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Potential of Satellite Spectral Resolution Vegetation Indices for
Estimation of Canopy Chlorophyll Content of Field Crops:
Mitigating Effects of Leaf Angle Distribution

Xiaochen Zou 1,*, Jun Jin 1 and Matti Mõttus 2

1 Technology Innovation Center for Integration Applications in Remote Sensing and Navigation, Ministry of
Natural Resources, School of Remote Sensing and Geomatics, Nanjing University of Information Science &
Technology, Nanjing 210044, China

2 VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
* Correspondence: xiaochen.zou@nuist.edu.cn

Abstract: Accurate estimation of canopy chlorophyll content (CCC) is critically important for agri-
cultural production management. However, vegetation indices derived from canopy reflectance are
influenced by canopy structure, which limits their application across species and seasonality. For
horizontally homogenous canopies such as field crops, LAI and leaf inclination angle distribution or
leaf mean tilt angle (MTA) are two biophysical characteristics determining canopy structure. Since
CCC is relevant to LAI, MTA is the only structural parameter affecting the correlation between CCC
and vegetation indices. To date, there are few vegetation indices designed to minimize MTA effects
for CCC estimation. Herein, in this study, CCC-sensitive and MTA-insensitive satellite broadband
vegetation indices are developed for crop canopy chlorophyll content estimation. The most efficient
broadband vegetation indices for four satellite sensors (Sentinel-2, RapidEye, WorldView-2 and
GaoFen-6) with red edge channels were identified (in the context of various vegetation index types)
using simulated satellite broadband reflectance based on field measurements and validated with
PROSAIL model simulations. The results indicate that developed vegetation indices present strong
correlations with CCC and weak correlations with MTA, with overall R2 of 0.76–0.80 and 0.84–0.95
for CCC and R2 of 0.00 and 0.00–0.04 in the field measured data and model simulations, respectively.
The best vegetation indices identified in this study are the soil-adjusted index type index SAI (B6,
B7) for Sentinel-2, Verrelts’s three-band spectral index type index BSI-V (NIR1, Red, Red Edge) for
WorldView-2, Tian’s three-band spectral index type index BSI-T (Red Edge, Green, NIR) for RapidEye
and difference index type index DI (B6, B4) for GaoFen-6. The identified indices can potentially be
used for crop CCC estimation across species and seasonality. However, real satellite datasets and
more crop species need to be tested in further studies.

Keywords: broadband vegetation indices; chlorophyll content; leaf angle distribution; Sentinel-2;
WorldView-2; RapidEye; GaoFen-6

1. Introduction

Foliar chlorophyll content is a very important photosynthetic pigment that governs
light absorption and conversion to chemical energy [1,2]. Canopy chlorophyll content
(CCC), defined as the total amount of chlorophyll in plant leaves per unit ground area [3,4],
is related to plant photosynthetic productivity and light use efficiency [5], and contributes
to the vegetation response to the environment [6,7]. It is usually calculated as the product
of leaf chlorophyll content (Cab) and leaf area index (LAI) [8,9], defined as the total of the
single-sided leaf area per area unit of horizontal ground [10]. From the perspective of
agricultural applications, the instantaneous value and dynamics of CCC indicate the crop
growth potential and actual development [11–13]. CCC is also strongly correlated with

Remote Sens. 2023, 15, 1234. https://doi.org/10.3390/rs15051234 https://www.mdpi.com/journal/remotesensing
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plant nutritional status and crop yield [8,14–17], so it needs to be accurately determined for
precision agriculture.

CCC drives visible light absorption and transmission within a canopy and hence
it can be detected by optical remote sensing technology [8]. Instead of laborious time-
consuming regional scale in situ measurements, spatially and temporally resolved CCC
can be determined from remote sensing data. The numerous approaches developed for
this [18,19] can be categorized into two general types, physically- and empirically-based
methods. Physically-based CCC estimation approaches mainly rely on canopy radiative
transfer models to determine the relationship between CCC and radiometric signals [20,21].
The empirical approach is to establish a statistical relationship between the measured CCC
and observed spectral features [4,22]. One of the commonly used empirical approaches is
via the use of spectral vegetation indices, mathematical combinations of remote sensing
instrument band readings designed to enhance the sensitivity of the outcome to variables
of interest and to minimize the impact of other factors [23–25].

Due to its simplicity, adaptability and computational efficiency, many vegetation in-
dices have been designed to estimate CCC [26], such as the MERIS terrestrial chlorophyll
index (MTCI) [27], normalized difference red edge index (NDRE) [28] and red edge chloro-
phyll index (CIred-edge) [3]. CCC is related to specific spectral features making it easier
to detect using narrow-band indices [2,11,29,30]. Specifically, chlorophyll is visible in the
reflectance spectrum between 680 and 760 nm (known as the red edge) [31,32], which can
be efficiently utilized for estimating CCC [33]. For large-scale practical applications, the use
of low-cost (or in many cases, free for the end user) spatially and temporally continuous
multispectral satellite data simplify the design of the vegetation index and makes estima-
tion of CCC feasible regionally or globally [9]. Fortunately, modern multispectral satellite
sensors are equipped with red edge bands, such as Sentinel-2, RapidEye, WorldView-2
and GaoFen-6. Sentinel-2-based vegetation indices have been assessed for CCC estimation
for several crop species, including potato, soybean, maize and winter wheat [33–35], but
RapidEye, WorldView-2 and GaoFen-6 have received little attention in the estimation of
crop CCC.

In addition to leaf optical properties, affected strongly by chlorophyll absorption in
the visible part of the spectrum, remotely sensed canopy reflectance is affected by ground
(soil) and canopy structure [36–40]. The canopy of field crops is usually assumed to be
horizontally uniform, which means that its architecture can be simply characterized by the
amount of leaves and their orientations within a canopy. These can be characterized using
two physical parameters—LAI and leaf inclination angle distribution or leaf mean tilt angle
(MTA), the leaf area-weighted average of all the leaf inclination angles in a canopy. To a
large extent, MTA is a species-specific characteristic, and it has been reported to have more
variation among species than within species [41–44]. In addition, MTA is affected by biome,
genotype and growth conditions. As LAI is included in the computation of CCC, MTA is
the only independent canopy structure parameter affecting the relationship between CCC
and canopy reflectance in horizontally homogeneous canopies.

There are only a few studies on the removal or minimization of the influence of MTA
on CCC estimation from satellite remote sensing data [45], mainly because of a lack of
measured MTA and corresponding spectral observations, either true satellite measurements
or the equivalent hyperspectral data resampled to simulate satellite spectral bands. To
address this shortcoming, the objectives of this study are to (1) evaluate the performance of
four multispectral satellites with red edge channels for CCC estimation of field crops with
diverse canopy architectures using vegetation indices and (2) develop CCC-sensitive and
MTA-insensitive vegetation indices for CCC estimation.

2. Materials and Methods

2.1. Study Area and Field Measurements

The empirical datasets acquired in this study include airborne imaging spectroscopy
data acquisitions and field measurements at Viikki Experimental Farm (60.224◦N, 25.021◦E),

2
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Helsinki, Finland (Figure 1). The experimental area is located in southern Finland with
a mean annual temperature of 6 ◦C. The study site area is approximately 4 km × 4 km
with an altitude no more than 10 m above sea level. The study site encompasses six crop
species, faba bean, narrow-leafed lupin, turnip rape, wheat, barley and oat. Three crop
biophysical and biochemical parameters were collected including LAI, Cab and MTA from
162 plots. The maximum plot size is 50 m × 12 m and the minimum is 2 m × 10 m. A
detailed description of the field plots is given in [46].

Figure 1. A map of the field site and aerial imagery of field plots.

Canopy MTA was measured using the photographic method developed by [47] and
validated and extended to field crops [46,48]. Leaf inclination angle measurements were
taken on 6th July 2012. The photographs of leaves were acquired outside of the field plot
approximately one meter away from the plot edge with a Nikon D1X digital camera. The
photograph of the canopy was acquired using the camera attached and leveled on a tripod
during acquisitions under windless conditions. The camera height was adjusted depending
on crop height, ranging from 30 cm to 50 cm to cover the whole plant vertically. With the
help of ImageJ software, leaf angles were visually measured from photographs for each
species. Leaf inclination is defined so that increasing MTA indicates more vertical leaves.
As suggested in [49], 75–100 leaves are sufficient to represent the leaf inclination angle
distribution. This method keeps the MTA measurement error within 4◦ [48]. Full details of
the method are given by [46].

The leaf area index of field crops was indirectly measured using a SunScan SS1 probe
(Delta-T Devices). The 1 m long SunScan probe with 64 radiation microsensors was inserted
below the crop canopy from the plot edge orthogonally to plant rows to minimize the
row effects. An additional beam fraction sensor recorded the incident direct and diffuse
downwelling irradiances simultaneously outside of field plots. The leaf area index was
calculated through a canopy radiative transfer (RT) model implemented in the SunScan
device. A one-parameter ellipsoidal leaf angle distribution model was assumed in this RT
model, and the leaf clumping effect was not considered for this instrument. The ellipsoidal
LAD model input parameter χ can be derived using Equation (16) in [50] as:

χ = −3 +
(

MTA
553

)−0.6061
(1)

MTA was assumed to be a species-specific characteristic. The details of the LAI
calculation algorithm are fully described in SunScan user manual version 2.0.

The Cab of leaves was measured with a portable SPAD-502 device in the field. Based on
the size of the field plot, 15–30 leaves were randomly sampled. This device acquired dimen-
sionless readings that were converted into absolute Cab values using the formula [51,52]:

Cab

(
μg cm−2

)
= 0.0893

(
10SPAD0.625

)
(2)

3
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which has achieved a strong correlation between laboratory-determined Cab and SPAD-502
readings for field crops (soybean, maize and barley). After the LAI and Cab were acquired,
the canopy CCC was calculated as:

CCC (μg cm−2) = Cab × LAI (3)

Airborne imaging spectroscopy data of the study plots were acquired using an AISA
Eagle II spectrometer on 25 July 2011 under cloudless conditions between 09:36 and 10:00
local time. The instrument provided data in 64 spectral bands covering the spectral range
between 400 and 1000 nm, and the resolution of the spectra was between 9 and 10 nm.
The average flight altitude was 600 m and achieved a ground spatial resolution of ap-
proximately 0.4 m. Radiometric correction of the raw image was completed using Specim
CaliGeo software. The radiometrically calibrated imagery was georectified using Parge
(ReSe Applications Schläpfer) by means of ground control points and the navigation data
acquired during the flight. Atmospheric correction was carried out with ATCOR-4 (ReSe
Applications Schläpfer). The plot scale spectra were visually extracted from each plot and
averaged. A detailed description of imaging spectroscopy data acquisition is given in [46].

2.2. Validation Datasets from the PROSAIL Model Simulation

Canopy reflectance was simulated with the widely used PROSAIL model, which is
a coupled model of the leaf reflectance model PROSPECT-5 [53] and canopy reflectance
model SAILH [54,55]. In the PROSAIL model, homogeneous randomly distributed leaves
are presumed to form a one-dimensional turbid medium [54], which is suitable for sim-
ulating the canopy reflectance of field crops. PROSPECT-5 simulates leaf reflectance and
transmittance from 400 nm to 2500 nm as a function of six input parameters: Cab, the meso-
phyll structure parameter (N), carotenoid content (Ccar), brown pigment content (Cbrown),
equivalent water thickness (Cw), and dry matter content (Cm). In addition to leaf optical
properties, eight canopy structural parameters were used as inputs for PROSAIL: LAI, MTA
(assuming an ellipsoidal distribution), solar zenith angle (ts), observer zenith angle (to),
relative azimuth angle (ϕ), soil reflectance, fraction of diffuse radiation (skyl) and hot spot
size parameter. The PROSAIL model inputs, summarized in Table 1, were set in accordance
with in-situ measurement conditions and scientific literature: Cab was set between 20 and
90 μg cm−2, in steps of 5 μg cm−2, Ccar was set to 20% of the Cab value based on the
LOPEX93 dataset [56], Cw was fixed to 0.001, N was fixed to 1.55—a mean value for various
crops [57], Cm was set to 0.005 g cm−2—the mean value of the six crop species [58–61],
Cbrown was fixed to 0 assuming no senescent leaves during the measurements. LAI was
set between 1 and 5 with a 0.1 interval, and MTA ranged from 20 to 70 with a 2-degree
interval. Based on the conditions of airborne imaging spectroscopy data acquisition, the
three illumination and view geometry parameters ts, to and ϕ were set to 49.4◦, 9.0◦ and
90.0◦, respectively. The 6S atmosphere radiative transfer model was used to calculate the
parameter skyl [62]. The hot spot parameter was fixed to 0.01 and the soil reference was
measured using a handheld Analytical Spectral Devices spectroradiometer (ASD). In total,
15,990 canopy spectra between 400 nm and 1000 nm were simulated and resampled to
satellite broadband reflectance.

4
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Table 1. The variable settings of the PROSAIL model.

Model Variable Value or Range

PROSPECT

Leaf structure parameter (N) 1.55
Leaf chlorophyll content (Cab) 20:5:90 μg cm−2

Equivalent water thickness (Cw) 0.001 cm
Dry matter content (Cm) 0.005 g cm−2

Brown pigment content (Cbp) 0 μg cm−2

Carotenoid content (Ccar) Linked to Cab (0.2 × Cab) μg cm−2

SAIL

Leaf area index (LAI) 1, 1.1, . . . , 5.0
Leaf mean tilt angle (MTA) 20, 22, . . . , 70◦

Hot spot size 0.01
Solar zenith angle (ts) 49.4◦

Observer zenith angle (to) 9◦
Azimuth angle (ϕ) 90◦

Fraction of diffuse radiation (skyl) 6S model (Wm−2 nm−1)
Soil reflectance ASD measurement

2.3. Satellite Broadband Reflectance Simulations

The airborne imaging spectroscopy data and PROSAIL model-simulated canopy
reflectance in Visible to NIR spectral region (VNIR) were resampled to the broadband
resolution of selected satellite sensors that had red edge channels: Sentinel-2, RapidEye,
WorldView 2 and GaoFen-6. The MultiSpectral Instrument (MSI) of Sentinel-2 has 10 bands
with three different spatial resolutions (10–60 m) in VNIR, including two red edge channels.
RapidEye is a commercial Earth observation mission that offers high spatial resolution
(6.5 m) imagery in five bands. The WorldView-2 satellite acquires very high spatial res-
olution (1.84 m) imagery in eight bands. The GaoFen-6 satellite, launched in 2018, has a
multispectral sensor with 16 m spatial resolution in eight bands. The spectral response
functions (SRFs, Figure A1 and Table A1) of the four multispectral instruments were used to
convolve the modeled and measured narrow-band reflectance. The resampled four satellite
broadband reflectance from the mean spectra of six crop species are presented in Figure 2.

Figure 2. Mean reflectance spectra of the six crop species used in the study: the four simulated
satellite broadband spectra and AISA spectra.

5
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2.4. Tested Vegetation Indices

A wide range of vegetation indices has been used to estimate vegetation canopy
chlorophyll content, a product of LAI and Cab. In this study, twelve widely used vegetation
indices that have been used to estimate chlorophyll content or LAI were evaluated (Table 2).
Some of these use reflectance in VNIR: the normalized difference vegetation index (NDVI),
enhanced vegetation index (EVI) and its two-band version (EVI2), optimized soil-adjusted
vegetation index (OSAVI), renormalized difference vegetation index (RDVI), pigment-
specific normalized difference index (PSND) and transformed chlorophyll absorption
reflectance index/OSAVI (TCARI/OSAVI). These indices are used to extract one or more
vegetation parameters, such as LAI, canopy cover fraction, biomass and pigment content.
Other indices have been formulated with the red edge bands: the red-edge transformed
chlorophyll absorption reflectance index/OSAVI (TCARI/OSAVIred edge), which has a red
edge band instead of the NIR band, the MERIS terrestrial chlorophyll index (MTCI), two
versions of normalized difference red-edge vegetation indices (NDRE1 and NDRE2, see
Table 2 for details) and the red-edge chlorophyll index (CIred edge) (rows 1–12 in Table 2).
These indices were used to extract chlorophyll content in previous studies. To identify the
CCC-sensitive and MTA-insensitive band combinations, eleven general index types were
selected from the literature next, including six two-band and five three-band formulations
(Table 2): ratio index (RI), normalized difference index (NDI), difference index (DI), soil
adjusted index (SAI), modified simple ratio (MSR) and modified soil adjusted index (MSAI),
triangular index (TI), Gitelson three-band index (Git), Tian’s three-band index (BSI-T),
Verrelts’s three-band index (BSI-V) and Wang’s three-band index (BSI-W) (rows 13–23
in Table 2). When calculating TI, the central wavelength of the broadband was used to
calculate the wavelength difference.

Table 2. The vegetation indices used in this study: indices 1–12 are existing indices with fixed
wavelengths; 13–23 are general indices with wavelengths found by optimization.

No Index Abbreviation Formulation Reference

1 Normalized difference vegetation index NDVI RNIR−RRed
RNIR+RRed

[63]

2 Enhanced vegetation index EVI 2.5(RNIR−RRed)
RNIR+6RRed−7.5RBlue+1 [64]

3 Two-band enhanced vegetation index EVI2 2.5(RNIR−RRed)
RNIR+2.4RRed+1 [65]

4 Optimized soil-adjusted vegetation index OSAVI 1.16(RNIR−RRed)
RNIR+RRed+0.16 [66]

5 Renormalized difference vegetation index RDVI RNIR−RRed√
RNIR+RRed

[67]

6 Pigment-specific normalized
difference index PSND RNIR−RBlue

RNIR+RBlue
[68]

7 Transformed chlorophyll absorption
reflectance index/OSAVI TCARI/OSAVI 3

[
(RNIR−RRed)−0.2(RNIR−RGreen)

RNIR
RRed

]
(1+0.16)∗ RNIR−RRed

RNIR+RRed+0.16

[66,69]

8 Red-edge Transformed chlorophyll
absorption reflectance index/OSAVI TCARI/OSAVIred edge

3
[
(RRE1−RRed)−0.2(RRE1−RGreen)

RRE1
RRed

]
(1+0.16) RNIR−RRed

RNIR+RRed+0.16

[70]

9 MERIS terrestrialchlorophyll index MTCI RRE2−RRE1
RRE1−RRed

[27]
10 Normalized difference red-edge version 1 NDRE1 RRE2−RRE1

RRE2+RRE1
[28]

11 Normalized difference red-edge version 2 NDRE2 RRE3−RRE1
RRE3+RRE1

[71]
12 Red-edge chlorophyll index CIred edge

RRE3
RRE1

− 1 [72]
13 Ratio index RI Rλ1

Rλ2
[57]

14 Normalized difference index NDI Rλ1−Rλ2
Rλ1+Rλ2

[73]
15 Difference index DI Rλ1 − Rλ2 [74]
16 Soil adjusted index SAI 1.5 (Rλ1−Rλ2)

(Rλ1+Rλ2+0.5) [75]

17 Modified simple ratio index MSR
[

Rλ1
Rλ2

− 1
]
×

[√
Rλ1
Rλ2

+ 1
]−1

[57]

18 Modified soil adjusted index MSAI 2Rλ1+1−
√
(2Rλ1+1)2−8(Rλ1−Rλ2)

2
[76]
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Table 2. Cont.

No Index Abbreviation Formulation Reference

19 Triangular index TI 0.5 [(λ2 − λ1)(Rλ3 − Rλ1)-
(λ3 − λ1)(Rλ2 − Rλ1)] [77]

20 Gitelson’s three-band Git
(

1
Rλ1

− 1
Rλ2

)
∗Rλ3 [78]

21 Tian’s three-band spectral index BSI-T Rλ1−Rλ2−Rλ3
Rλ1+Rλ2+Rλ3

[79]
22 Verrelts’s three-band spectral index BSI-V Rλ1−Rλ3

Rλ2+Rλ3
[80]

23 Wang’s three-band spectral index BSI-W Rλ1−Rλ2+2Rλ3
Rλ1+Rλ2−2Rλ3

[81]

The bands used for the test vegetation index calculations for Sentinel-2 are RRed (B4), RGreen (B3), RBlue (B2), RRE1
(B5), RRE2 (B6), RRE3 (B7) and RNIR (B8); for GaoFen-6 RRed (B3), RGreen (B2), RBlue (B1), RRE1 (B5), RRE2 (B6) and
RNIR (B4).

2.5. Statistical Analysis

The relationships between the CCC, MTA and vegetation indices were evaluated
using the coefficients of determination (R2). The R2 between vegetation indices and CCC is
indicated as R2

CCC and that relationship with MTA is indicated as R2
MTA. The difference

between R2
CCC and R2

MTA is used for the quantitative assessment of the CCC-sensitive
and MTA-insensitive vegetation indices. The correlations between the CCC, MTA and
individual band reflectance were also calculated.

3. Results

3.1. Responses of Satellite Broadband Reflectance to MTA

For illustration, the responses of individual broadband reflectance bands to MTA
from PROSAIL model simulations are presented at four combinations of high and low
LAI and Cab in Figure 3. At two low LAI conditions (LAI = 1), reflectance in the NIR
region had a strong negative correlation with MTA for all the satellites. At the same time,
MTA presented a medium to strong negative correlation with reflectance in the red edge
depending on the satellite sensors. In the visible region, MTA had little effect on reflectance
when Cab was high (Cab = 90). At two high LAI conditions (LAI = 5), MTA presented
strong negative correlations with reflectance in NIR, and this correlation was enhanced
when MTA varied between 60 and 70◦. The determination coefficients between CCC, MTA
and individual band reflectance using field-measured and model-simulated datasets were
presented in Table A1. Generally, the bands with the strongest correlation to CCC appeared
in visible regions, and those with the strongest correlations to MTA appeared in red edge
and NIR regions.

Figure 3. Cont.
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Figure 3. Responses of satellite broadband reflectance to leaf mean tilt angle (MTA) from PROSAIL
model simulation for four combinations of high and low LAI and Cab: low LAI and low Cab (left

column), low LAI and high Cab (second column), high LAI and low Cab (third column) and high
LAI and high Cab (right column) for Sentinel-2 (top row), WorldView-2 (second row), RapidEye
(third row), and GeoFen-6 (bottom row).

3.2. Performance of Existing Vegetation Indices

The relationships between CCC, MTA and the tested vegetation indices derived from
four broadband satellites are presented in Table 3, including both the field-measured dataset
and model simulations. In general, model-simulated dataset-derived VIs had stronger
correlations with CCC than those of the field-measured dataset.

Table 3. Coefficient of determination (R2) between canopy chlorophyll content (CCC), leaf mean tilt
angle (MTA) and tested vegetation indices.

Dataset Index
Sentinel-2 WorldView2 RapidEye GaoFen-6

R2
CCC R2

MTA R2
CCC R2

MTA R2
CCC R2

MTA R2
CCC R2

MTA

Measurement

NDVI 0.46 0.24 0.47 0.23 0.46 0.24 0.47 0.23
EVI 0.16 0.65 0.18 061 0.17 0.63 0.17 0.62

EVI2 0.19 0.63 0.19 0.60 0.18 0.62 0.19 0.60
OSAVI 0.32 0.46 0.32 0.43 0.31 0.45 0.32 0.43
RDVI 0.22 0.56 0.23 0.55 0.22 0.57 0.23 0.55
PSND 0.52 0.17 0.50 0.18 0.49 0.19 0.52 0.17

TCARI/OSAVI 0.31 0.40 0.32 0.38 0.29 0.41 0.33 0.37
TCARI/OSAVIred edge 0.31 0.18 0.20 0.48 0.27 0.31 0.36 0.08

MTCI 0.12 0.14 — — — — 0.48 0.21
NDRE1 0.41 0.30 — — — — 0.49 0.21
NDRE2 0.64 0.07 — — — — — —

CIred edge 0.68 0.05 — — — — — —

Model

NDVI 0.50 0.01 0.57 0.01 0.56 0.01 0.56 0.01
EVI 0.26 0.33 0.37 0.31 0.36 0.32 0.31 0.33

EVI2 0.36 0.28 0.39 0.28 0.38 0.28 0.39 0.28
OSAVI 0.41 0.18 0.46 0.17 0.45 0.17 0.46 0.17
RDVI 0.37 0.26 0.40 0.26 0.39 0.26 0.40 0.26
PSND 0.67 0.00 0.57 0.01 0.56 0.01 0.68 0.00

TCARI/OSAVI 0.82 0.01 0.88 0.01 0.87 0.01 0.87 0.01
TCARI/OSAVIred edge 0.51 0.05 0.35 0.04 0.42 0.00 0.54 0.03

MTCI 0.76 0.00 — — — — 0.82 0.00
NDRE1 0.76 0.00 — — — — 0.79 0.00
NDRE2 0.76 0.00 — — — — — —

CIred edge 0.90 0.00 — — — — — —

The transverse line (“—”) denotes the sensor without band to calculate corresponding vegetation index.
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In field measurements, for the tested VIs calculated using Sentinel-2 bands, the
CIred edge had the strongest correlation with CCC (R2

CCC = 0.68) and the smallest influence
from MTA (R2

MTA = 0.05). In model simulations, the CIred edge had the strongest correla-
tion with CCC (R2

CCC = 0.90) and a weak correlation with MTA (R2
MTA = 0.00). For the

other three satellite sensors, in the field-measured dataset analysis, PSND produced the
strongest correlations with CCC (R2

CCC = 0.49–0.52) and the weakest correlation with MTA
(R2

MTA = 0.17–0.19). Model-simulated PSND presented a medium-strong correlation with
CCC (R2

CCC = 0.57–0.67) and a weak correlation with MTA (R2
MTA = 0.00–0.01). In model

simulations, TCARI/OSAVI had the strongest correlation with CCC (R2
CCC = 0.87–0.88)

and the weakest correlation with MTA (R2
MTA = 0.01). This index had medium-strong

correlations with both CCC (R2
CCC = 0.29–0.33) and MTA (R2

MTA = 0.37–0.41). MTA had
the largest effect on EVI in both the field-measured dataset (R2

MTA = 0.61–0.64) and model
simulations (R2

MTA = 0.31–0.36).

3.3. Identification of New Indices

In addition to the twelve tested vegetation indices, the potential of six two-band and
five three-band new vegetation indices of predefined type were investigated for CCC
estimation using the four satellite bands. In Figures A2 and A3, for the six two-band
types of indices, the matrices of determinations of coefficients between CCC (R2

CCC), MTA
(R2

MTA) and vegetation indices using all possible combinations of field-measured datasets
based on RI, NDVI, DI, SAI, MSR, MSAI formulations are presented. The corresponding
difference matrices between R2

CCC and R2
MTA based on the six formulations are presented

in Figure 4. The three best band sets for the three-band indices identified using simulated
satellite bands in the field-measured dataset are presented in Table 4. These identified best
bands for the two-band and three-band indices and the corresponding R2

CCC and R2
MTA

using the field-measured data are presented in Tables 4 and 5, respectively. The identified
best indices were validated with PROSAIL model simulations, and the results are presented
in Table 6.
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Figure 4. Matrices of difference between R2
CCC and R2

MTA in all possible two band combinations
for RI, NDI, DI, SAI, MSR and MSAI formulations. The color indicates different R2 values, blank
negative values.
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Table 5. Best band configurations for the two-band indices in the field measured dataset for each
simulated satellite.

Index
Sentinel-2 WorldView-2 RapidEye GaoFen-6

B1, B2 R2
CCC, R2

MTA B1, B2 R2
CCC, R2

MTA B1, B2 R2
CCC, R2

MTA B1, B2 R2
CCC, R2

MTA

RI B5, B8A 0.77, 0.00 NIR1, Red Edge 0.73, 0.10 Red Edge, NIR 0.74, 0.01 B5, B4 0.73, 0.02
NDVI B5, B8A 0.73, 0.00 Red Edge, NIR1 0.74, 0.11 Red Edge, NIR 0.71, 0.02 B5, B4 0.69, 0.03

DI B6, B8A 0.76, 0.00 Blue, Yellow 0.36, 0.03 Blue, Red 0.40, 0.18 B6, B4 0.78, 0.00
SAI B6, B7 0.80, 0.00 Red Edge, NIR1 0.65, 0.09 Blue, Red 0.39, 0.19 B8, B1 0.36, 0.05
MSR B5, B8A 0.75, 0.00 NIR1, Red Edge 0.74, 0.11 Red Edge, NIR 0.73, 0.01 B5, B4 0.72, 0.02
MSAI B6, B7 0.78, 0.00 Red Edge, NIR1 0.56, 0.17 Blue, Red 0.40, 0.18 B4, B6 0.69, 0.23

Table 6. Performance of the best new indices of each type for the four simulated satellite sensors in
model simulations.

Index
Sentinel-2 WorldView-2 RapidEye GaoFen-6

Bands R2
CCC, R2

MTA Bands R2
CCC, R2

MTA Bands R2
CCC, R2

MTA Bands R2
CCC, R2

MTA

RI B5, B8A 0.89, 0.00 NIR1, Red Edge 0.80, 0.00 Red Edge, NIR 0.90, 0.00 B5, B4 0.90, 0.00
NDVI B5, B8A 0.76, 0.00 Red Edge, NIR1 0.83, 0.01 Red Edge, NIR 0.80, 0.00 B5, B4 0.79, 0.00

DI B6, B8A 0.93, 0.04 Blue, Yellow 0.51, 0.00 Blue, Red 0.61, 0.05 B6, B4 0.94, 0.04
SAI B6, B7 0.95, 0.00 Red Edge, NIR1 0.90, 0.02 Blue, Red 0.62, 0.06 B8,B1 0.57, 0.00
MSR B5, B8A 0.87, 0.00 NIR1, Red Edge 0.82, 0.00 Red Edge, NIR 0.87, 0.00 B5, B4 0.88, 0.00
MSAI B6, B7 0.96, 0.01 Red Edge, NIR1 0.90, 0.04 Blue, Red 0.61, 0.06 B4, B6 0.95, 0.00

TI B7, B4, B5 0.82, 0.05 NIR1, Green, Red
Edge 0.92, 0.02 Blue, Green, Red

Edge 0.43, 0.05 B1, B3, B8 0.36, 0.01

Git B5, B8, B8A 0.89, 0.00 Green, Red Edge,
NIR1 0.88, 0.00 Green, Red Edge,

NIR 0.88, 0.00 B5, B6, B4 0.91, 0.00

BSI-T B7, B6, B2 0.90, 0.01 NIR1, Blue, Red Edge 0.85, 0.01 Red Edge, Green,
NIR 0.84, 0.00 B5, B3, B4 0.79, 0.00

BSI-V B8, B6, B2 0.90, 0.01 NIR1, Red, Red Edge 0.90, 0.01 NIR, Blue, Red
Edge 0.91, 0.01 B4, B6, B1 0.87, 0.02

BSI-W B6, B8, B2 0.87, 0.01 Red Edge, Blue, NIR1 0.76, 0.00 Red Edge, Blue,
NIR 0.72, 0.00 B6, B4, B1 0.83, 0.01

In the Sentinel-2 bands, all the best new indices presented strong correlations with
CCC (R2

CCC = 0.74–0.80) and no correlation with MTA (R2
MTA = 0.00–0.02). SAI (B6, B7),

was identified as the best (R2
CCC = 0.80 and R2

MTA = 0.00) among all the new indices in the
field-measured dataset (Figure 5). This combination was found to have a strong correlation
with CCC (R2

CCC = 0.95) and a weak correlation with MTA (R2
MTA = 0.00) in the model-

simulated dataset (Figure 6), as shown in Table 6. In the simulated WorldView-2 data, the
R2

CCC varied between 0.44 and 0.78 and R2
MTA varied between 0.00 and 0.11. The identified

new three-band of indices performed better (R2
CCC = 0.58–0.78 and R2

MTA = 0.0–0.10) than
the two-band indices (R2

CCC = 0.44–0.74 and R2
MTA = 0.02–0.11). BSI-V (NIR1, Red, Red

Edge) was identified as the best new index (R2
CCC = 0.78 and R2

MTA = 0.00). In the model-
simulated dataset, this combination was found to have a strong correlation with CCC
(R2

CCC = 0.90) and no correlation with MTA (R2
MTA = 0.01). In the simulated RapidEye

data, large variations on correlation were identified among the best new indices for CCC
(R2

CCC = 0.22–0.76) and MTA (R2
MTA = 0.00–0.32). BSI-T (red edge, green, NIR) was the

best-performing index (R2
CCC = 0.76 and R2

MTA = 0.00) and was found to have a strong
correlation with CCC (R2

CCC = 0.84) and no correlation with MTA (R2
MTA = 0.00) in the

model-simulated dataset. In the simulated GaoFen-6 data, the best new indices presented
large variations in correlations with CCC (R2

CCC = 0.14–0.78) and MTA (R2
MTA = 0.00–0.23).

DI (B6, B4) was identified as the best index (R2
CCC = 0.78 and R2

MTA = 0.00) and was found
to have a strong correlation with CCC (R2

CCC = 0.94) and almost no correlation with MTA
(R2

MTA = 0.04) in the model-simulated dataset.
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Figure 5. Correlation between the best vegetation indices, and CCC (top row) and MTA (bottom

row) in Sentienl−2 (left column), WorldView−2 (second column), RapidEye (third column) and
GaoFen-6 (right column) in the field measured dataset.

Figure 6. Correlation between the best vegetation indices, and CCC (top row) and MTA (bottom

row) for Sentinel−2 (left column), WorldView−2 (second column), RapidEye (third column) and
GaoFen-6 (right column) in model simulations.

4. Discussion

Potential CCC-sensitive but MTA-insensitive satellite broadband vegetation indices
were developed. To our knowledge, this is among the few studies that have focused on
specifically designing this type of vegetation index. The vegetation indices were calibrated
with field measurements and validated with widely used PROSAIL model simulations. The
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canopy reflectance model can be used to accurately simulate the actual reflectance spectra
without the inherent bias caused by the specific growth conditions at any study sites.

Actual field-measured datasets have limited ranges of variables of interest and spe-
cific data distributions (with possibly site-specific) internal correlations. This limits their
generality for calibrating vegetation indices. While model-based fits are universal, they
inevitably include simplifications, such as the absence of material other than leaves. Before
application, all theoretical models need to be validated in the field. A compromise is to
link an existing field-measured dataset with model simulations as suggested in a previous
study [82]. An efficient vegetation index should be supported both by field measurements
and model simulations. In this study, the identified best indices for each satellite presented
a good match between measurements and simulations.

The newly developed indices performed better than the tested existing vegetation
indices and are recommended to remotely estimate crop CCC from satellites across species
and seasonality. Theoretically, three-band vegetation indices have a larger information
content and flexibility than two-band combinations. However, in our study, the three-band
vegetation indices did not show a great advantage over the simpler two-band formulations.
For the simulated Sentinel-2 and GaoFen-6 bands, the best indices were two-band, while
for the WorldView-2 and RapidEye, the identified best indices were three-band.

Regardless of the number of bands, all the best indices for each satellite were con-
structed from NIR and red edge bands. This agreed with previous studies performed
by [33], who demonstrated that these two band combinations are minimally affected by
crop phenology and can potentially be used as generic algorithms to crop CCC estimation.
Red edge reflectance is strongly negatively correlated with MTA [44,46], and the addition of
this channel can attenuate the sensitivity of vegetation indices to leaf angles [83]. Sentinel-2
MSI performed better than the other evaluated satellite sensors in both field-measured data
and model simulations, indicating a more optimal spectral band combination. Similarly,
in all tested vegetation indices, the CIred edge computed with Sentinel-2 data was the best
vegetation index strongly correlated with CCC (R2

CCC = 0.68 in field measured data and
R2

CCC = 0.90 in model simulated data) and no correlation with MTA (R2
MTA = 0.05 in field

measured data and R2
MTA = 0.00 in model simulated data). In previous studies, the perfor-

mance of CIred edge has been evaluated for single crop species either from real Sentinel-2
imagery or resampled from field canopy reflectance. The following relationships have been
reported in the literature for CIred edge and CCC: R2

CCC = 0.58 for potato [34], R2
CCC = 0.86

and 0.94 for maize and soybean, respectively [33], and R2
CCC = 0.74 for wheat [35]. These

relationships agree with the results in this study, which can be explained by the fact that
the CIred edge was suitable for crop CCC estimation under a mixed pixel scenario [3].

For the other vegetation indices derived from Sentinel-2 bands, such as NDVI, NDRE1,
NDRE2, MTCI, TCARI/OSAVI and TCARI/OSAVIred edge, R2

CCC varied between 0.12 and
0.64 for field measured data and between 0.50 and 0.82 for model simulations. In a previous
study, these correlations were between 0.66 and 0.78 for single wheat species [35], which
are larger than that found in the field-measured data but within the range of our model
simulations. Especially for the MTCI, which is specifically designed for the MERIS spec-
trometer, the correlation between CCC and real MERIS data-derived MTCI is R2

CCC = 0.24
for soybean [26]. The value is better than that from Sentinel-2 data (R2

CCC = 0.12) but
lower than that from GaoFen-6 data (R2

CCC = 0.48). The model-simulated MERIS-based
MTCI presented a stronger correlation with CCC (R2

CCC = 0.69) than real MERIS data [26],
but this value is lower than the model simulation based on Sentinel-2 (R2

CCC = 0.76) and
GanFen-6 (R2

CCC = 0.82) data in this study and even lower than that of proximal spectra-
simulated Sentinel-2 data (R2

CCC = 0.89) for maize and soybean [33].
Except for Sentinel-2, the three other satellites (WorldView2, RapidEye and GaoFen-6)

have been widely used for remote sensing of vegetation. Surprisingly, there are few reports
on their use for the estimation of CCC for field crops. In all tested vegetation indices, PSND
had the strongest correlations with CCC in the field-measured data (R2

CCC = 0.49–0.52),
and similar results were found in PROSAIL model simulations (R2

CCC = 0.56–0.68). TCARI/
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OSAVI presented the best correlation with CCC in PROSAIL model simulations
(R2

CCC = 0.82–0.88) and no correlation with MTA (R2
MTA = 0.01), but this good performance

was not consistent in field measurements. The matrices of difference between R2
CCC and

R2
MTA for the three two-band RI and NDI are similar (Figure 4), and identical bands were

identified for the best vegetation indices of both types. This can be explained by their math-
ematical similarity [84]. However, comparing the four satellite sensors, large differences
in performance were found among the best vegetation indices of each type in both field
measurements (Tables 4 and 5) and model simulations (Table 6). Thus, finding the right
type is also very important for optimizing vegetation indices.

For CCC estimation, it is essential to use band combinations. CCC effects on the
responses of MTA to individual broadband reflectance varied with the combination of
LAI and Cab. Even at similar CCC levels (CCC = 90–100 in Figure 3 in the second and
third columns), this relationship can vary greatly. This is mainly because LAI and Cab
determine the reflectance of different broadband separately. Generally, the MTA responses
to NIR reflectance were determined by LAI and those to visible reflectance were determined
by Cab.

Although the identified vegetation indices for the four satellite spectral configurations
in this study produced good results in both field-measured and model-simulated data
and are recommended for crop CCC estimation, there are some limitations in this study.
First, the derived vegetation indices were not validated with real satellite imagery. Satellite
sensor imaging needs to consider the atmospheric radiation and transmittance, geometric
characteristics, spatial resolutions and signal-to-noise ratio, which limit the transferability
of the vegetation indices developed in this study. Unfortunately, real satellite imagery could
not be acquired simultaneously for the particular study area over a given time. In the future,
more effort needs to be put into vegetation index evaluations using real satellite imagery.

The potential CCC-sensitive but MTA-insensitive satellite broadband vegetation in-
dices developed in this study may provide a convenient method for accurately estimating
crop CCC with diverse canopy architectures using satellite remote sensing data.

5. Conclusions

This research attempted to investigate the potential of satellite broadband vegetation
indices for crop canopy chlorophyll content estimation with minimum effects from leaf
inclination angle distribution. The broadband vegetation indices of four satellites (Sentinel-
2, RapidEye, WorldView-2 and GaoFen-6) were resampled from canopy airborne imaging
spectroscopy data of six crop species with various canopy structures. To obtain generic
and robust crop CCC indices, both field-measured datasets and model simulations were
used in this study. The best vegetation indices identified in this study are the soil-adjusted
index type index SAI (B6, B7) for Sentinel-2, Verrelts’s three-band spectral index type
index BSI-V (NIR1, Red, Red Edge) for WorldView-2, Tian’s three-band spectral index
type index BSI-T (Red Edge, Green, NIR) for RapidEye and difference index type index DI
(B6, B4) for GaoFen-6. The recommended indices produced strong correlations with CCC
(R2

CCC = 0.76–0.80 in field-measured data and R2
CCC = 0.84–0.95 in model simulations)

and no correlation with MTA (R2
MTA = 0.00 for field-measured data and R2

MTA = 0.00–0.04
for model simulations) and maintained consistent performance in both the field-measured
dataset and model simulations. Thus, it is anticipated that more generic vegetation indices
for crop CCC estimation can be derived from satellite broadband data. However, this is
only a case study, and further studies are required to examine the suitability across more
crop species and growth stages using real satellite imagery.
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Appendix A

Table A1. The central wavelength, bandwidth and spatial resolution and R2 values from field
measured dataset between CCC, MTA and individual band reflectance of four satellite sensors.

Sensor
Central

Wavelength (nm)
Band/Band

Number
Bandwidth (nm)

Spatial
Resolution (m)

Measurements Model

R2
CCC R2

MTA R2
CCC R2

MTA

Sentinel-2

490 2 65 10 0.58 0.00 0.39 0.25
560 3 50 10 0.44 0.05 0.42 0.08
665 4 30 10 0.53 0.08 0.54 0.07
705 5 15 20 0.07 0.77 0.43 0.10
740 6 15 20 0.00 0.87 0.00 0.45
783 7 20 20 0.04 0.78 0.27 0.39
842 8 115 10 0.04 0.77 0.26 0.39
865 8A 20 20 0.04 0.76 0.26 0.40

Worldview-2

478 Blue 60 1.8 0.60 0.00 0.29 0.45
546 Green 70 1.8 0.45 0.05 0.41 0.08
608 Yellow 40 1.8 0.49 0.01 0.51 0.05
659 Red 60 1.8 0.54 0.05 0.57 0.06
724 Red Edge 40 1.8 0.00 0.87 0.10 0.33
831 NIR1 125 1.8 0.04 0.77 0.26 0.39

RapidEye

475 Blue 70 5 0.60 0.00 0.29 0.47
555 Green 70 5 0.45 0.04 0.42 0.08

657.5 Red 55 5 0.53 0.07 0.57 0.07
710 Red Edge 40 5 0.03 0.83 0.31 0.19
805 NIR 90 5 0.04 0.78 0.26 0.39

GaoFen-6

485 1 70 16 0.58 0.01 0.39 0.26
555 2 70 16 0.46 0.03 0.42 0.08
660 3 60 16 0.55 0.05 0.57 0.06
830 4 120 16 0.04 0.77 0.26 0.39
710 5 40 16 0.08 0.76 0.39 0.15
750 6 40 16 0.01 0.85 0.08 0.44
610 8 40 16 0.49 0.01 0.51 0.05

Figure A1. Spectral response functions of satellite sensors used for simulation of broadband reflectance.
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Figure A2. Map of the coefficient of determination between the CCC (R2
CCC) and vegetation indices

using all two band combinations based on the RI, NDVI, DI, SAI, MSR and MSAI formulations. The
color indicates different R2 values.
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Figure A3. Map of the coefficient of determination between MTA (R2
MTA) and vegetation indices

using all two band combinations based on RI, NDVI, DI, SAI, MSR and MSAI formulations. The
color indicates different R2 values.
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Abstract: The accurate estimation of phenological metrics from satellite data, especially the start of
season (SOS), is of great significance to enhance our understanding of trends in vegetation phenology
under climate change at regional or global scales. However, for regions with winter snow cover, such
as the alpine grasslands on the Tibetan Plateau, the presence of snow inevitably contaminates satellite
signals and introduces bias into the detection of the SOS. Despite recent progress in eliminating
the effect of snow cover on SOS detection, the mechanism of how snow cover affects the satellite-
derived vegetation index (VI) and the detected SOS remains unclear. This study investigated the
effect of snow cover on both VI and SOS detection by combining simulation experiments and real
satellite data. Five different VIs were used and compared in this study, including four structure-based
(i.e., NDVI, EVI2, NDPI, NDGI) VIs and one physiological-based (i.e., NIRv) VI. Both simulation
experiments and satellite data analysis revealed that the presence of snow can significantly reduce
the VI values and increase the local gradient of the growth curve, allowing the SOS to be detected.
The bias in the detected SOS caused by snow cover depends on the end of the snow season (ESS),
snow duration parameters, and the snow-free SOS. An earlier ESS results in an earlier estimate of
the SOS, a later ESS results in a later estimate of the SOS, and an ESS close to the snow-free SOS
results in small bias in the detected SOS. The sensitivity of the five VIs to snow cover in SOS detection
is NDPI/NDGI < NIRv < EVI2 < NDVI, which has been verified in both simulation experiments
and satellite data analysis. These findings will significantly advance our research on the feedback
mechanisms between vegetation, snow, and climate change for alpine ecosystems.

Keywords: vegetation phenology; snow cover; vegetation index; SOS; Tibetan Plateau; remote sensing

1. Introduction

Land surface phenology is the assessment of seasonal vegetation growth at a large
scale using satellite remote sensing and has been widely used to quantify the response of
terrestrial ecosystems to climate change [1–3]. Alpine ecosystems, characterized by high
elevations, low temperatures, snows, and short growing seasons, are very sensitive to
climate change and are regarded as “climate change hot spots”. The accurate estimation
of phenological metrics from satellite data, especially the start of season (SOS), is critical
for understanding the dynamics of alpine vegetation and climate change. As the third
pole of the earth and the largest alpine pasture in Asia, the Tibetan Plateau is a research
focus in land surface phenology [4]. However, the prevalent and seasonal snow cover,
one of the major features of alpine ecosystems, increases the complexity of monitoring
vegetation phenology from satellites [5]. Especially in the Tibetan Plateau, existing studies
have yielded inconsistent results on the SOS changes, and snow cover has been attributed
as a major cause [6,7].

Phenological transitions are generally detected from the seasonal dynamics of the
satellite-derived vegetation index (VI). The VI measures the greenness of vegetation through
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algebraic combinations of the multiband reflectance of satellite data and is closely related to
the biophysical and structural properties of the canopy [8]. From the VI’s trajectory, the SOS
is detected as the point in time when the VI reaches a threshold, the growth gradient reaches
its maximum, or the VI exceeds the moving average VI curve, corresponding to the thresh-
old method, the derivative method, and the moving average methods, respectively [9].
While each method has its own advantages and shortcomings, there is no consensus on
which method performs best [10,11]. The dynamic threshold method, achieving a balance
between simplicity, universality, and robustness to noise, is one of the most commonly used
methods, especially in the latest MODIS phenology product MCD12Q2 C006 [12]. Among
the various VIs, the normalized difference vegetation index (NDVI) [13] is the earliest and
most commonly used VI in SOS detection due to its simplicity and long records of historical
data [14–16], but it suffers from saturation in densely vegetated areas and interference from
soil backgrounds. To reduce the sensitivity of VI to the soil background and atmosphere,
the two-band enhanced vegetation index (EVI2) [17] was proposed and has been widely
used in SOS detection, such as in the VIIRS phenology product VNP12Q2 [18].

Although various satellite-derived VIs have been successfully applied in phenology
detection [19–21], they face major limitations in alpine grasslands due to snow’s inter-
ference with satellite signals [22,23]. The presence of snow can significantly affect the
VI’s value and change the VI’s trajectory, while snowmelt can cause a rapid increase in
the VI’s trajectory [24,25]. If the effect of snow cover is not considered, the detected SOS
may be a snowmelt date instead of the SOS [26,27], which will further cause bias in our
understanding of vegetation phenology trends and climate change [28]. For example,
preseason snow was found to cause the SOS detected by NDVI to advance compared to
snow-free cases [20,21].

Previous studies have attempted to eliminate the effect of snow cover on SOS detection
from satellite data. Some studies introduced auxiliary information on snow, precipitation,
and temperature to replace the SOS of snow-covered pixels with those of snow-free back-
ground pixels [18,29]. However, auxiliary data are not always available in large alpine
areas, and additional data can also add bias and uncertainty [30]. Alternative approaches
have attempted to propose new snow-free VIs, such as the normalized difference phenol-
ogy index (NDPI) [31] and the normalized difference greenness index (NDGI) [21], which
were recently developed to eliminate the effects of snow and soil. Both VIs were found
to have better correlation with the in situ measurements and outperform the traditional
VIs under snow conditions, such as NDVI and EVI [20,21]. In some studies, the SOS dates
detected by NDPI or NDGI were used as the SOS detected under snow-free conditions to
evaluate the advancement or delay of the SOS under snow conditions [20,32]. In addition,
the near-infrared reflectance of vegetation (NIRv) [33] and solar-induced chlorophyll fluo-
rescence (SIF), as direct indicators of vegetation photosynthesis, are promising indicators
for phenological monitoring [33,34]. Both SIF and NIRv are physiological-based VIs and
overcome the saturation problem of NDVI. Existing studies verified the good consistency
of the SOS detected by NIRv and SIF with the SOS measured by flux towers [20,35].

Despite recent progress in eliminating the effect of snow cover on SOS detection, the
mechanism of how snow cover affects VI values and subsequent SOS detection remains
unclear. Existing studies have attempted to find evidence from satellite data or in situ
measurements [36–39], yet it is challenging to compare snow-free and snow-covered areas
directly. Vegetation growth on snow-free pixels cannot simply represent the growth on the
snow-covered pixels due to the confounding effects of snow cover on SOS detection and on
SOS itself. Furthermore, although several new snow-free VIs and SIF-related VIs have been
proposed [31,35,40], there are no definitive answers as to how they are affected by snow
cover and which VI performs best for alpine ecosystems. Direct evidence on how snow
cover affects SOS detected from satellite-derived VIs is urgently needed to enhance our
understanding of vegetation phenology changes on the Tibetan Plateau.

To address the above issues, this study combined simulation experiments and satellite
data to investigate the effect of snow cover on VI values and subsequent SOS detection, aim-
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ing to clarify the mechanism of how snow cover affects SOS detection from satellite-derived
VIs. Four snow parameters were adopted to describe the coverage and phonological
characteristics of snow, including snow cover fractions (SCFs), snow cover duration (i.e.,
consecutive days with snow and the ratio of days with snow to total days, hereafter referred
to as SCDc and SCDr), and the end of the snow season (ESS). Five different VIs were used
and compared in this study, including four structure-based (i.e., NDVI, EVI2, NDPI, NDGI)
VIs and one physiological-based (i.e., NIRv) VI. Simulation experiments were carefully
designed to model the time series of different VIs under different snow scenarios to investi-
gate the difference in SOS between snow and snow-free conditions. Then, the variations
in the SOS under different snow conditions were analyzed using satellite data. The main
objectives of this study are: (1) to elucidate the effect of snow cover on the five VIs and
subsequent SOS detection through simulation experiments; (2) to analyze the spatial and
temporal patterns of snow cover and investigate the effect of snow cover on the detected
SOS using real satellite data from 2020; and (3) to compare the performance of the five VIs
in detecting the SOS under snow-covered conditions.

2. Study Area and Data

2.1. Study Area

The study area is on the east of the Tibetan Plateau (29◦35′30′′N–35◦48′06′′N,
94◦08′08′′E–101◦03′36′′E, Figure 1), covering a large area of alpine grasslands at an av-
erage elevation of 4000 m. Our study focuses on alpine grasslands, which are dominated
by alpine meadows and alpine steppe [41]. The study area is typical of alpine meadows,
which normally grow from May to September. The mean temperature ranges from near
0 ◦C to above 20 ◦C, and precipitation ranges from 100 mm to over 1000 mm along a
south–north gradient [4]. Seasonal snow covers the study area from October to May, which
may contaminate the satellite signals and introduce bias in SOS detection.

 
Figure 1. Map of the study area. (a) MODIS land cover map of the Qinghai–Tibet Plateau. (b) MODIS
land cover map and (c) DEM of the study area.

2.2. Datasets
2.2.1. Satellite Reflectance Data

The MODIS MCD43A4 Nadir Bidirectional Reflectance Distribution Function (BRDF)
Adjusted Reflectance (NBAR) product with a 500 m resolution was used in this study to
remove the viewing angle effects from directional reflectivity [42]. A total of 366 images
from 1 January 2020 to 31 December 2020 were freely downloaded from the NASA Land
Processes Distributed Active Archive Center (LP DAAC, http://lpdaac.usgs.gov (accessed
on 10 July 2021)), which were processed to UTM/WGS-84 projection and 500 m resolution.
Based on repeated manual tests, missing values of 50 consecutive days would introduce
significant errors in reconstructing the VI trajectory. To eliminate errors caused by missing
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values in the daily NBAR products, pixels with more than 50 consecutive days of missing
data were flagged as poor-quality pixels and excluded from subsequent analysis, which
accounted for only 3.34% of the study area. Reflectance in the red, green, near-infrared
(NIR), and shortwave infrared (SWIR) bands was used to calculate the different VIs and to
further determine the SOS dates.

2.2.2. Snow Cover Data

The MODIS snow cover data MOD10A2, with a 500 m spatial resolution and 8-day
intervals, was used to derive snow phenology parameters in our study. This snow cover
product has higher spatial and temporal resolutions [43]. Previous studies have verified that
MOD10A2 is effective in reducing the effect of cloud contamination in most cases and has
higher classification accuracy than another MODIS snow product (MOD10A1) [37,44]. A
total of 46 images from 1 January 2020 to 31 December 2020 were freely downloaded
from the National Snow and Ice Data Center (NSIDC, http://nsidc.org (accessed on
17 December 2021)). All images were processed to UTM/WGS-84 projection and 500 m
resolution. Pixels coded as ‘200′ were extracted as snow pixels according to the product’s
user guide [43].

2.2.3. Land Cover Type and DEM

A subset of the global land cover product from Tsinghua University at 10 m resolution
in 2017 (available at http://data.ess.tsinghua.edu.cn (accessed on 15 July 2021)) was used
to define our study area for its high spatial resolution and high overall accuracy [45], as
shown in Figure 1. The SRTM digital elevation model (DEM) data at 90 m resolution were
used to characterize the variations in snow phenology and vegetation phenology. The DEM
data were freely downloaded from the Geospatial Data Cloud (http://www.gscloud.cn
(accessed on 15 July 2021)) and processed to UTM/WGS-84 projection and 500 m resolution,
as shown in Figure 1c.

3. Methods

3.1. Derivation of Vegetation Indices

Five VIs were selected and derived from MODIS daily NBAR data for phenology detec-
tion, including NDVI, EVI2, NDPI, NDGI, and NIRv. Their definitions and corresponding
references are given in Table 1.

Table 1. Derivation of vegetation indices used in the study.

Index
Acronym

Formula Reference

NDVI NDVI = RNIR−RRed
RNIR+RRed

[13]
EVI2 EVI2 = 2.5 RNIR−RRed

RNIR+2.4RRed+1 [17]

NDPI
NDPIMODIS =

RNIR−[0.74×RRed+0.26×RSWIR]
RNIR+[0.74×RRed+0.26×RSWIR]

[31]

NDGI NDGIMODIS =
0.65×RGreen+0.35×RNIR−RRed
0.65×RGreen+0.35×RNIR+RRed

[21]

NIRv NIRv = NDVI× RNIR [33]
Note: RGreen, RRed, RNIR, and RSWIR are the surface reflectance values in the green, red, NIR, and SWIR
bands, respectively.

Among the five VIs, NDVI is the most commonly used VI for monitoring land surface
phenology. EVI2 was developed from the enhanced vegetation index (EVI) [46] to adapt
to satellite sensors without a blue band [17], while both EVI and EVI2 were designed to
overcome the saturation problem and sensitivity to the soil background with NDVI. The
NDPI and NDGI and NIRv were recently developed and are rather new. Both NDPI and
NDGI were proposed to maximize the contrast between vegetation and soil/snow [21]. The
NDPI assumes that the reflectance of soil and snow increases or decreases monotonically
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from red to SWIR wavelengths. In contrast, the reflectance of vegetation is high in the
NIR band and low in both the red and SWIR bands [40]. The NDPI is thus designed by
replacing the red band in NDVI with a weighted sum of the red and SWIR bands. As a
result, the NDPI is close to zero for soil and snow but high for vegetation [31,40]. NDGI
is a semi-analytical snow-free VI based on a linear mixture model. It connects a straight
line between the reflectance of the green and NIR bands, and the difference between this
line and the reflectance of the red band is defined as the NDGI [21]. NDGI is positive
for vegetation but is close to zero for snow, soil, and dry grass. NIRv has been proposed
as a proxy for SIF, a very effective indicator of vegetation photosynthesis [47], and has
been successfully used in phenology detection [33]. The comparison of these five typical
VIs would provide a useful reference for the performance of both structural-based and
physiological-based VIs, as well as the traditional VIs and snow-free VIs.

3.2. Spring Phenology Detection and Evaluation
3.2.1. Detection of SOS Dates

Vegetation growth in the alpine grasslands on the Tibetan Plateau has a distinct
seasonal cycle, and the SOS can be detected from the time series of five different VIs. We
first removed the poor-quality/filled values from the original MODIS datasets and then
used a double-logistic fitting method to smooth the noisy time series of VIs in the TIMESAT
program [48], since it is more robust in extracting phenological parameters [49–52]. We
applied two upper-envelope iterations with an adaptation strength of 2 to reduce the
bias of atmospheric effects in the smoothing process [20]. Then, the simple and intuitive
dynamic threshold method [53,54] was used to detect the SOS (Figure 2) for its simplicity
and robustness [55], and a 20% amplitude was used to determine the SOS, which was
consistent with previous studies [20,55,56]. Figure 2 illustrates how the dynamic threshold
method detects the SOS under snow and snow-free conditions. The SOS date was detected
as the point in time when the VI increased to 20% of the amplitude plus the base value.

 
Figure 2. A schematic diagram of how the dynamic threshold method detects the start of the season
(SOS). ΔSOS = SOSsnow − SOSsnow-free.

3.2.2. Evaluation of SOS Dates

The SOS detected from the five VIs were compared pixel-by-pixel via scatterplots
on each pair of image combinations. Three indicators, the correlation coefficient (R), the
mean absolute error (MAE), and the root mean square error (RMSE), were calculated to
evaluate the consistency between the SOS detected from different VIs. Then, considering
the influence of elevation on the SOS, the study area was divided into four elevation zones,
including < 3500 m, 3500–4000 m, 4000–4500 m, and ≥ 4500 m. The changes in the detected
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SOS dates with varying elevations were analyzed through zonal statistics. The effect of
snow on the detected SOS was further analyzed in each elevation zone.

3.3. Effect of Snow Cover on Detecting SOS from VIs
3.3.1. Snow Cover Analysis

Four parameters were used to describe the coverage and phenology of snow, including
SCF, SCDc, SCDr, and ESS. The SCF is defined as the snow cover fraction at each location.
The SCDc and SCDr are complementary parameters used to describe snow cover duration.
The SCDc denotes the maximum number of consecutive days with snow cover and is more
specific, while SCDr is defined as the ratio of days with snow to total days and is more
general. The SCDc is more ready-to-use in simulating different snow scenarios if we only
consider the longest snow duration, while the SCDr is difficult to simulate, as the spring
snow cover might include several periods of snow duration. Thus, SCDc was used in both
simulations and satellite data analysis, and SCDr was only used in satellite data analysis.
The ESS is defined as the ending date of snow, i.e., the last day with snow cover. Since our
focus is spring phenology, the SCDc, SCDr, and ESS were calculated for the period from
the day of year (DOY) 001 to 208. The four parameters were calculated from the MOD10A2
snow cover data to reveal the spatial and temporal characteristics of snow in the study
area. Furthermore, they were also used in simulation experiments to generate different
snow scenarios.

3.3.2. Tests with Simulated Data

Since it is very difficult to find appropriate snow-free vegetation pixels as a reference,
we designed simulation experiments to evaluate the effect of snow on SOS detection. A
linear spectral mixture model was used to simulate the pixel reflectance with different SCF
values. For simplicity, it is assumed that each pixel is composed of soil and vegetation;
the snow layer is covered above and only absorbs and reflects the incident light, i.e., the
transmittance of the snow layer equals 0. Assuming that the vegetation and soil components
are both homogeneous, which is reasonable for alpine grasslands, the presence of snow will
not affect the areal compositions of soil and vegetation. As a result, the spectral reflectance
of a snow-covered pixel can be computed as:

Rmixed = (1− fsnow)
[
fveg · Rveg + (1− fveg)Rsoil)

]
+ fsnow · Rsnow (1)

where Rmixed denotes the simulated mixed pixel reflectance; fveg, fsoil, and fsnow are the
coverage fractions of vegetation, soil, and snow, respectively; and Rveg, Rsoil, and Rsnow are
the corresponding endmember reflectances.

To simulate the satellite-derived band reflectance, the spectral reflectance ρ(λ) was
convolved with the spectral response function (SRF) of the MODIS sensor S(λ) as follows:

R =
∫ λ2

λ1

ρ(λ)S(λ)dλ (2)

where λ1 and λ2 are the minimum and maximum wavelengths of each band, respectively.
The ρ(λ) for snow, soil, and vegetation were selected from the Johns Hopkins University
Spectral Library [57], corresponding to medium granular snow, dark brown fine sandy
loam, and green grass, respectively, as in Figure 3.

28



Remote Sens. 2022, 14, 5725

 
Figure 3. Schematic diagram of endmember reflectance spectra and the spectral response of the
MODIS sensor.

Through Equations (1) and (2), the band reflectance and further VIs of a pixel can be
computed using the endmember reflectance with varying FVC and SCF values. To investi-
gate the effect of snow cover on SOS detection, simulation experiments were designed in
the following two aspects.

First, we investigated the effect of snow cover on five VIs. We computed the VI values
when FVC was varied from 0 to 1 for five cases of SCF = 0%, 25%, 50%, 75%, and 100%.
The effect of snow cover on VI values can be described by the difference in VI values
under specific snow scenarios and snow-free conditions (i.e., SCF = 0%), expressed as
ΔVI = VISCF > 0 − VISCF = 0. As the values of ΔVI vary with SCF and FVC, we further define
a quantitative indicator, the maximum impact of snow (MIS), to represent the maximum
effect of snow on VI for a specific FVC, expressed as:

MIS =
|VISCF = 100% −VISCF = 0%|

VImax −VImin
(3)

where VISCF = 100% and VISCF = 0% correspond to VI values when SCF = 100% and SCF = 0%
for a given FVC, respectively; VImax and VImin are the maximum and minimum VI values,
respectively. The denominator is the range of VI values and is used to eliminate the effect
of different value ranges of VIs. Both VI and MIS vary with FVC. The numerator represents
the absolute difference in VI between SCF = 100% and SCF = 0%, while the MIS represents
the maximum percentage change in VI caused by snow relative to the range of VI values.
The MIS provides a direct indication of the extent to which a VI is affected by snow and
provides a basis to further investigate the effect of snow cover on SOS detection.

Second, to investigate the effect of snow cover on SOS detection, we designed a series
of experiments to generate different VI time curves under different snow scenarios. We
extracted the NDVI time curve of a typical snow-free vegetation pixel and converted the
time series of NDVI to FVC using the dimidiate pixel model [58]. Using the derived time
series of FVC, the time series of band reflectance and VI were calculated under different
snow scenarios defined by snow parameters, including SCF, SCDc, and ESS. The time
curves of five different Vis were then filtered, and the SOS was detected. As shown in
Figure 2, given the same growth curve of FVC, the red and blue lines represent the VI
trajectories for snow-free and preseason snow conditions, respectively. The preseason snow
caused a bias in the detected SOS, expressed as ΔSOS = SOSsnow − SOSsnow-free, which is
defined as the effect of snow on SOS detection.

Three sets of experiments were designed, and the corresponding settings of snow
scenarios are shown in Table 2. In all experiments, as we were only concerned with the
SOS, only the snow season from DOY 001 to DOY 208 was considered. Experiment I
corresponded to a completely snow-free case with SCF = 0% during the period, which
served as the baseline to assess the effect of snow cover on SOS detection (Figure 4a).
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Experiments II and III were snow cover conditions, where four cases of SCF = 25%, 50%,
75%, and 100% were considered, and in all cases, the SCF remained constant during the
snow season. Experiment II referred to the cases of snow persisting from DOY 001 to ESS.
Three cases of ESS at DOY 104, 136, and 168 were considered, which were the mean ESS
plus or minus its standard deviation analyzed from snow cover data, as shown in Figure 4b.
In experiment III, three cases of SCDc = 32, 64, and 96 days were considered. As the SCDc
could be in any interval during the snow season, we simulated all cases by iterating the
start of the snow season from DOY 001 at 16-day intervals while keeping the ESS no later
than DOY 208. For example, a case with SCDc = 64 can generate 10 different time curves of
a VI with a snow season ranging from DOY 1–64 to 145–208, as shown in Figure 4c.

Table 2. Experimental settings for the investigation of the effect of snow on spring vegetation
phenology detection.

Experiments No. Snow Scenarios *

I Snow free with SCF = 0% constantly during the period from DOY 001 to 208.
II Snow persists from DOY 001 to ESS (DOY 104, 136, and 168) with constant SCF.

III Snow persists from DOY t to ESS with constant SCF, where t is iterated from DOY 001
at 16-day interval; ESS = t + SCDc − 1 ≤ 208; and SCDc = 32, 64, and 96 days.

* In experiments II and III, four cases with SCF = 25%, 50%, 75%, and 100% were considered.

 
Figure 4. Temporal trajectories of coverage fractions of vegetation, snow, and soil for experiments I
to III. (a) Experiment I with SCF = 0% constantly from DOY 001 to 208; (b) experiment II with snow
persisting from DOY 001 to ESS with constant SCF; (c) experiment III with snow persisting from DOY
t to ESS with constant SCF.

3.3.3. Tests with Satellite Data

Since snow is prevalent, a direct comparison of VI in snow-covered and snow-free
pixels is difficult. Based on the simulation results, the effect of snow cover on SOS detection
was analyzed from satellite data in two aspects. First, the statistical distribution of the
minimum and maximum values of VI over time for each SCDr interval in each elevation
zone was analyzed. This analysis could help reveal the difference in VI values between
different SCDr intervals in the same elevation zone. Second, the statistical distribution of
the SOS detected from real satellite data for different SCDc and ESS scenarios was analyzed,
which could help reveal the variations in the detected SOS under different SCDc and
ESS cases.

The flowchart of this study is shown in Figure 5.
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Figure 5. Flowchart of the investigation of the effect of snow cover on spring phenology detection.

4. Results

4.1. Snow Cover Analysis

The snow cover analysis from MOD10A2 data in Figure 6 shows that a large portion
of the study area was covered by snow, while the SCDr varied across the area. Statistically,
the SCDr in 52.27% of the study area was higher than 40%, and the SCDr was lower than
20% only in 21.25% of the study area.

 
Figure 6. The derived SCDr map in the study area. SCDr is the ratio of days with snow to total days
from DOY 001 to DOY 208.

Statistically, approximately 77% of the study area has an elevation ≥ 4000 m, while
only approximately 6% of the area has an elevation < 3500 m. Figure 7 shows the statistical
distributions of ESS, SCDr, and SCDc in each elevation zone. In all four elevation zones, the
ESS values were concentrated on DOY 136. The increase in elevation led to the increase in
ESS. When the elevation increased to ≥4000 m, a significant subpeak in the ESS appeared
on DOY 160. Both SCDr and SCDc increased with increasing elevation. The peak values of
SCDr were 0%, 8%, 36%, and 64%, while the peak values of SCDc were 8, 8, 16, and 88 days,
respectively, for all four elevation zones from elevations <3500 m to ≥4500 m.
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Figure 7. Statistical distributions of (a) ESS, (b) SCDr, and (c) SCDc in each elevation zone.

4.2. Spring Phenology Derived from Different VIs

Figure 8 shows the SOS detected from five different VIs. Nongrassland pixels (e.g.,
water bodies, forests, etc.) and the pixels whose SOSs were poorly detected were flagged
as no data. SOS trends derived from different VIs were generally spatially consistent
with the elevation variations. The SOS dates in the eastern part of the study area were
earlier than those in the western parts. As shown in Figure 8, the SOS dates detected
by NDVI were very similar to the SOS dates detected by EVI2, while those from NDPI
and NDGI were highly consistent and those detected by NIRv were in between. The
histograms revealed that the SOS dates detected by the five VIs were generally simi-
lar in terms of the value ranges and peak values. The detected SOS dates ranged from
105 to 175, while the average SOS dates derived from the five VIs followed the order of
NDPI (DOY 154) > NDGI (DOY 152) > NIRV (DOY 150) > EVI2 (DOY 145) > NDVI (DOY 141),
which was very consistent with previous studies in this study area [38,55,59]. This in-
dicates that the SOS dates detected by the five VIs were generally consistent and reliable.

 
Figure 8. The SOS detected by (a) NDVI, (b) EVI2, (c) NDPI, (d) NDGI, (e) NIRV, and (f) the
corresponding histograms for 2020.
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Scatterplots in Figure 9 compare the SOS dates detected from different VIs on a pixel-
by-pixel basis. According to the consistency between the detected SOS, the five different
VIs were aggregated into two groups. One group included NDGI and NDPI (R = 0.849
and RMSE = 5.957), and the other group included EVI2, NDVI, and NIRv. The SOS dates
detected by EVI2 were highly correlated with those detected by NDVI (R = 0.934 and
RMSE = 6.416) and NIRv (R = 0.938 and RMSE = 6.870), while the SOS detected by NDVI
and NIRv had lower correlations (R = 0.776 and RMSE = 12.722). The SOS detected by the
VIs from different groups showed large discrepancies. For example, the SOS dates from
NDVI and NDPI were poorly correlated (R = 0.445) and had a large bias (RMSE = 17.823).
In addition to the differences in VI calculations, this different performance may also be
attributed to the different effects of snow cover on different VIs.

Figure 9. Comparison of the SOS detected by different VIs. The color from light gray to dark gray
indicates increasing sample densities. (a–j) are scatterplots of the SOS dates detected from different
VIs on a pixel-by-pixel basis.

4.3. Simulation Results
4.3.1. Effect of Snow Cover on VI

Figure 10 compares the changes in the five VIs under different SCF conditions as the
FVC increases from 0 to 1. For all indices, the values of the five VIs generally decreased
with increasing SCF. In the presence of snow cover, the larger the FVC was, the greater the
decrease in the VI value. The deviation of the data points from the 1:1 line showed the
effect of snow cover on VI values. The dashed line in each subplot of Figure 10 indicates
the difference in VI values between SCF = 0% and SCF = 100%, denoted as |ΔVI|max.
MIS values were further calculated for FVC = 0 and FVC = 1 to show the maximum
possible influence of snow on VI values using Equation (3). Thus, the sensitivity of the five
VIs to snow cover is NDPI (MIS range 0.0466–0.9534) < NDGI (MIS range 0.0122–1.0122)
< NIRv (MIS range 0.2335–1.2335) < EVI2 (MIS range 0.3320–1.3320) < NDVI (MIS range
0.5280–1.5280).
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Figure 10. Comparison of simulated VIs under different SCFs with snow-free cases. (a–e) are the
changes of the five VIs as the FVC increases from 0 to 1 under different SCF conditions.

4.3.2. Effect of Snow Cover on SOS Detection

Figure 11 shows the temporally filtered time curves of the five VIs and the detected
SOS dates in simulation experiments I and II. Under snow-free conditions, the SOS detected
by the different VIs ranged from DOY 144 to DOY 152, indicating small differences in snow-
free SOS detected by the different VIs. Under snow conditions, the SOS dates detected
by NDVI and EVI2 were earlier, while those detected by NDGI and NDPI were later, and
those detected by NIRv were in between, as shown in all subplots of Figure 11.

Considering the differences in the SOS between SCF = 0 and SCF > 0 in Figure 11, the ef-
fect of snow on the detected SOS generally follows the order of NDPI/NDGI < NIRv < EVI2/NDVI.
Generally, the presence of snow significantly reduced the VI values during the pregrowth
period and advanced the SOS for all five VIs. For all five VIs, the greatest advances in the
SOS were found for the earliest snow season (i.e., for ESS at DOY 104), which ranged from
16 to 56 days. As the ESS increased from DOY 104 to 168, the advances in the detected
SOS decreased rapidly. For the ESS at DOY 168, the SOS estimated by NDVI, EVI2, and
NIRv was only 4–6 days earlier than the snow-free SOS, while those estimated by NDPI
and NDGI were 6 and 2 days later than the snow-free SOS, respectively. This indicates
that the ending date of persisting snow is very important. When persisting snow ends
earlier than the snow-free SOS, the presence of snow reduces the minimum VI value during
the pregrowth period but does not affect the maximum VI value during the peak growth
period, which would increase the gradient of the time curve of VI significantly and cause
the SOS to be detected earlier. As analyzed in Section 4.3.1, the snow-induced decrease
in the VI value is very small at small VI values and is relatively larger at large VI values.
When the snow season ends later than the snow-free SOS, the decrease in VI values around
the SOS is larger than that of the pregrowth period. This may locally smooth the time curve
of VI and delay the detected SOS compared to the case of an early snow season.
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Figure 11. Time curves and the detected SOS of the five VIs under different SCF and ESS cases in
experiments I and II. (a–c), (d–f), (g–i), (j–l), and (m–o) are the time curves of five VIs, for each of
which three ESS cases at DOY 104, 136, and 168 and five cases of SCF = 0%, 25%, 50%, 75%, and 100%
were plotted.

To further investigate the mechanism of how snow affects SOS detection, simulation
experiment III was implemented to analyze the ΔSOS under different snow scenarios
defined by SCDc, ESS, and SCF, and the results are shown in Figure 12. It clearly shows
that ΔSOS changes with varying SCDc, ESS, and SCF values. Using the absolute val-
ues of ΔSOS as a standard, the effect of snow on SOS detection followed the order of
NDPI/NDGI < NIRv < EVI2 < NDVI, which is consistent with the effect of snow on VI
values analyzed in Section 4.3.1. Both SCDc and ESS are very important in determining
the ΔSOS. In general, the larger the SCDc value was, the larger the absolute value of ΔSOS.
This is reasonable because the reduction in VI values during a short snow period (i.e., small
SCDc) can be better recovered by time series filtering performed prior to SOS detection.
Specifically, for short snow with SCDc = 32, ΔSOS was very close to 0 for all VIs, except
NDVI, for which ESS was earlier than the snow-free SOS. For longer snow with SCDc = 64
and 96, ΔSOS increases from negative to positive values as ESS increases. This also indicates
that an earlier ESS generally advances the SOS, while an ESS much later than the snow-free
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SOS delays the SOS, and ΔSOS approaches 0 when ESS approaches the snow-free SOS.
These findings were consistent with the results of experiments I and II as analyzed above.

Figure 12. Changes in ΔSOS with increasing ESS under different SCF and SCDc cases derived from
simulation experiment III. (a–c), (d–f), (g–i), and (j–l) are the changes in the ΔSOS with ESS for four
cases of SCF = 25%, 50%, 75%, and 100%, in each group of which three cases of SCDc = 32, 64, and 96
were plotted.

To further investigate the different effects of ESS and SCDc on ΔSOS, we also analyzed
the time curves of Vis under different ESS scenarios based on simulation experiment III.
The medium SCDc = 64 was used. As the ΔSOS was close to 0 around the ESS at DOY 144,
the ESS was varied as DOY 144 minus or plus three 16-day intervals, corresponding to
three cases of ESS at DOY 96, 144, and 192. Figure 13 shows the temporally filtered time
curves of VIs and the detected SOS. It clearly shows that the snow season ending much
earlier than the snow-free SOS (ESS at DOY 96) advanced the SOS by up to 56 days, while
the snow season ending much later than the snow-free SOS (ESS at DOY 192) delayed the
SOS by up to 38 days. When the ESS approached the snow-free SOS (ESS at DOY 144),
the changes in SOS caused by snow were very small. Therefore, the effect of snow cover
on SOS detection depends on snow parameters, specifically SCDc, ESS, and the snow-free
SOS. Because the presence of snow increases the local gradient of the VI growth curve and
causes SOS to be detected, ESS and snow-free SOS determine where and to what extent the
gradient of the VI growth curve increases.
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Figure 13. Time curves and the detected SOS of the five VIs under different SCF and ESS cases at
SCDc = 64. (a–c), (d–f), (g–i), (j–l), and (m–o) are the time curves of five VIs, for each of which three
ESS cases at DOY 96, 144, and 192 and five cases of SCF = 0%, 25%, 50%, 75%, and 100% were plotted.

4.4. Effect of Snow Cover on Spring Phenology Detection from Satellite Data
4.4.1. Effect of Snow Cover on VI

Figure 14 shows the statistical distributions of the maximum, minimum, and range
of the time series of VIs for different SCDr intervals within the same elevation zone. To
ensure a sufficient number of pixels for statistics, the SCDr intervals with too few pixels
were excluded from the subsequent analysis, including the intervals of SCDr = 40–60%
and SCDr > 60% in the zone of DEM < 3500 m. Generally, the decrease in minimum VI
values with increasing SCDr was more significant than the decrease in maximum VI values.
This is because snow always melts before the peak growth season and does not affect the
maximum VI over time. Consequently, the range of VI values increased with the increasing
SCDr for all five Vis. These findings were consistent with the simulation results. However,
the reduction in VI values with increasing SCDr was not as significant as in the simulation
results. This is probably because there were few snow-free pixels, and the minimum VI
in the interval SCDr < 20% was affected by snow. Based on the decrease in the minimum
VI value with increasing SCDr, the effect of snow on the VI value follows the order of
NDPI/NDGI < NIRv < EVI2 < NDVI, which was consistent with the findings from the
simulation experiments described in Section 4.3.1.
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0.2

 
Figure 14. Statistical distribution of the maximum, minimum, and range of the time series of five VIs
for different SCDr intervals and elevation zones. (a–c), (d–f), (g–i), and (j–l) are statistics for elevation
zones of DEM < 3500 m, 3500–4000 m, 4000–4500 m, and ≥ 4500 m, in each of which the maximum,
minimum, and range of the VI values over time were plotted.

4.4.2. Effect of Snow Cover on SOS Detection

Figure 15 compares the statistical distribution of SOS detected from the five VIs at
different SCDr and elevation zones. At the same SCDr, an increase in elevation caused a
delay in the SOS for all five VIs. For less snowy areas with SCDr < 20%, an increase in
elevation from < 3500 m to ≥ 4500 m caused a delay of approximately 19–25 days. Within
the same elevation zone, the increase in SCDr caused different effects on the SOS detected
by different VIs. At elevations ≥ 4500 m, an increase in SCDr from < 20% to > 60% delayed
the SOS by 3 and 5 days for NDGI and NDPI, respectively, but advanced the SOS by 11, 9,
and 4 days for NDVI, EVI2, and NIRv, respectively. Generally, the SOS detected by NDGI,
NDPI, and NIRv was less affected by snow, while the SOS detected by NDVI and EVI2 was
more affected by snow.

Based on the simulation results, the effect of snow on SOS detection depends on
SCDc, ESS, and snow-free SOS. Figure 16 shows the statistical distribution of the SOS for
different SCDc and ESS cases in each elevation zone using real satellite data. To ensure
sufficient pixels for the statistical analysis, we considered three SCDc cases, including
SCDc < 48, 48 ≤ SCDc < 80, and SCDc ≥ 80, and divided the ESS values into 12 cases with
16-day intervals from DOY 32 to 208. In the zone with DEM < 3500 m, the intervals of
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48 ≤ SCDc < 80 and SCDc > 80 had a maximum of two pixels and were excluded from the
statistical analysis.

 
Figure 15. Error bars of the SOS detected by five different VIs for different SCDr intervals at each
elevation zone. Error bars show the mean and standard deviation of the SOS in each case. (a–d) are
the statistical distribution of SOS detected from the five VIs at different SCDr and elevation zones.

 
Figure 16. Changes in SOS with increasing ESS under different SCDc cases derived from satellite
data. (a), (b–d), (e–g), and (h–j) are statistics for elevation zones of DEM < 3500 m, 3500–4000 m,
4000–4500 m, and ≥ 4500 m, in each of which three cases of SCDc < 48, 48 ≤ SCDc < 80, and
SCDc ≥ 80 were plotted. SCDcMean and SCDcSTD are the mean and standard deviation of SCDc in
each elevation zone.
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As shown in Figure 16, the effect of snow on the detected SOS followed the order of
NDPI/NDGI < NIRv < EVI2 < NDVI. Generally, the larger the SCDc was, the larger the
effect of snow cover on the detected SOS. For short snow (i.e., SCDc < 48), the fluctuation
in the SOS with varying ESS was the smallest for all five Vis, indicating a negligible effect
of snow. Using the SOS detected for short snow (i.e., SCDc < 48) as a benchmark, the SOS
detected under medium snow (i.e., 48 ≤ SCDc < 80) was generally advanced for NDVI and
EVI2 and was slightly delayed for NDPI, NDGI, and NIRv for ESS later than DOY 144. For
long snow (i.e., SCDc ≥ 80), the detected SOS dates were advanced for ESS earlier than
DOY 160 and delayed for ESS later than DOY 160. For short and medium snows, the effect
of snow on SOS detection was generally small for NDPI, NDGI, and NIRv. Generally, an
earlier ESS results in earlier estimates of the SOS, while a later ESS results in later estimates
of the SOS. These findings were highly consistent with the simulation results and verified
the validity of the simulation experiments.

5. Discussion

5.1. Validity of the SOS Dates Detected by Different VIs

The SOS dates detected by the five different VIs all captured the spatial pattern of the
SOS, which occurred earlier in the eastern areas and later in the western areas (Figure 8).
The SOS dates detected by five different VIs also have very similar data distributions,
ranging from 105 to 175 with peak values of approximately 157. Both the spatial details and
data values were highly consistent with each other and with previous studies [38,55,59],
verifying the validity of the detected SOS dates.

Statistical analysis in Figure 15 revealed that both the mean and standard deviation
values of the SOS detected in less snowy areas (e.g., SCDr < 20%) by different VIs were very
close to each other. However, for more snowy areas, such as for SCDr > 40%, discrepancies
occurred in the SOS detected by different VIs. The SOS derived from NDVI and EVI2
were earlier, while those from NDPI and NDGI were later and those from NIRv were in
between. These discrepancies could be attributed to the different sensitivities of various
VIs to preseason snow cover.

For the entire study area, the SOS dates detected by different VIs have different
correlations with each other, such as the results of NDGI/NDPI, which have relatively low
correlations with those of NDVI/EVI2/NIRv. However, for less snowy areas, very high
correlations were found for the results of all five VIs. Figure 17 compares the different
SOS results for the areas with SCDr < 20%. The R values between the different SOS results
ranged from 0.818 to 0.982, indicating a very high consistency of the SOS detected by
different VIs.

Although previous studies confirmed the accuracy of satellite-derived SOS dates
under snow-free conditions [20,21,31,40], a direct comparison with field data was lacking
in this study due to the unavailability of in situ SOS measurements. However, we referred
to previous studies [20,38,55,59,60] and found a high consistency of our results with the
previous in situ measurements and satellite-derived SOS dates in terms of value ranges and
spatial distribution. Moreover, a high consistency of the SOS results detected by different
VIs was confirmed for less snowy conditions, which was also consistent with previous
findings [19,20]. Since the satellite-derived SOS dates represent the macroscale spring
phenology and cannot be simply equated with the in situ measurement [61,62], the absence
of a direct comparison with in situ measurements does not affect the validity of our results,
yet we hope more evidence from in situ measurements to support our findings in the future.
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Figure 17. Comparison of the SOS detected by different VIs for SCDr < 20%. The color from light gray
to dark gray indicates increasing sample densities. (a–j) are scatterplots of the SOS dates detected
from different VIs on a pixel-by-pixel basis.

5.2. Influence of Snow Phenology Parameters

Both the simulation experiments and satellite data analysis showed that the presence
of snow could significantly reduce the VI values, increase the local gradient of the time
curve of VI during pregrowth periods, and cause the SOS to be detected. The bias in the
SOS (ΔSOS) caused by snow cover depends on snow phenology parameters, especially the
SCDc, ESS, and snow-free SOS.

In general, the SCDc represents the maximum duration of snow cover, corresponding
to the length of the reduced values in the VI trajectory, which determines whether the
reduced VI values could be recovered from temporal filtering. Thus, the larger the SCDc
value was, the larger the absolute value of ΔSOS. Compared to the SCDc, the SCDr only
represents overall snow-covered days. A high SCDr does not necessarily imply a high
SCDc, while a high SCDc does lead to a high SCDr. Thus, the relationship between the
SCDr and ΔSOS was rather indirect and was not discussed in detail.

Whether the ESS is earlier or later than the snow-free SOS determines whether ΔSOS
is negative or positive, corresponding to the advancement or delay of the SOS detected
under snow conditions. The further the temporal distance of ESS to the snow-free SOS
was, the larger the absolute value of ΔSOS. These findings were consistent with previous
studies [37,38,63,64]. An earlier ESS results in an earlier estimate of SOS, while a later ESS
results in a later estimate of SOS. For example, Wang et al. [38] analyzed the correlation
between the duration of snow cover and the SOS on the Qinghai–Tibet Plateau and found
that snow cover can advance the SOS in the northeastern, central, and southwestern edges
of the Qinghai–Tibet Plateau; however, in some areas, longer snow cover duration delayed
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the SOS. Xie et al. [64] found that a shortened snow duration advances the SOS, whereas a
prolonged snow duration delayed the SOS in their study in the European Alps.

5.3. Performance of Five VIs under Snow Conditions

Our study showed that the effects of snow cover on the five VIs were NDPI < NDGI
< NIRv < EVI2 < NDVI. For SOS detection, NDPI and NDGI were rather stable even with
winter snow cover, which verified their abilities to minimize the effect of snow cover
for alpine grasslands, such as those also found for the American prairie [65]. Our study
further revealed the variations in the ΔSOS with snow phenology parameters for NDPI
and NDGI. For short and medium snow (i.e., SCDc ≤ 64), preseason snow ending prior
to the snow-free SOS caused insignificant biases in the SOS detected by NDPI and NDGI.
For long snow (i.e., SCDc ≥ 96) or late snow that ends far later than the snow-free SOS,
the biases in the SOS detected by NDPI and NDGI are significant. These findings increase
our knowledge about the specific conditions under which the NDPI and NDGI are reliable
for SOS detection with snow cover. The traditional NDVI and EVI2 are easily and heavily
affected by snow cover. Either an early or a late snow season can cause significant bias in
the detected SOS. The physiological-based NIRv could derive SOS dates highly consistent
with those detected by NDVI and EVI2 and was less sensitive to snow cover than NDVI
and EVI2, indicating its great potential for phenological detection in alpine grasslands.
These findings with respect to the performance of different VIs under snow conditions
were consistent with the study of Yang et al. [21].

5.4. Limitations and Future Improvements

There are several state-of-the-art methods to smooth the temporal profiles of VIs and
extract phenological metrics [11,52,66–68]. Only one of them was used in this study. More
methods can be used and evaluated in further studies. However, we assumed that the
conclusion can hold for other SOS detection method because the affecting mechanism
of snow in increasing the local gradient of the growth curve is still valid. A previous
study using the derivative-based method for SOS detection achieved similar conclusions
that snow cover would advance the SOS, but prolonged snow duration would delay the
SOS date [38].

The design of the simulation experiments made a series of simplifications of the actual
situation. One major simplification is that light cannot penetrate the snow layer. This
assumption is representative of most cases with a thick snow layer but may not apply to
thin snow layers. However, thin snow can melt or form into a thick snow layer quickly,
which will cause negligible effects on the time curves of the VIs. This assumption is thus
reasonable, yet further studies can consider the case of temporary thin snow. The other
major simplification is that we only considered the presence or absence of snow cover
without considering the snowmelt process. Snowmelt can also last for several days and
affect vegetation phenology [39,69]. Although such simplification would cause a sharp
increase in the time curve of the VIs at the ESS, temporal smoothing performed prior to
the SOS detection can locally smooth the VI temporal curve and remedy the problem. In
addition, the simulation experiments showed that a small SCF, such as 25%, can cause a
large reduction in the VI value. Although the snowmelt process leads to a gradual decrease
in SCF, the largest increase in the VI value is expected to be at the stage when SCF decreases
from 25% to 0%, which is a relatively short time interval. Therefore, the presence and
immediate melting of snow in our simulation experiments is reasonable, and more complex
situations can be considered in future work.

For the debate on whether NDVI-based spring phenology trends are overestimated on
the Tibetan Plateau [6,7,30,70], we suggest that snow phenology, particularly ESS, should
be given much attention in related studies. Normally, NDPI, NDGI, and NIRv would be
less affected by snow cover, and their performance in detecting long-term phenology trends
can be further investigated. Based on the findings in this study, we also expect to decouple
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the effect of snow cover on satellite signals and on vegetation physiological phenology,
which will enhance our understanding of vegetation–climate feedbacks.

6. Conclusions

Considering the difficulty in assessing the effect of snow cover on SOS detection, this
study investigated the effect of snow cover on both VI and SOS detection by combining
simulation experiments and real satellite data, aiming to determine how snow affects the
different VIs and the subsequent SOS detection and how different VIs perform in capturing
the SOS for alpine grasslands on the Tibetan Plateau. Five VIs, including NDVI, EVI2, NDPI,
NDGI, and NIRv, were used for SOS detection, and their performance was compared.

Based on the simulation experiments, we found that the presence of snow, even at a
low SCF, can significantly reduce the values of the five VIs and increase the local gradient
of the growth curve, allowing the SOS to be detected. Thus, the bias in the detected SOS
due to snow cover depends on both snow phenological parameters (i.e., ESS and SCDc)
and the snow-free SOS. An earlier ESS results in an earlier estimate of SOS, while a later
ESS results in a later estimate of SOS, and an ESS close to the snow-free SOS results in small
bias in the detected SOS.

The analysis from satellite data showed consistent results with those from the simula-
tions. The presence of snow especially reduced the minimum VI values over time, and the
detected SOS within the same elevation zone varied with snow parameters such as SCDc
and ESS. Generally, an earlier ESS led to an earlier estimate of SOS, while a later ESS led to
a later estimate of SOS.

The sensitivity of the five VIs to snow cover in SOS detection is NDPI/NDGI < NIRv
< EVI2 < NDVI, which has been tested in both simulation experiments and satellite data
analysis. For SOS detection with winter snow cover, NDPI, NDGI, and the physiological-
based NIRv were rather stable, while NDVI and EVI2 were easily and heavily affected by
snow cover. However, the performance of a specific VI in SOS detection also depends on
snow phenology parameters such as SCDc and ESS.

These findings will significantly advance our research on the feedback mechanisms
between vegetation, snow, and climate change for alpine ecosystems.
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Abstract: Remotely sensed estimates of forest diversity have become increasingly important in
assessing anthropogenic and natural disturbances and their effects on biodiversity under limited
resources. Whereas field inventories and optical images are generally used to estimate forest diversity,
studies that combine vertical structure information and multi-temporal phenological characteristics
to accurately quantify diversity in large, heterogeneous forest areas are still lacking. In this study,
combined with regression models, three different diversity indices, namely Simpson (λ), Shannon
(H′), and Pielou (J′), were applied to characterize forest tree species diversity by using GEDI LiDAR
data and Sentinel-2 imagery in temperate natural forest, northeast China. We used Mean Decrease
Gini (MDG) and Boosted Regression Tree (BRT) to assess the importance of certain variables including
monthly spectral bands, vegetation indices, foliage height diversity (FHD), and plant area index
(PAI) of growing season and non-growing seasons (68 variables in total). We produced 12 forest
diversity maps on three different diversity indices using four regression algorithms: Support Vector
Machines (SVM), Random Forest (RF), K-Nearest Neighbors (KNN), and Lasso Regression (LR).
Our study concluded that the most important variables are FHD, NDVI, NDWI, EVI, short-wave
infrared (SWIR) and red-edge (RE) bands, especially in the growing season (May and June). In terms
of algorithms, the estimation accuracies of the RF (averaged R2 = 0.79) and SVM (averaged R2 = 0.76)
models outperformed the other models (R2 of KNN and LR are 0.68 and 0.57, respectively). The study
demonstrates the accuracy of GEDI LiDAR data and multi-temporal Sentinel-2 images in estimating
forest diversity over large areas, advancing the capacity to monitor and manage forest ecosystems.

Keywords: forest diversity; GEDI LiDAR; Sentinel-2; machine Learning

1. Introduction

Forests host unique tree species diversities, which support key ecosystem services such
as nutrient cycles, head-water conservation, and biomass estimation [1]. Forest diversity is
changing in response to climate change, soil erosion, species introductions and more [2]. In
addition, forest productivity increases with tree species richness, and higher tree species
diversity provides more food options for wildlife. Thus, developing effective technology is
urgently needed for mapping forest diversity distribution over large areas to assess their
current states and carrying capacity for animal populations [3].

Forest diversity is typically assessed by botanical surveys of the woods and metrics
related to their species diversity (i.e., richness, Simpson, and Pielou diversity) [2,4]. Tradi-
tionally, forest diversity is calculated by counting the number and types of trees, which is an
expensive, time-consuming process. Additionally, due to accuracy problems and difficulty
in recognizing intertwined tree species, such a strategy is difficult to implement in large
(e.g., hundreds of hectares) forest communities [5]. The challenges are more significant in
natural forests with dense canopies. Remote sensing techniques have shown great potential
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for large-scale estimations of forest diversity and have been successfully used to estimate
species diversity of subtropical and tropical forest ecosystems [6,7]. However, contem-
porary remote sensing-based approaches to estimate forest diversity vary with regard to
the satellite data and machine learning models deployed. Plant richness of herbaceous
ecosystems has been assessed using hyperspectral imagery by Oldeland et al. [3]. Nagen-
dra et al. [7] used IKONOS and Landsat images to estimate forest species richness and
diversity in central India. Stenzel et al. [8] used multi-seasonal, multi-spectral remote sens-
ing data (RapidEye) to map ecological regions with high species richness. Almeida et al. [9]
used hyperspectral images and airborne LiDAR data to assess the structure and diver-
sity of restoration plantings. Clearly, rich spectral information plays an important role
in species richness. However, these remote-sensing data are limited by area coverage,
weather conditions, high costs, and acquisition time [10], making it challenging to develop
detailed maps of forest diversity across large areas. Currently, commonly used methods
for estimating forests diversity based on remote sensing data are extrapolated by using
field data collected. Leutner et al. [11] examined the relationship between remotely sensed
and field data, and mapped α- and β-diversity in the Yucatan Peninsula by using a re-
gression kriging procedure. Hakkenberg et al. [12] predicted floristic diversity at different
spatial scales using nonparametric models trained with spatially nested field plots and
aerial LiDAR-hyperspectral data. Chrysafis et al. [13] developed a workflow to obtain tree
diversity maps with machine learning algorithms using multispectral and multi-seasonal
Sentinel-2 images and geodiversity data at the regional scale. The most important process
in these methods is to extract features from remote sensing data, which are spectral indices
or LiDAR-based metrics highly relevant to forest diversity, and then using these features as
a set of mixed variables for regression analysis. Although these methods have achieved
good prediction accuracy, it is unclear which types of algorithms are more effective in
estimating forest diversity.

Sentinel-2 satellite data with 10 m spatial resolution has large spatial coverage, short
acquisition time, and rich spectral bands that offer unprecedented opportunities to estimate
tree species diversity [14]. The phenological differences of plant communities can be cap-
tured by their high temporal resolution and used as metrics to calculate plant diversity [15].
Detailed spectral information is related to plant biochemical composition, canopy structure,
and leaf morphology characteristics, specifically for red-edge wavelengths [16]. Then, being
available for free, they can be used to process large areas and complement field surveys
at a reduced cost [17]. Sentinel-2 imagery has achieved good performance in mapping
tree species classification [15], vegetation phenology monitoring [18], and forest above-
ground biomass [19]. However, estimating tree species diversity is still lacking, especially
in temperate mixed forests. Additionally, since April 2019, the NASA Global Ecosystem
Dynamics Investigation (GEDI), a spaceborne LiDAR sensor in the International Space
Station, has acquired footprint data with an average diameter of 25 m [20]. GEDI is a full
waveform LiDAR that was created with the purpose of detecting vegetation structure [21]
and provides an unprecedented sampling density, which could be an ideal structure pa-
rameter for estimating forest diversity [22]. Potapov et al. [23] combined GEDI LiDAR
and Landsat to produce a global tree height map at a 30 m resolution. Liang et al. [24]
quantified aboveground biomass dynamics of charcoal degradation in Mozambique using
GEDI LiDAR and Landsat. These studies provide promising examples for the potential of
GEDI-Sentinel data fusion to estimate forest diversity continuously across large extents.

In this study, GEDI LiDAR data and multi-temporal Sentinel-2 images were integrated
to estimate forest diversity at the pixel level within natural forests in northeast China.
Specifically, this study aims to: (1) quantify the relationships between forest diversity and
variables from Sentinel-2 and GEDI LiDAR, (2) explore the effective algorithm for high
precision mapping of forest diversity, and (3) map forest diversity by using GEDI LiDAR
data and Sentinel-2 images for forest ecological assessment.
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2. Materials

2.1. Study Area

The study area is located in the southeast region of Jilin Province, northeast China
(Figure 1). It covers approximately 311,000 ha with an average elevation of 500 m. The
average annual temperature ranges from nearly −3 to 7 ◦C, and the precipitation ranges
from 500 mm to 1400 mm [25]. The forest types are mainly temporal mixed broadleaf-
conifer woodlands, which are dominated by Juglans mandshurica, Pinus koraiensis, Betula
costata, Larix gmelinii, Quercus mongolica, and Populus tremula.

Figure 1. Location of the study area. The yellow dots on Sentinel-2 imagery are the sampling plots,
while purple dots indicate the GEDI footprints used in this study.

2.2. Field Botanical Surveys

Compared with other forest parameters, forest diversity is related to spatial variability.
Prior to field excursion, one would need to determine what size plots can achieve a stable
range of spatial variability. In this study, we used the semi-variogram to determine the
investigated plot size, which quantifies the spatial variability due to distance change [2].
Specifically, we calculated the square deviation between adjacent pixel values to test spatial
variability with the Sentinel-based NDVI band. Semi-variance gradually increases with
the distance between pixels until it starts to level off. Our findings indicated that lag
distances of 50 m correspond to the scale for tree species variability in the study area
(Appendix A, Figure A1). Thus, the plot size of 50 m × 50 m was identified as optimal in
terms of capturing spatial variation in tree species diversity. From June to July 2019, field
surveys were conducted. Based on spatial distribution randomness and road accessibility
principles, a total of 452 plots were designed; The Global Positioning System was used
to record each plot of position. In this study, based on the Chinese Forest Biodiversity
Monitoring Network (CForBio) [26], all trees with a diameter at breast height (DBH) greater
than 10 cm were identified, while trees with DBH less than 10 cm, shrubs and grasslands
were not investigated considering the effect of dense canopy. In addition, the spatial
distribution of different forest types was also obtained through the 9th National Forest
Inventory of China (2018).
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2.3. Data Source and Processing
2.3.1. Diversity Index Data

Based on sample data obtained from the field survey, tree species diversity for each plot
was calculated using the three commonly used plant diversity indices, namely Shannon
(H′), Simpson (λ) and Pielou (J′) (Table 1). Specifically, we first counted the species (i)
and proportion (Pi) of trees in each plot, and then input the statistical parameters into
the equations of diversity index to calculate diversity values of each plot (see Figure A2).
Finally, the diversity values of each plot were used as dependent variables, and multi-
variables from remote sensing data corresponding to the plot location were used as the
prediction variables for the next step.

Table 1. Three diversity indexes and corresponding equations were used in the study. Note: S is the
total number of tree species in a plot; Pi is the proportional abundance of species i relative to the total
abundance of all species S in a plot; InPi is the natural logarithm of this proportion.

Diversity Index Equation Reference Description

Shannon index
(H′, based e) H′ = − s

∑
i=1

Pi InPi [27]
Species richness and

equitability in
distribution in a plot

Simpson index
(λ form) λ =

s
∑

i=1
P2

i
[28] The dominance of a

species in a plot

Pielou evenness
index (J′) J′ = −∑s

i=1 Pi InPi
InS [29] How close in numbers

each species in a plot

2.3.2. Sentinel-2 Images

Multi-temporal Sentinel-2 imagery was obtained from the Copernicus open access
(COA) Hub [30]. We extracted 4 tiles of Sentinel-2 images which corresponded to different
phenological phases and covered the study areas from May, June, September, and October
in 2020. Using the Sen2Cor plug-in provided by the ESA [31], the Sentinel images were
atmospherically corrected. In the sentinel application platform [32], bilinear interpolation
method is used to resample all bands to 50 m, and then multiple vegetation indices were
also calculated using Sentinel-2 bands (Table 2).

Table 2. Vegetation indices extracted from Sentinel-2 satellite imagery.

Vegetation Indices Expression References

Normalized Difference Vegetation Index (NDVI) Rnir−Rred
Rnir+Rred

[33]
Normalized Difference Water Index (NDWI) Rnir−Rswir

Rnir+Rswir
[34]

Difference Vegetation Index (DVI) Rnir − Rred [35]
Enhanced Vegetation Index (EVI) 2.5

[
Rnir−Rr

L+Rnir+C1Rr

]
[36]

Soil Adjusted Vegetation Index (SAVI) Rnir−Rred
L+Rnir+Rred

∗ (1 + L) [37]

2.3.3. GEDI LiDAR Data

GEDI LiDAR L2B data were obtained from NASA Land Processes Distributed Active
Archive Center (https://search.earthdata.nasa.gov/search, accessed on 21 October 2022)
in 2019–2021, matching the region of study. The GEDI instrument acquired structural
information, such as canopy height metrics, vertical profiles, and surface topography,
by analyzing the amount of energy returned by various tree components at different
heights above the ground [38]. In this study, the foliage height diversity (FHD) and
plant area index (PAI) were extracted from 154,371 observations from GEDI L2B. The
FHD index is a plant structural measure that describes the vertical heterogeneity of the
foliage profile (Table 3) [39]. The PAI, which comprises various plant components (stem,
branches, and leaves), is the one-sided area of plant material surface per unit ground surface
area [39]. Considering the changes in forest structure caused by phenological differences,
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we differentiated the two metrics as growing season and non-growing season. Considering
the signal-to-noise ratio of the waveform, the sensitivity of a GEDI footprint shows the
dense canopy cover that can be penetrated. Thus, we excluded footprints with sensitivity
less than 0.9. After filtering out these invalid observations, 62,593 pairs of FHD and PAI
were used for further processing.

Table 3. Characteristics of data used in this study.

Data Type Variables Time Description

Sentinel-2

B1 May. Jun. Sep. and Oct. Coastal aerosol, 443 nm
B2 May. Jun. Sep. and Oct. Blue, 490 nm
B3 May. Jun. Sep. and Oct. Green, 560 nm
B4 May. Jun. Sep. and Oct. Red, 665 nm
B5 May. Jun. Sep. and Oct. Red edge, 705 nm
B6 May. Jun. Sep. and Oct. Red edge, 740 nm
B7 May. Jun. Sep. and Oct. Red edge, 783 nm
B8 May. Jun. Sep. and Oct. Near infrared, 842 nm
B8A May. Jun. Sep. and Oct. Near infrared, 865 nm
B11 May. Jun. Sep. and Oct. Short-wave infrared, 1610 nm
B12 May. Jun. Sep. and Oct. Short-wave infrared, 2190 nm

Vegetation indices

NDVI May. Jun. Sep. and Oct. Normalized Difference
Vegetation Index

NDWI May. Jun. Sep. and Oct. Normalized Difference
Water Index

EVI May. Jun. Sep. and Oct. Enhanced Vegetation Index
DVI May. Jun. Sep. and Oct. Difference Vegetation Index

SAVI May. Jun. Sep. and Oct. Soil Adjusted
Vegetation Index

GEDI LiDAR

FHD_NGS Non-growing season Foliage height diversity in
non-growing season

FHD_GS Growing season Foliage height diversity in
growing season

PAI_NGS Non-growing season Plant area index in
non-growing season

PAI_GS Growing season Plant area index in
growing season

To obtain spatially continuous FHD and PAI, we used inverse distance weighting
(IDW) interpolation to achieve wall-to-wall diversity mapping. The IDW, as a global
interpolation, is usually used for sample datasets that are uniformly distributed and
dense enough to reflect local differences [40]. Measured values closest to the predicted
location have a greater effect on the predicted value than those farther away, resulting in
sensitivity of IDW interpolation to outliers and sampling configurations (i.e., clustering and
isolation points) [41]. Thus, we randomly select dense GEDI points until these points are
uniformly distributed throughout the study area. Then, we selected 80% of GEDI points
for interpolation and parameter optimization and applied the remaining sample data (20%)
for validation until the correlation coefficient was higher than 0.8.

3. Methods

3.1. Variable Importance Assessment

Selecting the most important variables from high-dimensional datasets is beneficial in
improving efficiency and reducing model overfitting. In this study, Boosted Regression Tree
(BRT) and Mean Decrease Gini (MDG) algorithms were used to evaluate the importance of
independent variables. MDG indicates the contribution of each variable to the homogeneity
of the nodes and leaves in the resulting random forest, while BRT evaluates variable
performance by iteratively fitting and combining multiple regression tree models [42].
Both algorithms are capable of ingesting multiple classes of predicted variables to model
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complex interactions without making assumptions about variable interactions and have
been widely used in ecological and remote sensing research [43].

3.2. Algorithms for Forest Diversity Mapping

In this study, four machine-learning algorithms with various setups were employed:
Lasso Regression (LR), Random Forest (RF), K-Nearest Neighbors (KNN), and Support
Vector Machine (SVM). Non-parametric, non-linear algorithms including KNN, RF, and
SVM have been applied successfully in a variety of remote sensing applications [44].
KNN and SVM represent distance-based and kernel-based models, respectively, while
RF represents tree-based models. Specifically, KNN finds similarities between the new
data and available results and puts the new results into the category most similar to those
available. SVM can hold regression problems with multidimensional data by separating
positive and negative samples to identify the optimum decision hyperplane [45]. RF is a
classifier containing a large number of decision tree classifiers [46], and each tree is trained
with randomly selected training samples to solve a single problem [47]. All algorithms
were implemented using the Scikit-learn python library, and the hyperparameters of LR,
K-NN, SVM, and RF methods were fitted through cross-validation (Table 4) [48].

Table 4. Description of the regression models used in this study, including the parameters considered
and the criteria used to rank the feature importance.

Model Abbr. Parameters Feature Rank Criteria

Lasso regression LR — Absolute value of coefficients
K-Nearest
Neighbors KNN K values = 3, 5, 7, 9, 11 Minimum error rate

Support Vector
Machine

SVM
cost = 0.1, 0.5, 1, 2, 4, 10 Squared weights
kernel = linear, radial,

sigmoid, rbf.

Random Forest RF
ntree = 200, 500, 800, 1000 Increase in mean squared error

by permuting a variablemtry = 2, 5, 10, 20, or k/3

3.3. Accuracy Assessment

The coefficient of determination (R2), root-mean-square error (RMSE) and mean abso-
lute error (MAE) were applied to assess the accuracy of tree species diversity estimation.
The following equations were used to calculated R2, RMSE, and MAE:

R2 = 1− ∑n
i=1(yi − xi)

2

∑n
i=1(yi − y)2 (1)

RMSE =

√
∑n

i=1(xi − yi)
2

n
(2)

MAE =
∑n

i=1|xi − yi|
n

(3)

where xi and yi are the estimated and measured values, respectively. y is the average
measured values, and n is the sample number.

All samples were randomly assigned to one of the two sets of training and validation,
following the ratio of 70%:30%. Then, k-fold cross validation was also employed. The
generalization error of a given method is directly estimated by cross-validation: The data is
divided into K folds of almost equal size, and K folds are used to fit the model. Additionally,
the estimated generalization error is the average error over the K folds.
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4. Results

4.1. Optimal Features from SENTINEL-2 Images and GEDI LiDAR Data

MDG and BRT algorithms were applied to analyze the 68 features obtained by Sentinel-
2 images and GEDI LiDAR data to find the optimal features for diversity mapping. Cross-
validation is further used to score several feature subsets and choose the best scoring feature
collection. Figure 2 shows the ranking results of key features for three diversity indices,
other detailed results are displayed in Appendix A, Table A1. Using the FHD and PAI of
GEDI LiDAR in growing season, the vegetation indices of NDVI, NDWI, and EVI, and
the spectral bands of B7, B8A, B11, and B12 were identified. Compared with individual
spectral bands, GEDI feature and vegetation indices have a stronger explanation on the
variations of forest diversity.

Figure 2. Relative importance of the features selected for estimations of forest diversity indices.

After feature selection, we applied mixed features from GEDI LiDAR data and Sentinel-
2 images to estimate forest diversity. For comparison, we selected RF model and applied
only GEDI LiDAR data or Sentinel-2 images for forest diversity estimation. Our results
show that the Sentinel-2 data alone (averaged R2 = 0.62) gives better prediction accuracies
than the GEDI LiDAR data alone (averaged R2 = 0.51), but both are lower than that of
combined data sources (Table 5). Specifically, the Sentinel-2&VIs has a good performance
on the prediction of H′ and J′ indices, with R2 values of 0.66 and 0.63, RMSE of 0.56 and 0.18,
although the result of λ index is slightly lower than other indices (R2 = 0.57, RMSE = 0.15).
The GEDI data alone is observed to have a relatively high prediction on H′ and λ indices
(R2 = 0.51; R2 = 0.54 respectively), but a lower prediction on J′ index (R2 = 0.48).

Table 5. Estimated accuracy for different data combinations in three diversity indices.

Combined Variables
H′ Index λ Index J′ Index

R2 RMSE R2 RMSE R2 RMSE

GEDI 0.51 0.78 0.54 0.26 0.48 0.35
Sentinel-2 &VIs 0.66 0.56 0.57 0.15 0.63 0.18

GEDI & Sentinel-2 &VIs 0.72 0.46 0.78 0.14 0.86 0.11
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4.2. Diversity Indices Modelling Using Machine Learning Algorithms

Based on selected optimal predictor variables from Sentinel-2 and GEDI data, three
diversity indices were characterized using LR, K-NN, RF, and SVM models. Our results
showed that the R2 values of all models are above 0.45 in all the diversity indices (Figure 3).
Specifically, the RF model exhibited the best performance with R2 = 0.86 (RMSE = 0.11)
for the J′ index, 0.78 (RMSE = 0.15) for the λ index, and 0.73 (RMSE = 0.47) for H′ index
(Figure 3a,e,i). The SVM also had positive results on the H′ and λ indices, with R2 values of
0.80 and 0.72, RMSE of 0.37 and 0.16, although the result of the J′ index was lower than the
other models (R2 = 0.57, RMSE = 0.21) (Figure 3b,f,j). The KNN and LR models showed
relatively low results on the λ index (R2 = 0.46 and 0.57, respectively) (Figure 3c,d) but
higher results on the J′ index (R2 = 0.81 and 0.71, respectively) (Figure 3k,l). Overall, the
main trend was that lower values of the three indices were a bit overestimated (above the
1:1 line) while high values were underestimated (below the 1:1 line).

Figure 3. Scatterplot matrix of true values and predicted values by using RF, SVM, KNN, and
LR models in three diversity indices. Shannon indices (a–d), Simpson (e–h), and Pielou (i–j).
**: Significant correlation (p < 0.01).

4.3. Spatial Variability of the Predicted Diversity Indices

Based on the four regression models, we plotted the spatial variation of diversity
indices and predicted variables within forests. The spatial distribution of the three diversity
indices for the RF result is displayed in Figure 4, while the other results are displayed
in Appendix A, Figure A3. Visually, the predicted maps show strong spatial agreements
between the H′ and J′ indices, which are negatively related to the λ index in most parts of a
forest. The H′ and λ indices account for species richness (i.e., number of different species)
and abundance (i.e., number of individual trees per species), while J′ index accounts for
species evenness (i.e., the numerical dominance of a few abundant tree species). Generally
speaking, forest diversity was higher in the north than in the south, especially in the
northeast. It is worth noting that the forest diversity of the sparse woods in the southwest
area is significantly lower than that of other regions.
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Figure 4. Predicted maps and pixel statistics of forest diversity by the three indices (a) λ index, (b) H′

index, (c) J′ index using the RF model.

There are notable differences in tree species diversity according to the various forest
types obtained by the 9th National Forest Inventory of China (2018). The diversity of the
secondary forest regions (the right part of Figure 5a) could be easily distinguished from
the natural forests based on predicted variables (Figure 5b–d). However, the performance
varies amongst the three indices. Compared with other regions, the diversity of areas
along rivers and roads did not significantly differ, but the J′ index along rivers expressed
relatively low values (Figure 5f–h,j–l). Although the best prediction results were obtained
by testing four regression models, we found that a single indicator does not adequately
characterize diversity. For example, on the right side of the road in Figure 5f–h, there
are significant differences in the three diversity indices, which forced us to obtain a more
comprehensive assessment of diversity.

Figure 5. Zoom-in examples of true color Sentinel-2 images (RGB = bands 4, 3, 2) and forest diversity
predictions under different forest environments. Sentinel-2 image (a) contains two forest types,
secondary forest (right) and natural forest (lift); Images (e,i) show natural forests traversed by
rivers and roads. The (b–d), (f–h), and (j–l) indicate three diversity index results corresponding to
images (a,e,i).
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5. Discussion

5.1. Prospects of GEDI LiDAR and Sentinel-2 Data on Forest Diversity

In this study, we succeeded in estimating forest diversity in a mixed broadleaf-conifer
forest, using multi-temporal Sentinel-2 and GEDI LiDAR data. This suggests promising
potential for LiDAR data and optical images, combined with machine-learning approach,
to estimate forest species diversity over large areas. Such a method would greatly improve
conservation and management of forest resources. GEDI LiDAR data uses the reflected
laser energy within ~25 m footprints to determine the height, canopy cover, and vertical
distribution of plant material. This study is the first to apply the GEDI-derived FHD metrics
to forest diversity estimation, our results demonstrate the importance of FHD metrics in
future diversity studies. In forest ecology, a high FHD value typically indicates a more
complex forest structure (e.g., caused by multiple canopy layers). Structure differences
across tree species provide a different directional gap probability, which underlies the
LiDAR-based estimations of forest diversity and were confirmed by the direct correlations
between tree species diversity by indices (H′, λ and J′) and GEDI-derived FHD and PAI
indices (Figure 6). Therefore, GEDI LiDAR data will become one of the most important
parameters in forest diversity estimation. Nonetheless, we argue that it is difficult to
achieve good performance using only GEDI data. Our study demonstrated that combined
remote sensing data sources were better than GEDI LiDAR data or Sentinel-2 images alone
in explaining tree species diversity. The higher explanatory power of the combined data
sources was attributed to the full utilization of vegetation properties (vegetation structure
information, biochemical properties, and phenological variability).

 
Figure 6. Coefficients of determination (R2) between measured diversity indices and GEDI LiDAR indices.

Unique spectral responses are caused by differences in the physical and chemical
characteristics of various tree species, which is the main driver of forest diversity estimation.
Compared to band features, vegetation indices (NDVI, NDWI, EVI, and SAVI) were more
significantly correlated with forest diversity (H′, λ and J′). These results coincide with those
reported by Madonsela et al. [2]. Vegetation indices enhance the spectral information from
vegetation while limiting the spectral reflectance from non-vegetative characteristics [49].
This is also proven in Figure 7: The correlation coefficient between predicted H′ index
and vegetation indices in the fall season is significantly higher than that of the band
features. Variability in vegetation indices is caused by a variety of vegetation properties,
such as photosynthetic pigments, biomass, and structural carbohydrates [50]. Thus, it is
unsurprising that vegetation indices have a significant relationship with forest diversity
indices (H′, λ and J′). Additionally, the value of Red-Edge, NIR, and SWIR bands for
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estimating plant diversity has been demonstrated in previous studies by Sothe et al. [51]
and Grabska et al. [52]. This study also confirmed the importance of these bands using the
BRT and MDG algorithm (see Figure 2). This success is attributed to the rich spectral band
setting in Sentinel-2, for example, NIR and SWIR bands are sensitive to water content, lignin,
starch, and nitrogen [53]. In addition, we noticed that the correlation coefficients of growing
season and non-growing seasons showed a great gap, especially for spectral features.
Seasonal variations in canopy structure and biochemical characteristics among several tree
species were captured by the spectral values and vegetation indices. These differences
provide important references for estimating forest diversity in various forest environments.

Figure 7. The correlation coefficient between predicted H′ index and Sentinel-2 derived feature
variables. **: Significant correlation (p < 0.01), *: Significant correlation (p < 0.05).

5.2. Machine Learning Algorithms for Forest Diversity Mapping

Four different types of machine-learning algorithms were used to estimate forest
diversity indices, with three of the diversity indices used having their own variable selection.
Our results showed that RF and SVM models provided the highest estimation accuracy
in terms of the highest R2, the lower RMSE, and MAE. This was confirmed by the KNN
and LR models. The RF classifier, as an ensemble approach, consisted of a number of tree
classifiers, which reduces overfitting impacts and has been the most often used in remote
sensing tasks [54]. Similarly, SVMs are a high-performance method designed to solve
nonlinear problems using various kernel functions, such as the radial basis function [55].
The solid performance of RF and SVM models were confirmed in other studies [56,57]. For
λ and J′ indices, RF has the best prediction result, while in the H′ index, the SVM model
is best. The kernel-based algorithm (e.g., SVM) is prone to overfitting when presented
with an extreme value that cannot be identified in the sample [57]. In contrast, tree-based
algorithms (e.g., RF) seem to be more resistant to overfitting, though they do not fit as well
as kernel-based algorithms [58].

5.3. Prediction Performance and Uncertainty for Forest Diversity

Among the three diversity indices, J′ index has the highest correlation coefficient
(R2 = 0.86), followed by H′ index (R2 = 0.80) and λ index (R2 = 0.78). The three diversity
indices, being different representations of plant diversity, varied in spatial distribution
(Figure 5). λ index, which accounts for the proportion of species in a sample, is considered
to be a dominance indicator [59]. H′ index reflects both species richness and equitable
distribution of those species within a sample [3]. Moreover, Oldeland et al. [3] emphasized
that the H′ index better mirrors what one could call “vegetation structure”, which is a
subset of habitat heterogeneity and thus better reflects spectral variability. The spatial
difference between the two indices has been well demonstrated in natural forests and
secondary forests (Figure 5b,d). The J′ index is an indication of dominance and distribution
of individuals across the community within a sample. Relatively few studies have reported
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this index in remote sensing studies, but it is still of great significance, especially considering
the landscape scale [60].

While we derived the forest diversity map with high accuracy, several issues that may
limit further estimations still exist. The first is the uncertainty of on-site measurements.
In this study, we used semi-variance to determine a spatial scale for forest diversity in-
vestigation. Although fixed spatial scales are highly efficient in field surveys, they do not
adequately represent the diversity values of the survey region [61]. Secondly, the presence
of rare tree species in the understory and trees with DBH less than 10 cm may bring un-
certainty on the estimation of forest diversity. Our study area is primarily composed of
protected pristine natural forests [27], and the DBH of most trees exceeds 10 cm, which
is also confirmed in field surveys. Thus, these trees have no impact on the experimental
design and analysis, especially under dense canopy [49]. Finally, errors already exist in the
process of forest diversity prediction. For example, the background, including the shad-
ing caused by tree canopy, topography, and/or soil color, could cause biased reflectance
captured by Sentinel-2 [62].

6. Conclusions

In this study, we applied machine-learning-based regression models to map the spatial
patterns of forest diversity in a temperate mixed forest in northeast China. We did this
by coupling the newly available diversity product from GEDI LiDAR and multi-temporal
Sentinel-2 imagery. Our results showed that a variety of diversity indices can be predicted
accurately through combining forest vertical structure information, plant biochemistry, and
phenological variability. More accurately, utilizing the FHD index from GEDI, vegetation
indices (NDVI, NDWI and EVI), and shortwave infrared band from Sentinel-2 imagery
enhanced our ability to estimate forest diversity better than other variables, especially
during the growing season. Moreover, comparing four regression algorithms, the study
confirmed that the RF model, combined with GEDI LiDAR and Sentinel-2 data, showed
strong performance on forest diversity estimation (R2 = 0.79) and outperformed SVM, KNN,
and LR models (R2 = 0.76, 0.68 and 0.57, respectively). Our results also stressed the great
potential of GEDI LiDAR and Sentinel-2 images as explanatory variables for the prediction
of forest biodiversity indices. From a forest management perspective, our study developed
a reproducible workflow, based on free and openly available GEDI LiDAR and Sentinel-2,
that can potentially be used in a routine manner to map forest diversity distribution with a
high-resolution, advancing biodiversity conservation and forest ecological restoration.
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Appendix A

Table A1. Detailed results of variables importance.

Simpson Shannon Pielou

Rank Variables
BRT
(%)

MDG (%) Variables
BRT
(%)

MDG
(%)

Variables
BRT
(%)

MDG
(%)

1 FHD_GS 16.49 14.07 FHD_GS 15.59 12.14 NDVI_Jun 11.43 11.34
2 NDVI_Jun 12.16 12.37 NDVI_Jun 12.78 8.52 FHD_GS 9.33 7.48
3 NDWI_May 7.74 8.91 NDWI_May 10.48 9.38 NDWI_Jun 8.51 3.97
4 PAI_GS 7.55 6.33 B12_May 7.59 7.09 NDWI_May 5.38 5.07
5 NDWI_Jun 5.25 5.66 NDVI_Oct 6.40 6.84 PAI_GS 4.72 3.77
6 B12_May 4.58 5.55 PAI_GS 2.10 4.73 B12_May 3.97 2.94
7 EVI_May 5.18 3.84 B11_Oct 4.11 3.40 EVI_May 2.95 2.38
8 NDVI_May 3.75 3.18 EVI_May 3.52 2.70 B11_Oct 2.83 2.42
9 B12_Oct 3.21 2.76 B7_Jun 2.77 2.37 B7_Jun 2.77 2.40

10 B7_Jun 2.91 2.47 B11_Jun 2.36 2.25 B11_Jun 2.70 2.06
11 B11_Oct 2.58 2.25 B12_Oct 2.07 2.23 B12_Oct 1.66 2.02
12 B8A_Jun 1.97 2.18 NDVI_May 1.83 1.94 NDVI_May 1.59 1.68
13 B6_Jun 1.71 1.80 B8A_Jun 1.43 1.85 B5_May 1.59 1.45
14 B2_Jun 1.46 1.56 B8A_May 1.32 1.46 B8A_May 1.50 1.41
15 FHD_NGS 1.27 1.10 FHD_NGS 1.20 1.46 B5_Jun 1.49 1.40
16 B11_May 1.15 1.02 EVI_Oct 1.26 1.34 B8A_Jun 1.44 1.29
17 B1_Jun 0.92 0.99 B1_May 1.14 1.29 B5_Sep 1.29 1.18
18 NDWI_Sep 0.85 0.87 B8_Jun 1.08 1.19 NDVI_Oct 1.16 1.17
19 B4_May 0.83 0.85 DVI_Sep 1.02 1.05 B3_Sep 1.15 1.17
20 B3_May 0.78 0.84 B5_Oct 1.02 1.03 B3_Oct 1.11 1.16
21 B1_May 0.76 0.79 EVI_Jun 0.98 1.00 B4_Oct 1.09 1.13
22 B7_Sep 0.75 0.78 DVI_Oct 0.96 0.82 B7_Sep 1.07 1.12
23 B1_Oct 0.74 0.77 B3_May 0.89 0.80 B6_Sep 1.05 1.11
24 EVI_Oct 0.74 0.71 B4_May 0.89 0.78 B1_May 1.05 1.11
25 B6_Sep 0.71 0.69 B5_Jun 0.84 0.75 B1_Oct 1.04 1.09
26 B5_Jun 0.70 0.67 B1_Oct 0.78 0.75 B4_Sep 0.99 1.06
27 DVI_Sep 0.69 0.60 B12_Jun 0.75 0.72 B2_Oct 0.97 1.05
28 B12_Jun 0.68 0.60 B4_Sep 0.66 0.72 B1_Jun 0.97 1.05
29 B5_Sep 0.65 0.59 B2_Jun 0.65 0.69 DVI_Sep 0.97 1.04
30 B11_Jun 0.65 0.58 B3_Sep 0.62 0.68 B2_Sep 0.96 1.03
31 DVI_Oct 0.60 0.58 B5_May 0.61 0.68 PAI_NGS 0.95 1.03
32 B8_Jun 0.56 0.55 B1_Jun 0.61 0.65 DVI_Jun 0.93 1.00
33 NDVI_Oct 0.56 0.55 B2_Sep 0.57 0.64 DVI_Oct 0.93 0.99
34 PAI_NGS 0.55 0.49 B2_Oct 0.55 0.63 B6_May 0.85 0.98
35 DVI_Jun 0.54 0.49 B7_Sep 0.50 0.61 B6_Jun 0.84 0.98
36 B2_Oct 0.51 0.49 NDWI_Sep 0.48 0.61 B4_May 0.82 0.96
37 B8_Oct 0.48 0.48 B8_May 0.45 0.61 EVI_Oct 0.82 0.94
38 B9_Oct 0.48 0.47 NDWI_Oct 0.44 0.56 B9_Oct 0.80 0.92
39 B3_Jun 0.47 0.44 B6_May 0.44 0.54 B3_Jun 0.77 0.91
40 B3_Sep 0.47 0.43 B8A_Sep 0.43 0.52 B1_Sep 0.73 0.88
41 B3_Oct 0.46 0.42 NDWI_Jun 0.41 0.51 B5_Oct 0.73 0.88
42 B5_Oct 0.46 0.41 B11_May 0.40 0.51 B8_Jun 0.72 0.88
43 B2_Sep 0.31 0.40 B1_Sep 0.39 0.50 B2_May 0.71 0.86
44 B1_Sep 0.31 0.40 B6_Oct 0.37 0.49 EVI_Jun 0.71 0.85
45 B8A_Sep 0.30 0.39 B12_Sep 0.37 0.48 B12_Jun 0.70 0.85
46 B4_Oct 0.30 0.39 B6_Jun 0.36 0.48 NDVI_Sep 0.70 0.85
47 B2_May 0.28 0.39 DVI_Jun 0.36 0.47 B8A_Sep 0.70 0.84
48 B8_May 0.28 0.39 B8_Oct 0.31 0.47 B11_May 0.68 0.83
49 EVI_Jun 0.27 0.38 B5_Sep 0.30 0.46 B3_May 0.65 0.83
50 B4_Sep 0.26 0.38 NDVI_Sep 0.30 0.45 SAVI_May 0.56 0.83
51 NDWI_Oct 0.24 0.37 B6_Sep 0.30 0.45 SAVI_Sep 0.55 0.81
52 B5_May 0.24 0.37 B2_May 0.29 0.45 B8_Oct 0.53 0.81
53 B7_Oct 0.21 0.37 B11_Sep 0.28 0.43 FHD_NGS 0.52 0.81
54 B8A_May 0.20 0.37 PAI_NGS 0.26 0.42 B6_Oct 0.52 0.81
55 B6_Oct 0.19 0.37 B7_May 0.23 0.42 B11_Sep 0.50 0.79
56 B11_Sep 0.19 0.36 B9_Oct 0.22 0.42 B8_Sep 0.48 0.79
57 B8_Sep 0.18 0.36 B3_Oct 0.21 0.41 B4_Jun 0.48 0.77
58 B12_Sep 0.18 0.35 B4_Jun 0.19 0.41 B7_May 0.48 0.77
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Table A1. Cont.

Simpson Shannon Pielou

Rank Variables
BRT
(%)

MDG (%) Variables
BRT
(%)

MDG
(%)

Variables
BRT
(%)

MDG
(%)

59 NDVI_Sep 0.16 0.33 SAVI_Sep 0.15 0.41 B2_Jun 0.47 0.77
60 B4_Jun 0.15 0.33 B4_Oct 0.07 0.40 B8_May 0.45 0.75
61 B6_May 0.13 0.32 DVI_May 0.02 0.40 DVI_May 0.33 0.73
62 DVI_May 0.03 0.31 B7_Oct 0.02 0.39 B12_Sep 0.30 0.72
63 SAVI_May 0.01 0.29 B8_Sep 0.02 0.39 B7_Oct 0.22 0.72
64 B7_May 0.00 0.27 SAVI_May 0.01 0.38 NDWI_Oct 0.17 0.67
65 SAVI_Sep 0.00 0.27 B3_Jun 0.00 0.37 SAVI_Jun 0.00 0.66
66 SAVI_Jun 0.00 0.25 SAVI_Jun 0.00 0.34 EVI_Sep 0.00 0.65
67 EVI_Sep 0.00 0.24 EVI_Sep 0.00 0.33 SAVI_Oct 0.00 0.65
68 SAVI_Oct 0.00 0.20 SAVI_Oct 0.00 0.32 NDWI_Sep 0.00 0.65

Figure A1. The scale of tree species variability by semi-variogram analysis.

 

Figure A2. Illustrations of forest tree species diversity calculated by the three indices (H′, J′ and λ).
(a) Plot with tree species information; (b) Statistics on the number and types of tree species in the plot;
(c) Calculation equation of tree species diversity. In Figure A2c, S is the total number of tree species in
a plot; Pi is the proportional abundance of species i relative to the total abundance of all species S in a
plot; InPi is the natural logarithm of this proportion.
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Figure A3. Predicted maps of three diversity indices (λ, H′ and J′) by SVM (a–c), KNN (d–f) and
LR (g–i) models.
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Abstract: A methodology is presented for the quantitative assessment of soil biomass productivity at
100 m spatial resolution on a national scale. The traditional land evaluation approach—where crop
yield is the dependent variable—was followed using measured yield and net primary productivity
data derived from satellite images, together with digital soil and climate maps. In addition to
characterizing of soil biomass productivity based on measured data, the weight of soil properties on
productivity was also quantified to provide measured soil health and soil quality indicators as an
information base for designing sustainable land management practices. To produce these results, we
used only the Random Forest method for our calculations. The study considers high-input agriculture,
which is predominant in the country. Biomass productivity indices for the main crops (wheat,
maize and sunflowers) and general productivity indices were calculated for the whole agricultural
area of Hungary. Results can be implemented in cadastral systems, in applied in agricultural and
rural development programs. The assessment can be repeated for monitoring purposes to support
general monitoring objectives as well as for reporting in relation to the United Nations Sustainable
Development Goals. However, on the basis of the results, we also propose a method for periodically
updating the assessment, which can also be used for monitoring biomass productivity in the context
of climate change, land degradation and the development of cultivation technology.

Keywords: random forest; land evaluation; soil; biomass; Hungary; gross primary productivity; soil
health; soil quality

1. Introduction

A key natural resource that ensures food security, ecological security and sustainable
development is cultivable land. Recently, the importance of soil has been increasingly
put into focus as the general public also become more aware of it as a non-renewable
resource that can be lost quickly if improperly used or managed with very little chance
of regeneration. Despite the critical importance of soil productivity, not only as indicator,
but also in sustaining life on Earth, knowledge of the spatial and temporal variability of
soil from regional to global scales is limited or fragmented. For the creation of effective
agricultural and food policies at the regional levels, accurate soil productivity predictions
are essential. The limited information on soil productivity hinders national (Farmers’ Soil
Conservation Programme, National Rural Development Programme) and international
(EU Soil Mission) programs to monitoring its changes and build future scenarios on it.

The Sustainable Development Goals (SDGs) of the United Nations’ Agenda 2030 frame-
work include targets that recommend direct consideration of land and soil resources [1–3],
which were adopted by all United Nations member states in 2015. Soil resources are linked
to the SDGs through several soil functions [2], of which the biomass productivity function
is at the core of SDGs 2.3 and 2.4., which explicitly target the sustainable increases in
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agricultural productivity. Furthermore, biomass productivity is proposed as an indicator of
land degradation [4], which is linked to SGD 15.3 [5].

Biomass productivity is conditioned by inherent soil properties, climatic and manage-
ment factors, thus variable in both space and time [6]. Spatial variability of soil productivity
is traditionally assessed within the broad framework of land evaluation [7]. However, land
evaluation should also include socio-economic components [8], which are not necessary for
soil productivity evaluation. Nevertheless, soil is an integral part of the land with a distinct
spatial location and therefore biophysical characteristics of the studied sites, such as climate
and relief conditions, need to be taken into account when assessing its productivity [9].

The aim of classical quantitative land evaluation is to establish productivity indices
based on actual yields in order to reflect production potentials for taxation and planning
purposes [10–18]. A similar quantitative approach can be applied to reveal soil biomass
productivity, its drivers and changes for monitoring purposes.

Dynamic and simulation models [7,16,19–22] can provide an alternative to classical
productivity evaluation, but their validation still requires measured biomass or yield data.
Advantages of the classical data-driven assessment, i.e., where yield is the dependent
variable and biophysical factors are independent inputs, are high reliability, explicit spatial
validity and easy interpretation. Process-based modeling and statistical modeling are
also two frequently employed techniques for forecasting crop yield responses to climate
variability. Process-based crop models are effective for predicting crop yields because they
simulate physiological processes of crop growth and development in response to environ-
mental factors and management techniques, especially at the field scale [23]. Traditional
regression techniques have some drawbacks that can be addressed by statistical modeling
techniques based on machine-learning algorithms. Machine-learning techniques have
been used increasingly in recent years as niche-based classification modeling tools [24–26].
For our analysis we selected the Random Forest (RF) technique [27,28], which uses the
Classification and Regression Trees method as the basis for growing multiple classification
trees. The study considers high-input agriculture, which is predominant in the country and
uses time series information (measured crop yield statistics and satellite-derived biomass
productivity indicators).

A scientific-based biomass productivity assessment should be based on a numerical
assessment of production potential based on statistical studies. Previous national land eval-
uation techniques were estimation procedures, which inevitably introduced classification
errors. Since the only objective measure of land quality is yield over time, our method is
designed with yield as the dependent variable and environmental factors (soil, climate,
topography) that affect yield as the independent variables. The method must be designed
in such a way that the parameterization process can be repeated as the amount of available
data increases, so that the land classification system can be easily revised and refined at
any time on the basis of changes in production conditions.

Based on the above considerations, we performed a detailed study with country
coverage with the following aims: (i) to identify main soil and climatic determinants of
biomass productivity, (ii) to quantify the weights of soil and climatic factors of productivity
for the main crop types (wheat, maize, sunflowers), (iii) to produce crop-specific and
general productivity maps for all agricultural land of the country, and (iv) to propose a
methodology for integrated monitoring of biomass productivity.

2. Materials and Methods

Soil biomass productivity evaluation must be based on biomass data and the assess-
ment of the environmental and management factors influencing it. This requires biomass
data, and geographical and management data, including soil, topography, climate and
fertilizer data. Country-wide implementation of the agricultural biomass productivity
model can only be based on information that is available for the full agricultural area of
the country. To ensure the best possible spatial detail to develop and implement a new
productivity model, data of dependent variables (measured yield and remotely sensed
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biomass indicators) as well as independent variables on soil properties were collected at
parcel scale and implemented at soil property maps of 100 m resolution.

2.1. Study Area

Hungary is located in Central Europe and the Carpathian Basin, which is a part of the
Pannonian biogeographic region (45◦43′ to 48◦35′N and 16◦06′ to 22◦53′E). The country
is 93,033 km2 and has an elevation range between 77 and 1014 m above sea level, and
agricultural lands are typically located between 77 and 350 m altitude. Agriculture is
the dominant land use, with non-irrigated arable land (Figure 1) accounting for 61% of
the country’s total area [29]. Winter wheat (Triticum aestivum), maize (Zea mays) and
sunflowers (Helianthus annuus), which have been sown on up to 80% of Hungary’s arable
land in recent decades, were selected for the productivity assessment.

Figure 1. Arable land areas of Hungary (study area), based on Corine Land Cover 2018 dataset [30].

2.2. Databases
2.2.1. National Plot-Level Field Soil, Fertilization and Yield Databases (AIIR
Field Database)

The AIIR database [31] contains crop type, yield, fertilization and soil information for
each cultivated parcel, summing up to 80,000 cultivated parcels of Hungary for 5 years
(1985–1989). The data were provided by the Central Plant and Soil Conservation Service
(Budapest) for the purpose of land evaluation research. The sampling for the soil tests was
carried out in such a way that the parcels were divided into 12 ha sections and then, along
the diagonals of the selected sections, soil samples were taken from at least 20 locations
using the so-called parallel sampling method. The subsamples were taken homogenized,
so that an average sample was taken from the subplots of each agricultural field. For areas
with a slope greater than 12%, average samples were taken separately for each (upper,
middle, lower) section of the slope, taking into account erosion and different soil nutrient
supply. The database was digitized in 2000 and in 2014 was upgraded to a modern geo-
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spatial database (point data with coordinates). We have selected the points that still fall on
arable land at the time of our study. The database includes the following three major types
of data:

- Basic data of the parcels (location, size, land user);
- Soil taxonomical and laboratory analysis data (soil type and subtype, pH, texture,

organic matter, nitrogen, phosphorus and potassium content);
- Agricultural management data (crop type, yield, date of sowing, fertilization and

harvest, fertilizer doses);
- Crop type and yield data.

Distribution of data by soil types is presented in Table 1.

Table 1. Main features of the AIIR dataset, based on Hungarian [32] and World Reference Base for
Soil Resources [33] classification.

Soil Taxonomical Unit of Major Agricultural Soils No. of Parcels Covered Area (ha) Area (%)

Hungarian classification WRB 2014
Lessivated brown forest soil (non-podzolic) Haplic Luvisol 11,062 385,048 10.06

Raman-type brown forest soil Haplic Cambisol 6567 270,239 7.06
Rust-brown sandy forest soil Arenic Cambisol 2988 114,872 3
Typical calcareous chernozem Haplic Chernozems 3792 228,240 5.96

Great Plains calcareous chernozem Haplic Chernozems 2042 120,123 3.14
Carbonated meadow chernozem Gleyic Chernozems 5540 330,200 8.63

Non-carbonated meadow chernozem Luvic Chernozems 2021 108,149 2.83
Carbonated meadow soil Calcic Vertisols 3952 184,853 4.83

Non-carbonated meadow soil Haplic Vertisols 3460 151,394 3.96
Carbonated alluvial meadow soil Gleyic Fluvisols 3129 142,535 3.73

Non-carbonated alluvial meadow soil Dystric Fluvisols 4658 179,101 4.68
Carbonated humic alluvial soil Calcaric Fluvisols 1210 51,720 1.35

Non-carbonated humic alluvial soil Dystric Fluvisols 1584 50,789 1.33
Carbonated humic sandy soil Calcaric Cambisols 3714 138,044 3.61

Non-carbonated humic sandy soil Dystric Cambisols 2458 75,656 1.98
major soils in total 58,177 2,530,963 66.2

other soils 28,517 1,295,467 33.8
∑ 86,695 3,826,430 100

2.2.2. Remote Sensing Derived Biomass Productivity Indicators

Long term (2003–2018) time series remote sensing data were used to derive mean
gross primary productivity (GPP) values as proposed by Jin and Eklundh (2014) [34]. The
MODIS dataset (MOD17) [35] was used at a nominal 500 m spatial resolution to produce
GPP datasets for the whole country. It is important to note that crop yields and GPP
represent different aspects of productivity. However, in managed cropland there is a strong
correlation between the two [36]. We used the normalized productivity (value range 1–100)
as the target variable, and all of our results were normalized between 1 and 100, making it
easier to integrate into our model.

2.2.3. Time Series Meteorological Data

The Central-European FORESEE meteorological database [37], which covers the whole
area of the country with a 0.1 × 0.1 degree grid, was used to derive mean temperature
and total precipitation at monthly scales (between 1951 and 2013). Mean temperature and
precipitation values were linked to the spatial units (100 m pixels) of the assessment. The
downscaling was performed by the bilinear resampling method.

2.2.4. Topographic Data

The Shuttle Radar Topography Mission [38,39] provides a dataset of 30 m resolution
grid cells as the basis for the digital elevation model (DEM). SRTM mapped Earth’s topog-
raphy between 56 degrees south and 60 degrees north of the equator. SRTM has a vertical
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accuracy of 5.3 m (RMSE) in Hungary [40]. The SRTM-derived DEM was used to include a
topographic component to the land evaluation model.

2.2.5. Land Use Data

The Hungarian coverage of the CORINE [30] land cover database for the year 2018 was
used to delineate croplands in the country. The 1:100,000 scale datasets have a minimum
mapping unit of 25 ha for patches and a minimum width of 100 m for linear elements. A
total of 44 land cover and land use categories are included in the dataset, 28 of which are
appropriate for Hungary [30]. All assessments and the map visualization of the results
were based on the cropland areas (see Figure 1).

2.2.6. Map Series of Soil Types and Soil Properties

The unified national soil type and soil property maps of Pásztor et al. (2020, 2018,
2017, 2015) [41–44] provided the soil information base for the assessment. A total of
41 soil types, belonging to 9 main soil type groups of the Hungarian Soil Classification
System [45], are covered by the dataset. Soil chemical and physical data include pH, calcium
carbonate content, organic matter content and texture. The map series are all produced at
a 100 m resolution and can be viewed on the dosoremi.hu website. The 100 m resolution
of the soil maps was considered to be sufficiently detailed for parcel-scale productivity
evaluation, and therefore this spatial resolution defined the resolution of the assessment.
There is a slight difference in the semantic component of the soil type maps and the soil
type information in the AIIR dataset (Table 1). There are soil types in the national soil
map with areas covering <1% of the country that are not available in the AIIR dataset, or
which are available only with a very limited sample size. These were not sufficient for
statistical tests. This minor inconsistency required an expert-based modification of the final
evaluation system.

2.3. Data Preparation

A quality and consistency check of the AIIR dataset was carried out in the first phase of
the data preparation to filter out typos and false records. Inconsistent records (outliers), such
as soil samples with high carbonate content and low pH, were excluded from the dataset.
We then selected those records from the AIIR dataset that corresponded to agricultural
parcels of intensive (i.e., high fertilizer use) cultivation. The selection was made based on
the amount of fertilizers applied, and records containing at least 125 kg × ha−1 of nitrogen
and 30 kg × ha−1 of active phosphorus input were kept. In this way, the analysis of the
current assessment focused on data from intensively cultivated fields.

Winter wheat (Triticum aestivum), maize (Zea mays) and sunflowers (Helianthus annuus),
which have been sown on up to 80% of the croplands in Hungary [46] in recent decades,
were selected for the productivity evaluation. In order to establish a common basis for
the analysis, the yield data of these three main crops from each parcel of the dataset were
normalized to a scale of 1 to 100. For the same reason, the GPP values were also normalized
to a scale of 1 to 100. Normalization was applied to all wheat, maize and sunflower
yield data in the five years covered by the AIIR database and to all cropland pixels in the
GPP dataset.

The AIIR database with normalized yield data and the normalized GPP dataset were
integrated with the climate geodatabase into a single geodatabase using geographical
coordinates as unique identifiers. The result was a georeferenced dataset created to include
all soil, climate, management and yield data. Productivity analysis was carried out using
information of the georeferenced pixels, including their geographical coordinates.

The GPP data, originally produced at 500 m resolution, were downscaled to
100 m resolution and normalized to values between 1 and 100. The downscaling was
performed by the nearest neighbor resampling method The SRTM data, which were origi-
nally produced at 30 m resolution were generalized to 100 m resolution using the bilinear
interpolation technique.
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All datasets were converted to the Uniform National Projection System (EOV) to create
a coherent geodatabase.

2.4. Assessment and Implementation Methods
2.4.1. Model Development

Soil biomass productivity assessment is the process of establishing relationships
between soil properties and yields. Data-mining methods are tools for revealing hidden
relationships in datasets structured by input variables. In soil assessment, data mining can
help to identify the most important factors in yield formation and establish the weights of
these factors. For our analysis we chose the Random Forest technique [27,28], which uses
the Classification and Regression Trees method as a basis for growing multiple classification
trees. For this operation, the database is divided into a series of training and test datasets to
establish and validate relationships, respectively. Each training dataset (80% of the dataset)
is a randomly selected subset that is used to develop a tree model using randomly selected
predictors. The remaining data (10%) after the random selection of the subset (test data, 10%
of dataset) are used to validate the developed model [47]. We used the createDataPartition
function from the caret package to select data randomly. The generalized error of the
forest depends on two parameters: how accurate each individual classifier is and how
independent the different classifiers are from each other (i.e., the strength of each tree in
the forest and the correlation between them). The Random Forest analysis was performed
with the ranger R package [48]. The long-term means normalized productivity index
(MNPI), taking into account both the measured AIIR data and the GPP data, was computed
by taking the average of the two normalized datasets. The Random Forest operation
was performed with the MNPI as the dependent variable and the environmental (soil,
climate) variables as explanatory variables (Figure 2). First, the assessment was carried
out separately for winter wheat, maize and sunflowers in order to evaluate crop-specific
productivity of Hungarian croplands using the MNPI data of these crops. As a result, crop-
specific productivity indices were produced for the three main crops. As our overall interest
was to establish the MNPI for each Hungarian parcel at 100 m resolution, three parallel
models were developed for the three major crops (wheat, maize, sunflowers) based on
the crop-specific entries of the normalized yield data, and a fourth, a general productivity
model, was developed based on the MNPI. As a result, both crop-specific (weighted means,
wheat 40%, maize 40% and sunflowers 20%) and general productivity indices were assigned
to climate and soil property combinations. Due to the limited information for some minor
soil types (i.e., occupying area < 0.5% of agricultural lands), statistical testing could not
be successfully performed for these soils. To assess the productivity evaluation of these
soils, two evaluation approaches were applied and their results were combined. Firstly, an
expert-based judgement was carried out. Productivity indices were established considering
those of closely related soils in the Hungarian soil taxonomy using information from
previous land evaluation systems [49], related literature [50–54] and expert knowledge.
Secondly, a statistical test based solely on the GPP data was carried out to evaluate the
effect of soil properties and climate, although without statistically significant results, but for
orientation purposes. The relative importance of the explanatory variables was calculated.
We analyzed the importance of all variables using the imp function of bclust package
in R [55]. Relative importance was calculated by dividing the importance score of each
variable by the largest importance score of the variable, and then multiplying by 100.
Harmonizing the results of the two approaches ensured the consistency across the system,
even for parcels with soils that make up a small proportion of the country’s croplands. The
theoretical range of the final productivity indices was set between 1 and 100, corresponding
to the normalized yield values of the test dataset and following the indexing approach of
traditional soil productivity evaluation of Hungary [51]. Model validation was performed
using normalized yield data as independent variables of the test dataset. The test dataset
included a randomly selected 10% of the data and a predict function of the ranger package
was used. We calculated the correlation coefficient to show the relationship between the
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observed and the predicted values, the mean absolute error (MAE) to show the distance
of the predicted values from the observed values [56], and the mean absolute percentage
error (MAPE) to show the percentage of error between observed and predicted values [57].

Figure 2. Flowchart of land evaluation modeling process.

2.4.2. Spatial Implementation

Soil, meteorological and digital terrain maps were used for the spatial implementation
of the soil biomass productivity model, i.e., to produce soil productivity maps. The devel-
oped model provides productivity indices on a scale of 1 to 100 for several combinations
of climate and soil properties in the country. Basic input layers for the spatial implemen-
tation include detailed (100 m) soil type and soil property maps and climate data. Slope
correction coefficients (see Appendix A Table A1) from the previous official Hungarian
land evaluation model [49] were applied to produce the final productivity indices. The
coefficients reflect the effect of slope angle and slope direction on productivity. The SRTM
digital topographic data were used to implement the correction coefficients and to produce
the final maps. Presentation of the results covers all cropland areas of the country at a
100 m resolution.

3. Results

3.1. Model Development and Estimation Efficiency

The general, country-wide productivity model using biophysical explanatory variables
explains up to 40% of the biomass productivity in the country (R2 = 0.402). This model fit can
be considered adequate for a country scale assessment, especially for a country with a wide
variety of soil types from salt-affected soils to Arenosols, Luvisols and chernozems. The
efficiency of the crop-specific models is best for wheat, followed by maize and sunflowers,
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in the order of the available sample size, respectively (Figure 3 and Table 2). Results were
statistically significant at the 0.01 level.

Figure 3. Scatter plot of observed vs estimated biomass productivity of total cropland area (A),
wheat (B), maize (C) and sunflowers (D). Results were significant at the 0.01 level.

Table 2. Test validation results of all cropland, wheat, maize and sunflowers. R2: correlation
coefficient, R: Pearson correlation, MAPE: mean absolute percentage error, MAE: mean absolute error,
N: number of pairs.

R2 R MAPE (%) MAE N

All cropland 0.4 0.63 19.28 7.33 4381
Wheat 0.41 0.64 18.06 6.78 2631

Maize 0.35 0.59 19.17 7.93 1646
Sunflower 0.27 0.52 29.81 11.7 104
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The combination of measured and satellite-driven data for the general productivity
model development gave almost the same model fit as the crop-specific one for wheat,
which was based on a large sample size of measured yields. The descriptive power of
sunflower productivity estimation was not as strong (Figure 3D). The MAPE results are
as follows: all cropland 19.28%, wheat 18.07%, maize 19.17% and sunflowers 29.81%. The
most accurate prediction based on the MAPE and MAE results was for wheat followed by
the maize and sunflower predictions.

3.2. Baseline Biomass Productivity Indices and Map for Croplands of Hungary

By implementing the biomass productivity model on the national soil, climate and
topographic geodatabase, a new soil biomass productivity map was produced (Figure 4).
The map shows the general productivity of croplands. In the same process, crop-specific
productivity maps were also produced. While the crop-specific productivity indices and
maps can be used for planning land use and cropping, the general productivity map
provides an overview of the spatial pattern of biomass potential of agricultural parcels in
the country.

Figure 4. Croplands’ land evaluation values range between 0 and 100 in the case of general biomass
productivity of arable lands without slope correction coefficients (A) and separately wheat (B),
maize (C) and sunflowers (D).

The map confirms the empirical knowledge that the most fertile areas are on cher-
nozem soils in the east and on various loamy soils in the west of the country. Sandy soils,
whether in the western, the central or the eastern part of the country, perform rather poorly.
This phenomenon is typical of a country where water supply is the main climatic factor
limiting crop production.

The mean productivity index for all the croplands is 64.7, with a standard deviation of
13.4, reflecting the dominancy of medium-to-good land within the agricultural areas of the
country in terms of the spatial extent (Figure 4A).
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The mean productivity index after slope coefficient correction for all the croplands
of the country is 58.9, with a standard deviation of 18.5, reflecting the dominancy of
medium-to-good land within the agricultural areas of the country (Figure 5).

Figure 5. Croplands’ land evaluation values range between 0 and 100 in the case of general biomass
productivity of arable lands after slope correction.

3.3. Soil and Climatic Determinants of Biomass Productivity in Hungary

In general, humus content (which also reflects organic matter content), pH, CaCO3
content, soil type and soil texture were the most important soil-based input parameters
for predicting wheat productivity (Figure 6A). However, the geographical location was
found to be an even more important explanatory variable. While this information sug-
gests the importance of climate, the measured climatic variables ranked lower in the
importance list. The mean temperatures of January, February, December and June (in the
order of importance) are the most important thermal parameters for productivity. Regard-
ing precipitation, the amounts in November, August, June and December are the most
important determinants.

In the case of maize, on the other hand, the measured climatic variables were found to
be of high importance, together with humus, pH, CaCO3 and soil type, while the location
was not considered to be relevant. These differences suggest the appropriateness of the
crop-specific evaluation approach. There are also differences in the mean temperature
and precipitation. Figure 6B shows that the precipitation (July, November, May, August
and October) is a more important factor than temperature (most important in January and
February) in the case of maize.
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Figure 6. Overall importance of explanatory variables in predicting wheat (A), maize (B) and
sunflower (C) biomass productivity.
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Based on Figure 6C, the variables of the sunflower prediction show a completely
different pattern. The most important variables are the location and mean temperature in
February, followed by humus content, mean temperature in January, March and November,
pH, precipitation in November and CaCO3. Soil type and texture are the least important
variables. Climatic variables (mainly amount of precipitation) have a more significant effect
on the sunflower yield amount than the soil type and texture.

4. Discussion

Biomass productivity is a dynamic property that changes over time, partly due to
changing climatic conditions (within and between years) and changing soil properties
(pH, organic matter, soil nutrients content, etc.), but also due to new crop varieties and
advances in crop management having an important influence. The effect of the changes
in the biophysical factors may be synergistic or in the opposite direction. Nevertheless,
it is possible to estimate the weight of the factors in productivity on a reasonable time
scale. Twenty to thirty years seem to be an adequate time scale for estimating soil biomass
productivity and for identifying the weights of different factors in it. A moving timeframe
with intervals of 3 to 6 years can be proposed for the updating of the biomass productivity
indices. If the system is to be used for monitoring purposes, soil biomass productivity will
need to be compared on the basis of different time periods, e.g., on moving time windows
or trends and supplemented by the monitoring of soil properties, subject to degradation.
The moving time window for biomass productivity monitoring can be harmonized with
the periodic assessments in soil monitoring, i.e., 3–6 years.

Our validation results (predicted data vs. measured data in the test set) showed that
there is a significant difference in the prediction accuracy between the different crops. The
sunflower model has a lower performance in calculating biomass productivity, which may
be due to the fewer number of data available for model training. Furthermore, sunflowers
are a cash crop grown on very diverse soils and not so much linked to bioclimatic factors
and soil parameters [58,59], while the R2 value (0.41) for the biomass productivity map
can be regarded as adequate for a national estimate. The MAPE value indicates that only
18.06% of the model is inaccurate, that is, above the accuracy of results published in other
studies [60,61]. The MAE indicator values indicate an average deviation of 6.78, which is
not outstanding on a scale of 1 to 100. Cheng et al. (2022) [25] found similar R2 values in the
case of maize and wheat based on MODIS GPP values, with stronger correlation in the case
of maize. However, other studies in the case of wheat presented lower values [24,61,62].
Although the performance of the sunflower productivity model is rather low, its inclusion
in the assessment provides a more comprehensive overview of plant-specific productivities
and their differences, including major factors and the varying weights of the factors in
plant-specific productivities. Furthermore, the inclusion of an additional plant-specific
model extends the potential of the applied method to provide a general soil productivity
assessment considering multiple crops, which is often needed in land use planning.

A new soil biomass productivity map was created by applying the biomass produc-
tivity model using national soil, climate and topography geodatabase. Crop-specific pro-
ductivity maps, which shall be the ultimate source of multicriteria land use planning [63],
were also produced using the same technique. The spatial distribution of biomass po-
tential is shown on the general productivity map, which can be used to plan land use
and crop production. Further to that, weights of individual soil and climate parameters
of crop-specific productivity indices were also derived. For our final model results (soil
biomass productivity) we applied a correction that takes into account the topography. Slope
angle and orientation both matter for solar radiation to be taken into account. Our solu-
tion for incorporating terrain indices from an earlier national land evaluation model [51]
was tailored for Hungarian conditions (average slope under 2.3%), instead of applying
more complex methods [64,65] used in other pedoclimatic conditions. Random Forest is
considered to be an appropriate method to predict crop-specific biomass productivity, as
proven by Jeon et al. [23] and as also highlighted in our country assessment. Results of
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RF-based models can be applied to plan agricultural land use in order to increase the yield
and make it sustainable, without environmental side effects. One of the most important
and interesting results in our perspective is the quantification of the relative importance of
explanatory variables, which best reflects the different edaphic and climatic needs of the
observed crop species. For wheat, soil characteristics are the most important factors, while
temperature and precipitation are less important [66]. In case of maize, soil parameters are
still important but temperature and precipitation have more importance than in the case of
wheat, highlighting that, even in a relatively small country like Hungary, climate tolerance
of plants is a differentiating factor. This observation becomes more evident when studying
sunflowers, where the importance of mean temperature and precipitation outweighs those
of soil type and soil textures as earlier presented by Kern et al. (2018) in case studies from
Hungary. Nevertheless climatic variables, such as precipitation in October and November
and temperature in January and February are also important for winter wheat [66]. Our
results also show the importance of summer rainfall totals (May, June, July) for maize,
while for sunflowers the most important parameters are spring and autumn temperatures.
We have to emphasize that it is often difficult to compare our results with those of other
researchers, because the bioclimatic variables of the study area differ. For example, the
work of Vannoppen and Gobin (2018) from northern Belgium, investigating the importance
of climatic variables in winter wheat yield estimation, found similar parameters to be
important, but in a different order. While in Hungary, the mean temperature in January
and the amount of precipitation in November are the most important, in Belgium, winter
precipitation is the most important [67]. The model fit can be further improved by adding
information on management factors such as nutrient levels and fertilizer inputs [52,68].

Soil plays an important role in increasing crop production. The soil science community
is trying to define the appropriate indicators. The presented analysis on the importance
of variables in calculating productivity also provides a good basis for SDG indicators, as
the related target of SDG is to improve land and soil quality progressively. Addressing
soil health and soil quality are the main criteria for achieving sustainable agriculture.
Climate change largely affects the minimum and maximum temperatures and the amount of
precipitation per month [69–72]. Our results suggest that these variables are also important
for winter wheat, maize and sunflowers, and that changes in these variables could change
soil productivity in the future.

We established a baseline prediction model for biomass productivity applicable for
Hungarian croplands using Earth observation data and yield statistics, identified the
importance of soil and climatic determinants of biomass productivity, and proposed a
methodology for integrated monitoring of biomass productivity.

5. Conclusions

Our present assessment shows the long-term productivity of soils in Hungary. Long-
term productivity in this context means the mean productivity of the last three decades.
A period of 20 to 30 years was found to be an adequate time scale for estimating the
productivity of soil biomass and for identifying the weights of different factors in it, and also
as prospective baseline and threshold values of soil health and soil quality indicators, which
can be used in land degradation and soil improvement assessment. A new generalized
biomass productivity map was created on a 100 m resolution, which can be implemented
in the cadastral system and in multipurpose land use planning programs. The general map
of productivity was produced from crop-specific productivity maps by applying biomass
productivity models on the country-scale soil, climate and topography geodatabase. Soil
properties and characteristics play the most important roles in wheat biomass productivity,
while maize has a more significant relationship with precipitation. In the case of sunflowers,
soil type and texture are less important factors. The spatial pattern of biomass potential
is shown on the general productivity map at 100 m resolution. This map can be used to
plan land use in general and agricultural production in croplands. Climate change largely
affects the minimum and maximum temperatures, their variability and the amount of

77



Remote Sens. 2023, 15, 1236

precipitation and its temporal distribution, which all have considerable impact on soil
biomass productivity. The most important climatic variables for crops deserve particular
attention in the next decade, particularly in developing adaptation strategies. We believe
that our soil–climate-based land productivity models will help in developing new methods
for such adaptation. However, in order to measure changes in biomass production potential,
further assessment is required, including trend analysis and the analysis of the effects
of changing combinations of soil properties. Nevertheless, the proposed methodology,
in addition to possible applications in cadastral systems and in land use planning and
agricultural development programs, is also applicable to the integrated monitoring of
biomass productivity, which is in line with the goals related to the UN SDGs.
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Appendix A

Table A1. Coefficients to modify the computed productivity based on slope relief and orientation [49].

Slope (%)
South,

South-West
West,

South-East
East,

North-West
North-East North

1 1 1 1 1 0.98
2 1 1 1 0.98 0.96
3 1 1 0.98 0.96 0.94
4 1 0.98 0.96 0.94 0.92
5 0.98 0.96 0.94 0.92 0.9
6 0.96 0.94 0.92 0.9 0.88
7 0.94 0.92 0.9 0.88 0.86
8 0.92 0.9 0.88 0.86 0.84
9 0.9 0.88 0.86 0.84 0.82
10 0.88 0.86 0.84 0.82 0.8
11 0.86 0.84 0.82 0.8 0.78
12 0.84 0.82 0.8 0.78 0.76
13 0.82 0.8 0.78 0.76 0.74
14 0.8 0.78 0.76 0.74 0.72
15 0.78 0.76 0.74 0.72 0.7
16 0.76 0.74 0.72 0.7 0.68
17 0.74 0.72 0.7 0.68 0.66
18 0.72 0.7 0.68 0.66 0.64
19 0.7 0.68 0.66 0.64 0.62
20 0.68 0.66 0.64 0.62 0.6
21 0.66 0.64 0.62 0.6 0.58
22 0.64 0.62 0.6 0.58 0.56
23 0.62 0.6 0.58 0.56 0.54
24 0.6 0.58 0.56 0.54 0.52
25 0.58 0.56 0.54 0.52 0.5
25 0.56 0.54 0.52 0.5 0.48
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Abstract: Semi-natural grasslands (SNGs) are an essential part of European cultural landscapes.
They are an important habitat for many animal and plant species and offer a variety of ecological
functions. Diverse plant communities have evolved over time depending on environmental and
management factors in grasslands. These different plant communities offer multiple ecosystem
services and also have an effect on the forage value of fodder for domestic livestock. However, with
increasing intensification in agriculture and the loss of SNGs, the biodiversity of grasslands continues
to decline. In this paper, we present a method to spatially classify plant communities in grasslands in
order to identify and map plant communities and weed species that occur in a semi-natural meadow.
For this, high-resolution multispectral remote sensing data were captured by an unmanned aerial
vehicle (UAV) in regular intervals and classified by a convolutional neural network (CNN). As the
study area, a heterogeneous semi-natural hay meadow with first- and second-growth vegetation
was chosen. Botanical relevés of fixed plots were used as ground truth and independent test data.
Accuracies up to 88% on these independent test data were achieved, showing the great potential of
the usage of CNNs for plant community mapping in high-resolution UAV data for ecological and
agricultural applications.

Keywords: convolutional neural networks (CNNs); remote sensing; unmanned aerial vehicles
(UAVs); semi-natural grasslands; plant communities

1. Introduction

In Central Europe, semi-natural grasslands (SNGs) are an essential part of ancient
cultural landscapes. They have developed over centuries of anthropogenic land use by
grazing and mowing [1,2]. Until the 19th century, most European SNGs were used as
pastures, whereas hay meadows developed mainly over the last 100 to 150 years [1].
The highest diversity of species and plant communities in grasslands was reached in the
middle of the 19th century [2]. Increasing intensification of land use, however, has led to
decreasing species richness, especially since the 1950s [3,4]. Furthermore, the area used
as grasslands in Germany decreased continuously from the 1970s until 2013. Since then,
a reform of the common agricultural policy of the European Union (EU) regulates the
transformation of grasslands into arable land [5]. Furthermore, subsidies for biodiversity-
friendly use of grasslands were included as greening in the subsidy scheme of the EU [1].
For example, in Lower Saxony subsidies were granted for low-intensity use of high-nature-
value grasslands [6]. This included a ban on mineral nitrogen fertilizers or pesticides and a
prescribed earliest date for mowing.

Contrastingly, agriculturally improved grasslands are used, e.g., for dairy farming.
Here, a high energy and protein concentration in the forage is required for increasing the
milk production of the individual animal [7]. This is achieved by special grass cultivars
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and fertilizer application, which increase the number of mowings possible per year. Yield
from SNG is not always processed into silage for milk production but can also be cut once
or twice a year to produce hay in the traditional way, which maintains species richness [8].
If this hay is not fed to cattle or sheep but to horses, special importance must be paid
to its plant species composition. Horses do not tolerate some Lolium or Festuca species
due to their high fructose content [9,10]. Furthermore, these grass species may contain
endophytic fungi that make them highly resistant to environmental conditions [11] and
are harmful to horses but not ruminants [12]. Apart from their usage as fodder for meat,
dairy, and wool production, SNGs’ multiple ecosystem services include good groundwater
quality and quantity, water flow regulation, carbon storage, mitigation of greenhouse gas
fluxes, and erosion prevention, as well as cultural and health values. [13]. Furthermore,
they are a habitat for many plant and animal species [13]. Both ecosystem services and
habitat conditions of grasslands cannot be determined by mapping land use or land cover
type only, because of the spatial variability in the biophysical variables [14]. Ecosystem
services can vary over land use or land cover types [15], as species abundance and diversity
in grassland plant communities influence their provision [16]. The composition of plant
communities can change due to spatiotemporal dynamics, like water balance in the soil,
light availability, or management [17].

To monitor vegetation structure and species composition, field-based methods in the
form of phytosociological relevés are commonly used but are rather time-consuming [18,19].
In contrast, remote sensing is a cost-effective and non-destructive alternative, which is
increasingly applied to get vegetation data of large-scale areas or areas showing spatiotem-
poral dynamics [20–23]. On a large scale, various remote sensing systems can be used to
classify plant communities in grasslands. The authors of [24,25] used spaceborne data
as a combination of multispectral and/or radar time series, whereas [20] analyzed air-
borne LiDAR. Over the last years, UAVs are increasingly used for ecological tasks on a
smaller scale [26]. As an example, they were used in grasslands for the estimation of
biodiversity [27], species and vegetation functional groups classification [23,28,29], forage
quality, and biomass prediction [30,31] as well as for the detection of weed plants [32,33].
Various methodological approaches are suitable for the classification of plant communities
in remote sensing data. To use the influence of phenology, some studies use multitemporal
data for species and plant community classification [23,29]. The authors of [24,29] used
machine learning techniques such as support vector machine and random forest for the
classification of species and plant communities in grasslands. The authors of [34,35] tested
the suitability of convolutional neural networks (CNNs) for their classification of plant
communities in shrublands and forests. Recently, CNNs have been increasingly applied
for the analysis of remote sensing data [36], but also specifically in vegetation remote
sensing [22]. CNNs are particularly suitable for the detection of spatial patterns. As plant
communities in grasslands are formed by plants of different heights and shapes, the spatial
pattern is, in addition to spectral information, a strong feature for separation.

In our study, plant communities in a semi-natural hay meadow in northwestern
Germany were classified with UAV imagery using CNNs. The aim is to use CNNs (1) to
analyze the spatial distribution of the plant community composition before the first and
second cut of the grassland vegetation and (2) to map the distribution of weed species with
low forage value. Thereby, (3) the usage of mono- and multitemporal data for the mapping
of plant communities with respect to the phenological phases is compared.

2. Material and Methods

2.1. Study Site

This study focuses on a 2.3 ha semi-natural meadow in the Osnabrück district, Lower
Saxony, Germany (52.18°N, 8.10°E), as visible in Figure 1. According to the official soil
survey map [37], the soil is predominantly gley, with part of the northern area being plaggic
anthrosol. The climate is temperate oceanic, with an annual precipitation of 835 mm and a
mean air temperature of 8.8 °C [38].
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This survey covers the first growth (G1) of plants from the beginning of May 2021
until the first mowing in the middle of June 2021, and the second growth (G2) until the
second mowing at the end of August 2021. The SNG can be assigned to the class Molino-
Arrhenatheretea and the order Arrhenatheretalia [2]. Over the past 5 years, the study site
was used twice a year for hay production according to the agri-environmental measure for
low-intensity use of grasslands in Lower Saxony GL11 [6]. Before that, it had been used as
a cattle pasture for about 30 years and a heterogeneous structure of plant communities had
developed.

Figure 1. Location of the study site in Germany (top left) and the district of Osnabrück (bottom left).
Orthomosaic and grassland vegetation of one plot of 06/08/2021 (right).

2.2. Data and Preprocessing
2.2.1. UAV Image Data

UAV data for this study were captured using a DJI Phantom 4 multispectral. The
camera system offers five single-spectral cameras (blue (450 ± 16 nm), green (560 ± 16 nm),
red (650 ± 16 nm), red edge (730 ± 16 nm), and infrared (840 ± 26 nm)) as well as an RGB
camera. Each sensor has a resolution of 2.08 Megapixels and a focal length of 5.74 mm.
Due to the flight altitude of 35 m a resolution of less then two centimeters was achieved.
Images were taken on four dates during the first growth G1 (Table 1, G1T0-G1T3), and four
dates during the second growth G2 (Table 1, G2T0-G2T3). Flights took place during noon
(between 11 am and 3 pm) to minimize the influence of shadows. Each flight took about 30
to 35 min. The weather conditions on the observation days were inconsistent (see Table 1).
Eight to ten field targets were placed before the flights and used as ground control points
(GCPs). The center of each target was located using a differential GPS (bi-frequent GNSS
receiver). On each observation day, around 350 images per channel were made with a front
and side overlap of 70%. The images were stitched to a multispectral orthomosaic using
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Agisoft Metashape software (version V1.7.2), georeferenced using the GCPs, and clipped to
the extent of the study site.

Table 1. Growth, observation dates and times, number of botanically observed plots, weather
conditions, and wind speed during the flights.

Growth ID Date Time of Flight No. of Plots Weather Conditions
Wind
Speed

Growth 1 G1T0 05/03/2021 10:58 a.m.–11:24 a.m. 0 closed cloud cover 2 m/s
Growth 1 G1T1 05/12/2021 2:47 p.m.–3:11 p.m. 30 closed cloud cover 5.7 m/s
Growth 1 G1T2 05/28/2021 1:59 p.m.–2:28 p.m. 30 sunny with a few clouds 6.4 m/s
Growth 1 G1T3 06/08/2021 2:06 p.m.–2:30 p.m. 29 closed cloud cover 2.9 m/s

Growth 2 G2T0 06/25/2021 12:45 a.m.–1:22 p.m. 0 sunny and cloudless 3.9 m/s
Growth 2 G2T1 07/12/2021 11:22 a.m.–11:47 a.m. 35 sunny and cloudless 1.6 m/s
Growth 2 G2T2 07/27/2021 11:22 a.m.–11:49 a.m. 35 first sunny, then cloudy 2.2 m/s
Growth 2 G2T3 08/06/2021 11:13 a.m.–11:44 a.m. 35 closed cloud cover 2.2 m/s

2.2.2. Vegetation Surveys in the Field

A total of 30 plots were stratified randomly distributed and marked during the first
growth. For this, homogeneous areas were visually identified based on dominant species
and 1 m × 1 m plots were placed. The four corner points of a plot were captured using a
differential GPS. The area of one square meter is less than the minimum area of 10–25 m2

recommended for botanical examinations in pastures [18], but to generate a variety of
training data, a smaller plot size was chosen. At date G1T3, plot 26 was damaged and some
of the vegetation was removed, leaving only 29 plots to be recorded (Table 1). After the
first mowing, the existing plots were marked again and extended by five more plots. On
six observation days, T1–T3 in each growth, vegetation relevés were recorded by visual
cover estimation after the UAV flight using the scale of [39]. As many characteristic and
indicative species were not fully grown at both G1T0 (early in the vegetation period) and
G2T0 (immediately after mowing), no botanical data were recorded at these times.

2.3. Methodology
2.3.1. Analysis of Vegetation Data

We used the nomenclature for plant species according to [40]. Vegetation units (VUs)
were formed by sorting the relevés in each growth by similar composition. The species
in these VUs were sorted to form species groups. These groups show dominant species
within the VUs. Four VUs were formed in the first growth, and three in the second. The
plant species of a VU were listed in terms of their frequency to validate the separation into
plant communities with the help of Ellenberg indicator values (EIV): soil moisture number
(M, 1 = strong soil dryness, 5 = moist, 9 = wet, 12 = underwater), soil reaction number
(R, 1 = extremely acidic, 5 = mildly acidic, 9 = alkaline) and nutrient number (N, 1 = least,
5 = average, 9 = excessive supply) [41]. The weighted means were calculated using the
indicator values presented. The forage value, considering for example the protein and
mineral content of the VUs, was determined using the values of [42].

2.3.2. Training and Test Data

The data used to train the CNN were obtained from the orthomosaics by visual
interpretation and knowledge of the vegetation composition and regarding the time series.
Since the plots were placed in homogeneous areas, it was assumed that the adjacent
areas were dominated by the same plant community. Further training data for the VU
dominated by Rumex obtusifolius could be obtained on the whole area, as this plant was
easily identifiable. For each VU except for the one dominated by Rumex obtusifolius, 100
non-overlapping samples were taken in the homogeneous area around the observed plots.
Only 30 samples of Rumex obtusifolius were taken because the plants in the study site were
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limited. Each training sample had an actual size of 1 × 1 m, according to the size of
the plots, which corresponds to a size of 53 ± 1 × 53 ± 1 pixels. Following common
standards to enhance the number of training samples [43], they were augmented as follows:
Resampling to 64 × 64 pixels with nearest neighbor, rotating and flipping, and sporadic
application of a median filter (kernel size 3) to add blur [44]. For use in the CNN, a random
75% (random state = 42) of the training data were used for training, the remaining 25% was
used as a dependent test set for validation.

The spectral data of the observed plots were clipped and used for independent valida-
tion. Since the plot orientation does not correspond to the raster, the clipped plot samples
were rotated and resampled. To avoid misclassification, a CNN with the same structure as
shown in Table 2 was trained to binary classify objects that are not part of the vegetation.
For this, training data were collected from fence posts, bare soil, fawns, molehills, and
targets and augmented as described above.

Table 2. Architecture of the used CNN.

Layer Parameter

Input 64 × 64 × 5
Conv2D_1 Filter: 32, Kernel: 3 × 3, Strides: 2 × 2, Activation: ReLU
BatchNormalization -
Dropout 0.1
Conv2D_2 Filter: 128, Kernel: 3 × 3, Strides: 2 × 2, Activation: ReLU
BatchNormalization -
Dropout 0.1
Reshape -
FullyConnected_1 Dense: 64, Activation: ReLU
BatchNormalization -
Dropout 0.2
FullyConnected_2 Dense: n, Activation: Softmax

2.3.3. CNN

The structure of CNNs is inspired by the biological structure of a brain. Both consist
of repeating layers of simple and complex cells to solve segmentation, detection, and
localization tasks [36]. The first CNNs were presented in the late 1980s, e.g., by [45] for
the recognition of handwriting digits. Nowadays, they are the leading model for image
classification, detection, and recognition tasks [36]. Each convolutional layer of a CNN
extracts features and local conjunctions of the previous layer with weighted neurons. For
this, kernels of a certain size are used to pass over the feature map or filter, and forwarded
to a nonlinear activation function, e.g., rectified linear units (ReLU) [46]. There are two
commonly applied techniques to simplify and aggregate the outputs of a convolutional
layer. The first is to insert pooling layers. For this, features are merged (e.g., using the
maximum or average value) with a pooling kernel to reduce the spacial resolution and
decorrelate the features [47]. The second is the use of strides instead of pooling. Strides
describe the step size of the kernel, and by increasing their size, the spatial resolution
can be reduced. They are useful when input sizes are small [48] and are also utilized in
more complex architectures such as ResNet to achieve higher accuracy and increase the
training and classification speed [49]. Several convolutional layers in series can derive
abstract features of the input. Fully connected layers of neurons and weights, as in standard
neural networks, are attached to this to interpret these abstract features. For classification
problems, in general a softmax function is used as the activation function in the last fully
connected layer [46].

The CNN applied in this study was created with TensorFlow’s Keras Python API
(version 2.3.1). Its structure is shown in Table 2. Two convolutional layers, the first with
32 filters, the second with 128 filters, and two fully connected layers, the first of size
64, the second of size n, which is the number of output classes, were implemented. A

87



Remote Sens. 2023, 15, 1945

softmax activation function in combination with a cross-entropy loss function (also known
as categorical cross-entropy loss [50]) was used in this last layer to give a probability for
the predicted output. The model utilizes Adam as an optimizer because it showed good
results for CNNs [51]. Strides are applied within the convolutional layers to aggregate the
features. A ReLU activation function is used for the two convolutional layers and the first
dense layer. The performance of the CNN is improved via batch normalization [52]. To
reduce overfitting and improve generalization, the L2 kernel regularizer and dropouts are
applied as regularization methods [22,53].

2.3.4. Classification

Five different training sets were independently used to train CNNs with the structure
described in Table 2: first, a binary training set for the identification of non-vegetation
objects; second, a multispectral training set with the identified four vegetation units for
G1T3; third, a multitemporal training set for G1; fourth, a multispectral training set with
the three vegetation units for G2T3 and last a multitemporal training set for G2. For the
monotemporal classification, both G1T3 and G2T3 were chosen, as they are closest to the
harvest date in each growth and therefore most relevant for agricultural purposes. The
models trained on vegetation units were used to classify the whole orthomosaic via a mov-
ing window approach to select and classify squared subimages. For both monotemporal
models, each subimage was first classified with the object identification model to exclude
misclassifications and then classified by the monotemporal model. The subimages of the
multitemporal models were not pre-classified with the object identification model, since
it was assumed that misclassifications of objects that only appear at a specific date can be
avoided by the multitemporal features. The classification results of the subimages were
aligned and rasterized with n channels. This workflow is depictured in Figure 2.
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Figure 2. Schematic workflow of preprocessing, training, validation, and classification.

2.3.5. Validation Metrics

For evaluation of the classification model and the generated maps both dependent
test data, which were 25% of the augmented samples set aside prior to training, and
independent data, which were the resampled spectral information of the observed plots,
were used. The number of true positives (tp), true negatives (tn), false negatives ( fn), and
false positives ( fp) were calculated by using confusion matrices for each classification and
for both the dependent and independent test data. The threshold for class probability was
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set to 50%; classification results below this threshold were listed as misclassification. The
following metrics were used to estimate the performance of the models [54]:

Precision =
tp

tp + fp
(1)

Recall =
tp

tp + fn
(2)

Overall Accuracy =
tp + tn

tp + tn + fp + fn
(3)

3. Results

3.1. Floristic Typology

We grouped the vegetation relevés of the first growth in three plant communities
(see Appendix A) plus the VU dominated by Rumex obtusifolius. In both growths, VUs
of a Lolium perenne-community and a Alopecurus pratensis-community could be found.
In the first growth, we also identified a Bromus hordeaceus community. No dominant
stands of this community could be found in the second growth. Common species of
Arrhenatheretalia occur in all VUs (Appendix A, other species). Species groups highlighted
in Appendix A were used to differentiate the individual VUs and to show phenological
differences between the growths. Appendix B shows the VUs with their mean forage value
and EIV. All values for both M, R, and N are in the moderate range (5–7).

3.2. Phenological Change in Species Spectrum

The influence of phenology is indicated by the shifting species spectrum of the species
groups between the two growths and the percentage frequency of individual species
(Appendix A). Although Holcus lanatus was found over the entire study site in the first
growth, it was suppressed by other species such as Alopecurus pratensis or Lolium perenne in
the second growth. During the first growth, the Bromus hordeaceus-community was present
in some subareas, but in the second growth Bromus hordeaceus was only found sporadically
in areas of the Alopecurus pratensis-community. Other grasses, such as Phalaris arundinacea
or Cynosurus cristatus, were more abundant in the second growth. The flowering spectrum
of the study site also changes with the seasons, following the phenological phases. In
the first growth, all three plant communities showed a prominent flowering aspect with
Taraxacum officinale, Cerastium fontanum, Ranunculus repens, and Cardamine pratensis. In the
first growth, flowers of Trifolium repens, Veronica chamaedrys, and Ajuga reptans appeared
in the Lolium perenne-community and in the Alopecurus pratensis-community some Lychnis
flos-cuculi. In the second growth, the flowering aspect of the Lolium perenne-community
was dominated by Centaurea jacea, Trifolium repens and Crepis biennis (species group D3),
whereas the Alopecurus pratensis-community showed barely any flowering plants. Not only
the flowering aspect of the herbs but also the flowering of the grasses was a relevant feature
differentiating the two growths. Mowing in the first growth took place during the flowering
of Holcus lanatus, Poa pratensis, and Poa trivialis, and their flowering aspect is therefore
prominent. In the second growth, barely any flowering grasses were present; flowering
Phleum pratense, Cynosurus cristatus and Agrostis capillaris were found sporadically, but not,
or only weakly, visible in the orthomosaics.

3.3. Separability of Training Data

The mean values for training set and plot samples for G1T3 and G2T3 in blue vs. green
and red vs. infrared band combinations were shown in Figure 3.

The samples of the VUs formed clusters which partially overlap. In particular, the
spectral samples of the Rumex obtusifolius plants could not be well separated. In blue vs.
green band combinations, the clusters were better separated than in the red vs. infrared
combination. It was noticeable that the spectral values of the Lolium perenne-community
and the Alopecurus pratensis-community show higher variance and mean values at G2T3
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than at G1T3. Furthermore, the samples at date G2T3 showed a higher reflectance in the
green and infrared band than the samples at G1T3. This was caused by the prominent
flower aspect of the grasses at G1T3.
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Figure 3. Scatter plots of the samples of the dependent (◦) and independent (+) test data in blue vs.
green and red vs. infrared. Colors are used as follows: grey: Rumex obtusifolius plants, blue: Lolium
perenne-community, red: Alopecurus pratensis-community, green: Bromus Hordeaceus-community.

3.4. Classification Results

In Table 3, a summary of the validation of the monotemporal VU classification (G1T3
and G2T3), the multitemporal VU classification (G1 and G2) and the object identification
(OI) can be found. All five classification models reached overall accuracies > 91% on
the dependent test data. On the independent test data, the overall accuracy of the VU
classifications reached from 68% to 88%. On both the dependent and independent test
data, the multitemporal classification of G1 got the lowest overall accuracy. In this, worse
accuracies appeared for the classification of Rumex obtusifolius (precision and recall of 0%)
and the Alopecurus pratensis-community (precision: 70%, recall: 58.33%).

The result maps of the classifications for G1 and G2 are shown in Figure 4. Both the
monotemporal and the multitemporal classifications highlight similar spatial vegetation
patterns. In both dates, the transition ranges between VUs were smaller in the multitem-
poral classification. In the multitemporal classification of G1, more homogeneous areas
could be found than in the monotemporal classification. In G2, the results show strong sim-
ilarities, but differ mainly at the western edge. Subsets of a Rumex obtusifolius-dominated
area of the classification results are depicted in Figure 4. Rumex obtusifolius was mainly
recognized in the multitemporal classification result of G2. The areas eliminated by the
object identification appear as white areas in the results of the monotemporal classifications.
In G1T3, especially the area of open ground in the center of the subset was not classified.
In G2T3, individual molehills were not included in the classification. In the multitemporal
classification, these areas were assigned to the surrounding VUs.
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Figure 4. Subsets of the classification results of the mono- and multitemporal model and orthomosaics
in RGB-color of G1T3 and G2T3.
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Table 3. Precision, recall, and overall accuracy (OA) (in %) for dependent and independent test data
of the four vegetation classifications for Rumex obtusifolium plants, the Lolium perenne-, Alopecurus
pratensis-, and Bromus hordeaceus-community and overall accuracy for the object identification (OI).

Precision in %

OARumex obtusifolius Lolium perenne- Alopecurus pratensis- Bromus hordeaceus-
plants community community community

G1T3 87.72 100 97.98 81.81 99.00 80.00 96.51 83.33 97.06 82.75
G2T3 96.25 33.33 95.51 78.95 97.11 81.82 96.01 71.43

G1 83.33 0.00 93.94 72.73 95.81 70.00 87.34 83.33 91.14 68.97
G2 96.62 100 95.12 94.11 97.68 86.67 95.72 88.57

Recall in %

G1T3 98.04 71.42 96.37 100 94.75 75 98.04 100 97.06 82.75
G2T3 95.06 33.33 97.50 78.95 94.39 69.23 96.01 71.43

G1 79.71 0.00 96.44 100 83.40 58.33 99.07 71.43 91.14 68.97
G2 98.85 66.67 97.82 84.21 92.32 100 95.72 88.57

OI 97.71

4. Discussion

4.1. Usability of the Presented Methodology in an Agricultural Context

To estimate the forage value of the mown plant material, it is useful to know its
species composition [42]. Since this varies spatially, a map is useful for yield estimation.
However, it must be considered that the identified plant communities are not static in
their composition and vary spatially and temporally [17]. The EIV of the VUs helps to
understand the characteristics of an area and to identify potentially more humid, acidic, or
nutrient-rich areas. Based on the EIV, few differences can be deduced, both for different
observation dates and between the three communities of Alopecurus pratensis, Lolium perenne,
and Bromus hordeaceus (see Appendix B). For assessment of forage quality, it is also helpful
to estimate the forage value of a VU (see Appendix B), and spatially identify weeds [55]. The
species Bromus hordeaceus and Rumex obtusifolius mentioned here as weeds are characterized
by a low forage value. As can be seen in Appendix A, Bromus hordeaceus is represented
over the entire area in G1. Bromus hordeaceus is a perennial, self-seeding grass that is
found primarily in patchy rich pastures [56]. If it exceeds 10% of the vegetation, it can
be considered a weed [55]. The areas dominated by Bromus hordeaceus during G1 were
classified as Alopecurus pratensis-community in G2.

Rumex obtusifolius occurs as a nitrogen and intensification indicator, as can be seen
by N = 9, but due to its high content of oxalic acids and tannins, it is not fed fresh or in
hay [42]. Due to its high seed potential, even a single plant should be controlled [55,57].
However, the occurrence of individual grass species that may be harmful to horses is only
partially demonstrated by monitoring plant communities. The abundance of individual
species within the plant community varies, possibly occurring only in sub-areas. To cover
this issue, a classification of more detailed vegetation units is necessary.

4.2. Comparison of Mono- and Multitemporal Data for Plant Community Mapping

In comparison of the mono- and multitemporal VU classification, it was noticeable
that larger homogeneous areas are found in both multitemporal classifications. Further-
more, class boundaries could be better delimited in the multitemporal results, and the
transition areas were smaller. This could be explained by the expanded feature space of the
multitemporal training data. As described in Section 3.2, both the flowering aspect and the
occurrence of individual species changed with the phenological phases. It could therefore
be assumed that the flowering aspect and the change in vegetation structure had a positive
influence on the multitemporal classification, as they should vary the same or similar
within a plant community over the vegetation period. However, the validation showed
that the monotemporal model for G1 had a higher accuracy on the independent plot data
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(82.75% to 68.97%, Table 3). For G2, the multitemporal model had a higher accuracy on the
independent plot data (88.57% to 71.43%, Table 3).

The authors of [23] showed an improvement of 5–10% in the accuracy of the classi-
fication of vegetation functional groups by using multitemporal data. The influence of
shadows and flowering was reduced when using data of different phenological stages.
In our work, this improvement was only visible in the validation of independent plot
data of G2, but in general, the multitemporal models showed a weaker overall accuracy
than the monotemporal models. It is possible that the multitemporal models could be
improved with extended training data. These models have more input neurons than the
monotemporal models and therefore need more data to properly learn the relevant fea-
tures. The classifier of the multitemporal classification of G1 showed problems, especially
in the detection of Rumex obtusifolius. This plant is small and barely detectable at early
observation dates of G1 and later overgrown by tall grass, whereas it was present in G2
from the beginning of the observation. The multitemporal classification of G1 showed
problems in the detection of the Alopecurus pratensis-community. At early dates, this class
was dominated by Alopecurus pratensis, but at later dates the flowering of Holcus lanatus
was also visible, especially in the transition areas to the other plant communities. Possibly,
these plants caused a decreased accuracy in the multitemporal classification because the
borders of the plant communities were less clear at G1T3. Some plots in the northwest of
the study site lay in the transition area between the Lolium perenne- and the Alopecurus
pratensis-community, which influences the separability.

Object identification showed good results in the monotemporal models (97.72% accu-
racy, Table 3). In the multitemporal models it was not necessary, because most objects (e.g.,
molehills) were not temporally stable. Areas that were not classified in the monotemporal
models are replaced by the surrounding VU in the multitemporal models (see subfigures
of Figure 4). So, areas removed by the object identification did not affect the applicability
and interpretability of the result map.

4.3. CNNs for Plant Community Classification in Grasslands

The spectral classes of the VUs could not be separated linearly. Although there were
correlations between class membership and spectral information (see Figure 3), these were
not sufficient for a separation. The samples of Rumex obtusifolius extended across the other
VUs and had no distinctive spectral signature. However, due to their size and structure in
rosettes [55], they could be easily distinguished from the surrounding grasses and herbs.
The detection of Rumex obtusifolius in grasslands with CNNs was already shown by [32];
the authors achieved an accuracy of over 91% on a monotemporal model. The accuracy
of the identification of Rumex obtusifolius with the models presented here varies. The
multitemporal model for G1 achieved the worst accuracy with 79.71% on the test set (0%
on the plot data). The best accuracy was achieved by the monotemporal model of G1 with
98.04% on the test set (100% on the plot data). The other classes are characterized not
only by different spectral values but also by a distinctive spatial structure. The Alopecurus
pratensis community is dominated by tall grasses, which are no longer upright because
of wind at later observation dates. Thus, a wavy structure becomes visible, which is less
apparent in the Lolium perenne-community, where mainly herbs and low grasses are found
(see Appendix A).

It was shown by other studies [34,35] that CNNs are suitable for the classification
of different plant communities. In this work, individual plants of the species Rumex
obtusifolius were identified in addition to the Lolium perenne-, Alopecurus pratensis-, and
Bromus hordeaceus-community. Different requirements for classifications of VUs show the
great potential of CNNs. A single network can infer and combine multiple spatial and
spectral nonlinear features. In this complex problem, good accuracies in separating multiple
plant communities and individual plants could be achieved. Even though only a single
study site was observed in two growing periods within this study, it can be assumed that
the presented methodology can be used in other grasslands with different or differently
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separated plant communities. For this, a database should be created from grasslands
in various expressions at the same or similar phenological phases. With this database,
plant communities in various grasslands could be classified with little effort and no deep
ecological and botanical knowledge.

5. Conclusions

This work presents a method for the detection of plant communities in grasslands
based on CNNs and UAV data. For this, UAV imagery and botanical data were collected at
regular intervals in a hay meadow during two growths. Four VUs, a Alopecurus pratensis-
community, a Lolium perenne-community, a Bromus hordeaceus-community, and Rumex
obtusifolius plants were identified and classified with CNNs. It was investigated whether a
multitemporal classification offers added value compared to a monotemporal classification.
However, it was shown that not all models trained for this purpose achieved the same
accuracy and the classification quality was influenced by phenology. For the preparation of
phytosociological relevés, expert knowledge is essential. This complicates the generation of
suitable training data for the presented models. Furthermore, only one study site with two
different plant communities and two weed species was observed. To transfer the presented
methodology to other grasslands to estimate the composition of the vegetation and thus the
forage quality, a database of additional grassland plant communities in different variants
at the same phenological phase would be necessary. The monotemporal model can give a
good impression of the spatial distribution of the different plant communities from a single
observation. It should further be investigated whether the accuracy of the multitemporal
model can be improved with additional training data.
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Appendix A

Table A1. Frequency values (in %) of species in the plant communities of Lolium perenne, Alopecurus
pratensis, and Bromus hordeaceus. Identified species groups indicating plant communities are marked.
Other species include common Arrhenatheretalia species not differentiating between vegetation types.
Note the changed order of the growths of the Alopecurus pratensis community for better visualization.

Lolium perenne- Alopecurus pratensis- Bromus hordeaceus-
Community Community Community

G1 G2 G2 G1 G1

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Species Group No. of Plots 8 13 19 12 7
D1 Anthoxanthum odoratum 38 38 38

Ranunculus acris 38 50
Veronica chamedrys 13 13 13
Ajuga reptans 13 13

D2 Lolium perenne 100 100 100 100 100 100 25 25 25 25 58 58
Centaurea jacea 13 13 13 13 13
Galium mollugo 13 13 13 13 13 13 29

D3 Crepis biennis 31 31 25
Agrostis capillaris 25 25 25
Trifolium pratense 25 25 25

D4 Cynosurus cristatus 38 38 38 44 44 44
D5 Phleum pratense 19 19 0

Stellaria media 19 13
Rumex obtusifolius 13 13 13
Lamium album 6 6 13
Capsella bursa-pastoris 6 6 6

D6 Alopecurus pratensis 38 50 63 13 13 13 100 100 100 100 100 100 28 71 71
D7 Phalaris arundinaea 38 38 38 8 8 8 14 14 14

Cirsium arvense 13 13 13 14 14 14
D8 Bromus hordeaceus 25 62 62 19 19 19 11 58 58 100 100 100

Other species Holcus lanatus 100 100 100 56 56 56 81 81 81 100 100 100 100 100 100
Poa pratensis 100 100 100 25 25 25 13 13 13 25 58 58 43 43 43
Plantago laneolata 100 100 100 100 100 100 68 65 43 44 8 8
Taraxacum officinale agg. 100 100 100 87 68 44 68 62 38 67 41 29
Cerastium fontanum 88 100 75 43 56 31 31 31 19 67 58 33 43 71 14
Ranunculus repens 38 50 75 68 62 56 38 31 31 16 29 29 29
Trifolium repens 63 13 13 38 31 13 19 13 6
Rumex acetosa 63 13 13 43 31 25 19 19 13 8 16
Poa trivialis 100 100 100 25 67 67 100 100 100
Festuca rubra agg. 67 100 100 13 13 13 42 67 67 57 57
Molinia caerulea 13 16 14
Cardamine pratensis 50 13 42 8
Lychnis flos-cuculi 16 16

Appendix B

Table A2. EIV and forage values for Rumex obtusifolius plants, the Lolium perenne-, and the Alopecurus
pratensis-communities in both growths and the Bromus hordeaceus-community in the first growth.

Rumex
obtusifolius

Plants
Lolium perenne-Community Alopecurus pratensis-Community

Bromus
hordeaceus-
Community

G1 & G2 G1 G2 G1 G2 G1

Ellenberg M 6 5.76 5.44 5.98 5.76 6.4
Ellenberg R X 6.2 6.42 6.25 6.02 6.0
Ellenberg N 9 7.17 6.41 6.68 6.37 4.97
Forage Value 2 6.26 6.59 6.67 6.4 5.26
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Abstract: Forest stock volume (FSV) is a major indicator of forest ecosystem health and it also plays
an important part in understanding the worldwide carbon cycle. A precise comprehension of the
distribution patterns and variations of FSV is crucial in the assessment of the sequestration potential
of forest carbon and optimization of the management programs of the forest carbon sink. In this
study, a novel vegetation index based on Sentinel-2 data for modeling FSV with the random forest
(RF) algorithm in Helan Mountains, China has been developed. Among all the other variables and
with a correlation coefficient of r = 0.778, the novel vegetation index (NDVIRE) developed based
on the red-edge bands of the Sentinel-2 data was the most significant. Meanwhile, the model that
combined bands and vegetation indices (bands + VIs-based model, BVBM) performed best in the
training phase (R2 = 0.93, RMSE = 10.82 m3ha−1) and testing phase (R2 = 0.60, RMSE = 27.05 m3ha−1).
Using the best training model, the FSV of the Helan Mountains was first mapped and an accuracy
of 80.46% was obtained. The novel vegetation index developed based on the red-edge bands of the
Sentinel-2 data and RF algorithm is thus the most effective method to assess the FSV. In addition, this
method can provide a new method to estimate the FSV in other areas, especially in the management
of forest carbon sequestration.

Keywords: forest stock volume; NDVIRE; Sentinel-2; random forest; Helan mountains

1. Introduction

Forest stock volume (FSV) refers to the total volume of tree trunks growing within
a certain area of a forest, and it is thus an important indicator for measuring the total
forest resources within that area [1]. It is also an important parameter to measure forest
quality, forest carbon sequestration potentials, and an evaluation of the effectiveness of
forest management [2]. Around the globe and ever since the Chinese government formally
proposed a strategic plan for carbon peaking and carbon neutrality in 2020, global warming
has drawn widespread attention [3–5]. This is because the carbon sink capacity of forests
is an effective measure to mitigate global warming. Through the change in FSV [6], the
dynamic change in carbon storage can be understood and the carbon sink capacity of the
forest ecosystem can be obtained. Therefore, FSV studies are not only paramount in the
global carbon cycle, but also practically significant in the realization of China’s dual-carbon
objectives.
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The traditional FSV estimation method is mainly based on the manual measurement
of the diameter at breast height (DBH) and tree height on the ground [7]. For fine-scale
FSV estimation, it is indeed possible to obtain higher-precision estimation results [8].
However, if extended to a large-scale forest area, the small size and small number of
sample plots will make it hard to obtain results close to the actual level [9]. Furthermore,
forest ecosystems generally exhibit high spatial heterogeneity and inaccessibility [10,11].
Therefore, at this stage, it is not recommended to estimate FSV purely by manual field
surveys. The advent of remote sensing has provided a solution to the challenge of large-
scale FSV estimation [1,8,12]. By utilizing satellite images, it is now possible to obtain
information about forest structures and compositions across vast areas, without the need
for extensive ground measurements [13]. This technology has revolutionized the field of
forest inventory, allowing for a more efficient and accurate estimation of FSV at a large-scale.
Remote sensing images can be used in combination with a small number of ground samples
to obtain highly accurate estimates of FSV or biomass [10]. By calibrating remote sensing
data with ground-based measurements, it is possible to create statistical models that can
accurately predict FSV at a much larger scale [14]. This combined approach has significant
advantages over traditional manual field surveys, as it allows for a more efficient and
cost-effective estimation of FSV across large areas. Furthermore, the use of remote sensing
data can provide a more comprehensive understanding of forest ecosystems, allowing for
more informed management decisions.

However, as more and more optical remote sensing images are applied to FSV studies,
researchers have focused on the light saturation phenomenon that affects FSV estimation
results [15–17]. Using the band reflectance of optical remote sensing images, all kinds of
vegetation indices can be calculated. These traditional indices are usually used to estimate the
corresponding FSV or biomass [18–22]. However, as the forest ages, the traditional vegetation
indices will no longer respond accordingly to the decrease or increase in tree age [15,16]. This
is the phenomenon of overestimation of low values and underestimation of high values that
often occurs in FSV estimation studies. This is a result of the insensitivity of spectral variables
to changes in FSV, especially in forest areas with high vegetation coverage. Previous studies
have explored a variety of methods to decrease the influence of light saturation phenomena on
remote sensing estimation. These studies include the utilization of spatial regression models
and multi-source remote sensing image fusion [15,17]. Unfortunately, being an FSV study
solely on a specific region, it has generalized limitations and it does not apply to other regions.

The present study proposes a novel vegetation index aimed at improving the ability
to estimate FSV from remote sensing images. According to the literature, it is known
that the Sentinel-2 imagery covers 13 spectral bands [23–26], from visible light to short-
wave infrared, and each band has different spatial resolutions. Among all optical satellites,
Sentinel-2 is the only satellite that includes three spectral bands in the red-edge range [24,26].
These bands are very effective in monitoring vegetation change information. Such as to
estimate the FSV of the Helan Mountains, the vegetation reflectance of these three red-edge
bands was used to calculate the novel vegetation index [27]. Similarly, by setting the
step size, the optimal weighting coefficient of each red-edge band was determined. As
this study was carried out the a typical semi-arid montane forest ecosystem of the Helan
Mountains, this study may serve as a knowledge base for related research in similar areas
across the globe.

Furthermore, the present study aims at developing a novel vegetation index based
on Sentinel-2 multiple red-edge bands. It also combines the original band information
and traditional vegetation indices to estimate the FSV of the Helan Mountains under the
machine learning algorithm. The study will accomplish the following three goals: (1) to
explore the potentials of the novel vegetation index developed based on Sentinel-2 data
to estimate the FSV; (2) to compare the ability of the different variable combinations to
estimate FSV and determine the best model among the three models developed in this
study; (3) to map the FSV distribution of the study area by the best variable combination
obtained in objective (2).
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2. Materials and Methods

2.1. Study Area

This study focused on the forest resources in the Helan Mountains National Nature
Reserve (38◦19′–39◦22′ N, 105◦49′–106◦41′ E) in Ningxia Province (Figure 1). The Helan
Mountains belongs to the temperate arid climate zone with typical continental monsoon
climate characteristics. The lack of rain and snow all year round leads to a dry climate.
Although the average annual temperature is −0.7 ◦C, there is a wide seasonal variation
in precipitation. For instance, the average precipitation from June to September, which
accounts for over 62% of the annual precipitation, reaches 260.2 mm. Due to the steep moun-
tain and complex terrain, the Helan Mountains are an important dividing line between
climate and vegetation in western China. To the east is the grassland climate and grassland
vegetation, and to the west is the desert climate and desert vegetation. It is located at the
junction of the Qinghai-Tibetan Plateau, the Mongolian Plateau, and the North China Plain.
The special geographical environment has shaped the unique biological groups of the
Helan Mountains, making it the only biodiversity hotspot in northern China. Furthermore,
the Helan Mountains National Nature Reserve in Ningxia Province has played a major role
in studies on the virtuous cycle of vegetation development, succession, and restoration of
ecosystems in semi-arid areas.

Figure 1. The geographical location of the Helan Mountains.
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2.2. Field Data Collection

The field data were obtained from the 2020 forest resources management “one map”
annual update data released by the Ningxia Forestry Survey and Planning Institute. Using
these data reduces the workload of field surveys, and it provides access to a large amount
of information on ground sample plots. Due to the wide distribution of national surface
survey plots, not all sample plots can be surveyed on the spot, and there is a certain degree
of uncertainty in these data. Therefore, based on previous studies, the NDVI obtained from
Sentinel-2 data was used to screen plots and remove outlier data (NDVI < 0.2) [28,29]. In
the end, 881 small class data were extracted for the modeling analysis, and took the hectare
stock volume of living trees as the unit area FSV of each sample plot.

Random grouping was used to divide the training data and the testing data. Among
the 881 sample plots, 530 (about 60%) were used as the training data and 351 (about 40%)
were used as the testing data. Table 1 counts the characteristics of the field FSV training
data and testing data, respectively.

Table 1. Descriptive statistics of the FSV training and testing data.

Statistical Category Training Data (m3ha−1) Testing Data (m3ha−1)

Minimum 3.30 6.40
Maximum 163.20 162.30

Median 45.15 48.80
Mean 56.66 63.84

Number of sample plots 530 351

2.3. The Acquiring and Processing of Sentinel-2 Data

Sentinel-2 covers spectral information in 13 bands, including visible light, near-
infrared, red-edge, and short-wave infrared. The Sentinel-2 images are directly extracted
from the processed surface reflectance product (COPERNICUS/S2_SR) through the Google
Earth Engine (GEE) platform. To match the date of field data and consider the influence of
cloud coverage of remote sensing images in the study area, the product date is selected from
1 July 2020 to 31 August 2020. The declouding process uses the method officially announced
by the GEE to directly mask out the pixels whose pixel_QA band pixel attributes are 3
and 5. Following cloud removal, the overlaid images were medianized using the median
function, followed by coordinate system matching and resampling to 30 m resolution.

2.3.1. Original Band Information

Then, the band information was extracted from the processed images using the vector
file of the ground sample. Eight bands (Table 2) of the Sentinel-2 data were selected for
this study [30–32], excluding bands 1, 9, 10, 11, and 12 because these bands are mainly
associated with the atmosphere or water vapor.

Table 2. Selected band information of Sentinel-2.

Sentinel-2
Bands

Description
Central

Wavelength
(nm)

Bandwidth
(nm)

Resolution
(m)

Resampling
Resolution

(m)

B2 Blue 492.4 66 10 30
B3 Green 559.8 36 10 30
B4 Red 664.6 31 10 30
B5 Red Edge 1 704.1 15 20 30
B6 Red Edge 2 740.5 15 20 30
B7 Red Edge 3 782.8 20 20 30
B8 NIR 832.8 106 10 30

B8A Narrow NIR 864.7 21 20 30
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2.3.2. Traditional Vegetation Indices

The potential of six traditional vegetation indices for estimating FSV, calculated from
the band reflectance extracted from the Sentinel-2 data (Table 3) were initially tested.
Normalized Difference Vegetation Index (NDVI) reflects the background influence of plant
canopy and is concerned with vegetation coverage. It is a vegetation index frequently
utilized for detecting the growth status of plants. The difference vegetation index (DVI)
can also reflect changes in vegetation coverage very well, and within a certain range of
vegetation coverage, the DVI rises with the growth of biomass. The ratio vegetation Index
(RVI) is a highly sensitive indicator parameter for monitoring green plants, which can
be used to detect vegetation status and estimate the FSV. This index is the ratio of light
scattered in the near-infrared to light absorbed in the red band, which lessens the effect
of the atmosphere and terrain. The perpendicular vegetation index (PVI) represents the
vertical distance from the vegetation pixel to the soil brightness line in the two-dimensional
coordinate system of R—NIR and is less sensitive to the atmosphere than other vegetation
indices. The transformed vegetation index (TVI) is based on the NDVI and introduces a
constant of 0.5 to convert the negative value that the NDVI may take into a positive value.
The EVI not only inherits the advantages of the NDVI, but also improves the saturation of
high vegetation areas, incomplete correction of atmospheric effects, and soil background.
The enhanced vegetation index (EVI) can improve the sensitivity of vegetation in high
biomass areas and reduce the influence of soil background and atmosphere.

Table 3. Several traditional vegetation indices calculated based on Sentinel-2 data.

Original Vegetation Indices Formulas References

NDVI (ρNIR − ρRed)/(ρNIR + ρRed) [20]
DVI ρNIR − ρRed [33]
RVI ρNIR/ρRed [34]
PVI 0.939ρNIR − 0.344ρRed + 0.9 [34]
TVI

√
(ρNIR − ρRed)/(ρNIR + ρRed) + 0.5 [34]

EVI 2.5(ρNIR − ρRed)/(ρNIR + 6ρRed − 7.5ρBlue + 1) [20]

2.3.3. Novel Vegetation Index Based on Red-Edge Bands

The accuracy of traditional vegetation indices to estimate FSV is severely affected
by the light saturation phenomenon. While the three red-edge bands in the Sentinel-2
data have been proven to be an effective way to improve the estimation of the forest
parameters, unfortunately only one or two of the red-edge bands were used in existing
indices. Therefore, to maximize the ability to estimate FSV using the three red-edge bands
in the Sentinel-2 data, a novel vegetation index based on existing NDVI construction
principles, the 4-band red-edge NDVI (NDVIRE), such as Formula (1) was developed.
According to the novel index construction rules, as elaborated in previous studies, in the
NDVIRE formula, instead of using the NIR band, the reflectance values of RE3 and RE2 are
averaged using weights and are substituted. Similarly, the Red band is replaced with a
weighted average of the reflectance values of RE1 and RE2 [27]. The weighting coefficients
“α” and “β” are designed to define the optimal proportion of each band in the construction
of the novel index.

NDVIRE =
(α·RRE3 + (1− α)·RRE2)− (β·RRed + (1− β)·RRE1)

(α·RRE3 + (1− α)·RRE2) + (β·RRed + (1− β)·RRE1)
(1)

where RRE1, RRE2, RRE3, and RRed are the reflectance of B5, B6, B7, and B4, respectively. “α”
and “β” represent weighting coefficients. The value range of “α” and “β” is (0,1), and the
step size is 0.1.
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2.4. Acquisition of the Forest Distribution Pattern in the Helan Mountains

The Global PALSAR-2/PALSAR Forest/Non-Forest Map product utilizes synthetic
aperture radar (SAR) images obtained from the phased array type L-band synthetic aperture
radar (PALSAR) on the ALOS-2 satellite to generate a global map of forest and non-forest
areas. The classification accuracy of this map, in terms of forest and non-forest information,
can reach 90%. This product is widely used for monitoring forest changes, assessing
forest carbon storage, and providing information for forest management decisions. We
downloaded this product using the GEE and extracted the pixels defined as forest areas
within the Helan Mountains region, ultimately obtaining the forest distribution pattern of
the Helan Mountains.

2.5. Machine Learning Algorithm of Modeling FSV

The random forest (RF) is a machine learning algorithm that uses multiple decision
tree classifiers for classification and prediction. In recent years, studies on RF algorithms
have rapidly developed accompanied by large numbers of applied research carried out in
many fields. The RF algorithm is an efficient bagging-based integrated learning algorithm,
and numerous prior studies have shown that the RF algorithm performs well in regression
prediction [35–38]. Therefore, this study chooses the RF algorithm for modeling and
analysis. The RF algorithm operates by utilizing the bootstrap method, that involves
randomly sampling from the original population to create multiple samples. These samples
are then used to generate a set of decision trees (ntree). The RF algorithm achieves higher
accuracy and robustness by increasing the number of decision trees. At each splitting
node, the RF algorithm randomly selects a subset of predictors (mtry) to build each tree.
Additionally, there is no need to prune each tree. The RF algorithm employs the “out-of-
bag” (OOB) error procedure to independently build each tree based on the training data.
This procedure allows for the calculation of variable importance (VI) and OOB error for
each tree grown by the RF algorithm. An estimation of the OOB error can be obtained using
the following formula:

OOBerror =
1
n ∑n

i=1(yi − ŷi )
2 (2)

where yi is the measured FSV, ŷi is the predicted FSV, and n is the total number of OOB samples.
In this study, three RF-based models composed of bands and vegetation indices (VIs)

to estimate FSV, namely the bands-based model (BBM), VIs-based model (VBM), and bands
+ VIs-based model (BVBM) have been used.

2.6. Selecting Variables Using the VSURF Package

The VSURF package is a powerful tool for variable selection in regression problems
using the RF algorithm. It is a three-step process that involves eliminating irrelevant
variables, selecting relevant variables for interpretation, and improving prediction accuracy
by removing redundant variables. To begin, the first step of the process involves identifying
and eliminating irrelevant variables from the dataset. In the second step, all variables that
are associated with the response variable are selected for interpretation. Finally, in the third
step, redundant variables are removed to enhance the model’s prediction performance.
Once the relevant variables have been selected, the minimum mean square error (MSE)
is used to determine the optimal number of decision trees (ntree) and the number of
variables (mtry) to be used in the RF model. Initially, the ntree parameter is set to 500 and
mtry parameter is set to the total number of variables. Once the optimal parameters are
calculated, the RF regression model is established and tested.

2.7. Assessment of the Modeling Performance

This study utilized two metrics to assess the effectiveness of the RF model. The first
metric was the coefficient of determination (R2, Formula (3)), that indicates the extent to
which the independent variable can account for the variability in the dependent variable.
The second metric was the root mean square error (RMSE, Formula (4)), that represents the
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standard deviation of the difference between the observed data and the fitted model. A
higher R2 and a lower RMSE are indicative of a well-fitting model. The model is trained on
60% of the total samples, and the remaining 40% are used for testing. This approach allows
for accurate predictions while reducing the risk of over-fitting.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (3)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(4)

where yi is the measured FSV, ŷi is the predicted FSV, y is the mean measured FSV, i is the
same index, and n is the number of sample plots.

3. Results

3.1. Determination of the Optimal Novel Vegetation Index

According to the calculation formula of the novel vegetation index (NDVIRE), the
value range of the weighting coefficients “α” and “β” is (0,1), and the step size is 0.1, so
121 NDVIRE can be obtained. Python 3.10 software was used to calculate each NDVIRE
value of all small class data, and the Pearson correlation coefficient of each NDVIRE with
the FSV per unit area was also calculated. Results of the analysis are shown in Figure 2
(correlation is significant at the 0.01 level (two-tailed). In addition, the Pearson correlation
coefficient was also put between the traditional NDVI and unit area FSV in the figure for
comparison. Results showed the 47th NDVIRE to have the highest correlation coefficient
(r = 0.778), which is better than the traditional NDVI (r = 0.767), and its corresponding
values of “α” and “β” were 0.4 and 0.2, respectively. Therefore, the optimal NDVIRE was
determined and used for the subsequent modeling analysis.

Figure 2. Pearson correlation coefficients of the NDVI and NDVIRE with FSV per unit area.

3.2. Major Variables Selection and the Importance Related to the FSV Data

Two types of variables, the band (B2, B3, B4, B5, B6, B7, B8, and B8A) and vegeta-
tion index (NDVI, DVI, RVI, PVI, TVI, EVI, and NDVIRE) were selected to participate in
the modeling. Figures 3–5, represent the variable selection process of the three models
(BBM, VBM, and BVBM). Meanwhile, Table 4 shows the final variable selection results of
each model.
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Figure 3. The variables selection of BBM. (a,b) Removes the negatively important variables based on
the variable importance (VI) mean and standard deviation, respectively ((a), the threshold position is
represented by a solid red line that runs horizontally, and (b), the green segmented line represents
the predicted value given by the CART model, and the red line with dashes running horizontally
represents the minimum predicted value). (c) Gradually builds a random forest from only the most
important variables to all variables selected in the first step, and selects the corresponding variables
according to the average OOB error (the vertical solid red line indicates the minimum error position).
(d) Gives the number of variables meeting the requirements.

Figure 4. The variables selection of VBM. (a,b) Removes the negatively important variables based on
the VI mean and standard deviation, respectively ((a), the threshold position is represented by a solid
red line that runs horizontally, and (b), the green segmented line represents the predicted value given
by the CART model, and the red line with dashes running horizontally represents the minimum
predicted value). (c) Gradually builds a random forest from only the most important variables to all
variables selected in the first step, and selects the corresponding variables according to the average
OOB error (the vertical solid red line indicates the minimum error position). (d) Gives the number of
variables meeting the requirements.
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Figure 5. The variables selection of BVBM. (a,b) Removes the negatively important variables based
on the VI mean and standard deviation, respectively ((a), the threshold position is represented by
a solid red line that runs horizontally, and (b), the green segmented line represents the predicted
value given by the CART model, and the red line with dashes running horizontally represents the
minimum predicted value). (c) Gradually builds a random forest from only the most important
variables to all variables selected in the first step, and selects the corresponding variables according
to the average OOB error (the vertical solid red line indicates the minimum error position). (d) Gives
the number of variables meeting the requirements.

Table 4. The variables selection results using the VSURF package.

RF Models Variables Selected

BBM B4, B8, B2
VBM NDVIRE, TVI, EVI, DVI

BVBM NDVIRE, NDVI, EVI, DVI, B2

Furthermore, all predictor variables were ranked based on their ability to estimate
FSV using PercentIncMSE and IncNodePurity estimated from the OOB data. The greater
the value, the greater the significance of the variable (Figure 6). It is worth noting that the
novel vegetation index NDVIRE ranks first in importance under the two evaluation criteria.
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Figure 6. Importance ranking plot of all variables. Left, %IncMSE (percentage increase in the mean
square error, (a)), and right, IncNodePurity (increase in NodePurity, (b)).

3.3. Optimal Regression Model for the Three Models

To optimize the RF regression model, we need to find the optimal values for two
key parameters: “mtry”, which determines the number of variables randomly selected
as candidates for each split in the decision tree, and “ntree”, which determines the total
number of trees in the forest that have grown. To calculate the minimum error rate, an
iterative algorithm was used, known as an “error rate loop”, according to the number of
variables participating in the modeling in the three models. Figure 7 shows the determina-
tion process of the optimal mtry and ntree of the three models. The values of mtry, ntree,
and other performances of each model are summarized in Table 5.

3.4. Comparison of the Three Models Predicting FSV

In the training phase, BBM (Figure 8a) with an R2 = 0.92 is slightly better than VBM
(Figure 8c) with an R2 = 0.91. However, the RMSE = 11.90 m3ha−1 of the VBM is lower
than the RMSE = 12.23 m3ha−1 of the BBM. The BVBM (Figure 8e) has the highest R2 = 0.93
and the smallest RMSE = 10.82 m3ha−1. In the testing phase, the BBM (Figure 8b) with
an R2 = 0.59 and RMSE = 27.72 m3ha−1 performed almost the same as VBM (Figure 8d)
with an R2 = 0.59 and RMSE = 27.32 m3ha−1. Similarly, the BVBM (Figure 8f) had the best
performance with an R2 = 0.60 and RMSE = 27.05 m3ha−1. Obviously, the BVBM is the
optimal model in this study, and its predicted FSV is used as the final estimation result
to map the FSV. A summary of the data characteristics of FSV as predicted by the three
models is presented in Table 6.
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Figure 7. (a,c,e) are the distribution of error rate versus mtry; (b,d,f) are the distribution of the
error versus ntree; (a,b) are related to the BBM; (c,d) are related to the VBM; and (e,f) are related to
the BVBM.
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Table 5. The best mtry, ntree, and performance of the three models.

RF Models mtry ntree
Mean of
Squared

Residuals

% Var
Explained

BBM 1 468 636.68 56.77
VBM 1 494 612.33 58.42

BBVM 7 188 609.55 58.61

Figure 8. Comparison of the measured FSV and predicted FSV by the three models. (a), BBM in the
training phase. (b), BBM in the testing phase. (c), VBM in the training phase. (d), VBM in the testing
phase. (e), BVBM in the training phase. (f), BVBM in the testing phase.
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Table 6. Characterization of FSV predicted by the three models.

Statistical
Category

Training Phase (m3ha−1) Testing Phase (m3ha−1)

BBM VBM BVBM BBM VBM BVBM

Minimum 13.69 9.27 9.21 16.88 12.75 12.66
Maximum 143.83 145.66 144.76 127.55 143.64 142.48

Median 48.17 47.75 47.81 50.52 52.38 50.51
Mean 56.71 56.62 56.88 60.50 60.68 60.79

3.5. Mapping FSV Distribution of Helan Mountains

Based on the results shown in Figure 8, we have concluded that the BVBM is the
best-performing model in this study, and we calculated the FSV of the Helan Mountains
by the BVBM combined with the forest distribution pattern. Figure 9 is the final FSV map,
the minimum value of the unit area FSV of the Helan Mountains is 9.63 m3ha−1 and the
maximum value is 143.96 m3ha−1. The total amount of FSV in the Helan Mountains was
estimated to be 1,062,727.25 m3. According to the FSV data released by the Helan Mountains
National Nature Reserve in Ningxia Province (http://www.hlsbhq.com/, accessed on 22
January 2023), the total FSV of the Helan Mountains is 1,320,721.7 m3. Therefore, the
accuracy of the BVBM to predict the FSV in the Helan Mountains reached 80.46%.

Figure 9. Spatial distribution of the predicted FSV, and forest distribution of the Helan Mountains.
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4. Discussion

The carbon sequestration capacity of montane forest ecosystems is very significant
and of prime importance in the global carbon cycle. Due to their geographical location
and climatic characteristics, montane forests are an integral part of the entire terrestrial
forest ecosystem [35,39]. The Helan Mountains are highly representative of montane forest
ecosystems, their FSV estimation has a very high reference value for studies across similar
landscapes. However, as a result of the inaccessibility and complex spatial heterogeneity of
montane forest ecosystems, it is often a daunting task to obtain a sufficient number and
sufficiently representative ground samples to estimate FSV in large-scale areas. Although
remote sensing images have made it easier, issues related to low-value overestimation
and high-value underestimation still occur [15,17]. However, as more and more red-edge
bands in Sentinel-2 data are applied, the accurate estimation of vegetation parameters has
been greatly improved [1,2]. For example, based on the red-edge band of Sentinel-2, Liu
et al. [27] developed several new vegetation indices to estimate the photosynthetic and
non-photosynthetic fractional vegetation cover of alpine grasslands on the Qinghai-Tibetan
Plateau. Despite exhibiting a more sensitive response at low vegetation coverage, their
study found that compared with traditional vegetation indices, the novel vegetation indices
can effectively alleviate the high vegetation saturation problem at low vegetation coverage.
In a related study in Zhejiang Province, China, Fang et al. [2] used the optimal variable
selection method of different dominant tree species to estimate FSV. Their selected variables
included a variety of vegetation indices, such as SRre, MSRre, CIre, and NDI45 developed
based on the Sentinel-2 red-edge bands. Almost all of these variables appear in the final
variable selection results, which also prove the potential of the red-edge band in estimating
forest parameters.

In exploring the potential of NDVIRE to estimate FSV based on the Sentinel-2 red-edge
bands, in the variable importance results of the VBM and BVBM, the NDVIRE ranks first.
It is worth mentioning that the introduction of weighting coefficients “α” and “β” played
a key role in the successful construction of the NDVIRE. The results of this study also
indicate that the model’s estimation accuracy of FSV is significantly improved due to the
addition of the NDVIRE. First of all, an estimation accuracy of 80.46% is impressive in the
research on FSV estimation. Moreover, according to Table 6, we found that the minimum
and maximum values in the estimated results of the VBM and BVBM with the NDVIRE
involvement are superior to those in the BBM, indicating that the NDVIRE mitigates the
issue of light saturation to some extent. In addition, the mean values of FSV predicted by
the BVBM in the training phase (56.88 m3ha−1) and the testing phase (60.79 m3ha−1) are
also very close to the mean values of the training data (56.66 m3ha−1) and the testing data
(63.84 m3ha−1).

Despite the proven efficiency and robustness of the RF algorithm through numerous
studies [8,21,35–38], there is still a limitation observed in its ability to predict the minimum
and maximum values of FSV in both the training and testing phases when compared
to the actual training and testing data. This limitation results in overestimation of low
values and underestimation of high values. Therefore, it would be necessary for future
studies to incorporate more machine learning algorithms and innovative machine learning
algorithms. From another perspective, deep learning, as a kind of non-parametric machine
learning algorithm, is widely applied in forest monitoring. Numerous prior studies have
demonstrated the outstanding capability of deep learning algorithms when it comes to
target detection and vegetation classification [40–44].

Another paramount limitation of this study is the source of sample plot data which were
the most recent. Although “one map” contains a large amount of necessary forest information,
using these data to carry out research can no longer meet the current requirements for real-time
forest monitoring. In order to resolve this problem in future studies, it is necessary to use
unmanned aerial vehicles (UAVs) to obtain enough measured sample plots. Similarly, many
studies have proposed UAVs equipped with hyper-spectral and LiDAR sensors to obtain
the horizontal and vertical structure information of forests [45–51]. Its efficiency in obtaining
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forest parameters is unmatched by manual investigation. The accuracy of tree height, DBH,
and spectral information extracted using UAVs is very close to manual surveys. Therefore,
as an innovative research method, it is recommended to use UAVs to replace manual field
survey work to improve research efficiency where high-precision forest estimation results can
be obtained.

5. Conclusions

This study has effectively estimated and mapped the distribution of FSV in the Helan
Mountains, with a resolution of 30 m. Utilizing the RF algorithm in conjunction with
data from Sentinel-2, the study has affirmed the potential of NDVIRE in FSV estimation.
Among all modeled variables, the novel vegetation index NDVIRE, constructed based on
the three red-edge bands of Sentinel-2, contributed the most to predicting FSV. Furthermore,
the BVBM performed the best among the three models based on the two variables of the
band and vegetation index. Finally, this study would assist policymakers in designing
forest conservation and management paradigms that could potentially support the sus-
tainability and carbon sequestration dynamics in the Helan Mountains and other montane
forest ecosystems.
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Abstract: Early forecasting of crop yield from field to region is important for stabilizing markets and
safeguarding food security. Producing a precise forecasting result with fewer inputs is an ongoing
goal for the large-area yield evaluation. We present one approach of yield prediction for maize that
was explored by incorporating remote-sensing-derived land surface temperature (LST) and field
in-season data into a series of logistic models with only a few parameters. Continuous observation
data of maize were utilized to calibrate and validate the corresponding logistic models for regional
biomass estimating based on field temperatures (including crop canopy temperature (Tc)) and relative
dry/fresh biomass accumulation. The LST maps from MOD11A1 products, which are considered to
be matched as Tc in large irrigation districts, were assimilated into the validated models to estimate
the biomass accumulation. It was found that the temporal-scale difference between the instantaneous
LST and the daily average value of field-measured Tc was eliminated by data normalization method,
indicating that the normalized LST could be input directly into the model as an approximation of
the normalized Tc. Making one observed biomass in-season as the driving force, the maximum
of dry/fresh biomass accumulation (DBA/FBA) at harvest could be estimated. Then, grain yield
forecasting could be achieved according to the local harvest index of maize. Silage and grain yields
were evaluated reasonably well compared with field observations based on the regional map of LST
values obtained in 2017 in Changchun, Jilin Province, China. Here, satisfactory grain and silage yield
forecasting was provided by assimilating once measured value of DBA/FBA at the middle growth
period (early August) into the model in advance of harvest. Meanwhile, good results were obtained
in the application of this approach using field data in 2016 to predict grain yield ahead of harvest in
the Jiefangzha sub-irrigation district, Inner Mongolia, China. This study demonstrated that maize
yield can be forecasted accurately prior to harvest by assimilating remote-sensing-derived LST and
field data into the logistic models at a regional scale considering the spatio-temporal scale extension
of ground information and crop dynamic growth in real time.

Keywords: yield forecasting; remote sensing; logistic model; normalization method; crop canopy
temperature; maize

1. Introduction

Early estimates of crop yield will contribute to addressing the key issues of crop
production management, future market output, and deep processing. According to the
early prediction of crop yield, farmers can adjust and optimize irrigation decision making
in a timely way to maximize yield for enhancing profits, while policymakers also take
reasonable measures to deal with potential trade risks in order to safeguard food security
and ensure market stability [1]. It should be emphasized that the earlier yield forecasting
information is provided, the more effective measures are likely to be undertaken [2].

Plentiful studies have been implemented to predict final yield in the past decades
based on different methods including field survey, statistical methods, and crop growth
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models [3–5]. Field survey can assess yield by capturing the ground truth; nonetheless, it
is highly time-consuming and labor-intensive. The core of statistical methods lies in the
acquisition of empirical relationships between crop yields and specific related indicators.
Despite reasonably accurate results in specific field areas, it is restricted when scaling up
this relationship to large areas. Crop growth models can be applied to describe plant
dynamic growth. Biomass is a critical biophysical indicator with a close link to yield at
harvest. Therefore, one way to predict yield is to acquire biomass estimates via crop growth
models and then implement the in-season evaluations of yield on account of their good
correlations. Crop growth models include process-based models and experiment regression
ones [6]. The former requires many parameters as inputs [7,8], making it difficult to execute
the models in data-scarce regions [9] though it is more mechanistic than the latter. In
contrast, with only a few parameters, statistical regression models have been developed
(e.g., the Richards, Compertz, and Weibull equations) and continue to be widely used
to illustrate crop growth dynamics including biomass [10–12], but this method has the
limitation of extending model parameters to large areas.

Given that these methods have limitations, data assimilation has been developed
to solve these problems in yield forecasting. Intrinsically, data assimilation is used to
incorporate observations into the model to obtain the optimal possible estimates [13]. The
rapid advancement of satellite images allows for large-scale crop growth monitoring [14,15].
Numerous studies have shown that incorporating remote sensing data into crop models
can improve regional yield estimates [16–18]. The research has focused mainly on the as-
similation of mechanism models [2,19–21] despite the fact that they require numerous input
parameters. By contrast, it is worth investigating the potential of experiment regression
models in early-season yield forecasting for large areas via data assimilation when there is
a lack of detailed input information.

As one of the most important crops, maize yield forecasting is critical for the develop-
ment of agriculture and livestock [22] and can serve as an excellent reference for other crop
research. For different purposes, farmers can harvest maize as silage or grain yield, and
correspondingly, dry biomass accumulation (DBA) and fresh biomass accumulation (FBA)
need to be predicted as an important precondition for yield forecasting.

The logistic model is one of the most commonly applied regression models for crop
growth processes such as DBA throughout the growing season [23–27]. However, the
logistic model fails to fully describe the development process of FBA or leaf area index
(LAI) due to the existence of a downtrend process after the milk stage caused by leaf
senescence. A revised logistic model proposed by Wang [28] overcame this limitation
and performed well when describing LAI changes [29], but it has not yet been used for
FBA. In addition, the logistic model was originally developed for individual plants that
neglected regional applicability. Elings [30] acquired maize leaf area dynamic growth in
various environments using a set of parameters for the data normalization method. This
method has been used to establish a normalized logistic model of relative DBA (RDBA) for
simulating regional crop growth patterns [4,31].

Indeed, another major obstacle to the application of the logistic model in region
is the choice of input parameter, which serves as a vital bridge linking the point-based
and regional applications. Furthermore, previous studies have demonstrated the growth
curve of maize using the logistic models with air or soil temperatures as input [32–34].
The cropping environment is the most influential factor in plant yield [35,36]. Canopy
temperature (Tc) is obviously a better indicator for reflecting crop water message responses
to field conditions. Moreover, Tc can be considered as matched to land surface temperature
(LST) in large agricultural areas, which can be inversed from remote sensing images [37].
Therefore, integrating LST data into the normalized logistic models can acquire the values
of RDBA in combination with the once-measured DBA on a certain date and harvest index
(HI), which presents an opportunity to achieve early yield forecasting in regions.

Therefore, an approach was developed to retrieve early prediction of maize yield using
logistic models in combination with daily LST images and in-season field observations.
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The major objectives are as follows: (1) to calibrate and validate the corresponding logistic
models for simulating the maize growth curves including RDBA and relative FBA (RFBA)
based on different independent variables including temperatures of air, canopy, and soil at
20 cm or 40 cm in the root zone; (2) to determine the applicability of Tc in crop monitoring
as well as the appropriate model parameters; (3) to forecast maize yield in region by HI
and biomass maximum including DBA and FBA, which can be acquired by incorporating
the normalized LST from remote sensing as an approximation of the normalized Tc into
the corresponding optimal models with once-observed DBA or FBA as the driving force;
and (4) to test the portability of this approach by producing grain yield maps in other
agricultural districts and comparing them to local observations.

2. Materials and Methodology

2.1. Study Areas

The first study region was in Changchun area, Jilin Province (about 2.05 million ha),
as shown in Figure 1a,b. This region was characterized by a northern temperate continental
monsoon climate, with an average annual rainfall of 520–755 mm [38], of which more than
60% occurs in the summer. The annual average daily temperature is 4.8 ◦C, and the sunshine
duration is approximately 2700 h. The data for model developments were obtained from
field experiments of maize growth (May–September) from 2017 to 2019 in an agricultural
research station (43◦38′39.92′ ′N, 125◦19′7.77′ ′E, 248 m a.s.l.) near Changchun city, as shown
in Figure 1f (about 73 ha). The maize cultivar was Xianyu 335. The predominant soil types
are black and meadow soil, and the soil texture is mainly sandy loam soil. The field capacity
(Fc) and wilting point (Wp) were measured as 37% and 16% in an 80 cm average of the crop
root zone, respectively. Precipitation and soil water content in 2017–2019 were monitored,
revealing an optimal soil moisture range for maize growth (Figure 2).

Another study region for this work was the Jiefangzha sub-irrigation district (approxi-
mately 0.229 million ha), which is one main component of Hetao irrigation district in Inner
Mongolia, China (Figure 1a,c). Maize is one of the major crops in this region. The yearly
average daily temperature is 9 ◦C, with an annual rainfall of approximately 151.3 mm. The
field monitoring system was conducted in the Shahaoqu experimental station in 2016, as
shown in Figure 1b (40◦55′8”N, 107◦8′16”E, 1036 m a.s.l.). The values of Fc and Wp are 35%
and 15% in the crop root zone, respectively. More information can be found in the report
by Bai et al. [39].

2.2. Field Measurements

In Changchun, the five typical maize plots (named H1 to H5, Figure 1f) were equipped
with five sets of canopy temperature and meteorology monitoring systems (CTMS) (Figure 1e),
which are composed of a stainless-steel stand column, solar panels, and various sensors.
This system can synchronously monitor field data at 30 min intervals, including wind speed
(014MINI-MetOne, Washington, USA), solar radiation (SP110-Apogee/SQ110-Apogee,
Logan, USA), the crop canopy temperature (TPiS 1 T 1252B, Excelitas, Waltham, Germany),
air temperature/humidity (HMP60-Vaisala, Vantaa, Finland), soil temperature/moisture
(20 cm and 40 cm in the root zone) (SM10D, Beijing, China), and more by the corresponding
sensors. It should be emphasized that the canopy temperature at 30 min intervals was
computed as the average of multi-point values around the equipment by the rotation
measurement of a thermal infrared sensor (TPiS 1 T 1252B, Excelitas, Waltham, Germany)
installed at the end of a cantilever perpendicular to the stand column. Sensors were set up
at a height of 3 m during the whole growth stage, which could be adjusted as need. Regular
weekly maintenance ensured the normal functioning of the equipment. A more detailed
description of the system was provided by Cai et al. [37] and Huang et al. [40].
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Figure 1. Overview of the two study areas: (a) locations in China; (b) land-use and -cover map in
Changchun from the GlobeLand30 platform (in 2020); (c) distributions of experimental station and
eight yield monitoring points in Jiefangzha sub-irrigation district; (d,e) a typical CTMS equipment in
Jiefangzha/Changchun; (f) locations of the five sets of CTMS equipment (H1 to H5) in Changchun.

Figure 2. Precipitations and soil water contents changing during maize growing season in Changchun
during three years: (a) 2017; (b) 2018; (c) 2019.

Above-ground biomass was sampled every 10–15 days by removing three represen-
tative plants from each of monitoring plots. The collected samples were immediately
weighted as the amount of FBA. Then, these samples were put in an oven at 105 ◦C for
30 min to stop the plant life activities and subsequently were dried at 80 ◦C to a constant
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weight. (The final weight would be the DBA.) During the harvest, the last sampling of
above-ground biomass was recorded, and the grain yield (1 m2) and planting density were
measured in each experimental point at the same time. In conclusion, six samples were
collected from each plot per year.

Similarly, a CTMS system was installed in the Shahaoqu experimental station to
collect the same data as Changchun, and eight yield monitoring points were erected to
measure final grain yield for evaluation in the Jiefangzha sub-irrigation district (Figure 1c).
Furthermore, above-ground biomass in the experimental site was sampled and recorded
four times as a driving force for yield forecasting. More details can be seen in the report
from Bai et al. [39].

2.3. Remote Sensing Data

For the subsequent spatial-scale research in Changchun, the Landsat 8 images (30 m)
and MOD11A1 data (1 km) in 2017 were downloaded from the website of USGS (https://
earthexplorer.usgs.gov/ accessed on 21 June 2021) with the aim of acquiring the LST data.
The available remote sensing images can be seen in Table S1. Daily LST data were derived
from the MOD11A1 product (1 km). Due to the cloudiness, there were only four clear
Landsat 8 images in 2017 relevant to maize growth that would be used for mapping maize
in the research area and verified by the field monitoring data, cropland map from the
GlobeLand30 platform, and statistics data.

To obtain the maize distribution in Changchun, some calculations and preprocessing
needed to be finished. Firstly, the normalized difference vegetation index (NDVI) and
land surface water index (LSWI) were calculated by Equations (1) and (2), which were
also followed for four Landsat 8 images (Operational Land Imager, OLI) [41,42]. The
Landsat 8 image on 25 September, which is the best one just in the maize growth stage,
was chosen as a sample to classify the region of interest (ROI). The classification thresholds
could be determined by combining the features of vegetation in different stages and the
changes in NDVI and LSWI of ROI samples. The process contained the following four steps
(Figure S1): (1) to distinguish the vegetation and the others according to the NDVI values
on 25 September (Julian day 268), which belonged to the optimum discrimination period of
vegetation in four images; (2) to obtain the thresholds by analyzing the NDVI values of
forest and crop samples on 5 June (Julian day 156), when the crops were in the early growth
stage, and the NDVI of the forest should be obviously higher; (3) to employ the LSWI of
rice samples in ROI on 5 June (Julian day 156) to determine the corresponding thresholds
considering the rice was irrigated during this stage, and the LSWI values of rice should
be higher; and (4) to determine the relative thresholds between the maize and the other
vegetations by analyzing the LSWI ranges of them in ROI on 5 June (Julian day 156) and
25 September (Julian day 268). Based on these thresholds, the distribution of maize + rice
could be obtained according to the classification rules of decision tree classification.

NDVI = ( NIR − RED)/( NIR + RED) (1)

LSWI = ( NIR − SWIR)/( NIR + SWIR) (2)

where NIR (band5), RED (band4), and SWIR (band6) are the reflectivity of near-infrared,
red, and shortwave infrared band, respectively.

Based on the decision tree classification mentioned above, the combination pattern for
maize + rice in Changchun was obtained (Figure 3a). As the dominant field crops are maize
and rice here, it was assumed that these results are mostly cropland. In order to evaluate the
classification precision, the land-cover data with a spatial resolution of 30 m in 2020 (Figure 3b)
were downloaded from the platform of GlobeLand30 (http://www.globallandcover.com/
home.html accessed on 3 October 2021), published by the Ministry of Natural Resources of
China. Meanwhile, the statistical data of crop areas were obtained from the Statistic Bureau
of Jilin Province (http://tjj.jl.gov.cn/tjsj/ accessed on 3 October 2021) for further evaluating
the classification precision.

121



Remote Sens. 2023, 15, 1025

Figure 3. Crop patterns and cropland in Changchun area: (a) maize and rice obtained by decision
tree classification; (b) cropland data in 2020 from the GlobeLand30 platform; (c) maize mapping by
decision tree classification.

Using the confusion matrix, the value of the producer’s accuracy (ratio of the number
of estimated correct pixels to reference pixels) about cropland was 82.18%, determined
through comparing Figure 3a,b. This value proved that the classification method established
above was available and appropriate. It should be emphasized that the validation method
used here was restricted by the accuracy of the GlobeLand30 product. Meanwhile, this
product is not offered for every year, which will affect the accuracy evaluation of crop
mapping. The maize mapping could be obtained by the same method (Figure 3c), which
took up 87% of cropland in Figure 3b. The ratio was consistent with the value from statistics
data (84%).

For the Jiefangzha sub-irrigation district, the spatial distribution of maize was derived
from the report from Bai et al. [39], as shown in Figure 1c. Fortunately, the images from
Landsat 8 (30 m) and MOD11A1 (1 km) can support the enhanced spatial and temporal
adaptive reflectance fusion model (ESTARFM) algorithm [43] to improve the spatial ac-
curacy of LST. Therefore, the fused LST was used in this region. Details of the extraction
process can be found in research by Huang et al. [40].

2.4. Logistic Models
2.4.1. Logistic Model

The logistic model depicts a sigmoidal curve [44] that increases gradually at first,
more rapidly in the middle, and then slowly at the end before leveling off at a maximum
value [45,46], such as the growth curve of DBA [47]. The model equation is as follows:

yD = a/(1 + b exp(−kt)) t = ∑n
i=1(ti − 10) (3)

where yD is the dependent growth parameter (DBA, kg ha−1); a denotes the uppermost
asymptote, implying the theoretical upper limit of DBA growth; b and k are model pa-
rameters; t is the effective accumulated temperature after emergence in the present study
(hereinafter referred to as the effective accumulated temperature, ◦C). Notably, tair, tcanopy,
t20, and t40 (◦C), represent the effective accumulated temperature of the air, canopy, and soil
at 20 cm or 40 cm of the root zone, respectively. ti is the day i value (from crop emergence)
of daily average temperature of the air, canopy, or soil at 20 cm or 40 cm depth of the crop
root zone. (It is calculated as 30 ◦C when ti exceeds 30 ◦C, and it will be calculated as 10 ◦C
if the value is less than 10 ◦C [48].) n is the total number of days from crop emergence
to harvest.
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2.4.2. Normalized Logistic Model (N-Logistic Model)

The logistic model was originally developed for individual applications that may be
inappropriate for spatial prediction of crop growth. The normalization method transforms
the raw data into an interval of 0 to 1, which can eliminate the dimensional differences
between plots. Therefore, the RDBA and relative effective accumulated temperature (T)
were used to set up the growth model, lower data dispersion (from different plots), and
form a regional model. Here, the logistic model with normalization is called N-logistic
model, which has the same form as the logistic model but with different parameters:

YD = A/(1 + B exp(−KT)) YD = yD/yDm T = t/tm (4)

where YD is the RDBA, which is the ratio of yD (DBA in the maize growing season) to yDm
(DBA at harvest); A is the upper most asymptote implying the upper limit of RDBA; and B
and K are model parameters; t is the same as in Equation (3); tm is equal to the value of t at
harvest; T is relative effective accumulative temperature (T20, T40, Tcanopy, and Tair mean
the values in soil at 20 cm and 40 cm under surface, crop canopy, and air, respectively),
which is the ratio of t to tm. Theoretically, the value of YD equals A when T (0 ≤ T ≤ 1)
reaches 1. Therefore, the value of A represents the theoretical upper limit of the RDBA.

2.4.3. Revised Logistic Model (R-Logistic Model)

Like the simulation of LAI, the R-logistic model [28] was employed to verify the FBA
growth pattern:

yF = c/(1 + exp(gt2 + et + f )) (5)

where yF is the above-ground FBA (kg ha−1); c, g (>0), e, and f are the model parameters; t
is the same as in Equation (3). When t = 0, yF = c/(1 + exp( f )) (the above-ground FBA in
maize emergence); when t = (−e/2g), the value of (gt2 + et + f ) reaches a minimum, and
the value of yF reaches a maximum; when t > (−e/2g), the value of yF begins to decline.
These situations are consistent with the actual growth curve of FBA.

2.4.4. Normalized Revised Logistic Model (NR-Logistic Model)

Similar to the logistic model, the R-logistic model was initially developed for individ-
ual plants. To scale up the simulation from a single plot to a region, the NR-logistic model
was developed by the normalization method mentioned above. It takes the same form as
the R-logistic model but with key parameters:

YF = C/(1 + exp(GT2 + ET + F)) YF = yF/yFm (6)

where YF represents the relative fresh biomass accumulation (RFBA); C, G (>0), E, and F
are parameters; T (0 ≤ T ≤ 1) is the same as in Equation (4); yFm represents the maximum
FBA (g m−2). When T = (−E/2G), the value of

(
GT2 + ET + F

)
reaches a minimum, and

YF reaches a maximum; when (−E/2G) < T < 1, the value of YF declines as the value of T
increases.

2.5. Yield Forecasting

When the model was validated to obtain suitable parameters, namely the RDBA and
yDm, the RFBA and yFm could be simulated by Equations (4) and (6) with field monitoring
data once at least, respectively, when combined with the map of the independent variable
(LST) inversed from remote sensing images. Grain yield (Y) will be forecasted by the DBA
in harvest period and HI as follows:

Y = HI× yDm (7)

where Y is grain yield; HI is the weight of a harvested product as a percentage of the
total plant weight of a crop; and yDm is the DBA at harvest time as mentioned above. The
values of maize HI in some subareas in Changchun [49] and the measured ones in the
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experimental station (Table S2) were used to obtain the HI map (Figure S2) in Changchun
by the kriging interpolation method.

A flow chart of this approach using canopy temperature to forecast yield is shown
in Figure 4. Firstly, the logistic model/R-logistic model was used to prove the possibility
to simulate DBA/FBA based on Tc. Secondly, the logistic model/R-Logistic model was
changed to N-logistic model/NR-logistic model by the data normalization method for re-
gional biomass (RDBA/RFBA) estimation. Finally, the grain/silage yield can be forecasted
using remote-sensing-derived LST and once-measured biomass (DBA/FBA) as inputs to
the N-logistic model/NR-logistic model after obtaining the HI value. In Section 3, the
grain/silage yield in Changchun would be forecasted using measured DBA on three dates
(7/16, 8/10, and 8/31 in 2017), and the grain yield in Jiefangzha would be forecasted by
once-measured DBA on four dates (7/6, 7/21, 8/4, and 8/26 in 2016). The independent
variable for the N-logistic model and NR-logistic model, i.e., Tcanopy, was a scale factor
for yield forecasting from point to area through the LST map from remote sensing images
(TLST) in a large irrigation district.

Figure 4. Schematic of the approach for yield forecasting using crop canopy temperature. Notes: DBA
is dry biomass accumulation, kg ha−1; FBA is fresh biomass accumulation, kg ha−1; RDBA is relative
DBA; RFBA is relative FBA; Tcanopy represents relative effective accumulated temperature in canopy;
LST is land surface temperature,◦C; TLST represents relative effective accumulative temperature
calculated by LST; yDi is DBA in the maize growing season, kg ha−1; yDm is DBA at harvest, kg ha−1;
yFi is the above-ground FBA in the maize growing season, kg ha−1; yFm represents the maximum
FBA, kg ha−1; HI is harvest index.
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2.6. Statistical Evaluation

The index of model agreement (d), root mean square error (RMSE), relative error (RE),
the coefficient of determination (R2), and the coefficient of variation (CV) were used to
evaluate the models. Model accuracy increased as the values of d and R2 approached 1.0,
and the values of RMSE and RE decreased. Origin Pro 9.1 software was used to calculate
and fit the data to the model. Statistical analyses were performed in Microsoft Excel 2013.
The calculation formulas are listed in Equations (S1)–(S5).

3. Results

3.1. Evaluating the Values of LST from MOD11A in Changchun

The regional map of LST can be obtained by remote sensing images products—
MOD11A1. Afterwards, the grain yield in an area might be estimated through the validated
model and retrieval values. Due to cloud cover, there were some incomplete data in
MOD11A1 images from 25 May to 21 September 2017. The kriging interpolation method
was used to fill the gaps in data.

It is necessary to obtain high-quality input data for precise estimates of crop yield.
Therefore, the accuracy of the MOD11A1-LST retrievals was evaluated by comparison
against the Tc observed in situ by the CTMS system in experimental fields. Figure 5
(Figure S3) shows the linear regressions between the LST (time of passing territory: 11:30
a.m.) and Tc (measured at 11:30 a.m.) in same pixel (sample number is 58). The R2 values
here ranged from 0.714 to 0.828, which were a little lower than the results of [40] in Hetao
irrigation district of Inner Mongolia Autonomous Region. Those values of LST fused from
the Landsat 8 images (30 m) and MOD11A1 data (1 km) might have more precision in
large irrigation districts. Regardless, the R2 values near 0.8 indicate that the retrieved LST
directly is reliable.

Figure 5. Regressions between the LST from MOD11A1 product and the observed Tc in field in 2017
(sample number = 58, only at local satellite transit time). (a) H1; (b) H2; (c) H3.

As earlier stated, independent variables (tcanopy and Tcanopy) in corresponding logistic
models are calculated by the daily average value of Tc. However, the retrieved LSTs from
MOD11A1 represent instantaneous values in time of passing territory. There is a need to
verify the feasibility of instantaneous LST values replacing daily average ones to determine
Tcanopy, when Equation (4) or Equation (6) is used in area.

Here, the relative effective accumulated temperature, calculated by instantaneous LST
values of MOD11A1 (TLST) at 11:30 a.m. and daily average values observed from the CTMS
system, were compared during maize growth period (Figures Figure 6 and S4). The linear
regression results of points indicated the strong agreement between instantaneous and
daily average values to obtain Tcanopy (R2 > 0.987). The high consistency (RMSE < 0.05)
means that the normalized LSTs from MOD11A1 can be used directly as independent
variable in models as a robust approximation for the normalized Tc (daily average values).
The result highlights that the normalization method in Equations (4) and (6) can eliminate
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the temporal-scale difference between measured daily average value and the instantaneous
value inversed from remote sensing images of crop canopy temperature.

Figure 6. Regressions between the TLST calculated by the remote sensing instantaneous values at
11:30 a.m. (interpolation results) and daily average values (Tcanopy) observed from the CTMS system
in 2017 (sample number = 116, with Supplemented Data). (a) H1; (b) H2; (c) H3.

To verify its accuracy in spatial scale, the LSTs from MOD11A1 over two days (coupled
with the time of passing territory of Landsat 8) were resampled to 30 m spatial resolution.
These values were used to compare with the inversed LSTs from Landsat 8 using the
inversion method in the reference of [40]. The values map of RE between two kinds of
LST are mostly between −10% and 10% (Figure 7). Such high accuracy indicated that
the MOD11A1-LST was reliable to be used to simulate maize growth and estimate the
forthcoming yield.

Figure 7. Maps of RE values of LST (30 m) between Landsat 8 and MOD11A1 resample products.

3.2. Grain Yield Forecasting in Changchun
3.2.1. Calibration Results Based on the Logistic Model of DBA

Achieving high-quality estimates of DBA is necessary to predict crop yield. Using the
logistic model, all of the DBA changes were simulated based on the field observations from
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2017–2019. The simulations with four kinds of effective accumulated temperatures ran
well, with R2 average values exceeding 0.95 for five plots (Figure 8a). Figure 8b shows the
results of DBA simulating in 2017 of five plots by using tcanopy as model input. Each curve
is extremely consistent with the measured values, revealing that it is feasible to realize crop
growth monitoring by utilizing the Tc.

Figure 8. The performance of the DBA simulation results based on the logistic models. (a) Average
values of R2 of DBA simulating at five plots based on the logistic model with four kinds of effective
accumulated temperature in 2017, 2018, and 2019; (b) DBA simulating in five plots based on the
logistic model with effective accumulated canopy temperature (tcanopy) in 2017.

However, model parameters (a, b, and k) calibrated in different plots represent an
obvious discrepancy, as shown in Figure 9, which provides the CV values for each parameter
among five plots in different years. The CV values of a and b fluctuate significantly more
than the k value. In addition, the tcanopy-based coefficients present as more stable due to
lower CV values. Apparently, it is still hard to select universal model coefficients that
best-simulate regional DBA owing to the existing variation in different plots and years.

Figure 9. The CV values for each logistic model parameter (a, b, k) with four inputs (t20, t40, tair,
tcanopy) among five plots in 2017–2019.

127



Remote Sens. 2023, 15, 1025

3.2.2. Calibration Results Based on the N-Logistic Model of RDBA

To address this issue, the N-logistic model was employed with different relative
effective accumulated temperatures for the raw data from all the plots in 2017, 2018, and
2019 separately. The simulations for 2018 show the RDBA changes with T20, T40, Tair, and
Tcanopy (Figure 10), in which high values of R2 (>0.98) suggest that it is feasible to simulate
crop growth with good accuracy in regions when the data are normalized.

Figure 10. Simulations of RDBA based on the N-logistic model with four inputs from all plots in
2018: (a) T20; (b) T40; (c) Tair; (d) Tcanopy.

The calibrated results of the N-logistic model parameters with T20, T40, Tair, and
Tcanopy in 2017–2019 presented the inter-annual differences of the model parameters, in
which the CV values of A and K were relatively lower (Table 1). The results for Tcanopy
performed better than other variables with lower CV values, suggesting that it is a good
indicator to include.

Table 1. Calibration results and inter-annual differences of the N-logistic model parameters with T20,
T40, Tair, and Tcanopy in 2017–2019.

A B K

Year T20 T40 Tair Tcanopy T20 T40 Tair Tcanopy T20 T40 Tair Tcanopy
2017 1.244 1.193 1.248 1.163 33.090 27.140 31.940 41.131 4.863 4.884 4.825 5.465
2018 1.473 1.373 1.529 1.390 91.752 69.668 91.509 109.085 5.302 5.265 5.190 5.681
2019 1.041 1.010 1.056 1.056 43.966 38.916 46.139 58.246 5.905 6.091 5.830 6.111
CV 0.173 0.152 0.186 0.142 0.555 0.485 0.550 0.509 0.098 0.114 0.096 0.057

3.2.3. Validation Results Based on the N-Logistic Model of RDBA

To account for the inter-annual gap in the parameters of the N-logistic models, the
calibrated models above were validated by the field observations of the other two years to
identify the ideal set of regional parameters. A summary of the statistical characters of the
N-logistic models with T20, T40, Tair, and Tcanopy is presented in Table 2.

For the calibrated models in 2017, the measured and predicted values were in better
agreement in 2018 than in 2019 because of high values for d and R2 and low values of RMSE
in 2018. The validation results for 2018 models were better in 2017 than in 2019. Likewise,
the validation results in 2017 were better than in 2018 for the calibrated models in 2019. A
comparison of all of the validation results showed that the statistical characters performed
best in the calibrated models in 2019, with lower RMSE and RE and higher d and R2.

For the simulations based on Tcanopy, there were no large differences compared with
T20, T40, and Tair (Table 2), suggesting that it is feasible to simulate RDBA during the
growing season.

128



Remote Sens. 2023, 15, 1025

Table 2. Validation results of the N-logistic model of RDBA with T20, T40, Tair, and Tcanopy between
the simulated and observed data from five plots in 2017–2019.

Calibrated
Model

Independent
Variable

RMSE d R2 RE (%) RMSE d R2 RE (%)

In 2017

Validation by field data of 2018 Validation by field data of 2019
T20 0.094 0.984 0.978 6.8 0.168 0.942 0.937 4.7
T40 0.093 0.984 0.979 6.8 0.168 0.942 0.939 5.0
Tair 0.098 0.982 0.976 7.3 0.170 0.941 0.946 5.7

Tcanopy 0.101 0.981 0.971 7.3 0.169 0.942 0.947 6.0

In 2018

Validation by field data of 2017 Validation by field data of 2019
T20 0.099 0.983 0.951 −5.4 0.114 0.974 0.907 −3.7
T40 0.098 0.983 0.952 −5.3 0.111 0.974 0.909 −3.4
Tair 0.104 0.981 0.948 −6.0 0.107 0.977 0.917 −3.1

Tcanopy 0.112 0.978 0.938 −6.2 0.103 0.978 0.921 −2.8

In 2019

Validation by field data of 2017 Validation by field data of 2018
T20 0.068 0.991 0.969 −1.3 0.096 0.994 0.963 4.8
T40 0.069 0.991 0.968 −1.4 0.094 0.994 0.963 4.6
Tair 0.071 0.990 0.969 −2.3 0.090 0.995 0.965 4.2

Tcanopy 0.079 0.988 0.963 −2.8 0.085 0.996 0.968 3.7

3.2.4. Grain Yield Forecasting in Area by MOD11A1-LST Values

Based on the results above, the validated N-logistic model for 2019 in Table 1 was
used to simulate the pattern of RDBA in Changchun with Tcanopy, which was supposed to
equal the TLST derived by the daily LST from MOD11A1. The yDm (DBA at harvest) was
ascertained by incorporating at least once-measured DBA (yD) in field through the growing
season, and final grain yield could be forecasted then by the HI map. Here, the data in
2017 were used as an example to calculate and simulate to compare due to the limitation of
research conditions and field observations.

Figure 11 demonstrates the spatial grain yield forecasted based on the field monitoring
DBA of three different days in the growth period. Assimilating the DBA observation on
16 July into the model, the forecasted final grain yield was approximately 9750–10,500
kg ha−1 in most regions (Figure 11a). However, these values were 10,500–11,250 kg ha−1

and 12,000 kg ha−1 while assimilating the DBA observed on 10 August and 31 August
(Figure 11b,c), respectively. As expected, assimilating closer to the harvest date enables the
yield prediction to reach greater values, coinciding with the trend in crop growing.

Figure 11. Forecasting results of grain yield using the N-logistic model calibrated in 2019 based on
the field observations in three different days: (a) 2017/7/16; (b) 2017/8/10; (c) 2017/8/31.

These predicted results were compared with the measured maize grain yield from the
reference of An [49], which provided an average value of grain yield of 11,364.3 kg ha−1
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in three subareas of Dehui, Jiutai, and Nongan (Table 3). Simulated average values in the
same regions in Figure 11 were 10,126.2 kg ha−1, 10,885.35 kg ha−1, and 13,492.8 kg ha−1,
with corresponding RE values of −10.89%, −4.21%, and 18.73%, respectively. In addition,
the simulated results were 10,778.57 kg ha−1, 10,976.90 kg ha−1, and 13,501.05 kg ha−1

based on the DBA values in three days at the experimental site, respectively. When such
values were compared with the field yield observations (12,442.74 kg ha−1 on average here),
then the values of RE were −13.38%, −11.78%, and 8.51% (Table 3), correspondingly. The
yield prediction results confirm that the forecasting would be more precise along with the
acquisition date of once-measured DBA closer to the harvest date.

Table 3. Comparisons between the forecasted grain yields based on the field observations in different
days and the measurements 1 in three subareas and experimental station.

Observation Date of
Model Simulation

Based on

Measured Data in
Experimental

Station (kg ha−1) 2

Forecasting
Results

(kg ha−1)
RE (%)

Measured Data
in Three Subareas

(kg ha−1) 3

Forecasting
Results

(kg ha−1)
RE (%)

Grain yield
198 (2017/7/16)

12,442.74
10,778.57 −13.38

11,364.30
10,126.20 −10.89

223 (2017/8/10) 10,976.90 −11.78 10,885.35 −4.21
244 (2017/8/31) 13,501.05 8.51 13,492.80 18.73

1 Sample numbers in experimental station and three subareas are 13 and 30, respectively. 2 The data were
measured on 2017/9/17. 3 The data were measured on 2017/10/1.

It is significant for the accuracy of estimated results to choose the sampling time of
DBA when the N-logistic model is used to estimate the grain yield in regions. In theory, the
closer sampling time is to harvest time, the more accurate the yield estimate is. However,
from the viewpoint of practical application, it is preferable to estimate grain yield early
in the growth stage so as to promptly adjust the irrigation and agronomic management
according to the estimated results.

3.3. Silage Yield Forecasting in Changchun
3.3.1. Calibration Results Based on the R-Logistic Model of FBA

Utilizing Equation (5), the FBA growth patterns were simulated and calibrated by
the observed field values from 2017–2019. Similarly, the FBA simulations of each plot in
three years based on the R-logistic model presented a high R2 (R2 > 0.95), indicating that
the R-logistic model (previously applied to LAI growth) was capable of simulating the
FBA patterns (Figure 12a). The FBA curves simulated in 2017 with the R-logistic model
based on tcanopy are shown in Figure 12b. It is apparent that the curves of FBA included
an exponential increase at the beginning of growth, followed by a bell-shaped pattern
around the peak period, and then a decline toward physiological maturity (similar to LAI).
Among them, the disparity in H2 performance could be attributed to sampling error. The
maximum silage yield occurs at the peak of this curve, indicating that this may be an ideal
harvest period if only the silage yield is considered.

However, the parameters of the calibrated model varied across years and plots. Fig-
ure 13 depicts the CV values for each model parameter among five plots in different years
using the computation method consistent with Figure 9. Apparently, the CV values of all
coefficients in R-logistic models appear to be higher than those in Figure 9. The reason for
this result may be that the occurring time of maximum FBA (silage yield) is harder to pin
down since farmers usually harvest silage maize in advance of full maturity.

In brief, the calibrated model by ontogenetic growth data struggles to explain regional
maize growth because of the variation in model parameters between years and plots.
Therefore, it is necessary to determine a set of universal model parameters for depicting
maize growth in large areas.
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Figure 12. The performance of the FBA simulation results based on the R-logistic models. (a) Average
R2 values of FBA simulating at five plots based on the R-logistic model with four kinds of effective
accumulated temperature in 2017–2019; (b) FBA simulating in five plots based on the R-logistic model
with effective accumulated canopy temperature (tcanopy) in 2017.

Figure 13. CV values for each R-logistic model parameter (c, g, e, f ) with four inputs (t20, t40, tair,
tcanopy) among five plots in 2017–2019.

3.3.2. Calibration Results Based on the NR-Logistic Model of RFBA

The NR-logistic model was used to simulate the RFBA and to address the issues of
regional application. All of the RFBA simulations were based on T20, T40, Tair, and Tcanopy
for the raw data from 2017, 2018, and 2019 separately. During the results for 2017, the
RFBA growth curve climbed to a peak and subsequently declined as the relative effective
accumulated temperature increased (Figure 14). The values of R2 (>0.94) imply that it is
acceptable to simulate RFBA in the research area with the model calibrated by the relative
effective accumulated temperature. Meanwhile, no significant differences in R2 were found
for models calibrated with T20, T40, Tair, and Tcanopy.

The RFBA and different relative effective accumulated temperatures in the five plots
were used to calibrate the NR-logistic model each year. The calibration results for the model
parameters with T20, T40, Tair, and Tcanopy are displayed in Table 4. The CV values in the
model parameters G, E, and F were relatively lower than C, indicating different interannual
variations in different parameters. The comparison of the parameters derived by different
independent variables shows that the yearly gap of Tcanopy was lower, and the CV values
of C, G, E, and F were 0.235, 0.047, −0.045, and 0.105, respectively.
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Figure 14. Simulations of RFBA based on the NR-logistic model with four relative effective accumu-
lated temperatures from all plots in 2017: (a) T20; (b) T40; (c) Tair; (d) Tcanopy.

Table 4. Calibration results and inter-annual differences of NR-logistic model parameters with T20,
T40, Tair, and Tcanopy in 2017–2019.

Independent Variable 2017 2018 2019 CV

C

T20 1.127 2.098 1.270 0.350
T40 1.078 1.703 1.200 0.250
Tair 1.122 2.086 1.276 0.346

Tcanopy 1.215 1.848 1.306 0.235

G

T20 9.922 9.299 10.335 0.053
T40 10.340 9.713 10.820 0.054
Tair 9.840 8.962 10.119 0.063

Tcanopy 9.864 10.375 10.845 0.047

E

T20 −15.934 −14.554 −16.214 −0.057
T40 −16.233 −14.855 −16.653 −0.059
Tair −15.745 −14.04 −16.006 −0.070

Tcanopy −15.839 −16.240 −17.276 −0.045

F

T20 4.737 5.797 5.141 0.102
T40 4.398 5.341 4.911 0.097
Tair 4.614 5.603 5.152 0.097

Tcanopy 5.030 6.212 5.774 0.105

3.3.3. Validation Results Based on the NR-Logistic Model of RFBA

Each NR-logistic model was validated by field observations of the other two years in
order to test its performance in providing estimates of RFBA. The agreement between the
measured and predicted values of the RFBA was evaluated via the statistical characters of
RMSE, RE, R2, and d (Table 5). The calibrated model for 2017 was better validated in 2019
than in 2018, with lower values of RMSE and RE and higher values of d and R2. For the
calibrated model in 2018, there were no differences between the validations in 2017 and
2019. However, the validation results for 2017 were better than in 2018 when using the
calibrated model in 2019.

There were no extreme variations in the validated results of the calibrated model with
T20, T40, Tair, and Tcanopy each year. The calibrated model in 2019 showed the optimal sim-
ulation precision for RFBA (compared to the other two years) even though it is somewhat
poorer than the homologous model of RDBA in Table 2.

Using the NR-Logistic model calibrated in 2019 with T20, T40, Tair, and Tcanopy, a
scatter plot of the predicted and measured values of RFBA in 2017 and 2018 was added
to evaluate the model (Figure 15). The excellent agreement between them can be verified
by the high R2 values (R2 > 0.92). Additionally, the R2 values were very close among the
results for T20, T40, Tair, and Tcanopy. With respect to the results from 2017 (Figure 15a–d),
as observed, the fitting data were evenly distributed on both sides of the 1:1 line, indicating
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a strong concordance between the measured and predicted RFBA. As for the results from
2018 (Figure 15e–h), the fitting data were somewhat over the 1:1 line, which showed that
the RFBA was overestimated slightly. To summarize, the NR-logistic model calibrated in
2019 can predict the RFBA better in 2017 than in 2018.

Table 5. Validation results of NR-logistic model of RFBA with T20, T40, Tair, and Tcanopy between the
simulated and observed data from five plots in different years.

Calibrated
Model

Independent
Variable

RMSE d R2 RE (%) RMSE d R2 RE (%)

In 2017

Validation by field data of 2018 Validation by field data of 2019
T20 0.135 0.953 0.902 13.5 0.085 0.986 0.950 3.4
T40 0.139 0.950 0.899 14.0 0.088 0.985 0.951 5.3
Tair 0.139 0.949 0.898 13.9 0.086 0.985 0.955 6.1

Tcanopy 0.130 0.957 0.907 12.8 0.087 0.985 0.954 5.9

In 2018

Validation by field data of 2017 Validation by field data of 2019
T20 0.121 0.972 0.916 −9.9 0.111 0.976 0.936 −7.8
T40 0.123 0.971 0.914 −10.1 0.106 0.984 0.940 −6.6
Tair 0.121 0.971 0.915 −9.9 0.099 0.980 0.946 −5.4

Tcanopy 0.120 0.972 0.915 −9.6 0.096 0.987 0.947 −4.5

In 2019

Validation by field data of 2017 Validation by field data of 2018
T20 0.079 0.988 0.951 −0.9 0.118 0.974 0.920 11.7
T40 0.082 0.987 0.948 −1.8 0.115 0.976 0.920 11.0
Tair 0.084 0.986 0.946 −2.4 0.114 0.976 0.916 10.1

Tcanopy 0.091 0.984 0.936 −2.4 0.110 0.979 0.918 9.3

Figure 15. Regressions between the predicted and measured values of RFBA in 2017–2018 using the
NR-logistic models calibrated in 2019 with four inputs: (a) T20, (b) T40, (c) Tair, (d) Tcanopy, in 2017;
(e) T20, (f) T40, (g) Tair, (h) Tcanopy, in 2018.

The validated results with T20, T40, Tair, and Tcanopy and the model parameters (Table 4)
can be used to assess the RFBA. The selection of the model independent variable may
depend only on the way to monitor temperature in situ. The model application will be
more convenient if the temperature can be collected easily. However, it is important to
highlight that the Tc is a good factor for scale expansion.

3.3.4. Silage Yield (Maximum FBA) Forecasting in Area by MOD11A1-LST Values

The shapes of the FBA and RFBA curves depicted above suggest that the silage yield
should be near the peak of the curve to maximize profits. Therefore, the areal silage yield
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could be simulated by the validated Equation (6) in 2019 with TLST from MOD11A1 as a
substitute for Tcanopy in combination with the field FBA observations on three different
days at different growth stages (Figure 16). The differences in spatial distribution were
captured. Similarly, the predicted FBA increased and got closer to the maximum output
when the field observation date was near harvest.

Figure 16. Predicting silage yield values using the NR-logistic model calibrated in 2019 based on the
field observations in three different days: (a) 2017/7/16; (b) 2017/8/10; (c) 2017/8/31.

According to the summarized data in Table 6, the model simulation showed only a
slight difference on the observation day (31 August) in the experimental station. This is
not surprising given that the measured silage yield was recorded on the same date. The
results on 10 August still produced a satisfying accuracy, which indicates that it might
be an appropriate harvest date for silage yield in view of various factors. There were
no measurements of silage yield in the three subareas, so the comparison could not be
analyzed and displayed between observations and predictions in the region.

Table 6. Comparisons between the forecasted silage yields (maximum FBAs) based on the field
observation 1 in different days and experimental station.

Observation Date of Model
Simulation Based on

Measured Data in
Experimental Station (kg ha−1) 2

Forecasting Results
(kg ha−1)

RE (%)

Silage yield
(maximum FBA)

198 (2017/7/16)
84,605.70

65,187.70 −22.95
223 (2017/8/10) 79,447.25 −6.10
244 (2017/8/31) 83,715.78 −1.05

1 Sample numbers in experimental station are 13 and 30. 2 The data were measured on 2017/8/31.

3.4. Verification in Jiefangzha Sub-Irrigation District

As mentioned in Section 2.3, an LST map (30 m) of Jiefangzha showed the results
fused from Landsat 8 and MOD11A1 images by the ESTARFM algorithm. Scatters of
the fused LSTs and Landsat-LSTs were evenly distributed on both sides of the 1:1 line,
showing the fused LSTs were relatively reliable (Figure 17a). The fused LSTs were also
compared with the Tc recorded at 11:30 a.m., in which the values of R2 (0.547), RMSE
(3.96◦C), and d (0.79) indicate good consistency between the observed values and the fused
ones (Figure 17b). The grain yield forecasting map was constructed by employing the
N-Logistic model described previously with the fused LSTs (Figure 18).
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Figure 17. Regressions for accuracy evaluation of the fused LST: (a) the fused LST vs. the inversed
values from Landsat 8; (b) the fused LST vs. the observed Tc in experimental station in 2016.

Figure 18. Forecasting results of grain yield in the Jiefangzha sub-irrigation district using the 2019
calibrated model based on the field observations in four different days: (a) 2016/7/4; (b)2016/7/21;
(c) 2016/8/4; (d) 2016/8/26.
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Figure 18 shows the spatial grain yield estimates retrieved using DBA measured on
four acquisition dates that include (a) 4 July, (b) 21 July, (c) 4 August, and (d) 26 August
in 2016 based on the model calibrated in 2019. The predicted yield showed a significant
upward trend as the acquisition date of DBA approached harvest. Meanwhile, the com-
parisons between the predicted and measured yield in situ were conducted with statistical
parameters as evaluation metrics of accuracy (Table 7). The predicted yields coincide with
the measured ones with RE values, ranging from −16.14% to 9.84%, which confirms that
assimilating once-measured data into the model can produce a great estimate of grain yield.
Comparatively speaking, DBA assimilation closer to the harvest date allows for a more
accurate prediction of yield except for the results based on the data on 21 July, which may
be caused by the irrigation measures or the model parameters. Assimilating DBA measured
on 4 July also provides a reliable result, albeit with a slightly lower R2. Such a result proves
the feasibility of the approach for early yield forecasting in other large areas though the
optimal date of sampling still needs to be explored and determined further.

Table 7. Comparisons between the forecasted grain yields in the Jiefangzha sub-irrigation district
based on field observation in different days and the measurements 1.

Observation Date of Model
Simulation Based on

RMSE (kg ha−1) R2 RE (%) d

186 (2016/7/4) 933 0.63 3.52 0.86
203 (2016/7/21) 2334 0.77 −16.14 0.56
217 (2016/8/4) 1520 0.83 9.84 0.70

239 (2016/8/26) 888 0.88 5.01 0.85
1. The data were measured on 2016//9/15.

4. Discussion

According to results reported above, our data on maize biomass show that the Tc
should be included as a valuable proxy of other independent variables in models because
the Tc can be recognized as LST in large regions covered by maize that can be derived from
remote sensing data [50,51].

This study demonstrated the benefits of integrating remote sensing LST into crop
growth models in combination with once-observed values (DBA or FBA) to enhance yield
prediction. The introduction of remote sensing LST to the logistic models offers effective
information about regional crop status, overcoming the limitation of model in regional
application. Moreover, the ground crop truth was profitably considered by using once-
measured observations as the drive of the yield forecasting model. Another point worth
emphasizing is that the subsequent consequences, after undertaking necessary agronomic
measures based on the yield forecasting results, can be assessed with just one observation
as input again because the effect on the crop can be reflected by LST and measured biomass.
All in all, LST as a key factor for characterizing field drought [52] provides an intuitive basis
to determine the water shortage of crops in large regions. This offers a solid theoretical basis
for the synergistic prediction of future crop drought and yield evaluation in combination
using remote sensing technology.

In addition, to obtain a more robust estimate of maize yield, data fusion technology
may be recommended to improve the spatio-temporal resolution of LST [40]. Unfortunately,
this method is unavailable due to the scarce Landsat images caused by the cloud cover
on most days in maize growing season in Changchun. Our attempt in the Jiefangzha
sub-irrigation district indicated that the data fusion technology improved the performance
of spatial variation of grain yield forecasting under available conditions of suitable Landsat
images. It follows that high-resolution satellite imagery such as Sentinel-2 might be a
further exploration tool for improving yield forecasting precision.

The values of tm in models of RDBA and RFBA are key input data, which can be
obtained for different hydrological years by analysis of the local yearly rainfall. When the
hydrological year of the current growing season is estimated, the N-logistic model and
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the NR-logistic model can be utilized with the corresponding value of tm. To obtain the
values of yDm and yFm, the data of DBA and FBA should be collected in field at least once
during the maize growing period. Furthermore, the growth patterns of DBA and FBA can
be simulated when the models are set up and calibrated. HI, an empirical value describing
the relationship between DBA and grain yield, offers an opportunity to evaluate grain yield.
By combining the growth curves for DBA and FBA with the future market demands, maize
can be flexibly harvested as silage or grain during the growing season.

Apparently, the early yield forecasting accuracy varies depending on the growth
stages, which may be caused by many factors. Firstly, the retrieval of tm is pivotal, as
mentioned above. Secondly, the quality of remote sensing images obtained over time varies
slightly, which can introduce some uncertainty into the yield forecasting results. Thirdly,
the date of acquiring DBA or FBA is particularly critical for yield forecasting accuracy. As
shown in Tables 3 and 7, the optimal predicting date is clearly different in different areas.
In Changchun, the optimal date at which the DBA provides more accurate yield forecasting
is approximately 38 days (10 August) ahead of harvest. As for the Jiefangzha sub-irrigation
district, the results on 26 August produced a better prediction of yield, relatively speaking.
Furthermore, the latter is better than the former in statistical parameters. This phenomenon
may be caused by a variety of factors. For instance, a rare downpour amounting to more
than 160 mm of rain occurred in Changchun on 21 July 2017, which may destroy plants and
influence yield forecasting results. In addition, the area of Changchun is larger than the
Jiefangzha sub-irrigation district, which may have an impact on the results. Taking the three
results into account (Tables 3, 6 and 7), it is suggested to forecast yield by using the field
data (DBA or FBA) measured at the middle growth period (early August). Furthermore, it
is necessary to determine the optimal date by taking into consideration multiple factors.

Another noteworthy point about the results presented here is that the field soil water
content was sufficient or at least was not in water deficit in the research area. The FBA,
RFBA, and silage yield may be impacted by the crop and soil water conditions. Future
efforts to prove model generality should include examination of changes in the model
parameters for different levels of plant and field soil moisture.

5. Conclusions

An approach for yield forecasting from plot level to large scale was developed by
incorporating remote sensing LST of a measured biological indicator (DBA and FBA) into
corresponding logistic models. The main conclusions are as follows:

(1) The model of 2019 based on Tcanopy performed better result than others. Crop canopy
temperature can be used as input parameter in logistic models to simulate DBA and
FBA. It is thus a potentially valuable index to facilitate model development in regions.

(2) The normalization method can eliminate the difference in temporal scale between mea-
sured daily average values of Tc and instantaneous remote sensing LSTs. Therefore,
the normalized LST retrieved from MOD11A1 can be used directly as an independent
variable in models to simulate crop biomass for yield forecasting in areas.

(3) The yield forecasting accuracy is reliable in regions with this approach. Satisfactory
grain and silage yield forecasting in Changchun were provided by assimilating DBA
or FBA measured on 10 August ahead of harvest with RE values of −4.21% and
−6.1%, respectively.

(4) The application in the Jiefangzha sub-irrigation district demonstrated that it is possible
to apply this approach to predict yield in other regions. These simulation results hold
broad potential to provide a real-time reference in maize growing stages for farmers
and the grain futures market to make decisions.
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Abbreviations

LST Land surface temperature, ◦C
Tc Canopy temperature, ◦C
DBA Dry biomass accumulation, kg ha−1

FBA Fresh biomass accumulation, kg ha−1

LAI Leaf area index
RDBA Relative dry biomass accumulation
HI Harvest index
RFBA Relative fresh biomass accumulation
Fc Field capacity
Wp Wilting point
CTMS Canopy temperature and meteorology monitoring systems
NDVI Normalized difference vegetation index
LSWI Land surface water index
ROI Region of interest

NIR Reflectivity of near-infrared band

RED Reflectivity of red band

SWIR Reflectivity of shortwave infrared band
yD Dependent growth parameter
t Effective accumulated temperature after emergence, ◦C
ti Mean daily temperature in the air, canopy, or soil at 20 cm or 40 cm in the root zone, ◦C
a The theoretical upper limit of growth of dry biomass accumulation
b,k Parameters of the logistic model
tair Effective accumulative air temperature, ◦C
tcanopy Effective accumulative canopy temperature, ◦C
t20 Effective accumulative soil temperature at 20 cm in root zone, ◦C
t40 Effective accumulative soil temperature at 40 cm in root zone, ◦C
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T Relative effective accumulated temperature
YD Relative dry biomass accumulation
yDm Dry biomass accumulation at harvest, kg ha−1

tm Effective accumulative temperature at harvest, ◦C
A The upper limit of relative dry biomass accumulation
B, K Parameters of the normalized logistic model
T20 Relative effective accumulative soil temperature at 20 cm in root zone
T40 Relative effective accumulative soil temperature at 40 cm in root zone
Tcanopy Relative effective accumulative canopy temperature
Tair Relative effective accumulative air temperature
yF Above-ground fresh biomass accumulation, kg ha−1

c, g, e, f Parameters of the revised logistic model
YF Relative fresh biomass accumulation
yFm Maximum relative fresh biomass accumulation
C, G, E, F Parameters of the normalized revised logistic model
Y Grain yield, kg ha−1

TLST
The relative effective accumulative canopy temperature calculated by the remote sensing
instantaneous values of MOD11A1

d Index of agreement
RMSE Root mean square error
RE Relative error
R2 Coefficient of determination
CV Coefficient of variation
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Abstract: Salt marshes are one of the most productive ecosystems and provide numerous ecosystem
services. However, they are seriously threatened by human activities and sea level rise. One of
the main characteristics of this environment is the distribution of specialized plant species. The
environmental conditions governing the distribution of this vegetation, as well as its variation
over time and space, still need to be better understood. In this way, these ecosystems will be
managed and protected more effectively. Low-altitude remote sensing techniques are excellent
for rapidly assessing salt marsh vegetation coverage. By applying a high-resolution hyperspectral
imaging system onboard a UAV (UAV-HS), this study aims to differentiate between plant species
and determine their distribution in salt marshes, using the salt marshes of Cadiz Bay as a case
study. Hyperspectral processing techniques were used to find the purest spectral signature of
each species. Continuum removal and second derivative transformations of the original spectral
signatures highlight species-specific spectral absorption features. Using these methods, it is possible
to differentiate salt marsh plant species with adequate precision. The elevation range occupied by
these species was also estimated. Two species of Sarcocornia spp. were identified on the Cadiz Bay
salt marsh, along with a class for Sporobolus maritimus. An additional class represents the transition
areas from low to medium marsh with different proportions of Sarcocornia spp. and S. maritimus.
S. maritimus can be successfully distinguished from soil containing microphytobenthos. The final
species distribution map has up to 96% accuracy, with 43.5% of the area occupied by medium marsh
species (i.e., Sarcocornia spp.) in the 2.30–2.80 m elevation range, a 29% transitional zone covering in
1.91–2.78 m, and 25% covered by S. maritims (1.22–2.35 m). Basing a method to assess the vulnerability
of the marsh to SLR scenarios on the relationship between elevation and species distribution would
allow prioritizing areas for rehabilitation. UAV-HS techniques have the advantage of being easily
customizable and easy to execute (e.g., following extreme events or taking regular measurements).
The UAV-HS data is expected to improve our understanding of coastal ecosystem responses, as well
as increase our capacity to detect small changes in plant species distribution through monitoring.

Keywords: coastal marsh; continuum removal; hyperspectral; spectral signatures; unmanned aerial
vehicle (UAV); vegetation species discrimination; second derivative transformation

1. Introduction

Salt marshes are ecological transition zones where marine and terrestrial ecosystems
interact [1]. These ecosystems are characterized by a unique and highly specific assemblage
of plants and animals [2] and high primary production, with the plant species being a
crucial component of the system dynamics [3]. They offer numerous recognized ecosystem
services; highlights among them are the services of coastal protection and blue carbon
sink [4–7].

Tidal salt marsh vegetation is typically halophyte and has to tolerate regular periods
of immersion/emergence, salinity and anoxia [8,9]. To adapt to these stresses, these plants
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have developed unique morphological, anatomical, and physiological characteristics [10,11].
The distribution of the salt marsh plant species follows a typical zonation pattern along
the elevation gradient [12,13]. This elevation gradient includes gradients in salinity, redox
potential, soil N content, soil clay content, and soil organic matter [2]. However, elevation
seems a major determinant for the establishment of all of them.

Unfortunately, increasing human populations have caused an extensive loss, degrada-
tion, and fragmentation of coastal ecosystems worldwide [14]. The main anthropogenic
pressures on salt marshes include changes in hydrological and salinity regimes, physical
deterioration or removal of coastal features, and urbanisation [15–17]. However, the main
concern nowadays in any coastal ecosystem is the survival of the particular ecosystem in a
climate change scenario [18]. Although there are numerous examples of modelling these
responses in the literature [19–22], a major modelling limitation is still the low availability
of adequate datasets. Remote sensing (RS) techniques are changing this scenario with the
provision of high-resolution spatial data that will support a new generation of computer
models [18].

Sea level rise is probably the major threat to tidal salt marshes [18]. Changes in
sea level are equivalent to changes in elevation. Therefore, our capacity for monitoring
changes in elevation and plant species distribution is going to be key for developing early
warning management plans. RS techniques are a straightforward and cost-effective way to
extract information since they provide recurring datasets in short time scales at affordable
prices. Maps and assessments of coastal habitats have both benefited greatly from the
use of RS techniques [1,23]. For example, the loss and degradation of salt marshes have
been successfully evaluated by combining long-term LANDSAT imagery and numerical
modelling [24]. Sentinel-2 and Landsat archives proved to be useful tools for tracking
long-term salt marsh extent dynamics [25]. More recently, deep learning models, powered
by Sentinel imagery, have improved the mapping of low and high salt marsh land cover in
South Carolina coastal wetlands [26].

Differences in the biophysical properties of salt marsh plants generate spectral dif-
ferences that can be detected using hyperspectral (HS) data [27–29]. However, airborne
or satellite-based HS imaging has a spatial resolution (meter to tens of meters) that is
probably not adequate to identify species distribution due to the considerable spatial het-
erogeneity in salt marshes [25,30]. Previous works on HS images from the EO-1 Hyperion
satellite (30 m pixels) concluded that 30 m is insufficient spatial resolution to accurately
distinguish between species with spectral similarities, such as Sporobolus maritimus (Curtis)
P.M.Peterson & Saarela (previously named Spartina maritima (Curtis) Fernald) and Sar-
cocornia spp. A.J.Scott [31]. Combinations of Quickbird images (2.4 m resolution in the
multispectral mode) with high spectral data from Hyperion (242 narrow bands and 30 m
pixel) have been probed to map different salt-marsh species with acceptable accuracies in
classification [32]. Pléiades images provide a robust and consistent global identification
of the salt marsh zone. However, the application of its multispectral (MS) 2 m spatial
resolution images proved to be insufficient for early assessment of the Spartina anglica C.E.
Hubb. (currently Sporobolus anglicus (C.E. Hubb.) P.M.Peterson & Saarela) invasion, mainly
due to the small size of the patches [33].

Nowadays, most of the RS techniques have developed integrable sensors into un-
manned aerial vehicles (UAVs). For the intertidal zone, UAVs that fly up to 120 m alti-
tude are suitable to identify spatial heterogeneity in microtopography, canopy height or
greenness [34–36]. In addition, UAVs offer significant operational flexibility and mini-
mal costs [34,37], allowing flight dates to be tailored. Therefore, UAVs may provide the
necessary spatial and temporal resolution for mapping species distribution and their tem-
poral changes. High-resolution RGB cameras integrated into UAVs have been previously
employed in salt marsh environments. Farris et al. [38] used UAV-LiDAR to track the
salt marsh shoreline, while Yan et al. [39] used UAVs to examine environmental factors
influencing the ecological response of Spartina alterniflora Loisel. (currently Sporobolus
alterniflorus (Loisel.) P.M.Peterson & Saarela). UAV-multispectral (UAV-MS) technology has
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also shown utility in calculating indices of plant diversity and species richness in wetland
communities [40]. Villoslada et al. [41] have shown that maps created from UAV-MS images
provide useful data for managing plant communities and assessing the effects of climate
change on coastal meadows. However, achieving a high-accuracy classification requires
the use of a large variety of vegetation indices and the evaluation of the spectral properties
of the training samples.

The use of UAV hyperspectral remote sensing (UAV-HS) in salt marshes combines the
advantages of high spatial and spectral resolutions to capture the finer scale of spectral
and spatial heterogeneity. UAV-HS has previously been used to classify desert steppe
species [42], using spectral transformation to enhance species differences in vegetation
indices with an overall accuracy of 87%. UAV-HS is able to detect salt stress in crop-
lands and the accuracy performance of this technique improves in conjunction with other
techniques [43]. Although several salt marsh vegetation species have undergone field
hyperspectral investigation through field spectrometer measurements [28,44], this is likely
the first work using a UAV hyperspectral sensor in a salt marsh environment.

Advances in RS technique applications require adequate study cases. Cadiz Bay offers
an excellent system for assessing the capacity of UAV-HS in the discrimination of salt marsh
vegetation species distribution. This tidal environment is home to the southernmost tidal
salt marshes in Europe and is protected by numerous environmental protection figures at
local and international levels. Cadiz Bay was designated a Natural Park in 1989 (Bahía de
Cádiz Natural Park, PNBC, [45]) and RAMSAR site in 2002 (site no. 1265, [46]). The system
is considered an important resting place on the migratory route of birds and is included in
the Natura 2000 network (ES0000140, as SCA and SPA). Located between two seas and two
tectonic plates, Cadiz Bay is a key place for biodiversity studies [47–50].

This work examines the potential of high spatial and spectral resolution UAV-HS data
to accurately identify and differentiate the distribution of the salt marsh vegetation at the
level of species. The specific goals are (1) to determine which is the appropriate UAV-HS
dataset to map salt marsh vegetation; (2) to assess the separability of salt marsh interest
classes; and (3) to estimate the elevation ranges of the detected species. These findings are
expected to become a starting point for the early assessment of salt marsh degradation and
help in the selection of areas for salt marsh rehabilitation or detection of the establishment
and spread of alien species.

2. Materials and Methods

2.1. Site Description

Cadiz Bay hosts the southernmost European coastal wetland, located where the
Mediterranean Sea, the Atlantic Ocean, and the continents of Europe and Africa converge
(Figure 1). Located on the Atlantic coastline, precipitation, wind, and waves are influenced
by large-scale oceanic weather systems that cross the North Atlantic [51]. Cadiz Bay is
delimited by the tombolo of the city of Cadiz, with NNW-SSE orientation, and opens
towards the Atlantic Sea to the north [52]. The entire bay is formed by two water bodies,
the external and the inner bay, connected by tides through a narrow strait [53]. The external
basin has depths up to 20 m, whereas the inner basin has a mean depth of about 2 m, and is
sheltered from ocean waves [54]. The intertidal system of the bay is composed of natural
salt marshes, salinas, mudflats, and an intricate network of tidal creeks [55]. The tidal
regime is mesotidal semi-diurnal with a mean spring tidal range of 2.96 m [56].

The distribution of vegetation in the natural salt marshes of Cadiz Bay follows a con-
ventional mid-latitude zonation [57], although the protective walls of the salinas frequently
cut off the high marsh. The low marsh is mostly inhabited by Sporobolus maritimus, whereas
the medium marsh is dominated by Sarcocornia spp., primarily Sarcocornia fruticosa (L.)
A.J.Scott and Sarcocornia perennis (Mill.) A.J.Scott, and other halophytic species in lower
abundance (Figure 2). Seagrass beds of Zostera noltei Hornem. and Cymodocea nodosa
Asch., as well as patches of Zostera marina L., are found at the lower parts of the intertidal
zone [53].
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Figure 1. Location of the Cadiz Bay: regional context (a) and detail of the study area (b,c) The white
rectangle in picture c represents the flight area for the UAV-HS survey. Coordinates are expressed in
ETRS89/UTM zone 29N reference system (EPSG:25829).

Figure 2. Landscapes with dominant vegetation throughout the salt marsh horizons. (a) Sarcocornia
spp. populate the medium salt marsh horizon. (b) The vegetation of medium and low horizons
overlaps in a narrow fringe here called the transition zone. The abundance of species from the medium
and the low horizons can be found in different proportions. (c) Sporobolus maritimus dominates the
low horizon of the salt marsh.

Our study area was selected in an area with a wide and well-developed natural salt
marsh zonation, in the north-eastern corner of the inner bay [54].
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2.2. UAV and Hyperspectral Sensor

This work was performed with a Matrice 600 hexacopter (DJI) (UAV from now)
equipped with a co-aligned VNIR–SWIR hyperspectral (HS from now) system (Headwall
Photonics), all property of the University of Cadiz [58].

The HS unit captures continuous information in the 400–2500 nm spectral range,
(see [58] for further information). The HS instrument provides VNIR and SWIR data
as separate files, but they can be stacked in a single hypercube containing the complete
VNIR–SWIR information (see Section 2.4.2).

For data accuracy, the HS system includes an APX-15 GNSS-inertial solution (Trimble
Applanix), and the UAV incorporates three built-in GPSs. These GPSs provide an accuracy
of ±0.5 m and ±1.5 m in the vertical and horizontal, respectively. However, the post-
processing of the APX-15 data increases accuracy to 0.02 m and 0.05 m, respectively.

2.3. UAV-Based Data Acquisition

Flight operations were conducted on 22 October 2021 between 10 am and 12 pm with
a low tide of 1.3 m LAT (lowest astronomical tide), covering an area of 4.8 ha (Figure 1c).
Clear weather ensured uniform lighting conditions for setting the flight and the sensor.
The flight mission was planned with UgCS desktop, version 4.5 (SPH engineering). The
flight altitude was set at 120 m and the speed at 5 m/s to ensure radiometric quality. This
HS sensor does not require frontal overlap, but a 40% lateral overlap was set to assure
the subsequent reconstruction of the orthomosaic. The sensor was calibrated by obtaining
a reference spectrum in the 400–1700 nm range from a radiometrically calibrated tarp
(3 × 3 m). A Reach RS2+ RTK GNSS antenna (EMLID) was used as a base station (see
Section 2.4.1). This antenna allows for obtaining more precise results with accuracies of
4 mm + 1 ppm and 8 mm + 1 ppm, in horizontal and vertical measurements, respectively.

2.4. Hyperspectral Data Processing

This section summarizes the processing to generate the HS products (Figure 3). The
processing was performed with ENVI, v. 5.3.6 (L3Harris Geospatial Solutions, Inc., Broom-
field, CO, USA -.), whereas QGis, v. 3.26.3 (QGIS Development Team) was used for the
visualization and handling of raster deliverables. The projected coordinate system used in
this work was the ETRS89, UTM zone 29 N (EPSG:25829).

Figure 3. Flowchart showing the hyperspectral processing steps. Rounded boxes indicate data or
products, rectangle boxes represent processes. Numbers in brackets refer to the respective explanation
in the text. SBET: smoothed best estimate of trajectory; MNF: minimum noise fraction; PPI: pixel
purity index; n-DV: n-dimensional visualizer; NDVI: normalized difference vegetation index; SAM:
spectral angle mapper; ROIs: regions of interest; SVM: support vector machine. See text for details.
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2.4.1. Hyperspectral Pre-Processing

Data from the APX-15 is processed with the POSPac UAV software, v. 8.9 (Trimble
Applanix), using the data from the antenna to improve accuracy and create the smoothed
best-estimated trajectory (SBET). This file, with root mean square errors (RMSEs) within
0.02–0.05 m, is used for the orthorectification of the hypercubes (Figure 3(0)).

The VNIR and SWIR data cubes are processed separately using SpectralView, v 3.2.0
(Headwall Photonics) as follows: (1) raw data is transformed to radiance (Figure 3(1))
by subtracting the dark reference from the digital numbers (DNs). The dark spectrum is
collected in the field by covering the sensor lens after the mission and is considered sensor
noise; (2) the reflectance correction is the conversion of radiance to reflectance (Figure 3(2)).
This step is used to build a line of best fit between the radiance of the HS sensor and the
reflectance measured on the radiometric tarp [59,60]; (3) the orthorectification (Figure 3(3))
is performed by combining a precision DSM and the SBET from step 1. For this operation,
a DSM from Curcio et al. [34] was used, with 0.05 m/pixel resolution and 0.01 m mean
accuracy; (4) the processed VNIR and SWIR hypercubes are stitched together (mosaicking,
Figure 3(4)) into a single final mosaic that is orthorectified and georeferenced.

2.4.2. Hyperspectral Post-Processing

Atmospheric correction is not required when flying at a maximum altitude of 120 m.
Once mosaicked, VNIR and SWIR hypercubes are stacked into a single file and the wave-
lengths associated with water vapour absorbance (i.e., 1350–1460 nm; 1790–1960 nm;
2350–2500 nm [28]) are excluded, resulting in an orthomosaic with 418 exploitable bands
(Figure 3(5)).

The Normalized Difference Vegetation Index (NDVI) is used to discriminate the
presence of vegetation in the study area (Figure 3(6)) and generate the training set for the
final classification step (see Section 2.5). The NDVI map layer is calculated according to
Equation (1):

NDVI = (NIR − RED)/(NIR + RED) (1)

with NIR and RED as the near-infrared and red bands centred at 860 nm and 649 nm,
respectively. Very low NDVI values (0.1 and below) are associated with bare soil or
water, moderate values (~0.3) correspond to shrub and grassland, and high values (0.6–1)
are associated with high-density plants and healthy physiological conditions [61]. Since
only shrub and grassland vegetation was considered for this work, the NDVI map layer
was masked with a threshold of 0.3. The product of this step is a raster with only
vegetation distribution.

2.4.3. Endmember Extraction

An endmember is a pure signature for a class [62] and they are essential for the clas-
sification of HS data. Pure signatures from hyperspectral imagery can be found using
minimum noise fraction (MNF), the Pixel Purity Index (PPI), and endmember extraction
techniques (Figure 3). The MNF maximises the noise-to-signal ratio and reduces dimension-
ality without sacrificing information [63] (Figure 3(7)). Most of the significant information is
contained in the first MNF bands, which are used in successive processing, ignoring the rest
of the bands containing only noise [64]. The PPI technique [65] searches for pure spectral
signatures by identifying the pixels with the fewest mixed spectral signatures (Figure 3(8)).
The PPI image locates the pure pixels of the scene, which will then be used to extract the
spectra of the potential endmembers [66]. A region of interest (ROI) is a dataset sample con-
sidered important for a particular purpose [67]. In this case, the regions of interest (ROIs)
contain the pixels with the pure spectra in the scene and are imported in the n-Dimensional
Visualizer scatter plot (n-DV; Figure 3(9)). The n-DV is an ENVI tool for visualising the
distribution of pixels in the n-D space (where n is the number of bands), allowing the purest
pixels representing the spectral endmembers to be identified and clustered (Figure 3(10,11)).
After these steps, the classification procedure can be carried out.
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2.5. Classification

The classification process uses unsupervised and supervised algorithms to map the
spatial location and abundance of each endmember spectrum. The relevant MNF bands
are the input for the ISODATA algorithm (Figure 3(12)), which iteratively clusters the
pixels using the least distance approach [68]. The result is a first classified image based
on the inherent spectral information of the dataset, with each class represented by a
different endmember.

The next level of classification is produced by the spectral angle mapper (SAM) al-
gorithm (Figure 3(13)), which calculates the angle between two spectra to identify their
spectral similarity based on a maximum angle threshold [69]. This threshold is set to
0.1 radians to minimize spectral mixing issues. This algorithm uses the endmembers of the
unsupervised classification to classify.

The last algorithm selected in this study is the support vector machine (SVM)
(Figure 3(15)), selected because of the good results it produces with heterogeneous, complex,
and noisy data [70]. The SVM separates the classes using a training set with class samples
(i.e., support vectors) [71], with every class represented by an ROI. In this case, ROIs are
generated based on three sources of information: (1) the unsupervised classification; (2) the
SAM-classified image; (3) the NDVI map (Figure 3(14)).

2.6. Spectral Analysis

To verify that UAV-HS datasets can differentiate vegetation at the species level in salt
marshes, the separability of the spectral signatures of the classifications must be tested.
This was analysed through spectral transformations. In addition, the usefulness of new
spectral indices for the separation of species is explored, using the relevant wavelengths
highlighted by the spectral transformations to generate them.

2.6.1. Continuum Removal and Second-Order Derivative

The differences in absorption and reflection spectra between vegetation species can
be very small, making classification difficult. Spectral transformation, such as continuum
removal (CR) and derivative spectroscopy, have the potential to amplify small differ-
ences [28,42,72]. CR is used to normalize the spectra, and sometimes this is enough to
highlight differences in absorption and reflection spectra [73]. The second-order deriva-
tive method (2nd derivative from now) emphasises the small differences in absorption
peaks associated with biochemical properties, allowing for the identification of different
species [28,74]. To enhance the signal-to-noise ratio and extract additional hidden spec-
tral features, the 2nd derivative spectrum is filtered using a boxcar average smoothing.
All transformed spectra are analysed in four separated wavelength windows: visible
region (VIS, 400–700 nm), near-infrared region (NIR, 700–1000 nm), and two regions of
short-infrared (SWIR1, 1000–1800 nm; SWIR2, 1800–2350 nm).

2.6.2. Spectral Indices (SI)

New spectral indices (SI) have been constructed from the most outstanding absorption
and reflectance features (peaks and valleys of the 2nd derivative, respectively) of the
transformed spectrum. These indices can emphasize the distribution of different vegetation
species in the salt marsh. Each SI is calculated according to Equation (2) (known as the
normalized difference):

SIB2-B1 = (B2 − B1)/(B2 + B1) (2)

where SIB2-B1 is the calculated spectral index, B1 is the wavelength presenting the absorption
feature, and B2 is the wavelength presenting the reflectance feature. This type of equation
brings out characteristics not initially visible.
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2.7. Validation
2.7.1. Spectral Signatures

The spectral responses of our study area were previously studied in 2014–2015 (FAST
project, [75]). In the FAST project, each sampling point was a 1 × 1 m area where five
reflectance measurements were made using a field hyperspectral radiometer for the VNIR
range (400–1000 nm).

The FAST spectra measurements are utilised here as a reference spectral library to
identify species based on their spectral features. All spectra from our classification results
are compared to the library using the Spectral Analyst tool from ENVI. The similarities
of our classification spectra to those in the library are calculated by providing a similarity
score to each spectrum in the library, with the highest score considered the closest match
(i.e., the most confident spectral similarity). This analysis considers only the wavelength
range available in the FAST library (400–1000 nm).

2.7.2. Classification

Two methods are used to determine the SVM classification accuracy. The first one is
the comparison of the classification results with the composition of species observed at
60 randomly sampled points in the study area. To buffer small errors associated with very
precise locations, the species from the classification was determined as the prevalent class
in a 15 cm diameter buffer area around each point.

The second method is the comparison with random pixels from other sources. In
total, seven comparisons are performed from seven sets of random pixels. One set is
obtained from the training ROIs. The other six sets are generated from the unsupervised
classified image using different sampling methods: (1) two sets are generated with stratified-
proportionate samples (SP), with sizes directly related to the size of the classes; (2) two sets
of equalized samples (Eq), with fixed size regardless of the class size; and (3) two sets of
random samples (R), using 10% and 20% of the total pixels.

For each comparison, the accuracy is determined from (1) the overall accuracy, calcu-
lated by counting the correctly classified values and dividing by the total number of values;
(2) producer accuracy, which measures the likelihood of correctly classifying a value into
each class; (3) user accuracy, which shows the likelihood that a prediction belongs to the
correct class. Each probability is determined by dividing the proportion of correct values
by the total number of values in a class.

2.8. Elevation of Species Distribution

Once the vegetation classes are confirmed, their elevation distribution is assessed
using a DEM with 0.24 m/pixel resolution and a mean accuracy of 0.04 m [34]. The
corresponding elevations are extracted for each class using 5 cm sampling grids. After
removing outliers, the elevation of each class is characterized using a set of statistical
parameters (i.e., minimum, maximum, median, and mode).

3. Results

3.1. Classification Result

For the SVM supervised classification, a total of 15 ROIs were recognized, correspond-
ing to 15 classes, 7 of them associated with vegetation classes. However, only four of these
classes are within the salt marsh horizons considered in this work. Regarding the other
three vegetation classes, one has been associated with macrophyte debris deposited in the
uppermost zone of the salt marsh by an extreme high tide event, and the other two with
the typical vegetation of the saline wall. These last two classes are outside the scope of this
work and, therefore, will not be taken into consideration. Nevertheless, it is interesting that
they can be distinguished from salt marsh species.

Of the 4.8 ha of surveyed salt marsh, the spatial mapping of the endmembers estimates
a vegetation cover of 14.7% of the area. These species are distributed parallel to the mean
sea line and in different elevation ranges.
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In this work, the vegetation classes within the salt marsh horizons include four classes
of salt marsh species and a fifth class associated with macroalgal debris. From high to low
elevations, the distribution of these classes is macroalgal debris deposits first, followed
by vegetation 1 and 2 in the mid-horizon, vegetation 3 within the transition zone, and
vegetation 4 in the low horizon. The area covered by these classes is 2.9%, 9.2%, 34.3%,
28.9%, and 24.9% of the vegetated area, respectively (Figure 4).

 

Figure 4. Salt marsh vegetation distribution according to the SVM classification. The white line
defines the boundaries of the surveyed area, corresponding to 4.8 ha. The macroalgae class is
debris deposited in the uppermost zone of the salt marsh representing less than 3% of the vegetated
space. Vegetation 1 and vegetation 2 are distributed along the medium marsh horizon, vegetation
3 corresponds to the transitional zone, and vegetation 4 spreads along the low marsh horizon. The
classification is superposed on the orthomosaic obtained by the hyperspectral survey displayed in
true colour combination.

3.2. Spectral Analysis

The four marsh vegetation classes show typical plant spectral curves (Figure 5). The
peaks of each class are located at the same wavelength (±5 nm), presenting only quantitative
differences. The macroalgae class showed clear divergences from this pattern. First, the
strong absorption peak in the red region (peak 3 in Figure 5) is less pronounced than in plant
classes. It also lacks the absorption peak at 943 nm (peak 6 in Figure 5). There is a significant
increase in reflectance from the red-edge region to the SWIR1 region (i.e., 700–1300 nm),
and also higher reflectance in entire the SWIR region (1000–2350 nm) (Figure 5, Table 1).

Table 1. Wavelengths of the absorption peaks detected in the spectral signature of the marsh vegeta-
tion classes of Cadiz Bay. The numbers in the column headers correspond to the peaks indicated in
Figure 5. Units: nm.

Class\Peak (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Macroalgae 447 500 669 776 864 - 997 1182 1523 2025
Vegetation 1 443 492 669 776 860 943 991 1206 1523 2025
Vegetation 2 447 487 669 776 860 943 991 1194 1523 2025
Vegetation 3 447 487 669 776 864 943 997 1188 1523 2025
Vegetation 4 443 483 669 776 864 943 997 1182 1523 2025
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Figure 5. Spectral profiles (a) and the corresponding continuum removal transformations (b) for
the salt marsh vegetation classes identified in Cadiz Bay. The grey areas highlight the water vapour
absorbance regions (1350–1460 nm and 1790–1960 nm) excluded from the hyperspectral processing.
The numbers in brackets indicate the absorbance peaks of the spectral signatures. Note that minimum
values are absorption peaks and maximum values are reflectance peaks.

The 2nd derivative transformation accentuated small differences not previously ob-
served in the reflectance curves (Figures A1–A4). These effects are more pronounced
in the SWIR1 region, and the variations between 2013 and 2329 nm (SWIR2 region) are
particularly notable.

The spectral indices (SI) were constructed with the significant absorbance peaks at
1057, 1110, 1152, 1182, 1260, and 1331 nm, generating SI1152-1110, SI1331-1260, SI1182-1057,
and SI1523-1290. These indices may show differences that can be attributed to biophysical
differences in vegetation (Figure 6).

Figure 6. Distribution of spectral indices (SI) values in the salt marsh of Cadiz Bay. The results display
only a detail of the study area, and the corresponding SI is indicated in the legend. Wavelengths used
for creating SI are suitable to show the variations in canopy cover. Thresholds are adjusted for each
index to better enhance differences in canopy cover.
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3.3. Validation

According to the scores obtained, vegetation 1 and 2 classes may represent Sarcocornia
spp., while vegetation 4 class may correspond to Sporobolus maritimus. Vegetation 3 class
has been attributed to areas of overlap of different proportions of these species (i.e., the
transition zone).

The categories identified at the field reference points were Sarcocornia, Salicornia, and
transition zones only. However, distinguishing between Sarcocornia and Salicornia species
in the field is very challenging and misidentifications can be expected [76]. The accuracy
of the classification was estimated to be 46% but increased to 73% when considering that
Sarcocornia and Salicornia could be mistaken for each other in the field. When comparing
the classification to the sets of random pixels, the accuracy ranges from 92 to 96% (Table 2).

Table 2. Overall accuracy of the HS image classification. The accuracy is estimated by comparison
with field measurements, random samples generated from ROIs, and other groups of random samples
(Eq250, Eq500, R10, R20, Sp10, Sp20). Eq250 and Eq500 are the equalized samples groups using
250 and 500 pixels respectively for each class as reference; R10 and R20 are the random samples
groups using 10% and 20 % of total pixels as reference respectively; Sp10 and Sp20 are the stratified-
proportionate samples groups using 10% and 20 % of total pixels as reference, respectively.

Estimation Method Accuracy

Eq250 92.5%
Eq500 92.4%

Field measurement 46–73%
ROIs 95.9%
R10 95.6%
R20 95.7%
Sp10 95.9%
Sp20 95.8%

3.4. Elevation Range of Identified Species

Vegetation 1 class (identified as a short Sarcocornia spp. or a Salicornia spp.) is included
within the elevation range of the vegetation 2 class (identified as S. perennis) (Table 3). The
two classes spread across the same elevation range, but the mode of their elevation range
is different, with 2.67 m vs 2.79 m for vegetation 1 and 2, respectively. The transitional
class (vegetation 3) extended from 1.91 m to 2.78 m, narrowing to 2.26–2.58 m for Q1–Q3.
The S. maritimus (vegetation 4) covers a range between 1.22 m and 2.35 m (1.76–2.10 m for
Q1–Q3). Macroalgae have a bimodal distribution, with two accumulation zones located at
2.49–2.86 m and 3.35–3.84 m (Figure A5).

Table 3. Estimated elevation range for each salt marsh vegetation class identified in Cadiz Bay.
S. perennis: Sarcocornia perennis; S. maritimus: Sporobolus maritimus. Figure A5 shows the frequency
distribution of the extracted values for each class; Q: quantile.

Class Specie 0.05 Q 0.25 Q 0.5 Q 0.75 Q 0.95 Q Mode

Macroalgae Macroalgae 1.13 2.54 2.75 3.43 3.77 2.81
Vegetation 1 Salicornia spp. o Sarcocornia spp. 2.34 2.53 2.62 2.69 2.75 2.67
Vegetation 2 S. perennis 2.30 2.56 2.67 2.74 2.80 2.79
Vegetation 3 Transitional 1.91 2.26 2.42 2.58 2.78 2.00
Vegetation 4 S. maritimus 1.22 1.76 1.94 2.10 2.35 1.68

4. Discussion

The analyses of hyperspectral datasets from low and medium salt marsh areas in Cadiz
Bay are adequate to identify vegetation distribution at the species level. Four plant classes
distributed along the horizons of the salt marsh and one class of macrophyte debris were
recognised. Three of the plant classes have been associated with monospecific vegetation
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(Sarcocornia spp., S. perennis, and S. maritimus), while a fourth class represents the mix of
species typical of the convergence of distributions (i.e., transition zone). The results from
this study are expected to be extrapolated to other mid-latitude tidal marshes since the low
and medium tidal marshes of these latitudes usually present similar structural traits [75].

The performance of the SAM classification method is limited in areas with several
species due to the mix of spectra [77]. However, this problem can be minimised by using
the two supervised classification methods (SAM and SVM) in succession after performing
hyperspectral processing procedures. The SVM supervised classification reached up to
98% accuracy, demonstrating its effectiveness in mapping land cover. When looking
at the accuracy of individual classes, features such as water bodies and types of soil
perfectly match the reference data. Focusing on vegetation classes, the highest accuracy is
achieved by vegetation 1, vegetation 4 and macroalgae. The accuracy is lower, although still
significant for the remaining classes (Tables A1–A7). The spectral signature of the transition
zone (vegetation 3 class), which is a variable mixture of plant species and, therefore, a
variable mix of spectra, makes this class the lowest in accuracy (63.16%). Since the training
dataset used to produce the map (i.e., ROIs) determines the quality of the algorithm
classification, a single ROI for transition zones is considered insufficient to accurately
represent the variability associated with different levels of species mix. Still, the overall
accuracy provided by our UAV-HS approach is higher than previous classification attempts.
Rasel et al. [31] obtained a 43% overall accuracy from space-borne hyperspectral data with
30 m spatial resolution. Rajakumari et al. [28] combined satellite multispectral data and
ground spectrometric measurements, achieving 65.8% to 73.55% accuracy for the vegetation
and land cover spectral signatures, respectively.

Among the endmembers extracted from Cadiz Bay salt marshes, four exhibit the typi-
cal plant pattern, while one shows the macroalgae response with distinct peaks and slopes
of the reflectance spectrum. Chlorophyll a (Chl-a), found in both plants and macroalga,
determines a typical absorption peak at 669 nm. However, this feature is smoothed in
the spectral signature of macroalgae (Figure 5), maybe due to its yellowish-brown colour
related to the fucoxanthin content [78]. The class of macroalgae in this study corresponds
to debris deposited by an extreme flood event at an elevated position far removed from
ordinary tidal cycles. This material dries and decomposes, resulting in high reflectance val-
ues in the NIR–SWIR, a typical region where water often attenuates spectral signatures [79].
The reflectance curves of the four remaining classes do not differ much from each other, the
only significant variations being in the peak intensity. However, the continuum removal
transformation enhances different responses in the 740–864 region, with opposite slopes
in the curve between 882 and 949 nm (Figure 7). These findings lead to the acceptance of
vegetation 1 and 2 as the spectral signatures of Sarcocornia species in the medium marsh
horizon, and vegetation 3 and 4 as the signatures of species distributed in the transition
and the low marsh, respectively.

Figure 7. Results of the continuum removal transformation for the discriminated vegetation classes
in the salt marsh of Cadiz Bay. Note that vegetation 1 and 2 have the opposite slope to vegetation 3
and 4 in the 882–949 nm region.
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Different species of Sarcocornia dominate the medium marsh in Cadiz Bay [55,57].
However, because they are morphologically similar to Salicornia species, it is very challeng-
ing to distinguish them in the field when they coexist, and misidentification can occur [76].
As revealed by the CR spectra, vegetation 1 and 2 differ almost only in the intensity of the
peaks, demonstrating optical similarities. However, the 2nd derivative analysis reveals
that two groups of halophytes are spectrally distinct (Figures A1–A4), with these spectral
differences resulting from biochemical variations between salt marsh species [28]. The
pigment content, canopy structure, leaf area and leaf structure all have an impact on the
visible region of the reflectance spectrum of plant canopies [42]. The 2nd derivative of our
reflectance curves shows differences in the blue and red regions at wavelengths associated
with the chlorophyll and xanthophyll peaks [74]. However, our work shows that the largest
2nd derivative peaks are in the SWIR region, and many of them coincide with water absorp-
tion wavelengths. Water absorption bands are present at 900 and 967 nm (the water band
index [80]), in the 1150–1260 nm region [81] and in the 1450–1940 nm region [82]. Salinity
in soils and vegetation is also detectable in the SWIR region [83,84], and Kumar et al. [85]
proposed a SWIR-based vegetation index to detect changes in vegetation cover from satel-
lites. All these previous works support our conclusion that SWIR, with its highest spectral
variability, is a suitable region to discriminate plant species from salt marshes. The SI
established here can reveal differences in the canopy cover (Figure 6), proving that UAV-HS
is able to detect variations in canopy cover at the species level. The great advantages of
UAVs are the high spatial and temporal resolutions of their products, as well as greater
flexibility and lower cost when compared to satellite products. This allows, for example,
data collection immediately after an extreme event and then periodically afterwards, pro-
viding key data to assess the ability of dynamic systems, such as salt marshes, to return to
previous states (or resilience).

The horizon of the low salt marsh in Cadiz Bay is dominated by S. maritimus [55]. Its
shoot structure and density allow the soil to be exposed, resulting in a mixed spectrum
of soil and plant responses that is very similar to the spectral signature of soil with mi-
crophytobenthos. This problem may result in misinterpretations when using low spatial
resolution sensors [1]. The higher spatial resolution (5 cm/pixel) offered by UAVs not only
prevents this issue, but also reduces the occurrence of mixed spectral signatures due to
the reduced pixel size. The comparison of the spectral responses of the S. maritimus class
(vegetation 4) with the soil classes (Figure 8) shows that the influence of the soil is inevitable.
However, S. maritimus habitats and soil with microphytobenthos can be distinguished by
CR and 2nd derivative transformations in the red-edge and SWIR2 regions (Figure 9). This
demonstrates that these two habitats can be distinguished in UAV-HS datasets, allowing
for more precise mapping of S. maritimus and microphytobenthos soil and minimizing
overestimation/underestimation issues for these categories.

The zonation of salt marsh plant species depends on elevation, tidal regime, and
the gradient of environmental variables, such as salinity, redox potential, soil N, clay,
and organic matter content, as well as interspecific relationships [2,86–88]. According to
Redondo-Gomez et al. [89], in SW Spain, S. perennis subsp. perennis occupies from 2.26 to
2.84 m LAT, and S. perennis subsp. alpini from 2.84 to 3.65 m LAT. Our results agree with
these findings, showing that Sarcocornia spp. inhabit the salt marsh horizon between 2.30 m
and 2.80 m LAT. Previous studies have described S. fruticose and S. perennis as dominant
species in the salt marshes of Cadiz Bay [55]. Unfortunately, the spectral library available in
our study area (FAST project, [75]) does not specify which Sarcocornia taxa were measured.
However, due to differences in the SWIR region, our results suggest that two Sarcocornia
taxa coexist in the medium salt marsh horizon. Differences in this part of the spectrum have
previously been related to differences in the salinity [84], suggesting that soil salinity may
be playing a role in the zonation of Cadiz Bay tidal marshes. Although the elevation ranges
for vegetation 1 and 2 overlap, suggesting a similar ecological niche, their different mode
(2.67 m for vegetation 1 vs 2.79 m for vegetation 2, Table 3) indicate a shift in the optimum
range of environmental conditions between the two groups, supporting the existence of
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two species. Both histograms are left skewed, indicating that these species can populate
lower elevations despite performing better at higher positions. As a result of our findings,
some resilience is expected in these habitats under sea level rise scenarios.

 
Figure 8. Comparison of the spectral responses of the S. maritimus class (vegetation 4) and soil classes:
reflectance curve (a) and continuum removed spectra (b). The water vapour absorbance regions
(1350–1460 nm and 1790–1960 nm) excluded from the hyperspectral processing are shown in grey.

Figure 9. Comparisons of 2nd derivative transformation for the S. maritimus (vegetation 4) and soil
classes in the red-edge region (a) and SWIR2 (b).

Regarding the accumulations of macroalgae, the decomposition of these accumulations
of organic matter alters the availability of oxygen and the redox potential in the sediments,
which could have negative consequences for multiple trophic levels if their incidence
increases significantly [90,91]. Understanding the local carbon cycle and the dynamic of
the system also requires mapping where macroalgae are deposited [78,91]. In Cadiz Bay,
Sarcocornia spp. and S. maritimus overlap in a narrow area here called the transition zone
(vegetation 3). This class has problems with accuracy mainly because of the wide variety
of spectral responses due to the different proportions of Sarcocornia spp. and S. maritimus.
Future studies may include more classes for the transition zone, but they will need careful
spectral analysis to investigate the spectral response associated with specific proportions of
the dominant species.
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5. Conclusions

This study demonstrates the potential of UAV-HS technology to identify and map
the distribution of plant species in salt marshes, using canopy reflectance information.
Salt marsh plant species have very similar spectral shapes. However, hyperspectral
technology is capable of detecting spectral differences associated with the water content
and salinity of salt marsh plant tissues. The continuum removal and 2nd derivative
transformations can detect hidden spectral features in reflectance curves, which can sep-
arate plant species with satisfactory accuracy. The classification map obtained through
a supervised process reached up to 98% accuracy. The availability of an accurate DEM
allows for the estimation of the preferred elevation range for each specie from the distri-
bution of the corresponding classes. The overlap of species distribution generates mixes
of spectra with a large variability associated with different species proportions. Future
research may reduce these uncertainties but will require an increase in the number of
associated classes.

Vegetation distribution is a key indicator in determining the health of salt marshes.
The ability to monitor changes in these distributions will improve our understanding of
salt marsh dynamics, our modelling capacity to assess responses to sea level rise, and help
stakeholders manage these complicated, vulnerable, and valuable ecosystems. UAV-HS
data can be used to evaluate salt marsh vulnerability and strengthen conservation efforts
by defining critical areas for conservation and examining pressures on crucial ecosystem
services, such as blue carbon.
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Appendix A

Appendix A.1. 2nd Derivative Analysis

Figure A1. The focus is on the VIS region of the electromagnetic spectrum. The main peaks can
be identified in the 2nd derivative spectrum of the five studied spectral signatures (a). The boxcar
average smoothing filter applied on the 2nd derivative spectrum highlights other important peaks
for the studied signatures (b). Significant peaks are present at wavelengths where pigments influence
the spectral response of vegetation: 427,472, 487, 512, 547, 576, 638, 676, 689, and 698 nm.

Figure A2. The focus is on the NIR region of the electromagnetic spectrum. The main peaks can
be identified in the 2nd derivative spectrum of the five studied spectral signatures (a). The boxcar
average smoothing filter applied on the 2nd derivative spectrum highlights other important peaks
for the studied signatures (b). In the NIR region, other important absorbance peaks can be identified
at 725, 749, 771, 798, 822, 867, 880, 913, 937, 949, 961, and 997 nm.

Figure A3. The focus is on the SWIR1 region of the electromagnetic spectrum. The main peaks can
be identified in the 2nd derivative spectrum of the five studied spectral signatures (a). The boxcar
average smoothing filter applied on the 2nd derivative spectrum highlights other important peaks
for the studied signatures (b). Significant absorption peaks are present at 1039, 1098, 1128, 1152, 1188,
1206, 1331, 1499, 1523, 1594, 1636, 1672, 1690, and 1774 nm. In grey are the water vapour absorbance
regions (1350–1460 nm and 1790–1960 nm) excluded from the hyperspectral processing.
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Figure A4. The focus is on the SWIR2 region of the electromagnetic spectrum. The main peaks can
be identified in the 2nd derivative spectrum of the five studied spectral signatures (a). The boxcar
average smoothing filter applied on the 2nd derivative spectrum highlights other important peaks
for the studied signatures (b). The SWIR2 region presents absorbance peaks at 1971, 2007, 2025, 2054,
2114, 2192, 2228, 2264, 2293, and 2335 nm. In grey is one of the water vapour absorbance regions
(1790–1960 nm) excluded from the hyperspectral processing.

Appendix A.2. Accuracy

Table A1. Report for the accuracy of the comparison of classification results to Eq250, the equalized
samples groups using 250 pixels for each class as reference. The table summarizes the producer
accuracy and user accuracy in percentage and pixels for each class.

Class Class Name Prod. Acc. (Percent) User Acc. (Percent) Prod. Acc. (Pixels) User Acc. (Pixels)

ROI #1 Vegetation 1 98.00 98.00 245/250 245/250
ROI #2 Vegetation 2 74.80 87.38 187/250 187/214
ROI #3 Vegetation 3 66.80 81.07 167/250 167/206
ROI #4 Ponds with mpb 100.00 99.60 250/250 250/251
ROI #5 Vegetation 5 85.20 78.89 213/250 213/270
ROI #6 Vegetation 6 88.00 81.48 220/250 220/270
ROI #7 Soil 99.60 89.89 249/250 249/277
ROI #8 Soil with mph 98.40 94.62 246/250 246/260
ROI #9 Tidal channel 100.00 100.00 250/250 250/250

ROI #10 Saline 100.00 100.00 250/250 250/250
ROI #11 Ponds without water 90.40 97.84 226/250 226/231
ROI #12 Shallow water 99.60 100.00 249/250 249/249
ROI #13 Dry soil 100.00 100.00 250/250 250/250
ROI #14 Macroalgae 98.40 100.00 246/250 246/246
ROI #15 Vegetation 4 88.00 79.71 220/250 220/276

Table A2. Report for the accuracy of the comparison of classification results to Eq500, the equalized
samples groups using 500 pixels for each class as reference. The table summarizes the producer
accuracy and user accuracy in percentage and pixels for each class.

Class Class Name Prod. Acc. (Percent) User Acc. (Percent) Prod. Acc. (Pixels) User Acc. (Pixels)

ROI #1 Vegetation 1 98.13 98.13 419/427 419/427
ROI #2 Vegetation 2 74.00 85.87 316/427 316/368
ROI #3 Vegetation 3 66.74 78.51 285/427 285/363
ROI #4 Ponds with mpb 100.00 100.00 427/427 427/427
ROI #5 Vegetation 5 84.31 77.25 360/427 360/466
ROI #6 Vegetation 6 84.78 81.35 362/427 362/445
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Table A2. Cont.

Class Class Name Prod. Acc. (Percent) User Acc. (Percent) Prod. Acc. (Pixels) User Acc. (Pixels)

ROI #7 Soil 99.77 90.83 426/427 426/469
ROI #8 Soil with mph 98.83 96.57 422/427 422/437
ROI #9 Tidal channel 100.00 100.00 427/427 427/427

ROI #10 Saline 100.00 100.00 427/427 427/427
ROI #11 Ponds without water 90.87 99.49 388/427 388/390
ROI #12 Shallow water 100.00 100.00 427/427 427/427
ROI #13 Dry soil 100.00 100.00 427/427 427/427
ROI #14 Macroalgae 98.83 99.29 422/427 422/425
ROI #15 Vegetation 4 89.93 80.00 384/427 384/480

Table A3. Report for the accuracy of the comparison of classification results to random samples
generated from ROIs. The table summarizes the producer accuracy and user accuracy in percentage
and pixels for each class.

Class Class Name Prod. Acc. (Percent) User Acc. (Percent) Prod. Acc. (Pixels) User Acc. (Pixels)

ROI #1 Vegetation 1 97.88 97.13 508/519 508/523
ROI #2 Vegetation 2 73.80 80.25 386/523 386/481
ROI #3 Vegetation 3 66.61 72.40 417/626 417/576
ROI #4 Ponds with mpb 100.00 99.07 427/427 427/431
ROI #5 Vegetation 5 82.86 85.66 986/1190 986/1151
ROI #6 Vegetation 6 86.01 82.09 793/922 793/966
ROI #7 Soil 99.20 98.63 4734/4772 4734/4800
ROI #8 Soil with mph 98.29 97.87 1838/1870 1838/1878
ROI #9 Tidal channel 100.00 100.00 5997/5997 5997/5997

ROI #10 Saline 100.00 99.95 1915/1915 1915/1916
ROI #11 Ponds without water 90.67 93.71 447/493 447/477
ROI #12 Shallow water 99.87 100.00 767/768 767/767
ROI #13 Dry soil 100.00 100.00 508/508 508/508
ROI #14 Macroalgae 98.56 99.39 821/833 821/826
ROI #15 Vegetation 4 89.75 83.13 744/829 744/895

Table A4. Report for the accuracy of the comparison of classification results to R10, the random
samples group using 10% of total pixels as reference. The table summarizes the producer accuracy
and user accuracy in percentage and pixels for each class.

Class Class Name Prod. Acc. (Percent) User Acc. (Percent) Prod. Acc. (Pixels) User Acc. (Pixels)

ROI #1 Vegetation 1 98.39 96.83 61/62 61/63
ROI #2 Vegetation 2 67.44 78.38 29/43 29/37
ROI #3 Vegetation 3 67.92 63.16 36/53 36/57
ROI #4 Ponds with mpb 100.00 100.00 40/40 40/40
ROI #5 Vegetation 5 78.38 83.65 87/111 87/104
ROI #6 Vegetation 6 83.91 79.35 73/87 73/92
ROI #7 Soil 98.82 97.66 501/507 501/513
ROI #8 Soil with mph 100.00 98.32 176/176 176/179
ROI #9 Tidal channel 100.00 100.00 601/601 601/601

ROI #10 Saline 100.00 100.00 188/188 188/188
ROI #11 Ponds without water 79.25 93.33 42/53 42/45
ROI #12 Shallow water 98.90 100.00 90/91 90/90
ROI #13 Dry soil 100.00 100.00 47/47 47/47
ROI #14 Macroalgae 98.55 100.00 68/69 68/68
ROI #15 Vegetation 4 90.11 86.32 82/91 82/95
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Table A5. Report for the accuracy of the comparison of classification results to R20, the random
samples group using 20% of total pixels as reference. The table summarizes the producer accuracy
and user accuracy in percentage and pixels for each class.

Class Class Name Prod. Acc. (Percent) User Acc. (Percent) Prod. Acc. (Pixels) User Acc. (Pixels)

ROI #1 Vegetation 1 99.14 97.46 115/116 115/118
ROI #2 Vegetation 2 65.98 76.19 64/97 64/84
ROI #3 Vegetation 3 65.04 74.77 80/123 80/107
ROI #4 Ponds with mpb 100.00 96.43 81/81 81/84
ROI #5 Vegetation 5 83.40 84.45 201/241 201/238
ROI #6 Vegetation 6 88.18 84.04 179/203 179/213
ROI #7 Soil 99.04 98.21 933/942 933/950
ROI #8 Soil with mph 96.49 98.89 357/370 357/361
ROI #9 Tidal channel 100.00 100.00 1162/1162 1162/1162

ROI #10 Saline 100.00 99.75 398/398 398/399
ROI #11 Ponds without water 90.82 89.90 89/98 89/99
ROI #12 Shallow water 100.00 100.00 170/170 170/170
ROI #13 Dry soil 100.00 100.00 77/77 77/77
ROI #14 Macroalgae 97.31 99.45 181/186 181/182
ROI #15 Vegetation 4 91.95 82.47 160/174 160/194

Table A6. Report for the accuracy of the comparison of classification results to Sp10, the stratified-
proportionate samples group using 10% of total pixels as reference. The table summarizes the
producer accuracy and user accuracy in percentage and pixels for each class.

Class Class Name Prod. Acc. (Percent) User Acc. (Percent) Prod. Acc. (Pixels) User Acc. (Pixels)

ROI #1 Vegetation 1 92.31 97.96 48/52 48/49
ROI #2 Vegetation 2 69.23 76.60 36/52 36/47
ROI #3 Vegetation 3 71.43 66.18 45/63 45/68
ROI #4 Ponds with mpb 100.00 100.00 43/43 43/43
ROI #5 Vegetation 5 80.67 87.27 96/119 96/110
ROI #6 Vegetation 6 88.04 81.82 81/92 81/99
ROI #7 Soil 99.58 98.75 475/477 475/481
ROI #8 Soil with mph 98.40 98.40 184/187 184/187
ROI #9 Tidal channel 100.00 100.00 600/600 600/600

ROI #10 Saline 100.00 100.00 192/192 192/192
ROI #11 Ponds without water 89.80 95.65 44/49 44/46
ROI #12 Shallow water 100.00 100.00 77/77 77/77
ROI #13 Dry soil 100.00 100.00 51/51 51/51
ROI #14 Macroalgae 98.80 98.80 82/83 82/83
ROI #15 Vegetation 4 90.36 86.21 75/83 75/87

Table A7. Report for the accuracy of the comparison of classification results to Sp20, the stratified-
proportionate samples group using 20% of total pixels as reference. The table summarizes the
producer accuracy and user accuracy in percentage and pixels for each class.

Class Class Name Prod. Acc. (Percent) User Acc. (Percent) Prod. Acc. (Pixels) User Acc. (Pixels)

ROI #1 Vegetation 1 98.08 97.14 102/104 102/105
ROI #2 Vegetation 2 77.14 80.20 81/105 81/101
ROI #3 Vegetation 3 65.60 70.09 82/125 82/117
ROI #4 Ponds with mpb 100.00 97.70 85/85 85/87
ROI #5 Vegetation 5 81.93 86.67 195/238 195/225
ROI #6 Vegetation 6 87.50 82.14 161/184 161/196
ROI #7 Soil 99.06 98.23 945/954 945/962
ROI #8 Soil with mph 97.59 97.86 365/374 365/373
ROI #9 Tidal channel 100.00 100.00 1199/1199 1199/1199

ROI #10 Saline 100.00 100.00 383/383 383/383
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Table A7. Cont.

Class Class Name Prod. Acc. (Percent) User Acc. (Percent) Prod. Acc. (Pixels) User Acc. (Pixels)

ROI #11 Ponds without water 85.86 90.43 85/99 85/94
ROI #12 Shallow water 100.00 100.00 154/154 154/154
ROI #13 Dry soil 100.00 100.00 102/102 102/102
ROI #14 Macroalgae 98.80 100.00 165/167 165/165
ROI #15 Vegetation 4 89.76 84.66 149/166 149/176

Appendix A.3. Histograms

Figure A5. Distribution of the plant species present in the Cádiz Bay with elevation. The elevation
refers to LAT.
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Abstract: Time series of optical remote sensing data are instrumental for monitoring vegetation
dynamics, but are hampered by missing or noisy observations due to varying atmospheric conditions.
Reconstruction methods have been proposed, most of which focus on time series of a single vegetation
index. Under the assumption that relatively high vegetation index values can be considered as
trustworthy, a successful approach is to adjust the smoothed value to the upper envelope of the
time series. However, this assumption does not hold for surface reflectance in general. Clouds and
cloud shadows result in, respectively, high and low values in the visible and near infrared part of the
electromagnetic spectrum. A novel spectral Reflectance Time Series Reconstruction (RTSR) method is
proposed. Smoothed values of surface reflectance values are adjusted to approach the trustworthy
observations, using a vegetation index as a proxy for reliability. The Savitzky–Golay filter was used
as the smoothing algorithm here, but different filters can be used as well. The RTSR was evaluated on
100 sites in Europe, with a focus on agriculture fields. Its potential was shown using different criteria,
including smoothness and the ability to retain trustworthy observations in the original time series
with RMSE values in the order of 0.01 to 0.03 in terms of surface reflectance.

Keywords: time series; reconstruction algorithm; smoothing; optical remote sensing

1. Introduction

Optical remote sensing data become available with an increased temporal and spa-
tial resolution, in particular since the Copernicus program launched the Sentinel-2A and
Sentinel-2B satellites in 2015 and 2017 [1]. This has opened new opportunities for monitor-
ing vegetation dynamics up to the local scale. Inspecting changes of the spectral signature
of vegetation over time can be used to, e.g., monitor crop growth [2], forest degradation [3],
and grassland use intensity [4].

However, optical remote sensing is highly affected by atmospheric perturbations,
which cause both gaps and noise in the time series. In [5–7], the problem of gaps is
addressed by data assimilation from multiple sensors with similar characteristics. Gaps can
also be filled by combining data from sensors with different characteristics such as optical
and synthetic aperture radar (SAR) sensors [8]. More recently, machine learning models
have been introduced to fill gaps by predicting the missing values, e.g., from SAR data [9].
In [10], Landsat and Sentinel-2 surface reflectance have been fused using deep learning
techniques. A more simple approach is to fill gaps in the time series via interpolation of
clear observations [11]. This avoids issues with data harmonization and co-registration
between different sensors [12]. Noise in the time series are due to undetected clouds or
other variations in atmospheric conditions such as aerosol concentration. A subsequent
noise reduction filter is therefore often applied [13,14]. One of the difficulties in designing
such a filter is the trade-off between the ability to reduce unwanted noise and the retention
of the relevant changes. Low-pass or smoothing filters are effective at reducing noise
in time series with high-frequency fluctuations, but can also affect seasonal vegetation
changes. Edges in the vegetation signature risk to be blurred by such filters. These edges
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are useful features for agriculture applications that study crop harvest practices and rely
on, e.g., the identification of the start and end of the growing season [15,16]. Furthermore,
for the detection of disruptive events such as land cover change, fire, and floods, the design
of the smoothing filter requires special care [13].

Within the context of time-series reconstruction, vegetation indices such as the nor-
malized difference vegetation index (NDVI [17]) have the interesting property that they
are usually depressed in cloudy or poor atmospheric conditions [18]. In [19], NDVI was
analyzed under different observation conditions. The authors demonstrated that the NDVI
values for all land cover types increase with lower aerosol concentrations, near-nadir view-
ing and high solar illumination. It was therefore concluded that “the best possible pixel
value for a particular location is achieved by choosing the highest pixel value from multi
temporal data”. High NDVI values can therefore be assumed to be more trustworthy than
low NDVI values. This has been successfully used to reconstruct time series of NDVI by
approaching the upper NDVI envelope via an iterative process [20–22]. The maximum
NDVI composite is also based on this property. It creates a single noise-free image from a
series of images by selecting the acquisition with the maximum NDVI value [19,23,24]. An
overview of techniques to reduce noise of NDVI time series is provided in [25].

For some applications, a multi-variate analysis is preferred over a single index. On the
use of time series for detecting land disturbance in [26], it was found that the combined
use of spectral bands was better than using a single spectral band or index. Furthermore,
in the context of analysis-ready data (ARD [27]), the reconstruction of surface reflectance
time series is important. A fill-and-fit approach was followed in [28], where missing pixels
are filled with a clear observation in the same or a temporally close image. The selection
of the clear observation is based on a similarity measure. A subsequent fitting, based on
a (linear or non-linear) harmonic model, then reconstructs the time series. In [29], both
NDVI and surface reflectance time series from Sentinel-2 were reconstructed using the
penalized least-square regression based on the discrete cosine transform (DCT-PLS). Surface
reflectance was also reconstructed in [30], by incorporating the upper envelopes of the
time-series vegetation index as constraint conditions. The authors reconstructed surface-
reflectance time series for MODIS [30] and advanced very high resolution radiometer
(AVHRR) data [31]. Recently, a dynamic temporal smoothing (DTS [32]) method was
proposed that can also be applied to surface reflectance values. Although the authors focus
in their paper on the two-band enhanced vegetation index (EVI2 [33]), the code presented
in [32] can be applied to time series of spectral reflectance. However, the DTS algorithm
presented in [33] involves an adjustment of the smoothed value of the vegetation index
under study (i.e., EVI2) to the upper envelope of the time series. The assumption that
relatively high values correspond to trustworthy observations does not hold for surface
reflectance in general. On the contrary, the reflectance value in the visible and near infrared
part of the electromagnetic spectrum typically increases for cloud covered pixels.

In this study, a new surface Reflectance Time Series Reconstruction (RTSR) method
is proposed for vegetation monitoring. It adjusts the smoothed values, similar to existing
reconstruction methods that act on vegetation indices. It hereby decouples the vegetation
index as a proxy for reliability from the time series of the reflectance values to be recon-
structed. Unlike existing methods that let the smoothed time series approach the upper
envelope, the surface-reflectance times series here approaches the trustworthy observations.
The remaining sections are structured as follows. In Section 2, the materials are covered
with a description of the test sites and remote-sensing time series. The RTSR method is de-
scribed in Section 3 as well the as the evaluation procedure. Results and the evaluation are
presented in Section 4. A discussion with limitations of the proposed method is described
in Section 5. Conclusions are drawn in Section 6.
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2. Material

2.1. Test Sites

A total of 100 sites were selected to test the reconstruction method (see Figure 1),
following a similar approach as in AI4Boundaries [34]. In this parallel research project on
mapping crop field boundaries, a random stratified sampling method was designed to
extract image chips from various landscapes. The sample was drawn from six European
countries for which public parcel data are available: Austria, Spain, France, Netherlands,
Slovenia, and Sweden. Each test site covers 256 by 256 pixels, corresponding to 2560 by
2560 m. This is still sufficiently large to contain some contextual information for visual
interpretation and can be processed on a computer with relatively low memory constraints
(2 GB). The majority of pixels was vegetated land, the land cover in focus for this study.
Both agricultural land (57% of all pixels) and forest (27%) were represented. Agricultural
land included non-irrigated arable land (27%), pastures (11%), and a mosaic of small
cultivated land parcels with different cultivation types (13%). Non-irrigated arable land is
defined as cultivated land parcels under rainfed agricultural use for annually harvested
non-permanent crops, normally under a crop rotation system, including fallow lands within
such crop rotation [35]. Forested pixels were either broad-leaved forest (12%), coniferous
forest (13%), or a mixture of both (2%). The remaining non-vegetated pixels included
artificial surface and water bodies.

Figure 1. Test sample: 100 sites of 2560 by 2560 m distributed over six European countries (Austria,
Spain, France, Netherlands, Slovenia, and Sweden).

2.2. Remote Sensing Time Series

Sentinel-2 products with Level-2A bottom of atmosphere (BOA) reflectance data were
downloaded from the Copernicus Open Access Hub [36]. The proposed RTSR method is
applicable to the complete set of spectral bands, but only five bands have been selected here
in order not to overload the section on results and the figures. The spectral bands B2, B3, B4,
and B8 were selected based on their superior spatial resolution (10 m). These bands only
cover the visible to near infrared part of the electromagnetic spectrum. They were therefore
complemented with spectral band B12, to also cover the short-wave infrared. The proposed
method can apply to other data sources, if a vegetation index can be calculated and the
assumption that relatively high vegetation index values can be considered as trustworthy
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holds. In practice, this will be for most optical remote-sensing imagery with a red and near
infrared band. Here, the NDVI was calculated using the red (B4) and near infrared (B8)
bands:

NDVI =
B8− B4
B4 + B8

(1)

The ground sampling distance (GSD) of the bands in the visual and near infrared
is 10 m, whereas the GSD of band B12 in the short wave infrared is 20 m. All selected
bands were resampled to 10 m based on the nearest neighbor to obtain a regular gridded
data cube. In addition to the spectral bands, Sentinel-2 products are delivered with a
scene classification (SCL) band, which is an output of the Sen2Cor atmospheric correction
processor [37]. It distinguishes 11 classes including information on clouds and cloud
shadows. The products downloaded covered all acquisitions from beginning of December
2018 to the end of January 2020 with a cloud cover of less than 70%. A subset of eight
acquisitions for one of the test sites in France under various atmospheric conditions is
shown in Figure 2.

23 May 2019 07 June 2019 12 June 2019 07 July 2019

17 July 2019 06 August 2019 16 August 2019 21 August 2019

1 km

N

Figure 2. True color images (bands B4, B3, B2) for a subset of the time series acquired with Sentinel-2
under various atmospheric conditions (selected acquisition dates: 23 May 2019, 7 June 2019, 12 June
2019, 7 July 2019, 17 July 2019, 6 August 2019, 16 August 2019, 21 August 2019). The red square area
corresponds to an agriculture field near Montpellier, France (43◦39′53.64′′N, 3◦54′47.88′′E).

3. Methods

3.1. Masking

The masking of outliers in the time series is a common step in most reconstruction
methods [20–22]. The risk of not masking outliers is that contaminated reflectance values
propagate to the reconstructed time series and result in residual noise. In the context
of this study, masking was based on the SCL band. Pixels identified as dark (SCL = 2),
vegetated (SCL = 4), not-vegetated (SCL = 5), water (SCL = 6), and unclassified (SCL = 7)
were considered as clear. The remaining classes were masked as “not clear”: no data
(SCL = 0), saturated or defective (SCL = 1), cloud shadows (SCL = 3), clouds (SCL = 8–9),
thin cirrus (10), and snow or ice (SCL = 11). To mitigate some of the omission errors in the
SCL band at the cloud edges, a distance-based buffer of five pixels (50 m) was added to the
masked pixels. Larger buffer sizes of 100–300 m are commonly used, as proposed in [38].
Here, a relatively small buffer was found to be effective (e.g., masking the contaminated
observation corresponding to the acquisition on 12 June 2019), without removing a large
amount of usable imagery [39].

Part of time series (April to September 2019) of the reflectance in the red (band B4) and
near infrared (band B8) as well as the NDVI for a pixel in an agricultural field (red square
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in Figure 2) is shown in Figure 3. The eight vertical lines correspond to the eight acquisition
dates that have been selected in Figure 2. The masked observations are represented as
empty dots in Figure 3. Some of them can easily be identified as outliers, based on the time
series in Figure 3. For instance, the observation corresponding to 6 August 2019 (vertical
line 6) has a higher reflectance value than expected from the time series (see Figure 3d).
This observation was indeed identified by Sen2Cor as cloudy (with medium probability:
SCL = 8). Furthermore, masked were the observations acquired on 7 July 2019, 17 July 2019
(thin cirrus: SCL = 10) and 21 August 2019 (SCL = 8).

(a) Gap filling (NDVI) (b) Smoothing (NDVI) (c) Reconstructed NDVI

(d) Gap filling (B4/B8) (e) Smoothing (B4/B8) (f) Reconstructed B4/B8

Figure 3. Reconstruction of NDVI (top) and spectral bands B4 and B8 (bottom). Vertical lines
correspond to selected acquisition dates in Figure 2. Masked pixels are interpolated to fill gaps in
the time series (left column). The iterative reconstruction process (middle column) checks whether
observations are trustworty (green) or not (orange) based on the NDVI value. The NDVI values in
green that are above the orange long-term change trend curve (SG) are retained for the next iteration.
Those in red that are below will be replaced by the corresponding values on SG curve. Reconstructed
time series (right column) for the proposed RTSR method (in blue) compared to SG (orange) and the
dynamic temporal smoothing (DTS, in green).

3.2. Adaptive Smoothing

The proposed reconstruction algorithm requires complete time series with contiguous
observations in the temporal domain for each spectral band. Gaps due to missing or
masked observations are filled with linearly interpolated values of clear observations. In
case values are masked near the beginning and end of the time series, the nearest clear
observation is extrapolated.

Even after interpolating the masked values, the reflectance values Rλ,i (with λ rep-
resenting the wavelength and i the acquisition time) can still be noisy. For instance, the
acquisition of 7 June 2019 corresponds to a “clear” observation (vertical line 2 in Figure 3).
However, the reflectance in bands B4 and B8 is higher than expected, based on the previous
and next clear observations (see Figure 3d). The isolated high reflectance can be interpreted
as an outlier. This is also confirmed by the corresponding NDVI value, Ni (see Figure 3a).
Similar to the time series of the interpolated spectral reflectance, Rλ,i, the time series for the
interpolated NDVI value, Ni, also shows an outlier for the acquisition from 7 June 2019.
The isolated drop in NDVI is not compatible with a gradual change of vegetation and can
be regarded as noisy. By inspecting Figure 3a, it is shown that the image scene indeed
contains some cloud cover that could explain the noise.
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Several algorithms for smoothing time series have been proposed in the literature,
including the Whittaker smoother [40], the Savitzky–Golay filter [41], and its modifica-
tions [20,42]. Because the proposed RTSR algorithm was inspired by the work in [20],
the same smoothing filter (Savitzky–Golay) was chosen here. It is important to note that
other smoothing algorithms can easily be adopted in the proposed reconstruction method.
Similar to the approach in [20] to reconstruct the NDVI time series, a first Savitzky–Golay
filter, referred to as SG1, creates the long-term change trend (represented by the orange
lines in Figure 3). It has a relatively wide half-width of the smoothing window (7). This
value is based on our own experiments and on values found in the literature [20]. Likewise,
the parameter for the polynomial degree was set to 2 for SG1 (suggested between 2 and 4
in [20]). Larger values are supposed to better follow higher frequencies in the time series.

As illustrated in Figure 3b, the long-term change trend of the NDVI, SG1(Ni), under-
estimates the NDVI values for the clear observations in May. Based on the assumption
that relatively high NDVI values correspond to trustworthy observations, the upper NDVI
envelope is expected to better reflect the dynamic changes of interest in the NDVI tempo-
ral profile [20–22]. The acquisitions with a calculated NDVI above the long-term change
trend (green dots) are therefore assumed to be more reliable than those with a calculated
NDVI value below the long-term change trend (orange dots). Following this reasoning,
the original spectral reflectance values Rλ,i observed in May can be considered as reliable.
Unlike the NDVI, however, the reflectance values are lower than the long-term change
trend SG1(Rλ,i) (indicated in orange in Figure 3e). The assumption that clouds or poor
atmospheric conditions depress NDVI values does not hold for the individual spectral
bands. For instance, reflectance values in red and near infrared typically increase in case
of cloud cover, but decrease in case of cloud shadow. Neither the upper nor the lower
envelope reflect the dynamic changes of interest in the spectral reflectance temporal profile
that would be observed in clear conditions. A different algorithmic approach for spectral
reflectance was therefore developed, which is listed in Algorithm 1.

The reconstructed reflectance time series R̂λ,i is initialized as the long-term change
trend SG1(Rλ,i). If, for a given acquisition i, the interpolated NDVI value Ni (calculated
from the interpolated reflectance Rλ,i) shows a higher value than the current NDVI estimate
N̂i (calculated from the estimated reflectance R̂λ,i), then the corresponding interpolated
reflectance value Rλ,i is assumed to be reliable and replaces the current estimate R̂λ,i (green
dots in Figure 3e). Else, the current estimate R̂λ,i is retained in favor of the interpolated
reflectance value Rλ,i that is assumed to be noisy for the given acquisition i (e.g., orange
dot in Figure 3e). By comparing the green and orange dots in both Figure 3b,e, it is shown
that the decision which value to select (smoothed or interpolated version) is driven by the
NDVI time series.

The algorithm proceeds by smoothing the retained spectral values with a second
version of the SG filter, referred to as SG2. The smoothed values are then used for the next
iteration. The reconstructed spectral reflectance time series R̂λ,i after the final iteration is
shown in Figure 3c,f in blue. Different stopping criteria for number of iterations can be
implemented. In [20], a fitting-effect index was proposed. Here, the number of iterations
was experimentally fixed to five. More iterations did not further improve results. As
a comparison, the reconstructed time series based on the dynamic temporal smoothing
(DTS [33]) method is also shown (in green).

Algorithm 1 Reflectance reconstruction algorithm

R̂λ,i ← SG1(Rλ,i) � initialize reconstructed reflectance with long-term change trend
while Stopping criterion not met (e.g., 5 iterations) do

if N̂i < Ni then � observation is clear
R̂λ,i ← Rλ,i � update reconstructed reflectance

end if
R̂λ,i ← SG2(R̂λ,i) � smoothen reconstructed reflectance

end while
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3.3. Evaluation Procedure

Different metrics were defined to evaluate the proposed reconstruction method, as
requirements of a successful approach are also diverse. Noise should be reduced while
changes related to vegetation dynamics of interest should be retained. A first metric was
defined to quantify the smoothness, the time-series smoothness index (TSI) as proposed
in [43]. It is calculated as the average absolute difference between the reconstructed
reflectance value R̂λ,i at acquisition time i and the mean of the corresponding values before
and after that acquisition. The difference is then averaged over all T acquisitions in the
time series for each pixel (p):

TSIλ(p) =
1
T

T

∑
i=1
|R̂λ,i(p)− R̂λ,i−1(p) + R̂λ,i−1(p)

2
| (2)

Low TSI values indicate smooth time series and high TSI values indicate noisy time
series for a specific spectral band λ. A similar evaluation method was conducted in [42,44].
Reconstruction methods with a high level of smoothing are expected to perform well on
the TSI metric. However, they risk concealing the temporal changes of interest. Clear
observations with low noise content should be represented in the reconstructed time series.
A second evaluation metric was therefore based on the error between the reconstructed
time series R̂λ,i and the original observation Rλ,i in clear conditions (i = iclear). For each
test site, iclear was selected as the acquisition with the maximum number of clear pixels.
The reconstructed time series R̂λ,i was then compared to the observed time series Rλ,i at
acquisition time iclear (see top of Figure 4). Scatterplots were created per spectral band
based on all clear pixels p in a test site (N in total). Pixels masked as not clear were not
taken into account. In addition, the root mean squared error (RMSE0) was calculated as:

RMSE0
λ =

√
∑N

p=1 (R̂λ,iclear
(p)− Rλ,iclear

(p))2

N
(3)

Next, the most clear observation at acquisition time iclear was masked, resulting in the
metric RMSE1 (see center of Figure 4). This prevented the reconstruction algorithm using it
as a trustworthy observation. Notice the extra gap that was introduced at acquisition time
iclear in addition to the existing gaps due to the already masked pixels. Similarly, RMSE3

was calculated by introducing three consecutive gaps in the time series, i.e., masking the
most clear and its two surrounding observations (see bottom Figure 4).

A final evaluation metric, RMSEMVC, was defined based on the maximum NDVI
composite over the four-month period 1 May 2019–31 August 2019. This is illustrated
in Figure 5. With an average of 41 available observations, the maximum NDVI value
composite of the original time series is expected to minimize problems common to single-
date remote sensing studies, such as cloud contamination, atmospheric attenuation, surface
directional reflectance, and view and illumination geometry [19]. Reconstructed time
series that retain high-quality pixel observations should have a similar maximum NDVI
composite and result in low values of RMSEMVC. On the other hand, higher values of
RMSEMVC are expected for reconstruction methods that alter high-quality observations.
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Figure 4. Metrics RMSE0, RMSE1, and RMSE3 to evaluate the reconstruction method on the ability
to retain high-quality pixels using the most clear observation as a reference.

Figure 5. Evaluation metric based on the maximum NDVI value composite over the four-month
period 1 May 2019–31 August 2019.
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4. Results

The RTSR reconstruction algorithm was implemented in Python using the open source
pyjeo [45] library. Processing was performed on the Big Data Analytics Platform (BDAP [46],
the in-house storage and computing platform of the Joint Research Centre (JRC) of the
European Commission (formerly known as the JEODPP). The results confirmed the po-
tential of the adaptive smoothing using a vegetation index as a proxy for reliability of the
reflectance values. A more detailed analysis of the test site near Montpellier is presented
first, followed by an analysis of the metrics based on all test sites.

4.1. Evaluation of Test Site near Montpellier

In Figure 6, a subset of true color images for the reconstructed time series is shown. The
subset corresponds to the eight acquisitions that are also shown in Figure 2 and illustrates
qualitatively that cloudy and shadow pixels were reconstructed successfully.

23 May 2019 07 June 2019 12 June 2019 07 July 2019

17 July 2019 06 August 2019 16 August 2019 21 August 2019

N

0.5 1 km

Figure 6. Reconstructed true color images corresponding to the acquisitions in Figure 2.

Scatterplots for the spectral bands under study were then created for the same test site
(Figure 7). The pixel values of the observed and the reconstructed time series are compared
at acquisition time iclear and visualized based on the kernel density estimate. It is shown
that the proposed RTSR method outperforms SG and DTS. The linear regression model
indicates a better fit for RTSR, with a strong correlation (R2). In general, the SG- and DTS-
reconstructed surface reflectance values over-estimated the observed surface reflectance
value. This is also illustrated for the example pixel indicated by the red square in Figure 7
(except for DTS in B8). The time series in Figure 3f is based on the same pixel. Both SG-
and DTS-reconstructed values for the clear observation on 23 May 2019 (first vertical line)
indeed over-estimate the observation in B4 (lower graph). For this particular pixel and
acquisition time, only SG over-estimated the observation in B8. The DTS-reconstructed
surface reflectance in B8 was slightly lower than the clear observation, as can seen in
the upper graph in Figure 3f. The RTSR reconstructed value shows little bias in any of
the bands.

Furthermore, the RMSE based on the difference between the reconstructed and clear
observations on 23 May 2019 was lower for RTSR than for the other two method, except for
B8, where it was slightly larger the for this specific test site (0.22 with respect to 0.20 for SG
and DTS). However, it will be shown that for the majority of test sites, RTSR has a smaller
RMSE for all tested bands.
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RTSR SG DTS

B2

B3

B4

B8

B12

Figure 7. Scatterplot comparing the pixel values of the observed and the reconstructed time series
for each spectral bands at acquisition time iclear. The red square corresponds to the pixel that is also
indicated in Figures 2 and 6. The RMSE value, slope, intercept, and coefficient of determination (R2)
of the linear regression are also shown.

4.2. Smoothness Index for Aggregated Test Sites

The smoothness for the three methods was evaluated by calculating TSI according to
Equation (2). A cumulative frequency distribution representing all pixels aggregated for all
test sites is shown in Figure 8. The results show little difference in the smoothness between
the three reconstructed methods, with values for the 95 percentile that are almost identical.
Most variation was found for spectral band B2, with smoothest results obtained for the
non-adaptive Savitzky–Golay filter (SG) followed by the proposed RTSR and DTS. This is
not surprising, as the SG-reconstructed time series represents the long-term change trend
with a relatively wide half-width of the smoothing window. Both RTSR and DTS constrain
the smoothing filter to capture dynamic changes of interest in vegetation.
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Figure 8. Cumulative frequency distribution for the time-series smoothness index in the visible (B2,
B3, B4), near infrared (B8) and short-wave infrared (B12) calculated for three reconstruction methods
(SG, DTS, and the proposed RTSR). Small values indicate smoother time series. The 95 percentile is
indicated in brackets.

4.3. Statistical Analysis of RMSE Metrics for Aggregated Test Sites

As shown by the box plot in Figure 9a, the RMSE for RTSR was found to be smaller
than for SG and DTS for the majority of test sites. This was the case for all spectral bands.
The difference was most distinct in the visual to near infrared part of the electomagnetic
spectrum. Furthermore, in the short wave infrared (band B12), the minimum as well as the
25 percentile value (Q1) and the median value of the RMSE was minimum over all test sites
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for the proposed RTSR. However, for some test sites the RMSE was higher for the RTSR
than for the SG without adjusting the smoothed value, as expressed by the slightly higher
75 percentile value (Q3) and upper whisker (Q3 + 1.5× (Q3 −Q1)).

Following the addition of an extra gap in the time series, the three tested reconstruction
methods performed more similarly (see Figure 9b). This can be expected given that the gap
introduced exactly at acquisition time iclear was also used as a reference. This trustworthy
reflectance value in the time series was not available to adjust the smoothed value in the
RTSR-reconstructed time series. Only clear observations from nearby acquisition times
were able to contribute to the reconstructed time series. When introducing three consecutive
gaps (iclear − 1, iclear, iclear + 1), the difference between the compared methods was even
more reduced, resulting in a comparable RMSE3 (see Figure 9c).

The results for the maximum-value composite over the four-month period 1 May 2019–
31 August 2019 are shown in Figure 9d. The advantage of the proposed RTSR reconstruction
method with respect to the other two reference methods is more expressed than in the
previous metrics. A potential explanation is that only a single observation was used for the
previous metrics. Although the most clear observation was selected, varying atmospheric
conditions over the test site result in reflectance values that are not homogeneous. The
pixels in this reference image contain some noise, which blurs differences in the evaluation
metrics. As motivated in other evaluation studies that obtained reference data from the
10-year average (2011–2020) of NDVI data [25], aggregating data over time reduces noise
in the reference data.

(a) RMSE0 (b) RMSE1

(c) RMSE3 (d) RMSEMVC

Figure 9. RMSE based on the difference between the reconstructed image and the original observation
for the most clear observation (RMSE0, RMSE1, and RMSE3) and for the maximum NDVI value
composite over a four-month period (1 May 2019–31 August 2019).

5. Discussion

5.1. Reference Data and Model Parameters

A major difficulty with the quantitative evaluation of reconstructed time series is the
lack of reference data, which must match the test data in temporal, spatial, and spectral
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dimensions. Several studies have used modeled time series based on the average of multi-
year data as a reference [13,25,47,48]. Noise is often added to the modeled reference time
series to evaluate the performance of the reconstruction method. This assumes that the
modeled data and added noise realistically represent the actual data that will be used
for the model that is evaluated. In [25], reference data were obtained from the 10-year
average (2011–2020) of NDVI data. The advantage of this is a relatively noise-free reference
time series. Taking the average produces a smooth signal as frequent changes related to,
e.g., bidirectional effects, crop-harvesting practice, and sudden changes in land cover, are
smoothed out. Using averaged data as a reference risks favoring reconstruction algorithms
that include a higher level of smoothing. There is a trade-off between reconstructing a
smooth noise-free signal on one hand and retaining the original values of high-quality
pixels that have been observed in clear conditions on the other. The optimal approach
depends on the application. This is also reflected by the tuning parameters that often
accompany reconstruction algorithms [20,33]. The idea is that users can then optimize these
parameters for their application at hand. However, optimizing these parameters adds to
the complexity of a fair comparison of different techniques. The DTS algorithm proposed
in [33] contains 13 parameters, wherein the authors optimized these parameters using a
reference dataset that captured a range of ecosystems and land use/cover types. They claim
the parameters should therefore be fairly robust for applications using vegetation indices
such as the EVI2 or NDVI. However, as reflectance values can have a different variance
structure or dynamic ranges, different optimal parameters might apply.

In a production environment where products are created at regional and continental
scales, the fine-tuning of parameters for individual areas can become tedious and potentially
result in unwanted border effects between areas where parameters differ. Therefore, the
parameters for the three methods under comparison were fixed. A first parameter of the
proposed RTSR is related to the cloud buffer. Due to omission errors of the Sen2Cor cloud
detection algorithm, not all cloudy pixels have been identified as such. The observation
corresponding to the acquisition on 7 June 2019 (second vertical line in Figure 3) can also be
considered as an outlier, but was identified by the SCL band as clear and thus not masked.
Cloudy or shadow pixels that are not masked will not be interpolated during the gap-filling
step of the method. The corresponding surface-reflectance values will be taken into account
and add to the noise in the time series. Because omission errors are more frequent on
cloud edges [49], an extra buffer around clouds masks is commonly used [38]. Here, a
relatively small buffer of five pixels (50 m) was added. It was able to mask the observation
corresponding to the acquisition on 12 June 2019 that was considered by the SCL band as
clear (third vertical line in Figure 3). Using a larger buffer provides the potential to mask
more pixels. For instance, buffer sizes of 100–300 m were proposed in [38]. However, as
suggested in [39], this also removes a large amount of usable imagery. The impact on the
reconstructed time series will be reduced, because the observed surface-reflectance value
near the cloud edge will most likely have a relatively low calculated NDVI value. The
iterative RTSR algorithm will then reject this value and keep the smoothed value.

The parameters of the smoothing filters SG1 and SG2, were fixed based on the values
found in the literature and experimental results. For the half-width of the smoothing
window, values between 4 and 7 were suggested in [20]. Small values result in less
smoothing with the risk of over-fitting the data points, whereas larger values risk not
picking up important variations in the time series. For the first version of the SG filter, SG1,
a value of 7 was selected with a polynomial degree of 2 (suggested between 2 and 4 in [20]).
This creates a relatively smooth signal that is able to represent the slowly varying long-term
change trend. A lower filter width and a higher polynomial degree was set for SG2 (3 and
3 instead of 4 and 2) so that important variations potentially smoothed out with SG1, can
still be picked up by the iterative algorithm. This is illustrated in Figure 3c,f. In contrast to
the long-term change trend (in orange), the reconstructed time series (in blue) represents
well the original values near the green peak (23 May 2019). The reconstruction based on
DTS (in green) neither represents the original values near the maximum nor the minimum
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greenness. The relatively poor performance of DTS is potentially due its application to
surface reflectance data. Although the code in [32] is claimed to be applicable to time series
of satellite observations in general, the DTS presented in [33] was applied to EVI2 time
series and involved an adjustment to the upper envelope. As for the NDVI, the assumption
is that relatively high values correspond to a trustworthy observation. This assumption
does not hold for surface reflectance. The DTS-reconstructed time series was obtained
with the original code in [32] without this adjustment. Nevertheless, for most test sites the
RMSE values of DTS are still in line with the RMSE values obtained in other studies. In [28],
a reconstruction algorithm on Sentinel-2 surface reflectance data was evaluated using a
metric similar to RMSE0 and obtained RMSE values of 0.0426 (B2), 0.0407 (B3), 0.0405 (B4),
and 0.0449 (B8). In [30], reconstructed MODIS Terra MOD09A1 data were evaluated on
cloud-free MODIS Aqua MYD09A1 data: 0.0366 (red band), 0.0519 (near infrared band),
and 0.0499 (short-wave infrared band).

5.2. Limitations

The relatively low number of test sites (100) and the restricted geographic location
(Europe) limit the importance of the evaluation results. Rather than showing the superiority
of the proposed RTSR method, the objective of the evaluation was to show the potential of
dynamic smoothing where the time series approaches the trustworthy observations. The
smoothing method can hereby be adopted from other methods, such as that proposed in
DTS. A diverse set evaluation metric was hereby selected. Results of the TSI showed minor
differences in smoothness for the three methods under comparison. All three methods were
also able to fill gaps in the time series, which is driven by interpolating clear observations
near the missing values. The strength of the proposed RTSR is that in addition to producing
a smooth reconstructed time series, it is capable of retaining trustworthy observations in
the original time series.

A number of limitations of the proposed RTSR method do apply. The time series to be
reconstructed must include the spectral bands to calculate the index used as a proxy for the
reliability of observations (e.g., the B4 and B8 bands of the Sentinel-2 sensor in the case of
NDVI). Another limitation is the assumption that clouds or poor atmospheric conditions
depress NDVI values [18]. This holds mostly for vegetated land but not for all land cover
types. Clear observations of water bodies, for example, can result in lower NDVI values
than cloudy observations. This is not a limitation of the method, but of the proxy used for
trustworthy observations. The proxy can be adapted, for example, by distinguishing pixels
using a water mask. Instead of NDVI, water surface-reflectance values in the near infrared
band can be compared in the iterative algorithm. Clear water pixels usually have lower
reflectance values in this part of the electromagnetic spectrum than clouds. When applying
the RTSR reconstruction algorithm to create analysis-ready data for other applications
beyond vegetation monitoring, the proxy could be adapted in this way. Further evaluation
will be needed and is to be part of future research.

The Savitzky–Golay smoothing filter used in the reconstruction algorithm imposes
another limitation. The RTSR reconstruction method requires a time series of at least
15 observations, i.e., the full width of the Savitzky–Golay filter, to obtain the long-term
change trend curve. A longer time series is needed in practice to improve the results,
typically 20 observations or more. In the case of Sentinel-2 acquisitions, this corresponds to
a seasonal to annual coverage. The maximum length of the time series is only constrained
by the memory resources available, as our implementation reads the entire time series in
memory. Because the RTSR algorithm is a pixel-wise operation and requires no spatial
contextual information, there is no upper limit in the spatial dimension. The image can be
split into smaller tiles that can be run independently in parallel. Tiles can be made as small
as needed to fit in the available memory. For instance, the test sites of 256 by 256 pixels and
covering 62 acquisitions can be processed with less than 2 GB of memory.

Due to the extent of the smoothing window size, there is an edge effect inherent to
the filtering process that impacts the first and last observations of the reconstructed time
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series. In this study, the acquisition period was extended by one month before and after
the period of interest. The respective observations (December 2018 and January 2020) were
afterwards removed from the reconstructed time series. This approach is not suited for near
real-time applications. The Whittaker smoother has a number of advantages over the SG
filter [21,40,50,51]. It employs only past observations and would be a good candidate for
the smoothing filter, in particular for near real-time applications. This will be part of future
research. Another interesting topic is the effect of the cloud mask on the reconstructed time
series and to investigate whether more sophisticated cloud masks can improve results.

6. Conclusions

A spectral reflectance time-series reconstruction (RTSR) method has been proposed to
reconstruct optical remote-sensing time-series data that are hampered by missing or noisy
observations due to varying atmospheric conditions. This method differs from existing
approaches in that it adjusts smoothed values of surface reflectance values to approach
those of trustworthy observations, using a vegetation index as a proxy for reliability. The
results show that the RTSR method is effective in retaining trustworthy observations in
the original time series, with RMSE values in the order of 0.01 to 0.03 in terms of surface
reflectance. The method was evaluated on 100 sites in Europe, with a focus on vegetation.
The Savitzky–Golay filter was employed herein as the smoothing algorithm, but other filters
can also be used. The potential of this method is substantial now that optical remote-sensing
data have become publicly available at a finer spatial and temporal resolution. We hope that
this study will encourage further research in this area, and that the RTSR method will be
applied to create analysis-ready data for other applications beyond vegetation monitoring.
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Abstract: Accurately estimating wheat yield is crucial for informed decision making in precision
agriculture (PA) and improving crop management. In recent years, optical satellite-derived vegetation
indices (Vis), such as Sentinel-2 (S2), have become widely used, but the availability of images depends
on the weather conditions. For its part, Sentinel-1 (S1) backscatter data are less used in agriculture
due to its complicated interpretation and processing, but is not impacted by weather. This study
investigates the potential benefits of combining S1 and S2 data and evaluates the performance of
the categorical boosting (CatBoost) algorithm in crop yield estimation. The study was conducted
utilizing dense yield data from a yield monitor, obtained from 39 wheat (Triticum spp. L.) fields. The
study analyzed three S2 images corresponding to different crop growth stages (GS) GS30, GS39-49,
and GS69-75, and 13 Vis commonly used for wheat yield estimation were calculated for each image.
In addition, three S1 images that were temporally close to the S2 images were acquired, and the
vertical-vertical (VV) and vertical-horizontal (VH) backscatter were calculated. The performance of
the CatBoost algorithm was compared to that of multiple linear regression (MLR), support vector
machine (SVM), and random forest (RF) algorithms in crop yield estimation. The results showed
that the combination of S1 and S2 data with the CatBoost algorithm produced a yield prediction
with a root mean squared error (RMSE) of 0.24 t ha−1, a relative RMSE (rRMSE) 3.46% and an R2 of
0.95. The result indicates a decrease of 30% in RMSE when compared to using S2 alone. However,
when this algorithm was used to estimate the yield of a whole plot, leveraging information from
the surrounding plots, the mean absolute error (MAE) was 0.31 t ha−1 which means a mean error
of 4.38%. Accurate wheat yield estimation with a spatial resolution of 10 m becomes feasible when
utilizing satellite data combined with CatBoost.

Keywords: backscatter; gradient boosting; machine learning; NDVI; precision agriculture

1. Introduction

Agriculture plays a crucial role in the global economy and, as the world’s population
continues to grow, the pressure on agricultural production also increases [1]. Historically,
the primary method for increasing agricultural production was to expand the cultivated
land [2]. This was typically conducted until the early years of the “Green Revolution” (GR),
when cereal production tripled while the area devoted to agriculture increased by just
30% [3]. This improvement was driven by heavy public investments in infrastructure and
research, as well as the implementation of agricultural promotion policies. The GR was
characterized by the widespread use of mechanization, chemical fertilizers, and pesticides,
together with genetic improvements in major crops, aspects that played a significant role
in yield increases from the 1990s onward [4]. Nitrogen, a key component of fertilizers,
is particularly detrimental to the environment when used in excess [5,6]. To address
this issue, the European Union has launched the “Farm to Fork” strategy, which aims to
reduce the use of pesticides and fertilizers. As crop nutrient requirements are related to
production, reliable yield estimates are essential if fertilizer inputs are to be adjusted and
losses reduced [7].
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Recent studies, such as those conducted by Zambon et al. [8], have demonstrated that
technological advances can play a crucial role in achieving sustainable intensification in
agriculture. The development of precision agriculture (PA) began in the late 1990s as a strat-
egy for improving the sustainability of agricultural production through the consideration
of temporal and spatial variability. The utilization of various sensors, including weather
stations [9], multispectral cameras [10], electroconductivity meters [11], and LiDAR [12], is
a common practice within the framework of PA. The implementation of PA allows input
reduction while maintaining yield levels [13] through the targeted distribution of inputs
according to specific crop requirements rather than a uniform application [14]. Despite the
availability of PA technologies, adoption among farmers, particularly smallholders, remains
low [15]. Partially this phenomenon can be attributed to the economic burden associated
with acquiring new technology. Additionally, as technology becomes more sophisticated
and data-intensive, farmers may require expert assistance to validate their decisions [16].

Despite the challenges faced by small- and medium-sized farmers to adopt PA tech-
niques, the recent deployment of the Sentinel-2 (S2) satellite constellation by the European
Space Agency (ESA) has the potential to enhance their utilization. Specifically, the twin satel-
lites of the S2 series (A and B) were engineered to cater to requirements of the agricultural
sector and researchers [17]. These satellites provide high resolution images, with 13 mul-
tispectral bands and a rapid revisit rate, all of which are available free of charge through
ESA’s Copernicus program (https://scihub.copernicus.eu/, accessed on 13 March 2023).
The different bands of the sensor allow the calculation of various vegetation indices (VIs),
which are related to a range of crop parameters, including crop growth [18], crop clas-
sification [19], and soil conditions [20]. For example, Vallentin et al. [21] conducted an
analysis utilizing a time series of 13 years to examine the correlation between crop yield
and different VIs. Comparison of various satellites led to the conclusion that those of higher
resolution, such as the Rapid Eye or S2, performed better when compared to other lower
resolution satellite imagery.

VIs have been widely used in agriculture to estimate crop yield because stressed and
healthy crops emit energy at different wavelengths. For example, the normalized difference
vegetation index (NDVI) is calculated based on the reflectance of vegetation in the red and
near-infrared bands of the electromagnetic spectrum. As plants absorb more red light and
reflect more near-infrared light as they become more vigorous, the NDVI value increases as
the canopy density and biomass increase, and in consequence, the grain yield. Therefore,
NDVI can be used as an indicator of plant health and biomass production. Although the use
of VIs for this purpose dates to the early 1980s [22], it was not until the 1990s that it became
more common [23,24]. With the release of images provided by satellites such as S2 [25],
Landsat [26], MODIS [27], and SPOT [28], the use of VIs has exponentially increased. Recent
studies, such as that proposed by the authors of [29], have utilized VIs derived from S2
in combination with random forest (RF) to estimate yield within individual plots across
multiple wheat fields in England. VIs have also been used to estimate yield across entire
countries [30]. Incorporating satellite-derived information into agrometeorological models
has been shown to improve their accuracy [31,32]. For example, Vicente-Serrano et al. [33]
in Spain combined advanced very high resolution radiometer (AVHRR) and NDVI data
as well as drought indices at different time scales to predict wheat yield in advance. In
other cases, VIs have been used to estimate yield directly [34]. More recently, publications
such as [35,36] have taken a step further by combining machine learning techniques with
satellite information to estimate the yield of specific plots using data from other plots.

However, one major limitation of S2 is cloud cover [37], which can restrict the amount
of usable data available for certain areas and applications. Additionally, while S2 images
have a high spatial resolution, they may not be sufficient for some applications that require
very high resolution data as, for example, field work with vineyards or early disease
detection. Other impediments include misalignment with other remotely sensed data, such
as Landsat 8, the lack of panchromatic and thermal bands, and variations in the spatial
resolution of the bands [38].
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Sentinel-1 (S1) data are also available for free through the Copernicus program.
S1 is a synthetic aperture radar (SAR) designed for radar imaging and can provide data
in various modes and polarizations (VV, HH, VH or HV), depending on the emission
and acquisition signal mode. S1 operates in the C polarimetric band, which ranges from
5.405 to 5.625 GHz and has a wavelength of 5.6 cm. S1 provides information about objects
after being impacted by microwaves (C-band). Importantly, radar data are not affected
by atmospheric conditions such as clouds and can also be acquired at night. The spatial
resolution of S1 is 10 m, similar to the maximum resolution of S2, and it typically has a
revisit period of 6 days [39]. However, the interpretation of the signal from S1 is complex
and requires specialized analysis. For example, for a vegetated surface, the C-band signal is
a combination of contributions from the soil, canopy, volume scattering within the canopy,
and interactions between the soil and vegetation [40]. As a result, its use in agriculture is
not as widespread as that of S2.

The computational development and utilization of machine learning techniques have
become increasingly important in the field of PA [41]. These technologies allow for the
processing and analysis of large amounts of data collected from various sources, includ-
ing satellite imagery, drones, and Internet of Things (IoT) sensors, to generate accurate
and detailed predictions [42]. Different types of machine learning algorithms can be em-
ployed in this process, including supervised and unsupervised algorithms. Supervised
learning algorithms, such as decision trees, RF, and support vector machines (SVMs),
can be used to classify different crops, predict crop yields or detect patterns in crop
growth [43–45]. Unsupervised learning algorithms, such as k-means and principal compo-
nent analysis (PCA), can be utilized to identify patterns or delineate site-specific manage-
ment zones (SSMZs) [46].

Over the past few years, a variety of algorithms have been tested to estimate wheat
yield. Tang et al. [47] utilized multiple linear regression (MLR) to estimate yield, with
root mean squared error (RMSE) values ranging from 0.54 to 1.02. In the same study, the
backpropagation neural network (BPNN) was also tested, obtaining better results with
RMSE values ranging from 0.30 to 0.68. Hunt et al. [29] used the RF algorithm to estimate
wheat yield in different plots. These results were compared with those obtained from MLR.
The RF algorithm consistently obtained superior results for all the considered scenarios.
Support vector machine (SVM) is another commonly used algorithm for this purpose.
In the study published by Bebbie et al. [25], the coefficient of determination (R2) value
obtained was always greater than 0.80. Meraj et al. [48] compared the ability of SVM
and RF to estimate the area of wheat cultivation in large areas of India, obtaining better
results with RF. Finally, deep learning algorithms such as the long short-term memory
(LSTM) also produced adequate results, with an RMSE of 0.64 t ha−1 when estimating
wheat grain yield [49]. Srivastava et al. [50] compared the performance of eight different
algorithms using a 20-year time series and found that the convolutional neural network
(CNN) produced the best results. Finally, Cao et al. [51] compared the performance of
MLR, SVM, RF, and XgBoost to estimate winter wheat yield in northern China combining
machine learning with a global dynamical atmospheric prediction system.

Recently, in the latter part of the 1990s, a new type of supervised algorithm involving
gradient boosting emerged. Gradient boosting is a machine learning technique that aims to
enhance the accuracy of predictive models. The method operates by repeatedly training
a sequence of base models and assigning increased weights to examples previously mis-
classified by prior models with the purpose of focusing on the most challenging samples.
These algorithms involve the combination of multiple simple models with the goal of
creating a robust ensemble model. The first of these algorithms to be developed was the
adaptive boosting (AdaBoost) algorithm, published by Yoav Freund and Robert Schapire
in [52]. The gradient boosting machine (GBM), proposed by Jerome Friedman in [53], is an
extension of AdaBoost, but instead of assigning weights to examples, it utilizes gradient
descent to optimize the parameters of the base model. GBM is an iterative algorithm that
generates a series of decision trees, with each tree being intended to correct the errors made
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by the preceding tree. Another gradient boosting algorithm, the extreme gradient boosting
(XGBoost) algorithm, was developed by Tianqi Chen in [54] and is optimized for working
with large datasets. In 2017, the categorical boosting (CatBoost) algorithm was released by
Prokhorenkova et al. [55], which is optimized to handle categorical variables. Currently,
CatBoost is considered a powerful algorithm and is widely used owing to its ability to
process categorical data and its high capacity to generalize. However, its application in
agriculture is not yet widespread.

The challenge of yield estimation in modern agriculture presents numerous opportu-
nities for decision making at both farmer and institutional level, including future action
planning, the modulation of input supply according to crop needs, and harvest storage. In
this regard, it should be noted that several global-scale works, in addition to satellite and
yield information, use weather data [56] and soil information [57] in their yield estimation
models. However, it is difficult to have weather and soil information at a sufficient level of
detail when making yield estimation at intra-plot level.

Remote sensing technologies also offer new possibilities for improving yield estimation
through the use of more advanced algorithms. Taking these considerations into account,
the aim of the present study is to conduct a comprehensive analysis of the potential of
remote sensing and machine learning techniques for yield estimation. More specifically, the
study aims to determine whether the utilization of information obtained from S1 and S2
satellite imagery on different days enhances the accuracy of yield predictions. The study
also evaluates the potential benefits of combining S1 and S2 data and, finally, aims to
determine the effectiveness of the CatBoost algorithm in comparison to other commonly
used methods such as MLR, SVM, and RF.

The analyses are conducted with a practical approach that applies to agriculture.
High resolution wheat yield data from 39 plots, obtained with a yield monitor during
the 2021 season, are used. Additionally, three cloud-free S2 images representing different
phenological stages of wheat are analyzed, from which 13 VIs are calculated. A total
of three S1 images, acquired on dates close to those of S2, are also examined for their
backscattering values in vertical-vertical (VV) and vertical-horizontal (VH) polarizations.

2. Materials and Methods

2.1. Study Area

This study was carried out with data collected in the 2021 season in 39 wheat (Triticum
aestivum L.) plots located in the Llanada Alavesa region, situated in the center of the
province of Araba/Álava in northern Spain (Figure 1). This region is characterized by
agricultural fields growing mainly winter cereals (wheat and barley), potatoes, colza,
legumes, forage maize, and sugar beet. Wheat sowing was carried out at a density
of 230 kg ha−1 with Filón variety seeds between 20 and 30 November 2020. All fields
were fertilized with chemical fertilizers, averaging 53 kg ha−1 of N, 36 kg ha−1 of P, and
102 kg ha−1 of K in the growth stage (GS) GS21 that corresponds to tillering [58]. For the
top-dressing fertilization, 117 kg ha−1 N was applied in the stem elongation phase (GS30).

According to the Köppen classification, the Llanada Alavesa region has a temperate
oceanic climate (Cfb) [59] characterized by an average annual air temperature of 11.7 ◦C.
During the summer months, the average temperature reaches 20 ◦C, while the winter
months are relatively mild with an average temperature of 6 ◦C. Average annual rainfall
was 750 mm, with July and August being the driest months with less than 50 mm of
precipitation. The study plots were established over two distinct soil types developed on
two different lithologies. Thus, soils on the lithology from the Cretaceous geological era are
characterized by steep and irregular terrain, are relatively shallow (20–70 cm), and have a
high concentration of calcium carbonate (CaCO3) of over 50%. The dominant soil fraction
is silt, which has a concentration exceeding 40%. The second type of soil, sourced from
Quaternary material, is deeper (over 120 cm), has a lower concentration of CaCO3 (<25%)
and a loamier texture, and the stone content is higher [60].
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Figure 1. Upper left-hand side of the image shows the general location of the study area within Spain.
Upper right-hand side shows detail of the study area with the average yield of each plot (right part).
Below, wheat phenological stage and dates when satellite images were acquired. Red squares
represent S1 and blue squares represent S2.

The average grain yield of the studied plots (Figure 1) ranged from 4.76 t ha−1 for
the G32 plot to 8.91 for the G7 plot, with an average value for all plots of 7.01 t ha−1. Plot
size ranged from 0.72 to 9.42 ha, with 2.46 ha being the average, representing well Llanada
Alaves’s plot diversity.

2.2. Sentinel-2 Data and Derived Vegetation Indices

The S2 mission, operated by the European Space Agency (ESA), consists of two twin
satellites launched in June 2015 and March 2017. These satellites provide multispectral im-
agery with 13 bands (https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-
2-msi/resolutions/spatial, accessed on 13 March 2023). In this study, four spectral bands
were utilized: blue (B2, centered at 492.4 nm), green (B3, centered at 559.8 nm), red (B4, cen-
tered at 664.6 nm), and near-infrared (B8, centered at 832.8 nm) with a spatial resolution of
10 m. In theory, the combined use of both satellites provides an image of the study area
every five days. However, in reality, the availability of cloud-free images is much lower.
For this study, three cloud-free images of the study area were selected. The first image
(Day 1) was obtained on 24 March 2021, when the crop was in the initial stage of stem
elongation (GS30 according to Zadocks [58]). On the second date (Day 2), 23 April 2021,
the crop was between GS39 (flag leaf ligule just visible) and GS49 (first awns visible).

The final image, taken on 5 June 2021, (Day 3), depicts the crop between complete
anthesis and medium milk stage (GS69-75). The satellite data were downloaded from the
Copernicus Open Access Hub (https://scihub.copernicus.eu/, accessed on 13 March 2023)
in the form of Level 2A products (Bottom-of-Atmosphere reflectance images), which have
undergone atmospheric correction [61]. The tile 30 TWN of satellite S2 fully covered the
study area.

In this study, the SNAP software was used to calculate the 13 VIs (Table 1) used for
wheat or barley (Hordeum vulgare L.) grain yield estimation.
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Table 1. Vegetation indices calculated in this study with their formulae according to the S2 bands used.

Vegetation Index Abbreviation Formula Reference

Normalized Difference
Vegetation Index NDVI (B8 − B4)/(B8 + B4) [62]

Green Ratio
Vegetation Index GRVI B8/B3 [63]

Green Normalized
Difference

Vegetation Index
GNDVI (B8 − B3)/(B8 + B3) [64]

Green Difference
Vegetation Index GDVI B8 − B3 [65]

Enhanced
Vegetation Index 2 EVI2 2.4 × ((B8 − B4)/(B8 + B4 + 1)) [66]

Chlorophyll Vegetation
Index CVI B8 × (B4/(B3 × B3)) [67]

Color Index CI (B4 − B2)/B4 [68]
Wide Dynamic Range

Vegetation Index WDRVI ((0.1 × B8) − B4)/((0.1 × B8) + B4) [69]

Transformed Vegetation
Index TVI

√
((B8− B4)/(B8 + B4) + 0.5) [70]

Soil Adjusted Vegetation
Index SAVI ((B8 − B4)/(B8 + B4 + 0.5)) × (1 + 0.5) [71]

Simple Ratio 800/670
Ratio Vegetation Index RVI B8/B4 [72]

Optimized Soil Adjusted
Vegetation Index OSAVI (1 + 0.16) × ((B8 − B4)/(B8 + B4 + 0.16)) [73]

Nonlinear
Vegetation Index NLI ((B8 × B8) − B4)/((B8 × B8) + B4) [74]

2.3. Wheat Grain Yield Acquisition, Preprocessing, and Connection with Sentinel Data

Spatially dense wheat grain yield data were obtained by installing a yield monitor
and a GPS receiver on a John Deere T560 harvester. The GPS receiver could receive RX
corrections, enabling it to be spatially positioned with an error lower than 15 cm, making
it suitable for PA. Yield data were collected between 19 and 25 July 2021. To prepare the
yield data for further analysis, they were pre-processed to eliminate anomalous measure-
ments that can greatly affect the results [75]. Firstly, data with incorrect latitude/longitude
measurements were removed. In the pre-processing steps, data with moisture concentra-
tions below 8%, or values recorded when the harvester was operating at an inadequate
speed, were removed to ensure the accuracy of the data. Afterwards, some steps of the
methodology described by Taylor et al. [76] were applied. In the first step, yield values
that exceeded or did not reach the established threshold were eliminated. In the next step,
data points that were more than 2.5 standard deviations above and below the plot mean
were removed. In the following step, the local Moran’s I test [77] was applied to eliminate
spatial outliers in our case, high yield measures surrounded by low yield measures or vice
versa. In addition, to ensure that every S2 pixel was entirely within the study plot, a safety
buffer of 15 m was established in each plot to minimize the distortion produced by the
edge effect. Pixels located out of the buffer were removed. Data were then interpolated by
ordinary kriging to a continuous yield map by selecting the semivariogram that best fit to
the yield data for each plot. The most frequently used semi-variograms were exponential,
spheric or rational quadratic. The maps were re-sampled to a resolution of 10 × 10 m and
aligned with S1 and S2 pixels. Finally, a grid of points was generated in vector format
(ESRI shapefile) and the information from the different rasters was transferred to the vector
layer using the ‘extract values’ function in ArcGIS 10.8. This process resulted in a dataset
composed by 6219 yield measures.
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2.4. Sentinel-1 Data and Retro Dispersion Calculation

S1 ground range detected (GRD) images [78] were used in this study. These images
are synthetic aperture radar (SAR) data acquired by the S1 satellite with a resolution of
5 × 20 m and a swath width of 250 km. The interferometric wide (IW) mode of acquisition
was used, resulting in the acquisition of two polarization types: VV and VH. The images
provide backscatter intensity information and are pre-processed at Level 1, resulting in
geolocated, radiometrically calibrated, and terrain-corrected complex data in the slant
range. Three images (27 March 2021, 20 April 2021, and 7 June 2021) acquired on days
close to those acquired for S2 were downloaded from the Copernicus Open Access Hub
(https://scihub.copernicus.eu/, accessed on 13 March 2023). To make the acquired images
useful, they were processed using the SNAP software following the procedure outlined
in Figure 2. This processing included adjusting the image tile size to the study area and
calculating accurate orbits, as the metadata provided with the radar products is not always
sufficiently accurate. Precise orbit information was obtained by using the ‘apply orbit file’
function, which is available a few days after image capture. Other necessary steps included
improving image quality through the removal of thermal noise and radiometric artifacts
from image edges, image calibration to obtain radiometrically calibrated backscatter images,
and the elimination of granular noise caused by backscatter from certain elements (salt and
pepper effect). The Lee Sigma filter was used in this process. Geographical coordinates
were subsequently added to the images and, in the last step, backscatter values were
finally converted to decibels (Figure 2). VV and VH backscatter information were extracted
using the same georeferenced grid used to extract the information from S2 VI data. In total,
two variables (VV and VH polarization backscatter information) were obtained for
each date.

Figure 2. Workflow followed for the pre-processing of S1 images to obtain backscatter information.

2.5. Machine Learning Algorithms

Selecting the appropriate algorithm for a specific task is a crucial step in machine
learning. The literature suggests that no single algorithm is the best, and the selection
should be based on data characteristics and the desired outcome [79]. Therefore, it is
imperative to evaluate the suitability of different algorithms for a given task to obtain
optimal results.

In this study, the performance of four supervised machine learning algorithms was
evaluated for a specific task: MLR [80], SVM [81], RF [82], and CatBoost [55]. Their election
was based on their popularity and versatility in the modern agriculture literature [83].
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Hyperparameter optimization for the SVM, RF, and CatBoost algorithms was per-
formed using the GridsearchCV method implemented in the Scikit-learn library [84]. The
MLR algorithm does not require hyperparameter optimization.

In this study, the MLR algorithm was implemented with Lasso regularization to
reduce the complexity of the model and mitigate the effects of collinearity present between
some of the variables. Collinearity is a phenomenon where two or more predictors in a
multiple regression are highly correlated and can inflate the regression coefficients [85].
The Lasso function addresses this issue by limiting the sum of the absolute values of the
model coefficients.

For its part, SVMs can be used for classification and regression tasks. One of the key
advantages of using SVMs is their ability to identify the optimal boundary or decision
surface that separates different classes in a dataset. The main idea behind SVMs is to find
the best boundary or decision surface that separates different classes in a dataset. This is
achieved by maximizing the margin, which is the distance between the boundary and the
closest data points from each class [81]. Additionally, SVMs possess the ability to handle
high-dimensional and non-linearly separable data by utilizing kernel functions to map the
input data into a higher-dimensional space where a linear boundary can be found. This
enables SVMs to perform well on complex and non-linear datasets. In this study, the kernel
parameter was changed from ‘linear’ to ‘RBF’ to achieve this purpose. However, it should
be noted that SVMs are less resistant to overfitting than other algorithms. Overfitting is a
prevalent issue in machine learning, where a model performs well on the training data but
poorly on unseen data. This is due to the margin maximization technique employed by
SVMs being susceptible to overfitting [86]. To mitigate this risk, effective optimization of
the ‘C’ hyperparameter is required. A large value of C results in the generation of a complex
model, which minimizes training errors but also increases the likelihood of overfitting.
Conversely, a small value of C leads to the production of a simpler model, which is less
susceptible to overfitting but may not be as effective in fitting the training data [87]. In the
present study, various values (1, 10, 100, 1000) of the C hyperparameter were experimentally
evaluated to determine the optimal value that strikes a balance between predictive accuracy
and model overfitting. Among all the tests carried out, the best results were obtained with
C = 10. The gamma parameter was modified to 0.1.

The third algorithm used in the study is an ensemble algorithm that combines multiple
decision trees to make predictions and is known as RF. The principle of RF is to construct
a large number of decision trees and combine their predictions through methods such as
majority voting or averaging [82]. It works by randomly selecting a subset of features to
split the decision trees. This approach reduces the overfitting and variance issues commonly
associated with single decision tree models. Additionally, RF can handle high-dimensional
and correlated features, and can be used for both classification and regression tasks [88].
Moreover, the algorithm provides an estimate of feature importance, which can be useful
for feature selection and understanding the underlying relationships in the data. Despite
its advantages, RF is sensitive to noise in the dataset and can be computationally expensive
for large datasets. Additionally, the algorithm can be sensitive to the number of trees used
in the ensemble, requiring proper tuning to achieve optimal performance. Therefore, one
of the hyperparameters optimized using the Gridsearch.cv function was the number of
trees used in the ensemble, with the best results achieved with 300 trees. In addition, the
maximum number of features parameter was determined using the ‘auto’ function. This
function allows to use all features in each split. After tests with different combinations of
tree depth (4, 5, 6, 7, 8, 10, 45, 50), the best result was obtained with 45 nodes.

CatBoost is a gradient boosting algorithm for decision trees that is specifically designed
to handle datasets with many categorical variables [55]. The algorithm uses the gradient
descent to optimize the parameters of the decision trees, which helps to improve the
performance of the model [89]. The algorithm works by building and combining multiple
decision trees. It uses a subset of the data to build each decision tree and then combines
the predictions of all the decision trees to make the final prediction. The algorithm also
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utilizes a technique called ‘permutation feature importance’ to determine the importance of
variables in the model. This technique is based on measuring the impact of each feature on
the model’s performance by randomly shuffling the values of a single feature. The feature
with the largest impact on the model’s performance is considered the most important [55].
Additionally, CatBoost is able to handle missing values in the data without the need for
imputation techniques.

The CatBoost configuration that yielded the best results consisted of 18,000 iterations
with an early stopping value of 200, which was implemented to prevent overfitting of the
algorithm. The depth of the trees was set to six, and the ‘MultiRMSE’ loss function was
selected, with a learning rate of 0.015. The parameter ‘leaf_estimation_iteration’ was set to
10. As the dataset was not excessively large, it was trained on the computer’s CPU, but
CatBoost has the option to train on a GPU if needed.

In addition to utilizing supervised algorithms, the present study incorporated the
iterative self-organizing data analysis technique (ISODATA) unsupervised algorithm for
data classification. This iterative algorithm begins by assigning an arbitrary mean to each
class, and subsequently reassigns pixels based on minimizing the Euclidean distance to
the mean value of their assigned class. The iteration process continues until either the final
iteration is reached or the threshold for the maximum number of pixels changing class is
not exceeded.

In this study, a data partitioning strategy was implemented with the purpose of train-
ing and validating the algorithms. The strategy entailed the random selection of 70% of
the data for training and 30% for testing. This nearly ensures that testing is performed
with data from all plots. However, in Section 3.6, the authors deviated from the standard
data partitioning strategy and adopted an alternative approach. Except for data belong-
ing to one plot, the rest were utilized for testing while the data from the excluded plot
was reserved for testing. Iteratively the same process was performed for all plots. This
methodology aimed to evaluate the algorithm’s ability to predict the yield of a particular
plot without utilizing information from that plot. Algorithms were trained and tested using
functions provided by the Scikit-learn library over our datasets. The performance of the
regression algorithms was evaluated using R2, RMSE, and the percentage of mean absolute
error (%MAE).

Obtaining an accurate estimated yield map is the first step towards creating a fertilizer
prescription map based on yield data in cases where a yield monitor is not available. With
this in mind, in Section 3.6, the G15 plot was selected to demonstrate the possibilities
offered by the estimated yield map for creating prescription maps. Since prescription maps
usually consist of two or three zones, the unsupervised ISODATA algorithm was selected
to divide the datasets into two classes. This procedure was applied to the actual yield data
and the estimated yield data. The similarity between the classified estimated yield map
and the classified real yield map was measured using the ‘accuracy’ and Kappa Index (KI)
metrics, both widely used to assess the performance of classification algorithms.

2.6. Accuracy Assessment
2.6.1. Root Mean Squared Error (RMSE)

The RMSE is a commonly used statistic that measures the difference between predicted
values and observed values in a regression problem. It is defined as the square root of
the mean of the squared differences between the predicted and observed values. A lower
RMSE value indicates a better fit of the model to the data. It is widely used in regression
problems to evaluate the performance of a model (Equation (1)):

RMSE =

√√√√ N

∑
i=1

(Ei−Oi)2

n
(1)

where O represents the observed value, E the estimated value, and n represents the number
of samples.
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2.6.2. Relative RMSE (rRMSE)

The relative RMSE is the ratio of the RMSE to the mean values of field measurements
(yield (t ha−1)):

rRMSE =
RMSE
∑N

i=i Oi
N

(2)

where O represents the observed value and N represents the number of samples.

2.6.3. Coefficient of Determination (R2)

The coefficient of determination is a statistical metric used in the context of predictive
modeling. The primary goal is to quantify the proportion of variance in the dependent
variable that is predictable from the independent variable(s) in a statistical model. It is
calculated as the ratio of the explained variation to the total variation of the dependent
variable [90]. Equation (3) shows the R2 formula:

R2 = 1− σ2
r

σ2 (3)

where σ2
r is the sum of the squared differences between the predicted values (from the

model) and the actual values, and σ2 is the sum of the squared differences between the
actual values and the mean of the actual values.

2.6.4. Percentage of Mean Absolute Error (%MAE)

This is a statistical metric that quantifies the magnitude of the difference between
two continuous variables. It is commonly used to evaluate the accuracy of a predictive
model by comparing the predicted values to the actual values of the dataset. It is calculated
as the average of the absolute differences between the predicted and actual values. Its
mathematical formulation is represented in Equation (4):

%MAE =

(
1
n ∑n

i=1|yi − xi|
P

)
× 100 (4)

where yi is the value of the prediction, xi represents the observed value, n the total number
of observations, and P the mean observed yield of each plot.

2.6.5. Accuracy

The accuracy error metric is a metric to evaluate the performance of a model with
categorical data. Accuracy is calculated as the ratio of the number of correct predictions
made by the model to the total number of predictions. The accuracy was expressed as a
percentage, with values closer to 100% indicating a higher degree of accuracy:

Accuracy =

(
Cp
Tp

)
× 100 (5)

where Cp are correct predictions and Tp are total predictions.

2.6.6. Kappa Index (KI)

The Kappa index (KI) is a measure of accuracy when comparing actual and predicted
yield maps. KI is a widely used statistical metric that quantifies the agreement between
two categorical classifications, considering the possibility of agreement by chance. The KI
was calculated using the formula:

KI =
(Oa− Ea)
(1− Ea)

(6)
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where Oa is the observed agreement and Ea is the expected agreement.

3. Results

3.1. Relationship between Vegetation Indices and Wheat Yield Using Sentinel-2 Imagery

Figure 3 shows correlation matrices for the three different dates of VIs derived from
S2 and yield. A high degree of collinearity among the different VIs was observed on the
three dates, with Day 2 (GS39-49) showing the strongest correlation between indices with
r values above 0.9. In addition to the negative correlation, when compared to the other
VI results, the CI index obtained lower r values, ranging from −0.59 to −0.76 (Figure 3,
Day 2). Correlations between the VIs of Day 1 (GS30) were slightly lower but remained
above 0.8. Furthermore, the correlation between different VIs for Day 3 is not homogeneous
(as indicated by the broader color palette of the matrix), and r values varied from 0.97 to 0.58.
Given the high degree of collinearity observed among the VIs, some measures were taken
to address this issue during the implementation of the different algorithms. One such
measure employed was the Lasso correction of the MLR method.

Figure 3. Cont.
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Figure 3. Correlation matrix between the different VIs of the three days (Days 1–3). The last column
shows the correlation with the wheat grain yield.

In terms of the relationship between the different VIs and yield, the highest values
were measured for Day 2 (GS39-49). Except for the negative correlation of CI (−0.65), the
values ranged from 0.81 for GRVI to 0.73 for GDVI. In comparison, for Day 3 (GS69-75),
the correlations ranged from 0.72 for GNDVI to 0.54 for GDVI. Although the increase in
correlation is not significant (−0.66 compared to −0.65), CI was the only VI that increased
the correlation. The lowest correlations were found with the VIs of Day 1 (Figure 3), with
values ranging from 0.51 (RVI and GRVI) to 0.26 for GDVI. The correlation of CI was inverse
(−0.45). Overall, the highest value was obtained with GRVI for all three dates, whereas
GDVI exhibited the lowest values.

3.2. Exploring the Impact of Date Selection on Wheat Yield Prediction Using VIs Derived
from Sentinel-2

In this study, the effect of adding different VIs derived from S2 corresponding to the
three dates and its combination on the prediction of wheat grain yield was investigated
using four different algorithms: CatBoost, SVM, RF, and MLR. All results (RMSE and R2)
(Figure 4) were obtained from the testing dataset. A consistent pattern was observed for all
dates, with the best results obtained using CatBoost and the worst using MLR. When using
the data from a single day, the R2 and RMSE values varied greatly depending on the date.
The worst results were always obtained when using VIs from Day 1. Thus, RMSE oscillated
between 1.20 for CatBoost and 1.45 for MLR while R2 ranged between 0.45 and 0.33. In
contrast, the best results for a single day were obtained with Day 2 and CatBoost, reducing
the RMSE to 0.56 and increasing the R2 to 0.74.

When considering the predictive ability of the model using two different dates,
the performance was better than when using each day separately. The R2 of CatBoost
ranged between 0.81 for the Day 1–2 dataset and 0.82 for the Day 2–3 dataset (Figure 4),
while the R2 value of MLR ranged between 0.65 for the Day 1–2 dataset and 0.69 for the
Day 2–3 dataset. This result suggests that the best predictions were obtained with the dates
corresponding to GS39-49 and GS69-75.

Nonetheless, the results indicate that all algorithms obtained the best results when
they were trained with a dataset composed of the three dates (corresponding to GS30,
GS39-49, and GS69-75 phenological stages). The R2 values ranged from 0.859 for the
CatBoost algorithm to 0.77 for MLR, while RMSE ranged from 0.32 for CatBoost to 0.50
for MLR.

196



Remote Sens. 2023, 15, 1640

Figure 4. R2 and RMSE of the four tested algorithms (MLR, Multiple Linear Model; RF, Random For-
est; SVM, Support Vector Machine; CatBoost) when trained with VIs derived from S2 corresponding
to different dates. It also shows accuracy metrics of the combination of different days.

3.3. Exploring the Impact of Date Selection on Wheat Yield Prediction Using Backscatter
Information Derived from Sentinel-1

In this study, the feasibility of using backscatter information obtained from S1 at
various dates to train and test machine learning models was evaluated. The results,
represented in terms of R2 and RMSE, obtained during the testing process are presented
in Figure 5.

Figure 5. R2 and RMSE of the four algorithms (MLR, Multiple Linear Model; RF, Random Forest;
SVM, Support Vector Machine; CatBoost) when trained with VV and VH polarization backscatter
information derived from S1 corresponding to three different dates. It also shows their combined use.

The pattern observed with S2 is repeated with the S1 data, where the best results were
obtained using CatBoost and the worst using MLR. In the case of employing single days,
the results showed notable variations depending on the selected day. For example, the
R2 value for Day 2 was 0.36, while for Day 3, it decreased to 0.08 when using CatBoost.

For the S1 data, the combination of multiple dates improved the results compared
to a single date. The highest R2 values were obtained when using information from the
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three days (Days 1–3). Among the algorithms tested, CatBoost showed the best results
with an R2 of 0.69, while the lowest R2 value of 0.20 was obtained with the MLR model
(Figure 5). The RF and SVM models showed similar results, with the latter showing a
slightly better performance.

It is noteworthy that combining data from multiple dates did not always result in
better performance compared to using data from a single date. For example, the RMSE for
Day 2 was 1.34, while the combination of Days 1–3 was 1.59 with the CatBoost algorithm.

Additionally, the greatest differences in the RMSE and R2 were observed between the
algorithms that can analyze non-linear relationships (RF, SVM, and CatBoost) and the one
that only analyzes linear relationships (MLR) when compared to the information of S2. In
all cases, the non-linear algorithms showed better results (Figure 5).

3.4. Comparison of Machine Learning Algorithms for Estimating Wheat Yield Using
Multisource Data

The results presented in the previous section indicate that the best results were con-
sistently obtained using the information from Day 1-2-3. Having determined the optimal
date combination, the next objective was to determine which algorithm achieved the best
results for it. For this purpose, the RMSE and rRMSE were used. To capture the variabil-
ity of each algorithm more accurately, the authors trained and validated each algorithm
10 times using different partitions of three datasets (S1, S2, and S1S2), resulting in 30 RMSE
and rRMSE values for each algorithm (Table 2).

Table 2. Mean values of RMSE, SD and rRMSE of the four algorithms (MLR, Multiple Linear
Model; RF, Random Forest; SVM, Support Vector Machine; CatBoost). Three different datasets were
employed: S1 using only data from S1, S2 using data only from S2 and S1S2 using data from S1 and S2.

Algorithm n * Mean RMSE (t ha−1) SD rRMSE (%)

MLR 30 1.1 0.77 15.25
RF 30 0.69 0.35 9.78

SVM 30 0.62 0.34 8.92
CatBoost 30 0.41 0.29 5.91

* Each algorithm was trained and tested with ten different partitions of each dataset (S1, S2 and S1S2).

Table 2 shows the statistics associated to the prediction error obtained after running
each algorithm 10 times with each of the three datasets (S1, S2 and S12). CatBoost produced
the lowest error with an RMSE of 0.41 t ha-1 and a mean rRMSE of 5.91%. The SD of
the RMSE for CatBoost was 0.29, the lowest among the four models. CatBoost not only
produced results that were closest to the actual data, but also had less variability in the
results compared to the other algorithms. RF and SVM performed similarly, with an
average RMSE of 0.69 and 0.62 t ha−1, respectively. The values of rRMSE were 9.78% and
8.92% (Table 2). The SD for both was nearly the same, 0.35 for RF and 0.34 for SVM. Finally,
MLR produces the highest mean RMSE of 1.1 t ha−1, with a mean rRMSE of 15.25% and an
SD of 0.77.

After determining that CatBoost was the algorithm with the lowest RMSE and rRMSE
among the four evaluated algorithms, the subsequent step involved evaluating the per-
formance of CatBoost with each dataset (S1, S2, and S1S2). To this end, CatBoost was
trained and tested with each of the three datasets 10 times with different partitions of data
to train and test. The results presented in Figure 6 show that the RMSE varied depending
on the dataset used for yield estimation. The use of the S1S2 dataset produced the lowest
error, with a mean RMSE of 0.24 t ha−1, which is an rRMSE of 3.46%. The RMSE values
ranged between 0.22 and 0.26 t ha−1. The mean RMSE obtained with S2 was 0.34 t ha−1

and the rRMSE was 4.86%. RMSE values ranged from 0.30 to 0.37 t ha−1 (Figure 6). Finally,
the highest RMSE values were obtained when using only S1 data, with a mean RMSE
of 0.79 t ha−1 and values ranging from 0.55 to 0.83 t ha−1. The rRMSE for the S1 dataset
was 11.34%. Therefore, the use of combined S1 and S2 (S1S2) data reduced the error by 30%
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compared to using S2 data alone. Figure 7 presents the comparison of the predicted values
versus the real values using CatBoost with S1S2. The R2 value was 0.95.

Figure 6. RMSE obtained using the CatBoost algorithm with data from S1 (Sentinel-1), S2 (Sentinel-2),
and the combination of both (Sentinel-1 and Sentinel-2).

Figure 7. Linear regression between observed and predicted wheat grain yield for the test dataset
obtained using the CatBoost algorithm and the S1S2 dataset.

3.5. Contribution of the Variables to the Defintive Algorithm

Figure 8 shows the 10 variables that made the greatest contribution to the CatBoost
model, explaining 43.05% of the total variability. Of the 45 variables used (13 VIs and
two backscatter variables for each day), the VV polarization variable (VV_Day2) derived
from S1 and corresponding to April 20 (Day 2; GS39-49) contributed most to the model,
with 6.69% of the explained variability. The second highest contributor was the GRVI_Day2
variable, which explained 5.47% of the variability. This variable, derived from S2, corre-
sponds to April 23. The VH_Day1 variable, as shown in Figure 8, explained 2.99% of the
total variability.
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Figure 8. The 10 variables from S1 and S2 that most contributed to the model.

The analysis of the variables derived from S2 revealed a predominance of those
obtained on Day 2 (April 20, GS39-49). However, there was also a representation of those
from Day 3 (June 5, GS69-75), such as RVI. It is notable that the CVI variable is the only
VI represented on two different days. With respect to the variables derived from S1, those
corresponding to Day 2 explained more variability. However, in contrast to those derived
from S2, in the case of S1 Day 1 (GS30) variables explained more variability than Day 3
(GS69-75) variables. Although the acquisition date is deemed more pertinent, polarization
holds significance due to the greater explanatory power of the VV variables compared to
the VH variables.

3.6. The Ability of CatBoost to Predict Yield of Entire Plots Using Data from Other Plots

In this section, the study aimed to evaluate the ability of CatBoost to predict the yield
of an entire plot using information from other plots. Figure 9 shows that the mean %MAE
was 4.38, which is below the acceptable error of 10%. However, plots G1 and G20 exceeded
the 10% MAE threshold (Figure 9). To visually represent the difference between the actual
and predicted yield values, G15 was selected.

Figure 9. %MAE of the 39 plots when yield was predicted using the information from the rest of
the plots. Those plots where %MAE is higher than 10% are shown in red. The dashed black line
represents the mean %MAE.
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Each dataset (measured and estimated yield data) was classified into two different
classes using the ISODATA algorithm, which automatically set the optimal threshold
for classification. The threshold for the measured data was set at 5.17 t ha−1, while for
the estimated data, it was set at 5.23 t ha−1. To compare the agreement between the
two classified maps, the accuracy and KI metrics were used. The accuracy was found to
be 91.4%, while the KI was 0.77 (Figure 10). The accuracy and KI metrics show that the
two classified maps are similar, indicating that the estimated map has retained the spatial
variability of the original data. For G15 plot, the model predicted an average yield error of
0.190 t ha−1, which is less than the maximum established error.

Figure 10. On the left, the classified wheat yield map of plot G15 (6.97 ha). On the right, classified
wheat yield map based on the yield data estimated using the CatBoost algorithm with the S1S2
dataset for Days 1–3. The areas with low production are depicted in red, whereas those with high
production are shown in blue. The accuracy and KI metrics were used to compare the two maps.

4. Discussion

4.1. Inclusion of Sentinel-1 and Sentinel-2 in the Yield Estimation Model

In this study, an analysis was conducted to examine the impact of incorporating
multiple variables derived from S2 bands (VIs) and S1 backscatter information with VV and
VH polarization obtained from various dates on yield prediction. The results revealed a
consistent pattern in which the most favorable outcomes were consistently achieved when
utilizing data from all three specified dates that corresponded to the GS30, GS39-49, and
GS69-75 phenological stages.

In this study, the results obtained from VIs were consistent with those reported in prior
research by Hunt et al. [29], since the inclusion of data from various dates improved model
accuracy. In their study, the RF model was tested using VIs obtained from December to July,
and the best results were obtained when using the VIs from all months together. According
to the literature, the best grain yield estimation results are typically obtained after the end
of the stem elongation phase (>GS39) [91,92], with the strongest relationship occurring
during the anthesis or milky grain phase [93]. However, the analysis of VI information
using data from only one day revealed that the optimal results were obtained using data
corresponding to Day 2 (GS39-49) (Figure 3), which corresponds to the period from the end
of stem elongation until the first awns’ visible growth stage (24 April). This correlation
was slightly higher than that achieved with data from Day 3 when wheat is between
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complete anthesis and medium milk phase GS69-75 (5 June). Despite the moderate to high
collinearity among the VIs on the three dates (Figure 3), the results presented in Section 3.1
suggest that it is beneficial to use all the indices and multiple dates to obtain the best results.
Furthermore, it is evident that the use of any model is superior to the use of only one index
when predicting wheat yield.

Hunt et al. [29] found that the greatest improvement in the model occurred between
December and April for wheat fields in the UK, with the improvement thereafter being
less significant. In this study, the mean correlation coefficient between VI and yield on
Day 1 (GS30) was 0.36, while on Day 2 (GS39-49), it increased to 0.78 (Figure 3). Additionally,
other authors such as Segarra et al. [35] have reported that the best results (R2 = 0.89) were
obtained with the leaf area index (LAI) corresponding to the stem elongation/heading
stage, and the results with VIs were similar (R2 = 0.88). This is not surprising since LAI
and some VIs are related [69]. Correlation between grain yield and VIs and LAI at this
phase is logical since the phases encompassing stem elongation to ear growth phases are
crucial in the vegetative growth of wheat [94] and greatly determine the final grain yield.
The models demonstrated a high degree of efficiency in their ability to estimate yield at the
end of April (GS39-49). Although it may be late to make decisions that improve yield in
rainfed conditions, it could be useful for the planning of future fertilizer decisions within
the framework of precision fertilization.

Analysis of the S1 backscatter information revealed that the best results were obtained
using data from Day 2, corresponding to 20 April. However, in contrast to the results
obtained with S2, the data from Day 1 explained more variability than Day 3 data (as seen
in Figure 5). Previous research has reported a positive correlation between wheat yield
and the backscattering coefficient from S1 [95]. This correlation can be attributed to the fact
that backscattering is sensitive to changes in crop growth, biomass, and soil water content,
all crucial factors in determining wheat yield [96]. In the early growth stages, stronger
correlations were reported when backscatter information was used [96]. During these
stages, the crop is more sensitive to variations in water and nutrient availability [97], and
variations in backscattering can indicate crop health and potential yield. Furthermore, the
correlation between the backscattering coefficient and wheat yield is more robust in areas
where wheat is grown in monoculture. This is because the crop canopy in monoculture
is more homogenous, and the backscattering signal can be more directly linked to crop
growth and yield.

For the three S1 images, the VV polarization was found to contribute more to the model,
in contrast to the results reported by Mandal et al. [98] who found higher correlations with
VH polarization. The reason behind this is that VH polarization is more sensitive to changes
in surface roughness, which is an indicator of crop growth, whereas VV polarization
captures better changes in soil water content and soil moisture [99]. This seems to indicate
that soil water content in the crop early stages affects the final yield in a relevant way. It
is noteworthy that the correlation between backscattering and wheat yield is not simple,
thus it is understandable that a higher R2 value was obtained when using S2 data than S1
(Figures 4 and 5).

4.2. Reasons Why the Combination of Information from Sentienel-1 and Sentinel-2 Enhances the
Yield Estimation Model

Previous studies, such as those published by Mercier et al. [100], have utilized data
from S1 to predict the phenological stage of wheat. Other investigations have employed
the combined information from S1 and S2 for the same purpose [101]. For example,
Chaucha et al. [102] used the combined data from both satellites to determine wheat lodging
in specific plots. Thus, there are previous studies in which the combined information from
S1 and S2 has been utilized to estimate properties that can impact wheat yield or monitor
crop development. However, to date, no studies have been identified in the literature that
employ the combined information from both satellites to directly estimate wheat yield.
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The findings of this study indicate that the utilization of data from both satellites
improves the RMSE when compared to results obtained using only data from S2 (Figure 6).
Establishing a relationship between wheat grain yield and S1 backscatter is not straight-
forward as the correlation is not linear, as shown by the performance of MLR (Figure 5).
The backscatter is associated with crop canopy and soil roughness, which is related to
crop development, LAI, biomass, and grain yield [103]. On the other hand, VIs derived
from S2 data are relatively simple to calculate, are not computationally intensive, and are
usually related to the biophysical properties of crops, such as greenness and health [104].
However, multicollinearity is a problem when using multiple VIs (Figure 3), as it reduces
model accuracy [105]. The analysis of variable contribution showed that, among the top
ten most representative variables, variables from both sources of information were present
(Figure 8). Despite the unexpected nature of this finding, the variable that demonstrated the
greatest contribution in the model was VV_Day2. This is particularly surprising because
VH polarization is usually more sensitive to crop changes than VV [98]. By using data
from both S1 and S2 satellite sources together, a more comprehensive understanding of the
crop can be obtained, which can lead to more accurate wheat yield predictions. This study
demonstrates the potential of using combined S1 and S2 data for crop monitoring and yield
prediction and highlights the importance of considering multiple data sources for more
accurate crop assessment.

4.3. Algorithm Analysis

The results obtained through the utilization of RF, SVM, and CatBoost algorithms
surpassed those obtained through the utilization of MLR in all scenarios. The greatest
error measured with RMSE was observed when the model was trained with S1 data, as
depicted in Figure 5. The reason for this is that the connection between backscatter and
yield is not linear, and MLR is not able to handle non-linear relationships. Although
the relationship between VIs and wheat yield is primarily linear, it possesses enough
non-linearity for other algorithms to yield superior results [106]. The capacity to handle
non-linear relationships is a key advantage of some algorithms (SVM, RF, CatBoost), as it
enables the analysis of complex multivariate relationships between different types of data,
which is not feasible with MLR. The results obtained through the utilization of RF and
SVM are comparable, with those obtained using the SVM model being slightly superior,
which is in contrast to those reported by other authors [35,107] in the field of wheat yield
prediction. Although RF generally outperforms SVM, in some areas of PA such as disease
detection, SVM has performed better than RF [108]. However, in this study, the best results
were achieved using the CatBoost algorithm, which is a member of the boosting algorithm
family. The algorithms belonging to this family have produced inconsistent outcomes
within the domain of PA. For example, Bebie et al. [25] reported the worst results when the
boosting regression (BR) algorithm was used, while Heremans et al. [108] obtained the best
outputs with the same algorithms. CatBoost, like Xtreme Gradient Boosting (XGBoost), is
a gradient boosting algorithm that belongs to the next generation of boosting algorithms,
and XGBoost has been used successfully in PA to predict monthly NDVI evolution [109].
However, the use of this group of algorithms is not as prevalent in PA as RF or SVM. As
an example, the Scopus database revealed a limited number of articles, only seven, that
employ CatBoost within any field of PA. In contrast, it is widely utilized in other areas such
as industries, finance, healthcare, and online advertising.

Although in this case it has not been used because all the variables are quantitative,
one of the main advantages of CatBoost over other algorithms is its ability to handle
categorical variables because it can automatically deal with them without any additional
pre-processing, such as ‘one hot encoding’ reducing considerably matrix dimensions.
Moreover, CatBoost is specifically engineered to handle large datasets, as it facilitates
training on graphics processing units (GPUs), thereby significantly decreasing computation
time. In terms of performance, CatBoost has been shown to have high performance and
generalization ability, outperforming other algorithms such as RF and the generalized
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regression neural network (GRNN) algorithm [110]. Additionally, CatBoost has a built-in
mechanism for handling overfitting, which can be a problem with other algorithms like
deep neural networks (DNNs) [111] and missing values. Finally, CatBoost also has a built-in
feature importance mechanism that allows users to understand the importance of each
feature in the dataset.

4.4. CatBoost Algorithm as a Tool for Processing Heterogeneous Data in Precision Agriculture

Use of the CatBoost algorithm in PA can provide significant advantages in terms of
scaling up results. This algorithm is based on gradient boosting and is specifically designed
to handle both numerical and categorical variables. This characteristic makes it suitable
for PA, where a large amount of heterogeneous data are generated.

Compared to traditional machine learning algorithms such as RF, CatBoost has demon-
strated improved performance in terms of accuracy and speed. The algorithm utilizes
decision trees as weak learners and combines them in an iterative manner to make a strong
prediction model. This results in a model that can generalize well to new data and is able
to handle large amounts of data more efficiently than traditional algorithms.

In PA, the use of remote sensing data is increasingly common. This technology allows
the acquisition of information on the physical, chemical, and biological characteristics of
crops. Integration of the CatBoost algorithm with remote sensing data can provide valuable
insights into crop growth. Another advantage of CatBoost is its ability to operate effectively
even in the presence of missing records in a database. This is a common challenge faced
when utilizing information from multiple sensors, as failures of individual sensors can
occur at any point in time. The application of techniques to address such situations is not
ideal, as it involves the addition of estimated information, which does not enhance the
model. Furthermore, CatBoost data does not require scaling, leading to reduced time and
effort in data preprocessing.

4.5. Potential of S1 Backscatter and VIs for Precise Yield Mapping in Rainfed Areas Using the
CatBoost Algorithm

VIs have been widely utilized in PA for various purposes such as yield estimation,
SSMZ delimitation, and water stress estimation. For its part, S1 backscatter information has
been used for crop classification or for measuring land transformation changes. However,
its use for yield estimation is not common. As previously mentioned, its relationship with
growth is not direct, but it has been associated with key factors such as soil moisture,
roughness or crop height. Therefore, it is imperative to conduct new studies to understand
the underlying relationship between wheat yield and the S1 backscatter signal.

This study represents a preliminary step towards the goal of modulating fertilizer
application according to crop needs. The underlying theoretical basis of this approach is
that in rainfed areas, the fertilizer needs of the crop are generally associated to the potential
yield. The high resolution of this study allowed for the estimation of precise yield maps.
In this sense and according to Figure 9, the average %MAE was 4.38%, equivalent to an
error of 0.31 t ha−1. This level of precision would enable farmers to adjust fertilizer rates at
the plot level with an acceptable margin of error. Figure 10 takes this approach one step
further by comparing the yield maps generated from the yield monitor data with those
generated using the proposed methodology. The classification of pixels was found to be
consistent between the two maps in 91.4% of cases, suggesting that this approach captures
intra-plot yield spatial variability. Therefore, this would enable farmers who do not have a
yield monitor installed on their harvesters but have a variable rate fertilizer applicator to
create and employ intra-plot prescription maps based on estimated yield maps. In addition,
thanks to the auxiliary information source used (VI and backscatter derived from satellites),
this methodology can be scalable and applicable to larger areas. The results, however,
were obtained using satellite images acquired between Day 1 (GS30) and Day 3 (GS69-75),
with the latter date being too late to increase yield by fertilizing. Considering this, the
authors believe that future works should be directed at studying the combined capability
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of CatBoost with remote sensing data at early phenological stages of the crop to vary the
fertilization strategy during the growing cycle.

Finally, it is worth noting that the results presented in this study are promising, but
only correspond to one year. Thus, future works should encompass data from several years
to verify that the results remain consistent across all campaigns. Furthermore, it would be
interesting in future studies to incorporate high resolution climate and soil information in
order to better understand the reasons behind yield spatial variability.

5. Conclusions

The models developed to estimate yield using information from S1 and S2 satellites
showed better results than the correlation analysis. Among the evaluated models, CatBoost,
which is still relatively underutilized in agriculture, provided the best results. Furthermore,
using all available images that correspond to the GS30, GS39-49 and GS69-75 wheat pheno-
logical phases improved the performance of the models. Additionally, combining images
from S1 and S2 substantially improved predictions, providing a level of precision sufficient
to consider yield maps for fertilizer adjustment. This is an important aspect because most
farmers in the area do not have yield monitors.

Despite its potential, the methodology proposed in this article has some limitations.
Operationally, the biggest challenge lies in the clouds that impact the usability of the
S2 images. While, theoretically, S2 provides an image every five days, in reality only three
images were obtained throughout the whole crop growing cycle which were free of clouds
and hence suitable for analysis. Moreover, to effectively train the algorithm, it is imperative
to have access to high resolution yield data, such as that provided by yield monitors,
although the use of such equipment is not yet widespread.

Combining the backscatter information of S1 with that of S2 resulted in improved
outcomes of only using data from S2. However, further research is necessary to gain a
better understanding of the relationship between backscattering and crop yield. In addition,
this study focused solely on VIs and backscattering as they provide information on crop
status. Future research could benefit from incorporating high resolution meteorological
and edaphic variables, such as temperature, precipitation, and soil moisture, to better
comprehend the factors influencing crop yield.

Author Contributions: A.U. worked in the following: Conceptualization, Methodology, Software,
Data Processing, Formal Analysis, Original Draft Preparation, Visualization, Investigation, Interpre-
tation. A.C. worked in the following: Methodology, Data Acquisition, Results Analysis, Resources.
A.A. worked in the following: Conceptualization, Methodology, Writing, Reviewing and Editing,
Supervision of Parameter Computing, Funding Acquisition, Project Administration. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was funded by the AgritechZeha project of the Basque Government, Department
of Economic Development, Sustainability and Environment. It also was partially elaborated in
the context of the CLIMALERT project SOE3/P4/F0862 UNION EUROPE. So, we want to express
our gratitude to Interreg Sudoe Programme which a is part of the European territorial cooperation
objective known as Interreg (financed by one of the European structural funds: the European Regional
Development Fund (ERDF)).

Data Availability Statement: Data are available in a publicly accessible repository that does not
issue DOIs. The raw satellite information data can be found in https://scihub.copernicus.eu/dhus/
#/home, accessed on 30 January 2023.

Acknowledgments: The authors would like to thank Javier Alava, a farmer in the GARLAN cooper-
ative, for providing the possibility to carry out the research in his plots and giving us high resolution
yield information.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.

205



Remote Sens. 2023, 15, 1640

References

1. Giller, K.E.; Delaune, T.; Silva, J.V.; Descheemaeker, K.; van de Ven, G.; Schut, A.G.; van Wijk, M.; Hammond, J.; Hochman, Z.;
Taulya, G.; et al. The future of farming: Who will produce our food? Food Secur. 2021, 13, 1073–1099. [CrossRef]

2. Pingali, P.L. Green Revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [CrossRef]
3. Wik, M.; Pingali, P.; Broca, S. Global Agricultural Performance: Past Trends and Future Prospects; World Bank: Washington, DC,

USA, 2008.
4. Hazell, P. Handbook of Agricultural Economics; Pingali, P., Evenson, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2010;

pp. 3469–3530.
5. Randall, G.; Goss, M. Nitrate Losses to SurfaceWater through Subsurface, Tile Drainage. In Nitrogen in the Environment: Sources,

Problems, and Management; Elsevier: Amsterdam, The Netherlands, 2008.
6. Snyder, C.; Bruulsema, T.; Jensen, T.; Fixen, P. Review of greenhouse gas emissions from crop production systems and fertilizer

management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [CrossRef]
7. Ziliani, M.G.; Altaf, M.U.; Aragon, B.; Houborg, R.; Franz, T.E.; Lu, Y.; Sheffield, J.; Hoteit, I.; McCabe, M.F. Early season prediction

of within-field crop yield variability by assimilating CubeSat data into a crop model. Agric. For. Meteorol. 2022, 313, 108736.
[CrossRef]

8. Zambon, I.; Cecchini, M.; Egidi, G.; Saporito, M.G.; Colantoni, A. Revolution 4.0: Industry vs. Agriculture in a Future Development
for SMEs. Processes 2019, 7, 36. [CrossRef]

9. Mumtaz, R.; Baig, S.; Fatima, I. Analysis of meteorological variations on wheat yield and its estimation using remotely sensed
data. A case study of selected districts of Punjab Province, Pakistan (2001–2014). Ital. J. Agron. 2017, 12, 897. [CrossRef]

10. Sandonís-Pozo, L.; Llorens, J.; Escolà, A.; Arnó, J.; Pascual, M.; Martínez-Casasnovas, J.A. Satellite multispectral indices to
estimate canopy parameters and within-field management zones in super-intensive almond orchards. Precis. Agric. 2022,
23, 2040–2062. [CrossRef]

11. Uribeetxebarria, A.; Arnó, J.; Escolà, A.; Martínez-Casasnovas, J.A. Apparent electrical conductivity and multivariate analysis of
soil properties to assess soil constraints in orchards affected by previous parcelling. Geoderma 2018, 319, 185–193. [CrossRef]

12. Del-Moral-Martínez, I.; Rosell-Polo, J.R.; Company, J.; Sanz, R.; Escolà, A.; Masip, J.; Martínez-Casasnovas, J.A.; Arnó, J. Mapping
Vineyard Leaf Area Using Mobile Terrestrial Laser Scanners: Should Rows be Scanned On-the-Go or Discontinuously Sampled?
Sensors 2016, 16, 119. [CrossRef]

13. Daberkow, S.G.; McBride, W.D. Farm and Operator Characteristics Affecting the Awareness and Adoption of Precision Agriculture
Technologies in the US. Precis. Agric. 2003, 4, 163–177. [CrossRef]

14. Chen, W.; Bell, R.W.; Brennan, R.F.; Bowden, J.W.; Dobermann, A.; Rengel, Z.; Porter, W. Key crop nutrient management issues in
the Western Australia grains industry: A review. Soil Res. 2009, 47, 1–18. [CrossRef]

15. Barnes, A.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gómez-Barbero, M.
Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy 2019,
80, 163–174. [CrossRef]

16. Ingram, J. Agronomist–farmer knowledge encounters: An analysis of knowledge exchange in the context of best management
practices in England. Agric. Hum. Values 2008, 25, 405–418. [CrossRef]

17. Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features
and Applications. Agronomy 2020, 10, 641. [CrossRef]

18. Ghosh, P.; Mandal, D.; Bhattacharya, A.; Nanda, M.K.; Bera, S. Assessing crop monitoring potential of sentinel-2 in a spatio-
temporal scale. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-5, 227–231. [CrossRef]

19. Yi, Z.; Jia, L.; Chen, Q. Crop Classification Using Multi-Temporal Sentinel-2 Data in the Shiyang River Basin of China. Remote
Sens. 2020, 12, 4052. [CrossRef]

20. Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote sensing of soil moisture
applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017, 198, 52–68. [CrossRef]

21. Vallentin, C.; Harfenmeister, K.; Itzerott, S.; Kleinschmit, B.; Conrad, C.; Spengler, D. Suitability of satellite remote sensing data
for yield estimation in northeast Germany. Precis. Agric. 2022, 23, 52–82. [CrossRef]

22. Barnett, T.; Thompson, D. Large-area relation of landsat MSS and NOAA-6 AVHRR spectral data to wheat yields. Remote Sens.
Environ. 1983, 4, 277–290. [CrossRef]

23. Maselli, F.; Conese, C.; Petkov, L.; Gilabert, M.-A. Use of NOAA-AVHRR NDVI data for environmental monitoring and crop
forecasting in the Sahel. Preliminary results. Int. J. Remote Sens. 1992, 13, 2743–2749. [CrossRef]

24. Hamar, D.; Ferencz, C.; Lichtenberger, J.; Tarcsai, G.; Ferencz-Árkos, I. Yield estimation for corn and wheat in the Hungarian
Great Plain using Landsat MSS data. Int. J. Remote Sens. 1996, 17, 1689–1699. [CrossRef]

25. Bebie, M.; Cavalaris, C.; Kyparissis, A. Assessing Durum Wheat Yield through Sentinel-2 Imagery: A Machine Learning Approach.
Remote Sens. 2022, 14, 3880. [CrossRef]

26. Shen, J.; Evans, F.H. The Potential of Landsat NDVI Sequences to Explain Wheat Yield Variation in Fields in Western Australia.
Remote Sens. 2021, 13, 2202. [CrossRef]

27. Trombetta, A.; Iacobellis, V.; Tarantino, E.; Gentile, F. Calibration of the AquaCrop model for winter wheat using MODIS LAI
images. Agric. Water Manag. 2016, 164, 304–316. [CrossRef]

206



Remote Sens. 2023, 15, 1640

28. Boissard, P.; Guérif, M.; Pointel, J.-G.; Guinot, J.-P. Application of SPOT data to wheat yield estimation. Adv. Space Res. 1989,
9, 143–154. [CrossRef]

29. Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High resolution wheat yield mapping using Sentinel-2.
Remote Sens. Environ. 2019, 233, 111410. [CrossRef]

30. Li, H.; Chen, Z.; Liu, G.; Jiang, Z.; Huang, C. Improving Winter Wheat Yield Estimation from the CERES-Wheat Model to
Assimilate Leaf Area Index with Different Assimilation Methods and Spatio-Temporal Scales. Remote Sens. 2017, 9, 190. [CrossRef]

31. Curnel, Y.; de Wit, A.J.W.; Duveiller, G.; Defourny, P. Potential performances of remotely sensed LAI assimilation in WOFOST
model based on an OSS Experiment. Agric. For. Meteorol. 2011, 151, 1843–1855. [CrossRef]

32. Rodriguez, J.C.; Duchemin, B.; Hadria, R.; Watts, C.; Garatuza, J.; Chehbouni, A.; Khabba, S.; Boulet, G.; Palacios, E.; Lahrouni, A.
Wheat yield estimation using remote sensing and the STICS model in the semiarid Yaqui valley, Mexico. Agronomy 2004,
24, 295–304. [CrossRef]

33. Vicente-Serrano, S.M.; Prats, J.M.C.; Romo, A. Early prediction of crop production using drought indices at different time-scales
and remote sensing data: Application in the Ebro Valley (north-east Spain). Int. J. Remote Sens. 2006, 27, 511–518. [CrossRef]

34. Moriondo, M.; Maselli, F.; Bindi, M. A simple model of regional wheat yield based on NDVI data. Eur. J. Agron. 2007, 26, 266–274.
[CrossRef]

35. Segarra, J.; Araus, J.L.; Kefauver, S.C. Farming and Earth Observation: Sentinel-2 data to estimate within-field wheat grain yield.
Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102697. [CrossRef]

36. Uribeetxebarria, A.; Castellón, A.; Elorza, I.; Aizpurua, A. Intra-Plot Variable N Fertilization in Winter Wheat through Machine
Learning and Farmer Knowledge. Agronomy 2022, 12, 2276. [CrossRef]

37. Meraner, A.; Ebel, P.; Zhu, X.X.; Schmitt, M. Cloud removal in Sentinel-2 imagery using a deep residual neural network and
SAR-optical data fusion. ISPRS J. Photogramm. Remote Sens. 2020, 166, 333–346. [CrossRef]

38. Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping:
A Review. Remote Sens. 2020, 12, 2291. [CrossRef]

39. Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES
Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [CrossRef]

40. Ulaby, F.; Moore, R.; Fung, A. Microwave Remote Sensing Active and Passive-Volume III: From Theory to Applications; Artech House:
Norwood, MA, USA, 1986.

41. Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation
in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [CrossRef]

42. Mishra, S.; Mishra, D.; Santra, G.H. Applications of Machine Learning Techniques in Agricultural Crop Production: A Review
Paper. Indian J. Sci. Technol. 2016, 9, 1–14. [CrossRef]

43. Shao, Y.; Campbell, J.B.; Taff, G.N.; Zheng, B. An analysis of cropland mask choice and ancillary data for annual corn yield
forecasting using MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 78–87. [CrossRef]

44. Bhosle, K.; Musande, V. Evaluation of Deep Learning CNN Model for Land Use Land Cover Classification and Crop Identification
Using Hyperspectral Remote Sensing Images. J. Indian Soc. Remote Sens. 2019, 47, 1949–1958. [CrossRef]

45. Worrall, G.; Rangarajan, A.; Judge, J. Domain-Guided Machine Learning for Remotely Sensed In-Season Crop Growth Estimation.
Remote Sens. 2021, 13, 4605. [CrossRef]

46. Arno, J.; Martinez-Casasnovas, J.A.; Ribes-Dasi, M.; Rosell, J.R. Clustering of grape yield maps to delineate site-specific
management zones. Span. J. Agric. Res. 2011, 9, 721. [CrossRef]

47. Tang, X.; Liu, H.; Feng, D.; Zhang, W.; Chang, J.; Li, L.; Yang, L. Prediction of field winter wheat yield using fewer parameters at
middle growth stage by linear regression and the BP neural network method. Eur. J. Agron. 2022, 141, 126621. [CrossRef]

48. Meraj, G.; Kanga, S.; Ambadkar, A.; Kumar, P.; Singh, S.K.; Farooq, M.; Johnson, B.A.; Rai, A.; Sahu, N. Assessing the Yield
of Wheat Using Satellite Remote Sensing-Based Machine Learning Algorithms and Simulation Modeling. Remote Sens. 2022,
14, 3005. [CrossRef]

49. Wang, J.; Si, H.; Gao, Z.; Shi, L. Winter Wheat Yield Prediction Using an LSTM Model from MODIS LAI Products. Agriculture
2022, 12, 1707. [CrossRef]

50. Srivastava, A.K.; Safaei, N.; Khaki, S.; Lopez, G.; Zeng, W.; Ewert, F.; Gaiser, T.; Rahimi, J. Winter wheat yield prediction using
convolutional neural networks from environmental and phenological data. Sci. Rep. 2022, 12, 3215. [CrossRef]

51. Cao, J.; Wang, H.; Li, J.; Tian, Q.; Niyogi, D. Improving the Forecasting of Winter Wheat Yields in Northern China with Machine
Learning–Dynamical Hybrid Subseasonal-to-Seasonal Ensemble Prediction. Remote Sens. 2022, 14, 1707. [CrossRef]

52. Freund, Y.; Schapire, R.E. Experiments with a New Boosting Algorithm. In Proceedings of the 13th International Conference on
International Conference on Machine Learning, Bari, Italy, 3–6 July 1996; Morgan Kaufmann Publishers Inc.: San Francisco, CA,
USA, 1996; pp. 148–156.

53. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
54. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD ’16: 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
[CrossRef]

55. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased Boosting with Categorical Features.
arXiv 2019, arXiv:1706.09516.

207



Remote Sens. 2023, 15, 1640

56. Cai, Y.; Guan, K.; Lobell, D.; Potgieter, A.B.; Wang, S.; Peng, J.; Xu, T.; Asseng, S.; Zhang, Y.; You, L.; et al. Integrating satellite
and climate data to predict wheat yield in Australia using machine learning approaches. Agric. For. Meteorol. 2019, 274, 144–159.
[CrossRef]
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Abstract: Accurate canopy extraction and temperature calculations are crucial to minimizing in-
accuracies in thermal image-based estimation of orchard water status. Currently, no quantitative
comparison of canopy extraction methods exists in the context of precision irrigation. The accura-
cies of four canopy extraction methods were compared, and the effect on water status estimation
was explored for these methods: 2-pixel erosion (2PE) where non-canopy pixels were removed
by thresholding and morphological erosion; edge detection (ED) where edges were identified and
morphologically dilated; vegetation segmentation (VS) using temperature histogram analysis and
spatial watershed segmentation; and RGB binary masking (RGB-BM) where a binary canopy layer
was statistically extracted from an RGB image for thermal image masking. The field experiments
occurred in a four-hectare commercial peach orchard during the primary fruit growth stage (III). The
relationship between stem water potential (SWP) and crop water stress index (CWSI) was established
in 2018. During 2019, a large dataset of ten thermal infrared and two RGB images was acquired. The
canopy extraction methods had different accuracies: on 12 August, the overall accuracy was 83% for
the 2PE method, 77% for the ED method, 84% for the VS method, and 90% for the RGB-BM method.
Despite the high accuracy of the RGB-BM method, canopy edges and between-row weeds were
misidentified as canopy. Canopy temperature and CWSI were calculated using the average of 100%
of canopy pixels (CWSI_T100%) and the average of the coolest 33% of canopy pixels (CWSI_T33%).
The CWSI_T33% dataset produced similar SWP–CWSI models irrespective of the canopy extraction
method used, while the CWSI_T100% yielded different and inferior models. The results highlighted
the following: (1) The contribution of the RGB images is not significant for canopy extraction. Canopy
pixels can be extracted with high accuracy and reliability solely with thermal images. (2) The T33%
approach to canopy temperature calculation is more robust and superior to the simple mean of all
canopy pixels. These noteworthy findings are a step forward in implementing thermal imagery in
precision irrigation management.

Keywords: canopy temperature; crop water status index; accuracy assessment; peach orchard; stem
water potential
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1. Introduction

Crop water status estimation is significantly affected by canopy temperature [1].
Accurate classification of canopy pixels within an image is central to crop water status
estimation. The misclassification of non-canopy pixels, such as soil and mixed pixels, can
significantly alter the canopy temperature and crop water status estimation [2] and, thus,
may affect orchard irrigation decision making.

1.1. Crop Water Status Estimation for Precision Irrigation Management

Crop water stress index (CWSI) is an indirect measurement of crop water status
derived from a thermal image. Absolute canopy temperature is a function of stomata
opening and cooling by subsequent crop transpiration and is affected by meteorological
factors, including ambient temperature, vapor pressure, wind speed, and radiation [3].
To compare thermal images and eliminate the need to measure all of the meteorological
parameters, normalization of canopy temperature via CWSI was proposed as a proxy of
crop water status [4,5]:

CWSI =
Tcanopy − Twet

Tdry − Twet
(1)

where Tcanopy is the temperature of the canopy, Twet is the temperature of a fully transpiring
canopy, and Tdry is the temperature of a non-transpiring (stressed) canopy. CWSI ranges
from zero to one, where higher values indicate higher water stress. The difference between
Tcanopy (◦C) and Tair (◦C) is dependent on vapor pressure deficit (VPD) [4,5]. Tdry is typically
calculated using an empirical method [6,7], while Twet is determined by employing empiri-
cal, theoretical, and statistical methods [6,8] or, for commercial plot scale, by calculating
the average temperature of the coolest 5–10% of canopy pixels of each individual thermal
image [7–9].

The calculation of Tcanopy involves two steps. First, canopy pixels need to be extracted
from the image and separated from non-canopy pixels, including “mixed pixels” (combina-
tions of canopy, soil, weeds, foreign objects, and shade). The second step is the calculation
of canopy temperature. A common approach for calculating Tcanopy of an area of interest (a
whole plot or a management zone) is by using the mean [10] or the median [7] temperature
of extracted canopy pixels. Meron et al. [6] proposed using the coldest 33% of canopy pixels
for the calculation. Cohen et al. [8] reported an over-estimation of water stress in cotton
with the mean of all canopy extracted pixels. When the mean of the coldest 33% was used,
water status was better estimated. No such comparison between the approaches used for
calculating canopy temperature was found for orchards.

1.2. Approaches of Thermal Image-Based Canopy Extraction

Canopy extraction approaches incorporating thermal imagery include methods that
use a single thermal infrared image (1-source) and other methods that use a thermal infrared
image and additional remotely sensed images, usually RGB (multi-source). One-source
methods include purely threshold-based statistical analysis on the one hand and coupled
statistical and spatial analyses on the other hand. Statistical analysis of a temperature
histogram to identify canopy pixels within a thermal image has been performed in or-
chards [11,12] where canopy can be distinguished from soil. In such cases, temperature
histograms are characterized by a bimodal distribution, where the canopy and soil pixels
are represented by cooler and warmer peaks, respectively. Mixed pixels, which include com-
binations of canopy, soil, weeds, foreign objects, and shade in a single pixel, are generally
composed of a “saddle” area between the two peaks. Depending on the crop architecture,
the distance between plants, the degree of complexity, and pixel resolution, there can be
significant overlap between mixed pixels, pure-canopy pixels, and pure-soil pixels, creating
a challenge in identifying pure-canopy pixels. Additionally, water-stressed trees may have
higher canopy temperatures and could be misidentified as mixed or soil pixels [13].

An additional group of 1-source methods incorporates statistical and spatial analyses
of a single thermal image. Spatial watershed segmentation has been coupled with binary
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thresholding to extract pure-canopy pixels in palm trees [14] and in vineyards [15]. Camino
et al. [16] incorporated watershed segmentation and quartile histogram analysis in an
almond orchard. Superpixel algorithms are used to differentiate meaningful regions of
interest in an image [17], such as tree crowns in a forest system [18] and fruit detection
in orchards [19]. In peach orchards, one technique involved thresholding to remove non-
canopy pixels and then morphological erosion to remove mixed pixels and to extract
pure-canopy pixels [20]. A second method used edge detection algorithms followed
by morphological dilation to remove mixed pixels [21]. Additional methods include
delineation of regions of interest of a single canopy [2] as well as pure edge detection
analysis [22]. The incorporation of two types of analyses, statistical and spatial, on thermal
images alone has been claimed to improve the quality of canopy extraction in comparison
to merely statistical-based analysis [23].

In general, multi-source methods are based on statistical analysis of a visible (RGB)
or multispectral image to extract canopy pixels, which is then used as a binary mask that
is superimposed on a thermal image. This technique has been implemented in crops
including potato [9], mint [24], and grape [25]. Additional feature layers, such as maps of
irrigation pipes, can be incorporated to improve canopy extraction [26]. However, poor
overlap of RGB and thermal images can cause misidentification of canopy pixels.

Currently, there are many methods of canopy extraction, but, to the best of our knowl-
edge, there is no comprehensive quantitative comparison of canopy extraction methods
in the context of orchard water status estimation. Thus, the decision of which canopy
extraction method to incorporate and how to calculate canopy temperature may be arbi-
trary and not based on experimental data. Accurate canopy extraction and temperature
calculations are crucial to minimizing inaccuracies in thermal image-based estimation of
orchard water status that may directly affect irrigation decisions. This study tested the hy-
pothesis that thermal image-based orchard water status estimation is significantly sensitive
to the canopy extraction quality and to the temperature calculation approach. The objective
was to determine the sensitivity of thermal image-based orchard water status estimation
to canopy extraction methodology and quality. Four canopy extraction methods were
evaluated. Three methods followed the 1-source approach (thermal images), incorporating
both statistical and spatial analyses: (1) 2-pixel erosion (2PE), where non-canopy pixels
were removed by thresholding followed by morphological erosion; (2) edge detection (ED),
where edges were identified and then morphologically dilated; and (3) vegetation seg-
mentation (VS) using statistical analysis of the temperature histogram followed by spatial
watershed segmentation. A fourth method, denoted RGB-BM, followed the multi-source
approach and used an RGB image to statistically extract a binary canopy layer to mask
the thermal image. Additionally, two approaches to canopy temperature calculation were
assessed by calculating the following: (1) the average of 100% of canopy pixels (T100%),
and the average of the coolest 33% of canopy pixels (T33%).

2. Materials and Methods

2.1. Research Area

A field experiment was conducted during the 2019 season in a 4 ha commercial late-
harvest peach orchard (Prunus persica cv. 1881) located near Mishmar Hayarden, Israel
(33.01◦N; 35.60◦E) (Figure 1). The elevation of the orchard ranges from 171 to 188 m
above sea level, the average slope is 5% to the northwest, and within the orchard, the
slope ranges from 0 to 11.3%. The orchard was planted in 2007 with spacing of 2.6 m
and 5 m between trees and rows, respectively, and was divided into 22 management cells
(MC) of 35 m × 35 m to monitor various orchard parameters, including canopy area and
SWP. A precision drip irrigation regime was implemented in the north subplot (MC 1–11),
while the south subplot (MC 12–22) was uniformly irrigated. A detailed description of
the irrigation design of the entire orchard and the decision-making process in the north
subplot using thermal image-based tree water status estimation following the 2PE canopy
extraction method is reported in [27]. The experiment was conducted during stage III of
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fruit development, which is the primary stage of fruit growth and period when most of the
annual irrigation is applied.

 
Figure 1. Mishmar Hayarden peach orchard (green line) divided into 22 management cells (MC)
(black dashed squares).

The major steps of data acquisition and analysis are presented as a flow chart in
Figure 2.

2.2. Image Acquisition

Ten high-resolution thermal images were acquired between 21 July and 26 August
2019. A sensitive (±2 ◦C) uncooled FLIR SC655 camera (FLIR® Systems, Inc., Billerica, MA,
USA) with 640 × 480 resolution was mounted on a six-engine drone (Datamap Group,
Bnei Brak, Israel). The flight height for all campaigns was 100 m, and the subsequent
ground spatial resolution was approximately 7 cm. All campaigns were conducted midday
between 12:30 and 15:15 on cloudless days. Mosaics were created using the ThermCam
software (FLIR® Systems, Inc., Billerica, MA, USA) and Pix4D mapper software (Pix4D,
Prilly, Switzerland). All of the thermal images were resampled to the average pixel size of
the ten images, which was 7.3737 cm.

Two RGB images were acquired on 21 July and 12 August 2019 immediately prior to
the respective thermal image campaign using a Phantom 4 Pro V2 (DJI Technology Co.,
Ltd., Shenzhen, China). The ground spatial resolution was approximately 3 cm.

2.3. Canopy Extraction Methods

Four methods of canopy extraction from thermal images were applied and evaluated,
representing a range of techniques found in the literature. In this study, they were executed
primarily using the ArcGIS Pro software (ESRI, Redlands, CA, USA).
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Figure 2. Data acquisition and analysis of orchard canopy extraction accuracy, canopy temperature,
and orchard water status using the 2-pixel erosion (2PE), edge detection (ED), vegetation segmenta-
tion (VS), and RGB binary masking (RGB-BM) canopy extraction methods (green boxes). Canopy
temperature per management cell (MC) was calculated using the average of 100% of canopy pixels
(T100%) (orange boxes) and the average of the coolest 33% of canopy pixels (T33%) (blue boxes).
Orchard water status was estimated using the crop water stress index (CWSI) and the estimated
stem water potential (SWPe). The SWPe was based on a tree-scale stem water potential (SWP) and
CWSI relationship established using each canopy extraction method and each canopy temperature
calculation approach.

Three methods followed the 1-source approach, incorporating both statistical and
spatial analyses, using only thermal images:

(1) 2-pixel erosion (2PE):

a. Extraction of the coolest two-thirds of temperature pixels from the whole or-
chard histogram to separate canopy from non-canopy (mixed and soil) pix-
els [27] (statistical).

b. Morphological erosion of the two pixels [28] (spatial).

(2) Edge detection (ED) based on [21]:

a. Image sharpening with high pass filter (spatial).
b. Determination of edges (statistical).
c. Morphological expansion of three pixels (spatial).
d. Thresholding to extract only canopy pixels (statistical).

(3) Vegetation segmentation (VS) based on [29] written in the Matlab R2020a (Mathworks
Inc., Matick, MA, USA):

a. Temperature histogram analysis using the Otsu [30] and full-width-half-maxim
um [11] algorithms to differentiate between canopy and non-canopy pixels
(statistical).

b. Watershed segmentation to define the basin of each peach tree [14] (spatial).
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The temperature values per pixel of the 2PE, ED, and VS methods were retrieved by
multiplying the respective final layer of canopy pixels by the original thermal image.

A fourth method followed the multi-source approach, using a thermal and an RGB image:

(4) RGB-based binary masking (RGB-BM):

a. Resampling of the RGB to 7.3737 cm.
b. Georeferencing between the RGB and thermal layers.
c. The excess green index (ExG) (2G-R-B) is calculated per pixel and effectively

differentiates between plant and soil pixels [31].
d. Binary thresholding of the ExG layer to separate canopy from non-canopy

pixels [30] (statistical).
e. Thermal image masking using the ExG layer (post-binary thresholding) [24] to

retrieve the temperature values of each pixel (spatial).

2.4. Canopy Extraction Quality Evaluation

The quality of canopy extraction was determined by measuring the canopy area
consistency throughout the study as well as assessing the accuracy of each method (ArcGIS
Pro 2.9.0 software, ESRI, Redlands, CA, USA).

2.4.1. Canopy Area Consistency

During stage III, vegetative growth of deciduous fruit trees, including peaches, is
minimal to non-existent [32]. Hence, canopy area consistency can be used as a measure of
extraction quality. The canopy area (m2) per MC (n = 22) per image was calculated for all
four canopy extraction methods. On two dates, 21 July and 12 August, the median values
were calculated, and the Student’s t-test was used to determine significant differences in the
mean canopy area on these dates for each method (JMP statistical software, JMP Inc., Cary,
NC, USA). Additionally, the coefficient of variation (CV) was calculated for the canopy area
median values per image for the 2PE, ED, and VS methods.

2.4.2. Accuracy Assessment

Accuracy assessment was performed per canopy extraction method on the datasets
for 21 July and 12 August. All orchard pixels were reclassified into two categories using the
final extraction layer per image as pure-canopy and non-canopy pixels. Synchronization
between the final extraction layer (thermal or other) and the RGB ground truth image was
verified. One hundred sample points were divided equally between these categories. A
different set of 100 sample points was distributed for each of the four methods and two
dates. A total of 800 sample points were used in the analysis. Ground truth validation was
visually determined per sample point with the original RGB image from each respective
date, 21 July and 12 August. The ensuing confusion matrix included the following: sample
points that were correctly classified as canopy pixels (true positive—TP); sample points
that were classified as canopy but were actually non-canopy pixels (false positive—FP);
sample points that were correctly classified as non-canopy pixels (true negative—TN);
and sample points that were classified as non-canopy but were actually canopy pixels
(false negative—FN). The following parameters were calculated, enabling the evaluation
of canopy extraction quality: overall accuracy (Equation (2)); precision (Equation (3));
recall (Equation (4)); and F1-score, which is the harmonic mean of precision and recall [33]
(Equation (5)):

Overall accuracy = (TP + TN)/(TP + TN + FP + FN) (2)

Precision = TP/(TP + FP) (3)

Recall = TP/(TP + FN) (4)

F1− score = 2× (Precision× Recall)/(Precision + Recall) (5)
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2.5. Canopy Temperature Calculation

The temperature of all extracted orchard canopy pixels was retrieved, and a histogram
was built for each method. Descriptive statistics were calculated for the histograms, includ-
ing mean, median, standard deviation, minimum, and maximum. The canopy temperature
of each MC was estimated using two methods: the average of 100% of canopy pixels
(T100%), and the average of the coolest 33% of canopy pixels (T33%). The calculations used
the raster [34], rgdal [35], and reshape2 [36] packages in R [37], and the canopy temperature
graphs were constructed using the ggplot2 package in R [38].

2.6. Orchard Water Status Estimation

The CWSI was calculated per MC following Equation (1): Twet was calculated based on
the average of the coolest 5% of canopy pixels of the whole orchard [9]; Tdry was calculated
empirically as Tair + 2 ◦C [7,27]; and Tcanopy was calculated using the methods described
in the previous section for T100% and T33%. The CWSI was denoted CWSI_T100% and
CWSI_T33%, respectively. Air temperature values for the day and time of each thermal
image campaign were acquired from the nearby Gadot meteorological station (33.03◦N;
35.62◦E). The CWSI graphs were constructed using the ggplot2 package in R [38].

2.6.1. Establishment of the Relationship between SWP and CWSI

Linear regression models were developed based on a field experiment that took place
during the fruit growth stage III of season 2018. Different irrigation levels were applied to
the three plots in the orchard to create a range of soil water contents and respective plant
water status. A campaign, including stem water potential (SWP) measurements of five trees
per plot (n = 15) and thermal imaging, took place on 05 August 2018 during stage III. Plant
water status was evaluated by measuring SWP using a Scholander-type pressure chamber
(Arimad, MRC Ltd., Holon, Israel). Two shaded leaves were covered with an aluminum
foil zip-lock bag 1.5 h before the measurement. Measurements were performed on each
measurement tree between the hours of 12:30–15:15, and the results were averaged per tree.

For each canopy extraction method (2PE, ED, VS, and RGB-BM), CWSI_T100% and
CWSI_T33% were calculated per measurement tree using the method described in the
previous section. Linear regression models were created using the SWP measurements and
the CWSI calculations and evaluated using the following parameters: correlation coefficient
(R2), root-mean-square error (RMSE), p-value, and the lower and upper 95% confidence
intervals of the intercept and slope using the JMP statistical software (JMP Inc., Cary, NC,
USA).

2.6.2. Estimated Stem Water Potential

The linear regression models were the basis for calculating the estimated SWP (SWPe).
The SWPe was calculated from the CWSI_T100% and CWSI_T33% values per MC for the
entire dataset, and its values were denoted SWPe_T100% and SWPe_T33%, respectively.
Additionally, SWP was measured on three to four healthy trees of representative canopy size
per MC in the north subplot and three trees per MC in the south subplot for each day of data
collection. The SWP measurements served as a reference indicating the actual water status
of each MC. The specific method and time of measurement is described in Section 2.6.1. The
SWPe was subtracted from the measured SWP per MC per day, and descriptive statistics
were used to evaluate the datasets: average, standard deviation, maximum, minimum,
median, 25% and 75% quartile, mean squared error (MSE), and RMSE. Additionally, each
measured SWP and SWPe value was compared to the optimal water status range of stage III,
which was defined between −1.17 and −1.43 MPa and based roughly on [39]. Above-range
values (>−1.17 MPa) indicated excessive moisture and possible over-irrigation; within-
range (optimal) SWP values (between −1.17 and −1.43 MPa) indicated sufficient water
status; and below-range values (<−1.43 MPa) specified orchard water stress. The variance
of each distribution was calculated.

217



Remote Sens. 2023, 15, 1448

3. Results

3.1. Evaluation of Canopy Extraction Quality
3.1.1. Canopy Area Consistency

A difference in canopy area was evident between the two RGB-BM images on 21 July
and 12 August (Figure 3): the median values were 414 and 474 m2, respectively. This is a
difference of 60 m2, while slight differences were observed between these dates with the
2PE, ED, and VS methods: 6, 4, and 3 m2, respectively. Accordingly, a significant difference
in canopy area mean (increase) was calculated between the two RGB-BM images (p < 0.001,
n = 22 MC per date), while no difference was detected for the 2PE, ED, or VS methods
(p > 0.05, n = 22 MC per date).

Figure 3. Canopy area (m2) per management cell (MC) (black dots) and box plot (red) per day of
image acquisition (21 July–26 August 2019). The black horizontal line is the grand mean. The green
boxes indicate data from 21 July and 12 August of the 2-pixel erosion (2PE), edge detection (ED), and
vegetation segmentation (VS) methods. The RGM binary masking (RGB-BM) method was performed only
on these dates. Note: the Y-axis range of the VS method is specifically different from the other methods.

The canopy area consistency of the 2PE, ED, and VS methods was evaluated using ten
thermal images (Figure 3). The 2PE and VS methods were more consistent compared to the
ED method. The median values per date of the 2PE ranged from 374 to 430 m2 (a difference
of 56 m2), and the values ranged from 555 m2 to 626 m2 (a difference of 71 m2) with the VS
method. In contrast, the median values of the ED method ranged from 288 to 460 m2 (a
difference of 172 m2, 3-fold of the 2PE method), indicating less consistency over time. The
coefficient of variation (CV) values of the 2PE, VS, and ED methods were 0.05, 0.04, and
0.13, respectively, highlighting the differences in consistency.

3.1.2. Accuracy Assessment

The differences in canopy area identification accuracy were evident between the
canopy extraction methods (Figure 4). The RGB-BM method was found to be the most
accurate among the canopy extraction methods, as demonstrated through the overall
accuracy and the F1-score values on both 21 July and 12 August. On 21 July, the recall
values of all of the methods were high (90–97%), indicating that most of the actual canopy
was correctly classified. The precision, or the degree to which the classified map correctly
identified canopy, however, varied according to extraction method: the 2PE and RGB-BM
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methods’ precision was fairly high (84%), while the VS method’s precision was the lowest
(62%). On 12 August, the recall values of the VS and RGB-BM methods were higher than
the 2PE and ED methods. The precision of the 2PE method was slightly less than the
RGB-BM method (78%), and the ED method’s precision was the lowest (68%).

Figure 4. Overall accuracy (blue bars) of canopy/non-canopy classification and precision (red bars),
recall (yellow bars), and F1-score (grey bars) parameters of canopy classification as measured with a
confusion matrix per date for the 2-pixel erosion (2PE), edge detection (ED), vegetation segmentation
(VS), and RGB binary masking (RGB-BM) canopy extraction methods.

3.2. Canopy Temperature Calculation

The differences in estimated canopy temperature between the four canopy extraction
methods were evident at both the whole orchard and MC scales (Figure 5). The most striking
difference between the methods in the whole orchard histograms of canopy temperature
was the range of values. The temperature ranges of the extracted canopy pixels using the
RGB-BM method was substantially wider (30–64 ◦C) than that of the 2PE (30–42 ◦C), ED
(30–46 ◦C), and VS (30–47 ◦C) methods. The “tail” of the warm pixels of the RGB-BM
histogram is the result of non-tree canopy being misclassified as canopy. These warm pixels
were located between tree rows that contained grasses and soil but were free of tree canopy
material, and they are illustrated in the RGB-BM temperature map of the MC 5 (Figure 5
left image column). The ExG index, which is the basis for the RGB-BM method, seemingly
had difficulty differentiating between the different types of plant material. However, this
method was noticeably able to detect slight differences between canopy and non-canopy
pixels within the tree canopy, in contrast to the 2PE, ED, and VS methods which pixels were
all relatively coarse.
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Figure 5. Canopy temperature histogram of the whole orchard for the 2-pixel erosion (2PE), edge
detection (ED), vegetation segmentation (VS), and RGB binary masking (RGB-BM) canopy extraction
methods on 12 August 2019. Images of all extracted canopy temperature pixels (T100%) of the
management cell (MC) 5 (left image column) and the highlighted (turquoise) coolest 33% of canopy
temperature pixels (T33%) (right image column) for all canopy extraction methods.

The VS method histogram is characterized by a larger number of pixels between 38
and 47 ◦C compared to the other methods (Figure 5), indicating that not all mixed pixels
have been properly removed. The edges of canopy material (between one and three pixels)
are noticeably warmer than other parts of the canopy throughout the orchard. Additionally,
many between-row pixels of the MC 4 (not shown) were misidentified as canopy pixels. The
MC 4 was defined as stressed and irrigated according to the SWPe value. Over-irrigation
supposedly caused waterlogging in specific locations and relatively wet soil in others, and
it directly affected the pixel temperature in this MC (Figure 3 outlier).

Visible differences were evident between the spatial patterns of the extracted canopy
pixels and the coolest 33% of the canopy pixels for each canopy extraction method (Figure 5);
however, relatively small differences were noted in the spatial patterns between the coolest
33% canopy pixels of all extraction methods (Figure 5 right image column). Notable
differences were found between the canopy temperatures calculated using the average
100% of canopy pixels (T100%) and the average of the coolest 33% of canopy pixels (T33%)
(Figure 6). The average T100% values were higher than those of T33% for each canopy
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extraction method: 1.28 ◦C (ED), 1.37 ◦C (2PE), 2.85 ◦C (RGB-BM), and 3.02 ◦C (VS).
Additionally, the T100% calculation emphasized the differences between the extraction
methods. The RGB-BM and VS methods yielded considerably higher T100% than the 2PE
and ED methods. The value of the VS method was, on average, 1.91 ◦C higher than the 2PE
method, while the average differences between the 2PE and ED methods were minimal
(0.13 ◦C). The T33% dataset was characterized by minimal to slight differences between
the canopy extraction methods: an average difference of 0.04 ◦C between the 2PE and ED
methods and of 0.26 ◦C between the VS and 2PE methods.

Figure 6. Canopy temperature (◦C) calculated by the average 100% (T100%) and by the average of
the coolest 33% (T33%) of canopy pixels per management cell (MC) between 21 July and 26 Aug
2019 for the canopy extraction methods: 2-pixel erosion (2PE) (turquoise), edge detection (dark blue),
vegetation segmentation (VS) (coral), and RGB binary masking (RGB-BM) (brick red).
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3.3. Orchard Water Status Estimation

The CWSI_T100% values were substantially higher than the CWSI_T33% values per
MC, per date, and per canopy extraction method, and they mirrored the trends found
in the canopy temperature calculated using T100% and T33% (Figure 7). The average
difference between the CWSI_100% and CWSI_T33% values for each canopy extraction
method was as follows: 0.28 (ED), 0.30 (2PE), 0.67 (RGB-BM), and 0.68 (VS). Within the
CWSI_T100% dataset, minimal differences were recorded between the 2PE and ED methods
(0.02), while large differences were calculated between the 2PE and VS methods (0.42). In
the CWSI_T33% dataset, no difference was found between the 2PE and ED methods, and a
difference of 0.03 was calculated between the VS and 2PE methods.

Figure 7. Crop water status index (CWSI) with Tcanopy (◦C) calculated using the average 100%
(CWSI_T100%) and the average of the coolest 33% (CWSI_T33%) of canopy pixels. Twet = lowest
5% of canopy pixels, and Tdry = Tair + 2 ◦C. Values per management cell (MC) between 21 July and
26 August 2019 for the canopy extraction methods: 2-pixel erosion (2PE) (turquoise), edge detection
(ED) (dark blue), vegetation segmentation (VS) (coral), and RGB binary masking (RGB-BM) (brick
red). The table insert shows the air temperature (Tair (◦C)) values.
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3.3.1. SWP-CWSI Model Comparison

The relationship between the measured SWP and CWSI was modeled for all four canopy
extraction methods and the two temperature calculations (Figure 8). The CWSI_T100% values
are higher than the CWSI_T33% values per tree as expected. The R2 is higher and the
RMSE is lower for all of the CWSI_T33%-based models in comparison to the CWSI_T100%-
based models, regardless of extraction method, which possibly resulted from the higher
variability of canopy temperature per tree with the CWSI_T100% calculation. The intercept
of the CWSI_T100%-based models is significantly higher than CWSI-T33% for all canopy
extraction methods. There is a significant difference in slope between the CWSI_T100%-
based and CWSI_T33%-based models for the 2PE and ED methods (p < 0.0001), while
no significant difference is detected for the VS and RGB-BM methods (p > 0.05). The
slope signifies the sensitivity of CWSI in relation to the change in measured SWP. Within
the CWSI_T100%-based models, the slopes of the 2PE and ED methods are significantly
different (steeper) than the VS and RGM-BM methods (p < 0.0001) when each model was
compared to the other models. No difference is found between the intercepts of these
models. Within the CWSI_T33%-based models, no difference is found in the slope or
intercept. All eight models are significant (p < 0.0001), enabling the estimation of SWP
based on these relationships.

Figure 8. Linear regression model of SWP and CWSI for the 2-pixel erosion (2PE), edge detection
(ED), vegetation segmentation (VS), and RGB binary masking (RGB-BM) canopy extraction methods.
Crop water status index (CWSI) with Tcanopy (◦C) calculated using the average 100% (CWSI_T100%)
(red points and lines) and the average of the coolest 33% (CWSI_T33%) (blue points and lines) of
canopy pixels. Twet = lowest 5% of canopy pixels, and Tdry = Tair + 2 ◦C. Each point represents a
measurement tree (n = 15).

3.3.2. Estimated Stem Water Potential

The difference between the measured and estimated SWP values was calculated per
MC for each canopy extraction and temperature calculation method, highlighting the
differences between the datasets (Figure 9). A value of zero indicates no difference between
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the measured and estimated SWP. Positive values indicate that the estimated SWP is lower
(more negative, the MC more stressed) than the measured SWP. Conversely, negative values
indicate that the estimated SWP value is higher (less negative, the MC less stressed) than the
measured SWP values. The average difference between the measured and estimated SWP
(SWPe_T100%) in the RGB-BM dataset is substantially higher in comparison to the other
canopy extraction methods and indicates a shift to more positive values, in comparison
to the SWPe_T33% values. The MSE and RMSE values reinforce this point and indicate
that the SWPe_T100% values of both the RGB-BM and the VS extraction methods are
higher than the measured SWP values, indicating that the extraction quality is poorer than
the 2PE and ED methods. The average differences between the measured and estimated
SWP (SWPe_T33%) for each extraction method are mostly negative and close to zero. The
histogram analysis, MSE, and RMSE all indicate that the 2PE, ED, and VS methods are
similar to each other, while the RGB-BM is slightly different. These results suggest that
theoretical irrigation decisions based on the SWPe_T33% values of the 2PE, ED, and VS
methods would yield similar results.

Figure 9. The histogram of the difference between the measured and estimated stem water potential
(SWPe) calculated using the canopy temperature data of the average 100% (SWPe_T100%) (pink bars)
and the average of the coolest 33% (SWPe_T33%) (blue bars) of canopy pixels for the 2-pixel erosion
(2PE), edge detection (ED), vegetation segmentation (VS), and RGB binary masking (RGB-BM) canopy
extraction methods. The frequency refers to the number of management cells (MC). The table insert
provides the descriptive statistics of each dataset. Note: the Y-axis range of the RGB-BM method is
specifically different from the other methods.

The distribution of the SWPe_T100% and SWPe_T33% values for each canopy extrac-
tion method were compared to the defined optimal SWP range for stage III (between −1.17
and −1.43 MPa) (Figure 10). Within the SWPe_T100% dataset, the RGB-BM distribution
is noticeably offset to more negative SWP values, and a substantially high percentage of
below-range values (75%) were calculated, indicating that the orchard was estimated to
be under greater stress in comparison to the 2PE and ED methods. Forty-three percent of
the VS method’s SWPe values are below the optimum range. The majority of the SWPe
values of the 2PE and ED (63%) methods are within the optimal range of orchard water
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status. The SWPe_T33% dataset is characterized by a higher percentage of values within
the optimal range of orchard water status for each canopy extraction method in comparison
to the SWPe_T100% dataset. Additionally, the variance of the SWPe_T33% values is sub-
stantially smaller in comparison to the SWPe_T100% dataset for each extraction method.
A negligible percentage of above-range SWPe values was calculated, indicating that the
orchard is theoretically not over-irrigated. The measured SWP distribution is similar to the
SWPe_T100% ED method dataset.

Figure 10. Histogram of percent estimated stem water potential (SWPe) (MPa) calculated using the
canopy temperature data of the average 100% (SWPe_T100%) and the average of the coolest 33%
(SWPe_T33%) of canopy pixels in comparison to the defined optimal SWP range for stage III: upper
(−1.17 Mpa, blue dashed line) and lower (−1.43 Mpa, red dashed line) thresholds. Below-range
SWP values indicate orchard stress, while above-range water status values indicate theoretical over-
irrigation. The canopy extraction methods tested were 2-pixel erosion (2PE, turquoise polygon), edge
detection (ED, blue polygon), vegetation segmentation (VS, pink polygon), and RGB binary masking
(RGB-BM, red polygon).

4. Discussion

Canopy extraction that is based purely on the temperature attribute assumes a distinct
difference between soil and canopy temperatures. While this is largely true, canopy
temperature can be similar to shadowed or wet soil [40], and the temperature of mixed
pixels can be similar to canopy suffering from water stress [16]. In comparison, the canopy
of RGB images has a different multispectral signature than soil, enabling the use of spectral
vegetation indices for canopy classification. Accordingly, the ExG index, a popular index
for vegetation identification [41], served as the basis for binary thresholding in this study.
RGB images also have higher spatial resolution in comparison to thermal images. These
two characteristics led to the assumption that RGB-based canopy extraction would be
more accurate than using a single thermal image. This assumption was supported to some
extent by this study. Higher accuracy of canopy extraction was obtained by the RGB-based
method compared to the thermal-based methods. However, between-row weeds were
misclassified as tree canopy with the RGB-based method, leading to an atypical increase in
canopy area during stage III. Additionally, inaccuracies in geographical and geometrical fit
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between the RGB mask and the thermal image are a known drawback with multi-source
methods, such as RGB-BM [2], and explain the inclusion of warm canopy edges in the
canopy mask.

Between-row weeds and canopy edges are highly affected by surrounding high soil
temperatures, therefore leading to the overestimation of canopy temperature and CWSI in
this study. Camino et al. [16] also found that warm edge pixels cause significant errors in
almond tree canopy temperature and CWSI values. The VS method also included warm
temperature pixels on the edges of all trees in the orchard. Similar to the RGB-BM method,
the VS canopy temperature and CWSI values were higher in comparison to the 2PE and
ED methods. Conversely, the 2PE and ED methods were both able to adequately remove
canopy edge pixels by incorporating morphological erosion and edge detection algorithms,
respectively. The difference between these two groups of methods, 2PE–ED and VS–RGB-
BM, was also evident in the SWP–CWSI linear models calculated using the CWSI_T100%
values. The superiority of the 2PE and ED extraction methods over the RGB-BM method
implies that the multispectral nature and the high spatial resolution of the RGB images
do not obviate the need to incorporate spatial analyses, such as morphological erosion
and edge detection algorithms. This suggests that the contribution of the RGB images is
not significant for the canopy extraction stage and canopy pixels can be extracted with
high accuracy and reliability merely with thermal images. Furthermore, the multi-source
approach is slightly more complex and time consuming than the one-source approach,
primarily due to the critical georeferencing step. Thus, it is concluded that one-source
thermal-based approaches can be preferably used for canopy extraction.

Canopy temperature was estimated in this study using the average of all canopy pixels
(T100%) [7,10] and of the coolest 33% canopy pixels (T33%) [6,26,27]. The T100% values
were substantially higher than the T33% values for all MCs, dates, and canopy extrac-
tion methods. Within-crown temperature variability has been documented for almond
trees [16,42] and is partially affected by the inclusion of pixels at the edge of the canopy. The
T33% approach is less influenced by canopy temperature heterogeneity [6] and minimizes
the effect of mixed pixels. This idea is reinforced in the present study by the similar spatial
patterns and canopy temperatures between the canopy extraction methods using the T33%
calculation approach. The significant effect on temperature using the T100% approach
resulted in a pronounced effect on the CWSI.

Substantial differences were apparent between the extraction methods within the
CWSI_T100% dataset (Figure 7). The VS and RGB-BM values reached unexpectedly high
values for well-watered peach trees: 0.53–1.37 (VS) and 0.45–1.39 (RGB-BM). Furthermore,
the maximum CWSI_T100% values of the 2PE and ED methods were extremely high:
0.77 (2PE) and 0.82 (ED). A CWSI value of one indicates an extremely stressed peach tree
with closed stomata. For reference, in one of the experimental plots that formed the basis
for the SWP–CWSI models in this study, irrigation was suspended for a total of three weeks
prior to the imaging campaign. In this plot, and in stark contrast to the VS method, the
CWSI_T100% values of the measurement trees ranged between 0.58 and 0.96. CWSI values
higher than one imply that non-canopy pixels are included in the calculation. In contrast,
no significant differences were found between the CWSI values that were calculated using
the T33% approach. Additionally, and similar to the findings of Cohen et al. (2017) in
cotton, the SWP–CWSI models using the T100% approach were inferior in comparison to
the T33% approach. Most importantly, the T33% dataset produced similar SWP–CWSI
models irrespective of the canopy extraction method used, while the T100% yielded very
different models. These results highlight the robustness of the T33% approach and indicate
that it is not sensitive to the canopy extraction accuracy.

The robustness of the T33% approach is further emphasized by comparing the SWPe
values to the optimal water status range. This optimal range of SWP constitutes the basis
for irrigation decision making [27]. Therefore, a comparison of the SWPe distribution to
the optimal range can indicate the extent to which a specific canopy extraction method is
prone to water stress overestimation and leads to hypothetical over-irrigation as a result.
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Within the SWPe_T33%, a large percentage of the estimated SWP values were within range
for the 2PE, ED, and VS methods, indicating a theoretical irrigation policy that adequately
brings and maintains the MC in the optimal range. Higher percentages of above-range
SWP values were calculated with the VS and RGM-BM methods (compared to additional
extraction methods), indicating that the orchard was supposedly under a higher degree of
stress, necessitating increased irrigation.

The comparison of the SWPe_T100% distribution of values to the optimal water
status range further reinforces the fact that the estimated SWP values calculated with the
T100% method, and in particular using the RGB-BM canopy extraction method, possibly
overestimate orchard water status, hypothetically resulting in more-than-optimal irrigation
application with subsequent agronomic and economic consequences [32]. It should be noted
that none of the canopy extraction methods or temperature calculation methods sufficiently
estimated above-range (less negative) water status or below-range extremely stressed (more
negative) values in the SWPe_T33% dataset. This result, rather than indicating the quality
of the canopy extraction, signifies a general limitation of water status assessment using
thermal images. Thermal-based water status estimation suffers from different types of
inaccuracies, including the effect of meteorological conditions and different approaches for
determination of Twet and Tdry values.

5. Conclusions

The current study explored the sensitivity of thermal image-based orchard water
status estimation to canopy extraction quality using four canopy extraction methods, which
was previously unaddressed in scientific literature. Three methods used a single thermal
image (1-source) (2PE, ED, and VS), while a fourth method incorporated a thermal and an
RGB image (multi-source) (RGB-BM). Two approaches to canopy temperature calculation
were also evaluated: the average of all canopy pixels (T100%) and the average of the coolest
33% of canopy pixels (T33%). This study found that canopy pixels can be extracted with
high accuracy and reliability using only thermal images, primarily using the 2PE and ED
methods. The incorporation of an RGB image reduces the overall quality, as between-row
weeds and warm canopy edges are misidentified as tree canopy. Additionally, the T33%
approach to canopy temperature calculation was found to be robust and not sensitive to
canopy extraction accuracy. In comparison, the T100% approach, specifically for the VS and
RGB-BM methods, overestimated orchard water stress. These findings indicate that orchard
water status is sensitive to canopy extraction quality but is affected to a greater degree by the
canopy temperature calculation approach. Future research should explore the relationship
between SWP and CWSI on additional days, under different meteorological conditions,
and over seasons to strengthen the estimation of orchard water status. Future research
should also explore the sensitivity of orchard water status to canopy extraction quality in
additional varieties of peach and other fruit trees located in different environments. Such
research studies will widen the scope of impact and scale of the main findings from this
study, improving irrigation management based on thermal images.
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Abbreviations

CWSI crop water stress index

CWSI_T33%
crop water stress index calculated with the average temperature of the coolest 33%
of canopy pixels

CWSI_T100%
crop water stress index calculated with the average temperature of 100% of
canopy pixels

ED edge detection
ExG excess green index
MC management cell
RGB-BM red –green–blue binary masking
SWP stem water potential (MPa)

SWPe_T33%
estimated stem water potential using the average temperature of the coolest 33%
of canopy pixels (MPa)

SWPe_T100%
estimated stem water potential using the average temperature of 100% of canopy
pixels (MPa)

T33% average temperature of the coolest 33% of canopy pixels
T100% average temperature of 100% of canopy pixels
VS vegetation segmentation
2PE 2-pixel erosion
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Abstract: Nitrogen(N) is one of the most important elements for crop growth and yield formation.
Insufficient or excessive application of N fertilizers can limit crop yield and quality, especially as
excessive N fertilizers can damage the environment and proper fertilizer application is essential
for agricultural production. Efficient monitoring of crop N content is the basis of precise fertilizer
management, and therefore to increase crop yields and improve crop quality. Remote sensing has
gradually replaced traditional destructive methods such as field surveys and laboratory testing for
crop N diagnosis. With the rapid advancement of remote sensing, a review on crop N monitoring
is badly in need of better summary and discussion. The purpose of this study was to identify
current research trends and key issues related to N monitoring. It begins with a comprehensive
statistical analysis of the literature on remote sensing monitoring of N in rice and wheat over
the past 20 years. The study then elucidates the physiological mechanisms and spectral response
characteristics of remote sensing monitoring of canopy N. The following section summarizes the
techniques and methods applied in remote sensing monitoring of canopy N from three aspects:
remote sensing platforms for N monitoring; correlation between remotely sensed data and N status;
and the retrieval methods of N status. The influential factors of N retrieval were then discussed with
detailed classification. However, there remain challenges and problems that need to be addressed
in the future studies, including the fusion of multisource data from different platforms, and the
uncertainty of canopy N inversion in the presence of background factors. The newly developed
hybrid model integrates the flexibility of machine learning with the mechanism of physical models. It
could be problem solving, which has the advantages of processing multi-source data and reducing the
interference of confounding factors. It could be the future development direction of crop N inversion
with both high precision and universality.

Keywords: rice and wheat; nitrogen remote sensing; quantitative retrieval; research prospect

1. Introduction

The effective guarantee of national food security is a key objective for China. Therefore,
it has become a need of green agriculture to reduce the amount and increase the efficiency
of chemical fertilizers, which could improve the effective supply of agriculture [1–3]. Rice
and wheat are the main crops in the world, with a wide distribution and highly suitability.
How to achieve high quality and yield is currently a major challenge for agricultural
production [4–6]. N made up more than 40% of the mineral elements needed for the growth
of rice and wheat [7]. Its content would impact the physiological traits, photosynthesis,
and enzyme activities, leading to variations in protein content and grain production [8–10].
Healthy plants have a total N content that ranges from 0.3% to 5% of their dry matter,
which directly affects crop production. N deficiency can hinder chlorophyll (Chl) synthesis
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and reduce the effective number of spikes, thus reducing yields. A surplus of N prevents
photosynthetic products from reaching the seeds, delaying maturation [7,11]. Therefore, N
content during crop growth has become one of the most important indicators in agricultural
production management. Currently it is common to use base fertilizer, or top dressing
through experience. It will result in too much or not enough N, which not only inhibits
crop growth but also pollutes the environment. How to monitor rice and wheat canopy N
timely and accurately, so as to guide variable rate fertilization has become a core research
issue [12–15].

Currently the experts in plant protection and agronomy test N manually by observing
crop symptoms, plant growth and leaf color. They also use chemical diagnostics, such
as plant total N diagnostics and rapid nitrate diagnostics, to detect the N content of each
organ. The former has variances in results due to subjective judgments. The latter has
good accuracy but destroys the plant and has a time lag, making large-scale application
difficult [16]. Therefore, traditional N assessment methods do not facilitate variable rate
fertilization, because the information on the timing and extent of crop N abundance and
deficiency is not efficiently provided. Remote sensing has enabled the rapid development
of multiple scales of application, including satellite, unmanned aerial vehicles (UAVs) and
ground. It is the current technology for rapidly acquiring spatial and temporal contin-
uum information on a large range. The spectrum is sensitive to the N response in the
Visible–Near Infrared (VIS–NIR). This spectral information can show subtle changes in N
content, allowing for more accurate N retrieval [17,18]. Remote sensing monitoring of N in
rice and wheat can be non-destructive, effective, and real-time for large-scale studies. It
offers significant potential for crop nutrient diagnosis and as a basis of subsequent guidance
on fertilizer application [19–21].

Both rice and wheat belong to the gramineous cereal crop in the botanical classification,
and both are C3 crops with similar photosynthetic systems [22]. Thus, the absorption of col-
ored light by Chl in both canopies is consistent and the response to the spectrum is similar.
N is mainly found in the Chl of the photosynthetic systems and the process of N accumula-
tion in rice and wheat has a high degree of similarity [23,24]. They are both transformed
into nutrient bodies at the vegetative growth stages and into reproductive organs at the
reproductive growth stages, and there are anisotropic changes in N accumulation in each
organ at the growth stage [23,25]. Although the cropping patterns differ, one being dryland
and the other paddy, this effect can be attenuated when pre-processing the remote sensing
data [26]. Therefore, in remote sensing-based studies, the N transformation processes in
rice and wheat are highly consistent, making their remote sensing monitoring systems
relatively similar [14,27,28]. In this study, the remote sensing monitoring techniques for
both crops are explored in an integrated manner.

To analyze and summarize the current research hotspots and trends in the field of
remote sensing of canopy N in rice and wheat, this paper traces the related literature in
the Web of Science ™ Core Collection Database. The literature is retrieved and filtered by
the topics “nitrogen concentration” or “nitrogen content”, “rice” or “wheat” and “remote
sensing”. An initial collection of 572 apparently relevant records covered the period 2003–
2021. An initial screening progress is conducted to exclude literature that is not relevant
to the review, such as conference proceedings, patents, etc. However, it still contains
some irrelevant literature, and a further screening is necessary. This is followed by a more
detailed screening on titles and abstracts to exclude the following: (1) non-targeted research
topics (e.g., corn, cotton, grassland, etc.); (2) not directly estimated N (e.g., Chl, protein, etc.);
(3) estimated other indicators (e.g., leaf area, plant height, yield, etc.); (4) measured soil N
or other trace elements in agricultural fields; and (5) review articles. By carefully reading
the titles and abstracts, off-topic papers are obviously manually excluded. Eventually, a
total of 174 articles were identified and analyzed in depth. Figure 1 shows the number of
studies retrieved from 2003 to 2021 that used remotely sensed data to assess the canopy
N status of rice and wheat, reflecting the general trend in research on the application of
remote sensing monitoring of canopy N.

232



Remote Sens. 2022, 14, 5712

Figure 1. Number of rice and wheat N retrieval research studies per year from 2003 to 2021.

Remote sensing technology has shown great potential for crop N monitoring, pro-
viding research ideas from various perspectives. This paper based on the mechanism of
remote sensing monitoring of canopy N, respectively summarizes the current techniques
and methods from three aspects: remote sensing platforms for canopy N monitoring; corre-
lation between remotely sensed data and N status; and the retrieval methods of N status.
Then it discusses the factors affecting the accuracy in remote sensing of canopy N and
sketches future areas for research.

2. Mechanisms for Remote Sensing Monitoring of Canopy N

2.1. Physiological Mechanisms of Crop N

Focusing on crop physiological mechanisms, N is closely linked to Chl. N is an
important component in the formation of chloroplasts and Rubisco enzymes. Increasing leaf
N content will significantly increase leaf chlorophyll content (LCC) and Rubisco enzymes,
ultimately leading to a significant increase in crop photosynthetic rate and consequent
changes in the external morphology and internal structure of crop leaves [9,29]. Chl can
respond to N uptake by crops, and the strength of the relationship directly affects the
accuracy of N estimation. However, N is redistributed and reused in the crop during
growth. Early in crop development, N is initially concentrated in nutrient bodies such as
leaves, and as nutritional and reproductive growth coexist, N starts to be distributed to
nutrient bodies and reproductive organs; at the crop maturity stage, N in nutrient bodies is
transferred to reproductive organs. This resulted in varying degrees of N and Chl content
reduction in the canopy leaves, which changed the correlations between crop N and Chl
at various growth stages [25]. In addition to Chl, other mineral deficits, diseases, frost
damage, and water stress may also produce leaf yellowing, and using Chl content as a
proxy for N is misleading, which limits the ability to estimate N directly from Chl [28]. It
has been recommended to utilize leaf protein as a substitute for leaf N content in several
studies [30,31], because in contrast to Chl, protein is also a major nitrogenous component
in crops and contributes to the varied distribution of N in crop plants. The mechanism of
protein–N interactions is under investigation.

2.2. Spectral Response Properties of Canopy N

N affects the spectral reflectance of crops by influencing the Chl content of green crops
(Figure 2). Healthy crops’ VIS reflectance spectrum is determined by the Chl’s absorption
effect, which forms a prominent reflectance peak near 550 nm. Multiple reflections in the
NIR combine to generate a red edge region of reflectance in the range of 700–780 nm, and
the rising slope of the curve reflects the Chl content per unit area to some extent. NIR
(780–1350 nm) is closely related to leaf structure and is instructive for exploring whether N
is influenced by leaf structure. Under N stress, both the canopy spectral reflectance and the
vertical distribution of N will alter.
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Figure 2. Spectral reflectance properties of the wheat canopy: (A) spectral reflectance under N stress;
(B) spectral reflectance at different growth stages under normal N; and (C) correlation between leaf
nitrogen concentration (LNC) and spectral reflectance at different growth stages.

During N deficiency, the VIS reflectance of the crop canopy spectrum increased, while
the NIR reflectance and red-edge position (REP) decreased; in excess of N, the VIS reflectance
decreased, while the NIR reflectance and REP increased (Figure 2) [14,32–34]. As the growth
stages proceed, the response of canopy spectral reflectance to crop N status reduced, and
the VIS regions also displayed “red shift” and “blue shift” with the development [33,35,36].
It can be found that the analysis of crop N abundance and deficiency using spectral
techniques can be specific to a band interval [7,37]. Hyperspectral techniques can even be
precise to a specific band [38,39], which provides the possibility of effective identification of
crop N deficiency.

The top leaves of the plant under N stress will use the N transferred from the bottom
leaves, causing the bottom leaves to yellow and decline prematurely, while the top leaves
color changes are not obvious because of being less stressed by N [40,41]. As influenced by
the level of soil N supply, the spectral reflectance of leaves at different leaf positions differed
erratically in VIS and SWIR, while showing a clear gradient in NIR [42]. Duan et al. [43]
suggested that N concentration at different leaf positions decreases from top to bottom
at the jointing stage, flowering stages, and filling stage, while the flag leaf stage shows
an increasing and then decreasing trend. The vertical distribution of N in the plant is not
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constant and varies between N conditions, planting densities and growth stages [41,43,44].
Exploring the spectral response properties of the different leaf positions can serve as a
foundation for precise N quantification.

3. Techniques for Remote Sensing Monitoring of Canopy N

The continuous development of remote sensing technology on ground-based, UAV-
based, and satellite-based platforms provides a wide range of modal options for N status
monitoring studies. There is the technical focus in the field of N monitoring, including
exploring the correlations between remotely sensed information extracted from multi-
source data and N status, while achieving accurate modeling inversion of N status. To
summarize the relevant technologies, three main aspects are discussed: remote sensing
monitoring platforms; the correlation between remotely sensed data and N status; and the
retrieval methods of canopy N status.

3.1. Remote Sensing Platforms for Canopy N Monitoring
3.1.1. Ground-Based Platform

Spectral data collected by ground-based sensors can be divided into non-imaging
spectral data and imaging spectral data, with a spectral range primarily in the VIS–NIR,
and in several studies involving the SWIR [18,45]. This close-range spectral information
has ultra-high spectral resolution and can respond to subtle changes in N. It has been
widely used in N monitoring for both leaf and canopy scale. Non-imaging spectral data
are point spectral data, and lack spatial information for N estimation at regional scale [46].
Imaging spectral data, on the other hand, combine spatial and spectral features and allow
the estimation of canopy parameters from faceted data. However, due to being restricted by
data volume and acquisition method, it is generally used for ground study and rarely used
directly for diagnosis and applications of large area. Current ground-based spectrometers
used commonly include ASD FieldSpec (Analytical Spectral Devices, Boulder, CO, USA),
RS-5400 (Spectral Evolution, Haverhill, MA, USA), HR-1024i (Spectra Vista Corporation,
Poughkeepsie, NY, USA), SOC710 (Surface Optics Co. Ltd., San Diego, CA, USA), and
FISS (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Bei-
jing, China) [47–50], etc. These instruments provide a stable and high spectral resolution,
but some of them are heavy and are generally measured in a backpack or mounted on a
tripod in research, with a single angle and way of acquiring data. The advent of hand-
held instruments such as the RapidSCAN (Holland Scientific Inc., Lincoln, NE, USA),
4300 Handheld FTIR (Agilent Technologies Inc., Santa Clara, CA, USA), and Crop Sense
(Beijing Academy of Agriculture and Forestry Sciences, China) [51,52] symbolizes the devel-
opment of spectral sensors towards lightweight and flexibility. The portable spectrometer
can acquire data on a wide range of measurement scales flexibly and efficiently, and it is
easy to install on a variety of platforms such as lab benches, black boxes, and rocker arms.
In addition, the multi-angle spectral acquisition device [53–55] consists of several moving
parts to adjust the observation position and direction, where a goniometer is often used to
control the observation of zenith angle changes. The sensor is placed on the goniometer to
obtain spectral data in the viewing zenith angles (VZA) ranged from −60◦ to 60◦ [53,54].
It is a convenient platform for obtaining multi-angle crop spectral data, which has many
applications in the study of the vertical distribution of N in the plant canopy.

3.1.2. UAV-Based Platform

With the development of lighter and smaller sensors and the increased carrying
capacity of UAVs, the UAVs carrying sensors for data acquisition have become mainstream
platforms in crop N monitoring. It is possible to rapidly acquire ground data with high
spatial, temporal, and spectral resolution, facilitating the research at small and medium
scales. Compared to airborne platforms (operating at kilometers of altitude), UAVs have
the benefit of low cost, low operating altitude, and greater flexibility in terms of data
collection arrangements. The sensors currently on UAVs specifically include digital cameras,
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multispectral/hyperspectral sensors, infrared thermal imagers, chlorophyll fluorescence
sensors and LIDAR sensors [56–61]. The hyperspectral imaging spectrometer perfectly
combines the advantages of spectroscopic and imaging technology for use in a large
area. The payload of UAVs has made lightweight, low-cost sensors a research focus, and
airborne hyperspectral imaging spectrometers such as the UHD185-Firefly and Cubert S185
(Cubert GmbH, Ulm, Baden-Württemberg, Germany), and Micro-Hyperspec (Headwall
Photonics Inc., Boston, MA, USA) [62–64] are already being used for N monitoring. The
PIS112 hyperspectral imaging spectrometer (Beijing Academy of Agriculture and Forestry
Sciences, China), GaiaSky-mini hyperspectral imaging camera (Sichuan Dualix Spectral
Imaging Technology Co., Ltd., Chengdu, China) [65] and other sensors, as well as the eight-
rotor unmanned aircraft system based on RGB and 25-band small multispectral cameras
(Zhejiang University, China) [66,67] developed by multiple teams in China, have also been
used for agricultural monitoring with good results. Among the image data acquired by the
UAV platform, hyperspectral can show subtle changes in crop spectral reflectance features
due to its narrow bandwidth and wide continuous spectral range, which is conducive to
the fine monitoring of crop N. Most of the multispectral data are small in volume and the
spectral range encompasses the N response sensitive VIS–NIR bands. However, the low
spectral resolution tends to result in “missing” spectral information while overcoming the
high redundancy of hyperspectral information. Studies using multispectral data sources
must consider whether the ‘missing’ spectral information contains sensitive bands and how
it can be modeled. UAV remote sensing is not affected by the external environment, such
as the atmosphere, and provides better access to high-quality spectral information, making
it a common data source for crop N research.

3.1.3. Satellite-Based Platform

Images acquired by satellite platform sensors are characterized by a large range
and multiple time phases, making large-scale spatial monitoring possible. Satellite data
commonly used for agricultural monitoring include Landsat, Sentinel-2, etc. [68–71]. The
small canopy area of rice and wheat requires high temporal and spatial resolution of data
in seasonal N management. RapidEye, WorldView-2, etc. have better results in terms of
temporal and spatial resolution, and the indices constructed in this way have achieved
better results in N monitoring [72–74]. It is of practical significance to monitor crop N in
large areas by satellite remote sensing with high spatial and temporal resolution. However,
the use of field canopy spectral reflectance to simulate the spectral bands of satellite
multispectral sensors, and then transfer the N response models from field experiments to
satellite images, inherently results in mistakes due to the low spectral resolution of the
data [75,76]. Since the 20th century, China has launched a series of resources satellites,
HJ-1A/1B satellites and GaoFen (GF) satellites, etc. [77–81]. The types of sensors and spatial
resolution they carry have reached international advanced levels, and their applications in
agriculture are gradually spreading. Among them, GaoFen-6 (GF-6) is the first GF satellite
for precise agricultural monitoring, for the first time adding green vegetation-sensitive
red edge spectral bands and operating in a network with GaoFen-1 (GF-1) to significantly
improve the monitoring capability of agricultural resources. GF-6 has been shown to be
effective in improving the accuracy of image classification [78–81], and research into the
quantitative inversion of crop parameters is still in its infancy. Satellite imagery has a high
point and a wide field of view, but the quality has uncontrollable factors. Acquisition is
influenced by radiation, aerosols, and weather, increasing the image processing process;
analysis is influenced by complex geography and the presence of mixed image elements,
increasing the difficulty of N estimation. The effectiveness of crop N estimation models
based on satellite imagery still needs to be improved. In addition, as some important
reflectance features associated with N can only be measured by hyperspectral sensors,
future research could be explored based on satellite hyperspectral imagery.

Remote sensing technologies from ground-based, UAV-based, and satellite-based
platforms are maturing and have been widely used in agriculture (Figure 3). The different
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platforms have their own advantages in remote sensing monitoring, with their mounted
sensors having a high degree of overlap in the wavebands sensitive to N (Figure 4). Crop N
monitoring based on ground-based and UAV-based platforms has been effective. Because
these platforms provide highly accurate data, more valid information can be mined from
spectroscopy, graphics, etc. Satellite data, although limited by data volume and accuracy,
has become an effective complement to them in expanding the scale of research. Research
on multi-sensor and multi-platform joint observations is gradually being developed.

Figure 3. Remote sensing platforms, including ground-based platform, UAV-based platform, and
satellite-based platform.
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Figure 4. Spectral reflectance properties of crop canopy and spectral range of different
platform sensors.

3.2. Correlations between Remotely Sensed Data and N Status

Crop N status can be distinguished between two measurement perspectives: one
is area-based measure “nitrogen content” (Narea, per unit area); another is mass-based
measure “nitrogen concentration” (N%, per unit dry matter) [28]. N% can be converted to
Narea by plant leaf (or other plant organs) dry biomass. In research, N content generally
includes leaf/plant nitrogen accumulation per unit soil area (LNA/PNA), etc.; N concen-
tration generally includes LNC, plant nitrogen concentration on a leaf dry weight basis
(PNC), canopy N concentration (CNC), canopy N density (CND), etc. [28,82]. On this basis,
Nitrogen Nutrition Index (NNI) is defined as the ratio of the actual crop N concentration to
the critical N concentration. It is a direct indicator of whether the crop N concentration is
at an optimum level [83,84]. In existing studies, the accuracy of remote sensing estimates
of N content is significantly higher than that of N concentration, due to the fact that N
concentration is more difficult to extract from remote sensing information compared to
N content [64,85,86]. However, N concentration is not disturbed by density and is more
accurate in responding to crop N status [82]. Throughout the whole growth stage of rice
and wheat, N concentration has a narrower range of variation with a decreasing trend, and
the change rate decreased before it increased; N content is a product of the combination
of N concentration and plant dry biomass, so N content has a wider range of variation
with an increasing trend [87,88]. With the support of remote sensing technology, the study
directly links N indicators and spectral reflectance.

3.2.1. Sensitive Spectral Extraction

Spectral response under crop N stress varies significantly, and the analysis of original
hyperspectral information is an intuitive study in N remote sensing assessment [39,89], but
the sensitive bands extracted vary for the same/different crops in different geographical
environments [90,91]. As in different studies, the N-sensitive spectral bands of rice include
738 nm, 1362 nm, 1835 nm and 1859 nm [90], and also include NIR (>760 nm), visible
(355, 420, 524–534, 583 and 687 nm) and red edge (707 nm) region [39]; the N-sensitive
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spectral bands of wheat include 440 nm and 610 nm [91], and also include 790.4 nm [92].
Wang et al. [38] explored the best common central bands 822 and 738 nm for LNA estimation
in rice and wheat, which can effectively assess the N nutrient status of plants and reasonably
reflect the intrinsic N information in different crops. Most studies have extracted several N
sensitive bands to estimate crop N by individual spectra or combinations. Although the
method is simple, the accuracy is affected by the stability of the spectral information.

Hyperspectral data have hundreds of high-resolution continuous spectral information.
When exploring correlations between spectra and N status, using full band data as an input
can increase errors and reduce efficiency. Whereas insufficient exploitation and use will
lead to data waste, thus losing the significance of high-precision data. Therefore, improving
the use efficiency of hyperspectral data still needs to be further explored. Wang et al. [93]
divided the spectral data into five groups: blue, green, red, red edge and NIR, and extracted
the corresponding N-sensitive bands, in which the red edge (702, 703 and 710 nm) and
red edge (706, 733 and 759 nm) correlated with leaf and canopy-scale N status up to 0.92.
Yu et al. [94] reduced the spectral data by a discrete wavelet multi-scale decomposition
method (DWMD), achieving better results compared to iteratively retaining informative
variables, with 16.28–26.23% improvement in coefficient of determination (R2). Hyper-
spectral data are very similar between adjacent bands, and their dimensionality reduction
can help reduce the complexity of feature extraction. Liu et al. [95] demonstrated that
using feature bands extracted by improved adaptive ant colony optimization algorithm as
input parameters under the same prediction model can reduce the complexity of the model,
while improving the prediction capability. In addition, the autocorrelation matrix (R2 = 0.86
between N-sensitive bands and N status), the non-negative matrix factorization (R2 = 0.83),
the successive projections algorithm (R2 = 0.66), and the competitive adaptive reweighted
sampling (R2 = 0.93), etc. are also gradually applied [62,94,96–99]. Improvements to the
N-sensitive band extraction method have resulted in the stability of the retrieval N infor-
mation, but make the processing process more complicated, with a corresponding increase
in model performance and computation time [97]. In addition, the bands extracted by
these algorithms integrate more reflectance information, which improves stability and
anti-interference. This provides a guideline for constructing a unified and generalizable
spectral feature extraction method.

3.2.2. Mathematical Transformations of Spectra

The difference in response to N between spectra can be increased by mathematical
transformations of spectra, improving its adaptability to inversion N status. The spectral
reflectance curve feature can reflect the N change trend, and the first-order derivative of
the spectrum indicates the rate of change in the reflectance, which reduces the effect of
background information and is widely used in N estimation [63,92,93]. The morphological
differences in crop spectra can be described by characteristic parameters such as slope,
angle, and rate of change in the curve. Slope and angle are generally calculated based on
areas of reflectance that change abruptly, such as peaks and valleys. The slope indicates
the rate of reflectance rise/fall, and the angle formed by the sides of the reflection peak
and absorption valley indicates the width between the peak and valley [100]. The rate
of change is a generalization of the first-order derivative, which can respond not only to
the change in reflectance between successive wavelengths, but also to the rate of change
in reflectance between any two wavelengths [101]. Based on two integration metrics,
normalized area reflectivity curve and reflectivity integration index, Du et al. [58] combined
more wavelengths with improved LNC retrieval performance.

The study showed that the red edge region of 700–780 nm is a sensitive band for
responding to the growth status of green crops [102,103], and the characteristic parameters
of REP, red-edge slope, red-edge peak, red-edge minimum amplitude and red-edge area
obtained by mathematical transformation of the red edge band have also become common
parameters for N diagnosis in rice and wheat [36,104,105]. The REP based on linear
extrapolation method showed better canopy N concentration correlation at larger canopy
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cover. Since the first-order derivative has “bimodal” characteristics in the two main spectral
regions, the conventional REP is not sensitive enough to canopy LNC only using single-
peak maximum, and the spectral reflectance data can be fitted to generate continuous
REP values to achieve a continuous relationship between REP and N [105]. Li et al. [106]
proposed a continuous wavelet transform-based REP extraction technique, wavelet-based
red edge position (WREP), which provides a new idea for understanding the spectral
variation in red edge region. Guo et al. [107] constructed an algorithm based on the
analysis of red edge features, shifting red edge absorption area (sREA), which enables the
construction of N absorption models at the regional scale. Due to the possible discontinuity
of changes, insignificant amplitude, and large errors in the RE first-order derivative spectra,
the estimation of crop N by red edge parameter features is highly dependent on the
feature extraction method. It is necessary to select the appropriate method and parameters
according to the research needs. When the canopy cover is too high, the response of the red
edge region to N becomes gradually slower and then there is saturation, so only using red
edge parameters easily causes misjudgment.

The mathematical transformation of spectra can respond to the trend of N changes,
but the spectral information is changed by the influence of environmental stress. Deeply
mining the bands with more effective information and using them in combination is the
key to overcome the external factors and improve the accuracy of the model.

3.2.3. Spectral Indices

The information presented by specific parameter combinations (mainly difference,
ratio and normalized values) is more stable and representative, and it has become the
first choice for remote sensing inversion of crop parameters. The development of spec-
troscopy has improved the accuracy of spectral information, and the methods of first-order
derivative, continuum removal, wavelet transform and smoothing algorithm (such as
Savitzky-Golay smoothing), etc. are applied to the original spectra, which make the spec-
tral calculation more refined and the results more accurate [95,108,109]. Compared with
traditional vegetation indices (VIs), the construction parameters of spectral indices are
no longer limited to band reflectance, but can also be red edge parameters, other spectral
indices, etc. (Table 1) [26,110,111].

For multispectral/hyperspectral remote sensing data, spectral indices are usually
constructed by selecting appropriate bands in the visible red region and NIR region. For
different varieties of crops, there are significant differences in the slopes of normalized
difference vegetation index (NDVI)-based LNC models, and it is difficult to achieve uniform
regression analysis across different crops varieties with conventional indices. It has been
shown that NDVI(1220, 610) is a good index to estimate LNC in both rice and wheat, with
RMSE all less than 13.04% [34], and NDVI(1220, 710) achieves high precision estimation of N
status for different varieties of rice [112]. However, the model has not been extended to
other regions for validation, and the accuracy and stability of the spectral index remains to
be explored. In addition, the use of a multi-band vegetation index for LNC monitoring in
rice and wheat is more effective [92,113,114]. Wang et al. [113] used a three-band vegetation
index combining NIR, red edge and blue bands to estimate LNC for rice and wheat with R2

of 0.866 and 0.883, respectively, which were 17.66% (rice) and 7.68% (wheat) more accurate
than NDVI, and 40.13% (rice) and 16.18% (wheat) more accurate than RVI. Tan et al. [92]
explored the relationship between LNA and parameters such as first-order derivative
sum (SD), first-order derivative maximum (D), etc. in VIS and red edge regions, and the
new normalized index (SDr − SDb)/(SDr + SDb), which was constructed by integrating
information from multiple bands, was a good fit for wheat LNA (R2 = 0.935) and was
applicable to wheat N inversion in different varieties and regions.

The N estimation model used fixed VIs performed consistently over the same growth
stage, but when pooling data from multiple growth stages, accuracy decreased significantly.
Canopy structure and background conditions changed as the growth stage progressed, but
in all cases, whole leaf pixels showed more stable performance than light and shade leaf
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pixels [87,115,116]. Traditional spectral indices cannot fully capture the intrinsic relationship
between canopy spectra and N in growth stage, and how the predicted intensity of N
models varies across growth stages has not been fully explored [117]. The red edge
chlorophyll index (CIred edge) is sensitive to canopy N content and can effectively mitigate
the effect of canopy structure on canopy N estimation. Li et al. [118] combined NDVI and
CIred edge to construct a nitrogen planar domain index (NPDI) with good predictive ability
for canopy N uptake in wheat, corn and both combinations. Palka et al. [119] constructed
a regression model by combining the canopy chlorophyll content index (CCCI) and the
canopy nitrogen index (CNI), and modified the CCCI-CNI to extend N estimation to the
end of booting stage for wheat. Quantifying the spectral contribution in the mixed image
elements using spectral mixture analysis (SMA) can improve the spectral accuracy, and
the spectral indices constructed in this way show superior capability in all growth stages
and even in the early evaluation of LNC [116,120]. The selection of sensitive multi-band
and multi-index information fused to form a spectral index improves the sensitivity of
N inversion, and to some extent overcomes the inconsistency between indices and N for
different varieties of crops and different fertility stages.

Based on RGB data, the response of different image indices to N varies widely and has
limited response [121]. The RGB three-color channels of UAV images each contain lumi-
nance information and are susceptible to interference from lighting conditions. In contrast,
in the HSV and Lab color spaces, V and L denote value and luminosity, respectively, and the
transformation of RGB to them weakens the influence of luminance information through
nonlinear changes, resulting in a more sensitive response to LNC [122]. Nevertheless, RGB
is limited by spectral accuracy and still has difficulties in index improvement. In addition
to the color information extracted from spectral data, the texture information can be ob-
tained from the local variance function, which reflects the variation relationship between
several pixel points and characterizes the canopy structure. Fusing two or more datasets
with different feature information can provide a more comprehensive interpretation of the
relationship between remote sensing information and N status [123]. Therefore, for RGB
data, the “image-spectrum” fusion indices formed by fusing image indices and texture
features improves the sensitivity of image data to N features, and the investigation of its
ability to diagnose N status is a major development direction at present [60,82]. When
extracting texture features through Gray-level Co-occurrence Matrix (GLCM), crop cul-
tivation patterns may cause differences in texture information metrics for N content in
different directions, and using texture information calculated along the perpendicular to
the row direction to monitor row-grown crops has the best results [85]. In addition, adding
depth information to RGB images can break through the limitations of extracting canopy
structural features from 2D images [86,124]. Xu et al. [124] fused texture features with
3D structural information and RVI to invert N status with better accuracy and stability,
the LNA prediction accuracy of 0.74 during whole growth stages. By adding 2D and 3D
structural information, the background and saturation effects can be better reduced, and
the N inversion information of the crop canopy can be enhanced.

3.3. Retrieval Methods of Canopy N Status

For crop N status assessment and monitoring, the modeling methods can be divided
into statistical analysis, physical analysis, and hybrid methods. Statistical analysis is to
obtain high-precision N diagnosis by establishing mathematical relationships between
ground truth data and remote sensing spectral information, which can be further classified
into two categories: traditional statistical methods and machine learning methods. Phys-
ically based methods take the structural information and physicochemical properties of
plants and leaves as input parameters, simulate the process of radiation absorption and
scattering inside the crop, and form the reflection spectrum and output, so as to establish
the correlation between crop parameters and ground reflection spectrum. The models are
divided into radiative transfer models (RTM) and geometric optical models, and RTM are
often used in research because of the continuous and uniform distribution of rice and wheat
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in cultivation. Hybrid models have advantages by using multiple categories of models in
combination but are currently used rarely in N retrieval (discussed in Section 5).

Table 1. Spectral indices for assessing crop N status.

Index Formula Reference

Nitrogen Reflectance Index (R800/R550)target

(R800/R500)reference

[125]

Red Edge Position: Linear Extrapolation Method
linear extrapolation of two straight lines on the
derivative spectral curve (lines formed by 680 nm
and 694 nm, and formed by 732 nm and 760 nm)

[126]

Normalized Difference Red Edge R790 − R720
R790 + R720

[33]

Double-peak Canopy Nitrogen Index (R720 − R700)/(R700 − R670)
R720 − R670 + 0.03

[127]

Nitrogen Planar Domain Index Measured CIred edge −CIred edge_MIN
CIred edge_MAX−CIred egde_MIN

[118]

Water Resistance Nitrogen Index (R735 − R720)R900
R(R930 − R980)(R735 + R720)min

[128]

Canopy Chlorophyll Content Index NDRE−NDREmin
NDREmax −NDREmin

[129]

Modified Chlorophyll Absorption Ratio Index R700 − R670 − 0.2(R700 − R550)
R700/R670

[130]

MCARI/MTVI2
MCARI = R700 − R670 − 0.2(R700 − R550)

R700/R670

MTVI2 =
1.5(1.2(R800 − R550)− 2.5(R670 − R550))

sqrt((2R800 + 1)2 − (6R800 − 5sqrt(R670))− 0.5)

[131]

Ri stands for reflectance at wavelength i nm.

3.3.1. Traditional Statistical Methods

Traditional statistical methods have simple mechanisms, and their inverse accuracy
depends more on the rationality of modeling parameters, thus they cannot overcome the
influence of environmental and other factors, and there are difficulties in transferring
prediction models to other datasets. However, due to the simplicity and convenience
of the model and its usability, it is still widely used in the field of crop N monitoring
at present. Univariate linear regression and its nonlinear transformation, as the basis of
statistics, have achieved good results in exploring whether there is a significant correlation
between crop N indicators and individual VIs, and occupy an important position in N status
inversion [104,132,133]. Hansen et al. [89] found that applying partial least squares regres-
sion (PLSR) to fit N status gave equal and better results than exponential regression, with
the R2 maximum increase of 23%. PLSR was considered a good alternative to univariate
statistical models. When multiple growth stages are involved or when there is a lack of
phenological information, individual index that do not fully utilize spectral data cannot
describe the relationship between N and spectral information, so using multiple linear
regression (MLR) is a better choice [134]. MLR can reduce model chance. Whether the
parameters involved in modeling exist in response to N and whether there is overfitting
between parameters is the key to influencing the multiple regression model. Pearson
correlation coefficient is generally used as a measure in the study, and the combination of
parameters with larger correlation coefficients is selected to construct MLR models with
good interannual scalability [64,69]. PLSR, principal component analysis (PCA), stepwise
multiple linear regression (SMLR), and Ridge Regression, etc., play an advantage in dealing
with the collinearity problem between parameters. Many co-linear spectral variables were
reduced to a few uncorrelated latent variables to avoid overfitting problems [91,123,135].
The selection of a suitable variable dimensionality reduction method based on the quan-
titative relationship between the number of samples and the dimensionality of vari-
ables, combined with multiple regression, significantly improves the inversion accuracy
and applicability.
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Traditional statistical methods can describe different rates of change between N status
and spectral information, providing fitting models for a variety of change conditions. For
region-specific datasets, models with good inversion effects can be obtained by comparing
different regression methods; for datasets with different growing environments, the best
regression models derived from the study will be different [64,89,104,134]. Although the
statistical models are not stable enough to overcome environmental problems, the different
regression methods in the statistical models are more consistent in principle, have specific
mathematical relationships, are easy to understand and apply, and are extremely convenient
to use in fixed research areas. Therefore, the traditional statistical methods still dominate
the existing N remote sensing monitoring studies.

3.3.2. Machine Learning Methods

Machine learning models are gaining widespread attention for their ability to handle
large amounts of input data from multiple platforms and to solve nonlinear tasks. Artificial
Neural Network (ANN) and Back Propagation Neural Network (BPNN) are commonly
used models for remote sensing estimation of crop N status, which can automatically extract
relevant features from data. However, in practical applications, a large training dataset is
required, and the number and size of the implied layers, training efficiency, and overfitting
are considered. Yang et al. [96] used Gaussian radial basis function as the implied layer of
the neural network to avoid the tedious calculation and overfitting phenomenon of BPNN,
with structural adaptive features, good generalization ability and fast learning convergence
speed, and more stable and reliable application. When constructing neural network models
directly, the differences in results for different types of parameters are not obvious, but the
accuracy is significantly improved after using PCA for model input parameters [136–139].
The combined use of PCA and machine learning methods shows unique advantages and
promising applications.

Support Vector Machine (SVM) is extremely effective for analytically solving high-
dimensional data problems. Yao et al. [140] applied traditional regression analysis, ANN
and SVM, to compare the prediction accuracy, computational efficiency and complexity
level of different methods for inversion of wheat LNC. The results showed that the machine
learning models were more accurate, with the SVM method being more stable in dealing
with potential confounding factors for most varieties, ecological niches, and growth stages.
The kernel function in SVM is the focus of attention, and the multiple-kernel support vector
regression (MK-SVR) plays an advantage in estimating N status at different growth stages
because it combines the advantages of local kernel function and global kernel function [141].
However, complex optimization algorithms can reduce the computational efficiency of
SVM and using a combination of least squares and SVM methods, LS-SVM can solve
linear or nonlinear multivariate estimation capability in a relatively fast way, significantly
improving the computational efficiency of SVM [17,141,142].

In the presence of weak a priori knowledge, Gaussian Processes Regression (GPR) can
perform adaptive nonlinear fitting of complex datasets with flexible probabilistic Bayesian
models and simpler parameter optimization applied to crop N status inversion [11,93,143].
Random Forest (RF) integrated with decision trees as the basic unit can rank the importance
of variables, reduce redundancy in high-dimensional datasets, and have high stability, with
vast application prospects [37,144]. When the entire spectral range of a single band is used
as an input variable, the accuracy of regression by RF inversion (R2 = 0.89) is higher than
that of univariate regression with existing VIs; when VIs is used as input features, model
accuracy is improved with R2 of 0.95 [145]. Determining the appropriate input dataset is a
key element to exploit the predictive power of the model.

Machine learning methods techniques can be used to reveal the physiological and
structural characteristics of plants, and can respond to dynamic differences in physiology
due to environmental influences [144]. The study is no longer limited to conventional
machine learning models, but improves the models starting from input datasets [138,145],
model parameters [96,144], functions and structures [17,96,141], which not only improves
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the efficiency of data analysis, but also enables higher accuracy N status analysis, making
it more efficient and flexible in N monitoring. The input variables have diversified from
single spectral information to mathematically transformed spectral data, spectral indices,
and texture information, etc. while the machine learning methods are expanding toward
efficiency, accuracy, and speed.

3.3.3. Physically Based Methods

RTM use optimization algorithms for inversion to infer the N content of crops from
observed spectral data. Depending on the scale of the object of study, it is mainly di-
vided into leaf radiative transfer models and canopy models. At the leaf scale, the
PROSPECT model is the most widely used and has been continuously optimized and
improved [146–148]; at the canopy scale, the SAIL model is one of the first models ap-
plied, mainly for uniformly distributed continuous vegetation surfaces [149]. Combining
PROSPECT and SAIL models to invert vegetation physiological and biochemical parame-
ters is a common approach nowadays, mostly around canopy and LCC, water content and
leaf area [29,75,150,151]. Most studies derive crop N status through empirical relationships
based on significant associations between leaf area or Chl and N. Despite the long-standing
stability and reliability of RTM in the inversion of physicochemical parameters, different
configurations of the model by users may lead to equally plausible results [152,153], so
it is necessary to constrain the model using a priori information. Combining the DSSAT
cropping system model CSM and PROSAIL model, complementing the interaction between
crop growth stages and the environment for the constraints of the input parameters of
the PROSAIL model, plays a unique advantage in the inversion of crop physicochemical
parameters, not only with high accuracy, but also with the statistics of physicochemical
parameters among different varieties of crops [154].

Yang et al. [155] used N uptake coefficients to equivalently replace the Chl uptake
coefficients in the original PROSPECT model, and established the N-PROSPECT model
based on the PROSPECT model to directly invert leaf N content. The N-PROSAIL model,
established by combining the N-PROSPECT model and the SAIL model, achieves the
diagnosis of N status at the leaf and canopy scales, and reduces the model error by setting
a priori parameters at different growth stages [156]. The RTM expresses the crop growth
process from a physical point of view, which is more stable in the inversion, but has the
problem of being time-consuming. Combined with the Lookup Table (LUT) it can reduce
the computational demand. Li et al. [157] constructed a multi-LUT for wheat LAI, LND
and two spectral indices (MSR and MCARI/MTVI2), which not only reduced the LUT size
and improved the computation time, but also had better accuracy of N estimation. On
the other hand, since protein is also a major N-containing component in crops, coupling
protein specific absorption coefficients into the PROSPECT model to form PROSPECT-PRO,
which is combined with the 4SAIL model to form PROSAIL-PRO, can also be used for
crop N status diagnosis [31,158]. RTM with strong explanations is better expressed in the
inversion, but because the model expression depends on the input of more parameters
and complex computational process they are less used in current research. Reducing the
complexity of models and complementing the advantages of statistical models, hybrid
RTM and machine learning models have become a future research need.

4. Influential Factors on Accuracy of Remote Sensing Monitoring of Canopy N

Spectral reflectance information has been shown to be sensitive to the N content of
canopy leaves, but differences in data acquisition, vertical distribution of leaf N, dynamic
changes in N during the growth stages, and physiological differences between different
plants can all have an impact on the correlation between crop spectral information and
canopy N indicators.
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4.1. Differences in Data Acquisition Angles

Both portable spectrometers and UAV sensors usually acquire spectral data for crop N
monitoring within a range of VZAs, which can vary by 30◦ and more. The spectral indices
in crop N status studies are usually developed from vertical angle data. However, due
to the variation in the angle of view of data acquisition caused by different experimental
conditions, and the anisotropy of vegetation reflectance, the accuracy and robustness of
using these indices directly to estimate the N content are not sufficient. The reflectance in
the VIS, red edge and NIR bands decreases gradually from VZAs from −60◦ to 0◦, with
relative changes in reflectance ranging from 34.7% (+60◦) to 265.5% (−60◦), and 81.7% (+60◦)
to 89.3% (−60◦) in the VIS and NIR bands, respectively [53]. Therefore, developing an
index that is sensitive to N content and insensitive to VZAs is of great practical importance
to adapt to different experimental conditions, improve prediction accuracy and enhance
model stability.

Higher viewing angles allow better extraction of crop biochemical information com-
pared to the nadir orientation [159]. The change in view angle significantly affects canopy
reflectance, especially in the red and NIR bands, which in turn makes VIs based on these
spectral bands sensitive to angle [160]. The introduction of angle-insensitive bands to
construct indices, such as the normalized difference red edge (NDRE), the green and blue
bands, and the green band Chlorophyll Index (CIgreen), can improve the accuracy of
canopy N inversion of different VZAs remote sensing images, significantly expanding the
range of suitable viewing angles for determining crop N status by remote sensing, and thus
adapting to the differences between different experimental conditions [53,161,162]. For the
angular insensitivity index cannot be simply attributed to the effect of a single band; green,
blue and NIR bands may have played a joint role in improving the index adaptation. It is
difficult to obtain accurate spectral collection perspectives in the applications. A unified N
monitoring model under a range of perspectives can help with the flexible application of
crop N diagnosis. Like other VIs, Li et al. [53] developed angular insensitivity vegetation
index (AIVI) to have the best LNC estimation accuracy at −20◦ view angle, but at the same
time the correlation between AIVI and LNC has high stability at −10◦ to −40◦ with R2 of
0.83. Similarly, floating-position water band index (FWBI) has the highest correlation with
LNC at −10◦ view angle (R2 = 0.852), also has superior N content estimation accuracy at
0◦ to 30◦ (R2 = 0.835) [161]. The statistics on angular differences show that back-scatter
direction has better LNC prediction accuracy than the forward-scatter view angle.

However, the spectral information obtained by whatever VZAs inevitably has informa-
tion such as soil background, light shading, etc. Different growth stages and different light
conditions will change the crop spectral reflectance, which is a common noise in inversion.
The study reduces their effects by spectral preprocessing such as first-order differentiation
and wavelet transform, suitable vegetation index, and threshold segmentation [27,63,82,93].
The water background of rice is a unique feature that differs from other crops; water has
an absorption effect on the NIR band, and when the canopy cover is small, the water
depth and turbidity have an isotropic effect on the spectral reflectance of the red-edge
region [163]. Therefore, when converting reflectance to vegetation index, this effect can be
eliminated or attenuated by calculating between multiple bands. The individual N content
was significantly improved in accuracy before and after removal, and the group indicators
indicated the total amount per unit area, which was less influenced by background noise
and had a smaller enhancement effect [82].

4.2. Vertical Distribution of Leaf N

When the canopy leaves are taken as a whole object, most of the studies are carried
out for the upper leaves, ignoring the vertical heterogeneity of the canopy. The LNC within
the canopy is not constant from the top to the bottom of the leaf layer, and it varies with
growth stages. At jointing stage, flowering stage and filling stage, LNC decreases from top
to bottom; and at booting stage, it tends to increase and then decrease [43]. Moreover, it is
difficult to effectively identify the information at the bottom of the canopy by acquiring
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the crop reflectance spectra vertically due to the influence of canopy leaf cover at different
growth stages. At present, we have achieved better results in exploring the canopy N
content by acquiring reflectance spectrum vertically or from multiple angles to overcome
the stratification differences.

The PLS algorithm has better estimation capability for different levels of leaf N status,
then becomes an effective tool for early N monitoring [40,164–166]. Huang et al. [164] com-
bine NRI and NPCI to construct a PLSR model which could better retrieve foliage N density
in different leaf layers (R2 > 0.67). He et al. [166] also demonstrated that PLSR estimates
LNC accuracy better than BPNN and eXtreme gradient boost (XGBoost). However, for the
studied spectral information, which must contain information from different leaf layers, it
is especially important to determine the contribution of different leaf layers to the spectral
reflectance of the canopy. Studies have begun to explore the characteristics of the vertical
distribution of N in the canopy of crops at different growth stages, and to develop an
effective method for estimating N in each leaf layer or total N in the canopy by determining
the correlation between different leaf layers and N status [40,43,44]. Duan et al. [43] used
a calibration coefficient to adjust the relationship between the effective layer of remote
sensing detection and the whole canopy, and then developed a method for estimating
the overall canopy LNC based on GI, mND705 and NDVI. He et al. [44] estimated the
canopy top LNC by NDRE, then inputting the results into the LNC vertical distribution
model to get the model coefficients; thus the model based on the relative canopy height
could obtain LNC in different leaf layers (LNCLi), which was superior because of fewer
parameters and higher accuracy. The short plant size of rice and wheat crops and the
small vertical distance between different leaf layers can easily mask differences in the
spectral response of canopy N status changes [54]. Compared with vertical remote sensing
observation, multi-angle observation can reduce the information bias of fixed viewpoints.
Using different combinations of VZAs, Wu et al. [54] were able to retrieve LCC in the
upper-layer (VZA 10◦), middle-layer (VZA 10◦ and 30◦) and bottom-layer (VZA 10◦, 30◦
and 50◦) of the plant, respectively. Based on the response of spectral indices to each leaf
layer of N status at different VZAs, selecting the best VZAs or combination of VZAs can
realize the complementation of canopy spectral information so that the accuracy of crop N
monitoring can be more robust and accurate [40,54].

Multi-angle stereoscopic observation can obtain more vertical information about the
plant, but when the bottom leaves are too low, the influence of soil background and crop
residues, etc., will increase. Therefore, it is necessary to determine the effective depth of crop
canopy spectroscopy observation and realize the inversion model of vertical distribution
of N content in canopy from “surface” to “three-dimensional”. At the same time, the
multi-angle measurement will generate a huge amount of data, and how to quickly extract
the effective information from it has become an urgent problem to be solved.

4.3. Dynamic Changes in N during the Growth Stages

N content in crops is a long-term accumulation process that changes as growth stages.
The correlation between N and spectral information varies at different stages, and an ideal
N inversion model needs to overcome the effects of phenological variability and accurately
estimate the N content of the crop at different growth stages. Throughout the crop’s
reproductive stages, temperature levels affect photosynthesis and metabolic processes that
are closely related to N assimilation and utilization. Therefore, it is necessary to introduce
meteorological information to construct a dynamically changing model.

Crop models such as CERES and APSIM, which are widely used around the world,
simulate crop growth processes by inputting meteorological data and field management
data, etc., and are important guides for real-time diagnosis of crop N nutrition status
under different cropping conditions [167–169]. The construction of growth models relies
on numerous experimental parameters, which are data-intensive and cumbersome to
process. Cao et al. [170] dynamic obtained relative growing degree days (GDD) based on
the physiological development time of crops to participate in modeling, and quantified
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the model parameters that reduced the effects brought about by different indicators. In
addition, the field spectral information obtained based on remote sensing data is accurate,
and quantitative analysis of temporal variation between VIs is more conducive to the
dynamic monitoring of N status. Double Logistic functions and Gaussian curves fitted to
time-series data can effectively describe crop growth and senescence processes [171–173].
By combining effective accumulated temperature and crop growth parameters, such as
the spectral index NDRE, a model for monitoring the entire growing period of the winter
wheat canopy, constructed with the growing degree-days as a moderating factor, offers the
possibility for N estimation throughout the growth stages [174]. Dynamic curves of indices
such as NDVI, constructed using accumulated growing degree days (AGDD) as a time
driver, provide a reference for N nutrition diagnosis at different periods [172]. Combining
multi-temporal VIs with key phenological indicators, the constructed dynamic model
has clear biological significance, which not only facilitates crop N monitoring but also
significantly enhances the ability of N status early prediction.

4.4. Physiological Differences in Plants

N synthesis is influenced by canopy structure, photosynthesis-related pigments, and
water content, etc., and confounding effects are common in canopy reflectance under
physiological stress, making N remote sensing monitoring challenging.

Water is the carrier of N transport in the crop and is closely related to the N status of the
canopy. Exploring the spectral response to N and water shows that the spectral reflectance
of wheat treated under low water conditions increases in both regions of SWIR, with less
difference in the NIR region under water differences [27,59]. Thus, indices constructed
based on SWIR and NIR reflectance are better able to show differences between N levels
in different water treatment environments. The SWIR region contains more water-related
information, but sensors that include SWIR are costly so it is relevant to explore water-
sensitive bands in the VIS–NIR range. Under the condition of constant N content, the red
edge reflectance of crops with different water treatments tends to be the same [128]. Based
on the red-edge correlation indices such as NDRE and normalized pigment chlorophyll
index (NPCI), the introduction of water-related indices, such as floating-position water
band index (FWBI), crop water stress index (CWSI), etc., can significantly improve the
interaction between water deficit and N nutrition [128,175–177]. Whether the multi-analysis
based on specific VIs or the whole spectrum, studies have been conducted to separate N
and water information in the spectrum by reducing spectral mixing effects, thus improving
the estimation accuracy of crop N under the influence of water.

Crop growth parameters are not independent of each other and may correlate under
different circumstances, such as correlation between N, Chl and LAI when the canopy
cover is small. However, when Chl and LAI change driven by other external conditions,
there will be errors in estimating N status based on their correlation with N. Research needs
indices that are both sensitive to N and resistant to interference from other factors. The com-
bination of two VIs with different sensitivities to Chl and LAI, whose ratios can minimize
the effect of LAI and have a better correlation with Chl, such as the joint indices modified
chlorophyll absorption ratio index and second modified triangular vegetation index in ratio
(MCARI/MTVI2) [131], the red-edge-chlorophyll absorption index and the triangular vege-
tation index in ratio (RECAI/TVI) [111], the transformed chlorophyll absorption reflectance
index and optimized soil-adjusted vegetation index in ratio (TCARI/OSAVI) [177]. The red
edge region is influenced by LAI which cannot estimate N well in complex situations. Chen
et al. [127] found that there is a double-peaked phenomenon in the first-order derivative
spectrum of the red edge region, and that changes in N concentration can be amplified
as changes in the relative height of the double-peaked peaks, with which the proposed
double-peaked canopy nitrogen index (DCNI) can overcome the influence of LAI. There is
a certain similarity between different spectral indices and different physiological parame-
ters, which show hierarchy and aggregation in statistical analyses. Exploring the different
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relationships that may exist between parameters is therefore important for exploring N
status in crops grown under different growing conditions.

5. Challenges and Perspectives

After decades of development, the techniques for remote sensing monitoring of canopy
N have made rapid progress and achieved good results, but there are inevitably many
difficulties and challenges that need to be addressed.

(1) The development of multi-source data integration from “satellite–airborne–ground”
to meet the needs of high-precision monitoring at all scales. In recent years, remote sensing-
based crop N monitoring and assessment research has been conducted mainly at the
laboratory and field scale, applying small sensor platforms based on ground-based spectral
instruments and UAV to acquire data. Research on large farms, counties, cities, or larger
regional scales rely on satellite-based multispectral data. Multispectral data are affected
by radiation and atmosphere during acquisition, making processing more difficult. In the
face of complex geography, the low-resolution images are prone to mixed pixels, making it
difficult to achieve accurate estimates of N status. Hyperspectral data are limited at large
scales due to their access and data volume, so how to achieve high accuracy monitoring
and assessment of crop N over large scale areas is a major challenge currently faced.

Currently, the research on crop N estimation from UAV data is beginning to bear fruit,
with good validation in small farm applications. A summary of the spectral data acquisition
platforms and their inversion N in existing studies is shown in Table 2. UAV-based research
can not only analyze spectral information (sensitive spectra, spectral mathematical transfor-
mations, spectral combination calculations, etc.), but also extract image information (texture
information, color information, etc.), which shows advantages of high precision due to
its high spatial and temporal resolution and the amount of representation information.
Satellite-based imaging data are limited in depth, mostly only extract VIs result in low
inversion accuracy, yet satellite data is still the most important source of data for large-scale
studies. In the existing research situation, the rapid development of sensor technology
and remote sensing platforms has extended the scale of research to medium and large
farm areas. The results of existing UAV-scale research results are translated to municipal,
provincial, national, and even larger scales through algorithms such as multi-scale analysis
and reconstruction, and spatiotemporal data fusion, thus enabling N monitoring over large
areas. Therefore, the fusion of multiple sources of data from “satellite–airborne–ground”
is the basis for large scale applications with inversion accuracy [178]. At present, the
spectral resolution of the red edge and NIR bands (N-sensitive bands) in satellite-based
hyperspectral sensors is insufficient, and the spatial resolution and revisit period are not
advantageous. In this context, the transformation of ground-based research results and the
development of high-precision satellite-based hyperspectral sensors deserve even more
attention. From the perspective of data acquisition, the complementary advantages of the
multiple types of data from “satellite–airborne–ground” could break the limits of geograph-
ical scope, and then enable high-precision monitoring and assessment of crop N status at
all scales.

(2) Research still has bottlenecks in monitoring crop N in the presence of confound-
ing factors. Under N stress, the spectral properties of vegetation leaves change, and N
monitoring is achieved through crop spectral information obtained from ground-based
observations by remote sensing technology. However, in practical applications, the incon-
sistency of crop growth conditions can lead to irregular overall crop deficiencies in water,
fertilizer, and cause pests and diseases, all of which could generate yellowing and wilting
of crop leaves. The changes in the external structure and intrinsic characteristics of the
canopy, result in corresponding changes in the spectral reflectance characteristics [178]. To
simply attribute spectral changes to canopy N content would be a misjudgment. Studies
are generally set up with variable conditions for different growth stages, locations, field
management, species, or plant types to test the stability of the model. However, there is
insufficient evidence that the method is effective in overcoming spectral variation due to
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physiological differences. The primary way to achieve interpretability and practical applica-
tion of the model is to start with the principles and isolate the influencing factors [179,180].
When considering only N and another stress factor, overcoming the effects of water can
increase R2 to 0.843 [128]. However, few studies have quantified and differentiated the
contribution of leaf biochemical content (including water, diseases, other pigments, etc.) to
the spectral band from spectral perspective.

Table 2. Summary of the data platforms, retrieval methods, and research results of the studies cited
in the body.

Crop N Status Data Platforms Indices Retrieval Method Results References

Wheat LNA ASD FieldSpec Pro Spectral bands
VIs

PLSR
SVM
RF

R2 = 0.895
RMSE = 0.903 g/m2 [109]

Rice LNC
CNC

ASD FieldSpec Pro2500
ASD FieldSpec3

Spectral bands
VIs

GPR
RF, GPR-RF
SVR, GPR=SVR

R2 > 0.94
NRMSE < 6%

[52]

Wheat CND
ASD FieldSpec
Handheld
UAV (UHD 185 Firefly)

VIs N-PROSAIL

Field: R2 = 0.83
RMSE = 0.23
UAV: R2 = 0.74
RMSE = 0.26

[157]

Wheat N concentration
N content

ASD FieldSpec
HandHeld

Spectral bands
VIs Statistical analysis

N concentration:
R2 = 0.81
RMSE = 0.72%
N content: R2 = 0.96
RMSE = 0.83 g/m2

[119]

Wheat LNA

ASD FieldSpec
HandHeld 2
RealSense depth camera
D435i

VIs
Texture

MLR
BP

R2 = 0.74
RRMSEs = 40.13%

[124]

Rice LNC UAV (AIRPHEN
multispectral camera) VIs

Linear spectral
mixture analysis
Statistical analysis

R2 = 0.78
RMSE = 0.26%
RMSE = 10.4%

[116]

Wheat LNC UAV (hyperspectral
camera)

VIs
Texture

RR
PLSR
SVR
RF

R2 = 0.84
RMSE = 0.25

[123]

Wheat LNC
LNA

ASD FieldSpec
Handheld 2
RealSense depth camera
D435i

VIs
Canopy structural

PLS
RF

LNC: R2 = 0.78
RMSE = 0.35%
LNA: R2 = 0.79
RMSE = 1.54 g/m2

[86]

Rice NNI UAV (Parrot Sequoia
camera)

Spectral bands
VIs

LR, SMLR
RF
SVM
ANN

RF accuracy is the highest:
R2 = 0.61 (stem
elongation stage)
R2 = 0.79 (heading stage)
RMSEs = 0.09

[37]

Rice

LNC
PNC
LNA
PNA

UAV (Cubert S185
hyperspectral camera)

Spectral bands
VIs

LR, MLR
PLSR
ANN
RF
SVM

At single growth stage,
LR estimation N status
based on VIs has the
highest accuracy; at
multiple growth stages,
PLSR and ML are better.

[64]

Wheat N content HyMap sensor Spectral bands
PROSAIL-PRO
GP
Heteroscedastic GP

RMSE = 2.1 g/m2

The optimal N retrieval
spectral bands are in
the SWIR.

[31]

Wheat LCC Landsat8
ASD FieldSpec Pro VIs

LR
PROSPECT
SAIL

Use hyperspectral leaf
reflectance data to
simulate Landsat-8 bands
LR: R2 = 0.59
PROSPECT: R2 = 0.64

[75]

Wheat LCC
Sentinel-2
RapidEye
EnMAP

Spectral bands PLSR
Sentinel-2: R2 = 0.755
RapidEye: R2 = 0.689
EnMAP: R2 = 0.735

[74]

Wheat LNC ASD FieldSpec
HandHeld VIs Statistical analysis

AIVI could overcomes the
impact of VZAs:
R2 = 0.84 at −20◦
R2 = 0.83 at −10◦ to −40◦

[53]
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Table 2. Cont.

Crop N Status Data Platforms Indices Retrieval Method Results References

Wheat LNC ASD FieldSpec VIs
Spectral bands

VIs
BPNN
XGBoost
PLSR

R2 ≥ 0.83 at 0◦ to −30◦
VZAs range
The accuracy of PLSR is
better than VIs (16–17%),
BPNN (15–16%) and
XGBoost (29–58%) at
VZAs ±60◦

[166]

Rice LNCLi ASD FieldSpec4 VIs Vertical distribution
model

LNCL1: R2 = 0.768
LNCL2: R2 = 0.700
LNCL3: R2 = 0.623
LNCL4: R2 = 0.549

[44]

Wheat NNI

ASD FieldSpec
Micro-Hyperspec and
NIR-100 imager
SC655 thermal
camera

VIs
Thermal indices Statistical analysis

The combination of CCCI
and DWI can overcome
the influence of water to
retrieve NNI, and the
RMSE is reduced to 0.109.

[59]

Table 2 covers case studies from different regions.

In addition to physiological characteristics of vegetation, differences in soil back-
ground and canopy structure can cause difficulties in extracting whole leaf pixels, and
noise from atmospheric transport processes also affects spectral accuracy. Existing studies
mainly consider the effects of soil background and fractional vegetation cover (FVC). Before
and after removing the background pixels, the accuracy of remote sensing inversion of
crop biochemical parameters was significantly improved; for example, R2 in LAI inversion
could improve 0.27 [181], in N status inversion could improve 0.11 [82], and in Chl status
inversion could improve 0.10 [182]. However, the applicable method of background elimi-
nation is also extremely important, as it requires high performance to adapt to the complex
and changing field environment [182]. FVC correlates with background information and
combining this information with spectra can also improve N estimates in different envi-
ronmental contexts [183,184]. In addition, most imaging systems use top or side views to
collect data, and the anisotropy of spectral information leads to different responses to crop
N, and a suitable angle of spectral acquisition is important for accurate N monitoring. The
blue band has atmospheric function, when the N content estimation model combined with
blue band and other N-sensitive bands can improve the adaptability of the angle of data
acquisition [53]. Under multiple conditions such as data acquisition, environmental stress
and crop physiological stress, the spectral information is mixed with numerous non-target
factors, which need to be decomposed to determine the precise response of crop N to the
spectrum. Therefore, various influencing factors should be considered when estimating
crop N by remote sensing to achieve high precision diagnosis.

(3) Improving the generalizability of models is key to crop N monitoring and as-
sessment. To summarize the currently used models for inversion of N status and their
effectiveness, a statistical model is currently the most commonly applied method in research
experiments. When using statistical models, it is first necessary to determine the crop N
indicator, the determination of which may result in experimental bias due to equipment
or operational practices; subsequently, in the phase of selecting characteristic bands with
high correlation to the crop N indicator, there is the possibility of wrong band selection. In
essence, the reliability of statistical models to assess crop N status depends on the dataset
used to train the algorithm and the model. When applied to separate datasets under differ-
ent conditions, the models are less generalizable. To achieve regional scalability and explore
the influence of environmental differences on modeling, datasets can be constructed by
combining spectral information and ecological factors so that they contain a large amount
of variability data to improve model generalizability. However, improving the predictive
accuracy of the model by adjusting the input parameters still has limits. Considering the
principles, there is a trade-off between model interpretation and model performance. The
predictive principles of traditional statistical models are intuitive and easy to understand,
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but at the expense of model performance; some machine learning models produce better
predictive accuracy, while they are considered black box models because explaining how
these models make decisions is a very difficult task (partial model prediction accuracy
show in Table 2).

Physical models are highly advantageous in achieving model generalization, as they
simulate the interaction between physical–chemical parameters and light from the physio-
logical mechanisms of crops, thus providing explanations for the complex relationships
between spectra and physical–chemical parameters at different fertility periods and under
different growing conditions. However, the tedious and time-consuming inversion process
limits its application. Existing studies usually analyze crop status at a small number of
growth stages, so the statistical model has limited transferability across crops with dif-
ferent phenological status. The physical model overcomes this limitation and allows a
wider range of crop canopy properties to be simulated. A hybrid model combining the
mechanisms of statistical and physical models is not only efficient and flexible, but also
explanatory for parameter inversion. In a hybrid model, the physical model is used to
generate simulated spectra, which describes intra-canopy radiative transfer and interac-
tions according to physics laws, thus providing information on spectral reflectance in
relation to crop physicochemical variables [28]. Using simulated spectral data as input
to train statistical models can provide physical constraints and explanations, and give a
wider range of suitability [185]. Hybrid models have been applied successfully to estimate
crop physical–chemical parameters (LAI, LCC, FVC, etc.) [185–187], but have rarely been
used to invert N status. In recent years, physical models have moved from the previous
indirect inversion of N through the physiological relationship between Chl and N to ex-
plore direct modeling of crop N status from spectral information, with more stable models
and high response efficiency. Berger et al. [31] and Verrelst et al. [158] combined GP and
PROSAIL-PRO models for inversion of crop N content, and confirmed the efficiency of
hybrid models for direct N estimation. Therefore, how to achieve the complementary
advantages between statistical and physical models, then construct a crop N estimation
model with both mechanics and accuracy, will be the focus of future research.

6. Conclusions

Remote sensing technology is developing at a rapid pace and non-destructive mon-
itoring and assessment of crop N status is gaining importance. This paper analyses the
physiological mechanisms and spectral response characteristics of remote sensing mon-
itoring for canopy N. Taking the remote sensing monitoring platform, the correlation
between remotely sensed data and N status, and the remote sensing retrieval methods as
the entry point, this paper provides an in-depth summary of the research techniques in
the field of remote sensing monitoring for canopy N. The factors affecting the accuracy
of remote sensing monitoring are also discussed. To date, the research at field scale has
been well validated. The development of sensors and spectral carrying platforms facilitates
high-precision remote sensing monitoring of crop N at farm scale. Due to the amount
of information that can be extracted from remote sensing data, the efficiency of model
use has become a key research concern. The efficiency and flexibility of machine learning
models and the explanatory nature of physical models have their own advantages. The
hybrid of the two models is beginning to show results in improving model stability. In
addition, the effective use of multi-source data, and the removal of confounding factors
in crop N monitoring need to be further explored. In-depth understanding of the limi-
tations of current technology will be necessary to enhance the understanding of the link
between canopy optical properties and crop N status, and to identify more appropriate N
retrieval methods. In the context of the current rapid development of smart agriculture, the
combination of sensors, remote sensing platforms and the Internet of Things results in the
initial formation of a crop growth monitoring IoT platform. It provides the development
direction for real-time monitoring and early forecasting of crop N, making it more widely
application in the fields of growth monitoring, yield prediction and precision fertilization.
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Abstract: Agricultural cropping intensity plays an important role in evaluating the food security and
the sustainable development of agriculture. The existing indicators measuring cropping intensity
include cropping frequency and multiple cropping index. As a nominal measurement, cropping
frequency classifies crop patterns into single-cropping and/or double-cropping and leads to informa-
tion loss. Multiple cropping index is calculated on the basis of statistical data, ignoring the spatial
heterogeneity within the administrative region. Neither of these indicators can meet the requirements
of precision agriculture, and new methods for fine cropping intensity mapping are still lacking.
Time series remote sensing data provide vegetation phenology information and reveal temporal
development of vegetation, which can be used to facilitate the fine cropping intensity mapping. In
this study, a new temporal mixture analysis method is introduced to estimate the abundance level
cropping intensity from time series remote sensing data. By analyzing phenological characteristics of
major land-cover types in time series vegetatiosacan indices, a novel feature space was constructed
by using the selected PCA components, and three unique endmembers (double-cropping, natural
vegetations and water bodies) were found. Then, a linear spectral mixture analysis model was applied
to decompose mixed pixels by replacing spectral data with multi-temporal data. The spatio-temporal
continuous, fine resolution, abundance level cropping intensity maps were produced for the North
China Plain and the middle and lower reaches of the Yangtze River Valley. The experiments indicate
a good result at both county and pixel level validation. The method of manually delineating end-
members can well balance the accuracy and efficiency. We also found the size of the study area has
little effect on the unmixing accuracy. The results demonstrated that the proposed method can model
cropping intensity finely at large scale and long temporal span, at the same time with high efficiency
and ease of implementation.

Keywords: cropping intensity; temporal mixture analysis; endmember; unmixing; time series images

1. Introduction

Agricultural production is the cornerstone for the survival and development of hu-
man beings [1]. Due to the impact of urbanization, development of the market economy,
the international food trade and climate change, dramatic changes have taken place in
agricultural land systems. The most famous examples are the conversion of croplands
into built-up areas in the Yangtze River Delta and Pearl River Delta of China [2,3], the
phenomenon of double-cropping transitioning to single-cropping in the middle reaches of
the Yangtze River Valley [4], the non-grain use of croplands in China [5], the collapse of
soybean planting in Northeast China [6,7], and the abandoned croplands in mountainous area
in South China [8]. Furthermore, locust disasters [9], armed conflict [10], COVID-19 [11,12], etc.,
aggravated the uncertainty of food production. The world has encountered the most serious food
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crisis in the past 50 years [13]. On the other hand, continuous agricultural intensification in
some regions has caused serious ecological and environmental problems, such as excessive
consumption of water resources [14], land degradation [15], agricultural non-point source
pollution [16] and greenhouse gas emissions [17]. Therefore, agricultural cropping intensity
is an important input for evaluating the sustainable development of agriculture.

The existing methods of cropping intensity mapping include cropping frequency
(CF) and the multiple cropping index (MCI). The calculation of MCI is mostly based on
statistical data, ignoring the spatial heterogeneity within the administrative regions [18].
CF is a nominal measurement that divides crop patterns into single-cropping and double-
cropping, lacking quantitative measurement of cropping intensity. Most existing methods
for mapping CF are based on counting the number of peaks in coarse resolution remote
sensing images such as the Moderate Resolution Imaging Spectroradiometer (MODIS)
vegetation index profiles [19–23]. When a coarse resolution image is used to monitor
cropping frequency, the mixed pixel problem is particularly serious due to the fragmented
landscapes, small patch size of croplands and complicated crop patterns in Central and
South China.

There has been some progress recently on the construction of new indicators or new
methods for cropping intensity mapping. Time series high-resolution images such as
those from Sentinel-2 are used to monitor cropping intensity, alleviating the problem of
mixed pixels to some extent [24–26]. However, these methods are highly dependent on
data availability and constrained by complicated data pre-processing. The authors used
Bayesian network to obtain cropping intensity with interval measurement using time
series MODIS data [27]. This method is highly dependent on training samples, and the
accuracy of the model output depends on the quality of the samples. In any case, the above
existing methods of cropping intensity mapping cannot meet the requirements of precision
agriculture, and new methods for fine cropping intensity mapping suitable for Central and
South China are still lacking.

Although continuous accumulated high-resolution remote sensing images are helpful
for precise cropping intensity mapping, this convenience has only existed since the launch
of Landsat 8 in 2013 and the launch of Sentinel-2 in 2015. Medium-resolution data over
long time series can bridge the gap and push back observations to the year 2000 or even
earlier. Time series remote sensing data contain seasonal variation of vegetation and abun-
dant vegetation phenology information [28]. Intra-annual dense time series images carry
information on multiple cropping of crops. However, this information is usually used for
crop mapping [29,30], phenology monitoring [31], etc. Vegetation phenology information
contained in time series remote sensing data is not yet fully explored for cropping intensity
mapping. Dense time-series remote sensing images have enough repeated observation
(MODIS MOD13Q1 has 23 observations a year) and make this work possible [32].

Mixed pixels are more common in coarse resolution images and require mixture
analysis technology to decompose pixels to the abundance level. There are two mixture
analysis techniques: spectral mixture analysis (SMA) and temporal mixture analysis (TMA).
SMA methods are generally used to decompose spectral remote sensing data, among
which linear spectral mixture analysis (LSMA) is more often used. Based on the principle
of SMA, TMA is a method to decompose mixed pixels by replacing spectral data with
multi-temporal data.

The selection of endmembers (including their number and types) is another important
issue for unmixing. The two-endmember model is suitable for the decomposition of natural
land-cover types, while the three-endmember model is suitable for the decomposition of
land-cover types under human disturbance [33]. For built-up areas, the most commonly
used endmember selection method is the vegetation–impervious surface–soil endmember
model proposed by Ridd et al. [34]. For non-built-up areas, vegetation–soil–shadow (or dry
vegetation) endmember model is generally used [35]. The endmember selection is usually
scene-dependent when the TMA method is used: for example, the vegetation–impervious
surface–soil model [36], forests–multiple cropping–single cropping–non-vegetation model [32],
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and grass–corn–winter wheat–alfalfa model [37]. With proper endmember design, large scale,
long temporal spans and fine cropping intensity are possible.

To aim for large-scale, long-temporal-span and fine-resolution agricultural cropping
intensity estimation, this study presents a new TMA method for estimating cropping
intensity from historical archived time series coarse resolution remote sensing data. The
method includes: (1) constructing the feature space, finding the unique endmembers to
estimate the abundance level cropping intensity; (2) exploring the feasibility of manually
delineating endmembers and the effectiveness of the method on different regions with
varied completeness of endmember land-cover types. This work will be of great significance
for fine cropping intensity mapping at large scale and long-time series.

2. Materials and Methods

2.1. Study Area and Data
2.1.1. Study Area

The study area was the North China Plain and the middle and lower reaches of the
Yangtze River Valley (Figure 1). Major land-cover types were natural vegetation, croplands,
water bodies and built-up areas. Forests and scrublands were synthesized to natural
vegetation since they have similar phenology. Double-cropping and single-cropping coexist
in the research area. The dominant crop patterns are single-cropping paddy rice, winter
wheat-soybean, winter rapeseed-paddy rice, winter wheat-maize and double-cropping
paddy rice.

Figure 1. The location, major land-cover types and reference samples of the study area (A and B are two
test regions, corresponding to Sentinel-2 tiles 49RFP and 50SKC). The main land cover types are from the
FROM-GLC10 datasets (data source: http://data.ess.tsinghua.edu.cn/, accessed on 1 March 2023) in 2017.

2.1.2. Data

MODIS MOD13Q1 Enhanced Vegetation Index (EVI) products in 2018 with 250 m res-
olution were used and were synthesized over 16 days based on the maximum value
composite principle. The image tiles including h27v05, h27v06, h28v05, and h28v06
(h: horizontal, v: vertical) were downloaded from the National Aeronautics and Space
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Administration website (https://modis.gsfc.nasa.gov/, accessed on 1 March 2023). Image
preprocessing, including mosaic, resampling and reprojection, was conducted using the MODIS
Reprojection Tool. To eliminate the interference of clouds, snow, shadows and other factors,
Savitzky–Golay filtering was adopted to reconstruct the original time series. Data quality
information was extracted based on the pixel reliability layer of MOD13Q1 products.

Sentinel-2 data with a spatial resolution of 10 m were used to generate validation data.
Sentinel-2A (launched 2015) and Sentinel-2B (launched 2017) sensors together offer 5-day
revisit with global coverage [38]. NDVI was calculated for the Sentinel-2 data by using near
infrared and red band.

Sentinel-2 NDVI composite from three key phenological phases was used to prepare
the reference cropping intensity data. The first phase was in mid March, which represents
the peak of the first growing season of double-cropping (termed GS1). The second phase
was from late May to early June, which is the transition period between the two growing
seasons (termed TGS). Both single-cropping and double-cropping had low EVI values
at this stage. The third phase was in mid July, which is the peak of the second growing
season of double-cropping (termed GS2). Double-cropping is shown in magenta, and
single-cropping in blue in the false-color composite image (Figure 2a,b).

Figure 2. Unsupervised classification of Sentinel-2 images: (a,b) are false-color composites of Sentinel-
2 NDVI from three phenological phases (GS1, TGS, GS2); (c,d) are ISODATA classification results for
the two regions (A) and (B).

The classification was conducted based on these NDVI composites using ISODATA,
in which the classification number was between 10 and 20, and the iteration time was
set to 20. The classification results were merged into three categories: double-cropping,
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single-cropping and non-cropland (Figure 2c,d). Finally, they were aggregated to 250 m
fractional images to match the spatial resolution of MODIS data.

The crop pattern sample data were used to evaluate the accuracy of the Sentinel-2
derived cropping intensity data. The producers’ accuracies (PA) of single-cropping and
double-cropping were 91.06% and 91.16%, respectively, their users’ accuracies (UA) were
92.44% and 90.58%, respectively (Table 1), and the overall accuracy (OA) and Kappa
coefficient were 92.6% and 0.888, respectively, suggesting the reliability of the Sentinel-2
derived cropping intensity data.

Table 1. Accuracies of Sentinel-2 derived cropping intensity data using crop pattern sample data.

Cropping Intensity Single-Cropping Double-Cropping Other Total UA (%)

single-cropping 489 28 12 529 92.44
double-cropping 42 567 17 626 90.58

other 6 27 591 624 94.71
total 537 622 620 1779

PA (%) 91.06 91.16 95.32 OA = 0.926
Kappa = 0.888

To evaluate the accuracy of the Sentinel-2 derived cropping intensity data, we used
1779 crop samples (537 single-cropping samples, 622 double-cropping samples and 620
other samples) as reference data. These crop patterns were transferred into cropping
intensity: single cropping, double cropping and other (including non-crop cultivation and
non-cropland). These samples were from a filed survey in 2018 as ground truth (Figure 1),
and augmented by visual interpreting high-resolution images on the Google Earth Engine
platform. The ground truth data were collected using a mobile application, GPSTool 4.0.
The augmentation were delineated manually by overlaying ground truth data with high-
resolution images. The sample data were roughly distributed evenly throughout the
validation area and were independent and identically distributed.

In addition to the Sentinel-2 derived reference data, three cropping intensity products
were further used for the validation. The first was the MCD12Q2 V6 Land Cover Dynamics
product, which provides global estimates of the timing of vegetation phenology at 500 m
resolution [39]. The NumCycles layer in MCD12Q2 provides the total number of valid
vegetation cycles in a year. The annual average of the NumCycles was calculated and
then used as reference data. The second product was the Global Cropping Intensity (GCI)
dataset, which is an annual global multi-cropping index distribution map covering the
period from 2001 to 2019 at 250 m resolution [40]. The third was a global cropping intensity
map dataset at 30 m resolution (GCI30) from 2016 to 2018 [41].

2.2. Methods

The geometric method was used to implement the TMA model. The geometric
method is an important method for mixture analysis, and from a geometric perspective,
the multidimensional images can be viewed as a convex simplex. The convex geometry
method [42] was introduced to construct the simplex structure of time series remote sensing
data in the feature space, and the endmembers were found in this feature space.

The major steps of the methodology, including feature selection, feature space con-
struction, endmember selection, cropping intensity estimation and validation, are presented
in the flowchart (Figure 3).

2.2.1. Feature Selection

Intra-annual time series remote sensing images provide land surface phenological
information and reveal spatio-temporal development of vegetation [43]. The EVI profiles of
different land-cover types demonstrated the unique phenological characteristics of double-
cropping, single-cropping, evergreen forests, deciduous forests, water bodies, built-up
areas, etc. (Figure 4). The temporal profiles of crops are obviously different from those
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of other land-cover types. Moreover, there are great differences between single-cropping
and double-cropping. There are two peaks for double-cropping, one is around DOY (day
of year) 065 to 097, and the other is around DOY 193 to 225. However, there is only one
peak for single-cropping, which is around DOY 177 to 209. Similarly, there is only one
green cycle for forests, but the green cycle is much longer and wider compared to that of
single-cropping. In addition, both water bodies and built-up areas have low EVI values
throughout the year. These phenomena make recovering cropping intensity information
from time series remote sensing data possible.

Figure 3. Flowchart of the TMA method.

Figure 4. EVI profiles of major land-cover types in Hubei province. A total of 3000 samples were col-
lected to generate EVI profiles, including 537 of double-cropping, 622 single-cropping, 486 evergreen
forests, 432 deciduous forests, 517 water bodies and 406 built-up areas.

Principal component analysis (PCA) has been proven to be effective at detecting
seasonal changes in vegetation when applied to the time series vegetation index [44].
PCA transformation projects original data into new k-dimensional components ordered
by variance, with the majority of information provided by the first several components.
PCA components have geographic meanings; for example, Henderson et al. [45] found the
components corresponding closely to typical vegetation density or degree of seasonality,
Wang et al. [46] found the components coinciding with the average normalized difference
vegetation index (NDVI) (PCA component 1) and accounting for the most prominent
man-induced vegetation alterations (PCA component 2).

PCA transformation was applied to the original time series MODIS EVI to obtain com-
ponents with geographic meanings while reducing feature dimensions. In this study, the
first three components reserved 93.18% of the original information. From PCA component
1 (PCA 1), vegetation and non-vegetation (water bodies and built-up areas) could be easily
distinguished, and the difference between natural vegetation and croplands was also very
significant (Figure 5a,b). PCA component 2 (PCA 2) could discriminate double-cropping
from other land-cover types, and the difference between double-cropping and single-cropping
was also very obvious (Figure 5c). Moreover, PCA component 3 (PCA 3) could discriminate
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single-cropping from other land-cover types (Figure 5d). Therefore, the combination of the
first few components could be used to discriminate the major land-cover types.

Figure 5. Land-cover types (a) and the first three PCA components of the time series EVI, (b) PCA 1,
(c) PCA 2 and (d) PCA 3.

2.2.2. Feature Space Construction and Endmember Selection

The key for the unmixing is the selection of appropriate endmembers. The accuracy of
unmixing was directly affected by the quality and quantity of the selected endmembers. A
triangle is the simplest simplex when the convex geometry is introduced for the unmixing [47].
Convex cone analysis takes the boundary points of the convex cone constructed from the
observed spectra as the endmembers [48].

Two PCA components were employed to implement a projection from image space
to feature space and visually examine the distribution of the candidate endmembers in
the feature space. The combinations were from any two of the first three components.
Candidate endmember land-cover classes were sourced from the major land-cover types
of the study area and include natural vegetation, water bodies, double-cropping, single-
cropping and built-up areas. Since the purpose of the study was to map cropping intensity,
the cropland was subdivided into single-cropping and double-cropping, while other land-
cover types were used in broad categories.

Through observing these combinations, four candidate endmembers were obtained:
double-cropping, single-cropping, natural vegetations and water bodies (Figure 6).
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Figure 6. The feature space and the distributions of major land-cover types with different PCA
component combinations, in which the gray dots are all pixels of the images. (a) PCA 1, PCA 2
combination, (b) PCA 1, PCA 3 combination, (c) PCA 2, PCA 3 combination.

Through visually examining the scatter points based on the N-dimensional visualization
tool in ENVI, we found that the PCA 1 and PCA 3 combination and PCA 2 and PCA 3
combination should be excluded, and the PCA 1 and PCA 2 combination would be the best
choice (Figure 6). The mixture of single-cropping and natural vegetation could explain the
exclusion of the PCA 1 and PCA 3 combination. As for the exclusion of the PCA 2 and
PCA 3 combination, the single-cropping could not be used as an endmember because its
cropping intensity was about half that of double-cropping theoretically and could only be
inside the boundary of the feature space. With the PCA 1 and PCA 2 combination, all pixels
clustered closest to a triangle in the feature space, with three vertexes representing double-
cropping, natural vegetation and water bodies, which could be the candidate endmembers
(Figure 7).

Figure 7. The triangular feature space, in which the black dots are all pixels of the images, and the
colored dots are candidate endmember land-cover types. The EVI profiles of relevant land-cover
types are also presented.
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We also found that single-cropping was located in the transition zone from double-
cropping to the center of the feature space, and built-up areas were located in the transition
zone from water bodies to the center of the feature space. Double-cropping occupied one
of the corners and had the highest cropping intensity; natural vegetation and water bodies
were located in the other two corners and had zero cropping intensity; single-cropping
was on the transition zone from double-cropping to the center of the feature space and had
decreased cropping intensity. From these analyses, the unmixing based on this triangle
feature space met the requirements of our research. Therefore, three endmembers were
selected finally: double-cropping, natural vegetation and water bodies.

To guarantee the purity of endmembers, the Sentinel-2 images and historical images on
the Google Earth platform were used to identify large fields to assist the manual endmember
collection. High accuracy can be obtained by manually selecting endmember pixels through
the visual interpretation method [49]. The pure pixels corresponding to the endmembers
were widely distributed across the study area, and the amount reached about 0.5% of the
total pixels.

2.2.3. Cropping Intensity Estimation

The LSMA model was used to implement the TMA method. The fully constrained
LSMA model was used to estimate the abundance of each endmember. The unmixing
was conducted in the time dimension by replacing the original spectral information with
multi-temporal vegetation indices. The linear unmixing method assumed that the EVI
temporal spectra of a pixel are a linear combination of each endmember. The formulas of
linear spectral unmixing (1) and constraints (2) and (3) are as follows:

EVIi = Σn
j=1

(
f jEVIi,j

)
+ εi (1)

Σn
j=1 f j = 1 (2)

0 ≤ fi ≤ 1 (3)

where EVIi is the EVI value for each phase i in the temporal EVI image, n is the number of
end members, fi is the fraction for each end member j, EVIi,j is the EVI value of endmember
j in phase i (also the abundance of each endmember), and εi is the residual.

The abundances of all endmembers were under the constraint of being non-negative
and added up to 1. The abundance of double-cropping was extracted and was regarded
as cropping intensity, in which pixel value 0 represented abandoned cropland, and pixel
value 1 represented homogeneous double-cropping areas.

2.2.4. Validation of the Model

In addition to visual examination, the estimated cropping intensity was validated by
using the Sentinel-2 derived cropping intensity data, MCD12Q2 product, GCI dataset and
GCI30 dataset as references.

The accuracy of the model output was evaluated using the coefficient of determination
R2, root mean square error (RMSE) of the linear fitting with respect to the reference data.

The validation was conducted at grid level and county level, respectively. On grid
level, both the modeled result and the reference data were aggregated to 2 km fractural
images by summarizing the values within each grid. On county level, zonal statistics were
used to summarize the data to county level for those complete counties in the research area.

The software packages used in this research for constructing the feature space and the
model validation were ENVI (ENVI version 4.8, Exelis Visual Information Solutions, Boulder,
CO, USA) and MATLAB (MATLAB 2018a, The MathWorks, Inc., Natick, MA, USA).

269



Remote Sens. 2023, 15, 4712

3. Results

3.1. Cropping Intensity Map

The developed TMA method was used to estimate cropping intensity in the research
area in 2018 (Figure 8). Relatively high cropping intensity could be found in the North
China Plain and the center and north of Hubei Province. Furthermore, natural vegetation,
water bodies, and built-up areas featured very low intensity values.

Figure 8. Cropping intensity of the study area in 2018.

A comparison of the estimated cropping intensity with MODIS false-color composite
images and cropping frequency is presented in Figure 9. Since double-cropping areas had
high EVI values on DOY 065 and DOY 209 and low EVI values on DOY 145 (Figure 4),
they have a magenta tone in the false-color composite images. It can be observed that the
high cropping intensity pixels in the estimated cropping intensity correlate well with those
magenta pixels in the MODIS image. Additionally, the estimated cropping intensity avoids
dividing the cropping intensity into fixed categories like cropping frequency, and thus
contains detailed information.

3.2. Validation Results

When using linear fitting at the grid level, 1000 cases were randomly selected to
analyze the agreement between the Sentinel-2 derived cropping intensity data and the
estimated cropping intensity in the two test regions. The coefficient of determination (R2) of
the linear fitting reached 0.85 and 0.94 in the two test regions, respectively (Figure 10), suggesting
that our cropping intensity result well captures the variations in the reference samples.

The agreement between the three cropping frequency datasets (MCD12Q2, GCI and
GCI30) and estimated cropping intensity at the county level is presented in Figure 11. Their
R2 all achieved 0.93, demonstrating that the performance of our method is satisfactory
(Figure 11).
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Figure 9. Visual comparison of cropping intensity in 2018; (a,b) are MODIS false-color composites
(DOY 065, 145, 225); (c,d) are cropping frequency from MCD12Q2; (e,f) are the estimated cropping
intensity for the test regions A and B.
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Figure 10. Linear fitting of the Sentinel-2 derived cropping intensity and estimated cropping intensity.
(A,B) are two test regions.

Figure 11. Linear fitting of the estimated cropping intensity and three cropping frequency datasets at
the county level: (a) MCD12Q2, (b) GCI and (c) GCI30.

4. Discussions

4.1. Determining the Final Endmembers

To demonstrate the validity of the final endmembers, three PCA components were
used to visually examine the distribution of the candidate endmembers in the feature
space (Figure 12). Through rotating the feature space, different PCA component combi-
nations could be obtained and be represented in this three-dimensional space. For the
two-dimensional case, it was viewed by rotating the feature space to compress one of the
dimensions. It was difficult to visualize the one-dimensional case, so it was carried out in
the two-dimensional space and assumed to be projected into one of the features. PCA 2
was found to be the most ideal feature when one feature was used. Table 2 lists all possible
combinations using the three PCA components.

Through the visual examination, we found that three models might meet our require-
ments (Table 2, in bold font). With the first model, it was difficult to meet the purity
requirements for the endmembers because it lacked major land-cover types. The four-
endmember model (the fifth model) did not fit the definition of cropping intensity in our
study because single-cropping was also taken as one of the endmembers. Therefore, the
three-endmember model using PCA 1 and PCA 2 was finally selected.

272



Remote Sens. 2023, 15, 4712

Figure 12. The three-dimensional feature space.

Table 2. Multiple endmember models.

Number of Features Features Types of Models Endmembers

1 PCA 2 two-endmember model double-cropping, natural vegetation,
2 PCA 1, PCA 3 two-endmember model double-cropping, water bodies

2 PCA 1, PCA 2 three-endmember model double-cropping, natural vegetation,
water bodies

2 PCA 2, PCA 3 three-endmember model double-cropping, single-cropping,
natural vegetation

3 PCA 1, PCA 2, PCA 3 four-endmember model double-cropping, single-cropping,
natural vegetation, water bodies

4.2. Delineating the Endmembers Manually

Accurate and fast endmember selection is the key to the successful application of
the method. Although the endmember selection based on high-resolution remote sensing
images (named ESRS) could ensure the purity and representativeness of the endmembers,
it suffered from the heavy load of work for pure pixel selection and was highly dependent
on the availability of high-resolution images.

Therefore, we explored the feasibility of manually delineating endmembers (named
MDE). This was achieved by drafting the vertex of the convex simplex through human–
computer interaction in the feature space. We first delineated those pixels around the
vertices as endmembers, as close to the vertices as possible. As this work was susceptible
to the operator’s knowledge of what a “vertex” is, the operation was repeated three times
by covering different area sizes (Figure 13).

Figure 13. Delineating endmembers with different area sizes: size 1 (a), size 2 (b), size 3 (c). The sizes
of the area gradually expand.
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The estimated cropping intensity with different vertex sizes was compared with
MCD12Q2 at the county level. The R2 of the correlation between the estimation and
MCD12Q2 were all above 0.87 (Figure 14), which confirmed that the proposed endmember
selection method is applicable and robust. Compared with ESRS, MDE has the advantages
of high efficiency and ease of implementation, and the accuracy and efficiency can be
well-balanced.

Figure 14. Correlation between MCD12Q2 and MDE estimated at the county level.

The accuracy of the unmixing decreased slightly when the sizes of endmember areas ex-
panded (Figure 14). This is explainable since the closer the endmember is to the vertex of the
convex simplex, the purer the endmember will be. Therefore, to ensure the accuracy, the delineat-
ing area of endmembers should be as small as possible and as close to the vertex as possible.

4.3. Unmixing in Regions with Different Sizes and Varied Endmember Land-Cover Types

The shape of the feature space varied when the research area covered different regions
with different sizes. The shape of the feature space affected the unmixing accuracy since
the approximate triangle was the basis of the method. Therefore, the relationships of the
size of the research area and the completeness of the land-cover types with the unmixing
accuracies were explored.

The estimated cropping intensity and MCD12Q2 were compared for test areas with dif-
ferent sizes (Figure 15). The mean cropping intensity values were compared at
10 km × 10 km block level. The area sizes, the corresponding feature space and the
unmixing accuracies for each test area are given in Table 3.

The completeness of the three endmembers in the study area was the precondition
for the successful application of this method. The three vertices in the feature spaces were
obvious in all test areas with varied sizes. R2 values were above 0.87 in all test areas,
demonstrating that the size of the study area had little effect on the unmixing accuracy as
long as the study area had all necessary land-cover types.

The effectiveness of the proposed method also depends on the completeness of end-
member land-cover types. Our method can be applied directedly to the North China Plain
and the middle and lower reaches of the Yangtze River Valley, which are double-cropping
or double-single-mixed cropping areas with relatively large patches of croplands. The
successful application of the method requires the concurrence of three land-cover types
(double-cropping, natural vegetation and water bodies). The method will need further
work (for example, to construct a new feature space, to find the new optimal endmembers
again) when lacking any of the three necessary endmember land-cover types, such as those
areas where crops have only one growing season (Table 4). However, expanding the test
area does aid the inclusion of all three necessary endmember land-cover types.
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Figure 15. Test areas with different sizes.

Table 3. The unmixing accuracies for areas with different sizes.

Area Size (Pixels) Feature Space R2

2000 × 2000 0.9358

3500 × 3500 0.8747

5000 × 5000 0.9034
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Table 4. Completeness of endmembers when test areas are located in regions with varied land-cover
types.

Endmembers
MODIS False-Color

Composite (DOY
065, 145, 065)

Feature Space
Completeness of

Endmembers

double-cropping,
water bodies No

double-cropping,
natural vegetation No

natural vegetation,
water bodies No

double-cropping,
natural vegetation,

water bodies
Yes

More effort is needed to find the proper endmembers when the method is extended to
areas other than China. Since the interpretation for PCA images is scene-dependent and
there has been no well outlined procedure for it, the interpretation needs more elaboration,
and that is where innovation is possible.

The abundance of natural vegetation and water bodies can also be estimated as a
“by-product” of this research. MODIS MOD13Q1 products within a year were used and
the focus was cropping intensity estimation in this study. If the method is transplanted to
time series vegetation indices with different temporal spans, other land-cover types can
also be unmixed.

5. Conclusions

Fine cropping intensity mapping is essential for agricultural production and the
sustainable development of agriculture. This study reports our work on developing a new
method to estimate cropping intensity from time series remote sensing data for a specific
region of China. A novel feature space was constructed, and three unique endmembers
(double-cropping, natural vegetation and water bodies) were found. A new TMA method
was developed to map cropping intensity at the abundance level. The estimated results
were compared with sample data and cropping intensity product data at the pixel and
county levels, respectively. The experiments demonstrated that the method is a highly
accurate, semi-automatic, and easily implemented approach suitable for large-scale and
long time-series cropping intensity mapping.

The study provided a novel method for cropping intensity estimation from historical
archived time-series coarse-resolution remote sensing data. Firstly, a new TMA method
was developed to conduct spatio-temporal continuous fine-resolution cropping intensity
mapping from coarse-resolution remote sensing data. The phenology information was
fully mined considering the seasonal variation in vegetation, including the phenological
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difference between crops and other land-cover types. Secondly, a unique feature space was
constructed, along with three endmembers: double-cropping, natural vegetation and water
bodies. The estimated results expressed crop extent and cropping intensity at the abundance
level, improving the precision of cropping intensity estimation and avoiding dividing crop
patterns rigidly into double-cropping or single-cropping. Thirdly, the MDE method has
the advantage of high efficiency and ease of implementation, facilitating the endmember
selection and unmixing process. The research provided insights into TMA-based cropping
intensity mapping.

Future work will involve extending the method to a wider area and discussing the
impact of regional differentiation on the unmixing accuracy.
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