost efficiency and limiting the total material cost
for the electronics to approximately €1000. The system was designed to be as flexible as
possible, and therefore it provides full control to the transmit parameters and full access to
the receive data pipeline, where receive and beamforming parameters can be selected and
custom filters and reconstruction algorithms can be integrated into the real-time pipeline.
Full data access to the receive pipeline and in particular real-time availability of the pre-
beamformed channel data (up to 300 frames/s in our study) is not provided by clinical
sonography systems and makes the system future-proof for other types of applications
such as raw radio-frequent signal processing and ML modeling. On the other hand, most
research systems are not certified for medical use. Accordingly, the combination of low-cost
and the above-described flexibility makes the MoUSsE system an ideal tool for research
and educational purposes in ultrasound imaging. In order to ease the transfer of new
ultrasound imaging approaches into clinics, the technical prerequisites such as data access
must be provided and regulatory constraints must be respected as well. For this reason,
we performed various tests according to safety standards for medical devices, such as
electrical safety, electromagnetic compatibility and acoustic safety. Compliance to these
standards was shown and the corresponding test protocols are available; this is of great
value when seeking an ethics clearance for exploratory clinical studies.

In order to cover most of the clinical applications of diagnostic ultrasound, we chose
a frequency range of 100 kHz-10 MHz as the target specification and validated the band-
width in our study. The imaging performance of the MoUSE is mainly dependent on the
transducer that is used. Our phased array probe with 32 elements represents a compromise
between opening angle and sensitivity. A smaller pitch would have been preferred since a
larger opening would have resulted, which is crucial for effective plane wave compounding.
On the other hand, given the demonstrated image depth of more than 10 cm in the standard
CIRS phantom and more than 15 cm in the human abdomen, imaging of the entire bladder
would have been difficult to achieve with a smaller aperture size generating less acoustic
energy output. The comparison of the image metrics obtained with different beamforming
approaches underlines the potential of software-based reconstruction methods, and thereby,
the need to have access to pre-beamformed channel data.

Having high-contrast image data is particularly needed when subsequent image
processing steps are performed for automated analysis of the data, such as in our first
application of bladder segmentation. We demonstrated the general functionality of our
CNN for segmentation in abdominal ultrasound images. However, the analysis showed
that a high contrast is crucial to prevent segmentation artifacts. This is underlined by
the comparison with earlier work on the use of CNNs for bladder segmentation from
ultrasound data [26,27], where a higher correlation between the automatically determined
and the manually segmented bladder volumes was obtained. However, it should be
mentioned, that the cited work was based on the use of high-end clinical ultrasound
devices, which provide higher contrast, and two orthogonal B-mode images were acquired
for obtaining quantitative values for the bladder volume [26]. The assessment of the actual
bladder volume can hardly be achieved with high accuracy using single cross-sectional
B-mode images, and therefore it is beyond the scope of the presented work. However,
the impact of the lower SNR when compared to ultrasound data acquired with high-end
clinical ultrasound machines needs to be closely investigated, particularly since the bladder
cross-sectional surface was systematically underestimated. This was due to clutter signals
occurring at the bladder border that were recognized as background tissue by the CNN.
On the other hand, background tissue was very reliably identified with very few “false
positive” areas (background tissue falsely identified as bladder).

Despite the first proof-of-concept, further investigation is needed to enhance the
performance of the overall approach. In particular, the network size needs to be improved
in order to allow better use on mobile devices with limited computing capabilities. Since
the analysis has shown the importance of SNR for the accurate segmentation and the
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potential of more sophisticated beamforming approaches for contrast improvement, the
optimization of image CR and CNR will be the focus of our future work. Furthermore, we
will investigate if training the algorithm with more diverse data (different, and in particular,
lower contrast levels) will yield higher accuracy. In summary, in applications such as the
monitoring of POUR, where a significant or even dramatic and thereby potentially harmful
increase in bladder volume can occur, the proposed approach provides sufficient sensitivity.
However, for applications where a precise quantitative assessment of the bladder volume
is needed, further enhancement of the performance is needed and will be investigated
using refined beamforming approaches and improved training of the CNN.

Finally, beyond this first study on bladder monitoring, we will seek to use MoUsE
and its unique combination of device mobility, flexibility and data access in other medical
ultrasound applications. Although the number of transmit/receive channels is currently
limited to 32, a synchronization scheme that combines several MoUSE systems for a
higher total channel count is currently under development. A wireless interface is already
available on the hardware, but is not implemented in software, which is also a work in
progress and would allow easier use in future mobile ultrasound applications. A battery-
powered version of MoUSE is in development as well. The possibility of transferring
existing classification tasks using machine learning on radio-frequent data in addition to
the image-based approach will also be investigated.
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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for
the coronavirus disease (COVID-19) pandemic, is sweeping the world today. This study investigates
the optical detection of SARS-CoV-2, utilizing the antigen-antibody binding interactions utilizing a
light source from a smart phone and a portable spectrophotometer. The proof-of-concept is shown by
detecting soluble preparations of spike protein subunits from SARS-CoV-2, followed by detection
of the actual binding potential of the SARS-CoV-2 proteins with their corresponding antigens. The
measured binding interactions for RBD and NCP proteins with their corresponding antibodies under
different conditions have been measured and analyzed. Based on these observations, a “hump or
spike” in light intensity is observed when a specific molecular interaction takes place between two
proteins. The optical responses could further be analyzed using the principle component analysis
technique to enhance and allows precise detection of the specific target in a multi-protein mixture.

Keywords: COVID-19; NC protein; optical detection; protein—protein interactions; RBD; SARS-CoV-2

1. Introduction

The world is currently facing the COVID-19 pandemic, caused by the appearance of a
novel coronavirus in the human population at the end of 2019 [1]. Within a few months,
this virus had spread to most countries across the world, infecting millions (>21 million as
of 17 August 2020) and causing >770,000 deaths [2]. Rapid detection methods, independent
of lab settings, have been identified as top priorities in promoting epidemic prevention
and control. Currently, the molecular technique of quantitative real time polymerase chain
reaction (qQRT PCR) is the gold standard for SARS-CoV-2 detection using samples from
respiratory secretions [3-7]. However, this time-consuming and cumbersome procedure
involves long processing times (days) for results [8]. Several other molecular assays have
been developed to detect SARS-CoV-2, such as enzyme-based assays, such as ELISAs,
and rapid tests that aim to detect either antibodies against the virus or the viral antigen
themselves [4]. Nevertheless, most of these antigen-antibody-based assays have failed
quali